Niemann, H. and Elvert, M.. (2008) Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Organic Geochemistry, 39 (12). pp. 1668-1677.
PDF
Restricted to Repository staff only 250Kb |
Official URL: http://edoc.unibas.ch/dok/A5250595
Downloads: Statistics Overview
Abstract
The anaerobic oxidation of methane (AOM) with sulphate is the most important sink for methane in marine environments. This process is mediated by a consortium of methanotrophic archaea and sulphate reducing bacteria. So far, three groups of anaerobic methane oxidisers (ANME-1, -2 and -3) related to the methanogenic Methanosarcinales and Methanomicrobiales were discovered. The sulphate reducing partner of ANME-1 and -2 are two different eco-types of SRB related to the Desulfosarcina/Desulfococcus cluster (Seep-SRB1), whereas ANME-3 is associated with Desulfobulbus spp. (DBB). In this article, we reviewed literature data to assign statistically significant lipid biomarker signatures for a chemotaxonomic identification of the three known AOM communities. The lipid signatures of ANME-2/Seep-SRB1 and ANME-3/DBB are intriguingly similar, whereas ANME-1/Seep-SRB1 shows substantial differences to these AOM communities. ANME-1 can be distinguished from ANME-2 and -3 by a low ratio of the isoprenoidal dialkyl glycerol diethers sn2-hydroxyarchaeol and archaeol combined with a comparably low stable carbon isotope difference of archaeol relative to the source methane. Furthermore, only ANME-1 contains substantial amounts of isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs), however, with the probable exception of the ANME-2c sub-cluster. In contrast to the ANME-1 archaea, the tail to tail linked hydrocarbon tetramethylhexadecane (crocetane) is unique to ANME-2, whereas pentamethylicosenes (PMIs) with 4 and 5 double bonds without any higher saturated homologues were only found in ANME-3. The sulphate reducing partner of ANME-1 can be discerned from those of ANME-2 and -3 by a low ratio of the fatty acids (FAs) C16:1ω5 relative to i-C15:0 and, although to a lesser degree, by a high abundance of ai-C15:0 relative to i-C15:0. Furthermore, substantial amounts of 13C depleted non-isoprenoidal monoalkyl glycerol ethers (MAGEs) were only found in the sulphate reducing partners of ANME-2 and -3. A differentiation of these SRB is possible based on the characteristic presence of the FAs cy-C17:0ω5,6 and C17:1ω6, respectively. Generally, the data analysed here show overlaps between the different AOM communities, which highlights the need to use multiple lipid signatures for a robust identification of the dominating microbes involved.
Faculties and Departments: | 05 Faculty of Science > Departement Umweltwissenschaften > Geowissenschaften > Aquatic and Isotope Biogeochemistry (Lehmann) |
---|---|
UniBasel Contributors: | Niemann, Helge |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Pergamon Press |
ISSN: | 0146-6380 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Related URLs: | |
Identification Number: | |
edoc DOI: | |
Last Modified: | 03 Oct 2017 13:32 |
Deposited On: | 22 Mar 2012 14:05 |
Repository Staff Only: item control page