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Introduction – Studying bacterial evolution in the genomic era 

1.1 Studying bacterial evolution in the genomic era 
 
How bacteria and their traits are shaped by evolution has always been an important 

question. Particularly, the understanding of the evolutionary mechanisms underlying 

the occurrence and emergence of bacterial pathogens is of general importance. 

Since evolution occurs through changes in heritable traits encoded on the DNA, a 

prerequisite for studying bacterial evolution is the access to DNA sequence 

information. For long time, DNA sequences were available for only a few genes or 

taxa, and systematic or representative data which would allow inference of 

evolutionary aspects was missing (Seifert and DiRita 2006). The appearance of the 

first complete genome sequence in 1995, the one of Haemophilus influenzae, has 

dramatically changed the possibilities to examine evolutionary patterns (Fleischmann 

et al. 1995). In this study, the complete sequence of the attenuated laboratory strain 

Rd was compared to the sequences of known virulence genes cloned from more 

pathogenic clinical isolates providing insights into the molecular evolution of this 

pathogen.  

In the following, new genome projects were initiated and the continuous 

improvement of existing as well as the establishment of new sequencing 

technologies (Schuster 2008) has resulted in more and more genomic sequences 

deposited in databases (Fig. 1) . At the time of writing, 1001 complete microbial 

genomes (archea and bacteria) were found to be stored in public databases 

(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). The availability of genomic 

sequence data did not only provide more than enough information to infer 

comprehensive phylogenic relationships among bacterial species, but was also the 

onset for a new way of studying bacterial evolution (Lawrence 2005). Comparative 

genomics - the comparison of different genome sequences across biological species 

or strains - is nowadays an important research field mainly aiming at the 

understanding of molecular mechanisms underlying evolution of biological organisms 

(Koonin and Wolf 2008). By these means, certain biological questions about 

evolution could be addressed the first time and unexpected genomic characteristics 

revealed.  

Bacterial chromosomes have been viewed for long time as collections of a 

defined set of genes (Lawrence and Hendrickson 2005). However, the 

unprecedented view into the genomes of bacteria discovered a high degree of 

2 

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi


Introduction – Studying bacterial evolution in the genomic era 

3 

plasticity reflected by the difference in size among sequenced bacterial genomes 

ranging from 180 kb in the intracellular symbiont Carsonella rudii to 13 Mb in the soil 

bacterium Sorangium cellulosum (Fig. 1). The high abundance and importance of 

horizontal gene transfer (HGT), i.e. the lateral acquisition of foreign DNA, might be 

the biggest conceptual novelty brought about by comparative genomics of 

prokaryotes (Lawrence 1999; Ochman et al. 2000). In the pre-genomic area, HGT 

was viewed as a marginal phenomenon responsible for specific evolutionary events 

such as the spread of resistances (Koonin and Wolf 2008). Nowadays it is clear that 

horizontal transfer of genes plays a central role in the evolution of bacteria, and 

together with the phenomenon of gene loss represents the major factors contributing 

to the observed differences in genome size among bacteria. This high degree of 

genomic plasticity found among bacteria seems to reflect their distinct lifestyles and 

their adaptation to a wide range of ecological niches (Pallen and Wren 2007). 

 

Next-generation sequencing

Archaea
Bacteria

 
 
Figure 1: Exponential growth of microbial genome sequences in public databases since 1995 (green: 

genomes/ blue: genera). The onset of next-generation sequencing by the landmark publication of the 

sequencing-by-synthesis technology (Margulies et al. 2005) resulted in a boost of available genome 

sequences. Nowadays, genomes of most microbial genera are available. 
(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_growth.html). The inset shows the 

distribution of genome sizes among bacteria and archaea. Sequenced genomes of bacteria show a 

wide distribution with two peaks at 2 and 5 Mb, whereas archeal genomes sharply peak at 2Mb. This 

difference could be a sequencing bias, as the representation of archaeal genomes in the current 

databases is much less complete than the representation of bacterial genomes (adapted from (Koonin 

and Wolf 2008)). 

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_growth.html


Introduction – Genome dynamics – Gene change 

1.2 Genome dynamics: Common strategies for adaptation in 
bacteria 
 

Bacterial genomes are shaped by three main forces: gene change, gene loss, and 

gene gain (Pallen and Wren 2007). In the following each of the three mechanisms will 

be described and their consequences in regard to bacterial evolution and adaptation 

discussed. It is to note that most adaptive changes result from the interplay of these 

three forces. For pathogens, the most important adaptive changes underlying 

genomic dynamics are summarized in Fig. 2. 

 

 
 

Figure 2:  Representation of different genome dynamics occurring in bacterial pathogens. The three 

main forces shaping a genome (gene gain, gene loss, and gene change) can take place in a single 

bacterium. Most adaptive changes result from the interplay of these forces (Pallen and Wren 2007).  

 

1.2.1 Gene change 
 

Gene change describes mechanisms affecting the sequence or the order of existing 

genes (Pallen and Wren 2007). These mechanisms include nucleotide 
substitutions, insertions, and deletions, as well as rearrangements of single 

genes or larger genomic regions. 

 

1.2.1.1 Rearrangements 
 

Bacterial chromosomes experience a high degree of organization in regard to gene 

distribution and sequence composition. The maintenance of these structural features 

seems to be under strong selection (Rocha 2004). Therefore, the generation of 

4 
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genetic variability by genomic recombination might be in an evolutionary conflict with 

the conservation of genomic organization. Still, the occurrence of genetic variability 

by intra-genomic recombination is frequently observed in bacteria (Hacker et al. 

2003; Rocha 2004), even though varying a lot among bacteria adapted to different 

lifestyles (Mira et al. 2002). Genome stability correlates reciprocally with the degree 

of gene content and the presence of various types of repeated sequences (Mira et al. 

2002). Obligate intracellular bacteria (e.g. Rickettsia or Buchnera) have the smallest 

genomes and display the highest degree of stability which reflects their protected and 

highly constant ecological niches (Moran 2002; Tamas et al. 2002; Moran et al. 

2009). In contrast, free-living species as well as facultative intracellular pathogens 

such as Salmonella (Liu and Sanderson 1996), Shigella (Yang et al. 2005), 

Strepptococcus (Nakagawa et al. 2003), or Helicobacter pylori (Aras et al. 2003) 

undergo frequent genomic rearrangements due to the presence of repeated 

sequence elements. In these species, the periodic stresses imposed e.g. by the 

immune system or the environment probably resulted in the relaxed selection on 

organizational features of their chromosomes, thereby allowing fast adaptation via 

repeat-mediated rearrangements (Rocha 2004). The analysis of genomic 

organization between pairs of bacterial genomes by gene position plots (dot plots) 

revealed that genomic rearrangements often show symmetry around the origin or 

terminus of replication (Fig. 3). This phenomenon was thought to be the result of high 

recombination frequencies at the open replication forks (Andersson 2000; Tillier and 

Collins 2000). 

 
Buchnera (Ap) versus Buchnera (Sg) Salmonella typhi versus S. typhimurium Sulfolobus solfataricus versus S. tokodai
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Figure 3: Dot plot comparisons of related species with different degree of genome organization 

(adapted from (Mira et al. 2002)]). 

 

 Beside large genomic rearrangements single-gene translocations and 

inversions were shown to be abundant in genomes harboring insertion sequence (IS) 

5 
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elements. In Sulfolobus spp., the atypical high content of these elements resulted in 

a highly variable genome organization as seen from the scattered non-linear dot plot 

in Fig. 3 (She et al. 2001). 

Gene change can also occur by recombination between homologous genes. 

This mechanism, also called gene conversion, is best described for Neisseria ssp. 

which increase antigenic variation of different surface-exposed proteins, e.g. pilus 

subunits, by genetic recombination between expressed genes and silent loci (Palmer 

and Brayton 2007; Hill and Davies 2009). 

 

1.2.1.2 Nucleotide substitutions, insertions, and deletions 
 

Nucleotide insertions/deletions in genes frequently result in the occurrence of 

premature stop codons. Therefore, they are under strong negative selection or 

display the first step towards gene loss (see 1.2.3). Exceptions are the 

insertions/deletions of nucleotide triplets leading to the preservation of the reading 

frame. In some bacterial pathogens, a stochastical change in expression of surface 

structures produces a heterogenic phenotype which plays an important role for the 

infectivity of these pathogens. This phenomenon is called phase variation and can be 

achieved by e.g. slipped-strand mispairing (SSM) of contiguous DNA repeat units 

during replication. SSM results in the expansion or contraction of the number of 

repeats and ultimately to the phase-variable expression of a protein, if the regulatory 

or coding sequence is affected (van der Woude and Baumler 2004). 

 
Nucleotide substitutions display the most abundant type of gene change 

and continuously produce genetic variability which evolution can act on (Seifert and 

DiRita 2006; Barrick et al. 2009). The type and number of mutations that become 

fixed in a population can tremendously vary within and between genomes. If 

mutations have no significant consequences for fitness, they accumulate 

stochastically in direct proportion to the mutation rate (Rocha 2008). Nucleotide 

changes in intergenic regions or those that do not change the amino acid sequence 

of a gene often are considered to have no fitness effect and therefore are not 

affected by natural selection. In contrast, mutations which have a positive or negative 

fitness effect on the organism (e.g. mutations changing the amino acid sequence) are 

quickly fixed (positive selection) or eliminated from the population (purifying 

6 
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selection), respectively (Jordan et al. 2002). Proteins responsible for conserved 

cellular core functions are under severe functional constraints and therefore evolve 

slowly by accumulation of mainly neutral mutations. Most mutations affecting the 

protein sequence of these genes are deleterious and strong purifying selection is 

acting on them. As neutral mutations are directly proportional to the mutation rate, 

conserved core genome genes can be used to infer the relative time which has 

passed since divergence of species, thereby allowing to infer evolutionary 

relationships (Seifert and DiRita 2006). Although most genes evolve under purifying 

selection, the evolutionary rate can significantly vary across different functional 

classes of proteins (Jordan et al. 2002). Proteins which adopt new functions or are 

involved in the specific interaction with the environment were shown to carry 

substantially more mutations affecting the protein sequence (Murphy 1993; Moxon 

and Thaler 1997; Zheng et al. 2004; Chen et al. 2006; Bergthorsson et al. 2007; 

Petersen et al. 2007). These proteins are subject to adaptive evolution, and positive 

selection has resulted in fixation of mutations increasing the fitness of the organism in 

its ecological niche. For uropathogenic E.coli strains (UPEC), it was shown that 

proteins known to be important for causing urinary tract infection are under positive 

selection compared to non-UPEC strains. This reflects the adaptation of the UPEC 

strains to their specific niche within the host (Fig. 4). 

 

cell wall/membrane biogenesis

secondary metabolites,
transport and catabolism

0.075 0.15 0.225 0.3

Fraction of genes  

Figure 4: Genes under positive selection in 

uropathogenic E.coli strains. The analyzed 

genes are categorized according to 

functional classes. Black bars represent 

positively selected genes and white bars 

display total number of genes. Genes under 

positive selection are enriched in two 

functional categories (indicated by asterisk): 

These genes encoded adhesins, outer 

membrane proteins, proteins involved in iron 

acquisition and DNA repair systems, and 

proteins for regulation of LPS structures 

(adapted from (Chen et al. 2006)). 
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Another example are the amino acid variations in the fimbrial adhesins of 

E. coli and Salmonella which were shown to determine host specificity and tissue 

tropism allowing the transition from a commensal to a pathogenic lifestyle (Sokurenko 

et al. 1998; Boddicker et al. 2002; Hacker et al. 2003; Weissman et al. 2003). These 

so-called pathoadaptive processes also include the fast evolution of host-interacting 

proteins of pathogenic bacteria as a result of the selection pressure imposed by the 

host immune system. In this co-evolutionary arms race, both sides, the bacteria and 

the host, try to continuously improve their fitness by adaptive evolution (Stavrinides et 

al. 2008; Boller and He 2009). 

Beside intra-genomic differences, the degree of accumulation of mutations 

varies extensively among genomes from different bacterial strains and species 

(Tamas et al. 2002; Hacker et al. 2003; Denamur and Matic 2006). Small effective 

population sizes and increased mutation rates seem to be the two main reasons 

leading to an increased occurrence of mutations in certain bacterial organisms. For 

example, endosymbionts of the genus Buchnera revealed mutation rates 2-4-fold 

greater than their close relatives E. coli or Salmonella (Moran 1996; Clark et al. 

1999). In contrast to free-living prokaryotes with an effective population size 

estimated at > 109 for E. coli (Moran 1996), endsymbionts have tiny populations 

which mainly evolved clonal. This is caused (i) by the bottleneck occurring in each 

host generation when progeny are inoculated and (ii) by the strict separation of 

endosymbiont lineages in different hosts (Moran 1996). According to Muller’s ratchet 

(Felsenstein 1974), smaller populations accumulate faster mildly deleterious 

mutations and therefore show an increased rate of sequence evolution.

 A general increase in the mutation rate by changing the fidelity of DNA 

replication or repair can result in a more rapid accumulation of mutations. This fine-

tuning of the mutation rate is used by bacteria to increase their adaptability to 

changing environmental conditions and results in so-called mutator strains (Denamur 

and Matic 2006). However, since deleterious mutations are appearing at a much 

higher rate than beneficial, increased mutation rates are not always of advantage and 

can be counter-selected at one point of evolution (Giraud et al. 2001). Bacteria with a 

generally increased mutation rate were detected in many natural bacterial 

populations of E. coli, Salmonella, or Neisseria. In particular among pathogens, they 

frequently occur resulting in efficient variation of surface antigens and facilitating the 

acquisition of virulence or resistance determinants (Taddei et al. 1997). As an 
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example, among strains of Pseudomonas aeruginosa isolated from lungs of cystic 

fibrosis patients, a correlation between multiple-antibiotic resistance and high 

mutation rates was found (Oliver et al. 2000). 

 

1.2.2 Gene gain 
 
One of the greatest surprises uncovered by genome comparison was the degree of 

genomic variability within many bacterial species. The fact that two E. coli strains can 

differ by almost one quarter of their genomes (Hayashi et al. 2001; Welch et al. 2002) 

has reflated the debate about the definition of a prokaryotic species (Gevers et al. 

2005; Fraser et al. 2009). For several species, the number of genes common to all 

strains of that species (i.e. core genome) may display only a small fraction of its 

entire gene pool (i.e. pan-genome) (Medini et al. 2008). It was even proposed that for 

some species the pan-genome may be of unlimited size (Tettelin et al. 2005). As an 

example, the analysis of 17 Streptococcus pneumoniae genomes revealed an almost 

4-fold larger pan-genome than core genome (Hiller et al. 2007).  

Where are these genes coming from? Two main mechanisms are known to 

result in gain of genetic material: gene duplication and horizontal gene transfer 
(Pallen and Wren 2007). 

 

1.2.2.1 Gene duplication 
 

The duplication of genes displays a highly relevant biological process. An increase in 

gene dosage may result in the higher expression of a given gene. Furthermore, 

subsequent diversification of one of the two gene copies frequently leads to 

emergence of a new function, thereby facilitating adaptation to changing 

environments (Gevers et al. 2004; Andersson and Hughes 2009). Gene duplications 

belong to the most common type of mutations, and it has been estimated that at least 

10% of all cells in growing bacterial culture contain one duplication somewhere in the 

genome (Anderson and Roth 1981; Andersson and Hughes 2009). Therefore, it is 

not surprising that in some larger bacterial genomes paralogous genes (i.e. related 

genes emerged by duplications) can make up as much as 50 % of the entire coding 

content (Fraser-Liggett 2005). The number of paralogous genes strongly correlates 

with genome size (Fig. 5), and duplicated genes mainly belong to functional classes 

9 
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involved in the adaptation to constantly changing environments (such as amino acid, 

inorganic ion, or carbohydrate metabolism, as well as transcription, defense 

mechanisms, energy production and conversion) (Gevers et al. 2004). This is in line 

with the small fraction of paralogous genes found in the genomes of obligate 

intracellular organisms which colonize highly constant and nutrient-rich environments 

(Fig. 5).  

 

 
 

Figure 5: Prevalence of duplicated genes in proteobacteria. The category “Block duplicated” refers to 

genes belonging to a large duplicated DNA segment. Singletons are genes present only once in the 

corresponding genome. Ph and/or Tn are phage- and transposon-related genes. Orphans are genes 

without any homolog in other genomes. Obligate intracellular species are depicted in blue (Gevers et 

al. 2004). 

 

For many bacteria, gene duplications display an adaptive response to the 

selective pressure acting on the organism. In Borrelia burgdorferi, duplicated motility 

and chemotaxis genes comprise more than 6% of the proteome. These genes seem 

to confer the ability to migrate to distant sites under different physiological conditions 

in the tick as well as in the mammalian host (Fraser et al. 1997). In agreement with 

the complex nature of the mycobacterial cell wall, genes involved in fatty acid 

metabolism are duplicated in Mycobacterium, thus, reflecting the adaptive evolution 

of the bacterial cell surface (Gevers et al. 2004). Many other examples are known 

10 
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where the amplification of genes results in a dosage effect, thereby displaying direct 

adaptive response to a selective pressure. These types of duplications are often 

found in genes conferring resistance to antibiotics emphasizing the importance of this 

type of gene gain (Sandegren and Andersson 2009). 

 

1.2.2.2 Horizontal gene transfer 
 

The process of horizontal gene transfer (HGT) is the transmission of genetic 

information from one bacterial genome to another (Ochman et al. 2000). Albeit it was 

thought for a long time to be restricted to the spreading of resistance genes among 

bacterial populations, comparative genomics has revealed that HGT displays the 

most potential and abundant evolutionary path in the microbial world for generating 

biological diversity (Koonin and Wolf 2008). Although cases of HGT between bacteria 

and their hosts are reported, as for example in Legionella pneumophila (Bruggemann 

et al. 2006), it generally occurs between different bacterial strains and species. 

Mechanisms known to mediate HGT are conjugative transfer of plasmids or 

transposons, transduction of bacteriophages, or transformation of naked DNA 

(Salyers et al. 1995; Thomas and Nielsen 2005). Once acquired by a recipient cell, 

the foreign genetic information can either be maintained on an extra-chromosomal 

replicon or integrated into the chromosome (Burrus and Waldor 2004). The former 

case accounts for plasmids acquired by conjugation, although they may get 

assimilated into the recipient chromosome at one point of evolution.  

The integration of the horizontally acquired DNA mostly occurs as one 

syntenic block and is typically maintained as a so-called genomic island (GI) in the 

recipient genome (Juhas et al. 2009). GIs can be identified by different characteristic 

features (Fig. 6). Normally, they are relatively large segments of DNA (10-200 kb) 

present among closely related strains but absent from others. Smaller segments are 

also referred to as genomic islets (Hacker and Kaper 2000). Due to their foreign 

source, the nucleotide composition of GIs can differ from the rest of the chromosome 

measurable e.g. by the GC content. GIs often are inserted at conserved sites in the 

recipient chromosome as for example in tRNA genes. The site-specific integration 

results in the presence of perfect direct repeats of about 20 bp flanking the GI 

(Schmidt and Hensel 2004). Depending on the evolutionary stage, GIs can harbor 

genes or gene remnants associated with their mobilization or horizontal transfer such 

11 
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as integrases, insertion sequence elements, transposases, or plasmid and phage 

genes (Buchrieser et al. 1998; Gal-Mor and Finlay 2006). Most importantly, GIs often 

carry genes offering a selective advantage to the host bacteria which results in the 

fixation within the bacterial population (Schmidt and Hensel 2004). It is to note that 

many of the identified horizontally acquired islands are lacking one or more of the 

above-described features. This can be explained by the fact that many GIs are in a 

state of evolutionary regression, which results in the deterioration of mobilization 

genes and other signatures of their integration, thereby only maintaining genes 

conferring adaptation. Another reason is that GIs can be of many different origins 

harboring very distinct features, and their exact mechanism of chromosomal 

integration often is not fully understood (Juhas et al. 2009). Depending on the 

mediated function, a GI is referred to as pathogenicity, symbiosis, resistance, or 

metabolic island (Dobrindt et al. 2004). 

 

 
 

Figure 6: Typical features of GIs. According to their gene content, GIs can be described as 

pathogenicity, symbiosis, metabolic, resistance, or fitness islands. DR, directed repeat and  IS, 

insertion sequence element (Juhas et al. 2009). 

 

In the evolution of pathogens, HGT is of particular importance since virulence-

related traits can be acquired in a single step resulting in a so-called evolutionary 

“quantum-leap” (Groisman and Ochman 1996), i.e. the rapid alteration of the life-style 

of the recipient bacterium and the emergence of high-virulence strains. Herein, the 

12 
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spread and dissemination of antibiotic resistance genes among bacterial populations 

displays a serious threat to public health. This is particularly the case for pathogenic 

variants of gram-positive cocci (e.g. Staphylococcus aureus) causing severe sepsis 

and catheter-associated infections (Deurenberg et al. 2007). Due to the constant 

application of antibacterial drugs in hospitals, many of these strains carry GIs or 

plasmids which are conferring resistance to a variety of antibiotics (Chambers and 

Deleo 2009; Fischbach and Walsh 2009). The change from the almost universal 

susceptibility to increasing antibiotic resistance in a few decades is may be the most 

illustrative example of the remarkable capacity of HGT in conferring bacterial 

adaptation. 

Beside antibiotic resistances, frequently genes involved in host-interaction are 

disseminated via HGT allowing unrelated pathogens to use very similar strategies to 

subvert their hosts (Gal-Mor and Finlay 2006).  Table 1 provides a list of known 

virulence factors found on mobile genetic elements in different bacterial pathogens. 

Functionally versatile factors, easily adaptable for different purposes, are often 

acquired by HGT. Type III secretion systems (T3SS) and type IV secretion systems 

(T4SS) display good examples, as these nanomachines represent molecular needles 

dedicated to the injection of different effector molecules into host cells (Christie et al. 

2005; Coburn et al. 2007; Mueller et al. 2008). By switching the number and type of 

translocated molecules the host niche can be modulated for the specific purpose of 

the bacteria (Hueck 1998; Cascales and Christie 2003).  
 
Table 1: Mobile genetic elements that encode virulence factors present in human pathogens (Pallen 

and Wren 2007) 
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Strikingly, the same traits adopted by one species for virulence can be used by 

another to establish a symbiotic interaction. This was demonstrated for T3SS which 

were found to be present in the tsetse fly-symbiont Sodalis glossinidius and in 

various plant-symbiotic species of the rhizobiae (Dale et al. 2001; Marie et al. 2001).  

Although GIs and HGT have mostly been associated with the dissemination of 

host interacting factors or antibiotic resistance genes, it is obvious that free-living 

organisms are using the same strategies to adapt to their ever-changing environment 

which offers vast amounts of different ecologically niches (Davison 1999). The life-

style of these species in microbial communities exposes them to large amounts of 

foreign DNA in contrast to their host-associated relatives (Seifert and DiRita 2006). 

Accordingly, free-living bacteria generally comprise of larger genomes and harbor 

plasmids or GIs containing metabolic functions of several hundred kbs 

(Konstantinidis and Tiedje 2005; Sallstrom and Andersson 2005). In the anaerobic 

bacterium Geobacter sulfurreducens, a GI of 300 kb was detected encoding genes 

implicated in anaerobic metabolism, thus, reflecting the adaptive evolution to this 

specific life-style. Other environmental bacteria were found to carry mobile genetic 

elements responsible for the degradation of xenobiotics, i.e. anthropogenic 

compounds released into the environment. Analysis of the enzymatic pathways 

encoded on these elements indicated that they display an adaptive response to these 

environmental pollutants by circumventing their potential toxic effects and using them 

as alternative nutrient sources (Springael and Top 2004). 

 Finally, it is to note that the identification of horizontally transferred 

genes by genomic analyses has certain limitations. The continuous amelioration of 

the foreign DNA to the genetic composition of the recipient chromosome blurs the 

signatures of HGT (Lawrence and Ochman 1997). Still, there is clear evidence for 

ancient horizontal gene transfer. It was shown that highly conserved genes were 

horizontally transferred between all three domains of life, such as glutamine or 

methionyl-tRNA synthetase (Brown 2003). A striking example represents the archeal 

species Methanosacrina mazei, which has laterally acquired nearly 30% of its genetic 

content from an eubacterial source (Deppenmeier et al. 2002). Although, the extent 

of ancient HGT in the microbial world is not clear yet, the question about the 

feasibility of constructing a universal 'Tree of Life' has become a hot topic (Wolf et al. 

2002). 
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1.2.3 Gene loss 
 
Since bacterial genomes are not ever-expanding (Koonin and Wolf 2008), it is 

obvious that the acquisition of genetic material by HGT or gene duplication is 

counterbalanced by loss of DNA.  Furthermore, the lack of extensive non-coding 

sequences indicates that there is a bias towards small genomes in bacteria. This is in 

clear contrast to eukaryotic genomes which can differ by almost 300-fold in size with 

only a sixfold difference in gene number (Mira et al. 2001).  

In fact, for many bacteria, it has been shown that gene loss is linked to the 

specific adaptation to different ecological niches.  When a bacterium is adapting to a 

new environment, the selective pressure acting on it will be different than before, and 

former beneficial traits may become incompatible with growth in the new niche. 

Consequently, this leads to the down-regulation or elimination of the incompatible 

genes (Maurelli 2007). For example, strains of the pathogenic species Shigella lack 

ompT. This gene encodes a surface protease present in closely related non-

pathogenic E. coli. Apparently, the deletion of ompT was a prerequisite for the 

adaptation to the pathogenic life-style of Shigella, as the experimental introduction of 

this gene was shown to suppress its intracellular spread (Fig. 7) (Nakata et al. 1993; 

Hacker et al. 2003).  

In contrast to these pathoadaptive processes which are resulting in the loss of 

one or a few genes, several bacterial species exhibit a much more extreme reduction 

of their coding content. Across different evolutionary lineages, the transition from a 

free-living to strictly intracellular life-style was associated with an extensive loss of 

DNA (Casadevall 2008). Albeit, the evolutionary forces driving genome reduction are 

of different nature, yet they are clearly related to the restricted intracellular life-style of 

these organisms. At first, the highly constant environment within the host cell, rich in 

metabolic intermediates, results in the elimination of the selective pressure acting on 

most biosynthetic genes. Second, intracellular bacteria normally have small 

population sizes resulting in the fixation of slightly deleterious mutations (see 1.2.1.2). 

Thereby potentially beneficial genes enhancing the efficiency of important cellular 

functions, such as DNA replication and repair, can be lost, which consequently leads 

to further increase in the accumulation of deleterious mutations. The resulting 

pseudogenization is then followed by successive deletion of the non-functional genes 

(Casadevall 2008). 

15 



Introduction – Genome dynamics – Gene loss 

As bacteria have adapted to the intracellular lifestyle at various points of 

evolution, their genomes provide snapshots of the different stages of genome 

reduction. The recently evolved severe human pathogens Yersinia pestis, Salmonella 

enteric serovar Typhi, or Bordetella pertussis consistently show large-scale loss and 

inactivation of genes due to adaptation to a human-specific life-style (Wren 2003; 

McClelland et al. 2004; Preston et al. 2004). In these genomes, a high number of IS 

elements and repeats are found which were implicated as the source of 

chromosomal rearrangements, extensive deletions, and gene inactivation (Moran and 

Plague 2004). Ongoing genome reduction has also been found in the genomes of 

Rickettsia prowazekii and Mycobacterium leprae which harbor a high number of 

pseudogenes (Andersson et al. 1998; Cole et al. 2001). The most extreme examples 

of genome reductions are found among obligate intracellular pathogens and 

symbionts, such as Buchnera, Wolbachia, Chlamydia or Mycoplasma (Casadevall 

2008).  In Buchnera, the absence of pseudogenes, repetitive elements, and the 

highly conserved genomic structure (Fig. 3) reflects their ancient host-association 

which was established more than 150 million years ago (Tamas et al. 2002). The lack 

of opportunities to acquire foreign DNA in the protected niche of these organisms 

results in the irreversibility to a different lifestyle (Fig. 7). The discovery of the so far 

smallest bacterial genome, the one of the endosymbiont Carsonella rudii having a 

size of only ~180 kb, posed the questions whether obligate intracellular organisms 

are facing a dead end from where is no escape (Andersson 2006). 
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Figure 7: Bacterial evolution driven by the interplay of different genome dynamics. Different variants of 

pathogenic and symbiotic gammaproteobacteria have evolved by the acquisition and loss of genetic 

information from a common bacterial ancestor. cadA, lysine decarboxylase-encoding gene; ompT, 

outer membrane protein T-encoding gene; PAI, pathogenicity island; EIEC, enteroinvasive E. coli; 

UPEC, uropathogenic E. coli (Hacker et al. 2003). 
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1.3 Alphaproteobacterial evolution 
 
1.3.1 Genomic plasticity: Driving force of adaptability 

 
The alphaproteobacteria, which the genus Bartonella belongs to, represents one of 

the most diverse bacterial subdivisions. They display great variability not only in 

metabolic capacity, morphology, or life cycle (Batut et al. 2004), but they are also 

colonizing most imaginable habitats. Free-living alphaproteobacteria have been 

found in water and soil; others form intra- and extracellular associations with 

eukaryotes, such as unicellular organisms, nematodes, arthropods, plants, and 

mammals. In many of these different ecologically niches alphaproteobacteria display 

the predominant bacterial species (Nirgianaki et al. 2003; Venter et al. 2004; 

Giovannoni and Stingl 2005). The high prevalence of these microorganisms indicates 

their great capability to specifically adapt to a wide range of different habitats. In this 

respect, it was proposed that the alphaproteobacteria represent the bacterial 

equivalents of Darwin’s finches (Ettema, 2009). 

 The high degree of adaptability in the alpha subdivision is reflected by the 

variation in genomic content: (i) their genome sizes are ranging from less 1 Mb to 

more than 9 Mb (Kaneko et al. 2002; McCutcheon et al. 2009), (ii) only 33%-97% of 

all genes of a given alphaproteobacterial genome are also from an 

alphaproteobacterial origin (Esser et al. 2007), and (iii) in some genomes, species-

specific genes are counting more than a thousand (Boussau et al. 2004). In a 

quantitative analysis of the flux of genes during evolution, it was estimated that the 

last common ancestor of the alpha subdivision consisted of 3’000-5’000 genes and 

represented a free-living, aerobic, and motile bacterium with surface proteins for 

environmental and host interaction (Boussau et al. 2004). Massive genome 

expansion was observed at branches of soil- and plant-associated bacteria, whereas 

genome reduction mostly occurred within lineages of facultative or obligate 

intracellular bacteria of mammals (Fig. 8). Functional classes which show increased 

abundance in expanded genomes include energy metabolism, transport, and 

regulation; all which are processes involved in adaptability. Strikingly, environmental 

shifts have occurred several times during evolution in different lineages of the 

alphaproteobacteria, and they were always associated with the same fluctuation in 

genome size (Boussau et al. 2004).   
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Figure 8: Net gene loss or gain throughout the evolution of the alphaproteobacterial species. Arrows 

pointing upward indicate net gains of genes (G), and arrows pointing downward indicate net losses of 

genes (L). Colors of circles refer to the relative fraction of genes assigned to the different functional 

groups in the modern and inferred genome at the node. Yellow, information storage and processing; 

green, metabolism; red, cellular processes; blue, poorly characterized (adapted from (Boussau et al. 

2004). 

 

Genome reduction is observed in the early branching lineage of the host-

associated Rickettsiales, as well as in the lineage separating the facultative 

intracellular species of Bartonella and Brucella from the other Rhizobiales (Fig. 8). In 

both lineages, the high abundance of pseudogenes indicates a parallel ongoing trend 

towards genome reduction, although there is also evidence for lineage-specific 

horzontal acquisition of plasmid and phage-derived genes (Alsmark et al. 2004; Wu 

et al. 2004; Cho et al. 2007; Darby et al. 2007).  For Bartonella, specialization to a 

single vector and host has been associated with the loss of genetic content. The 

louse-borne human pathogen Bartonella quintana was shown to display a reduced 

genomic variant of the closely related zoonotic species Bartonella henselae (Alsmark 

et al. 2004). Interestingly, Rickettsia prowazekii, as B. quintana transmitted by the 
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human body louse, also shows extensive genome reduction compared to its relatives 

(Fig. 8). This suggests that the massive genome decay in these species might be 

related to the biology of their common arthropod vector (Andersson et al. 1998; 

Alsmark et al. 2004). 

In many alphaproteobacterial species auxiliary replicons of up to several 

megabases are present. Horizontally acquired genes located on these 

extrachromosomal segments count for most of the observed genome expansion in 

the alpha subdivision. Some of these elements contain plasmid-like replication 

systems indicating their plasmid-derived evolution (Batut et al. 2004). Large genetic 

variability is found on these auxiliary replicons which mostly contain niche-associated 

traits (Giuntini et al. 2005). In some cases, they are integrated into the chromosome 

and maintained as GIs as shown for Bartonella (Alsmark et al. 2004) and 

Bradyrhizobium (Viprey et al. 2000). Recently, it was revealed that parts of the 

integrated auxiliary replicon of Bartonella are massively amplified from an alternative 

origin of replication and packaged into phage particles. The authors proposed that 

this mechanism displays a novel strategy for increased lateral exchange of the many 

host-interacting genes contained in this region (Berglund et al. 2009). Further, in  

Mesorhizobium loti, an integrated symbiosis island of 500 kb was shown to be 

excised and transferred across species (Sullivan and Ronson 1998). 

Summarizing, alphaproteobacterial genomes seem to harbor hot spots or so 

called “plasticity zones” where accessory gene content involved in niche specific 

adaptation is assimilated to and maintained. By the physical separation of adaptive 

traits and conserved housekeeping functions the evolutionary adaptability might be 

substantially enhanced explaining the ecological success of the alphaproteobacteria 

(Ettema and Andersson 2009).
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1.3.2 Persistence: Common theme in infection strategies 
 
Many alphaproteobacterial species are interacting with diverse eukaryotic hosts, 

either as symbionts (e.g. most Rhizobiales, Wolbachia), commensals (e.g. 

Sinorhizobium) or pathogens (e.g. Agrobacterium, Anaplasma, Rickettsia, Bartonella, 

and Brucella). Despite these differences in hosts-association and the above-

described variation in genomic content, they share some properties in regard of their 

infection strategies. The common theme is not to kill the host, but to cause a chronic 

infection resulting in long-term persistence. Although the molecular mechanisms may 

differ, all host-associated alphaproteobacteria follow some general concepts to 

establish a chronic infection (Batut et al. 2004). The different steps towards a chronic 

infection are summarized in Fig. 9.  

 

 
 

Figure 9: The road to a chronic infection. After the first contact is establish the bacteria have to adapt 

to the host environment and establish their niche. A crucial role plays the avoidance or suppression of 

the host’s defense response. This requires a fine-tuned interaction with the host cells in which the 

secretion of effector proteins often plays an important role (Batut et al. 2004). 

 

Most important for causing chronic infections, and therefore a recurrent feature 

in the interaction between alphaproteobacteria and their hosts, is the maintenance 

and extension of the intracellular niches (Batut et al. 2004). The induction of cell 

proliferation by preventing host cells from undergoing apoptosis is one way how 

niche expansion can be achieved. Bartonella, Brucella, and Rickettsia are following 

this strategy by activating different anti-apoptotic pathways (Gross et al. 2000; Kirby 

and Nekorchuk 2002; Joshi et al. 2003; Schmid et al. 2006). Another type of niche 

extension is observed in the plant-associated species of Agrobacterium or Rhizobia. 

These bacteria induce massive cell proliferation resulting in the formation of tumour-
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like structures, thereby providing optimal conditions for bacterial growth and 

persistence (Zhu et al. 2000; Endre et al. 2002). Tumour-like manifestations resulting 

from vasoproliferation of the endothelium can also occur from infections with different 

Bartonella species (Koehler et al. 1992; Conley et al. 1994; Schmid et al. 2004). The 

hypertrophy (i.e. increase in cell size) of the ovaries induced by Wolbachia in the 

isopod hosts is another example of niche expansion among the alphaproteobacteria 

(Azzouna et al. 2004). 

Also, important for long-term persistence is the fine-tuned modulation of the 

targeted host and the avoidance of a strong immune response (Batut et al. 2004). In 

this process, regulation plays a central role. In alphaproteobacteria, two-component 

regulatory systems are typically used to control the expression of host-interacting 

factors as an adaptive response to an outside stimulus. Also, the lipopolysaccharides 

(LPS) of many of the alpha subdivision species carry adaptive properties (Batut et al. 

2004). In Brucella and Bartonella, the LPS has reduced endotoxic and 

immunostimulatory properties displaying a typical feature of stealth pathogens 

(Merrell and Falkow 2004; Zahringer et al. 2004; Barquero-Calvo et al. 2007). Many 

of the eukaryote-interacting species are using secretion systems to inject effector 

molecules into target cells resulting in a very specific modulation of the different 

niches. Most abundant are T4SSs ancestrally related to conjugation machineries. 

These versatile nanomachineries display key factors for host interaction in 

Agrobacterium, Brucella, Anaplasma and Bartonella. Recently, a putative role in 

pathogenicity was also proposed for T4SSs found in Wolbachia, Erlichia, and 

Rickettsia (Rances et al. 2008; Bao et al. 2009; Gillespie et al. 2009). Also, other 

secretion systems are found in alphaproteobacteria, as for example T3SS. In some of 

the rhizobial species these systems are involved in modulation of host range and 

host defense (Bartsev et al. 2004).  

Although alphaproteobacterial species use clearly different molecular 

mechanisms for host interaction, and their underlying genetic factors are of different 

origin or only distantly related, the conceptual strategy seems to be the same. The 

persistent nature of alphaproteobacterial host-interactions, together with the high 

degree of adaptability, seems to render the evolutionary success of this bacterial 

subdivision.
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1.4 Type IV secretion systems: Versatile nanomachines  
 
1.4.1 Diversifying evolution of conjugation machineries 
 
Type IV secretion systems (T4SSs) are multisubunit membrane-spanning 

nanomachineries which are dedicated to the transfer of bacterial effector molecules 

into cells of prokaryotes and eukaryotes (Christie et al. 2005). Among all secretion 

systems, T4SSs are unique by the ability to not only transfer proteins, but also DNA 

and DNA-protein complexes across different kingdoms. Presumably, the evolutionary 

origin as conjugation machineries explains this unique characteristic (Lawley et al. 

2003; Christie 2004). T4SSs play an important role for niche adaptation of host-

associated bacteria. First, by their ability to mediate HGT of various DNA molecules 

among bacteria T4SSs contribute to genome plasticity and the dissemination of 

antibiotic resistance as well as virulence traits (Hamilton et al. 2005; Juhas et al. 

2008). Second, many T4SSs of pathogens and symbionts contribute directly to host 

interaction by translocating effector molecules into targeted host cells. This results in 

the modulation of a wide range of essential host cell functions in favor of the bacteria 

(Schmid et al. 2004; Schulein et al. 2005; Segal et al. 2005; Backert and Meyer 

2006). 

T4SSs are encoded by multiple genes often organized in a single block in the 

chromosome. As expected from their functional versatility, the type, number, and 

order of the T4SS-encoding genes can significantly differ. By constructing protein 

homology networks it was shown that T4SSs consist of conserved core components 

which are complemented by non-conserved proteins. This has resulted in a step-wise 

diversification of T4SSs. The genetic modularity seems to contribute essentially to 

the functional specialization of these nanomachines (Medini et al. 2006).  

Based on the genetic organization, shared homologies, and evolutionary 

relationships, T4SSs have been classified into different types using two different 

classification schemes (Lawley et al. 2003; Christie et al. 2005). Originally, three 

different classes were based on the incompatibility group of conjugative plasmids: F 

(incompatibility group IncF), P (incompatibility group IncP), and I (incompatibility 

group IncI) (Lawley et al. 2003). Alternatively, type F and P were grouped together to 

the type IVA systems and type I was referred to as type IVB systems (Christie et al. 

2005). The recent identification of a novel T4SS with only limited homology to the so 
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far existing groups indicated the presence of another type. Due to its function in the 

HGT of GIs, this type was referred to as GI-T4SS (Juhas et al. 2007). An overview of 

all types and their evolutionary relationship is given in Fig. 10.  

 

F‐T4SSs
plasmid conjugation

P‐T4SSs
A. tumefaciens
(T‐DNA translocation)

I‐T4SSs
L. pneumophila
(protein translocation)
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Figure 10: Different groups of T4SSs and a model of the VirB/D4 T4SS of A. tumefaciens. In the 

illustration depicting the genetic organization, genes homologous across T4SS groups are highlighted 

with the same color. virB4 (red), virB10 (blue), and virD4 (yellow) are the only genes conserved across 

all T4SS groups. tfc, tra/trb, vir, and icm/dot refer to the gene names of the given loci. The same color 

scheme was used for the model of the VirB/D4 T4SS (adapted from (Schroder and Dehio 2005; Juhas 

et al. 2008)]). 

 

Most knowledge regarding evolution, structure, and function of T4SSs comes 

from the type IVA systems, in particular from the prototypical VirB/VirD4 system of 

A. tumefaciens (Fig. 10). Also, type IVA are the T4SSs found in many 

alphaproteobacteria including Bartonella. Therefore, for the rest of this chapter, the 

focus will lie on this class of T4SSs.  

The VirB/VirD4 T4SS of the plant pathogen A. tumefaciens mediates the 

transfer of oncogenic genes into host cells resulting in tumour-formation known as 

crown gall disease (Zhu et al. 2000). This system is encoded by the ~10 kb virB 

cluster comprising of 11 genes, virB1 to virB11. The extracellular pilus is built up by 

VirB2 and VirB5 subunits. VirB4, VirB11, and VirD4 are ATPases which energize 

substrate secretion and are possibly involved in the structural assembly of the entire 

system. The localization and function of VirB3 is still unclear (Fronzes et al. 2009). 

VirB6 to VirB10 are structural components being part of the secretion channel (Juhas 

et al. 2008). As shown by crystallization and cryo-electron microscopy for the 

homologous T4SS of plasmid pKM191, the proteins VirB7, VirB9, and VirB10 build 
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up a core complex of this channel, spanning from the inner to the outer membrane 

(Chandran et al. 2009; Fronzes et al. 2009). VirB1 which is absent from many type 

IVA systems encodes a transglycosylase with a bifunctional role. It lyses the 

peptidoglycan cell wall and assists in the assembly of the entire T4SS within the 

membrane (Zupan et al. 2007). Another component of T4SSs represents VirD4 which 

is encoded separately from the virB gene cluster in A. tumefaciens. This inner-

membrane-associated component is also referred to as coupling-protein, as it 

mediates the interaction between translocated effector molecules and the T4SS 

machinery (Fig. 10). The VirB/D4 system of A. tumefaciens translocates the so called 

T-DNA protein complex into plant cells which consists of the effector proteins VirD2 

and VirE2. They are bound to a linear DNA segment that encodes the oncogenic 

proteins (Vergunst et al. 2000; Grange et al. 2008). Other translocated proteins are 

VirD5, VirE3, and VirF. Although their function is not yet understood in detail, they 

seem to assist in DNA-transfer and nuclear import (Lacroix et al. 2006). 

Horizontal transfer has dominated the evolution of T4SSs, as congruence 

betwee

.4.2 VirB and Trw T4SSs of Bartonella 

 Bartonella the two T4SSs VirB and Trw represent striking examples for the 

The VirB T4SS of Bartonella translocates different effector proteins into 

endothelial host cells to subvert cellular functions critical for establishing a chronic 

n tree topologies inferred from conserved housekeeping genes and different 

components of T4SS is mostly lacking (Frank et al. 2005). It was proposed that 

T4SSs dedicated to host-interaction have been derived from conjugation systems 

many times independently during evolution. Their high prevalence, the ease of 

transmission by HGT, and their functional flexibility provide the basis for a rapid 

diversification resulting in the adoption of a wide range of different functions (Frank et 

al. 2005). 

 

1
 

In

adaptive capabilities of these nanomachineries. Both systems belong to the type IVA 

systems and are built up by the same subunits as the prototypical T4SS of 

A. tumefaciens (expect for the virB1 gene). In the B. tribocorum-rat model, both T4SS 

were shown to be essential for causing intraerythrocytic infections, a hallmark of 

Bartonella pathogenicity (Schulein and Dehio 2002; Seubert et al. 2003). 
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infection (Schulein and Dehio 2002). Evolutionary analyses strongly imply that the 

VirB T4SS was horizontally acquired during evolution of Bartonella (Frank et al. 

2005). In agreement with this, the VirB T4SS and its effector proteins are integrated 

into the chromosome of B. henselae, B. quintana, and B. tribocorum as one block 

bearing characteristics of a pathogenicity island (Schulein and Dehio 2002; Alsmark 

et al. 2004; Schulein et al. 2005). Most homology is found with conjugation systems 

located on conjugative plasmids from A. tumefaciens (pAT), Sinorhizobium meliloti 

(pSymA), and Rhizobium etli (p42d) (Frank et al. 2005).  

 

49%23 4 5 6 7 8 9 10 11
A1

virD4
C E F1 F2

23 4 5 6 7 8 9 10 11 virD4

virB bep

B. henselae

B. quintana

A. tumefaciens 23 4 5 6 7 8 9 10 11 traG traA

avhB tra

virD4

1

A2

oriT
1 kb

A B C D E F G

51%

Ø 85% 56% 91% 73% 49%Δ Δ 42% 45% Δ

Ø 41%

 
 
Figure 11: Genetic organization the VirB T4SS locus of Bartonella. Homology to the phylogenetically 

lated conjugation system of plasmid pAT of A. tumefaciens is shown for comparison. Machinery 

 VirB T4SS from a conjugation into a protein 

anslocation system dedicated to host adaptation required several steps (Fig. 11). 

Conjug

re

encoding genes are depicted in yellow and blue, coupling proteins in pink and translocated effector 

molecules (relaxases and bep genes) in light green color. The BID domains of the relaxase and the 

bep genes are shown in red color. The degree of conservation for individual genes or groups of genes 

(in average, Ø) is indicated in percentages of amino acid identity of the aligned translated protein 

sequences (Schroder and Dehio 2005) 
 

The transformation of the

tr

ative plasmids typically encode a relaxase which cleaves the plasmid DNA 

and interacts with the coupling protein of the T4SS, thereby enabling the plasmid 

transfer into the recipient cell (Schroder and Lanka 2005). This gene is not necessary 

for protein translocation and was deleted during the adaptive evolution of the T4SS of 

Bartonella. However, the C-terminal sequence motif of the relaxase which is sufficient 

for interaction with the coupling protein was adopted by Bartonella to target the 
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proteins for translocation to the machinery. All Bartonella effector proteins (Beps) 

harbor a sequence motif in their C-terminal moiety with homology to the ones found 

in relaxases (Fig. 11). This motif consists of the so-called Bartonella-intracellular 

delivery (BID) domain and a positively charged C-terminus (Schulein et al. 2005). 

Beside this secretion signal, bep genes were found to harbor additional BID domains, 

tandem-repeated tyrosine-phosphorylation motifs or FIC (filamentation-induced by 

cAMP) domains in their N-terminal moiety. The homology found among different 

Beps suggests that they evolved by duplications, diversification and reshuffling from 

a single ancestral effector gene which had been derived from the C-terminal moiety 

of the relaxase gene and the FIC domain present in many bacterial genomes 

(Schulein et al. 2005).  

 

As the VirB system, the Trw T4SS is essential for the infectivity of different 

artonella species. However, its exact function is not clear yet. As neither effector 

protein

 evolution marked by deletion of genes 

import

B

s nor a coupling protein are found in the locus encoding the machinery genes, 

the Trw system seems not to translocate any substrates into host cells. Instead, it 

was hypothesized that this system could function as an adherence factor mediating 

the invasion of erythrocytes (Dehio 2008). The trw genes of Bartonella share a 

remarkably high similarity to the conjugation machinery located on the broad-host 

range plasmid R388 which was originally isolated from E.coli (Fig. 12). Apart from the 

genes encoding the T4SS structure, the two systems have also a negative 

heterodimeric regulator system in common. A specific feature of the Trw T4SS of 

Bartonella, and in general unique among T4SSs, is the amplification of genes coding 

for several structural components (Seubert et al. 2003). The gene trwL is present in 7 

to 8 tandem-repeated copies and trwH, I, and J, corresponding to virB5, 6, and 7, 

were found to be co-amplified 2 to 3 times. The amplified copies of trwL as well as 

trwJ show a high degree of sequence diversification (Nystedt et al. 2008). This goes 

in line with the fact that both genes are encoding pilus subunits implying that their 

amplification and diversification may reflect antigenic variation or allow binding to 

different surface proteins of the erythrocytes. 

In summary, these findings indicate a recent HGT of the Trw T4SS in the 

lineage of Bartonella followed by an adaptive

ant for substrate translocation (as relaxase and coupling protein) and the 

amplification-diversification of pilus subunits. 
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Figure 12: Genetic organization of the Trw T4SS locus of Bartonella. Homology to the 

phyloge conjugation systems of plasmid R388 is shown for comparison. Machinery netically related 

encoding genes are depicted in yellow and blue, coupling proteins in pink and the relaxase gene in 

light green color. The degree of conservation for individual genes is indicated in percentages of amino 

acid identity of the aligned translated protein sequences. The genes korA and korB, enccoding the 

heterodimeric regulator system, are depicted in black color (Schroder and Dehio 2005). 
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2. Aim of the Thesis 
 
When the project was started in March 2006, the primary aim of this thesis was to 

understand functional and evolutionary aspects of the infection strategy adopted by 

the genus Bartonella. The main focus was the analysis of different type IV secretion 

systems of Bartonella involved in the interaction with the mammalian host. To this 

end, I generated genome-wide data sets, applied methods of comparative genomics 

and molecular evolution, and I used in vivo and in vitro approaches to corroborate 

findings from dry-lab analyses. 
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3.1.1 Summary 
 

Evolutionary processes underlying the transformation of prototypical pathogens 

causing massive host damage into host-adapted pathogens with attenuated virulence 

are poorly understood. As niche competition normally leads to the extinction of 

prototypical pathogens, information necessary to understand the evolutionary path by 

which successfully adapted descendants were selected is lost.  

In this study, we have inferred that the horizontal acquisition of different type 

IV secretion systems (T4SSs) facilitated Bartonella to adjust its characteristic 

infection strategy, which is reflected by an increased host adaptability of the 

descendants. 

Our phylogenetic analysis based on four housekeeping genes implicated that 

bartonellae with different virulence potential form distinct phylogenetic clades (Saenz 

et al. 2007). The analysis identified a deep-branching ancestral lineage, which solely 

comprises the highly virulent human pathogen B. bacilliformis. Most other Bartonella 

species causing mild or asymptomatic intraerythrocytic infections in various 

mammalian reservoir hosts are descendants of rapidly multiplying lineages. These 

occurred after the divergence from the ancestral lineage of B. bacilliformis. To identify 

pathogenicity genes (PGs) that could have facilitated host adaptability within these 

lineages, an integrated approach of comparative and functional genomics was used. 

We applied signature-tagged mutagenesis to screen for abacteremic mutants in the 

B. tribocorum-rat model. By this means, 97 PGs of B. tribocorum, which are essential 

for the intraerythrocytic colonization of the rat host, were identified. Complete 

sequencing of the genome of B. tribocorum allowed chromosomal mapping of the 

PGs and comparison to the publicly available genomes of B. bacilliformis, B. 

quintana, and B. henselae. Most of the identified PGs were found to be conserved in 

all four genomes, reflecting the common infection strategies used by bartonellae to 

colonize their different reservoir hosts. However, 15 PGs of B. tribocorum were 

present in B. quintana and B. henselae, but absent from B. bacilliformis. Except for 

one, these PGs encode different components of two horizontally acquired T4SSs, 

VirB and Trw, both having adopted essential but different functions during infection. A 

comprehensive screening for T4SS genes by PCR amplification and DNA 

hybridization showed that T4SS are present in all of the analyzed species belonging 

to the lineages with increased host adaptability, but not found in any tested strain of 
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B. bacilliformis. Further, the absence of T4SS gene remnants from the genome of 

B. bacilliformis suggested a horizontal acquisition of these factors after the 

divergence of the ancestral lineage. Interestingly, in the sub-clade of ruminant-

infecting Bartonella species none of the virB or trw genes could be detected. 

However, we identified components of a VirB-homologous (Vbh) T4SS. By 

phylogenetic analysis, we showed that the VirB and Vbh T4SSs have presumably 

been derived from each other suggesting similar functional roles in different 

Bartonella lineages.  

Summarizing, our results showed that T4SSs, horizontally acquired during 

evolution, resulted in the fine-tuning of an infection strategy already adopted by the 

common ancestor of Bartonella. Whereas the Trw T4SS is only present in a subset of 

species, a VirB-like T4SS (either VirB or Vbh) was found in all analyzed strains with 

increased host adaptability. By providing a nanomachine dedicated to the 

translocation of a cocktail of different effector proteins into mammalian target cells, 

the VirB T4SS represents the appropriate molecular tool to confer host adaptability. 

This is reflected by the high degree of variation found between the effector protein-

encoding genes of Bartonella species adapted to different hosts. The fine-tuning of 

the interaction with the mammalian host has presumably enabled Bartonella species 

to adjust their virulence and broaden their dissemination. Consequently, this resulted 

in the colonization of a much wider range of different hosts. 
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Genomic analysis of Bartonella identifies type IV
secretion systems as host adaptability factors
Henri L Saenz1,7, Philipp Engel1,7, Michèle C Stoeckli1, Christa Lanz2, Günter Raddatz2,6,
Muriel Vayssier-Taussat1,3, Richard Birtles4, Stephan C Schuster2,5 & Christoph Dehio1

The bacterial genus Bartonella comprises 21 pathogens causing characteristic intraerythrocytic infections. Bartonella bacilliformis
is a severe pathogen representing an ancestral lineage, whereas the other species are benign pathogens that evolved by radial
speciation. Here, we have used comparative and functional genomics to infer pathogenicity genes specific to the radiating
lineage, and we suggest that these genes may have facilitated adaptation to the host environment. We determined the complete
genome sequence of Bartonella tribocorum by shotgun sequencing and functionally identified 97 pathogenicity genes by
signature-tagged mutagenesis. Eighty-one pathogenicity genes belong to the core genome (1,097 genes) of the radiating lineage
inferred from genome comparison of B. tribocorum, Bartonella henselae and Bartonella quintana. Sixty-six pathogenicity genes
are present in B. bacilliformis, and one has been lost by deletion. The 14 pathogenicity genes specific for the radiating lineage
encode two laterally acquired type IV secretion systems, suggesting that these systems have a role in host adaptability.

Several severe bacterial pathogens, such as the agents of plague, typhoid
fever and whooping cough, have evolved from rather benign progeni-
tors by a process of genome degradation, which was facilitated by
changes in the human population structure over the last 1,500–20,000
years1–5. Little is known, however, about how prototypic pathogens
that cause massive host damage through adoption of new infection
strategies may evolve into host-adapted pathogens with attenuated
virulence. This lack of knowledge might primarily be due to the
extinction of prototypical pathogens as result of competition with
their epidemiologically more successful host-adapted descendants.
However, an exception is found in the genus Bartonella, which, besides
20 host-adapted pathogens of low virulence potential, encompasses
B. bacilliformis as the ‘missing link’6,7. With a restricted distribution in
the Andes region, this ‘living fossil’ is a severe human pathogen causing
up to 85% mortality8. In contrast, the other bartonellae commonly
cause benign but widespread infections in their specific mammalian
reservoirs: for example, B. quintana causes human trench fever, and
B. henselae causes asymptomatic feline infections7. Phylogenetic ana-
lysis indicate an isolated position of B. bacilliformis as sole representa-
tive of a deep-branching ancestral lineage, whereas the other
bartonellae evolved more recently in a lineage that radiates as a result
of their adaptation to different mammalian reservoirs6,9,10 (Fig. 1).

Notably, B. bacilliformis and the species of the radiating lineage
share a similar lifestyle in the blood of their mammalian reservoirs,

characterized by a marked tropism for endothelial cells and erythro-
cytes that results in long-lasting intraerythrocytic infections. This
unique infection strategy has been described in most detail for
B. tribocorum infections in rats11,12. Genetic studies in this model
have identified pathogenicity factors required for the infection of
endothelial cells and erythrocytes—the type IV secretion systems
(T4SSs) VirB and Trw, respectively13,14. T4SSs are macromolecular
transporters ancestrally related to bacterial conjugation systems.
Several mammalian pathogens have adopted T4SSs to translocate
effector proteins into host cells15; for example, the VirB T4SS of
B. henselae injects seven effectors into human endothelial cells to
subvert cellular functions16. Whether VirB, Trw or any other patho-
genicity factor11 identified in Bartonella has contributed to the
remarkable evolutionary success of the radiating lineage is unknown.
However, during separation from the ancient B. bacilliformis lineage,
the last common ancestor (LCA) of the radiating lineage should have
acquired pathogenicity factors facilitating host adaptation and viru-
lence attenuation. These pathogenicity factors have likely adopted
essential functions during infection and should thus be encoded by the
core genome of contemporary species of the radiating lineage. On the
basis of these two assumptions, we carried out an integrated genomics
approach to infer pathogenicity factors critical for host adaptability
and virulence attenuation within the radiating lineage. We first
determined a consolidated set of pathogenicity genes for the model

©
20

07
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
g

en
et

ic
s

Received 11 April; accepted 15 September; published online 25 November 2007; doi:10.1038/ng.2007.38

1Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. 2Max Planck Institute for Developmental Biology, D-72076 Tuebingen,
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pathogen B. tribocorum, that is, the set of genes required for causing
intraerythrocytic bacteremia in the rat model12. To this end, we
determined the complete genome sequence of B. tribocorum and
carried out a genome-wide mutant screen for loss of infectivity in
rats. Pathogenicity genes of B. tribocorum present in the core genome
of the three sequenced species of the radiating lineage (B. tribocorum,
B. henselae17 and B. quintana17) were then tested for their presence or
absence in the genome sequence of B. bacilliformis recently released
from The Institute of Genomic Research (see Methods). Pathogenicity
genes absent from B. bacilliformis were subsequently analyzed for their
presence in as yet unsequenced species of the radiating lineage. By this
approach, we show here that the acquisition of VirB-like T4SSs by
lateral gene transfer (LGT) is the only trackable change in pathogeni-
city gene composition that seems critical for the remarkable host
adaptation and virulence attenuation characteristic of species of the
radiating Bartonella lineage.

RESULTS
Genome sequence of the model pathogen B. tribocorum
We sequenced the genome of B. tribocorum strain 506T by the Sanger
method at 11-fold coverage using the shotgun approach18 and closed
the remaining gaps by sequencing of PCR fragments or directly on

chromosomal DNA. The genome consists of a circular chromosome of
2,619,061 bp (Fig. 2) and a plasmid of 23,343 bp. Compared to the
genomes of B. henselae17 (1.93 Mb) and B. quintana17 (1.58 Mb), the
B. tribocorum genome is 36% and 66% larger, respectively (Table 1),
which is reflected by a 45% and 89% greater number of protein-
coding genes. Despite these differences, the three genomes compared
have a similar coding density (Table 1) and a high degree of
collinearity (Supplementary Fig. 1 online).

Core genome of the radiating lineage
We determined the set of orthologous genes shared by B. tribocorum,
B. henselae and B. quintana, and we refer to this here as the ‘core
genome’ of the radiating lineage. Ortholog mapping was carried out
by reciprocal whole-genome BLAST searches of the translated ORFs19.
To take gene identity, similarity and size into account, we normalized
BLAST scores by dividing them by the BLAST score of each query ORF
against itself. From the distribution of these normalized BLAST
scores20 in each pair of compared genomes (Supplementary Fig. 1),
we defined an arbitrary BLAST score threshold of 0.7, above which
genes were considered orthologous, comparable to 70% identity over
the entire gene length. Genes with a lower normalized BLAST score
were also considered orthologous if they were flanked by orthologous
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Figure 1 Phylogenetic tree of Bartonella based on multilocus sequence analysis and summary table of the presence or absence of loci encoding the T4SSs

VirB, VirB-homolog (Vbh) and Trw in the different Bartonella species. (a) The phylogenetic tree shown was calculated on the basis of concatenated

alignments of protein sequences of rpoB, groEL, ribC and gltA using the Kimura algorithm as the distance method and neighbor joining as the tree-

construction method. The organism names and the strain designations are shown (for details and reference see Supplementary Table 5). The value of 0.02

on the scale bar indicates 1 amino acid substitution per 50 sites. Numbers at the nodes of the tree indicate bootstrap values (1,000 replicates). (b) The

table indicates the presence or absence of the T4SS loci virB, vbh and trw. References are given in the upper right of each box.
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genes showing gene order conservation (microsynteny). From this
analysis, the core genome of B. tribocorum, B. henselae and B. quintana
comprises 1,097 genes (Fig. 3 and Supplementary Table 1 online).
The accessory genome composed of the nonorthologous genes
includes 1,057 genes in B tribocorum (96% of core genome), 391
genes in B. henselae (36% of core) and 45 genes in B. quintana (4% of
core) (Fig. 3). Within the B. tribocorum genome, these nonortholo-
gous genes encompass a high proportion of horizontally acquired
phages and other genomic islands (highlighted in orange in the outer
circle of Fig. 2; see also Supplementary Table 2 online). Together
with the large number of cryptic phage integrases and other
genomic island remnants in B. henselae and B. quintana17, these
data suggest a functional role for LGT in genome evolution within
the radiating lineage.

Search for pathogenicity genes in B. tribocorum
To identify a comprehensive set of genes associated with pathogenicity,
we adapted signature-tagged mutagenesis (STM)21 to B. tribocorum.
Individually tagged mutants assembled in pools were tested in the
rat-infection model12 for the capacity to cause intraerythrocytic
bacteremia, the hallmark of Bartonella infection in the mammalian
reservoir. Each pool of 36 mutants was inoculated in two rats (input
pool), and bacteremic blood was cultivated on days 7 and 14 after
infection (output pools). Among 3,084 mutants screened, 359 were
present in the input pool but absent from the output pools. These
abacteremic mutant candidates were retested in newly assembled
mutant pools inoculated in at least four rats. Finally, a total of 130

mutants showed a consistently abacteremic phenotype, accounting for
4% of the 3,084 mutants screened. This result is in the range of aviru-
lent mutant frequencies reported for STM studies in other bacteria22.
The in vitro growth of all abacteremic mutants was comparable to wild-
type bacteria, indicating that the abacteremic phenotypes were not due
to general growth defects. We determined the transposon-insertion
sites of the 130 abacteremic mutants by direct genomic sequencing.
Thereby, 113 mutants were shown to carry insertions inside a gene, and
15 out of 17 intergenic insertions occurred maximally 350 bp upstream
of a gene. Taken together, 97 different protein-coding genes were found
to be essential for colonization of the mammalian host and thus were
termed pathogenicity genes (Supplementary Table 3 online).

Pathogenicity genes specific to the radiating lineage
From the 97 pathogenicity genes identified in B. tribocorum, 81 are
encoded by the core genome of B. tribocorum, B. henselae and
B. quintana (Table 2). Despite the similar size of the core and
accessory genomes in B. tribocorum, the core genome of the radiating
lineage thus includes the majority of the identified pathogenicity
genes. From the 81 pathogenicity genes encoded by this core genome
of the radiating lineage, 15 are absent from B. bacilliformis (Table 2
and Supplementary Table 4 online). Fourteen of these 15 pathogeni-
city genes are part of the T4SS loci virB and trw (Fig. 4). These T4SS
loci have been acquired by LGT and are thus referred to as genomic
islands or pathogenicity islands (Supplementary Table 2)14,16. The
remaining one pathogenicity gene shared among B. tribocorum,
B. henselae and B. quintana but absent from B. bacilliformis encodes
the membrane protein BT1873, which is conserved in Brucella
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Figure 2 Circular genome map of B. tribocorum. From the outside, the first

two circles indicate genes on the + and – strands. Genomic islands are

highlighted in orange and numbered according to Supplementary Table 2.

The third circle (blue) shows the core genome of the radiating lineage as

determined in Figure 3. The fourth circle shows the pathogenicity genes

encoded by B. tribocorum as presented in detail in Supplementary Table 3.

The pathogenicity genes falling into the core genome of the radiating lineage

are highlighted in blue if present in B. bacilliformis and in red if absent

from B. bacilliformis. The pathogenicity genes of the accessory genome of
B. tribocorum are shown in orange. The two inner circles display the

genomic island content (black) and the genomic island skew (green).

Table 1 General genomic features of B. tribocorum in comparison

with B. henselae and B. quintana

B. tribocoruma B. henselae B. quintana

Chromosome size (bp) 2,619,061 1,931,047 1,581,384

G+C content 38.8% (35.0%) 38.2% 38.8%

Total number of PCG 2,154 (18) 1,488 1,142

Average length of PCG (bp) 906 942 999

Integrase remnants 47 (0) 43 4

Number of rRNA operons 2 (0) 2 2

Number of tRNA genes 42 (0) 44 44

Percentage coding 71.6% (70.0%) 72.3% 72.7%

Plasmids 1 (23,343 bp) 0 0

aNumbers in parentheses refer to the plasmid. PCG, protein-coding genes.
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26

10

9174

208

839

B. henselae
(1,488 genes)

B. quintana
(1,142 genes)

B. tribocorum
(2,154 genes)

Figure 3 Core genome and accessory genomes of three species of the

radiating Bartonella lineage determined on the basis of ortholog gene sets

(Supplementary Table 1). Numbers in parentheses indicate the total number

of protein-coding genes.
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(Supplementary Table 4) and other bacteria of the a-proteobacterial
lineage. Comparison of corresponding chromosomal regions in
B. tribocorum and B. bacilliformis indicates deterioration of a three-
gene locus composed of BT1873 (deleted), BT1874 (deleted) and
BT1875 (pseudogene) in B. bacilliformis (data not shown). BT1873
was thus lost by the B. bacilliformis lineage after separation from the
radiating lineage.

Homologous sequences flanking the insertion sites of the virB and
trw genomic islands in B. tribocorum are short intergenic regions
without signatures of gene deletion or deterioration in B. bacilliformis
(Fig. 4), suggesting that these T4SS loci were acquired after separation
from the B. bacilliformis lineage rather than deleted within the
B. bacilliformis lineage. To exclude the possibility of deletion of these
genomic islands in the highly passaged B. bacilliformis strain KC583
used for genome sequencing, we analyzed five low-passage clinical
isolates of B. bacilliformis (T2, Monz269, ER-Cha, LA6.3 and
Cusco407)23 by PCR. For all tested B. bacilliformis strains, we could
amplify short PCR fragments spanning the flanking regions of the
T4SS genomic island integration sites in B. tribocorum. In addition,
amplification of conserved genes of both genomic islands (virB4 and
trwK) did not give any positive results in all tested B. bacilliformis
strains (data not shown). Taken together, these results confirm the
absence of virB and trw T4SS loci in the B. bacilliformis lineage and
indicate acquisition of these genomic islands by LGT after separation
from the B. bacilliformis lineage.

Distribution of T4SS loci in the radiating lineage
Pathogenicity factors associated with host adaptation should be
present in all species of the radiating lineage but absent from the
ancient B. bacilliformis lineage. We thus examined the as yet unse-
quenced species of the radiating lineage for the presence of the T4SS
loci virB and trw. We amplified conserved
genes of these loci (virB4 for virB, trwK for
trw) by PCR and validated the identity of the

obtained PCR fragments by DNA sequencing. Together with DNA
blot analysis (data not shown) and literature mining, this analysis
confirmed the presence of virB and trw loci in subsets of the radiating
lineage. To illustrate the distribution of these T4SSs among the
bartonellae in relation to their phylogeny, we inferred a phylogenetic
tree by multilocus sequence analysis (MLSA)24,25 (Fig. 1). Based on
concatenated protein sequences of the housekeeping genes groEL, gltA,
rpoB and ribC, this rooted Kimura neighbor-joining tree is highly
congruent with trees calculated by other algorithms (that is, maximum
evolution, maximum parsimony, and unweighted pair-group method
with arithmetic mean; data not shown), and most nodes are sup-
ported by high bootstrap values. We found the virB locus present in
the radiating lineage in all species except those infecting ruminants,
including Bartonella bovis, Bartonella capreoli, Bartonella chomelii and
Bartonella schoenbuchensis. The trw locus showed a similar distribu-
tion pattern, except that it was absent from Bartonella clarridgeiae,
the modern species most closely related to the ruminant-
specific sublineage.

The absence of both of these T4SS loci in the ruminant-specific
sublineage, which diverged first within the radiating lineage (Fig. 1),
may call into question whether T4SSs have a central role in host
adaptation and virulence attenuation as shared characteristics of
species belonging to the radiating lineage. However, annotation of
the B. tribocorum genome revealed a third T4SS locus, which we
termed virB-homolog (vbh) to reflect the high degree of sequence
similarity with the virB locus (Fig. 5). Indeed, a phylogenetic analysis
of the ATPase genes virB4 and vbh4 and virB11 and vbh11 with their
respective homologs from related T4SSs showed that vbh and virB
homologs cluster in one clade (Fig. 5), illustrating their close evolu-
tionary relatedness. Notably, as indicated by PCR and DNA blot
analysis, the vbh locus is absent from the sequenced B. bacilliformis
strain KC583 (Fig. 5) as well as from five low-passage B. bacilliformis
isolates (T2, Monz269, ER-Cha, LA6.3 and Cusco407; data not
shown)23, whereas it is present in the ruminant-specific sublineage
and several other species of the radiating lineage (Fig. 1). The
radiating lineage thus acquired the vbh locus during or soon after
separation from the ancient B. bacilliformis lineage. The sublineage
infecting nonruminants, which encodes a functional VirB T4SS in
every species, has lost the Vbh T4SS in B. clarridgeiae as well as the
phylogenetic subclade comprising B. henselae, B. quintana, Bartonella
koehlerae, Bartonella taylorii and Bartonella vinsonii subspecies.

Closer inspection of the vbh and virB genomic islands showed
marked similarities beyond the encoded T4SS components: for
example, a conserved nuclease gene encoded upstream of vbh2 and
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Table 2 Presence of pathogenicity genes identified by STM in

B. tribocorum, and their presence within the radiating lineage and

B. bacilliformis

Category Total genes Pathogenicity genes

B. tribocorum genome 2,154 97

Core genome of the radiating lineage: 1,097 81

with homolog in B. bacilliformis 959 66

without homolog in B. bacilliformis 138 15

Data for the core genome of the radiating lineage are derived from a comparison of the
three available genomes of B. henselae, B. quintana and B. tribocorum.
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in gray. The two integrase remnants flanking the

trw locus are colored in orange.
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virB2 that has not been associated with any other T4SS locus (Fig. 5).
These findings suggest that virB might have been derived from
duplication of vbh during an early stage of evolution of the radiating
lineage. Alternatively, the virB genomic island might have been
acquired by LGT from a similar external source as the vbh genomic
island, that is, a conjugative plasmid. Subsequent to the duplication or
LGT event that gave rise to virB, the vbh locus deteriorated in at least
some species of the non–ruminant-specific sublineage. This is indi-
cated by frameshift mutations in the vbh4 gene of B. tribocorum, and
by an almost complete reduction of the vbh genomic island in
B. quintana and B. henselae (Fig. 5). In contrast, a preliminary analysis
of the vbh locus of B. schoenbuchensis did not show any deleterious
mutation and, moreover, it indicated that this locus encodes translo-
catable T4SS substrates (P.E. and C.D., unpublished observations),
suggesting that Vbh represents a functional substrate-translocating
T4SS in the ruminant-specific sublineage. These findings imply that
Vbh and VirB are functionally and evolutionarily related, and that

since the acquisition of VirB, this T4SS has functionally replaced the
previously acquired Vbh. As an alternative scenario to a sequential
acquisition of VirB-like T4SSs, both Vbh and VirB might have
coexisted as functional T4SS in the LCA of the radiating lineage. In
this case, VirB would have been reduced in the ruminant-specific
sublineage, whereas Vbh would have been under deterioration in the
non–ruminant-specific sublineage.

Taken together, these data suggest that two VirB-like T4SSs were
acquired by the radiating lineage after separation from the ancient
B. bacilliformis lineage. These functionally redundant T4SSs may have
evolved differently in the ruminant-specific and non–ruminant-
specific sublineages, preserving at least one functional VirB-like T4SS
(Vbh and/or VirB) in every species. In contrast, the distantly related
Trw T4SS seems to have been acquired by the radiating lineage after
separation from the sublineage composed of the ruminant-specific
species and B. clarridgeiae. The VirB-like T4SS thus represent the only
pathogenicity factors analyzed in this study that match our criteria for
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mediating host adaptability and virulence attenuation, although we
cannot exclude the possibility that other pathogenicity factors (such as
Trw) or even factors without direct roles in pathogenicity may further
contribute to these adaptive traits.

Fast evolution of effectors translocated by the VirB T4SS might
reflect host adaptation
The virB loci of B. henselae, B. tribocorum and B. quintana show a
degree of sequence conservation in the range of other core genome–
encoded genes. In contrast, the genes encoding VirB-translocated
effectors (bepA–I) are much less conserved and show multiple
incidences of gene duplication, conversion and deletion (Fig. 6).
This genetic plasticity suggests that the bep genes evolved faster than
most other genes, probably as result of positive selection during radial
speciation. The diversity in the translocated effectors may therefore
reflect the specific host adaptations and concomitant virulence
attenuation by species of the radiating lineage in their respective
mammalian reservoirs.

DISCUSSION
Bacterial conjugation systems are known to play a dual role in
bacterial infection. First, they facilitate the spread within the bacterial
population of mobile DNA elements, which may encode pathogenicity
factors, antibiotic resistances or other factors that increase bacterial
fitness during infection. Second, the conjugation systems themselves
may adopt prominent functions in the infection process; in particular,
they may act to facilitate the translocation of macromolecular patho-
genicity factors into host cells. Such adapted conjugation systems—
better known as T4SSs—have been described as essential pathogeni-
city factors in several genetically amenable pathogens of mammals
(including Helicobacter pylori, Legionella pneumophila, Brucella spp.
and Bartonella spp.) and plants (for example, Agrobacterium tumefa-
ciens)15. Moreover, data from genome sequencing projects have shown
that many obligate intracellular pathogens of mammals (for example,
Rickettsia spp., Coxiella spp., Anaplasma marginale and Ehrlichia spp.)
and also mutualistic endosymbionts of insects (for example, Wolba-
chia spp.)26 and amoebae (for example, environmental Chlamydia
spp.)27 encode T4SSs. Although genetic evidence for the role of T4SSs
in the biology of these obligate intracellular bacteria has been lacking,
the conservation of T4SS loci in their often highly reduced genomes
suggests functional roles of T4SSs in establishing intracellular replica-
tion niches. The T4SSs of pathogenic as well as mutualistic bacteria are
thus considered to facilitate host cell interactions and in particular to
mediate the translocation of macromolecular effectors such as proteins
or DNA-protein complexes into host cells15.

The comparative and functional genomic analysis of host adapt-
ability in the genus Bartonella reported here allowed us to propose an
additional role for T4SSs in the evolution of host-associated bacteria.
We provide evidence that the acquisition of VirB-like T4SSs within the
radiating Bartonella lineage was associated with increased host adapt-
ability, as manifested by virulence attenuation in a given host and
increased adaptation to new hosts as compared to the ancestrally
related, highly pathogenic species B. bacilliformis. As our approach was
limited to the analysis of pathogenicity factors that are conserved in
the radiating Bartonella lineage but absent from B. bacilliformis, we
cannot exclude the possibility that additional bacterial factors may
contribute to host adaptability, including nonconserved pathogenicity
factors or factors without a primary role in pathogenesis. Notably, the
VirB-translocated effector proteins of Bartonella (Beps) show an
atypically high degree of sequence variation among different species,
suggesting an increased rate of evolution as the result of positive

selection for adaptive functions in the infected host. VirB-translocated
effectors are known to subvert multiple physiological functions within
their target host cells, such as actin dynamics, innate immune
responses and apoptosis16,28. Additional studies will be required to
examine how these physiological changes may contribute to T4SS-
dependent host adaptation in the specific mammalian reservoirs of the
diverse bartonellae. It is also presently unknown whether the role of
VirB-like T4SSs in host adaptability inferred here for bartonellae
might be a shared feature of effector-translocating T4SSs in other
host-associated bacteria.

METHODS
Bacterial strains and growth conditions. Bartonella and Escherichia coli strains

were grown as described previously13. Supplementary Table 5 online lists all

bacterial strains and plasmids used in this study.

Genome sequencing. Genomic DNA from B. tribocorum IBS 506T (ref. 29) was

isolated using the QIAGEN Genomic DNA Isolation kit (Qiagen). The

following DNA libraries were constructed and end-sequenced to 11-fold

sequence coverage: one library of 3–5 kb (TOPO Shotgun subcloning kit,

Invitrogen), three libraries of 35–43 kb (Epicentre Technologies) and one

library of 100–180 kb (Bio S&T). Remaining gaps were closed by direct

sequencing on genomic DNA or by PCR amplification and subsequent

sequencing. We calculated the final sequencing error rate to be 0.014 � 10�5

using the PHRED/PHRAP/CONSED software package30–32.

Annotation and genome analysis. For the automated annotation and the

manual curation, we used the annotation package GENDB33 as described in the

Supplementary Methods online. For the comparative genome analysis, we

used the program MUMmer34 and the Artemis comparison tool (ACT)35. We

determined the orthologous genes by carrying out reciprocal best-match

BLAST comparisons followed by manual curation. Comparisons with the

genomes of B. bacilliformis (CP000524) and Brucella abortus36 were done by

using BLASTP (see Supplementary Methods).

Construction of phylogenetic trees. For the phylogenetic tree of bartonellae, a

multilocus sequence analysis (MLSA) approach24,25 was used by aligning five

different housekeeping genes (groEL, ribC, rpoB and gltA) as described in

Supplementary Methods. The accession numbers of the sequences of the

different species are given in Supplementary Table 6 online. All protein

sequences were aligned with CLUSTAL W software version 1.8237, and over-

hanging ends were cut and phylogenetic trees calculated using different

algorithms included in the MEGA 3.1 software38. The trees of the virB and

vbh4 genes and virB and vbh11 genes were built by using the same software

tools as before (see Supplementary Methods).

Transposon vector and signature-tag construction. The suicide transposon

vector pHS006 contains an origin of transfer for conjugative transfer, the

Himar1 transposon, carrying a kanamycin resistance marker and a hyperactive

transposase39,40. Construction details are described in Supplementary Meth-

ods. To construct the signature tags, we generated a pool of degenerated single-

stranded 120-bp DNA molecules (STM oligo) containing a central stretch of 50

random base pairs ([NK]25) flanked by two constant sequences by oligonucleo-

tide synthesis (Microsynth). After amplification by PCR they were introduced

into pHS006 (Supplementary Methods).

STM library construction. A total of 42 individually tagged transposon vectors

were separately transferred to B. tribocorum by two-parental mating as

described previously12. Thirty-six tags were chosen on the basis of reproducible

detection (Supplementary Methods) and used to produce kanamycin-resistant

B. tribocorum transconjugants. From each mating, 96 single kanamycin-

resistant B. tribocorum colonies were transferred to a 96-well plate and labeled

with the tag number for storage at –70 1C.

Animal infections. Infections were done using the B. tribocorum rat-infection

model described previously12. We carried out animal care and ensured animal

well-being in accordance with the Swiss Act on Animal Protection and Good
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Animal Care Practice. For infection, 36 differently tagged mutants were grown

separately from the transposon library for each input pool. The same amounts

of each mutant were pooled in PBS directly before infection and used to infect

two rats with 109 bacteria (0.3 ml of culture with OD595 ¼ 1) each

intravenously in the tail vein. An aliquot of the input pool was used as

template for the detection PCR. Blood was taken from the tail veins of the

infected rats after 7 and 14 d after infection, serially diluted in PBS and plated

on Columbia blood agar (CBA) plates. Grown bacterial colonies (the output

pool) were counted, harvested in PBS and used as template for the detection

PCR. Rescreening was done following the same protocol using four rats

per input pool.

PCR detection of STM mutants. For each input and output pool, 36 tag-

specific PCR reactions were done. For PCR, we used tag-specific primers

together with a generic primer (Supplementary Table 5) to yield a product of

approximately 600 bp (Supplementary Methods).

Identification and analysis of transposon insertion sites. Genomic DNA from

single mutants, regrown from the mutant library, was isolated and used for

sequencing with transposon-specific primers (Supplementary Table 5).

PCR screening for T4SS loci. Genomic DNA of the species listed in

Supplementary Table 5 was used as template for PCR. By aligning the genome

sequences of B. tribocorum, B. henselae and B. quintana, we designed primers

on conserved genes of the VirB and Trw T4SSs. We tested several primer

combinations for each species (Supplementary Methods). The absence of the

virB, trw and vbh T4SS loci in different B. bacilliformis strains (KC583, T2,

Monz269, ER-Cha, LA6.3 and Cusco407) was shown by amplifying the

chromosomal integration sites of the three T4SSs. In addition, the PCR

amplification of conserved genes of the VirB, Vbh and Trw T4SSs was tested

for the different B. bacilliformis strains (Supplementary Methods).

DNA blot analysis. To further show the presence or absence of the T4SSs (VirB,

Trw and Vbh) in different Bartonella species (Bartonella alsatica, B. bacilliformis

KC583, B. clarridgeiae, B. henselae, B. quintana, B. tribocorum, B. vinsonii

berkhoffii, B. vinsonii arupensis, Bartonella birtlesii and B. koehlerae), we carried

out DNA blot analysis using the Digoxigenin hybridization system (Roche; see

Supplementary Methods).

Accession codes. EMBL Nucleotide Sequence Database: data have been

deposited with accession codes AM260525 and AM260524 (B. tribocorum

genome and plasmid sequence, respectively), AM690314 and AM690315 (ribC

and groEL of B. birtlesii), AM690317 and AM690316 (ribC and groEL of

B. chomelii), and AM420307 and AM420308 (sequences of the vbh4 and vbh11

genes of B. schoenbuchensis, respectively). NCBI accession codes were as follows:

sequence of B. bacilliformis recently released from The Institute of Genomic

Research (CP000524), accession numbers (virB4/virB11) for plasmid pAT of

Agrobacterium tumefaciens (NP_396095/NP_396102); B. henselae (YP_034053/

YP_034060); B. quintana (YP_032622/YP_032629); vbh of B. schoenbuchensis

(AM420307/420308); virB of B. tribocorum (genes BT1691/BT1698 of

AM260525); vbh of B. tribocorum (genes BT2334/BT2345 of AM260525);

plasmid 1 of Mesorhizobium sp. BNC1 (YP_665963/YP_665955); Rickettsia

prowazekii (NP_220495/NP_220676); plasmid p42a of Rhizobium etli CFN 42

(YP_471641/NP_659884); plasmid pSymA of Sinorhizobium meliloti

(NP_435962/NP_435955); plasmid pXF51 of Xanthobacter autotrophicus

(ZP_01200724/ ZP_01200716); Xyllela fastidiosa (NP_061663/NP_061671).

Note: Supplementary information is available on the Nature Genetics website.
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3.2.1 Summary 
 

Our previously published results show that most contemporary species of Bartonella 

have arisen after lateral acquisition of type IV secretion systems (T4SSs). These 

colonization factors appear to have enabled Bartonella species to adapt to different 

mammalian reservoir hosts (3.1. Research article I). This diversification resembles an 

evolutionary process called adaptive radiation which is the rapid diversification of an 

ancestral lineage into an array of species by specific adaptation to different 

ecological niches. So far, adaptive radiations were mostly described for the evolution 

of metazoan eukaryotes. Although several studies implicate the occurrence of 

adaptive radiations in bacteria, the underlying molecular mechanisms are poorly 

understood. Adaptive radiations can be driven by the sudden availability of 

unoccupied niches or by key innovations allowing the exploration of new niches.  

Here, we analyzed different Bartonella lineages for the presence of adaptive 

radiation with the aim of understanding the molecular mechanisms underlying host 

adaptation. We used 454-pyrosequencing for generating draft genome sequences of 

five Bartonella species isolated from different hosts (B. clarridgeiae, B. rochalimae, B. 

sp. AR15-3, B. sp. 1-1C, and B. schoenbuchensis). For B. clarridgeiae, we completed 

the genome assembly by end-sequencing of several hundred clones of a Fosmid 

library. Including publicly available genome sequences, we inferred a genome-wide 

phylogenetic tree of Bartonella. This phylogenetic analysis was further complemented 

with available gene sequences from non-sequenced Bartonella species. The 

resulting supertree revealed that two lineages of Bartonella, both harboring the VirB 

T4SS, have evolved by separate adaptive radiations. Remarkably, in both lineages, 

different Bartonella species have independently adapted to same or similar 

mammalian host(s). 

To detect genes important for niche (i.e. host) adaptation, we comprehensively 

detected genes which have undergone adaptive evolution by measuring non-

synonymous in relation to synonymous mutation rates. Strikingly, in both lineages the 

translocated effector proteins of the VirB T4SS were found to carry strong signal of 

adaptive evolution. This was in agreement with our previously published study, where 

the VirB T4SS was identified as an important host adaptability factor (3.1. Research 

article I). Further, it implicated that this horizontally acquired T4SS displays a key 

innovation driving the parallel adaptive radiations in the two lineages. 
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To understand the independent occurrence of these radiations, we assessed 

the evolutionary history of the VirB T4SS. In line with the evolutionary parallelism 

found on the ecological level, our analyses detected a highly parallel molecular 

evolution of the VirB T4SS in the two radiating lineages. First, genomic comparisons 

revealed that the VirB T4SS is integrated at different chromosomal sites in the two 

lineages. Second, in one of the two lineages the T4SS gene cluster was found to be 

partially triplicated and the effector genes disseminated over the chromosome. Third, 

phylogenetic analyses revealed that the effector genes of the two lineages have 

evolved from a single ancestral gene by lineage-specific amplification and 

subsequent diversification. Our data implies that these diversifying processes of the 

effector genes occurred prior to the radiations. Strikingly, in both lineages, we 

identified independently evolved effector proteins harboring tandem-repeated 

tyrosine-phosphorylation motifs. We subsequently showed that these motifs indeed 

are phosphorylated in eukaryotic cells.  

The high degree of parallelism found in the molecular evolution of the VirB 

T4SS is evidence for comparable, but independent, responses to similar selective 

pressure, and it reflects the parallel occurrence of adaptive radiations in the two 

different Bartonella lineages. Hence, we propose that the chromosomal fixation of 

virB T4SS genes and the amplification-diversification of genes encoding the effector 

proteins displayed a two-step key innovation driving adaptive radiations in Bartonella. 

This is the first study which demonstrates adaptive radiations for bacteria in their 

natural habitats, and moreover, assesses the underlying molecular mechanisms. 
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Abstract  

 

Organismal diversification commonly occurs through adaptive radiation, the evolution 

of ecological and phenotypic diversity within a rapidly multiplying lineage. Bacteria 

evolved enormous biological diversity by exploring disparate environmental niches, 

yet the demonstration of bacterial speciation driven by adaptive radiation has been 

challenging. Here we report the first compelling example for an adaptive radiation in 

bacteria in nature. Based on the genome-wide analyses of ten species of the 

alphaproteobacterial genus Bartonella we describe a parallel adaptive radiation 

within two sister clades of this mammalian pathogen. Moreover, we inferred a 

horizontally acquired and subsequently diversified protein secretion system as an 

evolutionary key innovation driving these parallel adaptive radiations, thereby 

establishing a molecular paradigm for adaptive radiation in bacteria.  
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Main text 

 

Adaptive radiation, i.e. the rapid evolution of a multitude of species from a single 

ancestor as a consequence of the adaptation to divergent environments (Schluter 

2000), is thought to be responsible for the genesis of a great portion of the diversity 

of life. Adaptive radiations typically occur after the arrival of an organism in an 

environment with unoccupied niches (ecological opportunity) or by the acquisition of 

a novel trait (evolutionary key innovation) allowing the exploitation of so far 

unavailable niches (1, 2). The most famous textbook examples of adaptive radiations 

are the Darwin’s finches on the Galapagos archipelago (3), the Caribbean Anolis 

lizards (4) and the species flocks of cichlid fishes in the East African Great lakes 

Victoria, Malawi and Tanganyika (5). Surprisingly, as of yet no convincing case of 

adaptive radiation has been described for bacteria in their natural environment – 

despite their great genetic and phenotypic diversity, their abundance in nearly any 

environment on Earth, and their capability to rapidly occupy distinct niches as shown 

in experimental evolution studies (6-10). 

Four features are characteristic of an adaptive radiation (2): (i) common 

ancestry of the radiating group of organisms; (ii) rapid rates of speciation; (iii) the 

correlation between newly evolved phenotypes and the available ecological niches; 

and (iv) the utility of phenotypic traits to exploit the environment. While it is rather 

obvious how these criteria are fulfilled in the 13 species of Darwin’s finches with their 

distinctive beak morphologies, anoles with their characteristic limbs correlated to twig 

diameter, and hundreds of cichlid species with their diverse mouth and teeth 

structures, the inference of phenotype-environment correlation and trait utility 

remains a challenge in bacteria due to their much simpler bauplan. Uncertainties with 
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the delineation of species boundaries and the unresolved issue of defining ecological 

niches in microorganisms (11-13) pose additional problems with correlating divergent 

phenotypic traits with niche-specific adaptations.  

Here we present the alphaproteobacterial pathogens of the genus Bartonella 

as a first compelling, natural example of adaptive radiation in bacteria. Our genome-

wide supertree-phylogenetic analysis based on a backbone of 478 conserved core 

genome genes (515,751 bp in total) retrieved from five available genome sequences 

plus five newly sequenced genomes (Figs. 1a and S1) reveals four major clades in 

the monophyletic bartonellae: (i) an ancestral lineage 1 represented by the highly 

virulent human pathogen B. bacilliformis (14) ; (ii) lineage 2 comprising four ruminant-

infecting species with overlapping host niches (15-17); (iii) lineage 3 consisting of two 

species and two strains recently isolated from different hosts; and (iv) the most 

species-rich lineage 4 with 13 described species. With short internal branches and 

longer branches at the tips, lineages 2, 3 and 4 show signs of rapid speciation in our 

phylogeny. 

The more than 20 described Bartonella species are specifically adapted to 

cause a long-lasting intra-erythrocytic infection in their respective mammalian 

reservoir hosts (18, 19) (see Fig. 1a). Whereas closely related species of lineage 2 

have overlapping hosts (15-17), the niche-restriction found in lineage 3 and 4 

displays a species-specific phenotype as demonstrated by the exclusive retrieval of a 

given Bartonella spp. from the blood of naturally or experimentally infected reservoir 

hosts, but not from any non-reservoir hosts (20-22). Our own infection experiments 

confirm the niche-specificity for the species of lineage 3 including the recently 

isolated strains 1-1C and AR15 (Fig. S2) (21). In case of lineage 3 and 4, the 

mammalian reservoir hosts thus represent the equivalent to the distinct ecological 

niches, and niche specificity constitutes the distinct phenotypic property of these 
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bacterial pathogen species. Hence, there exists a strong phenotype-environment 

correlation in Bartonella.  

With the overall and respective monophyly of the radiating lineages 3 and 4, 

the rapid cladogenesis in these lineages (Fig.1a), and the phenotype – environment 

correlation (i.e. exclusive infection of the specific reservoir host), the bartonellae fulfill 

the first three criteria of an adaptive radiation. It is less obvious, though, how the last 

criterion, trait utility, can be substantiated in Bartonella. First, a candidate trait would 

have to be involved in species – environment (i.e. reservoir host) interaction. For 

Bartonella, molecular factors that are essential for causing bacteremia in their 

reservoir hosts display such candidate traits. Second, in analogy to the morphological 

modulation of the phenotypic or adaptive traits in Darwin’s finches, anoles lizards or 

cichlid fishes, any molecular factor used to exploit the distinct environments (i.e. the 

reservoir hosts) in a specific manner should be divergent among niche-specialized 

species. Molecular evolutionary analyses provide the means to identify such traits as 

these are expected to show signs of adaptive evolution at the molecular level, i.e. an 

excess of non-synonymous (dn) over synonymous substitutions (ds) (23). Hence, we 

performed a genome-wide dn/ds analysis in the available genomes of lineage 3 and 

4 (Fig. S3 and Supporting Online Material [SOM]). This unbiased approach revealed 

that among the few positively selected genes are those coding for two different type 

IV secretion systems (T4SS), VirB and Trw, as well as several autotransporter 

proteins (Table S2, S3, S4). The two T4SS have recently been identified as so-called 

host adaptability factors that are essential for establishing intraerythrocytic infections 

in Bartonella (24). While Trw is exclusively found in the most species-rich lineage 4, 

VirB is shared among the two radiating lineages 3 and 4 (Fig. 1). The VirB system 

constitutes a multisubunit nanomachine (25) translocating a set of different Bartonella 

effector proteins (Beps) into mammalian host cells where they subvert a wide range 
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of different cellular functions (26-30). Beps consist of a modular domain structure and 

have evolved by gene duplications and functional diversification from a single 

ancestral effector gene (Fig. S4). It is exactly these Beps that show strong signs of 

positive selection – both when applying site tests (Table S4) as well as branch tests 

(Figs. 2, S6, and S7). Thus, our analyses together with previous work on the 

molecular mechanisms of infection (24) corroborate that the VirB T4SS displays an 

adaptive trait in Bartonella used to exploit distinct niches (i.e. the reservoir host). 

Hereby, also the last criterion of an adaptive radiation, trait utility, is fulfilled – at least 

for lineage 3 and 4. At the same time, the VirB T4SS represents the likely 

evolutionary key innovation facilitating adaptive radiation in these Bartonella 

lineages.   

The VirB T4SS has presumably been acquired in the common ancestor of 

lineage 3 and 4 (24). T4SSs are ancestrally related to plasmid-encoded conjugation 

machineries mediating the horizontal transfer of these extra-chromosomal replicons 

among bacteria (31, 32). It is thus tempting to speculate that the common ancestor of 

the two radiating lineages acquired the VirB T4SS as conjugation system of a 

conjugative plasmid and was subsequently integrated into the chromosome. This 

integration occurred in different ways in the two lineages (SOM): In the sequenced 

genomes of lineage 4, a single gene cluster encodes the different secretion system 

components (virB2-virB11 and virD4) as well as the bep genes suggesting a single 

integration event. On the contrary, the VirB T4SS components in lineage 3 are 

encoded by two to three paralogous gene clusters, which became integrated at two 

chromosomal sites different from the one found in lineage 4 (Fig. 1b and S5). Beside 

the adjacent location to virB T4SS genes (as in lineage 4), bep genes are found at 

six additional genomic loci in lineage 3 (Figs. 1b and S5).  
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The independent evolution of the VirB T4SS in the two lineages also becomes 

evident from our gene trees of the effector genes based on different sequence data 

sets (Figs. 2, S6, and S7). In all analyses, the bep genes of lineage 3 and 4 formed 

two separate clades. Apparently, after the integration and divergence of the VirB 

T4SS in lineage 3 and 4 independent duplications of the single ancestor-gene in 

each lineage resulted in the parallel emergence of two distinct arsenals of T4SS 

effector genes. Furthermore, the bep gene tree reveals that these duplication events 

preceded the radiations in both lineages, since distinct sub-clades (Bep clades in Fig. 

2) often contain positional orthologs present in all analyzed genomes of the 

corresponding lineage. Subsequent to these duplications, the different effector gene 

copies have undergone extensive adaptive diversification in both lineages. Our 

branch tests of positive selection (Figs. 2, S6, and S7) detected adaptive evolution on 

many internal branches suggesting the emergence of new effector variants prior to 

the radiations. This is in line with the various functions experimentally identified for 

the distinct Bep clades of lineage 4 (27-30). The C-terminal BID (Bartonella 

intracellular delivery) domain, conserved among all bep genes (Fig. S5), is essential 

for T4SS translocation, but was specifically adapted by effector proteins of the 

BepA/B subclade (Fig. 2) for modulation of the apoptotic fate of host cells (29). In the 

N-terminal part, a substantial number of bep genes encode so called FIC 

(filamentation-induced by cAMP) domains, which were recently shown to mediate a 

new post-translational modification of proteins by covalent attachment of an AMP 

moiety (33-35). This specific modification of target proteins called AMPylation seems 

to be used by several bacterial pathogens to tune distinct host cellular functions (36). 

Bartonella species of lineage 3 and 4 harbor an arsenal of divergent FIC-containing 

effector proteins presumably resulting in the modulation of a wide range of host cell 

functions by the specific AMPylation of various target proteins. Effector proteins 
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comprising an N-terminal FIC domain and a C-terminal BID domain represent the 

most conserved bep genes across lineages 3 and 4, thus they likely constitute the 

domain architecture of the common ancestor gene (SOM). However, many bep 

genes of lineage 4 (bepD, bepE, bepF, bepG, and bepH) are missing a FIC domain, 

and often harbour additional BID domains (Fig. S4). In our gene tree (Fig 2), they 

display the most distant clades with respect to lineage 3 implying that they derived 

from the ancestral domain structure by secondary recombination events. Some of 

these derived effectors (bepD, bepE, bepF of B. henselae) were shown to become 

phosphorylated by host cell kinases at conserved tyrosine phosphorylation motifs 

(Fig. 3 and S4). Thereby, these effector proteins recruit cellular binding partners and 

interfere with signalling pathways of the host cell (37). The presence of these 

tandemly repeated motifs in four out of seven Bep clades indicates their important 

role for VirB T4SS-mediated host cell interactions in lineage 4. 

 One of the most fascinating features of adaptive radiations is the frequent 

occurrence of evolutionary parallelisms (5). This is also the case for Bartonella. The 

independent adaptive radiations of lineage 3 and 4 have occurred in overlapping or 

highly similar niches (i.e. hosts). For example, species of both clades have adapted 

to cats or rats as reservoir host (Fig. 1). In line with these ‘ecological’ parallelisms at 

the species level, our comparative analyses of the eight available genomes of the 

radiating lineages 3 and 4 uncovered evolutionary parallelisms at the molecular level 

of the VirB T4SS and its effector genes. Separate mechanisms have fixed the VirB 

T4SS in the chromosomes of the two lineages. Still, the assemblage of T4SS effector 

genes has been shaped by gene duplication and positive selection in both lineages 

independently (see above), even though the radiations occurred at different times 

(lineage 3 shows shorter genetic distances and is, hence, younger [see Fig. 1]). 

Moreover, both lineages have convergently evolved a novel class of effectors with a 
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derived domain structure. In lineage 3 as well as in lineage 4 (see above), we find the 

effector proteins comprising derived domain structures with tyrosine-phosphorylation 

motifs (Bep clade 9, Figs. 2 and S4). As the sub-clades harbouring these effector 

proteins in the two lineages hold distant phylogenetic positions (Fig. 2), they must 

have evolved separately from each other. In silico predictions of tyrosine-

phosphorylation motifs consistently detected high numbers of tandem-repeated 

phosphorylation sites in the derived effector genes of lineage 3 (Fig. 3, Table S5). By 

ectopic expression in HEK293 cells, we show that these effector proteins become 

indeed tyrosine-phosphorylated within eukaryotic cells (Fig. 3). Interestingly, the 

repeated motifs detected in effector proteins of lineage 3 are clearly different from the 

ones in lineage 4 and are also less conserved among each other (Fig. 3). This 

implicates that parallel evolution at the molecular level in the two lineages led to the 

emergence of new effector variants with altered domain architecture and newly 

acquired functional modules comprising tandemly-repeated tyrosine-phosphorylation 

motifs.  

Taken together, in both lineages, the parallel evolution of the effector genes 

follows gene-duplication-diversification processes resulting in the generation of 

extensive genetic variation on which adaptive evolution can act. The modularity of the 

effector proteins consisting of versatile units (as phosphorylation motifs, BID 

domains, or FIC domains) provides the framework for the adaptive modulation of 

these traits in different ecological niches (i.e. hosts). The parallelism in the molecular 

evolution of the VirB T4SS prior to their independent adaptive radiations provides 

compelling evidence for similar selective conditions acting in both lineages. We 

propose that the key innovation for the adaptive radiations evolved by a two-step 

process, (i) by the independent chromosomal fixation of the VirB T4SS and an 
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effector ancestor-gene, and (ii) by the subsequent parallel amplification and 

diversification of effector genes.  

 This is the first study demonstrating adaptive radiation in bacteria and 

assessing the underlying molecular mechanisms. The distinguishable ecological 

niches of Bartonella provide a suitable setting to assess adaptive radiation, yet the 

phenomenon might be much more frequent in bacteria that evolved as specialists to 

explore diverse arrays of ecological environments.  
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Fig. 1. (A) Genome-wide supertree-phylogeny of Bartonella and (B) genomic 

organization of virB T4SS and effector gene loci in lineage 3 and lineage 4. (A) 

Maximum likelihood analysis based on 478 genes (515,751 sites) of ten sequenced 

Bartonella species (indicated by bold and underlined type): the available genomes of 

B. bacilliformis (CP000524), B. grahamii (38), B. henselae, B. quintana (39), and B. 

tribocorum (24) as well as the complete genome of B. clarridgeiae and the draft 

genomes of B. schoenbuchensis, B. rochalimae, B. sp. AR 15-3, and B. sp. 1-1C 

sequenced in this study (for genome features see Table S1). B. sp. AR 15-3 and B. 

sp. 1-1C were recently isolated from Amercian red squirrel and rat, respectively (40, 

41). Non-sequenced Bartonella species were included in the analysis based on 

sequence data from rpoB, glta, ribC, and groEL genes. Numbers above the branches 

represent maximum-likelihood bootstraps obtained with PAUP (42); numbers below 

represent values from Bayesian inference obtained with the MrBayes (43). The two 

monophyletic clades harboring the VirB T4SS (24) are marked by the shaded area. 

The different lineages are depicted in red, orange, blue, and green color (l1, 

lineage 1). Mammalian hosts are indicated for each species. The same monophyletic 

clades were obtained when using more than one species as outgroup. (B) Synteny 

plot of B. clarridgeiae (lineage 3) and B. quintana (lineage 4) generated in MaGe 

(44). Syntenic relationships comprising at least 5 genes are indicated by violet and 

blue lines for genes found on the same and the opposite strand, respectively. The 

genomic integration sites of virB T4SS loci are indicated. For lineage 3, the six loci 

encoding additional effector genes are marked by arrows. Genes are connected by 

gray boxes if they are orthologs of each other. For bep genes, connections are drawn 

if they belong to the same monophyletic clade (Fig. 2) or if they are top blast hits of 

each other. Bq, B. quintana, Bh, B. henselae, Bt, B. tribocorum, Bg, B. grahamii, B15, 

B. sp. AR15-3, Bc, B. clarridgeiae, Br, B. rochalimae, B1-1, B. sp. 1-1C. 
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Fig. 2. Gene tree of Bartonella effector proteins. Maximum-likelihood analysis 

(general time-reversible model with gamma-correction [GTR+I+G]) based on the BID 

domain and the C-terminus of VirB T4SS effector genes identified in lineage 3 and 

lineage 4. Numbers above the branches represent maximum-likelihood bootstraps 

with PAUP (42)); numbers below represent posterior probabilities obtained with the 

MrBayes (43). Values above 80% are shown. Locus_tag and gene name (if existing) 

is given for each bep gene, and color-coded according to species. The dashed line in 

red color indicates the independent clustering of the bep genes from lineages 3 and 

lineage 4. Bold lines in black color depict phylogenetic branches with dn/ds values > 

1 as calculated with HYPHY (45). For each branch under positive selection, the 

estimated dn/ds value is indicated. The later onset of the radiation in lineage 3 (see 

Fig. 1) explains the more frequent detection of positive selection in this lineage 

(particularly, on tip branches). Monophyletic sub-clades comprising orthologous bep 

genes are indicated. In lineage 3, BARCLv2_0629 and BARCLv2_0635 are not 

included in any clade, as their phylogenetic positions are neither supported by 

bootstrapping nor posterior probabilities. Shaded areas indicate clades of bep genes 

harboring tandem-repeated tyrosine-phosphorylation motifs. Trees inferred from data 

sets based on the C-terminal FIC domain or the entire effector gene sequence reveal 

the same two lineage-specific monophyletic clades (Figs. S6 and S7). 
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Fig. 3. Tyrosine-phosphorylation of Beps of lineage 3. (A) Domain structure of 

four orthologous effector genes of Bep clade 9 (lineage 3) and predicted tyrosine-

phosphorylation motifs. The motifs depicted by green bars were identified with the 

program NetPhos2.0 (46) using a threshold of 0.8. The consensus sequence of 

tandem-repeated motifs is shown for each of the four Beps by WebLogos (47). (B) 

WebLogo generated from all predicted tyrosine-phosphorylation motifs of Bep 

clade 9. (C) Weblogo generated from all predicted tyrosine-phosphorylation motifs of 

Bep clades BepD, BepE, BepF, and BepH (lineage 4). The motifs were identified with 

the program NetPhos2.0 using the same threshold as for Bep clade 9 of lineage 3. 

(D) and (E) Immunoprecipitation/Western blot analysis of HA-GFP-Bep fusion 

proteins ectopically expressed in HEK293T cells. Names refer to the locus_tags of 

the corresponding bep genes. Immunoprecipitations (IP) were performed with HA 

antibody-coated agarose beads. In (D), Western blot (WB) analysis was performed 

with anti-phosphotyrosine antibody. In (E), Western blot analysis was performed with 

anti-GFP antibody. 
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Supporting Results 

 

Genome-wide natural selection analysis reveals the VirB and Trw type IV 

secretion system (T4SSs) as well as different autotransporters as adaptive 

traits in the radiating lineage 3 and lineage 4 of Bartonella 

In order to screen for adaptive traits among Bartonella species, we analyzed all 

genes from the available genomes of the radiating lineage 3 (B. henselae, B. 

quintana, B. tribocorum, and B. grahamii) and lineage 4 (B. clarridgeiae, 

B. sp. AR 15-3, B. sp. 1-1C, and B. rochalimae) for signs of adaptive evolution. To 

this end, we inferred the natural selection of orthologous genes by estimation of ω, 

the ratio of non-synonymous (dn, amino acid change) to synonymous (ds, amino acid 

conservation) substitution rates (ω = dn/ds). Generally, ω < 1, ω = 1, ω > 1 represent 

purifying, neutral, and positive selection (= adaptive evolution), respectively (1).  

Based on the eight available genome sequences, our “gene-wide” dn/ds 

estimates revealed strong purifying selection (ω < 0.25) for most orthologous genes 

identified in the two lineages (lineage 3: 964 [88%] and lineage 4: 1004 [92%]). The 

mean value of ω obtained for lineage 3 and lineage 4 was ω = 0.19 and ω = 0.12, 

respectively. Only a small fraction of genes (lineage 3: 133 [12%] and lineage 4: 86 

[8%]) displayed increased dn/ds values (ω ≥ 0.25) which might indicate signs of 

adaptive evolution (Fig. S3, Tables S2 and S3).  

As adaptive evolution is often not affecting the entire gene sequence but only 

a few sites (2), we additionally analyzed the 86 and 133 genes for positive selection 

(ω > 1) acting on individual codons. To this end, we used a maximum likelihood 

method implemented in the software package PAML (see Materials and Methods), 

which fits different models of evolution on the analyzed sets of orthologous genes. 
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These models allow ω to vary among sites by assigning codons to different classes 

of natural selection (3). Likelihood ratio tests (LRTs) were then used to compare the 

log likelihood values of two nested models and to determine which model of evolution 

is fitting the data significantly better. We used two pairs of models which can be 

tested against each other: M1a (NearlyNeutral) versus M2 (Selection) and M7 (beta) 

versus M8 (beta + ω) (4). Model M2 as well as M8 are models including classes for 

sites under positive selection. The results of this analysis (Tables S2 and S3) show 

that in both radiating lineages positive selection was detected for a subset of genes 

with ω ≥ 0.25 (lineage 3: 29 [M1a vs M2] and 31 [M7 vs M8] genes; lineage 4: 14 

[M1a vs M2] and 20 [M7 vs M8] genes. As non-synonymous mutations accumulate 

over time, the later onset of the radiation in lineage 3 (reflected by the shorter 

distances between descendant taxa [Fig. 1]) might explain the larger fraction of 

genes under positive selection. Hence, the data set derived from the genomes of 

lineage 3 appears to be more sensitive to the detection of adaptive traits by natural 

selection analysis.  

A substantial fraction of genes, exhibiting ω ≥ 0.25, were found to be present 

in both lineages (Table S4). Interestingly, autotransporters and different components 

of the VirB T4SS displayed a large fraction of these common genes with ω ≥ 0.25. 

The VirB T4SS and several autotransporters are known to be important for host 

colonization (5-8) and, thus, might display adaptive traits of Bartonella.  

Autotransporters are outermembrane-anchored proteins which are used by 

Bartonella for uptake of essential metabolic resources from the host environments, 

as e.g. hemin via the hemin-binding proteins (9, 10). In our maximum likelihood 

analysis testing for sites under positive selection, most of the identified 

autotransporters revealed very strong signal of positive selection (Table S4). As 
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these genes tend to recombine and the assignment of direct orthologs is difficult, 

false positive detection of positive selection has to be considered and might partially 

explain the strong signal detected in our analysis. However, recombination by itself 

displays an efficient way to confer adaptation to changing environments and might 

support that these factors represent adaptive traits. 

The VirB T4SS constitutes a multisubunit nanomachine (11) translocating a 

set of different Bartonella effector proteins (Beps) into mammalian host cells. These 

effector proteins were shown to subvert a wide range of different cellular functions of 

the host (8, 12-15). Strikingly, all analyzed bep genes of lineage 3 (nine) as well as 

lineage 4 (four) were present among the genes with ω ≥ 0.25 (Tables S2 and S3). In 

lineage 4, all nine VirB T4SS effectors exhibited ω ≥ 0.4, thereby belonging to the 

genes with the highest dn/ds values detected. Our maximum likelihood analysis 

revealed eight of these nine effectors to be under positive selection, whereas only 

one out of four analyzed bep genes in lineage 4 exhibited statistically significant 

positive selection (Table S4). Due to the more recent radiation of lineage 3, the 

stronger signal of positive selection in the effector genes of this lineage was expected 

(see above). In addition to the effector proteins, two structural components of the 

VirB T4SS machinery were present among the common genes with ω ≥ 0.25. These 

are virB5 and virB7 encoding a putative pilus subunit and an outermembrane-

associated protein, respectively (16).  

Other factors known to be essential for host colonization (5) revealing in both 

lineages ω ≥ 0.25 represent a TonB-like protein and a conserved protein of unknown 

functions (BQ02810, BARCLv2_0226). Whereas the TonB-like homolog was found to 

be under positive selection in lineage 4, the protein of unknown function showed no 

signs of positive selection in neither of the two lineages (Table S4). 
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Among the genes exclusively exhibiting ω ≥ 0.25 in lineage 4, several 

components of another T4SS, Trw, were detected (Table S3). The Trw T4SS is only 

present in species of lineage 4 and was shown to be essential for intra-erythrocytic 

colonization in vivo (17). We detected positive selection in several components of the 

Trw T4SS, particularly, in pilus subunits, which have recently been reported to have 

evolved by amplification and diversification (18). As the Trw T4SS is supposed to be 

involved in erythrocyte binding, the adaptive evolution detected in surface-exposed 

genes could reflect the adaptation to divergent hosts. Among the remaining genes of 

lineage 4 exhibiting ω ≥ 0.25, only three proteins of unknown function (BQ11480, 

BQ03410, and BQ13290) are known to be essential for host colonization(5). In one of 

these three genes, our analysis detected significant adaptive evolution. 

Beside the genes in common with lineage 4, no other genes of lineage 3 with 

ω ≥ 0.25 encode known host colonization factors. Many candidate genes found in 

lineage 3 code for small proteins (~ 100 aa) with unknown function. The only 

interesting factors, exclusively detected in lineage 3, are genes homologous to type 

III secretion system (T3SS) effector genes, which belong to the widely distributed 

YopJ family. In many bacterial pathogens, these proteins display important factors for 

host interaction (19). In lineage 3, three of these genes were found to be under 

positive selection. With the exception of B. henselae, YopJ homologs are also 

present in the analyzed species of lineage 4. However, in case of Bartonella, these 

proteins are not known to be involved in host interaction and T3SSs enabling 

translocation of these effector proteins into host cells were not yet identified. 

Taken together, the analysis revealed a limited set of molecular factors of 

Bartonella, which appear to present adaptive traits as (i) they exhibit signs of 

adaptive evolution and (ii) are known to be essential for niche (i.e. host) colonization. 
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These adaptive traits comprise the VirB T4SS, various autotransporters, and the Trw 

T4SS. As autotransporters are also present in non-radiating Bartonella lineages, and 

the Trw T4SS is restricted to lineage 4, the horizontally acquired VirB T4SS displays 

the only detectable adaptive trait common to the radiating lineage 3 and 4 but absent 

from non-radiating lineages. 
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Differences in genomic organization indicates an independent evolutionary 

history of the VirB T4SS in lineage 3 and lineage 4 

In the published genomes of lineage 4 (B. henselae, B. quintana, B. tribocorum, and 

B. grahamii), the VirB T4SS genes, virB2-virB11 as well as the coupling protein gene 

virD4, are encoded at the same chromosomal locus (Figs. 1 and S5). Also, the genes 

of the Bartonella effector proteins (Beps), which are translocated by the VirB T4SS 

machinery into the host cell, are encoded in this region, with bepA being located 

directly downstream of virB11, followed by virD4 and the remaining bep genes. 

Interestingly, the genome sequences of lineage 3 (B. clarridgeiae, B. rochalimae, B. 

sp. AR 15-3 and B. sp. 1-1C) revealed marked differences in organization, copy 

number, and chromosomal localization of the virB and bep genes (Figs. 1 and S5). In 

the completely assembled genome of B. clarridgeiae, we find three copies of the 

virB2-virB10 genes encoded at two different chromosomal loci. Two copies, encoded 

at the same locus, are facing each other and belong to inverted repeats of ~10kb 

which are separated by several bep genes and the coupling protein-encoding gene 

virD4. A third copy of the virB2-virB10 gene cluster and an additional bep gene are 

encoded in a genomic region highly conserved across different Bartonella lineages 

(Fig. 1). The copy number and genomic organization of the T4SS of B. clarridgeiae 

was confirmed by end-sequencing of fosmid clones spanning the corresponding 

chromosomal regions. In contrast to VirB2-VirB10, the ATPase VirB11 and the 

coupling protein VirD4 are only encoded by a single gene copy. In the three 

additional draft genomes of lineage 3, the same chromosomal integration and 

amplification of the virB T4SS genes were found. However, one of the three copies 

must have been partially deleted in a common ancestor of B. rochalimae and B. sp. 

1-1C, as only virB2, virB3, and a remnant of the virB4 gene were found in the 

corresponding region of these two genomes (Figs. 1 and S5). Interestingly, the 
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different copies of virB2-virB10 are identical within each of the four genomes, but 

clearly divergent across each other. This implicates an intragenomic concerted 

evolution of these regions driven by a homogenization process such as e.g. gene 

conversion. The fact that duplicated components of another T4SS, Trw, also evolved 

in concert, and the finding of several other identical genes or gene clusters in 

different Bartonella genomes (18), indicates that sequence homogenization is a 

common mechanism in Bartonella to conserve paralogous gene copies. 

In B. clarridgeiae, the regions evolving in concert do not only include the virB2-

virB10 gene cluster but also an N-terminal part of the single gene copy virB11, which 

is only present as remnant in the other two copies of the T4SS. Two additional open 

reading frames are part of the homogenized regions of the inverted virB gene 

clusters. One of these coding sequences comprises a C-terminal part of the 

glutamine syntethase I gene (glnA), which is a vertically inherited housekeeping gene 

located downstream of the entire T4SS locus. The presence of this inverted C-

terminal glnA fragment upstream of the locus is evident of a VirB T4SS duplication 

event subsequent to the integration of a first copy (Fig. S5). Moreover, this inverted 

duplication could also have resulted in the mirrored organization of the bep genes 

located between the two T4SS copies.  

Beside the adjacent location to virB T4SS genes (as in lineage 4), a blast 

analysis revealed further bep genes in the genomes of lineage 3. In total, we found 

six additional loci encoding one or several bep genes. Some of these effector genes 

are missing in one or the other genome of lineage 4, and the existence of gene 

remnants provides evidence of their deletion. Interestingly, at the intragenomic level, 

some of the bep genes are highly similar or even identical to each other indicating 

concerted evolution of these paralogous gene copies (Fig. 2). Altogether, we 
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identified 12 to 16 bep genes in the genomes of lineage 3 (excluding remnants not 

harboring the C-terminal translocation signal), whereas in lineage 4 only five to seven 

bep genes are present. 

Although incomplete synteny at corresponding loci may hinder the comparison 

between the two different lineages, no gene remnants could be found at the different 

integration sites across the two lineages, neither for bep nor virB genes. It is difficult 

to determine whether massive genomic recombination events resulted in the different 

chromosomal locations and the lineage-specific dissemination of the virB and bep 

genes. However, such a scenario appears not to be likely, as the overall genomic 

backbone is mostly conserved (Fig. 1) and the VirB T4SS integrations sites do not 

share adjacently-located genomic regions across the two lineages.  

Another possibility could be that the VirB T4SS was assimilated into the 

chromosome by two independent lineage-specific events. This is supported by the 

fact that T4SS are ancestrally related to conjugation machineries which are encoded 

on plasmids and responsible for the horizontal dissemination of these extra-

chromosomal replicons (20). It could well be that the VirB T4SS was plasmid-

encoded when the two lineages diverged from each other and was integrated into the 

chromosome in a lineage-specific manner. The fact that related T4SSs, as the AvhB 

or the VirB system of pAT (Agrobacterium tumefaciens) and pSymB (Sinorhizobium 

meliloti) are plasmid-encoded supports such a scenario (21, 22). Furthermore, the 

highly related VirB-homologous (Vbh) T4SS (5), which was found to be encoded by 

two copies in B. grahamii, one located on a plasmid and the other one integrated into 

the chromosome, indicates that VirB-like T4SSs may episodically be maintained on 

extrachromosmal replicons in Bartonella (23). 
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The ancestral effector gene consisted of a N-terminal FIC and a C-terminal BID 

domain 

The phylogenetic trees inferred from the different sequence data sets of the 

Bartonella effector proteins (bep) genes (Figs. 2, S6 and S7) revealed two 

monophyletic clades separating the effector genes of lineages 3 and lineage 4. This 

implicates a lineage-specific amplification-diversification process which resulted in 

the evolution of two different effector gene sets. As some bep genes consist of a 

modular domain structure which has resulted from extensive duplication and 

reshuffling (Fig S4) (8), the domain architecture of the ancestral effector gene, 

present before the two lineages diverged, remains elusive. However, several findings 

suggest that the effector genes harboring an N-terminal FIC and a C-terminal BID 

domain (FIC-BID) represent the ancestral domain structure. Most bep genes of the 

two lineages harbor the FIC-BID structure. In lineage 3, only effector genes of Bep 

clade 9 consist of domain architectures different than FIC-BID (Fig. S4). Further, our 

gene tree based on BID domain and C-terminus (Fig. 2) shows that bep genes with 

the shortest evolutionary distance across the two lineages are the ones harboring the 

FIC-BID structure. Bep genes of the two lineages with different domain structures 

constitute more distant clades in respect to each other indicating that they must have 

been derived by independent recombination events. Strikingly, the presence of a 

putative effector gene harboring the FIC-BID structure in the ancestrally related VirB-

homologous T4SS of B. grahamii or B. schoenbuchensis consolidates our hypothesis 

(22). 
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Materials and Methods 

 

Bacterial strains and growth conditions. B. clarridgeiae strain 73 (24), B. sp. 1-1C 

(25), and B. rochalimae ATCC BAA-1498 (26) were grown routinely for 3–5 days on 

tryptic soy agar containing 5% defibrinated sheep-blood in a water-saturated 

atmosphere with 5% CO2 at 35 °C. B. sp. AR15-3 (27) and B. schoenbuchensis R1 

(28) were grown for the same time span under the same conditions on heart infusion 

agar and colombian base agar, respectively. 

 

Genome sequencing, assembly, and annotation. Strains originating from single 

colonies were grown under the conditions described before. Genomic DNA was 

isolated using the QIAGEN Genomic DNA Isolation kit (Qiagen). For 454-

sequencing, genomic DNA was prepared with an appropriate kit supplied by Roche 

Applied Science for sequencing on a Roche GS-FLX (29). For the assembly of the 

reads, the newbler standard running parameters with ace file output were used. A 

summary of number of reads, contigs, average read length, and genome coverage is 

presented in Table S6 for each of the five genomes. Newbler assemblies were 

considerably improved by linking overlapping contigs on the basis of the “_to” and 

“_from” information appended to the read name in the ace files generated with 

Newbler. Also, repeats were identified by analyzing the average coverage of each of 

the Newbler contigs. If the link between two contigs was ambiguous, PCR and long-

range PCR were used to confirm contig joins. For B. clarridgeiae, a library of about 

35 kb was generated using the CopyControlTM Fosmid Library Production Kit 

(Epicentre). By the end-sequencing of clones from this library with Sanger 
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technology, 983 high-quality reads were obtained and mapped onto the assembly 

based on 454-sequencing reads. The remaining sequence gaps were closed by 

PCR. The final singular contig displaying the circular chromosome of B. clarridgeiae 

was fully covered by staggered fosmid clones indicating a correct assembly. Gene 

predictions of the genome of B. clarridgeiae as well as the draft genomes of 

B. schoenbuchensis, B. rochalimae, B. sp AR15-3, and B. sp. 1-1C were performed 

using AMIGene software (30). Automated functional gene annotation was conducted 

with the microbial genome annotation system MaGe (31). For orthologous genes, the 

annotation was adopted from the manually annotated genome of B. tribocorum. 

Manual validation of the annotation was performed for the virB T4SS and bep genes 

only. By using the “FusionFission” tool of MaGe, fragmented genes were identified 

and the corresponding sequence subsequently examined for 454-sequencing errors 

due to homopolymeric runs. After correcting these errors, the updated sequences 

were re-annotated as described before. The data is stored on the web-based 

interface MaGe (Bartonella2Scope) and publicly available.  

 

Rat infections. Animal care was carried out in accordance with the Swiss Act on 

Animal Protection and Good Animal Care Practice. Ten weeks old female WISTAR 

rats obtained from RCC-Füllinsdorf were housed in an S2-animal facility for two 

weeks prior to infection allowing acclimatization. For inoculation, bacterial strains 

were grown as described before, harvested in phosphate-buffered saline (PBS), and 

diluted to OD595=1. Rats were anesthetized with a 2-3% Isuflurane/O2 mixture and 

infected with 10 μl of the bacterial suspension in the dermis of the right ear. Blood 

samples were taken at the tail vein and immediately mixed with PBS containing 3.8% 

sodium-citrate to avoid coagulation. After freezing to -70°C and subsequent thawing, 
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undiluted and diluted blood samples were plated on tryptic soy agar and heart 

infusion agar containing 5% defibrinated sheep-blood. CFUs were counted after 8-12 

days of growth. 

 

Phylogenetic analyses. Phylogenetic trees were based on nucleotide sequence 

data.  Alignments were generated on protein sequences with ClustalW (32) and 

back-translated into aligned DNA sequences. To calculate tree topologies, we used 

maximum-likelihood and Bayesian inference methods as implemented in the 

programs Paup (33) and MrBayes (34), respectively. The genome-wide phylogeny of 

Bartonella was calculated on the basis of 478 genes of the ten sequenced genomes 

of Bartonella and the genome of Brucella abortus (bv. 1 str. 9-941). This orthologous 

gene set was determined by using the “PhyloProfile Synteny” tool of MaGe (31). The 

threshold for ortholog assignment was set to 60% protein identity over at least 80% 

of the length of proteins being directional best hits of each other. The alignments of 

the 478 identified genes were concatenated resulting in a total of 515,751 aligned 

nucleotide sites. Tree topology and branch lengths were obtained by maximum-

likelihood analysis using the HKY85 model. Bootstrap support values were calculated 

for 100 replicates. To obtain the posterior probabilites by the Bayesian inference 

method the mcmc command of MrBayes (34) was run for one million iterations with 

standard parameters. To complement the genome-wide Bartonella phylogeny with 

non-sequenced Bartonella species, we include available sequence data for the gltA, 

groEL, ribC, and ropB genes (which all were present in the genome-wide data set) 

displaying 7731 nucleotide sites. Tree topology, branch lengths, and bootstraps were 

obtained as described before. To obtain the posterior probabilites by the Bayesian 

inference method the mcmc command of MrBayes (34) was run for five million 
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iterations with standard parameters. Bep gene trees were inferred from nucleotide 

alignments of either the most C-terminal BID domain including the C-terminal tail 

(948 sites), the FIC domain including the N-terminal extension (1305 sites), or the 

entire bep sequence of genes harboring the ancestral domain structure (3972 sites). 

For the latter data set, bepI of B. grahamii and B. tribococrum were included, 

although they harbor a central sequence insert not present in the other bep genes. 

To select an appropriate substitution model, the Akaike information criterion of 

Modeltest 3.7 (35) and MrModeltest 2.0  (36) was used for the maximum-likelihood 

and Bayesian inference analysis, respectively. For the alignments based on the BID 

domain and C-terminus, as well as for the data set based on entire bep gene 

sequences, we obtained the GTR+G+I model with both programs. For the alignments 

based on the FIC domain and N-terminus, the TVM+I+G model (Modeltest 3.7) and 

GTR+G+I (MrModeltest 2.0) were selected. With the parameters provided by these 

models, trees were inferred by the maximum-likelihood and Bayesian inference 

analyses as described before. Bootstrap support values were calculated for 100 

replicates, and posterior probabilites obtained with the mcmc command of MrBayes 

(34) for one million iterations with model-specific parameters. 

 

Natural selection analysis. Orthologous genes for each of the two phylogenetic 

lineages were determined by using the “PhyloProfile Synteny” tool of MaGe (Vallenet 

et al., 2006). The threshold for ortholog assignment was set to 30% protein identity of 

at least 60% over the length of proteins being directional best hits of each other. The 

same tool was used to detect genes without homologs in each of the two lineages. 

By comparing these automatically identified orthologs and non-orthologs, genes 

present in neither of the two lists were detected and manually assigned to one of the 
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two. The orthologous genes were subsequently aligned as described before. To 

obtain the average dn/ds value (ω) of each gene, the arithmetic mean of pair-wise 

dn/ds values calculated by the method of Yang and Nielsen (2000) as implemented 

in PAML 1.41 (Yang, 2007) was used. Site tests of positive selection for genes 

exhibiting ω ≥0.25 were performed with PAML 1.41 (Yang, 2007) by using the 

codeml module. Models M0 (one-ratio), M1 (neutral), M2 (selection), M3 (discrete), 

M7 (beta), and M8 (beta + ω) were analyzed. Paup (33) was used to infer maximum-

likelihood trees of each gene. For the codeml control file the standard parameters 

were used. The models M1a (nearlyNeutral) and M2a (positiveSelection) as well as 

the models M7 (beta) and M8 (beta + ω) were compared in a Likelihood-ratio test 

using two degrees of freedom to determine relative significance of models. 

Phylogenetic branches were tested for positive selection by using the 

TestBranchDNDS.bf module implemented as standard analysis in HyPhy (37). 

Cloning of plasmids for expression of HA-GFP-Bep fusion proteins. To 

construct the plasmids pPE2002 and pPE2004, bep genes BARCLv2_1034 

(B. clarridgeiae) and BARROv3_80017 (B. rochalimae) were amplified from genomic 

DNA with primer pairs containing flanking BamHI/NotI sites: prPE453 

(ATAAGAATGCGGCCGCGATGAAAACCCATAACACTCCTG) / prPE454 (CGGGA-

TCCTTAATGTGTTATAACCATCGTTC) and prPE455 (ATAAGAATGCGGCCGCGA-

TGAATTTTGGAGAAAAGAAA-AAAATG) / prPE456 (CGGGATCCTTAAATAGCTAC-

AGCTAACGATTTTTTC), respectively. PCR products were digested with enzymes 

BamHI and NotI and ligated into the BamHI/NotI sites of the backbone of plasmid 

pAP013 (kindly provided by Arto Pulliainen). The resulting constructs pPE2001 

(BARCLv2_1034) and pPE2003 (BARROv3_80017) were cut with NotI and ligated 

with a GFP fragment obtained from NotI digested pAP013. The plasmid pPE2007 

was constructed by cutting bepE of B. henselae from plasmid pRO1100 (kindly 
95 



Results – Research article II - Supporting Online Material 

provided by Rusudan Okujava) with NotI and BamHI and ligating it into pAP013. All 

plasmid DNA isolations and PCR purifications were performed with Macherey-Nagel 

and Promega columns according to manufacturer’s instruction.  

 

Immunoprecipitation of HA-GFP-Bep fusion proteins. The protocol for growth and 

transfection of HEK293T is described in (14). 36 h after transfection, cells were 

incubated for 10 minutes with 10 ml Pervanadate medium (5 ml PBS containing 100 

mM orthovanadate, 200 mM H2O2, incubated for 10 min with 500 μl Catalase (2 

mg/ml in PBS), and 45 ml cell media added). After washing three times with 7 ml of 

PBS at room temperature cells were scraped off and resuspended in 1 ml of ice-cold 

PBS containing 1 mM EDTA, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM 

orthovanadate, 1 mM leupeptin, and 1 mM pepstatin and collected by centrifugation 

(3,000g at 4°C for 60 sec). The resulting pellet was lysed in 300 ml of ice cold 

modified RIPA buffer (50 mM Tris·HCl [pH 7.4], 75 mM NaCl, 1 mM EDTA, 1 mM 

orthovanadate, 1 mM leupeptin, 1 mM pepstatin) for 1 hour at 4°C. The lysate was 

centrifuged (16,000g at 4°C for 15 min) and 12 ml of anti-HA-agarose (Sigma) added 

to the supernatant. After 150 min of incubation at 4°C on a slowly turning rotation 

shaker, the agarose was washed three times with 300 ml of modified RIPA buffer 

(3,000g for 10 sec). The affinity-gel pellet was then resuspended in 20 ml of modified 

RIPA buffer, 20 ml of SDS-sample buffer (2´) were added, and the sample was 

heated for 5 min at 95°C. Proteins were separated on a 10% SDS-polyacrylamide 

gel, blotted on a nitrocellulose membrane (Hybond-C Extra, Amersham Pharmacia), 

and examined for tyrosine phosphorylation by using monoclonal antibody 4G10 

(Millipore) and anti-mouse IgG-horseradish peroxidase (HRP) afterwards. The HRP-

conjugated antibody was visualized by enhanced chemiluminescence (PerkinElmer). 
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For visualization of the signal from GFP-fusion proteins the membrane was 

subsequently incubated in 4% PBS-Tween containing 0.02% NaN3 and anti-GFP 

antibody (Invitrogen), followed by anti-mouse IgG-HRP and visualized by enhanced 

chemiluminescence. 
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Supplementary Fig. 1. Phylogenetic tree of ten sequenced Bartonella species 

based on the nucleotide alignment of 478 genes. As outgroup the species 

Brucella abortus (bv. 1 str. 9-941) was used. The tree topology and branch lengths 

were obtained by maximum-likelihood analysis (as implemented in PAUP(33)). 

Numbers above the branches represent maximum-likelihood bootstraps of 100 

replicates, numbers below the branches represent posterior probabilities obtained 

with the MrBayes program (one million iterations, (34)). The two monophyletic clades 

harboring the VirB T4SS (5) are marked by the shaded area. The mammalian 

reservoir hosts are given for each species, and the four different lineages of 

Bartonella are indicated by red, orange, blue, and green color (l1, lineage 1, l2, 

lineage 2). 
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Supplementary Fig. 2. Experimental infections of rats with Bartonella species 

of lineage 3. Groups of rats (n = 5) were inoculated intradermally with 10 μl  of 

phosphate-buffered saline (PBS) solution containing bacteria of one of the four 

different species B. clarridgeiae, B. rochalimae, B. sp. 1-1C, or B. sp. AR 15-3 

(OD595 = 1). At the time points indicated in the graphs, blood was drawn, diluted, and 

plated for counting of colony-forming units (CFUs). Plotted graphs represent single 

animals from which bacteria could be recovered at a given time point post-infection. 

In all five animals infected with the rat-specific strain B. sp. 1-1C, bacteria were 

detected between day 8 and 28 post-infection (green graphs). In only three of five 

animals infected with the red squirrel-specific strain B. sp. AR 15-3, bacteria could be 

detected (red graphs). In these three animals, bacteria came up much later and did 

not reach the same blood titer as B. sp. 1-1C. From none of the animals infected with 

either B. rochalimae or B. clarridgeiae, bacteria could be recovered (threshold of 

detection ≤ 102 CFU/ml). Additionally, a recent study (38) showed that B. rochalimae 

is reliably infecting dogs, its natural reservoir host, but not cats or guinea pigs. These 

independent studies confirm the host specificity among Bartonella species. 
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Supplementary Fig. 3. Gene-wide dn/ds analysis of the core genomes of (A) 

lineage 3 and (B) lineage 4. The mean values plotted on the y-axis were obtained 

from dn/ds values of pairs of orthologs calculated with the method of Yang and 

Nielsen (2000) implemented in PAML (3). The genes are ordered according to their 

position in the genome of (A) B. clarridgeiae and (B)B. quintana. virB T4SS and bep 

genes are indicated in red color. For lineage 3 (A), 133 genes where detected to 

have an average dn/ds value ≥ 0.25, whereas for lineage 4 (B) 86 genes exhibited 

dn/ds values ≥ 0.25. In lineage 3, three genes exhibit average dn/ds values >> 1 (see 

also Table S2). This is explained by the fact that between B. rochalimae and B. sp 1-

1C, only non-synonymous mutations but no synonymous mutations have been 

detected in these three genes. For the other pair-wise comparisons, all three genes 

revealed ω < 1. This is indicated by the high standard deviations for average dn/ds 

values of these genes (see Table S2). 
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Supplementary Fig 4. Domain structure of Beps from (A) lineage 3 and (B) 

lineage 4. The FIC and BID domains are shown in orange and violet, respectively. 

The FIC motif (HPFxxGNG) is depicted. Motifs differing from the consensus are 

indicated. Beps are grouped according to the monophyletic clades indicated in Fig. 2. 

BARCLv2_0629 and BARCLv2_0635 are excluded from groups, because their 

phylogenetic positions are not well supported in the inferred gene trees (Figs. 2, S6 

and S7). Tyrosine-phosphorylation motifs depicted for Bep clade 9, BepD, BepE, 

BepF, and BepH were identified with the program NetPhos2.0 (39) using a threshold 

of 0.8. 

104 



Results – Research article II - Supporting Online Material 

 

Supplementary Figure 4 

 

105 



Results – Research article II - Supporting Online Material 

Supplementary Fig. 5. Comparison of virB T4SS- and bep-encoding loci of 

lineage 3 (A and B) and lineage 4 (C). (A) Comparison of the two virB T4SS loci of 

B. clarridgeiae, B. sp. AR 15-3, B. sp. 1-1C, and B. rochalimae. (B) Comparison of 

the genomic regions of B. clarridgeiae, B. sp AR 15-3, B. sp. 1-1C, and B. rochalimae 

encoding additional bep genes. (C) Comparsion of the virB T4SS loci of B. quintana, 

B. henselae, B. grahamii, and B. tribocorum. virB T4SS genes are colored in yellow, 

bep genes in red, as well as flanking regions and putative coding sequences in gray. 

The monophyletic clades of different bep genes (see Fig. 2) are indicated and show 

that most genes, belonging to the same monophyletic clade, constitute positional 

orthologs of each other. Bep clade 11 does not appear in Fig. 2, since these bep 

genes consist of only the FIC domain. Genes are connected by gray boxes, if they 

are orthologs of each other. For bep genes, connections are drawn, if genes belong 

to the same monophyletic clade (see Fig. 2), or if they are top blast hits of each 

other. The bep gene tagged by an asterisk (BAR15v2_400222) belongs to the Bep-

clade 1. In (A), the glutamine syntethase I (glnA) gene and its fragment flanking the 

two inverted virB T4SS copies are colored in green. In (B), contig breaks are 

indicated by the interruption of the sequence line. 
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Supplementary Fig. 6. bep gene tree based on the FIC domain-containing N-

terminus. The topology and branch lengths are according to maximum likelihood 

analysis. Numbers above the branches represent maximum likelihood bootstraps 

obtained with PAUP (33), numbers below the branches represent posterior 

probabilities obtained with MrBayes (34). Locus_tag and gene names (if existing) are 

given. Beps are color-coded according to the species. The dashed line indicates the 

independent clustering of the Bep genes from lineage 3 and lineage 4. Bold lines in 

black color depict phylogenetic branches with dn/ds values > 1 as calculated with 

HYPHY (37). For each branch under positive selection, the estimated dn/ds value is 

indicated. 
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Supplementary Fig. 7. (B) bep gene trees based on the entire sequence of 

genes harboring a N-terminal FIC and C-terminal BID domain. The topology and 

branch lengths are according to maximum likelihood analysis. Numbers above the 

branches represent maximum likelihood bootstraps obtained with PAUP (33), 

numbers below the branches represent posterior probabilities obtained with MrBayes 

(34). Locus_tag and gene names (if existing) are given. Beps are color-coded 

according to the species. The dashed line indicates the independent clustering of the 

Bep genes from lineage 3 and lineage 4. Bold lines in black color depict phylogenetic 

branches with dn/ds values > 1 as calculated with HYPHY (37). For each branch 

under positive selection, the estimated dn/ds value is indicated. 
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Supplementary Table 1. Genomic features of analyzed Bartonella species and information about their reservoir host and 

phylogenetic lineage (see Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a information adopted from (40), b species sequenced in this study, c information adopted from (23), 

 d Numbers in brackets refer to plasmids present in B. tribocorum and B. grahamii 

 B. bacilliformisa B. schoenbuchensisb B. clarridgeiaeb B. rochalimaeb B. sp AR15-3b B. sp 1-1Cb B. grahamiic B. henselaea B. quintanaa B. tribocoruma 

Reservoir host Human Roe deer Cat Dog Red squirrel Rat Mouse Cat Human Rat 

Lineage (see Fig. 1) 1 2 3 3 3 3 4 4 4 4 

Genome status complete draft complete draft draft draft complete complete complete complete 

Genome size 1,445,021 bp 1,685,713 bp 1,522,743 bp 1,552,290 bp 1,607,248 bp 1,585,739 bp 2,341,328 bp 1,931,047 bp 1,581,384 bp 2,619,061bp 

Plasmid no yes no no no no yes no no yes 

Number of contigs 1 18 1 13 17 19 1 (1)d 1 1 1 (1)d 

GC content 38,2 % 37.60% 35.70% 35.60% 35.70% 35.80% 38.10% 38.20% 38.80% 38.80% 

CDS 1,283 1.584 1,342 1,405 1,487 1,465 1,737 (31)d 1,488 1,142 2,136 (18)d 

rRNA 2x3 2x3 2x3 3x3 2x3 2x3 2x3 2x3 2x3 2x3 

tRNA 44 42 41 44 41 41 42 44 44 42 
Average CDS length 909 bp 863 bp 924 bp 878 bp 883 bp 880 bp not analyzed 942 bp 999 bp 906 bp 
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Supplementary Table 2. Genes of lineage 3 with average dn/ds values (ω) ≥ 0.25. Genes are ordered according to ω. virB T4SS and 

bep genes are indicated by gray color. Orthologous genes present in genomes of other lineages and Likelihood ratio test (LRT) results 

of the PAML selection analysis are given. 

   Orthologs in other Bartonella genomea  PAML resultsb 

Gene Product Length  (aa) Brucella abortus B. bacilliformis B. schoenbuchensis B. quintana ω M1a vs. M2 M7 vs. M8 
BARCLv2_1245 conserved protein of unknown function 91 BruAb1_1710 BARBAKC583_0136 BARSCv2_10259 BQ12030 16.73 ±40.3 0.00 0.00 
BARCLv2_0768 conserved exported protein of unknown function 77 no no BARSCv2_40129 BQ06010 16.69 ±40.32 0.00 0.00 
BARCLv2_0782 ATP-binding protein of ABC-transport system 245 BruAb2_0027 no BARSCv2_40051 BQ06320 16.56 ±40.39 1.28 3.00 
BARCLv2_1321 conserved protein of unknown function 85 BruAb1_1804 no BARSCv2_10329 BQ12930 0.82 ±0.22 1.36 1.77 
BARCLv2_0240 conserved exported protein of unknown function 49 no BARBAKC583_0299 BARSCv2_20051 no 0.78 ±0.22 5.92 5.96 
BARCLv2_0077 VirB T4SS protein, VirB5 150 no no no BQ10560c 0.73 ±0.09 11.02* 12.06* 
BARCLv2_0647 VirB T4SS protein, VirB5 150 no no no BQ10560c 0.73 ±0.09 11.02* 12.06* 
BARCLv2_1163 conserved protein of unknown function 97 no no no BQ11040 0.65 ±0.34 2.11 2.27 
BARCLv2_0505 glycine cleavage system T protein 373 BruAb2_0504 BARBAKC583_1096 BARSCv2_40500 BQ10130 0.64 ±1.18 1.18 1.41 
BARCLv2_0118 VirB T4SS effector protein, Bep (fragment) 223 no no no BQ10650c 0.62 ±0.21 13.84** 14.52** 
BARCLv2_0960 VirB T4SS effector protein, Bep 430 no no no BQ10650c 0.61 ±0.18 11.42* 14.62** 
BARCLv2_0491 protein of unknown function 120 no no BARSCv2_10073 no 0.6 ±0.09 0.09 0.18 
BARCLv2_0416 TonB protein 244 BruAb1_0622 BARBAKC583_0461 BARSCv2_20204 BQ04170 0.53 ±0.17 0.37 0.53 
BARCLv2_0125 Heme exporter protein CcmD 50 no BARBAKC583_1287 BARSCv2_10492 BQ01050 0.5 ±0.34 0.99 1.06 
BARCLv2_0194 exported protein of unknown function 90 no no no no 0.5 ±0.16 14.42** 18.29** 
BARCLv2_0632 VirB T4SS effector protein, Bep 528 no no no BQ10650c 0.5 ±0.12 6.51* 11.62* 
BARCLv2_1031 VirB T4SS effector protein, Bep 547 no no no BQ10650c 0.49 ±0.06 16.29** 22.75** 
BARCLv2_0245 VirB T4SS effector protein, Bep 497 no no no BQ10650c 0.48 ±0.11 10.19* 18.9* 
BARCLv2_0481 putative flagellar motor protein 405 BruAb2_1079 BARBAKC583_1125 BARSCv2_10086 no 0.47 ±0.08 0.02 0.15 
BARCLv2_0075 VirB T4SS protein, VirB7 103 no no no BQ10580c 0.47 ±0.09 0.43 0.8 
BARCLv2_0645 VirB T4SS protein, VirB7 103 no no no BQ10580c 0.47 ±0.09 0.43 0.8 
BARCLv2_0690 conserved protein of unknown function 77 BruAb1_0849 BARBAKC583_0864 BARSCv2_40153 BQ07510 0.47 ±0.21 6.46* 6.53* 
BARCLv2_1342 protein of unknown function 556 no no no no 0.46 ±0.08 35.82** 55.96** 
BARCLv2_0478 conserved protein of unknown function 242 no BARBAKC583_1128 BARSCv2_10089 no 0.46 ±0.08 0.00 0.02 
BARCLv2_1207 DsbB domain protein 184 BruAb1_1630 BARBAKC583_0182 BARSCv2_10215 BQ11650 0.46 ±0.09 3.33 4.32 
BARCLv2_0640 VirB T4SS effector protein, Bep 539 no no no BQ10650c 0.45 ±0.06 18.16** 23.35** 
BARCLv2_0669 conserved protein of unknown function 77 no no no BQ07720 0.44 ±0.21 0.00 0.00 
BARCLv2_1013 conserved protein of unknown function 158 no no no BQ09010 0.43 ±0.07 2.71 3.46 
BARCLv2_1355 protein of unknown function 32 no no no no 0.43 ±0.35 0.00 0.00 
BARCLv2_0639 VirB T4SS effector protein, Bep 625 no no no BQ10650c 0.43 ±0.01 19.73** 23.36** 
BARCLv2_1288 conserved protein of unknown function 225 BruAb1_1970 BARBAKC583_0098 BARSCv2_10295 BQ12360 0.43 ±0.11 0.00 0.00 
BARCLv2_1327 conserved protein of unknown function 387 BruAb1_1862 BARBAKC583_0063 BARSCv2_10335 BQ13000 0.42 ±0.08 5.28 5.85 
BARCLv2_1059 conserved protein of unknown function 141 BruAb1_0406 BARBAKC583_0375 BARSCv2_20121 BQ03120 0.42 ±0.09 5.04 5.44 
BARCLv2_0241 conserved protein of unknown function 131 BruAb2_0470 BARBAKC583_0300 BARSCv2_20052 BQ02980 0.42 ±0.35 0.00 0.00 
BARCLv2_0982 conserved protein of unknown function 464 no no no no 0.42 ±0.1 59.2** 94.79** 
BARCLv2_0631 VirB T4SS effector protein, Bep 538 no no no BQ10650c 0.42 ±0.06 15.09** 22.57** 
BARCLv2_1351 conserved protein of unknown function 221 BruAb1_2010 no no no 0.42 ±0.13 0.00 -0.07 
BARCLv2_0069 VirB T4SS effector protein, Bep 547 no no no BQ10650c 0.42 ±0.1 2.46 3.4 
BARCLv2_0475 Inducible Bartonella autotransporter 823 BruAb1_0895 BARBAKC583_1132c BARSCv2_10091c BQ10380c 0.42 ±0.17 35.06** 54.3** 
BARCLv2_0978 conserved protein of unknown function 40 BruAb1_1401 BARBAKC583_0931 BARSCv2_40323 BQ08690 0.41 ±0.37 0.92 1.20 
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   Orthologs in other Bartonella genomea  PAML resultsb 

Gene Product Length  (aa) Brucella abortus B. bacilliformis B. schoenbuchensis B. quintana ω M1a vs. M2 M7 vs. M8 
BARCLv2_0279 conserved protein of unknown function 218 no BARBAKC583_1049 BARSCv2_40463 BQ09660 0.41 ±0.12 0.00 0.00 
BARCLv2_1164 conserved protein of unknown function 139 BruAb1_1640 BARBAKC583_0248 BARSCv2_10151 BQ11050 0.41 ±0.07 3.14 3.26 
BARCLv2_1170 conserved protein of unknown function 74 no BARBAKC583_0239 BARSCv2_10161 no 0.4 ±0.25 0.33 0.63 
BARCLv2_1173 conserved protein of unknown function 152 no BARBAKC583_0234 BARSCv2_10165 BQ11080 0.4 ±0.08 2.39 2.47 
BARCLv2_0957 Effector protein yopJ 249 no no no BQ11580c 0.4 ±0.07 5.23 5.99* 
BARCLv2_0250 Effector protein yopJ 279 no no no BQ11580c 0.39 ±0.1 6.20* 8.93* 
BARCLv2_0367 conserved protein of unknown function 164 BruAb1_0516 BARBAKC583_0416 BARSCv2_20162 BQ03740 0.38 ±0.34 0.00 0.20 
BARCLv2_1270 ATP synthase epsilon chain  138 BruAb1_1778 BARBAKC583_0115 BARSCv2_10281 BQ12220 0.38 ±0.08 1.00 1.30 
BARCLv2_0473 Inducible Bartonella autotransporter E protein (fragment) 673 no BARBAKC583_1132c BARSCv2_10091c BQ10380c 0.38 ±0.11 108.28** 128.21** 
BARCLv2_1329 Antioxidant, AhpC/TSA family 143 BruAb1_1956 BARBAKC583_0053 BARSCv2_10347 BQ13100 0.37 ±0.22 -9.41 6.16 
BARCLv2_0664 conserved protein of unknown function 210 no BARBAKC583_0744 BARSCv2_40233 no 0.37 ±0.17 0.78 1.60 
BARCLv2_1005 conserved protein of unknown function 134 BruAb1_1433 BARBAKC583_0954 BARSCv2_40346 BQ08930 0.37 ±0.08 0.83 0.83 
BARCLv2_0054 conserved protein of unknown function 242 BruAb1_2088 BARBAKC583_1339 BARSCv2_10433 BQ00450 0.36 ±0.19 1.53 2.04 
BARCLv2_0882 conserved protein of unknown function 249 BruAb1_1170 BARBAKC583_0582 BARSCv2_20329 BQ07020 0.36 ±0.1 0.00 0.00 
BARCLv2_1123 Effector protein yopJ 339 no no no BQ01158c 0.35 ±0.13 6.19* 8.68* 
BARCLv2_1011 conserved protein of unknown function 107 BruAb1_1447 no no no 0.35 ±0.34 9.59* 10.29* 
BARCLv2_0115 FxsA cytoplasmic membrane protein 157 BruAb1_2048 BARBAKC583_1295 BARSCv2_10481 BQ00960 0.35 ±0.12 2.27 3.00 
BARCLv2_0929 50S ribosomal protein L29 66 BruAb1_1230 BARBAKC583_0674 BARSCv2_40270 BQ08150 0.35 ±0.21 0.16 0.38 
BARCLv2_0951 conserved protein of unknown function 225 BruAb1_0953 BARBAKC583_0651 BARSCv2_40294 BQ08380 0.35 ±0.29 3.82 3.79 
BARCLv2_0446 conserved protein of unknown function 125 no BARBAKC583_1158 BARSCv2_10119 no 0.34 ±0.15 0.00 0.09 
BARCLv2_0480 putative flagellar motor protein 426 BruAb2_1080 BARBAKC583_1126 BARSCv2_10087 no 0.34 ±0.09 0.18 0.50 
BARCLv2_1038 conserved protein of unknown function 144 BruAb1_0895 no no BQ04750 0.34 ±0.1 2.25 2.88 
BARCLv2_0699 conserved protein of unknown function 85 BruAb1_1043 BARBAKC583_0854 BARSCv2_40141 BQ07410 0.34 ±0.07 0.01 0.26 
BARCLv2_0566 conserved exported protein of unknown function 875 no no no no 0.34 ±0.12 48.71** 63.89** 
BARCLv2_1165 conserved protein of unknown function 228 BruAb1_1844 BARBAKC583_0247 no BQ11000 0.34 ±0.08 4.53 5.07 
BARCLv2_1200 conserved protein of unknown function 126 no BARBAKC583_0193 BARSCv2_10208 BQ11450 0.33 ±0.15 1.08 1.44 
BARCLv2_1199 conserved protein of unknown function 63 no BARBAKC583_0195 BARSCv2_10207 BQ11430 0.33 ±0.15 0.00 0.00 
BARCLv2_1225 conserved exported protein of unknown function 352 BruAb1_1693 BARBAKC583_0156 BARSCv2_10240 BQ11930 0.33 ±0.11 0.01 0.76 
BARCLv2_0670 conserved protein of unknown function 813 no BARBAKC583_0748 BARSCv2_40172 BQ07710 0.32 ±0.03 4.85 6.04* 
BARCLv2_0198 Hemin binding protein 291 BruAb1_0115 c BARBAKC583_1214 c BARSCv2_40484 c BQ02410c 0.32 ±0.04 9.37* 17.43* 
BARCLv2_0196 Hemin binding protein 277 BruAb1_0115 c BARBAKC583_1214 c BARSCv2_10559 c BQ02410c 0.32 ±0.08 8.84* 8.47* 
BARCLv2_0016 conserved exported protein of unknown function 199 BruAb1_0152 BARBAKC583_1369 BARSCv2_10401 BQ00150 0.32 ±0.21 1.79 1.93 
BARCLv2_1166 conserved protein of unknown function 297 no no BARSCv2_10157 BQ11020 0.32 ±0.1 3.22 4.86 
BARCLv2_1020 conserved protein of unknown function 837 no BARBAKC583_1109 no BQ10280 0.32 ±0.13 0.00 14.52 
BARCLv2_0420 conserved protein of unknown function 175 BruAb1_0433 BARBAKC583_0391 BARSCv2_20137 BQ03450 0.31 ±0.07 0.00 0.00 
BARCLv2_0103 3-phosphoshikimate 1-carboxyvinyltransferase 442 BruAb1_0025 BARBAKC583_1303 BARSCv2_10474 BQ00880 0.31 ±0.06 7.81* 9.68* 
BARCLv2_0221 Protein slyX homolog 50 no no no no 0.31 ±0.12 0.00 0.00 
BARCLv2_0867 ABC transporter, permease protein 232 no BARBAKC583_0597 BARSCv2_20344 BQ06870 0.3 ±0.1 2.19 2.56 
BARCLv2_1177 conserved protein of unknown function 283 no BARBAKC583_0229 BARSCv2_10169 BQ11120 0.3 ±0.07 0.88 2.30 
BARCLv2_0327 conserved protein of unknown function 84 BruAb1_1516 BARBAKC583_0993 BARSCv2_40420 BQ03350 0.3 ±0.12 0.20 0.27 
BARCLv2_0847 Lysophospholipase l2 293 BruAb1_0046 no no BQ05220 0.3 ±0.07 0.00 0.00 
BARCLv2_1180 conserved protein of unknown function 87 no BARBAKC583_0226 BARSCv2_10177 BQ11160 0.3 ±0.06 0.25 1.15 
BARCLv2_0877 Phosphatidate cytidylyltransferase  269 BruAb1_1163 BARBAKC583_0587 BARSCv2_20334 BQ06970 0.3 ±0.09 0.39 1.13 
BARCLv2_0781 permease protein of ABC transporter 296 BruAb1_1771 no BARSCv2_40052 BQ06310 0.3 ±0.42 2.31 3.25 
BARCLv2_1274 ATP synthase delta subunit 194 BruAb1_1782 BARBAKC583_0111 BARSCv2_10285 BQ12260 0.3 ±0.04 2.17 3.83 
BARCLv2_1261 conserved protein of unknown function 95 no no BARSCv2_10278 BQ12190 0.3 ±0.13 0.00 0.00 
BARCLv2_0197 Hemin binding protein 241 BruAb1_0115 c BARBAKC583_1214 c BARSCv2_40297 c BQ02410c 0.29 ±0.04 35.92** 50.26** 
BARCLv2_0381 conserved protein of unknown function 172 BruAb1_0603 no no BQ03880 0.29 ±0.1 0.41 0.84 
BARCLv2_0292 conserved protein of unknown function 215 no no no BQ09490 0.29 ±0.1 2.26 3.5 
BARCLv2_0559 conserved membrane protein of unknown function 363 BruAb1_0705 BARBAKC583_0507 BARSCv2_20252 BQ04620 0.29 ±0.04 6.34* 7.89* 
BARCLv2_1065 mutator MutT protein 136 BruAb1_1915 BARBAKC583_0364 BARSCv2_20107 BQ01900 0.28 ±0.19 3.35 4.25 
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   Orthologs in other Bartonella genomea  PAML resultsb 

Gene Product Length  (aa) Brucella abortus B. bacilliformis B. schoenbuchensis B. quintana ω M1a vs. M2 M7 vs. M8 
BARCLv2_0524 pantoate--beta-alanine ligase 281 BruAb1_0355 BARBAKC583_0476 BARSCv2_20219 BQ04310 0.28 ±0.09 0.00 0.00 
BARCLv2_1125 50S ribosomal protein L21 159 BruAb1_1829 BARBAKC583_0309 BARSCv2_20058 BQ01320 0.28 ±0.06 1.80 3.18 
BARCLv2_0024 lysyl-tRNA synthetase 549 BruAb2_0442 BARBAKC583_1360 BARSCv2_10409 BQ00220 0.28 ±0.44 2.84 4.69 
BARCLv2_1236 TolA protein 377 BruAb1_1683 BARBAKC583_0145 BARSCv2_10253 BQ11830 0.28 ±0.05 0.20 0.78 
BARCLv2_1313 SurF1 family protein 255 BruAb1_0496 BARBAKC583_0076 BARSCv2_10321 BQ12840 0.28 ±0.05 0.00 0.22 
BARCLv2_0171 Ribosomal-protein-alanine acetyltransferase 160 BruAb1_2125 BARBAKC583_1242 BARSCv2_10535 BQ02150 0.28 ±0.13 2.03 2.25 
BARCLv2_0518 conserved membrane protein of unknown function 179 BruAb1_0675 BARBAKC583_0470 BARSCv2_20213 BQ04250 0.28 ±0.03 6.16* 9.17* 
BARCLv2_1233 conserved protein of unknown function 152 BruAb1_1686 BARBAKC583_0148 BARSCv2_10250 BQ11860 0.28 ±0.07 0.08 0.55 
BARCLv2_0949 conserved protein of unknown function 181 BruAb1_0955 BARBAKC583_0653 BARSCv2_40292 BQ08360 0.27 ±0.07 0.00 0.00 
BARCLv2_0226 conserved protein of unknown function 473 no BARBAKC583_0286 BARSCv2_20039 BQ02810 0.27 ±0.06 0.00 0.51 
BARCLv2_0464 Flagellar hook-basal body complex protein fliE 112 BruAb2_0149 BARBAKC583_1142 BARSCv2_10102 no 0.27 ±0.16 2.26 3.12 
BARCLv2_1107 Filament-A percursor 391 BruAb1_1817 BARBAKC583_0323 BARSCv2_20069 BQ01520 0.27 ±0.04 0.62 2.17 
BARCLv2_0296 conserved protein of unknown function 128 BruAb1_1587 BARBAKC583_1018 BARSCv2_40443 BQ09450 0.27 ±0.06 3.57 4.40 
BARCLv2_1082 glycerol-3-phosphate ABC transporter permease 283 BruAb2_0569 BARBAKC583_0347 BARSCv2_20091 BQ01740 0.27 ±0.5 0.00 0.00 
BARCLv2_0468 conserved protein of unknown function 210 BruAb2_0153 BARBAKC583_1138 BARSCv2_10098 no 0.27 ±0.07 1.35 2.53 
BARCLv2_0454 Flagellar motor switch protein fliY 170 BruAb2_1067 BARBAKC583_1151 BARSCv2_10111 no 0.27 ±0.03 0.44 1.02 
BARCLv2_0397 Methyltranferase 162 no no BARSCv2_20184 BQ04020 0.26 ±0.06 0.00 0.16 
BARCLv2_1029 LysM/M23 peptidase domain protein 362 BruAb1_0900 BARBAKC583_0521 BARSCv2_20269 BQ04790 0.26 ±0.04 0.28 1.27 
BARCLv2_0813 conserved protein of unknown function 126 BruAb1_1079 BARBAKC583_0643 BARSCv2_20395 BQ05530 0.26 ±0.2 0.00 0.00 
BARCLv2_0063 conserved protein of unknown function 144 no BARBAKC583_1330 BARSCv2_10443 BQ00580 0.26 ±0.08 0.00 0.00 
BARCLv2_1062 ATP synthase B chain (modular protein) 210 BruAb1_0409 BARBAKC583_0378 BARSCv2_20124 BQ03150 0.26 ±0.06 0.36 1.04 
BARCLv2_0618 conserved protein of unknown function 246 no no no BQ10520c 0.26 ±0.04 0.00 0.97 
BARCLv2_0651 VirB T4SS-associated conserved protein of unknown function 246 no no no BQ10520c 0.26 ±0.04 0.00 0.46 
BARCLv2_1326 conserved protein of unknown function 481 BruAb1_1861 BARBAKC583_0064 BARSCv2_10334 BQ12990 0.26 ±0.05 2.91 4.32 
BARCLv2_1078 ABC transporter, periplasmic binding protein 300 no BARBAKC583_0350 BARSCv2_20094 BQ01770 0.26 ±0.08 3.07 5.27 
BARCLv2_1246 conserved protein of unknown function 121 BruAb1_1709 BARBAKC583_0135 BARSCv2_10260 BQ12040 0.25 ±0.08 0.71 1.19 
BARCLv2_0390 Cytochrome c-type biogenesis protein ccmH 125 BruAb1_0629 BARBAKC583_0433 BARSCv2_20179 BQ03960 0.25 ±0.04 0.00 0.00 
BARCLv2_0325 conserved protein of unknown function 350 BruAb1_1518 BARBAKC583_0995 BARSCv2_40422 BQ03330 0.25 ±0.08 0.00 0.00 
BARCLv2_0892 Transcriptional regulator 128 BruAb1_1185 no no no 0.25 ±0.08 0.00 0.00 
BARCLv2_0449 conserved exported protein of unknown function 147 BruAb2_1064 BARBAKC583_1155 BARSCv2_10115 no 0.25 ±0.07 3.02 3.88 
BARCLv2_1254 conserved protein of unknown function 506 BruAb1_1754 BARBAKC583_0125 BARSCv2_10271 BQ12130 0.25 ±0.08 6.03* 8.46* 
BARCLv2_1171 putative phage protein 328 no BARBAKC583_0238 BARSCv2_10163 BQ11060 0.25 ±0.03 20.56** 23.36** 
BARCLv2_0059 heat shock protein GrpE 219 BruAb1_0167 BARBAKC583_1334 BARSCv2_10438 BQ00500 0.25 ±0.16 9.59* 12.51* 
BARCLv2_0380 conserved protein of unknown function 162 BruAb1_0602 no no BQ03870 0.25 ±0.07 2.26 2.39 
BARCLv2_0145 conserved exported protein of unknown function 608 no no no no 0.25 ±0.05 3.24 7.43 
BARCLv2_0735 conserved protein of unknown function 96 BruAb2_0644 BARBAKC583_0797 BARSCv2_40109 BQ05830 0.25 ±0.16 5.73 5.83 
BARCLv2_0191 Formamidopyrimidine-DNA glycosylase 291 BruAb1_2156 BARBAKC583_1221 BARSCv2_10554 BQ02370 0.25 ±0.17 1.54 1.94 
BARCLv2_1278 conserved protein of unknown function 190 BruAb1_1786 BARBAKC583_0105 BARSCv2_10290 BQ12300 0.25 ±0.08 0.00 0.00 
BARCLv2_1227 OpgC protein 373 BruAb1_1691 BARBAKC583_0154 BARSCv2_10242 BQ11910 0.25 ±0.06 3.84 4.08 
BARCLv2_0565 conserved exported protein of unknown function 469 no BARBAKC583_0512 no no 0.25 ±0.05 0.00 2.35 
BARCLv2_0605 conserved protein of unknown function 182 no no no no 0.25 ±0.24 0.47 0.09 
BARCLv2_1373 Transmembrane protein 150 BruAb2_0497 no no BQ13370 0.25 ±0.05 0.70 1.34 

 

a for ortholog assignment the “Phylo Profile Synteny” tool provided on  the  MaGe platform (30) was used (parameters: Bidirectional Blast Hit, 30 % identities, 0.6 for minLrap and maxLrap), automated 
ortholog assignments were manually curated, b LRT statistics for model 1a versus model 2 and model 7 versus model 8, values indicating significant positive selection are depicted by asterisks  
(*: p <0.05, **: p <0.001); c more than one orthologous gene is present in the corresponding genome, no clear ortholog assignment possible 
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Supplementary Table 3. Genes of Lineage 4 with average dn/ds values (ω) ≥ 0.25. Genes are ordered according to ω. virB T4SS 

and bep genes are indicated by gray color. Orthologous genes present in genomes of other lineages and Likelihood ratio test (LRT) 

results of the PAML selection analysis are given. 

   Orthologs in other genomesa  CodeML resultsb 

Gene Product Length  (aa) Brucella abortus B. bacilliformis B. schoenbuchensis B. clarridgeiae ω M1a vs M2 M7 vs M8  
BQ12460 conserved protein of unknown function 203 no no no no 0.9   ±0.08 6.18* 7.35* 
BQ04750 conserved protein of unknown function 134 no no no BARCLv2_1038 0.84   ±0.09 4.26 5.16 
BQ10680 VirB T4SS effector protein, BepF 555 no no no BARCLv2_0069c 0.58   ±0.1 9.67* 21.70** 
BQ03120 conserved protein of unknown function 135 BruAb1_0406 BARBAKC583_0375 BARSCv2_20121 BARCLv2_1059 0.57   ±0.08 2.13 3.60 
BQ01050 conserved protein of unknown function 83 no BARBAKC583_1287 BARSCv2_10492 BARCLv2_0125 0.5   ±0.24 0.00 0.00 
BQ09660 conserved protein of unknown function 228 no no no BARCLv2_0279 0.49   ±0.11 1.72 3.54 
BQ12470 Trw T4SS protein, TrwN 189 no no no no 0.48   ±0.1 13.35* 16.79** 
BQ11430 conserved protein of unknown function 62 no BARBAKC583_0195 BARSCv2_10207 BARCLv2_1199 0.46   ±0.18 2.47 3.88 
BQ03700 conserved exported protein of unknown function 111 no no no no 0.45  ±0.1 0.00 0.07 
BQ12560 Trw T4SS protein, TrwL5 102 no no no no 0.43  ±0.18 7.42* 8.76* 
BQ13300 conserved exported protein of unknown function 129 no no no no 0.41  ±0.13 1.20 2.10 
BQ04170 TonB protein 248 BruAb1_0622 BARBAKC583_0461 BARSCv2_20204 BARCLv2_0416 0.41  ±0.1 10.25* 15.14** 
BQ12930 Chorismate mutase 110 BruAb1_1804 no BARSCv2_10329 BARCLv2_1321 0.4  ±0.09 2.55 3.34 
BQ11180 conserved protein of unknown function 83 BruAb1_0275 BARBAKC583_0213 no BARCLv2_1184 0.4  ±0.18 2.45 4.83 
BQ10970 conserved protein of unknown function 67 no BARBAKC583_0251 BARSCv2_10148 BARCLv2_1160 0.4  ±0.16 0.00 0.00 
BQ09320 conserved exported protein of unknown function 99 BruAb1_1503 BARBAKC583_0985 no BARCLv2_0336 0.39  ±0.37 0.00 0.00 
BQ12610 Trw T4SS protein, TrwH1 47 no no no no 0.37  ±0.09 5.66 6.75* 
BQ04650 conserved exported protein of unknown function 87 no BARBAKC583_0511 BARSCv2_20256 no 0.37  ±0.14 0.00 0.12 
BQ12600 Trw T4SS protein, TrwI1 281 no no no no 0.36  ±0.05 0.00 0.00 
BQ11050 conserved protein of unknown function 148 BruAb1_1640 BARBAKC583_0248 BARSCv2_10151 BARCLv2_1164 0.35  ±0.13 0.17 0.63 
BQ06010 conserved protein of unknown function 103 no no BARSCv2_40129 BARCLv2_0768 0.35  ±0.14 1.27 0.00 
BQ11480 conserved protein of unknown function 290 no BARBAKC583_0188 BARSCv2_10210 BARCLv2_1202 0.35  ±0.08 6.81* 12.38* 
BQ00140 conserved exported protein of unknown function 213 BruAb1_0151 BARBAKC583_1370 BARSCv2_10400 BARCLv2_0015 0.35  ±0.05 0.15 1.95 
BQ03410 conserved exported protein of unknown function 205 BruAb1_1507 BARBAKC583_0987 BARSCv2_40414 no 0.35  ±0.16 0.00 3.56 
BQ09010 conserved protein of unknown function 176 no no no BARCLv2_1013 0.35  ±0.09 2.67 3.54 
BQ07710 conserved protein of unknown function 819 no BARBAKC583_0748 BARSCv2_40172 BARCLv2_0670 0.35  ±0.05 11.50* 16.37** 
BQ01360 conserved protein of unknown function 73 no no no no 0.34  ±0.13 0.00 0.29 
BQ10580 VirB T4SS protein, VirB7 100 no no no BARCLv2_0075c 0.34  ±0.08 1.13 2.54 
BQ10660 VirB T4SS effector protein, BepD 414 no no no BARCLv2_0069c 0.33  ±0.07 0.00 0.87 
BQ06720 conserved exported protein of unknown function 109 no no no no 0.33  ±0.08 0.00 1.27 
BQ11620 conserved protein of unknown function 70 no BARKC0786 no no 0.32  ±0.06 0.00 0.00 
BQ11600 conserved exported protein of unknown function 74 no BARBAKC583_1056 c BARSCv2_20032 c no 0.32  ±0.19 0.89 2.96 
BQ10410 conserved exported protein of unknown function 792 no BARBAKC583_1132c BARSCv2_10091 BARCLv2_0476c 0.32  ±0.09 6.74* 20.36** 
BQ08690 conserved protein of unknown function 60 BruAb1_1401 BARBAKC583_0931 BARSCv2_40323 BARCLv2_0978 0.32  ±0.27 5.19 5.20 
BQ01620 conserved exported protein of unknown function 353 BruAb2_0057 no no no 0.32  ±0.05 0.00 0.00 
BQ10630 VirB T4SS effector protein, BepA 272 no no no BARCLv2_0069c 0.32  ±0.09 0.00 2.47 
BQ02210 conserved exported protein of unknown function 134 no no no no 0.31  ±0.08 4.14 7.18* 
BQ12190 conserved protein of unknown function 93 no no BARSCv2_10278 BARCLv2_1261 0.31  ±0.14 0.00 0.56 
BQ11040 conserved protein of unknown function 114 no no no BARCLv2_1163 0.31  ±0.08 0.00 0.00 
BQ11100 conserved protein of unknown function 231 no no BARSCv2_10167 BARCLv2_1175 0.31  ±0.07 4.52 9.25* 
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   Orthologs in other genomesa  CodeML resultsb 

Gene Product Length  (aa) Brucella abortus B. bacilliformis B. schoenbuchensis B. clarridgeiae ω M1a vs M2 M7 vs M8  
BQ13000 conserved protein of unknown function 389 BruAb1_1862 BARBAKC583_0063 BARSCv2_10335 BARCLv2_1327 0.31  ±0.06 1.57 4.80 
BQ13100 Thiol 3-disulfide interchange protein 226 BruAb1_1956 BARBAKC583_0053 BARSCv2_10347 BARCLv2_1329 0.3  ±0.06 0.13 0.70 
BQ05360 conserved protein of unknown function 584 no no BARSCv2_20378 BARCLv2_0831 0.3  ±0.06 0.00 0.95 
BQ12260 ATP synthase delta chain 194 BruAb1_1782 BARBAKC583_0111 BARSCv2_10285 BARCLv2_1274 0.3  ±0.07 0.13 1.18 
BQ05570 conserved protein of unknown function 164 no BARBAKC583_0647 BARSCv2_20400 BARCLv2_0810 0.3  ±0.13 22.22** 25.47** 
BQ07410 conserved protein of unknown function 157 no BARBAKC583_0854 BARSCv2_40141 BARCLv2_0699 0.29  ±0.05 5.81 13.24* 
BQ03690 conserved exported protein of unknown function 118 no no no no 0.29  ±0.08 1.17 1.65 
BQ04440 colicin V production protein 189 BruAb1_0470 BARBAKC583_0487 BARSCv2_20233 BARCLv2_0541 0.29  ±0.04 0.22 2.08 
BQ10530 VirB T4SS protein, VirB2 104 no no no BARCLv2_0080c 0.29  ±0.09 0.00 0.00 
BQ02150 ribosomal-protein-alanine acetyltransferase 160 BruAb1_2125 BARBAKC583_1242 BARSCv2_10535 BARCLv2_0171 0.29  ±0.07 0.00 0.00 
BQ13290 conserved exported protein of unknown function 127 BruAb1_0462 BARBAKC583_0036 BARSCv2_10358 BARCLv2_1361 0.28  ±0.06 1.23 3.51 
BQ10840 orotidine 5'-phosphate decarboxylase 280 no no no no 0.28  ±0.27 0.00 2.83 
BQ01520 filament-A percursor 424 BruAb1_1817 BARBAKC583_0323 BARSCv2_20069 BARCLv2_1107 0.28  ±0.04 0.00 0.65 
BQ08360 conserved protein of unknown function 184 BruAb1_0955 BARBAKC583_0653 BARSCv2_40292 BARCLv2_0949 0.28  ±0.03 5.59 7.19* 
BQ10650 VirB T4SS effector protein, BepC 532 no no no BARCLv2_0069c 0.28  ±0.02 0.00 5.30 
BQ03680 conserved exported protein of unknown function 117 no no no no 0.28  ±0.05 0.00 2.18 
BQ00120 conserved exported protein of unknown function 89 BruAb1_0148 BARBAKC583_1372 BARSCv2_10398 BARCLv2_0013 0.28  ±0.11 2.10 4.03 
BQ05220 lysophospholipase L2 300 BruAb2_0046 no no BARCLv2_0847 0.28  ±0.08 0.00 1.49 
BQ13310 Na+/H+ antiporter 133 BruAb2_0717 BARBAKC583_0035 BARSCv2_10359 no 0.27  ±0.05 0.85 2.19 
BQ12110 conserved exported protein of unknown function 480 BruAb1_1746 BARBAKC583_0127 BARSCv2_10269 BARCLv2_1252 0.27  ±0.05 0.09 2.72 
BQ03350 conserved protein of unknown function 85 BruAb1_1516 BARBAKC583_0993 BARSCv2_40420 BARCLv2_0327 0.27  ±0.13 3.11 4.24 
BQ02430 Hemin binding protein, HbpB 382 no no BARSCv2_40088 no 0.27  ±0.08 67.57** 82.87** 
BQ03940 Cytochrome c maturation protein E, Heme chaperone ccmE 159 BruAb1_0627 BARBAKC583_0431 BARSCv2_20177 BARCLv2_0388 0.27  ±0.06 0.00 0.00 
BQ07900 conserved exported protein of unknown function 181 no BARBAKC583_0732 BARSCv2_40244 no 0.27  ±0.06 0.00 0.28 
BQ02450 conserved exported protein of unknown function 160 BruAb2_0198 no BARSCv2_10563 BARCLv2_0200 0.27  ±0.05 1.81 3.65 
BQ02710 predicted membrane protein 212 BruAb1_1363 BARBAKC583_1194 BARSCv2_10008 BARCLv2_0216 0.27  ±0.06 1.08 2.68 
BQ05460 conserved protein of unknown function 183 BruAb1_0790 BARBAKC583_0636 BARSCv2_20388 BARCLv2_0821 0.27  ±0.08 0.00 0.02 
BQ04740 sec-independent protein translocase 103 BruAb1_0894 no no BARCLv2_1039 0.27  ±0.07 0.54 1.59 
BQ03900 conserved protein of unknown function 77 BruAb1_0622 BARBAKC583_0427 BARSCv2_20172 BARCLv2_0383 0.26  ±0.12 0.00 0.00 
BQ11060 Phage tail protein 260 no BARBAKC583_0238 BARSCv2_10163 BARCLv2_1171 0.26  ±0.04 0.00 0.00 
BQ10290 autotransporter 1753 no no no no 0.26  ±0.05 282.17** 345.48** 
BQ12220 ATP synthase epsilon chain 138 BruAb1_1778 BARBAKC583_0115 BARSCv2_10281 BARCLv2_1270 0.26  ±0.07 0.00 0.70 
BQ12590 Trw T4SS protein, TrwJ1 240 no no no no 0.26  ±0.05 13.80* 20.03** 
BQ10850 conserved membrane protein of unknown function 357 no no no no 0.26  ±0.06 0.00 1.24 
BQ00960 conserved membrane protein of unknown function 163 BruAb1_2048 BARBAKC583_1295 BARSCv2_10481 BARCLv2_0115 0.26  ±0.05 1.63 4.89 
BQ11450 conserved protein of unknown function 129 no BARBAKC583_0193 BARSCv2_10208 BARCLv2_1200 0.26  ±0.1 0.00 2.28 
BQ02420 Hemin binding protein, HbpA 267 BruAb1_0115 c BARBAKC583_1214c BARSCv2_10560 c BARCLv2_0196c 0.25  ±0.03 19.27** 24.17** 
BQ12970 conserved protein of unknown function 327 no no no no 0.25  ±0.05 0.00 0.00 
BQ10280 autotransporter 799 no BARBAKC583_1109 BARSCv2_10011 BARCLv2_1020 0.25  ±0.06 0.00 14.65* 
BQ10380 Inducible Bartonella autotransporter 759 no BARBAKC583_1132c BARSCv2_10092 BARCLv2_0475c 0.25  ±0.04 0.00 0.00 
BQ02810 conserved protein of unknown function 447 no BARBAKC583_0286 BARSCv2_20039 BARCLv2_0226 0.25  ±0.03 0.16 2.96 
BQ11830 TolA protein 381 BruAb1_1683 BARBAKC583_0145 BARSCv2_10253 BARCLv2_1236 0.25  ±0.03 0.00 5.10 
BQ04010 Hemin binding protein, HbpD 270 BruAb1_0115 c BARBAKC583_1214 c BARSCv2_40297 c BARCLv2_0196c 0.25  ±0.05 17.49** 26.87** 
BQ09930 conserved membrane protein of unknown function 361 no no BARSCv2_40486 BARCLv2_1127 0.25  ±0.06 0.00 0.00 
BQ10560 VirB T4SS protein, VirB5 146 no no no BARCLv2_0077c 0.25  ±0.07 1.08 2.57 
BQ02680 conserved exported protein of unknown function 106 no no no BARCLv2_0220 0.25  ± 1.52 3.58 

 

a for ortholog assignment the “Phylo Profile Synteny” tool provided on the MaGe platform (31) was used (parameters: Bidirectional Blast Hit, 30 % identities, 0.6 for minLrap and maxLrap), automated 
ortholog assignments were manually curated, b LRT statistics for model 1a versus model 2 and model 7 versus model 8, values indicating significant positive selection are depicted by asterisks  
(*: p <0.05, **: p <0.001); c more than one orthologous gene is present in the corresponding genome, no clear ortholog assignment possible 
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Supplementary Table 4. Common genes of lineage 3 and lineage 4 with average dn/ds values (ω) ≥ 0.25 and results of the PAML 
analysis. Paralogous genes are grouped together.  

Lineage 3:       Lineage 4:      

 PAML results   PAML results 
 Model 1 vs Model 2a Model 7 vs Model 8b   Model 1 vs Model 2a Model 7 vs Model 8b 

Gene Length ω LRT % sites > 1 dn/ds LRT % sites > 1 dn/ds Protein product Gene Length ω LRT % sites >1 dn/ds LRT % sites >1 dn/ds 
BARCLv2_0075 103 0.47 0.43   0.80   VirB T4SS proteins, VirB7c BQ10580 100 0.34 1.13 4.7 3.3 2.5 4.7 3.5 
BARCLv2_0645 103 0.47 0.43   0.80               

BARCLv2_0077 150 0.73 11.02* 25.0 3.4 12.06* 31.7 3.0 VirB T4SS proteins, VirB5 c BQ10560 146 0.25 1.08 1.8 7.3 2.6 2.6 6.4 
BARCLv2_0647 150 0.73 11.02* 25.0 3.4 12.06* 31.7 3.0             
BARCLv2_0118 223 0.62 13.84** 12.2 4.8 14.52** 13.5 4.5 VirB T4SS effector proteins, Beps c BQ10630 272 0.32 0   2.5   
BARCLv2_0069 547 0.42 2.46   3.40    BQ10650 532 0.28 0   5.3   
BARCLv2_0245 497 0.48 10.19* 9.5 3.0 18.90* 18.7 2.3  BQ10660 414 0.33 0   0.9   
BARCLv2_0631 538 0.42 15.09** 6.7 4.5 22.57** 9.8 3.6  BQ10680 555 0.58 9.67* 26.3 1.9 21.7** 45.7 1.6 
BARCLv2_0632 528 0.50 6.51* 3.2 4.6 11.62* 7.7 3.1           
BARCLv2_0639 625 0.43 19.73** 3.1 8.8 23.36** 3.6 7.4           
BARCLv2_0640 539 0.45 18.16** 4.0 6.8 23.35** 6.2 5.1           
BARCLv2_0960 430 0.61 11.42* 7.1 4.5 14.62** 13.3 3.2           
BARCLv2_1031 547 0.49 16.29** 8.1 4.5 22.75** 11.8 3.5             
BARCLv2_0196 277 0.32 8.84* 7.4 4.4 8.47* 9.3 3.7 Hemin binding proteins c BQ02420 267 0.25 19.27** 11.1 39.4 24.17** 12.4 25.2 
BARCLv2_0197 241 0.29 35.92** 9.8 8.3 50.26** 11.7 6.9  BQ02430 382 0.27 67.57** 12.7 27.7 82.87** 14.4 16.9 
BARCLv2_0198 291 0.32 9.37* 15.1 2.8 17.43* 18.1 2.7   BQ04010 270 0.25 17.49** 7.5 6.6 26.87** 11.8 4.3 
BARCLv2_0473 673 0.38 108.28** 8.1 25.9 128.21** 12.3 12.1 Inducible Bartonella autotransporters c BQ10380 759 0.25 0 5.2 1.0 0.0   
BARCLv2_0475 823 0.42 35.06** 5.0 15.5 54.30** 7.2 6.7   BQ10410 792 0.32 6.74* 5.1 204.1 20.36** 8.5 12.0 
BARCLv2_1020 837 0.32 0.00   14.52 1.1 298.6 putative autotransporters c BQ10280 799 0.25 0 9.6 1.0 14.65* 1.5 43.5 
BARCLv2_0145 608 0.25 3.24   7.43 3.3 3.7   BQ10290 1753 0.26 282.17** 21.9 41.5 345.48** 23.3 30.4 
BARCLv2_0416 244 0.53 0.37   0.53   TonB protein BQ04170 248 0.41 10.25* 4.5 7.0 15.14** 6.1 5.5 
BARCLv2_1236 377 0.28 0.20   0.78   TolA protein BQ11830 381 0.25 0   5.1   
BARCLv2_0171 160 0.28 2.03   2.25   Alanine acetyltransferase BQ02150 160 0.29 0   0.0   
BARCLv2_1171 328 0.25 20.56** 4.1 8.3 23.36** 4.6 7.5 putative phage protein BQ11060 260 0.26 0   0.0   
BARCLv2_0847 293 0.30 0.00   0.00   Lysophospholipase l2 BQ05220 300 0.28 0   1.5   
BARCLv2_0125 50 0.50 0.99   1.06   Heme exporter protein CcmD BQ01050 83 0.50 0   0.0   
BARCLv2_0115 157 0.35 2.27   3.00   FxsA cytoplasmic membrane protein BQ00960 163 0.26 1.63   4.9   
BARCLv2_1107 391 0.27 0.62   2.17   Filament-A percursor BQ01520 424 0.28 0   0.7   
BARCLv2_1274 194 0.30 2.17   3.83   ATP synthase delta subunit BQ12260 194 0.30 0.13   1.2   
BARCLv2_1270 138 0.38 1.00   1.30   ATP synthase epsilon chain  BQ12220 138 0.26 0   0.7   
BARCLv2_1329 143 0.37 -9.41   6.16   Antioxidant, AhpC/TSA family BQ13100 226 0.30 0.13   0.7   
BARCLv2_1038 144 0.34 2.25   2.88   twin arginine translocase TatB BQ04750 134 0.84 4.26   5.2   
BARCLv2_0226 473 0.27 0.00   0.51   conserved protein of unknown function BQ02810 447 0.25 0.16   3.0   
BARCLv2_0279 218 0.41 0.00   0.00   conserved protein of unknown function BQ09660 228 0.49 1.72   3.5   
BARCLv2_0327 84 0.30 0.20   0.27   conserved protein of unknown function BQ03350 85 0.27 3.11   4.2   
BARCLv2_0670 813 0.32 4.85   6.04* 0.7 12.8 conserved protein of unknown function BQ07710 819 0.35 11.5* 1.1 11.5 16.37** 1.5 9.5 
BARCLv2_0949 181 0.27 0.00   0.00   conserved protein of unknown function BQ08360 184 0.28 5.59   7.19*   
BARCLv2_0978 40 0.41 0.92   1.20   conserved protein of unknown function BQ08690 60 0.32 5.19   5.2   
BARCLv2_1013 158 0.43 2.71   3.46   conserved protein of unknown function BQ09010 176 0.35 2.67   3.5   
BARCLv2_1059 141 0.42 5.04   5.44   conserved protein of unknown function BQ03120 135 0.57 2.13   3.6   
BARCLv2_1163 97 0.65 2.11   2.27   conserved protein of unknown function BQ11040 114 0.31 0   0.0   
BARCLv2_1164 139 0.41 3.14   3.26   conserved protein of unknown function BQ11050 148 0.35 0.17   0.6   
BARCLv2_1199 63 0.33 0.00   0.00   conserved protein of unknown function BQ11430 62 0.46 2.47   3.9   
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Lineage 3:       Lineage 4:      

 PAML results   PAML results 
 Model 1 vs Model 2a Model 7 vs Model 8b   Model 1 vs Model 2a Model 7 vs Model 8b 

Gene Length ω LRT % sites > 1 dn/ds LRT % sites > 1 dn/ds Protein product Gene Length ω LRT % sites >1 dn/ds LRT % sites >1 dn/ds 
BARCLv2_1200 126 0.33 1.08   1.44   conserved protein of unknown function BQ11450 129 0.26 0   2.3   
BARCLv2_1261 95 0.30 0.00   0.00   conserved protein of unknown function BQ12190 93 0.31 0   0.6   
BARCLv2_1321 85 0.82 1.36   1.77   conserved protein of unknown function BQ12930 110 0.40 2.55   3.3   
BARCLv2_1327 387 0.42 5.28   5.85   conserved protein of unknown function BQ13000 389 0.31 1.57   4.8   
BARCLv2_0768 77 16.69 0.00   0.00   conserved exported protein  BQ06010 103 0.35 1.27   0.0   

 

a Likelihood ratio test (LRT) statistics for model 1 versus model 2a, percentage of sites under positive selection and estimated dn/ds value are shown, if model 2a (positive selection) fitted data 

significantly better than model 1 (* <0.05, **<0.001); b same analysis for of model 7 versus model 8; c no clear ortholog assignment possible between the genes of lineage 3 and lineage 4 
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Supplementary Table 5. Prediction of tyrosine-phosphorylation sites for Beps of Bep-clade 9 using NetPhos2.0 (38), ScanSite (41), 

and KinasePhos (42). 

        NetPhos2.0 predictiona   ScanSite predictionb KinasePhos predictionc 

Locus_tag Species Pos.   Motif Score   High Medium predicted kinase 100% specificity predicted kinase 
B11Cv2_60018 B.sp. 1-1C 255  SSGIYTNYN 0.966  no yes Grb2 SH2, Lck kinase yes INSR kinase 
B11Cv2_60018 B.sp. 1-1C 278  SSGIYTNYN 0.966  no yes Grb2 SH2, Lck kinase yes INSR kinase 
B11Cv2_60018 B.sp. 1-1C 297  SEEEYSAIY 0.989  yes yes Shc SH2, INSR kinase yes Src kinase 
B11Cv2_60018 B.sp. 1-1C 317  NEEEYSGIY 0.979  yes yes Fgr, Lck, INSR kinases, Shc SH2 yes Src, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 321  YSGIYESYD 0.899  yes yes Src, Lck kinases, Lck SH2 yes Syk, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 340  NEEEYSGIY 0.979  yes yes Fgr, Lck, INSR kinases, Shc SH2 yes Syk, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 344  YSGIYANYD 0.923  yes yes Fgr, Lck, Src, Grb2 SH yes INSR kinase 
B11Cv2_60018 B.sp. 1-1C 363  NEEEYSGIY 0.979  yes yes Fgr, Lck, INSR kinases, Shc SH2 yes Src, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 367  YSGIYANCD 0.898  no yes Itk SH2 yes INSR kinase 
B11Cv2_60018 B.sp. 1-1C 396  NDDIYDNKD 0.987  no yes Src kinase yes Syk, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 402  NKDIYDSAN 0.983  no no - yes EGFR, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 414  NDDIYDNKD 0.987  no yes Src kinase yes Syk, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 420  NKDIYDSAN 0.983  no no - yes EGFR, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 432  NDDIYDNKD 0.987  no yes Src kinase yes Syk, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 438  NKDIYDNPN 0.99  yes yes Abl, Nck, Crk, Itk SH2 yes Syk, EGFR, INSR kinases 
B11Cv2_60018 B.sp. 1-1C 660  KEDDYQTLA 0.991  no no - yes Syk, EGFR, INSR kinases 
BARROv2_70017 B. rochalimae 4  -MPNYVLVP 0.969  no yes PDFGR kinase, PLCg SH2 no - 
BARROv2_70017 B. rochalimae 253  QEGIYANYN 0.979  yes yes Fgr, Lck, Abl, Src kinases yes INSR kinase 
BARROv2_70017 B. rochalimae 277  NEDIYDTTD 0.986  yes yes Lck, Src, Abl kinases yes Syk, Jak, EGFR, INSR kinases 
BARROv2_70017 B. rochalimae 283  TTDIYDNPD 0.964  yes yes Abl, Crk, Nck, Itk SH2 yes Syk, INSR kinases 
BARROv2_70017 B. rochalimae 301  EEDIYANYN 0.993  yes yes Fgr, Lck, Src, Abl kinases, Grb2, Itk SH2 yes Src, Syk, INSR kinasess 
BARROv2_70017 B. rochalimae 320  NEGEYSDTY 0.986  no no - yes Srk, EGFR, INSR kinases 
BARROv2_70017 B. rochalimae 324  YSDTYNTTG 0.938  no no - yes Syk kinases 
BARROv2_70017 B. rochalimae 330  TTGIYENPD 0.927  yes yes Abl, Lck, Itk SH2 yes INSR kinase 
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        NetPhos2.0 predictiona   ScanSite predictionb KinasePhos predictionc 

Locus_tag Species Pos.   Motif Score   High Medium predicted kinase 100% specificity predicted kinase 

BARROv2_70017 B. rochalimae 350  FSDIYDTTD 0.954  no yes Nck SH2 no - 

BARROv2_70017 B. rochalimae 356  TTDIYDNPD 0.964  yes yes Abl, Crk, Nck, Itk SH2 yes Syk, INSR kinases 

BARROv2_70017 B. rochalimae 374  EEDIYANYN 0.993  yes yes Fgr, Lck, Src, Abl kinases, Itk, Grb2 SH2 yes Src, Syk, INSR kinasess 

BARROv2_70017 B. rochalimae 393  NKGEYSDTY 0.973  no no - yes INSR kinase 

BARROv2_70017 B. rochalimae 397  YSDTYNTTG 0.938  no no - yes Syk kinase 

BARROv2_70017 B. rochalimae 403  TTGIYENPD 0.927  yes yes Abl, Lck, Itk SH2 yes INSR kinase 

BARROv2_70017 B. rochalimae 421  EEDIYANYN 0.993  yes yes Fgr, Lck, Src, Abl kinases, Grb2, Itk SH2 yes Src, Syk, INSR kinasess 

BARROv2_70017 B. rochalimae 440  NKGEYSDTY 0.973  no no - yes INSR kinase 

BARROv2_70017 B. rochalimae 444  YSDTYNTTG 0.938  no no - yes Syk kinase 

BARROv2_70017 B. rochalimae 450  TTGIYENPD 0.927  yes yes Abl, Lck, Itk SH2 yes INSR kinase 

BARROv2_70017 B. rochalimae 468  EENIYENYN 0.99  yes yes 
Src, Lck, Fgr kinases, Fgr, Lck, Grb2, Itk, 
Shc SH2 yes Src, Syk, INSR kinasess 

BARROv2_70017 B. rochalimae 675  KENDYQTLA 0.98  no no - yes Syk 

BAR15v2_80031 B. sp. AR 15-3 255  DQNIYESYD 0.866  yes yes Src kinase yes Syk, INSR kinases 

BAR15v2_80031 B. sp. AR 15-3 285  IDSIYDNPS 0.84  yes yes Abl, Crk, Nck SH2 yes Syk, INSR kinases 

BAR15v2_80031 B. sp. AR 15-3 296  VDPVYANYT 0.929  yes yes Abl, Lck kinases, Grb2, Itk SH2 no - 

BAR15v2_80031 B. sp. AR 15-3 323  VDPVYDDPS 0.928  yes yes Abl kinase, Nck, Abl, Crk SH2 yes Syk kinases 

BAR15v2_80031 B. sp. AR 15-3 340  IDSIYDNPS 0.84  yes yes Abl, Crk, Nck SH2 yes Syk, INSR kinases 

BAR15v2_80031 B. sp. AR 15-3 351   VDPVYANYT 0.929   yes yes Abl, Lck kinases, Grb2, Itk SH2 no - 

BAR15v2_80031 B. sp. AR 15-3 378  IDPVYDDPS 0.908  yes yes Abl kinase, Nck, Abl, Crk SH2 yes Syk kinases 

BAR15v2_80031 B. sp. AR 15-3 395  IDSIYDNPS 0.84  yes yes Abl, Crk, Nck SH2 yes Syk, INSR kinases 

BAR15v2_80031 B. sp. AR 15-3 406  VDPVYANYT 0.929  yes yes Abl, Lck kinases, Grb2, Itk SH2 no - 

BAR15v2_80031 B. sp. AR 15-3 433  VDPVYDDPS 0.928  yes yes Abl kinase, Nck, Abl, Crk SH2 yes Syk kinase 

BAR15v2_80031 B. sp. AR 15-3 450  IDSIYDNPS 0.84  yes yes Abl, Crk, Nck SH2 yes Syk, INSR kinases 

BAR15v2_80031 B. sp. AR 15-3 461  VDPVYANYT 0.929  yes yes Abl, Lck kinases, Grb2, Itk SH2 no - 

BAR15v2_80031 B. sp. AR 15-3 488  IDPVYDDPS 0.908  yes yes Abl kinase, Nck, Abl, Crk SH2 yes Syk kinases 

BAR15v2_80031 B. sp. AR 15-3 608  KNPRYKQAK 0.948  no no - no - 

BARCLv2_1034 B. clarridgeiae 14  NSEIYENSE 0.981  no yes Src kinase, Fgr SH2 yes Syk, EGFR, INSR kinases 

BARCLv2_1034 B. clarridgeiae 20  NSEIYDNPA 0.983  yes yes Abl, Nck SH2 yes Syk, INSR kinasess 
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        NetPhos2.0 predictiona   ScanSite predictionb KinasePhos predictionc 

Locus_tag Species Pos.   Motif Score   High Medium predicted kinase 100% specificity predicted kinase 

BARCLv2_1034 B. clarridgeiae 30  DSGIYDTPA 0.891  yes yes Abl kinase, Nck, Crk, Abl SH2 yes Syk, INSR kinases 

BARCLv2_1034 B. clarridgeiae 40  NSEIYDNPA 0.983  yes yes Abl kinase, Abl, Nck, Crk, Itk SH2 yes Syk, INSR kinases 

BARCLv2_1034 B. clarridgeiae 50  DSGIYDTPA 0.891  yes yes Abl kinase, Nck, Crk, Abl SH2 yes Syk, INSR kinases 

BARCLv2_1034 B. clarridgeiae 60  NSEIYGNPA 0.978  no yes Abl, Srk kinases, Abl, Itk SH2 yes INSR kinase 

BARCLv2_1034 B. clarridgeiae 70  DSGIYDTPA 0.891  yes yes Abl kinase, Nck, Crk, Abl SH2 yes Syk, INSR kinase 

BARCLv2_1034 B. clarridgeiae 80  NSEIYENSE 0.981  no yes Src kinase yes Syk, EGFR, INSR kinases 

BARCLv2_1034 B. clarridgeiae 86  NSEIYGNPA 0.978  no yes Abl kinase, Abl, Nck, Crk, Itk SH2 yes INSR kinase 

BARCLv2_1034 B. clarridgeiae 96  DSGIYDTPA 0.891  yes yes Abl kinase, Nck, Crk, Abl SH2 yes Syk, INSR kinases 

BARCLv2_1034 B. clarridgeiae 106  NSEIYENSE 0.981  no yes Src kinase yes Syk, EGFR, INSR kinases 

BARCLv2_1034 B. clarridgeiae 112  NSEIYGNSA 0.973  no yes Src kinase yes INSR kinase 

BARCLv2_1034 B. clarridgeiae 122  DSEIYENYD 0.983  yes yes Src, Lck, Fgr kinases, Grb2, Fgr SH2 yes Syk, INSR kinases 

BARCLv2_1034 B. clarridgeiae 128  NYDTYKKNK 0.844  no no - no - 

BARCLv2_1034 B. clarridgeiae 318  RNNEYKLLA 0.84  no no - no - 

BARCLv2_1032 B. clarridgeiae 17  QEVEYTEH 0.949  no yes Fyn, Lck, Src SH2 no - 

BARCLv2_1032 B. clarridgeiae 42  QEVEYAEIR 0.962  no yes Lck kinase no - 

BARCLv2_1035 B. clarridgeiae 16  EEVEYAEVF 0.971  no yes Src, Lck, INSR, PDFGR kinase, PLCg SH2 yes Syk, INSR kinases 

BARCLv2_1035 B. clarridgeiae 197   SKPVYMLSR 0.89   no yes PCLg SH2 no - 
 
a For NetPhos2.0 predictions, a threshold of 0.8 was used. 

b Scansite was used with the high stringency filter and the medium stringency filter. Kinases depicted in bold type were predicted with high stringency filter. 
a For KinasePhos predictions, the 100% specificity filter was used. 
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Supplementary Table S6. 454-sequencing and newbler-assemby data for genomes sequenced in this study. 

  B. clarridgeiae B. rochalimae B. sp. 1-1C B. sp. AR15-3 B. schoenbuchensis

Final length (bp) 1,522,743 1,552,290 1,584,739 1,607,248 1,684,713

Number of 454-reads 212,905 287,512 253,303 254,535 173,358

Average read length (bp) 247 211 241 236 285

Number of Newbler contigs (> one reads) 43 78 74 93 220

454-sequence coverage 35x 39x 39x 37x 29x
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 Results - Research article III - Summary 

3.3.1 Summary 
 

As Bartonella species can only cause intraerythrocytic infection in one or a few 

related mammalian reservoir hosts, the genus Bartonella displays a great model to 

investigate the molecular basis of host specificity in bacterial pathogens.  

In this study, our aim was to identify bacterial factors which may confer host-

specificity for the colonization of erythrocytes. An in vitro erythrocyte adhesion and 

invasion assay was established and different Bartonella species were tested for their 

ability to colonize erythrocytes of different hosts. Quantification by gentamicin 

protection assays and flow cytometry showed that most Bartonella species can only 

adhere to and invade erythrocytes isolated from their respective reservoir hosts. 

These findings fully reflected the host specificity found in vivo.  

Using the Bartonella birtlesii-mouse model, a signature-tagged mutagenesis 

was performed. This resulted in the identification of 45 abacteremic mutants of 

B. birtlesii. By testing them in the in vitro assay, nine of these abacteremic mutants 

were found to be impaired in erythrocyte colonization. In seven out of nine mutants 

the transposon insertion was found to be located in genes of the Trw type IV 

secretion system (T4SS). These results confirmed the previously suggested role of 

this system in erythrocyte colonization. To test whether the Trw T4SS is directly 

responsible for the in vitro and in vivo observed host-specific colonization of 

erythrocytes, the entire Trw T4SS of B. tribocorum (rat-specific) was expressed in B. 

henselae (cat-specific). Erythrocyte infection experiments showed that B. henselae 

harboring the Trw T4SS of B. tribocorum was able to colonize erythrocytes isolated 

from cats and from rats implicating a direct role of the Trw system in host specificity.  

We further analyzed the molecular evolution of different trw genes to identify 

components of this T4SS which appear likely to mediate the observed host 

specificity. To this end, we applied phylogenetic and natural selection analyses, and 

compared the trw loci from the available genomes of B. tribocorum, B. henselae, 

B. quintana, and B. birtlesii. The latter genome was sequenced in relation to this 

project. In conjunction with previously published data (Nystedt et al. 2008), our 

computational analysis revealed that trwL and trwJ genes have been amplified and 

diversified in the different Bartonella species. Therefore, these two surface-exposed 

pilus subunits of the Trw T4SS represent primary candidates for mediating the 

observed host-specificity. 
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ABSTRACT 

 

Bacterial pathogens typically infect only a limited range of hosts; however, the 

genetic mechanisms governing this host-specificity are poorly understood. The 

α-proteobacterial genus Bartonella comprises 21 species that cause host-specific 

intraerythrocytic bacteremia as hallmark of infection in their respective mammalian 

reservoirs, including the human-specific pathogens Bartonella quintana and 

Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, 

we have identified bacterial factors that mediate host-specific erythrocyte colonization 

in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-

specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific 

Bartonella tribocorum, we established in vitro adhesion and invasion assays with 

isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection 

as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant 

selection in a mouse infection model we identified mutants impaired in establishing 

intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed completely 

to infect mouse erythrocytes in vitro. The corresponding genes encode components 

of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor 

laterally acquired by the Bartonella lineage is directly involved in erythrocyte 

infection. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-

specific B. henselae expanded the host range for erythrocyte infection to rat, 

indicating that Trw mediates host-specific erythrocyte infection. A molecular 

evolutionary analysis of the trw locus further indicated that the variable, surface-

located TrwL and TrwJ represent the T4SS components that determine host-

specificity of erythrocyte parasitism. In conclusion, we show that the laterally 
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acquired Trw T4SS diversified in the Bartonella lineage to facilitate the infection of 

erythrocytes in a host-restricted manner. 

133 



Results – Research article III - Manuscript 

AUTHOR SUMMARY 

 

Pathogens are - as the result of adaptive evolution in their principle host(s) - typically 

limited in the range of hosts that they can infect successfully. However, infrequently 

such host-restricted pathogens may undergo a spontaneous host switch, which can 

lead to the evolution of pathogens with altered host specificity. Most human 

pathogens evolved this way, and animal-specific pathogens have thus to be 

considered as an important reservoir for the emergence of novel human pathogens. 

Despite of host-specificity representing a common feature of pathogens the 

underlying molecular mechanisms are largely unknown. In this study we have used 

bacterial pathogens of the genus Bartonella to identify bacterial factors involved in 

the determination of host specificity. The bartonellae represent an excellent model to 

study host specificity as each species is adapted to cause an intracellular infection of 

erythrocytes exclusively in its respective reservoir host(s). Using a genetic approach 

in combination with erythrocyte infection models in vitro and in vivo we demonstrate 

that a surface-located bacterial nanomachine – a socalled type IV secretion system - 

determines host specificity of erythrocyte infection. Our work sheds light on the 

molecular basis of host specificity and established an experimental model for 

studying the evolutionary processes facilitating sudden host shifts.  
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INTRODUCTION 

 

The successful infection of a mammalian host by a bacterial pathogen typically 

involves a series of intimate host-pathogen interactions. On the molecular level this is 

reflected by specific receptor-ligand interactions between bacterial virulence factors 

and their targeted host factors (Finlay and Cossart 1997). Adaptation of a bacterial 

virulence factor to a host factor that displays variability within the host population can 

restrict the host range that is susceptible to infection. The resulting host-specificity is 

an inherent feature of most bacterial pathogens of humans, including Helicobacter 

pylori, Listeria monocytogenes, Neisseria gonorrhoae, Salmonella typhi, 

Streptococcus pyogenes and Staphylococcus aureus. However, remarkably little is 

known about the molecular determinants of host specificity in bacterial infections, 

with the only exception of L. monocytogenes for which the conjugated action of two 

distinct host-specific invasion proteins was shown to be critical for fetoplacental 

listeriosis (Lecuit et al. 1999; Khelef et al. 2006; Disson et al. 2008).  

Bartonellae represent an interesting but largely unexplored model for host 

specificity. These facultative intracellular bacteria use arthropod transmission and 

hemotropism as mammalian parasitism strategy (Dehio 2004). As the result of an 

adaptive radiation each of the 21 species infects only one or a few closely related 

mammalian reservoir host(s), which is highlighted by their capacity to cause a long-

lasting intraerythrocytic bacteremia (Saenz et al. 2007). Non-reservoir hosts may get 

incidentally infected without resulting in an intraerythrocytic infection (Dehio 2005). 

Two Bartonella species are human-specific: Bartonella bacilliformis causes the 

biphasic Carrion’s disease, with acute Oroya fever followed by the chronic verruga 

peruana, and Bartonella quintana causing trench fever. The life-threatening Oroya 
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fever and the much milder course of trench fever represent the characteristic 

intraerythrocytic stages of these pathogens. The other 19 species cause 

intraerythrocytic infections in various non-primate mammalian reservoirs. At least 

seven of them are recognized as zoonotic pathogens which incidentally infect 

humans. Most prominently, B. henselae is associated with cat scratch disease (Dehio 

2005).  

The life cycle of Bartonella in the reservoir host has been analyzed in detail in 

rats experimentally infected with B. tribocorum (Schulein et al. 2001). Following 

intravenous inoculation, bacteria initially infect a primary niche outside of circulating 

blood, which is considered to comprise the vascular endothelium and possibly other 

cell types. Approximately on day five of infection, large numbers of bacteria are 

released into the bloodstream where they invade mature erythrocytes. Bacteria then 

replicate in a membrane-bound compartment until reaching a critical number. For the 

remaining life span of the erythrocytes the intracellular bacteria remain in a non-

dividing state. Monitoring of bacteremia in other animal models, such as the B. 

birtlesii/mouse (Boulouis et al. 2001) and B. henselae/cat models (Yamamoto et al. 

2002), or in captive naturally infected animals has yielded results that match those 

observed in the B. tribocorum/rat model, suggesting a common mode of infection of 

the different species in their respective animal reservoirs (Chomel et al. 2009a). The 

only exception is B. bacilliformis, which causes lysis of the infected human 

erythrocytes, eventually resulting in a severe hemolytic anemia. 

The B. tribocorum/rat model was further explored to identify bacterial 

pathogenicity factors that are required for colonization of the mammalian reservoir 

host. A signature-tagged mutagenesis (STM) screen identified 98 essential bacterial 

loci (Saenz and Dehio 2005), including genes encoding components of two distinct 
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type IV secretion systems (T4SS), VirB/VirD4 and Trw, the invasion-locus B (IalB) 

protein, the trimeric autotransporter adhesin BadA, as well as other members of the 

autotransporter family (Saenz et al. 2007). Whether any of the identified genes is 

critical for host-specificity is unknown, although it is conceivable to assume that host-

specificity loci are essential for infection and may thus be represented among the hits 

of the performed STM screen. 

 Experimental infections of different mammalian hosts by a given Bartonella 

strain have reproduced the species-specificity of erythrocyte invasion as observed in 

natural infections (Kosoy et al. 2000; Kabeya et al. 2003; Chomel et al. 2009a; 

Chomel et al. 2009b). However, despite their availability, in vitro erythrocyte infection 

assays (Scherer et al. 1993; Mehock et al. 1998) have not been investigated for the 

study of host specificity. Here, we demonstrate for the first time that host specificity is 

reflected by the exclusive capacity of Bartonella species to infect erythrocytes 

isolated from their natural host(s). Second, by performing STM in Bartonella birtlesii 

followed by screening in mice in vivo and in isolated erythrocytes in vitro we identified 

the T4SS Trw as the molecular determinant of host-specific erythrocyte infection.  
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RESULTS 

 

An in vitro erythrocyte colonization assay to study host-restricted infection 

Based on described in vitro models of human and feline erythrocyte infection by B. 

bacilliformis and B. henselae, respectively (Scherer et al. 1993; Mehock et al. 1998), 

we established for B. birtlesii an in vitro infection model for erythrocytes isolated form 

the murine reservoir host. Balb/C mice were used as the source of erythrocytes as 

they are known to develop a long lasting intraerythrocytic infection upon experimental 

infection with B. birtlesii (Boulouis et al. 2001). The intraerythrocytic presence of 

bacteria was evaluated over a period of three days using the gentamicin protection 

assay (Fig. 1A). Bacterial entry into erythrocytes was dependent on the number of 

bacteria per erythrocyte (multiplicity of infection, MOI; tested MOI range: 0.01 to 10) 

and time of infection (days post infection, DPI; tested time range: 1 to 3 DPI). The 

highest intraerythrocytic bacterial content over time was obtained for MOI=0.1 and 1, 

with approximately 2x105 colony forming units (CFU) per 1010 erythrocytes (≈0.002% 

infected erythrocytes) at 3 DPI. Given that mouse blood contains approximately 1010 

erythrocytes/ml, this value corresponds well to the bacteremia reported for 

experimentally infected Balb/C mice (≈1x105 CFU/ml; 0.001% infected erythrocytes) 

(Boulouis et al. 2001). For MOI=10, erythrocytes were highly infected at 1 DPI, but 

lysed entirely until 3 DPI. At MOI=0.01, only low numbers of intraerythrocytic bacteria 

were detected over time. Based on these data, MOI=1 was used for all subsequent 

erythrocyte infection assays. To evaluate whether the increase of intraerythrocytic 

bacteria over time was mainly due to continued bacterial invasion, or to 

intraerythrocytic bacterial multiplication, or to a combination of both, erythrocytes 

were infected with B. birtlesii for one day in the absence of gentamicin, followed by 
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incubation in the continuous presence of gentamicin to kill extracellular bacteria. Fig. 

1B shows that the number of intracellular bacteria increased over time in the 

presence of gentamicin, albeit to a lesser extent than in the untreated control. 

Bacteria thus appear to enter erythrocytes beyond 1 DPI and, moreover, to replicate 

in an intra-erythrocytic location.  

Invasion of erythrocytes by Bartonella is preceded by bacterial adhesion to the 

erythrocyte surface (Schulein et al. 2005). To quantify erythrocytes infected by 

adherent extracellular and/or intracellular bacteria, we used GFP-expressing bacteria 

in combination with flow cytometry (Fig. 1.C, D). Similar as described for 

intraerythrocytic bacteria in the gentamicin protection assay, erythrocyte colonization 

revealed by flow cytometry was dependent on time (Fig. 1.C) and MOI (Fig. 1.D). 

However, the rate of erythrocyte colonization evaluated by flow cytometry (55% for 

MOI=1 at 3 DPI) was approximately 20’000-fold higher than erythrocytes invasion 

determined by the gentamicin protection assay (compare Fig. 1.A), indicating that the 

vast majority of bacteria detected by flow cytometry were associated extracellularly 

with erythrocytes. Confocal microscopy confirmed the predominant extracellular 

localization of erythrocyte-associated bacteria (Fig. 1.E).  

Next we investigated whether Bartonella species differ in their capacity to 

interact in vitro with erythrocytes of different mammalian origin, and whether this 

capacity may reflect the host-restriction displayed during natural infection. First, 

mouse erythrocytes were infected with either B. birtlesii, B. vinsonii arupensis (both 

mouse-specific), B. alsatica (rabbit-specific), B. vinsonii berkhoffii (dog-specific), B. 

henselae (cat-specific), B. quintana (human-specific), B. chomelii (cattle-specific), or 

B. tribocorum (rat-specific). Erythrocyte invasion was quantified by the gentamicin 

protection assay (Fig. 2). B. vinsonii arupensis displayed invasion rates similar to B. 
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birtlesii, while none of the other strains tested resulted in significant erythrocyte 

invasion. These findings indicate that specificity for a mouse reservoir in vivo 

correlates with efficient interaction with mouse erythrocytes in vitro.  

Next, we tested whether - similarly as observed for mouse erythrocytes and B. 

birtlesii – the capacity of B. henselae, B. quintana and B. tribocorum to colonize 

erythrocytes in vitro is also restricted to erythrocytes from their natural reservoir host, 

i.e. cat, human and rat, respectively. GFP-expressing bacteria were used for 

erythrocyte infection, and colonization was quantified by flow cytometric analysis. 

Fig. 3 and Table 1 illustrate that all tested Bartonella species were able to efficiently 

interact with erythrocytes isolated from their respective reservoir hosts, while they 

essentially did not interact with erythrocytes from non-reservoir hosts. The only 

exception is B. quintana, which further to erythrocytes from the human reservoir also 

colonized cat erythrocytes. However, isolation of B. quintana from cat blood has been 

described, suggesting that this organism has indeed a limited capacity to infect cat 

erythrocytes (Table 1) (Breitschwerdt et al. 2007). Together, these data indicate that 

the established in vitro model of erythrocyte colonization reflects host restriction as 

observed during natural infection.   

 

B. birtlesii genes required for intra-erythrocytic bacteremia in mice 

As a basis for identifying genetic factors involved in host-restricted erythrocyte 

colonization, we identified a comprehensive set of B. birtlesii genes required for 

establishing intraerythrocytic bacteremia in mice. To this end, an STM library of B. 

birtlesii was constructed as previously described for B. tribocorum (Mavris et al. 

2005; Saenz and Dehio 2005; Saenz et al. 2007). From each conjugation assay, we 

selected 96 single kanamycin-resistant colonies and assembled an STM mutant 

140 



Results – Research article III - Manuscript 

library of 3456 mutants. We then identified mutants that have lost the capacity to 

cause intraerythrocytic bacteremia by screening the library in the mouse infection 

model (Boulouis et al. 2001). Of 1456 mutants tested in the input pools, 98 were not 

detected in the output pools from mice at days 7 and 14 post infection and were thus 

classified as abacteremic mutant candidates. All 98 abacteremic mutant candidates 

were retested by reassembling them into 49 pools of 9 mutants, each pool containing 

two abacteremic mutant candidates and an invariable set of seven mutants 

displaying wild-type behavior (bacteremic mutants). The rescreen confirmed an 

abacteremic phenotype for 48 of the initial 98 abacteremic mutant candidates, 

corresponding to 3.3 % of the total number of mutants screened. Growth of all of the 

48 confirmed abacteremic mutants on solid media was similar to the parental wild-

type strain (data not shown). 

We determined the transposon insertion sites for all 48 abacteremic mutants 

by direct sequencing out of the transposon into the flanking chromosomal region and 

mapping of the derived sequenced onto the draft genome sequence of B. birtlesii (S. 

Cescau, H.M. Yang, J. Wang, M. Vayssier-Taussat, A. Danchin, and F. Biville, 

unpublished data). Three mutants harboring two separate transposon insertions were 

not considered further in the analysis. Table S1 lists the loci inactivated by single 

transposon insertion in the remaining 45 abacteremic mutants. Five mutants carried 

the transposon insertion in an intergenic region: one (83D04) was near a gene 

encoding a tRNA; three of them (04A01, 86C05, 69B07) were upstream of genes 

encoding proteins of unknown function and one (69C09) was in proximity to a 

putative transcriptional regulator gene. In these mutants, the transposon may have 

thus disrupted a promoter or other regulatory sequence. 40 transposon insertions 

were mapped to the coding region of 38 different protein-encoding genes. In 8 
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mutants the insertions were found in genes encoding a conserved protein of 

unknown function, among them three putative surface proteins. Sixteen mutants 

carried insertions in genes previously implicated in bacterial pathogenicity, either in 

Bartonella (virB/D4, trw, ialA/B, badA, omp43, iba) or other pathogenic bacteria 

(encoding heat shock proteins) (Dehio 2004). Moreover, mutant genes encoding 

proteins involved in transport and metabolism, as well as phage-related function were 

also identified.  

 

B. birtlesii genes required for erythrocytic infection in vitro 

The 45 confirmed abacteremic mutants with single transposon insertion were 

individually tested for their capacity to invade murine erythrocytes using the 

gentamicin protection assay (Fig. 4 and Table S1). Nine mutants were found to be 

impaired in murine erythrocyte colonization. Seven of them harbored a mutation in 

the same operon encoding the T4SS Trw (two in trwD, trwE, trwF, trwJ2, trwL1, 

trwL2) which was previously shown to be important for establishing an 

intraerythrocytic bacteremia in B. tribocorum (Seubert et al. 2003). Compared to wild-

type, both trwD mutants (04B03 and 41C12) showed a five-fold decrease in invasion 

efficiency. All other trw mutants failed to invade erythrocytes. We confirmed the direct 

role of the trw operon in erythrocyte invasion in the B. tribocorum/rat model. ΔtrwE 

mutants (Saenz et al. 2007) failed to invade rat erythrocytes, while complementation 

of the ΔtrwE mutant restored invasiveness (Fig. 5). The mutant harboring an insertion 

in the invasion-associated locus ialA/B locus also showed an impaired erythrocyte 

invasion phenotype (10-fold reduced, p<0.01), confirming the previously suggested 

role of this locus in erythrocyte infection (Mitchell and Minnick 1995; Coleman and 

Minnick 2001). One clone (25A02) mutated in livG (encoding an amino acid ABC-
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transporter) showed a slight decrease of invasion efficiency (4-fold, p<0.05) 

compared to wild-type. None of the other abacteremic mutants appeared to be 

involved in erythrocytes invasion indicating that they probably are required for an 

earlier step of infection, i.e. for colonization of the primary niche. 

 

Role of Trw T4SS in host-specific infection of erythrocytes  

Next we tested whether the Trw system shown here to be essential for erythrocyte 

infection in vitro and in vivo may also determine host-specificity. To this end we 

introduced pAB2, a plasmid expressing the entire trw locus of B. tribocorum (Seubert 

et al. 2003), in B. henselae and tested the capacity of this strain [B. henselae (pAB2)] 

to infect rat erythrocytes in comparison to the parental B. henselae strain and B. 

tribocorum (+/- pAB2). As shown in Fig. 6, expression of the trw locus of B. 

tribocorum rendered B. henselae permissive to the infection of rat erythrocytes, 

thereby supporting a major role of the Trw system in host-specific erythrocyte 

recognition.  

To further assess which components of the Trw T4SS may mediate host 

specificity we analyzed the molecular evolution of different trw genes of B. birtlesii 

and related species. Candidate genes for mediating host specificity are surface 

exposed components, i.e. the T4SS pilus components TrwL and TrwJ. As shown by 

Nystedt et al. (Nystedt et al. 2008) for other Bartonella species, trwL and trwJ genes 

have been amplified  and diversified several times during evolution. The trw locus of 

B. birtlesii also displays amplification of trwL (five copies) and co-amplification of trwJ 

together with trwH and trwI (two copies) (Fig. 7, panel A). Phylogenetic analyses and 

calculation of the non-synonymous (dN) and synonymous (dS) substitution 

frequencies of different trw genes further showed that trwJ and trwL homologs have 
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diversified to much higher degree than other components of the Trw T4SS, within 

and among different species [Fig. 7, panel B-G, and (Nystedt et al. 2008)]. 

144 



Results – Research article III - Manuscript 

DISCUSSION 

 

Host-specificity is a prominent feature of pathogenic bacteria that reflects the host 

range susceptible to infection. Subtle changes in the molecular mechanisms that 

govern host-specificity may result in sudden host shifts, which represent a major risk 

for the emergence of novel human pathogens from animal reservoirs. Striking 

examples for this evolutionary scenario are the bartonellae, which cause host-

restricted intra-erythrocytic infections in their mammalian reservoirs. In conjunction 

with repeated host shifts, the large number of Bartonella species evolved by adaptive 

radiation (Saenz et al. 2007), including the human-specific pathogen B. quintana that 

evolved from cat-specific B. henselae (Alsmark et al. 2004). Here we explored the 

bacterial genetic basis for host-restricted infection of erythrocytes. The establishment 

of an in vitro model of erythrocyte adherence and invasion allowed us to demonstrate 

for the first time a direct correlation of host-restricted erythrocyte infection in vivo and 

in vitro, demonstrating that host-specificity is determined by direct interaction of 

bacteria with erythrocytes. In order to identify the bacterial factors critical for host-

restricted erythrocyte infection we have used a two-step experimental protocol. First, 

we performed an STM screen for B. birtlesii in mice which allowed us to identify 45 

abacteremic mutants defective in establishing intra-erythrocytic infection. Among the 

corresponding set of 38 protein-encoding genes, 13 loci were also indentified in a 

similar STM screen performed in the B. tribocorum/rat model (Saenz et al. 2007), 

indicating extensive similarities in the repertoire of pathogenesis factors in these 

closely related organisms as well as robustness of the performed genetic screens. 

Second, rescreening of the entire set of 45 abacteremic B. birtlesii mutants in the in 

vitro mouse erythrocyte infection model resulted in the identification of nine mutants 
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impaired in this assay. The other mutants (36 of 45 = 80%) displaying a wild-type 

phenotype in this assay are therefore not directly involved in erythrocyte infection, but 

rather may contribute to the establishment of infection in the primary niche. 

Prominent examples are the virB/virD4 genes encoding the VirB/VirD4 T4SS, which 

is known to be required for primary niche infection in the B. tribocorum/rat model 

(Schulein, 2002). Moreover, a recent study inferred the VirB/VirD4 T4SS as major 

bacterial factor facilitating bacterial adaptation to novel hosts (Saenz et al. 2007). The 

nine mutants impaired in erythrocyte infection in vitro include transposon insertions in 

the invasion locus (ialA/B) previously implicated in erythrocyte invasion (Mitchell and 

Minnick 1995; Coleman and Minnick 2001), livG encoding an amino acid ABC-

transporter, and most prominently six genes encoding different components of the 

T4SS Trw. Trw is known to be required for establishing intra-erythrocytic infection in 

the B. tribocorum/rat model (Seubert et al. 2003; Dehio 2004, 2008), however, 

evidence for a direct role of the Trw system in erythrocyte infection as provided here 

was lacking so far. Based on the presumable surface location of components of Trw 

(Seubert et al. 2003) this T4SS may directly interact with the erythrocyte surface and 

thus may restrict the host range of erythrocyte infection. To test the hypothesis that 

Trw determines host range we have expressed Trw of rat-specific B. tribocorum in 

cat-specific B. henselae. Strikingly, this genetic manipulation resulted in an extension 

of the host range for in vitro erythrocyte infection towards rats, demonstrating that 

Trw indeed represents a major determinant of host-specificity of erythrocyte infection. 

Further to the molecular paradigm of host-specificity exemplified by the interaction of 

two surface proteins of L. monocytogenes, InlA and InlB, with their respective host 

receptors (Lecuit et al. 1999; Khelef et al. 2006; Disson et al. 2008), this finding 
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establishes a new experimental model to study the molecular mechanisms governing 

host restriction.  

The Trw locus was laterally acquired during evolution of the bartonellae. It is 

present in the largest sub-branch of the genus tree, comprising 13 species that are 

adapted to diverse mammalian reservoir hosts, while it is absent from human-specific 

B. bacillifformis, cat-specific Bartonella clarridgeiae and the species of the ruminent-

specific sub-branch, which diverted early during evolution of the bartonellae (Saenz 

et al. 2007). Interestingly, the acquisition of Trw by the modern lineage correlates 

with the loss of flagella, which are know to represent a major pathogencity factor for 

the invasion of erythroctes by B. bacilliformis and probably other flagellated 

bartonellae (Dehio 2008). The Trw system of Bartonella represents an interesting 

example of a pathogenesis-related T4SS that evolved rather recently by functional 

diversification of a laterally acquired bacterial conjugation system. Its locus displays 

characteristic features of a pathogenicity island and shares extensive similarity with 

the trw locus of IncW broad-host range plasmid R388  encoding a genuine 

conjugation system. The trw loci of Bartonella and R388 are colinear, except for 

multiple tandem gene duplications of trwL and trwJ-trwH in Bartonella. 

Complementation of R388 derivatives carrying mutations in different trw genes with 

their Bartonella homologues allowed to demonstrate functional interchangability for 

some T4SS components (Seubert et al. 2003; de Paz et al. 2005), underscoring the 

structural and functional conservation of individual subunits of these functionally 

diversified T4SSs. However, a major difference between these homologous systems 

is the lack of the coupling protein TrwB in Bartonella, which in R388 is required for 

export of T4SS substrates. The lack of TrwB in Bartonella thus indicates that its Trw 

system does not translocate substrates. However, the multiple copies of trwL and 
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trwJ in the Bartonella trw locus encode variant forms of surface-exposed pilus 

components, which probably are all co-expressed (Seubert et al. 2003), indicating 

that the primary function of the Bartonella Trw system may be the formation of variant 

pilus forms (Dehio 2008). Based on the essential role of the Trw system for 

erythrocyte invasion and its role in determining host range it is conceivable to 

assume that these variant pili may facilitate the specific interaction with polymorphic 

erythrocyte receptors, either within the reservoir host population (e.g. different blood 

group antigens), or among different reservoir hosts. Phylogenetic analyses and 

calculation of the non-synonymous (dN) and synonymous (dS) substitution 

frequencies of different trw genes indeed demonstrated that trwJ and trwL homologs 

have diversified to much higher degree than other components of the Trw T4SS, 

within and among different species (Nystedt et al. 2008). Together with the notion 

that the number of tandem repeats of trwL and trwlJIH are variable among different 

Bartonella species these findings indicate that trwL and trwJ genes have been 

amplified and diversified several times during evolution. Horizontal transfer of such 

genes from a different bartonellae – similarly as we have demonstrated here for the 

entire trw operon of B. tribocorum resulting in an extension of the host range of B. 

birtlesii – or alternatively pre-adaption of superfluous copies of trwL and trwJ may 

represent realistic molecular evolutionary scenarios for host-shifts and thereby the 

evolution of pathogens with an altered host-specificity as it has happened repeatedly 

during the evolution of the bartonellae. Future studies should identify the nature of 

the erythrocyte receptors targeted by the Trw system and their specific interaction 

that facilitate host-specific erythrocyte infection. 
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MATERIAL AND METHODS 

 

Ethics Statement. Animals were handled in strict accordance with good animal 

practice as defined by the relevant European (European standards of welfare for 

animals in research), national (Information and guidelines for animal experiments and 

alternative methods, Federal Veterinary Office of Switzerland) and/or local animal 

welfare bodies. Animal work performed at the Biozentrum of the University of Basel 

was approved by the Veterinary Office of the Canton Basel City on June 2003 

(licence no. 1741), and animal work performed at the Ecole Nationale Vétérinaire 

d’Alfort (ENVA/AFSSA) was approved by the institute’s ethics committee on 

September 2005.  

 

Bacterial strains and growth conditions. B. alsatica (IBS 382T, CIP 105477T) 

(Heller et al. 1999), B. birtlesii (IBS 135T, CIP 106691T) (Bermond et al. 2000), B. 

chomelii (A 828T, CIP 107869T) (Maillard et al. 2004), B. henselae (Houston-1, ATCC 

49882T), B. quintana (FullerT, ATCC VR-358T), B. tribocorum (IBS 506T, CIP 

105476T) (Heller et al. 1998), B. vinsonii subsp. berkhoffii (ATCC 51672T), B. vinsonii 

subsp arupensis (ATCC 700727) (Welch et al. 1999) were grown for 5 days on 

Columbia agar containing 5% defibrinated sheep blood (CBA) in a humidified 

atmosphere with 5% C02 at 35°C. 

 

Construction of bacterial strains. B. tribocorum-gfp containing a chromosomally-

integrated gfp-expression cassette (Schulein et al. 2001) was used as GFP-

expressing B. tribocorum strain. GFP-expressing bacteria of other Bartonella species 

were obtained by electroporation with plasmid pBBR1-MCS2 as previously described 
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(Kovach et al. 1995; Fournier et al. 2001). This plasmid was extracted and purified 

from B. quintana using a Midi Prep Kit (Qiagen). The electroporation procedures was 

described previously (Fournier et al. 2001). Transformed bacteria were selected by 

plating on CBA-Km. A signature-tagged mutant library of B. birtlesii IBS135T was 

constructed as described for B. tribocorum (Saenz and Dehio 2005; Saenz et al. 

2007). B. tribocorum ΔtrwE mutant and complemented ΔtrwE (ΔtrwE-comp.) have 

been described (Seubert et al. 2003). Cosmid pAB2 encoding the entire trw locus of 

B. tribocorum (Dehio et al. 1998; Seubert et al. 2003; de Paz et al. 2005) was 

introduced into B. henselae by three parental mating (Dehio and Meyer 1997; Dehio 

et al. 1998). 

 

In vitro infection of erythrocytes. Erythrocytes from peripheral blood of mice 

(Balb/C), cats, rats (Wistar) and humans were isolated and purified by Ficoll gradient 

centrifugation. After washing in PBS, they were maintained in F12 modified medium 

[supplemented with 10% fetal calf serum, 2 mM glutamine, 1 mM sodium pyruvate, 

0.1 mM Hepes, 257 mM histidine, 0.1 mg/ml hematin/histidine, non-essential amino 

acid (Gibco, FRANCE)] at 2x108/ml. For in vitro infection experiments, Bartonella 

species were grown on CBA or CBA-km (Bartonella-gfp and STM mutants) plates. 

After 5 days of culture (10 days for GFP-expressing Bartonella), bacteria were 

harvested, washed, suspended in PBS, and added to erythrocytes at a multiplicity of 

infection (MOI) varying from 0.01 to 10 and incubated at 35°C in 5% C02 for various 

periods of time (from 1 to 3 days).  

 

Detection of erythrocyte-associated bacteria. Colonization of erythrocytes by 

Bartonella was assessed and quantified by the gentamicin protection assay, flow 
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cytometry and confocal microscopy. For the quantification of intracellular bacteria by 

gentamicin protection, 100 μl were withdrawn from the invasion mixtures after 1, 2 or 

3 days of in vitro infection. Mouse erythrocytes were separated from non-associated 

bacteria by washing with PBS and centrifuged at 500 g for 5 min. Erythrocytes were 

then incubated for 2 h at 35°C with gentamicin sulfate (250 μg/ml) to kill residual 

extracellular bacteria. Erythrocytes were then washed three times in PBS to remove 

the antibiotic and intracellular bacteria were released from erythrocytes by hypotonic 

lyses of erythrocytes in 10 μl of sterile water by freezing at -20°C for 15 min. After 

thawing, serial dilutions of bacteria in PBS were inoculated onto CBA plates and 

incubated at 35°C for 5 days before being counted. For data presentation, all 

measurements were expressed as the number of CFU/1010 erythrocytes 

(corresponding to ≈1 ml of blood).  

For flow cytometric detection of erythrocyte-associated bacteria, 

measurements were performed at day 1, 2, 3 after in vitro infection of erythrocytes 

with a ten days old culture of GFP-expressing Bartonella sp. 100 μl of the infection 

mixtures was washed 3 times in PBS and fixed for 10 min with 0.8% 

paraformaldehyde and 0.025% glutaraldehyde. After fixing, erythrocytes were 

analyzed by flow cytometry (FACScan, Becton Dickinson Bioscience, France). Data 

were analyzed using the CellQuestPro software, version 4.0.2. Data for 10’000 gated 

erythrocytes were collected and analyzed.  

For confocal microscopy, 100 μl of the infection mixtures was washed three 

times in PBS and the erythrocytes cell surface was stained using PE-labeled anti-

GPA antibodies. Samples were viewed with a Nikon Eclipse C1 Plus confocal laser 

scanning microscope (Nikon, Amstelveen, Netherlands) with detection in channel 1 

(GFP fluorescence) and channel 2 (PE fluorescence) at original magnification x100. 
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STM library. The transposon vectors pHS006-Tag-001 to pHS006-Tag-036 are 

containing each: an oriT for conjugative transfer, the Himar1 transposon, a 

kanamycin resistant marker, a hyperactive transposase and one of 36 distinct 

signature-tags (Saenz et al. 2007). These 36 signature-tagged mariner transposon 

vectors were separately transferred from E. coli β2155 to B. birtlesii by two-parental 

mating as previously described (Dehio and Meyer 1997). From each mating, 96 

single kanamycin-resistant B. birtlesii transconjugants were transferred to a 96-well 

plate with cryo-medium and stored at -80°C. 

 

Mouse infections. Eight weeks old female Balb/C mice from Charles River 

Laboratories were housed in an animal facility (2 animals/cage) and allowed to 

acclimate to the facility and the diet for at least 5 days prior infection. Food and water 

were provided ad libitum. 36 differently signature-tagged mutants were grown 

separately from the transposon library for each input pool. They were pooled in PBS 

immediately before infection, and used to infect two mice with a total inoculum of 

5x107 colony forming units (10 μl of OD595=1) in the ear dermis of Balb/C mice. The 

remainder of the input pools was heated at 100°C for 10 min and used as template 

for PCR detection. Fifty μl of blood were taken from the tail vein of the infected mice 

when bacteremia is peaking (days 7 and 14 post-infection) (Boulouis et al. 2001). 

Bacteria released from erythrocytes by a freeze/thaw cycle were plated on CBA-km. 

After 10 days, bacterial colonies (output pool) were counted, harvested in PBS, 

suspended to OD595=1 and heated at 100°C for 10 min to be used as template for 

PCR detection. The rescreen was done following the same protocol using pools of 

nine mutants (two abacteremic mutants and seven mutants displaying a wild-type 

phenotype) 

152 



Results – Research article III - Manuscript 

 

PCR detection of abacteremic mutants. For signature-tag identification, the 

generic primer Srev01 corresponding to a sequence in the transposon and a set of 

tag-specific primer were used for amplification of a fragment of approximately 600 bp 

(Saenz et al. 2007). The conditions for the PCR were as follows: a first denaturation 

step at 95°C for 5 min, followed by 30 cycles of PCR with denaturation at 95°C for 1 

min, annealing for 30 s at 52°C, and extension at 72°C for 1 min. The program was 

completed by an extension step at 72°C for 5 min. The amplified fragments were 

displayed on a 1% agarose gel. Mutants that were detected in the input pools and 

absent from the out put pools (days 7 and 14) in both mice were considered as 

abacteremic mutants. 

 

Identification and analysis of transposon insertion sites. Genomic DNA from 

abacteremic mutants, regrown from the library, was prepared with the ROCHE 

Genomic DNA Isolation Kit. Genomic DNA was sent to QIAGEN for sequencing with 

primers Tnstart and Tnend (Saenz et al. 2007). The sequences obtained by the 

genomic sequencing were compared by BlastN to the nr data base of NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The exact transposon insertion sites were 

found by comparing the genomic sequences to contigs of the ongoing B. birtlesii 

genome sequencing project by BlastN.   

 

Screening of abacteremic mutants for their capacity to infect murine 

erythrocytes. Mutants displaying an abacteremic phenotype were tested for their 

capacity to invade murine erythrocytes using the gentamicin protection assay. Each 

mutant was tested at MOI=1 in at least two independent experiments performed in 
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triplicate samples. For mutants displaying an impaired erythrocyte invasion 

phenotype, invasion assays were performed at least three times in triplicate samples. 

 

Statistical analysis. Numerical data are reported as the mean of at least 3 replicate 

samples +/- standard errors of the means. Statistical significance of the data was 

measured by use of Student’s t test. A p-value <0.05 was considered significant. 

 

Phylogenetic and evolutionary analysis. The sequence of the B. birtlesii trw locus 

was deposited under the EMBL-EBI accession no. FN555106. Sequence alignments 

were calculated with ClustalW as implemented in MEGA4. Phylogenetic trees were 

inferred by maximum likelihood methods with Paup 4.0 (Wilgenbusch and Swofford 

2003) and 100 bootstrap replicates were calculated. To select an appropriate 

substitution model the Akaike information criterion of Modeltest 3.7 was used 

(Posada and Crandall 1998). The models obtained were general time reversible 

(GTR) + I for trwFED and trwN, transversion model (TVM) + I for trwI, and TVM + I + 

G for trwJ and trwL. Nonsynonymous (dN) and synonymous (dS) substitution 

frequencies were calculated using the method of Yang and Nielson (Yang and 

Nielsen 2000) as implemented in the PAML package (Yang 1997, 2007).  
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FIGURES 

 

Figure 1: B. birtlesii invades murine erythrocytes in vitro.  (A, B) Time- and 

bacterial number-dependency of B. birtlesii invasion of murine erythrocytes 

determined by the gentamicin protection assay. (A) Freshly isolated murine 

erythrocytes were infected with B. birtlesii at the indicated multiplicity of infection 

(MOI) and the numbers of intra-erythrocytic bacteria (colony forming units, CFU) was 

determined by the gentamicin protection assay at 1, 2 and 3 days post infection 

(DPI); n=6, mean +/-SD; *, **: significant difference of data compared to 1 DPI. (B) 

Freshly isolated murine erythrocytes were infected with B. birtlesii at MOI=1. At 1 

DPI, gentamicin was added to half of the samples, while as control the other half was 

not treated. For both untreated and gentamicin treated samples, numbers of intra-

erythrocytic bacteria were determined by the gentamicin protection assay at 1, 2 and 

3 DPI (n=6; mean +/-SD, *,**: significant difference in gentamicin treated samples 

compared to one DPI). (C) Time- and (D) bacterial number-dependency of B. birtlesii 

associated to murine erythrocytes determined by flow cytometry. Freshly isolated 

murine erythrocytes were infected with B. birtlesii-gfp (MOI=1, detection at two and 

three DPI in C and MOI=0.1 or 1, detection at three DPI in D). The percentage of 

erythrocytes associated with bacteria were quantified by flow cytometric analysis at 2 

and 3 DPI. Representative data for the fluorescence (FL-1) of 10’000 erythrocytes 

are shown as histogram plots. (E) Confocal microscopic analysis of murine 

erythrocytes infected for 2 days with GFP-expressing B. birtlesii. Arrows point to 

bacteria found in close association with erythrocytes. 
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Figure 2: Efficiency of in vitro invasion of murine erythrocytes by different 

Bartonella species. Freshly isolated murine erythrocytes were infected with the 

indicated Bartonella species with a MOI=1. The numbers of intra-erythrocytic bacteria 

(colony forming units, CFU) was determined by the gentamicin protection assay at 1 

and 2 days post infection (DPI); mean +/-SD of triplicate samples. 
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Figure 3. Efficiency of interaction between erythrocyte and Bartonella sp.  

according to host origin and Bartonella species. Freshly isolated erythrocytes 

from mouse, cat, human or rat were infected with gfp-expressing bacteria of the 

indicated Bartonella species (MOI=1). The percentages of infected erythrocytes were 

determined by flow cytometry at two DPI. Representative histogram plots for GFP-

fluorescence (FL-1) of 10’000 erythrocytes are shown.  
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Figure 4. Role of Trw in erythrocyte infection. Efficiency of in vitro invasion of 

murine erythrocyte by abacteremic mutants of B. birtlesii. The in vitro erythrocyte 

invasion phenotype of abacteremic mutants identified in the STM screen was 

evaluated by the gentamicin protection assay at 1 DPI. The efficiency of erythrocyte 

invasion of each tested mutant is expressed as the percentage of erythrocyte 

invasion of the isogenic wild-type strain (mean +/- SD of triplicate samples; n=1 for 

badA and virD4, n=3 for other mutants). All mutants listed in Table S1 that do not 

appear in this figure display wild-type phenotype in regard of in vitro erythrocyte 

invasion. 
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Figure 5: Role of B. tribocorum trwE in rat erythrocyte infection. Efficiency of rat 

erythrocyte invasion by the ΔtrwE mutant of B. tribocorum, the isogenic wild-type 

strain (wild-type), and the complemented ΔtrwE mutant (ΔtrwE comp.) at 1 DPI (n=3, 

mean +/- SD). 
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Figure 6. Role of Trw T4SS in mediating host-specific erythrocyte invasion. 

Freshly isolated rat erythrocytes were infected with B. tribocorum, B. tribocorum 

(pAB2), B. henselae and B. henselae (pAB2) at a MOI=1. Intra-erythrocytic bacteria 

were enumerated at 1, 2 and 3 days post infection (DPI) by the gentamicin protection 

assay (n=3; mean +/-SD). 
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Figure 7: Genetic organization of the Bartonella trw locus, and phylogenies and 

synonymous (dS) vs. nonsynonymous (dN) substitution frequencies of the 

encoded trw genes.  (A) Gene order structure of the trw locus of B. birtlesii and 

comparison to other Bartonella species. The copy number of amplified genes or 

segments in other Bartonella species is indicated within brackets. Maximum 

Likelihood phylogenies of (B) the concatenated nucleotide alignments of trwF, trwE, 

and trwD, the nucleotide alignments of (C) trwJ copies, (D) trwI, (E) trwL copies, and 

(F) trwN of B. birtlesii (Bb), B. grahamii (Bg), B. henselae (Bh), B. quintana (Bq) , and 

B. tribocorum (Bt).  For trwJ (C) and trwL (E), the range of pairwise dN/dS ratios of 

different phylogenetic subclusters (shaded areas) are indicated at the upper right of 

each cluster. For trwL1, the range of pairwise dN/dS ratios is indicated as well, 

although they do not cluster. (G) The pairwise dN/dS ratios of orthologous trw genes 

and the two adjacent genes ubiH and sdhA of B. birtlesii and B. grahamii, B. 

henselae, B. quintana, or B. tribocorum are plotted according to their gene order. For 

the tandem repeated genes trwL, trwJ, trwI, and trwH only trwL5, trwJ1, trwI1, and 

trwH1 are shown, since ortholog assignment is difficult for the others due to copy 

number variation and the occurrence of recombination among different species  

(Nystedt et al. 2008). 
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TABLES 

 
Table 1: Efficiency of erythrocyte colonization according to host origin and Bartonella 

species 

 

 B. birtlesii B. henselae B. quintana B. tribocorum 

 in vivo in vitro (%)* in vivo in vitro (%)* in vivo in vitro (%)* in vivo in vitro (%)* 

Mouse +a 26.3 +/- 2.2 -b 1.3 +/- 0.5 n.r. 0.8 +/- 0.3 n.r. 1.6 +/- 0.4 

Cat n.r. 1.6 +/- 0.8 +c 28.5 +/- 4.1 +d 42.2 +/- 3.1 n.r. 0.5 +/- 0.3 

Human n.r. 2.7 +/- 1.0 n.r. 1.3 +/- 0.3 +e 58.4 +/- 1.2 n.r. 0.9 +/- 0.2 

Rat n.r. 2.0 +/- 1.3 n.r. 1.8 +/- 0.7 n.r. 3.5 +/- 1.1 +f 20.7 +/- 2.8 

a(Boulouis et al. 2001), b(Kabeya et al. 2003), c(Rolain et al. 2001; Rolain et al. 2004), 
d(Breitschwerdt et al. 2007), e(Schulein et al. 2001; Rolain et al. 2002; Foucault et al. 

2004), f(Schulein et al. 2001) 

 

*Freshly isolated erythrocytes from mouse, cat, human or rat were infected with gfp-

expressing bacteria of the indicated Bartonella species (MOI=1) . The percentages of 

colonized erythrocytes were determined by flow cytometry at day two post infection. 

Data for 10’000 erythrocytes per time-point were analyzed (n=6 for tests with 

homologous species and n=3 for tests with heterologous species, mean +/- SD). For 

previously described infections of the respective mammalian hosts with the indicated 

Bartonella species the presence (+) or absence (-) of intraerythrocytic bacteremia is 

indicated (n.r. = not reported). 
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Supporting Table S1: Genotypic characterization of the abacteremic mutants. 
The columns BARBAKC, BH, BQ and BT list the extensions of systematic names of 

orthologous genes from the published genomes of B. bacilliformis (accession no. 

CP000524), B. henselae (accession no. BX897699), B. quintana (accession no. 

897700) and B. tribocorum (accession no. AM260525) respectively. * The in vitro 

erythrocate invasion phenotype of each mutant was determined by the gentamicin 

protection assay after 1 day of infection (triplicate samples) and categorized as 

normal (>70% of wild-type), reduced (<70% of wild-type but >1% of wild-type) or 

none (<1% of wild-type). Mutants with reduced or none in vitro invasion were tested 

again (n=3) and the resulting mean and SD of all three experiments are represented 

in Figure 3. 
 

Gene Name Mutant Putative function BARBAKC BH BQ BT In vitro 
infection* 

Adhesion/Invasion        

badA 05A04 adhesin 583_0314 01490 
01510 

01390 
01400 
01410 

0168 normal 

badA 70D12 adhesin 583_0314 01490 
01510 

01390 
01400 
01410 

0168 normal 

ialA/ialB 05D10 invasion associated gene B 583_0326 01650 01550 0181 reduced 

ibaA 44H12 putative inducible autotransporter  583_1132 13160 10410 1655 normal 

omp43 43G09 outer membrane protein, adhesin 583_0447 12500 09890 1902 normal 

trwD 04B03 T4SS component, VirB11 homolog - 15760 12680 2533 reduced 

trwD 41C12 T4SS component, VirB11 homolog - 15760 12680 2533 reduced 

trwE 65D01 T4SS component, VirB10 homolog - 15750 12670 2532 none 

trwF 61B04 T4SS component, VirB9 homolog - 15740 12660 2531 none 

trwJ2  43H01 T4SS component, VirB5 homolog - 15670 
15700 

12590 
12620 

2519 
2522 
2524 
2526 
2528 

none 

trwL1 25G12 T4SS component, VirB2 homolog - 15570 
15580 
15590 
12600 
12610 
12620 
12630 
12640 

12490 
12500 
12510 
12520 
12530 
12540 
12550 
12560 

2511 
2512 
2513 
2514 
2515 
2516 
2516a 

none 

trwL2 60H02 T4SS component, VirB2 homolog - 15570 
15580 
15590 
12600 
12610 
12620 

12490 
12500 
12510 
12520 
12530 
12540 

2511 
2512 
2513 
2514 
2515 
2516 

none 

177 
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Gene Name Mutant Putative function BARBAKC BH BQ BT In vitro 
infection* 

12630 
12640 

12550 
12560 

2516a 

virB4 61H02 T4SS component,  VirB4 homolog  - 13280 10550 1691 normal 

virD4 69D12 T4SS component, VirD4 homolog - 13380 10640 1701 normal 

virD4 79C12 T4SS component, VirD4 homolog - 13380 10640 1701 normal 

 61C01 autotransporter protein - 13030 10290 1796 normal 

Iron uptake        

hutA 5B10 outer membrane heme receptor 583_0460 04970 04160 0774 normal 

Transport function        

ilvE 45B03 amino acid transporter 583_0747 10010 07730 1376 normal 

livF 04A08 amino acid transporter - 08250 06330 1144 normal 

livG 25A02 amino acid transporter - 08260 06320 1145 reduced 

livH 45C07 ABC transporter - 08280 06300 1147 normal 

phaA 05G09 K+/H+ transmembrane protein 583_0030 16460 13360 2670 normal 

Cell stress response        

ibpA (hsp20) 86B07 chaperon 583_0614 07300 05230 1333 normal 

hslO (hsp33) 41A03 chaperon 583_1292 01080 00990 0118 normal 

Metabolism / cell 
integrity 

       

carD 41C07 transcriptional regulator factor 583_0123 15240 12150 2444 normal 

glnE 70D02 glutamate ammonialigase adenyl 
transferase 

- 4800 04000 0707 normal 

ftsK 15G10 cell division transmembrane protein 583_0291 03840 02850 0572 normal 

cobS 44G10 cobalamin biosynthesis 583_0080 15880 12800 2554 normal 

lpcC 69H08 lipopolysaccharide core 
biosynthesis mannosyltransferase 

583_0983 11690 09300 0746 normal 

mfd 41B10 transcription repair coupling factor 583_0798 08750 05840 1197 normal 

Unknown function        

 43H05 unknown function - 03150 - 0332 
0505 
1229 
1275 
1394 
1812 
2614 

normal 

BA0981 65D04 putative exported protein - 02590 02450 0286 normal 

BA1484 15A08 putativemembrane protein 583_1009 11960 09380 0713 normal 

BA1559 35D02 helicase/methyltransferase - 15450 - 0164 
0455 
0541 
1006 
1021 
1035 
1053 
1080 
1105 
2491 

normal 
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Gene Name Mutant Putative function BARBAKC BH BQ BT In vitro 
infection* 

BA1819 41C02 unknown function - 09350 - 0466 
1089 
1090 
2281 
2282 

normal 

BA1566 61D04 unknown function - - - 1926 normal 

 05H01 conserved/putative (Tm helices) 
membrane protein 

583_0492 05300 04480 0812 normal 

 44G12 putative efflux transport protein - 12560 - 1909 normal 

Phage origin        

BA1301 86C10 putative anti-repressor protein 583_1070 06900 
02990 
03430 
03240 
03670 
03690 

- 0325 
0355 
0372 
0373 
0431 
0470 
0486 
0494 
0556 
0557 
0954 
0976 
2290 
2301 

normal 

BA1052 60B07 Putative anti-repressor protein - 02890 
03020 
03250 
03440 
0345 
03460 
03470 

- 0475 normal 

Intergenic region        

 83D04 intergenic 583_1301/ 
583_1302 

00970/
00960 

00900/
0089 

tRNA-
BT000
1/BT0
082 

normal 

 69C09 intergenic, close to putative 
transcriptional regulator 

583_1248 13590
14160 
14370 
14380 
14970 
 

02090 2389 
2390 
2397 
2399 
2400 
 

normal 

 04A01 intergenic 583_1132 13140 
or 
13160 

10380 1660  
or  
1661 

normal 

 69B07 intergenic 583_0094/ 
583_0093 

15500/
15510 

12420/ 
12430 

2497/ 
2504 

normal 

 86C05 intergenic 583_1019/ 
583_1020 

12050/
12060 

09460/ 
09470 

1641/ 
1642 

normal 
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3.4 Unpublished results 
 
 
 
 

The VirB-homologous T4SS of B. schoenbuchensis:  

An evolutionary link between conjugation machineries and 
T4SSs adopted for host interaction 
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Introduction 
 
The horizontal acquisition of the VirB type IV secretion system (T4SS) was shown to 

play a central role for the host adaptation of Bartonella species (see 3.1. Research 

article I). By translocating a versatile cocktail of different effector proteins, bartonellae 

are able to subtly modulate their cellular host niches which results in a highly specific 

adaptation (Schmid et al. 2004; Schulein et al. 2005). The ease by which evolution 

can alter these effector genes seemed to facilitate Bartonella species of different 

lineages to adapt to a wide range of different hosts (see 3.2. Research article II). 

 Interestingly, phylogenetic trees revealed two lineages of Bartonella which 

seem not to harbor the VirB T4SS. The deeply-branching lineage of B. bacilliformis 

has presumably diverged before the VirB T4SS was acquired by horizontal gene 

transfer. In a second phylogenetic lineage, strictly comprising ruminant-infecting 

species, PCR screening for conserved VirB T4SS genes, as virB4 or virB11, did 

neither detect any VirB T4SS. However, in all analyzed ruminant-infecting species, 

the screening revealed the presence of two genes with homology to virB4 and virB11. 

By sequence analysis, these genes turned out to constitute orthologs of the VirB-

homologous (Vbh) T4SS identified in B. tribocorum (see 3.1. Research article I). As 

the virB4-homologous gene carried a frame shift mutation, and any effector- or 

coupling protein-encoding genes were absent, the Vbh system of B. tribocorum was 

assumed not to be functional. However, the presence of the Vbh T4SS throughout 

the ruminant-infecting lineage, plus the fact that the highly related VirB T4SS is 

absent from these species, suggested the Vbh T4SS to functionally substitute the 

VirB T4SS in this lineage (Saenz et al. 2007). 

 Here, we assessed the coding content and function of the Vbh T4SS of the 

ruminant-infecting species B. schoenbuchensis. 
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Results 
 
Sequence analysis of the vbh T4SS locus of B. schoenbuchensis indicates a 
bifunctional role for the Vbh T4SS 
 

Starting from the gene sequences of vbh4 and vbh11, the adjacently located 

chromosomal regions of B. schoenbuchensis were sequenced by primer walking on 

genomic DNA. This approach revealed the presence of a continuous vbh gene 

cluster in the genome of B. schoenbuchensis. Whole genome-shotgun sequencing of 

B. schoenbuchensis using 454-pyrosequencing confirmed the results from the primer 

walking approach (Liesch 2008). 

In contrast to the vbh locus of B. tribocorum, manual sequence analysis and 

gene annotation of the vbh locus of B. schoenbuchensis did not reveal any frame 

shift mutations. In addition to the machinery-encoding genes vbh2-vbh11, a putative 

effector gene, a relaxase-encoding gene, and a gene with homology to the coupling 

protein-encoding virD4 gene were identified (Fig. 1). These components are not 

present in the vbh locus of B. tribocorum. The putative effector gene of 

B. schoenbuchensis was identified by comparison to known Bartonella effector 

protein (bep) genes of the VirB T4SS. The analysis revealed that the effector gene of 

B. schoenbuchensis consists of an N-terminal FIC (filamentation-induced by cAMP) 

domain and a C-terminal BID (Bartonella intracellular delivery) domain, a domain 

structure typical found in Beps of the VirB T4SS (Fig.1). Interestingly, the BID 

domains of the putative effector gene and the relaxase gene of B. schoenbuchensis 

revealed a high degree of similarity.  

Comparative analyses of the Vbh T4SS of B. schoenbuchensis and the closely 

related VirB T4SS of e.g. B. tribocorum revealed the genomic organization of the 

machinery-encoding genes (vbh2-vbh11 and virB2-virB11) to be conserved (Fig. 1). 

However, the gene content of the downstream located effector region displays 

marked differences. A relaxase-encoding gene is absent from the virB T4SS loci of 

Bartonella. Furthermore, the single putative effector protein of the Vbh T4SS of 

B. schoenbuchensis is encoded on the reverse strand, whereas effector protein-

encoding genes of the VirB T4SS are located on the forward strand (Fig. 1). 
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Figure 1: Comparison of the virB T4SS locus of B. tribocorum, the vbh T4SS locus of 

B. schoenbuchensis, and the avhB T4SS locus of A. tumefaciens. T4SS genes are shown in yellow 

and genes coding for translocated effector genes are shown in light red. Other genes are shown in 

gray color. Boxes in blue and green color indicate BID and FIC domains, respectively. In case of the 

conjugation system AvhB and the Vbh T4SS, the coupling protein-encoding gene (virD4) is named 

traG and vbhD4. 

 

Comparison between the vbh T4SS locus of B. schoenbuchensis and gene 

clusters encoding related conjugation machineries, as for example the AvhB T4SS of 

A. tumefaciens, revealed striking similarities (Fig. 1). Beside the conservation of the 

machinery-encoding genes, as well as the relaxase and the coupling protein genes, 

additional genetic features essential for conjugation machineries are present in the 

vbh locus of B. schoenbuchensis. This included an intergenic sequence stretch 

resembling the oriT site, the origin of transfer, and two close-by encoded genes, traC 

and traD involved in the processing of the oriT during conjugative transfer. 

 

The BID domain-containing C-terminus of the putative effector protein of B. 

schoenbuchensis is transferred by the VirB T4SS of B. henselae into Ea.hy926 
cells 
  
Here, it was tested whether the BID domain-containing C-terminus of the putative 

effector protein of B. schoenbuchensis can be transferred into eukaryotic cells, either 

directly by B. schoenbuchensis or via the VirB T4SS of B. henselae. To this end, we 

used the CRAfT reporter assay, which allows the quantification of protein transfer 

from bacteria into eukaryotic cells of the Cre-tester cell line Ea.hy926/pRS56-c#B1 

(Schulein et al. 2005). A reporter plasmid pPE1001 was constructed harboring a 
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fusion protein of the BID domain-containing C-terminus of the putative effector gene 

to a nuclear localization signal (NLS)-Cre recombinase. 

First, it was tested whether B. schoenbuchensis is capable of transferring this 

reporter construct into eukaryotic cells. When using standard conditions (5 days of 

infection, multiplicity of infection [MOI] of 200), no translocation of the reporter 

construct encoded on plasmid pPE1001 was detectable. Neither the variation of the 

infection dose (MOI of 50, 100, and 300) nor the elongation of the infection time (7 

days of infection) resulted in detectable translocation events (data not shown). 

To test translocation via the VirB T4SS of B. henselae, cells were infected with 

different B. henselae strains (wild-type and ∆virB4) carrying the plasmid pPE1001. 

These experiments demonstrated that the BID domain-containing C-terminus of the 

putative effector protein of B. schoenbuchensis is translocated by B. henselae in a 

VirB T4SS-dependent manner into eukaryotic cells (Fig 2). 

 
Bh wt + pRS51 
(BID from bepD of Bh)

37.5 % 0.0 %

0.0 % 0.0 %

20.0 %

FL
1

FSC

Bh ΔvirB4 + pRS51 
(BID from bepD of Bh)

Bh wt + pRS96 
(cre without BID)

Bh wt + pPE1001 
(BID from Bs putative effector)

Bh ΔvirB4 + pPE1001 
(BID from Bs putative effector)

Reporter
plasmid

 
 
Figure 2: Protein transfer was determined by CRAfT. The Cre-tester cell line Ea.hy926/pRS56-c#B1 

was infected with the indicated B. henselae (Bh) strains (wt or ∆virB4) expressing different NLS-Cre 

fusion proteins from plasmids (5 days of infection, MOI of 200). A schematic representation of the 

reporter construct plasmid depicts the gene encoding the NLS-Cre-BID fusion protein. GFP-positive 

cells (implicating the transfer of the NLS-Cre-BID fusion protein) were detected by FACS analysis. Dot 

plots of forward scatter (FSC) and GFP fluorescence (FL1) are shown for the indicated Bh strains. 

Percentages of GFP-positive cells are indicated. As positive control, plasmid pRS51 containing the 

BID domain-containing C-terminus of B. henselae bepD was used (Schulein et al. 2005). Plasmid 

pRS96 expressing the NLS-Cre protein without C-terminal BID domain served as negative control.  

Bs, B. schoenbuchensis. 
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Further Results (generated by Marius Liesch) 
 
The Vbh T4SS is plasmid-encoded and mediates conjugative transfer 

 

Marius Liesch, a Master student under my supervision, continued to investigate the 

above-described aspects. The assembly of the B. schoenbuchensis genome 

indicated that the Vbh T4SS is encoded on a plasmid. The existence of this plasmid 

harboring the vbh T4SS locus could be demonstrated experimentally (Liesch 2008). 

By tagging the plasmid with a gentamicin resistance cassette, Marius Liesch further 

showed that the plasmid of B.schoenbuchensis is horizontally transferred between 

different Bartonella species. The disruption of the relaxase gene of the vbh locus by 

single cross-over recombination abolished the conjugative transfer of the plasmid 

between B. schoenbuchensis and recipient Bartonella strains (Liesch 2008). This 

implicated that the Vbh T4SS is directly involved in the conjugative transfer of the 

extrachromosomal replicon of B. schoenbuchensis. 

 

B. schoenbuchensis is not able to translocate effector proteins into  
Ea.hy926 cells 

 

Marius Liesch also investigated the role of the Vbh T4SS in host interaction. He 

extended the above-described CRAfT assays by changing various experimental 

parameters for the infections with B. schoenbuchensis. However, in none of the 

tested conditions, he could detect effector gene translocation from 

B. schoenbuchensis into Ea.hy926 cells. The fact that an increase of the MOI to more 

than 2000 did not lead to any cytotoxic effects suggested that there might be only 

poor interaction between B. schoenbuchensis and human endothelial cells (Liesch 

2008). This implication was bolstered by the fact that B. schoenbuchensis bacteria 

expressing plasmid-encoded GFP did not show any obvious interaction with 

Ea.hy926 cells. Typical cellular phenotypes resulting from infections with 

B. henselae, like invasome formation, peri-nuclear localization, or bacterial 

aggregation, were not observed by microscopy (Liesch 2008).  
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Perspective 
 

To show translocation by the Vbh T4SS, a new approach which was established by 

Marius Liesch before he left the laboratory was based on a β-lactamase reporter 

assay (Marketon et al. 2005). As this method can be used with any cell line, it has 

clear advantage over the CRAfT assay. Preliminary experiments infecting bovine 

cells with B. schoenbuchensis expressing the corresponding reporter construct did 

not show any significant levels of effector translocation. Still, this approach will be 

followed in the future by modifying the experimental conditions and testing different 

cell lines. To exclude that the Vbh T4SS is inactive, the gene expression of this T4SS 

in conditions of in vitro cell infections will be assessed. 

 

Conclusions 
 
The Vbh T4SS detected in ruminant-infecting Bartonella species was suggested to 

functionally replace the missing VirB T4SS (Saenz et al. 2007). Sequencing of the 

vbh T4SS locus of B. schoenbuchensis revealed that homologous genes of all VirB 

T4SS subunits are conserved in this ruminant-adapted species including the coupling 

protein-encoding gene. Furthermore, the detection of an adjacently located putative 

effector protein harboring an N-terminal FIC domain and a C-terminal BID domain, as 

found for many effector proteins of the VirB T4SS (Schulein et al. 2005), corroborated 

the assumption that the Vbh T4SS might display a host-interacting T4SS with similar 

function as the VirB. Although, this putative effector protein was translocated into 

host cells by B. henselae in a VirB T4SS-dependent manner, the direct translocation 

via the Vbh T4SS of B. schoenbuchensis could not be demonstrated yet. 

Remarkably, several features of the vbh T4SS locus of B. schoenbuchensis were 

found to be reminiscent of ancestrally related conjugation machineries like the 

presence of a relaxase gene or a putative origin of transfer. Genomic and functional 

investigation showed that the Vbh T4SS of B. schoenbuchensis is not only encoded 

on a plasmid, but also mediates the conjugative transfer of this plasmid between 

different Bartonella species.  

Although conclusive experimental data for a bi-functional role is not yet available, the 

Vbh T4SS appears to display an evolutionary link between the VirB T4SS of 

Bartonella, solely dedicated to host interaction, and ancestrally related conjugation 
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machineries mediating horizontal transfer of plasmids among bacteria. Hence, the 

Vbh T4SS reveals insights into the evolutionary mechanisms resulting in the 

functional transformation of these nanomachines. The putative effector gene of the 

Vbh T4SS, for example, provides compelling evidence for the evolutionary origin of 

the effector genes of the VirB T4SS. It was already suggested by Schulein et al. 

(2005) that bep genes might have originated from relaxases by adopting their C-

terminal translocation signal. The high degree of sequence identities shared by the 

BID domains of the putative effector gene and the adjacently located relaxase of 

B. schoenbuchensis provides the proof for the evolutionary origin of VirB T4SS 

effector genes. As relaxase genes frequently harbour two BID domains, one could 

have been split off by integration of foreign DNA sequence. By such a mechanism, 

the FIC domain was possibly introduced into the T4SS locus and coupled to the BID 

domain. The coupling of domains to an export signal was also found to be a 

prominent mechanisms in the evolutionary emergence of novel type III secretion 

effector proteins (Stavrinides et al. 2006).  

 Whether the effector gene of the Vbh T4SS of B. schoenbuchensis is already 

adapted for host interaction, or plays an unknown role in the process of conjugation 

will be revealed in the future. 
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Experimental procedures 

 

Bacterial strains and Growth conditions. Bartonella spp. were grown on Columbia 

agar (CBA) plates containing 5% defibrinated sheep blood in a humified atmosphere 

at 35°C and 5% CO2 for 2-3 days (B. henselae) or 4-5 days (B. schoenbuchensis). 

Strain RSE247, a spontaneous streptomycin-resistant strain of ATCC 49882T 

(Schmid et al., 2004) served as B. henselae wild-type in this study. The typing strain 

R1 (CHDE252) was used as wild-type for B. schoenbuchensis. Media were 

supplemented with 30 μg/ml kanamycin, 100 μg/ml streptomycin, 12.5 μg/ml 

gentamicin, and/or 500 μM isopropyl β-D-thiogalactosidase (IPTG) if needed. 

 

Sequencing on genomic DNA by primer walking. To isolate genomic DNA the 

QIAGEN Genomic-tip was used as recommended by the supplier (QIAGEN, Hilden, 

Germany). Bacteria were harvested from one to two plates, resuspended, and 

centrifuged for 5 minutes at 4000 rpm. DNA was frozen at -20°C or directly used for 

DNA extraction. For sequencing, 3 μg of genomic DNA was mixed with 0.5 μl of 

primer (10 pmol), 4 μl of BigDye1.1 reaction mix, 2 μl of BigDye1.1 5x Buffer, 1 μl 

Betaine, and ddH2O added to a final volume of 18 μl. The thermocycler program 

used for amplification was as follows: 95°C 5min, 95°C 30 sec, 50°C 20 sec, 60°C 4 

min, repeat step 2 to 4 99 times, store at 4°C. After linear DNA amplification, 2.2% 

SDS was added to each sequencing sample and incubated for 5 min at 95°C. The 

purification and precipitation of the DNA was done by adding 40 μl H2O, 4 μl sodium-

acetate (3 M) pH5.2, and 100 μl ethanol (95-100%). The samples were put into the -

70°C freezer for 15 min to facilitate DNA precipitation. Thereafter, the DNA was 

pelleted in a 30 min centrifugation step at 13’000 rpm and the supernatant discarded. 

The pellet was washed twice with 70% EtOH and centrifuged for 5 min after each 

washing step. The precipitated and purified DNA was dried by a 10 min centrifugation 

in a Speedvac or by air-drying for 30 min in the dark. Thereafter, the samples were 

stored at 4°C in the dark until use. The sequencing was performed with the in-house 

facility (ABI Prism 7000 Sequence Detector and ABI 7000 Sequence Detection 

System 1.1 software from Applied Biosystem). The generated sequences were 

assembled with existing sequence information using VectorNTI software (Invitrogen). 
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Cloning of expression plasmid encoding the NLS-Cre-BID fusion protein. To 

construct plasmid pPE1001, the BID domain-containing C-terminus was amplified 

from genomic DNA of B. schoenbuchensis with primer pairs containing flanking 

XmaI/SalI sites: prPE199 (ATGGTGTCGACAAACACAACAGGCACCATATC) and 

prPE201 (TCCCCCCCGGGTTACCTTGTAATTCCCTTTGAAG). PCR products were 

digested with enzymes XmaI and SalI and ligated into the XmaI/SalI sites of the 

backbone of plasmid pRS51 (Schulein et al. 2005). All plasmid DNA isolations and 

PCR purifications were performed with Macherey-Nagel and Promega columns 

according to manufacturer’s instruction 

 
Cell Culture. Ea.hy926/pRS56-c#B1 cells were grown in Dulbecco's Modified Eagle 

Media (DMEM,Gibco) with 10% fetal calf serum (FCS). Cells were grown in a 

humified atmosphere at 37°C and 5% CO2.  

 

Experimental setup for CRAfT. One day prior infection, 20’000 Ea.hy926/pRS56-

c#B1 cells (per ml and per well) were seeded into a 24-well plate. The next morning, 

the cells were washed once with pre-warmed (37°C) M199/10%. Then, 1 ml 

M199/10% FCS containing 500 μM IPTG was added. The cells were infected with 

variable MOIs of either B. henselae or B. schoenbuchensis strains carrying different 

reporter plasmids. After adding the bacteria to the cells, the 24-well plate was 

centrifuged for 5 min at 1’200 rpm (Biofuge stratos, Heraeus) and incubated at 35°C, 

5% CO2. After 5-7 days of infection, the cell medium was removed and the cells were 

washed with 400 μl trypsine. Afterwards, the cells were incubated with 150 μl trypsine 

for 3 min at 35°C to detach them from the surface. The reaction was stopped with 

450 μl M199 / 10% FCS. The suspension was mixed thoroughly by pipetting up and 

down and transferred into a FACS tube. 3 x 104 Ea.hy926/pRS56-c#B1 cells were 

analyzed by FACS-CaliburTM and data were exported for analysis to WinMDI or 

FlowJo software. 
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3.5.1 Summary 
 

The published genomes of B. bacilliformis, B. henselae, B. quintana, and 

B. tribocorum revealed interesting insights into evolution, host interaction, and 

ecology of the alphaproteobacterial pathogen Bartonella. In this review, we 

summarized published findings concerning general genomic features, genome 

dynamics on the inter- and intra-species level, as well as functional genomics of 

Bartonella. Beside the published data, we provided a comprehensive comparative 

analysis of the four Bartonella genome sequences highlighting aspects not yet 

covered by the primary research articles.  

We used a combination of synteny plots (dot plots) and circular genome maps 

to display size differences among the four Bartonella genomes (1.44 – 2.62 Mb) and 

to indicate the conservation of a genomic backbone in the genus Bartonella. Their 

small syntenic core genome (~ 1000 genes) is reflecting the common facultative 

intracellular life-style of Bartonella. Still, the variation in genome size indicated 

expansion and reduction of genomic content in different lineages of Bartonella. We 

mapped the core genome genes on these circular genome representations showing 

that the accessory genome of Bartonella is organized in genomic islands of different 

dimensions. We further assembled a comprehensive list of all genomic islands 

identified in each of the four genomes and provided information about their gene 

content, dimensions and localization, as well as their presence or absence in other 

Bartonella genomes. This analysis depicted the highly dynamic genome evolution in 

the genus Bartonella reflecting their exceptional adaptability. 

  
Statement of the own participation 
 
 This book chapter about the current state of Bartonella genomics was written 

by Prof. Christoph Dehio and me. Besides reviewing published data, I analyzed the 

four publicly available genomes of Bartonella for presence, absence, and structure of 

genomic islands and assembled the information in a comprehensive table. 

Additionally, I generated circular genome maps and dot plot representations of the 

four Bartonella genomes to allow direct comparison of genomic features. All figures 

of this review article were produced by me. 
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Abstract
The α-proteobacterial genus Bartonella comprises numerous arthropod-borne pathogens that share 

a common host-restricted life-style, which is characterized by long-lasting intraerythrocytic infec-

tions in their specific mammalian reservoirs and transmission by blood-sucking arthropods. Infection 

of an incidental host (e.g. humans by a zoonotic species) may cause disease in the absence of intra-

erythrocytic infection. The genome sequences of four Bartonella species are known, i.e. those of the 

human-specific pathogens Bartonella bacilliformis and Bartonella quintana, the feline-specific 

Bartonella henselae also causing incidental human infections, and the rat-specific species Bartonella 

tribocorum. The circular chromosomes of these bartonellae range in size from 1.44 Mb (encoding 

1,283 genes) to 2.62 Mb (encoding 2,136 genes). They share a mostly synthenic core genome of 959 

genes that features characteristics of a host-integrated metabolism. The diverse accessory genomes 

highlight dynamic genome evolution at the species level, ranging from significant genome expan-

sion in B. tribocorum due to gene duplication and lateral acquisition of prophages and genomic 

islands (such as type IV secretion systems that adopted prominent roles in host adaptation and spec-

ificity) to massive secondary genome reduction in B. quintana. Moreover, analysis of natural popula-

tions of B. henselae revealed genomic rearrangements, deletions and amplifications, evidencing 

marked genome dynamics at the strain level. Copyright © 2009 S. Karger AG, Basel

Until the early 1990s, the genus Bartonella comprised a single species, B. bacilliformis. 

Since then, the reclassification of previously described bacteria based on 16S rRNA 

sequences (i.e., Grahamella and Rochalimea) and the description of novel Bartonella 

species isolated from various animal reservoirs resulted in a major expansion of the 

genus to currently 19 approved species, one of which (Bartonella vinsonii) is split into 

3 subspecies. Among those, nine have been associated with human diseases (fig. 1) [1, 

2]. The arthropod-borne bartonellae are widespread pathogens that colonize mam-

malian endothelial cells and erythrocytes as major target cells [3]. While endothe-

lial cells and potentially other nucleated cells may get infected in both reservoir and 

incidental hosts, erythrocyte invasion takes place exclusively in the reservoir host, 
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resulting in the establishment of a long-lasting intraerythrocytic bacteremia. Despite 

the fact that most Bartonella species are restricted to one reservoir host, there is an 

increasing body of evidence that some species can infect several different mammalian 

hosts [4–8]. The bartonellae represent an interesting model to study the evolution of 

host adaptation/host restriction as most mammals infested by blood-sucking arthro-

pods serve as a reservoir host for at least one Bartonella species [9].

The highly virulent human-specific pathogen B. bacilliformis (causing life-threat-

ening Oroya fever and verruga peruana) holds an isolated position in the Bartonella 

phylogeny as sole representative of an ancestral lineage. All other species evolved in a 

separate ‘modern’ lineage by radial speciation. These modern species represent host-

adapted pathogens of rather limited virulence potential within their diverse mamma-

lian reservoirs. Examples are the human-specific species B. quintana causing trench 
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Fig. 1. Phylogeny and epidemiology of the genus Bartonella, distribution of important genomic 

islands (GI) encoding virulence factors, and presence/absence of flagella. For zoonotic species, man 

as an incidental host is indicated in brackets. Species with known genome sequences are highlighted 

in bold. The phylogenetic tree was calculated on the basis of protein sequences of rpoB, groEL, ribC, 

and gltA as described by [9]. Numbers at the nodes of the tree indicate bootstrap values for 1,000 

replicates. Except for Bartonella talpae and Bartonella peromysci, for which no type strains exist, all 

approved species are included in the tree.
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fever, the cat-adapted zoonotic pathogen B. henselae causing cat-scratch-disease and 

various other disease manifestations in the incidental human host, and the rat-spe-

cific pathogen B. tribocorum not yet associated with human infection (fig. 1). Over 

the last decade, the availability of animal and cell culture infection models in combi-

nation with powerful bacterial genetics has facilitated research aiming at understand-

ing the cellular and molecular interactions that contribute to the complex relationship 

between Bartonella and its mammalian hosts [1–3]. More recently, Bartonella has 

entered the post-genomic era by the release of several complete genome sequences. 

Here, we summarize the comparative and functional genomic studies on Bartonella 

that have been reported to date.

General Features of Bartonella Genomes

Complete genome sequences are presently available for four Bartonella species, i.e., B. 

henselae and B. quintana [10], B. tribocorum [9], and B. bacilliformis (GenBank acces-

sion no. CP000525). Additionally, the genome composition of Bartonella koehlerae 

has been analyzed by comparative genomic hybridization profiling (CGH) based on 

the genome sequence of the closely related species B. henselae [11]. The four available 

Bartonella genomes are composed of single circular chromosomes (plus one plasmid 

in B. tribocorum), which display a uniformly low G+C content of 38.2% to 38.8%, and 

a noteworthy low coding density of 72.3% to 81.6% (table 1). The chromosome sizes 

range from 1,445 kb (encoding 1,283 genes) for B. bacilliformis to 2,619 kb (encoding 

Table 1. General features of Bartonella genome sequences. PCG, protein-coding genes; n.d., not 

determined. The coding content of B. bacilliformis and B. tribocorum were (re-)calculated by dividing 

the total length of all protein-coding genes and tRNA/rRNA coding regions by the chromosome 

length. In addition, the average length of PCG was calculated for B. bacilliformis by dividing the total 

length of all PCG by the number of PCG.

B. bacilliformis B. tribocorum B. henselae B. quintana

Chromosome size 1,445,021 bp 2,619,061 bp 1,931,047 bp 1,581,384 bp

G+C content 38.2% 38.8% (35.0%)a 38.2% 38.8%

Total number of PCG 1,283 2,136 (18)a 1,488 1,142

Average length of PCG 909 bp 906 bp 942 bp 999 bp

Integrase remnants n.d. 47 (0)a 43 4

Number of rRNA operons 2 2 (0)a 2 2

Number of tRNA genes 44 42 (0)a 44 44

Percentage coding 81.6% 74.6% (69.8%)a 72.3% 72.7%

Plasmid 0 1 (23,343 bp)a 0 0

a Numbers in brackets refer to the plasmid
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2,136 genes) for B. tribocorum (table 1, fig. 2). Orthologous gene assignments resulted 

in the identification of a core genome of 959 genes [9], which is encoded by a rather 

well conserved chromosomal backbone in a largely synthenic manner (fig. 2, see dot-

plots).

The relatively small core genome of the bartonellae reflects specific adaptations 

to the genus-specific lifestyle. For instance, a striking example of host-integrated 

metabolism is represented by hemin. This important source for iron and porphyrin 

is particularly abundant in the  host niches colonized by bartonellae, i.e. the intracel-

lular space of erythrocytes and the midgut lumen of blood-sucking arthropods. The 

strict hemin requirement for growth of B. quintana (and probably other bartonel-

lae) in vitro correlates with the presence of multiple genes encoding hemin binding 

and hemin uptake proteins, while no hemin biosynthesis enzyme is encoded by this 

organism [10]. A large-scale mutagenesis screen in the B. tribocorum-rat model iden-

tified several of the hemin-uptake genes as essential for establishing intraerythrocytic 

infection. Moreover, this screen revealed that the majority of pathogenicity factors 

required for establishing intraerythrocytic bacteremia is encoded by the core genome 

inferred from the four available Bartonella genome sequences (66 of 97 pathogenic-

ity genes) [9], indicating that this genus-specific infection strategy is to a large extent 

dependent on a conserved set of core genome-encoded pathogenicity factors.

Genome Dynamics by Lineage-Specific Expansion and Reduction

Despite of a largely synthenic core genome, the known Bartonella genomes are diver-

sified by the variable size and composition of their accessory genomes. These were 

shaped in evolution by massive expansions (due to lateral gene transfer and gene 

duplication) and reductions (due to gene decay and deletion), which mostly occurred 

in a lineage-specific manner.

A marked example for genome reduction is B. quintana, which shares 1,106 

orthologous genes with B. henselae as its closest relative (fig. 1). B. henselae codes 

for 382 genes without orthologs in B. quintana, while only 36 genes are unique to B. 

quintana [9, 10]. Interestingly, Rickettsia prowazekii representing another pathogen 

transmitted by the human body louse has also undergone recent genome reduction, 

suggesting that the extensive genome decay in the B. quintana lineage may be related 

to the biology of this arthropod vector [10]. However, B. bacilliformis, a pathogen vec-

tored by the sandfly Lutzomyia verrucarum, displays also a remarkably small genome 

sequence, indicating that adaptation to humans could be accompanied by reductive 

genome evolution. Consistently, several of the more recently evolved human-specific 

pathogens display marked genome decay, e.g. Salmonella typhi and Mycobacterium 

leprae [12].

With an accessory genome exceeding the size of the core genome (1,195 vs. 959 

genes), B. tribocorum represents a remarkable example of lineage-specific genome 
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expansion, and to a lesser extent genome expansion is also evident in B. henselae 

(accessory genome of 529 genes). The primary source for these genome expansions 

are prophages and other laterally acquired genomic islands (GIs, table 2 and fig. 2). 

One phage-related GI is conserved in all known Bartonella genomes (table 2; BB-GI2 

and homologs). B. tribocorum and B. henselae encode in addition large (>50 kb) 

prophage regions (table 2; BH-GI2, BT-GI2/4) that are homologous but highly plastic 

in their genetic organization [10]. These mosaic prophage regions and the related GIs 

encoding homologous phage genes were probably shaped during evolution by a con-

secutive acquisition of different prophages, followed by duplication, excision, reinte-

gration, and reduction of prophage segments of different size and origin. Exclusively 

B. tribocorum encodes another large prophage (>30 kb) that, moreover, is present 

in multiple copies (table 2; BT-GI8/10/17/26). The different copies of this prophage 

display a strictly conserved gene order (fig. 3a) and a marked similarity to the genetic 

organization and sequence of P2- and Mu-like prophages described in other bacte-

rial taxa. GIs encoding two-partner secretion systems, which often also carry phage 

genes, have also contributed to the large accessory genomes of B. tribocorum and B. 

henselae (table 2; BH-GI4/6, and BT-GI3/7/9/11). Remnants of these GIs are found in 

the reduced genome of B. quintana, while they are absent from the ancestral B. bacil-

liformis lineage and closely related α-proteobacterial taxa. A prototype of these GIs 

was thus likely acquired by the common ancestor of the modern Bartonella lineage, 

followed by lineage-specific expansions and reductions. At present it is unknown 

whether the prophages, phage-related GIs and GIs encoding two-partner secretion 

systems, that contributed to the remarkable genome expansion exemplified by B. tri-

bocorum and B. henselae, have any beneficial role in host interaction, or whether these 

two species are just not under the selective pressure that resulted in massive genome 

reduction in B. quintana.

Some other GIs constituting the accessory genomes of the bartonellae are well 

established pathogenicity factors with important roles in the process of host coloniza-

tion. Unlike B. bacilliformis, all species of the modern lineage encode at least one of the 

closely related type IV secretion systems (T4SSs) VirB/VirD4 or Vbh (VirB homolog) 

(fig. 1), which likely emanated from an ancestral duplication event and which are 

redundant in function. These VirB-like T4SSs are considered to represent major host 

adaptability factors that contributed to the remarkable evolutionary success of the 

modern lineage [9]. T4SSs are transporters ancestrally related to bacterial conjuga-

tion systems that mediate the vectorial translocation of virulence factors across the 

Fig. 2. Circular genome maps of the four Bartonella genome sequences and Dot-plot representa-

tion of genome colinearity (micro-syntheny). The genome maps indicate (outside circles to inside 

circles) the genes on the + and – strands (genes located on genomic islands which are >5 kb or 

encoding more than five CDS are colored in red, all other genes in green), the genes belonging to 

the core genome (in blue), and the GC skew (black). Dot-plots were plotted for the B. quintana 

genome against any other genome for a sliding window of 20 nucleotides. Numbers in the genome 

circles refer to the different genomic islands (see also table 2).
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Table 2. List of genomic islands (GIs) >10 kb of the four known Bartonella genomes. The first and 

last gene of each island is indicated by its locus tag (only the number of each locus tag is shown). The 

length refers to the start and end of the first and last gene of the island, respectively.

GI# Similar genomic Islands Description tRNA Begin End Length

B. bacilliformis

BB-GI2 BT-GI20/23, BH-GI6/12, 

BQ-GI10

Bartonella-specific island 

encoding phage genes

yes 0217 0240 22115

BB-GI4 duplicated genomic region 

encoding housekeeping 

genes

no 0679 0710 26295

BB-GI5 conserved exported protein 

and transporter encoding 

genes

yes 0883 0894 10151

BB-GI6 conserved exported protein 

and phage genes

yes 1055 1080 17466

BB-GI8 BT-GI13, BH-GI10, 

BQ-GI8

flagella genes and inducible 

Bartonella autotransporter 

(iba) genes

yes 1116 1160 46499

BB-GI9 conserved exported protein 

and phage-related genes

no 1180 1190 12068

B. tribocorum

BT-GI1 BT-specific helicase and 

phage-related genes

yes 0156 0167 15612

BT-GI2 BH-GI2, BQ-GI1 phage island yes 0303 0377 51254

BT-GI3 BH-GI4/6 type II secretion system 

island

yes 0387 0422 44997

BT-GI4 BH-GI2/6 phage island yes 0423 0564 110682

BT-GI5 BT-specific island encoding 

predicted membrane 

proteins

yes 0577 0596 17292

BT-GI6 BH-GI3, BQ-GI2, BB-GI3 putative membrane 

proteins not present in 

other alphaproteobacteria

no 0832 0834 11826

BT-GI7 BH-GI2/4/5/6 phage genes, type II 

secretion systems and 

helicase genes

yes 0941 1122 181527

BT-GI8 BT-specific phage island I yes 1218 1283 53256

BT-GI9 BT-specific type II secretion 

systems and hypothetical 

genes

yes 1292 1301 18348

BT-GI10 BT-specific phage island II yes 1382 1429 37682

BT-GI11 BH-GI4 type II secretion system 

island

no 1446 1464a 18888

BT-GI13 BH-GI10, BQ-GI8, 

BB-GI8

inducible Bartonella 

autotransporter (iba) genes

no 1650 1663 21879
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Table 2. Continued

GI# Similar genomic Islands Description tRNA Begin End Length

BT-GI14 BH-GI11, BQ-GI9 VirB T4SS and Bartonella 

effector protein 

(Bep) genes

no 1689 1710 25598

BT-GI16 BH-GI9, BQ-GI7, BB-GI7 conserved Bartonella-

specific autotransporter 

encoding genes

no 1785 1796 28492

BT-GI17 BT-specific phage island III yes 1810 1849 32182

BT-GI19 BH-GI8, BQ-GI6 transporter-associated 

genes, and restriction 

system specific to BT

yes 1897 1930 35415

BT-GI20 BH-GI6/12, BQ-GI10, 

BB-GI2

Bartonella-specific island 

encoding phage genes

yes 1965 1983 12384

BT-GI22 BH-GI14, BQ-GI11, 

BB-GI1

Bartonella-specific island 

encoding yopP gene(s) in 

BQ and BT

yes 2113 2225 53002

BT-GI23 BH-GI6/12, BQ-GI10, 

BB-GI2

Bartonella-specific island 

encoding phage genes

yes 2263 2306 37989

BT-GI24 VirB-homologous (Vbh) T4SS no 2331 2351 13874

BT-GI25 BH-GI15, BQ-GI12 Trw T4SS no 2507 2533 22519

BT-GI26 BT-specific phage island IV yes 2603 2646 35567

B. henselae

BH-GI2 BT-GI2/4/7, BQ-GI1 phage island yes 02730 03760 65723

BH-GI4 BT-GI3/7/11 type II secretion system 

island

yes 06500 07260 75441

BH-GI6 BT-GI3/4/7/20/23, 

BQ-GI10, BB-GI2

phage genes and type II 

secretion 

yes 08980 09500 33315

BH-GI8 BT-GI19, BQ-GI6 transporter-associated 

genes

yes 12470 12600 20850

BH-GI10 BT-GI13, BQ-GI8, 

BB-GI8

inducible Bartonella 

autotransporter (iba) genes

no 13120 13190 19100

BH-GI11 BT-GI14, BQ-GI9 VirB T4SS and Bartonella 

effector protein (Bep) genes

no 13250 13440 28575

BH-GI12 BT-GI20/23, BQ-GI10, 

BB-GI2

Bartonella-specific island 

encoding phage genes

yes 13900 14090 21639

BH-GI14 BT-GI22, BQ-11, BB-GI1 Bartonella-specific island yes 14450 14630 29125

BH-GI15 BT-GI25, BQ-GI12 Trw T4SS no 15530 15760 16156

B. quintana

BQ-GI1 BT-GI2/4, BH-GI2 Remnants of phage island 

present in BH and BT

yes 02600 02760 12764

BQ-GI6 BT-GI19, BH-GI8 Transporter-associated 

genes

yes 09850 09930 10161

BQ-GI8 BT-GI13, BH-GI10, 

BB-GI8

inducible Bartonella 

autotransporter (iba) genes

no 10360 10410 12121
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two Gram-negative bacterial membranes and the host cell plasma membrane directly 

into the host cell cytoplasm [1]. The VirB/VirD4 T4SS of B. henselae was shown to 

translocate several effector proteins, termed Beps, into endothelial cells that subvert 

cellular functions, such as apoptosis and the inflammatory response, that are consid-

ered critical for establishing chronic infection [13–15]. The molecular mechanism 

by which VirB-like T4SSs mediate host adaptability is probably also dependent on 

the translocated Beps. Comparison of the virB/virD4/bep T4SS loci of B. henselae, B. 

quintana and B. tribocorum revealed that the virB/virD4 genes encoding the 11 essen-

tial T4SS components are highly conserved, while the bep genes encoding the trans-

located Beps displayed a higher degree of sequence variation (fig. 3b), suggesting an 

increased rate of evolution as the result of positive selection for adaptive functions in 

the infected host [9].

A third T4SS, Trw, is present in a sub-branch of the modern lineage (fig. 1) and 

essential for the process of erythrocyte invasion [16]. Interestingly, the presence of Trw 

by the modern lineage correlates with the loss of flagella (fig. 1), which are required for 

the invasion of erythrocytes by B. bacilliformis and probably also the flagellated bacteria 

of the modern lineage [1]. Trw does not translocate any known effectors, but produces 

multiple variant pilus subunits due to tandem gene duplication and diversification (by 

combinatorial sequence shuffling and point mutations) of trwL (encoding the major 

pilus subunit TrwL) and trwJ (encoding the minor pilus-associated subunit TrwJ) (fig. 

3c) [17]. The variant pilus subunits exposed on the bacterial surface are thought to 

facilitate the interaction with different erythrocyte receptors or blood group antigens, 

and may thus represent major determinants of host specificity [1].

Genome Dynamics on the Strain Level

Evidence for genome dynamics on the intra-species level is accumulating for differ-

ent Bartonella species. To access the natural variation in gene content and genome 

Table 2. Continued

GI# Similar genomic Islands Description tRNA Begin End Length

BQ-GI9 BT-GI14, BH-GI11 VirB T4SS and Bartonella 

effector protein (Bep) genes

no 10510 10680 22110

BQ-GI10 BT-GI20/23, BH-GI6/12, 

BB-GI2

Bartonella-specific island 

encoding phage genes

yes 11020 11160 17399

BQ-GI11 BT-GI22, BH-GI14, 

BB-GI1

Bartonella-specific island 

encoding yopP gene(s) in 

BQ and BT

yes 11400 11630 20809

BQ-GI12 BT-GI25, BH-GI15 Trw T4SS no 12450 12680 16587
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Fig. 3. Representation of selected GIs encoded in Bartonella genomes. Genes belonging to the GIs 

are shown in green, flanking genes are shown in white. (a) Alignment of the GIs encoding a B. tribo-

corum-specific prophage. Genes belonging to the prophage are located within the gray area. 

Noteworthy, BT-GI8 is flanked on one side by another island (gray gene symbols); (b) Alignment of 

the GI encoding the conserved T4SS VirB/VirD4 (virB2–11 and virD4 genes, colored in light green) and 

the highly variable translocated effectors (bep genes, colored in dark green); (c) Alignment of the GI 

(and flanking genes) encoding the T4SS-locus trw. The number of tandem repeats of trwL and trwIJH 

is indicated by gene symbols (colored in dark green) for the sequenced Houston-1 strain of B. hense-

lae and by numbers in brackets for further B. henselae strains and the other species with known gene 

sequences. For (b) and (c), sequence similarity is shown with the percent identity indicated accord-

ing to the color scales.
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structure of B. henselae, a set of 38 strains isolated from cats and humans was ana-

lyzed by comparative genome hybridization [18]. The variation in gene content 

was modest and confined to the mosaic prophage region and other GIs, whereas 

extensive rearrangements were detected across the terminus of replication with 

breakpoints frequently locating to GIs. Moreover, in some strains a growth-phase 

dependent DNA-amplification was detected that centered at a putative phage rep-

lication initiation site located in a large plasticity region exemplified by a particu-

larly low coding density [18]. Another study suggested that B. henselae exists as 

a mosaic of different genetic variants in the infected host [19]. Finally, genomic 

rearrangements due to gene deletions were elegantly demonstrated in serial isolates 

of B. quintana from an experimentally infected macaque [20]. Together, these data 

strongly suggest that various mechanisms contribute to a dynamic genome varia-

tion on the strain level.

Conclusions

Comparative and functional analysis of the four available complete genome sequences 

of species belonging to the genus Bartonella yielded first insights into the evolution, 

ecology and host interaction of this largely understudied group of bacterial patho-

gens. The small core genome reflects a host-integrated metabolism and codes for 

the majority of genes involved in the genus-specific infection strategy characterized 

by long-lasting intraerythrocytic infections in specific mammalian reservoir hosts. 

However, it is also evident that the accessory genomes contribute significantly to this 

infection strategy, e.g. flagella serving in the process of erythrocyte invasion by more 

ancestral species are considered to be functionally replaced by a laterally-acquired 

T4SS in more recently evolved species. Other laterally-acquired T4SSs were associ-

ated with the remarkable host adaptability exemplified by the radiating modern 

lineage. Genome expansion by lateral gene transfer in combination with secondary 

genome reduction has shaped the variable accessory genomes of the known Bartonella 

genomes. Additional Bartonella genome sequences expected to get available in the 

near future should result in a better understanding of the evolutionary processes that 

facilitated the emergence of a radiating group of host-restricted pathogens adapted 

to colonize a large variety of mammalian species that is infested by blood-sucking 

arthropods.

Acknowledgements

We are grateful to Arto Pulliainen for critically reading of the manuscript. The work was supported 

by grant 3100A0–109925/1 from the Swiss National Science Foundation (SNF), and grant 55005501 

from the Howard Hughes Medical Institute (HHMI).

Results - Review article - Manuscript

207



Genomics of Host-Restricted Pathogens of the Genus Bartonella 169

 1 Dehio C: Infection-associated type IV secretion sys-

tems of Bartonella and their diverse roles in host cell 

interaction. Cell Microbiol 2008;10:1591–1598.

 2 Dehio C: Molecular and cellular basis of Bartonella 

pathogenesis. Annu Rev Microbiol 2004;58:365–

390.

 3 Dehio C: Bartonella-host-cell interactions and vas-

cular tumour formation. Nat Rev Microbiol 2005; 

3:621–631.

 4 Harms C, Maggi RG, Breitschwerdt EB, Clemons-

Chevis CL, Solangi M, et al: Bartonella species 

detection in captive, stranded and free-ranging 

cetaceans. Vet Res 2008;39:59.

 5 Jones SL, Maggi R, Shuler J, Alward A, Breitschwerdt 

EB: Detection of Bartonella henselae in the blood of 

2 adult horses. J Vet Intern Med 2008;22:495–498.

 6 Maggi RG, Harms CA, Hohn AA, Pabst DA, 

McLellan WA, et al: Bartonella henselae in porpoise 

blood. Emerg Infect Dis 2005;11:1894–1898.

 7 Bown KJ, Bennet M, Begon M: Flea-borne Barton-

ella grahamii and Bartonella taylorii in bank voles. 

Emerg Infect Dis 2004;10:684–687.

 8 Engbaek K, Lawson PA: Identification of Bartonella 

species in rodents, shrews and cats in Denmark: 

detection of two B. henselae variants, one in cats and 

the other in the long-tailed field mouse. Apmis 

2004;112:336–341.

 9 Saenz HL, Engel P, Stoeckli MC, Lanz C, Raddatz G, 

et al: Genomic analysis of Bartonella identifies type 

IV secretion systems as host adaptability factors. 

Nat Genet 2007;39:1469–1476.

10 Alsmark CM, Frank AC, Karlberg EO, Legault BA, 

Ardell DH, et al: The louse-borne human pathogen 

Bartonella quintana is a genomic derivative of the 

zoonotic agent Bartonella henselae. Proc Natl Acad 

Sci USA 2004;101:9716–9721.

11 Lindroos HL, Mira A, Repsilber D, Vinnere O, 

Naslund K, et al: Characterization of the genome 

composition of Bartonella koehlerae by microarray 

comparative genomic hybridization profiling. J 

Bacteriol 2005;187:6155–6165.

12 Pallen MJ, Wren BW: Bacterial pathogenomics. Nat-

ure 2007;449:835–842.

13 Schmid MC, Scheidegger F, Dehio M, Balmelle-

Devaux N, Schulein R, et al: A translocated bacterial 

protein protects vascular endothelial cells from apo-

ptosis. PLoS Pathog 2006;2:e115.

14 Schulein R, Guye P, Rhomberg TA, Schmid MC, 

Schroder G, et al: A bipartite signal mediates the 

transfer of type IV secretion substrates of Bartonella 

henselae into human cells. Proc Natl Acad Sci USA 

2005;102:856–861.

15 Schmid MC, Schulein R, Dehio M, Denecker G, 

Carena I, Dehio C: The VirB type IV secretion sys-

tem of Bartonella henselae mediates invasion, proin-

flammatory activation and antiapoptotic protection 

of endothelial cells. Mol Microbiol 2004;52:81–92.

16 Seubert A, Hiestand R, de la Cruz F, Dehio C: A 

bacterial conjugation machinery recruited for 

pathogenesis. Mol Microbiol 2003;49:1253–1266.

17 Nystedt B, Frank AC, Thollesson M, Andersson SG: 

Diversifying selection and concerted evolution of a 

type IV secretion system in Bartonella. Mol Biol 

Evol 2008;25:287–300.

18 Lindroos H, Vinnere O, Mira A, Repsilber D, Nas-

lund K, Andersson SG: Genome rearrangements, 

deletions, and amplifications in the natural popula-

tion of Bartonella henselae. J Bacteriol 2006;188: 

7426–7439.

19 Berghoff J, Viezens J, Guptill L, Fabbi M, Arvand M: 

Bartonella henselae exists as a mosaic of different 

genetic variants in the infected host. Microbiology 

2007;153:2045–2051.

20 Zhang P, Chomel BB, Schau MK, Goo JS, Droz S, et 

al: A family of variably expressed outer-membrane 

proteins (Vomp) mediates adhesion and autoaggre-

gation in Bartonella quintana. Proc Natl Acad Sci 

USA 2004;101:13630–13635.

References

Christoph Dehio

Biozentrum, University of Basel

Klingelbergstrasse 70

CH–4056 Basel (Switzerland)

Tel. +41 61 267 2140, Fax +41 61 267 2118, E-Mail christoph.dehio@unibas.ch

Results - Review article - Manuscript

208



 Summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Summary 

209 



 Summary 

4. Summary 

 

Species of the alphaproteobacterial genus Bartonella present some stunning 

characteristics. They have adopted a unique infection strategy by persistently 

colonizing the bloodstream of various mammalian hosts. Whereas the presence of 

bacteria in the blood normally leads to severe disease manifestations, most 

bartonellae cause only mild or even asymptomatic infections, which indicates their 

perfect adaptation to the hosts. This remarkable infection strategy of Bartonella 

seems to be generally applicable, since the bloodstream of a wide range of different 

mammalian hosts can be colonized by Bartonella. Despite their adaptability, 

bartonellae exhibit a strong specificity, as a given species can only cause 

intraerythrocytic infection in one or few closely related mammalian hosts. By using 

genomic approaches, this work describes molecular features crucial for the 

adaptation of this unique infection strategy of Bartonella and assesses the underlying 

evolutionary processes. 

 

 Research article I presents a combinatorial study using functional and 

comparative genomics to identify colonization factors (i.e. pathogenicity genes) which 

could have contributed to the remarkable host adaptability of Bartonella. Our results 

show that most of the comprehensively identified colonization factors of B. tribocorum 

are conserved among different Bartonella species. This reflects the common infection 

strategy adopted by bartonellae to colonize their different mammalian hosts. 

Interestingly, we identified the VirB and Trw T4SS to be restricted to rapidly 

multiplying lineages comprising species causing generally benign infections in their 

various reservoir hosts. No T4SS was found in the genome of the highly virulent 

species B. bacilliformis. Comparative and phylogenetic analyses revealed that the 

VirB and Trw T4SSs were acquired by horizontal transfer after the divergence from 

the ancestral lineage of B. bacilliformis. By constituting molecular devices dedicated 

to the interaction with cellular host niches, T4SSs of Bartonella seem to be involved 

in the fine-tuning of the infection strategy resulting in increased host adaptability. This 

is reflected by the high degree of plasticity found among the genes encoding the VirB 

T4SS effector proteins known to subvert various cellular functions of the host. In this 

context, we propose that T4SSs display host adaptability factors facilitating virulence 

adjustment and the colonization of new hosts.  
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 In Research article II, our aim was to further understand the 

evolutionary process resulting in the adaptation to different hosts. Thus, we 

investigated the parallel diversifying evolution of two Bartonella lineages which both 

harbor the VirB T4SS. Phylogenetic analysis revealed that the diversification of these 

two lineages resembled an evolutionary process known as adaptive radiation – i.e. 

the evolution of ecological and phenotypic diversity within a rapidly multiplying 

lineage. Based on our previous findings (3.1. Research article I) and a genome-wide 

natural selection analysis, the VirB T4SS seems to display a horizontally acquired 

key innovation which has independently triggered the adaptive radiation of the two 

lineages. Our phylogenetic and comparative analyses revealed that the VirB T4SS of 

the two lineages has been chromosomally integrated by two separate evolutionary 

events. Subsequently, two distinct VirB T4SS effector gene sets with functional 

similar characteristics have evolved in the two lineages by independent amplification 

and diversification processes. As evolutionary parallelism displays stark evidence for 

comparable, yet independent responses to similar selective pressures, our results 

imply that the lineage-specific evolution of the VirB T4SS and its effector proteins 

was driving the radiation of the two lineages. This is the first study demonstrating 

adaptive radiations for bacteria in their natural habitats, and moreover, assesses the 

underlying molecular mechanisms. 

 

 Research article III is shifting the focus on another aspect of host adaptation 

of Bartonella by addressing the specificity on the level of erythrocytes exhibited by 

this bacterial pathogen. With our in vitro model for erythrocyte adhesion and invasion, 

we demonstrated that the interaction with erythrocytes underlies a strict host-

specificity in the genus Bartonella. When testing abacteremic transposon mutants of 

B. birtlesii in the in vitro model, the Trw T4SS was identified to be essential for 

erythrocyte colonization. The expression of the entire Trw T4SS of the rat-specific 

species B. tribocorum in B. henselae enabled this cat-adapted strain to colonize 

erythrocytes isolated from cats as well as from rats. This implicates a direct role for 

the Trw system in host specificity. Genomic inspection and evolutionary analysis of 

the trw loci showed that several pilus-components of the Trw T4SS are under 

diversifying selection in different Bartonella species. Hence, these components 

represent good candidates to confer host specificity of the Trw T4SS. 
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 Complementary to the previously mentioned study on adaptive radiations, the 

chapter of unpublished results addresses the functional role of the VirB-

homologous (Vbh) T4SS in a phylogenetic lineage of Bartonella strictly comprising of 

ruminant-infecting species. The Vbh T4SS was suggested to functionally replace the 

VirB T4SS which is missing in this sub-lineage of Bartonella. Sequencing of the entire 

vbh locus of B. schoenbuchensis, a representative of that lineage, indicated a bi-

functional role for this T4SS. Besides the presence of an effector-encoding gene 

similar to the ones of the VirB T4SS, the vbh locus of B. schoenbuchensis also 

harbors genetic features reminiscent of a conjugation machinery. Genomic and 

functional investigation showed that the Vbh T4SS of B. schoenbuchensis is encoded 

on a plasmid and mediates the conjugative transfer of this plasmid between different 

Bartonella species. Attempts to demonstrate Vbh T4SS-mediated translocation of the 

identified effector gene into eukaryotic cells did so far not lead to any conclusive 

results. However, with its ambiguous characteristics, the Vbh T4SS appears to 

constitute an evolutionary snapshot of the adaptive transformation of a conjugation 

machinery into a host-interacting protein secretion system. 

 

 Finally, to provide an overview of Bartonella genomics, our Review article 
summarizes commonalities and differences of the publicly available genomes of 

B. bacilliformis, B. henselae, B. quintana, and B. tribocorum. It highlights the variation 

of genome size ranging from 1.44 Mb to 2.62 Mb and addresses the accessory 

genome content of Bartonella. Dot plot analyses and comparison of the coding 

content of the four genomes show that bartonellae share a small, syntenic core 

genome (~ 1000 genes). The variation in gene content can mostly be attributed to 

lineage-specific acquisition and reduction of various genomic islands of different 

appearance. The highly dynamic genome evolution seems to reflect the great 

adaptability of the genus Bartonella. 
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5. Discussion
 

213 



Discussion – Genomic overview of Bartonella 

5. Discussion 

 

In this study, I used genomic approaches to understand the molecular basis of the 

infection strategy of Bartonella and to infer the underlying evolutionary process of 

host adaptation. Since my thesis included sequencing and analysis of several 

Bartonella genomes, I will first discuss some global findings in regard to Bartonella 

genomics and reflect on the life-style of this bacterial pathogen. Further, I will focus 

on more specific results of my PhD and integrate different aspects of the research 

articles and unpublished results to obtain a comprehensive picture for the molecular 

evolution of Bartonella by adaptive radiations. 

 

5.1 Genomic overview of Bartonella and its lifestyle 

 

In 2004, Bartonella entered the post-genomic era when the genomes of the zoonotic 

species B. henselae and the human pathogen B. quintana had been released 

(Alsmark et al. 2004). During my thesis, we sequenced the genomes of six additional 

Bartonella strains: B. tribocorum, B. clarridgeiae, B. rochalimae, B. sp. 1-1C, 

B. sp. AR 15-3, and B. schoenbuchensis (3.1 and 3.2 Research article I and II). Four 

of these six genomes consist of draft sequences only (B. rochalimae, B. sp. 1-1C, 

B. sp. AR 15-3, and B. schoenbuchensis). However, the advanced state of the 

assemblies and the automated gene annotations allowed comparative analyses of 

these draft genomes with the completed sequences. Together with genomes 

published by other research groups (B. henselae, B. quintana (Alsmark et al. 2004), 

B. grahamii (Berglund et al. 2009), and B. bacilliformis (CP000524)), the existing 

sequence data covers species from all major lineages of Bartonella and thus, 

provides a comprehensive overview of the genome dynamics in the genus 

Bartonella.  

In general, bartonellae harbor small genomes with a size of 1.4-2.6 Mb, a GC 

content of 35% - 39% and a low coding content (70 - 80 %). These are typical 

characteristics also found among genomes of other vector-borne intracellular 
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alphaproteobacteria, as Rickettsia, Wolbachia, or Anaplasma (Boussau et al. 2004). 

Hence, genomic evolution in the genus Bartonella consistently follows the common 

trend towards small genomes of intracellular bacteria confirming the strong 

correlation between environmental selection pressures and the evolutionary 

processes shaping genomic structures (Sallstrom and Andersson 2005; Casadevall 

2008). 

As Bartonella species share a common lifestyle in protected host niches, it is 

not surprising that their small core genome encodes most of the pathogenicity factors 

identified by the signature-tagged mutagenesis of B. tribocorum (3.1 Research article 

I). However, it is rather remarkable that some Bartonella species, despite their 

common infection strategy and the general trend towards gene loss, harbor large 

accessory gene pools resulting in the observed variability in genome size (3.5 

Review article). These differences could reflect the adaptation to different blood-

sucking arthropods used by Bartonella to be transmitted between hosts. As 

arthropods are colonized by heterogeneous bacterial populations (Dillon and Dillon 

2004; Tonetti et al. 2009), they display a potential source for HGT most likely 

responsible for the lineage-specific expansions of the genetic content in Bartonella. A 

substantial fraction of this accessory gene content might be specifically dedicated to 

the survival and replication within the distinct arthropod hosts. However, as the 

adaptation to narrow niches results in gene loss, it needs to be considered that not 

only the number of different arthropod vectors, but also the host range of these 

vectors, as well as the bacterial population size might influence the evolution of 

genomic structures in Bartonella (Felsenstein 1974; Moran 1996; Moran and Plague 

2004). In this line, it was proposed that B. quintana might have reduced its genomic 

content to the core genome as a consequence of the adaptation to a single host-

restricted vector, the human body louse (Page et al. 1998; Alsmark et al. 2004).  

For a substantial fraction of the accessory gene pool of Bartonella no function 

could yet be assigned. This might implicate the selfish nature of these DNA 

segments, which litter the genomes of Bartonella. Several prophage regions 

identified in the genome of B. tribocorum might display such elements, as they 

encode typical phage components needed for a selfish lifestyle in a bacterial 

population. Also, toxin-antitoxin-like genes and restriction-modification systems found 

in the genomes of Bartonella are evidence for the selfish nature of a substantial 
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fraction of the accessory genetic content (Kobayashi 2001; Van Melderen and 

Saavedra De Bast 2009). However, for B. grahamii, a bacteriophage was identified 

which not only packaged phage DNA into viral particles but also large fractions of 

genomic regions harboring genes important for host colonization. It was proposed 

that this so called gene transfer agent might allow an increased genetic exchange of 

genes involved in infectious processes (Berglund et al. 2009). These findings go in 

line with the fact that the packaged region displays the highest degree of gene 

content variability indicating that this mechanism might substantially shape the size of 

the accessory genomes of different Bartonella lineages. 

Despite the significant differences in genome size and the high abundance of 

repeats in the accessory gene pools, the organization of the genetic backbone 

encoding the core genome appears to be rather conserved across different 

Bartonella lineages. This is astonishing, as in other bacterial species the presence of 

repeats resulted in massive rearrangements of their genomic backbone (Mira et al. 

2002). The high degree of conservation implies that the chromosomal organization of 

Bartonella is under strong selection pressure, and the genomic plasticity is restricted 

to genomic hot spots. This compatibility of genomic conservation and plasticity might 

provide the framework of the evolutionary success of this bacterial pathogen.
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5.2 Adaptive radiations in Bartonella 

 

Since species of the genus Bartonella are specifically adapted to colonize the 

bloodstream of a wide array of different mammals, they display a great model to 

study molecular and evolutionary aspects of host adaptation. The availability of 

genome sequences offered new approaches for assessing the genetic basis and the 

molecular evolution of host adaptation in this bacterial pathogen. The genomic 

approach of this study inferred that type IV secretion systems (T4SSs), acquired at 

different time points of evolution, enabled Bartonella to successfully adapt its 

characteristic infection strategy for the colonization of a wide array of different 

mammals. In particular, these are the VirB, the Trw, and most likely also the VirB-

homologous (Vbh) T4SS (3.1 Research article I). At least two lineages of Bartonella 

(here referred to as lineage 3 and lineage 4, see 3.2 Research article II) harbor the 

VirB T4SS and appear to be exceptionally successful in adapting to various hosts, as 

they comprise most of the extant Bartonella species. In both lineages species have 

independently adapted to the same reservoir hosts. In research article II, we showed 

that evolution of these two lineages follows an evolutionary process known as 

adaptive radiation. This process describes the rapid evolution of a multitude of 

species from a single ancestor by the adaptation to divergent niches (Schluter 2000) 

which in case of Bartonella represent the mammalian hosts. This process can either 

be driven by a key innovation, the availability of unoccupied niches (i.e. ecological 

opportunities), or a combination of these two factors. Hallmark examples in the 

Metazoan kingdom are Darwin’s finches (Grant and Grant 2008) on the Galapagos 

Islands, cichlid fishes in the Great East African lakes (Salzburger 2009), or the 

Carribean Anolis lizards (Butler et al. 2007). Although adaptive radiations of rapidly 

multiplying bacteria have been directly observed in evolution experiments (Rainey 

and Travisano 1998; MacLean 2005; Blount et al. 2008; Kassen 2009), no 

compelling example of adaptive radiation has been described for bacteria in their 

natural habitats. Reasons for this may be the difficulty to consistently define bacterial 

species boundaries with respect to phenotypic and ecotypic characteristics, as well 

as the varying degree of genetic diversity (Fraser et al. 2009) across different 

bacterial genera. Herein, the ecology of Bartonella seems to provide the appropriate 

framework which allows us to understand mechanisms of adaptive radiations of 

bacteria in their natural habitats for the first time. 
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5.2.1 The VirB system: a key innovation driving parallel adaptive radiations 

 

Our data provides strong evidence that the VirB T4SS displays a key innovation for 

the adaptive radiations of Bartonella. We have found the VirB T4SS to be exclusively 

present in the two radiating lineages 3 and 4 of Bartonella, where it has presumably 

been acquired in a common ancestor. T4SS are ancestrally related to plasmid-

encoded conjugation machineries mediating the horizontal transfer of these extra-

chromosomal replicons among bacteria (Schulein and Dehio 2002; Frank et al. 

2005). Thus, it is tempting to speculate that the common ancestor of the two radiating 

lineages acquired the VirB T4SS as a conjugation system encoded on a conjugative 

plasmid. This scenario becomes even more likely by the fact that the highly related 

VirB-homologous (Vbh) T4SS of B. schoenbuchensis and B. grahamii is encoded on 

a plasmid and at least in B. schoenbuchensis is capable of mediating conjugative 

transfer (Berglund et al. 2009). Further, our comparative and phylogenetic analyses 

comparing the VirB T4SS of the two radiating lineages revealed a separate but highly 

similar evolution of the VirB T4SS. This included the independent chromosomal 

integration of the T4SS genes and the lineage-specific emergence of translocated 

effector alleles. These independently evolved similar functional features in the two 

lineages, as for example tyrosine-phosphorylation motifs. These parallel evolutionary 

processes preceded the adaptive radiations in both lineages implicating that the 

functional versatility of the VirB T4SS had been readily evolved before the lineages 

started to diversify. Evolutionary parallelisms, as identified on the ecological as well 

as the molecular level for Bartonella, are characteristic for adaptive radiations. They 

display compelling evidence for comparable, but independent, responses to similar 

selective conditions in different lineages (Salzburger 2009). Therefore, the correlation 

between the diversification of the VirB T4SS and the occurrence of adaptive radiation 

in two independent lineages provides strong evidence that this T4SS displays a key 

innovation for the radiation of the two lineages. 

The more recent onset of the radiation in lineage 3 compared to lineage 4 

might suggest that the integration of the VirB T4SS and the diversification of the 

effector genes happened at different time-points of evolution in these two lineages 

(3.2 research article II). The genetic differences which we have found between the 

VirB T4SS loci of the two lineages seem to reflect this. In the genomes of lineage 3, 
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the T4SS gene cluster is present in two or even three copies. Further, we have found 

more duplicated effector genes in lineage 3 compared to lineage 4. It was argued 

that gene amplification processes display the initial adaptive responses to selection 

pressures resulting in an increase of the gene dosage of important factors 

(Sandegren and Andersson 2009). This is explained by the much higher frequency of 

gene duplications over specific point mutations (as for example promoter up 

mutations) in a bacterial population (Bergthorsson et al. 2007). The multiple copies of 

the VirB T4SS and effector genes present in the chromosomes of lineage 3 might 

confer such a gene dosage effect. However, gene amplifications are highly instable 

mutations and display only transient solutions to a selective problem until more stable 

adaptive mutations occur (Andersson and Hughes 2009). This might explain why one 

of the three VirB loci was partially deleted again in a common ancestor of 

B. rochalimae and B. sp. 1-1C. The same seems to hold true for some effector genes 

of lineage 3, as gene remnants at given genomic integration sites provide evidence 

for their secondary deletion in some of the analyzed species.  

By harboring only one locus encoding the T4SS and effector genes, the 

genomic organization of the VirB system in lineage 4 seems to be more stream-lined 

likely reflecting its advanced evolutionary state in the species of this older radiation. 

This is also supported by the finding that the VirB T4SS of B. henselae, a species of 

lineage 4, was put under the regulatory control of the vertically inherited two-

component system BatR/BatS which belongs to the alphaproteobacterial core 

genome. Apparently, after the HGT and chromosomal integration, appropriate 

promoter sequences had evolved upstream of the VirB T4SS and effector genes 

(unpublished results, Maxime Quebatte). The control of the expression of the VirB 

T4SS of lineage 3 is unknown and would be an interesting aspect to study in the 

future.  

While gene dosage effects are supposed to constitute the initial force driving 

gene amplification, secondary adaptive mutations often lead to the emergence of 

functionally new variants (Francino 2005; Bergthorsson et al. 2007). This is exactly 

what we observe for the effector genes of lineage 3 and 4. The duplicated effector 

alleles have diversified by the accumulation of adaptive point mutations, as measured 

by positive selection analysis, as well as by recombination resulting in effector 

variants with altered domain structures. Particularly in lineage 3, where many effector 
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genes harbor the ancestral domain architecture, a substantial fraction of the adaptive 

mutations might also reflect a co-evolutionary arms-race between the pathogen and 

the host immune-system. In the plant pathogenic species complex Pseudomonas 

syringae, it was shown that the T3SS effector gene YopJ appears in various allelic 

forms which have evolved under strong positive selection (Ma et al. 2006; McCann 

and Guttman 2008). These variants have retained the same biochemical function but 

show very different patterns of recognition in different hosts, thereby also conferring 

host-specificity. 

For Bartonella, however, experimental studies have demonstrated that many 

of the analyzed effector variants exhibit distinct phenotypic properties in host cells 

indicative for their diverse roles in host subversion (Schmid et al. 2006; Rhomberg et 

al. 2009; Scheidegger et al. 2009; Selbach et al. 2009). But how can a single 

ancestral effector gene give rise to such a variety of distinct functions? The 

explanation seems to lie in the functional adaptability of the different domains and 

motifs which these effector genes are built on. The tandem-repeated phosphorylation 

motifs as well as the FIC domains encoded by many effector genes are supposed to 

mediate post-translational modifications of a diversity of host cell proteins (Roy and 

Mukherjee 2009; Selbach et al. 2009; Yarbrough et al. 2009). The adaptive evolution 

seems to allow these different effector variants to target distinct host cell functions 

resulting in a highly specific modulation of the cellular niches. Remarkably, also the 

BID domain, being part of the translocation signal of effector genes, seems to be 

capable of adopting functions in the host cell (Schulein et al. 2005). In case of BepA, 

it was shown that the BID domain is sufficient to mediate the anti-apoptotic property 

of this effector gene (Schmid et al. 2006). BID domains of other effectors with the 

same domain constitution as BepA do not exhibit this phenotype indicating the 

specific adaptive modulation of the translocation signal in BepA. The large reservoirs 

of biologically distinct functions, which apparently can be invented from a single 

ancestor-gene by amplification-diversification processes, provide the framework for 

the adaptive evolution of Bartonella in different ecological niches and ultimately result 

in the radiation of lineages harboring the VirB T4SS.  

Although the VirB T4SS and its effector genes are essential for colonization of 

the intraerythrocytic niche, the exact cell types targeted by this system in vivo remain 

unknown. However, there is evidence that the VirB T4SS fulfills its function at an 
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early stage of the infection process before the bacteria get seeded into the 

bloodstream (Schulein and Dehio 2002). Particularly, endothelial cells are likely to be 

targeted in vivo by Bartonella and the VirB T4SS, because these cells line the interior 

surface of blood vessels where the bacterial seeding could take place from (Dehio 

2005). Several Bartonella species show a strong tropism for endothelial cells 

(Brouqui and Raoult 1996; Verma et al. 2000; Schmid et al. 2004). In vitro studies of 

B. henselae infecting endothelial cells revealed various phenotypes dependent on 

the T4SS and its effector genes which get translocated into these cells (Schmid et al. 

2004; Schulein et al. 2005; Schmid et al. 2006; Rhomberg et al. 2009; Scheidegger 

et al. 2009). However, it is very likely that also other cell types, particularly those of 

the immune system, are targeted by the VirB T4SS, as the modulation of the host 

adaptive immune response represents the key towards a persistent infection (Batut et 

al. 2004); and also, the innate immune response displays one of the first barrier 

towards the colonization of new hosts (Albiger et al. 2007). Cell types of the immune 

system known to be targeted by Bartonella are, for instance, macrophages (Musso et 

al. 2001; Schweyer and Fayyazi 2002; Kyme et al. 2005).  

Interestingly, recent data shows that B. henselae is translocating effector 

proteins into dendritic cells implicating these tissue-located phagocytes as potential 

first targets of Bartonella at the site of vector-infection (unpublished results, Rusudan 

Okujava). The action of the VirB T4SS at an early stage of infection and the ability to 

modulate the host-specific immune response would go in line with the adaptive 

capabilities of this nanomachinery. Future studies aiming at the identification of the 

primary cellular niches in vivo would help to understand the molecular action of the 

VirB T4SS allowing Bartonella to reach the bloodstream. In this context, it would be 

of particular interest to study commonalities and differences in the way how 

Bartonella species of the two radiating lineages with their different effector gene sets 

are subverting the cellular niches of their hosts. 
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5.2.2 The Trw system: a lineage-specific key innovation 

 

The fact that the two lineages 3 and 4 have undergone separate adaptive radiations 

raises the question whether lineage-specific factors could have contributed to these 

independent evolutionary processes. The Trw T4SS might display such a lineage-

specific factor. It is exclusively found in lineage 4, where it was acquired by HGT 

(Seubert et al. 2003). Together with the VirB, the Trw T4SS belongs to the few 

essential host colonization factors absent in the highly virulent species B. 

bacilliformis. Thus, the Trw T4SS was suggested to contribute to the observed host 

adaptability in the corresponding lineage of Bartonella. Further, our natural selection 

analysis showed that different components of the Trw T4SS have substantially 

evolved by positive selection suggesting a role in the adaptive process of Bartonella.  

On the basis of in vivo data (Seubert et al. 2003), the Trw T4SS was 

hypothesized to be involved in erythrocyte binding and invasion; however, the direct 

interaction with erythrocytes was never shown. By using in vitro cell assays, we have 

demonstrated for the first time the direct role of the Trw T4SS in erythrocyte 

adherence and invasion (3.3 Research article III). Further, our in vitro assay fully 

reproduced the host specificity of Bartonella observed in vivo. The ectopic expression 

of the Trw T4SS of rat-specific B. tribocorum in cat-specific B. henselae expanded 

the host range for erythrocyte infection from cat to rat, thus indicating the Trw T4SS 

to mediate host-specific erythrocyte infection. Since niche specificity is a direct 

consequence of adaptive evolution to divergent niches (Cohan and Koeppel 2008), 

these finding are strongly supporting the adaptive potential of the Trw T4SS. In case 

of plant pathogenic bacteria, as Pseudomonas syringae or Pantoea agglomerans, 

Type III secretion effector genes were shown to have evolved by adaptive evolution, 

thereby conferring the host-specificity of different strains (Nissan et al. 2006; McCann 

and Guttman 2008; Almeida et al. 2009). Also, adaptive evolution detected in Type III 

secretion effector genes of Salmonella was supposed to mediate host specificity 

(Eswarappa et al. 2008; Eswarappa et al. 2009). Most trw T4SS genes, which were 

found to be under positive selection, are encoding different pilus subunits. 

Interestingly, these genes have been amplified and diversified several times during 

evolution resulting in the presence of up to eight paralogous gene copies in a given 

Bartonella species. It was hypothesized that these diverse pilus variants might confer 
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the binding to surface molecules of erythrocytes, as e.g. glycoproteins. Mammalian 

erythrocytes are known to have highly variable glycoprotein surface structures, both 

within and between individual host species (Gagneux and Varki 1999). Further, they 

have been suggested to evolve by diversifying selection (Baum et al. 2002; Altheide 

et al. 2006). Therefore, the selection for a diverse arsenal of bacterial binding 

components appears likely to explain the amplification and diversification of the pilus 

components of the Trw T4SS. Additionally, the selection pressure imposed by the 

host immune system may contribute to the observed rapid evolution of these pilus 

proteins (Nystedt et al. 2008). Although the Trw T4SS confers host specificity, the 

rapid diversifying evolution of the pilus subunits might facilitate spontaneous host 

switches, which eventually lead to the evolution of pathogens with altered host 

specificity. Hence, the Trw T4SS appears likely to contribute to the adaptive radiation 

of lineage 4.  

The adoption of improved molecular traits to colonize a given niche often 

results in the loss of formerly essential factors. This can be due to the incompatibility 

of these factors with the novel lifestyle of the bacterium or to the replacing function of 

the novel trait (Forterre 1999; Maurelli 2007). Intriguingly, we find a marked 

correlation between the presence of the Trw T4SS and the deletion of the flagella loci 

in different lineages of Bartonella. Flagella are supposed to have been vertically 

inherited in the alphaproteobacterial subdivision (Boussau et al. 2004). For the 

ancestral species B. bacilliformis, flagella are required for erythrocyte invasion 

(Scherer et al. 1993). In other Bartonella species lacking the Trw T4SS, genomic loci 

encoding the flagella genes were detected and corresponding surface structures 

identified by electron microscopy (Kordick et al. 1997; Dehio et al. 2001). Thus, it is 

tempting to speculate that the horizontally acquired Trw T4SS has functionally 

replaced the vertically inherited flagellae in the radiating lineage 4. This makes sense 

as flagellin, the major structural component of flagella, is a potent activator of the 

innate and adaptive immune response (Honko and Mizel 2005; Salazar-Gonzalez 

and McSorley 2005).  

 So far it is not known, whether flagellae directly bind to the erythrocyte surface 

and confer host specificity, or whether they only support the adherence and invasion 

process by mobilizing the bacteria to the erythrocytes. However, the availability of an 

erythrocyte invasion and adherence assay allows addressing these questions in the 
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future. Particularly, the comparison of species adapted to the same host but either 

harboring the Trw T4SS or flagellae could broaden our understanding of the 

functional commonalities and differences of these two traits. 

The step-wise acquisition of two different T4SS, Trw and VirB, both 

substantially fine-tuning the molecular strategy of Bartonella to colonize the host 

bloodstream, might explain why the adaptive radiation in lineage 4 constitutes the 

most species-rich clade of Bartonella. 

 

5.2.3 Ecological opportunities 

 

Besides the acquisition of key innovations, the driving forces for an adaptive 

radiation also include ecological opportunities, which is the availability of unoccupied 

niches where competition with other organisms is absent (Schluter 2000). For the 

adaptive radiations of the Darwin’s finches and the cichlid fishes, the Galapagos 

Islands and the Great Lakes of East Africa display ecological opportunities (Grant 

and Grant 2008; Salzburger 2009). 

In case of Bartonella, the blood stream of different mammalian hosts obviously 

represents the equivalents of such unoccupied niches as it is seldom colonized by 

other microorganisms (Brooks et al. 1991). However, an important aspect to consider 

is to what extent different host niches have been available for Bartonella during 

evolution. If we assume that the ancestors of different Bartonella lineages were 

already adapted to arthropod-borne transmission routes, the ecological opportunities 

are strictly dependent on the host-range of such vectors. Whereas some tick species 

can feed on a variety of different hosts (Sonenshine and Mather 1994) other 

arthropods, known to be vectors of Bartonella, exhibit a rather strict host-specificity 

(Krasnov et al. 2006). Although our knowledge about the nature of Bartonella vectors 

is currently limited, ecological opportunities to colonize new niches might not have 

been readily available for Bartonella during evolution. This appears to be reflected by 

the phylogenetic branching pattern of the radiating lineages 3 and 4 of Bartonella. 

The internal branches at the onset of the radiations are not exclusively short 

compared to the tip branches (i.e. branches of contemporary taxa) indicating that the 
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acquisition and diversification of the VirB T4SS did not result in an immediate but 

rather continuous branching of the two lineages. Short internal branches and long tip 

branches are typically found, when an ancestor arrives in an environment with plenty 

of unoccupied niches available resulting in a burst of new species over a rather short 

period of time until all niches are occupied (Gavrilets and Vose 2005). In the adaptive 

radiation of the cichlid fishes, the evolutionary young Great Lakes of East Africa 

presented such “still-to-be-filled” niches, as they were offering diverse habitats along 

their shores (Salzburger 2009). Over a short period of time, the cichlid fishes arriving 

in these lakes diversified by adaptation to the distinct ecological niches resulting in 

the evolution of enormous species flocks (Verheyen et al. 2003). Thus, these readily 

available niches result in the rapid multiplication of lineages over a limited time of 

evolution which slows down again, when new niches become rare.  

As shown by our phylogenetic analysis, the process of radiation in the 

Bartonella lineages seems not to have been limited to a certain time window in 

evolution implicating that the process is still ongoing. This is supported by a body of 

evidence. First, several lineage splits have occurred recently in evolution, as for 

example the adaptive diversification of Bartonella rochalimae and B.sp. 1-1C, 

whereas others appear to be rather old. Second, host niches can be colonized more 

than once, since several species of different lineages have adapted to same reservoir 

hosts. Apparently, niche competition does not exist, which is also substantiated by 

several reports of co-infections with two different Bartonella species, in particular with 

B. henselae and B. clarridgeiae in cats (Gurfield et al. 1997; Kosoy et al. 1997; 

Gurfield et al. 2001; Maruyama et al. 2001). Third, although Bartonella exhibits host-

specificity, some species are able to explore potentially new hosts. This becomes 

evident by (i) the zoonotic potential of Bartonella species, like B. henselae or 

B. rochalimae, and (ii) the capability of particularly rodent-adapted species to 

colonize several related hosts. 

Taken extrinsic factors into account, the adaptive radiations of Bartonella may 

not only be driven by the acquisition of given key innovations, but also by the 

availability of ecological opportunities. As shown for other radiations, the combination 

of the availability of unoccupied niches and the readiness of a particular species to 

occupy them seems to be the key for the occurrence of adaptive radiations (Schluter 

2000; Salzburger 2009). 
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5.2.4 The Vbh system in the ruminant-infecting lineage 

 

Phylogenetic analysis of the genus Bartonella consistently revealed the clustering of 

four closely related ruminant-infecting species. They constituted a sister-clade of the 

two radiating lineages 3 and 4 and the ancestral lineage of B. bacilliformis (see 3.2 

Research article II). Further, our analyses revealed that they evolved from a deep-

branching lineage. The close relationship among these species might indicate a 

recent adaptive radiation to different hosts of the ruminant suborder. However, as the 

different species of this lineage are known to have an overlapping host range (Chang 

et al. 2000; Dehio et al. 2001; Rolain et al. 2003), their genetic diversification does 

not display an adaptive process to distinct ruminant niches. 

The fact that this lineage is deep-branching and strictly comprises ruminants-

infecting species suggests that the adaptation to this suborder of mammals might 

have prevented the colonization of other potential hosts. This is supported by our 

findings that neither of the two adaptive T4SS, VirB or Trw, was identified in this sub-

lineage of Bartonella. However, in Saenz et al. (2007), we argued that the presence 

of a VirB-homologous T4SS likely substitutes for the function of the lacking VirB 

system in the ruminant-infecting species (3.1 Research article I). These two T4SS 

share a high degree of sequence similarity indicating close evolutionary relatedness. 

Further, the vbh locus was found to encode a hypothetical effector protein consisting 

of the same two functional domains as many effector genes of the VirB T4SS. 

However, subsequent shotgun sequencing of B. schoenbuchensis revealed this gene 

to be the only effector identified in the genome of this ruminant-adapted species. 

While the adaptive function of the VirB T4SS is conferred by an arsenal of divergent 

effector proteins, the existence of a sole effector might indicate a limited potential of 

the Vbh T4SS to distinctively modulate cellular host niches. On one side, this could 

explain the restriction to colonize other hosts than ruminants. On the other side, it 

suggests that virulence attenuation and adaptation to this specific suborder of 

mammals might have included other factors than T4SSs. 

Closer inspection of the vbh locus of B. schoenbuchensis by genomic sequencing 

revealed characteristics typical for related conjugation machineries (3.4 Unpublished 

results): (i) in the genome of B. schoenbuchensis, the vbh T4SS was found to be 

located on an extrachomosomal replicon and (ii) the downstream region of the vbh 
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locus encoded conserved genetic determinants essential for conjugative transfer of 

plasmids (e.g. relaxase gene and oriT). Our two-parental mating experiments 

confirmed the Vbh T4SS to mediate conjugative plasmid transfer between different 

Bartonella species. However, the likely bi-functional role of this T4SS remains 

hypothetical as our experimental approaches did so far not succeed to detect direct 

effector protein translocation into mammalian cells via the Vbh T4SS. Still, the 

genomic locus of the Vbh T4SS seems to offer a snapshot of evolution depicting the 

transformation of a conjugation machinery into a host-interacting T4SS, as the VirB 

system is constituting. The sequence similarity between the BID domains of the Vbh 

effector gene and the adjacently located relaxase provides the proof for the 

previously suggested evolutionary origin of the translocation signal of the VirB 

effector proteins (Schulein et al. 2005). The coupling of an enzymatic function to this 

translocation signal in the form of the FIC domain seems to have armed the T4SS 

with a prototypical effector protein. As FIC domains are evolutionary conserved from 

bacteria to eukaryotes and mediate post-translational modifications in cell signaling, 

they display suitable functional modules to couple to the secretion signal (Kinch et al. 

2009; Yarbrough and Orth 2009). This is not only the case for Bartonella. Many other 

pathogenic bacteria seem to use FIC domains to interfere with their hosts cellular 

functions, though there are using different secretion systems (Roy and Mukherjee 

2009; Worby et al. 2009; Yarbrough et al. 2009).  

Further, the Vbh T4SS reveals insights into the chromosomal integration 

mechanism of the VirB T4SS. The recently published genome of B. grahamii seems 

to harbor two Vbh T4SS copies, one integrated into the chromosome and another 

one located on the plasmid. Interestingly, a site-specific recombinase gene is present 

on the plasmid of B. grahamii. This is a typical characteristic of integrative and 

conjugative elements (Burrus and Waldor 2004) and might display the mechanism by 

which the T4SS has been inserted into the chromosome. A similar mechanism 

appears likely to have resulted in the independent chromosomal fixation of the VirB 

T4SS in lineage 3 and 4. The conjugative function of a plasmid-encoded T4SS is 

supposedly under strong selection, as it confers the maintenance of the extra 

chromosomal replicon in the bacterial population (Frank et al. 2005). This functional 

constraint is released as soon as the T4SS locus is transferred into the chromosome. 

Hence, the chromosomal fixation might display the crucial step towards the complete 

adoption of a new functionality, as observed for the VirB T4SS in lineage 3 and 4. 
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