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Summary 

The aim of this thesis was the in vivo investigation of the bioavailability of nasal esketamine 

formulations which were developed considering the strategies of enhancing the permeation and 

prolonging the residence time on the nasal mucosa as absorption site.  

Nasal application of esketamine has the potential to be a needle-free and time-saving application 

mode for emergency situations and a convenient and painless application mode for chronic pain 

situations allowing self-application by patients. Transmucosally absorbed esketamine circumvents 

its extensive hepatic first-pass metabolism after oral application. Only moderate absorption of 

esketamine via the nasal mucosa is reported. Therefore, nasal esketamine formulations providing a 

substantial bioavailability need to be developed. 

In Project I different formulations for transmucosal nasal delivery of esketamine were developed. 

Mucoadhesive properties and the maximal nasally applicable volume of these vehicles were 

investigated in healthy volunteers by observation of the mucociliary transport time (MCTT) of 

fluorescence labelled vehicles (Project II). The impact of the vehicle on the bioavailability of 

esketamine in healthy volunteers was investigated in Project III. The nasal esketamine formulation 

resulting in the highest bioavailability was selected for further investigation in Project IV. 

Pharmacokinetics and pharmacodynamics (analgesic effects upon electrically evoked pain) of the 

selected nasal esketamine formulation were tested in comparison to i.m. and i.v. applied 

esketamine in healthy volunteers (Project IV). 

Project I: Nasal esketamine formulations with the absorption enhancer chitosan and poloxamer 

(alone and in combination) were developed, which allow administering 20mg esketamine base by 

each one spray application of 100µl per nostril. An aqueous esketamine solution served as 

comparator formulation. Stability of the esketamine formulations during the shelf life of 6 months 

and sufficient microbiological quality as a prerequisite for clinical investigations (Project III and IV) 

were verified. Four corresponding formulations with fluoresceine-natrium instead of 

esketaminehydrochloride were developed for investigating the mucoadhesive characteristics of the 

vehicles and the maximal nasal application volume to prevent immediately swallowing (Project II). 

Project II: The usage of an endoscopic fluorescence-filter system facilitates practical in vivo 

determination of MCTT of the developed fluoresceine-natrium labeled nasal vehicles in healthy 

volunteers (FNA-study). The vehicle with chitosan showed due to its mucoadhesive characteristics 

a significant longer MCTT and allows application of 200µl per nostril without immediate run-off 

problems. A poloxamer containing thermogelling formulation with the same viscosity and osmolality 

as the formulation containing chitosan showed no prolonged MCTT. Not the viscosity but the 

character of the excipient has greater influence on the MCTT. The combination of chitosan and 

poloxamer showed a statistically significant prolongation of MCTT compared to the comparator 

formulation. The prolongation of the MCTT was less pronounced for the combination of chitosan 



Summary 

 

 

Christoph Bitter Page 4 of 202 University of Basel, 2010

 

and poloxamer than for chitosan alone. The effect of an initially slower clearance of the vehicle on 

the bioavailability of the incorporated drug has to be elucidated in a pharmacokinetic trial.  

Project III: The impact of vehicles with the excipients chitosan and poloxamer (alone and in 

combination) on the pharmacokinetics of nasally applied esketamine was assessed in healthy 

volunteers (Eskena-study, part I). An aqueous esketamine solution served as comparator 

formulation. Nasal compatibility and side effects of the different formulations were determined. 

None of the formulations was bioequivalent according to AUC and cmax of the others tested 

according to current EMEA-guidelines. The impact of the vehicle was overall statistically significant 

for AUC and tmax. The vehicle with the mucoadhesive and permeation enhancing excipient chitosan 

was exclusively transmucosal absorbed and had a statistically significant impact (increase) on the 

AUC. The combination of poloxamer and chitosan had a statistically significant impact (reduction) 

on tmax, but not chitosan or poloxamer alone. The thermogelling vehicle with poloxamer was not 

statistically significant different from the comparator formulation according to pharmacokinetic 

parameters. 

As the fluoresceine labeled vehicles for assessing MCTT do not consider the effects of esketamine 

on the mucosa, they are similar but not equal to the tested nasal esketamine formulations. The 

median of the MCTT of the comparator formulation, the formulation with chitosan and poloxamer, 

and the formulation with chitosan was analog with the mean of the bioavailability of the 

corresponding formulations with esketamine. This indicates that the prolonged mucosal residence 

time of the formulation with chitosan might be a reason for the higher bioavailability of this 

formulation. This hint has to be investigated in further clinical trials. 

Nasal application of the developed esketamine formulations showed a substantial bioavailability up 

to 79.9%, and can be a veritable alternative to invasive esketamine administration in acute pain 

settings (formulations containing chitosan) as well as in chronic pain settings. For the latter, the 

formulation containing poloxamer can be used, which showed no significant differences according 

to pharmacokinetics to the comparator formulation, but fewer side effects and better compatiblity 

than the comparator formulation. The nasal formulation containing chitosan, which showed the 

highest bioavailability, was selected for pharmacodynamic analysis in Project IV. 

Projcet IV: Pharmacokinetics, pharmacodynamics (analgesic effects upon electrically evoked 

pain), side effects and compatibility of the developed mucoadhesive nasal esketamine formulation 

containing chitosan were investigated in comparison to intramuscular and intravenous esketamine 

application in a double-blind, randomized clinical trial in a triple-dummy design in healthy 

volunteers (Eskena-study part II). All tested modes of application showed no significant differences 

in pain reduction of the first hour. Maximal pain reduction was reached first and was slight more 

pronounced for intravenous application, followed by intramuscular and nasal application. The 

pharmacokinetic profile of intramuscular esketamine administration in adults was similar as 

reported for the racemate ketamine. Blood levels are not a useful surrogate parameter for the 

effects of esketamine for nasal and intramuscular application as maximal effects were faster 

achieved as indicated by the blood levels. Side effects and increase of blood pressure and heart 



Summary 

 

 

Christoph Bitter Page 5 of 202 University of Basel, 2010

 

rate were comparable of nasal and intramuscular application and more pronounced for intravenous 

application. Psychotomimetic and dissociative side effects of esketamine were detected with 

psychometric questionnaires and were more distinctive for intravenous application.  

The nasal esketamine application with the chitosan containing formulation led to slight nasal 

irritation and taste effects, which are of secondary importance compared to the needle-free and 

easy to use alternative application mode. Especially in emergency situations with patients suffering 

from acute pain with a desired rapid onset of effect nasal application is time-saving, because 

esketamine can be applied before placing an indwelling catheter.  

 

In conclusion nasal esketamine formulations providing a substantial bioavailability were developed. 

The formulation containing chitosan resulted in the highest bioavailability and was exclusively 

transmucosal absorbed. This formulation showed no significant differences in pain reduction of the 

first hour in an experimental pain model compared to i.m. and i.v. application. The impact of the 

developed vehicles on AUC and tmax of nasally applied esketamine was overall significant. The 

esketamine formulation containing poloxamer and chitosan resulted in a statistically significant 

reduction of tmax. As well-established for oral dosage forms, galenics enable also different 

pharmacokinetic profiles for nasally applied drugs. Nasal esketamine application is an easy to use 

and needle-free application option for acute and chronic pain situations. A combination with 

midazolam to attenuate psychic side effects is necessary to enhance convenience in patients. 

The mucoadhesive vehicle containing chitosan allowed a maximal application volume of 200µl 

without immediately swallowing after nasal application.  
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Background and objectives 

Nasal application for local effects is a common treatment for allergies and rhinitis. Due to the high 

vascularization and the high absorption potential the nasal mucosa gains interest as an application 

site for systemic drug delivery. Transmucosal nasal drug delivery facilitates self medication and is a 

needle-free parenteral route of drug application. Drugs which are transmucosally absorbed via the 

nasal mucosa circumvent possible degradation in the gastrointestinal tract and hepatic first-pass 

metabolism. Therefore, transmucosal nasal drug delivery is an attractive alternative for drugs with a 

constricted oral bioavailability, proteins, and especially for emergency situations in which a rapid 

onset of action is desired, but i.v. application is not feasible or linked with delay of placing an 

indwelling catheter.  

The anesthetic drug esketamine is an N-Methyl-D-Aspartate (NMDA) receptor antagonist. Its 

nature to produce profound analgesia without depressing cardiovascular or respiratory function is 

one of esketamines’ outstanding properties and favours its use in emergency medicine. In lower 

doses it is used in various chronic pain settings for prevention of hyperalgesia and chronification of 

postoperative pain. Commercially available are solutions (Ketanest® S, Pfizer) approved for 

intravenous and intramuscular application. Esketamine is subject of extensive hepatic first-pass 

metabolism after (off-label) oral application. 

Intranasal application of esketamine has been of particular interest, because it can be time-saving 

in emergency situations and a more convenient application mode for premedication in children or in 

chronic pain settings. Nasal application of the commercially available esketamine solutions leads to 

swallowing of the large administered volumes required due to low drug concentration. 

Bioavailability of higher concentrated solutions after nasal application was generally low or 

moderate. Reasons for the low bioavailability can be physicochemical characteristics of esketamine 

and the protective mechanisms of the mucosa against inhaled particles which can also effectively 

hinder nasal absorption of applied drugs. The nasal mucosa is covered by a protective mucus layer 

serving as an absorption barrier. The mucus blanket is permanently removed to the nasopharynx 

and swallowed (mucociliary clearance). Therefore, the time frame for absorption is constricted.  

Two strategies are most promising to support nasal absorption and augment bioavailability: 

a) enlarging the mucosal residence time to achieve a larger time frame for absorption by the 

principles of mucoadhesion and in situ gelling of the vehicle, and b) enhancement of permeation to 

emend the absorption rate. It was hypothesized that these strategies can be capitalized to enable a 

high bioavailability of nasally applied esketamine. 
 

The objectives of this thesis were to develop nasal vehicles for effective nasal administration of 

esketamine expressed by substantial bioavailability, to assess the impact of different vehicles, and 

to test compatibility and pharmacodynamics of the nasal esketamine formulation with the highest 

bioavailability in comparison to the approved i.m. and i.v. application. 
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The nasal mucosa with its cleaning mechanism is a highly active system with continuous 

adjustments and expeditious reactions. These complex conditions cannot be efficiently mimicked 

by in vitro models. Therefore, the impact of the vehicle on the absorption, nasal compatibility, and 

pharmacokinetics has to be tested in vivo in clinical studies. To investigate the effects of different 

formulations, each formulation has to be tested in the same subjects. 

 

The aim of Project I was the development and characterization of appropriate nasal formulations 

for clinical studies. An aqueous solution of esketaminehydrochloride, considering the limited 

volumetric capacity of the nose was used as comparator formulation. Two excipients were chosen: 

poloxamer 407 as a thermogelling agent, and chitosanhydrochloride as a permeation enhancer 

with mucoadhesive characteristics. Aqueous esketamine formulations with poloxamer, chitosan, 

and chitosan and poloxamer in combination were developed. Due to the unknown influence of 

osmolality and viscosity, the osmolality of all formulations was adjusted to the same value, and the 

viscosity of the formulation with poloxamer and the formulation with chitosan was adjusted to the 

same value. Therefore, the pure effect of the absorption enhancing excipients on the 

pharmacokinetics can be assessed (Project III). To elucidate mucoadhesive characteristics and the 

maximal application volume of the vehicles, four corresponding formulations with the same 

osmolality and viscosity without esketamine, but instead with the marker dye fluoresceine-natrium 

were developed. The mucociliary transport times of these fluorescence labelled vehicles can be 

assessed in healthy volunteers (Project II). 

The purpose of Project II (FNA-study) was to assess the mucoadhesive characteristics of the 

vehicles. An in vivo fluorescence-labeling test was designed, which allowed to determine the 

mucociliary transport time as surrogate for the mucoadhesion, and the maximal application volume 

of the vehicles in subjects. The test was done by visual endoscopic inspection of the oropharynx by 

means of a fluorescence filter system to detect the appearance of the marker dye. 

In Project III (Eskena-Study part I), the impact of the vehicles of the nasal esketamine formulations 

on nasal compatibility, pharmacokinetics, and side effects was assessed in healthy volunteers. 

Mucociliary retention times of the corresponding vehicles were checked for possible accordance 

with AUC. The nasal formulation resulting in the highest bioavailability was selected for further 

investigation in Project IV. 

In Project IV, the double blind, randomized part II of the Eskena-study, pharmacokinetics and 

pharmacodynamics (analgesic effects upon electrically evoked pain) of the selected nasal 

formulation, i.m., and i.v. application of esketamine were tested in a triple-dummy design in healthy 

volunteers. Compatibility and side effects of all application modes were assessed. 
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1 Transmucosal nasal drug delivery 

1.1 Transmucosal nasal drug delivery  

The umbrella term nasal drug delivery comprises topical and systemic nasal drug delivery. Nasal 

decongestants (treatment of rhinitis) or anti-inflammatory drugs (treatment of allergies) are 

common topical nasal therapies targetting a local effect. Systemic nasal drug delivery describes the 

transmucosal absorption and the uptake of a compound into the systemic circulation after 

application on the nasal mucosa and targets a systemic effect. This process is best described by 

the term “transmucosal nasal drug delivery”. Transmucosal absorption subsumes the following 

subsequent processes: drug release, penetration (entry into a layer), permeation (transition of a 

layer), and absorption (uptake into the vascular system).  

The nasal mucosa is highly vascularized. The blood-vascular system is only separated of the nasal 

lumen by two cell layers [1], which offers the possibility of a rapid absorption. Transmucosal nasal 

drug delivery provides the possibility of a parenteral, non-invasive, and needle-free systemic drug 

application which is linked with a good compliance. Nasal drug delivery can be an attractive 

alternative to i.v. and especially to i.m. injections, which are linked with a risk of infection and 

needle-stick accident risks [2,3]. Exclusively transmucosally absorbed drugs are not subject to 

gastrointestinal degradation and circumvent the hepatic first-pass metabolism. This is a main 

advantage for unstable drugs or drugs distinctively metabolized in the liver after oral application. 

The main advantages of transmucosal nasal drug delivery can be subsumed as followed: 

 

 ease of administration convenience 

 good acceptance in adults and children 

 painless application 

 self-medication possible (self-administration compliance) 

 relatively large surface area 

 high permeability of the nasal epithelia 

 rapid drug onset possible (fast onset of therapeutic effect) 

 high bioavailability for drugs with good permeation abilities 

 circumvention of gastrointestinal degradation and hepatic first-pass effect 

 non-invasive, therefore reduced risk of infection 

 ideal administration route in emergency cases when i.v. administration is not feasible 

 

There is a large unmet medical need for nasal medication, especially in emergency medicine (e.g. 

status epilepticus, acute pain), paediatrics, and peptide drug delivery. Table 1-1 presents a 

selection of commercial products and compounds tested for transmucosal nasal drug delivery. 
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Table 1-1: Selection of compounds for transmucosal nasal drug delivery [4]. 

compound  class indication  investigation/ 
product development/ 
product and country 
(example) 

reference 

apomorphine  dopamin agonist Parkinson’s disease product development [5,6] 

buserelin  peptide prostate cancer  Profact, Germany [7] 

butorphanol opioid migraine Stadol, USA [8] 

calcitonin  protein osteoporosis  Karil, Germany [9] 

cobalamin 
(vitamin B12)  

vitamin substitution of vitamin B12 Nascobal, USA [10] 

desmopressin  protein 
diabetes insipidus 
centralis, enuresis 
nocturna 

Minirin, Germany [11] 

diazepam  benzodiazepine 
sedation, anxiolysis, 
status epilepticus 

product development [12] 

estradiol  steroid substitution of estradiol  Aerodiol , UK [13,14] 

fentanyl  opioide 
analgesia, postoperative 
pain 

Instanyl, Germany [15] 

gonadorelin hormon undescended testicle Kryptocur, Germany [16] 

human growth 
hormone  

peptide 
growth hormone 
deficiency  

investigation [17] 

influenca 
vaccine, life 
attentuated 

vaccine Flu prevention FluMist, USA [18] 

insulin  peptide diabetes mellitus  investigation [19] 

ketamine 
NMDA-
antagonist 

analgesia  product development: Ereska [20] 

L-dopa  amino acid Parkinson’s disease  investigation [21] 

melatonin  hormon jet-lag  investigation [22] 

metoclopramid 
D2 rezeptor 
antagonist 

antiemesis Pramidin, Italy [23,24] 

midazolam  benzodiazepine 
sedation, anxiolysis, 
status epilepticus 

investigation [25,26] 

morphine  opiate analgesia  
product development: 
Rylomine 

[27] 

nafarelin hormon 
central precocious 
puberty (CPP), 
endometriosis 

Synarel, USA [28] 

nicotine addictive smoking cessation Nicotrol NS, USA [29] 

oxytocin hormon 
lactation; treatment of 
social, cognitive, and 
mood disorders 

Syntocinon-Spray, Switzerland [30] 

progesterone  hormon infertility, amenorrhea  investigation [14] 

sildenafil  PDE-inhibitor erectile dysfunction  investigation [31] 

sumatriptan triptan migraines 
Imigran Nasal Spray, 
Switzerland 

[32] 

testosterone  hormon 
substitution of 
testosterone  

investigation [33] 

zolmitriptan triptan migraines Zomig, Switzerland [34,35] 
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1.2 Trends in Transmucosal nasal drug delivery 

Transmucosal nasal drug delivery is an ideal life cycle alternative. Nasal formulations can be 

liquids, gels, powders, inserts, or other innovative formulations.  

Usually particles get trapped in the nasal mucus. Some viruses have the ability to penetrate the 

protective mucus barrier unimpeded and to infect the mucosa. The surface chemistry and size of 

such viruses can be a model for the development of nanocarriers for transmucosal nasal drug 

delivery [36]. 

Nanocarriers are also of great interest for a potential nose to brain (N2B) delivery [35]. The 

olfactory region in the upper part of the nose is the only region of the central nervous system (CNS) 

with a direct access to the environment via ciliated olfactory nerve cells. It is under controversial 

discussion, if drugs can be delivered directly to the CNS over this pathway circumventing the blood 

brain barrier [37,38]. N2B delivery needs devices, which address specific the olfactory region. 

Transmucosal nasal drug delivery in general and maybe N2B delivery can contribute as novel 

application forms to the research of neurological and psychiatric disorders. 

Vaccination via the nasal mucosa is of highest interest, because it provokes a local and a systemic 

immune response [18]. Therefore, it is most appropriate for illnesses caused by inhaled antigens 

like influenza. The intranasal influenza vaccine FluMist® is an example for a nasal vaccination 

product. Vaccination via the nasal mucosa is needle-free, and has therefore no injection related 

infection problems and side effects, and any infection and waste disposal problems of used 

syringes. Self-administration is possible, and the convenient mode of application could contribute to 

high immunization rates. The preferred application site for nasal vaccination is the nasal associated 

lymphoid tissue (NALT), which is located near the nasopharynx. Challenges of nasal vaccine 

delivery are the stability of the formulations and the storage conditions. However, a nasal irritation 

by the formulation may be even beneficial for vaccination. 
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2 Impact of anatomy and physiology on transmucosal 

nasal drug delivery 

2.1 Functions of the nose 

The nose is a complex and multifunctional organ and has many more functions than simply 

olfaction. The nasal cavity serves as a resonant body. The nose is responsible for humidification 

and warming of the inspired air and has an important filter function. Nasal hairs and mainly the 

nasal mucosa with its sticky mucus blanket help to prevent xenobiotics like allergens, bacteria, and 

foreign particles from reaching lower parts of the airways. This most efficient first line of defense of 

the body’s airways copes with more than 500 liters of air that are filtered hourly into the lungs. 

During this time it is thought that more than 25 million particles are processed by this epithelium 

[39,40]. 

2.2 Anatomy of the nose  

The nasal cavity is vertically divided by the septum in two symmetric halves. It has openings in 

many directions: To the outside by the nostrils, inferior to the pharynx, to the sinuses, to the 

nasolacrimal duct and to the auditory tube for the ear cleaning.  

The nasal cavity can be classified in three distinct functional areas (vestibular, respiratory and 

olfactory area) and the nasopharynx (see Figure 2-1). The middle and main part of the cavity 

(respiratory area) is divided by lateral walls into three nasal conchae or turbinates, which enlarge 

the surface of this small volume to about 150cm2 [41]. The surface of the mucosa is additionnally 

increased by microvilli and cilia of an unknown factor. 

The epithelium in the nasal vestibular area (the front part) is stratified, squamous and keratinized 

with sebaceous glands [42].  

The epithelium in the respiratory area (about 130cm2) consists of two layers of cells above the 

lamina propria (Figure 2-2). Basal cells and pseudostratified columnar epithelia cells with microvilli 

and with or without about 300 cilia are interspersed with goblet cells and seromucosal glands which 

secret the nasal mucus. The cells are closely associated with thigt junctions. 

Epithelia in the olfactory area have supporting cells and specialized olfactory receptor neurons. 

The human olfactory region, situated in the superior turbinate, covers about 10% of the nasal 

cavity, while in mice and rats about 50% of the nasal cavity is covered by olfactory epithelium [43]. 

The olfactory region with its near location to the cerebrospinal fluid is of interest for possible nose 

to brain treatment (see Chapter 1.2 Trends in Transmucosal nasal drug delivery). 

The posterior region of the nasal cavity is the nasopharynx. Its upper part consists of ciliated cells, 

the lower part contains squamous epithelium. This area is of most interest for nasal vaccination 

(see Chapter 1.2 Trends in Transmucosal nasal drug delivery). 
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Figure 2-1: Sagittal section of the nasal cavity [4]. 

 

2.3 Nasal mucus and mucociliary clearance  

Nasal mucus is produced continuously resulting in an amount of 1.5 to 2 liter of nasal mucus per 

day in humans. The nasal mucus consists of about 95% water, 2% mucin, and each 1% of salts, 

lipids and proteins like immunoglobulin, lysozyme or lactoferrin. Mucin is a high molecular weight 

glycoprotein with carbohydrate side chains terminated with sialic acid and L-fucose groups which 

make mucin an anionic polyelectrolyte at neutral pH. The mucus protects the mucosa, has a water-

holding capacity, and is involved in the heat transfer to the inspired air [42,44]. 

The mucus blanket consists of two distinctive layers (see Figure 2-2), a more viscous upper layer 

(gel layer) and a periciliary more fluid layer (sol layer). The cilia rise up through the periciliary layer 

in the upper layer and transport mucus and entrapped particles towards the throat by concerted 

movements (about 1000 strokes per min). This effective cleaning mechanism is called mucociliary 

clearance (MCC). The mucociliary clearance time is about 15 to 20 min but has a great intersubject 

variability. The MCC is dependent on the function of the cilia and the characteristics of the covering 

mucus, which can be influenced by acute or chronic illnesses like common cold or allergic rhinitis.  

Many substances and drugs can influence the MCC of the airways, either by stimulation or 

inhibition as shown in in-vitro studies [45,46]. 
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Figure 2-2: Cell types of the nasal epithelium with covering mucus layer [4]. 

 

2.4 Ways of transmucosal absorption 

The target area for transmucosal nasal drug delivery is the respiratory area. It is a good permeable 

and large region with rich vasculature. Nasal absorption takes place simultaneously transcellular 

(through the cell) and paracellular (between the cells). Small and lipophilic drugs are absorbed 

more on the transcellular way as well as uncharged species. Therefore, the pKa of the drug and the 

pH at the absorption site (pH of the nasal epithelium is 5.5 to 6.5 [41]) have an impact. Buffering of 

nasal formulations has to be avoided wherever applicable considering local mucosa irritation and 

the unclear buffer capacity regarding the dilution of the mucus. 

Absorption is not only affected by ionization and hydrophilicity/lipophilicity but also by molecular 

weight. The extent of transcellular absorption of drugs larger than 1kDa is significantly lowered [47]. 

 

2.5 In vitro – in vivo correlation in transmucosal nasal drug delivery 

In vitro human nasal mucosa models or animal experiments like slug mucosal irritation assays [48] 

can provide valuable information. But the nasal mucosa with its cleaning mechanism is a highly 

active system with continuous adjustments and expeditious reactions. These complex conditions 

cannot be efficiently mimicked by in vitro models. Therefore, results from in vitro studies cannot be 

extrapolated to in vivo conditions. Additionally, there are important anatomic differences in common 

laboratory animals and humans. To assess effects and side effects of nasal drug formulations for 

transmucosal nasal drug delivery clinical studies in man cannot be replaced, eventually. 
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3 Challenges in nasal drug delivery 

Despite all the advantages of transmucosal nasal drug delivery, there are also limitations, which 

formulation scientists have to consider. However, the limitations can be comprehended as 

challenges. 

The mucus blanket (as a protection layer) and the MCC (as a cleaning mechanism) are the 

greatest challenges in transmucosal nasal drug delivery. The drug formulation is continuously 

removed from its application site to the nasopharynx and the time frame for transmucosal nasal 

absorption is therefore limited. Swallowing of the formulation extends the drug to possible 

gastrointestinal degradation and hepatic first-pass metabolism. Too large application volumes of 

liquids exceed the nasal capacity and are partly swallowed immediately after application. A 

reasonable application volume for an adult nostril for a single dose is discussed between 25µl and 

400µl [16,49], but also larger volumes were proposed as up to 2 to 3 ml for children [50]. 

The influence on transmucosal nasal drug absorption in patients with permanent anatomic 

alterations (e.g. polyps, septum deviation) and temporary alterations (e.g. allergic rhinitis, common 

cold) is not clear.  

Smoking, snuffing, and nasal abuse of dugs alter the constitution of the mucosa and have an 

influence on the permeability of the mucosa and therefore on the absorption. 

The sensory characteristics and the taste of a nasal formulation have an impact on the compliance 

for adults and especially for children. Masking for drugs with bad or bitter taste like midazolam is 

necessary, taste corrigenda or cyclodextrins may help. 

Each nasal application contains a potential of irritation which can provoke sneezing. Drugs, 

excipients, and especially preservatives can lead to nasal irritation or in worst case damage of the 

nasal mucosa or impairment of the MCC. A careful toxicity testing is necessary for all compounds 

and excipients for nasal drug delivery. In formulations intended for chronic nasal application all 

substances have to be proved safe. 

Nasal biotransformation enzymes are responsible for the metabolism of airborne xenobiotics. A 

wide variety of isoenzymes is present in the nose [51]. A possible nasal first-pass metabolism is 

dependent on the amount of the expression of such isoenzymes. This aspect should not be 

neglected in nasal protein delivery. 

The nasal cycle is a permanent alternating congestion and digestion of the nasal mucosa of the 

opposite nose halfs [52]. The congestion results in a narrower cavity together with a better blood 

flow. The impact on drug absorption of this phenomenon which takes place permanently in all men 

is unclear. 

Anatomy, physiology and pathology are given conditions. Formulation scientists can exert influence 

on the systemic bioavailability in developing formulations for transmucosal nasal drug delivery by 

choosing an appropriate vehicle and a device considering the limitations of nasal drug delivery. 
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4 Drug – vehicle – device: triad of nasal drug delivery 

Drug, vehicle, and delivery device build an undividable triad in nasal drug delivery. Even slight 

alterations of the three elements have the potential to modify absorption kinetics, and therefore, 

systemic bioavailability and clinical effects of the nasally administered drug. The formulation 

scientist can outsmart challenges of nasal drug delivery by thoughtful selection of the elements 

(see Figure 4-1). 

 

 

 

Figure 4-1: Consideration of all elements in a formulation triad – comprising of drug, vehicle, and 
device – is the basis of a successful formulation development. Skillful selection of the type of vehicle 
with its ingredients can outsmart predetermined challenges as the short time frame for absorption due 
to MCC [4]. 
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Based on the property of the drug molecule, the vehicle form (e.g. liquid, semi-solid, or solid) is 

determined first, second the device is chosen, and third the ingredients are chosen to create an 

optimal vehicle.  

Drug 

Usually the drug is chosen by medical need. The drug characteristics (size, charge, lipophilicity) 

decide about the first steps of the development of a formulation.  

For the development of liquid formulations it should be scrutinized if for example another salt form 

or a prodrug is more stable or is better soluble. Rather lipophilic molecules such as 

midazolamhydrochloride have a better absorption potential but are less soluble [53] whereas less 

lipophilic molecules such as esketaminehydrochloride are relatively well soluble but have 

absorption problems. 

Vehicle 

The functions of a nasal vehicle are to provide prolonged drug stability, to enable application of a 

definite dose, to enable ideal characteristics during application, and to support the drug delivery at 

the target site which means uptake to the blood vessels for transmucosal nasal drug delivery. 

Device 

The device is responsible for the nasal application of the formulation and therefore for the 

deposition in the nasal cavity [54,55]. Additionally, the particle size of the aerosol is determined by 

the device. Too small aerosol particles can reach the lungs. The spray performance like plum 

geometry is highly regulated.  

The development of the formulation has to be matched to the chosen device. State of the art is a 

device for preservative-free formulations. These can be single-use or bi-dose devices, or multiple-

dose devices with close container integrity. The overabundance of available devices forces to 

check the needs of the developed nasal drug product according the amount of a dose and mode of 

activation (by hand pressure, breath-out, breath-in, or automatically), and if the nasal product is 

intended for single dosing or chronic use, for children and/or adults and/or older patients, for self 

administration of patients, or for lying patients.  
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5 Esketamine 

5.1 Physicochemical characterization 

Ketamine was first synthesized by Calvin. L. Stevens (Parke Davis) in 1962 exploring an alternative 

for the anaesthetic agent phencyclidine which was related with severe side effects [56]. The first 

phase I study with intravenous ketamine application was published by Domino et al. in 1965 [57]. 

Ketamine is a racemate of R-(-)-ketamine and S-(+)-ketamine (see Figure 5-1). The international 

nonproprietary name of S-(+)-ketamine is esketamine [58]. 

 

 

Figure 5-1: Structure of ketamine enantiomeres. 

The empirical formula of esketamine is C13H16ClNO, the molecular weight is 238g/mol, the pKa 

is 7.5, and the logP is 2.9. The hydrochloric salt of esketamine is monographed in the European 

Pharmacopoeia and was used for Project I, III, and IV. Esketaminehydrochloride is better soluble in 

water (200mg/ml) than esketamine base [59]. 

5.2 Pharmacologic effects and indications 

Ketamine is a unique analgesic, sedative, and anesthetic drug. The mechanism of action is far from 

clear as ketamine interacts with multiple binding sites (NMDA and non-NMDA glutamate receptors, 

nicotinic and muscarinic cholinergic, and monoaminergic and opioid receptors, voltage-dependent 

Na and L-type Ca channels) [60]. The main effect results from a noncompetitive binding to the 

NMDA-receptor (ligand-gated calcium channel) at the phencyclidine binding site. Esketamine has a 

fourfold higher affinity to the NMDA receptor as R-ketamine. Usually, half of the ketamine dose is 

used for application of esketamine [61]. Advantages of esketamine compared to ketamine besides 

lower drug load are a remarkably shorter emergence period, a more rapid recovery of cerebral 

functions and less unpleasant psychotomimetic effects [62]. Furthermore, esketamine is faster 

eliminated and therefore, anesthesia can be better controlled [63]. Ketamine produces profound 

analgesia together with cardiovascular activation whereas protective reflexes remain unchanged 

over a wide dose range. Domino et al. introduced the term “dissociative” anesthesia, which 

describes that ketamine produces a singular state of disconnection from the environment [57]. 
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Ketamine reaches the CNS rapidly after i.v. application [64]. Ketamine is mainly metabolized by the 

liver to norketamine [65], which has also some analgesic effects and is mainly renal excluded as 

conjugates. The role of CYP’s (2B6, 2C9, 3A4) for the metabolism of ketamine is controversially 

discussed [56,66]. There is no pharmacokinetic data available for intramuscular application of 

esketamine. The bioavailability of ketamine racemate after intramuscular application is 93% and 

after oral application 17% [67].   

The use of ketamine is approved for anesthesia, analgesia in emergency use, analgesia for 

intubated patients, and for therapy resistant status astmathicus due to bronchospasmolytic effects 

[68]. Furthermore, ketamine is used in various pain settings for acute and chronic pain [69-73]. The 

effects of ketamine to prevent (morphine induced) hyperalgesia, wind-up phenomena and 

chronification of postoperative pain are under investigation – e.g. [74-81] – as well as 

antidepressant effects of ketamine [56,82-85].  

Doses for esketamine for acute pain in emergency situations are 0.125 to 0.25mg/kg body weight 

initially as i.v. bolus and half of the dose as maintenance dose every 15 to 20 min. Equivalent 

doses for i.m. application are 0.25 to 0.5mg/kg body weight [86]. 

5.3 Side effects 

Ketamine has sedative but additionally sympatomimetic effects, resulting in elevation of heart rate 

and blood pressure. Reported side effects of ketamine are nausea and vomiting, sialorrhoea, 

diplopia, and nystagm. Rapid application of high doses can cause respiratory depression. 

Ketamine has relevant dissociative and psychotomimetic side effects, which were utilized as 

models for schizophrenia [87]. The psychotomimetic effects make ketamine to a drug of abuse 

(“special K”, “vitamin K”) with tolerance effects but no physical withdrawal symptoms [86,88,89]. 

Ketamine has a large therapeutic index [68]. Even tenfold overdosing led to a prolonged but 

complete recovery [86]. There is no specific antidote available. 

5.4 Esketamine delivery 

Ketamine is approved for i.v. and i.m. delivery, but these application modes do not meet the 

medical need of many situations. Therefore, ketamine is often experimentally administered [70] by  

following application modes: nasal, oral [90-92], sublingual [92], transdermal [91], rectal [92,93], 

intrathecal [94], caudal [95], and subcutaneous [91]. 

The nasal application is of considerable interest because it is a convenient application mode and 

avoids largely the bad taste and the hepatic first-pass metabolism compared to sublingual or oral 

application. Furthermore, in vitro studies of supraclinical doses of ketamine on rat tracheal 

epithelial cells showed no signs of cilia toxicity [45], indicating that the nasal mucosa is an 

appropriate absorption target. Table 5-1 presents a selection of publications with nasal application 

of ketamine or esketamine, using mainly commercial i.v. solutions or experimental nasal 

formulations. The reported bioavailability after nasal application ranged from 33% to about 50% 

[92,93,96]. 
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Table 5-1: Selection of publications about nasal application of esketamine or ketamine in experimental 
and clinical situations. 

Indication/clinical or experimental situation Reference  

Premedication in children [97-101] 

Analgesia in adults [20,102,103] 

Pharmacokinetics adults [92] 

Pharmacokinetics children [93,104] 

Dental surgery children [105] 

Dental surgery adults [96] 

Endoscopic procedures children 
Sedation adults 

[106] 

Sedation for CT examination 
(in combination with midazolam) 

[107] 

Migraine aura [108] 
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6 Absorption enhancer in transmucosal nasal drug 

delivery 

The main challenges of transmucosal nasal drug delivery affecting absorption are the nasal 

mucosa with its protective mucus blanket as an absorption barrier and the efficient cleaning 

mechanism MCC, which limits the available time frame for absorption. 

The purpose of absorption enhancer in transmucosal nasal drug delivery is to support the uptake of 

the applied drug into the systemic circulation. This can be done by two strategies: a) more 

passively, by prolonging the residence time to provoke a larger time frame for absorption (see 

Chapter 6.1), and b) more actively, by increasing the permeation (see Chapter 6.2).  

 

Principles of absorption enhancement can be: 

 Mucoadhesion for a prolonged residence time 

 In situ gelling for a prolonged residence time 

 Permeation enhancement for emending absorption by weakening cellular junctions or 

increasing the fluidity of membrane bilayers 

 Prevention of enzymatic degradation, especially for protection of proteins in transmucosal 

nasal drug delivery 

In fact, these principles cannot completely be separated, as most absorption enhancers combine 

principles [109]. 

6.1 Prolonged residence time – mucoadhesion and in situ gelling 

The MCC removes applied drug formulations from the application site and limits the nasal 

residence time and therefore, the time frame available for absorption.  

The principle of mucoadhesion is a transiently reversible impairment of the clearance which results 

in a larger absorption time frame with the potential of a higher absorption and bioavailability. The 

term mucoadhesion describes the adhesion on a mucosa and is therefore a specification of the 

term bioadhesion, which describes in general adhesion of excipients on a biological tissue 

[110,111]. The mucoadhesive excipient facilitates an intimate and prolonged contact of the drug on 

the mucosa due to wetting, hydration, and chemical interaction like van der Waals, hydrogen, 

hydrophobic, electrostatic forces (desirable), and chemical bonds (undesirable) [42,110]. 

Mucoadhesive nasal formulations can have fewer run-off problems immediately after application 

and may enable larger application volumes. Mucoadhesive excipients can be polymers like 

carbomers, cellulose derivates, starch derivates, or chitosans (see chapter 6.4).  

Mucoadhesive excipients can increase the viscosity of the formulation. However, very high 

viscosity of formulations is coupled with a risk of faster clearing and a highly viscous matrix can be 
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itself an absorption barrier for the drug [112]. The impact of the viscosity of mucoadhesive 

formulations of its mucoadhesive characteristics and on the bioavailability is not yet clear. 

The principle of in situ gelling formulations is a newer approach to prolong the residence time and 

to delay clearing [42]. The rheological characteristics of in situ gelling formulations alter with 

contact on the nasal mucosa due to changing temperature, pH, or ions. Temperature sensitive in 

situ gelling formulations are called thermogel. A combination of in situ gelling agents with other 

mucoadhesive excipients may be promising [113]. Examples for in situ gelling agents are 

poloxamers (see chapter 6.3), or pectin.  

However, overcharge viscosity can, besides prolonged retention time, also result in a retard effect. 

This was capitalized in an in situ gelling pectin formulation with fentanyl which resulted in longer 

time to maximal plasma concentration [114]. The dilution of in situ gelling formulations on the nasal 

mucosa by the mucus makes an estimation of the in vivo effects difficult. 

6.2 Permeation enhancement 

The nasal mucosa is rather permeable but still an absorption barrier, especially for less lipophilic, 

charged, or large molecules.  

Permeation enhancers are excipients which enhance the absorption of the co-administered drug by 

increasing the membrane permeation rate [109]. This can be done by increasing the fluidity of 

membrane bilayers (increasing transcellular transport) or by weakening the cellular junctions 

(increasing paracellular transport). The enhancer has to promote nasal drug absorption, has to be 

biocompatible after swallowing and also nontoxic after self-absorption or absorption via damaged 

membranes. An optimal enhancer is compatible with the drug, odourless, and should act fast, 

effective, and reversible. A significant problem is that there is a correlation between toxic effect and 

absorption enhancement [44,109]. Membrane damage of “absorption enhancers” results in 

“excellent bioavailability”. A detailed assessment of toxicity is therefore the highest imperative of all 

excipients and especially absorption enhancers intended for use in transmucosal nasal drug 

delivery. For nasal drug products intended for chronic application only proven safe excipients for 

nasal drug delivery should be used. Examples for absorption enhancers are cyclodextrins, 

phospholipids, or chitosans (see chapter 6.4).  
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6.3 Poloxamer 407 

Chemical structure and pharmaceutical use 

 

HO-[CH2-CH2-O]a-[CH2-CHCH3-O]b-[CH2-CH2-O]aH 

a=about 101 

b=about 56 

Figure 6-1: Chemical structure of poloxamer 407. 

 

Poloxamer 407 (synonyms Lutrol® F 127, Puronic® F 127) is a synthetic polyoxyethylene-

polyoxypropylene surface active block copolymer (see Figure 6-1). F means “flakeable solid”, and 

the numbers classify the ratio of propylene oxide and ethylene oxide by a code [115]. Most used 

poloxamers are poloxamer 407 and poloxamer 188. The average molecular weight of 

poloxamer 407 is 9840 to 14600g/mol. Poloxamers are pharmaceutically used as emulsifying, 

stabilizing, and viscosifying agent. Of utmost interest are the thermogelling characteristics of 

poloxamers. Solutions of poloxamers gel by increased temperature, due to the dehydration of 

hydrophobic PO blocks which results in micelle building and further ordered packing of the micelles 

(see Figure 6-2 [113]). This phenomenon is completely reversible. The gelling temperature is highly 

dependent on the concentration of poloxamers, and the type and amount of available ions 

[116,117]. Viscosity characteristics were not changed after autoclaving, but possible degradation 

was not specified [113].  

Poloxamers are used for production of gels for skin and mucosal application to the eye and surgical 

wounds [118]. Poloxamer 407 is component in products like Zovirax® Creme and Zovirax® 

Lippenherpescreme (GSK, Germany) or Miraflow contact lens care (Ciba Vision, Switzerland). 

Poloxamers are also components of Gonal-f® Pen (Merck, Switzerland) for subcutaneous 

application. Poloxamers are monographed in European Pharmacopoeia, the British 

Pharmacopoeia, and in the United States Pharmacopoeia.  

Poloxamer 407 gels with insulin, intended for buccal application, showed increasing mucoadhesive 

force by increasing concentrations in in vitro experiments [119]. Poloxamers showed 

mucoadhesive effects on rectal mucosa in in vitro investigations [117]. Despite affecting 

mucociliary transport times in nasal in vivo experiments (see below) and mucoadhesive effects in in 

vitro experiments, poloxamers are generally not classified as mucoadhesive agents but as in situ 

gelling agents or as thermogelling agent. 
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Figure 6-2: Schematic presentation of the thermogelling effect of poloxamer 407 in water [113]        

(PO: propylene oxide, EO: ethylene oxide, T: temperature).  

Poloxamers in transmucosal nasal drug delivery 

The thermogelling attributes of poloxamer offer the possibility to develop liquid formulations at room 

temperature which gel after application in the nasal cavity and offer longer residence time on the 

nasal mucosa. Poloxamers are under investigation for transmucosal nasal drug formulations in 

vitro [32,120] and in animal studies [121]. A nasal OTC drug product for local effect containing 

poloxamer 407 as excipient is already available: Vicks® - Early DefenseTM Nasal Decongestant 

MicroGel Spray (Procter & Gamble, USA). Poloxamers showed prolonged residence time of 

plasmid DNA in nasal tissues, and further prominent long term nasal residence times in 

combination with polycarbophil and polyethylene oxide [122]. A formulation with 18% 

poloxamer 407 showed a more as two-fold larger mucociliary transport time in in vivo experiments 

in rats [123].  

Safety and toxicology 

Poloxamers are components of a huge number of pharmaceutical products for topical, oral, or 

parenteral use, including a nasal formulation (see above). Poloxamers are not metabolized in the 

body and are generally regarded as nontoxic and nonirritant [124]. 
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6.4 Chitosanhydrochloride 

Chemical structure and pharmaceutical use 

Chitosan is a linear polysaccharide which is produced by partial deacetylation of chitin from crab 

shells or other crustaceans. It is composed of β-(1→4)-linked D-glucosamine and N-acetyl-D-

glucosamine (see Figure 6-3). Chitin is insoluble, whereas chitosan can be solubilized with 

inorganic and organic acids like hydrochloric acid or acetic acid by protonation of the amino group. 

The amino group in chitosan has a pKa value of about 6.5. 

 

 

Figure 6-3: Chemical structure of chitosan. 

 

Different grades of deacetylation (40 to 98%) and molecular weights (50kDa to 2000kDa) are 

available [125]. The most used chitosan salt is chitosanglutamate. Higher deacetylation grades 

results in more charged molecules and have a more flexible chain. Chitosanhydrochloride is 

monographed in the European Pharmacopoeia. Chitosan is versatile pharmaceutically used as 

adjuvant for direct tablet compression, for solid dosage forms for controlled release, in the process 

of wet granulation, as a coating agent, in gels and emulsions, and for the production of 

microcapsules and microspheres. Chitosan seems to have antimicrobial characteristics [126], and 

its wound healing properties are used for products like ChitoSkin® (Beese Medical, Germany).  

Chitosan in transmucosal nasal drug delivery 

Chitosan is a safe and effective permeation enhancer due to interaction with mucosal membranes 

and transient opening of the tight junctions which enhances paracellular absorption [127,128]. 

Chitosan has shown absorption enhancing properties for transmucosal nasal drug delivery in a 

couple of in vitro and in vivo studies, e.g. [9,19,109,129-132].  

The commentary of the European Pharmacopoeia points out that chitosan is used as an excipient 

in nasal drug delivery [133]. Additionally, the cationic chitosan has a mucoadhesive effect on the 

negative charged mucus layer (sialic acid). The mucoadhesive properties can contribute to the 

absorption enhancing effect as well. 
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Safety and toxicology 

Chitosan has a very safe toxicity profile and creates no humoral immune response when given 

nasally or by injection [125]. Chitosan showed negligible cilia toxicity [125]. Chitosan is 

biocompatible and neither irritating nor allergenic [134]. Chitosan is constituent of many food 

products and has the generally recognized as safe (GRAS) status [135]. It is used in large 

quantities as fat absorbing ingredient in dietary supplements (e.g. Provisan Xitoform Pulver, Hepart 

AG, Switzerland). Chitosan as a natural biopolymer is available in ultrapure quality.  
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7 Project I: Development and Characterization of the 

Nasal Study Medication 

7.1 Introduction 

This project describes the development and characterization of the nasal vehicles for esketamine 

delivery and the fluoresceine-natrium labeled vehicles. According to the triad of nasal drug delivery 

(see Chapter 4), the drug determines the type of the formulation, followed by an election of the 

device and the development of the vehicle. 

The eutomer esketaminehydrochloride was chosen instead of the racemate 

ketaminehydrochloride, because half of the dose is sufficient for the same effect, which is an 

advantage considering the limited volumetric capacity of the nose. Esketaminehydrochloride is 

sufficiently soluble in water to develop liquid nasal formulations. As esketamine is a drug used in 

emergency medicine, a device has to be chosen which can be applied to lying patients. 

Furthermore, the doses have to be countable and there should be as little leftovers as possible in 

the device considering the potential of abuse. A unit dose device was chosen which fulfilled all 

these points. The nozzle is appropriate for adults and children. Single dose devices are most 

hygienic and offer the possibility to dispense exactly the prescribed amount of doses. The vial of 

the unit dose device is filled with 125µl whereas 100µl are delivered by the device. The dose of 

esketamine base to study the pharmacokinetics was ascertained for 20mg esketamine base 

(0.25mg/kg body weight for a human with 80kg) and was administered by one application of 10mg 

into each nostril. Applying two-sided application minimizes possible interference with the nasal 

cycle. The challenge was to develop vehicles with absorption enhancing excipients in which 

11.5mg esketaminehydrochloride can be solved in only 100µl. Due to the unknown influence of 

osmolality and viscosity on transmucosal absorption, these parameters were matched in 

formulations with different absorption enhancers, to determine the pure effect of the absorption 

enhancer. 

After preliminary tests two excipients were tested each separately and in combination. The 

thermogelling agent poloxamer 407 was chosen, as in situ gelling is a promising approach to 

prolong the residence time on the nasal mucosa. Poloxamer 407 is already established as 

excipient in a nasal OTC-product. Chitosan, a permeation enhancer with mucoadhesive 

characteristics, was chosen because it is the best characterized permeation enhancer and has a 

safe toxicology profile. An aqueous formulation of esketaminehydrochloride without any adjuvant 

was developed as comparator. 

To elucidate the mucoadhesive characteristics of the vehicles, four corresponding formulations with 

the marker dye fluoresceine-natrium instead of esketaminehydrochloride were developed. The 

corresponding formulations were aimed at as much comparable as possible according to osmolality 
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and viscosity. This is especially challenging in formulations with poloxamer 407, because adjusting 

of osmolality simultaneously changes viscosity and vice versa.  

Formulations (abbreviated with “F”) with esketamine were named with numbers, whereas 

formulations with fluoresceine-natrium were named with characters. Table 7-1 presents an 

overview of the formulations. 

 

Table 7-1: Glossary of the formulations. Formulations with esketamine were named with numbers (1 to 
4), whereas formulations with fluoresceine-natrium were named with characters (A to D). 

 
Formulation 
 
Numbers → esketamine 
Characters →  fluoresceine-natrium 

 
1  /  A 

 
2  /  B 

 
3  /  C 

 
4  /  D 

Absorption enhancing 

excipient(s) 
none chitosan poloxamer 407 

chitosan and 

poloxamer 407 

 

The nasal formulations have to be developed according to the requirements for nasal preparations 

of the European Pharmacopoeia (Ph. Eur.).  

The aim of this project was beyond the development of appropriate formulations, to establish 

applicable analytical methods, to supply all required GMP-documents (specifications, instructions 

for manufacturing and quality control), and to analyze the stability of the developed esketamine 

formulations. 
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7.2 Materials and methods 

7.2.1 Materials 

Esketaminehydrochloride BP was purchased from Naprod Life Sciences Pvt. Ltd. (Mumbai, India), 

fluoresceine-natrium Ph. Eur. from Fagron GmbH & Co KG (Barsbüttel, Germany), poloxamer 407 

Ph. Eur. from Fagron GmbH & Co KG (Barsbüttel, Germany), and chitosanhydrochloride in ultra 

pure quality from NovaMatrix FMC BioPolymer (Oslo, Norway) with the trade name Protasan UP 

CL 113 (Grade of deacetylation 75 to 90%, molecular weight < 150kDa, viscosity < 20mPas of a 

1% solution at 20°C). Furthermore, sodium chloride of pharmaceutical quality and water for 

injection was used. 

Unit dose nasal sprays, delivering 0.1 ml were obtained from Ing. Erich Pfeiffer GmbH (Radolfzell, 

Germany). Acrodisc® Syringe Filters (Supor® hydrophilic polyethersulfone membrane 0.8/0.2µm) 

from PALL (Ann Arbor, MI, USA) were used durig production. 

7.2.2 Analytical methods 

All formulations were analyzed according to the specifications for aspect (visual), pH (pH-Meter 

780 Methrom AG, Herisau, AR, Switzerland), tonicity (Micro-osmometer AdvancedTM Modell 3300, 

Advanced Inctruments Inc, Norwood, MA, USA), and refraction index (Refraktometer RXA170, 

Anton Paar, Graz, Austria).  

Dynamic viscosity of formulations B to D and 2 to 4 was assessed in 20ml samples with a rotational 

viscosimeter: Rheomat RM-180 (Rheometric ScientificTM/Ingenieurbüro Kassecker, Munich, 

Germany) with RSI Orchestrator software, version V6.5.7, 2001 (Rheometric 

ScientificTM/Ingenieurbüro Kassecker, Munich, Germany). Viscosity results are displayed as mean 

of the measurement points of duplicate determinations. Table 7-2 displays viscosity measurement 

parameters. Reproducibility of the method was monitored. 

Table 7-2: Parameters for viscosity assessment. 

Parameter Setting  

Geometry Tube 1, Bob 9 

Temperature  20°C (± 1°C) and 30°C (± 1°C) 

Tempering 5min 

Shear rate 1200s-1 

Pre-shearing 120s 

Shearing 60s 

Measurement points 30 
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Identity and content of formulations A to D were analyzed with UV-Vis-spectroscopy (UV/Vis-

Spectrophotometer Lambda Bio 20, PerkinElmer, Waltham, MA, USA) in buffer solution pH 8.0 R 

(4005900) Ph. Eur. 6.0 at 492nm (± 2nm).  

Identity of esketamine in formulations 1 to 4 was analyzed by chiral HPLC and content analytics 

were also performed by HPLC based on a method of Takahagi et al. [136].  

Table 7-3 summarizes parameters of esketamine analytics by HPLC.  

Microbiological quality was tested according to Ph. Eur. 6 (2008) Chapter 5.1.4. Category 2 or 

according to Ph. Eur. 6 (2009) Chapter 5.1.4. Microbiological quality of non-sterile pharmaceutical 

preparations and substances for pharmaceutical use for selected samples of formulation 2 and B. 

Uniformity of dosage units was tested with uniformity of mass test with emptying 10 sprays for each 

formulation according the general monograph for nasal preparations (Ph.Eur. 5.6). 

 

Table 7-3: Parameters for esketamine analytics by HPLC. 

Parameter Identity esketamine Content esketamine 
Content esketamine 
(stability testing) 

Apparatus 
Hitachi LaChrome Elite System (Hitachi LaChrome, Tokyo, Japan) with 
autosampler L-2200 an DAD L-2450, EZ-Chrome Elite software (Scientific 
Software Inc., Pleasanton, CA, USA) 

Pre-column 
XTerra RP18 3.5µm 3.9x20mm Guard Column (Waters Chromatography Ireland 
Ltd., Dublin, Ireland) 

Column 
Chiral-AGP 5µm 
150x4mm (ChromTech 
Ltd., Congleton, U.K.) 

ACE 3 C18; 3.0µm 7.6cmx4mm (Advanced 
Chromatography Technologies, Aberdeen, Scotland) 

Mobile phase 

16% methanol 
84% phosphate buffer 
50mM adjusted to pH 7.0 
with potassium hydroxide 

15% ACN 
85% phosphate buffer 
50mM 

15% ACN 
85% phosphate buffer 
50mM 

Flow rate 0.8ml/min, isocratic 0.8ml/min, isocratic 
0.8ml/min, gradient 
elution 

Running time 20min 5min 5min 

Temperature column 30°C 30°C 30°C 

Injection volume 20µl 10µl 10µl 

Esketamine 
quantification wavelength 

215nm 215nm 215nm 

 

7.2.3 Stability testing 

Stability testing was performed for esketamine formulations during 12 months (1, 2, 3, 6, and 

12 months) for samples stored at room temperature (15-25°C) and at 2-8°C. Test samples were 

unit dose sprays, and 5ml and 20ml vials, containing one rubber stopper of the nose spray to 

simulate primary packaging, for pH and viscosity analytics. Aspect, tonicity, pH, identity, and 

viscosity (formulations 2 to 4) were assessed as described in Chapter 7.2.2. For content analytics a 

stability indicating HPLC-method was developed (see Table 7-3). For this purpose, retention times 

of esketaminehydrochloride impurity A, and degradation products form stressed esketamine-
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hydrochloride samples with dry heat (16 days at 90°C), UV exposure (18 hours 254nm), two hours 

boiling in 1 molar hydrochloric acid, 1 molar sodium hydroxide, and 3% hydrogen peroxide were 

determined.  

 

7.3 Results 

Table 7-4 presents an overview of the developed formulations and the adjusted parameters 

osmolality and viscosity. Amounts of absorption enhancers which were elucidated to obtain the 

adjusted parameters are displayed in Table 7-5. 

For all investigational products, formulations A to D (Project II), and 1 to 4 (Project III), placebo and 

verum sprays (Project IV), and blinded study medication packages (Project II and Project IV), 

GMP-conform specifications (see Table 7-6 and as example specification of formulation 2 

Appendix 12.1.1), instructions for manufacturing and for quality control (see as examples 

instructions for manufacturing and quality control of formulation 2 Appendix 0) were provided 

according current GMP-guidelines. The developed analytical methods were displayed in Chapter 

7.2.2. 

Table 7-4: Overview of ingredients (+ contained, ― not contained) of the aqueous formulations for 
nasal application of esketamine (Project III) and the corresponding labeled vehicles with the marker 
dye fluoresceine-natrium (Project II). Adjusted osmolality and viscosity is marked with . 

Viscosity (30°C) 
[mPas] ±20% 

Formu-
lation 

Fluo- 
resceine-
natrium 

Esketamine 
HCl 

Chitosan 
HCl 

Poloxamer 
407 

Osmolality 
[mOsmol/kg] 

1000±15% 15 60 ― 

A + ― ― ―     

B + ― + ―    

C + ― ― +    

D + ― + +    

1 ― + ― ―     

2 ― + + ―    

3 ― + ― +    

4 ― + + +    

 

Production 

All formulations were prepared in volumetric flasks, as the dose of nasal sprays is defined of their 

application volume. Formulations A and 1 are aqueous solutions. For formulations C and 3, 

poloxamer gels were produced by adding cooled water for injection to defined amounts of 

poloxamer 407 and storing over night at 2-8°C. Afterwards aqueous solutions of fluoresceine-

natrium and NaCl, or esketaminehydrochloride were mixed in. Formulations B and 2 were 

produced in the same manner as formulation C and 3, but the chitosanhydrochloride solutions were 

stored at room temperature over night instead of 2-8°C. Formulations D and 4 were produced by 

adding water for injection to defined amounts of chitosanhydrochloride and storing over night at 

room temperature. Afterwards solutions produced as for formulation C or 3 as intermediate product 

were mixed in.  
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Before bottling in sterile nasal spray device vials, formulations A, B, 1, and 3 were filtered with 

0.2µm filters for sterility. For formulation B, D, 2, and 4 all intermediate products were filtered with 

0.2µm filters for sterility. It was not possible to filter chitosanhydrochloride solutions in the used 

concentrations with 0.2µm filters. Filtering of the formulations or intermediate products and bottling 

was performed under sterile conditions.  

 

Table 7-5: Overview of the developed nasal formulations with amounts of ingredients (weight/volume) 
per spray. All formulations are aqueous, NaCl was used quantum satis.  

UD: unit dose spray device; + contained; ― not contained. 

FNA-study 

Formulation 
Descriptive name 

Fluoresceine-
natrium 

Chitosan HCl Poloxamer 407 NaCl 

A 
Fluoresceine-natrium  
UD Nasal Spray 0.5mg/ml 

0.05mg ― ― + 

B 
Chitosan         
Fluoresceine-natrium  
UD Nasal Spray 0.5mg/ml 

0.05mg 1.75% ― + 

C 
Poloxamer      
Fluoresceine-natrium  
UD Nasal Spray 0.5mg/ml 

0.05mg ― 11.0% + 

D 
Poloxamer-Chitosan 
Fluoresceine-natrium  
UD Nasal Spray 0.5mg/ml 

0.05mg 1.75% 11.0% + 

Eskena-study 

Formulation 
Descriptive name 

Esketamine 
HCl Chitosan HCl Poloxamer 407 NaCl 

1 
Esketamine  
UD Nasal Spray 10mg 

11.5mg ― ― + 

2 
Chitosan Esketamine 
UD Nasal Spray 10mg 

11.5mg 1.60% ― + 

3 
Poloxamer Esketamine 
UD Nasal Spray 10mg 

11.5mg ― 10.0% ― 

4 
Poloxamer-Chitosan 
Esketamine  
UD Nasal Spray 10mg 

11.5mg 1.60% 10.0% ― 

 

Refraction index and uniformity of mass 

Refraction index was different for each formulation and allowed quality control of blinded nasal 

study medication for Project II and IV. Values for the test of uniformity of mass (emptying of each 

10 samples of all formulations) were within boundaries of ± 10%.  

Microbiological quality 

Formulation B fulfilled the requirements for microbiological quality of Ph. Eur. 6 (2008) directly after 

production. Two different batches (6 months and 9 months after production) of formulation 2 were 

tested according to Ph. Eur. 6 (2008/2009) and fulfilled the requirements for microbiological quality. 

All results of microbiological testing were below the level of detection. 
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Table 7-6: Specification of the clinical test samples. Content: fluoresceine-natrium/esketamine base.  

*equivalent to F2, selected for PK/PD testing;  **equivalent to FB without fluoresceine-natium. 

Project Formu-
lation 

Aspect Identity 
Content 
[mg/ml]  

pH 
Osmolality 

[mOsmol/kg] 
Viscosity 
[mPas] 

II A 
green-yellowish, 
fluorescent, clear solution 

Fluoresceine 

conform 
0.425 - 0.575 6.4 - 8.4 850 - 1150 n.a. 

II B 
Yellowish, fluorescent, 
clear solution 

Fluoresceine 

conform 
0.425 - 0.575 4.7 - 6.7 850 - 1150 12 - 18 

II C 
green-yellowish, 
fluorescent, clear solution 

Fluoresceine 

conform 
0.425 - 0.575 6.1 - 8.1 850 - 1150 12 - 18 

II D 
green-yellowish, 
fluorescent, clear or 
almost clear solution 

Fluoresceine 

conform 
0.425 - 0.575 4.8 - 6.8 850 - 1150 48 - 72 

III 1 clear solution 
Esketamine 

conform 
90-110 3.1 - 5.1 850 - 1150 n. a. 

III 2 
clear or slight turbid 
solution 

Esketamine 

conform 
90-110 4.1 - 6.1 850 - 1150 12 - 18 

III 3 
clear or slight turbid 
solution 

Esketamine 

conform 
90-110 3.3 - 5.3 850 - 1150 12 - 18 

III 4 
clear or slight turbid 
solution 

Esketamine 

conform 
90-110 4.0 - 6.0 850 - 1150 48 - 72 

IV 
Verum* 

Nasal 

clear or slight turbid 
solution 

Esketamine 

conform 
90-110 4.1 - 6.1 850 - 1150 12 - 18 

IV 
Placebo** 

nasal 
clear solution 

Esketamine 
nonconform, 

NaCl conform 
n.a. 4.7 - 6.7 850 - 1150 12- 18 

 

Clinical test samples 

Table 7-7 presents results of the analytics of the clinical test samples. All were conform to the 

specifications. The thermogelling formulation with esketamine (F3) showed from 20°C to 30°C an 

increase in viscosity of 42.3%, whereas the viscosity of the formulation with chitosan decreased by 

29.9%. Viscosity of formulation D decreased by 20.1% from 20°C to 30°C, whereas viscosity of 

formulation 4 increased by 5.9%. Differences of viscosity at 30°C for the corresponding 

formulations were 3.3% (FB and F2) and 6.7% (FD and F4), whereas formulation C and 

formulation 3 were equal in viscosity.  

Differences in osmolality of corresponding formulations were 2.2% (FB and F2), 8.9% (FC and F3), 

and 8.2% (FD and F4), whereas formulation A and formulation 1 were equal in osmolality.  

Difference in viscosity of verum nasal and placebo nasal (Project IV) was 1.4%, and osmolality was 

equal. 
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Table 7-7: Results of analytics of clinical test samples.  

Viscosity [mPas] (±1°C) 
Project 

Formu-
lation 

Aspect Identity 
Content 
[mg/ml] 

pH 
Osmolality 

[mOsmol/kg] 20°C 30°C Increase [%]

II A   0.45 7.23 1020 n.a. n.a. n.a. 

II B   0.48 5.63 980 22.3 15.5 -30.5 

II C   0.48 7.09 947 12.6 14.8 17.5 

II D   0.53 5.71 1029 80.0 63.9 -20.1 

III 1   101 4.13 1021 n.a. n.a. n.a. 

III 2   100 5,29 1002 21.4 15.0 -29.9 

III 3   96.2 4.53 1040 10.4 14.8 42.3 

III 4   92.9 5.10 1121 64.7 68.5 5.9 

IV 
Verum 
nasal 

  98.7 5.09 974 20.7 14.4 -30.4 

IV 
Placebo 

nasal   n.a. 5.55 974 20.8 14.6 -29.8 

 

Stability testing 

Acquired stability data confirm specified shelf life of 6 months for storing at room temperature for all 

formulations. Detailed results of stability testing on formulations 1 to 4 are shown in 

Appendix 12.1.3. 

Osmolality and pH of all samples and storing conditions was conform over 12 months. 

Formulation 1 fulfilled all specifications for 12 months stability testing at 15-25°C and 2-8°C, and in 

stability indicating chromatograms no peak was >2 per mill of esketamine peak area. 

Formulation  2 fulfilled all specifications for 12 months stability testing at 15-25°C and 2-8°C except 

for viscosity at 12 months (stored at room temperature), and in stability indicating chromatograms 

no confirmed degradation product peaks were found, and no peak in the noise was >4 per mill of 

esketamine peak area.  

Formulation 3 fulfilled all specifications from 1 to 12 months stability testing at 15-25°C and 2-8°C 

except for content at 12 months (room temperature). The exact values for content analytic (mg/ml) 

at 12 months (room temperature) were 84.0, 83.6, and 95.4, 95.3 resulting in a mean of 89.6 which 

is out of specification (90.0-110mg/ml). In stability indicating chromatograms no confirmed 

degradation product peaks were found. 

Formulation 4 fulfilled all specifications for 12 months stability testing at 15-25°C. Samples stored 

at and 2-8°C fulfilled all specifications from 1 to 12 months except for aspect: Samples stored in 

5ml vials and nose spray vials were not conform with aspect at 3 months, and viscosity samples 

stored in 20ml vials were initially slight turbid at 1 and 2 months, and showed precipitation at 3, 6, 

and 12 months, but got homogenous while warming and with strong shaking. In stability indicating 

chromatograms no confirmed degradation product peaks were found for both storing conditions, 

and no peak in the noise was >2 per mill of esketamine peak area. 
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7.4 Discussion 

Nasal esketamine formulations with the absorption enhancer chitosan and poloxamer adjusted 

equal for osmolality and viscosity were developed. Furthermore, a comparator formulation and a 

formulation with a combination of chitosan and poloxamer were developed. Four as far as possible 

corresponding formulations with fluoresceine-natrium instead of esketamine were developed. 

Required GMP-documents for production and analytics were provided. One-year stability testing for 

the nasal esketamine formulations was performed. 

An aqueous solution of esketamine served as reference formulation. The chosen absorption 

enhancers have oppositional characteristics according viscosity. Increasing temperature results in 

decreasing of viscosity for chitosan, but in increasing of viscosity for poloxamer. The temperature in 

the nose is decisive which ranges from about 30°C to 35°C [137-141]. Viscosity measurement was 

consequently performed at 30°C. To determine the amount of the thermogelling effect, an 

additional viscosity measurement was performed at 20°C. Since the nasal application of 

esketamine is optimal in emergency situations, the viscosity of the formulations should be 

heightened rather moderately to prevent drug liberation problems from the matrix. Mucoadhesive 

formulations which last for hours in the nasal cavity [122] are not appropriate for nasal delivery of 

esketamine. The development of formulations with poloxamer on the one hand and chitosan on the 

other hand was successful for an equal viscosity of 15mPas at 30°C. The same range (±20%) for 

viscosity as displayed in the monograph of chitosanhydrochloride in the Pharmacopoeia Europea 

was defined for the specifications of the nasal formulations with absorption enhancing excipients. 

The amounts of chitosanhydrochloride and poloxamer 407 could be combined for formulation 4 

without solubility problems for esketaminehydrochloride. This formulation defined the osmolality for 

all other formulations. Esketaminehydrochloride contributes at most to this high osmolality of 

1000mOsmol/kg (±15%). Isotonic solutions are best tolerated in the nose, and hypertonic solutions 

are generally better tolerated by the nose as hypotonic. However, there are several hypotonic and 

hypertonic nasal products on the market [142]. Compatibility of nasal long-term treatment with 

hypertonic esketamine solutions has to be carefully assessed, but single treatments in emergency 

situations of hypertonic solutions are unproblematic considering the risk-benefit ratio.  

Nasal sprays are dosed by volume. 10ml water for injection added to 1.5g esketamine results in a 

solution of a volume of about 11.0ml. The displaced volume has to be considered in the 

development of the formulations with fluoresceine-natrium. To obtain comparable viscosity results 

for the formulations with fluoresceine-natrium, the amounts of the absorption enhancers had to be 

adapted to the higher ratio of absorption enhancer and water for injection of the esketamine 

formulations due to the demanding volumetric capacity of the amounts of esketaminehydrochloride. 

The osmolality was adjusted with NaCl in the formulations with fluoresceine-natrium to the 

specified value. For the viscosity value of 15mPas the development of formulation C with the 

absorption enhancer poloxamer (adjusting of osmolality simultaneously changes viscosity and vice 

versa) of the specified osmolality was successful. The effect of different ions and osmolality on the 
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viscosity of poloxamer 407 can be seen in formulations 3 and C. Formulation 3 

(esketaminehydrochloride) has a thermogelling effect of 42.3% by increasing the temperature from 

20°C to 30°C, whereas the effect is 17.5% for formulation C (NaCl, fluoresceine-natrium). 

The pH of all formulations was not adjusted to avoid mucosa irritation by buffers. All formulations 

were preservative-free, which avoids mucosal toxicity [142]. Formulations 1, 3, A, and C were 

produced as sterile products. Chitosan solutions were too viscous for filtering with 0.2µm filters. 

Therefore, formulation B and 2 were analyzed for microbiological quality according to the 

requirements of Pharmacopoeia Europea. Formulation D and formulation 4 were not tested 

separately because they are based on formulation B and formulation 2. Production under sterile 

conditions and the ultrapure quality of chitosanhydrochloride led to nasal products of required 

microbiological quality. 

Results of stability testing affirmed that the formulations do not change their characteristics up to 

the specified shelf life and consequently during the clinical investigation. A testing point at 

12 months was added to get results about possible longer stability. As chitosanhydrochloride has to 

be stored at 2-8°C, additionally samples stored at 2-8°C were tested. Only formulation 4 with its 

high viscosity resulted in not conform aspect, whereas all other formulations were conform to the 

specification under storing conditions 2-8°C. Nearly all changes in aspect were detected in the 

20ml vials for viscosity testing. Therefore, three 125µl nose spray vials with formulation 4 were 

stored at 2-8°C and observed over one year. The aspect did not change in the first 24 hours. At 

inspection after three days up to one year storage at 2-8°C, there was a very slight turbidity visible, 

which cleared within one minute at room temperature. No precipitation was detected in all three 

samples over one year, which indicates that at least short time storage of all formulations at 2-8°C 

is possible, but the ideal storage condition is room temperature as specified. However, the viscosity 

of formulations 2 and 4 decreased in samples stored at room temperature. Content analytics were 

performed by pipetting 50µl of solution direct of the nose spray vials, as stability tests should be 

performed in primary packing materials. As pipetting of small amounts of viscous solution is rather 

difficult, this can be a reason for the out of specification value for content of formulation 3 at 12 

months room temperature. Furthermore, no degradation peaks were detected in the corresponding 

chromatogram. As ketamine is stable in aqueous solution [59] as shown in formulation 1, samples 

for content analytics of viscous esketamine solutions as formulations 2 to 4 should be weighted for 

further stability testing.  

For Project IV, the corresponding vehicle (formulation B) without fluoresceine-natrium was chosen 

as nasal placebo. 
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7.5 Conclusion 

Nasal esketamine formulations with the absorption enhancer chitosan and poloxamer were 

developed, which allow administering 20mg esketamine base by each one spray application of 

100µl per nostril. The formulations were comparable according osmolality and viscosity at 30°C, 

the temperature in the nasal cavity. Additionally, a nasal comparator formulation and a formulation 

with a combination of the absorption enhancer could be developed, as well as four corresponding 

formulations with fluoresceine-natrium instead of esketaminehydrochloride. Essential analytical 

methods were developed, and required GMP-documents were provided. Stability of the esketamine 

formulations during the shelf life of 6 months and sufficient microbiological quality as a prerequisite 

for clinical investigations was verified. Therefore, the developed formulations are appropriate for 

investigating the mucoadhesive characteristics of the vehicles and the maximal nasal application 

volume (Project II), and the pharmacokinetics of nasal application of esketamine (Project III) in 

clinical studies. 
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8 Project II: Mucociliary Transport Time and Maximal 

Application Volume of Vehicles for Transmucosal Nasal 

Drug Delivery in Healthy Volunteers (FNA-study) 

8.1 Introduction 

The nasal mucosa is an attractive application site for drugs intended for systemic effect due to its 

permeable nature and high vascularization. Nasal drug application is an ideal administration mode 

in emergency conditions, for children, and for drugs with extensive hepatic first-pass metabolism 

after oral administration. Examples for commercially available products are nasal sprays with 

zolmitriptan and fentanyl as fast acting and needle-free application options.  

A challenge in nasal drug delivery is the mucociliary clearance, which removes the drug formulation 

from the nasal mucosa. The fraction of the drug in the formulation which is not absorbed during the 

short residence time on the mucosa is swallowed and exposed to possible gastrointestinal 

degeneration and hepatic first-pass metabolism. 

A strategy to enable longer time for absorption – to achieve a higher bioavailability – is to develop 

nasal vehicles which can prolong the residence time of the applied formulation in the nasal cavity. 

This can be nasal vehicles containing mucoadhesive excipients or in situ gelling formulations which 

increase the viscosity in contact with the nasal mucosa. Additionally, these vehicles have the 

potential to enable larger application volumes and consequently administration of higher doses. 

This is an advantage, as the volumetric capacity of the nose is limited and surplus volumes are 

immediately swallowed after application. Maximal application volumes for an adult nostril are 

discussed up to 400µl [49] and no data is available for mucoadhesive vehicles.  

Determination of mucoadhesive effects of nasal formulations is complex. Several in vitro methods 

were developed to assess mucoadhesive characteristics [110,143-146]. The principles were to 

measure detachment forces, shear forces, or adhesion to agar plates, intestine mucosa, or frog 

palate. These models investigate only a distinct aspect of mucoadhesion, but cannot efficiently 

mimic the complex conditions of the nasal mucosa with its active transport. Therefore, it is not 

possible to extrapolate the results to in vivo conditions [42]. An in vivo determination of the 

mucoadhesive force of a liquid formulation is not feasible, but the mucociliary transport time 

(MCTT) can be measured as a surrogate for the mucoadhesion. A slower initial clearance is 

considered as a hint for mucoadhesive effects. A physiologic MCTT is shorter than 20min and 

ranges mostly between 8 and 14min [147-150]. The MCTT can be assessed with radiolabeling 

[137,149], or by means of different tracers which were applied in the nose. Radiopaque discs of 

Teflon can be detected by means of a fluoroscopic image intensifier [151]. Saccharin is a soluble 

tracer which can be detected by taste. Diverse particles like charcoal, anion resin, or aluminum 

disks were used as tracer and detected by visual inspection in the oropharynx [112,150,152]. 
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Furthermore, dyes like methylrosaniline, phenol red, edicolorange, and indigo carmine were used 

[149,150,153] and as well inspected visually. Limitations of the reported in vivo methods to 

determine MCCT are exposure of subjects to radiation, dependency of taste sensations, or difficult 

detection of dye tracers [149]. 

Nakamura et al. used polymers labeled with a dye to observe the nasal residence time of the 

formulations with a fiberscope in rabbits [144]. Zhou and Donavan used fluorescently labeled 

microspheres incorporated in putative mucoadhesive gels to determine influences on the nasal 

clearance by swabbing the oral cavity of rats with moistened cotton-tipped applicators and 

fluorescence spectrophotometric analysis of the samples [112]. The fluorescent dye fluoresceine-

natrium was used to visualize the intranasal distribution of nasal sprays [154-156].  

The aim of this double-blind study was to characterize nasal vehicles for their mucoadhesive 

properties by measuring the MCTT, and to determine their maximal administration volume in 

healthy volunteers. Therefore, an aqueos solution as comparator, a solution with the mucoadhesive 

agent chitosan, a thermogelling formulation with poloxamer, and a formulation with chitosan and 

poloxamer were labeled with fluoresceine-natrium. The appearance of the marker dye in the 

oropharynx after nasal application of 100µl, 200µl, and 300µl per nostril was selectively detected by 

endoscopic inspection of the oropharynx with a fluorescence-filter system. The abbreviated study 

name is FNA-study (Fluoresceine-natrium nasal). 

8.2 Subjects and methods 

The study was approved by the local ethics committee (EKBB, Basel, Switzerland, EKBB 43/08) 

and notified by the national regulatory authority (Swiss Agency for Therapeutic Products, 

Swissmedic, Ref-Nr. 2008DR1100). The study was carried out according the Declaration of 

Helsinki and current GCP-guidelines at the Department of Otorhinolaryngology, University Hospital 

Basel, Switzerland. 

Subjects 

Six healthy, male, non-smoking volunteers (age 18-40 years, BMI 18-25kg/m2) were included. 

Exclusion criteria were acute or chronic impairment of nasal function or anatomic nasal 

abnormalities (controlled by endoscopy of the nasal cavity), allergies, or known intolerance to 

fluoresceine-natrium or used excipients. Volunteers with abuse of drugs, which was controlled by a 

urine test before the study, were excluded. All volunteers were informed in detail about the study 

before giving informed consent.  

Investigational product 

Characteristics of the investigational products are shown in Table 8-1. The formulations were 

bottled in unit dose spray devices delivering 100µl. One, two, or three sprays per nostril were 

administered. Development and production of the investigational formulations are described in 

Chapter 7 (Project I). The Hospital Pharmacy, University Hospital Basel, Switzerland provided 

blinded study medication packages. Formulations were abbreviated with F and characters A to D. 
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Table 8-1: Characteristics of study medication. All formulations contain water for injection and NaCl 
quantum satis, [%] as weight/volume.  

Viscosity (30°C) 
[mPas] ±20% 

Formu-
lation 

Fluo- 
resceine-
natrium 

Chitosan 
HCl 

Poloxamer 
407 

NaCl 
Osmolality 

[mOsmol/kg] 
1000±15% 15 60 ― 

A 0.05% ― ― +     

B 0.05% 1.75% ― +    

C 0.05% ― 11.0% +    

D 0.05% 1.75% 11.0% +    

 

Study design 

The study was conducted as shown in Figure 8-1. The first two study days were performed 

unblinded for a proof of concept of the test, to familiarize the subjects with the procedure and to 

determine the measurement time points and the duration of the tests (data not displayed). 

Figure 8-1: Flowchart of the FNA-study. 
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All other study days were performed double-blind (investigator and subject) in three terms of four 

study days. Study days were at least separated by one day. Tests of the MCTT were performed in 

the morning. Each subject received each formulation once randomized in the three terms 

(crossover design). For this purpose, one spray of 100µl per nostril was applied. The test for the 

maximal application volume was performed in the afternoon in the first term with 200µl per nostril 

and in the second term with 300µl per nostril with the same formulation as in the morning. 

Assessment of mucociliary transport time and maximal application volume 

Subjects were sitting upright. Patency of the nose was checked by nasal breathing with obstruction 

of the other nostril. Nasal vestibulum and oropharynx were inspected for absence of fluoresceine-

natrium, which was as well as nasal patency a prerequisite to perform the study day.  

Application of the nose sprays was performed by the investigators aiming an angle of minimal 45° 

above the nasal floor. This application mode was chosen to prevent a direct spraying towards the 

choana. Intake of breath during application and sniffing after application was forbidden, as well as 

nose blowing during the experiment. Application was rated by the subjects as neutral, tolerable, 

unpleasant, or painful. Subjects were asked for their sensations after the applications like burning, 

itching or bitter taste. Subjects had to open the mouth for inspection every minute after application 

of the spray without swallowing previously. Inspection of the posterior oropharynx wall took place 

using a Storz® Xenon Light Source Type 615 B with a fluid light cable 3mm, and Hopkins® Straigth 

Forward Telescope 0° (Anklin AG, Binningen, Switzerland) equipped with a Storz® fluorescence 

blue filter system and a fluorescence excitation filter (Anklin AG, Binningen, Switzerland) which 

allows selectively isolating of the fluorescence emission of fluoresceine-natrium as fluorescent 

yellowish-green light.  

The MCTT was stopped from application up to an observed appearance of a broad fluorescent-

green front in the oropharynx or up to a constant appearance of fluorescence emission of 

10 following minutes. The maximal observation time was 90min.  

For the test of the maximal application volume, the time after application up to detection of 

fluorescence in the oropharynx was measured. The observation time was 15min.  

After the tests, the dye was rinsed out of the nose with 0.9% saline (Rhinomer® Nasenspülung JET 

INTENSIV, Novartis, Switzerland), and out of the pharynx by gargling water. The absence was 

controlled. All tests were performed by the same investigator. Temperature and humidity of the 

room were monitored. 

Statistical analysis 

Statistical analysis was performed using R Version 2.11.1 (R Development Core Team (2010). R: A 

language and environment for statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria). A p-value of less than 0.05 was considered to be statistically significant. 

Measurements of the response variable MCTT smaller than 5min were discarded, measurements 

larger than 90min were treated as measurements of 90min. A linear mixed effects model was fit for 

the log-transformed mucociliary transport time with the fixed effect formulation (4 levels: FA, FB, 
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FC, FD) and a separate random intercept for each subject to account for the non-independence of 

measurements within the same subject. Residuals of the fitted model were checked graphically to 

assess whether the model assumptions were fulfilled. An ANOVA table was compiled to assess the 

overall effect of the formulation and Tukey post-hoc multiple comparisons for the formulation were 

performed. 

8.3 Results 

Subjects 

Ten volunteers were screened. Three did not meet the inclusion criteria due to BMI, hypertension, 

and heart defect documented in an endocarditis pass. One volunteer failed to appear for nasal 

control endoscopy. Six subjects (mean age 24, SD 4.6; mean BMI 21, SD 1.8) completed the 

study.  

Application and side effects 

All applications of 100µl per nostril were rated as neutral and only subject 5 reported burning in the 

nose once after application of formulation B. All applications with 200µl were neutral, except 

application of formulation B was once tolerable in subject 1, and application of formulation A was 

once unpleasant in subject 1. All applications of 300µl were neutral. No itching or explicit taste 

sensations were reported immediately after any application. In 12 of 48 applications (200µl and 

300µl) subjects reported during the investigation very slight bitter, hot, or indefinable taste for 

formulation B, formulation C, and formulation D. Subject 4 reported strong burning and hot taste for 

200µl and 300µl application of formulation B. Of the 30 applications of each formulation (3x100µl, 

1x200µl, 1x300µl) sneezing occurred two times for formulation B (100µl), and nine times for 

formulation D (four times 100µl, five times 200µl), whereas no sneezing occurred for formulation A 

and formulation C. Mean temperature was 24.5°C (SD 0.84°C) and mean humidity was 49.2% (SD 

5.25%) at the test location during the tests.  

Mucociliary transport time 

The first 8 pictures of Figure 8-2 show a minute-by-minute series of pictures with appearance of the 

marker dye at the posterior oropharynx wall and further pictures with positive results, photographed 

by a Storz® endoscopic camera at study days one and two. 

Table 8-2 shows the results of the MCTT after application of 100µl per nostril. Large MCTT 

(>25min) occurred six times for formulation B, and four times for formulation D, but not for 

formulation A and formulation C. Once for formulation B and formulation D no fluorescence was 

detected in the oropharynx within 90min. Short MCTT (<5 min) occurred in three different subjects 

(2, 4, and 5), thereof once for formulation A, twice for formulation B, three times for formulation C, 

but not for formulation D. Neither formulation C, formulation B, and formulation D showed to be a 

very fast cleaned solution. Therefore, all values <5min were considered as false positive results as 

MCTT for the comparator (FA) was 8.47 ± 3.26min (mean ± SD). Mean of threefold determined 
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MCTT showed for formulation B and formulation D for each subject higher values than for 

formulation A. Mean of threefold determined MCTT of formulation C were lower than for 

formulation A for subjects 4, 5, and 6, and higher for subjects 1, 2, and 3. Median of all MCTT for 

formulation B and formulation D were higher than for formulation A, but values showed larger 

variance. The median of formulation A and formulation C were 8min and 9min. Subject 6 showed 

rather the same MCTT for each formulation.  

 

Table 8-2: Observed MCTT in minutes after application of 100µl per nostril of formulations A to D. 

Subject 
MCTT [min] 

FA 
Mean (SD) 
of subj. 

1
 

MCTT [min] 
FB 

Mean (SD) 
of subj. 

1
 

MCTT [min]
FC 

Mean (SD) 
of subj. 

1
 

MCTT [min] 
FD 

Mean (SD) 
of subj. 

1
 

1 5 11 10 11 
1 10 >90** 20 12 

1 14 

9.67 
(4.51) 

47 

49.33 
(39.55) 

21 

17.00 
(6.08) 

12 

11.67 
(0.58) 

2 8 85 3* 12 

2 7 21 18 8 

2 2* 

7.5 
(0.71) 

24 

43.33 
(36.12) 

20 

19.00 
(1.41) 

6 

8.67 

(3.06) 

3 9 14 9 9 

3 5 9 9 15 

3 8 

7.33 
(2.08) 

15 

12.67 
(3.21) 

6 

8.00 
(1.73) 

26 

16.67 
(8.62) 

4 8 3* 8 50 

4 7 17 4* 10 

4 5 

6.67 
(1.53) 

60 

38.50 
(30.41) 

5 

6.50 
(2.12) 

8 

22.67 
(23.69) 

5 7 1* 7 51 

5 15 56 2* >90** 

5 15 

12.33 
(4.62) 

57 

56.50 
(0.71) 

11 

9.00 
(2.83) 

22 

54.33 
(34.12) 

6 7 8 7 8 

6 8 8 6 9 

6 6 

7.00 
(1.00) 

7 

7.67 
(0.58) 

6 

6.33 
(0.58) 

8 

8.33 
(0.58) 

Median1 8.0  19.0  9.0  11.5  

Min1 5.0  7.0  5.0  6.0  

Max1 15.0  90.0  21.0  90.0  
 

* values < 5min;   ** values >90min were taken as 90min;    1 values <5 excluded for analysis. 

 

 

The ANOVA shows that formulation had an overall highly significant effect on logtransformed 

MCTT (see Table 8-3). The post-hoc comparisons of each formulation level combination showed 

that the differences of means between FB–FA, FD–FA and FC–FB were significantly different from 

zero (Table 8-4). 

MCTT of formulations B and D was significantly different form MCTT of formulation A, whereas 

MCTT of formulation C was not significantly different from MCTT of formulation A. MCTT of 

formulation D was not significantly different from MCCT of formulations B and C. 
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Table 8-3: ANOVA table for linear mixed effects model for MCTT after nasal application of formulations 
FA, FB, FC, and FD. 

Response 
variable 

(Intercept) 
formulation 

Numerator degrees 
of freedom 

Denominator 
degrees of freedom 

F-value p-value 

(Intercept) 1.00 57.00 242.67 <0.0001 
MCTT 

formulation 3.00 57.00 10.96 <0.0001 

 

 

Table 8-4: Post-hoc multiple comparisons of means with Tukey contrasts for MCTT after application of 
formulations FA, FB, FC, and FD (p-values adjusted). 

Combination Estimate SEM z-value p-value 

FB – FA 1.0779 0.2004 5.38 <0.0001 

FC – FA 0.2200 0.2034 1.08 0.7008 

FD – FA 0.5916 0.1941 3.05 0.0122 

FC – FB -0.8579 0.2062 -4.16 0.0002 

FD – FB -0.4863 0.1973 -2.46 0.0657 

FD – FC 0.3716 0.2008 1.85 0.2495 

 

Maximal application volume 

Table 8-5 shows the results of the MCTT after application of 200µl and 300µl per nostril. FB 

showed a considerable higher mean and median than the other formulations for 200µl. A MCTT 

>5min was detected in 1 (FA), 5 (FB), 3 (FC), and 2 (FD) of 6 investigations for 200µl. For 300µl a 

MCTT >5min was detected in 3 (FA), 2 (FB), 1 (FC), and 3 (FD) of 6 investigations. Once for 200µl 

and 300µl per nostril of FB no fluorescence was detected in the oropharynx within 15min. 

 

Table 8-5: Observed MCTT in minutes after application of 200µl and 300µl per nostril of formulations A 
to D. 

MCTT [min], 200µl per nostril  MCTT [min], 300µl per nostril 
Subject 

FA FB FC FD  FA FB FC FD 

1 4 15 6 10 1 >15* 2 9
2 2 >15* 2 4  2 3 13 2 

3 1 8 6 2  6 1 3 7 

4 2 9 2 2  7 2 1 3 

5 8 3 15 3  10 11 1 14 

6 3 8 2 7  1 1 1 1 

Mean 3.33 9.67 5.50 4.67  4.50 5.50 3.50 6.00 

SD 2.50 4.63 5.05 3.20  3.73 5.99 4.72 4.98 

Median 2.50 8.50 4.00 3.50  4.00 2.50 1.50 5.00 
 

* values >15min were taken as 15min. 
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Figure 8-2: Assesment of MCTT by endoscopic inspection of the oropharynx after application of 
fluoresceine-labeled nasal vehicles. First 8 pictures show a minute-by-minute series with appearance 
of the the marker dye. Next two pictures show appearance of a fluorescent front over the soft palate 
(tongue below), and following pictures show further positive results. Pictures were taken on the first 
two study days. 

 



Project II: Mucociliary Transport Time and Maximal Application Volume of Vehicles for Transmucosal Nasal Drug Delivery in 
Healthy Volunteers (FNA-study) 

 

Christoph Bitter Page 53 of 202 University of Basel, 2010

 

8.4 Discussion 

The usage of an endoscopic fluorescence-filter system facilitates in vivo determination of MCTT 

with fluoresceine-natrium labeled nasal vehicles. In this new practical test, nasal vehicles with 

chitosan and a combination of chitosan and poloxamer showed longer MCTT, indicating distinct 

mucoadhesive effects. A thermogelling vehicle with poloxamer alone showed no delayed initial 

clearance. The mucoadhesive vehicle with chitosan allows larger application volumes without initial 

swallowing. 

The MCTT of the aqueous comparator formulation (FA) was about 8min, and therefore in 

accordance with the times reported in literature [147,153]. The fluorescent dye and the 

fluorescence-filter system allowed selective detection of the dye in the oropharynx in spite of a 

concentration of 0.05%. The lower limit of detection of fluoresceine in UV-light is 0.02ppm [157]. 

Fluoresceine was detected in 116 of 120 investigations in the oropharynx. The non-appearance of 

the dye in subject 1 at 300µl of FB within 15min was verified by fiberscopy, which showed 

dispersion of fluoresceine-natrium within the nasal cavity. In contrast, Ingels et al. detected in a 

combined saccharine-dye test nasally applied indigo carmine (0.8%) in the oropharynx in 13 of 18 

measurements and only in three of nine subjects taste and dye could be detected in subsequent 

two measurements [149]. 

MCTT can be assessed with insoluble or soluble tracers, with partly different results [149,150]. 

Fluoresceine-natrium as a soluble tracer reflects the conditions of applied drug solutions. The 

MCTT designates the time point after which a nasal formulation and their containing drug is 

swallowed. A longer MCTT represents a longer residence time of the applied formulation on the 

mucosa which facilitates uptake of the drug in the systemic circulation in contrast to gastrointestinal 

degradation or hepatic first-pass metabolism after swallowing. Hyperosmolar nasal vehicles were 

tested, considering solving of large amounts of drug in the vehicles. Application of the formulations 

was very well tolerated, and compatibility of the formulation was good. The excipients caused some 

taste sensations. The excipient chitosan resulted in hot taste or burning in one of the subjects. It 

has to be considered, that observed compatibility of the vehicles does not represent the 

compatibility of the combination vehicle and drug.  

As the nasal cycle has a relevant effect on the nasal clearance, application was performed in both 

nostrils do determine the clearance of the whole system nose [52]. Application was performed in a 

minimum angle of 45° above the nasal floor, intake of breath during application and sniffing after 

application was not allowed to avoid an immediately deposition of aerosol in the oropharynx. 

Observing criteria as appearance of a broad fluorescent-green front in the oropharynx or constant 

appearance of fluorescence emission of 10 following minutes allowed assessing of the mucociliary 

transport unaffected of sporadically deposited aerosol droplets near the pharynx. To avoid false 

negative results, previously swallowing for opening the mouth was forbidden. Of 72 measured 

MCTT 6 were <5min. These values do not represent mucociliary transport but may represent 

deposition of the formulation near the oropharynx, and were therefore excluded.  
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All used excipients led to a larger variance of MCCT. The observed mucoadhesive characteristics 

of formulation B with the excipient chitosan are in accordance with other reports [42,134]. As 

chitosan showed no toxic effects on cilia [125], the mucoadhesive effects are mainly related to 

electrostatic interactions with the mucus. Formulation C with the excipient poloxamer, which 

increases its viscosity by increasing temperature, showed no initial slower clearance in the used 

concentration. As formulation B and formulation C were adjusted to the same viscosity at 30°C, the 

temperature in the nose, the viscosity seems to have no influence on the MCC. Vehicles as the 

transport medium of a drug are exposed on the nasal mucosa to a hydrating atmosphere, to 

dilution, and to changes of pH, ionization, osmolality and temperature. The altering conditions 

result in considerable changes of the vehicle, known as metamorphosis of the vehicle [158]. The 

initial viscosity of the tested vehicles formulation B, formulation C, and formulation D as determined 

in vitro, has been changed on the nasal mucosa as viscosity is a rather labile parameter. Not the 

type of the formulation (FC thermogel, FB viscous solution) but the character of the excipient has 

greater influence on the MCTT. The mucoadhesive characteristics of chitosan are a result of 

electrostatic interaction of the cationic chitosan with the mucus containing sialic acid [159]. The 

combination of chitosan and poloxamer in formulation D led to mucoadhesive characteristics but 

less pronounced than with chitosan alone. Formulation D caused sneezing, and may have 

therefore generated faster clearance by emending secretion due to irritation of the nose. 

Furthermore, formulation D has a relatively high viscosity of 60mPas compared to the other 

formulations. Zhou and Donavan showed that very high viscous formulations are subject of rapid 

initial bulk clearance [112].  

Results of the MCTT consider the initial clearance, but not the total clearance. This is a limitation 

compared to X-ray methods, which allow quantifying the clearance. To assess the impact of 

mucoadhesion expressed by a longer MCTT on the bioavailability, an additional clinical 

pharmacokinetic trial has to be undertaken.  

This test might be useful in clinical set-ups as well, as it allows simple and easy measurement of 

the MCCT. Especially possible changes in MCTT can be elucidated in patients having undergone 

functional sinus-surgery with pre- and postoperative MCCT determination. 

The application volume of a nasal formulation has to be adapted to the volumetric capacity of the 

nose, as surplus volume is immediately swallowed after application. Different volumes were 

proposed without referring to analytical methods how these volumes were determined: 130-140µl 

(oral communication Ing. Erich Pfeiffer GmbH, Radolfzell, Germany), 50-150µl with an upper limit 

of 200µl [160], 150µl [8], 100-400µl [49], 100µl [54], <150µl [161], 100-150µl [162], 25-200µl [16]. 

The developed test allowed determining adequate maximal application volumes to prevent 

swallowing immediately after application. The short MCTT of 200µl of formulation A with 3.33min 

and the 5 of 6 values ≤4min showed that 200µl of an aqueous nasal vehicle overcharge the 

volumetric capacity of the nasal cavity. The maximum volume to avoid run-off into the pharynx by a 

single administration of an aqueous formulation is therefore between 100µl and 200µl.  

The mean of the MCT of 200µl and 300µl for each formulation were considerable lower than for 

100µl. Compared to the MCTT of 100µl of formulation A per nostril of 8min, the MCTT of 200µl for 
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formulation B was ≥8min in 5 of 6 subjects and the mean was 9.67min. Therefore, the application 

volume 200µl for formulation B was considered as acceptable, whereas application of 200µl of 

formulation A, formulation C, formulation D, and of 300µl of all formulations was not acceptable. 

Investigating the pharmacokinetics of different drugs diluted in formulation B (100µl and 200µl) is 

therefore an implication for further research. It would be interesting to elucidate if an application of 

the half of the concentration but 200µl in formulation B will result in equal absorption as application 

in 100µl of formulation B. Larger application volumes can enable more compatible isotonic drug 

formulations due to lower drug concentrations and can enable administration of a second dose. 

 

8.5 Conclusion 

A practical test to assess MCTT and maximal application volume of nasal vehicles was developed. 

The vehicle with chitosan showed due to its mucoadhesive characteristics a significant longer 

MCTT and allows application of 200µl per nostril without immediate run-off problems. A 

thermogelling formulation with poloxamer showed no prolonged MCTT. The combination of 

chitosan and poloxamer showed a statistically significant prolongation of MCTT compared to the 

reference but less pronounced as chitosan alone.  

The effect of an initially slower clearance of the vehicle on the bioavailability of the incorporated 

drug has to be elucidated in a pharmacokinetic trial.  
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9 Project III: Impact of Absorption Enhancer on 

Pharmacokinetics of Nasally Applied Esketamine in 

Healthy Volunteers (Eskena-study part I)1 

9.1 Introduction 

Nasal application of ketamine or the eutomer esketamine is an attractive administration option for 

various clinical settings. It can be time-saving in emergency situations, and a convenient and 

needle-free mode of application in chronic pain treatment or for premedication. No nasal 

esketamine product is available on the market. Nasal application of the commercially available 

esketamine solution intended for injection leads to swallowing of the large administration volumes 

required due to low drug concentration [93,103]. Swallowed esketamine is subject of an extensive 

hepatic first-pass metabolism [67]. Nasal application of higher concentrated ketamine solutions led 

to a moderate bioavailability of 33 to 45% [92,96], The beneficial possible applications demand a 

development of nasal esketamine formulations causing a substantial bioavailability. 

The challenges in transmucosal nasal drug delivery are besides the limited volumetric capacity of 

the nasal cavity, the mucociliary clearance which actively removes the formulation from the 

absorption site, and the nasal mucosa as an absorption barrier. Considering these challenges, 

different nasal esketamine formulations were developed to enhance the absorption of esketamine: 

an aqueous solution as comparator formulation, a formulation with the mucoadhesive agent 

chitosan, a thermogelling formulation with poloxamer, and a formulation with chitosan and 

poloxamer. 

The impact of the different vehicles on the pharmacokinetics of nasally applied esketamine as well 

as nasal compatibility and side effects of the formulations were assessed in healthy volunteers. 

 

 

 

 

                                                      
1 The Eskena-study (Esketamine nasal) was conducted in two parts, dealing with different 
questions. Part I is subject of the present Project III and part II is displayed discrete in Project IV. 
For pharmacokinetic analysis data from the i.v. study day from part II is used.  
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9.2 Subjects and methods 

The study was approved by the local ethics committee (EKBB, Basel, Switzerland EKBB 351/08), 

notified by the national regulatory authority (Swiss Agency for Therapeutic Products, Swissmedic, 

Ref-Nr. 2009DR1015), and registered as NCT00847418 at www.clinicaltrials.gov. The study 

protocol and the case report form of part I is displayed in Appendix 12.2.1. 

The study was conducted at the Clinical Research Center of the University Hospital Basel 

(Switzerland) in accordance with the Declaration of Helsinki and current GCP-guidelines.  

Subjects 

Eight healthy, male, non-smoking volunteers were included for this Phase I study. Exclusion criteria 

were acute or chronic impairment of nasal function or anatomic nasal abnormalities, intolerance to 

esketamine or adjuvants (including allergy to crustaceans). Volunteers with abuse of drugs, which 

was controlled by repeatedly urine tests before and during the study, were excluded. Before giving 

informed consent, all volunteers were detailed informed about the study. The subjects had to fast 

10 hours before until 4 hours after administration of study medication. 

Study design 

The study was conducted in two parts as shown in Figure 9-1. For part II see Project IV. In part I 

each subject received at four study days, at least separated by two days, 20mg esketamine base in 

four different nasal formulations (abbreviated with F and numbers 1-4) in the sequence F1, F2, F3, 

and F4. Part I was not blinded, but subjects knew only that the applicated formulations contain the 

same amount of drug and different excipients. Table 9-1 shows the different ingredients of the 

formulations, which were produced according GMP-guidelines at the hospital pharmacy of 

University Hospital Basel (Switzerland). For detailed information about development and production 

see Project I. The dose of 20 esketamine base was administered by one spray of 100µl containing 

10mg esketamine base in each nostril with unit dose devices from Pfeiffer (Radolfzell, Germany). 

Table 9-1: Characteristics of study medication per spray of 100µl. All formulations contain water for 
injection and NaCl quantum satis as specified with +, [%] as weight/volume.  

Viscosity (30°C) 
[mPas] ±20% 

Formu-
lation 

Esketamine 
HCl 

Chitosan 
HCl 

Poloxamer 
407 

NaCl 
Osmolality 

[mOsmol/kg] 
1000±15% 15 60 ― 

1 11.5mg ― ― +     

2 11.5mg 1.60% ― +    

3 11.5mg ― 10.0% ―    

4 11.5mg 1.60% 10.0% ―    

 

Drug application was performed by the same examiners. Subjects were lying in hospital beds with 

a supine position of 30° of the upper part of the body. Nasal application of the two sprays was 

performed in an angle of 45° to the nasal floor, with the nozzle of the spray about 1.5cm into the 

nose and without intake of breath. Sniffing after the application was forbidden, as well as blowing 

the nose for 60min.  
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Figure 9-1: Flowchart of the Eskena-study. 

 

Venous blood samples (7.5ml) were obtained from an indwelling venous catheter placed on the left 

arm predose and at 2.5, 5, 7.5, 10, 15, 20, 40, 60, 90, 120, 180, 240, 360, and 480min after 

esketamine application. Blood samples were obtained in serum tubes, centrifuged at 1800g for 

10min at 4°C. Serum was stored at -20°C until analysis. For a fast evaluation of the formulation 

with the largest area under the curve (AUC), aliquots of samples of each time point were pipetted 

to pooled samples and analyzed as shown below. Blood pressure, heart rate, transcutaneous 

oxygen saturation, and adverse effects (muscle tone, sialorrhoea, nausea, nystagm, and dizziness) 

were monitored during the study day. Compatibility, taste sensations, and irritation (no irritation=0, 
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very slight=1, slight=2, intermediate=3, strong=4, or very strong=5) in nose and throat was 

monitored at 5, 10, 20, 30, and 60min. The subjects rated anxiety, coordination, fatigue, 

crankiness, and medication effect with 100mm visual analog scales (VAS subject). The investigator 

estimated the subjects for the same parameters with a separate VAS (VAS investigator). After each 

study day subjects were asked what they would prefer against strong pain, equal action 

preconditioned: nasal formulation of the present study day or oral application by a tablet, and nasal 

formulation of the present study day or i.m. application with a syringe. Subjects were asked to 

describe their estimation of the effect of the different formulations after study day four.  

Psychic side effects were recorded by validated psychometric questionnaires:  

 “Eigenschaftswörterliste 60 S” (EWL 60 S) [163], a mood rating scale, to detect the subjective 

well-being. The subjects rated 60 adjectives as not at all (1), mild (2), moderate (3), and 

markedly existent (4) predose (how do you feel?) and at time point 240min (how did you feel 

at the time of the maximum drug effect?).  

 5D-ABZ questionnaire [164] to detect the degree of alteration in consciousness, and psychic 

and dissociative side effects. The subjects rated 94 items with VAS at time point 240min (how 

did you feel at the time of the maximum drug effect?). The 5 main domains were analyzed: 

OSE (oceanic boundlessness), AIA (anxious ego-dissolution), VUS (visionary 

restructuralization), AUD (auditive alteration), and VIG (vigilance reduction). 

 State-train anxiety STAI-G [165] to detect anxiety. The subjects rated 20 descriptions of 

feeling as not at all (1), mild (2), moderate (3), and markedly existent (4) predose (how do you 

feel now?) and at time point 240min (how did you feel at the time of the maximum drug 

effect?). Data are analyzed as a score from 20 till 80. Subjects had rated after enrollment 

their basic state of anxiety at the same way. 

Subjects had the possibility to report their feelings during drug effect, if they liked. All subjects were 

asked about psychic side effects four weeks after completion of the study in a telephone interview. 

Analytical methods 

Quantification of esketamine and noresketamine in human serum was performed using an adapted 

and validated LC-MS method [166]. Serum samples of 1ml were spiked with 10ng ketamine-D4 

and 10ng norketamine-D4 and extracted with 3ml 1-chlorbutane. The organic phase was 

evaporated and redissolved in 40µl methanol. Aliquots of 10µl were used for quantification. The 

LC-MS system (LCQDuo, ThermoFisher Scientific, Reinach, Switzerland) equipped with a Restek 

Allure C18 (150x3.2mm, 5µm) column (BGB Analytik AG, Boeckten, Switzerland) was used with 

ternary gradient elution of 5mMol acetate buffer pH 4.75, methanol, and acetonitrile. The lower limit 

of quantification for this non-enantioselektive analysis was 2ng/ml for esketamine and for 

noresketamine. The assay was linear up to 500ng/ml. 

All measurements were performed at the Institute of Legal Medicine, Basel, Switzerland. 
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Pharmacokinetic analysis 

Serum concentration time profiles were analyzed with WinNonlin (Version 5.01, Pharsight 

Corporation, Mountain View, Ca, USA) using compartmental modeling. Secondary pharmacokinetic 

parameters were derived from assessed primary parameters according to standard proceedings. 

Ratio of noresketamine/esketamine was used to determine partly swallowing and not intended oral 

application. Bioequivalence for AUC and cmax was analyzed according current EMEA-guidelines for 

all combinations of formulation 1 to 4 [167].  

Statistical Analysis 

Statistical analysis was performed using R Version 2.11.1 (R Development Core Team (2010). R: A 

language and environment for statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria). A p-value of less than 0.05 was considered to be statistically significant. 

For each combination of the four formulations, the response variables AUC, tmax, and cmax of 

esketamine blood levels as a function over time were determined. A linear mixed effects model was 

fit for each of the three response variables with the fixed effect formulation (4 levels: F1, F2, F3, 

F4) and a separate random intercept for each subject to account for the non-independence of 

measurements within the same subject. Residuals of the fitted model were checked graphically to 

assess whether the model assumptions were fulfilled. For each of the three models, an ANOVA 

table was compiled to assess the overall effect of the formulation and Tukey post-hoc multiple 

comparisons for the formulation were performed. 
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9.3 Results 

Subjects 

One of ten screened volunteers did not meet the inclusion criteria. Nine were enrolled into the 

study. Subject 7 had to be excluded on the first study day due to a positive urine test for 

amphetamines. Eight subjects (age 26, range 21 – 33; BMI 21.9, range 19.9 – 24.6) completed the 

study. 

Application 

No nasal application was rated as painful. Application of formulations 1 and 2 was rated each five 

times as tolerable and three times as neutral. Application of formulation 3 was rated six times as 

neutral and two times as tolerable, and was therefore best compatible. Application of formulation 4 

was estimated four times as neutral, two times as tolerable, and two times as unpleasant. Overall, 

of both sided 32 applications, 16 were neutral, 14 tolerable, and 2 unpleasant. 

At one of the 64 nasal applications per nostril some liquid drip out of the nostril of subject 6 (F2). 

Adverse effects and compatibility 

Adverse effects of the nasal formulations 1 to 4 are summarized in Table 9-2. (psychic side effects 

are displayed separately below). All adverse effects were transient. Classified according Common 

Terminology Criteria for Adverse Events (CTCAE v4.0) all adverse effects were grade 1 (mild) or 

grade 2 (moderate), except partly for dizziness grade 3 (severe). Increased muscle tone was once 

observed after application of formulation 1. 

 

Table 9-2: Adverse effects application of formulations 1 to 4. Values are number of subjects with 
adverse effects (n=8). * Thereof two times immediately after application. 

Adverse effect F1 F2 F3 F4 

Nystagm 1 5 2 3 

Dizziness 6 4 3 6 

Nausea 1 2 0 1 

Sialorrhoea 2 6 1 4 

Teary eyes 2 3 0 4 

Sneezing 3 3 1 7* 

 

 

Adverse effects were generally lowest for formulation 3, and distinctive in the chitosan containing 

formulations (F4 and F2). Results for nystagm, dizziness, and sialorrhoea versus subject and time 

points are displayed in detail in Appendix 12.2.2. Nausea was reported from three different subjects 

and subject 4 was affected by vomiting for formulation 2. Teary eyes were reported within the first 

30min after application. Sneezing occurred in 14 of 32 applications, most prominent for 

formulation 4.  
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The numbers of irritation at the different time points were added (maximum of 200 points) and 

resulted for nasal irritation in 0/16/5/27, and for throat irritation in 17/69/21/46 respectively for 

F1/F2/F3F/F4 (for graphic presentation of irritation scores for nose, throat, and combined nose and 

throat see Appendix 12.2.3).  

Hot, bitter, or metallic taste appeard for all formulations, but more pronounced and longer lasting 

for the chitosan containig formulations (F2 and F4), which resulted also in burning (see Appendix 

12.2.4). Taste sensations partly changed for formulation 4, for example from bitter at 5min to hot at 

20min.  

After each study day subjects were asked for assessment of the compatibility of the applied nasal 

formulation in contrast to a tablet or a syringe. Answers of the subjects are presented in Table 9-3. 

 

Table 9-3: Compatibility of the different nasal formulations. Answers of subjects at the end of the 
study days one to four (with F1 to F4) to the question: What would you prefer against strong pain, 
equal action preconditioned ? (n=8). 

Formulation  tablet versus spray   syringe versus spray  

F1  2 - 6   1 - 7  

F2  4 - 4   2 - 6  

F3  2 - 6   1 - 7  

F4  7 - 1   1 - 7  

 

 

Compared to oral application subjects preferred nasal application of formulation 1 and 

formulation 3, whereas oral application was preferred against formulation 4. Answers for 

formulation 2 were balanced for nasal versus oral application. At least 6 of 8 subjects preferred 

nasal application versus i.m. application with a syringe. 
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Pharmacokinetics 

Table 9-4 shows pharmacokinetic parameters of 20mg nasal esketamine application with 

formulations 1 to 4. For individual results of the subjects see Appendix 12.2.5 and graphic 

presentation in Figure 9-2. Figure 9-3 gives an overview with mean blood level curves.  

The developed aqueous comparator formulation (F1) had a bioavailability of 59.35% (±12.77%), a 

cmax of 49.86ng/ml (±22.38ng/ml), and a tmax of 30.03min (±13.28min). All other formulations 

showed with means favourable kinetics as higher cmax, higher bioavailability, and shorter tmax. 

Maximal concentrations (cmax) for esketamine and noresketamine were equal for formulation 1 

whereas all other formulations showed higer cmax for esketamine blood levels as for noresketamine 

blood levels. The formulations containing chitosan (F2 and F4) resulted in higher cmax and earlier 

tmax for esketamine as the formulations without chitosan (F1 and F3). Formulation 3 showed a 

larger variance for AUC for esketamine than the other formulations. Formulation 4 had the shortest 

tmax with 16.40min (±5.76min), and formulation 2 the highest bioavailability 79.85% (±12.08%). 

 

Table 9-4: Pharmacokinetic parameters (mean and SD) following nasal application of 20mg esketamine 
with formulations F1, F2, F3, and F4; (n=8). Abbreviations: Bioavailability (F), apparent volume 
distribution (VD/F), clearance (Cl), elimination half-life (t½).  

AUC F tmax cmax VD/F Cl t½ blood 

levels 

Application 

[ng*min/ml] [%] [min] [ng/ml] [ml] [ml/min] [min] 

mean 7649.09 59.35 30.03 49.86 370919.83 2698.04 186.55 
F1 

SD 1378.03 12.77 13.28 22.38 181604.64 538.12 63.34 

mean 10292.29 79.85 21.85 67.89 264392.97 1958.76 187.65 
F2 

SD 965.24 12.08 7.63 22.55 97558.63 190.39 41.90 

mean 8609.39 67.60 27.10 62.23 265934.39 2530.30 160.44 
F3 

SD 2562.88 25.81 12.68 41.24 120803.42 863.83 44.15 

mean 8773.31 68.04 16.40 76.49 295338.51 2345.92 192.41 

es
ke

ta
m

in
e 

F4 
SD 1460.63 14.38 5.76 39.67 109719.55 462.93 129.12 

mean 18635.18 n.a. 78.53 46.76 451468.18 1275.94 257.33 
F1 

SD 8915.96 n.a. 22.61 18.54 298497.60 550.27 151.39 

mean 19627.67 n.a. 81.75 35.92 574893.49 1094.10 366.08 
F2 

SD 5643.59 n.a. 44.88 14.05 279844.26 315.63 134.23 

mean 18618.87 n.a. 96.82 47.02 437058.81 1137.88 251.20 
F3 

SD 4552.81 n.a. 50.28 21.04 340716.98 307.35 133.33 

mean 18487.41 n.a. 73.17 40.55 457352.59 1156.77 284.46 

n
o

re
sk

et
am

in
e 

F4 
SD 5356.07 n.a. 38.82 10.04 173684.78 301.19 105.36 
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The ANOVAs show that the formulation had an overall significant effect on AUC and tmax, but not 

on cmax (see Table 9-5). The post-hoc comparisons for AUC and tmax of each formulation level 

combination show that the differences of means between F2-F1 for AUC, F4-F1 and F4-F3 for tmax 

were significantly different from zero (see Table 9-6 and Table 9-7). 

AUC of formulation 2 was significantly different from AUC of formulation 1, and tmax of formulation 4 

(chitosan and poloxamer) was significantly different from tmax of formulation 1 and tmax of 

formulation 3, whereras tmax of formulations 2 (chitosan) and 3 (poloxamer) were not statistically 

significant from tmax of formulation 1. 

 

Table 9-5: ANOVA table for linear mixed effects model for AUC, tmax, and cmax of esketamine after nasal 
application with formulations F1, F2, F3, and F4. 

Response 
variable 

(Intercept) 
formulation 

Numerator degrees 
of freedom 

denominator 
degrees of freedom 

F-value p-value 

(Intercept) 1.00 21.00 611.15 <0.0001 
AUC 

formulation 3.00 21.00 3.85 0.0243 

(Intercept) 1.00 21.00 67.61 <0.0001 
tmax 

formulation 3.00 21.00 5.44 0.0063 

(Intercept) 1.00 21.00 40.97 <0.0001 
cmax 

formulation 3.00 21.00 2.79 0.0657 

 

Table 9-6: Post-hoc multiple comparisons of means with Tukey contrasts for AUC of esketamine after 
nasal application with formulations F1, F2, F3, and F4 (p-values adjusted). 

Combination Estimate SEM z-value p-value 
F2 – F1 2643.2000 787.8781 3.55 0.0046 

F3 – F1 960.3063 787.8781 1.22 0.6148 

F4 – F1 1124.2288 787.8781 1.43 0.4824 

F3 – F2 -1682.8938 787.8781 -2.14 0.1418 

F4 – F2 -1518.9713 787.8781 -1.93 0. 2163 

F4 – F3 163.9225 787.8781 0.21 0.9968 

 

Table 9-7: Post-hoc multiple comparisons of means with Tukey contrasts for tmax of esketamine after 
nasal application with formulations F1, F2, F3, and F4 (p-values adjusted). 

combination estimate SD z-value p-value 
F2 – F1 -8.1800 3.6435 -2.25 0.1112 

F3 – F1 -2.9350 3.6435 -0.81 0.8519 

F4 – F1 -13.6375 3.6435 -3.74 0.0010 

F3 – F2 5.2450 3.6435 1.44 0.4746 

F4 – F2 -5.4575 3.6435 -1.50 0.4388 

F4 – F3 -10.7025 3.6435 -2.94 0.0172 
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Figure 9-2: Modeled serum concentration time profiles of esketamine (left column) and its metabolite 
noresketamine (right column) of each subject (n=8) and the mean curve for formulations 1 to 4. 
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Figure 9-3: Overview presentation of serum concentration time profiles of nasal application of 
formulation 1 to 4 in discrete figures and as overlay. Mean curves of esketamine and noresketamine 
(n=8). 
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For a fast evaluation of the formulation with the largest AUC, aliquots of samples of each time point 

were pipetted to pooled samples. Figure 9-4 shows modeled curves from the pooled samples in 

comparison to the mean curves of blood levels of esketamine. Observed differences for AUC 

analyzing the pooled samples were -3.59% (F1), -2.5% (F2), -8.75% (F3), and +4.90% (F4).  

 

 

Figure 9-4: Modeled serum concentration time profiles of pooled samples (pooled aliquots of each 
time point from the subjects (above) and mean curves of blood levels for comparisson (below). 

 

To assess possible swallowing of the nasal formulations, the ratio of esketamine and 

noresketamine was compared with the ratio of esketamine and noresketamine after i.v. application 

(data of i.v. application from part II, see Project IV). Mean of ratios was 0.96 (±0.18) for 

formulation 2, 1.11 (±0.38) for formulation 4, 1.18 (±0.46) for formulation 3, and 1.20 (±0.36) for 

formulation 1. Individual data of the subjects is displayed in Appendix 12.2.7.  

Bioequivalence was tested for all combinations of formulation 1 to 4 according current EMEA 

guidelines for AUC and cmax. None of the formulations was bioequivalent according to AUC and 

cmax to the others (see Appendix 12.2.6).  
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Vital parameters 

Figure 9-5 summarizes vital parameters from 30min before until 120min after nasal esketamine 

application. Application of esketamine led to increased levels of blood pressure (BP) and heart rate 

(HR) for formulation 2, followed by formulation 4 and formulation 1. For formulation 3 levels of BP 

were unchanged and HR decreased slightly. Transcutaneous oxygen saturation (SpO2) remained 

stable in all formulations. 

 

 

 

Figure 9-5: Vital parameters – blood pressure (BP), heart rate (HR), and transcutaneous oxygen 
saturation (SpO2) – of nasal application of 20mg esketamine in four different formulations displayed 
as mean (n=8). Administration at time point 0min. No SD displayed for better overview (SD for SpO2 
around 1%, for HR about 8/min, and for BP about 8mmHg). 
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Visual analog scales 

Figure 9-6 shows the following VAS rated from the subjects: 

 anxiety: 0=tremendously anxious; 100=imperturbable calm 

 coordination: 0=motor activity controlled; 100=motor activity not controlled 

 fatigue: 0=wide awake; 100=tired to death 

 crankiness: 0=extreme excited and nervous; 100=pleased and contented 

 medication effect: 0=terribly awkward; 100=pleasant and comfortable 

All subjects were able to rate the VAS at every time point. The detected effects were overall 

strongest for coordination. Effects of coordination were earlier affected by formulations 2 and 4. 

Medication effect and fatigue were most prominent for formulation 1. Fatigue was similar for the 

other formulations. Medication effect except for formulation 1 was most prominent for formulation 2, 

followed by formulation 4, whereas formulation 3 showed the slightest medication effect. At the first 

study day (F1) subjects showed more anxiety before application of the esketamine sprays. 

Formulation 2 showed a slight appearance of anxiety after application, whereas the VAS was 

unchanged for formulation 3 at study day 3 and for formulation 4 at study day 4. Overall, 

formulation 3 showed least effects. An investigator rated the status of the subjects with the same 

VAS, which showed a good correlation (see Appendix 12.2.8). The medication effect was rated 

more unpleasant by the subjects as seen by the investigator and the subjects rated their fatigue for 

formulation 2 considerable fewer as seen by the investigator.  
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Figure 9-6: VAS time profiles of subjects (mean, n=8) of anxiety, coordination, fatigue, crankiness, and 
medication effect (SD omitted for clarity). 
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Psychotomimetic effects 

Figure 9-7 summarizes the outcome of the psychometric tests.  

The EWL 60 S showed an increase of general deactivation and anxiety/depression. Emotional 

crankiness increased for the formulations with chitosan (F2 and F4), but decreased slightly for 

formulations 1 and 3. Performance-related activity, extraversion/intraversion, and well-being 

decreased at the maximum drug effect. Formulation 3 showed general the lowest effects. The 

formulations with chitosan (F2 and F4) showed most prominent effects for extraversion/intraversion 

and well-being. Effects on performance-related activity were rather equal for formulations 1, 2, 

and 4. 

The 5 D-ABZ questionnaire showed a distinctive vigilance reduction, especially for formulations 1 

and 2. Some subjects stated that standing upright would not be possible. Effects for anxious ego-

dissolution and oceanic boundlessness were measured for all formulations. Subjects reported 

statements like: “I had no sense of time”, “surrounding area was like a picture”, “I could watch me 

by myself”, “I felt like driving in a carrousel”, “it was like being drunken”, “I was stunned”, “I was 

afraid to loose the control over my body” “I was not sure if I was unconscious” “My arm was not at 

the place where it should be”. Some subjects experienced visionary restructuralization and auditive 

alteration, mainly for formulation 2 and formulation 1. 

STAI-G showed that the subjects were more anxious at the beginning of the study days as on other 

days (basic state). At time of the maximal drug effect formulation 2 led to a distinctive effect, 

followed by formulation 4, and formulation 1. The score of formulation 3 was rather equal with 

predose. 

The chosen psychometric questionnaires and the comments of the subjects showed relevant 

psychotomimetic side effects. All effects were short lasting after the application and transient. 

Overall, formulation 3 showed the lowest effects from all formulations. Except of a single reported 

flashback of few minutes in the night 6 days after study day two with applied formulation 2 in 

subject 2, no psychic or dissociative side effects were reported by the subjects, neither at days 

between the study days of the following part II nor up to 4 weeks after completing the study (asked 

in the telephone interview). 

Differences of the formulations reported by the subjects 

Subjects reported differences of the formulations concerning intensity, fatigue, onset of action, and 

duration of action. Predominantly, formulation 2 was considered as formulation with most intensive 

effects. Formulation 3 was reported three times as pleasant. Five subjects reported faster onset of 

action for formulations 2 and/or 4. 
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Figure 9-7: Psychometric tests: EWL 60 S to detect subjective well-being, 5D-ABZ to detect psychic 
and dissociative side effects, STAI-G to detect anxiety. Subjects rated status of the maximal drug 
effect 240min after drug application.  
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9.4 Discussion 

The impact of vehicles with the excipients chitosan and poloxamer on the pharmacokinetics of 

nasally applied esketamine was assessed in healthy volunteers. Nasal compatibility and side 

effects of the different formulations were determined. The impact of the vehicle was overall 

statistically significant for AUC and tmax. The vehicle with the mucoadhesive excipient chitosan had 

a statistically significant impact on the AUC, and the combination of poloxamer and chitosan had a 

statistically significant impact on tmax. According to pharmacokinetic parameters the thermogelling 

vehicle with poloxamer was not statistically significant different from the reference.  

The osmolality of all formulations and the viscosity of the formulations with the excipient poloxamer 

or chitosan were adjusted equal to assess the effect of the excipients on the pharmacokinetics not 

influenced by these parameters. Considering the limited volumetric capacity of the nose the 

concentration of 10mg esketamine base per puff of 100µl was chosen for the reference formulation, 

which is 4-fold higher than the commercial aqueous solution intended for i.m. or i.v. application. 

The reference formulation had a bioavailability of 59.35% which is considerably higher as reported 

by Christensen et al. (33%) [96] and Yanagihara et al. (45%) [92] for ketamine racemate. No further 

studies were found reporting bioavailability of nasally applied ketamine racemate or esketamine in 

adults (SciFinder Scholar search: ketamine, nasal, pharmacokinetics, 2010-10-22). Reported 

pharmacokinetic studies in children which used large application volumes and high doses up to 

9mg ketamine/kg body weight are not appropriate for comparison [93,104]. The study of Huge et al. 

was performed in adults, but the large volumes were partly swallowed and resulted in nasal-oral 

kinetics and considerable lower maximal blood levels (34.3 ± 22.2ng/ml) for esketamine despite a 

dose of 0.4mg/kg body weight [103]. No studies were found which investigated the impact of 

absorption enhancer on the pharmacokinetics of nasally applied esketamine (SciFinder Scholar 

search: ketamine, nasal, absorption, 2010-10-22). 

None of the developed formulations resulted in retard effects as later tmax and in lower AUC as the 

reference formulation. None of the formulations was bioequivalent according to AUC and cmax to 

the others. Regarding pharmacokinetics, the formulations containing chitosan were generally 

different from the formulations without chitosan.  

Addition of the mucoadhesive excipient chitosan resulted in a significant increase of AUC 

compared to the AUC of the reference. However, the increase of AUC with chitosan was partly 

undone by added poloxamer (less increase on AUC, not significant). Chitosan is also a permeation 

enhancer, due to interference with the thight junctions, which can emend paracellular absorption 

[127,128]. Chitosan has shown absorption enhancing properties for transmucosal nasal drug 

delivery in a couple of in vitro and in vivo studies, e.g. [9,19,109,129-132]. Illum et al. reported that 

addition of chitosan resulted in shorter tmax and a higher bioavailability for morphine [27]. The 

formulations containing chitosan showed a positive effect on the early phase of esketamine 

absorption as seen by a reduction of tmax. Chitosan alone led to a shorter tmax (non significant) as 

well as poloxamer, whereas the combination of poloxamer and chitosan led to a 45% reduction of 

tmax to 16.4±5.76min which was significantly different from tmax of the reference. The exact reason 
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for this supportive absorption enhancing effect of the combination is unclear. Fentanyl has better 

absorption characteristics due to a more than ten-fold higher lipophilicity as esketamine. For 

Instanyl®, an commercially available aqueous fentanyl nose spray, a tmax between 12 to 15min or 

higher is reported [168].  

The pharmacokinetic parameters of the thermogelling formulation with the excipient poloxamer 

were not statistically significant from the reference formulation. The AUC of the formulation with 

poloxamer showed a larger variance due to subject 3. He had taken a nasal decongestant on the 

fourth day before study day 3, but had no symptoms of nasal congestions or common cold in the 

last three days and on the study day. His nasal mucosa may have been more permeable at this 

study day as on the others. At one of the 64 nasal applications per nostril some liquid drip out of 

the nostril of subject 6, formulation 2. The observed AUC was the lowest AUC of formulation 2, but 

the individual bioavailability was still 64.4%. Therefore, correct application of the formulation on the 

mucosa and integrity of the nasal mucosa, influenced by smoking, nasal decongestants, or 

illnesses may influence pharmacokinetics of nasally applied drugs. 

Nasal application of ketamine is controversially discussed [169-171]. As ketamine can also be a 

drug of abuse, a careful assessment of psychotomimetic effects in clinical ketamine studies is 

recommended. Overall, according to Perry et al. ketamine administration of subanesthetic doses 

has an acceptable level of risk for carefully screened healthy human subjects [172]. The first 

experience of unfamiliar esketamine effects were reported distinctive in VAS and psychometric 

questionnaires at the first study day, which were higher as expected regarding pharmacokinetics. 

Relevant psychotomimetic side effects were detected for all formulations with psychometric 

questionnaires. Typical side effects of esketamine as dizziness, nausea, and nystagm were 

transient, resolved without treatment, and were detected for all formulations. Comparable to the 

pharmacokinetics, more distinctive side effects and irritation were detected for the chitosan 

containing formulations. Therefore, side effects may be related to fast achieved high plasma levels. 

The formulation with poloxamer resulted in no nausea and teary eyes, led overall to fewest side 

effects, and was reported as pleasant from 3 of 8 subjects. Furthermore, F3 showed fewest effects 

in the VAS, and in the psychometric questionnaires, especially no increase of anxiety in the STAI-

G. Nasally applied esketamine with the reference solution provoked no nasal irritation and a slight 

irritation in the throat. The excipient chitosan resulted in a transient irritation in nose and throat. The 

combination of chitosan and poloxamer led to a smaller irritation score as chitosan alone, but 

provoked more sneezing. 

Considering pharmacokinetics and compatibility, the formulation containing poloxamer would be 

most appropriate for treatment in non-acute settings like chronic pain due to its relative high 

bioavailability, smoother onset of effects and its low side effects profile. In contrast, the 

formulations with chitosan are more appropriate for acute settings, as formulation 4 showed shorter 

tmax and formulation 2 showed larger bioavailability. Regarding the risk benefit ratio, a transient 

irritation of nose and throat is acceptable for single treatments for acute pain or in emergency 

situations. 
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An aim of part I of the Eskena-study was to determine the best nasal formulation defined by the 

highest relative bioavailability. Analysis of pooled samples allowed fast determination of the AUC, 

but not of time dependent parameters as cmax or tmax. Formulation 2 had the highest bioavailability 

and was chosen for part II (see Project IV). A comparison with the results showed a good 

correlation with a maximal difference of 8.75%. This design of one study in two parts saved time 

and costs and an additional study day with i.v. application and allowed to determine 

pharmacodynamic effects in the same subjects.  

Chitosan as mucoadhesive excipient and poloxamer as an in situ gelling agent have the potential 

to prolong the retention time on the nasal mucosa, and to enable therefore a greater time frame for 

absorption. The pharmacokinetic analysis can help to analyze if the retention time on the mucosa 

was long enough to absorb the applied drug completely. Swallowed esketamine after nasal 

application would lead to a greater ratio of noresketamine/esketamine after nasal application as 

after i.v. application. The mean of calculated ratios of nasal versus i.v. application for formulation 2 

was 0.96±0.18 which indicates that esketamine was exclusively transmucosal absorbed from the 

vehicle of formulation 2. The ratios for formulation 4 (1.11±0.38), formulation 3 (1.18±.46), and 

formulation 1 (1.20±0.36) indicate that small amounts might be swallowed. 

In the FNA-study (Project II), the initial clearance was investigated as mucociliary retention time 

(MCTT). A slower initial clearance is an indicator for a prolonged retention time on the nasal 

mucosa. For assessment of MCTT, the same vehicles without esketamine, but labeled with 0.05% 

fluoresceine-natrium were used. The osmolality was adjusted with NaCl and the viscosity was 

comparable (see Project I). As the fluoresceine labeled vehicles do not consider the effects of 

esketamine on the mucosa, they are similar but not equal to the tested nasal esketamine 

formulations. 

The bioavailability of formulation 2 and formulation 3 cannot be compared with the MCTT of the 

corresponding vehicles formulation B and formulation C, as chitosan has additional permeation 

enhancing effects. 

The median of the MCTT of formulation A (8min), formulation D (11.5min), and formulation B 

(19min) was analog with the mean of the bioavailability of formulation 1 (59.35%), formulation 4 

(68.04%), and formulation 2 (79.85%). This indicates that the shorter mucosal residence time of 

formulation 4 might be a reason for the lower bioavailability of formulation 4. Liberation problems or 

less absorption from the vehicle of formulation 4 could most probably not be the reason for the 

lower bioavailability as formulation 4 showed a shorter tmax and equal cmax as formulation 2.  

MCTT of formulations A and C and bioavailability of formulations 1 and 3 were each not 

significantly different. 

Two subjects attended in the FNA-study and the Eskena-study. For subject 4 (same number in 

both studies) the values of MCTT were analog to the bioavailability. However, for subject 6 (subject 

5 in FNA-study) MCTT were not analog to the bioavailability, but some liquid of formulation 2 had 

dropped out of one nostril. 

There are no studies available which investigated the relative contribution of mucoadhesion for 

absorption [42]. A combined MCTT and pharmacokinetic study with fluorescence labeled nasal 
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drug products would allow investigating the contribution of mucoadhesive vehicles for absorption, 

unbiased by different subjects and not exact equal vehicles. For esketamine, lower doses have to 

be used for cooperation of the subjects, or other drugs with poorer absorption characteristics as 

esketamine may be beneficial in this context. Another strategy would be a pharmacokinetic study 

with radiolabeled formulations which would allow quantifying the amount of drug in the nasal cavity 

parallel to the blood levels, but affects subjects to radiation. 

9.5 Conclusion 

The impact of the developed vehicles on AUC and tmax of nasally applied esketamine was overall 

significant. Addition of the mucoadhesive and permeation enhancing excipient chitosan led to an 

exclusively transmucosal absorption of esketamine and to a significant higher AUC and therefore, 

bioavailability. Addition of the combination chitosan and poloxamer led to a significant reduction of 

tmax compared to tmax of the reference, but not addition of chitosan or poloxamer alone. 

Nasal application of esketamine showed a substantial bioavailability up to 79.85% and can be a 

veritable alternative to invasive esketamine administration in acute pain settings (formulations 

containing chitosan) as well as in chronic pain settings. For the latter, the formulation containing 

poloxamer can be used, which showed no significant differences according to pharmacokinetics to 

the reference, but fewer side effects and better compatibility as the reference. 

 

 





Project IV: Intranasal, Intramuscular, and Intravenous Applied Esketamine: Determination of Pharmacokinetics, Analgesic 
Effects, and Psychic Side Effects in Healthy Volunteers (Eskena-study part II) 

 

Christoph Bitter Page 79 of 202 University of Basel, 2010

 

10 Project IV: Intranasal, Intramuscular, and Intravenous 

Applied Esketamine: Determination of Pharmacokinetics, 

Analgesic Effects, and Psychic Side Effects in Healthy 

Volunteers (Eskena-study part II)2 

10.1 Introduction 

Ketamine, the racemat of S-ketamine (=esketamine) and R-ketamine, was first synthesized in 1962 

and was initially introduced into clinical practice as a dissociative anaesthetic in 1964 [57,173]. Its 

nature to produce profound analgesia without depressing cardiovascular or respiratory function is 

one of ketamines outstanding properties and favours its use in emergency and catastrophe 

medicine [174,175]. Ketamine provides in higher doses effective analgesia for extraction of 

accident victims and transport by air and on road [69].  

More recently, ketamine is also used in lower doses to treat pain in a wide range of acute and 

chronic pain settings [69]. The aims of low dose ketamine therapy are to prevent hyperalgesia, 

wind up phenomena, and chronification of postoperative pain [74]. It is supposed that spinal 

neuroplasticity and hyperexcitability are responsible for these phenomena. Ketamine interacts with 

NMDA-receptors, which are involved in these processes [74]. This mechanism explains why 

ketamine is effective to treat pain resistant to classic analgesics and makes it an interesting drug. 

Recent scientific articles discussed indications, effects, doses, and mechanism of action of 

ketamine in acute and perioperative pain settings, chronic pain situations for cancer and non-

cancer pain [72,176-180], and unusual indications like depression [82-85]. 

The use of commercially available ketamine solution is approved for parenteral application 

(intravenous and intramuscular), which includes the use of needles and limits the use out of 

hospital. 

The oral off-label use of ketamine is limited by its bad taste and the low bioavailability (17%) due to 

extensive hepatic first-pass metabolism [181]. In a publication with a small population 57% of the 

patients treated with oral ketamine for neuropathic pain did not continue treatment beyond a week 

because of lack of effect or side effects [182], Mikkelsen et al. showed similar results [183]. Nasal 

application is an alternative needle-free and convenient parenteral application form and offers due 

to the highly vascularised nasal mucosa a fast onset of action. It is also well accepted by children 

[184,185], and can be a quick, safe, and easy to use application mode for ketamine in the hospital 

(e.g. postoperative settings, emergency room) as well as out of hospital. 

                                                      
2 The Eskena-study (Esketamine nasal) was conducted in two parts, dealing with different 
questions. Part II is subject of the present Project IV and part I is displayed discrete in Project III. 
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There are some reports about the nasal application of ketamine [20,92,93,97-105,107,169]. The 

use of commercial products for injection, not considering the volume capacity of the nose, led to 

partly swallowing and therefore, nasal and oral absorption with the aforementioned problem of a 

restricted bioavailability. Higher concentrated ketamine solutions led to a moderate nasal 

bioavailability of 33 and 45% [92,96]. 

For this study a mucoadhesive nasal esketamine (active enantiomer of ketamine) formulation was 

used, developed considering the limited nasal capacity and the nasal defence mechanisms 

(protective mucus layer and mucociliary clearance [1,42]). Only limited data is available about the 

pharmacokinetics of intramuscular applied esketamine [67,181]. Therefore, pharmacokinetics of 

nasal, intramuscular, and intravenous application of esketamine were tested in 8 healthy volunteers 

in a triple-dummy design, to verify the concept of an effective nasal ketamine delivery. 

Pharmacodynamic effects were assessed with an established ketamine pain model with electrically 

evoked pain, as well as compatibility and psychotomimetic side effects considering the potential of 

intranasal abuse of ketamine. 

10.2 Subjects and methods 

The study was approved by the local ethics committee (EKBB, Basel, Switzerland EKBB 351/08), 

notified by the national regulatory authority (Swiss Agency for Therapeutic Products, Swissmedic, 

Ref-Nr. 2009DR1015), and registered as NCT00847418 at www.clinicaltrials.gov (Eskena-study). 

The study protocol including case report form of part I is displayed in Appendix 12.2.1. 

The study was conducted at the Clinical Research Center of the University Hospital Basel 

(Switzerland) in accordance with the Declaration of Helsinki and current GCP-guidelines.  

Subjects 

Eight healthy, male, non-smoking volunteers were included for this Phase I study. Exclusion criteria 

were acute or chronic impairment of nasal function or anatomic nasal abnormalities, intolerance to 

esketamine or adjuvants (including allergy to crustaceans). Volunteers with abuse of alcohol and 

drugs, which was controlled by repeatedly urine tests before and during the study, were excluded. 

Before giving informed consent, all volunteers were detailed informed about the study. The 

subjects fasted 10 hours before until 4 hours after administration of study medication. 

Study design 

The study was conducted in two parts as shown in Figure 10-1.  

In part I each subject had received on four study days at least separated by two days 20mg 

esketamine in four different nasal formulations (see Project III).  

For the randomized and double-blind part II, the nasal formulation containing an aqueous solution 

of 11.5mg esketaminehydrochloride (corresponds to 10mg esketamine base) per spray (0.1ml) with 

the mucoadhesive agent chitosanhydrochloride (1.6%) and an adjusted osmolality of 1000 

mOsmol/kg with NaCl was chosen. The nasal esketamine sprays as well as the nasal placebo 

sprays (hyperosmolar NaCl solution with 1.75% chitosanhydrochloride) were produced according 
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GMP-guidelines at the hospital pharmacy of University Hospital Basel (Switzerland). Unit dose 

liquid devices from Pfeiffer (Radolfzell, Germany) were used. Furthermore, Ketanest® S (Pfizer, 

Karlsruhe, Germany), and 0.9% Saline (B. Braun Medical AG, Sempach, Switzerland) were used 

as verum and placebo, respectively. 

 
Figure 10-1: Flowchart of the Eskena-study. 

 

The subjects received in three treatments separated by at least two weeks 20mg esketamine in a 

triple-dummy design: 

 i.v. 20mg esketamine / i.m. placebo / nasal placebo 

 i.v. placebo/ i.m. 20mg esketamine / nasal placebo 

 i.v. placebo / i.m. placebo / 20mg esketamin nasal (10mg per spray for each nostril) 

Subjects, as well as investigators for drug application and assessment were blinded. 
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Drug application was performed simultaneously and every time by the same examiners. Subjects 

were lying in hospital beds with a supine position of 30° of the upper part of the body. Nasal 

application of the two sprays (one 10mg esketamine spray per nostril) was performed in an angle 

of 45° to the nasal floor, with the nozzle of the spray about 1.5cm into the nose and without intake 

of breath. Sniffing after the application was forbidden, as well as blowing the nose for 60min. 

Intravenous application was performed with an indwelling venous catheter placed on the left hand, 

and intramuscular application was performed in the musculus deltoideus of the right arm.  

Venous blood samples (7.5ml) were obtained from an indwelling venous catheter placed on the 

right arm predose and at 2.5, 5, 7.5, 10, 15, 20, 40, 60, 90, 120, 180, 240, 360, and 480min after 

esketamine application. Blood samples were obtained in serum tubes, centrifuged at 1800g for 

10min at 4°C. Serum was stored at -20°C until analysis. Blood pressure, heart rate, transcutaneous 

oxygen saturation, and adverse effects (muscle tone, sialorrhoea, nausea, nystagm, and dizziness) 

were monitored during the study day. Compatibility at the application sites, taste, and irritation (no 

irritation=0, very slight=1, slight=2, intermediate=3, strong=4, or very strong=5) in nose and throat 

was monitored at 5, 10, 20, 30, and 60min. The subjects as well as an investigator rated anxiety, 

coordination, fatigue, crankiness, and medication effect with 100mm visual analog scales (VAS). 

Times of maximal effects were analyzed for the VAS of the subjects.  

Psychic side effects were recorded by validated psychometric questionnaires:  

 “Eigenschaftswörterliste 60 S” (EWL 60 S) [163], a mood rating scale, to detect the subjective 

well-being. The subjects rated 60 adjectives as not at all (1), mild (2), moderate (3), and 

markedly existent (4) predose (how do you feel?) and at time point 240min (how did you feel 

at the time of the maximum drug effect?).  

 5D-ABZ questionnaire [164] to detect the degree of alteration in consciousness, and psychic 

and dissociative side effects. The subjects rated 94 items with VAS at time point 240min (how 

did you feel at the time of the maximum drug effect?). The 5 main domains were analyzed: 

OSE (oceanic boundlessness), AIA (anxious ego-dissolution), VUS (visionary 

restructuralization), AUD (auditive alteration), and VIG (vigilance reduction). 

 State-train anxiety STAI-G [165] to detect anxiety. The subjects rated 20 descriptions of 

feeling as not at all (1), mild (2), moderate (3), and markedly existent (4) predose (how do you 

feel now?) and at time point 240min (how did you feel at the time of the maximum drug 

effect?). Data are analyzed as a score from 20 till 80. Subjects had rated after enrollment 

their basic state of anxiety at the same way. 

Subjects had the possibility to report their feelings during drug effect, if they liked. All subjects were 

asked about psychic side effects four weeks after their last study day in a telephone interview. 

Experimental Pain Model 

A previous published and established experimental pain model with repeated and continuous 

intradermal electrical stimulation was used [186,187]. It induced ongoing pain and has proven to 

induce stable areas of secondary mechanical (punctuate stimuli and touch) hyperalgesia.  
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Two microdialysis fibres with internal stainless steel wires were inserted in the left central volar 

forearm for 10mm, parallel in a distance of 5mm. The microdialysis fibres were purged by 0.9% 

saline solution (1.0µl/min) to supply conductivity with a microdialysis pump. A constant current 

stimulator (Digimeter S7; Digimeter, Hertfordshire, UK) was used to apply monophasic, rectangular 

pulses of 0.5msec with alternating polarity (2Hz). The current was gradually increased during the 

first 15min to achieve the pain rating of NRS 6 on a 11-point numeric rating scale (NRS; 0=no pain, 

10=maximum tolerable pain). Afterwards it was kept constant over the pain experiment (until 

180min after medication). Figure 10-2 shows the time table of the pain test.  

 

 

Figure 10-2:  Time table of pain test. 

 

The examiner asked at the defined time points for the ongoing pain (NRS), and determined 

successively possible hyperalgesia areas with a 256mN von-Frey filament and allodynia areas with 

a dry cotton swab. The areas were calculated by the formula of an ellipse (½ D x ½ d x π). For this 

purpose the diameters were determined by moving along radially towards the stimulations site in 

5mm steps until the subject reported either increased pain sensation by pinpricks of the von-Frey 

filament, or an unpleasant sensation evoked by gently stroked movements with the cotton swab 

(see Figure 10-3). All pain experiments were carried out by the same investigator. 

 

 

Figure 10-3: Determination of allodynia (left) with a dry cotton swab and hyperalgesia (right) with a 
von-Frey filament 
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NRS time profiles were analyzed for time of the maximal effect (tEmax). Area under the effect curve 

(AUEC_0-60min) and maximal effect (max effect_0-60min) were determined for the first hour after 

medication of NRS time profiles. The number of subjects which achieved NRS=3 and NRS=0 was 

recorded. The area under the effect curve (AUEC_-5-180min) was determined for time profiles of 

hyperalgesia and allodynia. 

Analytical methods 

Quantification of esketamine and noresketamine in human serum was performed using an adapted 

and validated LC-MS method [166]. Serum samples of 1ml were spiked with 10ng ketamine-D4 

and 10ng norketamine-D4 and extracted with 3ml 1-chlorbutane. The organic phase was 

evaporated and redissolved in 40µl methanol. Aliquots of 10µl were used for quantification. The 

LC-MS system (LCQDuo, ThermoFisher Scientific, Reinach, Switzerland) equipped with a Restek 

Allure C18 (150x3.2mm, 5µm) column (BGB Analytik AG, Boeckten, Switzerland) was used with 

ternary gradient elution of 5mMol acetate buffer pH 4.75, methanol, and acetonitrile. The lower limit 

of quantification for the non-enantioselektive analysis was 2ng/ml for esketamine and for 

noresketamine. The assay was linear up to 500ng/ml. 

To detect a possible inversion of esketamine to R-ketamine blood samples of 40min and 240min 

were analyzed by enantioselective LC-MS with a chiral Chiracel OJ-RH (150x2.1mm, 5µm) column 

(Milian, Meyrin/Geneva, Switzerland) with isocratic elution of 0.1% trimethylamine in ethanol. The 

method was developed according to Yanagihara et. al. [188] and validated. The lower limit of 

quantification was 2ng/ml for esketamine and R-ketamine and the assay was linear up to 200ng/ml. 

All measurements were performed at the Institute of Legal Medicine, Basel, Switzerland. 

Pharmacokinetic analysis 

Serum concentration time profiles were analyzed with WinNonlin (Version 5.01, Pharsight 

Corporation, Mountain View, Ca, USA) with two-compartmental models.  

Secondary pharmacokinetic parameters were derived from assessed primary parameters 

according to standard proceedings. 

Statistical Analysis 

Statistical analysis was performed using R Version 2.11.1 (R Development Core Team (2010). R: A 

language and environment for statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria) 

Results are presented as mean and SD. A p-value of less than 0.05 was considered to be 

statistically significant. Variables with normal distribution were tested using a linear mixed effects 

model. Overall effects were tested by ANOVA F-Tests. Significant overall results were further 

analyzed with an appropriate post-hoc procedure for multiple comparisons (Tukey’s Honest 

Significant Difference). 
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10.3 Results 

Subjects 

One of ten screened volunteers did not meet the inclusion criteria. Nine were enrolled into the 

study. Subject 7 had to be excluded on the first study day due to a positive urine test for 

amphetamines. Eight subjects (age 26, range 21 – 33; BMI 21.9, range 19.9 – 24.6) completed the 

study. 

Application 

At the intravenous application site appeared no redness or any pain of all applications (placebo and 

verum). No nasal application (placebo and verum) was rated as painful or unpleasant.  

Nasal verum application was rated as neutral (five times) or tolerable (three times), one subject 

reported slight pain at the application site of the simultaneous applied i.m. placebo. At 1 of 48 nasal 

spray applications (placebo and verum) some liquid dripped out of a nostril 25min after drug 

application (nasal verum application of subject 1, second lowest AUC, not excluded for 

pharmacokinetic analysis). 

For intramuscular verum application 4 of 8 subjects reported slight pain at the application site, and 

the simultaneously nasal placebo application was rated as neutral (five times) or tolerable (three 

times) 

For intravenous verum application 4 of 8 subjects reported slight pain at the intramuscular 

application site for the simultaneously applied placebo, and the application of the simultaneously 

applied nasal placebo was rated as neutral eight times. 

Adverse Effects 

Table 10-1 summarizes the adverse effects sorted for the mode of verum application 

(psychotomimetic side effects are displayed in separate below). All adverse effects were transient. 

Classified according Common Terminology Criteria for Adverse Events (CTCAE v4.0) all adverse 

effects were grade 1 (mild) or grade 2 (moderate), except dizziness grade 3 (severe). All subjects 

reported that upright standing was not possible during the main drug effect. No increase of muscle 

tone was observed.  

The adverse effects like teary eyes or sneezing can also be results of the simultaneously applied 

placebos. Teary eyes and sialorrhoea appeared in the first 30min, dizziness in the first 60min.  
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Table 10-1: Adverse effects sorted for the mode of verum application. Values are number of subjects 
with adverse effects (n=8). * Only Subject 4 was affected by vomiting. 

Mode of verum application i.v. i.m. nasal 

Nystagm 4 7 7 

Dizziness 4 6 5 

Nausea 1 0 1 

Vomiting* 1 1 1 

Sialorrhoea 1 2 6 

Teary eyes 2 5 5 

Sneezing 3 0 2 

 

 

The numbers of the irritation at the different time points were added (maximum of 200 points) and 

resulted for nasal irritation in 28/11/9, and for throat irritation in 71/10/12, respectively for verum 

application nasal/i.v./i.m (presented as graph in Appendix 12.2.3).  

Hot, bitter, metallic, or burning taste appeared in 7 of 8 subjects during the first 20min after nasal 

verum application. Slight hot taste was reported by two subjects after 30min and by one subject 

after 60min.  

Bitter and/or metallic taste appeared for intramuscular (5 of 8) as well as intravenous (2 of 8) 

ketamine applications for the first 20min after application. Subject 6 registered no taste at all. The 

sensation of esketaminehydrochloride taste can change and is soonest bitter or metallic. 

Summarized, nasal verum application was slightly more irritating and resulted in more taste effects 

than nasal placebo application.  

 

Pharmacokinetics 

Figure 10-4 shows blood levels of esketamine (left column) and noresketamine (right column) of 

each subject and the mean curve for intravenous, intramuscular, and nasal application. The mean 

curves of the different application modes are displayed for better overview below. 

Table 10-2 displays the pharmacokinetic parameters of nasal, intramuscular, and intravenous 

applied 20mg bolus of esketamine. The shape of the esketamine serum concentration profiles of 

nasal and intramuscular application is analog. Esketamine was completely bioavailable after 

intramuscular application with a tmax of 18.00min. The developed nasal esketamine formulation was 

71.41% bioavailable and had a tmax of 20.94min. 
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Figure 10-4: Modeled serum concentration time profiles of esketamine (left column) and its metabolite 
noresketamine (right column) of each subject (n=8) and the mean curve for intravenous, 
intramuscular, and nasal application. The mean curves of the different application modes are 
displayed for better overview below. 
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The mean of ratios of noresketamine/esketamine after nasal application compared to the ratio of 

noresketamine/esketamine after intravenous application was 0.98 (SD ± 0.12), which indicates 

transmucosal nasal absorption. 

The enantioselective analysis of blood samples from 40min and 240min of nasal application 

detected no inversion to R-ketamine. 

The AUC of the nasal application is significantly lower than the AUC of the intramuscular (z = 7.2, 

p < 0.001) as well as the AUC of the intravenous application (z = 8.2, p < 0.001). The AUC of the 

intravenous application and the AUC of the intramuscular application are not significantly different 

(z = 1.020, p = 0.564). 

 

Table 10-2: Pharmacokinetic parameters (mean and SD) following nasal, i.m. and i.v. application of 
20mg esketamine; (n=8). Abbreviations: Bioavailability (F), Volume distribution (VD), Clearance (Cl), 
Elimination half-life (t½). *Values are apparent (VD/F). 

AUC F tmax cmax VD Cl t½ blood 

levels 

application 

[ng*min/ml] [%] [min] [ng/ml] [l] [ml/min] [min] 

mean 9266.92 71.41 20.94 65.72 246.81* 2206.53 166.01 
nasal 

SD 1449.59 11.14 5.56 23.76 41.95 354.53 39.54 

mean 13612.85 105.15 18.00 96.55 162.80* 1483.37 160.09 
i.m. 

SD 1360.92 13.22 6.91 17.85 46.97 162.17 10.58 

mean 13072.87 n.a. n.a. 181.10 262.00 1607.42 127.36 es
ke

ta
m

in
e 

i.v. 
SD 1778.32 n.a. n.a. 57.96 72.29 231.21 32.41 

mean 17722.59 n.a. 85.63 37.81 514.26* 1159.69 303.37 
nasal 

SD 3365.39 n.a. 34.87 13.93 203.61 189.94 97.39 

mean 24452.56 n.a. 75.01 39.59 476.42* 901.60 405.57 
i.m. 

SD 8668.66 n.a. 30.28 8.96 134.82 276.95 195.92 

mean 26191.47 n.a. 59.85 35.00 555.98 813.22 500.45 

n
o

re
sk

et
am

in
e 

i.v. 
SD 8297.40 n.a. 21.41 7.32 138.74 184.38 188.10 
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Pain 

The average (± SD) applied current was 47.0mA (±26.1mA) for intravenous verum application, 

42.7mA (±18.1mA) for intramuscular verum application, and 42.3mA (±17.5mA) for nasal verum 

application. The intrasubject standard deviation was smaller than 6.7mA except for subject 1 with 

26.5mA. 

Figure 10-5 shows time course of ongoing pain (NRS) and areas of hyperalgesia and allodynia. 

Characteristics of ongoing pain are presented in Table 10-3. For individual results of the subjects 

for ongoing pain see Appendix 12.2.8. 

For the AUEC_0-60min, there was no significant difference between the three modes of application 

(F1,14=1.33, p =0.30). 

 

Table 10-3: Characteristics of ongoing pain. Characteristics of ongoing pain displayed as mean an SD 
for tEmax, AUEC_0-60min, and max effect_0-60min. Achieved NRS=0 and 3 is displayed as number of 
subjects an (%) of n=8. 

Mode of verum application i.v. i.m. nasal 

tEmax [min] 8.4 (2.3) 10.6 (3.2) 14.4 (5.0) 

AUEC_0-60min 205.8 (62.0) 195.9 (74.5) 217.7 (69.1) 

max effect_0-60min [NRS] 4.13 (1.60) 3.31 (1.31) 2.97 (1.24) 

achieved NRS=0 (n=8) 5 (62.5%) 3 (37.5%) 1 (12.5%) 

achieved NRS=3 (n=8) 8 (100%) 7 (87.5%) 6 (75.0%) 

 

Areas of hyperalgesia and allodynia showed a slight initial reduction.  

AUEC_-5-180min for hyperalgesia mean (±SD) are 6612 (±2712), 8980 (±2947), and 8606 (±2303) 

for i.v., i.m., and nasal application respectively. AUEC_-5-180min for allodynia mean (±SD) are 

6684 (±3315), 7721 (±2867), and 7191 (±2819) for i.v., i.m., and nasal application respectively. 
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Figure 10-5: Results of pain test. Time profiles of ongoing pain, hyperalgesia, and allodynia are shown 
as mean with SD for nasal (down) and for i.m. (up) application. Pharmacokinetic time profile (mean) is 
added for overview.  
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Vital parameters 

Figure 10-6 summarizes vital parameters from 30min before until 120min after esketamine 

application. Application of esketamine led to increased levels of blood pressure (BP) and heart rate 

(HR). Intravenous application showed for these parameters more prominent and faster effects as 

intramuscular and nasal application, which curves are almost congruent.  

Transcutaneous oxygen saturation (SpO2) time profile showed a similar but less prominent course 

as the other parameters. SpO2 of subject 4 decreased about 10min after intravenous application to 

80%, but ascended to 94% at 15min after the request to breathe deeply.  

 

 

 

Figure 10-6 Vital parameters – blood pressure (BP), heart rate (HR), and transcutaneous oxygen 
saturation (SpO2) - of intravenous, intramuscular, and nasal application of 20mg esketamine. 
Medication application at time point 0min. No SD displayed for better overview (SD for SpO2 around 
1%, for HR about 10/min, and for BP about 10mmHg). 

 



Project IV: Intranasal, Intramuscular, and Intravenous Applied Esketamine: Determination of Pharmacokinetics, Analgesic 
Effects, and Psychic Side Effects in Healthy Volunteers (Eskena-study part II) 

 

Christoph Bitter Page 92 of 202 University of Basel, 2010

 

Visual analog scales 

Figure 10-7 shows the following VAS rated from the subjects: 

 anxiety: 0=tremendously anxious; 100=imperturbable calm 

 coordination: 0=motor activity controlled; 100=motor activity not controlled 

 fatigue: 0=wide awake; 100=tired to death 

 crankiness: 0=extreme excited and nervous; 100=pleased and contented 

 medication effect: 0=terribly awkward; 100=pleasant and comfortable. 

All subjects had received four times 20mg esketamine as nasal applications in part I of the study 

and were therefore familiarized with the effects of ketamine. The strongest effects were detected 

for coordination and fatigue. The effects after intravenous application start earlier and are more 

distinctive as for intramuscular and nasal applications which appear to have a rather similar 

progression.  

All maximal effects for intravenous application were reached at time point 5min except fatigue 

(10min). For anxiety 69mm (±46mm), for coordination 98mm (±3mm), for fatigue 59mm (±35mm), 

for crankiness 53mm (±51mm), and for medication effect 43mm (±43mm) were reached. Mean and 

SD at time points 5min and 10min are calculated of only 3 or 4 subjects for intravenous esketamine 

application because the other subjects were not able to focus the VAS, to draw a line, or to make a 

decision, or they dismissed to answer the VAS. Therefore, the effects were probably more 

pronounced as shown. 

In contrast all subjects (n=8) rated VAS at time points 5min and 10min for intramuscular and nasal 

verum application. Time points of maximal effect for i.m. application were for anxiety 10.7min 

(±4.5min), for coordination 13.1min (±7.5min), for fatigue 22.1min (±15.8min), for crankiness 

8.3min (±4.1min), and for medication effect 11.4min (±12.8min). Time points of maximal effect for 

nasal application were for anxiety 15.8min (±12.0min), for coordination 14.4min (±4.2min), for 

fatigue 13.4min (±6.5min), for crankiness 11.7min (±2.6min), and for medication effect 13.6min 

(±8.0min). 

An investigator rated the status of the subjects with the same VAS. The VAS of the subjects and 

the investigator showed a good correlation for anxiety, coordination, and crankiness (see Appendix 

12.2.10). The investigator rated the subjects as slightly more tired (fatigue) and underrated the 

medication effect after intravenous application.  
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Figure 10-7: VAS time profiles of subjects (mean, n=8) of anxiety, coordination, fatigue, crankiness, 
and medication effect.  

CAVE: Mean and SD for intravenous esketamine application at time points 5min and 10min are 
calculated of only 3 or 4 subjects because the other subjects were not able to focus the VAS, to draw a 
line, or to make a decision, or they dismissed to answer the VAS. Therefore, the effects were probably 
more pronounced as shown. 
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Psychotomimetic effects 

Figure 10-8 summarizes the outcome of the psychometric tests.  

The EWL 60 S showed an increase of general deactivation and anxiety/depression. Emotional 

crankiness increased for i.v. and i.m. application, but decreased slightly for nasal application. 

Performance-related activity, extraversion/introversion, and well-being decreased. The effects were 

most prominent for intravenous verum application and similar for nasal and intramuscular 

application.  

The 5 D-ABZ questionnaire showed a distinctive vigilance reduction. In fact, all subjects reported 

that standing upright would be not possible at the maximum effect, and they moved only carefully 

the head. Also for anxious ego-dissolution and oceanic boundlessness effects were measured. 

Corresponding statements of subjects were: “I felt to be away”, “I had no sense of time”, “I was in 

outer space”, “I felt like I was a genie in a bottle”, “I experienced sequences and watched me by 

myself” , “I felt like driving in a carrousel”, “I felt strong agitation”, “I felt packed in wadding”, “I felt 

extremely drunk”, “it was difficult to sense the parts of my body, I had to think about where my arm 

was”, “I felt I am going out of my person”. Some subjects experienced visionary restructuralization 

and auditive alteration. Comments of subjects were: “size of objects and rooms were altered”, 

“persons filled whole rooms”, “I had problems for visual accommodation”, “light-colored” (room was 

shaded by curtains), “I heard loud mechanic noises”, “conversation was very loud”, and “voices 

moved around me”. The effects were most prominent for i.v. verum application and similar for nasal 

and intramuscular application except for OSE. 

The STAI-G showed that the subjects were more anxious at the beginning of the study days than 

on other days (basic state). Intravenous application led to a doubling of the score, intramuscular 

and nasal application led to similar and less prominent increase of the score. 

The chosen psychometric questionnaires and the comments of the subjects showed relevant 

psychic side effects. All effects were short lasting after application and transient. No subject 

reported psychic or dissociative side effects like awesome dreams neither between the study days, 

nor during 4 weeks after the last study day (asked in telephone interview). 
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Figure 10-8: Psychometric tests: EWL 60 S to detect subjective well-being, 5D-ABZ to detect psychic 
and dissociative side effects, STAI-G to detect anxiety. Subjects rated status of the maximal drug 
effect 240min after drug application.  
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10.4 Discussion 

Pharmacokinetics, pharmacodynamics, side effects, convenience of application, and nasal irritation 

potential of a developed mucoadhesive nasal esketamine formulation were systematically 

investigated in comparison to intramuscular and intravenous application. Mean bioavailability was 

high after nasal application. All tested modes of application showed no significant differences in 

pain reduction of the first hour. Maximal pain reduction was reached first and was slight more 

pronounced for intravenous application, followed by intramuscular and nasal application. Side 

effects and increase of blood pressure and heart rate were comparable of nasal and intramuscular 

application and more pronounced for intravenous application. Psychotomimetic and dissociative 

side effects of esketamine were detected with psychometric questionnaires and were more 

distinctive for intravenous application.  

 

The developed nasal esketamine formulation resulted in favorable nasal kinetics. The 

bioavailability was with 71.41% considerably higher than reported by Christensen et al. (33%) [96], 

Yanagihara et al. (45%) [92], and Malinovsky et al. (approximately 50%) [93]. The major problem of 

reported studies [93,97,100,104,105,189,190] was the large volumes which had to be nasally 

applied using commercial ketamine products. Application of administration volumes of 3ml in the 

study of Huge et al. resulted in a nasal-oral kinetics and had considerable lower maximal blood 

levels (34.3±22.2ng/ml) for esketamine despite a dose of 0.4mg/kg body weight [103]. Volumes of 

several milliliters exceed the nasal capacity by far, especially for noses of children. Malinovsky 

therefore stated, that swallowing led to an unacceptable variability of effect which precludes the 

nasal route of ketamine application [93]. The developed formulation enables application of 20mg 

esketamine base with one puff of only 100µl in each nostril. The profile of the metabolite 

norketamine after nasal application in comparison to intravenous application indicates that 

swallowing was avoided and esketamine was exclusively transmucosally absorbed and hepatic 

first-pass metabolism was circumvented.  

A nasal vehicle with the excipient chitosan was used. Chitosan has mucoadhesive characteristics 

and a permeation enhancing effect by transiently opening the tight junctions in the nasal mucosa 

[128,191]. Furthermore, chitosan is a proven safe excipient for nasal drug delivery [125]. The nasal 

application of the formulation was very well tolerated and irritation in the nose was low and 

moderate in the throat. However, nasal application of esketamine resulted in more sialorrohea (6 of 

8 subjects) which indicates a local effect. Esketamine resulted in taste effects for each application 

modality. At 1 of 48 nasal applications of the mucoadhesive vehicle (placebo and verum) some 

liquid dripped of out of a nostril and sneezing occurred five times. Nasal application with the chosen 

mucoadhesive vehicle seems to be convenient and a needle-free alternative to intramuscular 

application of esketamine. The used unit dose spray device is most hygienic, makes applied doses 

countable, and allows application to lying patients. 

To reduce the volume to be nasally administered, the primarily active enantiomer esketamine 

instead of the racemate ketamine was used. R-ketamine proved to inhibit the elimination of 

esketmamine [192]. Therefore, esketamine leads to slightly different clinical effects like a 
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remarkable smoother emergence periode [62,63] and slightly different pharmacokinetics compared 

to ketamine racemate.  

There is few data published about pharmacokinetics of intramuscular ketamine application in adults 

and in children [193]. The most important publications reporting pharmacokinetic data for i.m. 

application in adults are almost 30 years old [67,181,194,195]. This is the first presentation of 

pharmacokinetic data of i.m. and i.v. esketamine in adults (SciFinder Scholar search: ketamine, 

intramuscular, pharmacokinetics, 2010-10-22). Esketamine was completely absorbed, had a tmax of 

18 ± 6.9min, and a half life of 166 ± 39.54min (n=8). Grant et al. reported a tmax of 22 ± 4min (n=6), 

a bioavailability of 93% (n=4), and a half life of 155 ± 12min (n=6) for the racemate [67]. This 

indicates that pharmacokinetics may be rather similar for intramuscular esketamine and the 

racemate ketamine. Nevertheless, the pharmacokinetic results of nasal application recommend 

more research effort for needle-free modes of ketamine application, and intramuscular ketamine 

application as “ketamine darts” is obsolete [196]. 

In accordance to Ihmsen et al. no inversion of esketamine to R-ketamine could be detected in the 

subjects of this study [192]. 

 

Despite considerable sedation and reduction of vigilance, especially for intravenous application, all 

subjects were able to rate their pain intensity at any time points as it was done orally. NRS 

decreased fastest for intravenous application, followed by intramuscular and nasal application.  

The used pain model allows evaluation of summarized pain over time which is more robust than 

peak pain evaluation [197,198]. For the AUEC_0-60min, there was no significant difference 

between nasal, intramuscular, and intravenous mode of application (F1,14=1.33, p=0.30), 

indicating that the developed nasal esketamine formulation is an effective alternative application 

form.  

A NRS of 3, which is generally considered as acceptable, was reached in 8 subjects for 

intravenous application, in 7 subjects for intramuscular application, and in 6 subjects for nasal 

application. 

The area of hyperalgesia showed an initial reduction after application for all modes of application, 

and was overall lowest for intravenous application. No hyperalgesic effect was seen for all modes 

of application. The area of allodynia decreased slightly for all modes of application, and stayed 

rather constant afterwards.  

Many parameters like the type of pain model or the dosing regime of the drug affect the outcome of 

experimental pain models and make comparisons therefore difficult. According to the review of 

Staahl et al., analgesic, antihyperalgetic, and antiallodynic effects can be expected for ketamine in 

a pain model with continous repeated electrical stimulation [197].  

Koppert et al. had used the same pain model for esketamine [80,186]. But the effects cannot be 

directly compared because in the present study bolus application of 20mg esketamine (0.25mg/kg 

body weight for a human with 80kg) was used as dosing regime and a von-Frey filament with 

256mN was used.  
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Koppert et al. showed more prominent antihyperalgesic and antiallodynic effects, and effects on 

NRS, but they had applied 30mg esketamine as infusion [186]. Probably the dosis of 20mg 

esketamine was too low to show strong antihyperalgesic and antiallodynic effects. Another 

explanation which could have influenced the subjects’ pain scoring is the degree of sedation and 

the impaired attention [199], which seems to be dose dependent, and therefore, different in the 

studies. 

The observed effects of pain ratings in the present study were similar compared to the effects 

reported in another study of Koppert et al. with an intravenous application of esketamine [80].  

 

Interestingly, the NRS and the VAS showed earlier maximal effects than the pharmacokinetic 

profile of esketamine for i.m. and nasal application. This indicates that the venous blood 

concentration is not an ideal surrogate parameter for the effect of esketamine. Persson et al. 

proved that there are arterial and venous differences for ketamine [200], and Sigtermans could also 

detect sex differences for elimination of esketamine in arterial samples [81]. Hartvig et al. reported 

in a positron emission tomography study, that central nervous system (CNS) effects of 

subdissociative doses of esketamine administered intravenously are related to plasma and brain 

concentrations [64]. They had measured the maximal plasma concentrations at the moment of 

maximum brain concentrations of about 5min which were related to psychotomimetic side effects. 

In accordance to these results the maximal effects for VAS (except fatigue 10min) in the present 

study were at 5min and the maximal reduction of pain (tEmax) was at 8.4min for intravenous 

application. Additionally, Vollenweider et al. reported appearance of psychotic symptoms of about 

5min after intravenous application [201,202]. Contrary to intravenous application, intramuscular and 

nasal application need absorption as an upstream step before distribution can take place. 

Ketamine reaches the central nervous system as main effect compartment rapidly from the blood 

circulation [64]. The gradual absorbed esketamine from the nasal mucosa or the muscle is 

therefore most probably mainly distributed to the CNS and the venous blood levels reflect not the 

level at the CNS. As tEmax was reached about 7min earlier as tmax for intramuscular and nasal 

application, tmax is not an indicator for the maximal effect. Therefore, it is not useful to define an 

analgesic blood level for esketamine for application modes with an absorptive step. Furthermore 

the contribution of noresketamine to the analgesic effect is unclear. 

 

Typical side effects of esketamine as dizziness, nausea, and nystagm were transient and 

comparable for intramuscular and nasal application in this study. Side effects as teary eyes could 

be also related to the applied mucoadhesive placebos, which led as well to some nasal irritation. 

Therefore, masking of nasal placebo was not revealed by obvious differences in nasal sensations. 

The used VAS questionnaire was able to record the well-being of the subjects. By assessing the 

subjects with the same VAS questionnaire performed by an investigator, it could be demonstrated 

that the mediated impression and the feelings of the subjects for anxiety, coordination, and 

crankiness were congruent. But the subjects underrated their fatigue, and the rated medication 

effect after intravenous application was more awkward and unpleasant as rated by the investigator. 
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This is of considerable interest because the subjects were familiarized with the effects of 

esketamine by part I of the study, but this cannot be assumed for patients in emergency situations. 

To enhance convenience for patients attenuating of psychotomimetic side effects with 

benzodiazepines is necessary. 

 

Nasal application of ketamine is controversially discussed [169-171]. As ketamine can be also a 

drug of abuse, a careful assessment of psychotomimetic effects in clinical ketamine studies is 

recommended. Overall, according to Perry et al. ketamine administration of subanesthetic doses 

has an acceptable level of risk for carefully screened healthy human subjects [172]. Because the 

subjects were treated four times (part I) and three times (part II) with bolus application of 

esketamine the psychotomimetic effects cannot be compared directly to other studies [203-205]. In 

general, similar results were detected. Most remarkable side effects were the reduction of 

vigilance, and the reported dissociative effects. As nearly all psychotomimetic effects were most 

prominent for intravenous application this could be a result of the abrupt high plasma levels. The 

esketamine experience was rated more or less unpleasant for the subjects. In contrast to fast 

acting nasal opioid formulations [15], the potential of abuse for nasal application of ketamine is 

probably lower. Moreover ketamine has a large therapeutic index [68].  

This pilot-study was performed with non-smoking subjects with no chronic or acute impairment of 

nasal function or anatomy. A careful evaluation of possible different pharmacokinetics in smokers 

and patients with common cold or allergic rhinitis has to be performed. 

Side effects of ketamine were not attenuated by additional application of benzodiazepines [206] to 

avoid influencing pharmacokinetics and pain measurements. Additional masking of ketamine side 

effects is an implication for further research. Midazolam is physically compatible with ketamine and 

very fast absorbed via the nasal mucosa [26]. This indicates that a combined nasal application is 

able to prevent patients from psychic side effects.  

Limitations of the study are the small number of subjects and the lack of data with pure placebo 

treatment, as placebo is itself effective against pain [207]. But the effects of a dose of 20mg 

esketamine were expected as such prominent that every subject would have recognized the 

placebo. Therefore, it was decided to compare the treatments of nasal, intramuscular, and 

intravenous application in a triple-dummy design. A strength of the part II of the Eskena-study is the 

high level of blinding. Subjects, investigators administering medication, and investigators for 

assessment were blinded.  

Furthermore, the chosen pain model is not dependent on subjects’ motivation, and is able to 

provide data about acute pain (NRS) and additionally about allodynia and hyperalgesia, which are 

characteristics associated to neuropathic pain. Time points for pain measurement were concerted 

to the dosing regime and the pharmacokinetic profile. Additionally pharmacokinetics of esketamine, 

including intramuscular application, and simultaneously pharmacodynamics were assessed in the 

same subjects.  
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10.5 Conclusion 

In conclusion, exclusive transmucosal absorption of esketamine was demonstrated from the 

developed nasal mucoadhesive formulation with chitosan and clinical effective plasma 

concentrations were reached in similar time as after intramuscular application.  

Intravenous, intramuscular, and nasal application showed no significant differences in pain 

reduction of the first hour. Side effects were most prominent for intravenous application. The 

pharmacokinetic profile of the racemate ketamine and esketamine in adults is rather similar for 

intramuscular application. Blood levels are not a useful surrogate parameter for the effects of 

ketamine for nasal and intramuscular application. 

The developed nasal esketamine formulation with chitosan is a needle-free and easy to use 

alternative application mode of esketamine, especially in emergency situations with patients 

suffering from acute pain in which a rapid onset of effect is desired. Nasal application is time-

saving, because esketamine can be applied before placing an indwelling catheter.  

Chronic pain settings or premedication in children are further clinical situations in which a needle-

free nasal application of low-dose esketamine can be beneficial. For this purpose a slower onset of 

effect is desired [208], which can be achieved by nasal vehicles with different galenics. A 

combination with midazolam to attenuate psychic side effects is necessary to enhance 

convenience. A possible long term use of nasal esketamine has to be very carefully investigated 

regarding nasal compatibility of ketamine and excipients as well as long term psychic effects of 

ketamine [69,209]. 
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11 Final conclusions and perspectives 

The objectives of this thesis were to develop nasal vehicles for effective nasal administration of 

esketamine expressed by substantial bioavailability, to assess the impact of different vehicles, and 

to test compatibility and pharmacodynamics of the nasal esketamine formulation with the highest 

bioavailability in comparison to the approved i.m. and i.v. application. 

Transmucosal nasal drug delivery is an attractive alternative application mode for challenging 

clinical situations where intravenous and intramuscular drug application is not applicable or related 

with a delay of time by placing an indwelling catheter. 

The time period, in which the drug incorporated in its vehicle stays on the nasal mucosa as 

absorption site is pivotal to achieve clinical effective blood levels and a high systemic 

bioavailability. Too large application volumes tend to run off to the pharynx immediately after 

application and are swallowed. Obstacles of absorption on the nasal mucosa are the mucus barrier 

and the mucociliary clearance, which continuously removes the mucus and applied nasal 

formulations to the pharynx for swallowing. The swallowed fraction of the drug is exposed to 

possible gastrointestinal degradation and hepatic first-pass metabolism. For small and lipophilic 

drugs which are rapidly absorbed on the nasal mucosa as fentanyl or midazolam this small time 

frame is not a problem. For drugs with suboptimal absorption characteristics two strategies are 

most promising to support nasal absorption and augment bioavailability: a) enlarging the mucosal 

residence time to achieve a larger time frame for absorption by the principles of mucoadhesion and 

in situ gelling of the vehicle, and b) enhancement of permeation to emend the absorption rate.  

Only low or moderate bioavailability is reported for nasal application of ketamine and orally applied 

ketamine is subject of an extensive hepatic-first pass metabolism. As there is a strong medical 

need for nasal esketamine application in acute and chronic pain settings esketamine was chosen 

as drug to investigate the impact of different nasal vehicles on its pharmacokinetics. 

Esketamine formulations with the thermogelling excipient poloxamer, with the mucoadhesive and 

permeation enhancing excipient chitosan, and with the combination chitosan and poloxamer were 

developed. An aqueous esketamine solution served as comparator solution. All formulations 

allowed administration of 20mg esketamine base by one spray in each nostril of 100µl and were 

tested in the part I of the Eskena-study in eight healthy volunteers. 

The comparator formulation resulted due to its high concentration and constricted application 

volume in a bioavailability of 59.35% which is considerably higher than in the reported studies by 

Christensen et al. (33%) [96] and Yanagihara et al. (45%) [92] for ketamine racemate.  

The impact of the developed vehicles on AUC and tmax of nasally applied esketamine was overall 

significant. Addition of the mucoadhesive and permeation enhancing excipient chitosan led to an 

exclusively transmucosal absorption of esketamine and to a significant higher AUC and therefore, 

bioavailability. Addition of the combination chitosan and poloxamer led to a significant reduction of 

tmax compared to tmax of the reference, but not addition of chitosan or poloxamer alone. None of the 
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formulations was bioequivalent according to AUC and cmax to the others tested with current EMEA-

guidelines. However, the addition of poloxamer led to no significant difference according to AUC to 

the comparator formulation. Furthermore, the poloxamer containing formulations showed fewest 

side effects and best compatibility of the formulations including the reference formulation.  

The formulation containing chitosan showed the expected effects on the bioavailability, whereas 

the thermogelling formulation with poloxamer did not enlarge the bioavailability in the used 

concentration. The effect of the combination of chitosan and poloxamer on tmax was unexpected.  

The initial clearance as mucociliary transport times (MCTT) of the vehicles without esketamine but 

with fluoresceine-natrium as marker dye was determined separately in the FNA-study by detecting 

the fluorescent marked vehicle by endoscopy of the oropharynx of six healthy volunteers. The 

analog median of the MCCT and the mean of the bioavailability of the comparator formulation, the 

formulations with chitosan, and the formulation with chitosan and poloxamer is a hint that the 

prolonged mucosal residence time of the formulation with chitosan might have led to a higher 

bioavailability of this formulation. A pharmacokinetic study with simultaneously assessing the 

MCTT is an implication for further research to investigate the contribution of the mucosal residence 

time of the bioavailability, unbiased by different subjects or not exact equal vehicles. The vehicle 

with chitosan showed due to its mucoadhesive characteristics a significant longer MCTT and allows 

application of 200µl per nostril without immediate run-off problems. However, application of 200µl 

of the aqueous reference solution and the other vehicles overcharged the volumetric capacity of 

the nasal cavity. Larger application volumes are beneficial for the development of nasal drug 

products and allow lower drug concentrations or earlier applying of a second dose and therefore 

higher doses. 

A poloxamer containing thermogelling formulation with the same viscosity and osmolality as the 

formulation containing chitosan showed no prolonged MCTT. Not the viscosity but the character of 

the excipient has greater influence on the MCTT. The combination of chitosan and poloxamer 

showed a statistically significant prolongation of MCTT compared to the reference but less 

pronounced as chitosan alone.  

The formulation, which showed the highest relative bioavailability (vehicle with chitosan) in the 

part I of the Eskena-study was selected by the means of pooled samples for part II. A comparison 

of the AUC resulting from pooled samples with the AUC of the final analysis showed a good 

correlation with a maximal difference of 8.75%. This design of one study in two parts saved time 

and costs and an additional study day with i.v. application. The aim of part II was to determine 

pharmacokinetics and pharmacodynamic effects of the nasal esketamine formulation with chitosan 

and for the approved application modes i.m. and i.v. Therefore, pharmacokinetics of the nasal 

formulation containing chitosan were determined two times in the same subjects. The first 

application as F2 in part I showed a bioavailability of 79.85%, tmax of 21.85min, and a cmax of 

67.89ng/ml, for the second application as verum nasal in part II bioavailability was 71.41%, tmax 

20.94min, and cmax was 65.72ng/ml. Mean of within subject variability was 10.94% (SD 11.68%) for 

AUC (ratio verum nasal/F2). 
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Pharmacodynamic effects were assessed with an established ketamine pain model with electrically 

evoked pain which is not dependent from the subjects’ motivation. Intravenous, intramuscular, and 

nasal application showed no significant differences in pain reduction of the first hour. Maximal pain 

reduction was reached first and was slight more pronounced for intravenous application, followed 

by intramuscular and nasal application. Side effects and increase of blood pressure and heart rate 

were comparable of nasal and intramuscular application and more pronounced for intravenous 

application. Psychotomimetic and dissociative side effects of esketamine were detected with 

psychometric questionnaires and were more distinctive for intravenous application. 

Pharmacokinetics of i.m. applied esketamine were investigated as there are no data reported in the 

literature for adults. The pharmacokinetic profile after i.m. application of esketamine was similar to 

the reported profile of ketamine racemate in adults.  

Pain ratings and visual analog scales assessing the medication effect and well-being of the 

subjects showed earlier maximal effects as the pharmacokinetic profile of esketamine for i.m. and 

nasal application. This indicates that the venous blood concentration is not an ideal surrogate 

parameter for the effect of esketamine. Contrary to intravenous application, intramuscular and 

nasal application need absorption as an upstream step before distribution can take place. 

Ketamine reaches the central nervous system as main effect compartment rapidly from the blood 

circulation [64]. The gradual absorbed esketamine from the nasal mucosa or the muscle is 

therefore most probably mainly distributed to the CNS and the venous blood levels reflect not the 

level at the CNS. As tEmax was reached about 7min earlier as tmax for intramuscular and nasal 

application, tmax is not an indicator for the maximal effect. Therefore, it is not useful to define an 

analgesic blood level for esketamine for application modes with an absorptive step. These 

observations highlight to determine additional to pharmacokinetic parameters pharmacodynamic 

effects for nasally applied drugs if possible.  

 

In conclusion nasal esketamine formulations providing a substantial bioavailability were developed. 

The formulation containing chitosan resulted in the highest bioavailability and was exclusively 

transmucosal absorbed. This formulation showed no significant differences in pain reduction of the 

first hour in an experimental pain model compared to i.m. and i.v. application. The impact of the 

developed vehicles on AUC and tmax of nasally applied esketamine was overall significant. The 

esketamine formulation containing poloxamer and chitosan resulted in a statistically significant 

reduction of tmax. As well-established for oral dosage forms, galenics enable also different 

pharmacokinetic profiles for nasally applied drugs. The mucoadhesive vehicle containing chitosan 

allowed a maximal application volume of 200µl without immediately swallowing after application. 

The developed vehicles may be useful for transmucosal nasal drug delivery of other drugs, which 

has to be investigated in clinical trials. 

The Eskena-study showed that nasal esketamine application is a time-saving and needle-free 

alternative to invasive esketamine administration especially for acute and chronic pain situations, or 

for premedication. A combination with midazolam to attenuate psychic side effects is necessary to 

enhance convenience in patients. A possible long term use of nasal esketamine has to be carefully 
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investigated regarding nasal compatibility of ketamine and excipients as well as long term psychic 

effects. A careful evaluation of pharmacokinetics of nasal esketamine application with smokers and 

patients with common cold or allergic rhinitis has to be performed. As ketamine is also a drug of 

abuse, psychotomimetic effects have to be carefully assessed in further clinical studies and the use 

of single dose devices is recommended.  
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12 Appendix 

12.1 Project I 

12.1.1 Specification of formulation 2 
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12.1.2 Instructions for manufacturing and quality control of formulation 2 
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12.1.3 Results of stability testing of formulations 1 to 4 
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12.2 Project III and IV 

12.2.1 Study protocol of Eskena-study including case report form of part I 

 

 



Appendix 

 

Christoph Bitter Page 128 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 129 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 130 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 131 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 132 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 133 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 134 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 135 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 136 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 137 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 138 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 139 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 140 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 141 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 142 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 143 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 144 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 145 of 202 University of Basel, 2010

 

 



Appendix 

 

Christoph Bitter Page 146 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 147 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 148 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 149 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 150 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 151 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 152 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 153 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 154 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 155 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 156 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 157 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 158 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 159 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 160 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 161 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 162 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 163 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 164 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 165 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 166 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 167 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 168 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 169 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 170 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 171 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 172 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 173 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 174 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 175 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 176 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 177 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 178 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 179 of 202 University of Basel, 2010

 



Appendix 

 

Christoph Bitter Page 180 of 202 University of Basel, 2010

 

 

 



Appendix 

 

Christoph Bitter Page 181 of 202 University of Basel, 2010

 

12.2.2 Nystagm, dizziness, and sialorrhoea after nasal administration of F1 to F4 

 

Figure 12-1: Appearance of nystagm, dizziness, and sialorrhoea versus subject and time after nasal 
application of formulations 1 to 4. 
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12.2.3 Irritation of nose and throat after administration of the study medication 

 

Figure 12-2: Irritation score of nose, throat, and combined nose and throat. Values for irritation in nose 
and throat (no irritation=0, very slight=1, slight=2, intermediate=3, strong=4, or very strong=5), 
monitored at 5, 10, 20, 30, and 60min were added. Maximum of scores is 100 for nose or throat and 200 
for combined nose and throat. 
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12.2.4 Taste sensations after nasal administration of formulation F1 to F4 

 

Figure 12-3: Taste sensations after nasal administration of formulations F1 to F4 for each subject at 
5min, 10min, 20min, 30min, and 60min. 
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12.2.5 Results of pharmacokinetic analyses of the Eskena-study 
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12.2.6 Assessment of bioequivalence of F1 to 4 (Eskena-study part I) 

 

 

Table 12-1: Bioequivalence testing of the nasal formulations for AUC. Upper and lower bound of the 
confidence interval (90%) for the ratio of test and reference formulation of AUC has to be in the 
acceptance interval of 80.00-125.00%.  

Test for AUC Ratio F2/F1 Ratio F3/F1 Ratio F4/F1 Ratio F3/F2 Ratio F4/F2 

Geometric mean 1.36 1.10 1.15 0.81 0.84 

90% Confidence 
Interval  

Lower bound 

1.1945 0.9214 0.9673 0.6714 0.7804 

90% Confidence 
Interval  

Upper bound 

1.5820 1.3457 1.4100 1.0072 0.9206 

Bioequivalence No No No No No 

 

 

Table 12-2: Bioequivalence testing of the nasal formulations for cmax. Upper and lower bound of the 
confidence interval (90%) for the ratio of test and reference formulation of cmax has to be in the 
acceptance interval of 80.00-125.00%.  

Test for cmax Ratio F2/F1 Ratio F3/F1 Ratio F4/F1 Ratio F3/F2 Ratio F4/F2 

Geometric mean 0.76 0.91 0.57 1.20 0.74 

90% Confidence 
Interval  

Lower bound 

0.5416 0.7107 0.4015 0.9953 0.6019 

90% Confidence 
Interval  

Upper bound 

1.2237 1.2445 0.8558 1.5231 0.9707 

Bioequivalence No No No No No 
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12.2.7 Ratios of AUC of esketamine and noresketamine 
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12.2.8 Individual results of pain testing Eskena-study part II  

 

 

Figure 12-4: Individual results of ongoing pain (NRS) for i.v., i.m., and nasal applicated esketamine at 
time point 0min.  
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12.2.9 Combined VAS time profiles of subject and investigator Eskena-study part I 

 

Figure 12-5: VAS time profiles of subjects (▲) and investigator (■) for anxiety, coordination, fatigue, 
crankiness, and medication effect (mean, n=8, SD omitted for clarity). 
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12.2.10 Combined VAS time profiles of subject and investigator Eskena-study part II 

 

 

Figure 12-6: VAS time profiles of subjects (▲) and investigator (■) for anxiety, coordination, fatigue, 
crankiness, and medication effect (mean, n=8, SD omitted for clarity). CAVE: Means at time points 5 
min and 10 min are calculated of only 3 or 4 subjects because the other subjects were not able to 
focus the VAS, to draw a line, or to make a decision, or they dismissed to answer the VAS. Therefore, 
the effects were probably more pronounced as shown. 
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