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Summary

In this thesis we study several aspects related to the dynamics of electrons and holes in
quantum dots, as well as dynamics of electron spins in molecular magnets.

Magnetic materials and spin systems are usually probed and controlled by magnetic
fields. The techniques of spin manipulation via magnetic fields were developed in the ESR
and NMR studies. These techniques allow for detailed study and manipulation of large
collection of spins.

Reducing the size of a device improves its properties. In case of a prototypical magnetic
device, a memory element, the smaller devices will have shorter access times and larger
capacity per unit volume, and a smaller power absorption. Another important reason to
study even smaller devices is that a plethora of intriguing quantum effects become manifest
only when the size of a device is small enough. Typically, the quantum effects start to be
important at the nanometer scale. At these scale, the control via magnetic fields of individual
devices becomes problematic.

Obtaining electric fields instead, that can be locally controlled and fast switched, is a
routine nowadays. The ability to move around molecules with STM tips is just one example
of for control of quantum systems at the nanoscale with electric fields. The missing ingredient
is a mechanism that would make spins couple to electric fields. In this work I investigated
precisely this issue, namely the coupling of electric fields, either classical or quantum, to
different spin systems, like spins in quantum dots or molecular magnets.

The thesis is divided in four parts. In the first part, we investigate a new type of
spin-spin interaction, which arises due to the presence of both Coulomb repulsion between
two electrons localized in quantum dots, and the spin-orbit interaction in the host material
(GaAs). We show that this type of coupling is long-range and resembles the interaction
of two electric dipoles that depend on spin. For this interaction to arise direct coupling
between electrons is not necessary (no tunneling assumed). In the second part we investigate
the interaction between spins localized in quantum dots mediated by the electromagnetic
modes of a one dimensional microwave cavity and spin-orbit interaction. We show that this
interaction can be strong and long range (∼ mm), and can be controlled (switched on and
off) either magnetically or electrically. The third part is devoted to hole-spin dynamics in
quantum dots. We analyze the weak magnetic field regime of the relaxation of a heavy-hole
spin localized in a quantum dot. Driven by recent experiments, we show that two-phonon
processes give a good explanation for the saturation of the relaxation time at intermediate
temperatures. In the fourth part we show, by several methods, that spin transitions in (some)
molecular magnets can be induced by electric fields. We identify a spin-electric coupling
caused by an interplay between spin exchange, spin-orbit interaction, and the chirality of
the underlying spin texture of the molecular magnet. This coupling allows for the electric
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vi SUMMARY

control of the spin (qubit) states, e.g. by using an STM tip or a microwave cavity. We propose
an experimental test for identifying molecular magnets exhibiting spin-electric effects.
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Chapter 1

Introduction

In this thesis we study several aspects related to the dynamics of electrons and holes in
quantum dots, as well as dynamics of electron spins in molecular magnets.

Magnetic materials and spin systems are usually probed and controlled by magnetic
fields. The techniques of spin manipulation via magnetic fields were developed in the ESR
and NMR studies. These techniques allow for detailed study and manipulation of large
collection of spins.

Reducing the size of a device improves its properties. In case of a prototypical magnetic
device, a memory element, the smaller devices will have shorter access times and larger
capacity per unit volume, and a smaller power absorption. Another important reason to
study even smaller devices is that a plethora of intriguing quantum effects become manifest
only when the size of a device is small enough. Typically, the quantum effects start to be
important at the nanometer scale. At these scale, the control via magnetic fields of individual
devices becomes problematic.

Obtaining electric fields instead, that can be locally controlled and fast switched, is a
routine nowadays. The ability to move around molecules with STM tips is just one example
of for control of quantum systems at the nanoscale with electric fields. The missing ingredient
is a mechanism that would make spins couple to electric fields. In this work we investigate
precisely this issue, namely the coupling of electric fields, either classical or quantum, to
different spin systems, like spins in quantum dots or molecular magnets.

1.1 Quantum dots and spin qubits

Quantum dots, also known as artificial molecules, are semiconductor nanostrucures that
can accommodate several charge carriers , and show discrete level structure. In gate-defined
quantum dots, the localization of carriers to small regions is achieved with the help of external
gates, by fine-tuning their electrostatic potential. In self-assembled quantum dots instead,
the confinement of the carriers appears naturally, for example due to lattice mismatch of
two different materials.

While in the first realized quantum dots, the control over the number of electrons was
quite poor (several hundreds) and pretty unstable with respect to variation of the external
parameters (like gate-potentials, magnetic fields, currents), today’s state-of-art quantum
dots are stunning: full control over the number of electrons, down to the single electron per
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2 CHAPTER 1. INTRODUCTION

quantum dot have been realized [1, 2].
In addition to the control over the number of electrons, the control over the quantum

state of the electrons is really impressive. In particular, the spin of an electron in a quantum
dot can be by now easily manipulated in a coherent fashion. Besides the technological
progress achieved in designing and controlling them, the quantum dots have been the play-
ground for testing important physical questions. It allowed to probe in a continuous manner
the transitions from classical to quantum world, in the same time providing strong tests of
quantum mechanical behavior at the nanoscale. The ability to engineer the quantum world is
the source of fascination with quantum dots. It opens new opportunities to use the quantum
properties of matter for different technological applications. Solid state electronics industry
build up its huge success on the constant miniaturization of the on-chip integrated circuits.
However, this approach on increasing the performance of electronics has its limits, which are
not only of technological nature but, more importantly, of physical nature. Reducing the size
further leads to crossing between classical and quantum regimes, where the functionality of
the devices is ruled by the laws of quantum mechanics instead of the classical ones. However,
this is not at all a drawback, but more of a challenge. It opens the possibility for a new
kind of devices that use quantum mechanics as an essential ingredient for their operation,
e.g. quantum computers, single-electron transistors, etc.

Information processing using quantum mechanics, or quantum computing, is among the
most prominent fields of science in the last fifteen years. The motivation behind this effort
comes both from the technological appeal of new and better computers and from the fun-
damental scientific questions about the nature of information and the physical limits on our
ability to process it. Quantum mechanics enters this discussion with understanding that
an abstract information is always embedded in some real world objects and therefore it is
governed by the laws of nature which are quantum. From the point of view of technology,
the appeal of quantum computers comes from the fact that there are problems that are
tractable on quantum computers which are believed to be intractable on classical ones. The
most famous such problem is factoring of integers into their prime factors [3], suggesting
that quantum computers may be intrinsically more powerful than classical ones.

Powerful computers that cannot be built are useless, and it is crucial to know whether
the model of a quantum computer describes a machine that can be built, and how such a
machine can be built. Based on our current knowledge of quantum mechanics it is possible
to build a quantum computer. However, the realization of such a machine seems to be a
hard task.

One of the seminal ideas that for implementing a quantum computer was to use the spin
of electron as quantum bit (or qubit) for storing and processing quantum information [4]. By
now, this program for implementing qubits is called the Loss-DiVincenzo proposal. There
are a few basic requirements that a good qubit have to fulfill, called the DiVincenzo criteria:

1. Initialization in a given state with high fidelity;

2. Coherent control of single qubits (one-qubit gates) and controlled interaction between
pairs of qubits (two-qubit gates);
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Figure 1.1: Schematics of the double-dot configuration in the Loss-DiVincenzo proposal. In each
of the two sites (quantum dots) sits exactly one electron, whose confinement is provided by the
gates depicted in yellow. The coupling between the spins is controlled by the middle gates.

3. Long relaxation and decoherence times (much longer than the operation times);

4. Ability to measure the final states of the qubits;

5. Scalable qubits, if one wants to use them in future technologies.

The spin of an electron is a natural quantum system to encode a qubit, since the Hilbert space
is by nature only two-dimensional. A general spin states can be obtained by a superposition
of the spin ’up’ and spin ’down’

|ψ〉 = α| ↑〉+ β| ↓〉, (1.1)

with |α|2 + |β|2 = 1. In the Loss-DiVincenzo proposal each of the spins is carried by an
electron which is trapped in a quantum dot, like in the sketch showed in Fig. 1.1. The
initialization of the qubit is defined by an external applied magnetic field. The spins are
supposedly manipulated individually, by local time-dependent magnetic fields which are due
either to currents flowing in nearby wires, the modification of the local g-factor by gates,
spin-orbit interaction, etc. The interaction between the spins can be controlled in an all-
electrical fashion by tuning the exchange interaction between spins. This is accomplished
by changing the potential barrier between the two dots. The coupling Hamiltonian between
two spins can be mapped to the isotropic exchange spin Hamiltonian H(t) = J(t)S1 · S2,
with the exchange coupling J(t) being time-dependent. Finally, the measurement of the spin
state at the end of the operation can be made, for example, by spin-to-charge conversion
methods.

Most of the experimental setups are based on quantum dots fabricated in a GaAs two-
dimensional electron gases(2DEGs). Rapid progress in GaAs nanostructures started once
few-electron QDs became available (for a review, see e.g., Ref. [1]), which opened the door
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to control the number of electrons in a single QD down to one in vertical [5] and lateral [6]
dots, as well as in double QDs. [7–9] Further important experimental progress came with the
advent of charge sensors which, quite remarkably, enabled the measurement of the relaxation
time of one single spin. [10] The longest spin relaxation times in single GaAs QDs extend up
to several seconds [11] and were measured in lateral dots at relatively small magnetic fields
(B ∼ 1T).

The spin decoherence time in GaAs was measured also in double QDs by studying the
hyperfine-induced mixing of singlet and triplet states. [12,13] In the same set-up, a universal
entanglement operation was implemented, [13] enabling a square-root-of-swap operation [4]
between two spin-1/2 qubits on a time scale of 180 ps. Resonant and coherent manipulation
of a single spin-1/2 has recently been implemented in a GaAs double QD, making use
of electron spin resonance (ESR) [14, 15] as well as electric dipole induced spin resonance
(EDSR) [?,16] techniques. Resonant but incoherent (hyperfine-mediated) spin manipulation
in double dots was also recently demonstrated. [17]

In the past years though, a new candidate for a qubit state has been attracting growing
interest: the spin of a heavy hole (HH) confined in a flat QD. In a bulk semiconductor the
HH (Jz = ±3/2) and light hole (LH) (Jz = ±1/2) bands are degenerate giving rise to strong
mixing and thus to strong HH-spin relaxation. However, in a 2D system the HH and LH
bands are split due to the strong confinement along the growth direction [18] implying a
significant reduction of the HH spin relaxation via HH-LH mixing.

Holes have several advantages over the electron for qubit implementation. First of all,
they interact weaker than the electron with the collection of nuclei in quantum dots due
to their p-symmetry of the Bloch functions [19–23]. Even more interesting, this coupling
to the nuclei is anisotropic, namely of Ising type, with the Ising direction along the growth
direction. This implies very long relaxation times when the spin is initialized along the
z direction, even for weak or vanishing magnetic fields, as opposed to electron spin which
decays on time scales on the order of ns in weak fields. As for electrons, the spin relaxation
time for holes is set by the coupling of the spin to the phonon bath. In bulk GaAs material,
the heavy-holes spin life time is as short as picoseconds. However, confinement prolongs
this time scale to microseconds, and even milliseconds in weak magnetic fields [20, 24]. It
was showed theoretically that the hole-spin relaxation time in quantum dots is the result
of the coupling to phonons via the spin-orbit interaction in the host material [25, 26]. In
strong magnetic fields, the behavior of the relaxation time have been well described by one-
phonon processes. However, as opposed to electrons, the relaxation time show saturation
in weak magnetic fields, in the millisecond range. This cannot result from one-phonon
processes [25,26], but instead can be the result of two-phonon processes [27].

Most of the studies of holes in quantum dots were performed optically, in self-assembled
quantum dots. However, gate-defined quantum dots are way more controllable and suitable
to implement the Loss-DiVincenzo idea. The day one single hole will sit in a gate defined in
a quantum dot is around the corner, at present the state-of-art gate defined quantum dots
containing only a few holes [28]. Also, detection schemes involving quantum point contacts
in p-doped semiconductors are now developed [29].
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1.2 Single molecular magnets as qubits

Although the original proposal of using spins as qubits focused on electron localized in
quantum dots [4], the basic ideas are quite general. Other systems, like molecular magnets,
magnetic ions, electron spins in carbon nanotubes, NV-centers, etc, are as good candidates
for storing an electron spin. Each of these systems have advantages and disadvantages. For
example, as stated before, electron spins in quantum dots (gate-defined mostly) are extremely
controllable, with switching times that can be as fast as hundreds of picoseconds. However,
the main drawback of these systems is that it is very hard to wire them up in a large number.
Even though there are no fundamental reasons why wiring up a large number of quantum
dots should be impossible, it requires precise patterning of conductors in semiconductors,
and appears to be very hard with the current technology.

As an alternative to the design and fabrication of connections between many quantum
dots, the supra-molecular chemistry allows for a synthesis of large clusters of magnetic cen-
ters. In these complex molecules, the interaction between the centers is set by the molecules
themselves, and it is perfectly reproducible. The single-molecule magnets (SMMs) [30, 31]
represent a class of quantum systems that show rich quantum behavior. At low energies, the
SMMs behave as either a large spins or a systems of few interacting spins. The structure of
this spin system is tunable by altering the chemical structure of the molecules, and ranges
from a single large spin with high anisotropy barrier, to small collections of ferro- or antifer-
romagnetically coupled spins with various anisotropies. This versatility of available effective
spin systems makes the SMMs promising carriers of quantum information. The classical
magnetic fields readily interact with the spins in SMMs, and offer the most straightforward
control mechanism through the electron spin resonance (ESR) techniques [32].

Quantum behavior of SMMs is clearly manifested in the quantum tunneling of magnetiza-
tion [33–39]. A prototypical example of quantum tunneling of magnetization is the hysteresis
loop of a SMM with a large spin and high anisotropy barrier. The height of the barrier sepa-
rating the degenerate states of different magnetization leads to long-lived spin configurations
with nonzero magnetic moment in the absence of external fields. The transitions between
magnetization states in the SMM driven through a hysteresis loop occur in tunneling events
that involve coherent change of a many-spin state. These transitions have been observed as
step-wise changes in magnetization in single-molecule magnets [36, 37, 40–42]. Similar tun-
neling between spin configurations are predicted in antiferromagnetic molecules [43,44], and
the observed hysteresis was explained in terms of the photon bottleneck and Landau-Zener
transitions [45–48]. The transitions between spin states are coherent processes, and show
the signatures of interference between transition paths [49,50]. It has been argued that they
show the effects of Berry phase [51–53].

These features make them, just like quantum dots, objects that are witnesses of the
crossover between the classical and quantum worlds. Like in quantum dots, one can chemi-
cally engineer the coupling between molecules, but for a much larger number of them. This
means wiring up the magnetic molecules, a step forward to the scalability of spin-qubit sys-
tems. The drawback here is the control over these couplings. Chemistry alone is not enough
for this purpose, but combined with the methods used for the control of spins in quantum
dots, can provide full control over the magnetic molecules. There are already plenty of ideas
for using molecular magnets for quantum information processing. To give just an example,
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Figure 1.2: The Mn12 molecular magnet. a) the schematics of the distribution of the Mn ions in
the molecular magnet. b) the level structure of the lowest spin multiplet S = 10.

it was showed that Grover algorithm [54] could be efficiently implemented in in such tiny
structures [55]. Grover algorithm, or ’searching the needle in the hay-stack’ is one of the
problems that has been showed it can be solved much faster on a quantum computer than on
a classical one. Even though the special resource of quantum mechanics, i.e. entanglement,
does not play a role for this algorithm, it still makes use of interference. In figure Fig.1.2
we show one of the most widespread molecular magnets, namely the so called Mn12. This
molecule is composed of 12 Mn magnetic ions, 8 of them carrying a spin 3/2, while S = 4 of
them a spin S = 2. Due to exchange coupling between the magnetic ions, the molecule has a
ground state with S = 10. For all purposes, this molecule behaves as a large spin individual
object, and not as a collection of magnetic ions that interact.

Molecular magnets are probed and controlled usually with magnetic fields, either static or
time-dependent. ESR and NMR are by far the most used methods for this purpose, providing
information on the parameters of the spin systems (spin-Hamiltonian). However, magnetic
fields probe a large number of molecules, and not one in particular. For implementing the
spin-qubit program though, access on the single molecule level is needed. Magnetic fields
that act locally, on a single molecule, are very hard to obtain. An even harder task is to
produce both local and strong magnetic fields. Usually, strong magnetic fields are provided
by superconducting coils. These are pretty big in size and thus the magnetic fields they
create are not at all local. Electric fields instead can be made both strong and local by
using, for example, STM tips or electrostatic gates as done for quantum dots.

Most of the molecular magnets are grown in crystal structures. They form the basis
of some bulk materials and usually they are not interacting with each other. The only
common feature they share are the lattice vibrations that cause decoherence, in the same
time providing means for coupling different magnets. The bulky structure of these materials
can be quite a problem if one is to address them individually. The goal would be to isolate
single molecular magnets on, for example, surfaces of different materials, in the same time
keeping them isolated from the surface itself. This obvious task was a hard one though,
and it required a lot of effort and innovation from the experimentalist. In the end, this
was worthwhile, by now more and more materials being synthesized on surfaces. The next
step now is to control them individually and, preferably, to implement some of the existing
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quantum algorithms.

1.3 Outline

In the first Chapter we investigate a new type of spin-spin interaction, which arises due to the
presence of both Coulomb repulsion between two electrons localized in quantum dots, and
the spin-orbit interaction in the host material (GaAs). We show that this type of coupling
is long-range and resembles the interaction of two electric dipoles that depend on spin. For
this interaction to arise direct coupling between electrons is not necessary (no tunneling
assumed).

In the second Chapter we investigate the interaction between spins localized in quantum
dots mediated by the electromagnetic modes of a one dimensional microwave cavity and
spin-orbit interaction. We show that this interaction can be strong and long range (∼ mm),
and can be controlled (switched on and off) either magnetically or electrically.

In the third Chapter we analyze the weak magnetic field regime for the relaxation of a
heavy-hole spin localized in a quantum dot. Driven by recent experiments, we show that
two-phonon processes give a good explanation for the saturation of the relaxation time at
intermediate temperatures.

In the fourth Chapter we show, by several methods, that spin transitions in (some)
molecular magnets can be induced by electric fields. We identify a spin-electric coupling
caused by an interplay between spin exchange, spin-orbit interaction, and the chirality of
the underlying spin texture of the molecular magnet. This coupling allows for the electric
control of the spin (qubit) states, e.g. by using an STM tip or a microwave cavity. We propose
an experimental test for identifying molecular magnets exhibiting spin-electric effects.





Chapter 2

Electrostatically coupled spins

We study the spin-spin coupling between two single-electron quantum dots due to the
Coulomb and spin-orbit interactions, in the absence of tunneling between the dots. We
find an anisotropic XY spin-spin interaction that is proportional to the Zeeman splitting
produced by the external magnetic field. This interaction is studied both in the limit of weak
and strong Coulomb repulsion with respect to the level spacing of the dot. The interaction
is found to be a non-monotonic function of inter-dot distance a0 and external magnetic field,
and, moreover, vanishes for some special values of a0 and/or magnetic field orientation.
This mechanism thus provides a new way to generate and tune spin interaction between
quantum dots. We propose a scheme to measure this spin-spin interaction based on the
spin-relaxation-measurement technique.

2.1 Introduction

Electron spins in semiconductor nanostructures are not decoupled from the charge degree of
freedom, one of the primary reasons for this coupling being the spin-orbit interaction. This
coupling leads to many interesting phenomena in the physics of semiconductors [56, 57], an
important one being the ability to control the spin of the electron with electric fields acting
on its charge degrees of freedom [?,58–62]. In GaAs quantum dots the spin-orbit interaction
manifests itself as a weak perturbation when compared with the confinement energy. The
measure of smallness is given by the ratio between the dot radius λ and the spin-orbit length,
λSO—the distance over which an electron travels and thereby precesses by an angle π about
the intrinsic ’magnetic’ field induced by the spin-orbit interaction. We mention that there
are also materials which possess large spin-orbit couplings, with the spin-orbit length on the
same order as the dot size, e.g. InAs, InP quantum dots. Despite its smallness the spin-orbit
interaction is very important for the coherence of the spin dynamics. For example, spin-
orbit interaction allows for coupling of the electron spin to (bosonic) environments, such as
phonons [63, 64] or particle-hole excitations in quantum point contacts [65], which in turn
causes relaxation and decoherence of the spins. Moreover, electrons being charged particles
interact via the long range Coulomb forces with each other, even if they are confined to well-
separated quantum dots with no overlap of their wave functions. Through this electrostatic
coupling and in combination with the spin orbit interaction, the spins of two electrons located
in different dots become coupled even in the absence of tunneling between the dots.

9
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In this section we provide a detailed analysis of such an effective spin-spin interaction for
lateral quantum dots in a configuration as shown in Fig. 1. We will see that the origin of
this interaction is the “tidal” effect each of the electrons produces on the charge distribution
of the other electron via electrostatic forces. Because of the spin-orbit interaction, the
electric dipole moment (as well as higher moments) in each dot couples to its electron
spin. As a result, the two spins experience an interaction resembling a magnetic dipole-
dipole interaction [66] with effective magnetic moments which can be strongly enhanced
by up to a factor of 103 compared to the Bohr magneton. The magnitude of the spin-spin
coupling obtained via this spin-electric effect can be efficiently controlled and even completely
suppressed by adjusting external parameters such as the magnetic field direction, strength,
and inter-dot distance.

The spin-spin interaction can, in principle, be used to perform two-qubit operations as
required in the spin-based quantum computing scheme [4], because it entangles spins and
can easily be switched on and off. We note that a similar mechanism for spin interaction
based on electrostatic coupling was studied very recently in Ref. [67] for vertically coupled
quantum dots, and in Ref. [68] for the special case of one-dimensional quantum dots formed
in semiconducting nanowires. Besides the differences in geometry and dimensionality, both of
these works treat only the case of weak Coulomb interaction (compared to the level spacing),
while we treat here also the opposite limit of strong Coulomb interaction where new and
interesting features emerge. In the limiting case of strongly elliptical dots we recover the
one-dimensional results obtained in Ref. [68].

We emphasize again that in the present study we exclude tunneling and thus the type
of spin interaction studied in the following is fundamentally different from the Heisenberg
exchange interaction for which the presence of electron tunneling between the dots is crucial1

[69–71]. Similarly, the combined effect of Heisenberg exchange interaction and spin-orbit
coupling [72–76] is also based on tunneling and should be carefully distinguished from the
spin-orbit effect studied here. We also note that the Heisenberg exchange coupling allows
typically for much stronger spin-spin coupling than the electrostatically induced one. For
instance, in GaAs dots the Heisenberg exchange can reach values on the order of 0.1 meV −1
meV, which, as we shall see, exceeds the electrostatically induced spin coupling by three to
four orders of magnitude. Nevertheless, the electrostatic spin coupling can prove useful for
cases where it is difficult to get sufficient wave function overlap (needed for large Heisenberg
exchange), and, moreover, it is also important to understand the electrostatic spin-effects
in detail in order to get control over possible interference effects between different types of
spin coupling. This will be for example of importance for spin qubit applications in order
to minimize spin decoherence and gate errors.

Finally, in view of experimental tests we propose a scheme to measure the spin-spin
interaction in a double dot setup with a nearby charge detector. We propose to combine
the spin-measurement technique of Ref. [10] with the entangling property of the spin-spin
interaction and present a gate pulsing sequence that enables one to access the coupling
constant in the time domain by measuring the occupation probability of a Zeeman sublevel.

1To distinguish between the two mechanisms we refer to the coupling studied in this work as ’spin-spin
coupling’ as opposed to the Heisenberg exchange coupling.
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Figure 2.1: The figure shows a sketch of the model system which consists of two identical quantum
dots in the xy-plane, separated by distance a0 (measured from dot-center to dot-center). ~Si denotes
the spin of electron i = 1, 2, λ is the dot radius, and ~B is the external magnetic field. The respective
orbital wave functions of electron 1 and 2 are assumed to have no overlap (i.e. tunneling between
the dots is excluded). The remaining purely electrostatic Coulomb interaction between the electron
charges leads, via spin-orbit interaction, to an effective coupling between their spins. This spin-
spin interaction depends sensitively on the orientation of ~B, with no component along it, and is
proportional to ~B2.

2.2 The Model

Our system consists of two electrons each of which is localized in a quantum dot, and the
two dots are separated from each other, without tunneling between them. The system is
composed of two gate-defined quantum dots in a two-dimensional semiconductor layer (e.g.
GaAs or InAs). A schematics of the system we consider is shown in Fig 1.

We model the system by a harmonic confinement potential, which, for simplicity is
assumed to be the same for both dots. Each dot is assumed to contain one electron with
charge −e and spin S = (~/2)σ, with σ = (σx, σy, σz) being the Pauli matrices. The model
Hamiltonian consisting of several terms reads

H = H0 +HZ +HC +HSO, (2.1)

where H0 is the energy of the two electrons in the confinement potentials

H0 =
∑

i=1,2

(
p2i
2m∗ + U(ri)

)
. (2.2)

Here, pi = −i~∂/∂ri + (e/c)A(ri) is the 2D kinetic momentum of the i-th electron at
position ri, m∗ the effective mass, c the speed of light, U(ri) = (m∗/2)ω2

0r
2
i the confinement

potential for the i-th electron which is assumed to be harmonic and isotropic, and A(ri) is
the electromagnetic vector potential. The strength of the confinement energy is given by the
frequency ω0. The second term on the right-hand side of Eq. (3.5) is the Zeeman energy of
the two electrons,

HZ =
1

2
gµBB · (σ1 + σ2). (2.3)

The third term in Eq. (3.5) is the unscreened Coulomb interaction between the two electrons,

HC =
e2

κ|r1 − r2 + a0|
, (2.4)
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where κ is the dielectric constant of the material and a0 is the geometric distance between
the two dots, namely between the potential minima (’center’) of the dots. With this choice,
we measure the distance for each electron from its own dot center. The last term in Eq.
(3.5) is the spin-orbit coupling which for strong z-confinement is given by

HSO =
∑

i=1,2

[β(−pixσi
x + piyσ

i
y) + α(pixσ

i
y − piyσ

i
x)], (2.5)

being the sum of the Dresselhaus term [77] (β) coming from bulk inversion asymmetry
and the Rashba term [78] (α) coming from structure inversion asymmetry. We assume the
same coefficients β and α for both dots. It is convenient to work with center-of-mass and
relative coordinates [79], as the Coulomb interaction couples only to the relative ones and
the solution of the center-of-mass part is straightforward [80, 81]. This then involves the
standard substitutions M = 2m∗, m = m∗/2, R = (r1+r2)/2, r = r1−r2, and P = p1+p2

and p = (p1 − p2)/2.

2.3 Spin-Spin Coupling

We now turn our attention to the spin-orbit interaction. As was shown in Ref. [64], the
spin-orbit coupling gives non-zero first order effects only if a magnetic field is present, as a
consequence of the Kramers degeneracy. In order to describe the effective first order spin-
orbit term in the presence of a magnetic field we make use of the Schrieffer-Wolff (unitary)
transformation [?, 64]

H̃ = eS(Hd +HZ +HSO)e
−S

= Hd +∆H + eSHZe
−S, (2.6)

where S = −S† is chosen such that P∆H = ∆H, with the projector operator P satisfying
PA =

∑
nAnn|n〉〈n| ∀A, and Hd|n〉 = En|n〉. The Hamiltonian Hd = H0 + HC (or Hd =

HR +Hr +HC in center-of-mass and relative coordinates). The Hamiltonian H̃ = Hd+∆H
is diagonal in the basis of Hd and has the same energy spectrum as the Hamiltonian H =
Hd + HSO. In first order of the spin-orbit interaction HSO the transformation generator
becomes S = (1 − P)L−1

d HSO, where Ld is the dot Liouvillean, LdA = [HR +Hr +HC , A],
∀A. Evaluating this expression explicitly we obtain

S = (1− P)i
∑

i=1,2

ξi · σi, (2.7)

with ξ1,2 = (y1,2/λ+, x1,2/λ−, 0). In second order in spin-orbit coupling the transformed
Hamiltonian H̃ becomes

H̃ = HR +Hr +HZ +HC +HZ
SO +∆HSO, (2.8)

with HZ
SO = HZ1

SO +HZ2
SO and ∆HSO = 1/2[S,HSO] + [S, [S,HZ ]] where

HZ1,2
SO = [S,H1,2

Z ] = EZ(1− P)[l× (ξR ± ξr/2)] · σ1,2 (2.9)
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∆HSO =
~

m∗λ−λ+
(1− P)

∑

i=1,2

(xipiy − yipix)σiz

+EZ
1

λ−λ+
(1− P)

∑

i=1,2

[(l× ξi)× ξi]σi. (2.10)

In Eqs. (2.9) and (2.10) l = B/B is the magnetic field direction vector, EZ = gµBB is
the Zeeman energy and the vectors ξR and ξr are given by ξR = (Y ′/λ−, X

′/λ+, 0) and
ξr = (y′/λ−, x

′/λ+, 0), respectively. The new coordinates correspond to a rotation by an
angle π/4 − γ with respect to the coordinate frame in which the direction of the a0-vector
is associated with the x-axis in the XY (xy) plane so that the final expressions have the
simplest form [64]. Here, γ is the angle between the xy frame in Fig. 1 and the normal axes
of the crystal. The spin-orbit lengths λ± are given in the form 1/λ± = m∗(β ± α). The
terms which are of second order in spin-orbit coupling in Eq. (2.10) (which are also zero and
first order respectively in Zeeman splitting) are single-spin terms and no coupling between
spins take place in this order. In fact, they are just second order terms which are present
in perturbation theory for an isolated spin in a QD, but now renormalized by the Coulomb
interaction between the two electrons. We neglect these terms in the following analysis
since they only change the on-site Zeeman interaction by a small amount. We are now in
a position to derive the coupling between the two spins. This is achieved by performing a
second Schrieffer-Wolff (SW2) transformation which excludes the first order contribution in
spin-orbit interaction with no diagonal matrix elements. The new transformed Hamiltonian
has the form Heff = eT H̃e−T , with T given by

T = (1− P)i(Ld + LZ)
−1HZ

SO. (2.11)

We assume now that the Zeeman energy is smaller than the orbital confining energy, EZ ≪
~ω0, which is usually the case for electrons in quantum dots, such that we can neglect in Eq.
(2.11) the Zeeman Liouvillean LZ (for spin-orbit effects due to level crossing see Ref. [25]).
In second-order in spin-orbit coupling the effective Hamiltonian Heff becomes

Heff = Hd +HZ +
1

2
[L−1

d HZ
SO, H

Z
SO]. (2.12)

The last term in Eq. (2.12) contains the desired spin-spin coupling between the two spins.
However, besides this interaction it also contains some self-interaction terms which renor-
malizes only the Zeeman splitting. We will not study those terms since they are of no
practical interest in the case of identical dots. We consider a general magnetic field B =
(cosΦ sin θ, sinΦ sin θ, cos θ), where θ is the angle between the magnetic field and the z-axis
perpendicular to the 2DEG plane and Φ the angle between the in-plane component of the
magnetic field and the x-direction (Fig. 1). The interaction between the two spins has the
most general form

H̃s =
1

2

∑

i 6=j

[L−1
d HZi

SO, H
Zj
SO], i, j = 1, 2. (2.13)

The spin Hamiltonian is obtained by averaging over the orbital ground state, Hs = 〈0|H̃s|0〉.
We then obtain

Hs = σ1 ·Mσ2, (2.14)
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where
Mab = E2

Z〈0|[(l× L−1
d ξ1)a, (l× ξ2)b]|0〉, a, b = x, y, z. (2.15)

We note that there is no component of the spin along the magnetic field direction as a
consequence of the vector product in the tensor M . By diagonalizing the above tensor, we
obtain for the Hamiltonian Hs the reduced expression

Hs = Jx̃σ
1
x̃σ

2
x̃ + Jỹσ

1
ỹσ

2
ỹ . (2.16)

where the couplings Jx̃,ỹ depend on the magnetic field orientation and on the functions
Ca1b2 = 〈0|[L−1

d a1, b2]|0〉, with a, b = x, y (for explicit expressions see the Appendix A). Thus,
the effective spin-spin interaction is highly anisotropic, and, in general, of the XY -type. We
note in particular that for an in-plane magnetic field (θ = π/2), the spin Hamiltonian reduces
to the Ising Hamiltonian, Hs = Jỹσ

1
ỹσ

2
ỹ (in a transverse magnetic field). Next, we rewrite

Hs in terms of raising/lowering spin operators σ± = σx̃ ± iσỹ

Hs = Jeff (σ
1
+σ

2
− + σ1

−σ
2
+) + J ′

eff (σ
1
−σ

2
− + σ1

+σ
2
+), (2.17)

with Jeff = (1/2)(Jx̃ + Jỹ) and J ′
eff = (1/2)(Jx̃ − Jỹ). We recall now that the full spin

Hamiltonian includes the Zeeman energy, given in Eq. (2.3), which leads to a large energy
gap with 2EZ ≫ Jx̃,ỹ. We will find below that typically

Jx̃,ỹ
EZ

∼ EZ

~ω0

(
λ

λSO

)2

≪ 1 (2.18)

under our assumption that EZ ≪ ~ω0 and λ ≪ λSO. As a consequence, we can neglect
in Eq. (2.17) the terms proportional to J ′

eff since they cause transitions between different
Zeeman levels of the total spin. The relevant spin-spin interaction, Heff

s , which acts only
within the S − T0 subspace, becomes then

Heff
s = Jeff (σ

1
+σ

2
− + σ1

−σ
2
+). (2.19)

Thus, we are left with the task of calculating the coupling strengths Jx̃,ỹ and Jeff . Because
of the Coulomb term, Eq. (2.4), this cannot be done exactly and some approximations
are required. They will depend on the ratio δ between the Coulomb interaction strength,
e2/κa0, and the orbital level spacing, ~ω0, giving δ = (e2/κa0)/~ω0 = (λ/aB) · (λ/a0), with
λ =

√
~/m∗ω0 being the dot radius and aB = ~

2κ/m∗e2 - the Bohr radius in the material.
In other words, the parameter δ will dictate the physics of the system, and from now on
we will speak of the ratio λ/aB as being the Coulomb interaction strength (representing
in fact the ’true’ Coulomb strength for touching dots). For making the following analysis
more transparent we focus on the case with only Rashba spin-orbit coupling (λ− = λ+ ≡
λSO). The generalization to the case with both Rashba and Dresselhaus terms present is
straightforward, but at the cost of more complicated expressions (see Appendix A).

2.3.1 Weak Coulomb coupling - δ ≪ 1

One interesting case is met when δ ≪ 1, such that the Coulomb interaction can be treated as
a perturbation compared to the orbital level spacing. In this case, one can retain only the first
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order contribution from the Coulomb interaction, which translates into the approximation
L−1
d ≈ L−1

0 − L−1
0 LCL

−1
0 . Making use of this and after some algebra we obtain for the

spin-spin coupling the following expression

Hs =

∫
dr1dr2

δρ1δρ2
κ|r1 − r2 + a0|

, (2.20)

where the operators δρi, i=1,2, are the charge density distribution modifications in each dot
as a consequence of the spin-orbit interaction. They are defined as

δρi = ρi − ρ0i , i = 1, 2, (2.21)

with ρ0i being the charge density operator in the absence of spin-orbit interaction and ρi =
eT0ρ0i e

−T0 the one in the presence of spin-orbit interaction, with T0 = L−1
0 HZ

SO for the present
approximation. From Eq. (2.20) we see that the spin interaction results from a Coulomb-
type of coupling between two charge density distributions which themselves depend on spin.

Let us now analyze in more detail Eq. (2.20). The first task is to find δρi, for i = 1, 2,
namely the spin-orbit induced charge distribution or the spin-dependent charge distributions
for each dot. In order to do this, we give first some important relations valid in the case of
harmonic confining potential, relations which are used in the following for the derivation of
the main results

L−1
0 xi = − i

~m∗ω2
0

(
pix +

eBz

c
yi

)
(2.22)

L−1
0 yi = − i

~m∗ω2
0

(
piy −

eBz

c
xi

)
(2.23)

L−1
0 pi =

im∗

~
ri. (2.24)

Making use of the relations Eqs. (2.22−2.24) and within the first order of spin-orbit coupling,
i.e. δρi ≈ [T0, ρ

0
i ], we obtain

δρi(r) =
2EZe

m∗λ2ω2
0λSO

ρ0i
[
cos θ(yi cosΦ + xi sinΦ)σ

i
x

+(yi sinΦ− xi cosΦ)σ
i
y

]
, (2.25)

with ρ0i being the bare charge density in the dot corresponding to the ground state and which
assumes the well-known form for harmonic potentials

ρ0i (r) =
1

πλ2
e
−(x2i + y2i )

λ2 . (2.26)

We note that when there exist a perpendicular component of the magnetic field, the dot
radius is renormalized due to the orbital effect of the magnetic field λ→ λ(1+ r2)−1/4, with
r = ω0/2ωc (ωc = eBz/m

∗c, Bz = B cos θ). However, we will still refer to λ as being the
dot radius, with the appropriate expression depending on the magnetic field orientation. We
could now insert the expression Eq. (2.25) for δρi in Eq. (2.20) and compute directly the
spin Hamiltonian. However, working with the Coulomb potential, it is more convenient to
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work with the center-of-mass and relative coordinates and for simplicity the x-axis along
the inter-dot direction a0. Assuming for simplicity a perpendicular magnetic field, the spin
Hamiltonian Hs takes the form

Hs =
4E2

Ze
2

m∗2λ4ω4
0λ

2
SO

∫∫
dr dR ρ0(r)ρ0(R)

×
(X2 − x2/4)σ1

xσ
2
x + (Y 2 − y2/4)σ1

yσ
2
y

κ
√
y2 + (x+ a0)2

, (2.27)

with the electronic densities ρ0(r) = (2/πλ2) exp(−r2/2λ2) for the relative coordinates, and
ρ0(R) = (1/2πλ2) exp(−2R2/λ2) for the center-of-mass coordinates. In Eq. (2.27) there
are no mixed terms like σ1

xσ
2
y since those terms vanish because of the odd symmetry of the

integrands in the case of harmonic confinement, which reflects inversion symmetry. The
limit of in-plane magnetic field is obtained very easy from Eq. (2.27) by substituting the
denominator with [(X2−x2/4) cos2 Φ+(Y 2−x2/4) sin2 Φ]σ1

ỹσ
2
ỹ. [For general field orientation

the expression for Hs is more complicated (see Appendix A).] In order to make the following
analysis more transparent, we introduce the dimensionless coordinates r → r/λ and R →
R/λ. The integration over the center-of-mass coordinates is now straightforward and the
reduced expression for the spin Hamiltonian becomes

Hs =
E2

Z

m∗2λω4
0λ

2
SO

(
∆Ex

Cσ
1
xσ

2
x +∆Ey

Cσ
1
yσ

2
y

)
, (2.28)

for a perpendicular magnetic field and

Hs =
E2

Z

m∗2λω4
0λ

2
SO

(
∆Ex

C sin2 Φ +∆Ey
C cos2 Φ

)
σ1
ỹσ

2
ỹ , (2.29)

for an in-plane magnetic field oriented at an angle Φ with respect to the inter-dot distance
vector a0. The energy differences ∆Ex,y

C are given by

∆Ex
C =

e2

κλ2

∫
drρ0(r)

1− x2√
y2 + (x+ a0/λ)2

, (2.30)

∆Ey
C =

e2

κλ2

∫
drρ0(r)

1− y2√
y2 + (x+ a0/λ)2

. (2.31)

The ground state and the first excited states of the dots in relative coordinates give rise to
different charge distributions (ρ0, ρ1x, and ρ1y, respectively), and thus to different potential
energies seen by a test charge at a distance a0 (along x) away from the center of the charge
distribution (in relative coordinates). ∆Ex,y

C are the differences between these potential
energies.

Before studying the distance dependence of the spin Hamiltonian Hs (determined by
∆Ex,y

C ) in the entire range of distances, it is instructive to see how the expression Eq. (2.20)
behaves in the large distance limit, a0 ≫ λ, and to make some comparison with the magnetic
dipolar interaction in vacuum [57]. We perform a multipole expansion of the Hamiltonian
in Eq. (2.20). The first non-zero contribution takes the form of a dipole-dipole interaction
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between two spin-dependent electric dipoles, or phrased differently, the interaction between
two charge-induced magnetic dipoles

Hs ≈
m1 ·m2 − 3(m1 · na)(m2 · na)

κ a30
, (2.32)

with the dipole moments mi given by

mi = Trorb[δρiri] = ¯̄µσi , i = 1, 2. (2.33)

Here, the trace is taken over the orbital degrees of freedom with na = a0/a0 and ¯̄µ being
the tensor corresponding to an effective spin-orbit induced magneton

¯̄µ =
eEZ

m∗ω2
0λSO




− cos θ 0 0

0 cos θ 0

0 sin θ 0



. (2.34)

We see from Eq. (2.34) that the tensor ¯̄µ depends on the magnetic field orientation with
respect to the 2DEG and that it is also anisotropic, in contrast to the usual isotropic Bohr
magneton µB = e~/2mec (me is the mass of the free electron and c the speed of light).
We note that the z-component of the induced magnetic moment (with ẑ||B) vanishes, i.e.

m = (mx,my, 0). Let us quantify the strength of ¯̄µ by the norm || ¯̄µ|| = (1/
√
3)
√∑

i,j µ
2
ij,

i.e.

|| ¯̄µ|| = 1√
3

eEZ

m∗ω2
0λSO

√
1 + cos2 θ. (2.35)

We compare now || ¯̄µ|| with µB. First of all, we note that || ¯̄µ|| vanishes when there is no
Zeeman splitting. However, for finite magnetic fields, || ¯̄µ|| can exceed µB by many orders
of magnitude in the case of quantum dots. To give an estimate, we assume ~ω0 ≈ 0.5meV,
EZ ≈ 0.05meV (B ≈ 2T) and m∗ = 0.067me, λSO ≈ 10−6 m for GaAs quantum dots. With
these values, and taking θ = 0 (perpendicular magnetic field) we obtain

|| ¯̄µ||
µB

=
4√
3

EZ

~ω0

me

m∗
c

ω0λSO
≈ 103. (2.36)

We describe now in more detail the limit of large distance between the dots. From Eqs.
(2.28) and (2.27) we find for a0 ≫ λ

Hs = J(σ1
yσ

2
y − 2σ1

xσ
2
x), (2.37)

for a perpendicular magnetic field, and

Hs = J(cos2 Φ− 2 sin2 Φ)σ1
ỹσ

2
ỹ (2.38)

for an in-plane magnetic field, with the coupling strength J having the form

J =
E2

Z e
2

κm∗2ω4
0λ

2
SOa

3
0

. (2.39)
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From Eq. (2.39) we see a large distance decay ∼ a−3
0 , i.e. a long range type behavior. We

note also that the large distance result in Eq. (2.39) does not depend anymore on the orbital
effect of the magnetic field. Working instead with the effective Hamiltonian defined in Eq.
(2.19), the effective coupling strength Jeff for arbitrary magnetic field is given by

Jeff = −J
2

[
1 + sin2 θ(1− 3 sin2 Φ)

]
. (2.40)

We note that the spin coupling can range from maximally ferromagnetic interaction with
Jeff = −J at θ = π/2 and Φ = 0 to maximally antiferromagnetic interaction with Jeff = J/2
at θ = π/2 and Φ = π/2, and with Jeff passing through zero for certain angles.

Next, we consider the case of arbitrary distance but still with small Coulomb interaction
strength as defined at the beginning of this section. Considering Heff

s defined in Eq. (2.19)
we obtain

Jeff = EZ
λ

aB

EZ

~ω0

(
λ

λSO

)2

G(a0/λ, θ,Φ), (2.41)

where

G(a0/λ, θ,Φ) =
κλ

e

[
(cos2 θ cos2Φ + sin2 Φ)∆Ey

C

+(cos2 θ sin2 Φ + cos2 Φ)∆Ex
C

]
. (2.42)

The function G(a0/λ, θ,Φ) is plotted in Fig. 2 for different angles θ and Φ. As for the large
distance limit in Eq. (2.40), a similar but more complicated ferromagnetic-antiferromagnetic
crossover behavior occurs as a function of the field orientation. However, in this case this
behavior can also be induced by changing the distance between the dots a0 (see Fig. 2.2).

Eq. (2.41) suggests that the condition δ ≪ 1 is too restrictive. Instead, the weaker
condition (λ/aB)(λ/a0)

3 ≪ 1 is sufficient for the approximation to be valid. Fig. 2 shows a
breakdown of the dipolar approximation (i.e. of the a−3

0 decay), occurring at a dot separation
a0/λ ≈ 2 for perpendicular magnetic fields (θ = 0), and also a cancellation of this interaction
for some given distance, which is around a0/λ ≈ 1.8. This shows that the sum of the two
electrostatic energy differences ∆Ex

C +∆Ey
C has a non-monotonic behavior as a function of

the distance a0. Actually, only ∆Ex
C is non-monotonic, whereas ∆Ey

C has a positive value
which decreases with a0, as can be seen from Fig. 2. If an in-plane magnetic field is applied
along y (Φ = 0) or x (Φ = π/2) direction, we obtain a dependence only either on ∆Ey

C

or on ∆Ex
C . Accordingly, G(a0/λ) will be larger in some parameter range as compared

with the case of perpendicular fields, see Fig. 2. At this point it is instructive to consider
numerical estimates for the coupling strength Jeff . For this we consider GaAs quantum dots
for which we assume λSO ≈ 10−6 m, m∗ = 0.067me, g = −0.44, κ = 13, and also consider
~ω0 ≈ 0.5 meV, EZ = 0.05 meV (B ≈ 2 T) and a0 = 5 · 10−7 m. These estimations lead to
a coupling strength J ≈ 10−10 eV, which lead to a time dynamics of the order of 10−5 s. If
this time scale is longer than the decoherence times in GaAs quantum dots, the system will
be insensitive to the coherent dynamics induced by the coupling Jeff . Shorter time scales are
obtained for materials with larger spin-orbit coupling such as InAs. The spin-orbit length
λSO in this material is comparable with a typical dot size of about 100 nm. Even though
our perturbative approach starts to get unreliable in this case, it still can provide a rough
estimate for the coupling strength. For InAs we have m∗ = 0.023me, g = 14.8, κ = 13,
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Figure 2.2: The function G occurring in Eq. (2.42) plotted as a function of the geometric distance
a0 between the dot centers scaled by the dot radius λ for different magnetic field orientations. The
dashed line represents the dipolar approximation of G for a perpendicular magnetic field (θ = 0)
which scales like a−3

0 .

λSO ≈ 100nm, and we choose ~ω0 ≈ 1meV, EZ ≈ 0.1meV and a0/λ ≈ 3. With those
values we obtain for the coupling Jeff ≈ 10−7eV, which corresponds to a switching time of
about ∼ 50ns for a swap of the spin states of electron one and electron two. This time scale
for the spin dynamics is shorter than the expected spin decoherence time in such quantum
dots. Thus, this interaction mechanism provides a useful way for the dynamical control
of the spin-spin coupling. As discussed before, for an in-plane magnetic field the coupling
constant could even be higher, depending on the angle of the magnetic field with respect to
the inter-dot axis.

2.3.2 Elliptical dots with δ ≪ 1

We briefly generalize the previous results to elliptical dot shapes. This will also allow us to
study the one-dimensional limit and recover previous results obtained for one-dimensional
nanowires [68]. We consider elliptical dots which are characterized by the frequencies ω0x

and ω0y corresponding to the x and y directions, respectively. In this case, Eq. (2.39) is
replaced by

Hs =
e2E2

Z

m∗2λ2SO

(
∆Ex

C

ω4
0xλ

2
1

σ2
xσ

2
x +

∆Ey
C

ω4
0yλ

2
2

σ1
yσ

2
y

)
, (2.43)

where the electrostatic energies ∆Ex,y
C become now

∆Ex
C =

1

κλ1

∫
drρ0(r)

1− x2√
y2 + (x+ a0/λ1)2

, (2.44)

∆Ey
C =

1

κλ2

∫
drρ0(r)

1− y2√
y2 + (x+ a0/λ2)2

, (2.45)
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with the charge density distribution function, expressed in relative coordinates,

ρ0(r) =
2

πλ1λ2
e−x

2/2λ21 − y2/2λ22 . (2.46)

For perpendicular magnetic fields and elliptical dots the lengths λ1,2 are given by [?]

λ1,2 =

√
4~(n+ 1)

m∗
1,2ω1,2

, (2.47)

where n = m1m2ω1ω2ω
2
c/B

2, ω1,2 =
√
A±B/2, m1,2 = 2B/(C±ω2

c+B), and m∗
1,2 = m1,2m

∗

with the explicit expressions for A, B, and C

A = ω2
0x + ω2

0y + ω2
c , (2.48)

B =
√
(ω2

0x + ω2
0y + ω2

c )
2 − 4ω2

0xω
2
0y, (2.49)

C = ω2
0x − ω2

0y. (2.50)

Taking now also the limit of strongly elliptical dots, i.e. ω0y ≫ ω0x, ωc, we see that this is
equivalent to keeping only one component of the spin interaction, namely the σ1

xσ
2
x part,

and that the orbital effect of the magnetic field drops out. The resulting Hamiltonian then
becomes

Hs =
e2E2

Z∆E
x
C

m∗2ω4
0xλ

2λ2SO
σ1
xσ

2
x +O

(
(ω0x/ω0y)

4
)
. (2.51)

Considering now the large distance limit, a0 ≫ λ, analogously to Eq. (2.37), our result
reduces formally to the one in Ref. [68], i.e.

Hs = −2
E2

Z e
2

κm∗2ω4
0xλ

2
SOa

3
0

σ1
xσ

2
x +O

(
(ω0x/ω0y)

4
)
. (2.52)

The above expression, Eq. (2.52), can be also obtained directly from Eq. (2.37) since within
the considered limit there is no orbital effect of the perpendicular magnetic field on the
spin-spin interaction. We note that in this limit the resulting spin-spin coupling takes the
form of an Ising interaction which, together with single qubit rotations, can be used [4] to
efficiently perform CNOT gate operations between two qubits. We finally note that in one
dimensions the Rashba interaction can be treated exactly, leading to a renormalization of
the g-factor [68], g → g exp (−λ2/λ2SO). This exact treatment is no longer possible in the 2D
case considered here, except for the special case [82] when α = ±β and the problem becomes
effectively 1D [82].

2.3.3 Strong Coulomb coupling - δ ≥ 1

We turn now to the more involved case of strong Coulomb interaction strength, δ ≥ 1, which
cannot be treated perturbatively. However, some approximations are still possible and we
will explore two of them in the following section. The first approximation consists in reducing
the two electron system to two classical point-charge particles. The classical equilibrium
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Figure 2.3: a) The effective distance a as a function of the Coulomb interaction strength λ/aB
for a0/λ = 2. The full line represents the variational result from Eq. (2.57). The dashed line
corresponds to the one obtained from the classical equilibrium solution of Eq. (2.53). b) Effective
distance a/λ as a function of the geometrical one a0/λ for λ/aB = 3. All distances are scaled with
the dot radius λ. The dotted line is a0/λ which is shown for comparison.

condition will be obtained by minimizing the total potential energy of the two particles. By
doing this, the motion of the electrons will take place around the new equilibrium positions
obtained from the equation

a2(a− a0) = 2λ4/aB, (2.53)

where a0 is the initial geometric distance and a the effective distance between the electrons in
classical equilibrium. However, we are interested in the motion around the equilibrium posi-
tion, which means that for small deviations, we may substitute the full Coulomb interaction
with an effective one, remembering that r = r1 − r2,

e2

κ|r + a0|
→ e2

2κ a3
(3(na · r)2 − r2). (2.54)

We note that the coordinates are measured now with respect to the new equilibrium po-
sition. Within this approximation, the relative Hamiltonian Hr is replaced with the new,
renormalized one, H̃r

H̃r =
p2

2m
+

1

2
mω2

xx
2 +

1

2
mω2

yy
2, (2.55)

with the definition ωx,y = bx,yω0 and bx,y given by the expressions

bx =
√
1 + 4(λ/aB)(λ/a)3, by =

√
1− 2(λ/aB)(λ/a)3. (2.56)

We see that this approximation leads only to a renormalization of the orbital frequencies of
the relative Hamiltonian. We proceed now to develop a second alternative for treating the
Coulomb interaction, namely a variational method based on the same picture of classical
equilibrium. This consists in substituting the full Coulomb interaction term with the same
type of expression like in Eq. (2.53), but with the effective distance obtained from the
variational ansatz. For this we minimize the expectation value of the orbital Hamiltonian,
Hr+HC , in the ground state of the effective relative Hamiltonian H̃r[Eq. (2.55)] with respect
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Figure 2.4: The logarithm of infidelity 1−F from Eq. (2.62) as a function of the geometric distance
a0/λ (scaled with the dot radius λ) for two different values of Coulomb interaction strength λ/aB.

to the effective distance a. This leads to the following equation

∂

∂a
〈ψ̃0|Hr +HC |ψ̃0〉 = 0, (2.57)

where |ψ̃0〉 is the ground state belonging to H̃r, i.e. H̃r|ψ̃0〉 = Ẽ0|ψ̃0〉, with Ẽ0 the ground
state energy. Since we are dealing with harmonic oscillators, those wave functions are known.
However, Eq. (2.57) for the effective distance a can be solved only numerically. We plot in
Fig. 3 the results obtained for the effective distance a as a function of different parameters
in both cases, namely the variational result from Eq. (2.57) and also the result obtained
from the classical equilibrium condition in Eq. (2.53). We see in Fig. 3 that there is very
good agreement between the two approaches in a wide parameter range and moreover, that
the effective distance within the variational approach is larger then the one obtained from
classical equilibrium, that means a lower ground state energy. We note that a perpendicular
magnetic field practically does not change the curves in Fig. 3 (not shown) on a large range
of magnetic field strengths (0 < ωc < 3ω0), which means that the effective distance is to a
very good approximation independent of the applied magnetic field. In order to verify the
accuracy of our variational method, we checked also the numerical fidelity, defined as the
overlap of the wave functions in the variational case with the exact (almost, in the sense of
perturbation theory) wave function. Although the problem contains no small parameter, we
can still define small matrix elements compared with level spacing in a numerical sense. For
this we write the full relative Hamiltonian in the following way

Hr = H̃r + V, (2.58)

with the effective Coulomb interaction V (see Eq. (2.54)) expressed now also in terms of the
new equilibrium coordinates (introduced after Eq. (2.54)),

V =
e2

κ|r + a| −
e2

2κa3
(
3(na0 · r)2 − r2

)
+
e2 x

κa2
. (2.59)

We show now that this term leads to small matrix elements so that indeed |V0n| ≪ |Ẽn −
Ẽ0|, where the energies Ẽn and Ẽ0 are the n-eigenvalue and ground-state energy of the
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Hamiltonian H̃r, respectively. To see this numerically we introduce the fidelity

F =
∣∣∣〈ψ0|ψ̃0〉

∣∣∣
2

, (2.60)

where |ψ0〉 and |ψ̃0〉 are the ground state wave functions of the full Hamiltonian Hr and H̃r,
respectively. We now estimate the fidelity F by using perturbation theory to find the true
ground-state wave function |ψ0〉 from the effective one |ψ̃0〉

|ψ0〉 = |ψ̃0〉+
∞∑

n=1

〈ψ̃n|V |ψ̃0〉
Ẽn − Ẽ0

|ψ̃n〉+ . . . , (2.61)

where we retain only terms to first order in V . Taking into account Eq. (2.61) we obtain
the infidelity, 1− F , namely the deviation of the true ground state wave function from the
effective one

1− F =
∞∑

n=1

∣∣∣∣∣
〈ψ̃n|V |ψ̃0〉
Ẽn − Ẽ0

∣∣∣∣∣

2

. (2.62)

We plot in Fig. 4 the infidelity 1−F as a function of the effective distance a for fixed Coulomb
strength, λ/aB. We see that the infidelity takes very small values (1 − F < 10−2) on the
considered range, for two different Coulomb strengths, which shows that our variational
approach is very accurate.

We can now evaluate the spin-spin interaction within this approximation. Since we are
now dealing with harmonic potentials only, the problem of finding Jx̃,ỹ from Eq. (2.16)
becomes straightforward. However, in the derivation of the spin Hamiltonian we need again
some relations, similar to Eq. (2.22) and Eq. (2.23), but for the present case with the
harmonic oscillator renormalized. These relations read

L−1
R X = − i

~Mω2
0

(
PX +

eBz

c
Y

)
, (2.63)

L−1
R Y = − i

~Mω2
0

(
PY − eBz

c
X

)
,

L−1
r x = − i

~mω2
x

(
px +

eBz

c
y

)
, (2.64)

L−1
r y = − i

~mω2
y

(
py −

eBz

c
x

)
.

Making use of the relations Eq. (2.63) and Eq. (2.64), and also with the effective spin-
orbit interaction expressed in the center-of-mass and relative coordinates, see Eq. (2.9), the
spin-Hamiltonian Hs takes the form

Hs =
E2

Z

m∗2ω2
0λ

2
SO

[(
1

b2x
− 1

)
σ1
xσ

2
x +

(
1

b2y
− 1

)
σ1
yσ

2
y

]
, (2.65)

for the case of a perpendicular magnetic field and

Hs =
E2

Z

m∗2ω2
0λ

2
SO

(
cos2 Φ

b2x
+

sin2Φ

b2y
− 1

)
σ1
ỹσ

2
ỹ , (2.66)
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Figure 2.5: The function I from Eq. (2.68) as a function of the dimensionless geometric distance
a0/λ. a) The case of perpendicular magnetic (θ = 0) field for three different Coulomb strength
parameters λ/aB. b) The case of in-plane magnetic field (θ = π/2), for two values of the Coulomb
strength λ/aB, for three angles between the inter-dot distance vector a0 and the magnetic field.
The groups of lines 1, 2, and 3 correspond to Φ = 0, Φ = π/4, and Φ = π/2, respectively.
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for the case of an in-plane magnetic field which makes an angle Φ with the inter-dot distance
direction. The ỹ is along the in-plane direction perpendicular to the in-plane magnetic
field. We see that the spin Hamiltonian depends on the Coulomb interaction part via the
difference between the inverse of the renormalized frequencies ωx,y and the bare one ω0. As
expected, when there is no renormalizations of the bare frequencies (no Coulomb interaction)
the interaction vanishes. Referring again to the effective spin Hamiltonian Heff

s from Eq.
(2.19), we obtain for the coupling Jeff for arbitrary magnetic field orientations

Jeff = Ez
Ez

~ω0

(
λ

λSO

)2

I(a0/λ, aB/λ), (2.67)

where

I(a0/λ, aB/λ) =

(
1

b2x
− 1

)(
cos2 θ sin2 Φ + cos2 Φ

)

+

(
1

b2y
− 1

)(
cos2 θ cos2 Φ + sin2 Φ

)
. (2.68)

One can see from Fig. 5b that for in-plane magnetic fields one obtains quite large values
for I in the two limiting cases Φ = 0 and Φ = π/2. Changing the magnetic field orientation
in-plane one can tune the coupling strength Jeff from negative to positive values, i.e. from
ferromagnetic to antiferromagnetic regime, and make it vanish for the angle (for in-plane
magnetic field)

Φ = arcsin
(
by

√
(1− b2x)/(b

2
y − b2x)

)
. (2.69)

In the case of a perpendicular magnetic field, cf. Fig. 5a, we see that the coupling shows a
non-monotonic behavior as a function of distance a0, and, moreover, Jeff vanishes for some
given distance, which for λ/aB = 5 is about a0/λ ≈ 2.5. This could be used to tune Jeff on
and off by changing the distance between the dots.

Next, we consider the case of very elliptic dots, with the bare oscillator frequencies ω0x,0y

corresponding to the x and y directions, respectively, such that ω0x ≪ ω0y. The spin-spin
coupling becomes in this limiting case

Hs =
E2

Z

m∗2λ2SOω̃
2
x

(
1

b2x
− 1

)
cos2 Φσ1

xσ
2
x +O

(
(ω0x/ω0y)

2
)
, (2.70)

where both perpendicular (Φ = 0) and in-plane magnetic fields are contained. We see that
the problem becomes effectively 1D with an Ising-type spin-spin coupling, similar to the case
of small Coulomb coupling studied in the previous section. We mention that for finite ratio
of the two bare frequencies, ω0x/ω0y, the interaction can be varied by changing this ratio,
the angle of cancellation defined in Eq. (2.69) varying as well.

The behavior displayed in Fig. 5 can be understood as follows. The spin-spin coupling
is directly related to the deformation of the charge distributions in the two dots as a con-
sequence of the strong Coulomb interaction (δ ≫ 1). Thus, the stronger the deformation
is, the stronger the spin-spin coupling becomes. Or, in our case, the stronger the devia-
tion of the renormalized orbital frequencies ωx,y from the bare one ω0 is, the stronger the
coupling becomes, see Eqs. (2.65) and (2.66). While the x component of the spin-spin
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coupling is bounded because the inverse of ωx tends to zero as the Coulomb interaction
strength δ increases, the y component of this coupling is unbounded since the inverse of ωy

can grow indefinitely. Consequently, the y component will dominate the x component for
large Coulomb strength and small inter-dot distance a0. However, the situation is reversed in
the large distance limit, since ωx increases faster than ωy decreases as seen from Eq. (2.56).
These opposite limits lead to the non-monotonic behavior depicted in Fig. 5a (perpendicular
magnetic field).

We mention that the large distance limit of Eq.(2.67) converges to the large distance
result obtained in the previous section, Eq. (2.39). However, it does not converge to the
results of the previous section in the case of small distance [Eq.(2.41)], when going from
δ ≫ 1 to δ ≪ 1, a crossover description (δ ∼ 1) being needed in this situation. Phrased
differently, tuning the spin-spin coupling Jeff from strong (δ ≫ 1) to small (δ ≪ 1) Coulomb
interaction regime by varying the inter-dot distance reproduces the corresponding δ ≪ 1
result in Eq. (2.39), while by varying the ratio λ/aB does not reproduce the corresponding
δ ≪ 1 limit, i.e. Eq. (2.41).

Let us give now some estimates for the coupling Jeff when an in-plane magnetic field is
applied along, say, the x-direction. Assuming now GaAs quantum dots, and EZ = 0.1 meV
(B = 4 T), ~ω0 = 0.5 meV (λ/aB ≈ 5), λ/λSO ≈ 10−1. Using these numbers and taking
for the geometric inter-dot distance a0/λ ≈ 2, we obtain Jeff ≈ 10−7 eV. It is worth
mentioning that the hyperfine interaction between the electron and the collection of nuclei
in a quantum dot (≈ 105) leads to similar energy scales [83, 84]. This shows that the
spin-spin coupling derived here can be very relevant for the spin dynamics in the case of
electrostatically coupled quantum dots and that it can also compete with other types of
interactions. Considering now the case of InAs quantum dots in a magnetic field along the
x direction, with λSO ≈ 2λ ≈ 100nm and EZ/~ω0 = 0.1 and taking also a0/λ ≈ 2, a value
of Jeff ≈ 10−6eV it is obtained. However, this is just a rough estimate since the spin-orbit
coupling cannot be treated as a perturbation anymore and our approximation, being pushed
to the limit of its range of validity, starts to break down.

2.4 Measurement Scheme

In this section we propose a measurement scheme for the spin-spin interaction Jeff . Similar
to the spin relaxation experiments in Ref. [10], the left dot is monitored by a sensitive charge
detector, such as a quantum point contact (QPC) or a single electron transistor (SET). We
show the main steps of the scheme in Fig. 2.4.

The first step is the initialization step shown in Fig. 2.4(a). At low temperatures, T ≪
EZ , a single-electron dot will relax to the ground state after a time larger than the spin
relaxation time T1 ≃ (0.1− 100) ms. A faster spin relaxation can be induced by cotunneling
with the lead, for which the dot can be placed closer to the Fermi surface for some time.
In Fig. 2.4(a), the left dot is initialized in the lower Zeeman sublevel | ↑〉, whereas the right
dot is empty. Next, the right-dot energy is lowered below the Fermi energy and the dot is
quickly filled with an electron in either upper or lower Zeeman sublevel. This is a sequential
tunneling process and we denote its rate by Γ. In Fig. 2.4(b), both dots are deep below the
Fermi surface and Jeff is the energy scale that governs a coherent evolution in the subspace
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{| ↑↓〉, | ↓↑〉}. The two spin density matrix reads

̺(t) =
1

2
| ↑↑〉〈↑↑ |+ 1

2
|Ψ(t)〉〈Ψ(t)|, (2.71)

where |Ψ(t)〉 is the wave function that describes the occurrence of the state | ↑↓〉 in the ini-
tialization step. In the ideal case, |Ψ(t)〉 evolves coherently due to the spin-spin interaction,
Eq. (2.19)

Ψ(t)〉 = cos(4Jeff t/~)| ↑↓〉 − i sin(4Jeff t/~)| ↓↑〉. (2.72)

Here, we neglect the cotunneling and other spin relaxation processes. In particular, the
cotunneling rate Γ2/U± should be much smaller than the spin-spin coupling Jeff . Here,
U± is the addition/extraction energy of the single-electron quantum dot in the Coulomb
blockade valley. On the other hand the sequential tunneling rate Γ should be large enough,
so that the spins have no time to evolve during the initialization and measurement steps.
We summarize the required regime by the inequality

Γ2

U±
≪ Jeff ≪ Γ. (2.73)

After a waiting time τ , the probability of the left-dot electron to be in the upper Zeeman
sublevel reads,

PL↓(τ) =
1

4
[1− cos(8Jeff τ/~)] . (2.74)

Form the period of this function (τ0 = π~/4Jeff ) one can extract the value of the coupling
constant Jeff .

The measurement of the probability PL↓(τ) can be performed in the same fashion as
in Ref. [10]. After the waiting time τ , the left dot is brought up to the Fermi level and
placed such that the electron can tunnel into the lead only from the upper Zeeman sublevel.
This configuration is shown in Fig. 2.4(c). Tunneling of the electron out and refilling the
quantum dot with an electron of the opposite spin is monitored by the charge detector close
to the left dot (not shown). For each value of the waiting time τ , the cycle of initialization,
coherent evolution, and measurement has to be repeated many times in order to reach a
good accuracy.

Next, we remark that the hyperfine interaction with the lattice nuclei should not impede
the measurement of Jeff as long as 4Jeff & A/

√
N , where A is the atomic hyperfine coupling

constant and N is the number of nuclei in both quantum dots. Note that the ratio of Jeff
to A/

√
N for a constant λ/a scales with the dot lateral size as ∝ λ4, for strong Coulomb

interaction, and as ∝ λ6, for weak Coulomb interaction. Therefore, the regime 4Jeff >
A/

√
N can be easily achieved by taking a larger quantum dot. Furthermore, the hyperfine

interaction with the nuclei has only the effect of reducing the visibility of oscillations of
PL↓(t), and even for A/

√
N ≫ Jeff a small part of PL↓(τ) shows oscillatory behavior with

unchanged period, τ0 = π~/4Jeff .
In Fig. 2.4, we plot the probability PL↓(τ) averaged over the realizations of the hyperfine

field. We choose A/
√
N ≥ 4Jeff to show that the measurement scheme is robust against the

hyperfine field. The oscillations are well visible even when A/
√
N is several times larger than

4Jeff . The averaged probability P̄L↓(τ) is obtained in the following way. For the subspace
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Figure 2.6: Scheme to measure the coupling constant Jeff in quantum dots without tunnel coupling.
In the initialization step (a), the left dot is at equilibrium with one electron in the lower Zeeman
sublevel and the right dot is empty. At the start of the coherent evolution step (b), the right dot
is filled with one electron in either upper or lower Zeeman level during a short time ~/Γ ≪ ~/Jeff ,
and the dots are deep in the Coulomb blockade valley, Γ2/U± ≪ Jeff . Further, the two spins evolve
coherently due to the spin-spin interaction Jeff during a fixed time τ & ~/Jeff . In the read-out step
(c), the left dot is brought up to the Fermi surface, so that the electron can tunnel to the lead only
if it is in the upper Zeeman sublevel. The latter event is recorded by a charge detector nearby the
left dot.
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Figure 2.7: Residual oscillations in the averaged probability P̄L↓(τ) for values of A/
√
N that exceed

the spin-spin interaction strength 4Jeff . The period of oscillations is not affected by the hyperfine
interaction and is given by τ0 = π~/4Jeff . With increasing the hyperfine strength A/

√
N , the

amplitude of oscillations decreases as ∝
√
N/A. As a function of the waiting time τ , the envelope

of oscillations decays as ∝ 1/
√
τ .

{| ↑↓〉, | ↓↑〉} and in the limit EZ ≫ A/
√
N , the coupling of spins to the hyperfine field is

given by Hδhz = 1
2
δhz(σ

z
1 − σz

2), where the hyperfine field δhz has a Gaussian distribution
with zero average and a variance σ = A/

√
N , which we take to be a measurable parameter

that defines N2. For more detail on the derivation of Hδhz we refer the reader to Ref. [85].
For our description to be accurate, the time between subsequent cycles of initialization,

coherent evolution, and measurement should be larger than the nuclear spin relaxation time.
Considering the sum of Hδhz and Heff

s in Eq. (2.19), we find that the probability PL↓(τ) for
a fixed value of δhz is given by [86]

PL↓(τ) =
1− cos

(
2τ~−1

√
16J2

eff + δh2z

)

4
(
1 + δh2z/16J

2
eff

) . (2.75)

The averaged probability P̄L↓(τ) is then computed by integrating Eq. (2.75) over δhz with
the Gaussian weight factor Pσ(δhz) =

1
σ
√
2π
e−δh2

z/2σ
2
, where σ = A/

√
N .

Considering A/
√
N > 4Jeff and τ > π~/4Jeff , we find that the visibility of oscillations

scales with A/
√
N and τ as follows

v ∝ Jeff
√
N

A

√
~

τJeff
. (2.76)

Note that the scaling law v ∝
√
N/A is weaker than what one might expect naïvely from

Eq. (2.75), after substituting there δhz by its typical value A/
√
N , which gives v ∝ N/A2.

The reason for the weaker scaling law is the fact that δhz is centered around zero and
the denominator in Eq. (2.75) has nearly no effect. We find that the numerical results in

2More rigorously, σ = IA/
√
2N0, where I2 = 〈I2

z
〉 is the variance of the z-component of a single nuclear

spin (assuming 〈Iz〉 = 0) and 1/N0 = v0
∫
d3r|ψ(r)|4, with ψ(r) being the electron wave function and v0 the

unit cell volume per nuclear spin.
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Fig. 2.4 can be reproduced fairly accurately, if we approximate the argument of the cosine
in Eq. (2.75) as follows

√
16J2

eff + δh2z ≈ 4Jeff

(
1 +

δh2z
32J2

eff

+ . . .

)
. (2.77)

This approximation is justified in the regime τ ≫ τ0 by the the minimal phase requirement,
despite the fact that δhz/Jeff may be large. With Eq. (2.77), it is easy to average PL↓(τ) and
obtain an approximate expression, which is fairly accurate for τ & τ0 and asymptotically
exact in the limit τ ≫ τ0. We thus obtain

P̄L↓(τ) =
1

4
[p̄− δp(τ)] , (2.78)

p̄ =

√
π

2
ζ exp

(
ζ2

2

)
erfc

(
ζ√
2

)
, (2.79)

δp(τ) =
ζ cos [2πτ/τ0 + ϕ0(τ)]

[ζ4 + (2πτ/τ0)2]
1/4

, (2.80)

where ζ = 4Jeff
√
N/A, erfc(ζ) is the complementary error function, and the running phase

shift ϕ0(τ) is given by

ϕ0(τ) =
1

2
arctan

(
2πτ

τ0ζ2

)
. (2.81)

We note that Eq. (2.78) is exact in two limiting cases: ζ ≫ 1 and τ ≫ τ0. In particular, in
the limit ζ → ∞, we recover PL↓(τ) in Eq. (2.75) for all values of τ . In the opposite limit,
ζ ≪ 1, Eqs. (2.78)−(2.81) can be significantly simplified, yielding

P̄L↓(τ) =
ζ

4

[√
π

2
−
√

τ0
2πτ

cos (2πτ/τ0 + π/4)

]
. (2.82)

2.5 Discussions and conclusions

In the entire derivation we assumed no tunneling between the dots. Even in the presence
of tunneling, when direct Coulomb repulsion, U12 (which is just the classical interaction
between two charge distributions) is larger than the exchange interaction, Jexc (U12 ≫ Jexc),
the theory presented here is expected to remain still valid. The reason is that this type
of spin-spin coupling is a direct consequence of the deformation of the electronic charge
distribution due to Coulomb repulsion between the two electrons. Since this is given by the
sum of the direct Coulomb part U12, and the exchange part Jexc, the spin coupling Jeff will be
insensitive to exchange in the limit U12 ≫ Jexc. The point now is that with finite tunneling,
even with the assumption that the coupling strength Jeff is not modified by the exchange
Coulomb interaction, the resulting Heisenberg exchange coupling Jexc (Hexc = JexcS1 · S2)
will start to compete with the electrostatically induced spin interaction. As a consequence,
the spin coupling Jeff will be washed out in the limit Jexc ≫ Jeff . However, since the
Heisenberg exchange coupling decays with the inter-dot distance like [69] Jexc ∼ exp(−2a20)
while Jeff ∼ a−3

0 , the electrostatic spin coupling will start to dominate at not very large
distances.
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We recall that when having exchange, another type of spin coupling, JSO
exc , induced by

spin-orbit interaction comes into play, and which is proportional to the Heisenberg coupling
Jexc, i.e. JSO

exc ∝ (0.1 − 0.01)Jexc for typical GaAs dots [69, 72–76]. Thus, JSO
exc can be

much larger than Jeff for large enough Heisenberg coupling, with a crossover from this
exchange-type to the direct Coulomb-type coupling taking place at some inter-dot distance.
This crossover, however, occurs before we get Jexc ∼ Jeff , since JSO

exc is typically 100 times
smaller than Jexc. To give an estimate, we assume Jexc ≈ 10−5eV for a0 = 1, which gives
Jexc ≈ 3.5 · 10−8eV for a0 = 2, implying that Jexc < Jeff .

Another important issue is the effect of screening induced by the surrounding electrons
in the 2DEG and the metallic gates. As is well-known, the screening effect between two
charges becomes important for distances exceeding the screening length λscr ∼ λFermi (Fermi
liquids). However, the screening of bare Coulomb interaction depends strongly on the di-
mensionality. In 3D the effect of screening is to induce an exponential decay of the bare
Coulomb interaction [87], with the decay parameter λscr, while in 2D the decay follows a
power law (∼ r−3 in the large distance limit ) [88–91], with λscr being the relevant length
scale. For GaAs, the screening length is around λscr ∼ λFermi ≈ 50 nm. Moreover, additional
screening is introduced by the electrodes to gate the dots, due to their metallic character.
The finite screening implies then that our theory in fact overestimates the strength of the
electrostatically induced spin coupling Jeff for distances exceeding this screening length and
the results obtained here become just an upper bound on Jeff for this limit.

Being highly controllable, the coupling Jeff could be used to perform two qubit gates
for the realization of quantum computers with electron spins, like proposed in Ref. [4]. The
switching times range between rather slow (∼ 10µs in GaAs) and reasonably fast (∼ 50 ns in
InAs). When making use of the standard exchange coupling [4] for switching (with typical
switching times of 100 ps in GaAs) the electrostatically induced spin-coupling found here
can lead to gate errors. However, this effect can be controlled by choosing the magnetic field
direction or strength and/or the inter-dot distance such that Jeff becomes negligibly small
(see Eq. (2.68)).

Here we assume perfect harmonic confinement potentials only. In reality the dot potential
is not harmonic, although quantum dots with potentials close harmonic have been reported.
Our spin-spin interaction by no means relies on the harmonicity of the quantum dot potential.
We have used the harmonic confinement potential in our model to give analytical expressions
which can be used to estimate the magnitude of the effect for realistic structures. We believe
that deviations of the confinement from harmonic will lead to corrections to our results, but
will not change (i) the a−3 scaling at large distances (a ≫ λ) and (ii) the magnitude of the
coupling constant.

Finally, an important question is how orbital fluctuations (for example of the confining
energy ~ω0) or in the interdot distance, measured by variation in the electrostatic energy
e2/κa0 ≡ Eel) mediated via spin-orbit coupling lead to fluctuations in the coupling Jeff and
thus eventually to spin decoherence. The relation between the orbital dephasing time (which
is assumed to be known) and the decoherence induced by the spin coupling Jeff reads [85]

τ oφ
τ sφ

∼
∣∣∣∣
δJeff
δ(~ω0)

∣∣∣∣
2

+

∣∣∣∣
δJeff
δEel

∣∣∣∣
2

, (2.83)

where τ oφ is the orbital dephasing time and τ sφ the corresponding spin decoherence time.
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Assuming an orbital dephasing time τ oφ ≈ 1 ns and also the limiting case of touching dots with
the same GaAs parameters as before we obtain a spin decoherence time (lower bound) τ sφ ≈
10−3 s. We mention that these two channels, i.e. fluctuations in the size and in the distance
between the dots are the most dominant ones for dephasing through Jeff . We can conclude
then that the incoherent part due to this type of coupling is negligible compared with other
types of decoherence mechanisms, e.g. induced by the hyperfine interaction [83–85].

To conclude, we have derived an effective spin-spin interaction between two electrons
localized in two quantum dots, spatially separated, induced by the direct Coulomb inter-
action and mediated by the spin-orbit coupling. This interaction was found to have the
form of an anisotropic XY interaction and to be proportional to the Zeeman energy. The
spin-spin coupling was studied both in the weak and strong Coulomb interaction limits and
for different magnetic field orientations and strengths. The important features are the non-
monotonic behavior of this spin interaction for some magnetic field orientations, together
with a vanishing of this interaction for particular inter-dot distances. This effect can be used
to manipulate the spin-spin interaction in electrostatically coupled quantum dots by tuning
the inter-dot distance. We proposed a measurement setup which allows one to access this
spin-spin coupling experimentally.



Chapter 3

Spin dynamics in InAs-nanowire

quantum-dots coupled to a transmission

line

We study theoretically electron spins in nanowire quantum dots placed inside a transmis-
sion line resonator. Because of the spin-orbit interaction, the spins couple to the electric
component of the resonator electromagnetic field and enable coherent manipulation, storage,
and read-out of quantum information in an all-electrical fashion. Coupling between distant
quantum-dot spins, in one and the same or different nanowires, can be efficiently performed
via the resonator mode either in real time or through virtual processes. For the latter case
we derive an effective spin-entangling interaction and suggest means to turn it on and off.
We consider both transverse and longitudinal types of nanowire quantum-dots and compare
their manipulation timescales against the spin relaxation times. For this, we evaluate the
rates for spin relaxation induced by the nanowire vibrations (phonons) and show that, as a
result of phonon confinement in the nanowire, this rate is a strongly varying function of the
spin operation frequency and thus can be drastically reduced compared to lateral quantum
dots in GaAs. Our scheme is a step forward to the formation of hybrid structures where
qubits of different nature can be integrated in a single device.

3.1 Introduction

Although lateral QDs have been most successfully used until now to demonstrate spin coher-
ence and usability for quantum computing, [2, 57] novel quantum systems have emerged in
recent years, providing a number of new ways to implement the basic ideas of quantum com-
puting. [92] Among such systems are the QDs formed inside semiconductor nanowires. [93,94]

The use of different semiconductors, other than GaAs, has since long been pursuit with
the goal to create nanostructures with novel properties. Particular examples are InAs and
InP nanowires, where both gate defined and ’barrier’ defined QDs could be fabricated. [95–98]
The advantage of these materials is that both optical and transport measurements can be
carried out on the same type of structure. The number of electrons can equally well be
controlled down to one electron per dot, [96] which shows that QDs created in nanowires
can serve as alternative candidates for spin-qubits.

33
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Figure 3.1: Schematics of the two configurations considered in this work. A) Large-diameter InAs
nanowire (pink-gray cylinder) positioned inside and parallel to the transmission line (blue-gray).
The disk-shaped quantum dots (QD) are located in the nanowire and are formed by two InP-
boundaries (brown-dark-gray). Each QD contains only one electron with spin 1/2 (green-arrows).
B) Two small-diameter InAs nanowires (pink-gray) positioned perpendicularly to the transmission
line (blue-gray). The elongated QDs are oriented along the nanowire with one electron in each dot.
The QD confinement can be achieved by barrier materials (as shown in brown-dark-gray) or by
external gates (not shown).
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One particular difference between GaAs and InAs semiconductors is the strength of the
spin-orbit interaction (SOI), which is much larger for the latter material. This fact, however,
is a double-edge sword; on one hand it opens up the possibility to efficiently manipulate the
electron spin with electric fields only, [?, 62, 99–101] while on the other hand it implies
stronger coupling of the spin to charge environments, like phonons, particle-hole excitations,
gate voltage fluctuation, etc. However, due to the quasi-1D structure of the nanowires, the
spin relaxation times due to phonons and SOI turn out to be longer than one might expect
from QDs created in InAs bulk material. Indeed, the time scales obtained in this work are
on the order of microseconds to milliseconds for sufficiently large Zeeman splittings. At the
same time, the relaxation rate exhibits peaks as a function of a static applied magnetic field
due to the quantization of the phonon spectrum. The long relaxation time and the presence
of a sizable SOI permits then an efficient control of coherent spin states by making use of
EDSR. [?, 62, 99,100,102]

One of the main ingredients in the spin-qubit scheme [4] is the electrical control of
two-qubit gates to generate entanglement. While the original proposal involved only local
interactions between neighboring spins, it is desirable to couple spins directly over large
distances, since this produces a better threshold for fault tolerant quantum computation.
[103] A solution to this problem was first proposed in Ref. [104] and involves optical cavities
whose photon modes mediate interaction between distant spins. The coupling of the spin to
optical cavities in semiconductors was also the subject of some recent experiments. [105,106]

Very recently, 1D electromagnetic cavities (or transmission lines) were shown to be very
suitable for reaching the strong coupling regime between superconducting qubits and pho-
tons. [107–109] Theoretical extension to QDs were proposed subsequently, including charge
and spin qubits. [110,111] The direct coupling of the spin to the cavity modes via the mag-
netic dipole transitions is usually weak and one has to use electric dipole transitions together
with correlations between spin and charge degrees of freedom in order to obtain a sizable
effective coupling. This can be achieved in several ways, e.g. by making use of the Pauli
exclusion principle and Coulomb repulsion, [111] or of Raman transitions. [110]

In this section we propose another mechanism to achieve long-distance coupling between
spins inside a cavity, namely via SOI which leads to an effective coupling of spin to the electric
field component of the cavity photon, and thus eventually to a coupling between distant spins
mediated by this photon. In order to reach a sizable coupling strength, it is desirable to use
nanostructures with large SOI such as InAs QDs. Two such proposed configurations, which
define the two model systems to be studied in this chapter, are sketched in Figs. 3.1 A and B.
They consist of nanowire QDs embedded in a transmission line. In particular, in Fig. 3.1A
a nanowire positioned parallel to the transmission line axis is shown. In this case, the QDs
are realized by confining the electrons in the longitudinal direction (i.e. along the nanowire
axis) much stronger than in the transverse one. This corresponds to a nanowire with a large
diameter, on the order of 80 − 100 nm. Such longitudinal confinement can be achieved by
applying metallic gates or by using other materials as barriers (InP for example, which is
depicted in Fig. 3.1 in brown) which have a larger band gap than the host material such as
e.g. InAs. [94,96] In Fig 3.1B a small-diameter (D < 40 nm) InAs nanowire is shown, being
positioned perpendicularly to the transmission line and containing QDs that are elongated
along the nanowire. That means that in this case we assume that the electronic confinement
along the nanowire is much weaker than in the transverse direction. Then, to a very good



36 CHAPTER 3. SPIN DYNAMICS IN A TRANSMISSION LINE

approximation, the electrons can be considered as behaving one-dimensionally, which will
allow us to treat the SOI exactly, while this is not possible for the configuration Fig. 3.1A.
However, in order to prevent a current flow, the nanowire and the transmission line need
to be separated by some insulating coating material, obtained, for example, by atomic layer
deposition.

The goal of this work is now to analyze these configurations in detail and, in the first
part, to derive an effective spin-spin coupling Hamiltonian. In the second part, we study
the spin decay in this system, induced by phonons and SOI, and calculate explicitly the
spin relaxation and decoherence times due to this mechanism. We will show that these
times are much longer than the switching times needed to manipulate and couple the spins
coherently. Thus, our findings provide theoretical evidence that nanowire QDs embedded
into transmission lines are promising candidates for spin-qubits with tunable long-range
coupling. This scheme also opens the door to hybrid configurations where qubits of different
nature (e.g. superconducting and spin qubits) can be coupled via the transmission line.

3.2 Model Hamiltonian

The Hamiltonian of the system composed of the single-electron QD and the cavity reads

H =
p2

2m∗2 + V (r) +
1

2
gµBB · σ +HSO +He−γ +Hγ, (3.1)

where the first two terms represent the bare orbital part of the Hamiltonian, m∗ is the
effective mass of the electron, g is the g-factor of the electron in the material, and V (r) is
the confinement potential, both in the longitudinal and transverse directions. We can obtain
an effective Hamiltonian Heff by averaging over the ground-state |0〉 in the longitudinal or
in the transverse directions depending on which case in Fig. 3.1 is considered. Then, for the
system in Fig. 3.1A(B) we obtain an effective 2D (1D) Hamiltonian.

The third term stands for the Zeeman interaction, while the fourth term in Eq. (4.1)
represents the SOI. For wurtzite InAs nanowires grown along the c-axis, with the longitudinal
confinement much stronger than the transverse one (see Fig. 3.1A) the SOI takes the form
of a Rashba type, [93] HSO ≡ H t

SO = α(p×c) ·σ, with c being the unit-vector corresponding
to the direction of the c-axis of the crystal. This expression when written in components,
becomes

H t
SO = α(pxσy − pyσx) . (3.2)

We mention that our present study is quite general and can be easily adapted to other types
of SOIs (such as Dresselhaus type). In the opposite case, when the transverse confinement
is much stronger than the longitudinal one (see Fig. 3.1B), the SOI Hamiltonian HSO takes
the form HSO ≡ H l

SO = (k · c)(η · σ) which, when written in components, becomes

H l
SO = ηpxση, (3.3)

with η = (ηx, ηy, ηz) being a vector of coupling constants and ση being the spin component
along η. [93]
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The fifth term represents the interaction between the photons in the cavity, labeled γ,
and the electron in the QD. This term is given by

He−γ = eE(z) · r. (3.4)

The electric field E(z) acting on the electron is E(z) = ex V (z)/d, with ex being the unit
vector along x, V (z) represents the fluctuating potential within the transmission line and d is
the distance between the transmission line and the center conductor. The voltage fluctuation
V (z) has the following form [108]:

V (z) =
∞∑

p=1

Vp sin
(pπz
L

)
[ap + a†p], (3.5)

where Vp =
√
~ωp/Lc, a†p(ap) are the creation (annihilation) operators for the excita-

tions(photons), c the capacitance per unit length, L the legth of the resonator, and ωp the
eigenmodes of the resonator. The last term in the Hamiltonian represents the free photons
Hγ =

∑
p ~ωpa

†
pap.

From Eq. (4.1) we see that there exists an infinite number of frequencies in the trans-
mission line, implying a coupling of the electron charge to an infinite number of modes.
However, from all these modes, the relevant ones are those close to resonance with the Zee-
man splitting of the spin. In the following we disregard all other modes from the problem
and we assume also that the QD is in the center of the transmission line, so that the inter-
action between the electron charge and the photons becomes maximal. Having now defined
all the ingredients, we can proceed to study the dynamics of the system.

3.3 General Spin-photon dynamics

3.3.1 Spin-photon interaction

In the following we derive an effective spin-photon Hamiltonian, assuming for both cases in
Fig. 3.1 a SOI of arbitrary strength (to be restricted later on). In the case of time-reversal
symmetry, the ground state of the dot (Hd ≡ H0 + HSO + HZ) is two-fold degenerate
(Kramers doublet), while this degeneracy is lifted in the presence of a magnetic field. If
the magnetic field is such that the doublet splitting and also the electron-photon coupling
strength are smaller than the level spacing of the QD, we can restrict our considerations to
the dynamics of the lowest doublet only. We label this doublet by {| ⇑〉, | ⇓〉}, which is now
different from the ’true’ electron spin. In the absence of SOI interaction the ’true’ electron
spin will not couple to electric fields by any means, while in the presence of SOI the lowest
Kramers doublet will contain orbital part to some amount, allowing coupling to electric fields
(quantum or classical). Of course, the amount of orbital part contained will depend on the
strength of the SOI compared, for example, to the bare orbital level spacing in the QD. It
is of major importance to quantify the amount of orbital degrees of freedom contained in
this Kramers doublet by taking as a reference the Kramers doublet free of SOI, i.e. the
lowest bare spin state (being the direct product of orbital state and spin state). Assuming
for simplicity that the free-of-SOI Hamiltonian has no degenerate levels (beside the Kramers
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doublets), we could, in principle, obtain the states in the presence SOI (arbitrarily strong)
from the ones in the absence of SOI by switching adiabatically the SOI, i.e. a continuous
mapping of states.

Assuming the above mentioned adiabatic switching of SOI, we can connect formally the
states in the presence of the SOI to the ones in the absence of the SOI with the help of a
unitary transformation or Schrieffer-Wolff (SW) transformation

|nτ 〉 = e−S|n〉|σ〉, (3.6)

where the states |n〉 are the eigenstates of the Hamiltonian H0 (H0|n〉 = E0
n|n〉), |nτ 〉 are

the Kramers doublets with SOI, |σ〉 = | ↑, ↓〉 are the bare spin states, and S = −S†. Also,
the relation Hd|nτ 〉 = Enτ

d |nτ 〉 holds from our definition of the transformed state. For
notational convenience we denote the lowest Kramers doublet as |0τ 〉. This is written simply
as |0τ 〉 ≡ |τ〉, with the identification |τ〉 = {| ⇑〉, | ⇓〉}. The above transformation can be
performed on the level of the Hamiltonian, implying diagonalization of the Hamiltonian Hd

in the basis of the ’bare’ Hamiltonian H0

H̄ ≡ e−SHeS. (3.7)

The advantage of transforming the Hamiltonian Hd so that it becomes diagonal in the basis
of the bare Hamiltonian H0 is now obvious. Within this transformation one can in principle
proceed to calculate the effect of SOI to arbitrary order in perturbation theory, together
with the SOI induced spin-photon coupling. We can now derive an effective spin-photon
Hamiltonian within the lowest doublet |τ〉 by averaging H̄ over the orbital ground state |0〉.
This leaves us with the following effective spin-photon Hamiltonian Hs−γ ≡ 〈0|H̄|0〉 given
by

Hs−γ =
1

2
gµBBeff σz +Mγ · σ(a† + a) + ~ωa†a, (3.8)

where
1

2
gµBBeff σz = 〈0|e−SHde

S|0〉 (3.9)

stands for the renormalized magnetic field,

Mγ · σ =
eV1
d

〈0|e−SyeS|0〉. (3.10)

stands for the spin-photon coupling. Above we made also the substitutions ω1 ≡ ω and
a†1 ≡ a† (a1 ≡ a). We mention that in order to have a finite coupling of the spin σ to the
photons, the vector Mγ must contain some time-reversal breaking parameter, such as the
external magnetic field B. In the absence of the magnetic field there is no coupling between
the lowest doublet and the photons (Mγ = 0) to all orders in SOI.

We now define the spin-photon coupling strength ν =
√

(Mx
γ)

2 + (My
γ)2 and the detun-

ing of the qubit from the cavity by ∆ ≡ Eeff
Z − ~ω, where Eeff

Z ≡ gµBBeff . Close to the
resonance between the qubit and the cavity mode (∆ ≪ Eeff

Z , ~ω) one can simplify Eq. (3.8)
by using the so called rotating wave approximation (RWA). [112] This implies to switch first
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to the interaction picture, so that the operators a(a†) and σ∓, where σ∓ = σx ∓ iσy become
time-dependent

σ∓(t) = σ∓(0)e
∓iωeff

Z t (3.11)

a(t) = a(0)e−iωt (3.12)

σz(t) = σz(0). (3.13)

where ωeff
Z = Eeff

Z /~. Then, we neglect the terms in the time-dependent resulting Hamil-
tonian which oscillate fast on the time scale ~/∆. This means neglecting counter-rotating
terms such as a†σ+ ∼ ei(ω

eff
Z +ω)t, aσ− ∼ e−i(ωeff

Z +ω)t, a†σz ∼ eiωt, and aσz ∼ e−iωt, which
average to zero for large times. Within this approximation the Hamiltonian in Eq. (3.8)
within the interaction picture becomes static and of the form

Heff
s−γ =

1

2
gµBBeff σz + ν(a†σ− + σ+a) + ~ωa†a. (3.14)

As expected, the above expression agrees with the Jaynes-Cummings Hamiltonian. [113]

3.3.2 Effective spin-spin interaction

We now investigate the case of two QDs in the cavity in the limit of finite detunings ∆1,2.
The Hamiltonian H

(2)
s−γ corresponding to the two spins in the cavity can be found by just

extending Eq. (3.14) to two spins

H
(2)
s−γ =

∑

i=1,2

(
1

2
giµBB

i
eff σ

i
z + νi(a

†σi
− + σi

+a)

)
+ ~ωa†a. (3.15)

For νi/∆i < 1 (i = 1, 2), the spin-photon interaction can be treated within the second order
perturbation theory in νi. We use again the SW transformation, similar to the previous
section. Here, this implies finding an operator T so that

H̃
(2)
s−γ = eTH

(2)
s−γe

−T (3.16)

is diagonal in the basis of the spin-photon Hamiltonian without spin-photon interaction
(the Hamiltonian H

(2)
s−γ with ν1,2 ≡ 0). Within first order in spin-photon couplings ν1,2, the

transformation operator T reads

T =
∑

i=1,2

νi
∆i

(σi
+a− a†σi

−), (3.17)

under the assumption that the condition νi/∆i < 1, i = 1, 2, is satisfied for both dots. The
transformed Hamiltonian H̃(2)

s−γ becomes

H̃
(2)
s−γ =

(
~ω +

2ν21
∆1

σ1
z +

2ν22
∆2

σ2
z

)
a†a

+

(
Eeff

1Z +
ν21
∆1

)
σ1
z +

(
Eeff

2Z +
ν22
∆2

)
σ2
z

+ν1ν2

(
1

∆1

+
1

∆2

)
(σ1

+σ
2
− + σ2

+σ
1
−), (3.18)
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where Eeff
iZ = gµBB

i
eff . We can obtain a pure spin Hamiltonian by neglecting the fluctuations

of the photon number a†a→ 〈a†a〉 ≡ n̄, with n̄ the average number of photons in the lowest
cavity mode. The resulting Hamiltonian Hs ≡ H̃

(2)
s−γ|a†a→n̄ reads

Hs = Ẽ1
Zσ

1
z + Ẽ2

Zσ
2
z + J(σ1

+σ
2
− + σ2

+σ
1
−), (3.19)

where

Ẽi
Z = Eeff

iZ + 2

(
n̄+

1

2

)
ν2i
∆i

, i = 1, 2, (3.20)

J = ν1ν2

(
1

∆1

+
1

∆2

)
. (3.21)

In Eq. (3.20) we see that the effective Zeeman splitting Ẽi
Z is quite different from the bare

one, EiZ ≡ giµBB. Besides the SOI renormalization of the Zeeman splitting, there is also
a contribution from the spin-photon coupling, which consists of the Lamb shift (the term
independent of the average photon number n̄) and the ac Stark shift (the term proportional
to the average photon number n̄).

The expression Eq. (3.19) is one of our main results: in the presence of SOI and cavity
modes one can achieve an effective spin-spin coupling with the exchange coupling J between
two spins that are spatially well-separated. Indeed, this interaction can act over the entire
length of the cavity, which can be as large as a few millimeters. Also, the spin-spin interaction
is of XY-type (transverse spin-spin coupling), which together with single spin rotations have
been shown to be universal for quantum computing. [104,114] We mention that in order to
obtain a maximal effect, one should be able to tune the two qubits into resonance, so that
Ẽ1

Z = Ẽ2
Z . [104]

3.4 Strong longitudinal confinement

So far we have taken the SOI into account exactly, regardless of the system under consid-
eration, but under the assumption that the lowest Kramers doublet is well separated from
the higher states compared to Zeeman energy and electron-photon coupling. We analyze
here the spin-photon coupling for the case shown in Fig. 3.1A. As stated in Section II, in
this case we can derive an effective transverse Hamiltonian Heff ≡ Ht = 〈0l|H|0l〉, where
|0l〉 stands for the ground-state wave-function in the longitudinal direction z. The effective
Hamiltonian Ht reads

Ht =
p2x + p2y
2m∗ + V (x, y) +HZ +H t

SO +He−γ +Hγ, (3.22)

with V (x, y) = 〈0l|V (r)|0l〉, while all the other terms stay the same since they do not act
in the z-direction. In the above expression we disregarded the term 〈0l|(p2z/2m∗)|0l〉, as it
gives a constant shift of the levels.

We can start in principle to derive the spin-photon interaction from the effective Hamil-
tonian Ht by making use of the transformation (3.6). However, this cannot be done exactly
and we have to proceed in perturbation theory. In order to give some numerical estimates
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for the strength of the coupling ν, we assume the limit of weak SOI, quantified by the con-
dition R/λSO ≪ 1, with R being the dot (wire) radius and λSO = ~/m∗α the spin-orbit
length. [64, 101, 115] Then, we can treat the SOI within perturbation theory. We assume in
the following hard-wall boundary conditions for the electrons confined in the QDs, namely
circular hard-wall boundaries in the transverse direction. In the longitudinal direction the
electron is also confined by a hard-wall type of potential, but much stronger than in the
transverse direction, as stated before. We compute the operator S from Eq. (3.6) within
the first order in SOI, S ≈ (L0 + LZ)

−1HSO, which gives explicitly

S ≈ iξ · σ − EZL
−1
0 (b× ξ) · σ, (3.23)

in the limit of EZ << ∆E0 with ∆E0 = E1 − E0 being the energy difference between the
first excited state |1〉 and the ground state |0〉. In the above formulas the Liouvilleans L0,Z

are defined as L0,ZA = [H0,Z , A] ∀A and ξ = λ−1
SO(−y, x, 0), b = B/B. We can obtain an

effective Hamiltonian up to second-order in SOI and first order in Zeeman splitting for the
lowest Kramers doublet by averaging over the orbital ground state |0〉,

Hs−γ =
1

2
gµBB · σ + 〈0|[S,HSO]|0〉+ 〈0|[S,He−γ ]|0〉

+
1

2
〈0|[S, [S,He−γ ]]|0〉+Hγ. (3.24)

The orbital wave-functions have the form (for circular hard-wall boundary conditions)

ψmp(r) =
1√
πR

eimφ

J|m|+1(kmpR)
J|m|(kmpr), (3.25)

where J|m|(kmpr) are the Bessel functions of the first kind, r is the electron radial coordinate
in the transverse direction, and kmp are the solutions of the equation J|m|(kmpR) = 0. The
appropriate energies are given by Emp = ~

2k2mp/2m
∗. Also, we assume that the magnetic field

B and the fluctuating electric field E are both along the x direction, such that He−γ = eE x
and S = iξ · σ − (EZ/λSO)L

−1
0 xσz. After performing the integrations, we are left with the

following effective Hamiltonian

Hs−γ =
1

2
Eeff

Z σz +Mx
γ(a

† + a)σy +Hγ, (3.26)

with

Eeff
Z ≃ EZ

(
1− 0.25

(
R

λSO

)2
)
, (3.27)

Mx
γ ≃ 0.25eE R

EZ

∆E0

R

λSO
. (3.28)

We see that there is no second order contribution in SOI to the spin-photon interaction, this
contribution vanishes identically for cylindrical wires in the ground state. We mention that
within the RWA the Jaynes-Cummings coupling ν becomes ν = Mx

γ .
In the case of two spins present in the cavity, one obtains the same expression as in Eq.

(3.19), where ν1,2 is given by Eq. (3.28). Since our coupling is proportional to the bare
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Zeeman splitting EZ , we need large magnetic fields in order to obtain a sizable coupling.
Then, we can in principle neglect the Lamb and the ac Stark shifts in the expressions for
Ẽi

Z , since they give negligible renormalizations, so that Ẽi
Z ≈ Eeff

iZ . However, as can be seen
from Eq. (3.27), the Zeeman splitting can be strongly reduced for large SOI. This feature
will turn out to be very important in order to have a long-lived qubit (see below).

3.5 Strong transverse confinement

In this section we analyze the case shown in Fig. 3.1B, i.e. when the transverse confinement
in the y−z plane is much stronger than the longitudinal one along x̂. As in the previous case,
we can derive an effective longitudinal Hamiltonian by averaging the full Hamiltonian H over
the transverse orbital ground-state |0t〉. The effective Hamiltonian Heff ≡ Hl = 〈0t|H|0t〉
reads

Hl =
p2x
2m∗ + V (x) +HZ +H l

SO +He−γ +Hγ, (3.29)

with V (x) = 〈0t|V (r)|0t〉, while all other terms remain the same, since they have no action
along the x-direction. Again, like in the previous case, we disregard the term 〈0t|(p2y +
p2z)/2m

∗|0t〉, since it gives a constant shift of the levels.
We now derive the spin-photon interaction from the effective Hamiltonian (3.29). As can

be seen from Eq. (3.3), the SOI contains only one spin-component, ση along the η-direction.
In this case and in the absence of an external magnetic field the SW transformation (3.6) can
be performed exactly, since the SOI appears as an Abelian gauge-potential. [68, 116] In the
presence of an external magnetic field, however, this cannot be done exactly anymore. We
now apply the transformation (3.6) to the Hamiltonian Hl so that we obtain H̄l = e−SHeS,
with the operator S corresponding to the zero-field case. This operator S reads

S = −i x

λSO
ση, (3.30)

with λSO = ~/m∗η. The effect of this transformation can be evaluated exactly and we obtain

H̄l =
p2x
2m∗ + V (x) +HZ(x) + eEx+ ~ωa†a, (3.31)

with

HZ(x) =
1

2
gµB

(
cos

(
2x

λSO

)
Bη⊥ · σ + Bηση − sin

(
2x

λSO

)
(eη ×B) · σ

)
,

where Bη⊥ is the component of the magnetic field B perpendicular to the vector η, Bη is
the magnetic field component along η, and eη = η/η. We now assume, as before, that the
Zeeman splitting EZ = gµBB is much smaller than the orbital level spacing ∆E0 given by the
first two term in the above Hamiltonian. Also, we assume harmonic confinement potential
along the x-direction V (x) = m∗ω2

0x
2/2 which gives a dot size l =

√
~/m∗ω0. This is usually

the case for gate-defined QDs. Then, the above condition translates in having EZ ≪ ~ω0.
We are now in position to derive an effective spin-photon Hamiltonian by treating HZ(x)
within perturbation theory. We perform a new SW transformation and transform the above
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Hamiltonian into a diagonal one in the basis of H0 to obtain Hs−γ = 〈0|e−S′

H̄eS
′ |0〉. We

averaged also over the orbital ground state |0〉 to obtain a pure spin-photon Hamiltonian.
Within lowest order in EZ/~ω0 the transformation is given by S ′ = (1 − P)L−1

0 HZ(x).
After inserting the operator S ′ in the expression for Hs−γ and keeping only the lowest order
corrections, we obtain

Hs−γ =
1

2
gµBBeff · σ +Mγ · σ(a† + a) + ~ωa†a, (3.32)

with
Beff · σ = e−(l/λSO)2Bη⊥ · σ +Bηση, (3.33)

Mγ · σ = eV1
l

d

l

λSO

EZ

~ω0

e−(l/λSO)2(eη × b) · σ. (3.34)

We see that the spin-photon interaction is maximal when the magnetic field is perpendicular
to η, like in the perturbative calculation of the previous section. This is expected since, as
in the previous section, the SOI manifest itself as an Abelian gauge potential within lowest
order, although there are two spin-components. From now on, we assume a magnetic field
perpendicular to η so that Bη = 0, B · ση⊥ = Bσz̃ and (eη × b) · σ = ση⊥,b ≡ σx̃. Then,
the spin-photon Hamiltonian reads

Hs−γ =
1

2
Eeff

Z σz̃ +Mγσx̃(a
† + a) + ~ωa†a, (3.35)

with

Mγ = eV1
l

d

l

λSO

Eeff
Z

~ω0

, (3.36)

where Eeff
Z = EZe

−(l/λSO)2 is the effective Zeeman splitting.
We see that the SOI reduces strongly the Zeeman splitting for large values of the ratio

l/λSO. This over-screening of the Zeeman interaction can be understood as follows. After
performing the transformation (3.30) there is no SOI present in the system, but the magnetic
field in the new ’frame’ has an oscillatory behavior, as shown in Eq. (3.32). This means that
the magnetic field precesses around the x-direction, the speed of precession being given by
the strength of the SOI measured through the SO length λSO. If the bare Zeeman splitting
EZ is much smaller that the orbital level spacing, EZ ≪ ~ω0, the electron find itself in the
orbital ground state |0〉 given by H0. Then, if the SOI strength is increased, the precession
frequency increases also, so that there are many precessions of the magnetic field over small
distances. Since this implies also small changes of the orbital wave-function, this leads to an
average reduction of the effective Zeeman splitting, as obtained above.

3.6 Numerical Estimates

We give now some estimates for the coupling ν ≡ Mx
γ for QDs in InAs nanowires for

both geometries shown in Fig. 3.1. In the first case, we assume the dots to have a width
of 5 − 10 nm (Ew ≈ 10meV–the transverse confining energy) and a radius R ≈ 50 nm
(∆E0 ≈ 5meV). The electron in the QD is characterized by m∗ = 0.023me, g ≈ 2.5 and
λSO ≈ 100 nm. [93] We assume also that the 1D cavity is 2 mm long and 100 nm wide,



44 CHAPTER 3. SPIN DYNAMICS IN A TRANSMISSION LINE

c ≈ 2 · 10−10 C/V ·m [108] which implies for the fundamental mode ~ω ≃ 0.5meV and an
rms electric field E = V1/d ≃ 100V/m. The Zeeman splitting is assumed to be on the same
order with the lowest cavity mode, i.e. Eeff

Z ≈ 0.5meV (B ≈ 1.75T). Plugging in all the
numbers in the formula for ν, Eq. (3.28) we obtain ν ≈ 10−5 meV which, in the degenerate
case Eeff

Z = ~ω, corresponds to a dynamics of the spin-photon system of about 60ns (Rabi
oscillations between the spin and the cavity). In the second case there is more control on
the orbital level spacing since the dots are obtained in principle by external gating. We now
assume a dot radius R ≈ 10 nm (E0t ≃ 30meV), a dot length l ≃ 40 nm (~ω0 ≃ 2meV) and
g ≈ 10. [94] For Eeff

Z ≈ 0.5meV we need a magnetic field B ≈ 0.45T. Also, we assume the
same lengths for the cavity as for the first case so that we obtain ν ≈ 4 ·10−4 meV. This gives
rise to a dynamics of the spin-photon system of about 2 ns in the degenerate limit Eeff

Z = ~ω.
We mention that in both cases the renormalized Zeeman splitting is quite different from the
bare one, i.e. Eeff

Z = 0.93EZ in the first case and Eeff
Z = 0.84EZ in the second case.

For the exchange coupling J between two spins one can achieve values as large as J ≈
10−6 meV in the limit of quite small detunings (∆ ≈ 10−4 meV) for the case in Fig. 3.1A,
which eventually translates into a time dynamics of about 500 ns for coherently swapping
the two spins. In the geometry shown in Fig. 3.1B the exchange coupling J can be much
larger, on the order of J ≈ 4 ·10−5 meV for detunigs on the order of ∆ ≈ 4 ·10−3 meV, which
implies a time dynamics of about 20 ns for swapping the two spins coherently.

In order to control the exchange coupling J , one should be able in principle to change
the Zeeman splitting or the orbital level spacing. In InAs QDs the Zeeman splitting can be
changed very efficiently by changing the dot size along the wire direction, [94] in both cases
in Fig. 3.1 Considering the case of two QDs in the cavity, one way to decouple them is by
tuning the g-factors so that ∆1 = −∆2, as can be seen from Eq. (3.18). However, in the
case of many QDs inside the cavity this will be rather difficult to achieve.

Another possibility is to change the g-factors locally so that the coupling between the
spins reduces due to the reduction of the Zeeman splitting EZ . Assuming that a reduction of
J by one order of magnitude is a good measure for the decoupling, one obtains a correspond-
ing change in the g-factor of the order of 15% in the first geometry shown in Fig. (3.1). The
rather drastic change of g-factor was already experimentally demonstrated for InAs QDs by
Björk et al. [94]. They achieved a change in the g-factor from |g| = 3.5 to |g| = 2.3 when
the dot size along the nanowire was reduced from 10 nm to 8 nm, i.e. a variation of about
30%, which shows to be sufficient for our scheme in the geometry shown in Fig. 3.1. The
same can be done efficiently for the second geometry, since the dots being gate-defined can
be modified strongly along the wire axis.

Yet another way to change the exchange coupling J is by changing the orbital confining
energy ∆E0. In the first geometry ν ∼ R4, and J ∼ ν2 (assuming two equal spin-photon
couplings for simplicity) one obtains a dependence J ∼ R8. Then, by using top gates,
for example, one can strongly modify the exchange coupling J by a small change of the
orbital energy ∆E0. This can be done equally, and maybe more efficiently, for the second
geometry since, as explained above, the dots can be modified easily along the wire axis. The
spin-photon coupling ν ∼ l4, which implies then a scaling of the exchange coupling J ∼ l8.
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3.7 Coherent manipulation

One way to coherently manipulate and to read-out (measurement) the qubits is by applying
an external driving field to the cavity with a varying frequency Hex = ǫ(t)(a†e−iωext+aeiωext),
where ǫ(t) is the amplitude. In the dispersive limit (νi/∆i ≪ 1) Hex → Hex + [T,Hex] so
that

Hex ≃ ǫ(t)a†e−iωext +
∑

i=1,2

νiǫ(t)

∆i

σ+
i e

−iωext + h.c. (3.37)

The control of the i-th qubit can now be realized by tuning the frequency of the driving field
to ωex = Eeff

iZ + ν2i /∆i, while this condition is not satisfied for the other qubits. This gives
rise to an electric-dipole spin resonance (EDSR) for the i-th qubit, similar to that studied
by Golovach et al. [?] The measurement can be performed by tuning the frequency of the
driving close to the cavity mode so that we can observe peaks in transmission at the positions
~ω +

∑
i(ν

2
i /∆i)σ

i
z. If detunings are chosen so that all combinations can be distinguished,

one can measure all the spins from one shot (or at least group of spins). [108]
A more efficient way to manipulate the spin is to make use of the EDSR-scheme proposed

in Ref. [?], namely to apply an alternating electric field E(t) to the QD, which, via the
electric dipole transitions and the SOI, gives rise to an effective alternating magnetic field.
Briefly, if only the dipolar coupling to the alternating electric field E(t) is considered, we
get He−el(t) = eE(t)y, with the electric field E(t) along y-direction. If the system in Fig.
3.1A is considered, the effective spin-electric field coupling within first order in SOI becomes
Hs−el = 〈0|[S,He−el(t)]|0〉 ≡ δB(t)σy, with the fluctuating magnetic field δB(t) having the
form

δB(t) ∼ eE(t)R EZ

∆E0

R

λSO
. (3.38)

For the case shown in Fig. 3.1B we obtain a similar expression for δB(t), but with the bare
Zeeman splitting EZ substituted with the effective Zeeman splitting Eeff

Z defined after Eq.
(3.36), and the radius R substituted with the dot length l. The electric field E(t) is assumed
to have an oscillatory behavior, E(t) = E0 cosωact with ωac being the frequency of the ac
electric field. By tuning the frequency of the oscillatory electric field ωac in resonance with
the qubit splitting Eeff

Z one can achieve arbitrary rotations of the spin on the Bloch sphere
on time scales given by the Rabi frequency ωR = δB(0)/~. [?] We mention that within
lowest order in SOI the induced fluctuating magnetic field δB(t) is always perpendicular
to the applied field B and reaches the maximum when the applied electric field E(t) points
into the same direction as B. [?] This is the reason for choosing the electric field along the
y-direction.

We give here also some estimates for the Rabi frequency ωR. For this we assume the same
parameters as in the previous section and we choose for the amplitude of the electric field E0 ≈
10 eV/cm. With this values we obtain for the strength of the Rabi frequency ωR ≈ 10GHz,
which gives a time dynamics for the electron spin control on the order of ω−1

R ≈ 0.1ns. This
time scale must be much shorter than the usual relaxation and decoherence times for the
spin in the QD. Finding the relaxation and decoherence time scales is the subject of the next
section.
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3.8 Spin relaxation and decoherence

We address now the issue of relaxation and decoherence of the spin in the cavity. There
are two types of contributions to the relaxation processes, one arising from the finite decay
rate of the cavity, κ, and the other one from the intrinsic relaxation and decoherence of the
spin, labeled by T−1

1,2 . To reach the strong coupling regime described here, the losses must be
smaller than the coupling between the qubits J in the regime of interest (ν2/∆ > κ, T−1

1,2 ).
Very high-Q factor 1D electromagnetic cavities were already built (Q = κ−1 ∼ 104 − 106),
[107] so that the intrinsic relaxation and decoherence of the qubit show up as the limiting
factors for reaching the strong coupling regime.

The relaxation and decoherence of the spin-qubit arise mainly from the coupling to the
bath of phonons and the collection of nuclei in the QD. The phonon contribution was studied
microscopically in great detail for the case of gate-defined GaAs QDs in 2DEGs and it was
shown that for large B-fields, similar to the present case, the main contribution to relaxation
comes from the deformation potential phonons with a decay time T1 ∼ 10−2 − 10−4s. [64]
As a consequence, a smaller relaxation time is then expected for InAs QDs since the SOI is
one order of magnitude larger than in GaAs (T1 ∝ (λSO/R)

2). However, different from the
bulk case, the phonon spectrum in nanowires becomes highly non-trivial due to the mixing
of the branches by the boundaries, [117] leading to a strong modification of the relaxation
time.

In cylindrical nanowires there are three types of acoustic modes: torsional, dilatational
and flexural. [118] All these modes couple to the electric charge and, in principle, all of them
couple also to the spin for a general SOI Hamiltonian. However, as shown later, this is not
actually the case for the SOI acting in the two configurations in Fig. 3.1, and only a small
part of the entire spectrum gives rise to spin relaxation.

As stated above, within the large Zeeman splitting limit considered in this chapter,
we can take into account only the interaction of the electron with the lattice via the de-
formation potential. The electron-phonon deformation potential interaction is given by
He−ph = Ξ0∇u(r, t), where Ξ0 is the deformation potential strength and

u(r, t) =
1√
N

∑

k

[u(k, r)bk(t) + h.c.], (3.39)

with the displacement field u(k, r) given by [117,118]

u(k, r) = ∇Φ0 + (∇× ez)Φ1 + (∇×∇× ez)Φ2. (3.40)

The index k ≡ {q, n, s} quantify the relevant quantum numbers, i.e. the wave-vector along
the wire, the winding number and the radial number, respectively, bk(t) is the annihilation
operator for phonons, ez is the unit vector along the z direction and

Φi = χjf
j
ns(r)e

i(nφ+qz), (3.41)

with j = 0, 1, 2, n = 0,±1,±2 . . . . The functions f j
ns(r) depend only on the radius [117,

119] and χj are normalization factors. The effective spin-phonon interaction can be found
following the same procedure as that used for deriving the spin-photon interaction for both
cases in Fig.3.1.
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3.8.1 Spin-relaxation in longitudinal confined QDs

We give here the main steps in the derivation of the relaxation rate for the case shown in
Fig. 3.1A. Keeping only terms up to first order in SOI, we obtain

Hs−ph = 〈0|[S,He−ph]|0〉, (3.42)

with S given in Eq. (3.23) and |0〉 being the orbital ground-state. Due to the circular
symmetry, the first order in SOI term couples only to the n = 1 phonons. The resulting
spin-phonon coupling has the form

Hs−ph =
1

2
gµBδBy(t)σy, (3.43)

with

δBy(t) = B
Ξ0

∆E0

R

λSO

∑

q,s

C(q, s)√
F(q, s)ρc ωq,s/~

K2
q,sb

†
k + h.c., (3.44)

C(q, s) ≈ 0.25

∫ 1

0

dr rJ1(k11r)J0(k10r)f
0
1s(r)

|J2(k11)J1(k10)|
, (3.45)

where Kq,s = ωq,s/cl with ωq,s being the eigen-modes of the phonon field, cl the longitudinal
speed of sound in InAs. The normalization function F(q, s) is given by

F(q, s) =
~R2

4Mχ2
0ωk

, (3.46)

where M is the mass of the ions in a unit cell.
The explicit forms for the ωq,s and F(ωq,s) depend on the boundary conditions used for the

phonon field. The two quantities relevant for the boundary conditions are the displacement
vector u(r) and the stress vector t(r) = Ter at r = R, with T being the stress tensor [118]
and er being the unit vector along r. One can now write u(r) = Uχ and t(r) = T χ with
χ = (χ0, χ1, χ2), where the expressions for the matrices U and T are given in Appendix
B. There are two limiting cases for the boundaries. The first case is met when there is
zero stress at the surface, i.e. t(R) = 0, [118] with ωq,s being the solutions of |T (R)| = 0
(free surface boundary conditions or FSBC), while the second limiting case is met when the
surface is rigid, i.e. u(R) = 0, with ωq,s being the solutions of |U(R)| = 0 (clamped surface
boundary conditions or CSBC). The phonon field is normalized according to the following
relation [120]

1

πR2

∫ 2π

0

dφ

∫ R

0

drru∗(k, r, φ) · u(k, r, φ) = ~

2Mωk

. (3.47)

From the FSBC or CSBC, together with the normalization of the phonon field, one obtains
the spectrum ωq,s and the normalization function F(q, s).

We now use the effective spin-phonon Hamiltonian with the fluctuating field given in
Eq. (3.43) to find the spin relaxation and decoherence times, T1 and T2, respectively. We
mention here that the fluctuating magnetic field δBy(t) is perpendicular to the external one
B such that there is no pure dephasing coming from the interaction of the spin with phonons
in lowest order in SOI. In fact, as shown previously, [64] this is valid for any type of baths,
be it phonons, particle-hole excitations etc.
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Figure 3.2: The relaxation rate T−1
1 as a function of the ratio ωeff

Z R/cl, for both FSCB and CSBC
(see text for explanations of FSBC and CSBC). Here ~cl/R ≃ 0.6 · 10−4 eV (cl ≃ 4 · 103m/s and
R ≃ 50 nm) corresponding to a magnetic field B ≃ 0.2T, for g = 2.5.

In the following we derive the expressions of the T1 and T2 times resulting from the
fluctuating field δBy(t). For this we need to compute the bath correlator

Jyy(ω) =
(gµB

2~

)2 ∫ ∞

0

dte−iωt < δBy(0)δBy(t) >, (3.48)

where the brackets < ... > means tracing over the phonon bath being at thermal equilibrium
at temperature T. The relaxation time within the Bloch-Redfield approach is given in the
present particular case (the B-field along x-direction) by (see Ref. [64, 65])

T−1
1 = Re(Jyy(ω

eff
Z ) + Jyy(−ωeff

Z )), (3.49)

with ωeff
Z = Eeff

Z /~. Making use of Eq. (3.48) we then finally obtain for the relaxation rate

T−1
1 = T−1

(0)1

(
ωeff
Z R

cl

)5∑

s

(∣∣∣∣
∂q

∂ωq,s

∣∣∣∣
C2(q, s)

F(q, s)

)

ωq,s≡ωeff
Z

, (3.50)

where

T−1
(0)1 ≈ 0.05

δ2~

ρcR5

(
Ξ0

∆E0

)2(
R

λSO

)2

. (3.51)

In the above expression δ = EZ/E
eff
Z , and the functions C(q, s) and F(q, s) are defined in Eqs.

(3.45,3.46). We mention that within first order in SOI the decoherence time T2 induced by
phonons satisfies T2 = 2T1 since, as mentioned before, the fluctuating magnetic field induced
by phonons δB is perpendicular to the applied one B. In Fig. 3.8.1 we plot the relaxation
time as a function of the ratio ωeff

Z R/cl, for R = 50 nm and cl = 4 · 103 m/s. We see that the
relaxation rate exhibits peaks as a function of the effective Zeeman splitting Eeff

Z . This is due
to the finite size in the transverse direction which gives rise to phonon branches. Each new
peak appears when Eeff

Z reaches a new energetically higher branch. Note that although the
relaxation rate seems to diverge when reaching a new peak, in reality this does not happen
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since there are many processes which broaden the phonon DOS at these special points, like
phonon-phonon scattering, phonon-substrate scattering, etc. The usual branch splitting is
on the order of ωR

ph ≡ cl/R, which stands for the phonon frequency in bulk material with the
wave-length equal to the dot size R. This frequency ωR

ph (or energy, when expressed as ~ωR
ph)

is the parameter which characterizes the dominant mechanism for the phonon-induced spin
relaxation, which can be due to piezoelectric-potential or deformation-potential phonons. In
the limit ωeff

Z ≪ ωR
ph the piezo-phonons give the main contribution to the relaxation rate

T−1
1 , while in the opposite case, ωeff

Z ≫ ωR
ph, the main contribution to the relaxation rate T−1

1

is given by deformation-potential phonons. [64] Here we are in neither of the two limits, but
in the range where Zeeman splitting is slightly larger than ~ωR

ph, i.e. ωeff
Z ≥ ωR

ph. However,
taking into account only the deformation potential mechanism should give the right order
of magnitude for the relaxation rate. We mention here that the relaxation rate T−1

1 in the
low energy limit (ωeff

Z R/cl < 1) is given predominantly by the longitudinal linear in q mode
(ωlong(q) = clq) and the bending mode, square in q (ωbend(q) = Bq2, with B being a constant
which depends on R). [118]

We see from Fig. 3.8.1 that each new phonon branch gives a strong enhancement of the
relaxation rate T−1

1 , since it adds more phonon density of states. However, we see also that
before the first peak, i.e. before reaching the first new branch, there is little spin relaxation
(T1 ≥ 10−3s) for both FSBC and CSBC. This energy scale corresponds to a Zeeman splitting
Eeff

Z ≈ 10−4eV(Eeff
Z ≈ 1.2 · 10−4eV) for FSBC (CSBC).

If one tunes the effective Zeeman splitting Eeff
Z below the first peak, the relaxation rate

of the qubit becomes very small, and the fact that Eeff
Z and not EZ has to be tuned is

practically an advantage for reasonably strong SOI since we need quite large EZ for having
large g ∝ EZ . In the present case Eeff

Z /EZ ≈ 0.93, and for larger SOI this ratio will be even
smaller.

3.8.2 Spin relaxation in transverse confined QDs

We give here a brief description of the phonon-induced spin relaxation for the case shown in
Fig. 3.1B. We first mention that due to the strong confinement in the transverse direction
we can average the electron-phonon interaction over the transverse orbital ground state |0t〉.
Since for the ground state wave function we have m = 0 (see Eq. (3.25)), the only modes
which couple to the electron, and thus eventually to the spin, are the n = 0 modes of the
phonon field in Eq. (3.39). Then, the problem of relaxation simplifies considerably.

The transformation He−ph → e−SHe−phe
S, with S given in Eq. (3.30), although exact,

does not lead to a coupling of the spin to the phonon field since both the electron-phonon
interaction Hamiltonian He−ph and S contain only coordinate x operator, i.e. they com-
mute. After this transformation, however, we are left with no SOI term, but with the
x-dependent Zeeman coupling in Eq. (3.32). We now perform a second transformation
He−ph → e−S′

He−phe
S′

with S ′ given before Eq. (3.32), under the assumption EZ ≪ ~ω0.
Then, within first order in EZ/~ω0 we obtain for the spin-phonon Hamiltonian Hs−ph the
following expression

Hs−ph = 〈0|[S ′, He−ph]|0〉, (3.52)

where we averaged also over the ground-state |0〉 of the orbital Hamiltonian H0. The spin-
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phonon Hamiltonian Hs−ph reads

Hs−ph =
1

2
gµBδBx̃(t)σx̃ +

1

2
gµBδBz̃(t)σz̃, (3.53)

with

δBx̃,z̃(t) = Beff

Ξ0

~ω0

∑

q,s

M x̃,z̃
s−ph(q)√

2F(q, s)ρcωq,s/~
K2

kb
†
k + h.c., (3.54)

and k ≡ {q, s}. The functions M x̃,z̃
s−ph are given by the following expressions

M x̃
s−ph(q) = SinhInt

(
l2q

λSO

)
(3.55)

M z̃
s−ph(q) = γ − CoshInt

(
l2q

λSO

)
+ Log

(
l2q

λSO

)
, (3.56)

where γ = 0.577 is the Euler constant, Log(x) is the natural logarithm, while the special
functions SinhInt(x) and CoshInt(x) are defined as

SinhInt(x) =

∫ x

0

dt
sinh (t)

t
(3.57)

CoshInt(x) = γ + Log(x) +

∫ x

0

dt
cosh (t)− 1

t
. (3.58)

We see that, there is both relaxation and pure dephasing of the spin due to spin-phonon
interaction. However, since the deformation-potential phonons is superohmic (even in 1D
case for deformation-potential phonons), the pure dephasing rate vanishes [121] so that we
retain in the following only the first term in Eq. (3.53). The relaxation rate T−1

1 can be
found by the same procedure as in the previous case and reads

T−1
1 = Re(Jx̃x̃(ω

eff
Z ) + Jx̃x̃(−ωeff

Z )), (3.59)

where the correlation function Jx̃x̃ is defined in Eq. (3.48) with y → x̃, and ωeff
Z = Eeff

Z /~,
as before. The expression for the relaxation rate T−1

1 becomes

T−1
1 = T−1

(0)1

(
ωeff
Z l

cl

)5∑

s

(∣∣∣∣
∂q

∂ωq,s

∣∣∣∣
M̃2x̃

s−ph(q)

F(q, s)

)

ωq,s=ωeff
Z

, (3.60)

where

T−1
(0)1 =

~

2πρcR2l3

(
Ξ0

~ω0

)2

(3.61)

and
M̃x̃

s−ph(q) = Mx̃
s−ph(q)e

−q2l2/8. (3.62)

In order to find now the dependence of the relaxation rate T−1
1 on the effective Zeeman

splitting ωeff
Z , we have to find first the phonon eigen-frequencies ωq,s. This can be done

following the same steps as in the previous section, depending which kind of boundary
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Figure 3.3: The relaxation rate T−1
1 as a function of the ratio ωeff

Z l/cs for three different ratios
l/λSO and with FSBC (see text).

conditions are used, i.e. FSBC or CSBC. As mentioned earlier, the average distance between
the branches s is on the order of ωR

ph = cl/R. Then, since R ≪ l, and also due to the gaussian
suppression in Eq. (3.62), it is enough to consider in Eq. (3.60) only the lower branch s = 1.
If we now assume FSBC and the limit qR ≪ 1, the phonon eigen-frequency becomes linear
in q, i.e. ωq,1 ≡ ω(q) = csq, with [118]

cs = ct

√
3c2l − 4c2t
c2l − c2t

. (3.63)

The normalization function χ0 acquires also a simple form in this limit, and reads

χ0 =
c2l

3c2l − 4c2t

R

q

√
~

2M cs q
. (3.64)

After inserting in Eq. (3.60) the expressions for ω(q) and χ0, we obtain for the relaxation
rate T−1

1 (FSBC) the final expression

T−1
1 =

T−1
(0)1

2

(
c2

3c2l − 4c2t

)2
(
ωeff
Z l

cs

)3

M̃x̃2
s−ph(ω

eff
Z l/cs). (3.65)

In Fig. 3.8.2 we plot the relaxation rate T−1
1 as a function of the dimensionless parameter

ωeff
Z l/cs for different SOI strengths measured through the ratio l/λSO. We assumed here R =

10 nm and l = 50 nm, which gives ~cs/l ≡ ~ωl
ph = 0.05meV and ~cl/R ≡ ~ωR

ph = 0.25meV.
We see in Fig. 3.8.2 that the relaxation rate T−1

1 is quite large (T−1
1 ∼ 105 − 107 s−1)

for ωeff
Z /ωl

ph ∼ 1 − 5, i.e. when these energies are comparable. However, there is need
for a large effective Zeeman splitting Eeff

Z ≫ ~ωl
ph to achieve a large spin-photon coupling

Mγ . At the same time, one should stay still below the next phonon branch since above it
we find a substantial increase for the relaxation rate. Since this next phonon branch lies
somewhere around 2~ωR

ph ≈ 0.5meV, the condition for efficient spin-phonon coupling and
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weak relaxation becomes ~ωl
ph ≪ Eeff

Z < 2~ωR
ph. In this regime we are actually satisfying

also the necessary condition that EZ/~ω0 ≪ 1, since for l = 50 nm we have ~ω0 = 1.3meV.
We mention that for CSBC the phonon spectrum is gapped, and, in consequence, there
is no phonon-induced relaxation of the spin for Zeeman splittings Eeff

Z smaller than this
gap ∆ph. This energy (gap) is on the order of ∆ph ∼ 2~ωR

ph = 0.5meV. Note the non-
monotonic behavior of the relaxation rate as a function of the effective Zeeman splitting (see
Fig. 3.8.2). This non-monotonicity has the same origin as in GaAs QDs, [64] and comes
from the fact that for increasing Zeeman splitting the wave-length of the phonon decreases,
and when this becomes less than the dot length the phonons decouple from the electron (i.e.
the electron-phonon coupling averages to zero). A similar non-monotonic effect has been
recently observed in GaAs double QDs. [122]

3.8.3 Decoherence due to hyperfine interaction

The spin decoherence time due to single-phonon processes is given by T2 = 2T1 so that the
main source for decoherence comes from the hyperfine interaction between the electron and
the surrounding nuclei. This time scale, T ∗

2 , is given by [83,84]

T ∗
2 = 2

~
√
N

A
, (3.66)

where N is the number of nuclei in the sample and A is the hyperfine constant. The number
of nuclei N can be found as

1

N
= v0

∫
d3r|ψ(r)|4, (3.67)

where v0 is the unit cell volume per nuclear spin and ψ(r) is the wave function of the electron
in the QDs. We see that the larger the number of nuclei, i.e. the bigger the dot, the longer
is the pure decoherence time T ∗

2 for the electron. In a typical GaAs QDs (R = 30 nm and
l = 5nm, AGaAs = 90µeV, N ≈ 105) this time scale is on the order of T ∗

2 ∼ 10−8 s. [83, 84]
In InAs material the hyperfine constant AInAs ≈ 300µeV [123], i.e. more than three times
larger than in GaAs. However, the number of nuclei found from Eq. (3.67) is on the order
N ≈ 106 for both geometries so that the dephasing time T ∗

2 ≈ 4 · 10−9 s. However, again like
in GaAs, we expect that coherently driving the qubit will prolong the T ∗

2 time up to 10−6 s
and with echo up to 10−5 s. [13] Moreover, like in GaAs QDs, one can make use of state
narrowing procedures, [86, 124] which should lead to a further substantial enhancement of
T ∗
2 due to nuclear spins, and possibly reach the SOI induced limit of 10−1−10−4 s calculated

above for large magnetic field strengths.

3.9 Conclusions

We have proposed and studied an efficient way to implement spin qubits localized in InAs
nanowires coupled to a 1D electromagnetic transmission line (cavity) via SOI. We have an-
alyzed two experimentally achievable configurations of the system. In the first case the elec-
tronic confinement is much stronger along the nanowire axis than in the transverse direction
(large-radius nanowires), while the other case corresponds to the opposite limit (small-radius
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nanowires). We have found an efficient coupling between the spin and the cavity modes due
to strong vacuum fluctuations in the cavity and a sizable SOI in InAs. We also have shown
that this spin-photon coupling can allow for coupling between two (or several) distant spins,
depending on the detuning of the Zeeman splittings Eeff

iZ from the cavity mode ~ω. The
SOI-induced exchange coupling J between two spins can be controlled by electrical fields
only, e.g. by changing the g-factor and/or orbital level spacing. Also, single-spin rotations
can be performed efficiently by electric fields only, through the EDSR mechanism. Exploit-
ing a stronger SOI in InAs nanowires than typically in GaAs structures might seemingly
compromise the use of spin for quantum memory, because the orbital environment couples
also stronger to the spin. However, we have studied the relaxation of the spin due to the
lattice vibrations in the InAs nanowires for both configurations, and shown that the time
scale for the spin-decay is on the order of milliseconds for relatively strong magnetic fields
(B ∼ 0.5 − 1T), much larger than the times associated with the spin-photon dynamics,
which takes place on times scales on the order of 10−8 − 10−7 s. This fact is due to the
quasi 1D structure of the system where the phonon spectrum shows discrete branches, very
different from the bulk limit.

We stress here also that the coupling of the quantized modes of the transmission line to
the spin degree of freedom via SOI is not restricted to QDs in semiconductor nanostructures.
In principle, this coupling should be possible in other spin-orbit coupled systems too, like
nitrogen-vacancy centers (NV-centers), [125, 126] molecular magnets, [127–129] magnetic
nanorings, [130] etc. In these systems there is usually a large zero-field splitting (ZFS)
of the lowest spin-multiplet attributed to SOI or to dipole-dipole interaction. This would
allow for an efficient coupling of the electric fields, quantum or classical, to the spin degree of
freedom and finally providing a mechanism for an all-electrical implementation of spin-based
quantum information processing.

As a final remark, we mention that the present scheme can be also used to form hybrid
structures where spin-qubits are integrated together with other types of qubits in the same
1D transmission line. For example, one can envision a setup where a spin-qubit is coupled
via the cavity modes to superconducting qubit as the one studied in Ref. [108] so that one
can transfer arbitrary states between the two qubit-systems.





Chapter 4

Relaxation of hole spins in quantum dots

via two-phonon processes

We investigate theoretically spin relaxation in heavy hole quantum dots in low external
magnetic fields. We demonstrate that two-phonon processes and spin-orbit interaction are
experimentally relevant and provide an explanation for the recently observed saturation
of the spin relaxation rate in heavy hole quantum dots with vanishing magnetic fields.
We propose further experiments to identify the relevant spin relaxation mechanisms in low
magnetic fields.

4.1 Introduction

In the past years, a new candidate for a qubit state has been attracting growing interest: the
spin of a heavy hole (HH) confined in a flat QD. In a bulk semiconductor the HH (Jz = ±3/2)
and light hole (LH) (Jz = ±1/2) bands are degenerate giving rise to strong mixing and thus
to strong HH-spin relaxation. However, in a 2D system the HH and LH bands are split due
to the strong confinement along the growth direction [18] implying a significant reduction of
the HH spin relaxation via HH-LH mixing.

A basic requirement for a good qubit is that it can be initialized in a given state (say,
spin up) and that the relaxation and decoherence times be much longer when compared
to the switching times for single- and two-qubit operations. The spin of a HH localized
in a quantum dot has been successfully initialized [20], and the relaxation time has been
measured [20, 24], and found to be on the order of 100 microsecs. The relaxation (T1) and
decoherence (T2) times of a HH-spin localized in a flat QD are, like for electrons, determined
by the interaction of the HH with the nuclear spin bath in the QD and the lattice vibrations
(phonons). The former interaction is weaker for HHs than for electrons (due to the p-
symmetry of the hole) [19,22]. More importantly, it is of Ising type, making it ineffective for
HH-spins initialized along the growth direction [19], as typically done in experiments [20,21],
thus implying very long dephasing times. This is in contrast to electrons, where the hyperfine
interaction is isotropic and dominates the spin dynamics at low B-fields [13,83,131,132].

55
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4.2 Heavy-hole Hamiltonian

Phonons couple to the HH spin through the spin-orbit interaction (SOI) [25]. The predicted
values [25] for the one-phonon induced relaxation time T1 agree quite well with data obtained
in high B-fields [24]. However, for low B-fields (B ∼ 1.5− 3T) and high temperatures (T >
2K), a clear deviation from the one-phonon theory has been observed [24]. Furthermore,
recent experiments on optical pumping of HH-spins in QDs showed saturation of T1 for
very low or even vanishing B-field [20]. The relaxation time was found to be unusually
long, T1 ≈ 0.1 − 1ms, like previously observed in high B-fields [24]. Both observations
suggest other sources of relaxation, and the question arises what are they and what are
their observable consequences? The answer to this question is not only interesting by itself
but also relevant for using HHs as qubits. In the following, we show that two-phonon
processes are good candidates and even provide a quantitative explanation of the mentioned
measurements at low B-fields [20, 24]. The importance of such two-phonon processes was
noticed a long time ago for electron spins in silicon-donors [133] and rare-earth ions [134],
while for electrons in QDs it was shown that these processes are negligible compared to
nuclear spin effects [135,136].

To describe a HH confined to a QD and interacting with the surrounding phonon bath,
we start with the following Hamiltonian

Hh = H0 +HZ +HSO +Hh−ph +Hph, (4.1)

where H0 = p2/2m∗ + V (r), is the dot Hamiltonian, V (r) ≡ m∗ω2
0r

2/2 is the confinement
potential which is assumed to be harmonic, with m∗ being the HH mass. The second term
in Eq. (4.1) is the Zeeman energy of the HH (pseudo-) spin

HZ = gµBB · σ/2, (4.2)

with B being the magnetic field and σ the Pauli matrices for the HH spin defined in the
Jz = ±3/2 subspace. The third term represents the spin-orbit Hamiltonian, which, for well
separated HH-LH bands (flat dots), reads [25]

HSO = βp−p+p−σ+ + h.c. (4.3)

This Hamiltonian represents the effective Dresselhaus SOI (restricted to the HH subspace)
due to bulk inversion asymmetry of the crystal [25], where p± = px±ipy, p = −i~∇−eA(r),
A(r) = (−y, x, 0)B/2, and σ± = σx ± iσy. We note that in Eq. (4.3) we have neglected the
Rashba SOI and other possibly linear-in-k but small SOI terms [25]. The fourth term in Eq.
(4.1) represents the interaction of the HH charge with the phonon field, i.e.

Hh−ph =
∑

qj

MqjXqj, (4.4)

with

Mqj =
F (qz)e

iq·r
√
2ρcωqj

[
eβqj − i(Ξ0 q · dqj − Ξz qzd

z
qj)
]
, (4.5)
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and Xqj =
√

~/ωqj(a
†
−qj + aqj), where q is the phonon wave-vector, with j denoting the

acoustic branch, ωqj = cjq the phonon energy, with cj the speed of sound in the j-th branch,
dqj the polarization unit vector, ρc the sample density (per unit volume), and eβqj the
piezoelectric electron-phonon coupling and Ξ0,z the deformation potential constants [25].
The form factor F (qz) in Eq. (4.5) equals unity for |qz| ≪ d−1 and zero for |qz| ≫ d−1, with
d being the dot size in the (transverse) z-direction. The last term in Eq. (4.1) describes the
free phonon bath.

4.3 Spin-phonon interaction

In the following, we analyze the effect of the phonons on the HH spin. The phonons do
not couple directly to the spin, but the SOI plays the role of the mediator of an effective
spin-phonon interaction. Let us define the dot Hamiltonian Hd ≡ H0 + HZ + HSO. These
eigenstates |nσ〉 ofHd are formally connected to the eigenstates |n〉|σ〉 ofH0+HZ by an exact
Schrieffer-Wolff (SW) transformation [64, 137], i.e., |nσ〉 = eS|n〉|σ〉, where S = −S† is the
SW generator and can be found in perturbation theory in SOI. After this transformation,
any operator A in the old basis transforms as A → Ã = eSAe−S in the new basis (e.g.,
Hd → H̃d, Hh−ph → H̃h−ph, etc.).

In order to derive the effective spin-phonon interaction, we perform another SW transfor-
mation of the total HH Hamiltonian H̃h. We get an effective Hamiltonian Heff = eT H̃he

−T ,
where T = −T † is chosen such that it diagonalizes H̃h−ph in the eigenbasis of Hd. In lowest
order in Hh−ph, we obtain T ≈ L̃−1

d H̃h−ph, where the Liouvillean is defined as L̃dA = [H̃d, A],
∀A, and diagonal terms of Hh−ph are to be excluded. In 2nd order in Hh−ph, we obtain then
the effective spin-phonon Hamiltonian

Hs−ph = σ ·
∑

qj,q′j′

[
δqj,q′j′C

(1)
qj Xqj +C

(2)
qj,q′j′XqjXq′j′

+ C
(3)
qj,q′j′

(
Pqj Xq′j′ − Pq′j′ Xqj

)]
, (4.6)

with

σ ·C(1)
qj = 〈0|M̃qj|0〉, (4.7)

σ ·C(2)
qj,q′j′ = 〈0|[L̃−1

d M̃qj, M̃q′j′ ]|0〉 (4.8)

σ ·C(3)
qj,q′j′ = 〈0|[L̃−1

d M̃qj, L̃
−1
d M̃q′j′ ]|0〉. (4.9)

Above, Pqj = i
√
~ωqj(a

†
−qj − aqj) is the phonon field momentum operator, and |0〉 is the

orbital ground state. In Eq. (4.6) we have neglected 2nd order corrections in SOI to the
energy levels. Note that for vanishing magnetic field B → 0 only the last term in Hs−ph is
non-zero, since only this one preserves time-reversal invariance and thus gives rise to zero
field relaxation (ZFR) [133–135].

We now assume the orbital confinement energy ~ω0 much larger than the SOI, i.e.
||H0|| ≫ ||HSO||, and treat the SOI to leading order in perturbation theory. We consider
also the B-field to be applied perpendicularly to the dot plane (as in Refs. [20, 24]). The
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SW-generator S can be written as S = S+σ− − h.c., and we then find

S+ = A1p+p−p+ + A2[p+p−P+ − (p+P− − P+p−)p+]

+ A4P+P−P+ + A3[(p+P− − P+p−)P+ + P+P−p+]. (4.10)

Here, Ai ≡ Ai(ωZ , ωc) with ωZ = gµBB/~ and ωc = eB/2c. For ωZ , ωc ≪ ω0, we obtain

A1 ≈ −7β

9~

(ωZ + ωc)

ω2
0

, (4.11)

A2 ≈ − β

3~

ωc

ω2
0

, (4.12)

A3 ≈ −2β

9~

ω2
c (ωc + ωZ)

ω4
0

, (4.13)

A4 ≈ 2β

3~

ω3
c

ω4
0

, (4.14)

while P± = Px ± iPy with Px(y) = −i~∇x(y) ± (m∗ω2
0/ωc)y(x). After somewhat tedious

calculations, we obtain analytic expressions for C
(i) = (C(i,x), C(i,y), 0) occurring in Eq.

(4.6). We give below only the exact expression for i = 3, the rest being too lengthy to be
displayed here:

C
(3,x/y)
qj,q′j′ = ±Mq′j′

qj

m∗λ2dβe
−q2λ2

d/4

3~ω2
0

F(q · q′)

×
(
q2yq

′

x − q
′2
y qx ± (qx − q′x)(2qyq

′
y + 3qxq

′
x)
)
, (4.15)

where

F(q · q′) =
1

λ2d(q · q′)2
(
e−λ2

dq·q′/2 − λ2dq · q′/2
)

×
(
γ + log(λ2dq · q′/2) + Γ(0, λ2dq · q′/2)

)
, (4.16)

Mq′j′

qj =
~F (qz)F (q

′
z)

2ρc
√
ωqjωq′j′

(Ξ0 q · dq,j − Ξz qzd
z
qj)(Ξ0 q

′ · dq′j′ − Ξz q
′
zd

z
q′j′),

with λd is the dot-diameter. We have also introduced γ ≈ 2.17 the Euler constant and
Γ(s, x) the incomplete gamma function. We note that C(1,2) ∝ B, so that these two terms
vanish with vanishing B-field.

4.4 Hole-spin relaxation

Let us now analyze the relaxation of the spin induced by all the phonon processes in the
spin-phonon Hamiltonian in Eq. (4.6). We first mention that all terms in Eq. (4.6) can
be cast in a general spin-boson type of Hamiltonian Hp

s−b = (1/2)gµBδB
p(t) · σ, p = 1, 2, 3,

with the corresponding identification of the fluctuating magnetic field terms δBj(t) from Eq.
(4.6) (e.g. δB1(t) ∼ C

(1)
qj Xqj).



4.4. HOLE-SPIN RELAXATION 59

Within the Bloch-Redfield approach, the relaxation rate Γ ≡ 1/T1 can be expressed as

Γ =
∑

i=x,y

[Jii(EZ/~) + Jii(−EZ/~)] . (4.17)

The correlation functions Jij are defined by

Jij(ω) = (gµB/2~)
2

∫ ∞

0

dte−iωt < δBi(0)δBj(t) >, (4.18)

where < · · · > denotes the average over the phonon bath, assumed to be in thermal equilib-
rium at temperature T. The relaxation time associated with the three types of spin-phonon
processes in Eq. (4.6) is Γ =

∑
i=1,2,3 Γ

(i) with

Γ(1) =
4π

~

∑

qj

|C(1)
qj |2

(
n(ωqj) +

1

2

)
δ(EZ − ~ωqj),

Γ(m) ≃ 8π

~

∑

qj,q′j′

|C(m)
qj,q′j′ |2(ωqjωq′j′)

m−2n(ωqj)

× (n(ωq′j′) + 1) δ(~ωqj − ~ωq′j′), (4.19)

where n(ω) = 1/(exp (ω/kBT )−1) is the Bose factor andm = 2, 3 correspond to B-dependent
and B-independent two-phonon rates, resp. We remark that in Eq. (4.19) we have neglected
some irrelevant processes in the limit of low-B field [63]. Also, for B-fields perpendicular
to the dot plane the decoherence time satisfies T2 = 2T1 for one-and two-phonon processes
since the spin-phonon fluctuations δBj ⊥ B [25, 64].

Note that for two-phonon processes the single phonon-energies do not need to match the
Zeeman energy separately (as opposed to one-phonon processes), so that there is only a weak
dependence on the B-field left which comes from the effective spin-phonon coupling itself.

In Figs. 4.4 and 4.4, we plot the phonon spin-relaxation rate Γ as a function of the
B-field and of temperature, resp., for InAs and GaAs quantum dots. Fig. 4.4 shows a clear
saturation of Γ at low magnetic fields which is due to two-phonon processes, while Fig. 4.4
shows the known saturation at low temperatures due to one-phonon processes [25].

For these plots, we used the following HH InAs QDs (labeled by A) [138,139] and GaAs
QDs (labeled by B) parameters [25]: Ξ0 = 1.9 eV, Ξz = 2.7eV, cAt = 2.64 · 103 m/s (cBt =
3.35 · 103 m/s), cAl = 3.83 · 103 m/s (cBl = 4.73 · 103 m/s), ρAc = 5.68 · 103 kg/m3 (ρBc =
5.3·103 kg/m3), m∗

A = 0.25me (m∗
B = 0.14me), gA = 1.4 (gB = 2.5), and we assume λd = 3nm

(~ωA
0 = 35meV, ~ωB

0 = 60meV) and d = 3nm (dot height). Also, βA ≈ 2.1 · 105 m/s and
βB ≈ 4.6 · 104 m/s. From Fig. 4.4 we can infer that the two-phonon processes become
dominant for magnetic fields B < 2T (B < 0.5T) and for temperatures T > 2K (T > 3K)
for InAs (GaAs) QDs. These estimates for the relaxation rates due to one- and two-phonon
processes are comparable to the ones recently measured in Refs. [20, 24], thus providing a
reasonable explanation for these measurements. Note that, in contrast to the HH case, the
relaxation time for electrons shows no deviation from the one-phonon time (or saturation)
with decreasing B-field [11].

Next, we provide explicit expressions of the relaxation rates for low and high temperature
limits. The rates Γ(i) can be written as

Γ(i) = δi

ri∑

m=0

ωri−m
Z ωm

c

ωri
0

F
(m)
i (t) , (4.20)
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Figure 4.1: The heavy-hole spin relaxation rate Γ for InAs QDs (GaAs QDs in the inset) as a
function of magnetic field B for different temperatures T. The full curves represent the rate due to
one- and two-phonon processes, i.e. Γ =

∑3
i=1 Γ

(i) as defined in Eq. (4.19) for different temperatures
T, while the dotted lines present the one-phonon rate Γ(1).

where

δ1 ≈
2π ~4 eh214 β

2

κ2mh λ6d ρc c
5
l

, (4.21)

δ2 ≈
πm4

h β
2 Ξ4

0

~2 λ5d ρ
2
c c

3
l

, (4.22)

δ3 ≈
πm6

h β
2 Ξ4

0

~4 cl λ3d ρ
2
c

, (4.23)

with r1 = 5, r2 = 2, r3 = 0, and t = kBT/Eph with Eph ≡ ~cl/λd. The functions Fm
i (t)

F
(0)
1 F

(1)
1 F

(0)
2 (t) F

(1)
2 (t) F

(2)
2 (t) F3(t)

t≪ 1 0.004 0.015 108t13 107t13 5 · 106t13 109t15

t≫ 1 0.08 t
ωZ

0.03 t
ωZ

102t2 102t2 30t2 0.3 t2

Table 4.1: The asymptotic values for F (m)
i (t).

depend on the ratios t = kBT/Eph, d/λ, and cl/ct. In Table 4.1 we list the asymptotic
(scaling) expressions for F (m)

i (t) in low B-fields ωc,Z ≪ ω0 for low (t≪ 1) and high (t≫ 1)
temperatures. We note that F (1)

1 (t) ≈ F
(2)
1 (t) in both regimes, and F (3,4,5)

1 ≡ 0.
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Figure 4.2: The heavy-hole spin relaxation rate Γ in Eq. (4.19) for InAs QDs (GaAs QDs in the
inset) as a function of temperature T for different B-field values. For finite B-field, Γ saturates at
low temperatures due to one-phonon processes.

Using Eq. (4.20) and Table 4.1 we can write for the two-phonon rates, say, for InAs QDs

Γ(2) = δ2





107
(
10
ω2
Z

ω2
0

+
ωZωc

ω2
0

+ 0.5
ω2
c

ω2
0

)
t13, t≪ 1

102
(
ω2
Z

ω2
0

+
ωZωc

ω2
0

+ 0.3
ω2
c

ω2
0

)
t2, t≫ 1

(4.24)

Γ(3)= δ3





109 t15, t≪ 1

0.3 t2, t≫ 1.

(4.25)

From Eqs. (4.25) we find that for T < 2K and for B > 0.5T the one-phonon processes
dominate the relaxation rate Γ. On the other hand, for low B-fields (0.1T < B < 1T) and
finite temperatures (T > 2K) the two-phonon processes will give the main contribution to
Γ, see Fig. 4.4. The main phonon processes could be identified experimentally by analyzing
the temperature dependence of Γ, scaling as Γ ∼ T for one-phonon processes and as Γ ∼ T 2

for two-phonon processes. Also, the saturation of Γ in vanishing B-field is a clear indication
of two-phonon processes. Note that the strong enhancement of the two-phonon HH spin
relaxation arises because (i) the rate is 2nd order in SOI (whereas for electrons it is 4th
order) and (ii) the effective mass for HHs is much larger than that for electrons. Even
more, the coupling of the phonon field to the HH spin is qualitatively different compared
to electrons (in-plane coupling vs. perpendicular-to-the-plane coupling) allowing for a clear
distinction between linear (electrons) and cubic (holes) in momentum SOI via two-phonon
relaxation processes.

In order to compute Γ(2,3), we took into account only the contribution from the de-
formation potential since this dominates the two-phonon relaxation for T/Eph > 0.1 and
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ωZ , ωc ≪ ω0. For the evaluation of Γ(1) instead, we considered both the piezoelectric and
deformation potential contributions, both of them being important for B and T considered
here. Surprisingly, we found that the ZFR rate Γ(3) increases when decreasing the dot size as
Γ(3) ∼ λ−1

d , while the other two rates decrease with decreasing the dot size as Γ(1) ∼ λ4d and
Γ(2) ∼ λd. This behavior strongly differs from the electronic case where the ZFR mechanism
is efficient for rather large dots [135].

Interestingly, the present results do not change much if the B-field is tilted with respect
to the QD plane. The g-factor for HHs is strongly anisotropic with g‖ ≪ g⊥ so that one
can neglect the in-plane Zeeman splitting. This implies performing the substitution ωc,Z →
ωc,Z cos θ in above results, with θ being the angle between the B-field and the z-direction.
This will lead to a reduction of the B-dependent rates (Γ(1,2)), while the ZFR (Γ(3)) being
independent of B remains the same.

4.5 Conclusions

In conclusion, we have shown that two-phonon processes give rise to a strong relaxation of
the HH spin in a flat quantum dot. This time is predicted to be in the millisecond range,
comparable to the one measured in recent experiments on optical pumping of a HH spin in
QDs [20]. Though other sources of relaxation are not excluded, a careful scaling analysis
of the measured relaxation time with the magnetic field and/or the temperature should
allow one to identify the two-phonon process as the leading relaxation mechanism for the
heavy-hole spin localized in small QDs.



Chapter 5

Spin electric effects in molecular

antiferromagnets

Molecular nanomagnets show clear signatures of coherent behavior and have a wide variety
of effective low-energy spin Hamiltonians suitable for encoding qubits and implementing
spin-based quantum information processing. At the nanoscale, the preferred mechanism for
control of quantum systems is through application of electric fields, which are strong, can
be locally applied, and rapidly switched. In this work, we provide the theoretical tools for
the search for single molecule magnets suitable for electric control. By group-theoretical
symmetry analysis we find that the spin-electric coupling in triangular molecules is governed
by the modification of the exchange interaction, and is possible even in the absence of spin-
orbit coupling. In pentagonal molecules the spin-electric coupling can exist only in the
presence of spin-orbit interaction. This kind of coupling is allowed for both s = 1/2 and
s = 3/2 spins at the magnetic centers. Within the Hubbard model, we find a relation
between the spin-electric coupling and the properties of the chemical bonds in a molecule,
suggesting that the best candidates for strong spin-electric coupling are molecules with nearly
degenerate bond orbitals. We also investigate the possible experimental signatures of spin-
electric coupling in nuclear magnetic resonance and electron spin resonance spectroscopy,
as well as in the thermodynamic measurements of magnetization, electric polarization, and
specific heat of the molecules.

5.1 Introduction

The control of coherent quantum dynamics is a necessary prerequisite for quantum informa-
tion processing. This kind of control is achieved through coupling of the internal quantum
degrees of freedom of a suitable micro- or mesoscopic system to an external classical or
quantum field that can readily be manipulated on the characteristic spatial and temporal
scales of the quantum system.

The molecular nanomagnets (MNs) [30, 31] represent a class of systems that show rich
quantum behavior. At low energies, the MNs behave as a large spin or a system of only
few interacting spins. The behavior of this spin system can be designed to some degree by
altering the chemical structure of the molecules, and ranges from a single large spin with
high anisotropy barrier, to small collections of ferro- or antiferromagnetically coupled spins

63
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with various geometries and magnetic anisotropies. This versatility of available effective
spin systems makes the MNs promising carriers of quantum information [55]. While the
interaction with magnetic fields provides a straightforward access to the spins in an MN, it
is preferable to use electric fields for the quantum control of spins, since the electric fields are
easier to control on the required short spatial and temporal scales. In this work, we explore
the mechanisms of spin-electric coupling and study the ways in which an MN with strong
spin-electric coupling can be identified.

Quantum behavior of MNs is clearly manifested in the quantum tunneling of magne-
tization [33–39, 140]. A prototypical example of quantum tunneling of magnetization is
the hysteresis loop of an MN with a large spin and high anisotropy barrier. The height
of the barrier separating the degenerate states of different magnetization leads to long-
lived spin configurations with nonzero magnetic moment in the absence of external fields.
The transitions between magnetization states in the MN driven through a hysteresis loop
occur in tunneling events that involve coherent change of a many-spin state. These tran-
sitions have been observed as step-wise changes in magnetization in single-molecule fer-
romagnets [36, 37, 40–42]. Similar tunneling between spin configurations are predicted in
antiferromagnetic molecules [43, 44], and the observed hysteresis was explained in terms of
the photon bottleneck and Landau-Zener transitions [45–48]. The transitions between spin
states are coherent processes and show the signatures of interference between transition
paths [49,50,141], as well as the effects of Berry phase in tunneling [50–53,141,142].

Spin systems within molecular nanomagnets offer a number of attractive features for
studying the quantum coherence and for the applications in quantum information processing
[55]. A wide variety of spin states and couplings between them allows for encoding qubits.
Chemical manipulation offers a way to modify the structure of low-energy spin states [143].
Coherence times of up to ∼ 3µs [144] which can persist up to relatively high temperatures of
the order of few Kelvin are sensitive to the isotopic composition of the molecule. A universal
set of quantum gates can be applied in a system of coupled antiferromagnetic ring molecules,
without the need for local manipulation [145]. The presence of many magnetic centers with
the coupled spins allows for the construction of spin cluster qubits that can be manipulated
by relatively simple means [146]. In polyoxometalates, the spin structure of the molecule
is sensitive to the addition of charge, and controlled delivery and removal of charges via an
STM tip can produce useful quantum gates [147]. Chemical bonds between the molecules
can be engineered to produce the permanent coupling between the molecular spins and allow
for interaction between the qubits [148].

Sensitivity of molecular state to the addition of charge was demonstrated in the tunneling
through single molecules [149], and used to control the spin state of a MN [150]. Transport
studies of the MNs can provide a sensitive probe of their spin structure [53,151–154].

The most straightforward and traditional way of controlling magnetic molecules is by
applying an external magnetic field. With carefully crafted ESR pulses, it is possible to
perform the Grover algorithm, or use the low-energy sector of the molecular nanomagnet as
a dense classical memory [55]. Unfortunately the approaches based on magnetic fields face a
significant drawback in the large-scale quantum control application. Typically, the quantum
manipulation has to be performed on the very short spatial and temporal scales, while
the local application of rapidly varying magnetic field presents a challenging experimental
problem. For that reason, the schemes for quantum computing tend to rely on modifying
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the spin dynamics that is caused by intramolecular interaction, rather than on the direct
manipulation of spins [155].

For the applications that require quantum control, the electric fields offer an attractive
alternative for spin manipulation in the molecular nanomagnets [156]. One major advantage
is that they can be applied to a very small volume via an STM tip [157, 158], and rapidly
turned on and off by applying voltage pulses to the electrodes placed close to the molecules
that are being manipulated. Switchable coupling between different nanomagnets is essential
for qubit implementation. At present, this can be implemented only locally, and the inter-
action is practically untunable. The use of microwave cavities can offer a solution to this
problem. By placing the nanomagnets inside a microwave cavity, one can obtain a fully con-
trollable, long-range interaction between them [156]. This coupling relies on the presence of
a quantum electric field inside such a cavity, which mediates the interaction between distant
nanomagnets. The interaction can be tuned by tuning each molecule in- or out-of-resonance
with the cavity field using local electric or magnetic fields [156]. The spins, however, do not
couple directly to the electric fields, classical or quantum, and therefore any electric spin
manipulation is indirect, and involves the modification of molecular orbitals or the spin-orbit
interaction.

The description of the molecular nanomagnets in terms of spins is an effective low-
energy theory that does not carry information about the orbital states. However, it is still
possible to predict the form of spin-electric coupling from symmetry considerations and
single out the molecules in which such a coupling is possible. In particular, the molecules
with the triangular arrangement of antiferromagnetically coupled spin-1/2 magnetic centers
interact with external electric field through chirality of their spin structure [156, 159]. The
same coupling of chirality to the external electric field was derived for the triangular Mott
insulators [160].

While the symmetry of a molecule sets the form of spin-electric coupling, no symmetry
analysis can predict the size of the corresponding coupling constant. The coupling strength
will depend on the underlying mechanism that correlates the spin and orbital states, and
on the detailed structure of low-energy molecular orbitals. To identify molecules that can
be efficiently manipulated by electric fields, it is necessary to perform an extensive search
among the molecules with the right symmetries and look for the ones that also have a large
coupling constant. Unfortunately, this search has to proceed by ab-initio calculations of the
coupling constants for a class of molecules of a given symmetry, or by an indiscriminate
experimental scanning of all of the available molecules.

In this paper, we contribute to the search for molecules that exhibit strong spin-electric
coupling. Based on the symmetry analysis, we identify the parameters of the spin Hamilto-
nian that can change in the magnetic field, and cause spin-electric coupling. We study the
mechanisms that lead to this coupling and describe the experiments that can detect it.

We will consider the spin electric coupling in the language of effective model, namely
either the spin Hamiltonian, or the Hubbard model. In reality the mechanism behind the
spin-electric coupling involves either the modification of the electronic orbitals in an ex-
ternal field and the Coulomb repulsion of electrons, or the much weaker direct spin-orbit
coupling to the external fields. A derivation of spin-electric coupling from this realistic pic-
ture would require the knowledge of electronic orbitals from an ab-initio calculation, and the
distribution of electric field within the molecule. Both of these problems require substantial
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Figure 5.1: (Color online) Schematics of the si = 1/2 triangular molecule in electric field. The
antiferromagnetic exchange couplings, represented by the bonds with thickness proportional
to Jii+1, are modified in electric field. In the absence of electric field, exchange couplings are
equal Jii+1 = Jjj+1, fade colors (grey online). The full color (blue online) triangle represents
the exchange interaction strengths in electric field.

computational power, and can not be performed routinely. Since the electric field acts pri-
marily on the orbital degrees of freedom, and the spin Hamiltonian carries no information
about the orbital states, we provide a description in terms of a Hubbard model that still
contains some information about the orbital states. We can then described the properties
of the molecule that allow for strong spin-electric coupling in the language of orbitals that
offers some intuitive understanding of the underlying mechanisms of interaction.

We identify the response of an MN with spin-electric coupling in the standard mea-
surements of ESR, nuclear magnetic resonance (NMR), magnetization, polarization, linear
magnetoelectric effect, and specific heat measurements.

In Sec. II we present a symmetry analysis of the spin-electric coupling in the ring-shaped
molecules with antiferromagnetic coupling of spins. In Sec. IV, we describe the MNs using
the Hubbard model, and relate the symmetry-based conclusions to the structure of molecular
orbitals. In Sec V, we analyze the experimental signatures of spin-electric coupling, and
present our conclusions in Sec. VI.
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5.2 Symmetry analysis of antiferromagnetic spin rings

Spin chains whose ground state multiplet consists of two quasi-degenerate S = 1/2 doublets
represent suit- able candidates for the manipulation of the spin state by pulsed electric fields.
Such a ground-state multiplet characterizes a number of frustrated spin rings, consisting of
an odd number of half-integer spins. In the following we consider prototypical examples of
such systems.

5.2.1 Triangle of s = 1/2 spins

The low-energy properties of most molecular nanomagnets (MNs) are well described in terms
of spin degrees of freedom alone. Within the spin-Hamiltonian approach, the coupling of
external electric fields to the molecule can be accounted by suitably renormalizing the phys-
ical parameters. In the following, we use the symmetry of the molecules to calculate the
changes of spin-Hamiltonian parameters, to identify the system’s eigenstates, and to deduce
the allowed transitions. Quantitative estimates of the parameters entering the spin Hamil-
tonian require the use of ab-initio calculations [161], or the comparison with experiments.
The simplest example of a spin system which may couple to an external electric field in a
non-trivial way is a triangle of s = 1/2 spins, like, for example, the Cu3 MN [162]. The
schematics of such a spin system in the presence of an electric field is showed in Fig. 5.1. Its
spin Hamiltonian, for the moment in the absence of any external fields (magnetic or electric),
reads:

Hspin =
N∑

i=1

Jii+1si · si+1 +
N∑

i=1

Dii+1 · (si × si+1), (5.1)

with N = 3 and s4 ≡ s1 in the summation over i. The first term in Eq. (5.1) represents the
isotropic Heisenberg exchange Hamiltonian with the exchange couplings Jii+1 between the
spins si and si+1, and the second term represents the Dzyalozhinsky-Moriya (DM) interaction
due to the presence of spin-orbit interaction (SOI) in the molecule, with the DM vectors
Dii+1. The states of the spin S = 1/2 triangle can be found by forming the direct product
of the SU(2) representations of three spins S = 1/2: Dtot = D(1/2)⊗3 = 2D(1/2) ⊕ D(3/2),
meaning there are eight states in total. The point group symmetry of the molecule is
D3h [162], i.e. the triangle is assumed to be equilateral. The D3h symmetry imposes the
following restrictions on the spin Hamiltonian parameters: Jii+1 ≡ J and Dx,y

ii+1 ≡ 0, and
Dz

ii+1 ≡ Dz. However, if lower symmetry is considered these restrictions will be relaxed.
The spin states in a form adapted to the rotational symmetry C3 of the system are

|ψ(k)
M=1/2〉 =

1√
3

2∑

j=0

ǫkjC
j
3 |↓↑↑〉 (5.2)

|ψM=3/2〉 = |↑↑↑〉 , (5.3)

where ǫj = exp (2iπ/3j) and j = 0, 1, 2. The states with opposite spin projection M ′ = −M ,
i.e. with all spins flipped can be written in an identical way (not shown). These states are
already the symmetry adapted basis functions of the point group D3h. Moreover, these are
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eigenstates of the chirality operator

Cz =
1

4
√
3
s1 · (s2 × s3), (5.4)

with Cz|ψ(1,2)
M=±1/2〉 = ±|ψ(1,2)

M=±1/2〉, Cz|ψ(0)
M=±1/2〉 = 0 and Cz|ψM=±3/2〉 = 0. The above states

in Eq. (5.3) carry different total spin. There are two spin S = 1/2 states, corresponding to
k = 1, 2, and a spin S = 3/2 state corresponding to k = 0. Obviously, the states |ψM=±3/2〉
have S = 3/2.

In an even-spin system, double valued point groups, instead of single valued groups,
are usually used in order to describe the states, the splittings and the allowed transitions
(magnetic or electric) [163]. In the presence of of spin-orbit interaction the splittings can be
accounted for either by single group analysis (perturbatively), or by double group analysis
(exact). In the following, we analyze the spectrum and the allowed transitions by both single
valued point group analysis and double valued point group analysis.

Single valued group analysis of the s = 1/2 spin triangle

In the single valued point group D3h, the states |ψ(k)
M=±1/2〉 with k = 1, 2 form the basis

of the two dimensional irreducible representation E
′

, while the states |ψ(0)
M=±1/2〉, and the

|ψM=±3/2〉 transform as A
′

2. The allowed electric transitions in the system are determined
by the transformation properties of the basis states.

The simplest and possibly the dominant dependence of the spin Hamiltonian on the
applied electric field comes via the modification of the exchange interactions, like depicted
in Fig. 5.1. This gives rise to the following term in the spin Hamiltonian

δH0(E) =
3∑

i=1

δJii+1(E) si · si+1, (5.5)

where δJii+1(E) ≈ dii+1 ·E, with dii+1 being vectors that describe the electric-dipole coupling
of the bond si − si+1 to the electric field E in leading order. There are three such vector
parameters and thus nine scalar parameters in total. However, symmetry will allow to
drastically reduce the number of free parameters by providing relations between them. The
S = 3/2 states of the unperturbed spin Hamiltonian form the multiplet 4A

′

2, while the S =
1/2 states form two multiplets 2E

′

. The electric dipole Hamiltonian is He−d = −e∑i E ·ri ≡
−eE ·R, with e standing for the electron charge, ri being the coordinates of the i-th electron
and R =

∑
i ri. The non-zero electric dipole matrix elements of He−d in the D3h symmetric

molecule are
〈ψ(1,2)

M | − ex|ψ(2,1)
M ′ 〉 = i〈ψ(1,2)

M | − ey|ψ(2,1)
M ′ 〉 ≡ dδMM ′ , (5.6)

proportional to the effective electric dipole parameter d. The value of d is not determined
by symmetry, and has to be found by some other means (ab-initio, Hubbard modeling,
experiments, etc). We mention that all the other matrix elements are zero, e.g. 〈ψ(1,2)

M | −
ex|ψ(1,2)

M ′ 〉 = i〈ψ(1,2)
M | − ey|ψ(1,2)

M ′ 〉 = 0, etc. We see that the electric field acts only in the
low-energy sector, which allows us to write the effective spin-electric coupling Hamiltonian
acting in the lowest quadruplet as

Heff
e−d = dE′ ·C‖, (5.7)
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where E
′ = Rz(7π/6−2θ)E, with Rz(φ) describing the rotation with an angle φ about the z

axis, and θ is the angle between in-plane component E‖ of the electric field E and the bond
s1 − s2. For C‖ = (Cx, Cy, 0) we have

Cx =
∑

M

(
|ψ(1)

M 〉〈ψ(2)
M |+ |ψ(2)

M 〉〈ψ(1)
M |
)
, (5.8)

Cy = i
∑

M

(
|ψ(1)

M 〉〈ψ(2)
M | − |ψ(2)

M 〉〈ψ(1)
M |
)
. (5.9)

The low-energy spectrum in the presence of electric field and the related states can be
expressed in terms of the spin Hamiltonian Eq. (5.5), so that we find anisotropic variations
of the exchange coupling constants:

δJii+1(E) =
4d

3
|E‖| cos

(
2π

3
i+ θ

)
, (5.10)

which depend on the angle θ and the projection of the electric field E on the plane of the
triangle. In the si = 1/2 triangle the C-operators can be written as

Cx = −2

3
(s1 · s2 − 2s2 · s3 + s3 · s1), (5.11)

Cy =
2√
3
(s1 · s2 − s3 · s1), (5.12)

with [Ci, Cj] = 2iǫijkCk (ǫijk are the Levi-Civita symbols) [156,160]. From the above relations
we can conclude that (i) only the electric field component perpendicular to the bond and
lying in the plane of the molecule gives rise to spin-electric coupling and (ii) there is only
one free parameter d describing the coupling of the spin system to electric fields and dii+1 =
4d/3 (sin (2iπ/3), cos (2iπ/3), 0), where i = 1, 2, 3 labels the triangle sites and 4 ≡ 1.

The SOI in a D3h symmetric MN is constrained by the transformation properties of the
localized orbitals. It reads

HSO = λ
‖
SOTA2Sz + λ⊥SO(TE′′

+
S− + TE′′

−
S+), (5.13)

with TΓ being tensor operators transforming according to the irreducible representation
Γ [163]. The non-zero matrix elements of this SOI Hamiltonian in the low-energy quadruplet
read 〈ψ(1,2)

M |HSO|ψ(1,2)
M ′ 〉 = ±Mλ

‖
SOδMM ′ so that the SOI takes the following effective form

HSO = ∆SOCzSz, (5.14)

with ∆SO = λ
‖
SO and Sz =

∑3
i s

z
i . An effective SOI Hamiltonian is obtained also from the

DM SOI Hamiltonian in Eq. (5.1). The constraints Dx,y
ii+1 = 0 and Dz

ii+1 ≡ Dz on the DM
vectors due to D3h symmetry of the molecule, give rise to the same effective SOI in Eq.
(5.14), with Dz = λ

‖
SO. Thus, as expected, the molecular SOI and the DM SOI give rise to

the same effective SOI Hamiltonian acting in the low energy quadruplet. Like in the case of
the electric dipole parameter d, finding Dz(λ

‖
SO) requires more than symmetry, like ab-initio

methods or experiments. The transverse SOI, with interaction strength λ⊥SO does not act
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Figure 5.2: The spin transitions in the si = 1/2 triangle induced by electric and magnetic
fields. The electric field causes transitions between the states of opposite chiralities Cz

and equal spin projections Sz (horizontal arrows), while the magnetic field instead causes
transitions between the states of opposite spin projections Sz and equal chiralities Cz (vertical
arrows).

within the low-energy space, and its effect will appear only in higher orders of perturbation
theory in 1/J .

An external magnetic field couples to the spin via the Zeeman term HZ = B · ¯̄gS,
with ¯̄g = diag{g‖, g‖, g⊥} being the g-factor tensor in D3h. The full effective Hamiltonian
describing the low-energy quadruplet in the presence of SOI, electric field and magnetic field
read

Heff = ∆SOCzSz +B · ¯̄gS+ dE′ ·C‖. (5.15)

Note that [C,S] = 0, and chirality and spin act as independent spin 1/2 degrees of freedom.
Furthermore, in the absence of SOI the chirality C and the spin S evolve independently.
However, the SOI couples the two and provides with means for electric control of both spin
and chirality. Vice-versa, magnetic fields can also couple to chirality due to SOI. Also, while
magnetic fields (time-dependent) cause transitions between states of opposite spin projection
M but with the same chirality Cz, the electric field does the opposite: it causes transitions
between states of opposite chirality Cz, but carrying the same M . Full control of the lowest
quadruplet is thus realized in the presence of both electric and magnetic fields, as can be
seen in Fig. 5.2.

Double valued group states of the s = 1/2 spin triangle

The double group representations allow to non-perturbatively describe the magnetic and
electric transitions in the presence of spin-orbit interaction. The lowest quadruplet consists
of two Kramers doublets, one of them transforming like Ē

′ ∼ (|− 1/2〉, |1/2〉), and the other
one according to Ē

′′ ∼ (|−3/2〉, |3/2〉). Here (|M〉, |−M〉) represent pairs of eigenstates of a
given angular momentum J ≥M , with spin projection ±M . For example, if M = 1/2, then
J = 1/2, 3/2, . . . . The higher energy states instead (S = 3/2 states), transform now not as
A

′

2, but as Ē
′

(M = ±1/2) and as Ē
′′

(M = ±3/2). Thus, the S = 1/2 states mix with the
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S = 3/2 states, but only the ones transforming according to the same representations, i.e.
there is no mixing between Ē

′

and Ē
′′

due to spin-orbit interaction. The magnetic dipole
transitions take place between Ē

′

and Ē
′′

, and within Ē
′

and Ē
′′

, respectively, while electric
dipole transitions take place only between Ē

′

and Ē
′′

. The selection rules for the electric
transitions are ∆M = ±2, while for the magnetic transitions these are ∆M = 0± 1. We see
that within the double group analysis, i.e. in the presence of SOI, there are allowed electric
dipole transitions also within the S = 3/2 subspace.

Using both the single group and double group analysis we can pinpoint to the transitions
that arise in the absence or only in the presence of SOI. Therefore, the electric dipole tran-
sitions present in the single-group are a consequence of the modified exchange interaction,
and can arise even in the absence of SOI, while the ones that show up only in the double
group analysis are a consequence of the SOI (or modification of SOI in electric field).

We now can establish several selection rules for the SOI, electric field and magnetic field
induced transitions. Note that the above analysis was exact in SOI. However, it instructive
to treat electric field, magnetic fields and SOI on the same footing. First, we find that the
electric dipole transitions fulfill the selection rules ∆Cz = ±1 and ∆Sz = 0, meaning that
electric field only couples states within the lowest quadruplet. The SOI transitions show a
richer structure. We can separate the SOI interaction in two parts: the perpendicular SOI,
quantified by Dz in the DM interaction Hamiltonian, and the in-plane SOI, quantified by
Dx,y in the DM interaction Hamiltonian, respectively. By doing so, we find that the Dz SOI
terms obey the selections rules ∆Cz = 0 and ∆Sz = 0, while for the Dx,y terms we get the
selection rules ∆Cz = ±1 and ∆Sz = ±1. We see in-plane SOI (Dx,y terms) do not cause
any splitting in the ground state and can lead to observable effects only in second order in
perturbation theory in Dx,y/J . Also, note that if σh symmetry is present, Dx,y ≡ 0 and
thus there are no in-plane SOI effects at all. Modification of these terms due to an in-plane
external electric field E, however, lead to different selection rules: changes of Dz terms lead
to ∆Cz = ±1 and ∆Sz = 0, while modification of Dx,y lead to ∆Cz = 0,±2 and ∆Sz = ±1.
The magnetic field transitions obey the selection rules ∆Sz = 0,±1 and ∆Cz = 0. Thus,
we can make clear distinction between pure electric field transitions, SOI-mediated electric
transitions and magnetic transitions. This distinction between the electric and magnetic field
induced transitions could be used to extract the spin-electric coupling strength parameter d
from spectroscopic measurements.

5.2.2 Spin s = 3/2 triangle

The spin s = 3/2 triangle has a more complex level structure than the s = 1/2 triangle due
to its higher spin. The spin Hamiltonian, however, is similar to the one in Eq. (5.1) for
s = 1/2, and the reduction of the representation of three spins S = 3/2 is Dtot = D(3/2)⊗3 =
2D(1/2) ⊕ 4D(3/2) ⊕ 3D(5/2) ⊕ 2D(7/2) ⊕D(9/2), a total of 64 spin states. The total number of
irreducible representations is the same as in the s = 1/2 case, and we need only to identify
these basis states in terms of the spin states. The s = 3/2 triangle states can be defined
according to their transformation properties under three-fold rotations C3 in D3h and are of
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the following form

|ψ(k,i)
M 〉 = P 3

k |M, i〉, (5.16)

P 3
k =

1√
3

2∑

j=0

ǫkjC
j
3 , (5.17)

where ǫkj = exp (2iπjk/3), Cj
3 are the 3-fold rotation of order j, and j, k = 0, 1, 2. The

states |M, i〉 ≡ |σ1σ2σ3〉 represent all possible states (i states in total) with a given spin
projection M(≡ ∑

k σk) that cannot be transformed into each other by application of the
rotation operator Cj

3 . These states are showed in Table 5.1.

H
H
H
H

H
H

M
i

1 2 3 4

1/2 |↓↑↑〉 |⇑↓↓〉 |⇓⇑↑〉 |⇓↑⇑〉

3/2 |⇓⇑⇑〉 |↓↑⇑〉 |↓⇑↑〉 |↑↑↑〉

5/2 |⇑↑↑〉 |↓⇑⇑〉 0 0

7/2 |↑⇑⇑〉 0 0 0

9/2 |⇑⇑⇑〉 0 0 0

Table 5.1: Non-symmetry adapted states of the s = 3/2 spin triangle. We use | ⇑ (⇓)〉 =
| ± 3/2〉.

The corresponding states with all spins flipped, namely with M
′

= −M , can be written
in a similar form (not shown). Having identified the symmetric states in terms of the
spin states, we proceed to analyze the allowed transitions induced in the spin systems by
magnetic and electric field, both within the single valued group and double valued group
representations.

Single valued group states of the s = 3/2 triangle

The above states are basis of the point group D3h, but not eigenstates of the total spin
operator S2, i.e. they do not have definite total spin. However, linear combinations of states
of a given total spin projection M and a given ’chiral’ numbers k become eigenstates of S2.
The total spin eigenstates can be written as |ψ(k)

S,M〉 =
∑

l(M) a
S
k,l|ψ

(k,l)
M 〉, where l(M) is the

number of different states with a given M . The coefficients ak,l are to be identified so that
these states satisfy S

2|ψ(k)
S,M〉 = S(S + 1)|ψ(k)

S,M〉, with S = 1/2, 3/2, 5/2, 7/2, 9/2. The states
with k = 0 are all transforming according to the A

′

2 representation, while the states with
k = 1, 2 are organized in doublets, being the bases of the two dimensional representation
E

′

. However, as mentioned above, different combinations of symmetry adapted states carry
different total spin S. The magnetic and electric transitions are similar to the ones in the
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s = 1/2 triangle, in the absence of SOI. The electric field causes transitions only between
states with the same M and S, but opposite chirality Cz =

1
2
√
3
s1 · (s2 × s3) (this is different

from the triangle with si = 1/2 spins in each of the vertices). As for the s = 1/2 spin
triangle, there are electric dipole transitions within the spin system even in the absence of
SOI. The ground states is four-fold degenerate consisting of two S = 1/2 eigenstates

|ψ(1)
M=1/2〉 =

1√
10

(
|ψ(1,1)

M=1/2〉+
√
3|ψ(1,2)

M=1/2〉

− (ǫ1 − ǫ2)(|ψ(1,3)
M=1/2〉 − |ψ(1,4)

M=1/2〉)
)
, (5.18)

ψ
(2)
M=1/2〉 =

1√
10

(
|ψ(2,1)

M=1/2〉+
√
3|ψ(2,2)

M=1/2〉

+ (ǫ1 − ǫ2)(|ψ(2,3)
M=1/2〉 − |ψ(2,4)

M=1/2〉)
)
. (5.19)

We see that, as opposed to the s = 1/2 triangle, the lowest states are given by linear
combinations of the several M = 1/2 symmetry adapted states (the M = −1/2 states are
obtained by flipping the spins in the states in Eqs. (5.18), (5.19). This, however, does not
modify the conclusions regarding the electric and magnetic transitions in the absence of
SOI, these being given by the same rules as in the S = 1/2 triangle: electric-field induced
transitions between the states of opposite chirality Cz and the same spin projection M . The
lowest states are still organized as spin and chirality eigenstates that are split in the presence
of SOI as in the previous case.

In the original spin Hamiltonian in Eq. (5.1) the electric field causes modification of the
spin Hamiltonian parameters. As for the spin s = 1/2 triangle, the strongest effect comes
from modification of the isotropic exchange interaction, so that

δH0(E) =
3∑

i=1

δJii+1(E)si · si+1, (5.20)

with δJii+1(E) = dE cos (2πi/3 + θ), where θ is the angle between the projection of the
external electric field E to the molecule’s plane and the s1 − s2 bond, and i = 0, 1, 2.
The effect of the electric field on the lowest quadruplet is found to be similar to the spin
s = 1/2 case. While the SOI splits the two chiral states without mixing them (at least in
lowest order), the electric field, on the other hand, mixes the chiral states. The effective
Hamiltonian acting in the lowest quadruplet reads

Heff = ∆SOCzSz +B · ¯̄gS+ d′E ·C‖. (5.21)

Above, d′ = 3d/2, C‖ = (Cx, Cy, 0), with Cx =
∑

M |ψ(1)
M 〉〈ψ(2)

M | + |ψ(2)
M 〉〈ψ(1)

M | and Cx =

i
∑

M(|ψ(1)
M 〉〈ψ(2)

M | − |ψ(2)
M 〉〈ψ(1)

M |), and ∆SO stands for the SO splitting. However, in this
situation the in-plane chirality operators Cx,y cannot be written in a simple form as a function
of the individual spin operators, as opposed to the s = 1/2 triangle.
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Double valued group states of the s = 3/2 triangle

The double group representation allows to identify the couplings between different spin states
induced by the SOI and to identify the allowed magnetic dipole transitions. Due to SOI,
the electric field induced spin transitions will take place also outside the spin quadruplet.
In the absence of extra degeneracies (induced, for example, by external magnetic fields),
however, these transitions are strongly reduced due the gap of the order J . We can then
focus, as for the S = 1/2 triangle, only on the lowest quadruplet. These states are organized
in two Kramer doublets of the form (|M〉, |−M〉), one transforming as Ē

′ ∼ (|1/2〉, |−1/2〉)
and the other one as Ē

′′ ∼ (| − 3/2〉, |3/2〉). Here again, (|M〉, | −M〉) represent angular
momentum J ≤M eigenstates with spin projection ±M .

As in the case of the s = 1/2 triangle, the electric field induced transitions take place
between Ē

′

and Ē
′′

, with the selection rules ∆M = ±2. Magnetic transitions instead take
place both within and between Ē

′

and Ē
′′

, satisfying the selection rules ∆M = 0,±1.
If we now treat the SOI, electric field and magnetic fields on the same footing, we arrive

at the same selection rules as for the s = 1/2 triangle, namely ∆Cz = ±1 and ∆Sz = 0 for
electric transitions, ∆Cz = 0,±1 and ∆Sz = 0,±1 for SOI transitions, and ∆Cz = 0 and
∆Sz = 0,±1 for magnetic transitions, respectively.

5.2.3 Spin s = 1/2 pentagon

We now analyze the spin-electric coupling in a pentagonal molecule with a spin s = 1/2
in each of the vertices, like depicted schematically in Fig. 5.3. As in the case of the spin
triangle, an external electric field E gives rise to modification of exchange interaction Jii+1

in Eq. (5.1). However, the net spin-electric coupling in the lowest spin sector can only be
mediated by SOI. i.e. via the DM interaction (which can be also modified in the presence
of the E-field).

To make the analysis simpler, we assume in the following that the pentagonal spin
molecule possesses a D5 point group symmetry, thus no horizontal reflection plane σh. How-
ever, no generality is lost, since lower symmetry implies more allowed transitions in the spin
system. If, for example, in the lower symmetric situation some transitions are forbidden,
these transitions will be forbidden in the higher symmetry case. The Hamiltonian is given
in Eq. (5.1) with N = 5. The states of the pentagon are found from the product of the
individual spin representations Dtot = D(1/2)⊗5 = 5D(1/2) ⊕ 4D(3/2) ⊕D(5/2), meaning there
are 32 spin states in total. As before, these states can be organized in a symmetry adapted
basis in the following way

|ψ(k,i)
M 〉 = P k

5 |M, i〉, (5.22)

P k
5 =

1√
5

4∑

j=0

ǫkjC
j
5 , (5.23)

where ǫkj = exp (2iπjk/5) with k, j = 0, . . . , 5, Cj
5 are the 5-fold rotations of order j. The

states |M, i〉 ≡ |σ1σ2σ3σ4σ5〉 represent all possible states (i states in total) with a given spin
projection M(≡ ∑

k σk) that cannot be transformed into each other by application of the
rotation operator Cj

5 . These states are showed in in Table 5.2 and the corresponding states
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S1 S5

S4

S3

S2

J45(E)J12(E)

E

J51(E)

J23(E J34(E))

Figure 5.3: (Color online) Schematics of a pentagonal spin ring molecule in electric field
E, light (green) arrow. The molecule in the absence of electric field is depicted in fade
colors, while the full colors represent the molecules in electric field. Thickness of the bonds
represents the strength of antiferromagnetic exchange interaction between the spins. An
electric field modifies the strengths of spin exchange couplings Jii+1.

with all spins flipped, i.e. M → −M states (not shown). In the absence of SOI there is
no mixing of different k states, i.e. the chirality is a good quantum number. In this case
the chirality is quantified by the operator Cz = 1/(2

√
5 + 2

√
5)
∑

i si · (si+1 × si+2) (the
prefactor is chosen for convenience; see below). As in the s = 1/2, 3/2 spin triangles, the
above states are not yet the eigenstates of the Hamiltonian and we have to solve the equation
S2|ψ(i)

S 〉 = S(S+1)|ψ(i)
S 〉, with |ψ(i)

S 〉 =
∑

k(M) a
S
k,i|ψ

(k,i)
M 〉. The ground state is spanned, again,

by four states, two Kramers doublets with spin S = 1/2. In the following we inspect the
level structure of these four states in terms of the above symmetry adapted states.

Single valued group s = 1/2 pentagon

We focus here only on the four lowest energy states, which are two pairs of S = 1/2 states.
The first (second) pair is given by linear combination of states with chirality k = 1 (k = 4)
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H
H

H
H
H
H

M
i

1 2

1/2 |↑↓↑↓↑〉 |↑↓↓↑↑〉

3/2 |↓↑↑↑↑〉 0

5/2 |↑↑↑↑↑〉 0

Table 5.2: Spin s = 1/2 pentagon non-symmetry adapted states.

and spin projection M = ±1/2. We obtain

|ψ(k)
S=1/2,M=±1/2〉 =

1√
3

(
1

2 cos

(
2kπ

5

) |ψ(k,1)
M=±1/2〉

+ 2ǫk2 cos

(
2kπ

5

)
|ψ(k,2)

M=±1/2〉
)
, (5.24)

so that Cz|ψ(k)
M=±1/2〉 = (−1)k|ψ(k)

M=±1/2〉. These states (for a given M projection) form
the basis of the two dimensional irreducible representation E1. We are now in positions
to investigate the allowed electric dipole transitions within this lowest subspace. The in-
plane electric dipole d = (dx, dy) forms a basis of the irreducible representation E1 in D5.
By calculating the product E1 ⊗ E1 ⊗ E1 = 2E1 ⊕ 2E2 we see that the totally symmetric
representation A1 of D5 is absent. Therefore, there are no electric dipole transitions within
the four dimensional subspace in the absence of SOI.

As in the previous two cases, the coupling of the spin Hamiltonian to electric field comes
via modification of the spin Hamiltonian parameters. If only the modification of the isotropic
exchange Hamiltonian is taken into account, the spin-electric Hamiltonian takes the same
form as in Eq. (5.7), with δJii+1(E) = dE cos (2iπ/5 + θ), i = 1 . . . 5. The parameter d
quantifies the electric dipole coupling of each of the bonds and θ is the angle between the
electric field E and the bond s1 − s2. Note that d is in principle non zero in D5 point
group symmetry. However, the matrix elements of the spin-electric Hamiltonian within the
lowest quadruplet are all zero, i.e. 〈ψ(k)

S=1/2,M |δHe−d(E)|ψ(k′)
S=1/2,M ′〉 ≡ 0. This means that

electric field has no effect on the lowest quadruplet, as found out also by purely symmetry
arguments. Therefore, we may expect that the spin-electric coupling in pentagonal spin
molecule is caused by SO effects.

Double valued group s = 1/2 pentagon

Double valued group analysis allows identifying of the level structure and the allowed transi-
tions in the presence of SOI and magnetic fields. The lowest four states in the double group
D

′

5 are described by the two dimensional irreducible representations Ē
′

1 ∼ (| − 1/2〉, |1/2〉)
and Ē

′′

1 ∼ (| − 3/2〉, |3/2〉), respectively. Since both the magnetic µ and electric d dipoles
transform as E1 in D

′

5, both electric and electric transitions will take place between the
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same pair of states. The products of the irreducible representations that labels the states
in the low-energy quadruplet read: Ē

′

1 ⊗ Ē
′′

2 = E1 ⊕ E2, Ē
′

1 ⊗ Ē
′

1 = A1 ⊕ A2 ⊕ E1 and
Ē

′

2 ⊗ Ē
′

2 = A1 ⊕ A2 ⊕ E2. These equalities imply the same selection rules in the lowest
subspace as for the spin triangle case: ∆M = ±2 (| ± 1/2〉 ↔ | ∓ 3/2〉) for electric dipole
transitions, and ∆M = ±1 (| ± 1/2〉 ↔ | ∓ 1/2〉 and | ± 1/2〉 ↔ | ± 3/2〉), for the magnetic
ones.

The main feature of pentagonal spin ring is the absence of electric dipole transitions in
the lowest quadruplet in the absence of SOI. This is to be contrasted to the spin triangle
case, where spin-electric coupling exists in the ground state even in the absence of SOI. This
feature finds its explanation from the interplay between the selection rules for electric field
transitions and the ones for the SOI. In fact, these selection rules are by no means different
from the triangular spin rings. Since the ground state is spanned by four states with chirality
Cz = 1, 4 and spin Sz = ±1/2, we see that the condition ∆Cz = ±1 for the electric field
transitions implies no electric field coupling within the ground state! In the presence of SOI
though, spin electric coupling is still possible, but it will be (Dx,y/J) times smaller than
in triangles. Spin-electric coupling can arise also via modification of the DM vectors Dx,y,z

in electric field. However, the selection rules for this transitions are, like for the triangle,
∆Cz = 0,±2 and ∆Sz = 0,±1. This means direct splitting in the ground state, and thus
we expect that for pentagon spin ring the electric dipole response will be much weaker.

5.3 Hubbard model of a molecular nanomagnet

Spin-Hamiltonian models of molecular nanomagnets are based on the assumption that the
spins on magnetic centers are the only relevant degrees of freedom. This assumption of
fully quenched and localized orbitals allows for the relatively simple predictions of spin
structure in the low-energy states of the molecule. However, since the orbital dynamics
plays a crucial role in spin-electric coupling, spin-Hamiltonian models are unable to predict
the corresponding coupling constants. In this Section, we relax the assumption of quenched
and localized orbitals and treat the orbital degrees of freedom of electrons on magnetic ions
within a Hubbard model. This provides an intuitive picture of spin-electric coupling in terms
of the deformation of the molecular orbitals induced by the external field. Besides, in the
limit of strong quenching of the orbitals, the Hubbard model reproduces a spin Hamiltonian,
similar to the results found in the studies of cuprates [164–166] and multiferroics [167,168].
In particular, we find the relation between modifications of the electronic hopping matrix
elements induced by the field and that of the spin-electric coupling in the spin Hamiltonian,
thus providing a guide for the estimate of the size of spin-electric coupling in a molecule.

The outline of the present Section is the following. In Subsection 5.3.1, we introduce
the Hubbard model of a spin chain with the shape of regular n-tangon, and derive the
resulting symmetry constraints for the hopping parameters. In Subsection 5.3.2 we assume
a direct electron hopping between magnetic sites, and derive the spin Hamiltonian of a spin
triangle from the Hubbard model, in the limit of large on-site repulsions; we thus express the
coupling to electric fields in terms of the Hubbard-model parameters. In Subsection 5.3.3,
we introduce a Hubbard model of a magnetic coupling in the case where this is mediated by
a non-magnetic bridge between the magnetic centers; also in this case, we find a connection
between the modification of the bridge and spin-electric coupling.
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5.3.1 Parameters of the Hubbard model of molecular nanomagnets

Magnetic properties of molecular nanomagnets are governed by the spin state of few elec-
trons in the highest partially occupied atomic orbitals, split by the molecular field. The
spin density is localized on the magnetic centers [169], and thus the low-energy magnetic
properties are correctly described by quantum models of interacting localized spins [170,171].

The response of molecular nanomagnets to electric fields, as a matter of principle, does
not have to be governed by the electrons occupying the same orbitals that determine the
molecule’s spin. However, the quantum control of single molecule magnets by electric fields
depends on the electrons that both react to electric fields and produce the magnetic response.
Therefore, the models of molecular nanomagnets that consider only few orbitals can provide
useful information about the electric control of spins.

Hubbard model provides a simplified description of orbital degrees of freedom by includ-
ing only one or few localized orbitals on each magnetic center. Furthermore, the interaction
between electrons is accounted for only by introducing the energies of the atomic configura-
tions with different occupation numbers. The Hubbard model of the MN is given by:

HH =

[
∑

i,j

∑

α,β

c†iα

(
tδαβ +

iPij

2
· σαβ

)
cjβ + h. c.

]

+
∑

j

Uj (nj↑, nj↓) .

(5.25)

where c†jσ (cjσ) creates (annihilates) an electron with spin σ =↑, ↓ on the orbital localized
on jth atom, and njσ = c†jσcjσ is the corresponding number operator. Model parameters
Uj, describe the energy of nj↑(↓) spin up(down) electrons electrons on the site j. Hopping
parameters tij, Pij describe the spin-independent and spin-dependent hopping between sites
i and j.

We assume that the largest energy scale is the splitting between the energy of the high-
est occupied atomic orbital and lowest unoccupied one, induced by the molecular crystal
field: this justifies the inclusion of one orbital only for each magnetic center. The on-site
repulsion energy is the next largest energy scale in the problem, being Uj larger than the
hopping coefficients. Amongst these, processes involving states of different spin, mediated
by spin-orbit interaction, are described by the x and y components of Pij. The parameters
Pij;z, instead, describe the difference of the hopping matrix elements between spin-up and
spin-down electrons. In the following, we shall consider both the case where electron hop-
ping takes place directly between neighboring magnetic ions and that where the magnetic
interaction is mediated by bridges of non-magnetic atoms. The Hubbard Hamiltonian can
be approximated by a spin Hamiltonian model in the limit |tij|, |Pij| ≪ Uj. The symmetry
constraints on the spin Hamiltonian parameters can be deduced from those on the Hubbard
model parameters [164]. If the spin-independent hopping dominates (|t| ≫ |P|), the result-
ing spin Hamiltonian will contain the Heisenberg exchange terms and a small additional
spin-anisotropic interaction. If |t| & |P|, the size of spin-dependent interactions in the spin
Hamiltonian will be comparable to the Heisenberg terms. Both these cases appear in the
molecule nanomagnets [46,162,172,173].

Symmetry of the molecule imposes constraints to the Hubbard model, thus reducing the
number of free parameters. The on-site repulsion parameters Uj are equal for all equivalent
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magnetic ions. In the molecules of the form of regular n-tagon, all of the spin-independent
hopping parameters are equal, due to the Cn symmetry. The spin-dependent hopping el-
ements are related by both the full symmetry of the molecule and the local symmetry of
localized orbitals. For example, in the case of localized orbitals in a regular polygon that
are invariant under the local symmetry group of the magnetic center,

Pj,j+1;x = exp

[
i
2π(j − k)

n

]
Pk,k+1;x, (5.26)

with the convention that site n+ 1 coincides with site 1. In this case, there is only one free
parameter that determines all of the Px matrix elements. Therefore, the regular n−tagon
molecule in the absence of external electric and magnetic fields can be described by a Hub-
bard model, with five independent parameters: U , t, P12. In addition, the σv symmetry, if
present will impose P12 = pez, thus reducing the number of free parameters to three.

5.3.2 Hubbard model of the spin triangle: direct exchange

In this Subsection we give a brief description of the Hubbard model for a triangular molecule
with D3h symmetry. In this model we assume only direct coupling between the magnetic
centers, thus no bridge in-between. Even so, this simplified model catches the main features
of the effective spin Hamiltonian and gives the microscopic mechanisms for the spin-electric
coupling. The Hamiltonian describing the electrons in the triangular molecule reads

HH =

[
∑

i,σ

c†iσ(t+ iσλSO)ci+1,σ + h.c.

]

+
∑

i,σ

(
ǫ0niσ +

1

2
Uniσniσ̄

)
, (5.27)

where λSO ≡ p = Pij ·ez is the spin-orbit parameter (only one), ǫ0 is the on-site orbital energy,
and U is the on-site Coulomb repulsion energy. As stated before, typically λSO, |t| ≪ U ,
which allows for a perturbative treatment of the hopping and spin-orbit Hamiltonians. These
assumptions agree well with the numerical calculations performed in [169].

The perturbation theory program involves the unperturbed states of the system. The
first set of unperturbed states are the one-electron states

|φσ
i 〉 = c†iσ|0〉, (5.28)

while the three-electron states split in two categories: (i) the site singly occupied states

|ψσ
k 〉 =

3∏

j=1

c†jσj
|0〉, (5.29)

with σj = σ for j 6= k and σj = σ̄, for j = k, and (ii) the double-occupied sites

|ψσ
kp〉 = c†k↑c

†
k↓c

†
pσ|0〉, (5.30)
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with k = 1, 2, 3 and p 6= k.
The states in Eqs. (5.28), (5.35) and (5.30) are degenerate with energies E = ǫ0, E = 3ǫ0

and E = 3ǫ0 + U , respectively. Note that these state are eigenstates of the Hamiltonian in
Eq. (5.27) only in the absence of tunneling and SOI.

The above defined states are not yet adapted to the symmetry of the system, i.e. they are
not basis states of the corresponding irreducible representations of D3h point group. Finding
these states is required by the fact that the symmetry of the molecule is made visible through
the hopping and SOI terms in the Hubbard Hamiltonian. This is accomplished by using
projector operators [163]. We obtain for the one-electron symmetry adapted states.

|φσ
A′

1
〉 =

1√
3

3∑

i=1

|ψσ
i 〉, (5.31)

|φσ
E′

±
〉 =

1√
3

3∑

i=1

ǫi−1
1,2 |ψσ

i 〉, (5.32)

(5.33)

where A′
2 and E ′

± are one-dimensional and two-dimensional irreducible representations in
D3h, respectively. Similarly, the symmetry adapted states with the singly-occupied magnetic
centers read:

|ψ1σ
A′

2
〉 =

1√
3

3∑

i=1

|ψσ
i 〉, (5.34)

|ψ1σ
E′

±
〉 =

1√
3

3∑

i=1

ǫi−1
1,2 |ψσ

i 〉, (5.35)

while the symmetry adapted states of the doubly-occupied magnetic centers read:

|ψ2σ
A

′
1,2
〉 =

1√
6

3∑

i=1

(|ψσ
i1〉 ± |ψσ

i2〉), (5.36)

|ψ2σ
E

′1
±

〉 =
1√
6

3∑

i=1

ǫi−1
1,2 (|ψσ

i1〉+ |ψσ
i2〉), (5.37)

|ψ2σ
E

′2
±

〉 =
1√
6

3∑

i=1

ǫi−1
1,2 (|ψσ

i1〉 − |ψσ
i2〉). (5.38)

The tunneling and SOI mixes the singly-occupied and doubly-occupied states. Since
both the tunneling and SOI terms in the Hubbard Hamiltonian transform as the totally
symmetric irreducible representation A′

1 in D3h, only states transforming according to the
same irreducible representations Γ mix. We obtain the perturbed in first order in t/U and
λSO:

|Φ1σ
A

′
2
〉 ≡ |ψ1σ

A
′
2
〉, (5.39)

|Φ1σ
E

′
±

〉 ≡ |ψ1σ
E

′
±

〉+ (ǭ− 1)(t± σλSO)√
2U

|ψ2σ
E

′1
±

〉

+
3ǫ(t± σλSO)√

2U
|ψ2σ

E
′2
±

〉. (5.40)



5.3. HUBBARD MODEL OF A MOLECULAR NANOMAGNET 81

0 10 20 30
U/t

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C
z

0.0

0.2

0.4

0.6

P 2

C
z 
 = -1/2

C
z
 = 1/2

P
2

Figure 5.4: Spin-Hamiltonian limit. Expectation values of chirality 〈Cz〉 (full lines) and the
their bounds of uncertainty 〈Cz〉±∆Cz (dotted lines), see text, in the low-energy states of the
Hubbard model, as a function of the on-site repulsion U , at the fixed hopping matrix element
t = 1 (left scale). The dashed line shows dependence of the double occupancy probability in
the ground state on the right scale. The spin-Hamiltonian description becomes accurate in
the U → ∞ limit. The approach to this limit is slow, and the double occupancy probability
is proportional to t/U .

Doubly occupied states become high in energy when |t|/U, λSO/U ≪ 1. In this limit, the
orbital states are quenched into singly-occupied localized atomic orbitals, and low-energy
behavior is determined by spin and described by a spin Hamiltonian. In this limit the states
in Eq. (5.35) are exactly the same chiral states in the spin Hamiltonian, i.e |ψ1σ

E′
±
〉 ≡ |ψ(1,2)

σ 〉
and |ψ1σ

A′
2
〉 ≡ |ψ(0)

σ 〉. The probability of finding two electrons at the same site decays as
1/U . The lowest energy states have total spin S = 1/2 and the chirality Cz = ±1, and the
fluctuations of chirality ∆Cz =

√
〈C2

z 〉 − 〈Cz〉2 in the eigenstates vanish, see Fig. 5.4. The
chiral states emerge as the eigenstates in the large-U limit, when the system is well described
by the spin Hamiltonian.

The coupling of the molecule to an external electric field E takes place via two mecha-
nisms. The first one implies modification of the on-site single particle energies ǫ0 and leads
to the following electric-dipole coupling Hamiltonian

H0
e−d = −e

∑

σ

Eya√
3
c†1σc1σ −

a

2

(
Ey√
3
+ Ex

)
c†2σc2σ

+
a

2

(
Ex −

Ey√
3

)
c†3σc3σ, (5.41)

with a being the geometrical distance between the magnetic ions and Ex,y the in-plane
components of the electric field. The second mechanism is due to modification of the hopping
parameters tii+1 in electric field and gives

H1
e−d =

∑

i,σ

tEii+1c
†
iσci+1σ, (5.42)

where tEii+1 = 〈Φiσ|− er ·E|Φi+1σ〉 are new hopping parameters induced solely by the electric
field E, and Φiσ are the Wannier states localized on the magnetic centers. We can write
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the E-induced hoppings as tEii+1 =
∑

q=x,y,z qii+1Eq, with qii+1 = 〈Φiσ| − eq|Φi+1σ〉 being
electric dipole matrix elements between the i and i+ 1 ions. These matrix elements are not
all independent, symmetry alone reducing drastically the number of independent electric
dipole parameters. In order to find suitable independent free parameters, we switch from
the description in terms of localized Wannier orbitals Φiσ, to the description in terms of
symmetry adapted states , namely from qii+1 to qΓΓ′ = 〈φΓσ|q|φΓ

′
σ〉, where Γ = A

′

1, E
′

±. In
the basis of symmetry adapted states, the components qΓΓ′ satisfy a number of relations. In
particular, we find:

〈φσ
A′

1
| − ex|φσ

A′
1
〉 = 〈φσ

A′
1
| − ey|φσ

A′
1
〉 = 〈φσ

E′
+
| − ex|φσ

E′
+
〉 ≡ 0 (5.43)

〈φσ
E′

−
| − ex|φσ

E′
−
〉 = 〈φσ

E′
+
| − ey|φσ

E′
+
〉 = 〈φσ

E′
−
| − ey|φσ

E′
−
〉 ≡ 0, (5.44)

〈φσ
E′

+
| − ex|φσ

E′
−
〉 = −i〈φσ

E′
+
| − ey|φσ

E′
−
〉 ≡ dEE (5.45)

〈φσ
A′

1
| − ex|φσ

E′
+
〉 = 〈φσ

A′
1
| − ex|φσ

E′
−
〉 = −i〈φσ

A′
1
| − ey|φσ

E′
+
〉

= i〈φσ
A′

1
| − ey|φσ

E′
−
〉 ≡ dAE. (5.46)

These relations reduce the number of free coupling constants to two, namely dEE and dAE.
It is instructive to write first the relation between the second quantized operators c†iσ(ciσ)

and c†Γσ(cΓσ), which create (annihilate) electrons in localized and symmetry adapted states,
respectively: 



c†1σ

c†2σ

c†2σ




=
1√
3




1 1 ǫ

1 ǭ ǭ

1 ǫ 1







c†A′
1σ

c†E′
+σ

c†E′
−σ



. (5.47)

With these expressions at hand, we can write the electric dipole Hamiltonian together with
the spin-orbit Hamiltonian in the following form:

H0
e−d =

−iea
√
3

2

∑

σ

(
Ēc†E′

+σcA′
1σ

− ǫEc†E′
−σcA′

1σ

+ ǫĒc†E′
−σcE′

+σ

)
+H.c., (5.48)

H1
e−d =

∑

σ

dAE(Ēc
†
A′

1σ
cE′

+σ − Ec†A′
1σ
cE′

−σ)

+ ĒdEEc
†
E′

+σcE′
−σ +H.c., (5.49)

HSO =
√
3λSO

∑

σ

σ(c†E′
−↑cE′

−↑ − c†E′
+↑cE′

+↑), (5.50)

where E = Ex + iEy(Ē = Ex − iEy). The symmetry adapted states can also be expressed
in terms of the symmetry adapted operators c†Γ. The expressions for these states are shown
in Appendix A. Using these states, we can compute all the matrix elements corresponding
to the electric dipole and SOI Hamiltonian, respectively. The explicit form of these matrix
elements can be found in Appendix B.
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We now compute the electric dipole matrix elements between the perturbed chiral states
of the E ′

± symmetry. The question is to what order in t/U and/or eEa(dEE, dAE)/U we
want to do it. We use the relations |ea| ≫ dEE, dAE, which hold in the case of localized
orbitals. This leads us to the following matrix element of the electric dipole in the ground
state:

|〈Φ1σ
E

′
−

|H0
e−d|Φ1σ

E
′
+
〉| ∝

∣∣∣∣
t3

U3
eEa

∣∣∣∣ , (5.51)

|〈Φ1σ
E

′
−

|H1
e−d|Φ1σ

E
′
+
〉| ≃

∣∣∣∣
4t

U
EdEE

∣∣∣∣ . (5.52)

We now relate the SOI matrix elements to the DM vectors in the effective spin-Hamiltonian.
In D3h symmetry, the DM term reads

HSO =
iDz

2

3∑

i=1

(Si
+S

i+1
− − Si

−S
i+1
+ ), (5.53)

which gives rise to the following non-zero matrix elements,

〈Φ1σ
E′

±
|HSO|Φ1σ

E′
±
〉 = ±

√
3Dz

2
sign(σ), (5.54)

and allows us to make the following identification

Dz ≡
5λSOt

U
. (5.55)

We see that this SOI term acts exactly as the ’microscopic’ SOI derived before: it splits the
chiral states, but it does not mix them.

The Hubbard model with spin-orbit coupling can reproduce the energy-level structure of
the spin Hamiltonian. In the limit of strong on-site repulsion |t|/U ≪ 1, the atomic orbitals
in the triangle vertices are occupied by one electron each. The lowest energy manifold
consists of four states with the total spin Stot = 1/2. These states are split from the next
four-level Stot = 3/2 manifold by a gap of the order of t2/U .

5.3.3 Superexchange in molecular bonds

In this Subsection, we use the Hubbard model to deduce the dependence of the spin Hamil-
tonian of MNs on the external electric fields in the case where the coupling between magnetic
sites is mediated by a non-magnetic bridge. In particular, we study how the parameters of
the effective spin Hamiltonian depend on the hopping matrix elements that are modified
by the presence of an electric field. This method was successfully applied in the studies of
strongly correlated electrons, like cuprates [166] and multiferroics [168].

In order to describe the magnetic coupling, we consider a pair of sites corresponding to
the magnetic centers and a bridge site. Since the direct overlap of the orbitals localized
on the magnetic centers is small, we set the direct hopping between the magnetic centers
to zero, but allow for the hopping of electrons between the magnetic sites and the bridge
site. This hopping gives rise to superexchange interaction between the spins on the magnetic
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Figure 5.5: Geometry of the bond and reduction of symmetry. (a) Electric field E in y
direction, leaves the C2v symmetry unbroken. (b) An electric field E in z-direction, normal
to the bond plane, reduces the symmetry to {E, σv}. (c) An electric field E in x-direction,
along the line connecting the magnetic centers, reduces the symmetry to {E, σh}. (d) In an
inhomogeneous staggered electric field E, the reduced symmetry group is {E,Ry,π}.

sites [164]. In the limit of strong on-site repulsions, the effective Hamiltonian in the lowest
energy sector of the bond corresponds to a spin Hamiltonian where the coupling strengths are
determined by the Hubbard model parameters. This correspondence provides an intuitive
picture of the mechanism that leads to the interaction between the spins. It also allows us
to infer the properties of the molecule that lead to a strong spin-electric coupling, e.g., the
delocalization of the orbitals and their local symmetry.

The Hubbard Hamiltonian of the bond is given by

Hb =
∑

i,αβ

[
c†iα

(
tiδαβ +

iPi

2
· σαβ

)
bβ + h. c.

]

+ U1(n1) + U2(n2) + Ub(nb),

(5.56)

where the indices 1 and 2 refer to the magnetic sites, and b refers to the bridge site. We derive
the spin Hamiltonian by fourth-order Schrieffer-Wolff transformation of the Hamiltonian Hb

(5.56).
The Schrieffer-Wolf transformation [174] of the bond Hamiltonian Hb = H0+Htun (5.56),

where the unperturbed Hamiltonian H0 = U1(n1) + U2(n2) + Ub(nb) produces an effective
low energy Hamiltonian H12 that approximately describes the low-energy dynamics of the
bond. The effective Hamiltonian is

H12 = PeSHbe
−SP , (5.57)

where the antiunitary operator S is chosen so that the low-energy space of H0 is decoupled
from the high-energy space. This operator is found iteratively, S = S(1) + S(2) + . . ., so
that the nth order transformation S(n) removes the terms that couple the low- and high-
energy states up to order n. The projector P projects to the low-energy states. In our
system, the lowest order Schrieffer-Wolff transformation that gives a nontrivial contribution
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to the low-energy spin Hamiltonian is of fourth order, and the operator S is approximated
as S ≈∑4

n=1 S
(n).

The unperturbed Hamiltonian, H0 = U1+U2+Ub, describes localized electrons, and the
hoppingHtun acts as perturbation. The low-energy subspace of the unperturbed Hamiltonian
is spanned by the states in which the magnetic ions are singly occupied, and the bridge is
doubly occupied. The lowest-order terms that give rise to a nontrivial spin Hamiltonian, in
the limit |t|, |P| ≪ U , are of the fourth order in t and P.

The resulting interaction of the spins includes an isotropic exchange of strength J , a
Dzyalozhinsky-Moriya interaction described by a vector D, and an anisotropic exchange
term described by a second rank symmetric traceless tensor Γ [175]

H12 = JS1 · S2 +D · (S1 × S2) + S1 · ΓS2. (5.58)

Quite generally the interaction between two spins up to second order in P12 can be rep-
resented as an isotropic exchange of rotated spins [166]. However, since the frustration in
the triangle is strong, it is a good approximation to take only the Dzyalozhinsky-Moriya
interaction into account for the weak spin-orbit coupling, |P12| ≪ |t12| when describing a
full molecule.

In a bond with a single bridge site, the largest possible symmetry is C2v. We introduce
Cartesian coordinates with the x-axis pointing from the magnetic center 1 to 2, y-axis lying
in the bond plane and pointing towards the bridge site, and the z-axis normal to the bond
plane (Fig. 5.5). The elements of the C2v symmetry group are then rotation Ry,π by π about
the y-axis, reflection σv in the yz plane, and reflection σh in the xy plane. Each of these
symmetry operations present imposes constraints on the parameters of Hb. In the case of
localized orbitals that remain invariant under the local symmetries of their respective sites,
the constraints resulting from the Ry,π symmetry are:

t1 = t2, (5.59)

Px,1 = −Px,2, (5.60)

Py,1 = Py,2, (5.61)

Pz,1 = −Pz,2. (5.62)

The σv symmetry implies:

t1 = t2, (5.63)

Px,1 = Px,2, (5.64)

Py,1 = −Py,2, (5.65)

Pz,1 = −Pz,2, (5.66)

and the σh symmetry implies:
P1 = −P2 = pez. (5.67)

In the perturbative calculation of the effective spin Hamiltonian parameters, these con-
straints reproduce the Dzyalozhinsky-Moriya rules. We do not deal with the symmetry of
on-site energies U1,2,b in any detail, since they do not affect the spin Hamiltonian at this
level of approximation.
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5.3.4 Electric field along y

In the electric field pointing along the y axis, the point group symmetry of the bridge
remains C2v, and all of the constraints (5.60) – (5.67) hold. The fourth-order Schrieffer-
Wolff transformation then gives the interaction between the spins on magnetic centers of the
form (5.58) with the parameters

J =
1

12U3

(
48t4 − 40t2p2z + 3p4z

)
, (5.68)

D =
2

U3
tpz
(
4t2 − p2z

)
ez, (5.69)

Γxx = Γyy = −1

2
Γzz = − 8

3U3
t2p2z, (5.70)

while all the off-diagonal elements of Γ vanish. Here, the parameters of the Hubbard model
satisfy the symmetry constraints of the full C2v, and

t1 = t2 = t, (5.71)

P1 = −P2 = pzez. (5.72)

We have introduced U3 = Uc2(2Uc2 −Ub2)(Ub1 −Ub2 +Uc2)
2/(4Uc2 −Ub2), where the on-site

repulsions are Ub2 for the doubly occupied bridge, Ub1 for the singly occupied bridge, and
Uc2 for the doubly occupied magnetic center. The parameter U describes the energy cost of
leaving the manifold of states with the minimal energy of Coulomb repulsion. We assume
that the lowest energy charge configuration corresponds to a doubly occupied bridge, so that
Ub2 < Ub1.

In first order, the variations of the spin-Hamiltonian parameters resulting from the mod-
ification of the Hubbard model parameters, are:

δJ =
1

3U3

[(
48t3 − 20tp2z

)
δt+

(
−20t2pz + 3p3z

)
δpz
]
, (5.73)

δDz =
2

U3

[(
12t2pz − p3z

)
δt+

(
4t3 − 3tp2z

)
δpz
]
, (5.74)

δΓxx = δΓyy = −δΓzz

2
= −16tpz

3U3
(pzδt+ tδpz) . (5.75)

Electric field modifies the orbitals and therefore the overlaps between them, that determine
the hopping parameters. We consider the case where the variations δt and δpz are linear in
the field intensity Ey: δt = κtEy, δpz = κpzEy. We will not discuss the effect of variations in
the on-site energies U in any details, since their only effect in the fourth order perturbation
is a rescaling of all the spin Hamiltonian parameters by U3/(U + δU)3.

We stress that these linear modifications of the hopping parameters are characteristic
for the C2v symmetry. If the electric field is oriented differently and thus lowers the system
symmetry (see below) first-order increments are not allowed, and the spin-electric coupling
is at least a second order effect in the electric field. The modification of the orbitals includes
the energy scale of splitting of the atomic orbitals in the molecular field. We have assumed
earlier that the splitting of the orbitals localized on the magnetic centers is large, and
the dominant source of the spin-electric coupling is the modification of the bridge orbital.
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Therefore, the key criterion for strong spin-electric coupling is the presence of bridge orbitals
that are weakly split in the molecular field. If, in addition, we assume that the modification
is a property of the bond alone, and not of the entire molecule, the κ parameters can be
determined in an ab-initio calculations on a smaller collection of atoms.

In the limit of weak spin-orbit coupling, |t| ≫ |pz|, the main effect of the electric fields
is a change of J , leading to our symmetry-based results, see Eq.5.15. In particular, the d
parameter of the symmetry analysis is:

d =
4

U3

[(
48t3 − 20tp2z

)
κt+

(
−20t2pz + 3p3z

)
κpz
]
.

(5.76)

In this case, the Dzyalozhinsky-Moriya vector D is constraint to point in the z direction,
D = Dez. The model suggests that the dominant effect of the electric field in the molecules
with dominant Heisenberg exchange (J ≫ |D|) is modification of the isotropic exchange
constants J , and

|δD|
|δJ | ∼ |D|

|J | , (5.77)

so that the modification of the Dzyalozhinsky-Moriya vector D → D+ δD is weaker. How-
ever, in the molecules in which the modifications of J are inefficient in inducing the spin-
electric coupling, as for example in the spin-1/2 pentagon, the modifications of D may
eventually provide the main contribution to the spin-electric coupling.

Electric field pointing in a generic direction breaks the C2v symmetry of the bridge, and
allows further modification of the Hubbard and spin Hamiltonian parameters, that do not
obey all the symmetry constraints in Eqs. (5.59) – (5.67). With the relaxed constraints,
both the direction and intensity of P1,2, as well as the spin-independent hoppings t1,2 become
field-dependent. This observation can be used in the search for molecules that show strong
spin-electric coupling. The energy cost of changing the distance between the localized orbitals
may be significantly higher than the cost of modifying the shape of the bridge orbital. In
order to investigate this dependence, we study the effective spin Hamiltonian description of
a bridge with all possible residual symmetries.

Residual σv symmetry

An electric field E = Eez normal to the bond’s plane reduces the initial C2v symmetry down
to {E, σv}. This reduction of the symmetry also happens when a molecule is deposited on the
surface parallel to the bond plane. While the constraints in Eq. 5.67 hold, this reduction of
symmetry implies the appearance of nonzero in-plane components of P1,2. We parameterize
the most general Hubbard model parameters t1,2, P1,2 consistent with the symmetry as

t1 = t2 = t, (5.78)

P1,x = P2,x = pxy cosφ, (5.79)

P1,y = −P2,y = pxy sinφ, (5.80)

P1,z = −P2,z = pz. (5.81)

The effective low energy spin Hamiltonian, derived by Schrieffer-Wolff transformation up to
fourth order in t/U , and |P|/U is given by (5.58), with the non-zero parameters
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J =
1

12U3

[
p4xy − 2p2xyp

2
z + 3p4z − 8t2

(
p2xy + 5p2z

)
(5.82)

+48t4 − 8p2xy
(
p2z − 4t2

)
cos 2φ+ 2p4xy cos 4φ

]
,

Dy = −pxy
U3

(pz cosφ+ 2t sinφ)
(
−p2z + 4t2 + p2xy cos 2φ

)
, (5.83)

Dz = − 1

2U3

(
4tpz − p2xy sin 2φ

) (
p2z − 4t2 − p2xy cos 2φ

)
, (5.84)

Γxx = − 1

6U3

[
p2xy (1− cos 2φ) + 2p2z

] [
8t2 + p2xy (1 + cos 2φ)

]
, (5.85)

Γyy =
1

12U3

{
−p4xy + 8p2xyp

2
z + 32t2

(
p2xy − p2z

)
(5.86)

+p2xy
[
8
(
p2z − 4t2

)
cos 2φ+ p2xy cos 4φ+ 48tpz sin 2φ

]}
,

Γyz = Γzy =
pxy
U3

(pz cosφ+ 2t sinφ)
(
−4tpz + p2xy sin 2φ

)
(5.87)

Γzz = −Γxx − Γyy. (5.88)

In the lowest order in spin-orbit coupling the spin interaction consists of the isotropic
exchange with J ≈ 4t4/U3, and the DM interaction with D ≈ −8t3(pxy sinφey + pzez)/U

3.

As a matter of principle, the spin-orbit coupling mediated hopping P does not have to
be much weaker than the spin-independent hopping t. In this case, all the nonzero terms
in Eqs. (5.82) — (5.88) are of comparable size, and the variation of spin Hamiltonian with
the angle φ becomes significant. Note that the angle φ describes the directions of spin-
orbit coupling induced hopping parameters P1,2, and that it is not directly connected to
the bond angle between the magnetic sites and the bridge site. However, for the bridge
orbital without azimuthal symmetry, the angle φ does depend on the bond angle. For the
molecules in which the full symmetry allows only for the spin-electric coupling mediated by
the spin-orbit interaction, this effect is important.

With these assumptions, the dependence of the effective spin Hamiltonian on pxy sug-
gests that the strength of induced in-plane Dzyalozhinsky-Moriya vector will be sensitive
to the angle φ that is determined by the angular dependence of the bridge- and magnetic
center orbitals. In turn, for a fixed symmetry of the bridge orbital, this dependence directly
translates into the dependence of the spin-electric coupling constant on the bridge bond
angle.

In the presence of electric field E = Eez, the hopping parameters will change from
their initial values, that satisfy the constraints implied by the C2v symmetry, into a set of
values that satisfy those implied by σv only. The resulting change in the spin-Hamiltonian
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parameters reads:

δJ =
1

3U3

[
4t0
(
12t20 − 5p2z0

)
δt (5.89)

+pz0
(
−20t20 + 3p2z0

)
δpz
]
,

δDy = − 1

U3

(
4t20 − p2z0

)
(2t0 sinφ+ pz0 cosφ) δpxy, (5.90)

δDz =
2

U3

[
pz0
(
12t20 − p2z0

)
δt (5.91)

+t0
(
4t20 − 3p2z0

)
δpz
]
,

δΓxx = δΓyy = −1

2
δΓzz = (5.92)

− 16

3U3
t0pz0 (pz0δt+ t0δpz) ,

δΓyz = δΓzy = − 4

U3
t0pz0 (2t0 sinφ+ pz0 cosφ) δpxy. (5.93)

The σv-symmetric variations of Hubbard parameters occur when an external electric
field is applied along the z direction to a C2v symmetric bond. Again, the variations of
the parameters is generically linear in the field strength, δt = κt,σvEz, δpxy = κpxy,σvEz,
δpz = κpz,σvEz, where the κ parameters depend on the modification of the bridge orbital in
the electric field. As opposed to the case of the field along y direction that maintains the
bonds C2v symmetry, the κ parameters for the field along z axis vanish in zero field, since
the z-component of a vector has no matrix elements between the relevant C2v-symmetric
states. The linear expansion is valid when the field is strong enough to distort the bridge
orbital. Alternatively, the expansion is valid for a bond with lower symmetry in zero electric
field, e. g., when the bond is close to a surface.

Residual σh symmetry

In an electric field that lies in plane of the bond, with E ‖ x̂), the only residual symmetry
transformation is the reflection about the xy plane (σh). Within this reduced symmetry,
the two magnetic sites are no longer equivalent, but the spin-dependent hopping parameters
P1,2 still point along the z axis:

t1 6= t2, P1 = p1ez 6= p2ez = P2. (5.94)

In the fourth order in hopping t, P, the resulting low energy spin Hamiltonian is again
given by Eq. 5.58, with the following non-zero coupling constants:

J =
1

12U3
[32t1t2p1zp2z (5.95)

−4
(
t21p

2
2z + t22p

2
1z

)
+ 48t21t

2
2 + 3p21zp

2
2z

]
,

D = − 1

U3
(t1p2z − t2p1z) (4t1t2 + p1zp2z) ez, (5.96)

Γxx = Γyy = −Γzz

2
= − 2

3U3
(t1p2z − t2p1z)

2 , (5.97)
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Similarly to the case of full C2v symmetry, the spin Hamiltonian consists of the isotopic
exchange J , Dzyalozhinsky-Moriya vector D = Dzẑ normal to the bond plane, and diagonal
tensor Γ isotropic in the bond plane (Γxx = Γyy). We stress that the dependence of the
effective spin Hamiltonian parameters on those entering the spin Hubbard Hamiltonian is
different for these two symmetries, and so is the response to the applied electric field. On one
hand, the C2v preserving electric field induces the transitions in the lowest energy multiplet
in the lowest order. On the other hand, the electric field that reduces the bond symmetry
to {E, σh} does not alter the coupling of spins in the lowest order, since the deformation of
the molecule requires some coupling to the field.

As in previous case, we expand the σh symmetric spin Hamiltonian around the C2v

symmetric case. We introduce a perturbation of the parameters Hubbard parameters in the
electric field consistent with the residual symmetry: t1 = t0+δt1, t2 = t0+δt2, p1z = pz0+δp1z,
p2z = −pz0 + δp2z. As a consequence, the spin Hamiltonian parameters are incremented by:

δJ =
1

6U3

[
4t0
(
12t20 − 5p2z0

)
(δt1 + δt2) (5.98)

+pz0
(
−20t20 + 3p2z0

)
(δp1z − δp2z)

]
,

δDz =
1

U3
[pz0t0 (12t0 − pz0) (δt1 + δt2) (5.99)

+t0
(
4t30 − 3p2z0

)
(δp1z − δp2z)

]
,

δΓxx =δΓyy = −δΓzz

2
= (5.100)

− 8

3U3
t0pz0 [pz0 (δt1 + δt2) + t0 (δp1z − δp2z)] .

As for the case of σv residual symmetry, there is no spin-electric effect of the first order in
electric field, and the crucial condition for coupling to the electric field in this direction is
weak splitting of the bridge orbitals in the molecular field.

Residual Ry,π symmetry

Reduction of the symmetry of the bond, from the full C2v to the group {E,Ry,π}, does not
occur for any vector perturbation. In terms of electric fields, this reduction of the symmetry
would correspond to an inhomogeneous electric field that points in the ez direction at the
position of one of the magnetic centers, and in the −ez direction at the position of the
other. This symmetry breaking can also happen when the localized orbitals on the magnetic
centers have lobes of opposite signs extending in the z-direction, and oriented opposite to
each other.

The most general Hubbard model parameters consistent with the residual symmetry are

t1 = t2 = t, (5.101)

P1x = −P2x = pxy cosφ, (5.102)

P1y = P2y = pxy sinφ, (5.103)

P1z = P2z = pz. (5.104)

After the fourth-order Schrieffer-Wolff transformation, the effective low-energy spin Hamil-
tonian has the form (5.58) with nonzero parameters
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J =
1

12U3

(
p4xy − 2p2xyp

2
z + 3p4z − 8t2

(
p2xy + 5p2z

)
+ 48t2 (5.105)

+8p2xy
(
p2z − 4t2

)
cos 2φ+ 2p4xy cos 4φ

)
,

Dx =
1

U3
pxy (−2t cosφ+ pz sinφ)

(
p2z − 4t2 + p2xy cos 2φ

)
, (5.106)

Dz = − 1

2U3

(
4tpz + p2xy sin 2φ

) (
p2z − 4t2 + p2xy cos 2φ

)
, (5.107)

Γxx =
1

12U3

(
−p4xy + 8p2xyp

2
z + 32t2

(
p2xy − p2z

)
(5.108)

+p2xy
(
−8
(
p2z − 4t2

)
cos 2φ+ p2xy cos 4φ− 48tpz sin 2φ

))
,

Γzx = Γxz =
1

U3
pxy (2t cosφ− pz sinφ)

(
4tpz + p2xy sin 2φ

)
, (5.109)

Γyy =
1

6U3

(
p2xy (1 + cos 2φ) + 2p2z

) (
p2xy (−1 + cos 2φ)− 8t2

)
, (5.110)

Γzz = −Γxx − Γyy = − 1

6U3

(
−p4xy + 2p2xyp

2
z + 8t2

(
p2xy − 4p2z

)
(5.111)

+p2xy
(
−2
(
p2z − 4t2

)
cos 2φ+ p2xy cos 4φ− 24tpz sin 2φ

))
.

The expansion from the C2v symmetric case gives (see the discussion of the σv residual
symmetry in Subsection 5.3.4):

δJ =
1

3U3

[
4t0
(
12t20 − 5p2z0

)
δt+ pz0

(
−20t20 + 3p2z0

)
δpz
]
, (5.112)

δDx =
1

U3

(
4t20 − p2z0

)
(2t0 cosφ0 − pz0 sinφ0) δpxy, (5.113)

δDz =
2

U3

[
pz0
(
12t20 − p2z0

)
δt+ t0

(
4t20 − 3p2z0

)
δpz0

]
, (5.114)

δΓxx =δΓyy = −1

2
δΓzz = − 16

3U3
pz0t0 (pz0δt+ t0δpz) , (5.115)

δΓzx =δΓxz =
4

U3
t0pz0 (2t0 cosφ0 − pz0 sinφ0) δpxy. (5.116)

As in the case of σv symmetry, the resulting interaction of the spins on magnetic centers
becomes dependent on the angle φ between the two P parameters. This dependence is
pronounced in the case of strong spin-orbit coupling and can lead to the dependence of
spin-electric effects on both the geometry of the bond and the shape of the bridge orbital.

5.3.5 Bond modification and symmetries

Spin-electric coupling induced by the superexchange through bridge atoms depends on the
symmetry of the bridge and the direction of the electric field. This symmetry reflects on
the resulting coupling of spins in an MN. In this subsection, we combine the results of the
Hubbard model study of the individual bonds with the previous symmetry considerations,
and provide rough estimates of the most promising spin-electric coupling mechanism in the
triangular and pentagonal molecules.
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The spin-electric coupling via superexchange is most sensitive to the electric fields that
does not break the initial C2v local symmetry of the bond. This symmetry corresponds to
the electric field that lies in the plane of the molecule and normal to the bond. All the
other couplings require modification of the bridge orbitals, and are suppressed by a factor
d|E|/Ud, where Ud is on-site repulsion on the bridge. Assuming that this repulsion is strong,
we can model the spin electric coupling as a set of modifications of the spin interactions
δHjj+1 between the neighboring magnetic centers, with ||δHjj+1|| ∝ |Ebond

⊥ |, where Ebond
⊥ is

the projection of the electric field normal to the bond and lying in the molecule’s plane.
In the triangle, the strongest effects of electric field is modification of exchange couplings

δJjj+1 = δJ0 cos (2jπ/3 + θ0), where the angle θ0 describes the orientation of the in-plane
component of the electric field, and δJ0 is a molecule-dependent constant. This modification
leads to a specific coupling of the in-plane components of chirality to the electric field Heff

e−d =
dE′ · C‖, see (5.7). Other types of coupling are suppressed either due to weaker influence
of electric field on the bonds, or due to the symmetry of the molecule. If the spin-electric
coupling is mediated by the spin-orbit interaction, the suppression is by a factor of the order
|D|/J , and if the coupling is mediated by electric field, the suppression factor is d|E|/J .
Assuming the simplest case, the modification of exchange coupling is the most promising
mechanism for spin-electric coupling in triangular molecules.

In the pentagons, the modification of spin-spin interaction δHjj+1 preferred by the su-
perexchange mechanism is inefficient in inducing the spin-electric coupling of the molecule.
The pattern δJjj+1 of exchange coupling constants induced by an external electric field
does not couple the states within the lowest energy manifold. In order to couple the spins
in the pentagon to an external field, another mechanism is needed. The modification of
the Dzyalozhinsky-Moriya vectors δDjz = δDz0 cos (2jπ/5 + θ0), where δDz0 is a molecule-
dependent constant, and θ0 describes the orientation of the in-plane component of the electric
field, is preferred by the superexchange bridge model. In the symmetry analysis, we have
found that this form of modification of spin-orbit coupling does not induce spin-electric
coupling. The same applies to the modifications of in-plane components Dj,xy. The main
effect that gives rise to spin-electric coupling is the modification of the exchange interactions
δJjj+1 in the presence of the original spin-orbit interaction Djj+1,z. Compared to a triangle
composed out of identical bonds, this interaction will be weaker by a factor of |Djj+1|/Jjj+1.

In summary, within our model of the superexchange-mediated spin-electric coupling,
the most promising candidates for the spin manipulation via electric field are triangular
molecules. In pentagons, the best candidates are molecules with strong spin-orbit interaction,
and weakly split bridge orbitals.

5.4 Experimental signatures of the spin-electric coupling

Coherent quantum control of spins in an MN using electric fields can be achieved by resonant
driving of the transitions between the chirality eigenstates [156]. At present, however, little
is known about the effects of electric fields on the spin states of molecular magnets. As
a preliminary step, it is useful to identify possible signatures of such a coupling that are
observable in the experiments routinely used to characterize these systems.

In this section, we study the ways in which the spin-electric coupling can be detected in
electron spin resonance (ESR), in nuclear magnetic resonance (NMR), and in the thermo-
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dynamic measurement of an MN.

5.4.1 Electron spin resonance

Electron spin resonance (ESR) investigates transitions between states belonging to a given
S multiplet and having different spin projections M along the magnetic field direction [32].
This technique provides information on the anisotropies of the spin system, as well as on
the chemical environment, and the spin dynamics [144]. In the following, we show how the
effects of an external electric field can show up in the ESR spectra of antiferromagnetic spin
rings by affecting both the frequency and the oscillator strength of the transitions.

Triangle of s = 1/2 spins

We start by considering the simplest case of interest, namely that of a triangle of s = 1/2
spins with D3h symmetry. The lowest energy eigenstates of the spin triangle, given in Eq.
(5.3) form an S = 1/2. The effective Hamiltonian Heff of the molecule in the presence of
electric and magnetic field, and acting within this quadruplet is given by Eq. (5.15).

We first consider the case of a static magnetic field perpendicular to the molecule’s plane
(B ‖ ẑ). The eigenvalues of Heff are then given by:

λασ = σ[B + α(∆2
SO + E2)1/2], (5.117)

where E ≡ d|E × ẑ|, B = µB

√
g2‖B

2
z + g2⊥B

2
⊥, σ = ±1/2 is the eigenvalue of Sz, α = ±1 is

the the eigenstate chirality in the limit of vanishing electric field: |λασ〉E=0 = (−α)σ−1/2|α, σ〉.
In the presence of electric field, the eigenstates read:

|λασ〉 = {2σ[∆SO + α(E2 +∆2
SO)

1/2]|+ 1, σ〉
+ Ee−iθ| − 1, σ〉}/Dα, (5.118)

where Dα = {E2 + [∆SO + α(E2 +∆2
SO)

1/2]2}1/2.
Electron spin resonance induces transitions between such eigenstates. The transition

amplitudes are given by the absolute values of matrix elements of x-component of the total
spin, taken between the states that the transition connects,

〈λα−1/2|Sx|λ−α
+1/2〉 = −E2/D+1D−1 (5.119)

〈λα−1/2|Sx|λα+1/2〉 =
∆SO[∆SO + α(E2 +∆2

SO)
1/2]

(Dα)2
. (5.120)

The corresponding frequencies are given by:

λα+1/2 − λ−α
−1/2 = B (5.121)

λα+1/2 − λα−1/2 = B + α(E2 +∆2
SO)

1/2. (5.122)

As an illustrative example, we plot the frequencies and amplitudes of the ESR transitions
as a function of the electric field (Fig. 5.6). While for E = 0, these transitions can only
take place between states of equal Cz (red and green symbols online, transitions with the
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Figure 5.6: (color online) Energy (ω) of the ESR transitions in a triangle of s = 1/2 spins
as a function of the applied electric field E that lies in the molecule’s plane, so that d|E| =
dE = E . The magnetic field is B ‖ ẑ and ω0 = gµBB, see Eqs. (5.121) and (5.122). The
diameter of the circles is proportional to the transition amplitudes |〈α|Sx|α′〉|, Eqs. (5.119)
and (5.120). Here, |α〉 are the eigenstates of H in the lowest energy S = 1/2 multiplet.
Inset: Eigenvalues (in units of Dz) as a function of E = d|E‖|, in units 3Dz/4.
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larger amplitude at low fields, in the figure and in the inset), the electric field mixes states
of opposite chirality, thus transferring oscillator strength to two further transitions, whose
frequencies are independent of E (blue symbols online, constant frequency transition in the
figure). In the limit dE ≫ Dz, the eigenstates of the spin Hamiltonian tend to coincide
with those of S2

12, and ESR transitions take place between states of equal S12. While the
eigenstates depend on the in-plane orientation of the electric field, no such dependence is
present in the frequencies and oscillator strength of the ESR transitions. Besides, these
quantities are independent of the exchange coupling J , and depend on the value of the
applied magnetic field only through an additive constant (ω0).

The dependence of the ESR spectrum on the applied electric field is qualitatively different
if the static magnetic field is applied in-plane (e.g., B ‖ x̂ and the oscillating field oriented
along ẑ). In this case, the eigenvalues of Heff are:

µα
σ = ασ[∆2

SO + (E + αB)2]1/2, (5.123)

where σ = ±1/2 is the value of 〈Sx〉 in the limit of large magnetic field (B ≫ E ,∆SO) and
α = ±1. The corresponding eigenstates read:

|µα
σ〉 = {eiθ(∆SO + µα

σ)[|+1,+1/2〉 − |−1,−1/2〉]
+ (B + αE)[|+1,−1/2〉 − |−1,+1/2〉]}/Dα

σ , (5.124)

where

Dα
σ =

√
2[(∆SO + µα

σ)
2 + (B + αE)2]1/2. (5.125)

The expectation values of the total spin along the magnetic field for each of the above
eigenstates are given by the following expressions

〈µα
σ |Sx|µα

σ〉 = 2[(∆SO + µα
σ)(B − αE)]/(Dα

σ )
2, (5.126)

which are independent of the in-plane direction of the electric field. The ESR transitions
between such eigenstates induced by a magnetic field that oscillates along the z direction
are given by the expressions:

〈µα
σ |Sz|µ−α

σ′ 〉 =
(∆SO + µα

σ)(∆SO + µ−α
σ′ ) + (E2 − B2)

DαD−α
,

〈µα
σ |Sz|µα

σ′〉 = 0. (5.127)

Therefore, the application of the electric field shifts the energy of the transitions between
states of opposite α, thus removing their degeneracy; however, unlike the case B ‖ ẑ, it does
not increase the number of allowed transitions.

In the case of tilted magnetic fields, the dependence of the ESR spectrum on the applied
electric field presents qualitatively different features (Fig. 5.7). In particular, the spectrum
is dominated by two pairs of degenerate transitions that anticross as a function of the electric
field. Away from the anticrossing, the transitions with the largest oscillator strength display
frequency dependence on the electric field.
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Figure 5.7: Energy (ω) of the ESR transitions in a triangle of s = 1/2 spins as a function
of the applied in-plane electric field E, so that d|E| = dE = E , and in the presence of the
in-plane magnetic field B ‖ x̂. The diameter of the circles is proportional to |〈α|Sz|α′〉|, Eqs.
(5.121) and (5.122). The states |α〉 are the eigenstates of H in the lowest S = 1/2 multiplet.
Inset: Eigenvalues (in units of Dz) as a function of d|E‖| = E , in units 3Dz/4.
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Pentagons of s = 1/2 spins

Triangles of s = 3/2 spins (not shown here) display the same qualitative behavior as the
one discussed above. In contrast, chains including an odd number N > 3 spins behave
differently. This is mainly due to the fact that the spin-electric coupling δH does not couple
directly the four eigenstates of H belonging to the lowest S = 1/2 multiplet: such coupling
only takes place through mixing with the higher S = 1/2 multiplet. As a consequence,
the effects of the spin-electric coupling tend to be weaker as compared to the case of the
triangle; besides, unlike the above case of the spin triangle, they depend on the exchange
coupling J . Illustrative numerical results are shown in Figs. 5.8 and 5.9 for the cases
of a perpendicular and in-plane magnetic field, respectively. In the former case, both the
frequencies and amplitude of the ESR transitions are hardly affected by the electric field,
in the same range of physical parameters considered in Fig. 5.6. In the case of an in-plane
magnetic field, instead, a relatively small shift in the transition energies is accompanied by
a strong transfer of the oscillator strength, for values of the spin-electric coupling exceeding
the Dzyalozhinsky-Moriya coupling constant.

5.4.2 Nuclear magnetic resonance

The spin-electric Hamiltonian δH0 modifies non uniformly the super-exchange couplings
between neighboring spins. This might not affect the projection of the total spin (as in the
case B ‖ ẑ, see above), but it generally affects the moment distribution within the spin
chain. Such effect can be investigated through experimental techniques that act as local
probes in molecular nanomagnets, such as nuclear magnetic resonance (NMR) [176] or x-ray
absorption [177]. In NMR, the expectation value of a given spin within the cluster can be
inferred through the frequency shift induced on the transitions of the corresponding nucleus.
The shift in the nuclear resonance frequency for the nucleus of the i-th magnetic ion is
∆ν = γA〈sz,i〉, where A is the contact hyperfine interaction constant at the nuclear site.
The constant of proportionality A depends on the spin density at the position of the nucleus,
and can be extracted from the experiment by considering the polarized ground state M = S
at high magnetic fields [176]. As in the case of ESR, the dependence of the NMR spectra on
the applied electric field qualitatively depends on the orientation of the static magnetic field
B with respect to the molecule. Unlike the case of ESR, however, it also depends on the
in-plane orientation of the electric field, i.e. on the way in which the E breaks the symmetry
of the molecule.

Spin triangles

Let us start by considering a spin s = 1/2 triangle, with a magnetic field applied perpen-
dicular to the molecule plane (B ‖ ẑ). In this case, the distribution of the spin projection
along z is given by the following expression:

〈λασ |si,z|λασ〉 = σ/3 + fα
σ (E) cos[θ + π(5/3− i)], (5.128)

where

fα
σ (E) ≡

4σE [∆SO + α(∆2
SO + E2)1/2]

3(Dα)2
. (5.129)
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Figure 5.8: Energy (ω) of the ESR transitions in a pentagon of s = 1/2 spins as a function
of the electric field applied in the molecule’s plane d|E| = dE = E . The Zeeman splitting,
ω0 = gµBB is set by the magnetic field B ‖ ẑ, orthogonal to the molecule’s plane. The
considered transitions are those between eigenstates (|α〉) belonging to the S = 1/2 multiplet
of the spin Hamiltonian (figure inset). Unlike the case of the spin triangle, these are coupled
to each other by the electric field via eigenstates belonging to other multiplets, and therefore
depends also on the exchange constant J (here J/∆SO = 100). The diameter of the circles
is proportional to |〈α|Sx|α′〉|, and therefore to the transition amplitude.
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Figure 5.9: Energy (ω) of the ESR transitions in a pentagon of s = 1/2 spins as a function
of the applied in-plane electric field E, so that d|E| = dE = E . The Zeeman splitting is
set by an in-plane magnetic field B ‖ x̂, and ω0 = gµBB. The considered transitions are
those between eigenstates (|α〉) belonging to the S = 1/2 multiplet of the spin Hamiltonian
(figure inset). Unlike the case of the spin triangle, these are coupled to each other by the
electric field via eigenstates belonging to other multiplets, and therefore depends also on the
exchange constant J (here J/∆SO = 100). The diameter of the circles is proportional to
|〈α|Sz|α′〉|, and therefore to the transition amplitude.
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Here, the expressions of the eigenstates |λασ〉 and of Dα are given in Subsection 5.4.1. For
E = 0, the three spins are equivalent and 〈λα±1/2|si,z|λα±1/2〉 = ±1/6. If the electric field is
finite and oriented along one of the triangle sides (e.g., E ‖ r12, corresponding to θ = 0),
then expectation values along z of spins 1 and 2 undergo opposite shifts, whereas that of
spin 3 is left unchanged: ∆E〈s1,z〉 = −∆E〈s2,z〉, where ∆E〈si,z〉 ≡ 〈si,z〉E − 〈si,z〉E=0. This
is shown in Fig. 5.10 for the ground state of the spin Hamiltonian, but the above relations
hold for any of the four eigenstates |λασ〉 belonging to the S = 1/2 quadruplet. If the
NMR frequency shifts ∆νi are larger than the corresponding line widths, the single line at
E = 0 splits into three equispaced lines, with intensity ratios 1:1:1. If, instead, the electric
field is applied along a symmetry plane of the triangle (e.g., E ⊥ r12, corresponding to
θ = π/2), spins 1 and 2 remain equivalent and their magnetic moments display the same
electric field dependence, while the shift of the third one is opposite in sign and twice as
large in absolute value: ∆E〈s1,z〉 = ∆E〈s2,z〉 = −∆E〈s3,z〉/3. The intensity ratios of the two
NMR lines are, correspondingly, 1:2. The expectation values for the remaining eigenstates
can be derived by the following equations: ∆E〈λα−1/2|si,z|λα−1/2〉 = −∆E〈λα+1/2|si,z|λα+1/2〉
and 〈λ1σ|si,z|λ1σ〉 = −∆E〈λ−1

σ |si,z|λ−1
σ 〉. Therefore, at finite temperature, the shifts in the

expectation values of the three spins are given by:

∆E〈si,z〉
∆E〈λ+1

−1/2|si,z|λ+1
−1/2〉

=

∑
α α cosh

(
λα
−1/2

kBT

)

∑
α cosh

(
λα
−1/2

kBT

) . (5.130)

If the field is oriented along the molecule plane (B ‖ x̂), the expectation value of the
three spins corresponding to each of the eigenstates are given by the following expressions:

〈µα
σ |si,x|µα

σ〉 = gασ (E) + (1/3) cos(θ − 2iπ/3), (5.131)

where

gασ (E) ≡
2

3

(∆SO + µα
σ)(B + αE)

(Dα)2
. (5.132)

If the magnetic field is parallel to the triangle plane, the in-plane electric field can modify
the total spin expectation value along B. The changes that E induces in the magnetization
distribution within the triangle at zero temperature are less varied than in the previous case
(Fig. 5.10). In fact, the magnitude of the ∆E〈si,z〉 is much smaller, and all the spins undergo
shifts of equal sign and slope. The NMR line, which is slitted into three lines already for
E = 0, is rigidly by the applied electric field.

If the triangle is formed by half-integer spins s > 1/2, an analogous dependence of the
expectation values 〈si,z〉 on the electric field is found. As an illustrative example, we report
in Fig. 5.11 the case of s = 3/2.

Pentagon of s = 1/2 spins

Spin chains consisting of an odd number of half-integer spins present analogous behaviors,
but also meaningful differences with respect to the case of the spin triangle. In particular,
the spin-electric Hamiltonian δH0 does not couple states belonging to the lowest S = 1/2
quadruplet directly (i.e., matrix elements 〈i|δH0|j〉 = 0 for i, j ≤ 4); these couplings are
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Figure 5.10: (Color online) Expectation values of the z-component of s = 1/2 spins in a
triangular molecule as a function of applied electric field. The magnetic field is perpendicular
to the ring plane (B ‖ ẑ); the electric field is parallel and perpendicular to r12 in the upper
and lower panel, respectively. In the electric field along one of the bonds (lower panel), the
spins that lie on that bond have the same out-of-plane projections. The shadings (colors
online) denote the different spins.
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Figure 5.11: (Color online) Expectation values of the z-component of s = 3/2 spins in a
triangular molecule as a function of applied electric field. The magnetic field is perpendicular
to the ring plane (B ‖ ẑ); the electric field is parallel and perpendicular to r12 in the upper
and lower panel, respectively. The shadings (colors online) denote the different spins.
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mediated by states belonging to higher S = 1/2 multiplets, that are higher in energy by
a quantity ∼ J . Therefore, the effect of the electric field tends to be significantly smaller
than in the case of a triangle with equal Dz and E (see Fig. 5.12), and depends also on the
exchange coupling J .

5.4.3 Magnetization, Polarization, and Susceptibilities

The spin-electric coupling shifts the energy eigenvalues of the nanomagnet, thus affecting
thermodynamic quantities, such as magnetization, polarization and susceptibilities. In the
following, we compute these quantities in the case of the s = 1/2 spin triangle as a function
of the applied magnetic and electric fields. Under the realistic assumption that the exchange
splitting J is the largest energy scale in the spin Hamiltonian, and being mainly interested
in the low-temperature limit, we restrict ourselves to the S = 1/2 quadruplet, and use the
effective Hamiltonian Heff in Eq. (5.21).

The eigenenergies of the lowest S = 1/2 sector in the presence of electric and magnetic
fields are

Eα,γ = αγ
√

B2 +∆2
SO + E2 + 2γE2

0 , (5.133)

with B = µB

√
g2‖H

2
‖ + g2⊥H

2
⊥, E0 = [(Bz∆SO)

2 + (BE)2)]1/4, and Bz = µBg‖H‖. Note that

these energies are the generalization of the ones in the previous section, which were valid
for in-plane magnetic field only. The partition function for N identical and non-interacting
molecules is Z = ZN

1 , with Z1 =
∑

α,γ exp (−βEα,γ) being the partition function for one
molecule, and β = 1/(kBT ). The free energy reads

F ≡ −1/β lnZ = −NkBT ln

[
2
∑

γ

cosh (βEγ)

]
, (5.134)

with Eγ ≡ E1/2,γ . From this, we can derive different thermodynamic quantities like the
magnetization Mi = −∂F/∂Hi, the electric polarization Pi = −∂F/∂Ei, the heat capac-
ity C = −∂/∂T (∂ ln (Z)/∂β), and the corresponding susceptibilities: χEiEj

= ∂Pi/∂Ej =
∂2F/∂Ei∂Ej - the electric susceptibility, χHiHj

= ∂Mi/∂Hj = ∂2F/∂Hi∂Hj - the spin sus-
ceptibility, and χEiHj

= ∂Pi/∂Mj = ∂2F/∂Ei∂Hj - the spin-electric susceptibility. For the
electric polarization components Pi we get

Pi =
NdEi

4
∑

γ=±1 cosh (βEγ)

∑

γ=±1

sinh (βEγ)

Eγ

×
(
1 + γ

B2

E2
0

)
(1− δi,z), (5.135)

while for the magnetization components Mi we get

Mi =
NgiµBBi

2
∑

γ=±1 cosh (βEγ)

∑

γ=±1

sinh (βEγ)

Eγ

×
(
1 + γ

∆2
SOδi,z + E2

E2
0

)
, (5.136)
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Figure 5.12: (Color online) Expectation values of the z-component of s = 1/2 spins in a
pentagon as a function of applied electric field. The magnetic field is perpendicular to the
ring plane (B ‖ ẑ); the electric field is parallel (θ = 0) and perpendicular (θ = π/2) to r12

in the upper and lower panel, respectively. The shadings (colors online) denote the different
spins.
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where again i = x, y. Making use of the above expressions, we can obtain the above defined
susceptibilities

χEiEj
=

Pi

Ej

δij − βPiPj +
Nd4EiEj

2
∑

γ=±1 cosh (βEγ)

[ ∑

γ=±1

γ
B4

E6
0

sinh (βEγ)

Eγ

+
βEγ cosh (βEγ)− sinh (βEγ)

2E3
γ

(
1 + γ

B2

E2
0

)2 ]
= χEjEi

(5.137)

χBiBj
=

Mi

Bj

δij − βMiMj +
Ng2i g

2
jBiBj

2
∑

γ=±1 cosh (βEγ)

∑

γ=±1

[
βEγ cosh (βEγ)− sinh (βEγ)

2E3
γ

×
(
1 + γ

∆2
SOδi,z + E2

E2
0

)(
1 + γ

∆2
SOδj,z + E2

E2
0

)

+
(∆2

SOδi,z + E2)(∆2
SOδj,z + E2)

E6
0

sinh (βEγ)

Eγ

]
= χBjBi

(5.138)

χBiEj
= −βMiPj +

Ng2i d
2BiEj

2
∑

γ=±1 cosh (βEγ)

∑

γ=±1

[
βEγ cosh (βEγ)− sinh (βEγ)

2E3
γ

×
(
1 + γ

∆2
SOδi,z + E2

E2
0

)(
1 + γ

B2

E2
0

)

+ γ
(∆2

SOδi,z + E2)(∆2
SOδj,z + E2)

E6
0

sinh (βEγ)

Eγ

]
(1− δj,z) = χEjBi

. (5.139)

The polarization P, magnetization M, and susceptibilities χ, Eq. (5.135) – Eq. (5.139),
all depend on the spin-electric coupling constant d. In the following, we analyze the details
of this dependence and identify the conditions suitable for extracting the value of d from the
measurable quantities.

Polarization and magnetization

The in-plane polarization of the molecule as a function of the magnetic field is illustrated
in Fig. 5.13 and Fig. 5.14. The polarization is a growing function of the magnetic field
strength, and it gets reduced by the normal component of the field.

The low-temperature, kBT ≪ ∆SO, thermodynamic properties of a molecule with spin-
electric coupling show a simple dependence on the strength of external electric and magnetic
fields in the special cases of in-plane and out-of plane magnetic field. We focus only on
effects in leading orders in electric field under the realistic assumption that the electric
dipole splitting is small compared to the SO splitting, i.e. E ≪ ∆SO. Also, we analyze
two limiting cases: (i) kBT ≪ E , i.e. low-temperature regime, and (ii) kBT ≫ E , i.e.
high temperature regime. However, we assume all temperatures (in both regimes) to satisfy
kBT ≪ ∆SO so that the spin-orbit split levels are well resolved. In the first case (i), we
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Figure 5.13: Electric polarization Px (x component) in Eq. (5.135) as a function of the
magnetic field in x direction. The three lines correspond to various values of an additional
external electric field in the z direction. The plot is for the temperature kBT = 0.001∆SO,
and the electric field dEx = 0.1∆SO.
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Figure 5.14: Electric polarization Px (x component) in Eq. (5.135) as a function of the
magnetic field in z direction. The three lines correspond to various values of the external
magnetic field in the x direction. The plot is for the temperature kBT = 0.001∆SO, and the
electric field dEx = 0.1∆SO.

obtain for the polarization

Pi ≃





ndEiB
4E∆B

for E ≪ B

nd∆2
SOEi

4∆3
B

for E ≫ B ,
(5.140)

while for the second situation (ii) we obtain

Pi ≃ nd∆2
SOEi

4∆3
B

(
1 +

B2

∆2
SO

β∆B

)
, (5.141)

with ∆B =
√

B2 +∆2
SO and n = N/V the density of molecules in the crystal. We see

that, for low temperatures, the electric polarization Pi ranges from being independent of the
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Figure 5.15: In-plane magnetization Mx in x-direction in Eq. (5.136) as a function of the
electric field Ex in x-direction. The three lines correspond to a fixed value of an additional
magnetic field in the z-direction. The assumed temperature is kBT = 0.001∆SO, while in
the inset it is at higher temperature kBT = 0.1∆SO.

magnitude of the electric field (E ≪ B), to a linear dependence on the applied electric field
E for large fields (E ≫ B). Also, the polarization is strongly dependent on the magnetic
field (linear in B) for low E-fields, thus implying strong magneto-electric response.

We now switch to the other special case, namely when the external magnetic field is
applied perpendicularly to the spin triangles. The electric polarization now reads

Pi =
ndEi
4∆E

tanh (β∆E), (5.142)

with ∆E =
√

∆2
SO + E2. The polarization Pi does not depend on the magnetic field B, and

there are no spin-electric effects present for this particular case.
Our results suggest that the spin-electric coupling can be detected by measuring the

polarization of the crystal of triangular single molecule antiferromagnets that lie in parallel
planes in the in-plane electric and magnetic fields.

The out-of plane component Mz of the molecule’s magnetization is rather insensitive to
the electric fields, since any effect of the applied in-plane electric field has to compete with the
spin-orbit coupling induced zero-field splitting ∆SO. Since we expect to find weak coupling
to electric field and small coupling constant d, it would require very strong electric field to
achieve the regime d|E| ∼ ∆SO. The in-plane components of magnetization Mx, My, on the
other hand show clear dependence on electric fields, Fig. 5.15. At low magnetic fields the
in-plane component of polarization appears and grows with the strength of in-plane electric
fields. However, the electric field dependence becomes less pronounced when an additional
magnetic field is applied normal to the triangle’s plane.

In the dependence of the magnetization on electric fields, and for the case of an in-
plane magnetic field, we find the same two main regimes as in the study of the polarization:
E ≫ kBT (i) and E ≪ kBT (ii). In the first case (i) we obtain

Mi ≃
ngiµBBi

4∆B

(
1 +

E∆2
SO

B∆2
B

)
, (5.143)
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Figure 5.16: Electric susceptibility (xx component), Eq. (5.137), as a function of the electric
field in x direction. The three lines correspond to various values of the external magnetic
field in the x direction. The plot is for the temperature kBT = 0.001∆SO. In the inset, the
same quantity is plotted at a higher temperature, kBT = 0.1∆SO.

while for the second case (ii) we get

Mi =
ng⊥µBBi

4∆B

[
1− 3E2∆2

SO

2∆4
B

(
1− β∆B

3

)]
. (5.144)

The magnetization shows a strong dependence on the electric field E, especially for E ≫ B
where this is linear in E-field. For low electric fields, however, the magnetization shows only
a weak dependence on the electric field, both at low and high temperatures.

For the magnetization (along z) in the presence of a perpendicular (also along z) magnetic
field we obtain

Mz =
ngzµB

4
tanh (βB), (5.145)

which is manifestly independent of the spin-electric coupling constant d.

Susceptibilities

The effects of spin-electric coupling on the polarization of a molecule show up in the electric
susceptibility and the spin-electric susceptibility. In Fig. 5.16 and Fig. 5.17, we plot the
xx and xy component of the electric susceptibility tensor as a function of electric field for
various strengths and orientations of an additional magnetic field. Both susceptibilities show
a high peak in the region of weak electric fields that is suppressed by in-plane magnetic fields.
The peaks are pronounced at low temperatures, and vanish as the temperature exceeds the
splitting of the two lowest-energy levels, kBT ≫ d|E|‖.

In the case of in-plane magnetic field, and weak coupling to the electric field d|E| ≪ ∆SO,
we can calculate the electric χEiEj

and spin-electric χEiHj
susceptibilities in the two limiting

cases (i) and (ii) defined above, with i = x, y. For the electric susceptibility we obtain:

χEiEj
≃





nd2B(E2δij − EiEj)
4E3∆B

for E ≪ B

nd2∆2
SOδij

4∆3
B

for E ≫ B
(5.146)
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Figure 5.17: Electric susceptibility (xy component), Eq. (5.137), as a function of the electric
field in x direction. The three lines correspond to various values of the external magnetic
field in the x direction. The plot is for the temperature kBT = 0.001∆SO. In the inset the
same quantity is plotted at a higher temperature kBT = 0.1∆SO.

in the first case (i), and

χEiEj
≃ nd∆2

SOδij
4∆3

B

(
1 +

B2

∆2
SO

β∆B

)
. (5.147)

in the second case (ii). We see that for low E-fields, the electric susceptibility χEiEj
depends

strongly on the applied electric field, and even vanishes if the field is applied, say, along x
or y directions. For large E-fields instead, the electric susceptibility becomes independent
of the electric field itself and, for low magnetic fields (i.e., for B ≪ ∆SO) this reduces to a
constant value χEiEj

= δijnd
2/4. At finite (large) temperatures the electric susceptibility is

still independent of the electric field, but it is enhanced by thermal effects ∼ 1/T .
For the electric susceptibilities χEiEj

in perpendicular magnetic field, we obtain

χEiEj
=

nd2

4∆E

(
δij −

EiEj
∆E

)
, (5.148)

where we assumed ∆SO ≫ kBT , as in the previous Section. As expected, there is no
dependence of χEiEj

on the B-field, and for vanishing electric field the electric susceptibility
reduces to a constant χEiEj

= nd2/4∆SO.
The quantity of most interest in the present spin system is the spin-electric susceptibility

χEiBj
, i.e. the magnetic response (electric response) in electric fields (magnetic fields).

The nonzero spin-electric susceptibility allows for the electric control of magnetization and
magnetic control of polarization in the crystals of triangular MNs, even in the case when
the coupling between the molecules is negligible. In addition, χEiBj

is nonzero only in the
presence of spin-electric coupling, i.e. when d 6= 0.

The spin-electric susceptibility shows a characteristic peak in weak electric fields which
vanishes in an external magnetic field, see Figs. 5.18 and 5.19. The peak in the diagonal
xx-component, χExEx , moves towards the higher electric fields and broadens as the magnetic
field Bx increases. The peak in the off-diagonal component χExBz , on the other hand, shifts
towards the lower electric fields, and narrows as the in-plane magnetic field increases. Both
peaks disappear at high temperatures, kBT ≫ ∆SO.
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Figure 5.18: Linear magnetoelectric tensor (xx component) in Eq. (5.139) as a function of
the electric field in x direction. The three lines correspond to various values of the external
magnetic field in the x direction. The plot is for the temperature kBT = 0.001∆SO.
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Figure 5.19: Linear magnetoelectric tensor (xz component) in Eq. (5.139) as a function of
the electric field in x direction. The three lines correspond to various values of the external
electric field in the x direction. The plot is for the temperature kBT = 0.001∆SO.

For in-plane magnetic fields and weak spin-electric coupling the spin-electric susceptibility
χEiBj

is

χEiBj
≃ ndgjµBEiBj∆

2
SO

4EB∆3
B

(5.149)

for the low temperature case (i), while for the second case (ii) we obtain

χEiBj
≃ −3n∆2

SOdgjµBEiBj

4∆5
B

(
1− β∆B

3

)
. (5.150)

By inspecting the above expression, we can infer that for low temperatures and low E-fields
the spin-electric susceptibility shows no dependence on the absolute value of the electric
field E and only a weak dependence on the applied magnetic field B. Moreover, when both
fields are applied along one special direction, say, along x, and assuming also B ≪ ∆SO,
the spin-electric susceptibility becomes χExBx = ndgiµB/4∆SO, i.e. it reaches a constant
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Figure 5.20: Linear magnetoelectric tensor (xx component) in Eq. (5.139) as a function of
the magnetic field in x direction. The three lines correspond to various values of the external
electric field in the x direction. The plot is for the temperature kBT = 0.001∆SO.
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Figure 5.21: Magnetic susceptibility (zz component) in Eq. (5.138) as a function of the
magnetic field in x direction. The three lines correspond to various values of the external
electric field in the x direction. The plot is for the temperature kBT = 0.001∆SO. The inset
represents the same quantity at a higher temperature kBT = 0.1∆SO.

value. The finite temperature expression shows that the spin-electric response is reduced, as
opposed to the electric response where temperature increases the response. Thus, for strong
spin-electric response one should probe the spin system at low temperatures (kBT ≪ ∆SO).

The diagonal out-of-plane component of the magnetic susceptibility, χBz ,Bz , in the pres-
ence of an external magnetic field in the x direction decays strongly in the applied electric
field along the x direction, Fig. 5.21. In electric fields, the χBx,Bx component shows a peak
that is reduced by the application of the magnetic field in x direction, Fig. 5.22.

We can derive the magnetic susceptibilities in the two regimes. In the first case (i) we
obtain (assuming now only linear effects in E-field):

χBiBj
=

ng2⊥µ
2
B

2∆B

[
δij −

BiBj

∆2
B

+
E∆2

SO

B∆2
B

(
δij −

(3B2 +∆2
B)BiBj

B2∆2
B

)]
, (5.151)
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Figure 5.22: Magnetic susceptibility (xx component), Eq. (5.138) as a function of the electric
field in x direction. The three lines correspond to various values of the additional magnetic
field in the z direction. The plot is for the temperature kBT = 0.001∆SO.

with i, j = x, y, while

χBzBz =
ng2zµ

2
B

2∆B

∆2
SO

BE , (5.152)

for Bz∆SO ≪ BE . At low temperatures the in-plane magnetic susceptibility shows a linear
dependence on the applied electric field E, thus allowing for a simple estimate of the electric
dipole parameter d from magnetic measurements. Note that for strong electric fields (E ≫
B), the magnetic susceptibility can vanish, since the magnetization does not depend on the
magnetic field anymore. However, such a regime would not help to identify the electric
dipole coupling strength d from susceptibility measurements directly. The perpendicular
magnetic susceptibility shows a strong electric field dependence χBzBz ∼ E−1 and can be
used as an efficient probe for extracting the electric dipole parameter d. In the second case
(ii) we obtain

χBiBj
=

ng2⊥µ
2
B

2∆B

[
δij −

BiBj

∆2
B

− E2∆2
SO

∆4
B

×
(
3

2

(
δij +

BiBj

∆2
B

)
− β∆B

(
δij +

4BiBj

∆2
B

))]
, (5.153)

when i, j = x, y, and

χBzBz =
ng2zµ

2
BB2

2∆3
B

(
1 + β∆B

∆2
SO

B2

)
. (5.154)

The magnetic response increases with temperature. Also, in this limit the dependence of
the magnetic susceptibility on the applied electric field is rather weak (χBiBj

(E) ∼ E2), thus
this regime is also not suitable for observing spin-electric effects.

For the magnetic susceptibility in the perpendicular magnetic field we find

χBzBz =
βng2zµ

2
B

4
sech(βB), (5.155)
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while for the in-plane magnetic susceptibility χBx(y)Bx(y)
we obtain

χBx(y)Bx(y)
=

ng2zµ
2
B∆SO

2(B2 −∆2
SO)

×
[ B
∆SO

(
1− E2

B2

)
tanh (βB)− 1

]
, (5.156)

in the limit B, kBT ≪ ∆SO. We mention that for B perpendicular to the molecular plane
there is no electric field E (magnetic field B) dependence of the magnetization Mi (electric
polarization Pi). Thus, in order to see spin-electric effects one needs to apply magnetic fields
which have non-zero in-plane components.

5.4.4 Heat capacity

Next we investigate the dependence of the heat capacity on the applied electric and magnetic
fields in different regimes. The heat capacity is defined as C = −∂/∂T (∂ ln (Z)/∂β), so that
we obtain

C =
NkBβ

2

4

∑

p=±1

(E1 + pE−1)
2

cosh2

[
β(E1 + pE−1)

2

] . (5.157)

We consider the cases of perpendicular B-field and in-plane B-field in the limit ∆SO ≫ kBT .
In the first case, i.e. for B ‖ z we obtain

C ≃ NkBβ
2





∆2
Ee

−2β∆SO + B2e−2βB, B ≫ kBT

∆2
Ee

−2β∆SO +
B2

4
, B ≪ kBT .

(5.158)

The heat capacity C shows a quadratic dependence on the applied electric field for the
entire range of E-field strengths. On the other hand, the magnetic field dependence of C is
non-monotonic, and shows a maximum for some finite B-field strength Bmax ≃ kBT . In the
second situation, i.e. for B ⊥ z we get

C ≃ NkBβ
2





B2E2

∆2
B
e
−2βBE

∆B +∆2
Be

−2β∆B , E ≫ kBT

B2E2

4∆2
B
, E ≪ kBT .

(5.159)

As in the previous case, the dependence of the heat-capacity C is linear in E-field for low
E-fields. However, for large E-fields the dependence is non-monotonic and thus shows a
maximum for some finite electric field strength Emax ≃ kBT . Note that in this case also the
dependence on the magnetic field is non-monotonic, and thus we obtain a second maximum
for Bmax ≃ kBT . We can conclude from the above expressions that the strongest dependence
of the heat capacity on the electric field is when the magnetic field is applied in-plane, and
then it is mostly quadratic.
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Figure 5.23: Heat capacity, Eq. (5.157), as a function of temperature in various electric
fields.
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Figure 5.24: Heat capacity, Eq. (5.157), at low temperature as a function of external electric
field.

For the derivation of all the thermodynamic quantities presented in the previous sections,
we have restricted ourselves to the contributions arising from only the lowest four states, even
though the spin system spans eight states in total. This description is valid if the splitting
between the energies of S = 1/2 and S = 3/2 states is much larger than the temperature
kBT . This splitting varies strongly with the applied magnetic field, for B = 3J/4 one of the
S = 3/2 states (M = −3/2) crossing the M = 1/2 of the S = 1/2 states and, even more, for
B > 3J/2 the M = −3/2 becomes the spin system ground states. Thus, for large magnetic
fields our effective description in terms of only the S = 1/2 states breaks down and one have
to reconsider the previous quantities in this limit.

5.5 Conclusions

Electric fields can be applied at very short spatial and temporal scales which makes them
preferable for quantum information processing applications over the more standard magnetic
fields . Nanoscale magnets, while displaying rich quantum dynamics, have not yet been
shown to respond to electric fields in experiments. We have investigated theoretically the
possibility of spin-electric coupling in nanoscale magnets using symmetry analysis, and found
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that the spin-electric coupling is possible in antiferromagnetic ground-state manifolds of spin-
1/2 and spin-3/2 triangles, as well as in spin-1/2 pentagon. The spin-electric coupling in
the triangle can exist even in the absence of spin-orbit coupling, while the coupling in the
pentagon requires the spin-orbit interaction in the molecule. We have characterized the form
of the spin-electric coupling in all of these molecules and presented the selection rules for
the transitions between the spin states induced by electric fields.

While the symmetry can predict the presence or absence of the spin-electric coupling, it
can not predict the size of the corresponding coupling constant. In order to find a molecule
suitable for electric manipulation, it is necessary to have an estimate of the spin-electric
coupling strength. For this purpose, we have described the nanoscale magnets in terms of
the Hubbard model, and related the coupling constants of the symmetry-based models to
the hopping and on-site energy parameters of the Hubbard model. We have found that the
modification of the Hubbard model parameters due to the electric field produces a spin-
electric coupling of the same form as predicted by the symmetry analysis. However, within
the Hubbard model, the coupling constants have a clear and intuitive meaning in terms
of the hopping and on-site energies of the localized electrons. We have also studied the
superexchange interaction of the spins on the magnetic centers through the bridge. If we
assume that the interaction of the localized spins is a property of the bridge alone, the spin-
electric coupling can be calculated by ab-initio analysis of the bridge alone, and not of the
entire molecule.

Finally, we analyzed the role of spin-electric coupling in standard experimental setups
typically used for the characterization of nanoscale magnets. We find that the spin-electric
coupling can be detected in the ESR and NMR spectra that probe the local spins. Also, ther-
modynamic quantities, like the polarization, magnetization, linear magnetoelectric effect,
and the specific heat show signatures of spin-electric coupling in the triangular molecules.
Thus, our results set a path toward finding suitable molecules that exhibit spin-electric
effects and how they can be identified experimentally.

In this work, we have focused on the spin rings with an odd number of magnetic centers
(odd spin rings), whose low-energy spectrum is dominated by frustration effects. The odd
spin rings, due to frustration, possess a four-fold degenerate ground state multiplet, which
can be split by electric fields. As opposed to the odd spin rings, the ground states of even-spin
rings is usually a non-degenerate S = 0 state, separated from the higher energy states by a
gap of the order of exchange coupling J . Coupling of the electric field to these states can thus
proceed only via excited states, and the coupling strength is reduced by d|E|/J . Similarly, in
lower-symmetry odd-spin rings, the ground state multiplet consists of an S = 1/2 Kramers
doublet, which can not be split by electric fields, i.e. there is no spin-electric effect in zero
magnetic field. Therefore, the odd spin rings seem to be the most suitable candidates for
observing the spin-electric coupling and using it to control the spins.





Appendix A

Jx̃,ỹ for arbitrary B-fields

In this Appendix we give explicit formulas for the couplings Jx̃,ỹ for an arbitrary magnetic
field orientation B = B(cosΦ sin θ, sinΦ sin θ, cos θ) and for both Rashba and Dresselhaus
spin-orbit couplings present. These are obtained by diagonalizing the tensor M , which leads
to

Jx̃,ỹ =
1

2

[
(C1 + C2) cos

2 θ + (C1 cos
2 φ+ C2 sin

2 φ− C3 sin 2φ) sin
2 θ

±
√(

(C1 + C2) cos2 θ + sin2 θ(C1 cos2 φ+ C2 sin
2 φ− C3 sin 2φ)

)2

−4(C1C2 − C2
3) cos

2 θ
]
, (A.1)

with φ = Φ − γ (the angle γ is defined after Eq. (2.9)). The functions Ci (i = 1, 2, 3)
can be expressed in terms of Ca1b2 = 〈0|[L−1

d a1, b2]|0〉, a, b = x, y, i.e.

C1 =
1

λ2−

(
sin2 γ Cx1x2 + cos2 γ Cy1y2 + sin 2γ Cx1y2

)
(A.2)

C2 =
1

λ2+

(
cos2 γ Cx1x2 + sin2 γ Cy1y2 − sin 2γ Cx1y2

)
(A.3)

C3 =
1

2λ+λ−

(
sin 2γ (Cx1x2 − Cy1y2)− cos 2γ Cx1y2

)
. (A.4)

These functions can be identified very easily from our formulas derived in the paper. For
example, for the case considered in Eq. (2.28) (weak Coulomb coupling regime) we get

Cx1x2 =
∆Ex

C

m∗2λ2ω4
0

, Cy1y2 =
∆Ey

C

m∗2λ2ω4
0

, Cx1y2 = 0. (A.5)
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Appendix B

Displacement and stress tensor

In this Appendix we give explicit formulas for the displacement u(r) and stress t(r) vectors,
respectively. We can write the displacement vector u(r) = (ur, uφ, uz) from Eq. (3.40) in
components

uk(r, t) =
∑

j

Ukj(r)χje
i(nφ+qz−ωt), k = r, φ, z, (B.1)

with χj = (χ0, χ1, χ2) and the matrix U(r) having the form

U(r) =




∂
∂r
f0n(r) in

r
f1n(r) iq ∂

∂r
f2n(r)

in
r
f0n(r) − ∂

∂r
f1n(r) −nq

r
f2n(r)

iqf0n(r) 0 k21f2n(r)



. (B.2)

The other relevant quantity for the elastic problem is the stress tensor T . [118] In order to
obtain T , we first have to find the strain tensor S as a function of displacement u(r). The
independent components of the strain tensor coordinates have expressions (in cylindrical
coordinates) [118] of the form

Srr =
∂ur
∂r

Sφφ =
1

r

(
∂uφ
∂φ

+ ur

)

Szz =
∂uz
∂z

Srφ =
1

2r

(
∂ur
∂φ

+ r2
∂

∂r

(ur
r

))

Szφ =
1

r

∂uz
∂φ

+
∂uφ
∂z

Srz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
. (B.3)

The stress tensor, T , which quantifies the surface forces, is related to the strain tensor S by
the elastic modulus constants. [118] Since we are interested in the boundary conditions at
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the surface of the cylinder, the relevant part of the stress tensor is given by the stress vector
t = Ter, with er being the unit vector along the radius. We write here only these relevant
parts of the stress tensor T as a function of the strain tensor components

Trr = ρ(c2l − 2c2t )(Srr + Sφφ + Szz) + 2ρc2tSrr

Trφ = 2ρc2tSrφ

Trz = 2ρc2tSrz, (B.4)

and t = (Trr, Trφ, Trz). We write now the relevant stress vector t, which is given explicitly
by the following relation




Trr

Trφ

Trz




= ρ




c2l
∂
∂r

+ (c2l − 2c2t )
1
r

(c2l − 2c2t )
1
r

∂
∂φ

(c2l − 2c2t )
∂
∂z

c2t
1
r

∂
∂φ

c2t (
∂
∂r

− 1
r
) 0

c2t
∂
∂z

0 c2t
∂
∂r







ur

uφ

uz



. (B.5)

We can bring the stress matrix to the same form as we did for the displacement, namely
tk(r) =

∑
j Tkj(r)χje

i(nφ+qz−ωt), with the matrix T having the explicit form

T (r) =




(
2c2t

∂2

∂r2
− (c2l − 2c2t )

(
ω
cl

)2)
f0n 2inc2t

∂
∂r

(
f1n
r

)
2iqc2t

∂2

∂r2
f2n

2inc2t
∂
∂r

(
f0n
r

)
−c2t

(
2 ∂2

∂r2
+ k21

)
f1n −2qnc2t

∂
∂r

(
f2n
r

)

2ic2t q
∂
∂r
f0n −c2t nqr f1n c2t (k

2
1 − q2) ∂

∂r
f2n.



.

(B.6)



Appendix C

Spin states in terms of the c
†
Γ

operators

In this appendix we show the expressions for the three-electron symmetry adapted states
|ψi,σ

Γ 〉 in Eqs. (5.35) and (5.38) in terms of the symmetry adapted creation operators c†Γ,σ.
Making use of Eq. (5.47) we obtain

|ψ1σ
A

′
2
〉 =

iǫ√
3

(
c†
A

′
1σ̄
c†
E

′
+σ
c†
E

′
−σ

+ c†
E

′
+σ̄
c†
E

′
−σ
c†
A

′
1σ

− c†
E

′
−σ̄
c†
E

′
+σ
c†
A

′
1σ

)
|0〉 (C.1)
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E

′
+
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i√
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c†
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′
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c†
E
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E

′
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c†
E

′
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+ ǭc†
E
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c†
E

′
−σ
c†
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′
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)
|0〉 (C.2)
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A

′
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E
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E
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E
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|0〉 (C.3)
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A
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where σ stands above for sign(σ).



Appendix D

HSO, H0

e−d and H1

e−d matrix elements

For the SOI matrix elements we obtain

〈ψ2σ
A

′
1
|HSO|ψ1σ

A
′
2
〉 =

2iλSO√
2
σ, (D.1)

〈ψ2σ
E

′1
±

|HSO|ψ1σ
E

′
±

〉 = ± iǭλSO√
2
σ, (D.2)

〈ψ2σ
E

′2
±

|HSO|ψ1σ
E

′
±

〉 = ±σ
√
3ǫλSO√
2

σ, (D.3)

〈ψ2σ
A

′
1
|HSO|ψ2σ

A
′
2
〉 = −σ2λSO (D.4)

〈ψ2σ
E

′1
±

|HSO|ψ2σ
E

′1
±

〉 = ±σ
√
3

2
λSO, (D.5)

〈ψ2σ
E

′1
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|HSO|ψ2σ
E

′2
±

〉 = ± iλSO
2

σ, (D.6)

〈ψ2σ
E
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E

′2
±

〉 = ∓σ
√
3

2
λSO, (D.7)
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E−D MATRIX ELEMENTS

while the remaining terms are equal to zero. For the electric dipole matrix elements we
obtain

〈ψ2σ
E

′1
−

|H0
e−d|ψ2σ

E
′1
+
〉 =

a

2

(
(ǭ− 1)Ex + ǫ

√
3Ey

)
(D.8)
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3
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2
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