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SUMMARY 
 

Within the framework of this thesis the genetic diversity of three bacterial pathogens, 

Mycobacterium ulcerans, Neisseria meningitidis and Streptococcus agalactiae was 

investigated. The aim of these analyses was to contribute to the understanding of 

how genetic properties of the pathogens contribute to immune evasion. Implications 

of the findings for vaccine design are discussed.  

 

Mycobacterium ulcerans  
Buruli ulcer is a disease of skin and soft tissue caused by the bacterial pathogen 

Mycobacterium ulcerans. M. ulcerans has recently diverged from an M. marinum 

progenitor through the acquisition of a virulence plasmid, lateral gene transfer and 

reductive evolution. Isolates of M. ulcerans deriving from different regions of the 

globe can be associated with two distinct lineages, either the ancestral or the 

classical lineage. Here, we show that the two copies of the esxB-esxA gene cluster 

present in the genome of M. marinum are both deleted from the genome of M. 

ulcerans strains belonging to the highly virulent classical lineage. Members of the 

ancestral M. ulcerans lineage instead retained copies of the esxB-esxA gene cluster. 

Additionally, the hspX gene was present in the strains of the ancestral lineage and 

absent in the classical lineage. Our results indicate that M. ulcerans is adapting to an 

environment that is screened by immune recognition mechanisms by loss of highly 

immunogenic proteins.  

 
Neisseria meningitidis 
Certain hypervirulent lineages of Neisseria meningitidis, a commensal of the human 

nasopharynx, are a major cause of meningitis and septicaemia. Here we have 

investigated subcapsular antigens of serogroup A Neisseria meningitidis strains 

isolated in the course of longitudinal colonization and disease surveys in the African 

meningitis belt. In the course of clonal waves of colonization and disease we 

observed no sequence diversification of the outer membrane proteins PorA, PorB  
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and FetA. In contrast, high variability in the expression of Opa proteins was 

observed due to changing numbers of pentamer repeats within the open reading 

frames of the four opa genes opaA, opaB, opaD and opaJ. Furthermore, we found 

some exchange of alleles of the opa genes OpaA and OpaJ by horizontal gene 

transfer. Herd immunity may thus be a stronger driving force for diversification of 

Opa proteins than for other outer membrane proteins.   

 

Streptococcus agalactiae 

While Streptococcus agalactiae, the group B streptococcus (GBS), is traditionally 

considered a neonatal pathogen, it is also emerging as a significant cause of 

morbidity in adults. Here we have analysed the population structure of GBS isolates, 

collected from carriers and clinical cases in Kenya. Multi-locus sequence typing 

differentiated the 173 strains analyzed into 22 sequence types (STs), including 5 

novel STs. A close correlation between STs and distinct capsular serotypes was 

found with the disease isolates being more diversified with respect to both STs and 

capsular serotypes than carrier isolates. The STs and capsular serotypes most 

prevalent in Kenya were also commonly found in many other regions of the world.  

 

In this investigation, the highest genetic variablility was found in our GBS collection. 

In the N. meningitidis isolates collected during clonal waves of meningococcal 

colonization and disease, there was a striking lack of diversification, with the 

exception of the opa genes. The most conserved bacterial pathogen in this study 

was M. ulcerans, where no genetic variability could be found within a geographic 

region.  

 

No vaccines exist to date against M. ulcerans or S. agalactiae, and an affordable 

universal vaccine against N. meningitidis is urgently needed. The technological 

advances in whole genome sequencing are likely to facilitate efforts towards finding 

suitable candidate antigens for subunit vaccines. 
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General Introduction  
 
Bacteria are unicellular prokaryotes usually surrounded by a complex cell wall and 

often a thick capsule. The bacterial chromosome consists of a double-stranded DNA 

molecule which is not contained within a nuclear membrane.  

 
Gram-staining and the Ziehl-Neelsen stain allow the differentiation of bacterial 

species into broad groups, and bacteria are either Gram-positive or Gram-negative, 

based on the properties of their cell walls. The main component of the cell wall is the 

peptidoglycan murein, a polymer of N-acetylglucosamine and N-acetylmuramic acid 

as well as amino acids. In gram positive bacteria, murein forms a relatively thick 

outer layer (20-80 nm), whereas the murein layer in Gram-negative bacteria is 

relatively thin (5-10 nm) and covered by an outer membrane. 

 

The cell wall of Mycobacteria consists of a hydrophobic, waxy outer layer containing 

a variety of mycolic acids and a peptidoglycan layer linked by the polysaccharide 

arabinogalactan. Lacking an outer cell membrane, Mycobacteria are considered 

Gram-positive. They do not readily take up the Gram-stain however, but can be 

identified by the Ziehl-Neelsen stain and are known as acid-fast bacteria.  

 

Species identification of bacteria can be performed either by non-cultural techniques 

such as microscopy and the detection of bacterial antigens in specimens, or by 

cultivation. The following characteristics are traditionally looked at in cultivated 

bacteria: Gram reaction, cell morphology and arrangement, growth requirements, 

the ability to produce certain enzymes as well as distinct metabolic properties. 

 

Gene Sequencing of 16S rRNA has been established as an identification method of 

bacterial species, and matrix-assisted laser-desorption/ionization time-of-flight 

(MALDI-TOF) mass spectroscopy is likely to be a front-line identification method of 

the future. 
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At the start of the 20th century, a vast number of people still died from infectious 

diseases that today are easily curable with the help of antibiotics. However, the 

genetic variability of bacteria by either mutation or recombination and the 

widespread use of antibiotics have been leading to the evolution of resistant 

bacterial strains. The bacterial genetic variability may also impair the efficacy and 

development of vaccines and can allow bacteria to escape herd immunity. 

 

Mutations may either be induced by chemicals and other agents or spontaneously 

occur as a result of faulty DNA replication. Point mutations are changes in single 

nucleotides. When located in protein-encoding sequences they are resulting either in 

silent mutations, missense mutations or nonsense mutations by changing the triplet 

code. While silent mutations do not alter the amino acid sequence of a protein 

encoded by its gene, missense mutations confer an amino acid replacement and 

nonsense mutations form a premature stop codon in a gene. Other mutational 

changes in the DNA may involve insertion, deletion, inversion or replacement of a 

number of bases. 

 

Transposable elements are sequences of DNA that can change the position within 

the genome of a single cell and may promote a variety of genetic rearrangements. 

Insertion sequences are the smallest transposable elements, only encoding 

functions that are required for the relocation within the bacterial DNA. Larger 

transposable elements may contain other genes, such as virulence genes and 

genes encoding antibiotic resistance. Bacterial recombination can take place 

through three different mechanisms: transformation, transduction and conjugation. 

Naked DNA can be taken up by certain bacterial species through transformation. 

New genetic material can also be taken up into a bacterium through transduction by 

a bacteriophage, making the DNA less vulnerable to deterioration by environmental 

agents. Bacteriophages are host-specific however, and can usually only move DNA 

between bacteria of the same or related species. Conjugation is a mechanism of 

horizontal gene transfer which involves physical contact between donor and 

recipient cell, mediating the transfer of DNA with high efficency. 
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Mycobacterium ulcerans  
 

Buruli ulcer is a disease of skin and soft tissue with the potential to leave sufferers 

scarred and disabled. M. ulcerans, the etiologic agent of Buruli ulcer was discovered 

by a team of Australian researchers in 1948 [1]. The disease typically occurs in poor 

rural communities of West and Central Africa. M. ulcerans infection is also found in 

several countries outside Africa, including rural areas of Papua New Guinea, 

Malaysia, French Guiana, Mexico, as well as Australia [2]. Buruli ulcer is considered 

to be the third most common mycobacterial disease (http://www.who.int/buruli/ 

information/antibiotics/en/). Partly attributable to the lack of genetic diversity, the 

exact mode of transmission has remained elusive [3]. M. ulcerans has been 

indicated to have recently evolved via lateral gene transfer and reductive evolution 

from the environmental species Mycobacterium marinum, an ubiquitous pathogen of 

fish and amphibia [4], to become a niche adapted specialist [5].  
 

 
Schematic view of an alignment of M. marinum M and M. ulcerans Agy99 whole genome sequences 
displayed by the Artemis comparison tool [6]. Regions of conformity are shown in parallel red plains. 
Inverted DNA segments are depicted in blue.  
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In aquatic hosts M. marinum causes a disseminated granulomatous disease, and in 

humans M. marinum provokes relatively minor granulomatous skin lesions, usually 

on the cooler extremities of the body [7]. Comparison between the 5.8 Mb genome 

of the M. ulcerans Ghanaian strain Agy99 and the 6.6 Mb genome of the M. 

marinum strain “M” showed that M. ulcerans has recently diverged from an M. 

marinum progenitor [8]. 

 

M. ulcerans has evolved through lateral gene transfer and reductive evolution, the 

acquisition of a virulence plasmid of the size of 174 kb, required for the production of 

mycolactone, pseudogene formation, gene rearrangements and gene deletion 

[5],[9]. Many of these changes have been mediated by some of the 213 copies of   

IS 2404 and 91 copies of IS 2606 [5], neither of which are present in M. marinum [8]. 

Standard molecular typing methods such as multi-locus sequence typing (MLST) 

and typing of variable numbers of tandem repeats (VNTR) have shown an apparent 

lack of genetic diversity of M. ulcerans within geographic regions [10].  
 

 
Image was taken from Käser et al. BMC Evol Biol. 2007 Sep 27;7:177. Evolutionary scenario for 
M.ulcerans, basically distinguishing two major lineages. Both the M. marinum progenitor and the M. 
ulcerans MRCA (most recent common ancestor) are hypothetical strains.  
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However, comparative genomic hybridization studies allowed the differentiation of  

M. ulcerans isolates deriving from different regions of the globe. Two distinct          

M. ulcerans lineages could be defined, the ancestral lineage of strains from Asia, 

South America and Mexico, which are genetically closer to M. marinum, and the 

classical lineage of strains from Africa, Australia and South East Asia [11], [12]. 

Although strains of M. ulcerans from different continents could be well differentiated, 

the typing of strains within a geographic region has remained a challenge. However, 

VNTR typing has provided some resolution among clinical isolates of M. ulcerans 

from Africa, confirming the existence of genotypic diversity among African strains 

[13].  

 

To systemically and comprehensively study the genetic diversity and evolution of M. 

ulcerans strains, two Ghanaian patient isolates from different residential districts and 

of different VNTR types [13] were selected and their genomes were sequenced 

using 454 and Solexa technologies, respectively. A Japanese patient isolate was 

also included as a representative of the ancestral lineage [14]. The genomes were 

compared with the previously sequenced genome of strain Agy99 that had also been 

isolated in Ghana [5]. Comparison with the Agy99 reference genome revealed 

26,564 SNPs in the Japanese strain. Only 173 SNPs were found when comparing 

Agy99 with the two other Ghanaian strains. The results of this study indicated that 

the divergence of the Ghanaian clade of M. ulcerans from the Japanese strain may 

have taken place 394 to 529 thousand years ago, and that the Ghanaian subtypes 

may have diverged about 1000 to 3000 years ago [14]. A collection of 54 Ghanaian 

strains was analyzed using the SNPs discovered, and 13 distinct SNP haplotypes 

could be differentiated [14]. In a follow up study, 74 strains isolated from patients 

living in the BU endemic Densu river basin in the Ga District of Ghana were 

analyzed, and 10 different haplotypes could be identified. When 15 strains collected 

in African countries other than Ghana were typed using the Ghanaian set of SNPs, 

13 strains clustered together and differred from all the Ghanian strains, indicating the 

prevalence of a different SNP pattern. The other 2 strains had SNP patterns similar  
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to the ones found in Ghana and could be distinguished from each other as well as 

the other 13 non Ghanaian strains [15].  
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Neisseria meningitidis 
 
Neisseria meningitidis, a Gram-negative diplococcus, is an obligate human 

commensal. Although usually carried asymptomatically in the upper airways of 

healthy individuals, the meningococcus is also a major cause of meningitis and 

septicaemia. The overall incidence of meningococcal disease in Europe and North 

America is 1-3 per 100 000 population per year. In the so-called “meningitis belt” in 

sub-Saharan Africa, extending from Ethiopia to Senegal, annual incidence rates may 

be as high as 1000 per 100 000 per year during the most severe epidemics [16]. 

 

The meningococcal genome has the size of approximately 2.2 Megabases encoding 

around 2000 genes [17]. Meningococcal populations, especially those isolated from 

asymptomatic carriers in Europe and North America, have been found to be highly 

diverse with extensive genetic exchange generating novel combinations of existing 

genes [18]  

 

A striking characteristic of the meningococcal genome is the abundance and 

diversity of repetitive DNA contributing to genome fluidity. About 20% of the 

meningococcal chromosome consists of repeated sequences of different kinds with 

the most obvious example being the neisserial DNA uptake sequence (DUS). Nearly 

2000 copies of the 12bp uptake sequence could be found in sequenced 

meningococcal genomes. The so called dRS3 elements, a family of 20 bp repeats 

with conserved 6 bp terminal inverted repeats occur almost 700 times in the 

meningococcal genome. Together with the families of 30-160 bp RS elements they 

make up the “neisserial intergenic mosaic elements” (NIMEs) [19], [20]. It has been 

shown that the most abundant member of the dRS3 repeat family serves as a target 

site for chromosomal integration of a filamentous phage [21], and it was suggested 

that the phage integrase might also catalyze the recombination between dRS3 

elements, resulting in permanent genomic changes, such as gene insertions and 

chromosomal rearrangements [22]. Correia elements (CEs) represent about 2% of 

the N. meningitidis genome. Correia elements are apparently mobile elements  
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comparable to small insertion sequences (IS) of the size of 100-155bp, but in 

contrast to conventional IS elements they do not encode a transposase. Insertion 

sequences and IS remnants are also spread throughout the meningococcal genome 

promoting genomic variability of N. meningitidis [20]. 

 

N. meningitidis has a large repertoire of phase-variable genes, accounting for almost 

4% of all CDs. So called simple sequence repeats or contingency loci comprise 

short tandem sequence repeats either within or upstream to a coding region. The 

number of these repeated motifs can be modified during replication through slipped 

strand mispairing influencing transcription or translation [20]. When tandem repeats 

occur in the coding sequence, the promoter region or close to the promoter region, 

they can change the transcriptional and translational state of the gene resulting in 

phase variation. Slipped-strand mispairing on the synthesis strand during replication 

generates addition events, whereas slipped strand mispairing on the the template 

strand induces deletion events [23]. Phase variable genes in meningococci may be 

involved in biosynthesis and modification of pili, capsular polysaccharide, 

lipopolysaccharide, opacity proteins, haemoglobin receptors, PorA outer membrane 

protein, Opc outer membrane protein, ferric receptor, and the putative adhesin NadA 

[24]. Antigenic variation is a mechanism of immune evasion where only some 

variants of certain surface components may be expressed. In N. meningitidis, 

antigenic variation occurs in several surface components, including type IV pili, 

lipooligosaccharides and opa proteins [23] 

 

N. meningitidis bacteria are naturally transformable, and DNA may be taken up 

through transformation and incorporated into the meningococcal chromosome, most 

likely by homologous recombination [25], [26], [27]. Transformation in Neisseria spp 

requires the presence of a specific DNA uptake sequence (DUS) or uptake signal 

sequence (USS), respectively, in the incoming DNA, allowing discrimination between 

DNA from closely related strains or species and foreign DNA. Competent bacteria 

possess complex machineries to facilitate transformation. Neisseria spp express 

type IV pili that are required for transformation, and also, a type IV system exporting  
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DNA into the environment has been described in most gonococci and some strains 

of meningococci. Transformation in the pathogenic Neisseria has fuelled high rates 

of recombination, and it has been estimated that an allele of the N. meningitidis 

genome is ten times more likely to change by recombination than by point mutation 

[28]. Despite being closely related, N. meningitidis, N. gonorrhoea, and N. lactamica 

are highly diverse. For example, at the time of writing (September 2010) the 

PubMLST database for Neisseria, which catalogues genetically distinct members of 

the three species as sequence types (STs), listed a total of 8508 unique STs [18]. 

(http://pubmlst.org/perl/bigsdb/bigsdb.pl?page=downloadProfiles&db=pubmlst_ 

neisseria_seqdef&scheme_id=1).  
 

 
The image was taken from Parkhill et al., Nature. 2000 Mar 30;404(6777):502-6 Circular 
representation of the N. meningitidis Z2471 genome. The isolate had been sampled in the Gambia in 
1983 from an invasive strain. The isolate had the serogroup A and was of the sequence type 4 [29]. 
 
 
The N. meningitidis genome is characterized by the horizontal acquisition of multiple 

genetic islands, acquired from other N. meningitids strains, as well as from N. 

gonorrhoea or N. lactamica. Genetic islands may also be transferred from other 

respiratory colonizers [29]. Although it had been thought that transformation is the  
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major vehicle of lateral gene transfer in Neisseria, recent data show that extensive 

genetic variation originates from phages and other mobile elements [28], [29].  

 

N. meningitidis can be encapsulated or unencapsulated, and there are 13 

serogroups based on different capsular polysaccharide structures, but only six 

serogroups (A, B, C, W-135, X and Y) are currently associated with significant 

pathogenic potential [30]. Serogroup A strains are responsible for major epidemics 

and pandemics [19], and the large epidemics in Africa are mainly associated with 

serogroup A [16].  
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Streptococcus agalactiae 
 

The Group B Streptococcus (GBS), or Streptococcus agalactiae, a Gram-positive, β-

haemolytic, chain-forming coccus is a commensal of the lower gastrointestinal and 

genitourinary tracts of 30-50% of healthy adults [31], and an estimated 20 - 30 % of 

all pregnant women are GBS carriers [32]. However, S. agalactiae is also a leading 

cause of life-threatening bacterial infection in neonates, a cause of invasive 

infections in the mother, as well as an emerging pathogen of nonpregnant adults, 

especially the elderly, and persons with underlying conditions such as diabetes and 

cancer [33], [32]. 
 

In newborns, GBS can cause sepsis, pneumonia, meningitis, and less frequently 

GBS may lead to focal infections such as osteomyelitis, septic arthritis or cellulitis. In 

pregnant women, GBS may be the cause of urinary tract infection, chorio-amnionitis, 

endometritis, bacteraemia, and most likely stillbirth [32]. GBS disease in adults 

includes skin and soft-tissue infection, bacteraemia, urinary tract infections, 

pneumonia, and osteomyelitis. Meningitis, endocarditits and the streptococcal toxic 

shock syndrome are rare but serious clinical syndromes of GBS infection [34], [35], 

[36]. S. agalactiae infection may be treated with penicillins and cephalosporins, and 

GBS remains largely susceptible to β-lactam antibiotics. However, in case of β-

lactam allergy, the emergence of widespread resistance to clindamycin and 

erythromycin poses a serious clinical problem [37].  

 

The genome of the bacterial species S. agalactiae has the size of approximately 2.1 

to 2.2 Megabases which are encoding around 2100 to 2200 genes.[38] [39] [40]. A 

bacterial species can be described by its “pan-genome” which includes a core 

genome containing genes present in all strains and a dispensable genome 

composed of genes absent from other strains of the same species. It has been 

proposed that the core genome of S. agalactiae consists of 1,806 genes [40], and 

that the pan-genome is relatively large, exceeding 2,800 genes. S. agalactiae has its 

habitat in both humans and animals, and this broad habitat range may provide a  
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great available gene pool for lateral gene transfer [41], [42]. It has been 

demonstrated by experimental and in silico approaches that DNA segments of up to 

334 kb can be transferred through conjugation, and that large DNA exchanges may 

have contributed to the genome dynamics in the natural population [43].  

 

S. agalactiae has been described to possess 10 different capsular types [44], and 

capsular switching may take place by either switching of capsule specific genes, or 

more often by the exchange of the entire capsular locus. However, capsular 

switching in S. agalactiae has been proposed to be rare [45]. Five serotypes (Ia, Ib, 

II, III and V) have been described to be primarily prevalent in the US [46], as well as 

other areas of the world, including the Central African Republic, Senegal [47], 

England [48], Norway [49], Israel [50] and Korea [51].  

 

 

 
 
eBurst image of 503 sequence types of Streptococcus agalactiae. The founders of the clonal 
complexes (CCs) CC1, CC10, CC17, CC19 and CC23 are marked. 
 

17 

19 
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The development of a multi-locus sequence based typing (MLST) scheme for GBS 

allows unambiguous comparison of the population structures of GBS strains among 

different geographical areas. This MLST uncovers sequence variation among seven 

conserved housekeeping genes, classifying strains into numerous clones, or 

sequence types (STs) [52]. More than 500 STs are known to date 

(http://pubmlst.org/perl/mlstdb-net/mlstdbnet.pl?page=download_profiles&file= 

gbs_profiles.xml) and STs could be grouped together into clusters or clonal 

complexes (CCs) following phylogenetic analyses [52]. 5 CCs (CC23, CC19, CC17, 

CC10 and CC1) were highly prevalent in different regions of the globe, such as 

Sweden [53], Italy [54], England [48], the US [55], the Central African Republic, 

Senegal [47] as well as Israel. 
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Abstract 
 
The highly immunogenic mycobacterial proteins ESAT-6, CFP-10 and HspX 

represent potential target antigens for the development of subunit vaccines and 

immunodiagnostic tests. Recently, the complete genome sequence revealed the 

absence of these coding sequences in Mycobacterium ulcerans, causative agent of 

the emerging human disease Buruli ulcer. Genome reduction and the acquisition of 

a cytopathic and immunosuppressive macrolide toxin plasmid are regarded crucial 

for the emergence of this pathogen from its environmental progenitor, 

Mycobacterium marinum. Earlier, we have shown the evolution of M. ulcerans into 

two distinct lineages. Here we show that while the genome of M. marinum M 

contains two copies of the esxB-esxA gene cluster at different loci, both copies are 

deleted from the genome of M. ulcerans strains belonging to the classical lineage. 

Members of the ancestral lineage instead have lost these gene clusters either by 

newly identified genomic insertional-deletional events or by conversions of functional 

genes to pseudogenes via point mutations. Thus, the esxA (ESAT-6), esxB (CFP-

10) and hspX genes are located in hot spot regions for genomic variation where 

functional disruption seems to be favored by selection pressure. Our detailed 

genomic analyses have identified a variety of independent genomic changes that 

have led to loss of expression of functional ESAT-6, CFP-10, and HspX proteins. 

Loss of these immunodominant proteins may help bypassing the host’s 

immunological response and represents part of an ongoing adaptation of M. 

ulcerans to survival in host environments that are screened by immunological 

defense mechanisms. 
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Introduction 
 
The emerging pathogen Mycobacterium ulcerans is the causative agent of Buruli 

ulcer, a mycobacterial disease of skin and soft tissue with the potential to leave 

sufferers scarred and disabled. While it is endemic in more than 30 countries (26), 

the major disease burden lies on children living in poor rural communities of West-

Africa. Buruli ulcer is prevalent in riverine, slow-flowing and swampy areas, but the 

exact mode of transmission has remained elusive. This is partly attributable to a 

clonal population structure and an associated lack of high-resolution genetic 

fingerprinting methods for micro-epidemiologic studies.  

 

M. ulcerans seems to have recently evolved via lateral gene transfer and reductive 

evolution from the fish disease causing environmental species M. marinum (40,43). 

Particularly, it has acquired the virulence plasmid, pMUM001, encoding the genes 

for the synthesis of the macrolide toxin, mycolactone. This toxin has cytopathic and 

immunomodulatory properties and plays a decisive role in producing an extracellular 

infection after an initial phase within macrophages (4,41,42,47). In addition, M. 

ulcerans has undergone extensive gene loss due to DNA deletions, DNA 

rearrangements, and pseudogene formation which apparently drives its evolution 

towards a niche adapted specialist (27,34,39). Previous findings suggest that M. 

ulcerans lineages from different geographic areas reveal variations in virulence 

(27,32), and F. Portaels, submitted).  

 

The ESX-1 secretion system is required for the virulence of M. tuberculosis and 

related pathogenic mycobacteria. It comprises the 6 kDa early secretory antigenic 

protein (ESAT-6) and the 10 kDa culture filtrate protein (CFP-10) which are among 

the strongest T-cell response elicitors in tuberculosis patients (7,8). The genes 

encoding these proteins are localized on the region of difference 1 (RD1) locus 

which is intact in virulent members of the M. tuberculosis complex, but absent from 

the attenuated vaccine strain M. bovis BCG (�RD1BCG) (21,29). Similarly, the vole 

bacillus, M. microti, was found to have a natural deletion (�RD1microti) overlapping  
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with deletion �RD1BCG (6,18). The so called extended RD1 encompasses most of 

the genes that form the ESX-1 secretion apparatus (7,16,17) or are crucial for both  

 

ESAT-6/CFP-10 secretion and virulence (7,17,19,31). This secretion apparatus 

enhances virulence in M. tuberculosis and M. marinum infection by secretion of 

effector proteins into the cytosol of infected macrophages (37), prevention of 

phagolysosomal maturation (28,45) and cytolytic activity (24). On the other hand, 

infected individuals develop strong T-cell responses against these proteins, which 

seem to be relevant for immune protection (8). The 16-kDa heat shock protein HspX 

or �-crystallin-like protein (Acr), a dominant protein expressed during static growth in 

M. tuberculosis, is required for mycobacterial persistence within the macrophage. It 

is yet another potent immune response elicitor and suitable for detection of M. 

tuberculosis infection (14,15,20,25,35,49). 

 

In mycobacterial disease control, highly antigenic proteins serve both as targets for 

diagnostic tests and as candidate proteins for vaccine development (1,8,30). While 

being present in the sequenced M. marinum strain M (http://www.sanger.ac.uk/cgi-

bin/blast/submitblast/m_marinum), genes encoding ESAT-6, CFP-10 and HspX are 

absent from the genome of the sequenced Ghanaian M. ulcerans strain Agy99 

(http://genopole.pasteur.fr/Mulc/BuruList.html). However, earlier data showed that 

some M. ulcerans isolates and other related mycolactone producing mycobacteria 

harbor at least segments of these genes (32,48). Recently, we have identified two 

distinct genetic lineages of M. ulcerans, with representatives of the ancestral lineage 

being phylogenetically closer to its progenitor, M. marinum, than members of the M. 

ulcerans classical lineage (27). Here, we have analyzed a world wide collection of M. 

ulcerans strains belonging to these two lineages for the presence of esxA, esxB and 

hspX and their surrounding genomic regions. 
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Materials and Methods 
 
Mycobacterial strains and genomic DNA extraction 

M. marinum strain M was used for interspecies comparison. A world wide strain 

collection of M. ulcerans was used earlier for investigation of genomic strain 

variations (34). Although several attempts to differentiate these strains revealed low 

resolution (2,3,11,22,23,38,44), this collection of patient isolates was shown to be 

divided in two lineages displaying major genomic differences (27). In this study, we 

used M. ulcerans clinical isolates of both lineages as follows. For the classical 

lineage: Ghana Agy99, Ghana ITM 970321, Ghana ITM 970359, Ghana ITM 

970483, Ivory Coast ITM 940662, Ivory Coast ITM 940815, Ivory Coast ITM 940511, 

Benin ITM 970111, Benin ITM 940886, Benin ITM 940512, Benin ITM 970104, 

Democratic Republic of Congo (DRC) ITM 5150, DRC ITM 5151, DRC ITM 5155, 

Togo ITM 970680, Angola ITM 960657, Angola ITM 960658, Papua New Guinea 

(PNG) ITM 941331, PNG ITM 9537, Malaysia ITM 941328, Australia ITM 941324, 

Australia ITM 941325, Australia ITM 941327, Australia ITM 9549, Australia ITM 

9550, Australia ITM 8849, Australia ITM 940339, Australia ITM 5142, and Australia 

ITM 5147. For the ancestral lineage: China ITM 980912, Japan ITM 8756, French 

Guiana ITM 7922, Surinam ITM 842, and Mexico ITM 5143. Presence of the specific 

PCR products obtained with primer pairs CH1/CH4 and CH3/CH4 (that exclude each 

other by design, see Fig. 1) occurred concomitantly in the strains ITM 5151 DRC 

and ITM 941331 PNG. Since also VNTR typing analysis indicated that these strains 

are impure, we excluded these strains from further analysis.  

 

Bacterial pellets of about 60 mg (wet weight) were heat inactivated for 1 hour at 

95°C in 500 µl extraction buffer (50 mM Tris-HCl, 25 mM EDTA, 5% monosodium 

glutamate), and sequentially treated with lysozyme (2 h, 37°C, 17 M lysozyme) and 

proteinase K (overnight, 45°C, 0.3 M proteinase K in proteinase K buffer: 1 mM Tris-

HCl, 5 mM EDTA, 0.05% SDS, pH7.8). After digestion, the samples were subjected 

to bead beater treatment (7 min, 3000 rpm, Mikro-Dismembrator, B. Braun Biotech 

International, Melsungen, Germany) with 300 µl of 0.1 mm zirconia beads (BioSpec  
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Products, Bartlesville, OK, USA). DNA was extracted from the supernatants by 

phenol-chloroform (Fluka, Buchs, Switzerland) extraction and subjected to ethanol  

 

precipitation. DNA concentration was measured by optical density at 260 nm 

(GeneQuant spectrophotometer, Pharmacia Biotech, Cambridge, UK). 

 
DNA methods 
PCR was performed using FirePol 10x BD buffer and 0.5 μl FirePolTaq-Polymerase 

(Solis BioDyne, Tartu, Estonia), 2.5 ng genomic DNA or the according volume of 

RNAse free water as a negative control, 0.6 μM forward and reverse primers each, 

1.7 mM MgCl2 and 0.3 mM of each dNTP in a total volume of 30 μl. PCR reactions 

were run in a GeneAmp PCR System 9700 PCR machine. The thermal profile for 

PCR amplification of M. ulcerans genomic DNA included an initial denaturation step 

of 95-98oC for 3 min, followed by 32 cycles of 95oC for 20 sec, annealing at 58-65oC 

for 20 sec, and elongation at 72oC for 30 sec up to 4min. The PCR reactions were 

finalized by an extension step at 72oC for 10 min. For experiments with more than 30 

samples Hot Star Taq® (QIAGEN AG, Hombrechtikon, Switzerland) was used 

according to the manufacturer’s protocol. In order to retrieve PCR products that were 

subsequently subjected to sequencing, iProofTM High fidelity DNA Polymerase (Bio-

Rad Laboratories, Hercules, CA) was used. PCR products were analyzed on 1-2% 

agarose gels by gel electrophoresis using ethidium bromide staining and the 

AlphaImager illuminator and AlphaImager software (Alpha Innotech, San Leandro, 

CA, USA). Primers as summarized in table 1 were designed using the Primer3 

software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). PCRs fragments 

produced for analysis of unknown genomic sequences were purified using the 

NucleoSpin purification kit (Machery-Nagel GmbH & Co. Ko, Düren, Germany) and 

subjected to direct sequencing or cloned using the TOPO TA Cloning® Kit 

(Corporate Headquarters, Invitrogen Corporation, Carlsbad, CA, USA), transformed 

into JM109 (Sigma Aldrich, Buchs, Switzerland) bacterial cells, and sequenced after 

DNA preparation (Miniprep-Kit, Sigma Aldrich, Buchs, Switzerland). VNTR 

undertaken for confirmation of strain identities was performed according to (44).  
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Sequencing was performed using the Big Dye kit and the AbiPrism310 genetic 

sequence analyzer (Perkin-Elmer, Waltham, MA, USA). All gene sequences were  

reproduced and subjected to alignment and comparison with the AbiPrism 

Autoassembler version 1.4.0 (Perkin-Elmer, Waltham, MA, USA). 

 

Data analyses and bioinformatics  
Retrieved sequences were compared to the BuruList 

(http://genopole.pasteur.fr/Mulc/BuruList.html) and the M. marinum 

(http://www.sanger.ac.uk/cgi-bin/blast/submitblast/m_marinum) blast servers and 

analyzed using the sequence manipulation suite 

(http://bioinformatics.org/sms/index.html), the sequence alignment tool blast 2 

sequences (http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi), the multiple 

sequence alignment website Multalin (http://bioinfo.genopole-

toulouse.prd.fr/multalin/multalin.html) and the Artemis software release 9 (The 

Wellcome Trust Sanger Institute, Hinxton, UK; (36)). The sequences for M. 

tuberculosis were retrieved from the following web page: 

(http://www.sanger.ac.uk/Projects/M_tuberculosis). Linear genomic comparison was 

performed using the Artemis Comparison Tool software release 6 (9).  

 

Accession Numbers 
The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.html) accession numbers 

for sequences from the following M. ulcerans strains are: Japan 8756: CFP-10, 

EU257146; ESAT-6, EU257151; HspX/Acr, EU257156; China 980912: CFP-10, 

EU257147; ESAT-6, EU257152; HspX/Acr, EU257157; Surinam 842 CFP-10, 

EU257148; ESAT-6, EU257153; HspX/Acr, EU257158; French Guiana 9722: CFP-

10, EU257149; ESAT-6, EU257154; HspX/Acr, EU257159; Mexico 5143: CFP-10, 

EU257150; ESAT-6, EU257155; HspX/Acr, EU257160 
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Results 
 
Presence of esxB/esxA in M. ulcerans strains of the ancestral lineage 
Blast searches of the partially annotated genome of M. marinum M 

(http://www.sanger.ac.uk/cgi-bin/blast/submitblast/m_marinum) showed that this 

strain contains two copies of the esxB (CFP-10)-esxA (ESAT-6) gene cluster. Both 

copies are deleted in the genome of the African M. ulcerans isolate Agy99 (43). The 

corresponding two regions of difference (RDs) between the genome sequences of 

the two mycobacterial species have been designated MURD152 (M. marinum 

genome position 6489253-6592034) and MURD4 (M. marinum genome position 

218302-230285) (43).  

 

Compared to M. marinum M, the M. ulcerans Agy99 genome has a 2.8 kb deletion in 

MURD152, which is associated with a large inversion at the 5’ end of the deletion 

(Fig. 1A). To test whether all M. ulcerans lineages share this genome constellation in 

MURD152, we screened a comprehensive M. ulcerans strain collection of world-

wide origin by PCR analysis using a primer pair (CH3 and CH4) that yields a PCR 

product of 162 bp only when MURD152 is deleted and flanked by the inverted 

sequence (Fig. 1A and B). Whereas members of the ancestral lineage (strains from 

Asia, South America and Mexico) were negative, members of the classical lineage 

(strains from Africa, Papua New Guinea, Malaysia and Australia) were positive, 

except for strain Australia 9549 which has a larger deletion in this region (see 

below). Likewise, a PCR using a primer pair (CH8 and CH9) specific for the 

sequence constellation of strain Agy99 in MURD4 revealed a PCR product of 1712 

bp only for representatives of the classical but not for members of the ancestral 

lineage (Fig. 1B), demonstrating genomic diversity between the two M. ulcerans 

lineages in this locus. 

 

A PCR with primers (CH1 and CH2) corresponding to the 5’ end of the esxB coding 

sequence and the 3’ end of esxA coding sequence (Fig. 1A) yielded a PCR product 

of the expected size of 610 bp with genomic DNA from the M. marinum control as 

well as in all M. ulcerans strains belonging to the ancestral lineage (Fig. 2). Primers  
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corresponding to the flanking regions of either the MURD4 or the MURD152 

associated esxB-esxA gene cassette were used to analyze for the localization of this 

cluster in the genome of these M. ulcerans strains (Fig. 2). Results indicated that 

esxB-esxA of the Asian and South American strains is located in MURD152, 

whereas in the Mexican strain the gene cluster is located in MURD4 (Fig. 2). These 

localizations were verified by PCR analyses extending several kilobases further into 

the flanking regions. While in the Asian and South American haplotypes the 

respective M. marinum MURD152 genome constellations were found, the cluster 

was flanked in the case of the Mexican haplotype by the MURD4 associated 

sequences of M. marinum. 

 

Unique deletions in MURD152 in strains 5143 from Mexico and 9549 from 
Australia 
While the MURD152 esxB-esxA is deleted in the Mexican strain 5143 (Fig. 2), no 

PCR product specific for the MURD152 constellation of the strains belonging to the 

classical lineage was obtained with primers CH3 and CH4 (Fig. 1B), giving evidence 

for a larger deletion. A PCR analysis with primers corresponding to different 

positions of the genomic sequences flanking MURD152 demonstrated that strain 

Mexico 5143 has a deletion, (designated �RD13A; Fig. 3), that is substituted by an 

IS2404 element. This InDel event can have occurred either from an M. marinum M 

like genome constellation or from an M. ulcerans Agy99 like constellation (loss of 

41.8 kb or of 8 kb, respectively). The DNA sequences flanking �RD13A in the 

Mexican strain have a slightly higher identity to the corresponding sequence 

stretches of M. ulcerans Agy99 than to those of M. marinum M (98% vs. 94% over 

986 bp). 
  
Failure to obtain a PCR product with both the CH1/CH2 and the CH3/CH4 PCR 

primers for the Australian strain 9549 (Fig. 1) provided evidence for yet another 

deletion type within the MURD152 region. PCR analysis using primers located in the 

sequences flanking the corresponding region in the M. ulcerans Agy99 genome led 

to the characterization of a deletion of 13662 bp (�RD13B; Fig. 3) including an  
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IS2404 element on each of the ends of the deleted DNA segment. The deleted DNA 

stretch was substituted by an IS2404 element that, upon sequence analysis, 

clustered to neither of the deleted versions of IS2404.  

 

Sequence variation in ESAT-6 and CFP-10 
PCR products obtained with primers corresponding to MURD locus-specific flanking 

regions and comprising the respective esxB-esxA clusters (Fig. 2) were sequenced. 

Deduced amino acid sequences of all versions of M. ulcerans ESAT-6 and CFP-10 

encoded in MURD4 (Mexico 5143) or MURD152 (South American and Asian strains) 

were compared with the M. marinum M sequences in the two loci (Fig. 4 and 

supplementary material). As expected, the translated ESAT-6 amino acid sequence 

of the Mexican strain clustered to and was identical with the MURD4-associated M. 

marinum M sequence (Fig. 4B). While the four MURD152-associated M. ulcerans 

ESAT-6 sequences of the Asian and the South American strains were identical 

among each other, their amino acid sequences differed at six positions from the 

MURD152-associated M. marinum sequence, but only at two positions from the 

MURD4-associated M. marinum sequence (Fig. 4B). At nucleotide level, the esxA 

gene of the Asian and South American strains appear as hybrids composed of an M. 

marinum MURD4 sequence stretch at the 5’ and a MURD152 stretch at the 3’ end.  

The two M. marinum esxB genes differ only at three nucleotide positions at the 5’ 

end (Fig. 4A), encoding CFP-10 proteins with identical deduced amino acid 

sequences (Fig. 4B). The esxB gene of the Mexican strain differed at four positions 

from the M. marinum M MURD4 locus, but only at one position from the MURD152 

locus. While the esxB gene sequences of the South American M. ulcerans strains 

were identical to the MURD152 associated sequence, a frameshift mutation has 

converted esxB of the Asian strains to a pseudogene (Fig 4B). 
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Lack of the immunodominant HspX/Acr protein in the classical lineage of M. 

ulcerans  
Next we screened the world-wide M. ulcerans strain collection for the presence of 

the CDS encoding the immunogenic protein HspX (Acr) located in MURD92 (M. 

marinum genome position 4271366-4313737; (43)). Using primers (CH14 and  
 

CH15) corresponding to the hspX flanking regions, a PCR product of 791 bp 

comprising the complete hspX gene was obtained for all members of the ancestral 

lineage, but for none of the strains belonging to the classical lineage (not shown). 

Instead, amplification of a 469 bp PCR product (primers CH16 and CH17) obtained 

with a complementary PCR again demonstrated the presence of the Agy99 genome 

constellation (related to the MURD92 deletion) in all members of the classical 

lineage. While strains coming from the same geographical area had identical gene 

sequences, Asian and South American sequences differed slightly from each other 

and from the M. marinum sequence (Fig. 5A and supplementary material). In the 

case of the Mexican strain, nucleotide insertions resulted in a frameshift mutation 

leading to a truncated translation product (Fig. 5B).  
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Discussion 
 

The M. tuberculosis proteins ESAT-6, CFP-10 and HspX are strong T- and B-cell 

immunogens. This makes them to suitable targets for immunodiagnostic tests 

(7,8,14,15,20) and potentially also for subunit vaccine development (1,30,35). These 

approaches cannot be duplicated for Buruli ulcer, since these proteins are not 

expressed by M. ulcerans strains belonging to the classical lineage that are found in 

the endemic areas of Africa and Australia and are responsible for the vast majority of 

clinical cases world wide.  

 

The genome of the M. marinum strain M harbors two esxB/esxA gene clusters at 

distant chromosomal locations, one in MURD4 and the other in MURD152. Such 

duplications are common for proteins of the esx protein family (46). In this report we 

demonstrate that all analyzed M. ulcerans strains belonging to the ancestral lineage 

have lost only one copy of the esxB/esxA cassette, the Asian and South American 

strains the MURD4 copy and the Mexican strain the MURD152 copy, respectively. 

Furthermore, a frameshift mutation has converted the remaining esxB gene of the 

Asian strains to a pseudogene. The basis for the high identity of the N-terminal esxA 

nucleotide sequence located in the MURD152 locus in the South American and 

Asian haplotypes with the M. marinum MURD4 sequence is unclear, but implies a 

history of homologous recombination between the two copies of esxB and esxA 

genes before loss of the MURD4 region. Members of the classical lineage have lost 

both copies, probably in a bottleneck situation that forged this lineage.  

 

Since MURD152, 92 and 4 do not only show genomic differences between  

M. marinum and M. ulcerans, but also within M. ulcerans strains, we designated 

these regions of difference RD13, RD14 and RD15, respectively, in continuation of 

the previously assigned RDs within the species M. ulcerans (34). A detailed 

alignment of the chromosomal organization in RD13, which corresponds to RD1 in 

M. tuberculosis, is shown in Fig. 3. These RDs represent hot spots of genetic 

variation potentially suitable to perform genetic fingerprinting of M. ulcerans. 

 



CHAPTER 2 
 

32

 

In addition to the previously identified five M. ulcerans InDel haplotypes (27,34) 

strain Australia 9549 was identified to represent a sixth InDel haplotype which is 

defined by �RD13B. 

 

Alone in MURD152 at least three different deletion events are responsible for the 

InDel diversity within M. ulcerans (Table 2). When this region was analyzed for 

variations among a collection of mycolactone producing mycobacteria, an unclear 

situation was suggested for a Mexican strain (48). Here, we show that the InDel of 

8kb substituted by an IS2404 element (�RD13A) in the Mexican strain (or 41.8 kb 

with respect to the M. marinum backbone) differs from the MURD152 deletion in 

Agy99. This deletion is independent of yet another extended deletion of 13.7 kb 

(�RD13B) in this genomic region in strain Australia 9549. The latter deletion is also 

substituted by an IS2404 element and displays a second large sequence 

polymorphism within Australian isolates, after the earlier described RD3 (27,34). It 

will be worth investigating the distribution of this InDel polymorphism within a 

collection of Australian M. ulcerans isolates using primer pair combinations 

CH10/CH11 demonstrating the presence of the �RD13B deletion and both CH10/12 

and CH13/CH11 displaying positive for strains with the sequence configuration of 

Agy99. 

 

The described deletions encompass also CDSs surrounding the esxA, esxB and 

hspX genes, indicating loss or modification of molecular apparatuses or pathways. 

First, PE35, essential for secretion (7), was lost in both MURD152 and �RD13A and 

is also commonly deleted in �RD1BCG and �RD1microti (Fig. 3). Second, many of the 

genes of the ESX-1 secretion system (genes Rv3866/MMAR_5441 through 

Rv3881/MMAR_5457/espB, corresponding to extRD1) are equally affected by 

deletions �RD13A and/or MURD151 through MURD153, namely the AAA protein 

family member Rv3868/MMAR_5443, Rv3871/MMAR_5446, and 

Rv3877/MMAR_5452 (7,17,19). Members of the classical lineage omit an 

MMAR_5457 orthologue in MURD153 which was recently described a secreted  
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product and renamed espB (31). Also in MURD92, HspX was jointly deleted with the 

co-regulated Rv2032/nitroreductase gene (33). 

 

As for ESAT-6 and CFP-10, we also found for HspX different genetic mechanisms 

that have led to loss of expression, comprising both deletions of genomic sequences 

and single base differences (Table 2). Many of the sequence variations across the 

M. ulcerans haplotypes leading to loss (of function) of these highly immunogenic 

proteins appear to have emerged independently of each other. This may indicate a 

counterselection for expression of these proteins. HspX seems to be a negative 

growth regulator involved in hypoxic shiftdown to promote non-replicating 

persistence of M. tuberculosis (15,20,25). Both ESAT-6 and CFP-10 were shown to 

be virulence factors of M. tuberculosis, and their loss reduces infectivity due to 

dysfunction of the ESX-1 secretion apparatus (5,10,12,13). The mycolactone 

producing and largely extracellular M. ulcerans has a profoundly different survival 

strategy in mammalian hosts than the intracellular M. tuberculosis has, therefore it is 

most likely that its pathogenicity for mammalian hosts is due to other virulence 

factors. Thus, our data suggest that functional disruption or complete loss of major 

targets of the immune response may confer a selective advantage to this emerging 

pathogen. Still, it is currently not clear, whether pathogenicity for mammalian hosts, 

i.e. shedding into the environment from chronic wounds, contributes significantly to 

survival of the species M. ulcerans. However, the observed loss of expression of 

highly immunogenic proteins caused by a variety of genomic changes may represent 

an indication that immune selection plays a role in the adaptation of M. ulcerans to a 

more stable environment.  
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Abbreviations: 
RD – region of difference (including a sequence locus in which several genomic 

events may have led to various configurations) 

InDel – Insertion-deletion (an event that includes an insertion substituting a deleted 

sequence in contrast to an insertion or a deletion only) 

CDS – coding sequence 

ISE – insertion sequence element (for M. ulcerans, two transposable elements are 

known as: IS2404 and IS2606) 
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Figure Legends 
Fig. 1: Confirmation of the MURD specific deletions affecting esxB (CFP10) and esxA 

(ESAT6) in an M. ulcerans world-wide strain collection. A: Schematic view of an alignment 

of M. marinum M (upper bar) and M. ulcerans Agy99 (lower bar) genomic sequences 

displayed by the Artemis Comparison Tool (9). Regions of conformity are shown in 

parallel grey plains, an inverted DNA segment is depicted as an inverted surface, and 

white areas represent unique sequences like MURD152 which is present only in M. 

marinum M but deleted from M. ulcerans Agy99. Indicated are the genes esxB and esxA 

and the PCR primers (CH1 through CH4) used for this experiment. B: PCR products of 

162 bp or 1712 bp proofed the MURD152 deletion of 2.8 kb and the MURD4 deletion of 

12 kb, respectively. 

 

Fig. 2: Localization of the two esxB-esxA clusters in the genomes of strains of the 
M. ulcerans ancestral lineage. Positions of the corresponding primers are indicated for 

the PCR product of the esxB-esxA cluster where CH1 and CH2 correspond to sequences 

within the CDSs of both locations, and of the slightly larger PCR products amplified with 

flanking primers specific for either MURD152 or MURD4 (primers see Table 1).  

 

Fig. 3: Chromosomal organization of CDSs in RD13 including deletional variations 
between M. ulcerans and other mycobacteria. Gene names are indicated for M. 

tuberculosis (http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve& 

dopt=Overview&list_uids=224), M. marinum (http://www.sanger.ac.uk/Projects/ 

M_marinum/), and M. ulcerans (http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj 

&cmd=ShowDetailView&TermToSearch=16230) and orthologous genes are aligned. 

RD13 of M. ulcerans corresponds to RD1 in M. tuberculosis. Deletions in M. bovis BCG, 

M. microti and various M. ulcerans strains are indicated by solid bars as marked.  

 

Fig. 4: Nucleotide variations (A) and amino acid sequence alignments (B) in CFP-10 
and ESAT-6 CDSs and their gene products. Position 1 of the nucleotide alignment 

reflects the start of gene esxB. For the DNA sequences, only differing nucleotides are 

shown (positions as indicated). For whole sequence alignments see supplementary  
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material. Orthologous sequences of M. tuberculosis H37Rv and M. bovis AF2122/97 are 

included in the amino acid alignments. 

 

Fig. 5: Nucleotide variations (A) and amino acid sequence alignments (B) in the 
HspX CDS and its gene product. Position 1 of the nucleotide alignment reflects the start 

of gene hspX. For the DNA sequences, only differing nucleotides are shown (positions as 

indicated). For whole sequence alignments see supplementary material. Orthologous 

sequences of M. tuberculosis H37Rv and M. bovis AF2122/97 are included in the amino 

acid alignments. 

 

 

Supplementary material 
Figure S1: Nucleotide sequence alignment (using Multalin) of the esxB-esxA cluster in the 

two M. marinum loci and the M. ulcerans strains Surinam 842, French Guiana 7922, 

Japan 8756, China 980912 and Mexico 5143 in comparison with the respective M. 

tuberculosis and M. bovis CDSs. Nucleotides of CDSs are at the positions 9-309 (esxB) 

and 348-633 (esxA). 

 

Figure S2: Nucleotide sequence alignment (using Multalin) of hspX in the two M. marinum 

loci and the M. ulcerans strains Surinam 842, French Guiana 7922, Japan 8756, China 

980912 and Mexico 5143 in comparison with the respective M. tuberculosis and M. bovis 

CDSs. Nucleotides of the CDS are at position 192-623 (hspX). 
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Tables 
 

RD MURD Description of PCR 
product 

expected 
product 
size [bp] 

Primer1 Primer2 

13/
14 

4/ 

152 

presence of esxB-esxA 
cluster in MURD4 
and/or MURD152 

610 CH1-tgaagaccgatgccgctac CH2-aacatccccgtgacgttg 

13 152 MURD152 deletion as 
in Agy99 162 CH3-cgttggggtgaatttctttg CH4-agtctgacggcgactcatct 

13 152 presence of esxB-esxA 
cluster in MURD 152  968 CH5-ttggcgaggaaagaaagaga CH4-agtctgacggcgactcatct 

14 4 presence of esxB-esxA 
cluster in MURD4 810 CH6-gacccaaagagatagagagtcca CH7-tcatcggtgtcggtgtagtg 

14 4 MURD4 deletion as in 
Agy99 1712 CH8-gacccagacgatgtgaattg CH9-ggagcatgttcacgatgttg 

13 152 deletion �RD13A 2354 CH18-cagttatcgtgcgggaattt CH19-atcgggagaaagaccgaagt  
13 152 deletion �RD13B 1650 CH10-ctggcggaaacaacaacc CH11-tcctggtcaagttggagacc 

13 152 MURD152 deletion as 
in Agy99 3198 CH10-ctggcggaaacaacaacc CH12-gccgctaacttgaagaatcg 

13 152 MURD152 deletion as 
in Agy99 1662 CH13-ttctcgctcaatctccccta CH11-tcctggtcaagttggagacc 

15 92 presence of hspX in 
MURD92 791 CH14-ggcgcttaaaccggtcgttg CH15-cgccaaacccaggacaatca 

15 92 MURD92 deletion as in 
Agy99 469 CH16-agctggctagcgtcgtacc CH17-cccaaagctcgtagatcagc 

 
Table 1: Primers used in this study and description of respective PCR products 
All primers are listed in 5’-3’ orientation. 
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Abstract 
 
In particular in the ‘meningitis belt’ of sub-Saharan Africa, epidemic meningococcal 

meningitis is a severe unresolved public health problem. In the past decades, 

serogroup A lineages have been the dominant etiologic agents, but also other 

serogroups, like C, W135 and X have caused outbreaks. Control of meningitis 

epidemics has relied so far on reactive vaccination strategies with polysaccharide 

vaccines. While a serogroup A polysaccharide conjugate vaccine is currently being 

clinically tested, a comprehensive vaccine based on sub-capsular outer membrane 

proteins (OMPs) is not available. Here we have investigated whether meningococcal 

populations overcome immune selection pressure associated with herd immunity by 

changing antigenic properties of their OMPs. Meningococcal isolates were collected 

in the context of longitudinal colonization and disease surveys in Ghana and Burkina 

Faso. Serogroup A strains isolated during two clonal waves of colonization and 

disease showed no diversification in the genes encoding their PorA, PorB, and FetA 

proteins. However, ST7 and ST2859 strains had different opaJ alleles and ST2859 

isolates from Ghana differed from ST2859 isolates from Burkina Faso in the opaA 

allele. This provides evidence for occasional allelic exchange of opa genes and 

selection of strains expressing Opa protein variants. No allelic difference within the 

epidemiologically related clonal group of isolates and no variations based on point 

mutations or insertional/deletional events in the OMP genes were found. However, 

opa genes showed wide variation in the number of intragenic tandem repeats. This 

shows that phase variation of Opa protein expression caused by slipped strand 

mispairing is a frequent event. Taken together our results demonstrate a remarkable 

antigenic stability of OMPs over years during the spread and local persistence of 

hyper-invasive meningococcal clones in human populations. Herd immunity thus 

does not seem to be a strong driving force for antigenic diversification of the major 

OMPs analyzed.  

 
Key words: Neisseria meningitidis, OMP, meningitis, herd immunity 
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Introduction 
 
Neisseria meningitidis, a Gram-negative diplococcus, is an obligate commensal of 

humans, usually carried in the upper airways of healthy individuals. The bacterium is 

transmitted to close contacts by the spread of respiratory secretions. Occasionally, 

N. meningitidis strains might penetrate the mucosal membrane, multiply in the 

bloodstream and gain access to the cerebrospinal fluid. The overall incidence rate of 

meningococcal disease in Europe and North America is 1-3 per 100 000 person-

years. The highest incidence rates are found in countries of sub-Saharan Africa, in 

the so-called “meningitis belt” which extends from Ethiopia to Senegal. In these 

countries, annual incidence rates of as high as 1000 per 100 000 person-years are 

recorded during the most severe epidemics (1). In the Meningitis belt, epidemics 

classically occur in the dry season, between December and April. They nearly 

always start in the early part of the dry season when it is hot, dry and dusty, build up 

to a peak at the end of the dry season and then stop abruptly at the onset of rains. 

High temperature, low absolute humidity and the harmattan (a dusty wind that blows 

from the Sahara) at the end of the dry season may favor the occurrence of 

meningococcal disease by damaging the local mucosal defenses (2). Based on 

different capsular polysaccharide structures, 13 serogroups of N. meningitidis can be 

distinguished. The vast majority of invasive meningococcal disease is caused by six 

of these serogroups (A, B, C, W-135, X and Y) (3). Most of the large epidemics in 

Africa in the past 100 years were associated with serogroup A (1). Clonal waves of 

colonization and disease are a characteristic feature of the epidemiology of 

meningococcal meningitis in the African meningitis belt (4). Closely related N. 

meningitidis serogroup A, genoclouds associated with the sequence types (STs) 5, 7 

and 2859 have been responsible for outbreaks in the last two decades (5), (6), (7). 

Molecular typing approaches based on DNA sequencing allow meningococci to be 

distinguished and tracked (8). During the last decade, multi locus sequence typing 

(MLST) based on the identification of the alleles of fragments of seven 

meningococcal housekeeping genes has developed into the “gold standard” for 

typing these bacterial pathogens (9), (10).  
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Meningococci are naturally competent for transformation by exogenous DNA and 

high rates of recombination have been observed (11). However, most genetic 

exchange appears to takes place between very closely related meningococci and it 

has been suggested that recombination may be primarily a mechanism for genome 

repair that will only occasionally result in generation of diversity (12). Nevertheless 

N. meningitidis is genetically and antigenically highly diverse. Sequence typing has 

identified to date >5000 STs and hundreds of variants of vaccine candidate antigens, 

such as the outer membrane protein (OMP) PorA (http://neisseria.org/nm/). On the 

other hand, hyper-invasive lineages seem to be surprisingly stable over decades 

and during global spread (1). This may facilitate development of a comprehensive 

protein-based vaccine, effective against a broad range of hyper-virulent 

meningococci. Cross-reactivity could be achieved by targeting antigenically invariant 

sub-capsular structures or by combining a cocktail of vaccine antigens selected on 

the basis of molecular epidemiological studies. A number of meningococcal surface 

structures are thought to play a role in mucosal colonization, haematogenous spread 

and penetration of the blood brain barrier (13). In order to escape immune 

surveillance, meningococci have developed a range of mechanisms to change 

surface components. We assume that development of herd immunity is responsible 

for the complete disappearance of meningococcal clones after a few years of 

colonization of populations in the African meningitis belt (4). Here we have 

investigated whether meningococcal populations escape from immune detection by 

varying their OMPs PorA, PorB, FetA and Opa. The serogroup A ST7 and ST 2859 

meningococci analyzed have been collected between March 2002 and April 2008 in 

the course of longitudinal meningococcal colonization and disease surveys in Ghana 

and Burkina Faso (4), (7). 
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Materials and methods 
 

Bacterial isolates 
The N. meningitidis isolates investigated in this study had been collected in the 

Kassena-Nankana District (KND) and the neighboring district of Bawku in Ghana 

and in the Nouna health district (NHD) in the Kossi region of Burkina Faso. Case 

strains were isolated from the cerebrospinal fluid of meningitis patients and carriage 

strains were isolated from throat swabs collected in the context of longitudinal 

carriage surveys. Isolation and characterization of strains has been described 

previously (14), (4), (7). For the analysis of genetic diversification, serogroup A ST7 

and ST2859 strains isolated from cases and carriers at different times during clonal 

colonization and disease waves were selected from our strain collection. Included 

were nine ST7 carriage and seven ST7 case isolates collected between March 2002 

and March 2005 in the KND of Ghana. In the case of ST2859 strains we analyzed 

six case and seven carriage isolates collected between March 2006 and March 2007 

in the NHD of Burkina Faso, as well as three case and fifteen carriage isolates from 

the KND, as well as three case isolates collected between March 2007 and April 

2008 in the neighboring district of Bawku.  

 

Genetic analysis 
DNA was extracted from bacterial pellets using the Wizard® Genomic DNA 

Purification Kit (Promega AG, Duebendorf, Switzerland). The DNA concentration 

was measured using a Nano drop Spectrophotometer (Witec Ag, Littau, 

Switzerland). PCR was performed using 5μl of 10× BD buffer and 1μl of FirePol Taq 

polymerase, 1.25 mM MgCl2 (Solis BioDyne, Tartu, Estonia), 100 ng of genomic 

DNA or the equivalent volume of nuclease-free water as a negative control, a 0.2 μM 

concentration of each forward and reverse primer, and a 0.2 mM concentration of 

each deoxynucleoside triphosphate in a total volume of 50 μl. PCRs were run in a T 

Professional Basic PCR machine (Biometra GmbH, Göttingen Germany). The 

thermal profile for PCR amplification included an initial denaturation step of 94°C for 

2 min, followed by 35 cycles of 94°C for 30 s, annealing at 55°C for 30 s, and 
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elongation at 72°C for 1min 20 s up to 2 min. The PCRs were finalized by an 

extension step at 72°C for 10 min. PCR products were analyzed on 1% agarose gels 

by gel electrophoresis using ethidium bromide staining and the AlphaImager 

illuminator and AlphaImager software (Alpha Innotech, San Leandro, CA). PCR 

products were purified using a NucleoSpin purification kit (Macherey-Nagel GmbH & 

Co. KG, Düren, Germany) and subjected to direct sequencing or cloned using a 

TOPO TA cloning kit (Invitrogen Corp., Carlsbad, CA), transformed into Novablue 

competent cells (Merck, Darmstadt, Germany), and sequenced after DNA 

preparation (Macherey-Nagel GmbH & Co. KG, Düren, Germany). Sequencing was 

performed by Macrogen Inc, Seoul, Korea. For PorA, Por B and FetA typing primers 

were used as previously described (15) (16) (17). For the opa genes and their 

flanking regions the following primers were used: OpaA VNTR15af (TCATCCGCT 

ACATTGTGTTGA) and OpaA2r (TCGTCATTCCCACGGAAGT) for amplification and 

VNTR15af, OpaA4r (TTTCCTGATTTTCCGTCTTCA), OpaA5r (ATGACGGTTCGGG 

TATTTCC) and OpaA4f (GCGGCAGATTATG CCAGTTA) for sequencing. OpaB: 

OpaB2f (CA GGACAAGGCGACGAG) and OpaB5r (TGTCTGGACGGGGATGT) for 

amplification and VNTR15br (GCACACCGATATAGGGTTTGAA), OpaBf (GTGTTG 

AAACATCGCCACAA), OpaBr1 (GGCATTTTTCCATGCGTTT) and OpaBff (GCGAG 

AACTGAAGACGGAAA) for sequencing. For OpaD, OpaD5f (TCTCCGTAG 

AGGAAATGATGC) and OpaD3r (AAGTGGGAATCTAGGACGTAAAA) for 

amplification and OpDf (TCATCCGCTATATTGTGTTGA), Opa26f (TGGGTCTTGG 

TGTCATCG), OpA26r (GAATAATTACTTTCTTTCCATTTTCTG), OpD2f (CGCCCC 

AAACCTGATATAGT) and OpDr2 (GAAACGGTGGGAATTGTGTAA) for sequencing 

were used. For OpaJ: Opaj5f (CGCCCCAAACCTGATATAGT) and Opaj1r (ATCT 

AGAACGTGGGGTTTGG) for amplification and Opaj5f, Opaj7f (TGATATAGTC 

CGCTCCTGCAA) Opaj8f (CGGTGCAGACAAAGACAAAA) Opaj9f (GTCGCCGG 

TGCTGCTA) Opaj10r (TAG CAGCACCGGCGAC) Opaj3r (TTTGGGCAACTGTT 

TTTATCC) for sequencing. Design of the primers used for amplification of opaA, 

opaB and opaD was based on the serogroup A strain Z2491genome sequence (18). 

and the Primer3 program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). 

The sequences obtained were analyzed making use of the N. meningitidis sequence 
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databases:(http://neisseria.org/perl/agdbnet.pl?file=poravr.xml), (http://neisseria.org/ 

nm/typing/porb/),(http://neisseria.org/perl/agdbnet.pl?file=fetavr.xml), 

(http://neisseria.org/nm/typing/opa/). The multiple sequence alignment websites 

Multalin (http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html) and Clustalw2 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html) were used for comparisons 

between Opa gene sequences and their flanking regions. The EMBOSS Transeq 

tool was used for the translation of the retrieved opa gene sequences. 

(http://www.ebi.ac.uki/Tools/ emboss/transeq).  
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Results 
 
PorA, PorB and FetA protein typing 
N. meningitidis is naturally highly competent and transformation by exogenous DNA 

leading to allelic exchange of gene fragments and genes represents an important 

mechanism of genetic diversification of this species. Nevertheless all 50 serogroup A 

strains analyzed here shared the same porA, porB and fetA gene sequences (Table 

1). The analyzed strains had been isolated from CSF of meningitis patients or from 

the pharynx of healthy carriers during two sequential colonization and disease 

waves in northern Ghana and during a meningococcal disease outbreak in Burkina 

Faso. Strains isolated from the start (2002) till the end (2005) of a ST7 colonization 

wave (4) were included in the analysis. In the case of ST 2859, strains isolated 

during outbreaks in Burkina Faso (2006-2007) (7) and in northern Ghana (2007-

2008) were analyzed.  

 

All PorA sequences had the VR1, VR2: 20,9 variable regions. The Por B sequences 

were invariably of class 3 and had the allele 47 and the variable region of Fet A was 

F3-1. In spite of microevolution of the epidemic clones, as detected by pulsed field 

gel electrophoresis (19), the structural composition of the analyzed OMPs thus was 

strikingly stable, providing no evidence for selection of OMP antigenic variants by 

herd immunity.  

 

Sequence analysis of opa genes and their flanking regions 
The multiple copies of genes encoding the Opa proteins can be turned on and off by 

slipped strand mispairing of tandem CTCTT repeats present in their open reading 

frames. Here we have used the published genome sequence of the serogroup A 

ST4 strain Z2491 to design primers specific for the flanking regions of the opaA, 

opaB and opaD genes. In contrast to strain Z2491, the ST7 and ST2859 strains 

analyzed here all contained an opaJ gene, as has been described for other ST5-

complex/subgroup III strains (20). 
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All strains analyzed here (Table 1) had identical opaB and opaD alleles (253 and 

296, respectively). ST7 and ST2859 isolates had different opaJ alleles (213 and 127, 

respectively). While both ST7 strains from Ghana and ST2859 strains from Burkina 

Faso had the opaA allele 242, the ST2859 isolates from Ghana had opaA253. No 

variation was observed within the three individual groups of epidemiologically related 

isolates. 

 

The numbers of pentamer repeats within the coding sequences of the opa genes 

were subject to much wider variation. However, strains isolated at the same location 

and a similar time point tended to be relatively uniform. For example, all Ghanaian 

ST2859 isolates from 2007, had 8 opaA, 8 opaB and 10 opaD repeats, while 5/6 

isolates from 2008 had 10 opaA, 7 opaB and 12 opaD repeats. Alleles with a 

number of pentamer repeats that were a multiple of three were found to be 

functional genes (Table 1). Disease and colonization isolates did not differ 

significantly in the Opa protein expression patterns.  
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Discussion: 
 
Humans are the only natural host for N. meningitidis and nasopharyngeal carriage 

rates are generally much higher than disease rates. In a longitudinal study in the 

northern Ghana we have observed waves of colonization and disease with hyper-

virulent clones of serogroup A meningococci. About four years after their local 

emergence these clones disappeared completely (4). This may be attributed to the 

development of herd immunity against the colonizing clone in the local population. 

Antibodies directed against outer membrane proteins have been implicated in the 

development of natural immunity against meningococci. In particular antibodies 

directed against the PorA and PorB proteins seem to provide serosubtype-specific 

protection (21). This prompted us to investigate whether immune selection pressure 

building up in the population during colonization waves leads to an antigenic 

diversification of OMPs in the colonizing meningococcal population. It has been 

proposed that the propensity of N. meningitidis to accumulate mutations increases 

dramatically towards the end of an epidemic, presumably due to immune pressure, 

and that with time, variants can arise forming new genoclouds (22). However, we 

detected no mutational changes in the surface proteins PorA, PorB and FetA in any 

of the strains investigated here. The benefit of accumulating mutations in order to 

escape herd immunity may thus be dispossessed by the fitness cost that such 

mutations may confer (22). This striking lack of diversification may also be due the 

lack of a genetically diverse pharyngeal flora of N. meningitidis, in the study 

population (4), not allowing for horizontal genetic exchange (23).  

 

While all PorA, PorB and FetA had the same alleles irrespective of the time point 

and location of isolation as well as the sequence type of the strains examined, two of 

the four opa genes analyzed were subject to some variation. The opa gene 

repertoire of most meningococcal isolates comprises 3-4 loci (opaA, opaB, opaD, 

and opaJ) (20). 
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The expression of the full length protein is controlled at the translational level by a 

phase-variable pentameric repeat region within the opa gene open reading frame 

(24), (25).While the OpaA genes of the Ghanaian ST7 strains as well as the ST2859 

strains from Burkina Faso had the allele 242, all Ghanaian ST2859 strains had the 

allele 253. ST7 and ST2859 are MLST single locus variants and the ST2859 

genocloud may have developed from ST7 meningococci in Africa. The change of the 

opaA allele in the ST 2859 genocloud that emerged in Ghana in 2008 (unpublished 

results) may have been due to homologous recombination and immune selection 

against the 242 allele (26), (27). In the case of the opaJ gene all ST7 isolates had 

the allele 213, whereas the ST2859 strains both from Ghana and from Burkina Faso 

had the allele 127.  

 

The highest variability observed in this study was due to changing numbers of 

pentamer repeats in the open reading frames of the opa genes. Whereas there was 

a certain conservation of numbers of pentamer repeats in strains collected at the 

same location and at a similar time point, the overall variability of the number of 

repeats was quite high. This variation of numbers of tandem repeats is due to 

slipped strand mispairing and results in phase variation involving on/off expression 

of the respective opa gene (28). Antigenic variation of the Opa genes has been 

suggested to be mediating immune evasion (29), (27). Functional open reading 

frames were found for all four opa genes, but no more than two functional opa genes 

were found in any of the strains.  

 

Control of meningitis epidemics has relied so far on reactive vaccination strategies 

with polysaccharide vaccines. While a serogroup A conjugate vaccine is currently 

being clinically tested, a comprehensive vaccine based on sub-capsular outer 

membrane proteins (OMPs) is not yet available. Future analyses of the whole 

genomes of epidemiologically well defined collections of isolates may give insight 

into the driving forces behind the micro-evolution of N. meningitidis. Results will help 

identifying antigens suitable for inclusion into a multivalent subunit vaccine (30). 



CHAPTER 3 
 

 

64

Acknowledgments 
This work was supported by the Volkswagen Foundation through the Collaborative 

Research Grant (SFB) 544 ‘Control of Tropical Infectious Diseases’. This publication 

made use of the Neisseria Multi-Locus Sequence Typing website 

(http://pubmlst.org/neisseria/) developed by Keith Jolley and Man-Suen Chan (Jolley 

et al. 2004, BMC Bioinformatics, 5:86) and sited at the University of Oxford. The 

development of this site has been funded by the Wellcome Trust and European 

Union. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 
 

 

65

Table 1 

Origin and characteristics of serogroup A meningococci analyzed. The opa genes that were 
found to be in frame are framed. 
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Abstract 
 
Streptococcus agalactiae, also referred to as group B streptococcus (GBS) is 

traditionally considered a neonatal pathogen. However, GBS is also emerging as a 

significant cause of morbidity in adults. In this study we examined the population 

structure of a clinically well documented collection of S. agalactiae isolates sampled 

between 2007 and 2010 at the Aga Khan Hospital in Nairobi, Kenya. This collection 

included 98 carrier and 75 clinical isolates. Using MLST and molecular serotyping, 

we identified 22 Sequence types, including 5 novel sequence types mainly 

associated with disease. A strong correlation between sequence types and distinct 

capsular serotypes was found with the disease isolates showing higher variability 

compared to the carrier isolates. The most prevalent sequence type was ST-23 in 

both clinical and carrier isolates, accounting for 26.6% in total. 99.4 % of the isolates 

were of one of the five previously described capsular serotypes Ia, Ib, II, III and V.  

 
Introduction  
 

Streptococcus agalactiae, also known as group B streptococci (GBS) are Gram-

positive, β-hemolytic, chain-forming cocci that are traditionally considered to be 

primarily a pathogen affecting neonates. However, S. agalactiae is also emerging as 

a pathogen responsible for significant morbidity in pregnant women and in non-

pregnant adults, especially in the elderly and persons suffering from underlying 

conditions such as diabetes and cancer [1], [2]. In newborns, S. agalactiae causes 

sepsis, pneumonia, meningitis, and less frequently focal infections such as 

osteomyelitis, septic arthritis or cellulite [3]. In pregnant women, GBS cause urinary 

tract infection, chorio-amnionitis, endometritis, bacteremia and most likely stillbirth. 

Diseases in adults caused by S. agalactiae include mainly skin and soft-tissue 

infection, bacteremia, urinary tract infections, pneumonia and osteomyelitis. 

Meningitis, endocarditits and the streptococcal toxic shock syndrome are rare but 

serious clinical syndromes of S. agalactiae infections [1], [2], [4], [5]. S. agalactiae 

colonizes asymptomatically the lower gastrointestinal and genitourinary tracts of 30-
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50 % of healthy adults [6], and an estimated 20 - 30 % of all pregnant women are 

carriers. S. agalactiae can be isolated from swabs of the vagina or the rectum and 

prenatal recto-vaginal screening for colonization of pregnant women is 

recommended [3]. Intra-partum antibiotic prophylaxis has been introduced 

successfully in a number of Western Countries to prevent vertical transmission to the 

neonate during delivery [7], [8].  

 

The development of a multi-locus sequence based typing scheme (MLST) for S. 

agalactiae allows unambiguous comparison of the population structures of S. 

agalactiae among different geographical areas [9]. This MLST uncovers sequence 

variation among seven conserved housekeeping genes, classifying strains into 

numerous clones, or sequence types (STs). Some STs can be grouped together into 

clusters or clonal complexes (CCs) following phylogenetic analyses. Four STs were 

found to be the most prevalent in a global collection of strains, ST-1, ST-17, ST-19, 

and ST-23 [9]. ST-17 and strains of its clonal complex were strongly associated with 

neonatal disease in several populations and may have an enhanced invasiveness 

[9], [10]. MLST has been used to investigate the population structure of S. agalactiae 

in different regions of the United Kingdom [9], [11], the United States [12], Canada 

[13] Poland [14], Sweden [15], Portugal [16], France [17], Italy [17], Norway [18], and 

Israel [19]. Limited epidemiological studies from Kenya [20], South Africa [21], 

Malawi [22], Senegal and Central African Republic [23] suggest that S. agalactiae is 

emerging also in Africa as an important cause morbidity and mortality. 

 

Imperi et al. have developed a multiplex PCR assay for the direct identification of the 

10 known capsular serotypes (Ia to IX) of S. agalactiae that correlates with the 

conventional typing results [24]. Five serotypes (Ia, Ib, II, III and V) account for 96% 

of neonatal disease and 88% of invasive disease in adults in the US [25]. In the UK, 

the same five serotypes were accounting for 98% of neonatal disease and 94% of 

carrier isolates in pregnant women [11]. 
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It has been shown that placental transfer of maternal antibodies against GBS 

capsular polysaccharides can protect infants from invasive GBS infection [1]. The 

introduction of a GBS vaccine for pregnant mothers has the potential to prevent GBS 

induced diseases in the newborn and efforts towards developing a subunit vaccine 

are pursued [26], [27]. Capsular polysaccharides representing each of the five major 

serotypes in the US have been conjugated to a protein carrier and have shown 

immuno-genicity in clinical vaccine trials [28]. A pentavalent conjugate vaccine might 

therefore be sufficient to induce antibodies against the majority of serotypes 

circulating in the US [28], [29], as well as England [11]. In order to develop an 

effective vaccine against S. agalactiae in different areas of the world, a precise 

characterization of the genetic diversity and the distribution of serotypes circulating 

within human populations in the respective regions is needed (http://www.who.int/ 

vaccine_research/diseases/soa_bacterial/en/index6.html). 

 

In this investigation we examined the population structure of a collection of 173 

isolates of S. agalactiae. These samples have been collected and documented at 

the Aga Khan University Hospital of Nairobi, Kenya over the last 4 years. To our 

knowledge, this is the first report of GBS molecular epidemiology in urban East 

Africa. 
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Materials and Methods 
 
Ethical clearance for this study was obtained from the Ethikkommission beider Basel 

(EKBB). 

 

The S. agalactiae isolates were routinely sampled and identified at the AKUH, 

Nairobi, Kenya from both in-patients and out patients. The species identification was 

performed using colony morphology, Gram staining, the CAMP test, as well as by 

performing the slide agglutination test of the bacterial meningitis kit (Welcogen) with 

specific Group B latex.  

 

Duplicates of the isolates were transferred to the Swiss TPH. The isolates were 

incubated overnight at 37°C on Columbia Agar sheep blood plus plates (Oxoid). 

Single colonies were then selected and plated in order to grow overnight for MALDI-

TOF MS confirmation of identity. A small amount of bacteria was suspended in 25 % 

formic acid and immobilized on the MALDI-TOF MS target by addition of a matrix 

(Sinapic acid or 3,5,-dimethyoxy-4-hydroxy cinnamic acid), in order to crystallizes 

the whole cell and brake the cellular membranes. The Samples were measured 

using the Axima Confidence™ (Shimadzu, Japan) with an automated measurement 

method. Using the SARAMIS software, automated computer-aided identification of 

bacteria was achieved by comparing mass spectra for individual samples against the 

SARAMIS SuperSpectra™ database (Anagnostec, Germany).  

 

For MLST, strains were grown overnight at 37°C on Columbia Agar sheep blood 

plus plates (Oxoid), genomic DNA was extracted from the bacterial pellets using the 

Wizard® Genomic DNA Purification Kit (Promega AG, Duebendorf, Switzerland) and 

the MLST PCR amplification and sequencing was performed with the standard 

primers as described. [9]. Briefly, PCR reactions were done with 5μl of 10 × BD 

buffer and 1μl of FirePol Taq polymerase, 1.25 mM MgCl2 (Solis BioDyne, Tartu, 

Estonia), 100 ng of genomic DNA or the equivalent volume of nuclease-free water 

as a negative control, a 0.2 μM concentration of each forward and reverse primer, 
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and a 0.2 mM concentration of each deoxynucleoside triphosphate in a total volume 

of 50 μl. The PCR reactions were run in a T Professional Basic PCR machine 

(Biometra GmbH, Goettingen Germany). PCR products were analyzed on 1% 

agarose gels by gel electrophoresis and then subjected to purification and direct 

sequencing on an ABI3730 XL automatic DNA sequencer (Macrogen, Seoul, South 

Korea). All alleles were sequenced on both strands and aligned with the ABI Prism 

Auto assembler, version 1.4.0 (Perkin-Elmer, Waltham, MA). Novel alleles and 

sequence types were amplified and sequenced twice independently and then 

submitted for allele assignment. The allele types and ST were determined by making 

use of the S. agalactiae MLST website (http://pubmlst.org/ sagalactiae/) developed 

by Man-Suen Chan and Keith Jolley and sited at the University of Oxford [30]. The 

neighbour joining tree was generated from the allelic profiles obtained using Start2 

[31]. 

 

The multiplex PCR assay for the identification of the capsular types prevalent in our 

collection was performed as previously described. A positive control for all 10 

capsular serotypes was included into each of the multiplex PCR assay [24].  



CHAPTER 4 
 

 

76

Results 
 
A collection of 173 GBS isolates originating from Kenya were typed using MLST [9], 

and twenty two sequence types (STs) could be resolved (Fig. 1). Isolates were 

grouped into clonal complexes (CC) by use of eBURST software (by relaxing the 

group definition to six out of seven shared alleles), and thirteen STs were clustered 

in five CC, namely CC23, CC19, CC17, CC10 and CC1. The most prevalent CC was 

CC23 (27.7%), followed by CC17 (22.0%), CC10 (16.2%), CC19 (13.3%) and CC1 

(12.1%). 91 % of the isolates could be grouped to one of these five CCs. Singletons 

not clustering were identified as ST-3, ST-4, ST-24, ST-26 ST-103, ST-327, ST-328, 

ST-485 and ST-486 (Table 1). Five novel STs could be found in this collection and 

were named ST-484, ST-485, ST-486, ST-492 and ST-501. All newly found STs are 

single or double locus variants of a known ST, namely ST-17, ST-103 or ST-23. 

  

98 GBS isolates obtained from asymptomatic carriers and 75 clinical case isolates 

were MLST typed. The carrier samples could be grouped into 16 STs while the 

clinical isolates resolved into 19 STs (Table 1). The ST-4, ST-103, ST-327, ST-485, 

ST-492 and ST-501 were present exclusively in the clinical cases. ST-3, ST-24 and 

ST-8 could be detected only among the carriers (Table 1). ST-484, a novel single 

locus variant (SLV) of ST-17 was found 8 times in the case isolates and 2 times in 

the carrier isolates.  

 

Preliminary work on GBS MLST typing using a global collection of isolates [9] has 

shown that capsular serotype does not strictly follow the ST. We used the PCR 

based capsular typing method [24] for assigning the capsular serotypes in our 

collection. In total, six different serotypes were detected namely Ia, Ib, II, III, IV and 

V. The most common serotype was serotype III (31.2%), followed by serotype Ia 

(30.0%), serotype V (17.3%), serotype Ib (13.9%), serotype II (6.9%), and 1 isolate 

was of the serotype IV (0.6%) (Table 1). A close correlation between capsular 

serotype and ST could be observed. Out of the 46 strains that were of the ST-23, 43 

were serotype Ia. All 28 isolates of the ST-17 were of serotype III. 18 out of the 20 
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isolates that had the ST-10 were of the serotype Ib. 15 out of the 16 isolates with 

ST-1 were of serotype V. All ST-484 and ST-182 isolates had the serotype III. 

Interestingly, S. agalactiae obtained from clinical cases showed a higher general 

variability in the capsular serotypes of the same ST compared to the carrier S. 

agalactiae like ST-23, ST-12, ST-10 and ST-1 (Figure 2). 

 

Next, we analysed the relationship between clinical disease and STs and serotypes 

(Table 2). Samples obtained from urine showed a clear bias towards ST-23, ST-17, 

ST-10 and ST-1. Interestingly, out of the thirteen isolates obtained from blood, the 

novel ST-484, ST-485, ST-486 and ST-492 represented 38 % (Table 2) indicating 

that these STs clearly have pathogenic potential.  

 
 
Discussion: 
 
A detailed analysis of the population structure of S. agalactiae in Africa has not been 

performed so far. In this work we used the well established MLST in combination 

with molecular serotyping to characterize strains collected from asymptomatic 

carriers and clinical cases at the Aga Khan University Hospital in Nairobi in the years 

2007 to 2010. Our collection consisted of 98 carrier and 72 adult disease isolates as 

well as 3 invasive isolates from infants. 

  

Using MLST, the 173 GBS isolates investigated resolved into 22 STs out of which 5 

STs had not been previously described. 5 CCs (CC23, CC19, CC17, CC10 and 

CC1) were accounting for 91.3% of our isolates. These 5 CCs were also highly 

prevalent in other regions of the globe, such as Sweden [15], Italy [17], England [11], 

the US [12], the Central African Republic, Senegal [23] as well as Israel. In Israel, a 

high prevalence of ST-22 was also detected [19]. In a global collection of strains 

isolates of ST-22 were exclusively found in Israel [9] and ST-22 was absent in our 

collection. CC-26 which represented 15% of all identified isolates in the Central 

African Republic and Senegal [23] was only found three times in our collection. 
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Five capsular serotypes (Ia, Ib, II, III, V) were accounting for 99.4 % of all isolates in 

our collection. These serotypes were also commonly present in other regions of the 

world, including the Central African Republic and Senegal [23], England [11], 

Norway [18], the Unites States [25], Israel [19] and Korea [32].  

 

Similarly to previous reports [23], [15], we observed an overall correlation between 

genotype defined by MLST and the capsular serotype. However, a certain 

diversification could be detected, and in general, the clinical isolates displayed a 

higher variability of both sequence types and corresponding capsular serotypes.  

 

Also, it is worth noting that all of the 5 novel STs including ST-484, ST-485, ST-486, 

ST-492 and ST-501, were at least found once in disease isolates and only ST-484 

and ST-486 were also found in carrier isolates. The most prevalent novel ST was 

ST-484, a SLV of ST-17, accounting for 10 isolates. In agreement with previous 

reports [33], [34], ST-17 was invariably associated with the capsular serotype III, as 

was ST-484. The ST-17 complex is thought to have relatively recently arisen from a 

bovine ancestor [34] and appears to have diverged independently with an exclusive 

set of virulence characteristics [35]. The enhanced invasiveness of ST-17 has been 

proposed to be specific to neonates and independent of capsular serotype [11]. In 

our study the GBS samples had mainly been collected from adults, and only 8 of the 

28 isolates of the ST-17 were associated with disease. However, 8 of the 10 strains 

of the ST-484 were invasive isolates, including two neonatal blood isolates, three 

urine isolates, two pus isolates and one isolate from fat tissue. Two novel sequence 

types had emerged from ST-23, the most frequently detected ST in our collection. 

ST-492 and ST-501, both SLVs of ST-23 had the serotype Ia and were derived from 

adult disease isolates. ST-103, its SLV ST-486 as well as its double locus variant 

ST-485 were of the capsular serotype Ia, and one isolate of each ST was found in 

adult blood isolates of our collection. One strain of the ST-486 was also found 

amongst the carrier isolates. ST-103 had previously been isolated from humans as 

well as animals. One invasive strain of the ST-103 was found in an elderly person 

and carrier strains had been isolated from pregnant women [11], [35]. Animal strains 
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of the ST-103 had been found in a guinea pig, a cat and a cow [33]. Having its 

habitat in both humans and animals, S. agalactiae may be provided with a great 

available gene pool for lateral gene transfer [36],[37]. It has been demonstrated that 

GBS DNA segments of up to 334 kb can be transferred through conjugation, and 

that large DNA exchanges may contribute to the genome dynamics in the natural 

population challenging the GBS vaccine development [38], [27]. A pentavalent 

conjugate vaccine including the capsular serotypes Ia, Ib, II, III and V has been 

proposed for the US [29], and such a vaccine may provide protection against the 

majority of serotypes circulating in different areas of the world, including the Central 

African Republic, Senegal [23], England [11], Norway [18], Israel [19] and Korea 

[32], as well as our setting. Other serotypes have been reported to arise however 

[39], [32], and a vaccine including the capsular serotypes Ia, Ib, II, III, and V may not 

be suitable in regions like Japan [40]. Efforts have been undertaken to develop a 

protein based vaccine against GBS, using genomic and proteomic-based 

approaches, but no vaccine is on the market to date [41], [26], [27]. 
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 Figure 1: 
 

 
 
 
 
 
Figure 1 Neighbour-joining tree showing genetic relationships between 22 STs of 
group B Streptococcus isolated from patients with asymptomatic carriage, neonates 
and adults. The phylogeny is based on MLST data for seven housekeeping genes.  
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Figure 2: Overview of distribution of STs with their capsular serotypes for 
carrier and clinical case isolates of S. agalactiae.  
 
In the 75 clinical isolates investigated, 19 different ST could be observed while in the 
98 carrier isolates investigated, 16 ST were identified. For the capsular serotyptes, 6 
and 5 different serotypes were found in carrier and case isolates, respectively. A 
higher variety of ST and corresponding capsular serotypes was detected in clinical 
vs carrier isolates. 



CHAPTER 4 
 

 

82

 



CHAPTER 4 
 

 

83

 
 
 



CHAPTER 4 
 

 

84

 
 

References: 
 
[1] Rajagopal L. Future microbiology 2009;4:201-221. 
 
[2] Skoff TH, Farley MM, Petit S, Craig AS, Schaffner W, Gershman K, Harrison LH, 

Lynfield R, Mohle‐Boetani J, Zansky S, Albanese BA, Stefonek K, Zell ER, Jackson D, 
Thompson T, Schrag SJ. Clinical infectious diseases 2009;49:85-92. 

 
[3] Gibbs RS, Schrag S, Schuchat A. Obstet gynecol 2004;104:1062-1076. 
 
[4] Farley MM. Clin. infect. dis 2001;33:556-561. 
 
[5] Ulett KB, Benjamin WH, Zhuo F, Xiao M, Kong F, Gilbert GL, Schembri MA, Ulett 

GC. J clin microbiol 2009;47:2055-2060. 
 
[6] van der Mee-Marquet N, Fourny L, Arnault L, Domelier A, Salloum M, Lartigue M, 

Quentin R. J clin microbiol 2008;46:2906-2911. 
 
[7] Schrag SJ, Zywicki S, Farley MM, Reingold AL, Harrison LH, Lefkowitz LB, Hadler 

JL, Danila R, Cieslak PR, Schuchat A. N. engl. j. med 2000;342:15-20. 
 
[8] Spaetgens R, DeBella K, Ma D, Robertson S, Mucenski M, Davies HD. Obstet gynecol 

2002;100:525-533. 
 
[9] Jones N, Bohnsack JF, Takahashi S, Oliver KA, Chan M, Kunst F, Glaser P, Rusniok C, 

Crook DWM, Harding RM, Bisharat N, Spratt BG. J clin microbiol 2003;41:2530-2536. 
 
[10] Lin FC, Whiting A, Adderson E, Takahashi S, Dunn DM, Weiss R, Azimi PH, Philips 

JB, Weisman LE, Regan J, Clark P, Rhoads GG, Frasch CE, Troendle J, Moyer P, 
Bohnsack JF. J. clin. microbiol 2006;44:1257-1261. 

 
[11] Jones N, Oliver KA, Barry J, Harding RM, Bisharat N, Spratt BG, Peto T, Crook DW. 

Clin. infect. dis 2006;42:915-924. 
 
[12] Bohnsack JF, Whiting A, Gottschalk M, Dunn DM, Weiss R, Azimi PH, Philips JB, 

Weisman LE, Rhoads GG, Lin FC. J. clin. microbiol 2008;46:1285-1291. 
 
[13] Manning SD, Springman AC, Lehotzky E, Lewis MA, Whittam TS, Davies HD. J. clin. 

microbiol 2009;47:1143-1148. 
 
[14] Sadowy E, Matynia B, Hryniewicz W. J. antimicrob. chemother. 2010:dkq230. 
 
[15] Luan S, Granlund M, Sellin M, Lagergård T, Spratt BG, Norgren M. J. clin. microbiol 

2005;43:3727-3733. 
 



CHAPTER 4 
 

 

85

[16] Martins ER, Pessanha MA, Ramirez M, Melo-Cristino J. J clin microbiol 
2007;45:3224-3229. 

 
 
[17] Gherardi G, Imperi M, Baldassarri L, Pataracchia M, Alfarone G, Recchia S, Orefici G, 

Dicuonzo G, Creti R. J. clin. microbiol 2007;45:2909-2916. 
 
[18] Bergseng H, Afset JE, Radtke A, Loeseth K, Lyng RV, Rygg M, Bergh K. Clin. 

microbiol. infect 2009;15:1182-1185. 
 
[19] Bisharat N, Jones N, Marchaim D, Block C, Harding RM, Yagupsky P, Peto T, Crook 

DW. Microbiology (reading, engl.) 2005;151:1875-1881. 
 
[20] English M, Ngama M, Musumba C, Wamola B, Bwika J, Mohammed S, Ahmed M, 

Mwarumba S, Ouma B, McHugh K, Newton C. Arch. dis. child 2003;88:438-443. 
 
[21] Madhi SA, Radebe K, Crewe-Brown H, Frasch CE, Arakere G, Mokhachane M, 

Kimura A. Ann trop paediatr 2003;23:15-23. 
 
[22] Gray KJ, Bennett SL, French N, Phiri AJ, Graham SM. Emerg infect dis 2007;13:223-

229. 
 
[23] Brochet M, Couvé E, Bercion R, Sire J, Glaser P. J clin microbiol 2009;47:800-803. 
 
[24] Imperi M, Pataracchia M, Alfarone G, Baldassarri L, Orefici G, Creti R. J. microbiol. 

methods 2010;80:212-214. 
 
[25] Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH, Petit S, Craig AS, 

Schaffner W, Zansky SM, Gershman K, Stefonek KR, Albanese BA, Zell ER, Schuchat 
A, Schrag SJ. Jama 2008;299:2056-2065. 

 
[26] Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, 

Brettoni C, Iacobini ET, Rosini R, D'Agostino N, Miorin L, Buccato S, Mariani M, 
Galli G, Nogarotto R, Nardi Dei V, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, 
Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G. Science 2005;309:148-150. 

 
[27] Johri AK, Paoletti LC, Glaser P, Dua M, Sharma PK, Grandi G, Rappuoli R. Nat. rev. 

microbiol 2006;4:932-942. 
 
[28] Baker CJ, Edwards MS. Arch. dis. child 2003;88:375-378. 
 
[29] Edwards MS. Hum vaccin 2008;4:444-448. 
 
[30] Jolley K, Chan M, Maiden M. Bmc bioinformatics 2004;5:86. 
 
[31] Jolley KA, Feil EJ, Chan MS, Maiden MC. Bioinformatics 2001;17:1230-1231 
. 
[32] Seo YS, Srinivasan U, Oh K, Shin J, Chae JD, Kim MY, Yang JH, Yoon H, Miller B, 



CHAPTER 4 
 

 

86

DeBusscher J, Foxman B, Ki M. J. korean med. sci 2010;25:817-823. 
 
[33] Brochet M, Couvé E, Zouine M, Vallaeys T, Rusniok C, Lamy M, Buchrieser C, Trieu-

Cuot P, Kunst F, Poyart C, Glaser P. Microbes infect 2006;8:1227-1243. 
 
[34] Bisharat N, Crook DW, Leigh J, Harding RM, Ward PN, Coffey TJ, Maiden MC, Peto 

T, Jones N. J. clin. microbiol 2004;42:2161-2167. 
 
[35] Springman AC, Lacher DW, Wu G, Milton N, Whittam TS, Davies HD, Manning SD. 

J. bacteriol 2009;191:5419-5427. 
 
[36] Lefébure T, Stanhope MJ. Genome biol 2007;8:R71. 
 
[37] Marri PR, Hao W, Golding GB. Mol. biol. evol 2006;23:2379-2391. 
 
[38] Brochet M, Rusniok C, Couvé E, Dramsi S, Poyart C, Trieu-Cuot P, Kunst F, Glaser P. 

Proc. natl. acad. sci. u.s.a 2008;105:15961-15966. 
 
[39] Diedrick MJ, Flores AE, Hillier SL, Creti R, Ferrieri P. J. clin. microbiol 2010;48:3100-

3104. 
 
[40] Lachenauer CS, Kasper DL, Shimada J, Ichiman Y, Ohtsuka H, Kaku M, Paoletti LC, 

Ferrieri P, Madoff LC. J. infect. dis 1999;179:1030-1033. 
 
[41] Doro F, Liberatori S, Rodríguez-Ortega MJ, Rinaudo CD, Rosini R, Mora M, Scarselli 

M, Altindis E, D'Aurizio R, Stella M, Margarit I, Maione D, Telford JL, Norais N, 
Grandi G. Mol cell proteomics 2009;8:1728-1737. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 5 
 

 

87

 
 
 
 
 
 
 
 
 
 
 
 

 

CHAPTER 5: DISCUSSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 5 
 

 

88

 

General discussion  
 

Humans have approximately ten times more bacteria associated with them than they 

have human cells in the body. The bacteria of the normal flora of the human are 

usually found in the exposed parts of the body such as the skin, the mucosal 

surfaces of the nose, the mouth and intestinal and urogenital tracts. Although 

bacteria of the normal flora may be harmful if they spread into previously sterile parts 

of the body, the normal flora prevents pathogen colonization by occupying almost all 

of the available ecological niches. Besides out-competing pathogens for living 

space, the normal flora of the skin produces fatty acids, discouraging other species 

from invading. Gut bacteria release a number of factors with antibacterial activity, 

and vaginal lactobacilli maintain an acid environment, suppressing growth of other 

organisms.  

 

Commensals are usually harmless organisms residing on the body of larger species. 

Many bacteria, not only the normal flora but also neisserial, streptococcal as well as 

other bacterial species may live in coexistence with the human host without causing 

harm, but there are numerous ones that quite commonly cause disease. However, 

microorganisms are generally confronted with the antimicrobial defenses of its host 

and have evolved ways to overcome the defense mechanisms of both the innate 

and adaptive immune system.  

 

In the work presented in this thesis, we were investigating the genetic variability of 

Mycobacterium ulcerans, Neisseria meningitidis, as well as Streptococcus 

agalactiae. The aim of this study was to contribute to the understanding of how 

genetic variablility allows these bacterial pathogens to evade the immune system of 

the human host and the challenge that genetic variability may pose for vaccine 

development.  
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Mycobacterium ulcerans  
 
M. ulcerans has arisen from Mycobacterium marinum by horizontal transfer of a 

virulence plasmid coding for the enzymes needed for mycolactone production, 

followed by reductive evolution. In our study, we have analyzed a worldwide 

collection of M. ulcerans strains belonging to the ancestral as well as the classical 

lineage. The ancestral lineage has been previously reported to be phylogenetically 

closer to its progenitor M. marinum than members of the M. ulcerans classical 

lineage [1]. While being present in the sequenced M. marinum strain M 

(http://www.sanger.ac.uk/cgi-bin/BLAST/submitblast/m_marinum), genes encoding 

ESAT-6, CFP-10, and HspX are absent from the genome of the sequenced 

Ghanaian M. ulcerans strain Agy99 (http://genopole.pasteur.fr/Mulc/BuruList.html) 

The genome of the M. marinum strain M harbours two esxB-esxA gene clusters 

coding for ESAT-6 and CFP-10 at distant chromosomal locations, in the so-called 

MURD4 (M. marinum M genome position 218302 to 230285) and MURD152  

(M. marinum M genome position 6489253 to 6592034) [2]. In our study, all analyzed 

M. ulcerans strains belonging to the ancestral lineage were found to have lost only 

one copy of the esxB-esxA cassette. The strains that had been collected in Asia or 

South America had lost the MURD4 copy wheareas the Mexican strain had lost the 

MURD152 copy. Both copies were absent in the M. ulcerans strains that belonged to 

the classical lineage. The hspX gene was found to be present in the strains of the 

ancestral lineage and absent in the classical lineage. Additionally, pseudogenization 

of the hspX gene had taken place in the Mexican strain. The loss of these 

immunodominant proteins may have helped M. ulcerans to bypass the host’s 

immunological response.  

 

Insights into the biological functions of mycolactone, Esat-6, Cfp-10 and HspX may 

help explain why the acquisition of the mycolactone producing plasmid pMUM001 

has rendered the virulence factors ESAT-6, CFP-10 and HspX superfluous [3].  
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Mycolactone is a diffusible cytotoxin with immunomodulatory properties, playing a 

key role in the development of the pathology of M. ulcerans infection [4], [5]. The 

cytotoxic action of mycolactone affects a broad range of cell types in different 

intensity, also depending on the state of maturation of the target cells. Adipose cells 

are extremely sensitive to mycolactone and undergo apoptosis at low toxin 

concentrations [6], whereas other cell types may cope better. Mycolactone has 

structural similarities with immunosuppressive drugs such as FK506 and rapamycin, 

and at nontoxic concentrations, mycolactone has been described to selectively 

suppress dendritc cell functions, limiting both the initiation of primary immune 

responses and the recruitment of inflammatory cells to the infection site [4], [7]. In 

human monocytes, mycolactone suppresses the expression of tumor necrosis factor 

alpha (TNF-α), interleukin-2, (IL-2) and interleukin-10 (IL-10) in vitro [8]. Mycolactone 

has also been described to impair the production of TNF-α as well as interferon γ 

(IFN- γ) in macrophages, contributing to immune evasion by inhibiting phagocytosis 

[9], [10], [11]. A recent study described a characteristic suppression of circulating 

chemokines in Buruli patients. Also, the capacity to produce Th1, Th2 and Th17 

cytokines was largely impaired in ex vivo stimulation assays [12].  

 

The M. tuberculosis proteins ESAT-6, CFP-10 and hspX are strong T- and B-cell 

immunogens, making them suitable for immunodiagnostic tests [13], [14], [15].  

ESAT-6 and CFP-10 play a complex role in the immune response in TB. In addition 

to the immunodominance of their epitopes, ESAT-6 and CFP-10 may activate 

macrophages, dendritic cells and mast cells to release proinflammatory mediators, 

and induce the differentiation and maturation of dendritic cells, resulting in a specific 

Th1 response. However, ESAT-6 and CFP-10 may also be partly responsible for 

mycobacterial immune evasion by impairment of macrophage functions as well as 

dendritic cell capacity for optimal induction of a specific Th1 response [13], [16]. 

HspX is essential for the survival of M. tuberculosis during persistence and is 

targeted by the immune system during latent infection in humans, inducing very 

strong T- and B-cell responses [14]. 
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A vaccine against M. ulcerans would protect persons at risk in highly endemic areas. 

However, whilst the immunogenicity of ESAT-6, CFP-10 and HspX makes these 

proteins suitable for vaccine development in M. tuberculosis [17], [18], they are not 

expressed by classical-lineage M. ulcerans strains that are prevalent in Africa and 

Australia where the vast majority of Buruli cases are found worldwide. In order to 

know if an effective vaccine against M. ulcerans should mainly stimulate a humoral 

or cellular immune response, the question remains to be resolved whether M. 

ulcerans is essentially an intracellular or extracellular pathogen. It is most probable 

that both arms of the immune response are required for optimal protection [19]. 
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Neisseria meningitidis  
 

A common mechanism of masking bacterial surfaces is the expression of a 

carbohydrate capsule [20], and although carrier isolates of N.meningitidis may be 

encapsulated or unencapsulated, disease isolates are invariably encapsulated. 

Thirteen meningococcal serogroups have been described, and the majority of 

disease is caused by one of the five capsule types A, B, C, W-135 and Y. 

Interestingly, the capsular polysaccharides of the serogroups B, C, W-135 and Y 

contain sialic acid, commonly present on cell surfaces of the human, enabling 

bacteria to become less visible to the immune system. The immune response 

against the serogroup B capsule is particularly poor due to the structural identity of 

its sialic acid homopolymer with a component of the human NCAM (neural cell-

adhesion molecule). In Europe and the Americas, meningococcal disease is 

predominantly caused by the serogroups B and C [21], whereas the large epidemics 

in Africa are associated with serogroup A [22]. 

 

In this current investigation we were typing the genes of the subcapsular antigens 

PorA, PorB and FetA of fifty different Nm strains of the serogroup A and ST-7 or 

2859 respectively, collected at the same locations either in Ghana or Burkina Faso 

over multiple time points. No sequence diversification was detected for PorA, PorB 

and FetA throughout the waves of colonization and disease irrespective of sequence  

type or country of origin. Although antibodies directed against PorA and PorB had 

been shown to be associated with the development of an immune response 

following meningococcal carriage and disease [23], [24], [25] and FetA had also 

been demonstrated to be immunogenic [26], [27], our results do not indicate immune 

selection against PorA, PorB and FetA. The homogeneity of these surface      

proteins may partially be due to the lack of a genetically diverse pharyngeal 

Neisseria flora in the African population, not allowing for horizontal genetic exchange 

[28], [29]. 
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We also investigated the sequences of the four opa genes OpaA, OpaB, OpaD and 

OpaJ together with their flanking regions in all the strains included in this study. The 

highest variability was found due to changing numbers of pentamer repeats within 

the open reading frame of the opa genes. The opa gene sequences were translated 

into predicted protein sequences, and all the opa alleles that had a number of 

pentamer repeats that were a multiple of three were found to be functional genes. It 

is worth noting that no more than two opa genes were found to be in frame in any of 

the strains investigated. Additionally, only one of the fifty strains was found to have 

all the four opa genes out of frame, indicating an essential role of the opa proteins 

for their survival on the host. It has been reported that certain opa proteins have the 

ability to suppress the activation of CD4(+) T cells when binding to the human 

carcinoembryonic antigen cellular adhesion molecule 1 (CEACAM1) in Neisseria 

gonorrhoeae [30].  

A limited variability besides the change in the number of pentamer repeats could be 

detected in the open reading frame of the OpaA genes as well as the OpaJ genes. 

The OpaA genes of the Ghanaian strains of the ST-7 as well as the Burkina Fasian 

strains of the sequence type 2859 had the allele 242. The OpaA alleles of the 

Ghanaian strains of the ST-2859 differed from the OpaA alleles of the other strains 

investigated and had the allele 253, which was the same allele which was found for 

the OpaB gene in all of the strains studied. This change of the OpaA allele that had 

taken place between the Ghanaian strains of the ST-7 and the ST-2859 may have 

been due to homologous recombination and immune selection against the 242 allele 

[31], [32]. However, none of the opa 253 alleles were found to be in frame in any of 

the strains of the ST-2859, also indicating immune selection against the 253 allele. 

The OpaJ genes of the strains of the ST-7 had the allele 213 and all the strains of 

the ST-2859 had the allele 127. This change of the opaJ allele may have been 

partially responsible for the replacement of the ST7 wave by the ST2859 wave [33], 

[29], and it is worth noting that 76% of all the opa alleles 127 were found to be in 

frame.  
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Altogether the results of this study demonstrate a striking lack of diversification of the 

surface proteins investigated. In order to more deeply understand the waves of 

colonization and disease of the meningococci, whole genome approaches may be 

needed, possibly in combination with the investigation of meningococcal protein 

expression patterns [34]. 

Meningitis epidemics in sub-Saharan Africa may be countered based on early 

detection of cases and emergency reactive vaccination of the population at risk with 

meningococcal polysaccharide vaccines, although the downside of most 

polysaccharide vaccines is their failure to induce immunological memory and their 

lack of immunogenicity in young children [35]. Conjugation of polysaccharides to 

proteins change the nature of the immune response induced from T-independent to 

T-dependent, and polysaccharide conjugate vaccines are effective in infants and 

induce immunological memory [36]. It had been decided to develop an affordable 

mono-valent serogroup A conjugate vaccine, based on the expectation that other 

serogroups, including W135 strains will not cause massive epidemics in sub-

Saharan Africa, but it is becoming increasingly clear that other serogroups may have 

to be included [35]. 

Outer membrane proteins such as PorA, PorB and FetA are candidates in the 

search for comprehensive meningococcal vaccines. However, whilst the allele types 

of PorA, PorB and FetA often correlate with the MLST genotype of a meningococcal 

strain [37], [38], these outer membrane proteins are highly diverse between strains 

of different clonal complexes [38]. The technique of reverse vaccinology is used to 

identify genes from the N. meningitidis genome encoding potential surface exposed 

protein antigens to develop a safe and effective vaccine against serogroup B           

N. meningitidis [39], [40], with the ultimate aim to develop a universal vaccine 

against the pathogen [41]. 
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Streptococcus agalactiae 
 
In this work we were performing a detailed analysis of the population structure of 

GBS strains collected from 98 asymptomatic carriers and 75 clinical cases at the 

Aga Khan University Hospital in Nairobi in the years 2007 to 2010, using the well 

established MLST in combination with molecular serotyping. 

 

Using MLST, the 173 GBS isolates investigated in our study resolved into 22 STs 

out of which 5 STs had not been previously described. The high diversification of 

GBS may be explained by the broad habitat range of S. agalactiae [42], [43], and its 

high potential for genetic recombination [44].  

 

The population structure of the GBS isolates in our Kenyan collection, defined by 

MLST and capsular serotyping, was found to be similar to the GBS population 

structure in many other regions of the world. Five clonal complexes (CCs) (CC23, 

CC19, CC17, CC10 and CC1) were accounting for 91.3% of our isolates. These 5 

CCs were also highly prevalent in other regions of the globe, such as Sweden [45], 

Italy [46], England [47], the US [48], the Central African Republic, Senegal [49] as 

well as Israel [50]. Five capsular serotypes (Ia, Ib, II, III, V) were accounting for     

99.4 % of all isolates in our collection. These serotypes were also commonly present 

in other regions of the world, including the Central African Republic and Senegal 

[49], England [47], Norway [51], the Unites States [52], Israel [50] and Korea [53]. 

Similarly to previous reports [49], [45], we observed an overall correlation between 

genotype defined by MLST and the capsular serotype. However, a certain 

diversification could be detected, and in general, the clinical isolates displayed a 

higher variability of both sequence types and corresponding capsular serotypes. 

Also, it is worth noting that the 5 novel STs were more commonly found in the case 

isolates than in the carrier isolates.  

 

GBS have ten known capsular serotypes which are heavily sialylated, providing 

resistance to components of the host’s innate immune response. The sialylation of 

the GBS capsule results in the impairment of the C3 deposition on the bacterial cell  



CHAPTER 5 
 

 

96

 

surface, thus preventing the activation of the complement alternative pathway [54], 

[55]. Studies have shown though that placental transfer of maternal antibodies can 

protect infants from invasive GBS infection [56], and conjugate vaccines of 

polysaccharides complexed to highly immunogenic proteins have been 

demonstrated to mount immune responses against GBS capsular polysaccharides 

[55], [57]. 

 

A pentavalent conjugate vaccine including the capsular serotypes Ia, Ib, II, III and V 

has been proposed for the US [58]. A vaccine including the serotypes Ia, Ib, II, III 

and V may also provide protection against the majority of serotypes circulating in 

different areas of the world, including the Central African Republic, Senegal [49], 

England [47], Norway [51], Israel [50] and Korea [53], as well as our setting. A 

vaccine including the capsular serotypes Ia, Ib, II, III, and V may not be suitable in 

regions like Japan though [59], and other serotypes have been reported to arise in 

Korea as well as the US [53], [60]. 

 

To develop a broadly protective vaccine against GBS, the genome sequences of 

eight S. agalactiae isolates were analyzed, and 312 surface proteins were 

subsequently tested as vaccine candidates. Four proteins elicited protection in mice 

and their combination proved highly protective against a high number of strains 

including all circulating serotypes [61]. Alternatively, a proteomics-based approach 

allowing the identification of surface-exposed proteins was applied to GBS. Whole 

viable bacterial cells of the hypervirulent serotype III strain COH1 were treated with 

proteases, and the released peptides were identified using mass spectroscopy. A 

novel highly expressed antigen, SAN_1485 was found and used for protection 

studies in the offspring of immunized adult female mice. SAN_1485 conferred good 

protection in the pups when challenged with the COH1 strain as well as the 

heterologous M781 strain [62].  
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Outlook 
 
MLST has a high discriminatory power, however, it is time consuming and cost 

intensive, and MALDI TOF MS analysis has been suggested as a more rapid and 

less costly alternative for bacterial typing [63], [64]. Here, we were performing the 

typing of 22 GBS isolates of known STs that had been sampled at the Aga Khan 

hospital in Nairobi, Kenya, using MALDI TOF MS. Two bovine strains and one 

capsular reference strain was also included in the study.  

 

 
 

A phylogenetic tree was obtained. The 6 strains of the ST-17, as well as the three 

strains of the ST-1 and the two bovine stains clustered together, whereas  

ST-10, ST-19 and ST-23 appeared to be more heterogenic. 
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GBS strains of the ST-17 have previously been described to be more homogenous 

than strains of other STs [65], and it has been proposed that the number of loci 

selected for the GBS MLST scheme may be insufficient for strains of the clonal 

complex 23 [66].  

 

MLST is a well-established method to study bacterial populations of sufficient 

genetic variability, and high quality Sanger sequencing is commonly used to 

sequence individual positions of a genome. However, the technology is expensive 

and too slow for sequencing extended genomic regions [66], [67]. To meet the 

increased demand for sequencing, several so-called second-generation sequencing 

systems such as Solexa and 454 sequencing technologies have been developed. 

These developments have significantly reduced the cost of sequencing whilst 

simultaneously increasing the DNA sequencing speed. The main downsides of these 

sequencing technologies are short read-lengths, higher error-rates, and the difficulty 

of managing massive amounts of data [68]. The informatics challenges of data 

obtained by second-generation sequencing technologies are mostly due to the short 

reads characteristic of these technologies. Novel single-molecule DNA sequencing 

technologies have the potential to yield reads that are in excess of 10 kilobases, 

easing many of the informatics challenges relating to assembly that are now 

experienced. However, raw read error rates may remain high and the increased 

information content will demand new types of mathematical models and algorithms 

[69]. 
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