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Summary 
 

The aquatic environment is particularly susceptible to pollution, partly because there is 

considerable intentional release of chemicals into rivers, lakes and the sea (mainly through 

release of effluents), and partly because it receives a lot of accidental releases of chemicals 

(through spills, runoff, atmospheric deposition, etc.). Sewage treatment plants (STPs) release a 

complex mixture of natural and synthetic chemicals into the aquatic environment. It was 

estimated that 60’000 man-made chemicals are in routine use worldwide, most of them enter the 

aquatic environment and many of them via STPs. 

Endocrine disruption occurs when specific chemicals interact with internal endocrine signalling 

pathways in organisms. In the aquatic environment, endocrine active substances are easily 

bioavailable to fish through aquatic respiration, osmoregulation, maternal transfer into eggs, 

dermal contact with contaminated sediments or ingestion of contaminated food. Endocrine 

disruption appears to be particularly widespread in freshwater fish throughout the world. Effects 

ranged from subtle changes in the physiology and sexual behaviour of fish to permanently 

altered sexual differentiation and growth, and reproductive impairment. Most attention has been 

directed towards identifying the main estrogenic chemicals, because many of the effects reported 

in wildlife appear to be a consequence of ‘feminization’ of males. Environmental estrogens can 

be anthropogenic, such as certain pharmaceuticals, pesticides and industrial chemicals or natural, 

such as phyto- and mycoestrogens.  

Resorcyclic acid lactones (RALs) are the only known class of estrogenic mycotoxins and show 

estrogenic activity in the range of natural steroid estrogens. RALs occur as secondary 

metabolites of Fusarium spec. fungi growing on a variety of cereals. Zearalenone (ZON) belongs 

to the chemical group of RALs and is one of the worldwide most common mycotoxins. The 

occurrence of mycotoxins has been studied extensively in food, feed products, and domestic 

animals. Agricultural products around the world exhibited ZON contaminations of up to 69 % of 

the tested samples. However, only little is known about the ecotoxicological effects of ZON at 

concentrations found in the environment. Only a few short-term in vivo studies investigated ZON 

and its metabolites and observed effects on vitellogenin (VTG) induction, zona radiata proteins, 

the immune system, and growth of fish after exposure via injection or feeding. 

In this research project, the ecotoxicological potential of ZON was evaluated. Effects on fish 

caused by an exposure to ZON were assessed using the zebrafish (Danio rerio) as a model 

organism. An embryo toxicity test was performed to investigate toxic effects of ZON on fish 

development. This study was complemented with a 30 day zebrafish early life-stage experiment 

to assess the influence of ZON on juvenile growth. In a second step the estrogenic potency of 
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ZON and its effects on adult fish were examined. A recombinant yeast estrogen screen (rYES) 

was used as an in vitro assay to determine effects on the activation of estrogen receptor-regulated 

genes. Zebrafish were exposed to ZON in a 42 day reproduction experiment enabling assessment 

of reproductive as well as physiological and morphological parameters. In a third step, the 

estrogenic potency of ZON was studied in a life-cycle experiment. This study was designed to 

investigate possible effects of continuous long-term exposure including a subsequent depuration 

period as well as possible transgenerational effects of F0 exposure on F1 generation. The 

offspring of the F0 generation that was exposed to ZON for 21 days was raised in a 140 day 

exposure experiment from embryo to adult. In a subsequent 42 day reproduction experiment, 

spawning groups of the F1 generation were either exposed to ZON (after growing up in clean 

water) or clean water (after growing up under ZON exposure) and effects on developmental, 

reproductive as well as physiological parameters were assessed. 

Exposure to ZON had no effects on embryonic development up to 2000 ng/L, but a positive 

correlation between the body length and ZON concentration of up to 100 ng/L suggests a growth 

promoting effect for zebrafish exposed during 30 days. Although ZON revealed a moderate 

estrogenic potency in vitro (rYES), it exhibited a comparably strong effect on induction of VTG 

(1000 ng/L) and reproduction (100 ng/L) in vivo during 21 days exposure. It was further 

demonstrated that ZON influenced growth (1000 ng/L), sexual differentiation (320 ng/L), 

reproduction (1000 ng/L), and VTG levels (1000 ng/L) in zebrafish exposed from fertilization to 

day 140. Furthermore, ZON revealed a possible transgenerational effect on growth caused by 

short-term exposure of F0 and F1 generation each for 21 days to 1000 ng/L. 

In the framework of this project, relevant data of the ecotoxicological relevance of ZON were 

collected. The estrogenic potential of ZON was confirmed in vitro and in vivo and detrimental 

effects on zebrafish reproduction were demonstrated. This indicates that ZON may have an 

effect on fish populations in the aquatic environment. Effects were observed at concentrations 

near the maximum measured values in surface waters (approximately double) and below the 

maximum values measured in effluents (approximately half). Even though to date there is not 

much data published presenting ZON concentrations in the aquatic environment and effects on 

different (native) fish species, this project demonstrated that ZON has the potential to pose a 

threat to fish in the aquatic environment.  

 

In a second research project, the embryo toxicity and genotoxicity of biofilm and sediment from 

the catchment area of a STP was investigated. An embryo toxicity test with zebrafish and the 

comet assay (single cell gel electrophoresis) with primary cells isolated from the embryos were 

applied to investigate native biofilm for the first time. Biofilms were sampled from different 
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sections of the sewage system and sediments were taken from the rive Wyna directly at, 

upstream and downstream of the STP discharge Mittleres Wynental (Switzerland). The aim of 

this study was to verify the applicability of the aforementioned test system to investigate native 

biofilm and to evaluate the toxicity of the different sampling sites. 

Clear differences in the embryo toxicity and genotoxicity of the biofilm from different sewage 

system sections as well as from the sediment sampling sites were found. Significant genotoxicity 

was determined in all biofilm and sediment samples. Temporal variability in toxicity were 

observed in some of the biofilm and sediment samples. Based on the results of this study it can 

be suggested that biofilm implemented in ecotoxicological bioassays such as the embryo toxicity 

test and comet assay with zebrafish can be a useful tool to assess (waste) water quality. 
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Chapter I 
 

General Introduction 
 

1 Ecotoxicological characterization of the estrogenic mycotoxin zearalenone 
 

1.1  The phenomenon: Endocrine disruption 

An endocrine disrupter has been defined as ‘an exogenous substance or mixture that alters 

function(s) of the endocrine system and consequently causes adverse effects in an intact 

organism, or its progeny, or subpopulations’ (Vos et al. 2000). Endocrine disruption occurs when 

exogenous chemicals interact with internal endocrine signalling pathways in an organism (Cheek 

et al. 1998). Endocrine active substances (EASs) may affect the development or reproduction of 

organisms by interfering with normal synthesis, storage, release, transport, metabolism, binding, 

action or elimination of endogenous hormones (Kavlock & Ankley 1996). 

In general, the reproductive physiology of vertebrates, both mammalian and non-mammalian, is 

similar, with the broad structure and function of the reproductive axis involving the 

hypothalamus, pituitary and gonads conserved. In all vertebrates, the release of a decapeptide 

gonadotrophin-releasing hormone (GnRH) from the hypothalamus stimulates the pituitary to 

secrete gonadotrophic hormones (GTH) that signal the gonads to synthesize steroid hormones. 

The basic biosynthetic pathways for steroid hormones and the active steroid hormones 

themselves are also well-conserved in both mammalian and non-mammalian vertebrates (Mills 

& Chichester 2005).  

 

The aquatic environment is particularly susceptible to pollution, partly because there is 

considerable intentional release of chemicals into rivers, lakes and the sea (mainly through 

release of effluents from sewage treatment plants [STPs] and industries), and partly because it 

receives a lot of accidental releases of chemicals (through spills, runoff, atmospheric deposition, 

etc; Sumpter 2005). STPs (which often receive domestic, industrial and/or agricultural waste) 

release a complex mixture of natural and synthetic chemicals into the aquatic environment, 

following their partial or complete biodegradation during the treatment process. It is estimated 

that 60’000 man-made chemicals are in routine use worldwide and most of these enter the 

aquatic environment (Jobling & Tyler 2003). 

Endocrine disruption appears to be particularly widespread in freshwater fish populations. There 

is little evidence, however, to suggest that fish are more susceptible to EASs relative to other 
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wildlife. There are many more similarities between the endocrine systems of fish and other 

higher vertebrates, with respect to the nature of the hormones, their receptors, and in the 

regulatory control of their endocrine system, suggesting that vertebrates are likely to be similarly 

sensitive to environmental EASs (Munkittrick et al. 1998). In the aquatic environment, EASs are 

easily bioavailable to fish through a variety of routes, including aquatic respiration, 

osmoregulation and maternal transfer of contaminants in lipid reserves of eggs (Van der Kraak et 

al. 2001). Dermal contact with contaminated sediments or ingestion of contaminated food (the 

major route of exposure to EASs in terrestrial animals) are additional exposure routes (Mills & 

Chichester 2005).  

Endocrine disruption in wild freshwater fish populations has been reported in various parts of the 

world. Biological effects that have been attributed to the effects of endocrine  disruptors include 

the inappropriate production of the blood protein vitellogenin (VTG; the female specific and 

estrogen-dependent egg yolk protein precursor) in male and juvenile fish, inhibited ovarian or 

testicular development, abnormal blood steroid concentrations, intersexuality and/or 

masculinization or feminization of the internal or external genitalia, impaired reproductive 

output, precocious male and/or female maturation, increased ovarian atresia, reduced spawning 

success, reduced hatching success and/or larval survival, altered growth and development and 

alterations in early development (Vos et al. 2000). Fish show high plasticity in phenotypic sexual 

differentiation and gonadogenesis can be a very complex and plastic process. Although sex 

determination is under genetic control, the final differentiation of the gonads in fish also depends 

on endocrine signals, i.e. estrogens and androgens (Arcand-Hoy & Benson 1998, Campbell & 

Hutchinson 1998, Devlin & Nagahama 2002). In most gonochoristic fish, the germ cells of the 

undifferentiated gonads are sexually bipotential (Kobayashi et al. 1991). During specific critical 

periods of development, changes in sex hormone levels can, therefore, affect the final sex 

independently of the genetic sex (Donaldson & Hunter 1982). Due to the lability of sex 

differentiation in fish, exposure to EASs during certain critical periods of development can lead 

to sex reversal (Andersen et al. 2003, Donaldson & Hunter 1982). These effects may arise due to 

disruption of a range of endocrine-mediated mechanisms (including receptor-mediated 

processes, and/or interference with steroid metabolism and/or excretion). Overall, current 

scientific evidence suggests that certain effects observed in freshwater fish can be attributed to 

cocktails of chemicals that mimic and/or disrupt hormone function/balance (Jobling & 

Tyler 2003). 

 

Most attention has been directed to identify the main estrogenic chemicals, because many of the 

effects reported in wildlife appear to be a consequence of ‘feminization’ of males (Sumpter 
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2005). Environmental estrogens can be anthropogenic, such as certain pharmaceuticals, 

pesticides and industrial chemicals or natural, such as phyto- and mycoestrogens. The main 

causative chemicals found in the aquatic environment appear to be the natural steroid estrogens 

17ß-estradiol (E2) and estrone (E1), and the synthetic steroid estrogen 17α-ethinylestradiol 

(EE2), all of which have been found in sewage effluent in low ng/L concentrations (Baronti et al. 

2000, Desbrow et al. 1998, Snyder et al. 1999). The former two chemicals are natural hormones, 

and the last one is the active ingredient of the contraceptive pill. All are presumably excreted by 

people, and incompletely degraded in STPs, and hence are present in effluents (Munkittrick et al. 

1998). Although these steroid estrogens are present at very low concentrations, such 

concentrations are biologically active (Gagnon et al. 1995, McMaster et al. 1991). It is likely that 

these estrogens act together, in an additive manner, to cause ‘feminization’ of fish (Van der 

Kraak et al. 1992). These estrogens bind to estrogen receptors (ERs) in exposed organisms with 

an affinity identical or similar to the endogenous estrogen hormone E2, and have the potential to 

exert effects at extremely low concentrations. 

Man-made estrogen mimicking chemicals (xenoestrogens) are much weaker (less potent) 

estrogens, but sometimes they are present at much higher concentrations than the steroidal 

estrogens. In some specific locations, xenoestrogens appear to make a significant contribution to 

the overall estrogenic activity of effluents (Van der Kraak et al. 1998), and also appear to be 

possibly the major agent causing the adverse effects observed in fish living downstream of these 

effluents (Ankley et al. 1998). Biodegradation products of alkylpolyethoxylate detergents, such 

as nonylphenol and octylphenol, are also found in sewage effluent and wastewater from septic 

systems, but at high ng/L to low µg/L concentrations (Lye et al. 1999, Rudel et al. 1998). Some 

alkylphenols have been shown to bind to the estrogen receptor and stimulate a biological 

response similar to E2, although concentrations of at least 1000 fold more are required (Jobling 

& Sumpter 1993, Körner et al. 2000, White et al. 1994). Bisphenol A, which is used in 

epoxyresins, polycarbonate plastics and dental sealants (Sonnenschein & Soto 1998), exhibits 

estrogenic activity (Brotons et al. 1995, Metcalfe et al. 2001) and has been detected in sewage 

treatment effluent and septic system wastewater in low µg/L concentrations (Körner et al. 2000, 

Rudel et al. 1998). Some persistent environmental contaminants, such as polychlorinated 

biphenyls (PCBs) and pesticides (DDT and metabolites, chlordecone, methoxychlor) are also 

considered endocrine-disrupting, based largely on their ability to bind to estrogen receptors 

(Loomis & Thomas 1999, Nimrod & Benson 1997). 
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1.2  The mycotoxin zearalenone (ZON) and its environmental fate 

Mycotoxins are naturally occurring secondary metabolites of fungi growing on a variety of 

cereals in the field or during storage. The resorcyclic acid lactones (RALs) are naturally 

occurring endocrine disrupting compounds and to date the only known class of estrogenic 

mycotoxins. RALs show estrogenic activity in the range of natural steroid estrogens. ZON 

belongs to the chemical group of RALs and is one of the worldwide most common mycotoxins 

(Fig. 1; Chelkowski 1998). The relative binding affinity (RBA) to the rainbow trout (rt) ER for 

ZON has a factor of 0.82 in relation to the natural steroid estrogen E2 (Matthews et al. 2000).  

 

 

 
 
Fig. 1: Structural formulas of zearalenone and its metabolites 

 

 

Several RALs occur as a result of Fusarium spec. infection of corn, wheat and other cereals. The 

most important mycoestrogen-producing fungus, Fusarium graminearum, is the world’s major 

causal agent for red ear rot in corn or head scab in wheat, barley, rye, and oats. Airborne 

ascospores of F. graminearum infect the corn ear via silk channel and the other cereals while 

their heads are in flower. The fungus then appears as a pink to red mould on the kernels and, in 

severe infections, on other organs of wheat and corn such as the cob, husks and shank. The 

pathogen survives during the winter in plant residues such as wheat stubbles or corn stalks left 

on the field after harvest (Sutton 1982). The extent of Fusarium spec. infestation on crops and 

subsequent contamination with mycotoxins is dependent on factors such as crop rotation, soil 

cultivation, susceptibility of crop varieties and climatic conditions (Champeil et al. 2004). 

Climate change towards warmer and more moist conditions may provide even more fertile 

ground for fungi proliferation (Jenny et al. 2000). 

The occurrence of mycotoxins has been studied extensively in food and feed products and 

domestic animals. Agricultural products around the world were contaminated by ZON up to 
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69 % of the tested samples with concentrations of up to 180 μg/kg (Rhyn & Zoller 2003). Due to 

its anabolic properties α-zearalanol (ZAL, Fig. 1), a ZON metabolite and the estrogenically most 

potent of the RALs, is licensed as growth promoter for cattle in USA and Canada (banned in EU) 

which increases the risk of exposure to RALs (Le Guevel & Pakdel 2001). It has been shown 

that RALs can cause severe reproductive and infertility problems in husbandry animals due to 

their high estrogenic potency (Gaumy et al. 2001, Kuiper-Goodman et al. 1987). In general the 

data point to a frequent and global occurrence of ZON in food and feed products.  

 

ZON must be classified moderately water soluble (5.2 mg/L; Megharaj et al. 1997) and rather 

hydrophobic (KOW: 3.7; Lemke et al. 1998). This indicates some environmental aqueous phase 

mobility and a certain potential for sorption and retention in soil systems (Koc: 3.9; Mortensen et 

al. 2006). Its stability during milling, food processing and heating (no significant loss in ZON 

during processing for 80 min at 100 °C) is considerable and its half-live in soil samples was 

reported to be  6.4 – 11.3 days (Mortensen et al. 2006, Ryu et al. 2003). Therefore it must be 

assumed that ZON is rather persistent in the environment. Data on biotic transformation of ZON 

indicated as main metabolic pathway the conversion to α- and β-zearalenol (ZOL; Fig. 1; El-

Sharkawy & Abul-Hajj 1988, European Commission 2000, Kleinova et al. 2002, Mirocha et al. 

1981). This is of relevance as the estrogenic activity of RALs decreases in the following order: 

α-ZOL (rtER-RBA: 2.67) > β-ZOL (rtER-RBA: 0.91) > ZON (Matthews et al. 2000). 

On the basis of these physico-chemical properties, together with the findings from environmental 

studies, Bucheli et al. (2005) hypothesised that ZON and its metabolites are very likely emitted 

into the environment by several pathways: Toxins released from Fusarium-infested plants might 

contaminate the soil and infiltrate into groundwater, elute by surface runoff or subsurface 

drainage to surface waters or STPs, drift off on airborne fungi spores or soil particles; toxin 

residues in excrements of exposed livestock might enter agricultural soils and local waters via 

application of manure; food industry wastewater and human excretions might introduce toxin 

residues via sewage into surface waters. 

 

Although the occurrence of ZON has been studied extensively in food and feed stuff, only little 

is known about its environmental distribution and impact (Rhyn and Zoller 2003, Pittet 1998). 

The occurrence of ZON was reported in Italian and Polish rivers in concentrations of 2 – 5 and 

0.5 – 44 ng/L, respectively (Gromadzka et al. 2009, Lagana et al. 2004). It was further detected 

in US American (Kolpin et al. 2010) and Swiss rivers (Bucheli et al. 2008) below limits of 

quantitation. Up to 35 ng/L and 4 ng/g ZON was quantified in drainage water and soil, 

respectively, in a field study with wheat and maize (Hartmann et al. 2008a, 2008b). In Italian 
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waste water treatment plants and US American industrial wastewater effluents ZON 

concentrations of 1 – 10 and 95.5 – 220 ng/L, respectively, were measured (Lagana et al. 2001, 

2004, Lundgren & Novak 2009). Given the comparably high ER-RBA, ZON and its metabolites 

might contribute to the overall estrogenic activity in the environment (Matthews et al. 2000). 

Little is known about the ecotoxicological effects of ZON at levels found in surface waters and 

the consequence of exposure to aquatic organisms. Only a few short-term in vivo studies 

investigated ZON and its metabolites and observed effects on VTG induction, zona radiata 

proteins, immune system and growth in fish after exposure via injection or feeding (Arukwe et 

al. 1999, Celius et al. 2000, Keles et al. 2002). 

 

 

1.3  The test organism zebrafish (Danio rerio) 

The zebrafish belongs to the family of Cyprinidae, the most species-rich vertebrate family 

(Nelson 1994). The name Danio derives from the Bengaly name ‘dhani’, meaning ‘of the rice 

field’. Danios are included in the subfamily Rasborinae (Howes 1991). 

The zebrafish is one of the most important vertebrate model organisms in genetics, 

developmental biology, neurophysiology and biomedicine (Amsterdam & Hopkins 2006, 

Grunwald & Eisen 2002, Rubinstein 2006, Vascotto et al. 1997). It has a number of attributes 

that make it particularly tractable to experimental manipulation. Females can spawn every 2 – 

3 days up to several hundred eggs, generation time is short (3 – 4 months), eggs are optically 

transparent and development is rapid (precursors to all major organs developing within 36 h) 

(Kimmel et al. 1995). The sensitivity of zebrafish reproduction to exogenous estrogens and 

xenoestrogens appears to be comparable to that of other fish species (Kwak et al. 2001, Lange et 

al. 2001, Scholz & Gutzeit 2000, Yokota et al. 2000). 

Danio rerio rarely exceeds 40 mm standard length. Its body shape is fusiform and laterally 

compressed, with a terminal oblique mouth directed upwards. The lower jaw protrudes further 

than the upper, and the eyes are central and not visible from above. The lateral line is incomplete 

extending to the pelvic fin base. It exhibits two pairs of barbels and five to seven dark blue 

longitudinal stripes extending from behind the operculum into the caudal fin (Barman 1991). The 

anal fin is similarly striped while the dorsal fin has dark blue upper edge, bordered with white. 

Males tend to have larger anal fins with more yellow colouration (Laale 1977, Schilling 2002). 

The sex of juveniles cannot be reliably distinguished without dissection. While gravid females 

tend to have more rounded body shape, the most reliable diagnostic feature is the presence of a 

genital papilla in front of the anal fin origin (Fig. 2; Laale 1977). 
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Fig. 2: Danio rerio male (left) and female (right) 

 

 

The natural range of the zebrafish is centred around the Ganges an Brahmaputra river basins in 

north-eastern India, Bangladesh and Nepal. There is a wide range of temperatures within the 

natural range of zebrafish, from as low as 6 °C in winter to over 38 °C in summer. Zebrafish 

have typically described as inhabiting slow-moving or standing water bodies, shallow ponds, the 

edges of streams and ditches, particularly adjacent to rice fields (Jayaram 1999, Sterba 1962, 

Talwar & Jhingran 1991). However, they are also reported inhabiting the margins of rivers and 

streams with a low flow regime (Daniels 2002, Engeszer et al. 2007b, McClure et al. 2006). This 

association with rice cultivation may relate to the use of fertilisers that may promote the growth 

of zooplankton, a major component of the zebrafish diet (Spence et al. 2007). Behavioural 

observations of their vertical distribution indicate that they occupy the whole of the water 

column and occur as frequently in open water as amongst aquatic vegetation (Spence et al. 

2006). Zebrafish are a shoaling species, a behaviour that appears to be innate; shoaling behaviour 

commences soon after hatching and fish reared in isolation quickly form shoals when placed 

together (Engeszer et al. 2007a). 

The zebrafish is omnivorous, its natural diet consists primarily of zooplankton and insects, 

although phytoplankton, filamentous algae and vascular plant material, spores and invertebrate 

eggs, arachnids, detritus sand and mud have also been reported from gut content analysis (Dutta 

& Malhotra 1991, McClure et al. 2006, Spence et al. 2007). The composition of their diet 

indicates that zebrafish feed in the water columns, at the surface as well as from the substratum. 
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In the laboratory, domesticated zebrafish strains breed all year round whereas in nature spawning 

is more seasonal. However, larger females collected in January (outside the main spawning 

season) have been found to contain mature ova, indicating that reproduction may not be cued by 

season, but instead be dependent on food availability, which is likely to co-vary with season. 

Reproductive maturity appears to be related to size rather than age, wild and domestic zebrafish 

appear to reach reproductive maturity at similar sizes, despite having different growth rates 

(Spence et al. 2006). 

Zebrafish show a distinct diurnal activity pattern, synchronised with the light/dark and feeding 

cycles. The first activity peak occurs immediately after illumination with two further peaks in the 

early afternoon and the last hour of light (Baganz et al. 2005, Plaut 2000). Spawning activity 

coincides with the first activity peak and usually commences within the first minute of exposure 

to light following darkness, continuing for about an hour (Darrow & Harris 2004). Zebrafish are 

group spawners and egg scatterers. The eggs are released directly over the substratum with no 

preparation of the substratum by either sex and there is no parental care. Females spawn onto a 

bare substratum, but when provided with an artificial spawning site, such as a plastic box filled 

with marbles or vegetation, will preferentially use it for oviposition (Spence & Smith 2005). 

Pairs of zebrafish left together continuously spawn at frequent but irregular intervals and a single 

female may produce clutches of several hundred eggs in a single spawning (Eaton & Farley 

1974, Spence & Smith 2006). 

Eggs are non-adhesive and demersal, with a diameter of approximately 0.7 mm. Egg survival is 

enhanced by incubation in a substratum that allows oxygenated water to circulate while 

protecting them from disturbance and cannibalism. Eggs become activated on contact with water 

and even in the absence of sperm, undergo a series of programmed developmental steps, but fail 

to develop beyond the first few cleavages (Fig. 3; Lee et al. 1999).  Immediately after hatching 

the larvae attach to hard surface by means of small secretory cells in the epidermis of the head 

(Laale 1977). Attachment at progressively higher levels enables them to reach the surface to 

which the need to gain access in order to inflate their swim bladders (Goolish & Okutake 1999). 

Zebrafish undergo a period a transitory hermaphroditism during juvenile development and thus 

are classified as undifferentiated gonochorists (Nakamura et al. 1998, Takahashi 1977). 

Approximately 10 days post hatch (dph) the differentiation of the gonads begins and all fish, 

irrespective of their definitive sex, develop ovaries. At approximately day 23 dph the ovaries of 

approximately half of the fish start to degenerate and proliferation of testes occurs. This process 

is completed at approximately 40 dph. In the remaining fish, the development and maturation of 

ovaries continues (Takahashi 1977, Uchida et al. 2002). 
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Fig. 3: Embryonic development of Danio rerio (modified according to Kimmel et al. 1995) 

 

 

Zebrafish growth rate is most rapid during the first three month, after which it starts to decrease, 

approaching zero by about 18 months (Spence et al. 2007). Mean life span of domesticated 

zebrafish is 42 months, with the oldest known individual surviving for 66 months. However, 

instances of spinal curvature, a phenotype caused by muscle degeneration and commonly 

associated with senescence become apparent in domesticated and wild zebrafish after their 

second year in captivity (Gerhard et al. 2002, Kishi et al. 2003). 

 

 

1.4  Early life-stage of fish – embryo toxicity assay 

The developing fish is generally considered to be the most sensitive stage in the life-cycle of a 

fish. Many anthropogenic substances in the environment either exert a more toxic effect on 

embryos than on adult fish or affect only the sensitive early development (Lange et al. 1995, 

Nagel 2002, Nagel & Isberner 1998, Strmac et al. 2002, Von Westernhagen 1988). The early 

life-stage of fish provides an array of development parameters, which could serve as biomarkers 

of toxicant effects on ontogenesis and growth (Eaton & Farley 1974, Hutchinson et al. 1998, 

Luckenbach et al. 2001, Rosenthal & Alderdice 1976). The collected data could then be used for 

72 h

48 h

18 h, 18-somite 12 h, 6-somite 

0.8 h, 2-cell0.2 h, 1-cell 4 h, sphere 5.3 h, 50%-epiboly 

24 h 
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estimating/extrapolating pollutant toxicity not only at individual but also at the level of fish 

populations (Ensenbach & Nagel 1997, Luckenbach et al. 2001, Triebskorn et al. 2000). The 

ability of growing embryos to discriminate between varying levels of pollution in aquatic 

systems has been well documented (Klumpp et al. 2002, Luckenbach et al. 2001, 2003). 

 

Apart from mortality and malformation (obvious disadvantages for the fish and possibly for the 

population) there are additional endpoints in an embryo toxicity assay, such as hatching and 

heart rate, which can provide a further toxicological characterization of substances or an 

environmental sample. Hatching date is a sensitive endpoint, because environmental impacts and 

pollutants may influence the hatching by delaying or accelerating egg development (Dave & Xiu 

1991). Hatching is a combined result of the activity of the hatching enzyme chorionase, 

increased perivitellin pressure, muscle contraction and active water uptake by the embryo 

(Denuce 1989). Pollutants may interfere directly with these processes and hatching failure may 

be due to various mechanisms that include the diminished activity of the embryo and abnormal 

distribution of the hatching enzyme chorionase (Rosenthal & Alderdice 1976)  or the inability of 

the emerging larvae to break through the non-digestible outer part of the egg shell (Sinha & 

Kanamadi 2000). Furthermore, organisms exposed to pollutants assign a large part of their 

energy to metabolic pathways aimed at eliminating the pollutant (Wiegand et al. 2000), thus, less 

energy could be available for hatching (Osterauer & Kohler 2008). Heart rate determination is a 

simple reliable metric that has been successfully used to quantify the physiological and 

developmental stresses experienced by embryonic zebrafish as a result of exposure to a wide 

variety of waterborne chemicals and pollutants (Hallare et al. 2005, Hassoun et al. 2005). The 

heart rate continues to increase until heart valve maturation is complete at approximately fife 

days post fertilization. At this point the larval heart is in its adult conformation and its beat 

frequency begins to decrease gradually until about 60 days post fertilization (Barrionuevo & 

Burggren 1999). 

 

 

1.5  Toxicological effects of the mycotoxin zearalenone on early development of zebrafish: 

A pilot study (Chapter II) 
An embryo toxicity test with zebrafish was performed to investigate potential lethal and 

sublethal effects of ZON on early development and to assess its fish toxic potential in a 

waterborne exposure. Additionally, a 30 day zebrafish early life-stage experiment was conducted 

to study the influence of ZON on juvenile growth (Fig. 4). 
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Fig. 4: Exposure system for early life-stage experiment. 

 

 

1.6  Short-term exposure to the environmentally relevant estrogenic mycotoxin zearalenone 

impairs reproduction in fish (Chapter III)  

Several studies in zebrafish have shown that estrogens such as the natural E2 or the synthetic 

EE2 induce the yolk precursor protein VTG, affect gonad development, induce atresia of oocytes 

and inhibition of spermatogenesis, and have an impact on egg production and viability, 

fertilization success, sexual differentiation and sex ratios (Andersen et al. 2003, Brion et al. 

2004, Hill & Janz 2003, Maack & Segner 2004, Nash et al. 2004, Örn et al. 2003, Schäfers et al. 

2007, Segner et al. 2003, Van den Belt et al. 2003b, Van der Ven et al. 2007). 

The estrogenic potency of ZON and its effects on fish were investigated in a waterborne 

exposure. A 42 day reproduction experiment was conducted exposing spawning groups of adult 

zebrafish to ZON via water. Reproduction (spawning frequency, fecundity, fertility and hatch) as 

well as physiological (VTG induction) and morphological (histomorphometry of gonads) 

parameters were assessed to evaluate effects of endocrine disruption (Fig. 5). A recombinant 

yeast estrogen screen (rYES) expressing the human ERα was used as an in vitro assay with the 

endpoint ‘activation of ER-regulated genes’ to assess the relative estrogenic activity of ZON 

compared to E2. 
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Fig. 5: Exposure system for reproduction experiment. 

 

 

1.7  Life-cycle exposure to the estrogenic mycotoxin zearalenone affects zebrafish (Danio 

rerio) development and reproduction (Chapter IV) 

To fully assess the potential of EASs to disrupt reproduction and cause transgenerational effects, 

multigenerational full life-cycle exposure are needed that consider all relevant life stages and 

developmental paramteters. A few studies involving EE2 covered the full life-cycle of fish, and 

have tested the impact on reproductive parameters and observed decreased number of eggs and 

fertilization rate (Fenske et al. 2005, Larsen et al. 2008, Metcalfe et al. 2001, Nash et al. 2004, 

Schäfers et al. 2007, Segner et al. 2003, Van den Belt et al. 2003b).  

The estrogenic effects of ZON on zebrafish were investigated in a life-cycle exposure. The study 

was designed to investigate possible effects of continuous long-term exposure including a 

subsequent depuration period as well as possible transgenerational effects of F0 exposure on F1 

generation. For this experiment F1 fish of a parental generation were used, which was exposed to 

ZON for 21 days (Chapter III). With these fish, a 140 day exposure experiment from embryo to 
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adult was conducted. In a subsequent 42 day reproduction experiment spawning groups of the 

adult fish were either exposed to ZON (after growing up in clean water) or clean water (after 

growing up under ZON exposure). To evaluate effects of endocrine disruption, developmental 

(mortality, growth sex ratio and gonad histomorphometry), reproduction (spawning frequency, 

fecundity, fertility and hatch) as well as physiological (VTG induction) parameters were assessed 

(Fig. 6). 

 

 

 
Fig. 6: Exposure system for life-cycle experiment. 



Chapter I 

18 
 

2  Ecotoxicological characterization of environmental samples 
 

2.1  Pollution of surface waters 

In general, STPs are considered to be a major point source of anthropogenic contamination of 

river systems (Ternes 2007). The composition of STP effluents can be a complex mixture of 

more than 100’000 different chemicals which can exhibit detrimental effects on fish, resulting in 

impaired health status, increased mortality or decreased reproductive success in fish populations 

(Clements 2000, Kime 1999, Sumpter 1997).  

Many anthropogenic chemicals in the water phase adsorb to suspended particles and are 

integrated into the sediment. Therefore, sediments are a sink but also a potential source for 

persistent toxic substances (Ahlf 1995, Burton 1991, Hollert et al. 2003, Schwarzenbach et al. 

2006). A much higher amount of contaminants are stored in the sediments of many rivers than 

are introduced annually from external sources (Baker 1991, Power & Chapman 1992). 

Sediment-bound contaminants can affect organisms that live over it directly or indirectly via the 

food web, and can also be remobilized during flood events (Mac et al., 1984; Power and 

Chapman, 1992; Hollert et al., 2000). In sediments which are contaminated by STP effluents and 

industrial waste, genotoxic substances are frequently detected (Aouadene et al. 2008, Claxton et 

al. 1998, Klee et al. 2004, Kosmehl et al. 2004). These genotoxic substances can affect the 

reproductive success of organisms: DNA damage leads to dieback of gametes, developmental 

disorders, embryo mortality, and hereditary mutations, and can directly influence the population 

structure and size (Anderson & Wild 1994).  Furthermore, it was reported that increased DNA 

damage, induced by genotoxic substances, can affect gene flow in populations and hence reduce 

genetic diversity (Theodorakis et al. 2000, 2001). 

Not only sediment but also biofilm is particularly interesting as indicator for environmental 

pollution, as it interacts with toxic substances and integrates over longer periods. Biofilm is a 

complex biocoenosis of microorganisms (bacteria, fungi, algae) on a solid surface at the 

boundary layer to a liquid phase (Sabater et al., 2007). Apart from natural boundary layers such 

as soil, sediments, plants, animals and mucosa, it can be found on technical installations such as 

canalizations. In biofilms, the cells of the microorganisms are embedded in a secreted mucilage 

matrix of extracellular, polymer substances (EPS). A multitude of organic and inorganic 

compounds are integrated and particular substances are embedded in the EPS (Geesey et al. 

1994). Transport and exchange processes that take place between the EPS and the ambient 

medium determine which substances are integrated in the matrix and which are not (Geesey et al. 

1994, Stanimirova et al. 2008). 
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2.2  Embryotoxic and genotoxic potential of sewage system biofilm and river sediment in 

the catchment area of a sewage treatment plant in Switzerland (Chapter VI) 

The direct exposure of a test organism to an environmental sample closely resembles natural 

conditions and can therefore be of high ecological relevance. In several studies, zebrafish eggs 

have been exposed to native sediment to assess the bioavailable toxic potential of samples 

(Ensenbach, 1998; Hallare et al., 2005; Hollert et al., 2003). In contrast to sediment, the toxic 

potential of biofilm has to date not been investigated in bioassays. In the comet assay (a 

commonly used technique to detect DNA strand breaks in cell lines and primary cells) the 

bioavailable genotoxic potential of sediment can be assessed with primary cells from zebrafish 

embryos previously directly exposed to the sediment samples (Kosmehl et al. 2006, 2008).  

Both an embryo toxicity test with zebrafish and the comet assay with primary cells isolated from 

the embryos were applied in combination to assess the toxicity of native sediments from a river 

directly at, upstream and downstream of a STP discharge in Switzerland (Fig. 7). For the first 

time, this test system was used to investigate native biofilms from different sections of the 

connected sewage system. The aim of the study was to evaluate the applicability of the test 

system to investigate biofilms and to evaluate the embryotoxic and genotoxic potential of the 

samples in a ranking. This ranking was used (1) to compare the hazard potentials of the different 

sampling sites, (2) localize possible toxic discharges into the sewage system, and (3) to 

investigate temporal variability from samplings in autumn and spring. 

 

 

 
Fig. 7: Exposure in 6-well plates 
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Chapter II 
 

Toxicological effects of the mycotoxin zearalenone on early 

development of zebrafish: A pilot study 
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Abstract 
 

Zearalenone (ZON) is one of the worldwide most common mycotoxins and exhibits estrogenic 

activity in the range of natural steroid estrogens. The occurrence of ZON has been reported in 

soil, drainage water, wastewater effluents and rivers, but its ecotoxicological effects on fish have 

hardly been investigated. 

In the present study, effects on zebrafish development and growth were investigated in a 96 h 

embryo toxicity test as well as in a 30 day early life-stage experiment. No effects on mortality, 

hatch rate, heart rate, and growth were observed after exposure from fertilization until hatch up 

to 2000 ng/L ZON. A positive correlation between body length and ZON concentration (25 – 

100 ng/L) was detected after exposure from fertilization until 30 days. This might indicate a 

growth promoting effect of the mycotoxin. 

The measured values in surface waters are below the LOEC (lowest observed effect 

concentration) we determined to cause effects on fish early life-stage. Thus, it is rather unlikely 

that ZON influence early development of fish directly, but it might contribute to an overall 

estrogenic activity in the environment and under certain circumstances could affect fish in their 

natural habitat. 
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1 Introduction 
 

Zearalenone (ZON) is one of the worldwide most common mycotoxins and belongs to the 

chemical group of the resorcyclic acid lactones (RALs; Chelkowski 1998). RALs exhibit 

estrogenic activity in the range of natural steroid estrogens (Le Guevel & Pakdel 2001, Matthews 

et al. 2000). Several RALs occur as a result of Fusarium spec. (primarily F. graminearum) 

infection of corn, wheat and other cereals. Agricultural products around the world were 

contaminated by ZON up to 69 % of the tested samples with concentrations of up to 180 μg/kg 

(Rhyn & Zoller 2003). Climate change towards warmer and more moist conditions may provide 

even more fertile ground for fungi proliferation and lead to an increase of mycotoxin 

contamination (Jenny et al. 2000). Due to its anabolic properties, α-zearalanol, a ZON 

metabolite, is licensed as growth promoter for cattle in USA and Canada (banned in EU) which 

increases the risk of environmental exposure to RALs (Le Guevel & Pakdel 2001). 

ZON must be classified moderately water soluble (5.2 mg/L; Megharaj et al. 1997) and rather 

hydrophobic (KOW: 3.7; Lemke et al. 1998). This indicates some environmental phase mobility 

and a certain potential for sorption and retention in soil systems (KOC: 3.9; Mortensen et al. 

2006). Its stability during milling, food processing and heating (no significant loss in ZON 

during processing for 80 min at 100 °C) is considerable and its half-live in soil samples was 

reported to be  6.4 – 11.3 days (Mortensen et al. 2006, Ryu et al. 2003). Therefore it must be 

assumed that ZON is rather persistent in the environment. Data on biotic transformation of ZON 

indicates the conversion to α- and β-zearalenol (ZOL) as main metabolic pathway (El-Sharkawy 

& Abul-Hajj 1988, European Commission 2000, Kleinova et al. 2002, Mirocha et al. 1981). This 

is of relevance as the estrogenic activity of RALs decreases in the following order: α-ZOL > 

ZON > β-ZOL (Coldham et al. 1997, Le Guevel & Pakdel 2001). 

Although the occurrence of ZON has been studied extensively in food and feed stuff, only little 

is known about its environmental distribution and impact (Pittet 1998, Rhyn & Zoller 2003). The 

occurrence of ZON was reported in Italian and Polish rivers in concentrations of 2 – 5 and 0.5 – 

44 ng/L, respectively (Gromadzka et al. 2009, Lagana et al. 2004). Up to 35 ng/L and 4 ng/g 

ZON was quantified in drainage water and soil, respectively, in a field study with wheat and 

maize (Hartmann et al. 2008a, 2008b). In Italian waste water treatment plants and US American 

industrial wastewater effluents, ZON concentrations of 1 – 10 and 95.5 – 220 ng/L, respectively, 

were measured (Lagana et al. 2001, 2004, Lundgren & Novak 2009). 

Little is known about the ecotoxicological impact of ZON as an environmental estrogen at levels 

found in surface waters and the consequence of exposure to aquatic organisms. Only few short-

term in vivo studies investigated ZON and its metabolites and observed effects on vitellogenin 
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induction, zona radiata proteins, immune system and growth in fish after exposure via injection 

or food (Arukwe et al. 1999, Celius et al. 2000, Keles et al. 2002). 

The zebrafish was selected as a model since it is easy to keep and readily reproducing in the 

laboratory, has a rapid development and short generation time, and is widely recommended to be 

used in many standard ecotoxicological tests in OECD guidelines. Several studies in zebrafish 

(Danio rerio) have shown that estrogens such as the natural 17β-estradiol (E2) or the synthetic 

pharmaceutical 17α-ethinylestradiol (EE2) have an impact on egg viability and production, 

fertilization success, sexual differentiation and sex ratios (Andersen et al. 2003, Brion et al. 

2004, Hill & Janz 2003, Maack & Segner 2004, Nash et al. 2004, Örn et al. 2003, Schäfers et al. 

2007, Segner et al. 2003, Van den Belt et al. 2001, 2003b, Van der Ven et al. 2007).  

The early life-stage is generally considered to be the most sensitive period in the life cycle of a 

fish (Hutchinson et al. 1998, Lange et al. 1995, Luckenbach et al. 2001, Nagel 2002). In early 

life-stage tests, toxicant effects on ontogenesis and growth can be examined through diverse 

endpoints and extrapolated to assess effects at population levels (Ensenbach & Nagel 1997, 

Luckenbach et al. 2001, Triebskorn et al. 2000). In the present study, an embryo toxicity test 

with zebrafish was performed to investigate lethal and sublethal effects of ZON and to assess its 

fish toxic potential in a waterborne exposure. Additionally, a 30 day zebrafish early life-stage 

experiment was conducted to assess the influence of ZON on juvenile growth. 
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2 Materials and Methods 
 

2.1 Experimental animals 

All procedures concerning experimental animals were performed in compliance with the Swiss 

protection of animals act. The zebrafish used for egg production originated from our fish 

breeding stocks, held at the University of Basel. They were kept in aerated 60 L glass tanks 

supplied with a constant flow of 5 L/h conditioned water (1 : 1 mix of charcoal filtered tap water 

and reverse osmosis water) at a temperature of 26 ± 1 °C, pH of 8.0 ± 0.2 and an artificial light : 

dark photoperiod of 16 : 8 h.  The fish were fed twice per day once with dry pellet (SilverCup, H. 

U. Hofmann AG, Switzerland) and once with frozen brine shrimps (Artemia salina, 3F Frozen 

Fish Food BV, Netherlands).  

 

 

2.2 Egg production 

Approximately 2 h before the dark period, spawning groups of two female and four male 

zebrafish were transferred into 12 L spawning tanks. All tanks were aerated and tempered to 

26 ± 1 °C using submerged electrical heaters and a light : dark photoperiod of 16 : 8 h was 

maintained. The spawning tanks were equipped with a stainless steel mesh (mesh size: 2.5 mm) 

to prevent fish from eating their eggs. Artificial weed (Clear water coarse filtering wool, 

Dennerle GmbH, Germany) was attached to the centre of the steel mesh to provide a spawning 

stimulation. Oxygen was always above 7.4 mg/L (Oxi 315i, WTW, Germany), pH at 7.8 – 8.2 

(pH 315i, WTW, Germany), and conductivity at 240 – 260 µS/cm (Cond 315i, WTW, 

Germany). On the following morning, 0.5 – 1 h after beginning of the light period, all fish were 

transferred back to the stock tanks and the eggs were collected into petri dishes for microscopical 

analysis. 

 

 

2.3 Test chemical 

A stock solution of 2 mg/L ZON (purity: 99 %, Sigma-Aldrich GmbH, Switzerland) was 

prepared in purified water (Elgastat, Option 4 water purifier, Elga Ltd, England) and stored in a 

glass bottle at 4 °C in the dark. This stock solution was diluted to prepare the test concentrations 

(15.6 – 2000 ng/L) for the embryo toxicity test and to prepare the supply solution (25 µg/L) for 

use in the exposure system of the early life-stage experiment. 
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2.4 Embryo toxicity test with zebrafish 

The embryo toxicity test was conducted with 3 – 8 independent experiments (n = 3 – 8) 

according to the adapted test protocol of Schulte & Nagel (1994) and the German DIN 38415 – 

T6. ZON was applied at 8 – 9 concentrations, each with 20 – 24 wells of a 24-well plate (Becton 

Dickinson Labware, USA) and 2 mL dilution per well.  

To prepare the test dilutions, the ZON stock solution was diluted with artificial water (ISO 

7346/3, stock solutions of 58.8 mg/L CaCl2 × 2 H2O, 24.6 mg/L MgSO4 × 7 H2O, 12.6 mg/L 

NaHCO3 and 5.5 mg/L KCl, diluted 1:5 with purified water), aerated to 100 % oxygen 

saturation. For the control 20 – 24 wells were filled with the same amount of artificial water. 

Within two hours post fertilization (hpf) one fertilized and normally developing fish egg was 

transferred into each well using a plastic pipette. The 24-well plates were closed with lids and 

incubated in a warming cupboard at 26 ± 1 °C and saturated humidity to avoid evaporation from 

the wells.  

 

 

Table 1: Toxicological endpoints for the evaluation of embryo 
toxicity and mortality (hpf: hours post fertilization).  

Toxicological endpoint 24 hpf 48 hpf 72 hpf 96 hpf 
Coagulation ● ● ● ● 
Epiboly stage ● ● ● ● 
No somites ● ● ● ● 
Undetached tail ● ● ● ● 
No heartbeat  ● ● ● 
No circulation  ○ ○ ○ 
No pigmentation  ○ ○ ○ 
No movement ○ ○ ○ ○ 
Development retardation ○ ○ ○ ○ 
Edema ○ ○ ○ ○ 
Malformation ○ ○ ○ ○ 
Hatch   ○ ○ 
● = lethal criterion used to determine mortality rate 
○ = documented but not evaluated as lethal criterion 
 = not documented 
 

 

The eggs were exposed to the ZON concentrations during the period of 2 – 96 hpf and inspected 

at 24, 48, 72 and 96 hpf for lethal and sub lethal effects using an inverse microscope (Olympus 

CKX41, Olympus, Germany) at 40x and 100x magnification. The toxicological endpoints 

evaluated in the test are given in Table 1. For assessing the heart rate, the number of heartbeats 
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was counted for a period of 15 s and beats per minute were calculated. Digital photomicrographs 

were taken (Altra 20, Soft imaging system GmbH, Germany) at 40x and 100x magnification 

from hatched zebrafish larvae at 96 hpf and body length was measured using Adobe Photoshop 

CS3 Extended version 10.0.1 (Adobe Systems Inc., USA). 

 

 

2.5 Early life-stage experiment: Exposure system 

The zebrafish (egg to juvenile) were exposed in a flow-through system in 12 L glass tanks with 

three replicate tanks for each exposure group and the water control. All tanks were aerated and 

tempered to 26 ± 1 °C using submerged electrical heaters, and a light : dark photoperiod of 16 : 

8 h was maintained during the duration of the experiment. Flow indicators (Sho-Rate 1355, 

Brooks Instrument, Netherlands) were used to regulate the flow of 2 L/h conditioned water into 

glass mixing chambers, equipped with magnetic stirrers. The ZON supply solution (25 µg/L) 

was dosed into the three mixing chambers of the exposed groups by means of a computer 

controlled dispenser (Microlab 541C Dispenser, Hamilton, Switzerland) at a speed of 2, 4 and 

8 mL/h resulting in nominal exposure concentrations of 25, 50 and 100 ng/L, respectively. Each 

tank was supplied from the mixing chambers through Teflon tubing (Carl Roth GmbH + Co. 

KG, Germany) using modular valve positioner (MVP, Hamilton, Switzerland) with a flow rate of 

1 L/h. 

Dissolved O2, pH, conductivity and temperature was monitored every fourth day. O2 was always 

above 7.5 mg/L, pH at 7.9 – 8.3, conductivity at 210 – 220 µS/cm and temperature at 25 – 27 °C. 

 

 

2.6 Early life-stage experiment: Experimental design 

Group A was introduced at day 0 and group B at day 10 into the exposure system. For group A 

115 and for group B 90 eggs per replicate were transferred within 4 hpf into mesh boxes. The 

mesh boxes (100 × 100 × 50 mm), consisting of stainless steel mesh (mesh size: 0.355 mm), 

were suspended in the 12 L exposure tanks. These fish were raised under the described exposure 

conditions for 30 and 20 days, respectively. From hatch till 8 days post hatch (dph), the larvae 

were fed dry powder (Sera Micron, Sera, Germany) and from 8 to 30 dph dry flakes (TetraMin 

Baby, Tetra GmpH, Germany) and freshly hatched Artemia salina nauplia twice a day. 

On day 30 of the early life-stage experiment all juvenile zebrafish (group A and B) were 

euthanized in 150 mg/L MS222 buffered with 300 mg/L NaCO3 to maintain a neutral pH. The 

total length of juvenile fish was measured to the nearest mm.   
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2.7 Chemical analysis 

To analyse the ZON concentrations in the stock solution and in the exposure aquaria, 100 mL 

water samples were collected before the start of the experiments and on day 0, 15 and 30 (all 

replicate tanks) of the early life-stage experiment, respectively, into solvent cleaned glass bottles 

and sent within 24 h to the research institute for chemical analysis (Agroscope Reckenholz-

Tänikon Research Station ART, Switzerland). An isotope labelled internal standard (D6-ZON) 

was added to the water samples prior to solid-phase extraction (SPE; SupelcleanTM Envi-18 

cartridges, 6 mL, 500 mg, Supelco, USA) and analysis by LC-MS/MS (negative electrospray 

ionization; Hartmann et al. 2007). 

 

 

2.8 Statistical analyses 

To investigate effects of the ZON exposure, data of exposed groups were compared to control 

group using SigmaPlot version 9.01 and SigmaStat version 3.1 (Systat Software Inc., USA). 

Data of mortality at 96 hpf, heart rate at 48 hpf, hatch rate at 72 hpf and body length (embryo 

toxicity test and early life-stage experiment) met the assumptions of normality and equality of 

variance. Hence, these data were analysed with a one-way analysis of variance (ANOVA) 

followed by Dunnett’s test. Data of heart rate at 72 hpf was log10 transformed prior to analysis to 

meet the assumptions of normality and equality of variance. Performing standard transformation 

of mortality at 48 hpf and hatch rate at 96 hpf data could not provide for the assumption of 

normality and equal variance, and therefore were analyzed by Kruskal-Wallis ANOVA on ranks, 

followed by Dunn’s method for multiple comparisons. Analysis of correlation between body 

length and nominal ZON concentration was conducted using Pearson Product Moment 

Correlation. 



Chapter II 

29 
 

3 Results 
 

3.1 Aqueous ZON concentration 

To verify the test concentrations, ZON was quantified in the stock solution and in the exposure 

tanks during the early life-stage experiment. ZON concentration in the stock solution for the 

embryo toxicity test was 1.70 ng/L which corresponds to 85 % of the nominal value. Mean ZON 

concentrations in the early life-stage experiment ranged between 70 and 84 % of the nominal 

value and were constant during the entire experiment. In the control group, no ZON could be 

determined (< 1 ng/L; Table 2). 

 

 
Table 2: Measured concentrations of zearalenone 
(ZON) for exposure groups and controls (mean ± 
SEM, n = 3). 

Nominal Mean measured concentrations [ng/L]
ZON day 0 day 15 day 30 
Control BDa BDa BDa 
25 ng/L 20.2 ± 0.10 18.1 ± 0.35 18.2  ± 0.27 
50 ng/L 42.2 ± 0.30 38.6 ± 0.20 39.7 ± 0.33 
100 ng/L 71.4 ± 0.95 70.2 ± 1.26 74.9 ± 1.76 

a BD = below detection limit (< 1 ng/L) 
 

 

3.2 Embryotoxicological effects of ZON 

Zebrafish embryos developed normally in the control groups of all experiments, defined by the 

criteria of Kimmel et al. (1995). Developmental abnormalities were always observed in ≤ 1 fish 

(≤ 5 %) per concentration. The observed effects in the exposed groups showed no concentration 

response relation. 

At 24 hpf only few developmental abnormalities such as malformations and edemas were 

observed in some exposure groups with a maximum of 1 – 2 fish (≤ 5 – 10 %) per concentration. 

An undetached tail was observed in one embryo, as indication of development retardation. At 

48 hpf the effects no heartbeat and no circulation were observed in a few embryos but not more 

than 1 – 2 fish (≤ 5 – 10 %) per concentration. Also edemas and malformations appeared 

occasionally with a maximum of 1 – 2 fish (≤ 5 – 10 %) per concentration. At 72 hpf effects such 

as no heartbeat, no circulation, edemas and malformation appeared in some experiments in some 

concentrations with a maximum of 1 – 3 fish (≤ 5 – 15 %) per concentration. At 96 hpf the 

effects and their frequency were similar to those at 72 hpf. 
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3.3 Embryo toxicity: Mortality, hatch rate, heart rate, body length 

The mortality in the control group showed means of 4.5 and 4.4 % at 48 and 96 hpf, respectively. 

Similarly the mortality in all ZON exposed groups revealed means of 1.6 – 5.2 and 1.3 – 6.7 % at 

48 and 96 hpf, respectively, with no significant differences between groups (Fig. 1 A, B). 

The hatch rate in the control group displayed means of 56.5 and 93.1 % at 72 and 96 hpf, 

respectively. Similarly the hatch rate in all ZON exposed groups showed means of 49.0 – 62.6 

and 93.8 – 98.8 % at 72 and 96 hpf, respectively, with no significant differences between groups 

(Fig. 1 C, D). 
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Fig. 1: Embryo toxicity: Mean ± SEM for mortality at (A) 48 hours post fertilization (hpf; n = 6 – 8) and 
(B) 96 hpf (n = 3 – 4), and for hatch rate at (C) 72 hpf (n = 6 – 8) and (D) 96 hpf (n = 3 – 4). 
 

 

The heart rate in the control group revealed means of 140.1 and 151.4 beats/min at 48 and 

96 hpf, respectively. Similarly the heart rate in all ZON exposed groups displayed means of 

130.3 – 135.1 and 140.1 – 145.5 beats/min at 48 and 96 hpf, respectively, with no significant 

differences between groups (Fig. 2 A, B). Body length at 96 hpf showed a mean of 3.8 mm for 
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the control group and was almost identical in the ZON exposed fish (mean of 3.8 mm) without 

significant differences between groups (Fig. 2 C). 
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Fig. 2: Embryo toxicity: Mean ± SEM for heart rate at (A) 48 hours post fertilization (hpf; n = 7 – 8) and 
(B) 72 hpf (n = 7 – 8), and for body length at (C) 96 hpf (n = 3). 
 

 

3.4 Early life-stage experiment 

After exposure for 20 days up to 100 ng/L ZON, body length of zebrafish showed means of 5.3 – 

5.4 mm and were similar to control group (5.3 mm) without significant difference between 

groups (Fig. 3 A). After exposure for 30 days, body length revealed means of 6.1, 6.5 and 

6.7 mm at 25, 50 and 100 ng/L ZON, respectively, and 6.0 mm in the control group without 

significant differences between groups (Fig. 3 B). However, analysis of correlation revealed a 

positive correlation between ZON concentration and body length (r = 0.695, p = 0.0121). 
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Fig. 3: Early life-stage experiment: Mean ± SEM for body length at (A) 20 days post fertilization (dpf) 
and (B) 30 dpf (n = 3). 
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4 Discussion 
 

4.1 Embryo toxicity: Evaluation of effects 

Only few deviations from normal development were observed in the various ZON concentrations 

without showing a relation between concentration and response. No indication of retarded 

development was observed at 24 hpf, except for one single embryo with an undetached tail. In 

the exposure period from 48 to 96 hpf, the effect no heartbeat appeared only occasionally. 

Evaluating these findings together with the results for mortality (as effects such as undetached 

tail and no heartbeat were determined as mortal) and hatch rate which showed no differences to 

the control, we suggest that ZON does not affect development up to a concentration of 

2000 ng/L. 

Developmental abnormalities such as edemas and malformations appeared in very few embryos 

in various ZON concentrations without significant differences to control. These deviations from 

normal development are probably due to inter-individual variation and therefore indicating no 

teratogenic potential for ZON up to 2000 ng/L. 

Since developmental events in zebrafish were not arrested and embryos developed 

synchroniously in all concentrations, we can deduce that ZON exert no apparent threat to 

embryonic fish development until hatch up to a concentration of 2000 ng/L. 

 

 

4.2 Mortality, hatch rate, heart rate and body length 

The mortality in the control groups at 48 hpf was in all experiments below 10 %. Therefore the 

requirement of DIN 38415 – T6 for a valid test was met and the effects can be attributed to the 

ZON exposure. 

Mean cumulative mortality at the end of the embryo exposure in control and exposure groups 

was similar with no significant differences between groups. Consequently there was no evidence 

that exposure for 96 h, from fertilization to hatch, up to a concentration of 2000 ng/L ZON 

affected survival of zebrafish. This is in accordance with data from toxicological studies 

demonstrating that apart from estrogenic effects ZON exhibits a low acute toxicity in many 

animal species (Kuiper-Goodman et al. 1987). 

Similarly hatch rate at 72 and 96 hpf was for all exposure groups in the same range as for the 

control group and no significant difference between groups were found. Hatching date is a 

sensitive endpoint of the fish egg assay, because environmental impacts and pollutants may 

influence the hatching date by delaying of accelerating egg development or they may interfere 

directly with these processes, e.g. through the inhibition of the chorionase (Dave & Xiu 1991). 
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Furthermore, organisms exposed to pollutants assign a large part of their energy to metabolic 

pathways aimed at eliminating the pollutant, thus, less energy could be available for hatching 

(Wiegand et al. 2000). As we could not observe early or late hatch caused by the exposure to 

ZON there was no indication of influence on development time. 

The heart rate in all exposure groups was slightly lower than in the control group but without 

significant differences among groups. Heart rate determination is a reliable metric that has been 

successfully used to quantify the physiological and developmental stresses experienced by 

embryonic zebrafish as a result of exposure to waterborne chemicals and pollutants (Craig et al. 

2006, Hallare et al. 2005, Hassoun et al. 2005). From our results we conclude that exposure to 

ZON up to 2000 ng/L did not induce significant stress to the developing fish. 

In addition, body length of the hatched larvae at 96 hpf was almost identical in the exposure and 

control groups. Consequently there was no evidence that exposure from fertilization to 96 hpf up 

to a concentration of 2000 ng/L ZON affected growth of zebrafish. 

 

 

4.3 Early life-stage experiment 

After exposure from fertilization until 30 dpf all exposure groups showed a trend for increased 

body length compared to control but without significant differences between groups. This was 

not the case at 20 dpf. 

Several authors reported a significant increase in length and weight of zebrafish after exposure 

from 0 to 240 and 24 to 64 dpf to 0.5 – 2 ng/L and 2 – 10 ng/L EE2, respectively, as well as a 

concentration dependent increase of length and weight after exposure from 0 to 42 dpf and F0 

generation to 27 – 272 ng/L E2 (Örn et al. 2003, Soares et al. 2009, Van der Ven et al. 2007). In 

contrast no effect on length and weight was found in zebrafish exposed from 0 to 75 and 0 to 

270 dpf to 3 – 5 ng/L EE2 as well as 5 ng/L E2, respectively (Fenske et al. 2005, Nash et al. 

2004). Other studies observed a significantly reduced length and weight of zebrafish after 

exposure from 0 to 60 – 90 dpf to 1.7 – 25 ng/L EE2 (Hill & Janz 2003, Schäfers et al. 2007, 

Van den Belt et al. 2003b). In summary, the cited studies show very diverse effects of the steroid 

estrogens E2 and EE2 on zebrafish. The observed estrogenic effects ranged from promoting 

growth to having no effect, or to inhibiting growth. Taken together these results show no pattern 

or tendency, such as concentration or duration dependence of positive or negative effect on 

growth of zebrafish, or give evidence under which conditions estrogens influence growth or not. 

However the observed positive influence on growth of zebrafish exposed to ZON for 30 days 

corresponds to the growth-promoting (anabolic) potential of E2 in early life of fish (Bell 2004, 

Mandiki et al. 2005). 
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4.4 Environmental relevance 

ZON was reported to occur in surface waters and effluents in concentrations of 0.5 – 44 ng/L and 

1 – 220 ng/L, respectively (Gromadzka et al. 2009, Lagana et al. 2001, 2004, Lundgren & Novak 

2009). The maximum observed environmental concentrations are 9 – 45 times lower than the 

highest applied concentration which revealed no effect in the present embryo toxicity studies 

(2000 ng/L). The maximum observed surface water concentration is 44 % of the highest 

concentration applied in the early life-stage experiment, which showed no significant effect 

compared to control but a positive correlation between ZON concentration (25, 50 and 100 ng/L) 

and body length. 

Assessing the environmental relevance of these results, the risk for early development of fish to 

be affected by ZON in the natural environment appears to be rather low. However, the actual 

exposure in a given catchment depends on many factors, such as Fusarium infection rates, 

meteorology and hydrodynamics (Bucheli et al. 2008, Hartmann et al. 2008b). Therefore, taking 

into consideration the highest detected concentrations, a possibly higher species sensitivity, 

regional and temporal limited higher concentrations (caused by effluent discharge in 

combination with low flow conditions, or runoff from Fusarium infected fields), and mixture 

effects in combination with other estrogen active substances, ZON might contribute to the 

overall estrogenic exposure in the environment. 
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5 Conclusions 
 

No effects on embryonic development of zebrafish caused by exposure up to 2000 ng/L ZON 

from fertilization until hatch was observed. However, a positive correlation between the body 

length and ZON concentration for zebrafish exposed from fertilization until 30 days up to 

100 ng/L suggests a growth promoting effect of ZON.  

There is not much data available for ZON concentrations in the environment and the measured 

values in surface waters are below the LOEC (lowest observed effect concentration) we 

determined in this study to cause effects on fish early life-stage. Thus, it is rather unlikely that 

ZON impair early development of fish directly. However, ZON might contribute to an overall 

estrogenic contamination in the environment and under certain circumstances (higher species 

sensitivity, spatially and temporally limited events and combination with other estrogen active 

substances) there might be a certain risk for fish to be affected by ZON in their natural 

environment. 

Further studies are needed to investigate the potential consequences for fish caused by exposure 

to ZON for longer periods. Furthermore it is of great importance to investigate effects on 

different life-stages as well as estrogen related and population relevant endpoints (e. g. 

reproduction). 
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Abstract 
 

Zearalenone (ZON) is one of the worldwide most common mycotoxins and exhibits estrogenic 

activity in the range of natural steroid estrogens such as 17β-estradiol (E2). The occurrence of 

ZON has been reported in drainage water, soil, wastewater effluents and rivers, but its 

ecotoxicological effects on fish have hardly been investigated. 

In this study, the estrogenic potency of the ZON was compared to E2 in a recombinant yeast 

estrogen screen (rYES) and the effects of waterborne ZON exposure on reproduction, physiology 

and morphology of zebrafish (Danio rerio) were investigated in a 42 day reproduction 

experiment. E2 as well as ZON evoked a sigmoid concentration response curve in the rYES with 

a mean EC50 of 2 µg/L and 500 µg/L, respectively, resulting in an E2 : ZON EC50 ratio of 

1 : 250. Exposure to ZON for 21 days reduced relative spawning frequency at 1000 and 

3200 ng/L to 38.9 and 37.6 %, respectively, and relative fecundity at 100, 320, 1000 and 

3200 ng/L to 74.2, 41.7, 43.8 and 16.7 %, respectively, in relation to the 21 day pre exposure 

period. A 4.4 and 8.1 fold induction of plasma vitellogenin (VTG) was observed in male 

zebrafish at 1000 and 3200 ng/L ZON, respectively. Exposure to ZON did not affect fertility, 

hatch, embryo survival and gonad morphology of zebrafish. 

The results of this study demonstrate that although ZON possesses a moderate estrogenic 

potency in vitro, it exhibits a comparably strong effect on induction of VTG and reproduction in 

vivo. This indicates that ZON might contribute to the overall estrogenic activity in the 

environment and could therefore pose a risk for wild fish in their natural habitat.  
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1 Introduction 
 

Zearalenone (ZON) belongs to the chemical group of the resorcyclic acid lactones (RALs) and is 

one of the worldwide most common mycotoxins (Chelkowski 1998). RALs show estrogenic 

activity in the range of natural steroid estrogens and the relative binding affinity (RBA) to the 

estrogen receptor (ER) for ZON has a factor of 0.82 in relation to the natural steroid estrogen 

17β-estradiol (E2; Matthews et al. 2000).  

Several RALs can co-occur as a result of Fusarium spec. (primarily F. graminearum) infection 

of corn, wheat and other cereals. The extent of Fusarium spec. infestation on crops and 

subsequent contamination with mycotoxins is dependent on factors as crop rotation, soil 

cultivation, susceptibility of crop varieties and climatic conditions (Champeil et al. 2004). 

Climate change towards warmer and more moist conditions may provide even more fertile 

ground for fungi proliferation (Jenny et al. 2000). The occurrence of mycotoxins has been 

studied extensively in food and feed products and domestic animals. Agricultural products 

around the world show contamination rates for ZON up to 69 % of the tested samples with 

concentrations of up to 180 μg/kg (Rhyn & Zoller 2003). Due to its anabolic properties α-

zearalanol (ZAL), a ZON metabolite, is licensed as growth promoter for cattle in USA and 

Canada (banned in EU since 1985) which increases the risk of exposure to RALs (Le Guevel & 

Pakdel 2001).  

ZON must be classified moderately water soluble (5.2 mg/L; Megharaj et al. 1997) and rather 

hydrophobic (KOW: 3.7; Lemke et al. 1998). This indicates some environmental phase mobility 

and a certain potential for sorption and retention in soil systems. Its stability during milling, food 

processing, heating, etc. is considerable and it must be assumed that ZON is rather persistent in 

the environment (Ryu et al. 2003). Data on biotic transformation of ZON indicates as main 

metabolic pathway the conversion to α- and β-zearalenol (ZOL; El-Sharkawy & Abul-Hajj 1988, 

European Commission 2000, Kleinova et al. 2002, Mirocha et al. 1981). This is of relevance as 

the estrogenic activity of RALs decreases in the following order: α-ZOL > ZON > β-ZOL 

(Coldham et al. 1997, Le Guevel & Pakdel 2001).  

The occurrence of ZON was reported in rivers in Italy, Poland and USA in concentrations of 2 – 

5, 0.5 – 43, and up to 8 ng/L, respectively (Gromadzka et al. 2009, Kolpin et al. 2010, Lagana et 

al. 2004). Hartmann et al. (2008a, 2008b) demonstrated in a field study with wheat and maize the 

occurrence of ZON in drainage water and soil up to 35 ng/L and 4 ng/g, respectively. 

Concentrations of 1 – 10 and 95.5 – 220 ng/L ZON were measured in Italian wastewater 

treatment plants and US American industrial wastewater effluents, respectively (Lagana et al. 
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2001, 2004, Lundgren & Novak 2009). Given the comparably high ER-RBA, ZON and its 

metabolites might contribute to the overall estrogenic activity in the environment. 

Little is known about the ecotoxicological impact of ZON as an environmental estrogen at levels 

found in surface waters and the consequence of exposure to aquatic organisms. Endocrine active 

substances (EASs) exert their effects by mimicking or antagonizing endogenous hormones, 

influencing the natural hormone synthesis, metabolism or elimination, and therefore have the 

potential to interfere with reproduction and development (Jobling & Tyler 2003b, Sumpter 

2005). Primary concerns are on substances with estrogenic activity which can be anthropogenic, 

such as certain pharmaceuticals, pesticides and industrial chemicals, natural, such as phyto- and 

mycoestrogens or both, such as steroid estrogens. The few in vivo studies that investigated ZON 

and its metabolites revealed effects on vitellogenin (VTG) induction and zona radiata proteins, 

immune system and growth in fish (Arukwe et al. 1999, Celius et al. 2000, Keles et al. 2002). 

Exposure of fish to estrogens result in induction of the yolk precursor protein VTG in male and 

juvenile fish, making it a suitable specific biomarker for detecting estrogenicity (Sumpter & 

Jobling 1995). 

Several studies in zebrafish (Danio rerio) have shown that estrogens such as the natural E2 or 

the synthetic pharmaceutical 17α-ethinylestradiol (EE2) affect gonad development and have an 

impact on egg viability and production, fertilization success, sexual differentiation and sex ratios 

(Andersen et al. 2003, Brion et al. 2004, Hill & Janz 2003, Maack & Segner 2004, Nash et al. 

2004, Örn et al. 2003, Schäfers et al. 2007, Segner et al. 2003, Van den Belt et al. 2001, 2003b, 

Van der Ven et al. 2007). Investigations that focus on a relationship between exposure 

conditions, biomarker changes and reproductive effects can provide information to evaluate the 

environmental relevance of estrogens (Arcand-Hoy & Benson 1998, Miller et al. 2007, Thorpe et 

al. 2007).  

The aim of this study was to investigate the estrogenic potency of ZON and its effects on fish in 

a waterborne exposure. A recombinant yeast estrogen screen (rYES) was used as an in vitro 

assay with the endpoint ‘activation of ER-regulated genes’ to assess the relative estrogenic 

activity of ZON compared to E2. For the in vivo experiment we used the zebrafish, a widely used 

species in many standard ecotoxicological tests in OECD guidelines, as a model. We conducted 

a 42 day reproduction experiment exposing spawning groups of adult zebrafish to ZON via 

water. Reproduction (spawning frequency, fecundity, fertility and hatch) as well as physiological 

(VTG induction) and morphological (histomorphometry of gonad) parameters were assessed to 

evaluate effects of endocrine disruption.  
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2 Materials and Methods 
 

2.1 Experimental animals 

All procedures concerning experimental animals were performed in compliance with the Swiss 

protection of animals act. The zebrafish used in this study were approximately 10 months old at 

the start of the experiment and originated from our fish breeding stocks, held at the University of 

Basel. Prior to the onset of the experiment the fish were kept in aerated 60 L glass tanks supplied 

with a constant flow of 5 L/h conditioned water (1 : 1 mix of charcoal filtered tap water and 

reverse osmosis water) at a temperature of 27 ± 1 °C, pH of 8.1 ± 0.2 and an artificial light : dark 

photoperiod of 16 : 8 h.  The animals were fed twice daily once with dry pellet (SilverCup, H. U. 

Hofmann AG, Switzerland) and once with frozen brine shrimps (Artemia salina, 3F Frozen Fish 

Food BV, Netherlands).  

 

 

2.2 Test chemical 

A stock solution of 0.5 mg/mL zearalenone (ZON, purity: 99 %, Sigma-Aldrich GmbH, 

Switzerland) was prepared in acetone (purity: 99.9 %, Carl Roth GmbH + Co. KG, Germany) 

and stored in a glass bottle at 4 °C in the dark. This stock was used to prepare a solvent free 

supply solution every 3 days for use in the exposure system. The supply solution was prepared 

by coating a 2 L glass bottle with 4 mL of stock solution and removing the solvent under a gentle 

stream of N2. The bottle was then filled up to 2 L with conditioned water to give a concentration 

of 1 mg/L ZON and stirred over-night with a magnetic stirrer prior to introduction to the 

exposure system. 

 

 

2.3 Exposure system 

The zebrafish were exposed in a flow-through system in 12 L glass tanks with four replicate 

tanks for each ZON concentration and the water control.  All tanks were aerated and tempered to 

26 ± 1 °C using submerged electrical heaters and a light : dark photoperiod of 16 : 8 h was 

maintained during the duration of the experiment. Flow indicators (Sho-Rate 1355, Brooks 

Instrument, Netherlands) were used to regulate the flow of 6 L/h conditioned water into glass 

mixing chambers, equipped with magnetic stirrers. The ZON supply solution was dosed into the 

four mixing chambers of the exposed groups by means of a computer controlled dispenser 

(Microlab 500 series Dispenser, Hamilton, Switzerland) at a speed of 600, 1920, 6000 and 

19200 µL/h giving nominal exposure concentrations of 100, 320, 1000 and 3200 ng/L. Each 
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exposure tank was supplied from the mixing chambers through Teflon tubing (Carl Roth GmbH 

+ Co. KG, Germany) using peristaltic pumps (Ismatec IPN 24, Ismatec, Switzerland) with a flow 

rate of 1 L/h and allocated to the different concentrations and negative control, respectively, 

using a random generator (www.randomizer.org). 

Every tank was equipped with a spawning tray consisting of a stainless steel tray (265 × 185 × 

30 mm) covered with a stainless steel mesh (mesh size: 2.5 mm). To minimize the handling 

stress for the fish two stainless steel cable ties were attached to the trays for manipulation from 

outside the water. Artificial weed (Clear water coarse Filtering wool, Dennerle GmbH, 

Germany) was attached to the centre of the steel mesh and surrounded by a few stained glass 

stones to provide an appropriate spawning stimulation. 

Dissolved O2, pH, conductivity and temperature was monitored every fourth day. O2 was always 

above 7.4 mg/L, pH at 7.8 – 8.2, conductivity at 240 – 260 µS/cm and temperature at 25 – 27 °C. 

 

 

2.4 Experimental design 

Each exposure tank (four replicates per ZON concentration and control) was stocked with a 

spawning group consisting of two female and four male zebrafish. After an acclimatization 

period of one week the experiment started with a pre exposure period of 21 days to establish the 

baseline reproduction for each group, followed by a 21 day exposure period. During the whole 

time the animals were fed dry pellets once and 2 mL of freshly hatched Artemia salina nauplia 

twice per day. 

Every morning the spawning trays were removed from the exposure tanks, to check for eggs and 

replaced with clean spawning trays. The fish eggs were transferred to petri dishes for 

microscopical analysis, to determine fertilization success. From each clutch a maximum of 

50 fertilized eggs were randomly selected and transferred to an egg cup consisting of a glass 

tubing (80 × 60 mm) closed with a stainless steel mesh (mesh size: 0.355 mm) at the bottom 

side, and suspended in 21 L glass tanks filled with conditioned water at a temperature of 25 – 

27 °C. Five days post fertilization the eggs were analyzed for vitality and hatch. 

 

 

2.5 Estrogenic activity 

A rYES expressing the human estrogen receptor alpha (hERα; Routledge & Sumpter 1996) was 

used to assess the relative estrogenic potency of ZON in comparison to E2 (purity: 98 %, Sigma-

Aldrich GmbH, Switzerland) and to determine estrogenic activity in each aquarium in relation to 

an internal ZON standard. 
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The E2 and ZON standards were prepared in ethanol (purity: 99.8 %, Carl Roth GmbH + Co. 

KG, Germany) in a concentration of 54.5 µg/L and 20 mg/L, respectively. To assess the 

concentration-response curve and the relative estrogenic potency of ZON, 12 independent 

experiments were performed. 

Samples of 1 L aquarium water were collected on day 4, 7, 21 (one replicate per concentration 

and control) and 12 (all replicates) of the exposure period into solvent cleaned glass bottles, 

spiked with 5 mL methanol (Sigma-Aldrich GmbH, Switzerland) and extracted onto pre-

conditioned Sep-Pak Classic C18 cartridges (Waters corp., USA). The cartridges were air dried 

and stored until further processing at -40 °C. After defrosting and air drying, the cartridges were 

eluted into solvent cleaned amber glass tubes using 5 mL methanol. The methanol extracts were 

dried under a N2 stream and redissolved in 1 mL ethanol (Sigma-Aldrich GmbH, Switzerland). 

E2 and ZON standard were tested in a serial dilution of 12 steps and the ethanol extracts of the 

water samples in a serial dilution of 5 steps, each in duplicate. The rYES was conducted 

following the methods described by Routledge & Sumpter (1996).  

 

 

2.6 Chemical analysis 

To measure ZON concentrations in the exposure tanks, 100 mL water samples were collected on 

day 4, 21 (one tank per concentration and control) and 12 (all replicates) of the exposure period 

into solvent cleaned glass bottles and sent within 24 h to the chemical laboratory (Agroscope 

Reckenholz-Tänikon Research Station ART, Switzerland). A HPLC-negative electrospray 

ionization (-ESI)-MS/MS analytical method with a preparatory solid-phase extraction was used 

to analyze the water samples following the methods described by Hartmann et al. (2007). 

 

 

2.7 Fish sampling and analysing 

On day 42 of the experiment all adult zebrafish were euthanized in 150 mg/L MS222 buffered 

with 300 mg/L NaCO3 to maintain a neutral pH. The fish were wet weighed to the nearest 0.01 g 

and total length determined to the nearest mm. A 5 – 10 µL blood sample was taken by cardiac 

puncture using a heparinised (1000 Units heparin/mL, Heparin ammonium salt, Sigma-Aldrich 

GmbH, Switzerland) insulin syringe (Becton Dickinson & Company, USA), transferred in an 

Eppendorf reaction tube and centrifuged for 5 min. at 4 °C and 9300 g. The 3 – 5 µL plasma per 

sample was transferred to a new reaction tube and stored at -80 °C in the dark for later analysis 

of VTG concentration using a commercially available zebrafish ELISA kit (Prod. No. 

V01008402, Biosense Laboratories, Norway). The abdominal cavity was opened with dissecting 
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scissors and the whole fish fixed for 24 h in Bouin’s fixative (Sigma-Aldrich GmbH, 

Switzerland). 

For histological examination the head and tail of the fixed fish were removed and the trunk cut 

into four slices (~ 3 mm thickness) using a microtome blade (SEC 35, Microm International 

GmbH, Germany). Subsequently the samples were dehydrated in an ascending ethanol series, 

incubated in Roti Histol (Carl Roth GmbH + Co. KG, Germany) and paraffinized (Roti-Plast, 

Carl Roth GmbH + Co. KG, Germany). All four samples per fish were embedded in one standard 

embedding cassette. This enabled simultaneous whole body transverse sectioning of different 

areas. Transverse histological sections (9 µm thickness) were stained with standard hematoxylin 

and eosin (H&E, Carl Roth GmbH + Co. KG, Germany). 

Digital photomicrographs were taken (Nikon ACT-1 version 2.63, Nikon Corporation, Japan) 

from male and female gonads and analyzed using Adobe Photoshop CS3 Extended version 

10.0.1 (Adobe Systems Inc., USA). For the male gonads four photos, two per testis, of a routine 

section were taken at 400x magnification. The development stage of the sperm cells was 

classified in three major classes according to Dietrich & Krieger (2009), namely spermatogonia, 

spermatocytes and spermatides. The photos were analyzed by measuring the surface area of the 

three different classes and calculating the relative proportion of each class. For the female both 

gonads on a routine section were photographed completely at 40x magnification. The 

developmental stage of the oocytes was classified into three major classes according to Dietrich 

& Krieger (2009), namely perinucleolar, cortical alveolar and vitellogenic oocytes. The photos 

were analyzed by counting the cells and determining the relative ratio of each class.  

 

 

2.8 Statistics 

To investigate effects of the ZON exposure, data of exposed groups were compared to control 

groups using SigmaPlot version 9.01 and SigmaStat version 3.1 (Systat Software Inc., USA). For 

data of reproductive output the ratio of the 21 day exposure period to the 21 day pre-exposure 

period was calculated resulting in relative spawning frequency, fecundity, clutch size, hatch rate 

and embryo survival. Data of reproductive output ratio, body weight, length and 

histomorphometry met the assumptions of normality and equality of variance permitting to use 

one-way analysis of variance (ANOVA) followed by a Dunnett test. Data of fertilization rate and 

plasma VTG concentrations were log10 transformed prior to analysis to meet the assumptions of 

normality and equality of variance. Analysis of correlation between relative fecundity and log10 

transformed VTG concentration was conducted using Pearson Product Moment Correlation. 
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3 Results 
 

3.1 Estrogenic activity of ZON and aqueous concentration 

To determine the relative estrogenic potency we compared ZON to E2 using a rYES. E2 as well 

as ZON evoked a sigmoid concentration response curve with a mean EC50 of 2 µg/L and 

500 µg/L, respectively, resulting in an E2 : ZON EC50 ratio of 1 : 250 (Fig. 1). Both curves ran 

almost parallel and provoked comparable maximal receptor activation. 
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Fig. 1: Concentration response curve for 17β-estradiol (E2) and Zearalenone (ZON) in the recombinant 
yeast estrogen screen (mean ± SEM, n = 12). 
 

 

A combination of analytical measurement for ZON and in vitro analysis (rYES) for 

determination of estrogenic activity induced by ZON were used to quantify the content of 

mycotoxin in the exposure tanks. Analytically measured ZON mean concentrations ranged 

between 57.5 and 84.4 % of nominal values and were always lower than mean concentrations 

determined in vitro, expressed as estrogen equivalent (EEQ) for ZON, which ranged between 

92.5 and 247.5 % of nominal values (Table 1). In the control group no ZON could be detected 

(LOQ = 1.5 – 2.4 ng/L) and estrogenic activity was below detection limit (LOQ ≈ 80 ng/L EEQ). 

 

 

 

 

 

 

 



Chapter III 

48 
 

Table 1: Analytically measured concentrations of zearalenone (ZON) and in vitro (recombinant 
yeast estrogen screen, rYES) determined estrogen equivalent for ZON (EEQ) for exposure 
groups and control (mean ± SEM). Analytical chemistry: one replicate per group on day 4, 12, 
21 (n = 3), all replicates on day 12 (n = 4); rYES: one replicate per group on day 4, 7, 12, 21 
(n = 4), all replicates on day 12 (n = 4). 

Nominal concentration  Mean measured concentrations (ng/L) 
ZON Analytical chemistry (ZON) Recombinant yeast screen (EEQ)

 day 4, 12, 21 day 12 day 4, 7, 12, 21 day 12 
Control   BDa    BDa  BDa    BDa 

100 ng/L  73 ± 6   84 ± 2 248 ± 54   217 ± 55 
320 ng/L 229 ± 9 233 ± 5 476 ± 75     656 ± 104 

1000 ng/L  728 ± 89   575 ± 14 925 ± 66 1078 ± 76 
3200 ng/L  2549 ± 407 2327 ± 66 3315 ± 317   4104 ± 165 

a BD = below detection limit 
 

 

3.2 Effects on mortality, weight, body length and gonad morphology 

There was no evidence that exposure for 21 days to a concentration up to 3200 ng/L ZON 

affected survival, weight and body length of the male or female zebrafish. Similarly, we found 

no effect on gonad morphology (data not shown). The testes of all males in both control and 

ZON exposed fish were regular in structure and the tubules contained cysts showing a full 

spectrum of sperm cell differentiation stages with no significant differences between the groups 

in terms of the ratio of the various stages of development. None of the testes examined contained 

oocytes. Similarly, the ovaries of the control and ZON exposed fish showed a full range of the 

different oocyte developmental stages with no significant differences between the groups in 

terms of the proportions of oocytes at the various stages of development.  

 

 

3.3 Effects on reproductive performance and VTG induction 

Details of the reproductive performance for each exposure group during pre-exposure and 

exposure period are presented in Table 2. Assessment of egg production demonstrated a 

concentration dependent decrease for relative spawning frequency as well as for relative 

fecundity during 21 days of exposure to ZON (Fig. 2 A, B). Mean relative spawning frequency 

during exposure period was 137.4 % for control group and significantly reduced at 1000 and 

3200 ng/L ZON (p < 0.05) to 38.9 and 37.6 %, respectively, whereas the two lowest 

concentrations reached values of 96.1 and 69.4 %, respectively. Relative fecundity revealed a 

significant decrease in all breeding groups exposed to ZON (p < 0.05). Mean relative fecundity 
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for control was 133.1 % and the ZON exposed groups exhibited values of 74.2, 41.7, 43.8 and 

16.7 % for 100, 300, 1000 and 3200 ng/L, respectively. 

Data for relative clutch size displayed a slightly different pattern (Fig. 2 C). Whereas the two 

lowest and the highest ZON concentrations showed a negative concentration related response 

during exposure period, the value for 1000 ng/L reached with 109.5 % approximately the same 

value as control with 108.7 %. No effects on fertility, hatch and embryo survival after exposure 

to ZON up to a concentration of 3200 ng/L could be detected. 

 

 

Table 2: Reproductive performance of zebrafish during 21 days pre-exposure and 21 days exposure to 
zearalenone (ZON) in the reproduction experiment (mean ± SEM; n = 4). 

Exposure Group Reproductive performance 

ZON  Spawning frequency 
(spawnings per day) 

Fecundity 
(eggs per day) 

Clutch size 
(eggs per spawning) 

 pre-exposure exposure pre-exposure exposure pre-exposure exposure 

Control 0.50 ± 0.10 0.63 ± 0.10 38.54 ± 9.7 54.89 ± 17.9 76.81 ± 11.9 81.21 ± 18.5 

100 ng/L 0.57 ± 0.09 0.50 ± 0.09 69.37 ± 22.0 47.63 ± 13.8 131.11 ± 45.5 99.34 ± 30.5 

320 ng/L 0.51 ± 0.05 0.37 ± 0.11 85.57 ± 21.6 37.06 ± 14.1 160.36 ± 30.1 92.09 ± 10.3 

1000 ng/L 0.45 ± 0.03 0.18 ± 0.04 25.81 ± 5.2 9.93 ± 1.9 57.22 ± 12.0 56.93 ± 3.9 

3200 ng/L 0.39 ± 0.04 0.17 ± 0.08 24.44 ± 6.8 4.65 ± 2.7 60.15 ± 14.8 18.18 ± 7.2 
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Fig. 2: Relative (A) spawning frequency, (B) fecundity and (C) clutch size for spawning groups of 
zebrafish (4 males, 2 females) exposed for 21 days to zearalenone (ZON) and water control in relation to 
pre-exposure period (mean ± SEM, n = 4). Significant differences between groups are denoted by 
different letters (a, b, c; p < 0.05). 
 

 

After 21 days exposure, a concentration related increase in plasma VTG was observed in male 

zebrafish at ZON concentrations from 320 to 3200 ng/L (Fig. 3). There was a significant 4.4 and 

8.1 fold induction of VTG at 1000 and 3200 ng/L ZON relative to control, respectively 

(p < 0.05). Analysis of correlation revealed a significant negative correlation between plasma 

VTG concentration and relative fecundity (r = -0.558, p = 0.01). 
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Fig. 3: Vitellogenin (VTG) concentration in plasma of male zebrafish exposed for 21 days to zearalenone 
(ZON) and water control (mean ± SEM, n = 4). Significant differences from control are denoted as * 
(p < 0.05). 
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4 Discussion 
 

The estrogenic potency of ZON was compared to the natural steroid estrogen E2 in vitro, in a 

rYES, and its effects on morphology, reproduction and physiology of zebrafish were investigated 

in vivo, in a 42 day reproduction experiment. References on ZON and E2 provided in the 

following text are based on nominal concentrations. 

 

 

4.1 Estrogenic activity of ZON 

The estrogenic potency, as ability to bind to the ER, activate the receptor and express hormone 

controlled genes was determined in a rYES transfected with hER. ZON revealed a moderate 

estrogenic activity in the present study with an E2 : ZON EC50 ratio of 1 : 250. This is in 

accordance with Bovee et al. (2004) and Le Guevel & Pakdel (2001) who observed an E2 : ZON 

EC50 ratio of 1 : 205 – 391 in an rYES expressing the hERα and β. Le Guevel & Pakdel (2001) 

also applied a rYES expressing rainbow trout ER (rtER), resulting in a E2 : ZON EC50 ratio of 

1 : 13.9. 

Several studies reported E2 : ZON EC50 ratios for the binding affinity (BA) of E2 and ZON to 

human and fish ER (EC50 are calculated in g/L): 1 : 27.1 (hERα), 1: 14.6 (hERβ; Takemura et al. 

2007) 1 : 129.9 (hER), 1 : 46.0 (rtER; Olsen et al. 2005, Tollefsen et al. 2002) and 1 : 350 (rtER; 

Arukwe et al. 1999). Ratios for hER : rtER EC50 are 1 : 1.3 (ZON), 1 : 3.7 (E2; Olsen et al. 2005) 

and 1 : 10 (E2; Le Drean et al. 1995). Data derived from rYES experiments imply that ZON in 

relation to E2 is approximately 14.8 – 28.1 fold more potent for rtER, a fish ER, than it is for 

hER, a mammal ER. Results from ER-BA studies, however, display a wider range for the 

estrogenic potency of ZON namely 14.6 – 129.9 and 46 – 350 times lower for hER and rtER 

compared to E2, respectively. The BA to rtER for E2 and ZON is 3.7 – 10 and 1.3 times lower 

than to hER, respectively, indicating only small difference in species sensitivity. Altogether the 

presented in vitro data suggest that relative estrogenic potency for ZON is 14.6 – 391 and 13.9 – 

350 fold lower for hER and rtER, respectively, in relation to E2. 

 

 

4.2 Aqueous ZON concentration 

The quantified ZON concentrations for both methods analytical chemistry and rYES were stable 

in the exposure groups and undetectable in the control groups during the entire exposure period. 

The ZON concentrations determined in the rYES (92.5 – 247.5 % of nominal) were consistently 

higher than the analytically measured (71.5 – 84.4 % of nominal) values. An explanation for this 
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could be that in the rYES the overall estrogenicity is determined and, hence, other possible 

sources such as ZON metabolites could have contributed to a background estrogenic activity. 

Data on biotic transformation of ZON generally indicate as a main metabolization pathway the 

reduction of the 6′-keton to yield α- and β-ZOL. The estrogenic potency of α-ZOL in the rYES is 

approximately five fold higher than that of ZON (El-Sharkawy & Abul-Hajj 1988, Le Guevel & 

Pakdel 2001). Therefore, α-ZOL might have contributed to the high estrogenicity in the rYES. 

 

 

4.3 Effects on mortality, weight, body length and gonad morphology 

The absence of any mortality and the fact that fish were looking healthy and showed no signs of 

behavioural modification indicate that exposure to concentrations up to 3200 ng/L ZON up to 

21 days does not have severe acute toxic effects on zebrafish. This is in accordance with data 

from toxicological studies demonstrating that apart from estrogenic effects ZON exhibits a low 

acute toxicity in many animal species (Kuiper-Goodman et al. 1987). 

In this study we could not find an effect of exposure for 21 days to ZON up to a concentration of 

3200 ng/L on gonad morphology. Brion et al. (2004) did not observe effects in adult female 

zebrafish in terms of the proportion of oocytes at the various stages of development and active 

spermatogenesis in adult male zebrafish after exposure for 21 days up to 100 ng/L E2. A factor 

of 32 calculated from these two maximal concentrations suggest that the results of Brion et al. 

(2004) are in accordance with our histology outcome considering  a 13.9 – 350 weaker 

estrogenic potency for ZON in comparison to E2, resulting from in vitro data. At 2724 ng/L E2, 

a significant increase of spermatogonia surface area in testis and a lack of advanced maturation 

stages in ovary but no effect at 272.4 ng/L were stated in the study of Van der Ven et al. (2003). 

However, even based on the lowest estrogenic potency factor of 13.9 between ZON and E2 

resulting from in vitro studies, a concentration of 2724 ng/L E2 corresponds to an approximately 

11 fold higher ZON concentration than the maximum used in the present study. 

 

 

4.4 Effects on reproductive performance 

To assess potential effects of EASs on the population level their effects on the reproductive 

output needs to be understood. In control groups, an increased spawning frequency during the 

21 day exposure period compared to pre-exposure period was observed, while in ZON exposed 

groups the spawning frequency decreased (significant at 1000 and 3200 ng/L). Relative 

fecundity revealed a significant decrease in all spawning groups exposed to ZON in comparison 

to control. With the exception of 1000 ng/L ZON, egg production was related to both, a 
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decreased spawning frequency and clutch size. Whether this impaired reproductive capacity was 

due to adverse effects on male and/or female reproductive function was not examined in the 

present study, since both sexes were exposed to the test chemical. As no differences in 

spermatocyte and oocyte development were histologically observable between the different 

treatments, one possible explanation for a reduced fecundity might be a disruption of mating 

behavior (Bjerselius et al. 2001, Gray et al. 1999). 

Brion et al. (2004) demonstrated a decrease in relative fecundity during 21 days exposure of 

zebrafish to 25 and 100 ng/L E2 (following 21 days pre-exposure) to 80 and 75 %, respectively 

(n = 1). The authors reported that this effect was only related to a decreased spawning frequency. 

Van der Ven et al. (2007) observed a significant concentration dependent decrease of spawning 

frequency in zebrafish exposed to 27.2, 87.2 and 272.4 ng/L E2 for 21 days in comparison to 

control. However, this effect was counterbalanced by increased clutch size, so that fecundity 

during this period revealed no effect.  

With a factor of 1 : 3.7 – 10 calculated from the lowest observed effect concentration (LOEC) of 

1000 ng/L ZON in the present study relative to the maximal concentration of 100 (no significant 

effect) and 272.4 ng/L E2 reported by Brion et al. (2004) and Van der Ven et al. (2007), ZON 

revealed a comparably strong effect on spawning frequency. With a LOEC of 100 ng/L ZON 

resulting in a factor of 1 : 0.4 – 1, ZON demonstrated an even higher potency relative to E2 to 

affect fecundity. 

Altogether the presented in vivo data suggest a factor of 1 : 0.4 – 10 for ZON relative to E2 to 

affect reproductive output. This is considerably lower than the estrogen potency factor of 

1 : 13.9 – 350 for ZON relative to E2 calculated from in vitro data for rYES and ER-BA studies, 

indicating that ZON exhibits a comparatively strong effect on zebrafish reproduction. However, 

we could not detect any effect on fertility, hatch and embryo survival caused by exposure to 

concentrations up to 3200 ng/L ZON up to 21 days which is in accordance with Brion et al. 

(2004) and Van der Ven et al. (2007) who did not observe effects on fertilization rates and 

hatching success after exposure for 21 days up to 100 and 272.4 ng/L E2, respectively. 

 

 

4.5 Effects on VTG induction 

The observed concentration dependent increase of plasma VTG in male zebrafish after 21 days 

of exposure (significant 4.4 and 8.1 fold induction in 1000 and 3200 ng/L, respectively) clearly 

demonstrates the estrogenic potency of ZON to affect fish in waterborne exposure and the 

sensitivity of zebrafish to the mycotoxin, resulting in an abnormal VTG induction. 
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In the only other in vivo fish study with ZON, Arukwe et al. (1999) observed a elevation of 

plasma VTG in juvenile Atlantic salmon (Salmo salar) within seven days after a single 

intraperitoneal injection with 1 and 10 mg/kg ZON and a significant 32 fold induction in 

10 mg/kg in relation to control. The authors compared this exposure to a single E2 injection of 

5 mg/kg, resulting in a significant 87 fold induction of plasma VTG. A calculation based on the 

levels of VTG induction in this study (and on the assumption that 10 mg/kg E2 results in a 

174 fold VTG induction) suggests that ZON is 5.4 fold less potent to induce VTG in vivo in 

relation to E2. 

Olsen et al. (2005) and Tollefsen et al. (2003) found in rainbow trout (Oncorhynchus mykiss) and 

Atlantic salmon primary hepatocytes an E2 : ZON EC50 ratio of 1 : 18.7 and 1 : 1438.9 for the 

potency to induce VTG, respectively. Based on this in vitro data a calculation suggests an 18.7 – 

1438.9 fold lower potency for ZON to induce VTG in comparison to E2 which is 3.5 – 

452.4 fold lower than the calculation based on the in vivo result from Arukwe et al. (1999). In 

contrast to the rather high difference in species sensitivity presented by these two in vitro studies, 

Van den Belt et al. (2003b) observed in adult male zebrafish and juvenile rainbow trout exposed 

for 21 days to 20 ng/L E2 a significant 130 and 30 fold, and to 100 ng/L E2 a 115 and 150 fold 

induction of plasma VTG, respectively, in relation to control, indicating only a minor difference 

in species sensitivity in vivo.  

Assuming there is only a small difference in species sensitivity and taken a factor of 5.4, based 

on the study of Arukwe et al. (1999), our effect concentrations of 1000 and 3200 ng/L ZON 

correspond to 185 and 593 ng/L E2. This concentration is in the same order of magnitude as 

applied in the study of Seki et al. (2006) who demonstrated a significant VTG induction in blood 

of adult male zebrafish exposed for 21 days to 100 ng/L E2, as well as Brion et al. (2004) who 

reported a 4 and 2667 fold VTG induction, respectively, in whole body homogenate of adult 

male zebrafish in relation to control after 21 days exposure to 25 and 100 ng/L E2.  

 

 

4.6 Evaluation of in vitro and in vivo results 

A factor of 1 : 13.9 – 350 for the estrogenic potency of ZON relative to E2 calculated from in 

vitro data for rYES and ER-BA studies suggests an estrogenic potency that is one order of 

magnitude lower than the factor of 1 : 5.4 based on calculation from in vivo VTG induction. This 

high estrogenic potency in vivo corresponds to the comparatively strong effects on reproduction 

we observed for ZON in the present study.  

In vitro results based on EC50 values of the rYES might substantially underestimate the 

estrogenic potency in vivo, especially for compounds where metabolisation or bioaccumulation 
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plays a crucial role during in vivo exposure. Van den Belt et al. (2004) found the relative 

estrogenic potency for EE2 in vitro (rYES) to be almost equipotent and in vivo (zebrafish VTG 

induction) to be about 30 times higher than E2. The authors suggested one explanation may be 

the lower susceptibility of EE2 for metabolization compared to endogenous steroids. 

Hence, from the results of this study we suggest that ZON may not only be a potent active 

estrogen itself but that its rather strong estrogenicity in vivo is also a result of its metabolic 

products such as α-ZOL. This is in line with the observation of Kuiper-Goodman et al. (1987) 

who reported that the most sensitive species for reproduction alteration caused by ZON is pig 

and α-ZOL is the major metabolite in this species. 

 

 

4.7 Environmental relevance 

ZON was reported to occur in surface waters in concentrations of 0.5 – 43.7 ng/L (Gromadzka et 

al. 2009, Lagana et al. 2004). However, the actual exposure in a given catchment depends on 

many factors, such as Fusarium infection rates, meteorology and hydrodynamics (Bucheli et al. 

2008, Hartmann et al. 2008b). This is about half the concentration we presented as LOEC for 

zebrafish reproduction in this study (reduced fecundity at 100 ng/L). Effluent concentrations of 

1 – 220 ng/L ZON (Lagana et al. 2001, 2004, Lundgren & Novak 2009) are up to 2.2 times 

higher than determined LOECs for fecundity, spawning frequency (1000 ng/L) and VTG 

induction (1000 ng/L). 

Evaluating the environmental relevance of this data taking into consideration the highest 

detected concentrations and possibly higher species sensitivity, long term/chronic exposure, a 

regional and temporal limited exposure to higher concentrations (caused by effluent discharge in 

combination with low flow conditions, or emission from Fusarium infected wheat fields) and 

mixture effects in combination with other EASs, ZON might pose a risk for fish in their natural 

environment. 
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5 Conclusions 
 

The results of the present study confirm the estrogenic potential of ZON in vitro (rYES) and in 

vivo (zebrafish). We demonstrated that although ZON possesses a moderate estrogenic potency 

in vitro, it exhibits a comparably strong effect on induction of VTG and reproduction in vivo 

following waterborne short-term exposure. 

Although there is not much data for ZON concentrations in the environment available and the 

measured values in surface waters are below the LOEC we determined to cause negative effects 

on fish, there might be a certain risk for wild fish to be harmed by ZON in their natural habitat. 

Further studies are needed to investigate the consequences of long term/chronic exposure (for 

entire life or even for several generations) to ZON as well as effects on different (more critical) 

life stages. 
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Abstract 
 

Zearalenone (ZON) is one of the worldwide most common mycotoxins and exhibits estrogenic 

activity in the range of natural steroid estrogens. The occurrence of ZON has been reported in 

soil, drainage water, wastewater effluents and rivers, but its ecotoxicological effects on fish have 

hardly been investigated. 

The consequences of continuous long-term ZON exposure, including a subsequent depuration 

period, as well as transgenerational effects of F0 short-term exposure on F1 generation were 

investigated. Effects on growth, reproduction activity, physiology and morphology of zebrafish 

(Danio rerio) were examined in a 182 day live-cycle experiment. 

Live-long exposure to ZON for 140 days increased wet weight, body length and condition factor 

of female fish at 1000 ng/L and sex ratio was shifted towards female from 320 ng/L ZON. Only 

females at 1000 ng/L ZON revealed a 1.5 fold induction of plasma vitellogenin (VTG). Relative 

fecundity at 1000 ng/L recovered significantly during the depuration period. An increased 

condition factor in adult female F1 fish implies that exposure of F0 generation to 1000 ng/L 

ZON affect growth of F1 generation. A negative correlation between relative fecundity in the F1 

generation (all groups exposed to 320 ng/L ZON) and the nominal ZON concentrations of the F0 

exposure might indicate an influence of F0 exposure on reproductive performance of F1 

generation. No exposure scenario affected fertility, hatch, embryo survival and gonad 

morphology of zebrafish. 

Evaluating the environmental relevance of this data, the risk for fish to be harmed by exposure to 

ZON solely seems rather marginal but ZON might contribute to the overall estrogenicity in the 

environment. 
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1 Introduction 
 

Endocrine active substances (EASs) exert their effects by mimicking or antagonizing 

endogenous hormones, influencing the natural hormone synthesis, metabolism or elimination, or 

modifying hormone receptor levels, and therefore have the potential to interfere with 

reproduction and development (Jobling and Tyler 2003, Sumpter 2005). Although sex 

determination in fish is under genetic control, the final differentiation of the gonads also depends 

on endocrine signals (Arcand-Hoy and Benson 1998, Campbell and Hutchinson 1998, Devlin 

and Nagahama 2002). Changes in sex hormone levels can affect the final sex independently of 

the genetic sex and exposure to EAS during development can lead to sex reversal (Andersen et 

al. 2003, Donaldson and Hunter 1982). Among the EASs, primary concerns are therefore on 

substances with estrogenic activity. These can be anthropogenic, such as certain 

pharmaceuticals, pesticides and industrial chemicals or natural, such as phyto- and 

mycoestrogens. Effects like inhibited testicular growth, testis abnormalities and intersex caused 

by estrogens have already been detected in wild fish populations (Milnes et al. 2006, Sumpter 

2005). 

Zearalenone (ZON) is one of the worldwide most common mycotoxins and belongs to the 

chemical group of the resorcyclic acid lactones (RALs; Chelkowski 1998). RALs show 

estrogenic activities that are in the range of natural steroid estrogens (Le Guevel and Pakdel 

2001) and they occur as a result of Fusarium spec. (primarily F. graminearum) infection of corn, 

wheat and other cereals (Champeil et al. 2004). Agricultural products around the world show 

contamination rates for ZON of up to 69 % of the tested samples with concentrations of up to 

180 μg/kg (Rhyn and Zoller 2003).  

The occurrence of ZON was reported in Italian and Polish rivers in concentrations of 2 – 5 and 

0.5 – 44 ng/L, respectively (Gromadzka et al. 2009, Lagana et al. 2004). It was further detected 

in US (Kolpin et al. 2010) and Swiss rivers (Bucheli et al. 2008) below limits of quantitation. Up 

to 35 ng/L and 4 ng/g ZON was quantified in drainage water and soil, respectively, in a field 

study with wheat and maize (Hartmann et al. 2008a, 2008b). In Italian waste water treatment 

plants and US American industrial wastewater effluents ZON concentrations of 1 – 10 and 

95.5 – 220 ng/L, respectively, were measured (Lagana et al. 2001, 2004, Lundgren and Novak 

2009).  

Little is known about the ecotoxicological impact of ZON at levels found in the environment and 

the consequence of exposure to aquatic organisms. Only a few short-term in vivo studies 

investigated ZON and its metabolites and observed effects on vitellogenin (VTG) induction, 

zona radiata proteins, immune system and growth in fish after exposure via injection or food 
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(Arukwe et al. 1999, Celius et al. 2000, Keles et al. 2002). In a reproduction experiment, we 

documented recently a reduced fecundity in zebrafish exposed for 21 days to 100 ng/L and an 

increased plasma VTG concentration in males at 1000 ng/L ZON (Schwartz et al. 2010). 

The zebrafish (Danio rerio) was selected in the present study as a model to assess estrogen-

mediated responses to ZON in a waterborne exposure. This species is easy to keep and readily 

reproducing in the laboratory, has a rapid development and short generation time, and is widely 

used in many standard ecotoxicological tests in OECD guidelines. Several studies in zebrafish 

have shown that estrogens such as the natural 17β-estradiol (E2) or the synthetic 17α-

ethinylestradiol (EE2) induce the yolk precursor protein VTG, affect gonad development, induce 

atresia of oocytes and inhibition of spermatogenesis, and have an impact on egg production and 

viability, fertilization success, sexual differentiation and sex ratios (Andersen et al. 2003, Brion 

et al. 2004, Hill and Janz 2003, Maack and Segner 2004, Nash et al. 2004, Örn et al. 2003, 

Schäfers et al. 2007, Segner et al. 2003, Van den Belt et al. 2003, Van der Ven et al. 2007). EE2 

was selected as test chemical in many studies since it is a potent synthetic steroid estrogen, a 

common component of oral contraceptives and known to enter the aquatic environment via 

domestic wastewater (Metcalfe et al. 2001, Williams et al. 1999). 

Reduced reproductive success may result from disruption of reproductive development; reduced 

female fecundity and male vitality, altered reproductive behaviour, and disruption of breeding 

dynamics (Balch et al. 2004). To fully assess the potential of EASs to disrupt reproduction and 

cause transgenerational effects, multigenerational life-cycle exposures are needed that include all 

relevant life stages and developmental parameters (Metcalfe et al. 2001, Van den Belt et al. 

2003).  

The aim of the present investigation was to study the estrogenic potency of ZON in respect to its 

effects on zebrafish in a life-cycle exposure. The study was designed to investigate possible 

effects of continuous long-term exposure including a subsequent depuration period as well as 

possible transgenerational effects of F0 exposure on F1 generation (Fig. 1). For this experiment 

F1 fish of a parental generation were used which was exposed to ZON for 21 days (Schwartz et 

al. 2010). With these fish we conducted a 140 day exposure experiment from embryo to adult. In 

a subsequent 42 day reproduction experiment spawning groups of the adult fish were either 

exposed to ZON (after growing up in clean water) or clean water (after growing up under ZON 

exposure). To evaluate effects of endocrine disruption, developmental (mortality, growth sex 

ratio and gonad histomorphometry), reproduction (spawning frequency, fecundity, fertility and 

hatch) as well as physiological (VTG induction) parameters were assessed. In the following we 

differentiate between the previously published ‘reproduction experiment F0’ (Schwartz et al. 

2010) and the ‘juvenile exposure F1’ (raise of F1 generation under corresponding ZON exposure 
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for 140 days) and ‘reproduction experiment F1’ (reproduction experiment with F1 generation) 

presented here (Fig. 1). 

 

 

 
 
Fig. 1: Exposure scheme of the complete zearalenone (ZON) life-cycle study. Nominal concentrations in 
the respective phases of the experiments are stated in the boxes in ng/L ZON and exposure periods on the 
vertical arrow are indicated in days. Sampling points are illustrated as horizontal broken lines. Group L, 
M and H: life-long ZON exposure and subsequent depuration; group Lc, Mc and Hc: raised in clean water 
and short-term ZON exposure; Reproduction experiment F0: Schwartz et al. (2010). 
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2 Materials and Methods 
 

2.1 Experimental animals 

All procedures concerning experimental animals were performed in compliance with the Swiss 

protection of animals act. The zebrafish eggs used in this study derived from the reproduction 

experiment F0 which was conducted with adult zebrafish originating from our fish breeding 

stocks, held at the University of Basel (Schwartz et al. 2010). 

 

 

2.2 Test chemical 

A stock solution of 0.5 mg/mL zearalenone (ZON, purity: 99 %, Sigma-Aldrich GmbH, 

Switzerland) was prepared in acetone (purity: 99.9 %, Carl Roth GmbH + Co. KG, Germany) 

and stored in a glass bottle at 4 °C in the dark. This stock solution was used to prepare solvent 

free supply solutions every 4 days for use in the exposure system. The supply solutions were 

prepared by coating a 1 L glass bottle with 2 mL of stock solution and removing the solvent 

under a gentle stream of N2. The bottle was then filled up to 1 L with conditioned water (1 : 

1 mix of charcoal filtered tap water and reverse osmosis water) to give a concentration of 1 mg/L 

ZON and stirred over-night with a magnetic stirrer prior to introduction to the exposure system. 

 

 

2.3 Juvenile exposure F1: Exposure system  

The zebrafish (eggs to adults) were exposed in a flow-through system in 12 L glass tanks with 

four replicate tanks for each exposure group and the water control. All tanks were aerated and 

tempered to 26 ± 1 °C using submerged electrical heaters, and a light : dark photoperiod of 16 : 

8 h was maintained during the duration of the experiment. Flow indicators (Sho-Rate 1355, 

Brooks Instrument, Netherlands) were used to regulate the flow of 6 L/h conditioned water into 

vitreous mixing chambers, equipped with magnetic stirrers. The ZON supply solution was dosed 

into the three mixing chambers of the exposed groups by means of a computer controlled 

dispenser (Microlab 541C Dispenser, Hamilton, Switzerland) at a rate of 600, 1920 and 

6000 µL/h giving nominal exposure concentrations of 100, 320 and 1000 ng/L, respectively. 

Each tank was supplied from the mixing chambers through Teflon tubing (Carl Roth GmbH + 

Co. KG, Germany) using peristaltic pumps (Ismatec ISM 944D, Ismatec, Switzerland) with a 

flow rate of 1 L/h and allocated to the different concentrations and negative control, respectively, 

using a random generator (www.randomizer.org). 



Chapter IV 

65 
 

Dissolved O2 (Oxi 315i, WTW, Germany), pH (pH 315i, WTW, Germany), conductivity (Cond 

315i, WTW, Germany) and temperature was monitored once a week. O2 was always above 

7.0 mg/L, pH at 7.8 – 8.2, conductivity at 230 – 260 µS/cm and temperature at 25 – 27 °C. 

 

 

2.4 Reproduction experiment F1: Exposure system  

The adult zebrafish were exposed in a flow-through system in 12 L glass tanks with four 

replicate tanks for each exposure group and the water control. For group H only three replicates 

were used because in one replicate of the juvenile exposure F1 not enough male fish survived for 

assembling of a spawning group. All tanks were aerated and tempered to 26 ± 1 °C and a light : 

dark photoperiod of 16 : 8 h was maintained during the duration of the experiment. The exposure 

system for the first part of the reproduction experiment F1 had the same design as the system for 

the juvenile exposure F1 (see section 2.3). For the second part the ZON supply solution was 

dosed into the three mixing chambers of the exposed groups at a speed of 1920 µL/h giving just 

one exposure concentration of 320 ng/L. 

Each tank was equipped with a spawning tray consisting of a stainless steel tray (265 × 185 × 

30 mm) covered with a stainless steel mesh (mesh size: 2.5 mm). To minimize the handling 

stress for the fish, stainless steel cable ties were attached to the trays for manipulation from 

outside the water. Artificial weed (Clear water coarse Filtering wool, Dennerle GmbH, 

Germany) was attached to the centre of the steel mesh and surrounded by a few stained glass 

stones to provide an appropriate spawning stimulation. 

Dissolved O2, pH, conductivity and temperature was monitored every fourth day. O2 was always 

above 7.2 mg/L, pH at 8.0 – 8.3, conductivity at 210 – 240 µS/cm and temperature at 25 – 27 °C. 

 

 

2.5 Juvenile exposure F1: Experimental design 

Between 80 and 440 eggs originating from one spawning event of each spawning group from the 

parental generation (F0) of the reproduction experiment F0 (Schwartz et al. 2010) were divided 

in halves (40 – 220 eggs) and transferred within four hours post fertilization (hpf) into egg cups. 

The egg cups, consisting of a glass tubing (80 × 60 mm) closed with a stainless steel mesh (mesh 

size: 0.355 mm) at the bottom side, were suspended in the 12 L exposure tanks. One half of each 

clutch was continuously exposed to the same ZON concentration as their parents (L = 100, M = 

320, H = 1000 ng/L ZON) and the other half, as well as all eggs from control were reared in 

clean conditioned water (Lc, Mc, Hc, control). This F1 generation was raised under the described 

exposure conditions for 140 days until maturity (Fig. 1). 
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From hatch till 8 days post hatch (dph) the larvae were fed rotifers (from our internal culture) 

and from 8 to 10 dph rotifers and freshly hatched Artemia salina nauplia twice daily. From 

11 dph till the end of the experiment they were fed freshly hatched Artemia salina nauplia twice 

and dry pellet (SilverCup, H. U. Hofmann AG, Switzerland) once per day. 

 

 

2.6 Reproduction experiment F1: Experimental design  

Each exposure tank was stocked with a spawning group consisting of two female and four male 

zebrafish from the juvenile exposure F1 experiment. After an acclimatization period of one week 

with the same exposure conditions as in the juvenile exposure, the first part of the reproduction 

experiment F1 started with unchanged exposure conditions for 21 days (control, Lc, Mc, Hc = 

0 ng/L and L = 100 ng/L, M = 320 ng/L, H = 1000 ng/L ZON). For the second part, the 

following 21 day period, exposure conditions changed for Lc, Mc, Hc to 320 ng/L ZON 

(exposure period) and for L, M, H to 0 ng/L (depuration period; Fig. 1). During the whole 

experiment the animals were fed freshly hatched Artemia salina nauplia twice and dry pellet 

once per day. 

Every morning the spawning trays were removed from the exposure tanks, to check for eggs, and 

replaced with clean spawning trays. The fish eggs were transferred to petri dishes for 

microscopical analysis, to determine fertilization success. From each clutch a maximum of 

50 fertilized eggs were randomly selected, transferred into egg cups and suspended in 21 L glass 

tanks filled with clean conditioned water at a temperature of 25 – 27 °C. Five days post 

fertilization (dpf) the eggs were analyzed for vitality and hatch. 

 

 

2.7 Estrogenic activity 

A recombinant yeast estrogen screen (rYES) expressing the human estrogen receptor alpha 

(hERα; Routledge and Sumpter, 1996) was used to determine estrogenic activity in each 

aquarium in relation to a ZON standard. This ZON standard was prepared in ethanol (purity: 

99.8 %, Carl Roth GmbH + Co. KG, Germany) in a concentration of 20 mg/L. 

Samples of 1 L aquarium water were collected on day 10, 30, 50, 70, 90, 110 (one replicate per 

concentration and control) and 130 (all replicates) of the juvenile exposure F1 as well as on day 

4, 7, 21, 25, 28, 42 (one replicate per concentration and control), 12 and 33 (all replicates) of the 

reproduction experiment F1 into solvent cleaned glass bottles, spiked with 5 mL methanol 

(purity: 99.9 %, Sigma-Aldrich GmbH, Switzerland) and extracted onto pre-conditioned (5 mL 
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methanol, 5 mL ultrapure water) Sep-Pak Classic C18 cartridges (Waters Corp., USA). The 

cartridges were air dried and stored until further processing at -40 °C.  

After defrosting and air drying, the cartridges were eluted into solvent cleaned amber glass tubes 

using 5 mL methanol. The methanol extracts were dried under a gentle N2 stream and 

redissolved in 1 mL ethanol (purity: 99.8 %, Sigma-Aldrich GmbH, Switzerland). The ZON 

standard was tested in a serial dilution of 12 steps and the ethanol extracts of the water samples 

in a serial dilution of 5 steps, each in duplicate. The rYES was conducted following the methods 

described by Routledge and Sumpter (1996).  

 

 

2.8 Chemical analysis 

To measure the ZON concentrations in the aquaria, 100 mL water samples were collected on day 

10, 50, 90 and 130 (one tank per concentration) of the juvenile exposure F1 as well as on day 4, 

12, 21, 25, 42 (one tank per concentration) and 33 (all tanks) of the reproduction experiment F1 

into solvent cleaned glass bottles and sent within 24 h to the chemical laboratory (Agroscope 

Reckenholz-Tänikon Research Station ART, Switzerland). An isotope labelled internal standard 

(D6-ZON) was added to the water samples prior to solid-phase extraction (SPE; SupelcleanTM 

Envi-18 cartridges, 6 mL, 500 mg, Supelco, USA) and analysis by LC-MS/MS (negative 

electrospray ionization; Hartmann et al. 2007). 

 

 

2.9 Fish sampling and analysing 

On day 140 of the juvenile exposure F1, all zebrafish were wet weighed to the nearest 0.01 g, 

total length was measured to the nearest mm and sex was determined based upon external 

secondary sex characteristics, such as coloration, size and marking of anal fin, body shape and 

visibility of an urogenital papilla. Mortality during the juvenile exposure F1 was calculated 

based on the number of eggs transferred in the tanks at the beginning of the experiment. 

Spawning groups were assembled and transferred to the subsequent reproduction experiment F1.  

On day 42 of the reproduction experiment F1, all adult zebrafish were euthanized in 150 mg/L 

MS222 buffered with 300 mg/L NaCO3 to maintain a neutral pH. The fish were wet weighed to 

the nearest 0.01 g and total length was measured to the nearest mm. A 5 – 10 µL blood sample 

was taken by cardiac puncture using a heparinised (1000 Units heparin/mL, Heparin ammonium 

salt, Sigma-Aldrich GmbH, Switzerland) insulin syringe (Becton Dickinson & Company, USA), 

transferred in an Eppendorf reaction tube and centrifuged for 5 min at 4 °C and 9300 g. The 3 – 

5 µL plasma per sample was transferred to a new reaction tube and stored at -80 °C for later 
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analysis of VTG concentration using a commercially available zebrafish ELISA kit (Prod. No. 

V01008402, Biosense Laboratories, Norway). The abdominal cavity was opened with dissecting 

scissors and the whole fish was fixed for 24 h in Bouin’s fixative (Sigma-Aldrich GmbH, 

Switzerland). 

For histological examination the head and tail of the fixed fish were removed and the trunk cut 

into four slices (~ 3 mm thick) using a microtome blade (SEC 35, Microm International GmbH, 

Germany). Subsequently the samples were dehydrated in an ascending ethanol series, incubated 

in Roti Histol (Carl Roth GmbH + Co. KG, Germany) and paraffinized (Roti-Plast, Carl Roth 

GmbH + Co. KG, Germany). All four samples per fish were embedded in one standard 

embedding cassette. This enabled simultaneous whole body transverse sectioning of different 

areas. Transverse histological sections (9 µm thickness) were stained with standard hematoxylin 

and eosin (H&E; Carl Roth GmbH + Co. KG, Germany). Male and female gonads on the 

histological sections were verified for sex and analyzed following the methods described by 

Schwartz et al. (2010). 

 

 

2.10 Statistical analyses 

To investigate effects of the ZON exposure, data of exposed groups were compared to control 

group using SigmaPlot version 9.01 and SigmaStat version 3.1 (Systat Software Inc., USA). For 

the juvenile exposure F1 data of survival, male wet weight, body length, condition factor (weight 

× 100 / length3) and sex ratio met the assumptions of normality and equality of variance. Hence, 

these data were analysed with a one-way analysis of variance (ANOVA) followed by Dunnett’s 

test. Performing standard transformation of the female wet weight data could not provide for the 

assumption of normality and equal variance, and therefore were analyzed by Kruskal-Wallis 

ANOVA on ranks, followed by Dunn’s method for multiple comparisons. 

For the reproduction experiment F1, the ratio of the second part (21 days exposure for group Lc, 

Mc and Hc and depuration for group L, M and H) to the first part (21 days pre-exposure for 

group Lc, Mc and Hc and exposure for group L, M and H) was calculated for data of 

reproductive output, resulting in relative spawning frequency, relative fecundity, relative clutch 

size, relative fertilization rate, relative embryo survival and relative hatch rate. The use of the 

relative reproductive output data is a possibility to deal with the considerable variation in the 

numbers of eggs spawned in a zebrafish population, which was already observed in other studies 

(e.g. Ensenbach & Nagel 1997, Nash et al. 2004). This method enables to obtain information 

about the change in these parameters caused by exposure to a substance and depuration 
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subsequently to exposure, respectively, without encountering the problem of high inter-

individual variance. 

Data of female wet weight, length, histomorphometry, fecundity, clutch size, embryo survival 

and plasma VTG concentration met the assumptions of normality and equality of variance 

permitting to use one-way ANOVA followed by Dunnett’s test. Performing standard 

transformation of the male wet weight as well as relative spawning frequency, relative 

fertilization rate and relative hatch rate data could not provide for the assumption of normality 

and equal variance, and therefore were analyzed by Kruskal-Wallis ANOVA on ranks, followed 

by Dunn’s method for multiple comparisons. 

Analysis of correlation between relative spawning frequency, relative fecundity, relative clutch 

size and nominal ZON concentration as well as between VTG concentration and relative 

fecundity was conducted using Pearson Product Moment Correlation. 
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3 Results and Discussion 
 

3.1 Aqueous ZON concentration 

A combination of analytical measurement and in vitro analysis (rYES) for determination of 

estrogenic activity induced by ZON were used to quantify the content of mycotoxin in the 

exposure tanks. During the juvenile exposure F1, analytically measured ZON mean 

concentrations ranged between 46 and 86 % of nominal values and were always lower than mean 

concentrations determined in vitro, expressed as estrogen equivalent for ZON (EEQ), which 

ranged between 91 and 206 % of nominal values. In the control and ‘0 ng/L’ groups, no ZON 

could be detected (LOQ = 1 ng/L) and estrogenic activity was below determination limit (LOQ ≈ 

80 ng/L EEQ; Table 1). 

Similarly, during the reproduction experiment F1, analytically measured ZON mean 

concentrations ranged between 54 and 96 % of nominal values and were always lower than mean 

concentrations determined in the rYES, which ranged between 78 and 190 % of nominal values. 

In the control group, no ZON could be detected and estrogen activity was below determination 

limit (Table 1). 

The quantified ZON concentrations for both methods analytical chemistry and rYES were stable 

during the entire juvenile exposure F1 and the reproduction experiment F1. An explanation for 

the consistently higher ZON concentrations determined in vitro compared to the analytically 

measured values could be that in the rYES the overall estrogenicity is determined and, hence, 

other possible sources such as primarily ZON metabolites could have contributed to a 

background estrogenic activity. Data on biotic transformation of ZON generally indicate the 

reduction of the 6′-keton to yield α- and β-ZOL as a main metabolization pathway (Galtier 

1999). The estrogenic potency of α-ZOL in the rYES is approximately five fold higher than that 

of ZON (El-Sharkawy and Abul-Hajj 1988, Le Guevel and Pakdel 2001). Therefore, α-ZOL 

might have contributed to the high estrogenicity in the rYES. 

In the following, references on ZON as well as literature data of E2 and EE2 provided in the text 

are based on nominal concentrations. 
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Table 1: Analytically measured zearalenone (ZON) concentrations and in vitro (recombinant yeast 
estrogen screen, rYES) determined estrogen equivalent (EEQ) for ZON (mean ± SEM). Analytical 
chemistry: one replicate per group on day 10, 50, 90, 130, on day 4, 12, 21 and on day 25, 33, 42; all 
replicates on day 33 (n = 4). rYES: one replicate per group on day 10, 30, 50, 70, 90, 110, 130, on day 4, 
7, 12, 21 and on day 25, 28, 33, 42; all replicates on day 130, on day 12 and on day 33 (n = 4). 

Nominal concentrationa Mean measured concentrations 
ZON Analytical chemistry (ng/L ZON) Recombinant yeast screen (ng/L EEQ) 

Juvenile exposure 10, 50, 90, 130 - 10, 30, 50, 70, 90, 110, 130 130 
Control BDb  BDb BDb 

Lc: 0 ng/L BDb  BDb BDb 
Mc: 0 ng/L BDb  BDb BDb 
Hc: 0 ng/L BDb  BDb BDb 
L: 100 ng/L 46 ± 9  91 ± 28 206 ± 39 
M: 320 ng/L 276 ± 38  368 ± 44 640 ± 53 
H: 1000 ng/L 712 ± 55  933 ± 59 940 ± 35 

Reproduction part 1 4, 12, 21 - 4, 7, 12, 21 12 
Control BDb  BDb BDb 

Lc: 0 ng/L BDb  BDb BDb 
Mc: 0 ng/L BDb  BDb BDb 
Hc: 0 ng/L BDb  BDb BDb 
L: 100 ng/L 74 ± 2  190 ± 39 91 ± 7 
M: 320 ng/L 281 ± 8  300 ± 56 360 ± 74 
H: 1000 ng/L 959 ± 85  1030 ± 73 1187 ± 35 

Reproduction part 2 25, 33, 42 33 25, 28, 33, 42 33 
Control BDb BDb BDb BDb 

Lc: 320 ng/L 174 ± 10 176 ± 3 313 ± 23 380 ± 32 
Mc: 320 ng/L 189 ± 8 191 ± 11 309 ± 31 285 ± 26 
Hc: 320 ng/L 176 ± 8 184 ± 11 251 ± 24 270 ± 23 

L: 0 ng/L BDb BDb BDb BDb 
M: 0 ng/L BDb BDb BDb BDb 
H: 0 ng/L BDb BDb BDb BDb 

a Group Lc, Mc and Hc: raised in clean water and short-term ZON exposure; group L, M and H: 
life-long ZON exposure and subsequent depuration. 
b BD = below detection limit: Analytical chemistry < 1 ng/L, rYES < 80 ng/L 
 

 

3.2 Juvenile exposure F1: Effects of ZON on mortality, weight and body length 

Mean cumulative mortality at the end of the juvenile exposure F1 was 72 % for the control 

group, 62 – 75 % for Lc, Mc and Hc, and 69 – 80 % for L, M and H with no significant 

differences between groups (data not shown). Consequently there was no evidence that exposure 

for 140 days from fertilization to maturity up to a concentration of 1000 ng/L ZON affected 

survival of zebrafish. 
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Mortality occurred mainly during the first month of the juvenile exposure F1. The overall 

mortality was rather high compared to other studies that observed mean mortality rates from up 

to 47 % for control to 58 % for exposure groups, without significant differences, in zebrafish 

exposed from egg to adult up to 15.4 ng/L EE2 (Andersen et al. 2003, Fenske et al. 2005, Hill 

and Janz 2003, Nash et al. 2004). No effect on F1 mortality was observed after exposure of F0 

and F1 generation up to 1.7 ng/L EE2 (Schäfers et al. 2007). Nonetheless our results for 

mortality indicate that long-term exposure up to 1000 ng/L ZON does not have acute toxic 

effects on zebrafish. This is in accordance with data from toxicological studies demonstrating 

that apart from estrogenic effects ZON exhibits a low acute toxicity in many animal species 

(Kuiper-Goodman et al. 1987). 

Wet weight, body length and condition factor of the male fish did not show any effect caused by 

ZON exposure (data not shown). In female zebrafish the body length and the wet weight in 

group H (exposed to 1000 ng/L ZON) and similarly their condition factor, as well as in Hc 

(raised in clean water and F0 exposed to 1000 ng/L ZON) were increased compared to control 

(Fig. 2 A, B, C). 

Several authors reported a significant increase in length and weight of male and/or female 

zebrafish after exposure from 0 to 240 and 24 to 64 dpf  to 0.5 – 2 ng/L and 2 – 10 ng/L EE2, 

respectively, as well as a concentration dependent increase of length and weight after exposure 

from 0 to 42 dpf and F0 generation to 27 – 272 ng/L E2 (Örn et al. 2003, Soares et al. 2009, Van 

der Ven et al. 2007). In contrast, no effect on length and weight was found in zebrafish exposed 

from 0 to 75 and 0 to 270 dpf to 3 – 5 ng/L EE2 as well as 5 ng/L E2, respectively (Fenske et al. 

2005, Nash et al. 2004). Other studies observed a significantly reduced length and weight of 

male and/or female zebrafish after exposure from 0 to 60 – 90 dpf to 1.7 – 25 ng/L EE2 (Hill and 

Janz 2003, Schäfers et al. 2007, Van den Belt et al. 2003). Two studies revealed an even 

divergent impact on zebrafish. Males exposed from 0 to 120 dpf to 0.05 ng/L EE2 showed a 

lower weight whereas at 5 ng/L EE2 a higher weight was found and exposure from 2 to 90 dph 

to 10 ng/L EE2 caused a lower weight and length but a higher condition factor compared to the 

control (Larsen et al. 2008, Xu et al. 2008). 

In summary, the above cited studies show very diverse effects of E2 and EE2 on zebrafish. The 

observed estrogenic effects ranged from promoting growth to having no effect, or to inhibiting 

growth. Taken together these results show no pattern or tendency, such as concentration or 

duration dependence of positive or negative effect on growth of zebrafish, or give evidence 

under which conditions estrogens influence growth or not. However, the positive effect on 

growth of female zebrafish in group H parallels the growth-promoting (anabolic) potential of E2 

in early life of fish (Bell 2004, Mandiki et al. 2005). 
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The consistently high and similar values for body length, wet weight and condition factor of 

female zebrafish in groups Hc and H in the present study, might imply that exposure of (only) F0 

generation to a high ZON concentration affect growth in F1 more than continuous exposure of 

F0 and F1 generation to lower ZON concentrations as in the case of group L and M (Fig. 2 A, B, 

C). Therefore the results suggest a transgenerational effect of F0 exposure to ZON on F1 growth. 

Maternal transfer of EAS may occur in fish when pollutants are co-transported with VTG into 

the developing oocytes (Gray et al. 1999). However, we do not have data of ZON concentrations 

in the fish, and can therefore not test if in the present study such a mechanism has influenced 

growth in this extent over such a long period. 
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Fig. 2: (A) total length, (B) wet weight, (C) condition factor (weight × 100 / length3) of females and (D) 
sex ratio of zebrafish raised in clean water (Lc, Mc, Hc) or exposed to (L) 100, (M) 320 and (H) 
1000 ng/L zearalenone (ZON) for 140 days after exposure of parental generation, as well as water control 
(mean ± SEM, n = 4). Significant differences from control are denoted as * (p < 0.05). 
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3.3 Juvenile exposure F1: Effects of ZON on sex ratio 

There was a higher proportion of female fish in all groups compared to control, which was 

significant in group M and H after 140 days exposure to 320 and 1000 ng/L ZON, respectively. 

The mean male/female ratio was the highest in the control (0.78) and reduced to 0.37 and 0.41 in 

group M and H, respectively (Fig. 2 D). The male/female ratios were clearly reduced in Lc, Mc 

and L (but not Hc) to 0.52, 0.44 and 0.52, respectively, although not significantly. This 

feminization effect caused by exposure to estrogens was reported by several authors who 

observed a shift of sex ratio towards females in zebrafish exposed from 0 to 60 – 120 dpf to 0.5 – 

15.4 ng/L EE2 or from 0 to 21 dpf to 100 ng/L E2 (Andersen et al. 2003, Brion et al. 2004, 

Larsen et al. 2008). Other studies found, apart from an increased number of females and a 

decreased number of males, also an increased number of immature gonads in zebrafish exposed 

from 0 – 20 to 60 – 90 dpf to 0.1 – 25 ng/L EE2, indicating an arrested sexual differentiation 

(Hill and Janz 2003, Örn et al. 2003, Van den Belt et al. 2003, Xu et al. 2008). In the present 

study zebrafish were not investigated for gonadal conditions at the end of the juvenile exposure 

F1, because the fish were not sacrificed at this point. However, no negative gonadal effect was 

found later on (see below).  

 

 

3.4 Reproduction experiment F1: Effects of ZON on mortality, weight, body length and 

gonad morphology 

No mortality was recorded during the reproduction experiment F1 and hence exposure for (yet 

another) 21 days up to 1000 ng/L ZON did not affected survival of the adult zebrafish. Similarly 

there were no effects on body length and wet weight of the fish (data not shown). This 

corresponds with the reproduction experiment F0 where no mortality and no effects on growth 

could be detected after exposure up to 3200 ng/L ZON (Schwartz et al. 2010). 

Also no effects on gonad morphology after exposure for 21 days up to 320 ng/L ZON (group Lc, 

Mc and Hc) could be observed, which is in line with the reproduction experiment F0 where no 

effects were observed up to 3200 ng/L ZON (Schwartz et al. 2010). As well no effects of 

exposure from 0 to 161 dpf up to a concentration of 1000 ng/L ZON and a subsequent 21 days 

depuration period (group L, M and H) on gonad morphology were observed (data not shown). 

The testes of all males in both control and ZON exposed fish were mature, regular in structure 

and the tubules contained cysts showing a full spectrum of sperm cell differentiation stages with 

no significant differences between the groups in terms of the ratio of the various stages of 

development. Similarly, the ovaries of the control and ZON exposed fish were mature and 
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showed a full range of the different oocyte developmental stages with no significant differences 

between the groups in terms of the proportions of oocytes at the various stages of development.  

Nash et al. (2004) and Xu et al. (2008) detected altered proportion of germ cell types in male 

zebrafish exposed from 0 to 75 and 6 to 90 dpf to 0.5 – 5 and 2 – 10 ng/L EE2 followed by a 

depuration period of 150 and 90 days, respectively. These authors furthermore found 43 and 75 – 

80 % immature gonads after continuous exposure from 0 to 210 and 2 to 90 dpf to 5 and 2 – 

10 ng/L EE2, respectively. In zebrafish exposed from 0 to 177 dpf to 10 ng/L EE2, solely gonads 

with mostly immature ovarian morphology were observed (Schäfers et al. 2007). However, the 

results of the present study indicate that even life-long exposure up to 1000 ng/L ZON (group L, 

M and H) does not arrest sexual differentiation of gonads as it was reported in the above cited 

studies with (partial) life-cycle exposure of zebrafish to estrogens. 

 

 

3.5 Reproduction experiment F1: Depuration after life-long ZON exposure 

Details of the reproductive performance for each exposure group during the first and the second 

part of the reproduction experiment F1 are presented in Table 2. Mean relative spawning 

frequency was 100 % for the control and increased to 200 % for group H. However, due to high 

variability between replicates the difference was not statistically significant. Group L and M 

showed values similar to the control (98, 116 %; Fig. 3 A). Analysis of correlation revealed a 

positive correlation between nominal ZON concentration and relative spawning frequency for L, 

M and H (r = 0.878, p = 0.00002). Relative fecundity exhibited values of 117, 128 and 233 % for 

group L, M and H, respectively, which was significantly increased for H compared to control 

(107 %; p < 0.05; Fig. 3 B). There was also a positive correlation between nominal ZON 

concentration and relative fecundity of these groups (r = 0.843, p = 0.00008). Data for relative 

clutch size was slightly but not significantly increased for group L, M and H to 119, 110 and 

128 %, respectively, in comparison to control (106 %; Fig. 3 C). 
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Table 2: Details for reproductive performance of zebrafish during 21 days first part and 21 days 
second part of the zearalenone (ZON) reproduction experiment F1 (mean ± SEM; n = 4, for H: n = 3). 

 Reproductive performance 

Exposure Groupa Spawning frequency 
(spawnings per day) 

Fecundity 
(eggs per day) 

Clutch size 
(eggs per spawning) 

 part 1 part 2 part 1 part 2 part 1 part 2 

Control 0.92 ± 0.07 0.92 ± 0.07 169.6 ± 44.2 171.9 ± 33.9 181.1 ± 39.1 183.4 ± 27.0 

Lc 0.82 ± 0.09 0.85 ± 0.09 175.5 ± 51.2 167.1 ± 55.8 206.5 ± 49.8 183.6 ± 46.9 

Mc 0.93 ± 0.06 0.93 ± 0.03 261.3 ± 32.6 242.8 ± 34.6 278.4 ± 21.3 258.7 ± 29.2 

Hc 0.71 ± 0.06 0.61 ± 0.06 105.4 ± 29.0 75.3 ± 33.3 160.4 ± 59.1 221.9 ± 52.9 

L 0.82 ± 0.07 0.81 ± 0.08 171.4 ± 65.2 184.0 ± 53.2 198.7 ± 62.9 220.3 ± 53.4 

M 0.79 ± 0.09 0.89 ± 0.06 188.0 ± 42.1 220.0 ± 32.8 230.6 ± 38.9 242.1 ± 24.6 

H 0.35 ± 0.18 0.60 ± 0.27 31.3 ± 25.0 73.2 ± 60.0 60.0 ± 30.9 85.3 ± 53.6 
a Group Lc, Mc and Hc: raised in clean water and short-term ZON exposure; group L, M and H: life-
long ZON exposure and subsequent depuration. 
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Fig. 3: Relative (A) spawning frequency, (B) fecundity and (C) clutch size (ratio of the second part to the 
first part of the reproduction experiment F1) for spawning groups of zebrafish (4 males, 2 females) 
exposed for 21 days to 320 ng/L zearalenone (ZON; Lc, Mc, Hc) or during a 21 days depuration after 
161 days exposure to (L) 100, (M) 320 and (H) 1000 ng/L ZON, as well as water control (mean ± SEM, 
n = 4, for H: n = 3). Significant differences from control are denoted as * (p < 0.05). 
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Several studies observed a lower reproductive output after long-term exposure of zebrafish to 

estrogens. Nash et al. (2004) and Schäfers et al. (2007) found a reduced fecundity in fish exposed 

from 0 to 210 and 0 to 135 dpf to 5 and 1.7 ng/L EE2, respectively. Also a reduced fecundity 

was observed in a depuration period of 22 and 90 days after exposure from 0 to 118 and 6 to 90 

dpf to 3 (fish never spawned while under exposure) and 0.4 – 10 ng/L EE2, respectively (Fenske 

et al. 2005, Xu et al. 2008). In the study of Nash et al. (2004) zebrafish exposed from 0 to 75 dpf 

up to 5 ng/L EE2 and 5 ng/L E2, with a subsequent depuration of 150 days showed no effect on 

fecundity, which was in contrast with the impact of continuous 0 to 210 dpf exposure to 5 ng/L 

EE2 causing a significant reduced fecundity. These data suggest a capacity for recovery of 

reproductive output during a depuration period after long-term exposure to estrogens. The 

observed increase of fecundity in group H indicates that some degree of recovery might occur 

during the 21 days depuration period after live long exposure to ZON. As the clutch size 

increased just slightly, the increase of fecundity was mainly related to an increase of spawning 

frequency. The correlation between nominal ZON concentration and relative fecundity of group 

L, M and H suggests that there might be also a slight recovery for L and M during the depuration 

period. As the ZON concentration was lower in these groups the change is obviously less 

prominent. Thus, the results suggest a potential for recovery of reproductive performance after 

live long exposure to ZON. 

No effects on zebrafish fertility, hatch and embryo survival caused by exposure from 0 to 

161 dpf up to 1000 ng/L ZON and subsequent 21 days of depuration (group L, M and H) could 

be detected (data not shown). Similarly no effects on fertilization and viability of offspring 

during exposure for 21 days up to 3200 ng/L ZON were found (Schwartz et al. 2010). 

This is in contrast to several studies that observed effects on fertilization success and embryo 

viability in offspring after long-term exposure of zebrafish to estrogens. An increased embryo 

mortality at 12 and 80 hpf was observed after exposure from 2 to 90 and 0 to 240 dpf to 0.4 and 

0.5 – 2 ng/L EE2, respectively, but no effects on fertilization (Soares et al. 2009, Xu et al. 2008). 

Nash et al. (2004) reported a reduced viability of eggs at 14 hpf in zebrafish exposed from 0 to 

210 dpf to 0.5 – 5 ng/L EE2 and 5 ng/L E2. Even after 150 days depuration following exposure 

from 0 to 75 dpf to 0.5 and 5 ng/L EE2, the fertilization success was still reduced with an 

increased number of nonviable eggs. In the study of Schäfers et al. (2007), a reduced fertilization 

success after exposure from 0 to 135 dpf to 1.7 ng/L EE2 was observed. The data of the present 

study and the results of the reproduction experiment F0 (Schwartz et al. 2010) in relation to the 

results of the cited studies suggest that ZON is less endocrine disrupting and/or less toxic than 

the steroid estrogens E2 and EE2 with regard to fertility and embryo survival. 
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3.6 Effects of depuration on VTG induction after life-long ZON exposure 

At the end of the reproduction experiment F1, only female zebrafish in group H revealed a 

significant 1.53 fold increase in plasma VTG concentration relative to control (p < 0.05; 

Fig. 4 B). There was also a correlation between female plasma VTG concentration and relative 

fecundity of L, M and H (r = 0.721, p = 0.002). Male fish did not show any significant 

differences for VTG concentration between the groups (Fig. 4 A).  

These results, and the fact that in the reproduction experiment F0 (Schwartz et al. 2010) 

exposure for 21 days to 1000 ng/L ZON lead to a significant 4.4 fold VTG induction in male 

zebrafish, suggest that either a depuration period of 21 days is sufficient for recovery of normal 

VTG concentration or that life-long exposure leads to an adaption of metabolism and 

consequently to a normalization of VTG levels, or a combination of both.  

The half-life of VTG concentrations in zebrafish was calculated to be 2.4 days after exposure 

from 0 to 25 dph to 15.4 ng/L EE2 (Andersen et al. 2003). Van den Belt et al. (2002) found in 

male zebrafish decreased plasma VTG level to 1/3 (still significantly elevated) in a 24 day 

depuration period after exposure for 24 days to 10 ng/L EE2. However, the VTG concentration 

in females decreased to 1/4 and was not significant anymore. These two studies indicate that a 

depuration period of 21 days may be long enough to recover VTG levels similar to control group 

after exposure of zebrafish to estrogens. In contrast to the short-term exposure of F0 zebrafish 

for 40 days (males: 0.5, 5 ng/L EE2, females: 5 ng/L EE2), Nash et al. (2004) observed no 

induction of plasma VTG in F1 males and females after exposure from 0 to 310 dpf up to 5 ng/L 

EE2 and suggested an acclimatisation and down regulation of vitellogenic response after long-

term exposure to estrogens. As there is no data for VTG concentrations neither at the end of the 

juvenile exposure F1, nor at the end of the first part of the reproduction experiment F1, we 

cannot conclude here whether VTG levels in exposure group L, M and H were higher before the 

depuration period. 
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Fig. 4: Vitellogenin (VTG) concentration in the plasma of (A) male and (B) female zebrafish exposed for 
21 days to 320 ng/L (Lc, Mc, Hc) or 161 days to (L) 100, (M) 320 and (H) 1000 ng/L zearalenone (ZON) 
with a subsequent 21 day depuration, as well as water control (mean ± SEM, n = 4, for H: n = 3). 
Significant differences from control are denoted as * (p < 0.05). 
 

 

3.7 Reproduction experiment F1: Transgenerational effects of short-term ZON exposure 

Details of the reproductive performance for each exposure group during the first and the second 

part of the reproduction experiment F1 are presented in Table 2. Mean relative spawning 

frequency was 105, 101 and 91 % for group Lc, Mc and Hc, respectively, and similar to control 

(100 %; Fig. 3 A). The mean relative fecundity for these groups exhibited values of 91, 92 and 

65 %, respectively, and were considerably, but not significantly, lower than in the control group 

(107 %; Fig. 3 B). There was a negative correlation between the nominal ZON concentration of 

the F0 generation and relative fecundity of group Lc, Mc and Hc (r = -0.618, p = 0.011). Relative 

clutch size for these groups was slightly reduced to 91, 92 and 74 %, respectively, in comparison 

to control (106 %; Fig. 3 C). 

In the study of Nash et al. (2004) fecundity of the F1 generation was not affected by F0 exposure 

for 40 days up to 5 ng/L EE2 and 5 ng/L E2. However, the data of the present study display the 

same tendency as in the reproduction experiment F0, although without being significant, where a 

significantly reduced relative fecundity was observed in adult zebrafish already from 100 ng/L 

ZON, but no effect on spawning frequency up to 320 ng/L and clutch size up to 1000 ng/L ZON 

(Schwartz et al. 2010). This result suggests that exposure of F0 to high ZON concentrations 

might affect the sensitivity of F1 generation, although the overall sensitivity on the level of 

reproductive performance decreased from F0 to F1. 

No effects on zebrafish fertility, embryo survival and hatch caused by exposure to ZON for 

21 days up to 320 ng/L were observed (data not shown), which corresponds with the 

reproduction experiment F0 where no effects could be detected after exposure up to 3200 ng/L 
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ZON (Schwartz et al. 2010). Similarly Brion et al. (2004) did not observe effects on fertilization 

and hatch in zebrafish at 85 dpf after exposure from 0 to 21, 21 to 42 dpf, as well as adults for 

21 days up to 100 ng/L E2, and Van der Ven et al. (2007) found no effects on these parameters 

after exposure of adult fish for 21 days up to 272.4 ng/L E2. 

 

 

3.8 Transgenerational effects of short-term ZON exposure on VTG induction 

At the end of the reproduction experiment F1, females of group Lc and Hc displayed a slightly 

elevated VTG level (1.32 and 1.19 fold higher than control), although it was not significant (Fig. 

4 B). Male fish did not show any significant differences for VTG concentration between the 

groups (Fig. 4 A).  

These results are correspondent to the reproduction experiment F0 where no effect on male 

plasma VTG levels could be observed after 21 days exposure up to 320 ng/L ZON (Schwartz et 

al., 2010). But although there was no significant difference to control, mainly due to high 

variation, VTG concentration in males of group Hc was the highest among all groups (1.77 fold 

higher than control). This might suggest a possible transgenerational impact of F0 exposure to 

increase the sensitivity of F1 generation to ZON. 

 

 

3.9 Environmental relevance 

ZON was reported to occur in surface waters in concentrations of up to 44 ng/L (Gromadzka et 

al. 2009, Lagana et al. 2004), which is 14 % of the concentration calculated in the present study 

as LOEC (lowest observed effect concentration) for transgenerational effects on F1 after short-

term exposure of F0 generation (condition factor at 320 ng/L, group Hc). It is as well 14 % of the 

concentration calculated as LOEC after short-term exposure of F0 and life-long exposure of F1 

generation (male/female ratio at 320 ng/L, group M). The reported effluent concentrations of up 

to 220 ng/L (Lagana et al. 2001, 2004, Lundgren and Novak 2009) is still around 1.5 times lower 

than the LOECs of 320 ng/L for transgenerational and long-term effects. These LOECs of 

320 ng/L are about three times higher than the LOEC of 100 ng/L for short-term exposure 

presented in the reproduction experiment F0 (Schwartz et al. 2010), suggesting a generally lower 

sensitivity of F1 generation to effects caused by ZON. 

Evaluating the environmental relevance of this data, the risk for fish to be directly harmed by 

exposure to ZON in their natural environment seems rather marginal. However, the actual 

exposure in a given catchment depends on many factors, such as Fusarium infection rates, 

meteorology and hydrodynamics (Bucheli et al. 2008, Hartmann et al. 2008b). Hence, taking into 
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consideration the highest detected concentrations, a possibly higher species sensitivity, a regional 

and temporal limited exposure to higher concentrations (caused by effluent discharge in 

combination with low flow conditions, or emission from Fusarium infected wheat fields), and 

mixture effects in combination with other EASs, ZON might contribute to the overall estrogenic 

exposure in the environment. 



Chapter IV 

82 
 

4 Conclusions 
 

The results of the present study confirm the estrogenic potential of ZON to influence sexual 

differentiation and reproduction in zebrafish caused by long-term exposure and a possible 

transgenerational effect on growth caused by short-term exposure of F0 and F1 generation. 

Growth of fish was increased (1000 ng/L) after continuous F0 and F1 long-term exposure to 

ZON and sex ratio was shifted toward female (from 320 ng/L), demonstrating a feminizing 

effect. A positive correlation between the relative fecundity and the ZON concentration as well 

as an increased relative fecundity (1000 ng/L) indicates a recovery during the depuration. 

The condition factor of female F1 fish with solely parental ZON exposure (1000 ng/L) was 

increased, suggesting that exposure of F0 influences growth in F1 generation. A negative 

correlation between the relative fecundity of F1 generation and the ZON concentration of the F0 

exposure might imply that exposure of F0 to high ZON concentrations increases the sensitivity 

of F1 on the level of reproductive performance. 

There is not much data available for ZON concentrations in the environment and the measured 

values in surface waters are below the LOECs we determined to cause negative effects on fish. 

Thus it is rather unlikely that ZON harm fish directly. However, ZON might contribute to an 

overall estrogenic contamination in the environment and under certain circumstances (higher 

species sensitivity, spatially and temporally limited events and combination with other EASs) 

there might be a certain risk for wild fish to be negatively affected by ZON in their natural 

habitat. 
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Chapter V 
 

Final Discussion 
Ecotoxicological characterization of the estrogenic mycotoxin zearalenone 

 

In this research project, the ecotoxicological potential of the estrogenic mycotoxin zearalenone 

(ZON) was characterized. Effects on fish caused by an exposure to ZON were assessed using the 

zebrafish as a model organism. Various experiments were conducted, investigating different 

exposure scenarios and life-stages of zebrafish as well as several endpoints. In the following the 

hazard (the potential to cause harm) of ZON is compared to common environmental estrogens 

and the risk (the likelihood of harm) for fish in the environment is estimated based on measured 

environmental concentration. 

 

 

1 Effects of zearalenone on zebrafish – a summary 
  
As a first pilot study (chapter II) an embryo toxicity test with zebrafish was performed to 

investigate toxic effects of ZON on fish development. This study was complemented with a 

30 day zebrafish early life-stage experiment to assess the influence of ZON on juvenile growth. 

In a second step (chapter III) the estrogenic potency of ZON and its effects on adult fish were 

investigated. A recombinant yeast estrogen screen (rYES) was used as an in vitro assay to 

determine effects on the ‘activation of ER-regulated genes’ representing the relative estrogenic 

activity of ZON in comparison to E2. During a 42 day reproduction experiment, spawning 

groups of zebrafish were exposed to ZON and reproduction (spawning frequency, fecundity, 

fertility and hatch) as well as physiological (VTG induction) and morphological 

(histomorphometry of gonad) parameters were assessed to evaluate effects of endocrine 

disruption.  

In a third step (chapter IV) the estrogenic potency of ZON was studied in a zebrafish life-cycle 

experiment. This study was designed to investigate possible effects of continuous long-term 

exposure including a subsequent depuration period as well as possible transgenerational effects 

of F0 exposure on F1 generation. The offspring of the F0 generation which was exposed to ZON 

for 21 days was raised in a 140 day exposure experiment from embryo to adult. Spawning groups 

of this F1 generation were either exposed to ZON (after growing up in clean water) or clean 

water (after growing up under ZON exposure) in a subsequent 42 day reproduction experiment 
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and effects on developmental (mortality, growth, sex ratio and gonad histomorphometry), 

reproduction (spawning frequency, fecundity, fertility and hatch) as well as physiological (VTG 

induction) parameters were assessed. 

 

ZON exposure revealed no effects on embryonic development of zebrafish up to a concentration 

of 2000 ng/L. However, a positive correlation between the body length and ZON concentration 

for zebrafish exposed from fertilization for 30 days up to 100 ng/L suggests a growth promoting 

effect during early development. 

The estrogenic potential of ZON was confirmed in vitro (rYES) and in vivo (zebrafish). It was 

shown that although ZON possesses a moderate estrogenic potency in vitro, it exhibits a 

comparably strong effect on induction of VTG (1000 ng/L) and reproduction (100 ng/L) in vivo 

during exposure for 21 days. 

It was further demonstrated that ZON influences growth (1000 ng/L), sexual differentiation 

(320 ng/L), reproduction (1000 ng/L) and VTG levels (1000 ng/L) in zebrafish during exposure 

from fertilization to day 140. Furthermore, ZON revealed a possible transgenerational effect on 

growth caused by short-term exposure of F0 and F1 generation each for 21 days to 1000 ng/L. A 

negative correlation between relative fecundity of F1 generation and the ZON concentrations of 

the F0 exposure might imply that short-term exposure of adult fish increases the sensitivity of the 

offspring on the level of reproductive performance. 

 

 

2 Occurrence and potency of common environmental estrogens 
 

To evaluate the relevance of ZON as environmental estrogen, its potential for estrogenic effects 

in fish was compared to other common and ecotoxicologically well described estrogens. The 

natural steroid estrogen 17β-estradiol (E2) was used as reference to compare the estrogenic 

potency of the environmental estrogens in vivo and in vitro. 

 

 

2.1 Steroid estrogens 

The synthetic steroid estrogen 17α-ethinylestradiol (EE2), a common component of oral 

contraceptives, and the natural steroid hormone E2 are mainly excreted by people and 

incompletely degraded in STPs (Guengerich 1990, Munkittrick et al. 1998, Tyler et al. 1998). 

Surface waters in Europe and USA showed concentrations of < 0.1 – 4.3 ng/L EE2 and 0.19 – 

5.5 ng/L E2 (Baronti et al. 2000, Belfroid et al. 1999, Snyder et al. 1999).  A survey of 
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139 streams in USA demonstrated that 5.7 % of them display more than 5 ng/L EE2 (Kolpin et 

al. 2002). In STP effluents in Europe and USA, concentrations of 0.2 – 15 ng/L EE2 and 0.48 – 

48 ng/L E2 were measured (Baronti et al. 2000, Belfroid et al. 1999, Desbrow et al. 1998, 

Larsson et al. 1999, Snyder et al. 1999, Ternes et al. 1999).  

Steroid estrogens have an estrogenic potency that is typically three orders of magnitude above 

that demonstrated by other environmental estrogens (Christiansen et al. 1998). The estrogenic 

potency in the rYES revealed an E2 : EE2 EC50 ratio of 1 : 1.13. Induction of VTG in rainbow 

trout primary hepatocytes resulted in an EC50 of 3.56 – 19.27 µg/L EE2 and 5.99 – 7.08 µg/L E2, 

yielding an E2 : EE2 EC50 ratio of 1 : 0.59 – 2.72 (Cosnefroy et al. 2009, Segner et al. 2003). 

VTG induction was observed in zebrafish exposed to 0.5 – 3 ng/L EE2 (40 d) and 21.4 ng/L E2 

(Nash et al. 2004, Rose et al. 2002, Segner et al. 2003). EC50 for VTG induction in female 

zebrafish was 6.22 ng/L EE2 and 174.9 ng/L E2 (21 d), resulting in an E2 : EE2 EC50 ratio of 1 : 

0.04 (Van den Belt et al. 2004). Exposure of zebrafish to EE2 concentrations of 0.05 – 1.67 ng/L 

reduced fertilization rate (124 – 177 d); 0.5 – 2 ng/L resulted in a higher percentage of female 

(90 – 124 d); 1.1 – 5 ng/L inhibited or suppressed fecundity (177 – 210 d); and 3 ng/L induced 

changes in gonad histology (lifelong; Fenske et al. 2005, Larsen et al. 2008, Nash et al. 2004, 

Schäfers et al. 2007, Segner et al. 2003, Xu et al. 2008). 

 

 

2.2 Bisphenol A (2,2-bis-(4-hydroxyphenyl)-propane 

Bisphenol A (2,2-bis-(4-hydroxyphenyl)-propane [BPA]) is a widely used intermediate in the 

production of polycarbonate plastic and epoxy resins (Sonnenschein & Soto 1998). 

Concentrations of up to 21 µg/L BPA were reported in the aquatic environment (Crain et al. 

2007), and Loos et al. (2010) found in water samples from the Danube River and its tributaries 

up to 68 ng/L BPA. River water analyses exhibited BPA concentrations of 3 – 55 ng/L in 

Belgium and Italy (Loos et al. 2007), 0.5 – 702 ng/L in Germany (Fromme et al. 2002, Kuch & 

Ballschmiter 2001), up to 12 µg/L in USA (Kolpin et al. 2002), and 0.058 – 19 µg/L in Japan 

(Ministry of Environment Japan 2004). In STP effluents, 0.26, 0.49 and 2.5 µg/L BPA were 

measured in Germany, Sweden and Austria, respectively (Fürhacker et al. 2000, Körner et al. 

2000, Larsson et al. 1999). Industrial effluents in Canada revealed concentrations of 0.01 – 

1.08 µg/L BPA (Lee & Peart 2000). 

In vitro studies indicate BPA to be 1 – 3 × 104 times less potent than E2 (Körner et al. 2000, 

Metcalfe et al. 2001, Silva et al. 2002). The estrogenic potency in the rYES exhibited an E2 : 

BPA EC50 ratio of 1 : 10315. VTG induction in rainbow trout primary hepatocytes resulted in an 
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EC50 of 7082 ng/L E2 and 7419425 ng/L BPA, producing an E2 : BPA EC50 ratio of 1 : 1048 

(Segner et al. 2003).  

In vivo experiments with zebrafish demonstrated changes in gonad histology after exposure to 

375 µg/L, and reduced fecundity and fertilization success after lifelong exposure to 1500 µg/L 

BPA (Segner et al. 2003). The EC50 for fertilization success after lifelong exposure of zebrafish 

was 1401.7 µg/L BPA (Segner et al. 2003). Exposing medaka to BPA resulted in induction of 

testis-ova at 10 µg/L (Metcalfe et al. 2001) and decreased fecundity and hatching success at 

2282.9 µg/L (14 d; Shioda & Wakabayashi 2000). BPA revealed feminizing effects in vivo and 

induced VTG and/or zona radiate proteins in several fish species: carp, 100 µg/L (Mandich et al. 

2007); fathead minnow, 160 µg/L (Brian et al. 2005, Sohoni et al. 2001); atlantic cod, 59 µg/L 

(Larsen et al. 2006); medaka, 1000 µg/L (Ishibashi et al. 2005); and rainbow trout, 500 µg/L 

(6 d; Lindholst et al. 2001). 

 

 

2.3 Alkylphenol ethoxylates 

Alkylphenol ethoxylates are widely used surfactants and antioxidants in the plastic industry 

(Soto et al. 1991). Nonylphenol (NP) and octylphenol (OP) are the major degradation products 

of alkylphenols in the aquatic environment (Ahel et al. 1994, Nimrod & Benson 1996, Rudel et 

al. 1998). In Belgian and Italian rivers concentrations of 0.32 – 2.5 µg/L NP and 0.02 – 

0.11 µg/L OP were found and in the Danube river and its tributaries up to 0.24 µg/L NP (Loos et 

al. 2007, 2010). Up to 180 µg/L and 0.15 – 644 µg/L NP was measured in British and Spanish 

rivers, respectively (Blackburn & Waldock 1995, Sole et al. 2000). In STP effluent, 

concentrations of 0.1 – 3.7 µg/L NP were reported for UK, Germany, Switzerland and Italy 

(Ahel et al. 2000, Di Corcia et al. 1994, Körner et al. 2000) and up to 32 µg/L NP and 0.7 µg/L 

OP, and 330 µg/L NP were measured in USA and UK, respectively (Blackburn & Waldock 

1995, Snyder et al. 1999). 

4-tert-OP is the most potent of the alkylphenols followed by 4-tert-NP, being 1.5 × 103 and 1 × 

104 times less potent than E2, respectively (Jobling et al. 1996, Routledge & Sumpter 1997). The 

estrogenic potency in the rYES resulted in an E2 : NP and E2 : 4-tert-OP EC50 ratio of 1 : 6745.8 

and 1 : 1553.8, respectively (Segner et al. 2003, Van den Belt et al. 2004). VTG induction in 

rainbow trout primary hepatocytes revealed an EC50 of 5.99 – 7.08 µg/L E2 and 7483.43 – 

8541.65 µg/L 4-tert-OP, resulting in an E2 : 4-tert-OP EC50 ratio of 1 : 1206.5 – 1249.3 

(Cosnefroy et al. 2009, Segner et al. 2003). 

Induction of VTG was observed in zebrafish males exposed to 30 – 100 μg/L NP (21 – 60 d; Hill 

& Janz 2003, Van den Belt et al. 2003b, Yang et al. 2006). EC50 for VTG induction in female 
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zebrafish were 174.9 ng/L E2 and 247012.4 ng/L NP (21 d), producing an E2 : NP EC50 ratio of 

1 : 1412.3 (Van den Belt et al. 2004). Fertilization success in zebrafish showed an EC50 of 

28.06 µg/L 4-tert-OP (lifelong; Segner et al. 2003) and exposure to 100 µg/L NP resulted in a 

shifted sex ratio in zebrafish and medaka (60 d; Hill & Janz 2003, Seki et al. 2003). VTG 

induction has been reported in several fish species: fathead minnow, 10 μg/L NP (Harries et al. 

2000); medaka 11.6 µg/L NP and 11.4 µg/L OP (60 d; Seki et al. 2003); and rainbow trout, 

20.3 μg/L NP (21 d; Jobling et al. 1996). 

 

 

2.4 Phtalates 

Phtalates are esters of phthalic acid and mainly used in the manufacture of plastics. The 

phthalates with the most evidence for estrogenic activity in vitro are butyl benzyl phthalate 

(BBP), dibutyl phthalate (DBP), and di-2-ethyl hexyl phthalate (DEHP; Murk et al. 2002). In a 

review of thousands of surface water measurements, most concentrations were below 1 µg/L for 

BBP and DBP (Staples et al. 2000), but surveys found DBP and DEHP concentrations of 0.12 – 

8.8 µg/L and 0.33 – 97.8 µg/L in German, as well as 0.04 – 1.88 µg/L and 0.05 – 4.67 µg/L in 

Dutch surface waters, respectively (Fromme et al. 2002, Peijnenburg & Struijs 2006). In British 

and German sewage effluent < 1 – 2.8 µg/L BBP, < 1 – 14 µg/L DBP and < 2.4 – 182 µg/L 

DEHP were detected (Fatoki & Vernon 1990, Fromme et al. 2002). 

BBP, DBP, and DEHP were in vitro 105 – 108 fold less potent than E2 (Murk et al. 2002). BBP 

was reported to induce VTG in fathead minnow and diethylphthalat (DEP) in carp exposed to 

100 µg/L each (28 d; Barse et al. 2007, Harries et al. 2000). 

 

 

2.5 Phytoestrogens 

Isoflavones and coumestanes are the most prevalent groups of estrogenic compounds, present as 

phytoestrogens in high concentrations in legumes such as soy, clover, Lucerne beans and peas 

(Price & Fenwick 1985, Reinli & Block 1996). One of the major isoflavones is genistein, and 

coumestrol, the most common coumestan, is the phytoestrogen exhibiting the highest relative 

estrogenic potency (Bovee et al. 2004, Matthews et al. 2000). Up to 1 – 20 ng/L and 0.7 – 2 ng/L 

genistein and coumestrol were detected in Australian rivers (Kang & Price 2009), and 

concentrations of  3 – 5 ng/L and 24 µg/L genistein were found in an Italian and a Japanese 

rivers, respectively (Bacaloni et al. 2005, Kawanishi et al. 2004). Erbs et al. (2007) measured in 

drainage water of a test field containing red clover up to 14 ng/L genistein. Up to 0.1 –0.4 ng/L 

and 0.7 ng/L genistein and coumestrol were found in Australian STP effluents, respectively 
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(Kang & Price 2009). Pulp and paper mills exhibited high levels of isoflavones in their effluent 

with genistein concentrations up to 13.1 µg/L (Kiparissis et al. 2001). In plant-processing 

industries and STPs in USA, 0.158 – 151 µg/L genistein and 0.034 – 0.428 µg/L coumestrol 

were measured (Lundgren & Novak 2009).  

The estrogenic potency of phytoestrogens is generally much weaker than that of steroidal 

estrogens but equal to other environmental estrogens such as BPA and NP (Erbs et al. 2007). 

VTG induction in rainbow trout primary hepatocytes revealed an EC50 of 5.99 µg/L E2 and 

459.95 µg/L genistein, resulting in an E2 : genistein EC50 ratio of 1 : 76.69 (Cosnefroy et al. 

2009). 

A 215 and 620 fold induction of luciferase activity was detected after exposing a transgenic 

ERE-luciferase zebrafish line to 675.60 µg/L genistein and 272.39 µg/L E2, respectively (Sassi-

Messai et al. 2009). Exposure to 1000 µg/L genistein caused gonadal intersex in male and 

atreitic oocytes in female medaka (Kiparissis et al. 2003). 

 

 

3 Comparative hazard assessment of the estrogenic potential 
 

To evaluate the estrogenic potency in fish, ZON was compared to the above described 

environmental estrogens. A ranking of the environmental estrogens according to their estrogenic 

potential in vitro and in vivo (if the corresponding data for the substance was available) is 

presented in the following. 

 

E2 : EAS EC50 ratio for in vitro estrogenicity (rYES): 

E2 (1 : 1) > EE2 (1 : 1.13) > ZON > (1 : 13.9 – 350; chapter III) > OP (1 : 1553.8) > NP 

(1 : 6745.8) > BPA (1 : 10315) 

 

E2 : EAS EC50 ratio for in vitro VTG induction (fish cells): 

EE2 (1 : 0.59 – 2.72) > E2 (1 : 1) > ZON (1 : 18.7 – 1438.9; chapter III) > genistein (1 : 76.69) 

> BPA (1 : 1047.7) > OP (1 : 1206.5 – 1249.3) 

 

LOEC for in vivo VTG induction: 

EE2 (0.5 – 3 ng/L) > E2 (21.4 ng/L) > ZON (1000 ng/L; chapter III) > NP (10 – 20.3 µg/L) > OP 

(11.4 µg/L) > BPA (100 µg/L) = BBP (100 µg/L) > genistein (675 µg/L, luciferase induction) 
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LOEC for in vivo effects on reproduction: 

EE2 (0.05 – 5 ng/L) > E2 (27.2 ng/L) > ZON (100 ng/L; chapter III) > OP (28.06 µg/L) 

> genistein (1000 µg/L, intersex & atreitic oocytes) > BPA (1401 – 1500 µg/L) 

 

According to these comparisons, ZON showed a weaker estrogen activity than the steroid 

estrogens EE2 and E2 but a stronger activity than OP, NP BPA, genistein and BBP. This result 

indicates a strong potential to act estrogenic in fish. From these data it can be concluded that 

ZON is of high relevance when environmental concerns on endocrine disrupters come into play.  

 

 

4 Environmental risk assessment for ZON and common estrogens 
 

To evaluate and compare the risk for fish in their natural environment, data of effects on fish 

were related to the concentrations found in the environment. The quantity of studies and sites for 

data of concentration in surface waters as well as bioaccumulation, biomagnification and 

metabolization mechanisms were not taken into consideration in this evaluation (sources for the 

data used in the following are already quoted in paragraph 2). For a basic risk characterization, 

each environmental estrogen was classified on the basis of environmental concentrations and 

LOECs from in vivo studies using three levels (Table 1). 

 

 

Table 1: Classifications for the risk assessment  

Risk characterization Condition 
Low surface water and effluent concentrations < LOEC 
Medium only effluent concentrations ≥ LOEC 
High surface water concentrations ≥ LOEC 

 

 

ZON exhibited surface waters concentrations of 0.5 – 44 ng/L which are about half the value 

presented as LOEC for zebrafish reproduction (100 ng/L, reduced fecundity) in this project. 

Measured effluents concentrations of 1 – 220 ng/L ZON are up to 2.2 times higher than LOECs 

for reproduction. Consequently, there is a medium risk for ZON to affect fish in the natural 

environment. 

EE2 and E2 were present in surface waters at concentrations of 0.1 – 5 ng/L and 0.19 – 5.5 ng/L, 

respectively, which is for EE2 in the range of physiological responses in fish (0.5 – 3 ng/L, VTG 

induction) and effects on reproduction (0.05 – 5 ng/L), but below the LOEC for E2 (20 ng/L, 
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VTG induction; 27.2 ng/L, reproduction). The concentrations in effluents were 0.2 – 15 ng/L 

EE2 and 0.48 – 48 ng/L E2 which exceed also the LOEC for E2. Consequently, there is a high 

risk for EE2 and a medium risk for E2 to affect fish in the natural environment.  

BPA was reported in surface waters at concentrations of 3 – 19000 ng/L and in effluents at 260 – 

2500 ng/L, which in both cases is below the LOEC in fish (100 µg/L, VTG induction; 1401.7 – 

1500 µg/L, reproduction). Therefore, it can be concluded that there is only a low risk for BPA to 

affect fish in the natural environment. 

NP and OP were measured at concentrations of 0.15 – 644 µg/L and 0.016 – 0.111 µg/L in 

surface waters as well as 0.1 – 330 µg/L and up to 0.7 µg/L in effluents, respectively. This is in 

both cases above the LOEC for NP (10 – 20.3 µg/L, VTG induction; 100 µg/L, shifted sex ratio) 

but below the LOEC for OP (11.4 µg/L, VTG induction; 28.06 µg/L, reproduction) in fish. Thus, 

there is a high risk for NP and a low risk for OP to affect fish in the natural environment. 

The limited data for phthalates demonstrated concentrations of 1 – 14 µg/L DBP, BBP and 

0.05 – 97.8 µg/L DEPH in surface waters as well as 1 – 14 µg/L DBP, BBP and 2.4 – 182 µg/L 

DEHP in effluents, respectively, which is below the in vivo LOEC for BBP (100 µg/L, VTG 

induction). This implies only a low risk for BBP and, based on the assumption that the estrogenic 

potency is similar for DBP and DEHP, as well a low risk for DBP and a medium risk for DEHP 

to affect fish in the natural environment. 

The phytoestrogens genistein and coumestrol were detected in concentrations of 1 – 24000 ng/L 

and 0.7 – 2 ng/L in surface waters as well as 0.1 – 151000 ng/L and 0.7 – 428 ng/L in effluents, 

respectively. Values in surface waters and in effluents are below the LOECs for genistein in fish 

(675.6 µg/L, luciferase induction; 1000 µg/L, intersex & atreitic oocytes). For coumestrol, effect 

data from fish are missing. These results suggest a low risk for genistein to affect fish in the 

natural environment. 

 

Evaluating this data from a worst case point of view, that is taking into consideration the highest 

detected concentrations, there is a high risk for EE2 and NP to cause endocrine disruption in fish 

in their natural habitat. The risk for BPA, OP, BBP, DBP and genistein to affect fish is low and 

for coumestrol in vivo data is missing. According to the applied classification, there is a medium 

risk for ZON, E2 and DEPH (assuming similar potency for DEHP and DBB) to affect fish. 

However, taken into consideration a regional and temporal limited exposure to higher 

concentrations (above the LOEC) caused by effluent discharge in combination with low flow 

conditions (low dilution factor) or surface runoff from contaminated fields, it is conceivable that 

ZON, E2 and DEPH can affect fish in the natural environment. 
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For some of the discussed environmental estrogens, including ZON, data of environmental 

occurrence and concentrations is very limited. Therefore the significance of this risk assessment 

is also limited and has to be evaluated according to the described restrictions. Furthermore, a 

possible difference in species sensitivity has to be taken into consideration when extrapolating 

results from laboratory experiments with model organism to native wildlife. For example in a 

direct comparison of E2 induced VTG synthesis with zebrafish, fathead minnow and medaka, 

zebrafish was the least sensitive species (Seki et al. 2006) whereas no difference between 

zebrafish and rainbow trout was found (Van den Belt et al. 2003a). 
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5 Conclusions 
 

In the present research project, the ecotoxicological significance of the estrogenic mycotoxin 

ZON was studied. The potential effects on fish caused by exposure to ZON were assessed using 

the zebrafish as a model organism. Different exposure scenarios and different life-stages of 

zebrafish were investigated in a series of experiments to investigate effects on various endpoints. 

The results of the experiments presented in this thesis provide crucial data for the 

ecotoxicological evaluation of ZON. The estrogenic potential of ZON was confirmed in vitro 

and in vivo and detrimental effects on zebrafish reproduction were demonstrated. The effects on 

zebrafish reproduction were observed at concentrations near the maximum measured values in 

surface waters (approximately double) and below the maximum values measured in effluents 

(approximately half). This might indicate a potential for ZON to affect fish populations in their 

natural environment. However, to date there is not much data published from ZON 

concentrations in the environment and effects on different (native) fish. Therefore, altogether we 

suggest a more detailed characterization of the ecotoxicological relevance of ZON in order to 

conduct a scientifically sound risk assessement. 
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Abstract 
 

In the present study an embryo toxicity test with zebrafish and the comet assay with primary 
cells isolated from the embryos were combined to assess the toxicity of native biofilms from the 
sewage system of the sewage treatment plant (STP) Mittleres Wynental and native sediments 
from the river Wyna (Switzerland). The aim of the study was to evaluate the applicability of the 
test system to investigate biofilms and to rank the results of the biofilm and sediment sampling 
sites with regard to embryotoxic and genotoxic effects. 
We demonstrated that the zebrafish embryo toxicity test in combination with the comet assay 
with embryo primary cells is a tool that can basically be applied for investigating the 
bioavailable toxic potential of native biofilms. By ranking the results for embryo toxicity and 
genotoxicity, we found clear differences in the toxic potential of the biofilm from different 
sewage system sections. Significant genotoxicity was determined in all biofilm samples and the 
sediments revealed a lower genotoxic potential upstream of the STP discharge compared to 
samples downstream and directly at the discharge. Temporal variability from samplings in 
autumn and spring were found for two of the five biofilms and for one of the three sediment 
samples. 
Based on the results of our study we suggest that ecotoxicological bioassays (such as the embryo 
toxicity test and comet assay with zebrafish) using biofilm can be a useful tool to assess (waste) 
water quality.  
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1 Introduction 
 

Fish decline in rivers is often discussed related to water pollution and degradation of aquatic 

habitats (Burkhardt-Holm et al. 2005, Keiter et al. 2006). In general, sewage treatment plants 

(STP) are considered to be one major point source of anthropogenic contamination of river 

systems (Ternes 2007). The composition of STP effluents can be a complex mixture of more 

than 100’000 different chemicals which can exhibit detrimental effects on fish, resulting in 

impaired health status, increased mortality or decreased reproductive success in fish populations 

(Sumpter 1997, Kime 1999, Clements 2000).  

Many anthropogenic chemicals in the water phase adsorb to suspended particles and are 

integrated into the sediment. Therefore, sediments are a sink but also a potential source for 

persistent toxic substances (Burton 1991, Hollert et al. 2003, Schwarzenbach et al. 2006). 

Sediment-bound contaminants can affect organisms that live over it directly or indirectly via the 

food web, and can also be remobilized during flood events (Mac et al. 1984, Power and 

Chapman 1992, Hollert et al. 2000). In sediments which are contaminated by STP effluents and 

industrial waste, genotoxic substances are frequently detected (Klee et al. 2004, Kosmehl et al. 

2004, Aouadene et al. 2008). These genotoxic substances can affect the reproductive success of 

organisms: DNA damage leads to dieback of gametes, developmental disorders, embryo 

mortality, and hereditary mutations, and can directly influence the population structure and size 

(Anderson and Wild 1994).  Furthermore, it was reported that increased DNA damage, induced 

by genotoxic substances, can affect gene flow in populations and hence reduce genetic diversity 

(Theodorakis et al. 2000, 2001). 

Not only sediment but also biofilm is particularly interesting as indicator for environmental 

pollution, as it interacts with toxic substances and integrate over longer periods. Biofilm is a 

complex biocoenosis of microorganisms (bacteria, fungi, algae) on a solid surface at the 

boundary layer to a liquid phase (Sabater et al. 2007). Apart from natural boundary layers such 

as soil, sediments, plants, animals and mucosa they can be found on technical installations such 

as canalizations. In biofilms, the cells of the microorganisms are embedded in a secreted 

mucilage matrix of extracellular, polymer substances (EPS). A multitude of organic and 

inorganic compounds are integrated and particular substances are embedded in the EPS (Geesey 

et al. 1994).  

Several studies revealed that the sensitivity of fish embryos and larvae to some chemicals is 

greater than that of adults (Lange et al. 1995, Nagel and Isberner 1998, Nagel 2002, Strmac et al. 

2002). In early life-stage tests, toxicant effects on ontogenesis and growth can be examined 

through many diverse endpoints (Ensenbach and Nagel 1997, Luckenbach et al. 2001). In 
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addition, the direct exposure of a test organism to an environmental sample closely resembles 

natural conditions and can therefore be of high ecological relevance. In several studies zebrafish 

(Danio rerio) eggs have been exposed to native sediment to assess the bioavailable toxic 

potential of samples (Ensenbach 1998, Hollert et al. 2003, Hallare et al. 2005, Colavecchia et al. 

2006, Höss et al. 2010). In contrast to sediment, the toxic potential (toxicant load) of biofilm has 

to date not been investigated in bioassays.  

The comet assay (single cell gel electrophoresis) is one of the most commonly used techniques to 

detect DNA strand breaks in cell lines and primary cells (Cotelle and Ferard 1999, Rojas et al. 

1999, Kamer and Rinkevich 2002). By using primary cells from zebrafish embryos previously 

exposed directly to sediment samples, the bioavailable genotoxic potential of these samples can 

be assessed in the comet assay (Kosmehl et al. 2006, 2008). 

In the present study, both an embryo toxicity test with zebrafish and the comet assay with 

primary cells isolated from the embryos were applied for the first time, to investigate native 

biofilms from different sections of a sewage system. Furthermore, this combination of test 

systems was used to assess the toxicity of native sediments from the river Wyna directly at, 

upstream and downstream of the STP discharge Mittleres Wynental (Switzerland). The STP was 

selected because previous studies demonstrated a negative effect of this STP on brown trout 

(Salmo trutta fario) embryo development (Escher 1999, Kobler 2004, Aqua-Sana 2006). The aim 

of the study was to verify the applicability of the test system to investigate biofilms and to 

evaluate the embryotoxic and genotoxic potential of the samples in a ranking. This ranking was 

used (1) to compare the hazard potentials of the different sampling sites, (2) localize possible 

toxic discharges into the sewage system, and (3) to investigate temporal variability from 

samplings in autumn and spring. 
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2 Materials and Methods 
 

2.1 Sampling sites 

The river Wyna has a total length of 32 kilometers and flows through the cantons Lucerne and 

Aargau, Switzerland, with an average flow rate in the downstream of about 1.76 m3/s. The STP 

Mittleres Wynental is dimensioned for 8’500 inhabitant equivalents and located in an area of 

intensely used farmland and small industries at the lower reaches of the river Wyna (coordinates: 

N 47.334 E 8.112, WGS84). Three STPs upstream of the STP Mittleres Wynental are 

discharging wastewater into the river which can reach a proportion of up to 50 % of the river 

water (Kobler 2004). 

Six biofilm samples (B1 – B6) were taken from the sewage pipelines of the STP Mittleres 

Wynental and three sediment samples from the river Wyna (S1 directly at the discharge of the 

STP, S2 100 m upstream and S3 200 m downstream, Fig. 1). The selection of the sampling 

location was done in cooperation with the cantonal authorities, based on their estimation in 

which sections problematic discharge could be expected. 

 

 

2.2 Sampling and processing of biofilm and sediment 

A first sampling of all sites, apart from B6, was conducted in October 2008 (‘autumn samples’) 

and a second sampling, including B6, in June 2009 (‘spring samples’). 

At each sampling site, 0.2 – 0.3 L biofilm and 0.4 – 0.6 L sediment (0 – 5 cm depth) was taken 

from several points within an area of approximately 1 – 2 m2 and 4 m2, respectively, using a 

stainless steel spoon and a spattle. The biofilm and sediment samples were filled into solvent 

(ethanol and acetone) cleaned 0.5 and 1 L glass bottles, respectively, and closed with Teflon lids. 

The bottles were transported to the laboratory in a cool box equipped with cooling packs and 

stored at -40 °C for a maximum of two weeks until further processing. The frozen samples were 

then dried for one week in a freeze-dryer (Freezemobile 6, Virtis Inc. Gardier, USA), 

homogenized and stored at 4 °C in the dark. 
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Fig. 1: Sampling sites for biofilm (B1 – B6) in the sewage pipelines and sediment (S1 – S3) in the river 
Wyna, in the catchment area of the sewage treatment plant (STP) Mittleres Wynental, canton Aargau, 
Switzerland.  
 

 

2.3 Experimental animals 

All procedures concerning experimental animals were performed in compliance with the Swiss 

protection of animals act. The zebrafish (Danio rerio) used for egg production originated from 

our fish breeding stocks, held at the University of Basel. They were kept in aerated 60 L glass 

tanks supplied with a constant flow of 5 L/h conditioned water (1 : 1 mix of charcoal filtered tap 

water and reverse osmosis water) at a temperature of 26 ± 1 °C, pH of 8.0 ± 0.2, water hardness 

of 142.4 mg/L CaCO3 (8 °dH) and an artificial light : dark photoperiod of 16 : 8 h.  The fish were 

fed twice a day once with dry pellet (SilverCup, H. U. Hofmann AG, Switzerland) and once with 

frozen brine shrimps (Artemia salina, 3F Frozen Fish Food BV, Netherlands).  
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2.4 Egg production 

Approximately 2 h before the dark period, spawning groups of two female and four male 

zebrafish were transferred into 12 L spawning tanks. All tanks were aerated and tempered to 

26 ± 1 °C using submerged electrical heaters and a light : dark photoperiod of 16 : 8 h was 

maintained. The spawning tanks were equipped with a stainless steel mesh (mesh size: 2.5 mm) 

to prevent fish from eating their eggs. Artificial weed (Clear water coarse filtering wool, 

Dennerle GmbH, Germany) was attached to the centre of the steel mesh to provide a spawning 

stimulation. Oxygen was always above 7.4 mg/L (Oxi 315i, WTW, Germany), pH at 7.8 – 8.2 

(pH 315i, WTW, Germany), and conductivity at 240 – 260 µS/cm (Cond 315i, WTW, 

Germany). On the following morning, 0.5 – 1 h after the onset of the light period, all fish were 

transferred back to the stock tanks and the eggs were collected into petri dishes for microscopical 

analysis. 

 

 

2.5 Embryotoxicity test 

The embryo toxicity test was conducted with biofilm and sediment sampled in autumn and 

spring each with two independent experiments according to the adapted test protocol of Hollert 

et al. (2003) and the German DIN 38415-6. All samples were tested at 4 – 5 concentrations, each 

with 6 wells of a 6-well plate (Becton Dickinson Labware, USA) and 3 g sample dilution per 

well (Table 1). To prepare the dilutions, each sample of sediment and biofilm was mixed with 

silica sand (50 – 70 mesh particle size, Sigma-Aldrich, Switzerland) and homogenized with a 

mortar. The applied concentrations were determined in range finding experiments (data not 

shown). For the negative control, 6 wells were filled with 3 g pure silica sand. Approximately 

one hour before the exposure started, 7 mL artificial water (ISO 7346/3, stock solutions of 

58.8 mg/L CaCl2 × 2 H2O, 24.6 mg/L MgSO4 × 7 H2O, 12.6 mg/L NaHCO3 and 5.5 mg/L KCl, 

diluted 1:5 with purified water), aerated to 100 % oxygen saturation was added to each well.  

 

 

Table 1: Sediment and biofilm dilutions and 
concentrations of the sample-silica sand mixture applied 
in the embryotoxicity test. 

Sediment 
Dilution 1:2 1:4 1:8 1:16 1:32 
Concentration [%] 50.0 25.0 12.5 6.3 3.1 

Biofilm 
Dilution 1:32 1:64 1:128 1:256 1:512 
Concentration [%] 3.1 1.6 0.8 0.4 0.2 
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Within two hours post fertilization (hpf), 5 fertilized and normally developing fish eggs were 

transferred into each well using a plastic pipette. The well plates were closed with lids and 

incubated in a heating cabinet at 26 ± 1 °C with saturated humidity to avoid evaporation from the 

wells. The eggs were exposed to the samples during the period of 2 – 96 hpf and inspected at 24, 

48, 72 and 96 hpf for lethal and sub lethal deviation from normal development using an inverse 

microscope (Olympus CKX41, Olympus, Germany) at 40x and 100x magnification. For 

examination, the eggs were transferred into 24-well plates (Becton Dickinson Labware, USA) 

filled with artificial water. The toxicological endpoints evaluated in the test are given in Table 2 

(Hollert et al. 2003). A line was extrapolated to the data using SigmaPlot version 9.01 (Systat 

Software Inc., USA), and the LC50 for mortality and EC50 for hatch rate (50 % effect 

concentration) were determined graphically from the linear section of the graph. The LC50 for 

mortality at 48 hpf and EC50 for hatch rate at 96 hpf (modification of DIN 38415-6) were used to 

determine embryo toxicity.  

 

 

Table 2: Toxicological endpoints for the evaluation of 
embryotoxicity and mortality (hpf: hours post fertilization).  

Toxicological endpoint 24 hpf 48 hpf 72 hpf 96 hpf 
Coagulation ● ● ● ● 
Epiboly stage ● ● ● ● 
No somites ● ● ● ● 
Undetached tail ● ● ● ● 
No heartbeat  ● ● ● 
No circulation  ○ ○ ○ 
No pigmentation  ○ ○ ○ 
No movement ○ ○ ○ ○ 
Development retardation ○ ○ ○ ○ 
Edema ○ ○ ○ ○ 
Malformation ○ ○ ○ ○ 
Hatch   ○ ○ 
● = lethal criterion used to determine mortality rate 
○ = documented but not evaluated as lethal criterion 
 = not documented 

 

 

2.5.1 Oxygen consumption of the samples 

The oxygen concentration in the water can decrease during the experiment due to oxygen 

consumption caused by biological (degradation of organic material) and chemical reactions. 

Therefore, at the end of each experiment, the liquid of all wells from each sample concentration 
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was carefully pooled in a 25 mL glass beaker and O2 concentration was measured (Oxi 315i, 

WTW, Germany). 

 

 

2.6 Comet assay with primary cells 

The comet assay was conducted with biofilm and sediment sampled in spring, according to the 

modified test protocol of Kosmehl et al. (2006). We conducted two independent experiments 

with two independent replicates (n = 2) each. Eight embryos were pooled for each replicate. An 

additional concentration of 0.2 % was used for all biofilm samples. At the end of the embryo 

toxicity exposure (96 hpf), the sample concentrations in which ≥ 80 % of the embryos survived 

were investigated in the comet assay. For the positive control, primary cells from embryos which 

developed on pure silica sand were exposed for 10 min to UV radiation in Eppendorf reaction 

tubes.  

 

 

2.6.1 Cell isolation 

The embryos were euthanized in 150 mg/L MS222 (Ethyl 3-aminobenzoat, methanesulfonic acid 

salt 98 %, Sigma-Aldrich GmbH, Switzerland) buffered with 300 mg/L NaCO3 and washed in 

phosphate-buffered saline (PBS). MS222 does not cause primary DNA damage and is 

recommended for genotoxicity tests (Barreto et al. 2007). The eight embryos per replicate were 

transferred into a 5 mL glass tissue grinder (Potter-Elvehjem-type, Sartorius, Germany) with a 

defined pestle/wall distance of 50 to 70 µm in which 1 mL PBS-fetal bovine serum (Sigma-

Aldrich GmbH, Switzerland) solution was added. The grinding step was conducted two times 

with careful pressure and a rotation of 90°. The resulting cell suspension was filtered through a 

70 µm gauze (SEFAR, Switzerland) into an Eppendorf reaction tube and centrifuged for 10 min 

at 4 °C and 200 g.  

 

 

2.6.2 Cell vitality test 

A cell vitality test was conducted in preliminary experiments according to the modified test 

protocol by Borenfreund and Puerner (1984), to improve the cell isolation method and to avoid 

too much damage of the cells during the isolation process. Based upon the results of the 

experiments, two grinding steps with the homogenizer were selected as optimum. With the 

established method, the cell viability was consistently > 80 % (mean = 94 %, n = 8). 
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After cell isolation, the density was adjusted with PBS to 3 × 104 cells/mL. From this 

suspension, 200 µL was filled into each well of a 96-well plate and 50 µL of a 0.4 % toluylene 

red solution (2-Methyl-3-amino-7-dimethylaminophenazin, Carl Roth GmbH, Germany) in PBS 

was added. For the negative control, 8 wells were filled with 200 µL PBS and 50 µL toluylene 

red solution. After incubation for 10 h in the dark, the 96-well plate was centrifuged for 2 min at 

200 g. The supernatant was discarded and the wells were again filled with 200 µL PBS and 

centrifuged for 2 min at 200 g. The supernatant was removed and the plate was dried for 15 min. 

Each well was filled with 50 µL lysis buffer (10 mL Ethanol, 200 µL acetic acid) and analysed in 

the plate reader (540 nm, Tecan Sunrise absorption-plate-reader, Tecan Group Ltd, Switzerland).  

 

 

2.6.3 Electrophoresis 

The slides (Superfrost Plus, Gerhard Menzel GmbH, Germany) were coated with 1.0 % (w/v) 

normal melting agarose (NMA; SeaKem LE Agarose, Biozym Scientific GmbH, Germany) in 

PBS. Following hardening on an ice cold metal plate for 3 min, the slides were dried for 24 h at 

room temperature. 

After cell isolation, the density was adjusted with PBS to 3 × 104 cells/mL, gently mixed with 

90 µL 0.7 % (w/v) low melting agarose (LMA; SeaPlaque GTG Agarose, Biozym Scientific 

GmbH, Germany) at 37 °C and spread onto a precoated slide. The slide was again put on the 

cold metal plate for 3 min and dried for 5 min at 37 °C. Finally, 100 µL 0.7 % (w/v) LMA was 

placed on top as a protective third layer, cooled for 3 min and dried for 5 min at 37 °C. 

The slides were incubated in lysis solution containing 100 mM ethylene-diamine-tetraacetic acid 

(EDTA; purity: 99 %, Sigma-Aldrich GmbH, Switzerland), 2.5 M NaCl, 1 % (v/v) Triton X-100 

(Sigma-Aldrich GmbH, Switzerland), and 10 % (v/v) dimethyl sulfoxide (pH 13.0; purity: 

99.9 %, Sigma-Aldrich GmbH, Switzerland) for 3 h at 4 °C in the dark. For DNA unwinding, 

slides were immersed in a horizontal electrophoresis tank (Maxigel ECO 2, Apelex, France) 

containing ice cold alkaline buffer (12 g/L NaOH, 0.37 g/L EDTA) for 30 min in the dark. After 

electrophoresis for 25 min at 25 V and 0.3 A, the slides were neutralized with 400 mM Tris-HCl 

(purity: 99 %, Sigma-Aldrich GmbH, Switzerland) buffer at pH 7.4 for 2 min. 

 

 

2.6.4 Image analysis and statistics 

Immediately before scoring, the gels were stained with 75 µL of 20 µM ethidium bromide 

(purity: 95 %, Sigma-Aldrich, Switzerland) in purified water and embedded with a cover slip. 

All slides were examined at 340x magnification using a fluorescent microscope (Eclipse 400, 
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Nikon, Switzerland) equipped with an excitation filter for ethidium bromide (518 nm) and a 

camera (Nikon DXM-1200F, Nikon, Switzerland). For each concentration, 100 randomly 

selected nucleoids of two replicate slides (50 each) were photographed. Subsequently, the photos 

were analyzed with the software CometScore (TriTek, Sumerduck, USA) using the tail moment 

(product of the fluorescence intensity and the tail length) for statistical analysis. 

Data of tail moments was analyzed by the Kruskal-Wallis one-way analysis of variance on ranks 

followed by Dunn´s method for multiple comparisons (SigmaStat 3.1TM, Systat Software, 

Germany). In case of significant differences to the control (p ≤ 0.05), the sample concentrations 

were scored as genotoxic. The lowest observed effect concentration (LOEC) was determined as 

the lowest test concentration, which caused statistically significant DNA damage. The induction 

factors (IFs) were calculated as quotient of the tail-moment means of all sample concentrations 

and the control. 

For the genotoxicity ranking, the data was analyzed using the 3-step analysis (Seitz et al. 2008). 

This is a descriptive method that takes into account all information that can be obtained from the 

concentration-effect curve, allowing a comprehensive comparison of the genotoxicity of 

samples. According to this method, the evaluation of the samples was performed based on three 

steps: 1. LOECs (first the samples are ranked according to their LOECs); 2. Maximum IF 

(IFmax) in the concentrations significantly different from control (in case of identical rank in 

step 1, the samples are further ranked according to the IFmax in the concentrations with 

significant genotoxicity); 3. IFmax in the non significant concentrations (in case of identical rank 

in step 2, the samples are further ranked according to their IFmax in the concentrations without 

significant genotoxicity). However, only IFs can be compared which are based on identical 

concentrations. 
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3 Results 
 

3.1 Embryotoxicity 

Zebrafish embryos developed normally in the control groups of all experiments, defined by the 

criteria of Kimmel et al. (1995). In the following the results for mortality and hatch rate (3.1.1) 

as well as a qualitative description of the observed development abnormalities caused by 

exposure to the biofilm and sediment are given (3.1.2, 3.1.3, see also Table 2).  

 

 

3.1.1 Mortality and hatch rate 

The mortality in the control groups at 48 hpf was in all experiments below 10 %. Therefore the 

requirement of DIN 38415 – T6 for a valid test was always met and the observed effects can be 

attributed to the sediment and biofilm exposure. 

In the biofilm samples, most eggs in most concentrations were already coagulated at 24 hpf and 

at 48 hpf many of the vital embryos had no heartbeat and were hence determined as mortal. In a 

few cases, some embryos which revealed a development retardation and were determined as 

mortal at 24 hpf could catch up the development retardation and therefore the mortality 

decreased until 48 hpf. The mean LC50 for mortality at 24 and 48 hpf and EC50 for hatch rate at 

72 and 96 hpf for the two experiments with the samples from autumn and from spring are 

presented in Figures 2 and 3. The ranking based on the mean LC50 for mortality of all four 

experiments at 48 hpf is: B2 < B1 = B6 < B3 < B4 = B5, and for hatch rate at 96 hpf: B1 < B2 < 

B6 < B3 < B4 = B5 (Table 3). 

In the sediment samples many embryos were not developed as far as in the control at 24 hpf and 

were therefore determined as mortal. However, they were able to catch up the development 

retardation until 48 hpf. Only in sample S1 was a high mortality determined at 48 hpf in one 

experiment. The mean LC50 for mortality at 24 and 48 hpf and EC50 for hatch rate at 72 and 

96 hpf of the two experiments for the samples from autumn and from spring are presented in 

Figures 2 and 3. The ranking based on the mean LC50 for mortality of all four experiments at 

48 hpf is: S3 < S2 < S1, and for hatch rate at 96 hpf: S3 < S2 < S1 (Table 3). 
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Fig. 2: Embryo toxicity of biofilm (B1 – B6) and sediment (S1 – S3): Lethal concentration of 50 % 
(LC50) for mortality at 24 and 48 hours post fertilization (hpf). Mean of two independent experiments 
with samples from (A) autumn (October 2008) and (B) spring (June 2009).  
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Fig. 3: Embryotoxicity of biofilm (B1 – B6) and sediment (S1 – S3): Effect concentration of 50 % (EC50) 
for hatch rate at 72 and 96 hours post fertilization (hpf). Mean of two independent experiments with 
samples from (A) autumn (October 2008) and (B) spring (June 2009). 
 

 

Table 3: Embryotoxicity of biofilm (B1 – B6) and sediment (S1 – S3): Effect concentration 
of 50 % (EC50) for mortality at 48 hours post fertilization (hpf) and hatch rate at 96 hpf 
(sample concentration in %). Results from two experiments for samples from autumn 
(October 2008, 1 & 2) and spring (June 2009, 3 & 4).  

EC50 B1 B2 B3 B4 B5 B6 S1 S2 S3 
Experiment Mortality 48 hpf 
Autumn (1) 0.2 0.2 0.2 0.2 0.2 - 8 50 44 
Autumn (2) 1.4 1.2 0.3 0.2 0.2 - 24 50 50 
Spring (3) 0.2 1.3 0.2 0.2 0.1 0.5 37 5 37 
Spring (4) 0.2 1.3 0.2 0.1 0.2 0.5 17 16 30 
Mean 0.50 1.00 0.23 0.18 0.18 0.50 21.50 30.25 40.25 
Experiment Hatch rate 96 hpf 
Autumn (1) 1.0 0.2 0.2 0.2 0.2 - 7.0 33.0 12.0 
Autumn (2) 0.8 0.9 0.2 0.2 0.2 - 18.0 50.0 50.0 
Spring (3) 0.2 0.5 0.2 0.2 0.1 0.3 34.0 6.0 34.0 
Spring (4) 0.2 0.2 0.2 0.1 0.2 0.5 24.0 17.0 34.0 
Mean 0.55 0.45 0.20 0.18 0.18 0.40 20.75 26.50 32.50 

 

 

3.1.2 Embryotoxicological effects of biofilm 

At 24 hpf, the main observation in samples B1, B2 and B6 was an undetached tail up to 0.8 % 

biofilm. At 1.6 % and higher concentrations most embryos had no somites and were still in the 

epiboly stage or coagulated. In B2 from autumn, most embryos showed an undetached tail 

already at 0.8 % whereas in the spring sample this effect only appeared in higher concentrations. 
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In the samples B3, B4 and B5, most embryos had no somites and were in epiboly stage up to 

0.8 %. At 1.6 % and higher only few egg survived. 

At 48 hpf, in the B1 autumn sample effects such as no circulation and edemata were observed 

and many embryos had no heartbeat up to 0.8 %. In the spring sample, effects such as no somites 

and undetached tails appeared frequently up to 0.8 % and at 1.6 % and higher most eggs were 

coagulated. The embryos in B2 showed effects such as no heartbeat or no circulation up to 

0.8 %. At 1.6 % and higher the embryos had no somites, were in epiboly stage or coagulated. In 

B3, B4 and B5 the embryos displayed undetached tails, no somites or were still in epiboly stage 

at 0.4 %. At higher concentrations all eggs were coagulated. 

At 72 hpf, only few or no fish in all biofilm samples hatched. The embryos in the B1 autumn 

sample showed less development retardation up to 0.8 % than in the spring sample. At higher 

concentrations most eggs were coagulated in both samples. In B2 from autumn no lethal effects 

were observed up to 0.8 % and at higher concentrations most eggs already had coagulated 

earlier. In the spring sample effects such as no somites were observed at 3.1 % sporadically and 

at 0.4 – 0.8 % deformed tails appeared several times. Samples B3 and B4 showed effects such as 

no heartbeat at the lowest concentration whereas in higher concentrations all eggs already had 

coagulated earlier. In B3 from spring and B5 almost all eggs were coagulated. 

At 96 hpf, effects such as undetached tails could be observed in all biofilm samples and no 

circulation was observed frequently in the vital embryos.  

 

 

3.1.3 Embryotoxicological effects of sediment 

At 24 hpf, most embryos exposed to S2 and S3 revealed development abnormalities such as 

undetached tails, absence of somites and epiboly stage at 12.5 % and higher. These effects 

appeared in S1 already at 6.3 %, and at 50 % many embryos coagulated. In S2 from spring 

undetached tails and epiboly stage appeared already at 6.3 %. Only very few edemata were 

observed. 

At 48 hpf, S1 from autumn revealed effects such as no circulation, edemata and tail deformations 

already in concentrations of 3.1 %. In the S1 spring sample no circulation, edemata and 

deformed tails were observed frequently at 12.5 % and higher. From 25 % and higher, effects 

such as no heartbeat, undetached tail or coagulation appeared in the autumn and spring sample. 

In S2 and S3 from autumn, effects such as no heartbeat and no circulation appeared sporadically 

at 25 % and higher. In the spring sample abnormalities such as undetached tails and no 

circulation were already increased at 12.5 %. 
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At 72 hpf, all embryos in S1 were coagulated at 50 % and in lower concentrations effects such as 

no circulation, no heartbeat and edemata appeared frequently. The vital embryos in S2 from 

spring revealed development retardations in 12.5 % and higher. Most of the embryos in the 

sample S3 developed normally. 

At 96 hpf, most embryos of the vital eggs in the samples S2 and S3 hatched. In the S1 autumn 

sample, the fish hatched up to 12.5 % whereas in the spring sample they hatched up to 25 %. 

 

 

3.1.4 Oxygen consumption of samples 

The oxygen concentration at the end of the experiment was generally higher in the sediment than 

in the biofilm samples and always above the limit of 2 mg/L, which was reported to have no 

negative effects on zebrafish development (Braunbeck et al. 2005). Only in the highest 

concentration (3.1 %) of the B1 spring sample and B3, B4 and B5 from spring and autumn, 

oxygen levels at 96 hpf were below 2 mg/L (data not shown). 

 

 

3.2 Genotoxicity 

For a conservative assessment, the ranking according to the 3-step analysis was based on the 

lower LOECs for genotoxicity of the two independent experiments. The mean IFmax of the 

significant genotoxic concentration for both experiments was calculated. In those cases where 

the concentrations in which the IFmax was measured were not identical for both experiments the 

lower concentration was used (Table 4; see appendix for the three-dimensional diagram). 

The biofilm B1 only showed a significant genotoxicity at a concentration of 0.4 % in both 

experiments. In B2 and B6 significant genotoxicity in both experiments was detected at 0.4 % 

and higher and in one experiment at 0.2 %. B3, B4 and B5 revealed a significant genotoxicity in 

both experiments already at 0.2 %. The samples B2, B3, B4, B5 and B6 showed the same 

LOECs of 0.2 %. Accordingly, these samples were ranked based on their IFmax in the 

significant genotoxic concentrations. Only B3, B4 and B5 can be compared with each other, as 

they have the IFmax (13.95, 4.50 and 3.85) in the same concentration. Therefore B3 is more 

genotoxic than B4 and B4 is more genotoxic than B5. The ranking for the genotoxicity according 

to the 3-step analysis of the two experiments for the spring sample is: B1 < B2 = B6 < B5 < B4 < 

B3. 

The sediment S1 revealed a significant genotoxicity in both experiments in all concentrations. In 

S2 and S3, significant genotoxicity was detected in both experiments at 12.5 % and higher. 

Sample S3 showed a significant genotoxicity in one experiment at 3.1 and 6.25 % and S2 at 
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6.25 %. S1 and S3 exhibited an identical LOEC but they could not be ranked based on the IFmax 

because they were different for the significant and non significant concentrations. The ranking 

for the genotoxicity according to the 3-step analysis of the two experiments for the spring sample 

is: S2 < S3 = S1. 

 

 

Table 4: Genotoxicity of biofilm (B1 – B6) and sediment (S1 – S3): Lowest observed effect 
concentration (LOEC) in the comet assay for experiment 1 (LOEC 1) and experiment 2 (LOEC 2), 
mean maximum induction factor (IFmax) and sample concentration at which the IFmax was 
measured. The lower LOEC (bold) was used for the ranking.  

 B1 B2 B3 B4 B5 B6 S1 S2 S3 
LOEC 1 [%] 0.40 0.40 0.20 0.20 0.20 0.20 3.10 12.50 12.50 
LOEC 2 [%] 0.40 0.20 0.20 0.20 0.20 0.40 3.10 6.25 3.10 
IFmax 7.35 8.00 13.95 4.50 3.85 21.70 7.30 7.65 14.65 
Concentration [%] 0.40 0.80 0.20 0.20 0.20 0.40 12.50 12.50 25.00 
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4 Discussion 
 

4.1 Applicability of the test system and evaluation of biofilm toxicity 

For the first time, biofilm was investigated in an embryo toxicity test. The biofilms exhibited a 

22 – 229 fold higher embryo toxicity (LC50: 0.175 – 1 % at 48 hpf) than the river sediments. An 

obvious reason for this is that biofilm from a sewage system is exposed to the untreated 

wastewater and therefore it can be expected to exhibit a far higher toxic potential than river 

sediment which is exposed to treated and diluted wastewater. Another reason is the composition 

of biofilm. River sediments mainly consist of mineral and organic particles with toxic substances 

adsorbed, while biofilm is a biocoenosis of microorganisms embedded in an EPS matrix (Sabater 

et al. 2007). Hence, in the latter, organic and inorganic compounds are not only adsorbed to the 

surface but are also integrated in the EPS, and taken up, possibly accumulated and/or 

metabolized by the microorganisms (Geesey et al. 1994). Therefore, in biofilm the concentration 

and composition of substances is most likely different compared to river sediments and enables a 

higher toxic potential. 

Although in the highest concentration of B1, B3, B4 and B5 the oxygen concentration at 96 hpf 

was below the limit which was reported to have no negative effects on zebrafish development 

(Braunbeck et al. 2005), the embryos were already coagulated at 48 hpf. It is rather unlikely that 

the O2 concentration between 24 and 48 hpf was already below 2 mg/L. Furthermore, Hollert et 

al. (2003) found in preliminary experiments even 0.5 mg/L O2 to be sufficient for normal 

development of zebrafish embryos. Therefore, we suggest that the toxicity of the samples caused 

the mortality rather than a low O2 concentration. 

Based on our results we suggest that the zebrafish embryo toxicity test is a tool that can basically 

be applied to investigate the toxic potential of native biofilm. However, direct comparisons with 

data from sediment investigations should be evaluated carefully, as the characteristics of the 

material are very different. 

 

 

 4.2 Evaluation of sediment toxicity 

Sediment S2 and S3 showed a rather low toxic potential (LC50: 30 – 40 % at 48 hpf), whereas S1 

(LC50: 22 % at 48 hpf), directly at the discharge of the STP, revealed a higher embryo toxicity. 

The embryo toxicity test was already applied in investigations of sediments from Southern 

German rivers. For the river Neckar and the Neckar catchment area an LC50 for mortality of 

≥ 20 – 38 % and for a nature reserve connected to the Neckar values of 9 – 24 % sediment were 

reported. The rivers Danube and Rhine displayed an LC50 of ≥ 4 – 15 % sediment (overview: 
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Braunbeck et al. 2009). Hence, the embryo toxicity of the river Wyna sediments are in a similar 

range and rather low in comparison to Southern German river sediments.  

 

 

4.3 Evaluation of the observed effects 

Most of the deviations from normal development were general development retardations, 

distinguishable by epiboly stage, absence of somites, undetached tail, and no heartbeat or 

circulation. In all sediment and the biofilm samples B1 from autumn, B2 from spring and autumn 

and B6 from spring, most development retardations could be compensated until the end of the 

experiment. This observation was also reported from other studies with river sediments 

(Ensenbach 1998, Keiter et al. 2006). In the biofilms many embryos developed normally but did 

not hatch until 96 hpf. Furthermore, B1 from spring, B3, B4 and B5 from autumn and spring 

caused extreme development retardations in the vital embryos which could not be caught up. 

These immobile fish would be an easy prey for predators in the natural environment. 

The embryos in the sediments revealed less pronounced development retardations than in the 

biofilms. As many embryos in S1 could not compensate the development retardation, it was 

evaluated as more toxic than S2 and S3 in which the LC50 for mortality and EC50 for hatch rate 

increased with exposure duration, suggesting mainly an effect on development time. In the lower 

sediment concentrations early hatch was frequently observed. As an explanation for an early 

hatch it was suggested that toxic substances in the water may cause an increased movement of 

the embryo and thereby penetrating the chorion earlier (Ensenbach 1998). Even though early 

hatched embryos do not show limitations of further development per se, the chorion protects the 

embryo from particles, mechanical influences and microorganisms (Stehr and Hawkes 1979; 

Schoots et al. 1982). In addition, the chorion is assumed to reduce the uptake of toxic substances 

(Van Leeuwen et al. 1985, Fent 1992, Braunbeck et al. 2005). Therefore, it is likely that an early 

hatched fish is exposed to environmental stressors too early, at a life-stage in which it is still very 

sensitive. 

In this investigation, zebrafish embryos exposed to sediments frequently developed edemata. 

These findings concur with the results of other sediment studies (Strmac et al. 2002, Hollert et al. 

2003). Smaller edemata often disappeared until a later point in time but larger persistent edemata 

are at least a handicap for the swimming ability of fish larvae. Malformations were only 

observed sporadically and thus it can be assumed that the sediment and biofilm samples had a 

minor teratogenic potential. From 72 hpf on, spine deformations appeared still rarely but more 

often. A strong spine curvature leads to an inability for fish to swim directed and therefore a 

survival under natural conditions would be impossible.  
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Although effects such as development retardation, late hatch, early hatch, edemata and 

malformation are no lethal criteria in the assessment of mortality they should be considered for 

the evaluation of the embryotoxic potential. 

 

 

4.4 Temporal variability of toxicity 

B3, B4 and B5 displayed similar embryo toxicity for the samplings in autumn and spring. 

However, data for spring revealed a considerably higher toxicity for B1 and a considerably lower 

toxicity for B2 compared to autumn. This result indicates a change in the toxic potential of the 

biofilms during a period of 8 months, possibly due to variation of the wastewater composition in 

the canalization or changed development parameters for biofilm such as temperature, pH, 

hydrodynamic conditions and colonizing microorganisms (Giaouris et al. 2005).  

The sediment from site S2 from spring revealed a considerably higher toxicity compared to 

autumn. A possible explanation for this result is that the spring sample was very fine grained 

with a high proportion of organic matter whereas in autumn it was more sandy and gritty with a 

low proportion of organic matter. The finer the material, the greater is the surface at which 

substances can adsorb and therefore a higher toxic potential is likely. S1 was somewhat less and 

S3 somewhat more toxic in spring compared to autumn. 

Although river sediments (Baker 1991, Power and Chapman 1992) and biofilms are long term 

sinks for many hazardous substances (Evans 2000), environmental and exposure conditions can 

vary over time and seasons. Therefore and from our results we conclude repeated samplings are 

necessary to obtain comprehensive evaluation results for environmental samples such as biofilms 

and sediments. 

 

 

4.5 Localization of toxic discharges 

Site B1 and B2 showed considerably lower embryo toxicity than B3, B4 and B5. As the former 

are near the STP, at the end of two canalization main branches and the latter are at the beginning 

of these branches, this result indicates a decrease of the toxic potential in the biofilm downstream 

along the pipelines. Possible explanations for this finding are (1) additional dischargers are 

located upstream and the toxic substances degrade in the pipelines, (2) less toxic wastewater is 

discharged along the pipeline and dilutes the more toxic wastewater coming from upstream, 

and/or (3) less toxic substances are integrated in the biofilm at site B1 and B2, since 

development parameters for biofilm and the substrate basis are different (Giaouris et al. 2005). 
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B4 and B5 were the most embryotoxic sites with an identical LC50 for mortality. The additional 

sampling site B6 upstream of B4 and B5 was included in the spring sampling to further localize 

potential polluters. B6 (LC50: 0.5 % at 48 hpf) was less toxic than B1, B3, B4 and B5 (LC50: 0.2, 

0.2, 0.15 and 0.15% at 48 hpf) based on the spring samples. Therefore, data for B6 demonstrated 

that just a few hundred meters upstream of B4 and B5 considerably less toxic substances were 

present in the biofilm, although there are no industrial dischargers in between. Possible reasons 

for this result are that toxic material is integrated in the biofilm to a lesser extent before site B5 

and B4, since development parameters for biofilm and the substrate basis are different (Giaouris 

et al. 2005) or a toxic discharge from connected private properties between the sampling sites 

occurs. 

At the moment, cantonal authorities are evaluating the results of the present study. They are 

investigating the catchment areas of the different canalization sections and are trying to identify 

possible toxic dischargers into the sewage system. 

 

 

4.6 Genotoxicity 

As one mechanism leading to developmental disorders and embryo mortality, DNA-damage 

caused by genotoxic substances was investigated in the comet assay (Anderson and Wild 1994). 

A significant genotoxicity was observed in all samples and, apart from S2 and B1, in all tested 

concentrations. The tested samples were ranked according to the 3-step analysis. Five biofilm 

samples (B2, B3, B4, B5 and B6) exhibited identical LOECs and had to be ranked upon their 

IFmax. The IFmax of B2 and B6 were assessed at different concentrations and consequently they 

could not be ranked based on the IFmax. For the sediment samples S1 and S3 with identical 

LOECs a ranking based on the IFmax was not possible because the IFmax values were in 

different concentrations.  

For application of the 3-step analysis, a ranking based on the IFmax requires identical 

concentrations for all samples. However, this is not always possible because of different embryo 

toxicity of samples. As an extension of the 3-step analysis we propose to rank the samples with 

the IFmax in different concentrations based on the concentration in which the IFmax was 

determined: A sample with the IFmax in a high concentration is less toxic than a sample with the 

IFmax in a lower concentration. Therefore, B6 (0.4 %) is evaluated to be more genotoxic than 

B2 (0.8 %) and similarly, S1 (12.5 %) is evaluated to be more genotoxic than S3 (25 %). In this 

way, a more detailed ranking for the genotoxic potential can be obtained and samples with an 

equal rank in the 3-step analyses before can be differentiated. With this extension the ranking for 
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genotoxicity is: B1 < B2 < B6 < B5 < B4 < B3 for the biofilm, and: S2 < S3 < S1 for the 

sediment. 

 

 

4.7 Use of biofilm in ecotoxicological bioassays 

Biofilms in waters interact with dissolved substances such as environmental chemicals and 

integrate the effects of environmental conditions over extended periods of time (Sabater et al. 

2007). The ability of biofilms to act as interceptors of dissolved and particulate matter is based 

on their emerging physical and biological properties. The EPS offer potential binding sites for a 

variety of colloidal, organic, and inorganic species (Flemming 1995). By physical adsorption, 

biofilms remove substances from the water (Kaplan et al. 1987). Large molecules are trapped in 

the polysaccharide matrix and remain bound by weak physicochemical interactions (Flemming 

1995). 

In this study we demonstrated that biofilm can be implemented in ecotoxicological bioassays 

such as the embryo toxicity test and comet assay with zebrafish as a useful indicator for water 

quality. However, it has to be considered that biofilm not only accumulate but also metabolize 

substances and thereby alter their composition. Therefore, further studies are needed to elucidate 

these mechanisms and their significance related to the application in bioassays. 
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5. Conclusions 
 

Native biofilm was for the first time investigated in an embryo toxicity test. We demonstrated 

that this test system is a tool that can basically be applied for investigating the toxic potential of 

biofilms. In combination with the comet assay using embryo primary cells, information about 

genotoxicity as one mode of action could be obtained. 

Clear differences in the embryotoxic and genotoxic potential of the biofilm from different 

sewage system sections were found. Significant genotoxicity was determined in all biofilm 

samples and the sediments revealed a lower genotoxic potential upstream of the STP discharge 

compared to samples downstream and directly at the discharge. Temporal variability from 

samplings in autumn and spring were found in some of the biofilm and sediment samples.  

Based on the results of our study we suggest that biofilm implemented in ecotoxicological 

bioassays such as the embryo toxicity test and comet assay with zebrafish can be a useful tool to 

assess (waste) water quality. 
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Genotoxicity of biofilm (B1 – B6) and sediment (S1 – S3) in the comet assay with primary cells from 
zebrafish embryos according to the 3-step analysis. Mean of two independent experiments. Significant 
differences from control are denoted as * (one experiment) and ** (two experiments; p < 0.05). Samples 
with equal rank are indicated by two-headed arrows. 
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