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SUMMARY 
 

Considerable attention has been given to the design and analysis of clinical trials 

where interventions are allocated to whole communities (e.g. schools, villages) rather 

than to individual participants. Such studies are known as cluster randomized trials or 

group randomized trials (CRTs). Motivated by the analysis of a community 

randomized trial (BoliviaWET) on solar water disinfection (SODIS) in Bolivia, this 

dissertation: i) outlines the primary analysis of the trial, ii) presents results from 

investigations undertaken to address analytical issues of situations observed in the 

trial and iii) presents results from topics of some secondary analysis. Statistical 

analysis was performed following both frequentist and Bayesian methods.  

 

Chapter I gives a background on the established approaches for analysing CRTs. 

Some statistical methods are briefly described and the BoliviaWET trial is introduced. 

In addition, elements regarding the statistical analysis of BoliviaWET (e.g. design, 

model specification, selection of the statistical method) are discussed. The primary 

outcome, number of episodes per child per year was found to have substantial 

overdispersion. The Negative Binomial (NB) specification was found to satisfactorily 

address overdispersion. Generalized lineal mixed models were selected as the method 

for analysing the trial because of the reported overall good performance in analysing 

community randomized trial situations with small numbers of large clusters. Since the 

literature on the analysis of CRTs has mainly focused on binary and continuous data, 

a need for assessing methods for overdispersed counts was identified.     

 

A full description of the trial and the main results are presented in chapter II. In 

summary, BoliviaWET was a CRT aimed at evaluating the effectiveness of SODIS to 

reduce diarrhoea among children under 5 in rural Bolivia. Twenty two rural 

communities participated in the study. The intervention, a comprehensive 

standardised SODIS promotion campaign, was randomly allocated to eleven 

communities following the pair-matched design. Diarrhoea occurrence of 376 

children in the intervention arm and 349 children from the control arm was monitored 

for one year. Diarrhoea incidence was compared between arms producing an 

unadjusted (for covariates) relative rate of 0.81 (95% CI 0.59 - 1.12). The between-
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cluster coefficient of variation CVc was 0.27 (95% CI: 0.11 - 0.46). Parameters from 

the random-effect models were estimated via restricted pseudo-likelihood and MCMC 

on the basis of the considerations taken from chapter I. Results for adjusted models 

and analysis of other outcomes (prevalence, severe diarrhoea and dysentery) are also 

provided. 

 

Chapter III studies the performance of five analytical methods for CRTs with 

overdispersed counts in settings similar to community randomized trials. The 

compared methods are: (i) The two-sample t test of cluster-level rates, (ii) Generalized 

estimating equations (GEE) with empirical covariance estimators (iii) GEE with 

model-based covariance estimators, (iv) Generalized Linear Mixed Models (GLMM) 

and (v) Bayesian Hierarchical Models (Bayes-HM). The NB distribution is applied to 

simulate overdispersed counts of CRTs with two study arms allowing the period of 

time under observation to vary among individuals. The effect of different sample sizes, 

degrees of clustering and degrees of cluster-size imbalance was investigated. The 

performance of the methods was assessed in terms of point, interval estimation and 

hypothesis testing properties.  

 

Sample size and clustering led to differences between the methods in terms of CI’s 

width, coverage, significance, power and random-effects estimation. GLMM and 

Bayes-HM performed better: Unbiased RR, nominal coverage, type I error rates and 

reasonable power. GEE showed higher power but anticonservative coverage and  

elevated type I error rates. The t-test yielded wide and unstable CI, the highest 

coverage and nominal significance. Imbalance affected the overall performance of the 

cluster-level t-test and the GEE’s coverage in small samples. In explorations of the 

implications of ignoring overdispersion in the analysis of BoliviaWET data, upwardly 

biased RRs were observed for the Poisson analyses and the t-test. The existence of 

extreme values, more frequent in the control arm, violated the equidispersion 

assumption of Poisson analyses and the assumptions of the cluster-level t-test. 

  

The point and interval estimation of the between-cluster coefficient of variation for 

overdispersed counts was studied in chapter IV. Four methods for point estimation 

were assessed: i) a cluster-level coefficient of variation (CL), ii) the CVc from the one-

way random-effect ANOVA, the root of the random-effect variance of iii) GLMM 
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and iv) Bayes-HM, both assuming NB distribution. The interval estimating methods 

were: i) Bootstrap confidence intervals (CI), ii) Generalized CI and iii) Bayesian 

credible intervals. Monte Carlo simulation was used to compare the methods at 

different sample sizes, and levels of clustering. The outcome was generated as NB 

counts with different individual period of follow-up.  

 

GLMM and ANOVA both provided unbiased point estimates although ANOVA was 

more unstable under high clustering. CL heavily overestimated the between-cluster 

variation when it is lower or equal to 25%. Bayes-HM provided slight upward bias in 

settings without clustering. Bayes-HM performed best in terms of interval estimation. 

The effect of allowing for overdispersion was assessed by analysing the BoliviaWET 

dataset. Upwardly biased estimates were observed when assuming Poisson 

distribution. The magnitude of the bias resembled to that of the CL method observed 

in the simulations. The ANOVA-based approaches were not robust to the presence of 

extreme observations, being susceptible to producing anomalous random-effect 

estimates.   

 

The meaning of the vernacular Quechua term k’echalera was evaluated as diagnosis 

of Diarrhoea in rural Bolivian settings (chapter V). Pre- and post-intervention data of 

BoliviaWET were employed where signs and symptoms of diarrhoea as well as 

k’echalera reports were recorded. Mother’s reports of k’echalera were found to be 

associated with important changes in stool frequency, consistency and occurrence of 

blood and mucus. Interestingly, k’echalera reports were highly related to three types 

of watery-stool consistencies from the four applied in field tools. The milky rice stool 

consistency which fits into the definition of watery stool was not strongly related to 

k’echalera. Mucus in the stool was also associated with k’echalera. However its 

occurrence in k’echalera-free days accounted for at least 50% of the possible false 

negatives. Assuming an imperfect gold standard the sensitivity and specificity of the 

term k’echalera was estimated by Bayesian methods. We obtained a high specificity 

of at least 91% and sensitivity of at least 82% in average. 

 

We investigated the factors that influenced on the adoption of SODIS in households in 

the intervention arm of BoliviaWET (chapter VI). Multivariable exploratory 

techniques were applied to identify typologies of SODIS users on the basis of 4 
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indicators of SODIS-use, and 2 indicators related to the duration of study participation. 

The chance of becoming a type of SODIS-user as a function of potential predictors 

was assessed by multinomial modelling. This subgroup analysis identified four groups 

of SODIS users after a 15-months extensive and comprehensive campaign. User-

groups with high compliance were found to have a higher intensity of exposure to the 

SODIS campaign, latrine ownership, not having electricity, and having severely 

wasted children living in the home. The identified household factors related to the use 

of SODIS may help targeting populations that would benefit most from SODIS 

implementations. These findings indicate that pre-existing health knowledge, 

motivation and knowledge of disinfecting drinking water acquired through previous 

exposure to water, sanitation and hygiene programmes is associated with successful 

uptake of SODIS. 

 

Finally, chapter VII provides a discussion of our main findings in context of the 

design of new cluster-unit trials and implications for statistical analysis, 

overdispersion and the methods applied in the secondary analysis, 

  

In conclusion, the simulation studies suggest that GLMM and Bayesian models are 

appropriate for the analysis of overdispersed counts in CRTs in sample sizes ≤ 40 

clusters in total. The estimation of the between-cluster coefficient of variation via 

GLMM and Bayes-HM is also appropriate. The Poisson model may seriously bias 

both the RR and CVc estimates. The NB model with normal random-effects provides a 

natural way to address overdispersion of count data in a CRT. We, encourage to 

regularly verify the residual overdispersion and to apply the (Poisson or extra-

Poisson) model that best fits the data.  

 

The BoliviaWET trial found no strong evidence of reduction of the diarrhoea 

incidence in children <5 years in families using SODIS. In terms of secondary 

analyses, we conclude that the vernacular term k’echalera does refer to a change in 

the regular stool patterns associated with diarrhoea, although it differs from the 

symptoms-based diarrhoea definition in some aspects. We found that intensity of 

exposure to the SODIS campaign, latrine ownership, lack of electricity, and having 

severely wasted children living in the home are associated with the uptake of SODIS.   
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ZUSAMMENFASSUNG  
 

Design-, Studienaufbau- und Analyseaspekte von klinischen Studien, bei denen die 

Randomisierungseinheit der Intervention nicht das Individuum darstellt, sondern ein 

Cluster von Probanden, wie z.B. Schulen oder Gemeinden, werden z.Z. wieder 

vermehrt diskutiert. Solche Studien werden als Cluster-randomisierte Studien (CRSs) 

oder Gruppen-randomisierte Studien bezeichnet. Motiviert durch die statistische 

Auswertung einer Cluster-randomisierte Studie zur Wirksamkeit von solarer 

Trinkwasserdesinfektion (SODIS) in Bolivien (BoliviaWET), umfasst diese 

Dissertation einerseits die Primäranalyse der Studie, andererseits Ergebnisse von 

Simulationsstudien zu speziellen analytischen Aspekten unter den in der Studie 

festgestellten Rahmenbedingungen und schliesslich die Resultate von weiterführenden 

Auswertungen. Die statistischen Analysen wurden dabei sowohl mit frequentistischen 

als auch mit Bayes’schen Methoden durchgeführt.  

 

In Kapitel I werden einige Grundlagen zu den gängigen Analyseansätzen für CRSs 

beschrieben. Einige statistische Methoden werden kurz beschrieben und die 

BoliviaWET Studie wird vorgestellt. Zusätzlich werden einige Aspekte hinsichtlich 

der statistischen Auswertung der BoliviaWET Studie – wie Design, 

Modellspezifikation und Auswahl des statistischen Verfahrens – diskutiert. Es stellte 

sich heraus, dass die primäre Zielgrösse – Anzahl Durchfall-Episoden pro Jahr und 

Kind – eine substanzielle Überdispersion aufwies. Diese Streuung der Daten wurde 

durch Verwendung der negativen Binomialverteilung (NB) bei den Analysen 

angemessen berücksichtigt. Verallgemeinerte lineare gemischte Modelle (GLMM) 

wurden zur Analyse der Studie gewählt, da über generell gute Performance-

Eigenschaften bei der Analyse von Studien mit einer geringen Anzahl, aber dafür 

relativ grossen Clustern, berichtet wurde. Die vorhandene Literatur zur Analyse von 

CRSs konzentriert sich hauptsächlich auf binäre und kontinuierliche Daten; eine 

kritische Beurteilung der Methoden im Zusammenhang mit Zähldaten ist in der 

Literatur bisher nicht verfügbar.     

 

Eine detaillierte Beschreibung der Studie und die wichtigsten Ergebnisse werden in 

Kapitel II präsentiert. BoliviaWET war eine CRS um die Wirksamkeit von SODIS zur 
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Reduktion von Durchfällen bei Kindern unter fünf Jahren in ländlichen Gebieten 

Boliviens zu beurteilen. Zweiundzwanzig ländliche Gemeinden nahmen an der Studie 

teil. Elf Gemeinden wurden zufällig mittels Matched-Pairs Technik der 

Interventionsgruppe, bestehend aus einer intensiven und standardisierte SODIS-

Werbe- und Schulungskampange, zugeteilt. Das Auftreten von Durchfall wurde bei 

376 Kindern in der Interventionsgruppe und bei 349 Kindern in der Kontrollgruppe 

ein Jahr lang beobachtet. Die relative Rate (RR) der Durchfallinzidenz betrug 0.81 

(95% CI 0.59 - 1.12) aus jenem Modell, welches einzig den Interventionseffekt und 

die Designfaktoren berücksichtigte. Der zwischen-Cluster Variationskoeffizient CVc 

betrug 0.27 (95% CI: 0.11 - 0.46). Aufgrund der Überlegungen in Kapitel I, wurden 

die Parameter des Models mit zufälligen Effekten anhand der eingeschränkten 

pseudo-Maximum-Likelihood Methode ermittelt. Die Ergebnisse der adjustierten 

Modelle und der sekundären Zielkriterien (Prävalenz, Dysenterie, schwerer Durchfall) 

werden gleichfalls präsentiert. 

  

In Kapitel III werden Leistungsindikatoren von fünf Analysemethoden, welche für die 

Auswertung von CRSs mit Überdispersion geeignet sind, unter Bedingungen getestet, 

die bei randomisierten Interventionsstudien mit Gemeinden als Cluster üblich sind. 

Die verglichenen Methoden waren: (i) Der Zweistichproben T-Test für Raten auf 

Clusterebene, (ii) verallgemeinerte Schätzgleichungen (Generalized Estimating 

Equations, GEE) mit empirischem Kovarianz Schätzer (iii) GEE mit Modell-

bezogenem Kovarianz Schätzer, (iv) GLMM und (v) Bayes’sche hierarchische 

Modelle (Bayes-HM). In Simulationen wurden NB-verteilte Zähldaten mit 

Überdispersion generiert, wobei die Beobachtungsperiode individuell variierte. 

Untersucht wurde der Einfluss der Stichprobengrösse, Grad der Verklumpung 

(Clustering) und die Unausgewogenheit der Anzahl Probanden innerhalb der Cluster. 

Die Leistung wurde anhand der Güte von Punkt- und Intervallschätzer sowie 

Signifikanztests beurteilt.  

 

Stichprobengrösse und Clustering führten zu Unterschieden bei den Methoden 

bezüglich der Weite des Konfidenzintervalls, Erfassungswahrscheinlichkeit des 

wahren Populationsparameters, Signifikanz, Power und Schätzung der zufälligen 

Effekte. GLMM und Bayes-HM erbrachten bessere Leistungen: unverzerrte RR sowie 

Erfassungswahrscheinlichkeit und Typ-I Fehlerraten nahe dem nominalem Niveau 
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und zudem eine angemessene Power. GEE war mit einer grösseren Power assoziiert, 

allerdings auf Kosten einer antikonservativen Erfassungswahrscheinlichkeit, die zu 

erhöhten Type-I Fehlerraten führte. Der T-Test lieferte weite und instabile 

Konfidenzintervalle, die höchste Erfassungswahrscheinlichkeit und eine Signifikanz 

nahe dem nominellen Niveau. Unausgewogene Clustergrössen beeinträchtigten die 

Performance von T-Test und GEE vor allem wenn die Stichprobengrösse klein war. 

Die Analyse der Daten der BoliviaWET Studie ergab, dass ein Missachten der 

Überdispersion bei Poisson verteilten Daten, und die Anwendung des T-Test bei NB-

Verteilung zu aufwärts verzerrten RR führt.  Extremwerte, welche in der 

Kontrollgruppe häufiger auftraten, verletzten die, bei der Poissonverteilung 

grundlegende Annahme der Equidispersion,  sowie die Vorraussetzungen zur 

Durchführung des T-Tests. 

  

Punkt- und Intervallschätzer des zwischen-Cluster Variationskoeffizienten (CVc) für 

Zähldaten mit Überdispersion wurden in Kapitel IV untersucht. Dabei wurden vier 

Methoden zur Punktschätzung eingesetzt: i) ein Variationskoeffizient auf Cluster-

Ebene (cluster level, CL), ii) der CVc der einfaktoriellen Varianzanlyse mit zufälligen 

Effekten, i.e. die Quadratwurzel der Varianz der zufälligen Effekte, iii) GLMM und 

iv) Bayes-HM, beide mit NB Verteilung. Zudem wurden folgende Methoden der 

Intervallschätzung beurteilt: i) Bootstrap Konfidenzintervalle (CI), ii) 

verallgemeinerte CI und iii) Bayes’sche Intervalle. Anhand von Monte Carlo 

Simulationen wurden die Methoden bei verschiedenen Stichprobengrössen und 

unterschiedlichem Grad des Clusterings untersucht. Das Zielkriterium wurde als NB-

verteilte Zähldaten generiert mit individuell variierendem Beobachtungszeitraum.  

 

GLMM und die Varianzanalyse ergaben beide unverzerrte Punktschätzer, obwohl die 

Varianzanalyse bei starkem Clustering unstabilere Ergebnisse lieferte. CL 

überschätzte die zwischen-Cluster Varianz bei Werten kleiner oder gleich 25% stark. 

Bayes-HM erzeugte leicht erhöhte  Resultate in Situationen ohne Clustering. Bayes-

HM lieferte bei der Intervallschätzung das beste Ergebnis. Anhand der im Rahmen 

von BoliviaWET erhobenen Daten wurde der Einfluss von Überdispersion erörtert. 

Wenn das Zielkriterium als eine Poisson verteilte Variable analysiert wurde, war der 

CVc generell zu hoch. Die Verzerrung war in etwa in der Grössenordnung der CL 

Methode während der Simulationen. Der varianzanalytische Ansatz war vor allem 
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anfällig gegenüber Extremwerten, wobei insbesondere das Schätzen der zufälligen 

Effekte negativ beeinflusst wurde.   

 

Der Zusammenhang zwischen dem indigenen Qechua-sprachlichen Ausdruck 

K’echalera und der WHO Definition von Durchfall im ländlichen Bolivien wird in 

Kapitel V beschrieben. In einer Vorstudie wurden die Mütter zu verschiedenen 

Anzeichen und Symptomen von Durchfall, sowie dem Auftreten von K’echalera 

befragt. Das Auftreten von K’echalera war mit Veränderungen der Stuhlfrequenz und 

-konsistenz und blutigem oder schleimigen Stuhlgang assoziiert. Interessanterweise 

wurde K’echalera häufig in Kombination mit drei der vier flüssigen 

Stuhlkonsistenzkategorien des Fragebogens genannt. Dabei konnte bei der Kategorie 

“milky rice“, welche ebenfalls eine flüssige Konsistenz beschreibt, kein 

Zusammenhang mit K’echalera festgestellt werden. Obwohl eine Assoziation 

zwischen schleimigen Stuhlgang und K’echalera bestand, war Schleim in über der 

Hälfte der Fälle vorhanden, bei denen die Symptome für eine Durchfallepisode nach 

WHO-Definition sprachen, aber K’echalera von den Müttern nicht genannt wurde. 

Unter der Annahme, dass die WHO Definition nicht als Goldstandard für Durchfall 

angesehen werden kann, wurden Sensitivität und Spezifität von K’echalera durch 

Bayes’sche Methoden bestimmt. Dabei wurden eine hohe Spezifität von mindestens 

91% und eine Sensitivität von mindestens 82% festgestellt. 

 

Mögliche Faktoren, die den Einsatz der SODIS Methode in der Zielbevölkerung der 

BoliviaWET Studie beeinflussen, werden in Kapitel VI beschrieben. Multivariable 

exploratorische Techniken wurden eingesetzt um die Haushalte in Nutzer-Klassen 

einzuteilen. Dafür wurden vier Indikatoren bezüglich der SODIS Applikation und 

zwei Indikatoren bezüglich der Länge der Teilnahme in der Studie herangezogen. Ein 

möglicher Einfluss verschiedener Faktoren wurde mit Hilfe von multinomialen 

Modellen. Diese Subgruppenanalyse identifizierte vier verschiedene Nutzergruppen 

die sich durch die 15-monatigen SODIS Kampagne gebildet hatten. Es stellte sich 

heraus, dass die Zugehörigkeit zu jener Gruppe, die SODIS am häufigsten praktizierte, 

durch einen intensivere Exposition zu der Intervention, das Vorhandensein einer 

Latrine, dem Fehlen von Elektrizität und stark ausgezehrter, schlecht ernährter Kinder 

begünstigt wurde. Die identifizierten Faktoren können helfen künftige Interventionen 

auf diejenigen Bevölkerungsgruppen auszurichten, die davon am meisten profitieren 
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können. Zudem signalisieren diese Ergebnisse, dass gesundheitsrelevantes Vorwissen, 

sowie bereits vorhandenes Wissen zur Trinkwasserreinigung aus der früheren 

Teilnahme an Wasser- und Siedlungshygiene Programmen zu einer beschleunigten 

Akzeptanz und Anwendung der SODIS Methode führt.  

 

In Kapitel VII werden die Hauptergebnisse vor allem im Kontext von Aspekten des 

Studiendesigns diskutiert, die bei der Planung künftiger CRSs von Bedeutung sind. 

Zudem werden Empfehlungen für die statistische Methodenwahl bei der Primär- und 

Subgruppenanalyse und zum Vorgehen bei Überdispersion ausgesprochen.   

  

Zusammenfassend kann festgehalten werden: die statistischen Simulationen zeigten, 

dass  GLMM und Bayes’sche Modelle geeignet sind, um Cluster-oder Gemeinde-

randomisierte Studien (CRS) mit Zähldaten und Überdispersion zu analysieren, selbst 

wenn die Anzahl der Cluster kleiner 40 ist. Auch beim Schätzen des zwischen-Cluster 

Variationskoeffizient (CVc) zeigten GLMM und Bayes-HM gute Ergebnisse. Das 

Poisson Modell kann zu schwerwiegenden Verzerrungen sowohl beim Schätzen von 

RR als auch des CVc führen. Das Negativ Binomial Modell unter Berücksichtigung 

von zufälligen Effekten stellt einen geeigneten Weg dar, um  Zähldaten mit 

Überdispersion in CRSs zu analysieren. Es wird empfohlen, standardmässig die 

Überdispersion der Residuen zu verifizieren und das entsprechend beste Modell 

(Poisson oder extra-Poisson) zu wählen.  

 

Die BoliviaWET Studie fand keinen stichhaltigen Nachweis für eine erhebliche 

Reduktion der Durchfallsinzidenz in Kindern unter fünf Jahren aufgrund einer SODIS 

Kampagne. Sekundäranalysen haben ergeben, dass der indigene Ausdruck K’echalera 

Änderungen des Stuhlgangs in der Form bezeichnet, wie sie für Durchfälle typisch 

sind. Trotzdem unterscheidet sich der Ausdruck in einigen Aspekten von der 

Standarddefinition der Weltgesundheitsorganisation. Eine intensive Exposition zur 

SODIS Intervention, das Vorhandensein einer Latrine, das Fehlen von Elektrizität und 

das Vorhandensein von schlecht ernährten und ausgezehrten Kindern im Haushalt 

waren mit einer erhöhten Akzeptanz und Anwendung der SODIS Methode assoziiert.  
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ABBREVIATIONS 
 

ANOVA Analysis of variance 

Bayes-HM Bayesian hierarchical models 

BoliviaWET Water evaluation trial in rural Bolivia 

CI  Confidence interval | credible interval 

CL  Cluster-level coefficient of variation  

CRT  Cluster randomized trial 

CS  Cluster specific 

c.v.  Coefficient of variation 

CVc  Between-cluster coefficient of variation 

EmpSE Empirical standard error  

GEE  Generalized estimating equations 

GEE-Emp Generalized estimating equations with empirical covariance estimates 

GEE-MB Generalized estimating equations with model based covariance 

estimates 

GLM  Generalized linear models 

GLMM Generalized linear mixed models 

GP  Generalized pivots 

ICC  Intra class correlation coefficient 

IQR  Inter quartile range 

IR  Incidence Rate 

MCMC Markov chain Monte Carlo  

NB  Negative Binomial 

NGO  Nongovernmental organisation 

NPV  Negative predictive value  

OR  Odds ratio 

PA  Population average 

PCI  Project concern international 

PET  Polyethyleneteraphtalate 

POU-HWT Point of use household water treatment 

PPV  Positive predictive value 

PR   Prevalence 
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RE  Random effects 

RCT  Randomized controlled trial 

cRCT  Cluster randomized controlled trial 

RR  Relative rate 

SAS  Statistical analysis system 
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1. INTRODUCTION. 
 

 

The allocation of health interventions in randomized controlled trials is often 

performed at the level of groups of individuals rather than the individual. These 

studies are known as group or cluster randomised trials (CRTs), and are considered 

the gold standard for the evaluation of health interventions when clusters (e.g. 

communities, hospitals, schools) are the units of random allocation. The case study 

examined throughout this thesis is a typical example of a field CRT. The intervention, 

the solar water disinfection method (SODIS), was randomly assigned to entire rural 

villages in Bolivia, while the outcome, childhood diarrhoea, was measured at 

individual level.   

 

A distinctive feature of CRTs is that individuals from the same cluster are likely to 

respond in a more similar manner than units from different clusters, i.e. to have 

correlated responses. This potential violation of the independence assumption of 

standard statistical methods causes the underestimation of the true standard errors, 

leading to falsely narrow confidence intervals (CI) and fallaciously small P values. 

Indeed, if there is within cluster correlation, the variance of the outcome  becomes 

VIF* , where:   

2σ
2σ

 

ρ)1(1 −+= nVIF  

 

VIF denotes the variance inflating factor (or design effect) which depend on n, the 

number of individuals per cluster, and on ρ, the intra cluster correlation coefficient [1]. 

Figure I.1 illustrates the effect of clustering on the CI’s width in a) a situation that 

ignores correlation and b) a situation that accounts for it.  

 

That is why clustering must be allowed at the design and analysis stages, in order to 

avoid: i) elevated type 2 error rates for having underestimated the sample size to 

achieve a given power level, or ii) high type 1 error rates for having underestimated 

the standard errors during data analysis [2]. 
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Figure I.1: Effect of ρ  the intra cluster correlation coefficient on the width of CI of a two-
arms CRT. 
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The methodological issues of CRTs have been broadly discussed in the statistics 

literature [2-4]. Specific topics of trial designs under a variety of practical conditions 

have been considered [5-10]. Similarly, analytical problems, assessment of statistical 

methods [11-22] and the need of effective reporting and proper interpretation has been 

also highlighted [23].  

 

The remainder of this chapter provides introductory notes on analytical approaches for 

CRTs. This is followed by an introduction to the trial on solar water disinfection. A 

particular focus is given to design and analytical aspects of the trial, which will lead to 

the definition of the objectives of the thesis.  

 

 

1.1. Overview to analytical methods for cluster randomized trials. 

1.1.1. Analysis of cluster-level statistics 

 

A straightforward way to address clustering during the analysis of CRTs is the use of 

cluster-level summary statistics. Individual-level data are combined within clusters to 

produce a cluster-level version of: the event rates, proportions, odds, means or the log 

versions of them. The intervention versus control analysis is performed by a t-test, a 

Wilcoxon’s test, an ordinary least square regression or a meta-analysis random-effect 

regression of such summary statistics [12, 19, 24].    
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The principle of this type of analysis is the fact that the sample size considered for CI 

estimation of hypothesis testing is the number of clusters rather than the number of 

individuals. They are therefore conservative versions of the individual-level analysis 

where within-cluster variation is ignored. Some disadvantages are the obvious  

impossibility of adjusting for individual-level confounders in linear regression, 

potential bias [21], impossibility of assessing the within-cluster estimating precision  

and, related to the latter, a decrease in power and a loos of efficiency in trials with 

unequal cluster size [6].  

 

1.1.2. Population average methods: GEE  

 

Population averaged (PA) also known as marginal models, measure the effect of 

covariates on the mean response across the population, regardless of whether 

covariates vary within clusters [25]. Indeed, the mean response depends only on the 

covariates of interest and not on any (cluster) random effects, reflecting thus the 

average effect on the population.  

 

PA methods separately model the mean response and the intra-cluster correlation. 

Correlation is considered a nuisance characteristic of the data when making inferences 

about the mean response. A well known method for fitting PA models is the 

generalized estimating equations (GEE). GEE is an extension of generalized linear 

models (GLM) where a link function is required to characterize the relationship of the 

mean response to a vector of covariates and a variance function to relate the variance 

of the outcome as a function of the mean [26]. Unlike GLM, no distributional 

assumptions are made in GEE and inferences are asymptotically unbiased and 

efficient as long as the mean and variance functions are correctly characterized. This 

method can be implemented in most major standard statistical packages [27] and is 

considered a natural approach to model the effects of interventions in CRTs because 

of the appealing interpretation of the marginal effects. There are however some 

technical problems regarding the use of the empirical (sandwich) variance estimator, 

when the number of clusters is lower than 50 [3].   
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1.1.3. Cluster specific methods: GLMM 

 

In contrast to PA, the cluster specific methods (CS) are based on conditional models. 

Random effects are incorporated into the model to reflect correlation among 

observations made on the same cluster. CS account thus for an heterogeneity between 

subjects investigating and explaining the source of group to group variation, by 

modelling random effects along with fixed effect covariates.  

 

Some examples are the random coefficient models, multilevel models, hierarchical 

regression, which can all be typified as a class of Generalized Linear Mixed Models 

(GLMM) [28]. GLMM represent an extension of GLM with a link and variance 

function specified along with the full distributional form of the response. The mean 

response is said to be conditioned on the (cluster) random effects and therefore they 

describe the cluster’s response to changing covariates.  

 

When CS contain covariates that do not vary within clusters the interpretation of the 

regression parameters can be complicated, because coefficients measure a contrast 

that is not observed in any single cluster [29]. A risk of underestimation of both fixed 

and random effects may occur when the level of clustering is large and the cluster size 

is small [3]. However, they have been reported to produce overall good performance 

when simulating situations similar to community-randomized trials [2]. The 

assumptions made on the random effects distributions are possibly the most important 

limitation. Misspecification of random-effects distribution may produce considerable 

bias both on the fixed effects coefficients and on their standard error estimates [30].         

 

1.1.4. Bayesian analysis: hierarchical models 

 

Bayesian methods are increasingly used in a variety of disciplines. They work with 

the notion of probability as a conditional measure of uncertainty, being the 

computation of posterior probabilities (probability of the parameters of interest given 

the data: P(θ | data) the focal concern. Empirical evidence from the collected data is 

combined with previous knowledge to produce such uncertainty measures, and a 
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posterior distribution of the parameters of interest is constructed by Markov chain 

Monte Carlo (MCMC) simulation [31].  

 

In the framework of CRT, Bayesian methods deal with intracluster dependence in the 

same way as GLMM, by explicitly modeling the between-cluster variability through 

random effects. For instance, assuming a count outcome Y ~ Poisson(μ) of the 

intervention xj (x = 0,1), the hierarchical model log(μj) = β0 + βxj + νj would reflect 

that the log of the expectations μj is a function of the intervention and the random 

effects νj of cluster j which follows a distribution with mean 0 and variance . The 

calculation of the posterior probabilities P(β

2
cσ

0, β,  | Y) are done by updating the 

likelihood f(Y | β

2
cσ

0, β, ) with the prior P(β2
cσ 0, β, ) as established by the Bayes’ 

principle, through MCMC [13, 14].   

2
cσ

 

Although the mathematical foundations of Bayesian methods are not discussed, the 

main point of controversy is the risk of incorporating subjectivity by the choice of 

prior beliefs. However ‘non-informative’ or ‘reference’ priors are widely used and it 

is also possible to investigate the sensitivity of the results to the priors [32]. 
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2. ANALYSIS OF THE BOLIVIAWET TRIAL 
 

2.1. Motivation for the trial. 

 

Microbiologically safe water is considered an important determinant in preventing 

diarrhoeal disease in children under five years of age [33]. However, about 1.1 billion 

people lack access to improved water supplies [34]. Consequently several 

interventions (e.g. filtration, chlorination, boiling, flocculation) have been developed 

to improve water quality. Evidence showed that such interventions are in general 

effective in preventing diarrhoea, particularly when applicable at household level [35].  

 

SOlar water DISinfection is a simple, low-cost and  household water treatment 

method. It combines the effects of UV-A radiation and the increase of temperature in 

water exposed to sunlight in plastic bottles. Although SODIS has been proven to be 

efficacious at inactivating waterborne pathogens in laboratory conditions [36], there is 

not conclusive evidence of its health effects in populations without access to safe 

drinking water. Hence, a community randomized controlled trial was designed to 

assess the effectiveness of SODIS promotion in reducing diarrhoea among children 

under 5, without other access to clean drinking water.  

 

2.2. Design. 

 

The intervention was a standardised interactive SODIS-promotion campaign. The 

study was designed with a rural village or community as the unit of random allocation. 

Reasons for cluster randomization are given in the design section of chapter II. 

 

The trial design incorporated pair-matching and sample size was calculated allowing 

for clustering within communities by using methods proposed by Hayes & Bennett 

(1999) [5]. Sample size calculations suggested that at least 18 communities (9 pairs) 

with 10 persons-year of observation per community were sufficient to estimate a 33% 

difference, with a power of 80%, a significance of 0.05 and a between-cluster 

coefficient of variation (CVc) = 0.20. Anticipating a drop-out of at least 2 
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communities and possible individual drop-outs, the final sample size was adjusted to 

22 communities with 30 persons-year of observation. 

 

The 22 rural villages were grouped in pairs by diarrhoea incidence as measured in an 

8-week baseline survey. The SODIS intervention was then randomly allocated to one 

of the two communities within each pair (Figure I.2).  

 

Figure I.2: Layout of the BoliviaWET study design 

 
 

2.3. Primary outcome. 

 

The primary outcome was the diarrhoea incidence defined as the number of diarrhoeal 

episodes per child per year at risk. In order to estimate the trial outcome, daily 

diarrhoea occurrence was monitored through a weakly health monitoring tool in 725 

children from the 22 rural communities (detailed information is given in chapter II). 

Diarrhoea was measured as K’echalera, the local vernacular term (see chapter V). 

Additional related symptoms (frequency, consistency and presence of blood or mucus 

in the stool) were also collected.  

 … … …

 = Pair        = Child < 5 years

S =Intervention arm
 = Community C =Control arm

S

C S

C

S
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The number of episodes for each child was calculated from the following definition. 

A new diarrhoeal episode was considered after at least 3 symptoms-free days [37, 38]. 

Table I.1 summarizes the incidence rates obtained in the two study arms as well as the 

observed relative rate (intervention over control). 

  

Table I.1: Observed incidence rates in the two arms of the BoliviaWET trial 

 Control  Intervention 
Nr of children 349 367 
Total Episodes 887 808 
Children-days-at-risk 75077 82682 
Group incidence rate 0.01181 0.00977 
Crude Relative Rate (RR) 0.827 
Protective Effect (%)  17.3 

 

   

2.4.  Statistical model. 

 

Let us denote Yijl the number of episodes observed during tijl days at risk in the lth 

child (l = 1,…,nij) from a community j allocated to an intervention group (j = 1,2) 

within pair i ( i = 1,…,p). The statistical model for the pair-matched design above and 

specified in terms of generalized linear mixed models (GLMM) is the following:  

 

log(E[Yijl])= log(tijl) + η + BBi + βxij + ξij    (1) 

 

i = 1,…,11 (Pair) 

j = 1, 2 (communities allocated to the intervention group within the ith pair) 

l = 1,…,nij (nr of children from the jth community from the ith pair). 

 

Where:  

η  = General log mean 

BB

                                                

i = Random effect of the i  pair. Bth
i ~ NIID  (0, ) † 2

pσ

β = the effect of the intervention, as the log-means (intervention-over-control) 

relative rate. 

 
† NIID = Normally independent and identically distributed  
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xij = Intervention group (0 = control, 1=SODIS) allocated to the jth community 

of the ith pair. 

ξij = Random effect of the jth community in the ith pair. ξij ~ NIID(0, ) 2
pcσ

 

The model implies a relative rate RR of exp(β) and clustering accounted for through 

the random effects Bi and ξij whose variances sum up to the total between-cluster 

variation , i.e. between-pairs plus within-pairs variance, and ξ222
pcpc σσσ += ij used as 

an error term for testing β = 0.  

 

 

2.5. Checking the model assumptions. 

2.5.1. Examining residuals. 

 

Two distributional assumptions were assessed for the outcome due to high 

overdispersion in the observed number of episodes per child and individual incidence 

rates (Table I.2):  

 

Table I.2: Mean and variance of the nr of episodes per child and the individual incidence 
rates of the BoliviaWET Trial 

 n Mean Variance 
Nr of Episodes per child 725 2.3 8.6 
Individual incidence rates* 725 5.5 269.6 

  *nr of episodes per child per year 
    

i) Y ~ Poison(μ) with variance function V(Y) = φv(μ) =μ where φ the 

overdispersion parameter is assumed to be 1. 

ii) Y ~ Negative Binomial(s, μ) with a variance function 

( )2)()( jlsvYV μμφμφ +== , where φ is assumed to be 1 and s is the NB 

overdispersion parameter. 

 

Results from the two analyses are summarized next (Table I.3). The residual 

overdispersion φ is clearly lower for NB compared to the Poisson model. Likewise, 

the information criteria (Pseudo AIC) is inflated for the Poisson model. This indicates 
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a clear better fit for the NB model. The analysis of the Pearson standardized residuals 

against the expected means confirms the better fit of the NB model (Figure I.3).   

 

Table I.3: Comparison of the Poisson and Negative Binomial assumptions for model 
specification in the BoliviaWET data 

  Poisson Neg Bin 
Fit statistics Pseudo AIC† 4311.47 2769.62 

φ 4.74 1.28 
Random effects 2

pσ 0 0 
2
pcσ 0.1049 0.07275 

Fixed effects β (se) †† -0.1421 (0.1473) -0.2114  (0.1547) 
95% CI of β (-0.4494, 0.1651) (-0.5341, 0.1113) 

P-value 0.346 0.187 
† Pseudo Akaike Information Criteria †† se = Standard error     
 
 
 

Figure I.3: Comparison of a) Poisson and b) Negative Binomial (Pearson-standardized) 
residuals of the BoliviaWET dataset. 
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2.5.2. Random-effects distribution. 

 

The assumption of normality of random effects is difficult to assess in CRTs by 

statistical tests when the number clusters is small. Therefore, this assumption is 

checked using a normality probability plot [39]. Figure I.4 displays the random-effects 

predicted values against the expected values of the standard normal distribution. A 

straight line is indicative of normality. For the BoliviaWET data, correspondingly, the 

assumption of normally distributed random effects seems to be reasonable. 

 

Figure I.4: Normal probability plot of the solution for random effects of the BoliviaWET trial. 
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2.6. Model selection. 

 

Note that the between-pairs variance estimate in Table I.3 was 0 both for Poisson and 

NB analyses. This suggests that the between-cluster variance can obviate pair-

matching because it was ineffective in controlling the outcome variance. Hence, 

model (1) can be reformulated to the random intercepts model, where a gain in power 

would be expected [2]. The MIXED and GLIMMIX procedures in SAS reformulate 

the model automatically when a variance component is found 0 [40, 41]. The fixed 

effects results in Table I.3 will be thus equivalent to the ones specified under the 

random intercepts model. In addition, and provided the better fit of the NB 
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distribution, the statistical model will be specified in terms of NB mean and variance 

functions (or the specification of the full distribution). 

 

log(E[Yjl])= log(tjl) + η + βxj + ξj    (2) 

 

where l = 1,…,nj (nr of children in the jth community) j = 1,…,22 (nr of communities), 

η the general log mean, β the change in the log-means (intervention-over-control) or 

log of the RR, xj  intervention group (0 = control, 1=SODIS) allocated to the jth 

community, ξj the random effect of the jth community ~ NIID(0, ).  2
cσ

 

2.7. Concluding remarks. 
 

Based on the residual analysis we resolved for Yjl ~ NB(s, μjl) provided the better 

capacity of controlling the residual variance. The NB-random effects model may be 

considered a natural approach to account for overdispersion. It is equivalent to 

Poisson model with heterogeneous gamma-distributed means at individual level 

(within clusters) and normally-distributed cluster random effects.  

 

The choice of GLMM over cluster-level or GEE methods relies upon the general 

support to GLMM in situations similar to community randomized trials, i.e. small 

number of large clusters [2, 3]. Previous literature reports GEE to underestimate the 

standard errors and to produce elevated type I error rates if the number of cluster is < 

50 [2, 3]. On the other hand cluster-level methods may show low efficiency, elevated 

type 2 error rates and bias [21]. Note that such properties were observed in studies 

with continuous and binary data.  

 

We present results by 5 statistical methods for CRTs (Table I.4) assuming the random 

intercepts model (2). This includes a Bayesian hierarchical regression, assuming Y ~ 

NB(s, μ) with,  uninformative priors: η ~ N(0, 106), β ~ N(0, 106),  ~ IG(0.001, 

0.001), s ~ Γ(0.001,0.001) (IG=Inverse Gamma distribution). The exchangeable 

correlation structure is used for GEE. 

2
cσ
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Table I.4: Results from the analysis of the BoliviaWET data by methods for cluster 
randomized trials. 

Parameter Observed T-test GEE† GLMM‡ NLMIXED* Bayesian-
HM 

β   -  - -0.1707 -0.2114 -0.2042 -0.2154 
RR 0.827 0.912 0.843 0.809 0.815 0.806 

(RR) 95% CI   (0.61, 1.20) (0.64, 1.11) (0.59, 1.12) (0.59, 1.13) (0.59, 1.10) 
P-value   0.496 0.225 0.187 0.209 0.172 

† using empirical variance estimator and exchangeable correlation structure (PROC GENMOD, SAS 

v1.9) 
‡ GLMM with parameters estimated via Restricted Pseudo Likelihood (PROC GLIMMIX SAS v9.1. 
* GLMM with parameters estimated via numerical integration (PROC NLMIXED, SAS v9.1). 
 
 

The results in Table I.4 by the methods for CRTs merit a deeper attention. It is 

uncertain whether the properties of methods for continuous of binary data can be 

extrapolated to overdispered counts. Some studies have raised the issue of 

overdispersion and the comparison of methods when modelling count data [28, 29, 42, 

43]. However, most of them were based on the analysis of real datasets where the true 

model parameters were unknown just like in Table I.4. Simulation studies are 

therefore required to assess the performance of methods for analyzing CRTs with 

overdispersed count data. Of additional importance is the need to identify appropriate 

approaches for estimating clustering under overdispersed count data situations of 

CRTs.   

 

This dissertation is a synopsis of how such methodological and practical problems 

were dealt with during the primary and secondary analysis of the SODIS trial. Chapter 

II reports and discuss the main results of the trial. Chapter III provides findings of an 

evaluation made on the performance of analytical methods for CRTs applicable to 

overdispersed count data. Chapter IV similarly presents results from a simulation 

study on methods for point and interval estimation of the between-cluster coefficient 

of variation as the measure of clustering alternative to ρ. Chapter V reports the 

statistical validation of the local vernacular term used in the trial to account for 

diarrhoea in rural Bolivia. The analysis of factors associated to SODIS adoption in 

households that received the intervention is summarized in chapter VI. Finally an 

overall discussion of the main topics related to the design and analysis of CRTs in 

light of our experience, is presented in chapter VII. 
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3. OBJECTIVE OF THE THESIS 
 

This work aimed at assessing methodological aspects of Frequentist and Bayesian 

analysis of overdispersed count data under typical situations of community 

randomized trials. In particular: 

 

- To study the statistical performance (estimation and hypothesis testing) of 

analytical methods for CRTs with overdispersed count data, under 

situations analogous to real community intervention trials.  

 

- To assess the performance of point- and interval estimating methods for 

the between-cluster coefficient of variation in situations analogous to real 

community intervention trials. 

 

In addition, to contribute with analytical solutions to problems related to the 

secondary analysis of the trial such as: 

   

- To validate the meaning of the vernacular term k’echalera to report child 

diarrhoea. in rural Bolivia 

 

- To identify the factors that determine the adoption of SODIS   
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Abstract 

 

Background: Solar drinking water disinfection (SODIS) is a low-cost, point-of-use 

water purification method that has been disseminated globally. Laboratory studies 

suggest that SODIS is highly efficacious in inactivating waterborne pathogens. 

Previous field studies provided limited evidence for its effectiveness in reducing 

diarrhoea. 

 

Methods and findings: We conducted a cluster-randomized controlled trial in 22 

rural communities in Bolivia to evaluate the effect of SODIS in reducing diarrhoea 

among children under the age of 5 y. A local nongovernmental organisation 

conducted a standardised interactive SODIS-promotion campaign in 11 communities 

targeting households, communities, and primary schools. Mothers completed a daily 

child health diary for 1 y. Within the intervention arm 225 households (376 children) 

were trained to expose water-filled polyethyleneteraphtalate bottles to sunlight. 

Eleven communities (200 households, 349 children) served as a control. We recorded 

166,971 person-days of observation during the trial representing 79.9% and 78.9% of 

the total possible person-days of child observation in intervention and control arms, 

respectively. Mean compliance with SODIS was 32.1%. The reported incidence rate 

of gastrointestinal illness in children in the intervention arm was 3.6 compared to 4.3 

episodes/year at risk in the control arm. The relative rate of diarrhoea adjusted for 

intracluster correlation was 0.81 (95% confidence interval 0.59–1.12). The median 

length of diarrhoea was 3 d in both groups. 

 

Conclusions: Despite an extensive SODIS promotion campaign we found only 

moderate compliance with the intervention and no strong evidence for a substantive 

reduction in diarrhoea among children. These results suggest that there is a need for 

better evidence of how the well-established laboratory efficacy of this home-based 

water treatment method translates into field effectiveness under various cultural 

settings and intervention intensities. Further global promotion of SODIS for general 

use should be undertaken with care until such evidence is available.  
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Introduction  
Globally, 1.8 million people die every year from diarrhoeal diseases the vast majority 

of whom are children under the age of 5 y living in developing countries [1]. Unsafe 

water, sanitation, and hygiene are considered to be the most important global risk 

factors for diarrhoeal illnesses [2]. 

 

Recent systematic reviews concluded that interventions to improve the microbial 

quality of drinking water in households are effective at reducing diarrhoea, which is a 

principal source of morbidity and mortality among young children in developing 

countries [3–5]. One widely promoted water disinfection method with encouraging 

evidence of efficacy in laboratory settings is solar drinking water disinfection (SODIS) 

[6]. Global efforts are underway to promote SODIS as a simple, environmentally 

sustainable, lowcost solution for household drinking water treatment and safe storage 

(www.who.int/household_water, www.sodisafricanet.org). SODIS is currently 

promoted in more than 30 countries worldwide (www.sodis.ch) and in at least seven 

Latin American countries through the SODIS Foundation including in Bolivia. 

 

Despite this widespread promotion, evidence of the effectiveness of SODIS from field 

studies is limited. The three reported SODIS trials to date implemented the 

intervention at the household level, two of them in highly controlled settings that 

ensured very high compliance [7–9]. The highest reduction in incidence (36%) was 

recorded in a trial carried out among 200 children in an urban slum in Vellore, India 

[9].  

 

Because SODIS is a behavioural intervention designed to reduce infectious diarrhoea, 

disease transmission and its interruption likely have community level dynamics [10]. 

In addition, because SODIS is typically rolled out in practice through community 

rather than household level promotion, there is an urgent need for effectiveness data 

from such settings. We conducted a community-randomized intervention trial to 

evaluate the effectiveness of SODIS in decreasing 

diarrhoea in children < 5 y in rural communities in Bolivia.  
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Methods 
Ethics Statement 

The study was approved by the three human subjects review boards of the University 

of Basel, Switzerland, the University of California, Berkeley, and the University of 

San Simon, Cochabamba, Bolivia. The Cochabamba and Totora municipal authorities 

also approved the study and informed consent was obtained from community leaders 

and male and female household heads prior to implementation of the study. Informed 

consent was obtained before randomisation to the treatment arms (Figure II.1). Mildly 

ill children from households participating in the study were provided with and 

instructed to use oral rehydration salts, or they were referred by field staff to the local 

health system where clinical services were provided free of charge. The project 

provided transport and treatment costs for those patients. All project staff completed 

training on research ethics (www.fhi.org/training/sp/Retc/). Project staff comprised all 

project personnel of all project partners. Field staff comprised all personnel working 

in our laboratories and at our Totora field station including data enumerators and data- 

and project-management staff, supervisors, and community-based field workers living 

in the study communities. The trial protocol (Text S1) and the CONSORT statement 

checklist (Text S2) are available online as supporting information. 

 

Site and Population 

Our trial, the Bolivia Water Evaluation Trial (BoliviaWET), was conducted in an 

ethnically homogeneous Quechua setting in rural Totora District, Cochabamba 

Department, Bolivia. Our study was part of a comprehensive SODIS roll-out 

programme in collaboration with Project Concern International, a nongovernmental 

organisation (NGO). Most of the local residents are farmers, typically living in small 

compounds of three buildings with mud floors, with five or more persons sleeping in 

the same room. Our own surveys showed that 15% of homes have a latrine or other 

sanitary facilities and that most residents defecate in the nearby environment. 

 

Drinking water is typically stored in 10-l plastic buckets or open jerry cans of 5–20 l 

in the household. Baseline assessments of the drinking water quality in the home 

indicated a median contamination of thermotolerant coliforms (TTC) of 32 TTC/ 
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100 ml (interquartile range (IQR)= 3–344; n = 223). Samples of at least one water 

source per community were tested for Giardia lamblia and Cryptosporidium parvum. 

The two parasites were detected in 18/24 and 11/23 water samples, respectively. 

Parasites were detected by using immunomagnetic separation and PCR techniques 

[11]. Piped water, when available, is not chlorinated.  

 

Design  

Twenty-seven of 78 communities in the study area fulfilled the selection criteria 

(geographically accessible all year round; at least 30 children < 5 y; reliance on 

contaminated drinking water sources). Two communities were excluded because of 

other ongoing health and hygiene campaigns, and three communities withdrew 

participation before baseline activities because of a change in political leadership. 

Community health workers undertook a census and identified households with at least 

one child < 5 y. All children < 5 y were enrolled in the participating villages. 

 

We pair-matched communities on the incidence of child diarrhoea as measured in an 

8-wk baseline survey [12]. The intervention was then assigned randomly to one 

community within each of the 11 consecutive pairs. This assignment was done during 

a public event because key political stakeholders were worried about possible 

backlash, public outcry, or a drop-off in group participation, which would result from 

providing some members with a new benefit while others got ‘‘nothing.’’ It was 

agreed that a public drawing event was necessary to increase perceived fairness 

among the participating district and municipal authorities. Three authorities, the 

district head (Alcalde), representatives of the Ministries of Health and Education, and 

the deputy of the farmers union (Central Campesina), each drew one of two balls 

(with community codes inscribed that were randomly assigned beforehand) 

representing paired communities from a concealed box. It was agreed that the first 

draw assigned the community to the intervention arm. The group allocation was 

immediately recorded in a protocol by an independent witness. Subsequently, the 

witness disclosed the sequence, informed the community members and the authorities 

present in the town hall, and all drawers signed the protocol. 
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We explicitly chose community-level randomization because important components 

of the intervention (i.e., community efforts to encourage adoption of the SODIS-

method) would occur at the community level. Randomization below the community 

level would not reflect the reality of scale-up programme implementation, and we 

would not have captured the potential community-level reinforcement of the 

behaviour change. Furthermore, community-level randomization is considered 

ethically optimal, because participants expect to equally benefit from interventions 

within their community [13–15]. Additionally, we believed cross-contamination (of 

the intervention) between the intervention and control communities was minimised by 

vast geographical dispersion of the communities. Control communities knew from the 

beginning of the study that they would receive the intervention as part of the NGO’s 

development plans after study completion. It was not possible for the NGO to carry 

out the intervention in all the communities at the same time, thus making 

randomization feasible and acceptable to the three ethical review boards overseeing 

the study. 

 

Sample size was calculated according to methods outlined by Hayes and Bennett [16], 

assuming an incidence rate (IR) in the control villages of five episodes/child/year [17], 

and accounting for clustering, the number of episodes, and the expected effect. We 

assumed a coefficient of between-cluster variation (k) of similar studies, between 0.1–

0.25 (as cited by Hayes and Bennett) and a minimum of 10 child-years of observation 

per cluster [16]. We calculated that nine pairs of clusters were required to detect a 

difference of at least 33% in the IR between the control and intervention arms with 

80% power, k= 0.20 and an alpha level of 0.05. Anticipating a drop-out of at least one 

cluster per arm and a loss of follow-up of individuals, the final sample size was 

adjusted to 11 pairs with 30 children per community cluster. We powered the study to 

detect a 33% reduction in diarrhoea incidence after reviewing the evidence base for 

point-of-use water treatment at the time of the study’s inception in 2002 [18].  

 

Implementation of the intervention 

The SODIS intervention was designed according to the published guidelines for 

national SODIS dissemination (http://www.sodis.ch/files/TrainingManual_sm.pdf). 

Promotion activities were targeted at primary caregivers and all household members 

(biweekly), whole communities (monthly), and primary schools (three times) by the 
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NGO as part of its regional community development programme. Eleven communities 

(262 households and 441 children) were randomized to the intervention; 11 

communities (222 households, 378 children) served as a control group (Figure II.1). 

The implementation scheme and detailed description of the intervention in the 

intervention arm (and the control arms after study end) are described in Appendix B. 

For a period of 15 mo an intensive, standardised, and repeated interactive promotion 

of the SODIS method was implemented in the intervention communities beginning 3 

mo before the start of follow-up. 

 

Within the intervention arm, participating households were supplied regularly with 

clean, recycled polyethyleneteraphtalate (PET) bottles. The households were taught 

through demonstrations, role plays, video, and other approaches to expose the water-

filled bottles for at least 6 h to the sun. NGO staff emphasized the importance and 

benefits of drinking only treated water (especially for children), explained the germ–

disease concept, and promoted hygiene measures such as safe drinking water storage 

and hand washing as they relate to the understanding of drinking water and the 

faecal–oral route of transmission of pathogens (Appendix B). During household visits 

the NGO staff encouraged all household members to apply the method, answered 

questions, and assisted mothers and primary caregivers to integrate the water 

treatment into daily life. The same intervention (in terms of contents and messages) 

was supplied to the communities in the control arm by the NGO-staff at the end of the 

study (Appendix B).  

 

Outcome 

The primary outcome was the IR of diarrhoea among children <5 y, defined as 

number of diarrhoea episodes per child per year obtained from daily assessment of 

individual diarrhoea occurrence. We applied the WHO definition for diarrhoea of 

three or more watery bowel movements or at least one mucoid/bloody stool within 24 

h [19,20]. We defined a new episode of diarrhoea as the occurrence of diarrhoea after 

a period of 3 d symptom-free [20–22]. An episode of diarrhoea was labelled 

‘‘dysentery’’ if signs of blood or mucus in the stool were recorded at any time. We 

also calculated the longitudinal prevalence (number of days a child suffered diarrhoea 

divided by the number of days of observation) because of its closer relation to severity, 
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growth faltering, and mortality than diarrhoea incidence [19,23]. Severe diarrhoea was 

defined as the occurrence of diarrhoea on more than 10% of the observed days [24]. 

 

Data collection and field staff 

The primary outcome was measured by community-based field workers who were 

recruited nearby and who lived one per community during data collection periods. 

The field workers were extensively trained in interviewing and epidemiological 

observation techniques, data checking, recording, and in general approaches to 

community motivation. Community-based field workers were randomly rotated 

between communities every 3 mo. Child morbidity was reported by the closest 

caregiver using the vernacular term ‘‘K’echalera,’’ which had been established 

previously to correspond to the WHO definition of diarrhoea [25]. Mothers or closest 

caretakers kept a 7-d morbidity diary recording daily any occurrence of diarrhoea, 

fever, cough, and eye irritations in study participants [25]. Community-based field 

workers visited households weekly to collect the health diaries, and supervisors 

revisited an average 7% of homes. Discrepancies between supervisors and 

community-based field workers’ records were clarified during a joint home revisit. 

Child exposure risks were also assessed by community-based staff interviewing 

mothers once during baseline and twice during the 1-y follow-up. 

 

Compliance with the SODIS method was measured using four different subjective and 

objective indicators. Three of the indicators were assessed by field staff independent 

from the implementing NGO: (i) the number of SODIS-bottles exposed to sunlight 

and, (ii) the number of bottles ready-to-drink in the living space, and (iii) the personal 

judgment about families’ user-status was provided by community-based field workers 

living among the families in the intervention arm. Judgement criteria for this main 

compliance indicator study included observing regular SODIS practice and bottles 

exposed to sun or ready to drink in the kitchen and being offered SODIS-treated water 

upon request. The fourth SODIS-use indicator was based on self-reporting and 

caregivers’ knowledge of and attitudes toward the intervention that was assessed at 

the beginning (i.e., 3 mo after start of the intervention) and at the end of the 12-mo 

follow-up period.  
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Statistical Analysis 

An intention-to-treat analysis was applied comparing the IR of diarrhoea between 

children ,5 y in intervention and control communities. Diarrhoea prevalence (PR) and 

severe diarrhoea (SD) were additionally analysed. Generalized linear mixed models 

(GLMM) were fitted to allow for the hierarchical structure of the study design (pair-

matched clusters). In contrast to our original trial protocol we selected the GLMM 

approach rather than generalized estimating equations (GEE) because recent 

publications indicated that the latter method requires a larger number of clusters to 

produce consistent estimates [26]. 

 

The crude (unadjusted) model included only the design factors and the intervention 

effect [12,27]. Further models included potential confounders (selected a priori: 

child’s age, sex, child hand-washing behaviour, and water treatment at baseline). 

Following an evaluation of the best fit, the GLMM included the log link function for 

negative binomial data (IR) and logit for binomial data (PR and SD). Denoting the 

link function of the outcome Y by g(E(Y)), the crude and adjusted models were: 

g(E(Yijk)) = μ + Bi + τj + ξij , and g(E(Yijk)) = μ + Bi + τj + ξij + x’b where Yijk 

denotes the observed outcome value for the k-th individual from a community 

allocated to the j-th intervention, in the i-th pair, μ is the general mean, Bi is the 

random effect of the i-th pair ~ N(0, ), τj is the fixed effect of the SODIS 

intervention, and ξij is the random effect of the interaction of the i-th pair with the j-th 

intervention applied to the community ~ N(0, ) (signifying the within-pair cluster 

variance and used as error term for τj), x is the vector of potential confounding factors 

and b the vector of the corresponding regression coefficients. 

2
pσ

2
pcσ

 

The intracluster correlation coefficient (ICC) and the coefficient of between-cluster 

variation (k) were calculated after data collection to validate the degree of clustering 

and our assumptions for the sample size. ICC and k were estimated from the unscaled 

variance of the IR’s GLMM. To estimate the uncertainty of ICC and k, we obtained 

the 95% credible region (Bayesian equivalent of 95% confidence interval [CI]) 

through an analogous Bayesian hierarchical regression [28]. Noninformative priors 

were used. The statistical analyses were performed using SAS software v9.1 (PROC 

GLIMMIX, SAS Institute Inc.) and WinBUGS v1.4 (Imperial College and MRC). 
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Figure II.1: Community-randomized trial flow diagram on point-of-use solar water disinfection 
in totora district, bolivia. 

 

Results  
Participant flow and recruitment 

Among the 1,187 households in the 22 communities there were 546 that met the 

inclusion criteria (Figure II.1). The median number of participating households with 
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children <5 y per community was 22. Because of political unrest and national election 

campaigns in 2005 a period of 6 mo passed between the baseline and the start of 

follow-up. Subsequently, 62 households (102 children) were no longer traceable 

before randomisation, and 59 households (37 intervention, 22 control) were lost 

before data collection had started. The loss to follow-up was balanced in intervention 

and control arms. Data were obtained from 376 children (225 households) in the 

intervention and 349 children (200 households) in the control arm, thus reaching our 

originally planned sample size. 

 

Follow-up started in June 2005 and ended in June 2006. During the 51 wk of the study, 

information on the occurrence of diarrhoea was collected for 166,971 person-days 

representing 79.9% and 78.9% of the total possible person-days of child observation 

in intervention and control arms. We excluded from the potential observation time the 

experience of 94 children who dropped out before the start of follow-up. National 

festivities, holidays, and political unrest over the entire year amounted to further 9 wk 

during which outcome surveillance needed to be suspended. The main reasons for 

incomplete data collection were migration (28%) and withdrawal (67%). Supervisors 

reevaluated the outcome during 984 unannounced random home visits, and 

discrepancies between community-based field workers’ and supervisors’ records were 

found for five (0.5%) of all visits. 

 

Baseline characteristics 

At baseline the households in the different study arms were well balanced on multiple 

other factors suggesting successful randomisation (Table II.1). The main types of 

water sources for household chores and drinking were similar in both arms as was the 

distance to the source (median distance 50 m and 30 m in the control and intervention 

arms, respectively). Storing water for longer than 2 d was more common among the 

intervention (26.8%) than the control arm (13.9%). Nearly 30% of all households 

reported treating water regularly before drinking. Boiling was the most common water 

treatment before the trial (20.2% in both arms). 
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Table II. 1: Baseline community- and household characteristics of a community-randomized 
trial of SODIS 

            
Characteristic  Control  Intervention 
    11 clusters   11 clusters  
Demography     
 Community size: Nr of households  [Mean (sd)]  50 (20)  58(20) 
 Household size: Nr of household members  [Mean 

(sd)] 
N= 222 6.2 (2.1) N= 262 6.3 (2.6) 

 Nr of children< 5 per household  [Mean (sd)]  1.8 (0.7)  1.7 (0.8) 
 Nr of children< 5 per community [Mean (sd)]  35.3 (6.6)  41.4 (9.9) 
 Female household head [Nr (%)]  20 (9.0)  14 (5.4) 
 Closest child caregiver (female)  223 (99.5)  266 (99.6) 
 Age of closest child caregiver (yr) [Mean (sd)]  31(9)  30(10) 
 Nr of children <1  65 (4.7)  67 (4.1) 
 Nr of children <5  369 (26.6)  426 (25.9) 
Education     
 Household chief: Reported years of education  

[Mean (sd)] 
N= 167 4.1 (2.6) N= 178 4.2 (2.4) 

 Closest child caregiver: Reported years of 
Education   [Mean sd)] 

N= 179 2.5 (1.9) N= 198 2.7 (1.8) 

Socio-economic Variables     
 Main occupation of the household chief as farmer N= 208 180 (86.5) N= 228 207 (90.8) 
 Ownership of truck, car or motorbike  12 (5.8)  14 (6.2) 
 Ownership of radio  129 (86.1)  194 (85.1) 
 Ownership of bicycle  109 (52.4)  121 (53.1) 
 Ownership of television  24 (11.5)  15 (6.6) 
 Nr of rooms in the house  [Mean (sd)]  2.9 (1.4)  2.8 (1.2) 
Water Management & Consumption     
 Spring as source of drinking water N= 208 100 (48.1) N= 228 136 (59.6) 
 Tap as source of drinking water  108 (51.9)  129 (56.6) 
 River as source of drinking water  46 (22.1)  29 (12.7) 
 Rain as source of drinking water  31 (14.9)  71 (31.1) 
 Dug well as source of drinking water  31 (14.9)  37 (16.2) 
 Distance to water source (m)  [Median (Q1, Q3)]  50 (7.5, 100)  30 (6, 150) 
 Container for water collection: Plastic bucket  189 (90.9)  205 (89.9) 
 Container for water collection: Jerry can  165 (79.3)  156 (68.4) 
 Container for water collection: Bottles  32 (15.4)  36 (15.8) 
 Container for water collection: Jar / Pitcher  13 (6.3)  20 (8.8) 
 Container for water collection: Barrel  10 (4.8)  25 (10.9) 
 Child's consumption of untreated water 

(glasses/day)  [Mean (sd)] 
M= 318 1.2 (1.2) M= 359 1.2 (1.4) 

 Treat water before drinking N= 208 59 (28.4) N= 228 67 (29.4) 
 Store water for >2 days  29 (13.9)  61 (26.8) 
 Water storage container: Jerry can  23 (11.1)  49 (21.5) 
 Water storage container: Plastic bucket  17 (8.2)  37 (16.2) 
 Water turbidity in water storage container >30 

NTU 
 13 (11.2)  24 (18.8) 
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Characteristic  Control  Intervention 
      11 clusters    11 clusters  
Sanitation     
 Reported Nr of interviewee’s hand washing per 

day  [Mean (sd)] 
N= 177 3.8 (1.7) N= 200 4.1 (1.8) 

 Reported Nr of child hand washing per day [Mean 
(sd)] 

M= 348 2.5 (1.2) M= 376 2.6 (1.4) 

 Child washes hands : Before eating  228 (65.5)  270 (71.8) 
 Child washes hands : When hands are dirty  62 (17.8)  56 (14.9) 
 Child washes hands : Other occasions  58 (16.7)  50 (13.3) 
 Latrine present N= 208 27 (13.0) N= 228 38 (16.7) 
 Use of latrine by the interviewee (day or night)  15 (7.2)  20 (8.8) 
 Feces visible in yard N= 202 121 (59.9) N= 219 124 (56.6) 

 
Data shows numbers and percentages (%) unless otherwise specified  
N = Number of households, M = Number of children 
NTU: Nephelometric units, 30NTU: threshold for efficacious pathogen-inactivation of the SODIS 
method 
Baseline data from Dec. 2004 
 

Intervention and attendance 

The NGO conducted 210 community events and 4,385 motivational household visits 

in intervention communities; 3,060 visits occurred in the households with children < 5 

y followed up and analysed for the study, and 1,325 household visits took place in 

homes that were not taking part in the study. Study households attended a median of 

nine community events (IQR= 5–12) and were visited by the SODIS-programme team 

a median 11 times at home (IQR =7–18). To ensure a sufficient number of PET 

bottles, the NGO provided as many SODIS-bottles as required by participants (mean 

955 bottles/community). 

 

Compliance 

Community-based field workers who were living in the communities throughout the 

study observed a mean SODIS-user rate of 32.1% in the intervention arm (minimum 

13.5%, maximum 46.8%, based on their personal judgement) (Figure II.3). The mean 

proportion of households with SODIS-bottles exposed to the sun was 5 percentage 

points higher than the assessment by community-based field workers. In contrast, 

almost 80% of the households reported using SODIS at the beginning and end of the 

follow-up. About 14% of the households used the method more than two-thirds (> 

66%) of the weeks during observation, and 43% of the households applied SODIS in 

more than 33% of the observed weeks (Table II.4). 
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Table II.2: Diarrhoea episodes, length of illness and days ill with diarrhoea 

    N Control N Intervention 
Diarrhoea Illness Overview  Children  Children  
Days under observation median (Q1, Q3) 349 263 (213, 274) 376 263 (222, 273) 
Days at risk  median (Q1, Q3) 349 246 (192, 265) 376 247 (202, 265) 
Nr of episodes  median (Q1, Q3) 349 1 (0, 3) 376 1 (0, 3) 
Nr of dysentery episodes median (Q1, Q3) 349 1 (0, 2) 376 1 (0, 2) 
Days spent ill median (Q1, Q3) 349 4 (0, 11) 376 4 (0, 12) 
Episode length (days) median (Q1, Q3) 349 3 (1, 5) 376 3 (2, 5) 
Days under observation Total  79'829  87'140 
Days at risk  Total  75'077  82'682 
Nr of episodes  Total  887  808 
Nr of dysentery episodes Total  460  431 
Days spent ill Total  3111  3038 
      

Diarrhoea Incidence Age class Children Inc. Rate Children Inc. Rate 
Nr episodes / (child x year at risk) <1 16 7.8 15 11.1 
  1 - 2 67 7.1 70 5.5 
  2 - 3 67 4.3 82 3.8 
  3 - 4 77 3.2 75 2.8 
  4 - 5 71 3.4 80 2.1 
  5 - 6 50 2.7 53 2.5 
 Total* 349 4.3 376 3.6 
      

Diarrhoea Prevalence Age class Children Mean (std) Children Mean (std) 
Nr days ill / (child x year) <1 16 27.4   (28.3) 15 42.3  (40.7) 
  1 - 2 67 31.4   (42.2) 70 23.0  (26.1) 
  2 - 3 67 19.0   (47.5) 82 16.4  (28.4) 
  3 - 4 77 11.7   (24.5) 75 7.3  (9.7) 
  4 - 5 71 9.5   (15.1) 80 6.2  (12.4) 
  5 - 6 50 6.9   (11.8) 53 7.7  (10.4) 
 Total* 349 16.5 (32.8) 376 13.5 (22.4) 
      

Diarrhoea Illness Days spent ill Children % Children % 
  0 days 97 27.8 126 33.5 
  1 - 2 days 50 14.3 42 11.2 
  3 - 7 days 91 26.1 80 21.3 
  8 - 14 days 49 14.0 59 15.7 
  15 - 21 days 27 7.7 33 8.8 
  22 - 40 days 18 5.2 21 5.6 
  > 40 days 17 4.9 15 4.0 
 Total 349 100 376 100 
      

Diarrhoea Illness Duration Episode duration Episodes % Episodes % 
 1 day 250 28.2 191 23.6 
  2 - 3 days 303 34.2 292 36.1 
  4 - 7 days 258 29.1 250 30.9 
  8 - 13 days 54 6.1 59 7.3 
  14+ days 22 2.5 16 1.9 
 Total 887 100 808 100 
      

Prevalence of Other Symptoms  
[days / (child x year)]  Children Mean (std) Children Mean (std) 
Vomit  349 5.5 (13.2) 376 4.0 (8.9) 
Fever  349 21.0 (33.0) 376 15.1 (19.8) 
Cough  349 41.9 (48.3) 376 30.9 (39.4) 
Eyes irritation   349 12.8 (29.8) 376 8.3 (19.5) 
      

* includes one child per treatment arm with unknown age 
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Diarrhoeal illness in the control and intervention arm 

No positive effect of compliance (proportion of weeks of observed SODIS use) on the 

IRs in the intervention arm was observed. The incidence did not decline with the 

increase of weeks using SODIS (Figure II.4). Seasonal variation in compliance was 

observed. The proportion of SODIS-practising households was consistently below 

average during weeks 4–16 (January 2005–April 2006), which corresponded to the 

labour intensive cultivating period from November to May. 

 

The median proportion of sunny days with more than 6 h of sunshine was 70.2% and 

67.2% in intervention and control communities, respectively, consistent with the 

technical and climatic conditions necessary for the proper functioning of the 

ultraviolet SODIS purification process [29] during the study (Table II.4). 

A multivariable model adjusting for age, sex, baseline-existing water treatment 

practises and child hand-washing was consistent in its estimate of effect. (RR=0.74, 

95% CI 0.50-1.11). We repeated the analysis by including confounding covariates in 

the order of occurrence of the variables in Table II.3 to confirm that the conclusions 

were not sensitive to the choice of covariates. None of the models yielded significant 

results for the effect of SODIS (all p-values >0.1) or resulted in meaningful changes 

in estimates of relative rates or odd ratios. Figure II.2 shows the relationship between 

study time and diarrhoea in the control and intervention arm. We found no statistically 

significant effect of the interaction of time and intervention in a time-dependent 

model.  
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Table II.3: Effect of SODIS on diarrhoea episodes, longitudinal prevalence, severe diarrhoea, 
and dysentery episodes. 

 

Nr of episodes: Nr of episodes per days at risk 
Prevalence: Nr of days ill per days under observation 
Severe diarrhoea: Diarrhoea during >10% of all days (only children with more than 100 days of observation are 
included) 
Unadjusted: General linear mixed models; only design factors and treatment are included  
Adjusted: Effects of treatment and covariates 
Sex: 0 = female, 1 = male; Water treatment: Water treatment at baseline, 0 = no treatment, 1 = treatment 
(Chlorination or Boiling or SODIS); Hand washing: Reported number of child’s hand washing per day at baseline 
 

Diarrhoeal illness by compliance 

No positive effect of compliance (proportion of weeks of observed SODIS use) on the 

IRs in the intervention arm was observed. The incidence did not decline with the 

increase of weeks using SODIS (Figure II.4). Seasonal variation in compliance was 

observed. The proportion of SODIS-practising households was consistently below 
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average during weeks 4–16 (January 2005–April 2006), which corresponded to the 

labour intensive cultivating period from November to May. 

The median proportion of sunny days with more than 6 h of sunshine was 70.2% and 

67.2% in intervention and control communities, respectively, consistent with the 

technical and climatic conditions necessary for the proper functioning of the 

ultraviolet SODIS purification process [29] during the study (Table II.4). 

 
 
 

Figure II.2: weekly prevalence of child diarrhoeal illness. 

 
Legend: Weekly points are derived from daily prevalence data of each participating child 
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Figure II.3: Weekly observed proportion of households using solar water disinfection as 
point-of-use drinking water purification method. 

 
Legend: Open triangles: self-reported SODIS-use at the beginning (after 3 month of initial SODIS 
promotion) and at the end of follow-up; filled dots:  SODIS-use observed by project staff living in the 
community (see methods for definition); open circles: SODIS bottles observed on the roof and/or in the 
kitchen; Stars: SODIS-bottles on the roof; crosses: SODIS-bottles in the kitchen.   
 

Table II.4: Climatic Conditions and SODIS-use of a Cluster-randomized Trial Involving 22 
Rural Communities of Totora District, Bolivia. 

Description    Control 
(N= 11 clusters) 

Intervention 
(N= 11 clusters) 

Climate Percentage of sunny 
days (>6hrs sunshine) 
[median of clusters 
(min, max)] 

  70 
(57, 78) 

67 
(44, 77) 

 

Average duration of 
sunshine  
[median of clusters 
(min, max)]  

7.0 
(6.3, 8.0) 

7.1 
(4.5, 8.3) 

     
     
SODIS-use Observed level of 

SODIS use a  
Percentage of 
households 

Percentage of 
households 

 0.66 - 1   0 % 14 % 
 0.33 - 0.66   0.5 % 29 % 
  0 - 0.33    99.5 % 57 % 
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a Proportion of weeks in which SODIS was used, as estimated by community-based project staff at the 
end of study. Households with less than 10 weeks of observation are excluded  
 

Figure II.4: Compliance of Using Solar Water Disinfection (SODIS) and Child Diarrhoea in 
Rural Bolivia. 

 
Legend: Compliance of SODIS use is estimated as the proportion of weeks a family has been classified 
as a SODIS user by community-based project staff. Dots: number of episodes per child-year at risk;. 
Small random noise was added to the dots to avoid over plotting. Only children with at least 110 days 
under observation are included. 
 
 
Discussion 

We conducted a community-randomized trial within the operations of an ongoing 

national SODIS-dissemination programme which provided an intensive training and 

repeated reinforcement of the SODIS-intervention throughout the study period. In this 

context of a ‘natural experiment’ we found a relative rate of 0.81 for the incidence 

rate of diarrhoea episodes among children assigned to SODIS compared to controls. 

However, the confidence interval included unity (RR=0.81, 95% CI 0.59–1.12) and 

therefore we conclude that there is no strong evidence for a substantive reduction. 

Subsequently, we discuss the primary outcome in context of other study findings, and 
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explain why we hypothesize that the true effect – if there is any – might be smaller.   

First, the estimate for the longitudinal prevalence of diarrhoea was substantially 

smaller (OR=0.92, 95% CI 0.66-1.29) then the estimate of incidence and there is 

some evidence that prevalence is a better predictor in terms of mortality and weight 

gain than incidence [23].  

The absence of a time-intervention interaction in our time-dependent analysis 

suggested no increased health benefits with the ongoing intervention. Furthermore, 

within the intervention arm, there was no evidence that increased compliance was 

associated with a lower incidence of diarrhoea (Figure II.4). However, we interpret 

this post hoc subgroup analysis cautiously because compliant SODIS users might 

differ in important ways from noncompliant users. A compliant SODIS user might be 

more 

accurately keeping morbidity diaries, whereas less compliant families may tend to 

underreport diarrhoeal illness. Or, households with a high burden of morbidity might 

be more likely to be compliant with the intervention. Both of these scenarios could 

lead to an underestimation of the effectiveness of SODIS. 

 

Further, analysing the laboratory results from 197 randomly selected stool specimens 

the proportion of Cryptosporidium parvum was lower in the intervention children 

(5/94 vs. 2/103), and other pathogens were found at similar proportions in 

intervention and control children (Gardia lamblia: 39/94 vs. 40/103; Salmonella sp.: 

2/94 vs. 3/104; Shigella sp.: 3/94 vs. 3/104). In further exploring the occurrence of 

other illness symptoms we found the prevalence of eye irritations and cough to be 

lower in the intervention group compared to the control group. This difference could 

be the result of the limited hygiene component in the intervention that increased 

hygiene awareness among the treatment communities. An alternative explanation is 

that the lack of blinding led to biased (increased) health outcome reporting in the 

intervention group. 

   

Due to the nature of the intervention neither participants nor personnel were blinded 

to treatment assignment. Ideally, blinding to the intervention allocation should apply 

to the NGO staff administering the SODIS intervention and our enumerators assessing 
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outcomes [30]. Although the former could not be blinded in our study (for obvious 

reasons), the latter would inevitably be able to identify the intervention status of the 

cluster through the visible display of bottles to sunlight in the village or directly at the 

study home during home visits. These problems are consistent with nearly all 

household water treatment interventions [5] and other public health cluster 

randomized trials [31,32]. Schmidt and Cairncross [33] recently argued that reporting 

bias may have been the dominant problem in unblinded studies included in a meta-

analysis reporting a pooled estimate of a 49% reduction of diarrhoea in trials 

investigating the effects of drinking water quality interventions [5]. However, their 

review of only four available blinded trials showing no effect demonstrates weak 

support for contrast. In addition, all of the blinded trials exhibited analytical 

shortcomings or had very broad CIs suggesting very low power. In the absence of 

blinding—unavoidable inmany behavioural change interventions or household water 

treatment studies—we believe that data collection independent from the 

implementation is a crucial factor. Future reviews should include reporting on such 

additional quality parameters. 

 

In our study the lack of blinding may have reduced motivation in the control 

communities. However, the number of households lost during follow-up and the 

number of days under observation were almost identical in both arms. Additionally, 

the control communities knew that they would receive the intervention after study end. 

Finally, a reduction of diarrhoea frequency of 20% might be insufficient to be well 

perceived, i.e. have a noticeable impact in a population with a high burden of child 

diarrhoea and will, thus, not result in a sustainable behavioural change. Faecal 

contamination in about 60% of the yards indicates a highly contaminated environment 

with presumably a large potential for transmission pathways other than consuming 

contaminated water. This simultaneous exposure to a multiplicity of transmission 

pathways may explain why we found no significant diarrhoea reduction due to SODIS. 

 

On the other hand, our result of a 19% reduction in diarrhoeal episodes appears to be 

roughly consistent with results of the two other SODIS trials both from Maasai 

cultural settings conducted by Conroy and colleagues among children under 6 and 5-
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16 years of age. They report a 16% reduction (in <6 years olds, two-weeks prevalence 

of 48.8% in intervention and 58.1% in control group) [8] and a 10.3% reduction in the 

two-weeks diarrhoea prevalence (in 5-16 year olds) [7]. However, these randomized 

controlled trials were undertaken in a Maasai socio-cultural setting assuring a 100% 

compliance (as stated by the authors) in water treatment behaviour through social 

control by Maasai elder who promoted the method [7,8]. In the results presented in 

these studies adjusted models with post-hoc selected covariates were presented (i.e. no 

unadjusted models were provided). These trials were carried out in conditions of 

heavily contaminated drinking water and very high diarrhoea rates,- important 

considerations when attempting to generalize these results. The only other – quasi 

randomized – trial to estimate the effect of solar water disinfection was carried out in 

the urban slum in Vellore and resulted in a remarkable reduction of diarrhoea among 

children <5 (incidence rate ratio: 0.64, 95% CI 0.48-0.86) despite 86% of SODIS-

users drinking also untreated water [9].   

 

To our knowledge this is the first community-randomized trial and the largest study so 

far to assess the effectiveness of the SODIS-method under typical social and 

environmental conditions in a general rural population setting where children drink 

untreated water.  

 

Our study was sufficiently powered to detect a 33% reduction in the effectiveness of 

the SODIS-intervention and we accounted for clustered design in our analysis. Based 

on a post-hoc sample size calculations using the model-based estimate for the 

between-cluster variability (CVc=0.27) we would have needed a study 2.5 times larger 

for a 20% difference to be significant.  

 

The implementing NGO with a worldwide experience to disseminate SODIS adapted 

a campaign to local and cultural needs and also involved the public health and 

educational system in the roll-out. This comprehensive SODIS-campaign resulted in a 

mean SODIS usage of 32% on any given study day. In using the SODIS-use indicator 

based on the personal judgement of community-based staff we intended to measure 

actual use in combining objective, visible signs of use (e.g. bottles exposed to sunlight) 
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with proxies more responsive to actual treatment behaviour (e.g. SODIS-water can be 

offered to drink upon request). We consider this a restrictive, more conservative 

definition of SODIS-use compared to that in other studies which recorded reported 

use [9] or the number of bottles exposed to sunlight [36]. Both are indicators that can 

easily and reliably be measured but which are prone to over-reporting due to low 

specificity for actual use. Further studies will need to validate different compliance 

indicators and formally assess the dimension of reporting bias. 

 

It is possible that respondents would like to please field staff and over-report use out 

of courtesy. Also, observing exposed bottles on the roof may overestimate use (Figure 

II.3) as some households anecdotally were noted to place bottles on the roof to avoid 

discussions with the SODIS-implementing NGO-staff. Figure II.3 is indicative of this 

phenomenon, as reported use at the beginning and reported use and satisfaction with 

the method at end of study reached the 80% mark – a usage figure consistent with 

other studies relying on reported compliance [9] and evaluation reports from grey 

literature. We conclude that self-reported SODIS-use may overestimate compliance 

and a combination of reported and objectively measurable indicators provides more 

accurate SODIS-compliance data.  

 

There are limitations to our study. As in other studies [24,37], we observed a decline 

in the reporting of child diarrhoea during the observational period in both arms 

(Figure II.2). If true, seasonal variation of diarrhoea could be one possible cause, 

increased awareness leading to more attention to basic hygiene and hence to illness 

reduction may be another reason. Alternatively, the pattern could be due to survey 

fatigue.  

 

Despite a comprehensive and intensive intervention promotion campaign, we detected 

no strong evidence for a significant reduction in the incidence rate of diarrhoea in 

children <5 years in families using SODIS in our trial in a typical setting in rural 

Bolivia. We believe that a clearer understanding of the discrepancy between 

laboratory and field results (obtained under typical environmental and cultural 

conditions), the role of compliance in effectiveness, and a direct comparison of 
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SODIS to alternate drinking water treatment methods is needed before further global 

promotion of SODIS. 
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SUMMARY 

 

Many different methods have been proposed for the analysis of cluster randomized 

trials (CRTs) over the last 30 years. However, the evaluation of methods on 

overdispersed count data has been based mostly on the comparison of results using 

empiric data; i.e. when the true model parameters are not known. In this study, we 

assess via simulation the performance of five methods for the analysis of counts in 

situations similar to real community-intervention trials. We used the Negative 

Binomial distribution to simulate overdispersed counts of CRTs with two study arms, 

allowing the period of time under observation to vary among individuals. We assessed 

different sample sizes, degrees of clustering and degrees of cluster-size imbalance. 

The compared methods are: (i) The two-sample t test of cluster-level rates, (ii) 

Generalized estimating equations (GEE) with empirical covariance estimators (iii) 

GEE with model-based covariance estimators, (iv) Generalized Linear Mixed Models 

(GLMM) and (v) Bayesian Hierarchical Models (Bayes-HM). Variation in sample 

size and clustering led to differences between the methods in terms of coverage, 

significance, power and random-effects estimation. GLMM and Bayes-HM performed 

better in general with Bayes-HM producing less dispersed results for random-effects 

estimates although upward biased when clustering was low. GEE showed higher 

power but anticonservative coverage and elevated type I error rates. Imbalance 

affected the overall performance of the cluster-level t-test and the GEE’s coverage in 

small samples. Important effects arising from accounting for overdispersion are 

illustrated through the analysis of a community-intervention trial on Solar Water 

Disinfection in rural Bolivia.  

 

 

 

Keywords:  Negative Binomial count data, community-cluster randomized trials, GLMM, 

GEE, Bayesian hierarchical models, t-test.  
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1. INTRODUCTION 

 

Cluster Randomized Trials (CRTs) are studies for which the unit of random allocation 

is a group of individuals rather than an individual. The cluster units might be well 

defined geographical areas, communities, schools, hospitals, worksites, etc., and the 

reasons for assigning entire groups to the intervention range from logistical 

convenience to the impossibility of operating/delivering the intervention at individual 

level [1]. 

 

As health outcomes are measured at individual level, and individuals are likely to be 

correlated within a cluster, statistical analysis of such trials without allowance for 

clustering might produce inflated type I error rates in statistical testing and falsely 

narrow confidence intervals. For these reasons attention has been given to the 

development and study of statistical methods that address within-cluster dependence 

over the past 30 years [2, 3].  

 

A number of methods have been proposed for the analysis of different outcomes. The 

analysis of cluster-level summary statistics (rates, odds or means) by the basic t-test, 

Wilcoxon’s U-test, Chi-square tests, etc., is well described [4-6]. In addition, a more 

extensive class of statistical models including the multilevel, hierarchical or random 

effect regression models, more broadly typified as Generalized Linear Mixed Models 

(GLMM), has been developed in parallel to the Generalized Estimating Equation 

(GEE) methods, to estimate the effect of covariates while allowing for intracluster 

correlation [7-10]. These methods can be divided into two main classes: the 

conditional or Cluster Specific (CS) and the marginal or Population Averaged (PA) 

models with GLMM and GEE respectively as the prominent representatives. The 

main distinction between CS and PA models is whether the regression coefficients 

describe a cluster level or the average population response to the covariates’ changes. 

A secondary distinction is in the nature of the assumed within-cluster dependence. CS 

models condition the model on random effects which reflect the correlation among 

observations of the same cluster while GEE account for correlation by incorporating 

predefined correlation structures to describe the nature of within-clusters 

dependencies [11]. Alternatively, the Bayesian paradigm proposes highly flexible 
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methods to analyse random-effects models overcoming the computational problems of 

GLMM and providing a full distributional answer to the estimate values of the 

parameters [12-14]. 

 

Previous research has concentrated on the performance of such methods in the context 

of CRTs for continuous and binary data. Theoretical equivalences and a 

comprehensive assessment through simulation are available for these outcomes [15-

23]. Some attention has been also focused on the analysis of counts and incidence 

rates, although a thorough evaluation particularly in the context of clustered count 

data under overdispersion, have been generally done by means of illustrations in the 

form of analysis of real datasets where the true model parameters were unknown [6, 

24-28]. The number of clusters and the degree of clustering appear among the factors 

that greatly affect the performance of the methods, and are considered in the planning 

of new CRT. Although equal cluster sizes may be assumed in the design, balance is 

rarely found after data collection, and such imbalance is known to affect the analysis 

of binary data[29-32].         

 

In the present study we assess the statistical performance of 5 methods for analysing 

CRTs by simulating situations close to real community-randomized trials, when a 

count outcome, observed in individuals with different follow-up periods, is 

overdispersed. The number of clusters and cluster size imbalance are assessed across a 

gradient of intercluster variability. The methods compared are: (i) the two-sample t 

test, (ii) GEE with empirical covariance estimator, (iii) GEE with model-based 

covariance estimator, (iv) GLMM and (v) the Bayesian Hierarchical Models. We 

illustrate the results with the motivating example of a CRT of solar water disinfection 

in rural Bolivia. 

 

 

2.  A MOTIVATING EXAMPLE 

 

 

Solar drinking water disinfection (SODIS) is a low-cost, point-of-use water 

purification method that uses solar energy to inactivate waterborne pathogens. The 
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combined effect of UV-A radiation and the increase of water temperature has been 

shown to be efficacious in inactivating microbiological pathogens, when water is 

exposed to sunlight in plastic bottles [33, 34]. However, there has been limited 

evidence of its effectiveness at reducing the burden of waterborne diseases in 

populations consuming contaminated water.  

 

A community randomized trial (BoliviaWET) was conducted to evaluate the effect of 

SODIS promotion in reducing diarrhoea among children under 5 years of age [35]. 

The study took place in 22 rural communities of the Cochabamba department in 

Bolivia. The communities were pair-matched by community diarrhoeal incidence at 

baseline, and the SODIS intervention was randomly assigned to one community 

within each pair. The intervention was implemented through 15 months of intensive 

promotion of the SODIS-method along with personal and home-hygiene educational 

training in the intervention communities.  

 

Diarrhoea, was monitored by a surveillance monitoring system for one year, and 

individual diarrhoea occurrence was assessed daily. In this paper we analyze the 

effects of the intervention on the primary outcome, i.e. the incidence rate expressed as 

the number of episodes per child (Y) per time at risk (t) without considering potential 

confounders (child age, sex, hand washing habits) and ignoring pair-matching. We 

henceforth use the data of the trial for illustration purposes only.  

 

 

3. ANALYTICAL METHODS 

 

3.1. The t-test  

 

Consider a two-arm CRT with a count outcome Yijl (values = 0,1,2,…) observed in a 

time period tijl, on the individual l (l =1,…nij), from cluster j (j=1,…,ki), receiving the 

intervention i (i=1,2). The analysis considers the cluster-level rates rij of the counts Yijl 

per observed time tijl as the units for the analysis. 
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where K = k  + k1 2 is the total number of clusters. T follows a Student distribution with 

K – 2 degrees of freedom when the rij are normally distributed, but this normality 

assumption is not usually met in CRTs. Nevertheless, since simulations have shown 

that the t-test is robust to the violation of the underlying assumptions [36] this may be 

a reasonable analytical approach. A test on the rate ratio (2) using the Taylor’s series 

approximation in (3) could be also performed, however (4) is much easier to 

implement and produces similar results. 
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3.2.  Random-effect models. 

 

A more complete representation of the structure of the data is given by specifying a 

Generalized Linear Mixed Model (GLMM).  GLMM represents an extension of 

generalized linear models (GLM) specified by a linear predictor, link function, 

variance function and outcome distribution at the cluster and individual levels. The 

linear predictor can be specified as follows: 

 

jjljljl νzβx '' +=η ,    (5) 

 

where xjl is the vector of covariates observed on individual l nested within the cluster j, 

β is the vector of fixed-effects regression parameters, zjl the vector of variables having 

random effects, and νj the vector of random effects which are usually assumed to 

follow a multivariate normal distribution with mean 0 and variance-covariance matrix 

Σ.  

 

The link function g(.), relates the expected value or mean μjl of the outcome variable 

Yjl (i.e. E[Yjl] = μjl) to the linear predictor ηjl, i.e.: 

 

( ) jljlg ημ = . 

 

The variance can be specified in terms of the mean μjl, as V(Yjl) = φv(μjl), where φ is 

called the overdispersion parameter. The later two specifications depend on the 

distribution of the outcome Yjl which is assumed to fall within the exponential family 

of distributions [37]. 

   

The expected value of the outcome variable in terms of the linear predictor (via the 

link function) is then:   

 

[ ]jjljljl YE νx ,|=μ ,    (6) 
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and represents the expectation of the conditional distribution of the outcome given the 

random effects. As a consequence GLMM are referred to as conditional models in 

contrast to GEE which are considered methods to estimate marginal effects.   

 

Considering the random-intercepts model with the count outcome Yjl (i.e.  0,1,2,…) of 

a two-arm CRT, the linear predictor of the expected number of counts μjl has the 

following form:  

 

( ) jjjljl x νββημ ++== 0log ,   (7) 

 

where the link g(.) is the log function that transforms the scale of the counts 

(permitting only positive values) to the scale of the linear predictor ηjl which can take 

any value in the real line; β  is the intercept, β the log of the RR of the intervention xj0  

(0 = control, 1 = intervention) implemented in cluster j and νj is the random effect of 

the jth 2 cluster ~ N(0,σ c). If the time over which the counts were observed differs 

among individuals, being tjl the time of observation of individual l in cluster j, the 

linear predictor is augmented as  

 

( ) ( ) jjjljl xt νββμ +++= 0loglog ,   (8) 

 

( )jjjljl xt νββμ ++= 0exp/also expressed as  to reflect that it is the number of counts 

per follow-up period that is modelled. The term log(tjl) is often called the offset.  

 

We consider two distributional assumptions for count data: 

 

1) Poisson distributed counts, Yjl ~ Poi(μjl), with variance function V(Yjl) = φv(μ ) =μjl jl 

where φ is assumed to be 1; i.e. the mean equals the variance or equidispersion, 

property that is rarely found in real practice.  

 

2) Negative Binomial (NB) distributed counts, Yjl ~ NB(s, μjl) with a variance 

function ( )2)()( jljljljl svYV μμφμφ +== , where φ is assumed to be 1 and s is the NB 
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overdispersion parameter, indicating that the NB distribution models overdispersion 

implicitly by its parameter s [38].  

 

We consider two alternative approaches for parameter estimation of random-effect 

models:  

 

(i) Maximum-likelihood based methods. To estimate the model parameters, the 

solution of integrals of the likelihood function over the random-effects is needed but 

can be numerically intensive particularly for discrete data where solutions may not 

have a closed form. Taylor’s series (linearizations) approximations [39] as well as 

numerical integration [40] for evaluating such integrals have been proposed. We 

apply the first class, specifically Restricted Pseudo Likelihood estimation as 

implemented in the GLIMMIX procedure in SAS v9 [41] and denote it henceforth as 

GLMM.     

 

(ii)  Bayesian estimation via a Markov chain Monte Carlo algorithm. In the Bayesian 

framework, the computation of posterior probabilities P(θ | data) is the focal concern. 

For a CRT with count outcome Yjl ~ Poi(μjl) or Yjl ~ NB(s, μjl) and a model log(μjl) = 

log(tjl) + β0 + βxj + νj; νj ~ N(0, ) the posterior probabilities P(β2
cσ 0, β, ,s | Y) are 

calculated by updating the likelihood f(Y; β

2
cσ

0, β, ,s) with the prior P(β2
cσ 0, β, ,s) as 

established by the Bayes’ principle, using Markov chain Monte Carlo simulation 

(MCMC), Gibbs sampling specifically as defined in the WinBugs Software v1.4  [13, 

42]. 

2
cσ

 

3.3.  Generalized Estimating Equations (GEE). 

 

GEE are useful to estimate marginal or PA effects in the context of correlated data. As 

an extension to GLM, GEE is applicable to different types of outcomes by defining a 

link function g(.), a linear predictor ( ), a variance function v(μβx'
jljl =η jl), and a 

working correlation matrix that is typically assumed to be the same across all clusters 

[43]. Unlike GLMM, in GEE no distributional assumptions are made on Yjl and 

inferences are asymptotically unbiased and efficient as long as the mean and variance 
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functions are correctly characterized [44]. As the linear predictor ηjl does not depend 

on any random effect, the mean response reflects the average effect of the population. 

On the other hand, the variance of Yjl depends on v(μjl) and R(α), the working 

correlation matrix. For more details and contrasts with GLMM we refer the reader to 

Zeger et al, 1988, Young, 2007 and Fitzmaurice 2004 [11, 27, 45]. 

 

Different types of correlation structures have been proposed for R(α): Independence 

where R(α) is an identity matrix, i.e. individuals are all independent. Exchangeable 

where R(α) is a matrix with 1s in the diagonal and α elsewhere. Note that α, the 

correlation of individuals within the same cluster, is assumed to be constant across 

clusters. Unstructured where R(α) is a symmetric matrix with 1s in the diagonal and 

αll’ elsewhere. Other structures are also proposed [7, 43, 46].  

 

Assuming a two-arm CRT with a count outcome Yjl per follow-up time tjl , the 

marginal model is  

 

( ) ( ) j
PAPA

jljl xt ββμ ++= 0loglog    (9) 

 

with the same characterizations of models (7) and (8). The intervention effect is 

labelled differently to make clear the PA interpretation of the marginal model (9) in 

contrast to the CS interpretation in models (7) and (8). The expectance μjl = E[Yjl | xjl] 

contrasts to that of  (6). The log link is complemented with the variance functions 

φv(μjl) =μ  or ( )2)( jljljl sv μμφμφ +=jl , similar to the Poisson or NB GLMMs 

respectively. Note however that the β coefficient of GLMM has both CS and PA 

interpretations when the log link is used [27].   

 

All the parameters are estimated by solving the estimating equations: 

 

( )μ(β)YVD'U 1 −= −  
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where D contains the partial derivatives δμ/δβ, V contains φv(μjl) and R(α), and 

finally Y and μ(β) are the vectors of observations and mean functions respectively. 

We consider two alternative standard errors estimating methods:  

 

(i) Empirical covariance estimates. If R(α) is incorrectly specified the variance of the 

outcome is inefficient providing inaccurate standard errors for the β estimators. This 

problem can be overcome by using the “sandwich” or “robust” variance estimator 

(empirical estimator), popularized by Liang & Zeger [44] which is consistent for large 

sample sizes even when R(α) is incorrectly specified under the assumption of missing 

at random. However, it was shown to perform poorly for small sample sizes [2].  

 

(ii) Model-Based covariance estimates. If R(α) is correctly specified the inverse of 

the Fisher information matrix also known as the model-based estimator, can be used 

as an estimator of the covariance of β, producing consistent standard errors even in 

scenarios with small number of clusters [27, 43]. 

 

3.4.  Simulations 

 

Datasets were generated for different number of clusters (K = 10, 20, 40), degrees of 

imbalance (balanced, slightly and highly imbalance designs) and degree of clustering 

(σc = 0.05, 0.15 and 0.40 as the between-cluster standard deviation on the log risk 

scale). The number of individuals per cluster was set at 30 for balanced designs, while 

for slightly and highly imbalanced designs the cluster size was generated from normal 

distributions with mean 30 and s.d.=6 and s.d.=18 individuals per cluster (c.v.=20% 

and 60%) respectively. The fractional cluster sizes were rounded up to the closest 

integer and the number of individuals per cluster was truncated to a minimum of 8, 

assuming 8 to be too small for community recruitment in large field trials (e.g. min of 

the motivating example was 24). A different exposure time tjl per individual was 

assumed, with tjl being sampled from a negative skewed distribution similar to the one 

observed in the motivating example: skewness -1.4, mean 290 and s.d. 100, through a 

power transformation: tjl = 80(xjl
1/4 ) where x ~ N(200,100). The control-group event 

rate θ was set at 5/365 (events per days at risk), and a protective efficacy of 30% was 

assumed implying a RR of exp(β)= 0.70. A null effect was also simulated in order to 
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assess the significance level. A cluster effect δj was set to act multiplicatively on the 

mean and whose logarithm was normally distributed with mean 0 and s.d. = σc. Note 

that σc under the log link and by a Taylor series expansion is approximately equal to 

the between-cluster coefficient of variation (CVc) [6, 47]. To simulate the within 

cluster variation and overdispersion specifically, the number of events Yjl were 

produced from a NB distribution Y ,s), with mean μjl ~ NB(μjl jl =θtjlδ  and μj jl = 

θtjlδ exp(β) for control and intervention clusters respectively, variance v(μ) = μ + sμ2
j  

and a fixed overdispersion of s = 0.5. 

 

One thousand datasets were produced using different seeds for each of the 3 × 3 × 3 

possible arrangements. Each dataset was subsequently analysed by: i) The t-test of 

cluster-level rates as defined in (1) – (4), ii) GEE with empirical covariance estimators 

(GEE-Emp), iii) GEE with model-based covariance estimators (GEE-MB), both 

implemented in SAS v9 by the GENMOD procedure [48] specified according to 

model (9), with a log link, a NB variance function and an exchangeable correlation; 

iv) GLMM as implemented in the GLIMMIX procedure of SAS v9 [41] based on 

model (8) assuming a NB distribution. 

 

A random subset of  300 datasets were analysed using method v) a Bayesian 

hierarchical model (Bayes-HM)  implemented in WinBugs v1.4., specified according 

to model (8) assuming NB distributed counts (the high computational demands 

precluded analysing all 1000 datasets by this method). For this analysis,  

uninformative priors were used : β 6 6
0 ~ N(0, 10 ), β ~ N(0, 10 ),  ~ IG(0.001, 0.001), 

s ~ Γ(0.001,0.001) (IG=Inverse Gamma distribution). A SAS-WinBugs interface was 

written to analyse the replicate datasets per arrangement in SAS. The convergence 

was previously assessed in WinBugs by running two chains with dispersed initial 

values throughout the parameter space and comparing the between and within chain 

variation in sample datasets for each of the 27 situations. Convergence was achieved 

before 5,000 iterations, but 15,000, 10,000 and 7,000 iterations after 1,000 burn-in 

were implemented in the interface for K = 10, 20 and 40 respectively. The posterior 

2.5% and 97.5% quantiles were reported as the intervals (CI for simplicity) and the 

median as the point estimate.          

2
cσ
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For each method, performance in point and interval estimation as well as hypothesis 

testing were assessed in terms of: 

 

- Relative Bias as: |mean estimated RR – true RR|/true RR*100.  

- The empirical standard errors (EmpSE), computed as the root square of the 

variance of the RR estimates across the simulated datasets. 

- The width of the CI as the range between the upper and lower confidence limits.  

- Coverage probability of the confidence interval (CI) expressed as the proportion 

of intervals that contained the true RR.  

- Type I error rate, as the proportion of significant findings at 0.05 level when the 

true RR = 1. 

- Statistical power as the proportion of significant results at 0.05 level when the 

true RR = 0.7.  

 

Finally, estimation of the underlying between-cluster standard deviation σc was also 

assessed. For the t-test, the ANOVA variance component method was used  

 

0

2ˆ
n

MSMS ec
clust

−
=σ           (10) 

 

where MSc is the intercluster mean squares, MSe, the intracluster mean squares and n0 

a weighted mean cluster size (see Donner & Klar, 1994, Ukoumunne, 2002 for full 

details [4, 49]). Since σc is log(μ ) scaled and σclustjk  is in the rate scale, the between-

cluster coefficient of variation CVc [47] was estimated by ..ˆ rclustσ  allowing to 

compare the cluster variability of the ANOVA method with that of σc produced by 

GLMM and Bayes-HM. Indeed, by a Taylor’s first order expansion of μjk around μ at 

the log link, σc is found to approximately equal CVc. GEE correlation estimates were 

not considered.  
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4. RESULTS 

 

Simulations 

 

Bias and empirical standard error.  

 

The distribution of the absolute bias of the RR estimates with respect to the true 0.70 

value is depicted in Figure III.1. All the methods across the studied situations 

provided an average bias around 0, while the level of dispersion depended on K and 

σc. The analysis of the relative bias indicated that in 90% of the studied combinations, 

the bias was below 3%, with the highest values when σc = 0.40 and K = 10. The 

relative bias and EmpSE were more sensitive to K and σc than to the methods, 

although the advantage of large sample size on the relative bias was evident only 

when σc = 0.40. The EmpSE, tended to decline similarly in all methods with the 

increase of K, and increased with σc, No noteworthy differences in bias were found 

between: the t-test, GEE-Emp, GEE-MB, GLMM. Although Bayes-HM occasionally 

differed from the other methods, the differences were negligible compared to the ones 

due to K or σc.  

 

Width of the confidence interval.  

 

The average width of the CI and its coefficient of variation (c.v.) across replicate 

datasets are given in Table III.1. GEE-Emp and GEE-MB produced the narrowest 

intervals among the methods. Bayes-HM and GLMM yielded less variable interval 

widths across replicate datasets compared to the t-test, GEE-emp and GEE-MB. The 

degree of imbalance made no difference to the mean width of the CI except for the t-

test which showed higher and more unstable widths under high imbalance. Imbalance 

affected however the stability of the CI widths of the other methods with more 

variable widths with higher imbalance. This effect was no longer evident when σc = 

0.40, where high clustering appears to conceal the effect of high imbalance. As 

expected, the CIs were narrower with larger sample sizes, and wider with larger σc. 
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The between-datasets variability of the widths followed the same pattern; more stable 

widths were found with larger K, and larger c.v. were associated with larger σc.     

 

Figure III.1: Distribution of the absolute bias of the relative rate (RR) of 5 statistical methods 
for overdispersed counts in cluster randomized trials at different: total number of clusters K, 

between-cluster variation σ  and levels of cluster size imbalance. c

 

 
Footnote: Numbers at the bottom represent the relative bias (%). 
 
 
Coverage Probability 

 

Figure III.2 displays the coverage probabilities of the CIs for RRs obtained by the 5 

methods at different K, σc and levels of imbalance. The CI coverage for GEE methods 

were in most cases lower than nominal, but approached the 95% reference when K = 

40. The t-test, on the contrary, always provided higher than nominal coverage, 
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possibly because of the wide intervals resulting from the imprecision arising from the 

use of the cluster-level rates as analysis units. A cluster-level t-test weighted by 

cluster size would have been expected to produce more efficient results. GLMM and 

Bayes-HM produced coverage around the nominal in all the scenarios and somewhat 

higher than nominal when σc = 0.05. The differences between those two methods were 

due to the coverage proportions computed from different total number of replicates 

analysed (1000 vs 300). No difference was observed when the coverage proportions 

came form the same 300 replicates. Imbalance appeared to accentuate the 

unfavourable coverage of GEE methods specially when K = 10.   

 

Figure III.2: Coverage provability of 5 analytical methods for overdispersed counts of 
clustered randomized trials at different: between-cluster variation σc, total number of clusters 

K and levels of cluster size imbalance. 
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Type I  error rates and Power 

 

The distinction between the GEE and the other methods is also evident in the type I 

error rates and the power (Table III.2). The risk of type I error was higher than 

nominal for both GEE-Emp and GEE-MB and in general high as compared to the t-

test, GLMM and Bayes-HM. This risk nonetheless approached the nominal values 

when K increases and especially when K = 40 and σc = 0.4. GLMM and Bayes-HM 

had normally lower probabilities of detecting false significant results under all the 

studied conditions, except when σc = 0.4 where Bayes-HM yielded sometimes higher 

error rates than GLMM. These two methods produced conservative error rates when 

σc = 0.05 and K ≤ 20. There was no marked difference by types of imbalance, nor was 

a clear relation with K or σc observed.  

 

The analysis of statistical power refers to the power required to detect the simulated 

30% protective reduction in the incidence rate. GEE-Emp and GEE-MB were 

generally more powerful than the other three methods, most clearly in the 

unfavourable situations: K ≤ 20 and σc = 0.4. No clear differences in power were 

observed when comparing degrees of imbalance except for the t-test which showed a 

consistent decrease in power with higher imbalance. In addition to the effect of K, 

power was influenced by the degree of clustering, i.e. all the methods report rather 

high probabilities of detecting true significant effects when σc = 0.05 while regardless 

the sample size, the power of all methods falls below 80% when σc = 0.40 (Table 

III.2). In an additional evaluation setting assuming RR = 0.80 (data not shown), the 

effect of K, σc and the advantage of GEE versus the other methods was confirmed but 

at lower power levels than the ones obtained when RR = 0.70, e.g. power of all 

methods only reached or surpassed 80% when (K = 40, σc ≤ 0.15) while only GEE 

reached 80% at (K = 20, σc = 0.05). 
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Table III.1: Width of the CI (mean and c.v.) of the rate ratios (RR) obtained by 5 analytical methods for overdispersed counts of cluster randomized 

trials, differing in: total number of clusters (K), level of between-cluster variation (σc) and degrees of imbalance†, in 1000 replicates for t-test - 
GLMM and 300 replicates for Bayes-HM 

      Balanced    Slightly imbalanced   Highly imbalanced 
σc K   t-test GEE-

Emp 
GEE-
MB GLMM Bayes-

HM  t-test GEE-
Emp 

GEE-
MB GLMM Bayes-

HM  t-test GEE-
Emp 

GEE-
MB GLMM Bayes-

HM 
0.05 10 mean 0.49 0.37 0.37 0.53 0.51  0.49 0.36 0.37 0.53 0.51  0.57 0.34 0.36 0.55 0.54 

  c.v. 25.2 25.2 24.8 15.1 13.3  27.1 28.6 27.1 16.3 14.5  29.2 37.0 31.1 19.1 17.88 
                    
 20  0.32 0.28 0.28 0.33 0.34  0.33 0.28 0.28 0.34 0.34  0.37 0.28 0.28 0.34 0.35 
   17.2 17.2 17.0 10.9 8.3  17.5 18.0 17.8 11.4 8.4  21.4 23.0 21.6 13.8 12.9 
                    
 40  0.22 0.20 0.20 0.22 0.23  0.22 0.20 0.21 0.22 0.23  0.25 0.20 0.20 0.22 0.23 
   11.2 11.2 11.2 7.7 7.0  12.0 12.3 12.3 8.1 7.8  14.5 14.5 14.0 9.6 8.5 
                    

0.15 10  0.63 0.48 0.48 0.64 0.60  0.64 0.48 0.48 0.65 0.61  0.68 0.46 0.47 0.66 0.63 
   24.5 24.5 24.5 21.5 20.7  25.5 26.2 25.9 22.6 24.0  26.8 33.3 31.0 25.1 25.9 
                    
 20  0.41 0.37 0.37 0.42 0.41  0.42 0.36 0.36 0.41 0.40  0.46 0.37 0.37 0.43 0.42 
   17.9 18.1 18.0 16.8 18.2  17.1 17.2 17.2 16.2 16.2  18.7 19.9 20.2 17.9 16.5 
                    
 40  0.28 0.27 0.27 0.28 0.28  0.29 0.27 0.27 0.28 0.28  0.31 0.27 0.27 0.29 0.28 
   12.2 12.3 12.2 11.7 13.9  11.7 12.0 12.2 11.5 13.5  13.5 13.5 14.3 12.8 14.1 
                    

0.4 10  1.19 0.90 0.90 1.21 1.19  1.21 0.92 0.92 1.23 1.20  1.24 0.92 0.93 1.25 1.25 
   26.9 26.9 26.9 25.4 32.6  26.4 26.6 27.1 25.1 32.3  26.5 27.8 31.7 25.6 30.7 
                    
 20  0.79 0.70 0.70 0.79 0.77  0.82 0.72 0.73 0.81 0.82  0.82 0.71 0.71 0.80 0.79 
   19.6 19.6 19.6 17.4 19.7  19.0 19.1 20.1 16.6 19.2  18.7 19.2 23.3 16.9 21.7 
                    
 40  0.56 0.53 0.53 0.55 0.55  0.56 0.53 0.53 0.55 0.55  0.57 0.54 0.54 0.56 0.54 
      14.1 14.1 14.1 11.5 15.2   13.9 14.0 14.9 11.3 14.8   14.5 14.6 17.0 12.0 16.1 

† Imbalance around a mean cluster size of 30 individuals per cluster              
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Table III.2: Type I error rates (for relative rate of RR = 1) and statistical power (for RR = 0.7) of 5 analytical methods for overdispersed counts of 
cluster randomized trials, differing in: total number of clusters (K), level of between-cluster variation (σc) and degrees of imbalance†,in:1000 replicates 

for t-test - GLMM and 300 replicates for Bayes-HM 

      Balanced   Slightly imbalanced  Highly imbalanced 

σc K  t-test GEE-
Emp 

GEE-
MB GLMM Bayes-

HM‡  t-test GEE-
Emp 

GEE-
MB GLMM Bayes-

HM  t-test GEE-
Emp 

GEE-
MB GLMM Bayes-

HM 
  Type I error rates                 

0.05 10  0.046 0.108* 0.102 0.014 0.033  0.046 0.144 0.140 0.018 0.020  0.045 0.203 0.168 0.016 0.013 

 20  0.058 0.082 0.082 0.030 0.037  0.042 0.074 0.078 0.030 0.033  0.050 0.109 0.109 0.027 0.027 

 40  0.051 0.073 0.073 0.047 0.053  0.062 0.062 0.062 0.049 0.047  0.042 0.059 0.061 0.029 0.030 
                    

0.15 10  0.052 0.118 0.116 0.042 0.047  0.056 0.128 0.132 0.040 0.070  0.040 0.150 0.138 0.045 0.053 

 20  0.066 0.086 0.088 0.068 0.060  0.058 0.090 0.090 0.054 0.070  0.041 0.092 0.090 0.048 0.047 

 40  0.040 0.051 0.051 0.044 0.050  0.044 0.064 0.062 0.053 0.060  0.046 0.059 0.059 0.043 0.060 
                    

0.4 10  0.042 0.146 0.148 0.050 0.053  0.046 0.140 0.138 0.050 0.053  0.040 0.132 0.136 0.040 0.063 

 20  0.054 0.098 0.098 0.064 0.086  0.054 0.090 0.090 0.050 0.067  0.041 0.078 0.087 0.045 0.067 

  40  0.020 0.044 0.044 0.018 0.040  0.033 0.047 0.053 0.047 0.070  0.049 0.067 0.074 0.049 0.060 

  Statistical Power                 
0.05 10  0.804 0.929 0.925 0.778 0.803  0.783 0.923 0.922 0.776 0.780  0.706 0.921 0.916 0.774 0.787 

 20  0.991 0.995 0.995 0.991 0.993  0.988 0.998 0.998 0.992 0.997  0.939 0.996 0.995 0.989 0.990 

 40  1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 
                    

0.15 10  0.588 0.789 0.788 0.584 0.663  0.580 0.764 0.768 0.585 0.590  0.512 0.784 0.771 0.575 0.590 

 20  0.927 0.960 0.963 0.932 0.957  0.908 0.944 0.941 0.917 0.927  0.864 0.946 0.947 0.908 0.920 

 40  0.998 0.999 0.999 0.999 0.990  1.000 1.000 1.000 1.000 1.000  0.993 1.000 1.000 0.999 1.000 
                    

0.4 10  0.196 0.403 0.398 0.214 0.217  0.202 0.401 0.405 0.224 0.227  0.181 0.359 0.367 0.201 0.223 

 20  0.386 0.488 0.488 0.407 0.440  0.383 0.497 0.496 0.412 0.413  0.367 0.502 0.503 0.412 0.473 

  40   0.697 0.737 0.742 0.739 0.677  0.664 0.712 0.720 0.701 0.657  0.667 0.716 0.716 0.696 0.683 
†Imbalance around a mean cluster size of 30 individuals per cluster .  ‡ Based on a Bayesian pseudo p-value computed as: 2*min[P(β > 0 | data); P(β < 0 | data)].    * Bold font indicates lower limit > than 0.05
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Estimation of the between-cluster variance  

 

The distribution of CVc estimates from the t-test (ANOVA variance estimator in (10)),  

GLMM and Bayes-HM across replicate datasets is shown in Figure III.3; all negative 

variances were truncated to 0 for the t-test, and GLMM. Although the methods 

estimate on average the underlying σc, Bayes-HM produced in general more efficient 

estimates, becoming similar to GLMM but still superior to t-test when σc = 0.4. Note 

that between-cluster variance estimates for all the methods are greatly affected by K 

and σc yielding rather variable estimates at low K and high σc. Although with more 

homogeneous estimates, Bayes-HM overestimated the intercluster variance when σc = 

0.05.   

Figure III.3: Between-cluster coefficient of variation (CVc) obtained by 3 analytical methods 
for cluster randomized trials, applied to 300 simulated datasets per combination of total 

number of clusters (K), between-cluster variation  (σc) and degree of cluster size imbalance. 
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Analysis of the motivating example 

 

The BoliviaWET trial initially targeted 30 children per cluster in 22 communities 

giving a total of 660 participants [35]. By the end of the trial however the observed 

cluster size was not constant but showed a symmetric distribution around a mean of 

33 children per cluster (min = 23, median = 30, max = 57, s.d. = 7.6) and a total of 

725 children recruited up to the randomization time: 349 and 376 children in the 

control and intervention arm, respectively. 

 

A total of 887 diarrhoeal episodes were observed during 75,077 children-days at risk 

observed in the control arm and 808 diarrhoeal episodes in 82,682 children-days at 

risk observed in the intervention arm. It yields a crude RR of 0.827 corresponding to 

an effectiveness of 17.3% in reducing diarrhoea. The significance of the intervention 

effect was analysed by each of the 5 methods for clustered data examined above. 

45,000 iterations after 2,000 burn-in were applied for the Bayes-HM. 

 

In order to investigate the effects of overdispersion, two aspects were assessed:  

 

i) Both Poisson and NB mean and variance functions were specified (applicable on 

GEE, GLMM and Bayes-HM)  

ii) Data were analyzed with or without the exclusion of outlier observations. Outliers 

were defined as those having the (PA) Pearson’s standardized residuals greater 

than |2.5| for the model with the best fit. This left a remainder of 691 children 

(Table III.3).   

 

The overdispersion parameter φ was always greater than 1 when Poisson variation 

was assumed even with the exclusion of outliers, while it draws close to 1 when NB 

variation was assumed (Table III.3), indicating that the NB model provides a better 

representation of the sampling variation. The distribution of residuals comparing the 

Poisson versus NB model confirms this result (Figure III.4).  

 

The between-cluster coefficient of variation CVc is presented for the t-test, estimates 

of σc for GLMM and Bayes-HM and within-cluster exchangeable correlation α for 
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GEE (Table III.3). A cluster variance (correlation for GEE) higher than 0 was 

obtained by all the methods, under either Poisson or NB distributions and with or 

without the exclusion of outliers. The only exception was the t-test in the complete 

dataset (N = 725; Table III.3). This null clustering is explained by the negative 

variance (truncated to 0) estimated as (MSc – MSe)/n0 (see expression (10)), where a 

high residual variability, captured by the MSe exceeded the clusters’. Indeed, when the 

outliers were excluded (N = 691) the method estimated an 18.8% of between-cluster 

variation with MSc becoming clearly higher than MSe. That suggests that using this 

method the outliers contribute more to the residual than to the cluster variance. Note 

that during the simulations the estimate of the between-cluster variance was 

particularly unstable when σc > 0.15.      

 

Figure III.4:  a) Poisson and b) Negative Binomial (Pearson-standardized) residuals versus 
the expected mean number of events of the BoliviaWET dataset. 

 
 

The cluster variation estimated by adjusting the standard error by φ in the Poisson 

models (GLMM2 in Table III.3) decreased when comparing the uncorrected with the 

corrected Poisson GLMM. A portion of the cluster variance of the uncorrected model 

went thus to adjust the standard errors in the GLMM2. Finally, the posterior medians 

of σc of the Bayes-HM are similar to the values estimated by the equivalent GLMM 

model.  
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Table III.3: Parameter estimates of the analysis of the BoliviaWET trial, obtained by 5 statistical methods, with and without the exclusion of outliers, and 
assuming Poisson or Negative Binomial distributed counts. 

 Complete dataset, N = 725 
   Poisson  Negative Binomial Parameter 
 t-test  GEE-Emp GEE-MB  GLMM1 GLMM2†  Bayes-HM  GEE-Emp GEE-MB  GLMM1  Bayes-HM

                  
φ   -  5.95  4.74 4.95   -  1.53  1.28   - 

NB parm (s)   -  -   -  -   -  1.33  1.42  1.26 
CVc | α | σc  0.000  0.037  0.324 0.195  0.330  0.016  0.270  0.271 

RR  0.908  0.921 0.921  0.868 0.853  0.865  0.843 0.843  0.809  0.806 
CI of RR  (0.61, 1.20)  (0.70, 1.21) (0.64, 1.32)  (0.64, 1.18) (0.64, 1.14)  (0.63, 1.18)  (0.64, 1.11) (0.63, 1.13)  (0.59, 1.12)  (0.59, 1.10) 

Width of the CI  0.59  0.50 0.67  0.54 0.50  0.55  0.47 0.51  0.53  0.52 
p-value‡  0.496  0.550 0.653  0.346 0.262  0.343  0.225 0.259  0.187  0.172 

                                   
                  

 Outliers excluded*,  N = 691 
   Poisson  Negative Binomial Parameter 
 t-test  GEE-Emp GEE-MB  GLMM1 GLMM2  Bayes-HM  GEE-Emp GEE-MB  GLMM1  Bayes-HM

                  
φ   -  2.87  2.62 2.66   -  0.97  1.02   - 

NB parm (s)   -  -   -  -   -  0.93  0.79  0.90 
CVc  | α | σc  0.188  0.022  0.262 0.195  0.265  0.019  0.195  0.163 

RR  0.924  0.885 0.885  0.906 0.890  0.902  0.887 0.887  0.887  0.876 
CI of RR  (0.66, 1.19)  (0.70, 1.12) (0.70, 1.12)  (0.64, 1.18) (0.64, 1.14)  (0.63, 1.18)  (0.71, 1.11) (0.71, 1.11)  (0.69, 1.14)  (0.69, 1.11) 

Width of the CI  0.53  0.42 0.42  0.48 0.46  0.48  0.41 0.40  0.46  0.42 
p-value  0.539  0.307 0.311  0.437 0.352  0.414  0.301 0.293  0.338  0.281 

                                    
φ = Overdispersion parameter, estimated as the generalized Pearson chi-square statistics        
NB parm (s) = Scale (overdispersion) parameter of the Negative Binomial distribution            
Between-cluster coefficient of variation CVc is reported for the t-test, α the exchangeable correlation for GEE and σc for GLMM and Bayes-HM    
† GLMM2= GLMM standard errors corrected (inflated) by φ            
*Excluding observations whose absolute standardized residuals were higher than |2.5|        
‡ Bayesian pseudo p-value computed as: 2*min[P(β > 0 | data); P(β < 0 | data)]          
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Although the simulations gave similar results for different estimation methods, the 

assumed outcome distribution had an important influence on the point estimate of the 

RR in the complete BoliviaWET dataset. All the Poisson-based methods and the t-test 

gave RR above 0.85 with the overdispersion-corrected Poisson GLMM showing the 

closest RR to the crude 0.827. The NB models yielded estimates lower than the 

Poisson models, more homogeneous and much closer to the observed (population-

averaged) crude RR. When outliers were excluded from the analysis the RR of all the 

methods moved the RR estimates towards unity. As shown in Figure III.5, this 

behaviour may be explained by the fact that the control arm had most of the observed 

outliers, particularly in the Poisson model. Their exclusion reduced the estimated 

difference between control and intervention rates.   

 

Figure III.5: Distribution of the individual incidence rates and the number of episodes per 
community in the two study arms of the BoliviaWET trial. 

 
 

As expected, the CI’s were narrower when outliers were excluded as a result of the 

reduction in the overall variance. In general, the exclusion of outliers leads to more 

similarities with the simulation results, both for Poisson and NB analysis, with the 

GEE methods showing narrower CI than the other methods. This behaviour however 

disappears in the complete dataset, where substantial differences between the CI 

widths between the GEE-Emp and GEE-MB were observed. Further, the t-test CI’s 
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widths were very different from those of GLMM and Bayes-HM analysis. The latter 

result may be because of the highly variable widths of the t-test CIs compared with 

those of GLMM and Bayes-HM analyses, as observed in the simulations (Table III.1).    

  

No significant effect of the intervention on the diarrhoeal rates was found by any 

method in any scenario. The interval estimates all contained the null effect and the P-

values were all above 0.15, although a tendency towards even lower significance was 

found for all the methods when N = 691, since the excluded outliers belonged mainly 

to the control arm (Figure III.5). The NB models generated less conservative results 

for the complete data set, but seemed to best model the RRs even though outliers were 

present. Note that the (overdispersion-adjusted) Poisson GLMM2 applied to N = 725 

produced close results to the NB in terms of estimates and significance.  

 

According to the simulations, GEE has more power than the other methods to detect 

true significant results. Any of the methods would have ≥ 80% power to detect the 

33% difference initially planned in the BoliviaWET trial with 22 clusters and a σc of 

0.27 (assuming the NB model on the complete dataset) (see Table III.2), but not for 

the observed 17.7% crude rate. The simulations with RR = 0.80 (results not shown) 

suggest that GEE with NB functions would have ≈ 70% power while GLMM ≈ 60% 

to detect a 20% reduction. The Bayesian posterior probabilities Pr[exp(β)>d | data] 

(with d as the effect of interest) concur with this estimates yielding powers of 0.82 

and 0.52 for d=0.7 and d=0.8.  

 

 

5. DISCUSSION 

 

The performance of analytical methods for overdispersed count data in cluster 

randomized trials was examined in terms of point, interval estimation and hypothesis 

testing. The methods were: the two-sample t-test of cluster-level incidence rates, GEE 

with empirical covariance estimators, GEE with model-based covariance estimators, 

GLMM and Bayesian hierarchical models under negative binomial distribution when 

applicable. We focused on overdispersed counts, allowing for variation in times of 

individual follow-up and simulated situations close to reality for community-
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intervention trials, considering the effects of: small number of clusters (K), different 

degrees of clustering (σc) and different levels of cluster size variation. Overdispersion 

was stressed through the data analysis of a community-intervention trial to illustrate 

its impact in the performance of the statistical methods.  

 

The performance of the methods was related to K and σc while high imbalance 

affected the performance of the t-test and somewhat reduced the already low coverage 

of GEE in small samples.  

 

Imbalance and cluster size influence the performance of methods for binary clustered 

data [22, 31, 32, 50-52], particularly of cluster-level methods (e.g. t-test, cluster-level 

linear regretssion), but do not affect individual level random-effect models for binary 

data [53] . We found similar results when analysing count data. One particular study 

[31], assuming conditions typical to primary care trials, shows that power is affected 

when the cluster size coefficient of variation (c.v.) is greater than 0.23. Our findings 

assuming community field trials situations are in line with that conclusion. Note 

however that the mechanisms that determine variable cluster size in community 

randomized trials may differ from their primary care counterparts. In community trials, 

the investigators often have more control over the size of the clusters, because there is 

generally a choice in how to subdivide the population into communities (e.g. 

geographic areas, villages, districts) [3]. The underlying distribution of community 

size and the patterns of individuals’ response/drop-outs are important sources of 

cluster size variation in field trials. On the contrary in primary care, the recruitment 

strategy of individuals or clusters may be more important (e.g. health care seeking, 

degree of disease register size), leading thus to greater variation in the cluster size. We 

chose the slightly imbalance scenario (c.v. = 0.2) to match the BoliviaWET 

experience of failing to recruit equally sized clusters. We believe this is common in 

community randomized trials. The high imbalance (c.v.=0.6) represents situations 

where half the clusters have sizes lower or larger than the minimum and maximum 

cluster size in the BoliviaWET trial. This choice matches the average level of 

imbalance of health facilities in the UK [31]. We interpret our findings as applicable 

to trials with a mean cluster size of 30, which appears to be the average size of 
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community-intervention trials < 100 individuals/cluster (confirmed by an adhoc 

review of 20 community-intervention trials published after 2000).   

 

All the methods are similar in terms of point estimation. Theoretically no important 

differences were to be expected particularly between PA and CS models, since for 

count data under a log link, CS’s regression coefficient have both PA and CS 

interpretations [23, 27]. Indeed, the observed differences in bias and EmpSE 

depended only on K and σc. 

 

Although we present results for the 30% but analysed also the 20% reduction in the 

true RR, we found GEE methods to have higher power than the other methods, in line 

with previous research [18, 21, 54]. However, this advantage was clear for K < 40, the 

same region where the CI’s coverage was anticonservative, and in some extent at K = 

40 when σc = 0.4. In the analysis of the 20% reduction in the RR, GEE’s higher power 

was nonetheless confirmed for K = 40 when σc > 0.05.  

 

GEE-Emp and GEE-MB produced noticeable lower coverage probabilities alongside 

narrow CI and consequently higher Type I error rates compared to the other methods. 

This findings are consistent with previous research [17, 18, 22, 50, 54, 55] and may 

partly be explained by the fact that GEE intervals are based on normal quantiles, 

while t-test and GLMM base their CI on the student’s distribution, more appropriate 

for small sample situations. In addition, GEE have been reported to underestimate the 

covariance among observations producing downwards biased standard errors in small 

sample situations (< 40 clusters), specially with unequal cluster sizes [56]. Bias-

corrected methods have accordingly been proposed [56-58], although they are not yet 

implemented in standard statistical packages. Simple sampling distribution corrections 

are however possible and have been shown to improve GEE performance [22, 59]. An 

advantage of GEE-MB over GEE-Emp in small samples is expected if the correlation 

structure is correctly specified. We could not confirm this because in terms of 

correlation structure and under the log link, the CS underlying model used to generate 

the data is not equivalent to the exchangeable PA [27]. We applied the exchangeable 

nonetheless because of its common use in CRT. Recent research proposes the means 

to identify the working correlation structure [60]. 
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Although Bayes-HM reported higher Type I error rates than GLMM when σc was 

high both methods performed similarly well in all the studied scenarios. Proper 

coverage performance in simulations of clustered data has been described for both 

methods with some advantages of Bayes-HM over GLMM [50]. The similarities in 

interval widths between GLMM and Bayes-HM that we found do not concur with 

Turner et al’s claim [13] that Bayesian hierarchical models produce wider CI for β 

than frequentist multilevel models in an analysis of binary outcomes, since the 

Bayesian models account for imprecision of the intercluster variance while the 

frequentist models assume it to be known. In the present study, the analysis of count 

data in WinBugs using the same priors as [13] and applied to 300 different datasets 

per arrangement produced consistently similar intervals to those obtained by the 

GLMM in the GLIMMIX procedure. Although the methods are similar, Bayes-HM 

has the advantage of greater flexibility in assessing diverse outcome and random-

effect distributions, and provides interval estimates for any parameter or function of 

parameters of interest such as the intraclass correlation coefficient (ICC)) or the 

statistical power. However informative priors should only be used with caution 

because of their influence on the uncertainty measures [13, 42].    

 

The straightforward t-test showed conservative results, wide CI, rather large coverage 

probabilities, and a tendency to have lower power than GLMM and Bayes-HM at the 

highest between-cluster variability (σc=0.40). Its disadvantages were evident in the 

analysis of the BoliviaWET dataset where it reduced the difference between study-

arms by masking the effect of outlier rates which mainly came from the control arm 

(Figure III.5). Another limitation of all cluster-level methods regards the inability of 

adjusting for individual-level covariates.   

 

We investigated the estimates of the random-effects, given their implications for the 

ICC, CVc and the design of new trials, but did not compare the ICC from the random-

effects models with the exchangeable correlations of the GEE because of the 

underlying differences mentioned above. The relationships between CS and PA in 

terms of marginal covariances and correlations for count data have been presented 

elsewhere for the case of  Poisson variance [27]. A derivation of similar equivalences 
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would be required for Negative Binomial but that is out of the scope of this study.   

Random-effects models have also previously been compared with GEE in terms of 

variance and covariance parameter estimates in continuous and binary data [61]. In 

general the t-test, GLMM and Bayes-HM all provided reasonably good estimates of 

the intercluster coefficient of variation CVc for K ≥ 20 but all methods gave a high 

dispersion when the true value of σc = 0.4 or K = 10. Bayes-HM produced in general 

more stable values but upward-biased when σc = 0.05. The classical ANOVA 

estimator was the more unstable and may produce misleading results in presence of 

extreme observations as was observed in the motivating dataset.     

 

The analysis of the BoliviaWET dataset illustrates the impact of modelling extra-

Poisson variation: a situation that routinely occurs in count data of CRTs. 

Overdispersion may make itself evident both as inflation of the incidence of zero 

counts or occurrence of larger counts than expected by the Poisson model and is 

known to cause underestimation of standard errors and misleading inference for the 

regression parameters [62]. At the same time, it is important to distinguish real from 

apparent overdispersion that can arise inter alia, because of omission of explanatory 

predictors and/or interactions, presence of outliers, or miss-specification of the link 

[38]. However, some proposed remedies for apparent overdispersion are not 

applicable to CRTs. For instance, no other predictors than the design and treatment 

factors are included in the analysis of a crude model, and dropping/adjusting for 

outliers would infringe the principle of the intention to treat analysis.    

 

Approaches to deal with real overdispersion such as inflating the Poisson variance by 

φ or assuming a heterogeneous gamma-distributed Poisson mean [63] (Poisson-

Gamma mixture [38]) may not be enough for a CRT. Including cluster random-effects 

in a Poisson CS model implies that overdispersion is assumed [27], but this approach 

does not necessarily capture the individual within-cluster heterogeneity. In the 

BoliviaWET data, despite some extreme observations, the number of outliers in the 

NB analysis was clearly lower than that of the Poisson model (Figure III.4), in 

addition, NB showed a superior fit even without adding predictors other than the 

treatment. The NB model with normally distributed random-effects would be thus 

preferred to address overdispersion in a CRT. It is comparable to the Poisson model 
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with gamma and normal random-effects at mean and cluster levels respectively, 

which has previously been shown to give improved fit over Poisson, Poisson-gamma 

and Poisson-normal models when estimated via full maximum likelihood with 

numerical integration over the random-effects [26] (PROC NLMIXED in SAS). In 

contrast, we used expansion methods (PROC GLIMMIX) and MCMC (Bayes-HM) 

which have the advantage over PROC NLMIXED because they can be extended to 

pair-matched, repeated cross-sectional or other more complex designs.  

 

To our knowledge this is the first study that has used simulation to evaluate analytical 

methods for overdispersed counts in CRTs. There is still a need to consider more 

complex designs (pair-matching, stratified, repeated cross-sectional), and to asses 

imbalance under different average cluster sizes. Further research is needed into 

exploring the implications of different degrees of overdispersion. We did not evaluate 

other extra-Poisson models (Zero Inflated, Zero Truncated models for Poisson and 

NB Regression) and did not analyse the effects of covariate inclusion in the context of 

borderline overdispersion in the adjusted analysis of CRTs. Another important 

limitation is the use of only 300 datasets per arrangement for Bayes-HM because of 

the long computation times. Statistical power was reported only for one treatment 

difference (30%) although results were confirmed with a lower treatment difference 

(20%). 

 

Under the situation of community-intervention trials analysed in this paper, our 

overall conclusions are that the NB model with normal random-effects provides a 

natural way to address overdispersion of count data in a CRT. Its analysis via GLMM 

and Bayes-HM would produce overall good performance, although caution must be 

taken for the random-effects estimates when K = 10 or σc = 0.4. GEE with NB means 

and variance functions are also an attractive choice provided its higher power. GEE 

requires however a proper specification of the correlation structure in small-sample 

situations, which in practice may differ from the structures assumed by the typically 

employed exchangeable and/or use of bias-corrected estimators. Based on our 

simulations the t-test is conservative for overdispersed rates and caution must be taken 

when extreme observations are present. High imbalance affects the overall 

performance of the t-test cluster-level analysis and coverage of GEE when K = 10. 



Chapter III.  Performance of analytical methods for CRT with count data 82 

 

Acknowledgments 

 

We are grateful to two anonymous reviewers for their valuable insight that greatly 

improved this paper. We are also thankful to Dr. Laura Gosoniu and Benjamin Arnold 

for their comments on a previous version of the manuscript. Finally we warmly 

acknowledge Andri Christen, Myriam Cevallos, Freddy Arauco and the rest of the 

field staff of the BoliviaWET study for their relentless commitment during the data 

collection. The BoliviaWET trial was funded by the National Institutes of Health, 

award number R01AI50087-01IH. Gonzalo Durán Pacheco is in receipt of a stipend 

from the Stipendiumkommission of the Amt für Ausbildungsbeiträge of the Canton of 

Basel, Switzerland.  

 

 
6. REFERENCES 

 
 1.  Eldridge SM, Ashby D, Feder GS, Rudnicka AR, Ukoumunne OC. Lessons 

for cluster randomized trials in the twenty-first century: a systematic review of 
trials in primary care. Clin.Trials 2004; 1(1):80-90. 

 2.  Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-
randomized trials: A review of recent methodological developments. American 
Journal of Public Health 2004; 94(3):423-432. 

 3.  Campbell MJ, Donner A, Klar N. Developments in cluster randomized trials 
and Statistics in Medicine. Statistics in Medicine 2007; 26(1):2-19. 

 4.  Donner A, Klar N. Methods for Comparing Event Rates in Intervention 
Studies When the Unit of Allocation Is A Cluster. American Journal of 
Epidemiology 1994; 140(3):279-289. 

 5.  Klar N, Darlington G. Methods for modelling change in cluster randomization 
trials. Statistics in Medicine 2004; 23(15):2341-2357. 

 6.  Bennett S, Parpia T, Hayes R, Cousens S. Methods for the analysis of 
incidence rates in cluster randomized trials. International Journal of 
Epidemiology 2002; 31(4):839-846. 

 7.  Preisser JS, Young ML, Zaccaro DJ, Wolfson M. An integrated population-
averaged approach to the design, analysis and sample size determination of 
cluster-unit trials. Statistics in Medicine 2003; 22(8):1235-1254. 

 8.  Twisk JWR. Applied Multilevel Analysis: A Practical Guide for Medical 
Researchers. Cambridge University Press: UK, 2006. 



Chapter III.  Performance of analytical methods for CRT with count data 83 

 9.  Greenland S. When should epidemiologic regressions use random 
coefficients? Biometrics 2000; 56(3):915-921. 

 10.  McCulloch CHE, Searle SR. Generalized, Linear, and Mixed Models. Wiley 
& Sons: New York, 2001. 

 11.  Zeger SL, Liang KY, Albert PS. Models for Longitudinal Data - A 
Generalized Estimating Equation Approach. Biometrics 1988; 44(4):1049-
1060. 

 12.  Spiegelhalter DJ. Incorporating Bayesian ideas into health-care evaluation. 
Statistical Science 2004; 19(1):156-174. 

 13.  Turner RM, Omar RZ, Thompson SG. Bayesian methods of analysis for 
cluster randomized trials with binary outcome data. Statistics in Medicine 
2001; 20(3):453-472. 

 14.  Ohlssen DI, Sharples LD, Spiegelhalter DJ. Flexible random-effects models 
using Bayesian semi-parametric models: Applications to institutional 
comparisons. Statistics in Medicine 2007; 26(9):2088-2112. 

 15.  Neuhaus JM, Kalbfleisch JD, Hauck WW. A Comparison of Cluster-Specific 
and Population-Averaged Approaches for Analyzing Correlated Binary Data. 
International Statistical Review 1991; 59(1):25-35. 

 16.  Albert PS, McShane LM. A generalized estimating equations approach for 
spatially correlated binary data: applications to the analysis of neuroimaging 
data. Biometrics 1995; 51(2):627-638. 

 17.  Hendricks SA, Wassell JT, Collins JW, Sedlak SL. Power determination for 
geographically clustered data using generalized estimating equations. Statistics 
in Medicine 1996; 15(17-18):1951-1960. 

 18.  Bellamy SL, Gibberd R, Hancock L, Howley P, Kennedy B, Klar N, Lipsitz S, 
Ryan L. Analysis of dichotomous outcome data for community intervention 
studies. Statistical Methods in Medical Research 2000; 9(2):135-159. 

 19.  Pan W, Wall MM. Small-sample adjustments in using the sandwich variance 
estimator in generalized estimating equations. Stat.Med. 2002; 21(10):1429-
1441. 

 20.  Yasui Y, Feng ZD, Diehr P, McLerran D, Beresford SAA, McCulloch CE. 
Evaluation of community-intervent ion trials via generalized linear mixed 
models. Biometrics 2004; 60(4):1043-1052. 

 21.  Austin PC. A comparison of the statistical power of different methods for the 
analysis of cluster randomization trials with binary outcomes. Statistics in 
Medicine 2007; 26(19):3550-3565. 

 22.  Ukoumunne OC, Carlin JB, Gulliford MC. A simulation study of odds ratio 
estimation for binary outcomes from cluster randomized trials. Statistics in 
Medicine 2007; 26(18):3415-3428. 



Chapter III.  Performance of analytical methods for CRT with count data 84 

 23.  Ritz J, Spiegelman D. Equivalence of conditional and marginal regression 
models for clustered and longitudinal data. Statistical Methods in Medical 
Research 2004; 13(4):309-323. 

 24.  Chin HC, Quddus MA. Applying the random effect negative binomial model 
to examine traffic accident occurrence at signalized intersections. Accident 
Analysis and Prevention 2003; 35(2):253-259. 

 25.  Tseloni A. Multilevel modelling of the number of property crimes: household 
and area effects. Journal of the Royal Statistical Society Series A-Statistics in 
Society 2006; 169:205-233. 

 26.  Molenberghs G, Verbeke G, Demetrio CGB. An extended random-effects 
approach to modeling repeated, overdispersed count data. Lifetime Data 
Analysis 2007; 13(4):513-531. 

 27.  Young ML, Preisser JS, Qaqish BF, Wolfson M. Comparison of subject-
specific and population averaged models for count data from cluster-unit 
intervention trials. Statistical Methods in Medical Research 2007; 16(2):167-
184. 

 28.  Gardiner JC, Luo Z, Roman LA. Fixed effects, random effects and GEE: what 
are the differences? Stat.Med. 2009; 28(2):221-239. 

 29.  Kerry SM, Bland JM. Unequal cluster sizes for trials in English and Welsh 
general practice: implications for sample size calculations. Stat.Med. 2001; 
20(3):377-390. 

 30.  Yudkin PL, Moher M. Putting theory into practice: a cluster randomized trial 
with a small number of clusters. Statistics in Medicine 2001; 20(3):341-349. 

 31.  Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials: 
effect of coefficient of variation of cluster size and analysis method. 
International Journal of Epidemiology 2006; 35(5):1292-1300. 

 32.  van Breukelen GJP, Candel MJJM, Berger MPF. Relative efficiency of 
unequal versus equal cluster sizes in cluster randomized and multicentre trials. 
Statistics in Medicine 2007; 26(13):2589-2603. 

 33.  Sommer B, Marino A, Solarte Y, Salas ML, Dierolf C, Valiente C, Mora D, 
Rechsteiner R, Setter P, Wirojanagud W, Ajarmeh H, AlHassan A, Wegelin M. 
SODIS - An emerging water treatment process. Journal of Water Supply 
Research and Technology-Aqua 1997; 46(3):127-137. 

 34.  Dejung S, Fuentes I, Almanza G, Jarro R, Navarro L, Arias G, Urquieta E, 
Torrico A, Fenandez W, Iriarte M, Birrer C, Stahel WA, Wegelin M. Effect of 
solar water disinfection (SODIS) on model microorganisms under improved 
and field SODIS conditions. Journal of Water Supply Research and 
Technology-Aqua 2007; 56(4):245-256. 

 35.  Mäusezahl, D., Christen, A., Duran-Pacheco, G., Alvarez-Tellez, F., Iriarte, 
M., Zapata M.E., Cevallos, M., , Hattendorf J., M., Arnold, B., Smith-A T., 



Chapter III.  Performance of analytical methods for CRT with count data 85 

and Colford, J. M. A cluster-randomized, controlled trial of solar drinking 
water disinfection (SODIS) to reduce childhood diarrhoea in rural Bolivia.  
2009 (submitted manuscript) . 

 36.  Heeren T, D'Agostino R. Robustness of the two independent samples t-test 
when applied to ordinal scaled data. Stat.Med. 1987; 6(1):79-90. 

 37.  McCullagh P, Nelder JA. Generalized Linear Models. Chapman and Hall: 
London, 1989. 

 38.  Hilbe J.H. Negative Binomial Regression. Cambridge University Press, New 
York: 2007. 

 39.  Rodriguez G, Goldman N. An Assessment of Estimation Procedures for 
Multilevel Models with Binary Responses. Journal of the Royal Statistical 
Society Series A-Statistics in Society 1995; 158:73-89. 

 40.  Pinheiro JC, Bates DM. Approximations to the Log-likelihood Function 
in the Nonlinear Mixed-effects Model. Journal of Computational 
andGraphical Statistics 1995; 4:12-35. 

 41.  SAS Institute Inc. The GLIMMIX Procedure. SAS Institute Inc.: Cary, North 
Carolina, USA, 2006. 

 42.  Spiegelhalter DJ. Bayesian methods for cluster randomized trials with 
continuous responses. Statistics in Medicine 2001; 20(3):435-452. 

 43.  Young M.L. Generalized estimating equations (GEE) with design-based 
correlation structures for cluster-unit trials. University of North Carolina: 
2003. 

 44.  Liang KY, Zeger SL. Longitudinal data analysis for discrete and continuous 
outcomes. Biometrics 1986; 42(1):121-130. 

 45.  Fitzmaurice G. M, LairdN.M., Ware J.H. Applied longitudinal analysis. 
Wiley: 2004. 

 46.  Horton NJ, Lipsitz SR. Review of software to fit generalized estimating 
equation regression models. American Statistician 1999; 53(2):160-169. 

 47.  Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized 
trials. International Journal of Epidemiology 1999; 28(2):319-326. 

 48.  SAS Institute Inc. SAS/STAT 9.1  user's guide. SAS institute Inc.: Cary: NC, 
2004. 

 49.  Ukoumunne OC. A comparison of confidence interval methods for the 
intraclass correlation coefficient in cluster randomized trials. Stat.Med. 2002; 
21(24):3757-3774. 

 50.  Localio AR, Berlin JA, Ten Have TR. Longitudinal and repeated cross-
sectional cluster-randomization designs using mixed effects regression for 



Chapter III.  Performance of analytical methods for CRT with count data 86 

binary outcomes: Bias and coverage of frequentist and Bayesian methods. 
Statistics in Medicine 2006; 25(16):2720-2736. 

 51.  Klar N, Donner A. Current and future challenges in the design and analysis of 
cluster randomization trials. Statistics in Medicine 2001; 20(24):3729-3740. 

 52.  Guittet L, Ravaud P, Giraudeau B. Planning a cluster randomized trial with 
unequal cluster sizes: practical issues involving continuous outcomes. 
BMC.Med.Res.Methodol. 2006; 6:17. 

 53.  Heo M, Leon AC. Performance of a mixed effects logistic regression model 
for binary outcomes with unequal cluster size. Journal of Biopharmaceutical 
Statistics 2005; 15(3):513-526. 

 54.  Heo M, Leon AC. Comparison of statistical methods for analysis of clustered 
binary observations. Statistics in Medicine 2005; 24(6):911-923. 

 55.  Gunsolley JC, Getchell C, Chinchilli VM. Small Sample Characteristics of 
Generalized Estimating Equations. Communications in Statistics-Simulation 
and Computation 1995; 24(4):869-878. 

 56.  Mancl LA, DeRouen TA. A covariance estimator for GEE with improved 
small-sample properties. Biometrics 2001; 57(1):126-134. 

 57.  Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance 
matrix estimation. Journal of the American Statistical Association 2001; 
96(456):1387-1396. 

 58.  Lu B, Preisser JS, Qaqish BF, Suchindran C, Bangdiwala S, Wolfson M. A 
comparison of two bias-corrected covariance estimators for generalized 
estimating equations. Biometrics 2007; 63(3):935-941. 

 59.  Lipsitz SR, Fitzmaurice GM, Orav EJ, Laird NM. Performance of Generalized 
Estimating Equations in Practical Situations. Biometrics 1994; 50(1):270-278. 

 60.  Hin LY, Wang YG. Working-correlation-structure identification in 
generalized estimating equations. Stat.Med. 2009; 28(4):642-658. 

 61.  Evans BA, Feng ZD, Peterson AV. A comparison of generalized linear mixed 
model procedures with estimating equations for variance and covariance 
parameter estimation in longitudinal studies and group randomized trials. 
Statistics in Medicine 2001; 20(22):3353-3373. 

 62.  Hinde J, Demetrio CGB. Overdispersion: Models and estimation. 
Computational Statistics & Data Analysis 1998; 27(2):151-170. 

63.  Lee Y, Nelder JA. Two ways of modelling overdispersion in non-normal data. 
Journal of the Royal Statistical Society Series C-Applied Statistics 2000; 
49:591-598. 

 
 



 
 
 
 
 
 
 
Chapter IV:   
 
 

Point and Interval estimation of the between-
cluster coefficient of variation for overdispersed 

counts in cluster randomized trials  
 
 
Gonzalo Durán Pacheco1, Jan Hattendorf1, John M. Colford, Jr.2, Daniel Mäusezahl1, Thomas 

Smith3

 

 
1 Department of Public Health and Epidemiology, Interventions and Health Systems Unit, Swiss 

Tropical Institute 
2 Division of Epidemiology, School of Public Health, University of California, Berkeley (UCB), 

California 
3 Department of Public Health and Epidemiology, Biostatistics and Epidemiology Unit, Swiss Tropical 

Institute, P.O. box 4002 Basel, Switzerland. 
 
 
 
This manuscript is prepared to be submitted to: Biometrics 

 
 
 
 
 
 
 
 
 
 



 
 
 



Chapter IV.  Estimation of the between-cluster coefficient of variation 89 

 

SUMMARY 

 

 

We studied the estimation of the between-cluster coefficient of variation of 

overdispersed counts, as a measure to assess clustering in community randomized 

trials. Four methods for obtaining point estimates and three methods for interval 

estimation were assessed via simulation under different sample sizes and levels of 

clustering. The point estimating methods were: i) a cluster-level coefficient of 

variation (CL), ii) one-way random effects ANOVA,  iii) generalized linear mixed 

models (GLMM) iv)  Bayesian hierarchical models (Bayes-HM), the last two 

assuming Negative Binomial distribution. The interval estimating methods were: i) 

Bootstrap CI, ii) Generalized CI and iii) Bayes-HM. GLMM and ANOVA both 

provided unbiased point estimates although ANOVA was more unstable under high 

clustering. CL heavily overestimated the between-cluster variation when it is lower or 

equal to 25%. Bayes-HM provided slight upward bias in settings without clustering. 

Bayes-HM performed best in terms of interval estimation. We illustrate and discuss 

the application of these methods using data of a community randomized trial of solar 

water disinfection in rural Bolivia. 

 

 

Keywords:  Between-cluster coefficient of variation, confidence intervals, 

community-cluster randomized trials, Negative Binomial data. 
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1. INTRODUCTION 

 

 

In randomized controlled trials of health interventions it is sometimes necessary to 

allocate interventions by groups (clusters) rather than at the individual level. Typical 

situations include i) interventions aimed at cluster level (communities, hospitals, 

general practices, schools, etc.), ii) behavioural change is desired at  community level, 

iii) a need to avoid contamination in unblinded studies, iv) logistical convenience, 

among others. These trials are known as Cluster Randomized trials (CRTs) [1]. 

 

In CRTs, the similarity of individuals’ responses within the same cluster invalidates 

the assumption of independence of standard statistical methods [2]. Sample size 

calculations and statistical analysis would therefore require adjustment for intracluster 

dependence to avoid an elevated type 2 error at the design stage or an inflated type 1 

error at the analysis stage [3].  

 

The common measures of clustering in CRTs are the intraclass (intracluster) 

correlation coefficient (ρ) and the between-cluster coefficient of variation (CVc). 

Methods for point and interval estimation of ρ for continuous and binary data have 

been studied and critically reviewed [4-12]. Much less literature exists for CVc, 

though it is generally easier to understand for field epidemiologists. Methods for 

determining sample size using CVc as the measure of clustering have been described 

[13]. From the analytical point of view, when modelling count data by random-effects 

models, the square root of the cluster-effect variance approximately equals CVc when 

the log link function is used. In terms of interval estimation, a number of studies 

present computationally cumbersome methods for confidence intervals (CI) of 

coefficient of variations, assuming normally distributed data [14, 15]. A much simpler 

approach based on the concept of generalized variables can be applied [16, 17].     

 

In this paper we study the performance of methods for estimating CVc for CRTs with 

overdispersed counts, motivated by the analysis of a community randomized trial of 

solar water disinfection in rural Bolivia. We compare: i) the  coefficient of between-

cluster variation of cluster-level rates [13], ii) the ANOVA variance component 
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estimator [5], iii) GLMM of Negative Binomial count data and the iv) variance 

component of Bayes-HM. We further assess interval estimation of CVc linked to the 

methods above by applying i) Bootstrapping, ii) the CIs of generalized pivots and iii) 

Bayesian credible regions. Performance is assessed via Monte Carlo simulation with 

different sample sizes and degrees of clustering. 

 

We introduce first the motivating example. Notation and the details of the methods 

applied throughout the paper are given in section 3 as well as a description of the 

simulation study. The findings are reported in section 4 together with the analysis of 

the example. Further connotations and conclusive remarks are commented in section 5.    

 

 

2. MOTIVATING EXAMPLE  

 

 

Solar drinking water disinfection (SODIS) is a low-cost, point-of-use water 

purification method that uses solar energy to inactivate waterborne pathogens. The 

method has been proven to be efficacious under lab conditions [18, 19], but evidence 

of its effectiveness in populations consuming contaminated water is scarce [20]. A 

community randomized trial (BoliviaWET) was conducted in 22 communities in rural 

Bolivia to evaluate the effect of a SODIS promotion campaign in reducing diarrhoea 

among children under 5 years of age [21]. Communities were pair-matched by 

baseline diarrhoeal incidence and the intervention was randomly allocated to one 

community within each pair. Diarrhoea was recorded daily by a surveillance 

monitoring system for one year. In this paper we analyze the effects of the 

intervention on the primary outcome expressed as the number of episodes per child 

(Y) per time at risk (t) and estimate the between-cluster variation ignoring pair-

matching. We use the data of the trial for illustration purposes only.      
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3. METHODS 

 

3.1. Estimating the between-cluster coefficient of variation CVc 

 

We denote Yijl the outcome of a CRT observed on individual l (l=1,…,nij), from 

cluster j (j=1,…,ki), receiving the intervention i (i=1,2). Denoting the population 

cluster-level means by μj and the cluster variance V(μj), the between-cluster 

coefficient of variation is defined as:  

 

μ

μ )( j
c

V
CV =     (1) 

 

where μ = E(μj).   A common value of CVc is assumed for both trial arms.  

 

3.1.1. Estimating CVc from the cluster-level rates.  

 

Let us assume that the outcome variable takes values 0, 1, 2,…, with different periods 

of observation tijl among individuals. Defining the cluster-level rates as 

 

∑∑
==

=
ijij n

l
ijl

n

l
ijlij tYr

11
,      (2) 

 

a first method of estimation [13] considers the cluster variance:  
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3.1.2. The one way random-effects ANOVA estimator.  

 

The one way random-effects model of the individual event rates Xjl =Yjl/tjl is,  

 

jljjl rX εμ ++=     (5) 

 

with μ as the population mean, rj the random effect of cluster j ~ (0, ) and ε2
rσ jl the 

random effect of individual l from cluster j ~ (0, ). r2
eσ j and εjl are usually assumed to 

be normally distributed, although this is not important for variance component point 

estimation [22]. When applied to event rates of overdispersed counts, this approach 

was reported to produce consistent point estimates of CVc [23].  

 

The between-cluster variance is estimated form the corresponding ANOVA table as:  

 

0

2ˆ
n

MSMS ec
r

−
=σ                           (6) 

 

where MSc is the between-cluster mean squares, MSe, the within-cluster mean squares 

and n0 a weighted mean cluster size. The full procedure including some interval 

estimation methods for ρ are described elsewhere [5]. The coefficient of variation 

results thus from the ratio of the between-cluster variance over the general mean 

estimate:  

 

μ
σ

ˆ
ˆ3 r

cCV = .     (7) 

 

3.1.3. Random-effects models for count data.  

 

The random-intercepts model for the intervention effect on the expected number of 

events μjl of Yjl in a CRT has the following form:  
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( ) ( ) jjjljl xt νββμ +++= 0loglog ,   (8) 

 

where μjl is the mean of individual l (l = 1,…,nj) from cluster j (j = 1,…,K); β0 the log-

mean at the control group (xj = 0), νj the random effect of cluster j, νj ~ N(0, ); β 

the effect of the intervention, as the log-means (intervention-over-control) relative rate 

(RR), x

2
cσ

j the intervention group of cluster j, and tjl the length of individual exposure. 

Note that the cluster variance is produced at the log scale, that is V(log(μj))= . 

From the first-order Taylor expansion of μ

2
cσ

j around μ, we obtain: 
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i.e. the CVc is approximately equal to the square root of the variance component of the 

cluster effect: 

   

ccCV σ≅4 .              (10) 

 

Two distributional assumptions will be considered for count data: 

 

1) Poisson distributed counts, Yjl ~ Poi(μjl), with variance function V(Yjl) = φv(μjl) =μjl 

where φ is assumed to be 1; i.e. the mean equals the variance, a property also known 

as equidispersion that rarely holds in real practice.  

 



Chapter IV.  Estimation of the between-cluster coefficient of variation 95 

2) Negative Binomial (NB) distributed counts, Yjl ~ NB(s, μjl) with a variance 

function ( )2)()( jljljljl svYV μμφμφ +== , where φ is assumed to be 1 and s is the NB 

overdispersion parameter [24].  

 

We consider two alternative approaches for parameter estimation of random-effect 

models:  

 

i) Maximum-likelihood based methods (Restricted Pseudo Likelihood method in SAS 

GLIMMIX). Estimates of the model parameters can be obtained by solving the 

integrals of the likelihood function over the random-effects. We apply the Taylor’s 

series (linearizations) approximations [25] as implemented in the GLIMMIX 

procedure in SAS v9 [26] and denote it henceforth as GLMM.    

 

ii) Bayesian estimation via a Markov chain Monte Carlo algorithm. For a CRT with 

count outcome Yjl ~ Poi(μjl) or Yjl ~ NB(s, μjl) and a model log(μjl) = log(tjl) + β0 + βxj 

+ νj; νj ~ N(0, ) as specified in (8), the posterior probabilities P(β2
cσ 0, β, ,s | Y) are 

calculated by updating the likelihood f(Y |β

2
cσ

0, β, ,s) with the prior P(β2
cσ 0, β, ,s) 

using Markov chain Monte Carlo simulation (MCMC) in the WinBugs Software v1.4  

[8].  

2
cσ

       

3.2. Interval estimation of the between-cluster coefficient of variation CVc 

 

3.2.1. Bootstrap Confidence Intervals. 

 

Bootstrapping is a set of resampling simulation techniques that provide accuracy 

measures to statistics when their parametrical assumptions seem questionable. For a 

detailed discussion of the topic, particularly applied to medical statistics we refer to 

[27]. The method has been also applied in the context of clustered data [6]. In this 

paper we apply the non parametric bootstrap, with CI obtained from the bootstrap 

distribution of a large number of re-samples, according to the following algorithm: 

 

1. Sample K clusters randomly with replacement from the original dataset.  

2. Calculate the CVc with one of the methods above. 
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3. Repeat 1 and 2 a large number of times, to obtain an estimate of the bootstrap 

distribution. 

 

The CI can be calculated by a number of methods [27]. We apply the non-pivotal 

percentile method, a technique that uses the α/2 and the 100(1 – α/2) percentiles of 

the bootstrap distribution as the lower and upper confidence limits respectively. Its 

continued popularity among practitioners compared to other non parametric 

bootstraps is owed to its simplicity and that it is transformation respecting; i.e. when 

applied to transformed statistics, the back transformed limits to the original scale 

provide identical limits to those yielded by the untransformed statistics.  

    

3.2.2. Bayesian posterior credible intervals.  

 

The MCMC provides the marginal posterior distribution of σc from which the interval 

limits are obtained as the α/2 and 100(1 – α/2) percentiles. A comprehensive 

discussion regarding the choice of (informative/uninformative) priors for between-

cluster variation parameters can be found elsewhere [8, 9] 

 

3.2.3. Confidence intervals of generalized pivots.  

 

The concept of generalized pivots, generalized CI and generalized P-values has been 

developed for a variety of statistics of practical importance where the standard 

solutions for CI and hypothesis testing may not exist [16, 17, 28, 29]. The method 

consists of generating a pivotal function of a statistics of interest, with a distribution 

free of unknown parameters. 

 

Consider model (5) let us define a pivotal quantity for  based on the ANOVA 

elements and properties as outlined in [16]: 

2
eσ

 
22 ~ KNeeSSV −= χσ               (11) 

 

with SSe as the within-cluster sum of squares. The pivot  is hence defined as: 2
e

R
σ
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and solving (13) for  and replacing  by , the pivot of  is  2
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with SSr as the between-cluster sum of squares. The pivotal quantity of μ is: 
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where ( )22
.. /)( re nKXZ σσμ +−=  ~ N(0, 1). 

 

Finally, the pivot for the between-cluster coefficient of variation is:  
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The computing algorithm is the following: 

 

1. Compute observed versions of SSe, SSr and ..X   

2. Generate V ~ χ2
N-K, Q ~ χ2

K – 1 and Z ~ N(0, 1). 

3. Compute  from (12),  from (14) and  from (15).  2
e

R
σ 2

r
R

σ μR

4. Compute RCV from (16). 

5. Repeat 2 – 4 a large number of times, to obtain the sampling distribution of 

RCV. 

 

The α/2 and 100(1 – α/2) percentiles of the distribution of RCV would correspond to 

the lower and upper bounds of RCV. A version of the pivot RCV for unbalanced clusters 

can be also applied [16].  

 

3.3.  Simulation 

 

To assess the methods’ performances, random data were generated for three sample 

sizes: K = (10, 20, 40 total number of clusters), four levels of clustering (σc = 0, 0.10, 

0.25 and 0.40) and a fixed cluster size of 30 individuals per cluster. A different 

follow-up time per individual was assumed, being sampled (tjl) from a negative 

skewed distribution similar to the one observed in the motivating example above: 

skewness -1.4, mean 290 and s.d. 100, through a power transformation: tjl = 80(xjl
1/4 ) 

where x ~ N(200,100). The control-group event rate θ was set at 5/365 (events per 

days at risk), and a protective efficacy of 30% was assumed implying a RR of 

exp(β)= 0.70. A cluster effect δj was set to act multiplicatively on the mean and 

whose logarithm was normally distributed with mean 0 and s.d. = σc. The number of 

events Yjl were produced from a NB distribution with mean θtjlδj and θtjlδjexp(β) for 

control and intervention clusters respectively and a fixed overdispersion of s = 0.5. 

Five hundred datasets were generated for each of the 3 × 4 combinations of the 

defined parameters using different seed numbers. 
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3.4.   Implementation 

 

The CVc was estimated for each generated dataset by: i) the cluster-level rates method 

following equations (2) – (4) (CL); ii) the ANOVA method outlined in (6) and (7) and 

implemented in PROC MIXED of SAS v9.1 [30]; iii) GLMM as implemented in the 

GLIMMIX procedure of SAS v9.1 [26] following model (8) and assuming a NB 

distribution. 

 

A Bayesian hierarchical model (Bayes-HM) specified according to model (8) was 

applied to a random subset of 200 datasets (the high computational demands 

precluded analysing all 500 datasets by this method). The outcome Y was assumed 

NB distributed, uninformative priors were used: β0 ~ N(0, 106), β ~ N(0, 106),  ~ 

IG(0.001, 0.001), s ~ Γ(0.001,0.001) (IG=Inverse Gamma distribution). A SAS-

WinBugs interface was written to analyse the replicate datasets per arrangement in 

SAS. Model convergence was previously assessed in WinBugs by running two chains 

with dispersed initial values throughout the parameter space and comparing the 

between and within chain variation in sample datasets for each of the 12 situations. 

Convergence was achieved before 5,000 iterations, but 15,000, 10,000 and 7,000 

iterations after 1,000 burn-in were implemented in the interface for K = 10, 20 and 40 

respectively. The posterior 2.5% and 97.5% quantiles are reported as the intervals (CI 

for simplicity) and the median as the point estimate. 

2
cσ

 

The 500 datasets were used for the bootstrap method. One thousand bootstraps were 

run per dataset. Re-sampling was applied at the cluster level, retaining the 

observations of all subjects in the re-sampled clusters as recommended for cluster 

designs [6]. The CVc was then computed for each bootstrap sample by methods i) – 

iii). The 95% CI’s were finally obtained as the 2.5 and 97.5 percentiles of the 

bootstrap distribution.  

 

The generalized CIs were computed following the computing algorithm outlined in 

section 3.2.3. 2500 random values for the variates V ~ χ2
N-K, Q ~ χ2

K – 1 and Z ~ N(0, 

1) were generated for each of the 500 datasets. The 95% confidence limits were 

calculated as the 2.5 and 97.5 quantiles of the sampling distribution of the pivot RCV. 
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The point estimation methods were compared in terms of the bias distribution defined 

as the difference between the underlying CVc and the observed value. The Interval 

estimation methods were compared through: 1) coverage probabilities, estimated as 

the proportion of intervals containing the true CVc and 2) The interval width (mean 

and c.v.) as the difference between the upper and lower limits.  The programs for data 

simulations and analysis were written in SAS v9.1 and WinBugs v1.4. 

 

 

4. RESULTS 

 

Simulations 

  

Point estimation 

 

The distribution of the point estimates of CVc by the four corresponding methods is 

displayed in Figure IV.1. A clear distinction between the cluster-level and the 

individual-level methods can be appreciated. The CL approach markedly 

overestimated CVc particularly when σc ≤ 0.25. From the individual-level methods, 

Bayes-HM showed upward biased estimates when σc = 0 although visibly lower bias 

than CL. ANOVA and GLMM yielded similar results with CVc estimates around the 

expected σc. All the methods seem to slightly underestimate CVc in small sample size 

and high clustering (K = 10, σc = 0.40).   

 

The anticipated effects of K and σc on the level of variation of CVc point estimates 

were observed. High dispersed estimates were related to either high between-cluster 

variability or small samples, while more stable estimates were associated to large 

samples or non correlated data. However, the underlying level of between-cluster 

variance caused more instability than K, as rather unstable estimates were obtained by 

all the methods when σc was 0.4. Among the four methods, Bayes-HM provided CVc 

estimates with a visibly lower variance when σc ≤ 0.10 and similar to GLMM when σc 

≥ 0.25. ANOVA reported similar efficiency than GLMM but somewhat lower when 

σc ≥ 0.25 (Figure IV.1).  
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Figure IV.1: Between-cluster coefficient of variation (CVc) by 4 point estimating methods, 

applied to 200 simulated datasets per combination of number of clusters (K), between-cluster 
variation (σc). 

 
 
 
Interval estimation 

 

Figure IV.2 depicts the coverage proportions of the interval estimating methods: the 

percentile bootstrap applied to the ANOVA (bootstrap-ANOVA) and GLMM 

(bootstrap-GLMM) point estimates, the generalized pivot CI (GP) and the coverage of 

the Bayesian credible region. Results from CL are not given because of its highly 

biased point estimates.  

 



Chapter IV.  Estimation of the between-cluster coefficient of variation 102 

Only Bayes-HM’s credible region presented coverage around the nominal 95%, 

except when σc = 0, the scenario with reported upward bias. Bayes-HM’s coverage at 

σc = 0 was hence 0 regardless of K. Bootstrap-ANOVA and bootstrap-GLMM 

performed almost identically in all the settings, providing in general inadequate 

coverage. GP yielded even lower coverage than the bootstraps when σc ≤ 0.10, but 

around nominal when σc = 0.40. Contrary to our expectations, when σc ≤ 0.10, the 

coverage of both bootstraps and that of GP, diminished with the increase of sample 

size. This result is explained by an upwardly biased sampling (bootstrap or pivot) 

distribution, whose centre was generally located above the expected σc when σc ≤ 

0.10 (Table IV.1). A reduction of the interval width when K was increased, reduced 

the chance that the interval included the true σc (Table IV.1). 

 

Figure IV.2: Coverage proportions of CVc interval estimating methods at different: between-
cluster variations σc and total number of clusters K. 

 
 

The bootstrap yielded on average the narrowest intervals but also very variable ones. 

Bayes-HM’s interval widths were narrower than GP and approached bootstrap-

ANOVA and bootstrap-GLMM in large samples. Bayes-HM had more stable widths 

than the bootstraps (Table IV.1). With respect to σc and K, the interval widths 

behaved similarly in all the methods. Wider intervals were obtained with high σc’s or 

small K, while narrower CI were related to small σc’s and large K. 
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Table IV.1: Centers of the sampling distributions across replicate datasets of four 

corresponding methods for interval estimation of the between-cluster coefficient of 
variation (CVc) and mean widths (and cv) of 95% CIs at different sample sizes (K) 

and level of clustering (σc). 

    
Centre of the Sampling† 

Distribution   
Interval Width 

σc K  
Method  Mean  (Q1 , Q3)  Mean cv 

           
0 10 Bootstrap-ANOVA  0.07  (0.03, 0.11)  0.16 40.4 
  Bootstrap-GLMM  0.07  (0.03, 0.11)  0.16 40.3 
  Generalized Pivot  0.12  (0.07, 0.17)  0.31 28.3 
  Bayes-HM  0.08  (0.06, 0.09)  0.22 23.1 
           
 20 Bootstrap-ANOVA  0.08  (0.05, 0.11)  0.14 23.5 
  Bootstrap-GLMM  0.08  (0.05, 0.11)  0.15 23.9 
  Generalized Pivot  0.11  (0.06, 0.14)  0.22 19.0 
  Bayes-HM  0.07  (0.06, 0.08)  0.14 22.2 
           
 40 Bootstrap-ANOVA  0.09  (0.07, 0.11)  0.12 17.7 
  Bootstrap-GLMM  0.09  (0.07, 0.11)  0.12 17.5 
  Generalized Pivot  0.11  (0.09, 0.14)  0.17 11.7 
  Bayes-HM  0.06  (0.05, 0.07)  0.10 20.1 
           

0.1 10 Bootstrap-ANOVA  0.11  (0.06, 0.15)  0.20 33.4 
  Bootstrap-GLMM  0.11  (0.06, 0.15)  0.20 33.8 
  Generalized Pivot  0.16  (0.10, 0.21)  0.34 23.7 
  Bayes-HM  0.11  (0.07, 0.13)  0.26 28.7 
           
 20 Bootstrap-ANOVA  0.12  (0.09, 0.15)  0.17 20.9 
  Bootstrap-GLMM  0.12  (0.09, 0.15)  0.17 20.9 
  Generalized Pivot  0.15  (0.12, 0.19)  0.24 12.7 
  Bayes-HM  0.10  (0.07, 0.12)  0.18 21.3 
           
 40 Bootstrap-ANOVA  0.13  (0.11, 0.15)  0.12 20.4 
  Bootstrap-GLMM  0.13  (0.11, 0.15)  0.12 20.3 
  Generalized Pivot  0.15  (0.13, 0.18)  0.16 8.8 
  Bayes-HM  0.09  (0.06, 0.11)  0.13 18.7 
           

0.25 10 Bootstrap-ANOVA  0.24  (0.17, 0.30)  0.30 27.4 
  Bootstrap-GLMM  0.24  (0.18, 0.31)  0.30 27.0 
  Generalized Pivot  0.30  (0.24, 0.37)  0.48 26.3 
  Bayes-HM  0.23  (0.14, 0.31)  0.41 23.7 
           
 20 Bootstrap-ANOVA  0.26  (0.22, 0.29)  0.19 28.4 
  Bootstrap-GLMM  0.26  (0.22, 0.29)  0.18 21.9 
  Generalized Pivot  0.29  (0.25, 0.33)  0.29 15.6 
  Bayes-HM  0.24  (0.20, 0.28)  0.26 10.0 
           
 40 Bootstrap-ANOVA  0.26  (0.23, 0.29)  0.13 21.8 
  Bootstrap-GLMM  0.26  (0.23, 0.29)  0.12 16.8 
  Generalized Pivot  0.28  (0.25, 0.31)  0.19 10.9 
  Bayes-HM  0.24  (0.21, 0.28)  0.17 7.5 
           

0.4 10 Bootstrap-ANOVA  0.36  (0.28, 0.43)  0.39 33.0 
  Bootstrap-GLMM  0.37  (0.29, 0.44)  0.38 27.7 
  Generalized Pivot  0.44  (0.34, 0.54)  0.70 44.2 
  Bayes-HM  0.37  (0.27, 0.45)  0.54 23.4 
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 20 Bootstrap-ANOVA  0.40  (0.34, 0.45)  0.25 33.3 
  Bootstrap-GLMM  0.39  (0.34, 0.44)  0.23 22.4 
  Generalized Pivot  0.44  (0.38, 0.50)  0.42 26.3 
  Bayes-HM  0.40  (0.34, 0.45)  0.33 14.1 
           
 40 Bootstrap-ANOVA  0.40  (0.35, 0.44)  0.23 59.8 
  Bootstrap-GLMM  0.40  (0.36, 0.43)  0.16 17.7 
  Generalized Pivot  0.43  (0.38, 0.47)  0.27 19.8 
  Bayes-HM   0.39   (0.35, 0.43)   0.22 10.4 

† Bootstrap distribution, pivot distribution and posterior distribution are referred to for the bootstrap, generalized 
pivot and Bayes-HM methods respectively.  

 
 

Analysis of the motivating example 

 

The BoliviaWET trial was powered to estimate a 33% reduction in the diarrhoea 

incidence rate, assuming 5 episodes per child per year in the control group. Because 

no prior data existed regarding the extent of between-cluster variation in the study site, 

sample size calculations were evaluated assuming a range of 0.1 – 0.25 of CVc from 

similar community intervention trials [13]. The sample size calculation suggested that 

at least 18 communities with 10 persons-year of observation per community were 

sufficient to estimate the desired effect, with a power of 80%, a significance of 0.05 

and assuming a CVc = 0.20. Anticipating a drop-out of at least 2 communities and 

possible individual drop-outs, the final sample size was adjusted to 22 communities 

with 30 persons-year of observation [21] .  

 

The estimation of CVc after data collection, by the point and interval estimating 

methods is summarized in Table IV.2. For Bayes-HM, 45,000 iterations after 2,000 

burn-in were applied.  

 

Two situations were assessed to investigate the effect of overdispersion on CVc:  

 

i) Specification of Poisson and NB distributions for the GLMM and Bayes-HM 

analyses.  

ii) Data were analyzed with or without the exclusion of outlier observations. Outliers 

were defined as those having the Pearson’s standardized residuals greater than 

|2.5| for the model with the best fit. This left a remainder of 691 children (Table 

IV.2).  
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Complete dataset 

 

The ratio of observed and expected variation in the model φ, suggests that the NB 

model has a substantial better fit than the Poisson models. Estimates of the between-

cluster standard deviation and the general mean are reported next. Log scaled values 

are presented for Poisson and NB analyses, while incidence rate-scaled for the other 

methods. The resulting CVc point estimates are later provided.  

 

The cluster-level approach produced a high CVc point estimate consistent with the 

simulations results, in which CL visibly overestimated the true value. Note that 

GLMM and Bayes-HM fits, assuming Poisson errors, produced similarly elevated CVc, 

greater than the overdispersion-corrected Poisson and the NB estimates. This suggests 

that the Poisson assumption may also lead to upwardly-biased CVc, due to a 

reallocation of the outcome overdispersion to the between-cluster variance.  

 

GLMM models gave similar results to their Bayesian counterparts. In contrast to what 

was found during the simulations (Figure IV.1), GLMM with NB errors gave different 

results from the ANOVA. The ANOVA was the only method that produced CVc = 0, 

due to truncation of the negative variance component, resulting from a negative 

difference between MSc and MSe (see equation (6)). This was because highly 

influential observations inflated the MSe. When the outliers were excluded, a 

substantial 18.7% of between-cluster variation was obtained by this method.  

 

The CVc 95% CIs  were broad for all methods. The two approaches based on the one-

way random-effect model (the bootstrap-ANOVA and GP) provided 0 as the lower 

limit. The bootstrap-GLMM-Poisson produced narrow intervals, potentially biased 

and therefore with a higher risk of not including the true CVc. The Bayes-HM, which 

showed the best performance during the simulations, yielded also wide intervals.  
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Outliers excluded 

 

Exclusion of outliers improved model fit for Poisson models and gave almost perfect 

fit when NB errors were assumed. Both CVc point estimates and CI widths of all 

methods were reduced, compared to the analysis of the full dataset, except for the 

ANOVA CVc as highlighted before. The point estimates became more similar across 

the methods and the pattern of interval widths closely resembled the one in the 

simulation setting to which this trial best matched (Table IV.2).      

 

The evaluation of this example supplied suggestive insight regarding the influence of 

overdispersion on the between-cluster variance estimation. First, potential upward 

bias might be expected if overdispersion is not accounted for; i.e., the extra Poisson 

variation may be artificially allocated to the between-cluster variance. Second, 

ANOVA-based approaches (including GP) might not be robust to the presence of 

extreme observations for the random-effects estimation being susceptible to produce 

anomalous results. Third, extreme observations may similarly influence the NB 

between-cluster variance although in less extent than the Poisson models. In case of 

bias, they could be, however, considered conservative estimates. 
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Table IV.2: Point and Interval estimation of the between-cluster coefficient of variation (CVc) of the BoliviaWET trial with and without the 
exclusion of outliers, and assuming Poisson or Negative Binomial distributed counts. 

 Complete dataset, N=725 
  Random-effects models for count data  

 Poisson  Negative Binomial Parameter 
Cluster-

level-
Bootstrap 

ANOVA-
Bootstrap 

General. 
Pivots 

 
GLMM-

Bootstrap 
GLMM2†-
Bootstrap Bayes-HM 

 
GLMM- 

Bootstrap Bayes-HM 

φ  -  -  -  4.74 4.95  -  1.28  - 
σr | σc 0.0033 0.0000 0.0023  0.324 0.195 0.330  0.270 0.271 

μ 0.0107 0.0151 0.0150   -  -  -   -  - 
CVc (%) 30.6 0.0 15.4  32.4 19.5 33.0  27.0 27.1 

CI of  CVc (20.6, 42.1) (0.0, 46.4) (0.0, 55.2)   (24.0, 39.8) (11.9, 35.0) (23.3, 48.7)  (16.9, 40.7) (10.9, 46.4) 
CI width 21.4 46.4 55.2   15.8 23.1 25.4   23.79 35.5 

           
 Outliers excluded, N=691 

  Random-effects models for count data  

 Poisson  Negative Binomial Parameter 
Cluster-

level-
Bootstrap 

ANOVA-
Bootstrap 

General. 
Pivots 

 
GLMM-

Bootstrap 
GLMM2†-
Bootstrap Bayes-HM 

 
GLMM- 

Bootstrap Bayes-HM 

φ  -  -  -  2.62 2.66  -  1.02  - 
σr | σc 0.0023 0.0018 0.0019  0.262 0.195 0.163  0.195 0.163 

μ 0.0088 0.0096 0.0096   -  -  -   -  
CVc (%) 26.3 18.7 19.9  26.2 19.5 16.3  19.5 16.3 

CI of  CVc (18.5, 34.0) (12.7, 29.0) (2.2, 35.7)  (20.4, 32.0) (11.9, 35.0) (17.8, 40.0)  (13.7, 29.9) (3.8, 33.2) 
CI width 15.5 16.2 33.5   11.6 23.1 22.3   16.216 29.4 

φ = Overdispersion parameter, estimated as the generalized Pearson chi-square statistics 
σr = outcome scaled between-cluster standard deviation. (reported for the non GLMM or Bayesian models). 
σc =log-scaled between-cluster standard deviation. (reported for GLMM models and Bayes-HM).  
μ=Estimate of the general mean. 
† GLMM2 = GLMM with standard errors corrected (inflated) by φ 
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5. DISCUSSION 

 

 

Reporting ρ or CVc estimates and the computational details are important in CRTs. 

They facilitate interpretation, and provide information for the design of further trials 

[31]. In this paper we considered the between-cluster coefficient of variation (CVc) as 

the measure to assess clustering in CRTs with overdispersed counts. Point and interval 

estimation methods of CVc were studied via simulation under clustering level and 

sample size conditions similar to those of community-randomized trials.  

 

The CL approach illustrated in [13] for sample size calculation can substantially 

overestimate the true between-cluster variance in overdispersed counts when the true 

CVc ≤ 0.25. Bayes-HM also showed upward bias in settings without clustering (σc = 

0), and similar bias with σc = 0.05 [23], but proved unbiased and efficient when σc ≥ 

0.10. We may therefore expect the medians of the posterior distribution of σc to over-

report the clustering level when the between-cluster variation is lower than 10%. 

However, this bias is less than that of the CL approach and may be considered 

conservative rather than extreme.  

 

In general, ANOVA and GLMM behaved similarly well regarding CVc point 

estimation, although ANOVA generated slightly less efficient estimates in settings 

with moderate to highly correlated data (σc ≥ 0.25). In addition, the efficiency of both 

methods was seen to decrease in simulations with greater overdispersion (results not 

shown). In the analysis of the BoliviaWET data, ANOVA, unlike the other methods, 

suggested there was no between-cluster variation. Additional simulations in which a 

few observations were replaced by extreme values similar to the ones observed in the 

BoliviaWET data confirmed that this method can be markedly affected by influential 

data points.    

 

In terms of interval estimation, the Bayesian credible region had the best performance 

among the methods studied. Its only disadvantage was related to the observed bias in 

the posterior distribution when σc = 0. Otherwise, Bayes-HM provided coverage 
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around the nominal 95% in all settings, and interval widths intermediate between the 

bootstraps’ and the GP’s.  

 

Besides Bayes-HM, GP was the only attaining close to nominal coverage but just 

when σc = 0.40, although with rather wide intervals. The poor performance of the 

percentile bootstrap (applied both to ANOVA and GLMM) and the GP methods, was 

due to their corresponding bootstrap/pivot distributions being centred away from the 

expected parameter value when σc ≤ 0.10. The interval limits extracted from the 

percentiles of such distributions are clearly misleading as long as the underlying 

between-cluster variability is small. Other authors have commented on the percentile 

bootstrap low coverage and potential bias, proposing alternative procedures or 

improvements [6, 27]. We assessed this method nonetheless because of its high 

popularity among practitioners; note that it is implemented in Stata along with other 

conventional bootstraps.  

 

The GP approach has been successfully applied in the context of other quantities 

whose sampling distributions may be unknown [16, 17]. We were able to reproduce 

the very satisfactory findings reported by others when validating our implementation 

tools in simulated clustered data with normal distribution, but were unable to replicate 

those findings in clustered negative binomial data. In this sense, a number of 

normalising transformations were considered and evaluated [32-34]. None of them 

gave a satisfactory approximation to normality owing to the nature of the individual 

rates (NB counts/time); small numbers mostly below 0.1, highly skewed and with a 

prominent mode at 0. The arcsin transformation was the one that best approximated 

the rates to normality but still showed a consistent asymmetry due to the substantial 

number of zeros. An additional disadvantage is that most transformations are not 

transformation respecting, that is, the back conversion of the mean and intervals will 

not correspond to the ones in the original scale. The back transformation will require 

in consequence a bias correction which in some cases, depending on the 

transformation, may not be straightforward.      

 

For point estimation of CVc with overdispersed count data, we consequently 

recommend GLMM and Bayes-HM assuming NB distribution, with the former 
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overcoming the conservative bias of the latter in low clustering settings. Point 

estimation by those methods is based on the extent to which the approximation CVc ≅ 

σc holds. To assess this, we considered ANOVA a comparison method, because of its 

intuitive way of obtaining CVc on the outcome scale (σr/μ). Note that for σr point 

estimation, no individual-level distributional assumption is necessary [22]. ANOVA 

gave CVc values similar to those of σc by GLMM, with a correlation greater than 0.92 

and a change in cσ̂  per unit of change in CVc close to 1 (regression coefficient 0.96), 

indicative of the 1 to 1 relationship. The two approaches tend to differ however, as the 

underlying σc becomes high, where ANOVA began to report lower estimating 

efficiency.  

 

Interval estimation of CVc is a more complex issue. Estimating methods may be based 

on a series of assumptions than may be difficult to fulfil in real practice or impossible 

to prove. We considered, for instance, the random effects to be normally distributed. 

The influence of the misspecification of such distribution has been extensively studied 

[35, 36] and the maximum-likelihood variance estimates were found to be heavily 

biased if the underlying distribution is not normal. As the random-effect variances are 

the only tool to assess the variability of the underlying random-effect distribution, 

biased estimates due to misspecified distributions will not allow for assessing the 

validity of fixed effects structure [36]. Bayes-HM through MCMC, and some 

hierarchical models provide the chance of specifying distributions different than the 

normal [8, 37]. The use of prior information may be considered also an advantage, 

provided reports are available of between-cluster variation in similar studies. Other 

issue regards the difficulty of testing for normality in settings with small number of 

clusters (community randomized trials). Note that sample sizes required to estimate 

the intervention effect, are generally smaller than the ones required for appropriate 

random-effects variance estimation. Considering such implications, we believe Bayes-

HM is a reasonable choice for CVc interval estimation. 

 

This is probably the first study that assessed via simulation methods for point and 

interval estimation of CVc, in situations similar to community randomized trials. We 

assumed overdispersed counts and studied methods attractive among practitioners 

some already existent in standard statistical software or easy to implement. We 
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propose CVc rather than ρ for clustered count data because of the straightforwardness 

in its calculation. As illustrated already, CVc values are ≅ σc, while estimating ρ would 

imply i) the conversion of   to the outcome scale and ii) the estimation of residual 

variance which may depend on the level of overdispersion. We did not investigate 

alternative bootstrap techniques (e.g. bias-corrected, bias-corrected-accelerated, 

bootstrap-t) nor extension or modifications of them. Random-effects estimation from 

more complex designs (e.g. pair-matched, stratified, repeated cross-sectional) was not 

considered. There is still a need to assess the methods performance on situations with 

cluster-size imbalance, to fit other extra-Poisson models, and the effect of adjusting 

for confounders.   

2
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ABSTRACT 

 

This paper describes the association of the vernacular Quechua term k’echalera with 

the symptoms-based standard definition of diarrhoea in rural Bolivian settings. Signs 

and symptoms of diarrhoea as well as k’echalera reports were collected during a 

cluster randomized trial in rural Bolivia. Reports of k’echalera were found to be 

associated with important changes in stool frequency, consistency and occurrence of 

blood and mucus. K’echalera reports were highly related to three types of watery-

stool consistencies from the four applied in field tools. The intermediate milky rice 

stool consistency which fits into the definition of watery stool was not strongly related 

to k’echalera. Mucus in the stool was also associated with k’echalera and its 

occurrence in k’echalera-free days accounted for at least 50% of the possible false 

negatives. Sensitivity and specificity of the term k’echalera was estimated by 

Bayesian methods allowing for both the diarrhoea symptoms and k’echalera reports to 

be subject to diagnosis error. We obtained an average specificity of at least 97% and 

sensitivity of at least 50%. 

 

Keywords: Diagnosis of diarrhoea; caregiver's reports; Quechua vernacular terms; 

K'echalera; rural Bolivia 
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1. INTRODUCTION 

 

Based on a common set of signs and symptoms, diarrhoea is defined as the obvious 

change in the normal stool pattern, characterized by 3 or more watery loose stools in a 

24 h period or 1 or more stools with evident presence of blood or mucus (Baqui et al. 

1991;Jeejeebhoy 1977;Morris et al. 1994;Thapar & Sanderson 2004).  

 

Reports of mothers or caregivers are also used and widely accepted for reporting of 

diarrhoea occurrence in children (Killewo & Smet 1989;Pathela et al. 2006;Ruel et al. 

1997). Vernacular terms are then necessarily employed and morbidity estimates 

calculated from these. The validity of such reports is based on the observation that 

people who regularly care for young children are aware of the actual change in the 

child’s normal habits of stool frequency, volume and consistency (Baqui et al. 1991; 

Morris et al. 1994). The correspondence between mother-defined and symptom-based 

definitions may vary across populations and cultures (Baqui, et al. 1991).   

 

K’echalera is a generic term widely used in Quechua-speaking settings of South 

America (from northern Ecuador, to southern Bolivia). It refers to a change in the 

ordinary stool patterns as a result of an increased volume and frequency of stool with 

simultaneous change of stool consistency. The term has also been adopted as part of 

the folk and Criollo language in urban Spanish-speaking areas in Bolivia (Prudencio 

C.A. 1978) and is used by health and medical staff to assess diarrhoea in rural areas. 

Eleven specific terms (e.g. K’echa Pukay, K’echa K’ellu, K’echa Yuraj) have been 

found to classify gastrointestinal illness by colour, odour and frequency of stool, 

standing k’echalera in general for watery and frequent stool (Hobbins 2004).    

 

This report aims at describing the association of the term k’echalera with the 

symptoms-based standard definition and to estimate the sensitivity and specificity of 

the vernacular definition relative to the international standard.      
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2. METHODS 

 

Data 

 

We use data from a baseline survey and the fist six-months of the post-intervention 

follow-up of a recent community randomized trial on solar water disinfection in rural 

Bolivia (BoliviaWET) (Mäusezahl et al. 2009). Weekly and daily diarrhoeal 

symptoms and occurrence of k’echalera were collected for the eight-weeks baseline 

and the post-intervention follow-up respectively. Mothers or primary caregivers of 

study participants provided data regarding: number of stools during the last 24 hrs, 

stool consistency, presence of blood or mucus as well as k’echalera occurrence. We 

identified local foods to use as stool consistency analogs to standardize our 

measurement in focus group sessions in our study population. We used the Quechua 

versions of the following analogs to measure stool consistency: liquid (water, api), 

semi-liquid (arrope), intermediate (milk rice), semi-solid (mashed potatoes), solid 

(sausage) (Table V.1).   

 

 

Data analysis 

Descriptive and exploratory  

 

The distribution of diarrhoeal symptoms is compared for days with and without 

reported k’echalera. The correspondence among answers to the questionnaire 

concerning: number of stools, consistency of stool, presence of blood and mucus, was 

analysed by a multiple correspondence analysis (MCA) on the Burt matrix (Lebart et 

al. 2000). The association between categories of different variables was 

simultaneously visualized by a scatter plot of the first two factorial axes. Closeness 

between categories of different symptoms should be interpreted as association. 
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Estimating the Sensitivity and Specificity 

 

A variable describing the standard symptom-based definition (std-diarrhoea) was 

defined as the daily passage of at least 3 watery loose stools or at least one stool 

containing blood or mucus. K’echalera reports were contrasted with those of std-

diarrhoea (Table V.2). We assumed that both k’echalera and std-diarrhoea are 

susceptible to diagnostic error. We hypothesize that the report of symptoms may be 

subject to measurement error depending on how knowledgeable the caregiver is in the 

child’s regular patterns of defecation. In addition, cultural norms when reporting to 

the field staff may contribute to reporting bias. Since standard methods of calculating 

diagnostic statistics assume that the “gold standard” method is the truth (an 

assumption that may not reasonably hold in this analysis), we estimate sensitivity  

(Se) and specificity (Sp) using Bayesian methods (Black & Craig 2002;Gustafson 

2005), which allow both metrics – k’echalera and std-diarrhoea – to be measured 

with error.  

 

Informative (beta distributed) priors for the sensitivity and specificity of std-diarrhoea 

(dSe and dSp) were employed. We assumed std-diarrhoea to be highly sensitive and 

specific (mode of dSe and dSp = 0.95) but a 95% chance of being at least 0.8. Provided 

the high observed specificity (Table V.2) and negative predictive value of k’echalera, 

informative (Beta) priors were used for the sensitivity and specificity of k’echalera 

(kSe and kSp). We assumed kSp to have a mode = 0.95 but 95% chances of being at 

least 0.80. More uncertainty was assumed about the knowledge of kSe, and three 

priors were assessed:  

 

i) Full uncertainty (uninformative prior: kSe ~ Beta(1,1) ).  

ii) Vague optimistic prior (mode = 0.7 and  95% chances of being at least 0.3) 

iii) Vague pessimistic prior (mode = 0.3 and  95% chances of being at most 

0.70). 

 

Finally a prior assuming complete ignorance of the prevalence of diarrhoea (λ) was 

also evaluated (λ ~ Beta (1,1)). Figure V.2 displays the assumed prior uncertainty on 
dSe, dSp, kSe and kSp.  
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3. RESULTS 

 

The distribution of the diarrhoeal symptoms is reported in Table V.1 for days with and 

without k’echalera from the pre-intervention study and days with k’echalera from the 

post-intervention follow-up. A day without k’echalera was characterized by a median 

of 1 stool, mostly solid or semisolid (69.8%). Although in much lower proportion, 

blood and mucus were also reported in days without k’echalera. Days with k’echalera 

in the pre-intervention study were characterized by a median of 3 stools during the 

last 24 hrs, a predominant proportion of watery stool (81.1%), and higher frequency 

of blood or mucus presence compared to days without k’echalera. Watery stool was 

defined as one that would take the shape of the container (Clasen et al. 2007;Ejemot 

et al. 2008).  

 

Table V.1: Distribution of the diarrhoeal symptoms for days with and without k’echalera in 
Baseline and a post-intervention study. 

  Pre-intervention Post-intervention 
Days without 

K’echalera 
Days with 
K’echalera 

Days with  
K’echalera Symptom 

N = 4071 N = 281 N = 4412 
Nr of stools, last 24 hrs: median (Q1; Q3) 1 (1; 2) 3 (2; 3) 3 (2, 4) 
    
Stool consistency: n (%)    

Liquid (water) 142 (3.5) 102 (36.3) 2021 (45.8) 
Liquid (api†) 76 (1.9) 48 (17.8) 931 (21.1) 

Semi-liquid (arrope‡) 186 (4.6) 62 (22.1) 912 (20.7) 
Intermediate (milk rice) 177 (4.4) 14 (4.9) 249 (5.6) 

            Watery stool: Total 581 (14.3) 228 (81.1) 4113 (93.2) 
Semi-solid (mashed potatoes) 865 (21.3) 24 (8.5) 102 (2.3) 

Solid (sausage) 1975 (48.5) 16 (5.7) 6 (0.14) 
            Solid or semi-solid: Total 2840 (69.8) 40 (14.2) 108 (2.5) 

Other 1 (0.02) 1 (0.4) 78 (1.8) 
Don’t know 649 (15.9) 12 (4.3) 113 (2.6) 

    
Blood in the stool: n (%) 51 (1.25) 39 (13.9) 666 (15.1) 
Mucus in the stool: n (%) 231 (5.7) 97 (34.5) 1965 (44.5) 

N, n = nr of days 
Pre-intervention data represent once-a-week data 
Post-intervention data represent daily data  
†api: a non-alcoholic thick corn drink  
‡ arrope: a non-alcoholic beverage, quite tick sweet syrup, produced by adding water to Prosopis flour 
(borra).  
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Among the watery loose stools categories, “milk rice” is equally likely in both days 

with and without k’echalera. Similar patterns were observed in the post-intervention 

data with a much larger sample size. Here, the proportion of watery stool was higher 

(93.2%) than in baseline (81.1%), owed to the increase of liquid and decrease of solid 

and semi-solid consistencies (Table V.1). A characterization of days without 

k’echalera was not provided for the post-intervention period, because data on 

diarrhoeal symptoms were collected only if k’echalera was reported. 

 

Figure V.1: Distribution of the modalities of the diarrhoeal symptoms of the questionnaire 
and the reports of k’echalera in a plane conformed by the 2 first factorial axis of a multiple 

correspondence analysis. 

 
 

Figure V.1, displays the distribution of the categories of the four diarrhoeal symptoms 

and the k’echalera status in a factorial space obtained by MCA. The figure reflects 

joint symptoms reported for children on the same day of observation. K’echalera, 

contrasts with no k’echalera by being at the centre of the categories that do 

characterize diarrhoea, i.e.: blood, mucus, the two forms of liquid consistency 

assessed and high number of stools. This suggests that whenever k’echalera was 
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reported, the diarrhoeal symptoms were reported too. Conversely, no k’echalera was 

reported in the absence of blood, mucus, solid or semisolid stools. Interestingly, three 

stools per day and semi-liquid stool consistency modalities fall approximately 

equidistant between the k’echalera and no k’echalera classifications; this suggests 

that these symptom categories are where the two classifications begin to overlap. 

Indeed, from all the semi-liquid reports in days with k’echalera (n=61), 85.5% were 

given when ≥ 2 stools were reported (35.5% correspond to 2 stools). Conversely, 

95.2% (n=183) of the semi-liquid stools in k’echalera-free days were reported when ≤ 

3 stools were reported (14.0%, 34.9% 40.3% for 3, 2 and 1 stools respectively). The 

intermediate milk rice and semisolid stool consistencies fall closer to days without 

k’echalera because both of them were frequently reported together with 2 stools.       

  

Observed sensitivity and specificity 

 

Table V.2 shows the distribution of the days with k’echalera across the combination 

of diarrhoeal symptoms that make the standard definition std-diarrhoea.  

 

Table V.2: Sensitivity and specificity of k’echalera reports compared to the standard 
symptom-based definition of diarrhoea. 

 Std-Diarrhoea 

K'echalera Days with  Days without  

Days with 177 100 

Days without 315 3434 
 

 

Assuming that std-diarrhoea is the gold standard, the observed sensitivity of 

k’echalera was 36% (177/492). The main reason for a low sensitivity was the large 

number of false negatives. From the 315 days without k’echalera but positive 

according to std-diarrhoea, 104 reported at least 3 watery loose stools, 16 reported at 

least 1 stool with blood, 168 reported mucus, and 26 both mucus and blood (Table 

V.3). The reasons for the 100 apparent false positives are also presented in Table V.3.  

The prevalence calculated following the std-diarrhoea definition yields 12.2% 

(492/4026) while a prevalence following the k’echalera definition suggests 6.9% 

(277/4026).  
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The observed specificity 97.2% (3434/3534) and negative predictive value 91.2% 

(3434/3749) were high.  

 

Table V.3: Reasons of false negative and false positive reports of k’echalera using the 
standard symptom-based definition of diarrhoea as gold-standard 

  Reported symptom n (%) 
≥3 Watery loose stools, no blood no mucus 104 (33.1) 
≥1 stool with only blood 16 (5.1) 
≥1 stool with only mucus 168 (53.5) 
≥1 stool with both blood and mucus 26 (8.3) 
Missing 1 

False 
Negatives 

Total 315 
<3 stools, no blood, no mucus 74 (74.0) 
3 solid or semisolid stools (no blood, no mucus) 10 (10.0) 
missing 16 (16.0) 

False 
Positives 

Total 100 
 

 

Modelling the sensitivity and specificity  

 

Assuming that both k’echalera and std-diarrhoea are subject to diagnostic error or 

recall bias, the sensitivity and specificity estimates using the uncertainty levels 

displayed in Figure V.2, are presented in Table V.4. Note that we presume to be more 

certain on the high specificity of k’echalera and on the high Se and Sp of the standard 

definition.   

Table V.4: Estimates of the sensitivity and specificity of K’echalera and the standard 
definition allowing for uncertainty in their reporting accuracy (pre-intervention data) 

 
Prior for 
k'echalera Sensitivity  Specificity 

K'echalera Uninformative 60.8 (38.1; 97.4) †   97.5 (96.8; 98.6) 
 Optimistic 61.9 (39,3; 91.7)  97.6 (96.8; 98.6) 
 Pessimistic 49.6 (36.1; 77.6)  97.6 (96.8; 98.6) 
     
std-diarrhoea Uninformative 92.4 (78.2; 98.8)  94.4 (91.4; 98.9) 
 Optimistic 92.2 (78.3; 98.8)  94.3 (91.7; 98.6) 
 Pessimistic 92.5 (78.4; 98.8)  96.1 (92.7; 99.3) 
     

Uninformative 7.7 (4.5; 12.8) 
Optimistic 7.6 (4.8; 12.4) 

Prevalence of 
diarroea 

Pessimistic 9.5 (5.8; 13.3) 
†Posterior median and credible interval 
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Figure V.2: Prior distributions of the sensitivity and specificity of k’echalera and for the 
functional definition of diarrhoea based on reported symptoms. 

 

 
 

Regardless of prior beliefs about the sensitivity of k’echalera (uninformative, vaguely 

optimistic and vaguely pessimistic), kSe was always estimated higher than the 

observed values calculated from Table V.2. Introducing a reasonable level of 

uncertainty in the report of the std-diarrhoea symptoms led to an important increase 

in kSe to 50% with the pessimistic prior and 62% with the optimistic one (Table V.4). 
kSp was always high. The prevalence of diarrhoea was estimated around 7.7% 

assuming uninformative and optimistic priors and 9.5% assuming a pessimistic prior 

for kSe (Table V.4). 

 

4. DISCUSSION 

 

We evaluated the meaning of the vernacular term k’echalera as a mother/care giver 

diagnosis of diarrhoea in rural Bolivian settings and compared its reporting to an 

internationally standardized, symptom-based diarrhoea definition. We found that 
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caregivers use the term k’echalera to reflect a noticeable change in the child’s regular 

defecation patterns characterised by an increase of bowel movement frequency and a 

change in the stool consistency. A median of 3 watery stools during the last 24 hrs, 

81.1% of the stools in days with k’echalera had a watery consistency, and a greater 

proportion of blood and mucus compared with days without k’echalera. The 

proportion of watery stool was confirmed to be greater (93.2%) in k’echalera days 

when measured in the post-intervention data.  We found some divergence in the 

vernacular use of k’echalera and the international standard definition of diarrhoea. A 

k’echalera report was strongly associated with liquid and semi-liquid stools that differ 

clearly from solid stool. However, the intermediate stool consistency level (milk-rice-

like stool), which fits into the definition of watery loose stool (Clasen et al. 

2007;Ejemot et al. 2008), did not help to discriminate between k’echalera and non-

k’echalera. Blood and mucus in the stool were also positively associated with 

k’echalera. Mucus was reported during days without k’echalera in a much lower 

proportion, but enough to increase appreciably the number of false positives.  

 

These observed reporting differences led to a low sensitivity of the vernacular term 

compared to the standard symptom-based diarrhoea definition. The reporting 

differences led principally to false negatives, characterized by episodes with high 

stool frequency and intermediate consistencies, or days with at least 1 stool with 

mucus. The specificity and negative predictive value of k’echalera were consistently 

high. A bayesian analysis that allowed for measurement error in both k’echalera and 

the symptom-based definition of diarrhoea (a scenario that we argue more accurately 

reflects real measurement conditions) increased the vernacular term’s sensitivity from 

36% to between 50% and 62%.  

 

In addition, we hypothesize that discrepancies between k’echalera and the symptoms 

reports might both be due to two main sources of measurement error: i) 

perception/detection by the caregiver, influenced by how much time the caregiver 

spends with the child and how much attention she pays to stool symptoms, and ii) the 

caregiver reporting to the field staff, influenced by cultural norms, practices and social 

desirability and the relationship between the caregiver and the field staff. Moreover, 

we wished to allow std-diarrhoea as possibly deviating from the actual changes in 

defecation patterns in the study setting. In this sense the estimation of the sensitivity 
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of the term k’echalera was done using Bayesian techniques allowing for a reasonable 

level of uncertainty to the report of symptoms. A higher sensitivity was then obtained 

and validated through a sensitivity analysis of the priors employed.  

 

Assuming the symptoms-based definition is the gold standard, maternal reports of 

diarrhoea in different settings yielded higher Se estimates than ours in Table V.2. 

Baqui and colleagues (Baqui et al. 1991) actually assumed that the mother’s definition 

is the gold standard. They provide data, however, suggesting that Se of the mother’s 

definition compared to the standard is 68% (in line with our 61% estimate using 

uninformative and vague optimistic priors for kSe). A study in South Africa (Ferrinho 

et al. 1995) reported even a higher sensitivity of 89% for the mothers’ report. 

However the latter estimate was obtained comparing diarrhoea occurrence over a 1-2 

months recall period with the occurrence of symptoms in the same period. In contrast, 

our study, like others (Baqui et al. 1991), compared reports of symptoms and 

k’echalera occurrence corresponding to one day of observation. Thomas et al (1989) 

provided Se and Sp estimates for mothers’ reports of diarrhoea being 79% and 94% 

respectively. A study in the Philippine island of Cebu (Kalter et al. 1991), provided Se 

and Sp estimates of maternal symptom-based diagnosis as compared with physicians’ 

diagnosis. The diagnosis of diarrhoea had a sensitivity of 95-97% and a specificity of 

80% when based on maternal reports of frequent loose of liquid stools. That suggests 

that mothers were able to retrospectively report the signs and symptoms of their 

children accurately for interview-based diagnosis. That Se and Sp concur with our 

assumption on the priors for the symptoms-based definition in the Bayesian analysis.   

 

Our crude prevalence estimates fall between 6.9 and 12.2% for k’echalera and the 

symptom-based diarrhoeal reports respectively. This suggests that, in our study setting, 

mothers do not identify diarrhoea very consistently with the international definition. 

In contrast to other cultures, in many cases mothers reported the presence of mucus 

and milk-rice consistency as “normal”, what other cultures would report as diarrhoea 

(Bangladesh (Baqui et al. 1991), South Africa (Ferrinho et al. 1995), Kenya (Thomas, 

Neuman Ch G., & Frerichs 1989)). We found a high prevalence of malnourished 

children, especially wasted children (data not shown). This health status was often 

accompanied with mal absorption of food and chronic diarrhoea with milk rice stool 

consistency. In addition, the mal absorption of food and the resulting unshaped stool 
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was often accompanied by mucus a well described physiological phenomenon 

(Thapar & Sanderson 2004). We presume that such health status was perceived as 

normal by the mother and reported as day without k’echalera.  

 

We believe that the prevalence of diarrhoea lies between the k’echalera and std-

diarrhoea estimates and the reasonable uncertainty assumed during the Bayesian 

analysis is a good approximation (7.6 – 9.5%). The disadvantage of this approach is 

that good care should be taken when choosing the priors, since the final estimates may 

be sensitive to their choice.   

 

Conclusion 

 

In this rural Bolivian population, the term k’echalera is used to report a true change in 

the defecation patterns of children under 5 years. K’echalera is strongly associated 

with the symptoms that are used in the symptom-based standard definition. However, 

the intermediate (milk-rice) stool consistency and mucus presence, part of the 

standard definition, were frequently reported in days without k’echalera and were 

responsible for numerous false negative results. We estimated an average sensitivity 

of k’echalera of at least 50% and a specificity of 97% when allowing for uncertainty 

on both k’echalera and the symptoms report. The low sensitivity of k’echalera 

relative to the standard definition may be due, in part, to caregivers perceiving as 

normal chronic, low-level diarrhoeal symptoms that classify children as diarrhoeic in 

other settings.      
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Abstract  

Background  

Diarrhoea is the second leading cause of childhood mortality, with an estimated 1.3 

million deaths per year. Promotion of Solar Water Disinfection (SODIS) has been 

suggested as a strategy for reducing the global burden of diarrhoea by improving the 

microbiological quality of drinking water. Despite increasing support for the large-scale 

dissemination of SODIS, there are few reports describing the effectiveness of its 

implementation. It is, therefore, important to identify and understand the mechanisms that 

lead to adoption and regular use of SODIS.  

Methods  

We investigated the behaviours associated with SODIS adoption in households randomly 

assigned to receive SODIS promotion during a cluster-randomized trial in rural Bolivia. 

Distinct groups of SODIS-users were identified on the basis of six compliance indicators 

using principal components and cluster analysis. The probability of adopting SODIS as a 

function of campaign exposure and household characteristics was evaluated using 

multinomial models.  

Results  

Standardised, community-level SODIS-implementation in a rural Bolivian setting was 

associated with a median SODIS use of 32% (IQR: 17-50). Households that were more 

likely to use SODIS were those that participated more frequently in SODIS promotional 

events (OR=1.07, 95%CI: 1.01-1.13), included women (OR=1.18, 95%CI: 1.07-1.30), 

owned latrines (OR=3.38, 95%CI: 1.07-10.70), and had severely wasted children living in 

the home (OR=2.17, 95%CI: 1.34-3.49).  

 

Conclusions  

Most of the observed household characteristics showed limited potential to predict 

compliance with a comprehensive, year-long SODIS-promotion campaign reflecting the 

complexity associated with human behaviour change. However, the findings of this 

within-group analysis among SODIS-users suggest that the motivation to adopt new water 

treatment habits and to acquire new knowledge about drinking water treatment is 

associated with prior engagements in sanitary hygiene and with the experience of 

contemporary family health concerns.  
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Household-level factors like the ownership of a latrine, a large proportion of females and 

the presence of a malnourished child living in a home may be easily assessable indicators 

for SODIS-programme managers to identify population subgroups that can be targeted for 

rapid uptake of SODIS.  
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Background  
Systematic reviews of the literature on water, sanitation, and hygiene interventions in 

developing countries suggest that between 20% and 35% of a total of 3.5 billion diarrhoea 

episodes per year could be prevented globally by improved drinking water or hand 

hygiene interventions [1-5]. The evidence to date led the World Health Organisation 

(WHO) to conclude that household water treatment (HWT) is the most cost-effective 

approach to reach the United Nations millennium development target 7c of halving the 

number of persons with no access to safe water (WHO report 2002).  

However, the majority of evidence has been collected in controlled intervention studies 

that document efficacy of HWT by improving water quality and reducing diarrhoeal 

disease in developing countries [6]. These tightly controlled experiments typically last 

fewer than six months and include both subsidized (or free) materials and high levels of 

behaviour reinforcement [7]. Critical issues of effectiveness on a larger scale and 

sustained use are rarely addressed by these studies [4,8] but are crucial before HWT can 

be recommended for scaling up [9,10].  

 

Solar water disinfection (SODIS) is one of the simplest and cheapest technologies for 

household water disinfection. The method relies on disposable translucent plastic bottles 

of 1-2 litres in which pathogen-containing water is purified by the combined pathogen-

inactivating effects of solar radiation and heating [11,12]. Laboratory experiments proved 

its efficacy in improving the quality of water [12-14]. The method is widely disseminated 

in developing countries to improve health in settings where safe drinking water is not 

available. Despite this widespread promotion, only a few field studies assessed its health 

impact and evidence on acceptance, regular use, and scalability of the method is scarce 

and inconclusive [9,10,15-18]. Recent studies demonstrate that SODIS promotion is 

unlikely to reduce diarrhoea in children below 5 years of age if there are low adoption 

rates and limited long- term use by the target population [6,15,19,20]. It is therefore, 

important to identify and understand the mechanisms that attenuate the health impacts of 

SODIS despite its high efficacy for improving water quality under ideal conditions 

[12,21].  

 

One challenge of assessing the effectiveness of SODIS implementation is the lack of a 

reliable, unbiased and accepted indicator to measure SODIS-use. Compliance with the 

SODIS-intervention (e.g. consumption of the SODIS-treated water) is an important 
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indicator of success of the implementation strategy. To our knowledge, none of the 

SODIS studies that measured its effectiveness to improve water quality for preventing 

diarrhoea assessed determinants of compliance directly. To date, the most commonly used 

end-points to assess SODIS-use rely on self-reported use or the direct observation of 

water-filled plastic bottles exposed to sunlight [16,18,22-25]. Indicators are often assessed 

once, usually at the end of the intervention, and the reliability of these indicators is 

unknown. Self-reported use in response to verbal questioning is known to produce 

inflated results due to reporting bias [26-29]. Togouet et al. use five measures of self-

reported use, direct observation and interviewer opinion to create a 0-5 score to classify 

‘non-users,’ ‘irregular users,’ and ‘regular users’ [18]. However, this approach to user 

classification uses a score that weighs all components equally, and forces the investigator 

to subjectively choose cut points in that score. There is a need for objective methods to 

classify households into distinct SODIS user groups.  

 

In this article we present a detailed analysis of SODIS compliance among recipients of a 

SODIS-intervention who participated in a community-randomised, controlled SODIS trial 

(cRCT) in rural Bolivia (BoliviaWET). The trial detected no statistically significant 

reduction in diarrhoea in children under age 5 with an overall SODIS compliance of 32% 

based on community-health worker assessment [15], a measure that was more 

conservative than indicators applied in studies with high SODIS-usage rates [16-18]. 

Here, we use weekly data collected over 12 months from the SODIS compliance 

monitoring and the SODIS promotion campaign of BoliviaWET to objectively classify 

households into distinct SODIS-use groups using principal components and cluster 

analysis. We then use the classified groups to describe the household determinants and 

campaign implementation factors that are associated with the adoption and utilisation of 

SODIS in our setting.  

 

Methods  
 

Twenty-two communities from the Totora district, Cochabamba department, Bolivia were 

included in the cRCT and randomised to receive the SODIS as a HWT. Data of 216 of 

225 households enrolled in the 11 intervention communities of the cRCT were included in 

the analysis. We excluded 9 households from the analysis that were monitored for fewer 

than 6 weeks over the 12 month follow-up period.  



Chapter VI.  Factors associated with compliance among SODIS users 137 
 

Study site: The Totora district covers an area of 2000 km2. Community settlements are 

widely dispersed and found at altitudes between 1700 and 3400 metres above sea-level. 

The majority of the ethnically homogeneous Quechua population are subsistence farmers 

with small parcels of land growing potatoes, wheat and maize crops. Households keep 

livestock for their own consumption and for sale. Families typically live in small 

compounds of three buildings with mud floors, with several persons sleeping in the same 

room. Only 18% of the homes have a latrine. Most residents defecate in the nearby 

environment. Unprotected springs are the predominant sources for drinking water.  

 

SODIS campaign: The campaign had two main objectives: i) to create demand for safe 

drinking water, and ii) to establish a sustainable application of SODIS as a drinking water 

disinfection method at household level. A locally well-known non-governmental 

organisation, Project Concern International (PCI), implemented the campaign. PCI has a 

vast experience in promoting SODIS in rural Bolivian communities. SODIS was 

introduced during an intensive three-month period before and during the 12-months of 

field data collection for the trial.  

 

The implementation in intervention communities was standardised at community and 

household levels. Through participative interactions during district events, community 

events and home visits, study subjects were introduced to SODIS and environmental 

health issues related to water and sanitation. District stakeholders from the farmers' union 

and the official local government, health and school system representatives as well as, 

formal and informal community leaders were involved in promoting SODIS. In the field, 

the method was promoted by PCI staff, leaders and advocates, health personnel and 

teachers, through focus group venues, community- and school events, community training 

workshops and monthly home visits. Community events were held at least monthly. All 

community members were invited to these events where they were trained and motivated 

to practice SODIS daily at their homes.  

 

Experienced health promoters from PCI conducted motivational home visits to empower 

participants to disinfect their drinking water before consumption and to adopt or improve 

hygiene habits to create a less contaminated home environment. The motivational home 

visit strategy was based on participatory hygiene and sanitation transformation 

methodologies and motivational interviewing [30-32].  
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SODIS-use assessment: Data regarding SODIS-use were collected by community-based 

field workers who were integrated into the community and were not involved in any 

SODIS promotion or implementation activities. Field staff was extensively trained in 

interviewing and epidemiological observation techniques, data recording, and 

participatory community motivation approaches. Field staff recorded SODIS-use 

indicators during weekly home visits with a structured, inconspicuous, observational 

protocol. In addition, field staff recorded self-reported SODIS-use three months after the 

beginning and at the end of the intervention campaign (after 15 months).  

 

Table VI.1: Indicators for SODIS-use 

 
 



Chapter VI.  Factors associated with compliance among SODIS users 139 
 

PCI measured study participants’ degree of exposure to the SODIS implementation 

campaign by registering the individual attendance during SODIS promotional events.  

In order to arrive at an outcome that describes meaningful types of users, we selected a 

priori four different survey indicators that measure use (Table VI.1). We believe that 

considering complementary indicators for describing SODIS-use increases the reliability 

of its measurement by capturing multiple dimensions of potential use. In addition, we use 

two monitoring indicators (Table VI.1) to identify households that contribute limited 

information to the classification process due to infrequent observation.  

 

Statistical analysis: To identify patterns of SODIS-use we explored the multivariate 

distribution of study households in terms of the six quantitative SODIS-use indicators 

(Table VI.1) by principal component analysis [33]. Identification of meaningful SODIS-

user groups was done by Ward’s grouping algorithm using R-squared distances as the 

metric of similarity between households. The Ward’s method proved to generate the best 

classification among several clustering algorithms tested. Five differentiated groups were 

identified by this approach (Figure VI.1). To confirm the patterns of SODIS-use we 

further examined the distribution of the study households in the data defined by the 

factorial axes of a principal component analysis based on the SODIS-use indicators [33].  

 

The effects of the SODIS implementation factors such as the number of times a 

household member attended a community event, and community- and household level 

characteristics were tested for univariate differences between groups with the Fisher’s 

exact test for binary data and the Kruskal-Wallis test for non-normally distributed 

quantitative data. Characteristics with two-sided p-values smaller than 0.1, predictors with 

less than 25% of missing values to not provoke severe data sparseness problems, and non 

collinear variables, were retained for inclusion in a multivariable ordinal logistic model. 

The previously identified SODIS-user groups were used as the categorical-ordinal 

outcome variable ranging from “non-adopters” to “emerging-adopters”. Robust standard 

errors were calculated to account for community level clustering.  

 

All analyses were performed in STATA 10 (StataCorp. 2007) and in SAS (SAS Institute 

Inc., Cary, NC, USA).  

 

Ethics: Ethical approval for this study was granted within the framework of the registered 

BoliviaWET cRCT (ClinicalTrials.gov Identifier: NCT00731497).  
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Results  

Intervention activities and compliance  

Household compliance with intervention and morbidity were assessed weekly by the field 

based monitoring staff for a period of 42 weeks from June 2005 to June 2006 (median: 39 

visits, IQR: 34-40).  

 

The SODIS implementation strategy included promotional activities at the community 

and household level. At the community level, PCI conducted a total of 210 group events, 

which consisted of 108 community- (median 8 /community, IQR: 7-12), 77 women- 

(median 7 /community, IQR: 3-10), and 25 school-events (median 3 /community, IQR: 

1.5-3). During the study PCI conducted 2886 motivational household visits (median 12 

/household, IQR: 8-18).  

 

The measured level of SODIS-use varied depending on the indicator used and the source 

of information. The community-based staff observed an overall median of 33% (IQR: 17-

50) of households with SODIS bottles exposed to sunlight during weekly visits. The 

SODIS-implementing PCI staff registered during monthly household visits a median 

proportion of 75% (IQR: 60-85) of households with SODIS bottles exposed to the sun. 

After three months of intensive implementation, PCI staff recorded 77% of household 

respondents reporting regular SODIS-use, and 88% at the end of the study.  

 

SODIS-user group classification  

Figure VI.1 summarizes the results of the cluster analysis, which identified five distinct 

SODIS-use groups based on household-level use indicators: Group 1 = ‘non-adopters’, 

Group 2 = ‘minimal-adopters’, Group 3 = ‘declining-adopters’ and group 4 = ‘emerging-

adopters’ (see also supplementary Figure VI.S1). Groups 3 and 4 comprised households 

with the highest SODIS-usage rates; group 3 with an initially high uptake and declining 

SODIS-use over time, group 4 with an emerging adoption pattern. Based on this group 

separation, we used characteristics of households in the groups to describe them in 

meaningful, qualitative terms. Figure VI.2 shows the difference between groups in four 

different SODIS-use indicators (self-reported and observed use) and two monitoring 

indicators (Table VI.1), and Figure VI.3 shows different SODIS-usage rates over time 

using the same indicators for the five user groups. Group 5 (25 households) differed from 

the other groups with respect to the time under observation (indicators 4 and 5): Its time 
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under observation (median 20 weeks, IQR: 16-23) was considered too short to obtain a 

valid estimate of SODIS-use and led to high variability in all of the indicators (Fig 2e). 

Based on the limited information in group 5, we decided to exclude it from between-

group comparisons in the ordinal logistic model.  

 

Figure VI.1:  Dendogram with the grouping history of the hierarchical classification (Ward’s 
method).  

 

 
Legend: Horizontal axis denotes the linkage distance (R-square distance) between 
households according to their SODIS-use indicators listed in Table VI.1 
 

The group of ‘non-adopters’ consisted of households with little interest in adopting and 

using SODIS (median proportion of weeks with bottles exposed to sun were observed: 

0.13; IQR: 0.04-0.24) (Fig. 2a and 3a). ‘Minimal-adopters’ used SODIS more frequently: 

median proportion: 0.3 (IQR: 0.21-0.38) (Fig. 2a and 3b) of the weeks observed. The 

‘declining- and emerging adopters’ constituted the households with the highest SODIS-

usage rates (median: 0.53 and 0.60; IQR: 0.40-0.64 and 0.50-0.78) (Fig. 2a and 3c and 

3d). ‘Declining-adopters’ used SODIS more often at the beginning of the follow-up 

(Indicator 4 “Behavioral change” in Table VI.1, logistic regression coefficient bottles 

exposed to sun vs. time) median: -0.65; IQR: -0.75-0.38 (Fig. 2d and 3c). ‘Emerging-

adopters’ used SODIS more often toward the end of the follow-up with a median of 0.30; 

IQR: 0.20-0.60 (Fig. 2d and 3d).  
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Figure VI.2: Box-plots of 5 SODIS-user groups differing in 6 SODIS-use indicators (see 
Table VI.1) 

 
 

Factors influencing SODIS adoption  

The characteristics of the different SODIS user groups comparing in a univariate analysis 

‘non-adopters’, ‘minimal-adopters’, and the two frequent user groups of ‘declining-‘ and 

‘emerging-adopters’ are presented in Table VI.2.  

 

Some household characteristics differed significantly at a 95%-confidence level between 

SODIS-use groups. Households with the highest SODIS-usage rates exhibited the 

following specific features: ‘Emerging-adopters’ consisted of more females compared to 

the other groups. ’Decreasing-adopters’ were more likely to own bicycles. Households 

from both of the higher user-groups were more likely to own a latrine (56% and 26%) 

than ‘non- and minimal- adopters’ households (both 8%). Further, they were more likely 

to have severely wasted children (two times substandard weight-for-height = 65% and 

66%, respectively) than ’non-adopters’ (17%) and ‘minimal-adopters’ (25%). ‘Non-

adopters’ lived the furthest distance away from their water source with a median of 100m, 

followed by the ‘minimal-adopters’ (30m). In contrast, distances to the water source were 

much shorter for households with the highest SODIS-usage rates (5m and 10m in 

’declining-and emerging-adopters’).  



Chapter VI.  Factors associated with compliance among SODIS users 143 
 

Figure VI.3: Weekly observed proportion of households using SODIS in five SODIS-user 
groups  
 

 
 

Legend: Legend: Open triangles: self-reported SODIS-use at the beginning (after 3 month 
of initial SODIS promotion) and at the end of follow-up; filled dots: SODIS-use observed 
by project staff living in the community (see Table VI.1 for definition); open grey circles: 
SODIS bottles observed on the roof; open black circles: SODIS bottles observed ready to 
drink 
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Table VI.3 summarizes household exposure to the SODIS campaign through active 

participation at community-level events and through passive exposure to motivational 

activities during household visits. Since the implementation was standardised at 

community- and household levels there is no difference between the four SODIS-user 

groups regarding campaign features such as ‘Number of events taken place per 

community’, ‘Average number of participants per event and community’, and ‘Number of 

household visits per household’. However, groups differed significantly regarding active 

participation at those events. ‘Non-adopters’ participated on average at half of the events 

offered, whereas ‘declining and emerging adopters’ participated at 78% and 71% of the 

events. The level of participation at school events was similar across groups, since 

participation was mandatory for school children in all schools in the study site.  

 

Since SODIS implementation indicators were correlated with each other, only one 

indicator (‘Total number of events visited by at least one household member’) was 

included in the model because it encapsulates the others. Table VI.4 presents results of 

the ordinal logistic regression model. The model containing only the SODIS 

implementation factor revealed that ‘Total number of events visited by at least one 

household member’ is positively associated with frequent SODIS use group membership. 

For each additional event visited the odds of being in the next higher category of adoption 

was 1.07 (95% CI : 1.01-1.13). The multivariable model showed that higher adoption 

groups were more likely to own a latrine (OR: 3.38; 95% CI: 1.07-10.70) and to have at 

least one wasted child living in the household (OR: 2.17; 95% CI: 1.34-3.49). 

Furthermore, the number of females living in a household was significantly associated 

with group membership prediction (OR: 1.18; 95% CI: 1.07-1.30).  
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Discussion  

We characterised in a cluster analysis five distinct SODIS user groups after a 15-month 

comprehensive SODIS-dissemination campaign among the participants of a community-

randomised, controlled SODIS-evaluation trial in rural Bolivia.  

Household characteristics that were most strongly associated with the adoption of the 

SODIS household water treatment method include the intensity of exposure to the SODIS 

campaign, the number of females per household, latrine ownership, and having severely 

wasted children living in the home. The knowledge of household factors found to be 

related to SODIS-use may help to target populations that would more easily adopt SODIS 

and, therefore, benefit most from SODIS implementations.  

 

Table VI.4. Results of the ordinal logistic regression models 
 

  
Univariable model (n=189) 

(SODIS implementation factor 
only) Predictor 

 OR 95% CI* P value 
     
Total no. of events visited by at least one household member  1.07 1.01-1.13 0.02 
          

   Multivariable model (n = 146) 
  OR 95% CI* P value 
     
Total no. of events visited by at least one household member  1.04 0.98-1.11 0.15 
Nr of females per household  1.18 1.07-1.30 0.001 
Household with pregnant women at start of campaign  1.33 0.67-2.64 0.41 
Bicycle owenrship  0.75 0.35-1.64 0.48 
Latrine  3.38 1.07-10.70 0.04 
Distance to water source (log of)  0.94 0.73-1.22 0.65 
Households with at least one wasted child under 5  2.17 1.34-3.49 0.001 
          
 * calculated from robust standard errors adjusted for community cluster 
 
 

Our findings suggest that the motivation to adopt new water treatment habits and to 

acquire new knowledge about drinking water treatment is associated with prior health-

related engagements, e.g. in latrine construction, and by with the experience of family 

health concerns such as living with an acutely malnourished child. In addition, higher 

SODIS-use was associated with the frequency of exposure to SODIS promotion of 

anyone of the household members. It is likely that eager adopters of new ideas and 

technological inventions such as SODIS are more interested in participating at the related 

promotional events.  
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Our findings are consistent with previous studies: In a similar setting in Bolivia, Moser 

and Mosler [25] found existing knowledge about the need to treat drinking water 

predicted early SODIS adoption. Applying the theory of the diffusion of innovations from 

Rogers et al. [34] in a SODIS diffusion programme in rural Bolivia they found that 

participation at SODIS-campaign events correlated positively with SODIS-use [24]. 

Further, a field study from Nicaragua reported that intention to use and actual use were 

related to a positive attitude toward the new technology [35]. These coherent findings on 

the motivating factors for SODIS adoption underscore the importance of determining a 

target population’s characteristics and its attitude towards new technology prior to 

promoting SODIS.  

 

The indicators we employed in our analysis to measure households’ weekly SODIS-use 

were based on inconspicuous structured observations conducted by our community-based 

staff who were not involved in any SODIS-promotion activity. In combining objective 

indicators measuring, visible signs of use (e.g. bottles exposed to sun) with proxies more 

responsive to the direction and magnitude of the change of treatment behaviour (e.g. 

weekly observation of correct application of SODIS) we increased the quality of 

measurement and reduced the potential for reporting bias and misclassification error [26-

28]. Our independent evaluation of SODIS-use generated much lower adoption rates than 

estimates from the implementing organization, PCI (32% versus 75%). This underscores 

the potential for bias in situations when implementers evaluate their own work. Such 

courtesy bias and over-reporting of compliance with the intervention is well known from 

water, sanitation and hygiene intervention studies [7,26,36-42]. The discrepancy between 

the levels of SODIS compliance assessed through different indicators in our study raises 

questions about the interpretation of compliance rates of both, studies in peer-reviewed 

and grey literature. Our results highlight the importance of choosing independent staff and 

a valid and responsive indicator to assess use and to draw conclusions about the 

implementation effectiveness of HWT intervention programmes.  

 

Despite an intensive 15-month promotion campaign carried out by a highly qualified 

implementing organization, we observed 32% overall compliance with the solar water 

disinfection method during our 12 months of follow-up [15]. Our findings suggest that 

SODIS promotion would benefit from re-assessing the core marketing messages and 

approaches to reach the critical 50% fraction of early and willing SODIS adopters in the 

population [25]. Our analysis identified some characteristics associated with frequent use. 
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However, it is the characteristics of willing but occasional user groups (our ‘minimal 

adopters’) to whom new marketing and promotion strategies should be targeted [43]. 

However, based on the characteristics that we measured, it was difficult to differentiate 

the ‘minimal adopters’ from ‘non-adopters’ (Table VI.2). In this population, the ‘non-

adopter’ and ‘minimal-adopter’ groups included the most marginalized households by 

observable characteristics: they were poorer, lived further from water sources, rarely 

owned a latrine, had more frequently faecally contaminated home environments, and had 

more animals roaming their kitchen area; yet, unexpectedly, they were less likely to have 

stunted or wasted children in their families (Table VI.2).  

 

Criteria to plan for the successful roll-out and targeting of water and sanitation 

programmes have often been suggested [44]. In the Bolivian context SODIS-programme 

planning may benefit from assessing easy measurable household-level factors like the 

ownership of a latrine, a large proportion of females and the presence of a malnourished 

child to identify population subgroups that can be targeted for rapid uptake of the SODIS 

HWT method.  

 

There are limitations to this study. The participating communities were not homogenous 

regarding pre-existing water supplies and sanitation infrastructures, previous exposure to 

sanitation and hygiene campaigns, as well as political support to participate in the study. 

Further, the ordinal logistic regression assumes that the categories follow an intrinsic 

order. This order is evident for ‘non- and minimal adopters’ but is less obvious in the case 

of ‘declining- and emerging-adopters’. However, from the programme-implementation 

viewpoint the sustained user, i.e. the ‘emerging adopters’, are, of course, the most 

important group. To ensure that our findings were not sensitive to the modeling approach, 

we repeated the analysis using multinomial regression, which does not impose an order to 

the categorical outcome. Analogous to our presented results, the multinomial regression 

identified latrine ownership and presence of severely wasted children as the most 

important predictors of SODIS-use categories (data not shown). Finally, data on the 

SODIS-use indicator ‘Households rated as SODIS-user by implementation-independent 

field worker’, was incomplete because (i) the indicator was implemented after an 

intensive 3-month pilot phase, and (ii) it required the randomly-rotated field staff (every 3 

months) to familiarize themselves with each local community for a period of four weeks 

before they could report the indicator [15]. While we believe this measure reduced 
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systematic reporting bias and enhanced the reliability of SODIS-use measurement, it 

reduced the total observation time available for analysis.  

Conclusions  

Analyses of implementation effectiveness and the dynamics of SODIS-uptake from large- 

scale SODIS dissemination programmes are rarely published. Our findings suggest that 

households that have more women, own a latrine, have malnourished (wasted) children 

and are close to their water source are more likely to adopt SODIS during an intensive 

promotion campaign. Households that did not adopt SODIS tend to be poorer, further 

from water sources and have less hygienic home environments. This finding suggests how 

implementers could identify populations most likely to use (initially and over a sustained 

period) and benefit from SODIS interventions.  
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Figure VI.S1. 3D scatter plot view of SODIS user groups of the first three principal 
components.  
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1. Discussion and Concluding Remarks. 
 

 

The BoliviaWET experience of analysing the effect of solar water disinfection on 

childhood diarrhoea provided abundant material for statistical research. The main 

analysis of the trial (chapter II) motivated the assessment of analytical methods for 

cluster randomized trials, under situations similar to BolivaWET data, i.e. 

overdispersed count data, variation of individual follow-up periods, cluster size 

imbalance, levels of clustering, sample size (chapter III). We also compared the 

performance of methods for point and interval estimation of a clustering measure in 

similar situations (chapter IV). We evaluated the local term “k’echalera”, in the 

Quechua language, as a means to assess the diarrhoeal syndrome (chapter V). Finally, 

we explored the meaning of SODIS-use from a multivariate perspective, identified 

typologies of SODIS-users and identified the factors that influence on the adoption of 

SODIS (chapter VI).  

 

This material was originally conceived as a set of instruments to validate the primary 

and secondary analyses of the trial. Additionally, it provided elements to enrich the 

interpretation of the trial results. We consider, however, that this work is relevant to 

community randomized trials in general and to home-based water treatment 

interventions to prevent diarrhoea in particular.   

 

The next section of this discussion considers our main findings in context of the 

design of new cluster-unit trials. A further section considers the implications for 

methods of analysis of the results. This is followed by a section that focuses on the 

implications of overdispersion. Next some more general remarks on the statistical 

methods applied in chapters V and VI are presented. Finally, the overall conclusions 

of this thesis are provided.     

 

Design aspects 

 

Pair-matching is particularly recommended in community randomized trials because 

disparity between trial arms is more likely if the total number of clusters is limited [1]. 
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Matching clusters prior to randomization by factors related to the outcome can thus 

make randomization much more effective especially if the clusters are heterogeneous 

[2]. The BoliviaWET trial considered pair-matching to reduce the chance of assigning 

the treatment to inherently different communities in terms of diarrhoea rates. It was 

also assumeed that controlling the outcome would indirectly assure balanced risk and 

confounding factors at baseline between arms [2]. Consequently, communities were 

matched into pairs by baseline diarrhoea incidence. As observed in chapter I, the 

between-pairs variance was estimated to be zero, reflecting a lack of control in terms 

of the outcome variation (Tables I.3, III.3). However, other baseline characteristics 

were fairly well balanced between the study arms (Table II.1). A few exceptions were 

some water management and consumption characteristics.   

 

We believe that an improved balance between the arms can be achieved in similar 

community randomized trials by pair-matching on criteria other than the outcome. 

Unless a sufficiently long baseline follow-up period is envisaged, the incidence rates 

may produce different pairs depending on when the data is collected, because 

diarrhoea is a time fluctuating disease.  

 

Based on our experience we recommend characterizing the randomization units 

(communities) by baseline potential confounding factors. For instance, proportions of 

children per age groups < 5 years, socio-economy status, main source for drinking 

water, hygiene behaviour, use of other disinfection methods, water management and 

consumption habits. Communities can be then placed in pairs according to similarities 

in those characteristics. Randomization within balanced pairs will follow reducing 

thus the risk of bias due to baseline differences. In order to assess similarity in terms 

of all the baseline characteristics, multivariate exploratory techniques can be applied. 

One example is given in chapter VI, where similarities between households were 

explored using 6 indicators of SODIS use, and households were grouped according to 

their multivariate resemblance. Other approach consists of estimating the probability 

of receiving the treatment conditioned on similarities between communities in terms 

of the baseline characteristics. The estimating method is a logistic regression where 

communities would be paired depending on the similarities in their conditional 

probabilities or scores. This method is called Propensity Scores and is widely used to 

reduce bias due to confounding in observational studies [3, 4].                    
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The trial was powered to estimate a 33% reduction of the diarrhoea incidence 

presuming 5 episodes/child/year in the control arm. The simulations of chapter III 

suggest that all the analytical methods were able to detect an effect of this magnitude 

considering: 20 clusters, a moderate clustering, cluster size imbalance. However, the 

estimated effect was lower, i.e. a 19% reduction (RR = 0.81, CI: 0.59 – 1.12). 

Moreover, the level of clustering was higher than the one assumed during sample size 

calculations (between-cluster coefficient of variation CVc = 0.27, CI: 0.11 – 0.46).  

 

These findings provide valuable information for the design of new trials. In this 

context, we conducted post-hoc power calculations not in order to determine the 

current “likely state of nature” [5] but to evaluate how well future trials can be 

conducted given the set of plausible situations we found and the design we plan to 

implement. Results are displayed in Figure VII.1. The measures of clustering are 

taken from the main report (chapter II), based on GLMM and Bayesian analyses 

(chapter IV). But confidence limits are reduced to a more realistic range. Assuming 

the clustering found in BoliviaWET (CVc = 0.27), the post-hoc calculations suggest 

that 28 pairs would be required to detect a 20% reduction in diarrhoea incidence with 

80% power. This represents ≅ 2.5 greater sample size to detect a reduction in one 

episode/child/year from 5 in the control arm.      

 

Figure VII.1: Expected detectable difference with an 80% power at three between-cluster 
coefficient of variation (CVc). 
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The calculations assume the average number of persons-years per cluster observed in 

BoliviaWET (33 per cluster). Note that adjusting the number of participants per 

cluster would improve power only if clustering is low. Intuitively, high clustering 

implies high similarity among individuals within clusters, in which case increasing the 

number of individuals per cluster would not really help. This fact is well illustrated in 

Figure 1 from reference [6]. Reliable estimates of the clustering level are thus required.  

 

The CONSORT statement in its extension to CRTs highlights the importance of 

reporting intra-cluster correlation estimates along with confidence limits [7, 8]. From 

the two measures of clustering, the intra class correlation coefficient ρ and CVc, we 

devote chapter IV to methods for point and interval estimation of CVc. The choice of 

the latter is rooted in the fact that CVc is straightforwardly obtained when modelling 

count data. Based on asymptotic properties (see equation (9) chapter IV) CVc is 

approximately equal to the root of the random-effect variance of a random-intercepts 

model with log link function (σc ≅ CVc). Another advantage is that overdispersion can 

be simultaneously modelled by specifying distributions that account for it (e.g. 

Negative Binomial) when using GLMM methods.  

 

Our findings point out that GLMM with NB distribution or similar Bayesian 

hierarchical models provide the best point estimates of CVc. The latter with a 

conservative (upward) bias when the underlying CVc < 10% (Figures III.3 and IV.1), 

but with the best performance in terms of interval estimation. We also found that for 

overdispersed counts, the cluster-level point estimating method of CVc (outlined in 

[6]) may seriously overestimate clustering when the underlying CVc ≤ 25% (Figure 

IV.1).  

 

The estimation of CVc for the BoliviaWET data, suggested that the Poisson 

assumption may lead also to overestimating CVc if the outcome is overdispersed. The 

magnitude of the bias observed in BoliviaWET data was comparable to that of the 

cluster level method (Table IV.2). We believe that the unexplained Poisson variability 

went to  making the estimate grater. Conversely, Poisson models with 2
cσ

overdispersion corrections (where the variance function v(μ) was replaced by φv(μ)), 
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provided low CVc estimates, comparable to analyses where outliers were excluded 

(Table IV.2). For this reason, we recommend σc from GLMM or Bayes-HM as the 

estimate of CVc, with the CI extracted from the Bayesian posterior distribution. NB 

distribution is recommended to handle overdispersion and seems to be reasonably 

conservative in the presence of extreme observations.  

 

It has been suggested that CVc below 0.25 often occurs in real field trials and the 

value rarely exceeds 0.50 [6]. Our estimate of CVc = 0.27 (CI: 0.11 – 0.46) from 

BoliviaWET is an important finding that adds to the knowledge of this indicator. The 

confidence limits give an idea of the uncertainty and imprecision of CVc. They can be 

used in sensitivity analysis of sample size calculations to different CVc over a 

plausible range. For example, values of CVc between the point estimate and a 

plausible upper limit can be simulated for different sample sizes. The ultimate sample 

size will reflect the extent to which the investigator wishes to guard against 

underestimating the required sample size, provided that the upper 95% limit might 

suggest an infeasible large sample size [9].  

 

A final consideration concerning sample size calculations regards the effect of cluster 

size imbalance. In chapter III, we found that high imbalance (coefficient of variation 

of cluster size = 60%) affected the performance of the cluster level t-test and the 

individual level GEE analysis. In line with our findings, imbalance was also reported 

elsewhere to influence power and consequently required sample size [10-12]. A cluster 

size variation > 23% will be enough to affect power in CRT [12]. We therefore 

recommend accounting for cluster size variation in order to avoid the underestimation 

of sample size.  

  

Analysis of CRTs. 

 

Consistent with literature on continuous and binary data [13-17], our results show that 

random-effect (RE) methods are preferable to GEE and cluster level analysis for 

overdispersed counts under field trials situations. We simulated trials with 10, 20 and 

40 clusters in total, different clustering levels (CVc = 0.05, 0.15 and 0.40) and cluster 

size imbalance (balance, slightly imbalance and highly imbalance). The methods 
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compared were: the t-test of cluster-level incidence rates, GEE with empirical and 

model-based variance estimators, GLMM and Bayes-HM. Below we present some 

reflections on our overall findings. 

 

The five methods produced accurate RR estimates during the simulations (Figure 

III.1). The bias was rather small (generally < 3%), but greater (4% – 6%) for all the 

methods when clustering was high and a sample size was 10 clusters. The stability of 

the RR was similar across the methods and was primarily influenced by clustering and 

sample size. The analysis of BoliviaWET, however, provided evidence that the t-test 

RR may yield biased conservative RR by ignoring the existence of extreme disease 

responses concentrated in one of the trial arms (TableIII.3, Figure III.5).   

 

As remarked already in chapter I, methods using cluster-level summary statistics may 

be inefficient since they ignore the within-cluster variation and cluster size [12, 18]. It 

implies the disregard of imprecision of each summary statistics, which may be 

considerable in practice. Our experience from the simulation study on overdispersed 

counts, and the analysis the BoliviaWET data confirmed it. Very high coverage 

probabilities as a result of wide but unstable CI were found for the t-test during the 

simulations (Figure III.2, Table III.1). Versions of cluster level methods weighting by 

cluster size, or within cluster variance are known to improve efficiency [19, 20].  

 

Some approaches have been reported to deal with the impossibility of cluster level 

methods to adjust for individual covariates. Cluster level t-tests performed on Poisson 

residuals from a regression that previously adjusts for covariates have been proposed 

[21]. Some cluster-level methods may be attractive to estimate effects at the risk 

difference, risk ratio, or odds ratio scales of unadjusted analysis of binary data, 

because they are easy to calculate [20].  

 

Our results suggest considering GEE for CRT analysis with caution if the trial has less 

than 40 clusters in total. Narrow CI, anticonservative coverage and high chances of 

falsely significant results are expected. The reasons are the underestimation of 

standard errors (SE) by the robust variance estimator, already discussed in chapter III. 

GEE with model-based variance estimators produced almost identical unfavourable 

results, suggesting problems with the specification of the working correlation 
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structure. In addition, high cluster size imbalance reduced GEE coverage, when 

sample size ≤ 20. 

 

Recent research on GEE provides tools for enhancing the method under the situations 

studied here. Although not yet implemented in standard statistical software, bias 

correcting methods are described for amending SE underestimation [22-25]. Simpler 

modifications regarding the use of the t-distribution rather than z have also been 

studied and proved to achieve nominal coverage in small samples [19]. Additionally, 

methods to identify or implement alternative correlation structures have been 

described elsewhere [26, 27]. We believe that GEE are potentially attractive in CRTs 

because of their desirable population average interpretation of the intervention effect. 

 

Random effect models via restricted pseudo-likelihood or MCMC yielded stable CIs, 

nominal coverage and nominal type I error rates (chapter III). This behaviour was 

robust to sample size, clustering and cluster size imbalance. We warn however that 

such desirable performance is subject to the fulfilment of the model assumptions [28]. 

The impact of misspecification of the outcome variance was evident when analysing 

the BoliviaWET data (Table III.3). Furthermore, the misspecification of the random-

effects distribution is known to seriously bias the estimates of the variance of the 

random-effects ( ). This has secondary effects on SEs, CIs and the hypothesis 

testing behaviour of the fixed-effects structure in the model [

2
cσ

29, 30].  

 

We recommend therefore RE analysis for community randomized trials with ≤ 40 

clusters. For count data, the RR would have both CS and PA interpretations [31]. 

However the appropriate estimation of clustering would depend upon the number of 

clusters. While < 6 levels are considered unreliable for variance component estimation 

[28], we found that even 10 clusters were insufficient to avoid highly unstable 

estimates (Figures III.3, IV.1). In terms of methods for parameters estimation in RE 

models, pseudo-likelihood may produce bias in situations with small number of 

individuals per cluster [15]. Numerical integration and Bayesian analysis via MCMC 

were shown to have a better performance than pseudo-likelihood in complex design 

situations [15, 32]. The flexibility of the Bayesian analysis provides other remarkable 

advantages. Full posterior distributions of the model parameters, and of other 
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quantities not directly specified (e.g. CVc, ρ), allows reporting uncertainty measures 

even for quantities where standard solutions may not exist. The use of prior 

knowledge can be also seen as a gain, for instance, in the case of intra-cluster 

correlation.     

 

Finally, RE models are more flexible in analysing complex designs (e.g. nested 

hierarchies of more than 2 levels, pair-matching, repeated cross-sectional studies). 

Implementation is undemanding now with the GLIMMIX procedure in SAS, the 

GLLAMM procedure in STATA, the lme4 library in R or the MLwiN software to 

mention a few. For models with random-effects that are not normally distributed, 

implementation is possible via H-likelihood [33], or Bayesian hierarchical models in 

Winbugs.       

 

Overdispersion. 

 

The Poisson model is almost always considered for analysing count data. It implies 

equidispersion, i.e., the mean of the response equals its variance. Unfortunately, this 

assumption is seldom met in practice. Overdispersion, defined as the extent to which 

the variance exceeds the mean, occurs more often when the responses are correlated, 

or by an excess of variation between response probabilities or counts [34]. The 

consequences of ignoring overdispersion in statistical modelling are the 

underestimation of SE and misleading inference for the regression parameters.  

 

We detected a high level of overdispersion in the BoliviaWET data, even after 

accounting for intracluster correlation with a Poisson random-effect model (Table I.3). 

The specification of the NB distribution remarkably improved the fit and handled 

overdispersion appropriately (Table I.3, Figure I.3). As already pointed out, NB can 

be viewed as a special form of Poisson, where the mean parameter is a random 

gamma distributed variable (Poisson-Gamma mixture), whereas the overdispersion 

correction φv(μ) is merely an inflation of the Poisson variance [34, 35]. We therefore 

believe that NB models address overdispersion in a more natural manner than just 

correcting the variance v(μ) by φv(μ). In the context of CRTs, a NB model viewed as 

a Poisson-gamma mixture with normally distributed cluster random effects is 
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equivalent to Y ~ Poisson(μ) where μ =λδ = exp(xβ+ξ), λ ~ Γ(α,β), ξ ~ N(0, ). 2
cσ

The model parameters can be estimated via full maximum likelihood or MCMC [36]. 

Alternatively, the NB model could be derived as a GLM with cluster random effects, 

with parameters estimated via restricted pseudo likelihood [34, 37]. Other models may 

be also adequate in case of deviations from the equidispersion assumption. Some 

examples are the Zero-inflated Poisson, Zero-inflated NB in case of excessive zero 

counts, or Zero-truncated NB when zero counts are structurally excluded from the 

model [34]. We encourage to regularly verify the residual overdispersion and to fit the 

model that best fits the data. 

 

Analysis of the outcome and the intervention 

   

Exploratory techniques and statistical modelling were combined to answer specific 

questions in chapters V and VI. Does the term k’echalera employed to report 

diarrhoea in Quechua speaking settings in rural Bolivia correspond to the standard 

definition of diarrhoea?. Which are the factors that influenced in the adoption of 

SODIS in the intervention arm of BoliviaWET?.  

 

Multiple correspondence analysis (MCA) for categorical data or principal component 

analysis (PCA) for quantitative data, were applied to explore the multivariate patterns 

of similitude among observation units [38]. MCA on the Burt matrix, contributed to 

confirm the association of diarrhoeal symptoms among themselves and with the 

reports of k’echalera (Figure V.1). A MCA on the Binary matrix displaying the 

distribution of child-days of observation showed the similitude of responses given to 

the questionnaire confirming such associations at individual level.  

 

An in-depth analysis of the relation of the diarrhoeal symptoms and the vernacular 

term gave lights on the perception of diarrhoea of rural Bolivian mothers in terms of 

the combination of symptoms that may predict k’echalera. Some differences with the 

standard definition were found and both the sensitivity and specificity of k’echalera 

were estimated using Bayesian modelling assuming imperfect gold standard. We 

believe that the differences found provide the motivation to evaluate the validity of 

the standard definition in settings where cultural aspects, nutrition habits and 
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environment may be responsible of a differentiation between the true changes in 

defecation patterns and the world diarrhoea definition. 

 

In chapter VI, we investigated the ways of identifying a plausible and objective 

indicator of SODIS adoption in the intervention arm of BoliviaWET. Four indicators 

of use and two of monitoring were identified as to quantify SODIS adoption from 

different perspectives. We wished to differ from the regular ways of quantifying 

SODIS adoption via self reports or a sole indirect measurement (e.g. presence of 

SODIS bottles on the roof).  

 

The households were compared in terms of the six indicators via PCA. The similitude 

among households was visualized in a space conformed by the first 3 principal 

components (Figure VI.1.b). This exploratory tool allowed us to 1) interpret the 

patterns of response to the six indicators 2) identify the existence of possible groups 

of users and 3) to validate the identification of typologies of SODIS-user groups 

obtained by grouping hierarchical methods based on the 6 indicators [38]. The final 

typologies resulted in five groups of households, with similar households within 

groups in terms of all the indicators and different to households from other groups.  

 

We believe this approach is superior to others where the first principal component 

(PC) is selected as an index that summarises the variation of the variables of interest 

[39]. Our approach accounts for the information of all the variables simultaneously 

while the first-PC approach would account only for the subset of variables that 

describe it. A further disadvantage of the latter is that the ranking of individuals by the 

scores defined by the first PC is only interpretable for the variables in the subset that 

have a high linear relation with it.  

 

The application of hierarchical classification methods (cluster analysis) was 

performed assessing different metrics of similitude and evaluating the several 

grouping algorithms. Again, the method provided a meaningful classification because 

we validated the algorithms performance visualizing the grouping results in the PCA 

data cloud. We warn that a blind application of both PCA and cluster analysis may 

produce misleading results if the true patterns of variables and individuals 

relationships are not explored and properly interpreted.      
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Following the SODIS-users definition, we estimated the effect of household-related 

and community-level factors on the chance of a household belonging to one of the 

identified SODIS-user groups. Multinomial regression was applied and within-

community correlation of households was allowed for by introducing random effects. 

The descriptive results show already clear associations between a set of factors with 

the SODIS-user groups. The multinomial model, while showing similar suggestive 

tendencies, is unable to detect significance in some cases. We believe that our 

findings are substantially persuasive for SODIS dissemination programs, although the 

analysis of 11 clusters in such a complex RE multinomial model is likely 

underpowered for hypothesis testing in such hierarchical model.  

  

Many topics for statistical research remain open concerning our experience handling 

and analysing BoliviaWET data. The mail bulk of this thesis deals with CRTs with a 

completely randomized design. Analytical issues and estimation of clustering 

measures from pair-matched designs were not addressed. Although we introduced the 

notion of overdispersion in the analysis, we did not report formally the effects of 

different magnitudes of overdispersion in our simulations. Another topic that also 

appealed our attention was the study of imputation methods for diarrhoea for  

individual days, as a function of diarrhoea occurrence during past days or weeks. 

 

In conclusion, the simulation studies suggest that GLMM and Bayesian models are 

appropriate for the analysis of overdispersed count data in CRTs in sample sizes ≤ 40 

clusters in total. The estimation of the between-cluster coefficient of variation via 

GLMM and Bayes-HM is also appropriate. The Poisson model may seriously bias 

both the RR and CVc estimates. The NB model with normal random-effects provides a 

natural way to address overdispersion of count data in a CRT. We, encourage to check 

the residual overdispersion and to apply the (Poisson or extra-Poisson) model that best 

fits the data.  

 

The BoliviaWET trial found no strong evidence of reduction of the diarrhoea 

incidence in children < 5 years in families using SODIS. In terms of secondary 

analyses, we conclude that the vernacular term k’echalera does refer to a change in 
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the regular stool patterns associated with diarrhoea, although it differs from the 

symptoms-based diarrhoea definition in some aspects. We found that intensity of 

exposure to the SODIS campaign, latrine ownership, lack of electricity, and having 

severely wasted children living in the home are associated with uptake of SODIS. 
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Appendices 
 

Appendix A. SAS codes for implementing a GLMM analysis on NB count data 
following both the pair-matched and completely randomized (random-
intercepts) designs. 

 
 
Assuming pair-matching 
 
y    : nr of episodes per child.  
Intervention : 1, 0 (SODIS, Control) 
Dayatrisk : nr of days at risk  
Pair   : 1,2,…,11 
Cluster_pair : 1, 2.  
 
 
1. GLMM specification. 
 
proc glimmix data = dataset; 
 lnrisk=log(dayatrisk);  *logarithm of the FU-time;  
 class pair cluster_pair; 
 model y=intervention/ 

dist=negbin  *NB distribution; 
  link=log  *log link function; 
  offset=lnrisk *log(FU-time); 
  ddf=10 *denominator df for testing H0:β=0 (11-1)*(2-
1);  
  cl   *displays the CI; 
  solution;  *displays the parameter estimates; 
 random pair pair*cluster_pair; *Specifies the between-
pairs and within-pairs random effects; 
run; 
 
 
2. Multilevel regression specification. 
 
proc glimmix data = analysis; 
 lnrisk=log(dayatrisk);     
 class pair cluster_pair; 
 model y=intervention/ 

dist=negbin  
  link=log  
  offset=lnrisk  
  ddf=10   
  cl   
  solution;  
 random int cluster_pair /sub =pair;   
run; 
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Ignoring pair-matching (random-intercepts model) 
 
Y    : nr of episodes per child.  
Intervention : 1, 0 (SODIS, Control) 
Dayatrisk : nr of days at risk  
Cluster  : 1,2,…,22 
 
 
1. GLMM specification. 
 
proc glimmix data = table3; 
 class cluster; 
 lnrisk = log(dayatrisk); 
 model y = intervention / 

dist = negbin 
    link = log  
    offset = lnrisk  
    ddf = 20 
    cl  

Solutions; 
 random cluster; 
run; 
 
 
2. Multilevel regression specification. 
 
proc glimmix data = table3; 
 class cluster; 
 lnrisk = log(dayatrisk); 
 model y = intervention / 

dist = negbin 
    link = log  
    offset  lnrisk  =
    ddf = 20 
    cl  

Solutions; 
 random int /sub = cluster; 
run; 
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Appendix B. SODIS Promotion and Implementation Scheme 
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Appendix C. Eigenvectors, eigenvalues and correlation coefficients of the first 

three principal components (Z) of 6 indicators of SODIS-use 
 
 

Z1 Z2 Z3Indicator 
e r e R e r 

1. Bottles sun-exposed 0.57 0.87 -0.15 -0.21 -0.08 -0.08 
2. Bottles ready to drink 0.52 0.80 -0.09 -0.13 -0.30 -0.31 
3. Classified user 0.58 0.89 -0.19 -0.27 0.17 0.18 
4. Time behavioral change  0.05 0.08 -0.19 -0.27 0.92 0.94 
5. Time in study (Tool 1) 0.20 0.30 0.67 0.93 0.12 0.12 
6. Time in study (Tool 2) 0.18 0.28 0.67 0.94 0.13 0.14 
       
Eigenvalue 2.38 1.96 1.05 
Cumul. explained variance (%) 39.7 72.3 89.9 

 
  e = Eigenvector 
  r = Pearson correlation coefficient 
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