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Abstract

Statistical shape models have become a widely used tool in computer vision and medical
image analysis. They are constructed from a representative set of example shapes and
represent the normal shape variations of a class of objects, in our case of human bones.
The foundation of statistical shape models is the concept of correspondence. In order to
draw meaningful statistical conclusions and to build a generative model from the example
shapes, we should compare and relate only corresponding parts of the shape. The task
of establishing correspondence between shapes and images is known as the registration
problem and is one of the fundamental problems of computer vision. To approximate a
solution of the registration problem for our bone shapes, we propose a new registration
algorithm, which is formulated as a continuous minimization problem, whose solution is
sought with a state of the art finite element method.

Once the shapes have been brought into correspondence, a statistical shape model can
be built. We present a formulation of the shape model on general Hilbert spaces, which
incorporates all associated models which can be constructed in a similar way, like models of
shape, color, intensity, deformations etc. Which of these models is used depends only on the
choice of the Hilbert space. Because this includes the choice between continuously defined
models and models based on any kind of discretization method, we can easily integrate the
statistical model into our registration method and its finite element discretization. This
inclusion of class-specific prior knowledge into makes the registration more robust against
outliers and damaged data sets.

Finally, we show how the statistical models can be applied to a number of practical
problems from medical image analysis and surgery planning, like the fitting of the model
to novel shapes or images, the design of optimized medical implants or the automatic
repositioning of fractured bones.

5





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Introduction 11
1.1 Shape Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Morphable Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Data Acquisition and Preprocessing 21
2.1 CT Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Pre-Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Registration 27
3.0.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Registration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Level Set Representation . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Distance Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.4 Robust Distance Measures . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.5 Curvature Guided Registration . . . . . . . . . . . . . . . . . . . . 32
3.1.6 Regularization Term . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.7 Full Registration Functional . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Minimization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Existence of Minimizers of the Registration Functional . . . . . . . 38
3.2.2 Euler-Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.4 Strong Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Finite Element Space Discretization . . . . . . . . . . . . . . . . . . 44
3.3.3 Local Discontinuous Galerkin Finite Element Discretization . . . . 46
3.3.4 Implementational Details . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Registration Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7



3.4.1 3D Surface Registration . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Curvature Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.3 Volume Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 The Statistical Shape Model 57
4.1 Shape Models on Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Functional PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Discrete Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Intensity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Dealing with M⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Shrinkage Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 A Note on Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.3 PPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Applications 83
5.1 Statistically Regularized Registration . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Registration Results . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Statistical Shape Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Fitting with known Correspondence . . . . . . . . . . . . . . . . . . 90
5.2.2 Reconstruction of Partial Shapes . . . . . . . . . . . . . . . . . . . 91
5.2.3 Flexibility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.4 Visualizing the Flexibility . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.5 Limitations of the Method . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.6 Model Fitting without known Correspondence . . . . . . . . . . . . 98
5.2.7 Generic Outside Model . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.8 Mumford Shah Model . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.10 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Building Shape Models from Problematic Data . . . . . . . . . . . . . . . . 106
5.4 Orthopedic Implant Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Predicting Faces from Skulls . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Visualizing the Density of the Subchondral Bone . . . . . . . . . . . . . . . 113
5.7 Fracture Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7.1 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Discussion 123

Bibliography 125

Curriculum Vitae 131



Notation

R Real numbers
R+ Positive numbers
N Natural numbers {1, 2, . . .}
span{ρ1, . . . , ρm} Linear span of the vectors ρ1, . . . , ρm

img Image of an operator or matrix
ker Kernel of an operator or matrix
◦ Composition (of functions, operators etc.)
∼= Isomorphic
L2(Ω) The space of all square-integrable functions u : Ω → R

L2(Ω,Rd) The space of all square-integrable functions u : Ω → Rd

H1(Ω,Rd) = H1,2(Ω,Rd) The space of all functions in L2(Ω,Rd) with weak first derivative
H2(Ω,Rd) = H2,2(Ω,Rd) The space of all functions in L2(Ω,Rd) with weak second derivative∫

Ω
f(x) dx Lebesgue Integral over Ω∫

Γ
f(x) do(x) Surface Integral over Γ

‖·‖L2(Ω,Rd) L2(Ω,Rd) norm
‖·‖ Euclidean norm
H Hilbert space
‖·‖H Hilbert space norm
〈 ·, ·〉H Hilbert space scalar product
IN Identity matrix in RN

id The identity map
N (μ,Σ) Normal distribution with mean μ and covariance matrix Σ
N (μ, C) Normal distribution with mean μ and covariance operator C
n The number of training examples
m The number of nonzero eigenvalues of the covariance operator
DOF Degree of freedom





1 Introduction
Since the invention of photography and radiography, the number of images acquired both
in everyday life and in the scientific and medical domain has risen steadily. More recent
inventions like computed tomography (CT), magnetic resonance imaging (MRI), and digital
photography, and their growing affordability, have accelerated this process dramatically.

The simultaneous advance in computer science has allowed the development of methods
to support humans in the analysis of these images. For instance, segmentation algorithms
aim at extracting and presenting relevant information from an image. Algorithms for
computer aided diagnostics try to automatically detect suspicious regions in a medical
image. Increasingly, these computer assisted methods are becoming a necessity rather than
a convenience, as without them it becomes more and more difficult to analyze and handle
the sheer amount of image data that is constantly being acquired.

There are many tasks in image analysis which computers can carry out more efficiently
than humans. These include for instance calculations on all the pixels in an image, or
measuring the volume of regions within an image. For instance, in the images in Figure 1.1,
a computer takes only milliseconds to compute the mean and standard deviation of the
color of all the pixels in the image, whereas it would take a human days to calculate these
numbers by hand.

In many other tasks however, humans are by far superior to computers, especially when
we move from monotonous tasks like pixel counting to actually seeing and understanding
images. For instance, it will most likely still take decades of research before a computer
can give any kind of sensible answer to the question: “What do you see in these images?”,
whereas a human takes only seconds to regard the image and answers something like: “I
see a man jumping his bike off a ramp. It looks like he fell and broke his bone.”

Trying to understand how humans are able to interpret these images this efficiently is
an active area of research for itself. A part of an answer to this question is certainly that
we as humans can rely on the experience we have gained in our life. A person who has
never seen a bike or an x-ray image will certainly have a harder time at understanding
these images. On the other hand, a person with more experience or knowledge will be able
to extract more information, such as the exact type of bone fracture or the type of jump
the mountain biker is attempting.

The computer science disciplines of computer vision and machine learning develop
algorithms that work towards making computers “see” and “understand” images. The
most promising approach in this area is to model some kind of “experience” or “knowledge”
in the computer, which can then be used in the interpretation of images similar to how a
radiologist draws from his experience and knowledge in order to diagnose medical images. Of
course, the algorithms of computer vision and machine learning are still very far from being
able to imitate the various ways in which humans acquire, remember and use knowledge.
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(a) (b)

Figure 1.1: (a) shows a mountain biker attempting a front flip. (b) shows radiographs of the
femur fraction he sustained in the attempt and its surgical treatment by fixation with a long
metal nail [38].

Nevertheless, we can try to mimic a very simple type of learning method: A person can
learn a lot about a class of objects by simply looking at a large number of examples. For
instance, by looking at a number of femur bones, a person will learn how the bone typically
looks like and what variations are common. He forms a mental model of the femur in his
mind.

This is what we try to imitate on a computer. From a set of examples, we construct
a model of a class of objects. This model represents the knowledge about this class of
objects and can be used in the analysis of images that show an object of the class. The
models we use in this thesis are 3D shape models. The most prominent example that
started the research for this thesis is the human femur bone. But for many experiments
and illustrations, including those in this introduction, we also use the skull, as well as
other object classes, like tibiae, faces and hands. Each of these classes require their own
model. Of course this makes it impossible to ever acquire the rich knowledge a human
possesses, but we can show that for individual object classes, this method can be put to
good use. For instance, for the object class of femur bones, we can use a shape model to
automatically compute an optimal repositioning of the fragments of a fracture like that in
Figure 1.1b. Without computer support, this is surprisingly hard to achieve for humans,
resulting in operations in which the bones that are poorly aligned, see [40].

The shape modeling technique we use is based on the 3D Morphable Model [13], which
was originally introduced for human faces. Most research in the Graphics and Vision
research group at the University of Basel is dedicated to this face model and it is the task of
this thesis to apply this modelling method in the medical domain. For this, every method
from data acquisition to the applications of the model had to be reevaluated regarding its
use with medical data. The 3D Morphable Model showed that it is ineffective to try to



learn the shape of 3D objects from 2D images like photos or the 2D radiographs shown in
Figure 1.1b. Instead, we need to acquire examples that show the 3D shape of the bone.
Currently, this information is best acquired in the form of CT scans. We will show in
Chapter 2 how the 3D shape information can be extracted from these scans. In this thesis
we focus on bone models, but these should seen as an example for the many object classes
that can be modeled with 3D shape models.

1.1 Shape Models
The basic idea of a shape model is to represent a class of shapes by combinations of example
shapes. As with all statistical methods, the more examples are used, the better the model
can represent the class of objects it models. The models we use here are linear shape
models. This means that they represents a class of shapes as linear combinations of the
examples shapes. While this seems very straight-forward, it is not instantly clear how these
linear combination can be formed. It is not even clear how we can take the sum of two
shapes. An early and rather simple method was introduced as Eigenfaces by Turk and
Pentland in [70]. It represents face shapes by images and simply builds a model based on
linear combination of these images. Similarly, Leventon et al. [42] represent shapes like
human vertebrae by distance images and use linear combinations of these distance images
to build a shape model. However, for these methods it is in general not certain that a
linear combination represents again a valid shape from the object class. In fact, for more
complicated shapes, this concept of shape modeling breaks down completely. In Figure 1.2
a linear combination of only two skulls is computed by means of their distance images.
Even this most simple of linear combinations fails to represent a valid skull.

1
2 + 1

2 =

Figure 1.2: Linear combination of two skulls by means of a linear combination of their distance
maps as proposed in [42]. The linear combination fails to represent a valid skull.



1.1.1 Correspondence

To construct valid linear combinations of shapes the Morphable Model [13] brings the
shapes into correspondence before building the shape model. The concept of correspondence
is easy to grasp but difficult to define in a mathematically precise way. We consider two
parts of a shape to correspond to each other if they share a comparable position or function
within their respective shapes. For instance, the teeth in one skull correspond to the teeth
in another skull. This concept can be extended to individual points: a point on the corner
of one tooth correspond to the point on the corner of the corresponding tooth.

Figure 1.3: Correspondence between two skulls.

While this is a very straight-forward concept, it becomes quite vague and ambiguous as
soon as we go into detail: It is clear that corners of the teeth correspond to each other. But
on relatively featureless surfaces like the faces of the teeth or the forehead of the skull, it is
not clear which points correspond to each other and which do not. Is the relative position
within the shape more important than local surface features? How is the correspondence
between two skulls with a different number of teeth defined? Can one point correspond to
several other points? In Figure 1.3, the red arrows represent correspondences between two
skulls that are obvious and well-defined, while the blue arrows show correspondences that
are more uncertain.

There is no definite answer to the question if or how correspondence can be defined in
these cases and we have to accept that the concept of correspondence cannot be precisely
defined down to the last detail. It can even depend on the application. For instance, for a
tooth model, we may be interested in the correspondence between all different types of
teeth, whereas in a skull model we consider only correspondence between equivalent teeth,
e.g. between the canines of one skull and the canines of the other skull.

How can we build shape models based on correspondence, if we cannot even give a
precise definition of correspondence? In all but the most simple examples it is impossible to
calculate correspondence perfectly. It has to be approximated with a registration algorithm.
Based on the way the algorithm tries to calculate the correspondence, we can find a
pragmatic way to deal with the ambiguities of correspondence in the next section.



1.1.2 Registration
The problem of establishing correspondence is known as the registration problem and is one
of the central problems in computer vision. A large number of registration algorithms have
been proposed to address the problem, but it is far from being solved. Most registration
methods are based on the following observation:

Suppose that we have complete dense correspondence between two surfaces Γ1 and
Γ2 ⊂ R3. That is, we have a map Φ : Γ1 → Γ2 that maps every point x ∈ Γ1 to
its corresponding point Φ(x) ∈ Γ2. If this map is bijective, we can represent Γ2 as a
deformation of Γ1 with Φ:

Γ2 = {Φ(x) |x ∈ Γ1} =: Φ(Γ1). (1.1)

This is also referred to as a “warp” or “morph” of Γ1. The registration problem is equivalent
to finding this map Φ and most registration algorithms try to approximate Φ by minimizing
the distance between Φ(Γ1) and Γ2. If we are able to reduce this distance to zero we have
found a registration for the two surfaces, which is a correct registration if, additionally, the
points x and Φ(x) correspond and Φ is bijective.

Unfortunately, for all but the easiest cases, we will not be able to reduce the distance to
zero and find a perfect registration result. How well the registration result approximates
the true correspondence between the surfaces depends on the algorithm. It depends on the
way it measures and minimizes the distance between Φ(Γ1) and Γ2 and on the way it tries
to enforce that Φ is bijective and actually maps only corresponding points onto each other.
Each registration algorithm tries to address these problems in its own way and a single best
registration algorithm that works perfectly in every situation does not exist. Because the
registration problem is not well-defined and typically no ground truth is available for real
data it is virtually impossible to compare two registration results or algorithms objectively.

Therefore, we tried to design our own new registration algorithm that works as well as
possible for our given task of constructing 3D shape models for medical applications. When
correspondence between two shapes is given by the approximated correspondence field Φ,
we can define linear combinations of the shapes based on a morph with this field, as in
Figure 1.4. Contrary to the linear combination from Figure 1.2, the linear combination is
again a valid skull shape.

Upon closer inspection, we see that this linear combination, which should mark exactly
the half-point between the two shapes is more similar to the first than the second shape.
This is because it is actually a linear combination between the first shape Γ1 and the warp
of this first shape Φ(Γ1), which does not exactly coincide with Γ2 for real-world examples of
fields Φ that are approximated by a registration algorithm. On one hand this introduces a
bias towards Γ1, which is an obvious drawback of this way of computing linear combinations
of shapes, on the other hand it also holds several important advantages. For instance, in
Figure 1.4, we see that, unlike the first skull, the second skull does not have the full set of
teeth. Furthermore, due to low resolution the interior structures of the second skull were
impossible to reconstruct correctly from the original CT scan, resulting in the artifacts we
can see trough the skull’s left eye. In this type of linear combinations, these imperfections
are replaced by the correct anatomy found in the first skulls.
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Figure 1.4: Linear combination of two skulls based on correspondence. Contrary to Figure 1.2,
the linear combination is again a valid skull.

In the Morphable Model, each shape is represented by a deformation of one common
reference shape. The model is based on linear combinations of these deformations. For
our skull model, we use the first shape of Figure 1.4 as a reference, because it is the data
set with the highest data quality. It was acquired from a very high resolution CT scan,
from which the shape was extracted manually with great attention to anatomical detail.
Almost all other skull data sets suffer from problems like missing teeth, CT scanning
artifacts, or low resolution. Therefore, for this model, it is a great advantage that all shapes
are represented by only one anatomically correct reference. Nevertheless, using a single
reference introduces a bias towards this reference into the model, and several research
groups are working towards at least reducing this bias [71, 7].

The representation of shapes by deformations of a reference also determines the way
that we deal with the ambiguities of correspondence mentioned above. Even in places
where it is unclear how the correspondence should be defined correctly, we simply use the
correspondence between the reference and its deformation by the registration result. In
the case of missing teeth, this means that we use the correspondence between the teeth of
the reference skull and the deformation of these teeth. Ideally, these should coincide with
the teeth that the second skull would have if they were not missing.

How well the deformations of the reference represents the example skulls, both in the
defective and in the intact regions, depends on the registration result. This makes the
registration algorithm the most important step in building a Morphable Model, and explains
the prominent place it took in our research and this thesis. The registration algorithm has
to solve the inherently ill-posed problem of establishing correspondence between shapes,
which may even contain defects, in a way that allows the construction of a shape model.
The better the algorithm performs, the better the resulting model will be. If the shapes
are so different that every registration algorithm fails to find meaningful correspondence,
they cannot be considered to belong to the same object class and therefore cannot be
represented by a common shape model.



1.1.3 Morphable Model
The Morphable Model represents all shapes of an object class by deformation of a common
reference shape. These deformations are linear combinations of a set of example defor-
mations, which are usually the registration results of registering the reference to example
shapes. The Morphable Model thus describes all shapes by a linear space of deformations.
Not all deformations in this linear “model space” represent valid shapes, however, especially
if they are far from the example deformations. To model which deformations represent
valid shapes, the Morphable Model estimates a normal distribution N (μ, C) from the
example deformation. This is a normal distribution on the linear model space, but it can be
extended to the space of all possible deformations of the reference. Then, all deformations
that can be considered plausible according to the normal distribution N (μ, C) represent
valid shapes of the modeled object class; provided all the examples belong to a class of
shapes that are similar enough and approximately normally distributed. If, in addition,
the examples represent the object class sufficiently well, the normal distribution N (μ, C)
represents all members of the object class. This means that given enough representative
examples, a Morphable Model aims at representing the class of all possible skulls or all
possible femurs etc.

Essentially, the Morphable Model is a statistical model of deformations. Therefore, this
model and related models such as the Active Shape Model [23] are referred to as “statistical
shape models” or “statistical deformation models”.

1.2 Outline and Contributions
The rest of this thesis is organized according to the chronological order of the steps it takes
to build a statistical shape model. We begin by describing in Chapter 2 how the necessary
example data sets can be acquired and prepared for registration and model building.

We introduce our registration algorithm in Chapter 3. In line with its importance for
building shape models, a large portion of research time and a large portion of this thesis
were dedicated to this registration algorithm. The algorithm is based on representing the
two shapes that we wish to register by distance functions and registering these distance
functions like images. This means that we calculate a vector field which warps one image
so that it resembles the other image as closely as possible. This vector field then represents
the correspondence of the shapes as well as of the surrounding space. The algorithm is
described in depth in Chapter 3. In this context, we are able to present the following
contributions:

• We show that when only the distance images are used to represent the surfaces, the
registration maps one shape to the other, but often does not map corresponding
points onto each other. By including additional feature images like the curvature of
the shapes, we can obtain a registration results that maps points in a way that is
much closer to our intuitive notion of correspondence [28].

• To ensure that the registration result does not deviate too far from the goal that it
should be bijective and optimally even diffeomorphic, every registration algorithm



has to include some kind of regularization. We show that the most straight-forward
and widely used regularization term allows unnatural expansion or compression of
the shapes. By including a volume preservation term, we obtain a registration result
that allows only a very even and consistent change of volume.

• We implement the registration method with a state of the art finite element method,
which allows the efficient parallel calculation of the registration result on a locally
adaptive grid [28].

• We introduce the registration method as a continuously defined minimization problem,
making it independent of the proposed discretization method.

• We show that by introducing an additional statistical regularization term into the
registration functional, we can penalize unlikely solutions and make the registration
more robust and allow the registration of problematic data sets such as those with
missing parts [2].

The statistical regularization term is based on the statistical model and therefore we
postpone it until after the introduction of the statistical shape model, which is described
in Chapter 4. While we mostly follow the concepts of the Morphable Model [13], a novelty
in this thesis is that we introduce the statistical model in the most general way possible:
as a statistical model on a general Hilbert space H. This unifies all possible applications of
the same modeling technique into one formulation. This formulation applies directly to
continuously or discretely defined surface models of shapes, deformations, image intensity,
surface color etc. Choosing any of these models only amounts to choosing the appropriate
Hilbert space H.

Once the model is defined in this general way, we show its application in a variety of
scenarios in Chapter 5:

• We show how a surface model can be fitted to a complete or partial surface. For
the case that the given surface is only partially defined, we model the flexibility that
remains in the model, i.e. we investigate how strongly the given part influences the
whole shape [1, 44].

• We fit a model of shape and image intensities directly to CT scans. In order to
improve the fitting near the object boundary we include a generic model for the
outside of the object [3].

• We include a statistical model into the registration process in form of a regularization
term [2].

• For cases in which no prior statistical model is available, we investigate the possibility
to build a statistical model directly from problematic and partial data sets [45].

• We show how statistical shape models of bones can be used to design optimal implants
for osteosynthesis.



• We show how several statistical models can be linked together, allowing for instance
the prediction of faces from skulls by connecting a skull and a face model [57].

• We show how statistical shape models of bones can be used to automatically locate
the subchondral bone plate and visualize its density.

• Finally, for the last application, we come back to our introductory example of the
broken femur in Figure 1.1, and show how the statistical model can be used to
automatically compute an optimal reposition of broken bones from a CT scan.

Many of these applications point towards interesting ideas for future research, which we
will discuss in Chapter 6.

1.3 Prior Work
We have included the relevant prior work for each method we use in the respective sections.
Here, we would like to mention the works that were most influential or relevant to this
thesis. In representing object classes by shape models, the most influential work was the
Morphable Model, introduced by Volker Blanz and Thomas Vetter in [13]. Our principles
of registration, especially its thorough mathematical treatment was most influenced by the
book on image registration by Jan Modersitzki [49]. While the representation of shapes by
distance images or, more generally, level set functions can be considered standard, its use
in image registration has been pioneered by Nikos Paragios et al. in [55].

The formulation of the registration method as a continuous optimization problem as well
as its minimization and discretization with a finite element method is of course influenced
by the work of Euler, Lagrange, Ritz, Galerkin, and Hilbert. In their place, we mention
the books of Evans [30] and Braess [15]. The specific type of finite element method we use
is the local discontinuous Galerkin introduced by Cockburn and Shu in [21].

The idea of incorporating the statistical model itself into the registration process was
previously described by Gee and Bajcsy [32] as well as Wang and Staib [73]. An early yet
very comprehensive and mathematically thorough introduction to the use and construction
of statistical models in medical image analysis is presented by Granander and Miller in
[36].





2 Data Acquisition and Preprocessing

The greatest organizational challenge in building a statistical model is acquiring enough
data sets to represent the shape variations of the object class we wish to model. As in any
other statistical application, the more data sets we can acquire, the better our model will
be. Specifying how many data sets are necessary to build a good statistical model depends
on the complexity of the shape and the individual data sets. However, a proof of concept
for most methods involving statistical shape models can already be achieved with 10 – 20
examples.

2.1 CT Scanning

Figure 2.1: CT scanning of isolated femur bones

For our main applications of bone models, the best way to capture the shape and at the
same time the density information of bones is with a computed tomography (CT) scanner.
It produces a 3 dimensional array of voxels (3D pixels). Each voxel represents a small box
in space and the voxel’s value represents the ability of the material in this box to block
x-rays. The values of the CT image are given in Hounsfield Units (HU) [17]. Air typically
has a value of -1000 HU and bone a value of 400 HU or above. Other tissues in the human
body have Hounsfield values between around -100 and 100. Therefore, in principle bones
can be easily identified in a CT scan based on their high Hounsfield values and any CT
scan containing a complete bone can be used as an example data set.

In practice however, things turn out to be more difficult. While thousands of CT scans
are performed every day, there is practically never a medical indication to perform a
high-resolution CT scan of an entire healthy bone. Clinical CT scans typically contain
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broken bones. Additionally, in order to minimize the patient’s exposure to potentially
harmful x-rays, the resolution of the scans is typically kept to a minimum.

The amount of radiation necessary to perform a high resolution scan of an entire bone
makes it impossible to acquire example scans of healthy bones from living volunteers.
Therefore, the only possible source for high quality scans of the entire bones are cadavers.
This requires the help of medical partners. We are very thankful for the support from
the Anatomical Institute and the University Hospital Basel. The Anatomical Institute
provided us with 20 dry (macerated) femur bones (see Figure 2.2) and an additional 25
bones from the medical students’ anatomy courses (see Figure 2.1). These were scanned
with a CT scanner at the University Hospital Basel. This provided the valuable data sets
without which building the statistical model would not have been possible.

Figure 2.2: Macerated femur bones

To get these bones scanned, we actually had to carry them to the University Hospital
ourselves and scan them in a CT scanner that was momentarily unused. The other data
sets that we use in this thesis stem from other projects and we received the CT scans
directly in digital form, without the need to actually handle human bones.

2.2 Segmentation

While some research groups try to develop shape models directly from medical images [36],
we take the more common approach to first separate the object from the background. We
are particularly interested in the shape of the object, in other words its outline or surface.
By segmenting the image into object and background, we obtain a direct representation of
this surface. Secondly, in most cases the background contains superfluous information that
we do not wish to model. In our bone example data, the background contains the stretcher
of the CT scanner, plastic bags used to wrap the bones, Styrofoam blocks on which the
bones were placed, residual soft tissue that is still attached to some bones etc. None of
this information is useful for the bone model and could even affect it adversely. Therefore,
it should be excluded.



(a)
(b) (c)

Figure 2.3: Threshold segmentation: At first glance, marking all pixels with a higher intensity
than 130 HU identifies the bone in a slice of a CT image (a). Upon closer inspection, we see that
many parts of the bone are missed, while some soft tissue is misclassified as bone.

Because bone has a higher density and therefore higher Hounsfield values than all other
types of tissue in the body as well as the background objects in the CT scans, the bone can
in principle be identified easily by selecting only voxels with Hounsfield value greater than
a given threshold. This works reasonably well to get an overall impression of the shape of
the object, see Figure 2.3a, where, in a slice of a CT scan, the femur bone is marked in
blue by selecting all pixels with an intensity higher than 130 Hounsfield Units. However,
upon closer inspection, in Figures 2.3b and 2.3c, we notice that not all of the actual bone
tissue is marked as bone. The Hounsfield value of a voxel represents the average density
over that voxel. Therefore, a voxel that contains part air and part bone has a much lower
value than the theoretic Hounsfield value of bone. This is essentially an aliasing artifact
and is known as the “partial volume effect” in the medical community. Therefore, when
we choose a threshold value that should, in theory separate bone from other tissue and air,
we miss the voxels that are only partially filled by bone. As we can see in Figure 2.3c, this
concerns both the inside as well as the outer boundary of the bone. At the same time, we
can observe in Figure 2.3b that with this same threshold some of the remaining soft tissue
is misclassified as bone. Choosing a lower threshold would misclassify even more soft tissue
or even background objects as bone, whereas a higher threshold would miss even more of
the actual bone, especially at the boundary in Figure 2.3c. To make this problem even
more severe, some of the example bones we received as examples where actually damaged
in places where the bone is very thin.

There are many attempts at designing automatic segmentation algorithms to tackle
these kinds of problems, and many are implemented in standard software packages such as
ITK [39] or Slicer [58]. However, none of these available algorithms, not even the more
sophisticated level set methods, were able to completely solve the fundamental problem of



either classifying too much or too little of the image as bone. For many medical applications,
this does not pose a significant problem, because the holes in the bone or the additional
soft tissue can simply be ignored by a physician. For building a shape model, however,
which is supposed to model the complete bone, without holes or residual soft tissue, a
more accurate segmentation is necessary. One of the goals of statistical models is to design
better segmentation algorithms for the future, but in order to build a model in the first
place, the examples have to be segmented somehow and the most reliable method for this
proved to be manual segmentation.

Starting from a threshold value that is a relatively good compromise between classifying
too many or too few voxels as bone, like that in Figure 2.3, the segmentation is inspected
slice by slice, filling the holes and removing the remaining soft tissue manually. While
the application Slicer [58] allows for rudimentary image manipulation of 2D slices, this
is a very tedious task and a great motivation for continued research in automatic image
segmentation.

A typical resulting segmentation result can be seen in Figure 2.4. Unfortunately, the
slice-by-slice segmentation introduces additional artifacts when the manual editing is not
performed consistently over all slices, see the vertical stripes in the 3D reconstruction
Figure 2.4c. With further editing and smoothing, some of our examples have been manually
segmented to provide an almost idealized representation of the bone like the bones in
Figure 2.5 in the next section. But most bones we used were segmented as accurately as
the example in Figure 2.4. This proved to be a good compromise between a reasonable
segmentation and a justifiable amount of manual user interaction.

(a)

(b) (c)

Figure 2.4: Hand segmentation: The bone is correctly identified, but the manual interaction
introduces some artifacts, which are visible as vertical stripes in the 3D reconstruction (c).



2.3 Pre-Alignment
Usually, when images or 3D scans are collected for a statistical model, each object is
intuitively placed in the middle of the image and in a similar position. However, for
accurate registration and model building, the objects should be placed in the same position
as accurately as possible. This provides a good initialization for the registration algorithm,
and, more importantly, without pre-alignment the statistical model would not only model
the shape variations, but also the small differences in position of the examples.

It is hardly possible to perform an exact alignment by hand, for instance by placing the
bones in the exact same position in the CT scanner. Therefore, the alignment is performed
in the computer, after the CT images have been acquired. While there are a number of
automatic alignment algorithms, the most reliable technique is, similar to the segmentation,
based on manual user interaction. A representative set of corresponding landmark points is
marked on each of the examples. For the femur bone model, we chose the most prominent
features described in an anatomy book, see Figure 2.5.

Figure 2.5: Two bones with manually marked landmarks

Once the points are marked on each of the example shapes, we seek a transformation
that moves the landmarks and thus the objects they represent as close together as possible.
At this point we only want to manipulate the position and not the shape of the objects.
Therefore, as possible transformations we admit only rigid motions or similarity transforms,
i.e. transformations Φ : Rd → Rd that can be represented as

Φ(x) = λAx+ t, (2.1)

where A ∈ SO(d) is a rotation matrix, t ∈ R3 a translation vector, and λ ∈ R+ scaling
parameter which can take any positive value for a similarity transform and is fixed to λ ≡ 1
for rigid motions. It depends on the application if scaling should be allowed or not. In
cases where the data acquisition can introduce scale inconsistencies, such as in photography
or radiography, allowing scaling in the pre-alignment can help remove these inconsistencies.
On the other hand, for methods like CT or MR scanning, which produce consistently scaled
output, allowing only rigid pre-alignment seems favorable. In any case, the subsequent



task of establishing correspondence between the examples with a registration algorithm is
significantly easier if the pre-alignment admits scaling and can thus bring the objects closer
together. But, if desired, this scaling can be removed again after registration, resulting in
a statistical shape model that preserves the proper scaling of the examples.

In order to align two shapes based on their landmarks, we seek a transformation
Φ = λAx + t which minimizes the distance between the transformed landmarks of one
shape {Φ(x1), . . . ,Φ(xm)} and the landmarks of the other shape {y1, . . . , ym}. This means
that we find the parameters of the transform as:

(λ,A, t) = argmin
λ,A,t

m∑
i=1

‖Φ(xi) − yi‖2 = argmin
λ,A,t

m∑
i=1

‖λAxi + t − yi‖2. (2.2)

The minimum can be found in a closed from solution, see [72] for details. Traditionally,
this form of aligning two shapes is referred to as “Procrustes Alignment”, after a character
from Greek mythology. Figure 2.6 shows the alignment of the two bones from Figure 2.5.
In Figure 2.6a, λ was fixed to 1, resulting in a purely rigid alignment, while in Figure 2.6b,
the optimal λ was calculated, resulting in what we call a similarity alignment.

(a) Rigid alignment (b) Similarity alignment

Figure 2.6: Comparison between rigid and similarity alignment: Rigid alignment preserves the
original scale of the bones, whereas similarity alignment allows for an isotropic scaling of the
aligned bone in order to produce a better match.

In order to align not only two but all the example shapes at the same time, all shapes can
be aligned to the common reference. If we wish to make the alignment independent of the
chosen landmarks, we can perform an additional alignment after the registration by using
all points in the shapes, which are now in correspondence, as landmarks. Additionally, we
can make the alignment independent of the reference by performing Generalized Procrustes
Analysis [35], in which all shapes are aligned to a mean shape, or rather a mean set of
landmarks, which is estimated during the alignment in an iterative process. However, a
noticeable improvement in the alignment with this method was only achieved for a model
of the skull, for which the landmark selection was rather difficult. For all other object
classes we modeled, the regular Procrustes alignment proved to be sufficient.



3 Registration
The most important and most challenging step in constructing shape models from examples
is bringing these examples into correspondence. The process of bringing two shapes into
correspondence is known as “registration” and consists of finding, for each point on one
surface, the corresponding point on the other surface. It may depend on the application
what “corresponding” actually means, but typically we assume that corresponding points
share a comparable position and function within their respective data sets.

In principle, we wish to establish correspondence between all example objects. The
most straight-forward way to accomplish this is to register each example individually to a
common reference. The registration algorithm then only needs to establish correspondence
between two objects at a time. This is achieved by deforming the reference so that it
resembles the other object as closely as possible. The statistical shape model can be built
directly from these deformations of the reference shape.

In order to move away from relying on a single reference shape, there are recent develop-
ments in group-wise registration and statistical models that use pairwise registration of all
examples, see [71, 7] for instance. But as these come at a much greater computational cost,
we chose to use the traditional method of registering each example to a common reference.

In most applications, such as in our bone examples, the objects that need to be brought
into correspondence are organs that were captured with a medical imaging device, such as
a CT or MRI scanner. We propose a method to bring the objects into correspondence by
registering a number of feature images derived from these medical images.

As our ultimate goal is the construction of statistical shape models, we are mostly
interested in the shape of the organ’s surface, which we represent by the two most prominent
feature images in our method: a distance and a curvature image of the surface. Together,
they provide a good description of the shape of an object. Other possible feature images,
which are then simultaneously registered, can encode additional information about the
organs like the original CT or MRI data. Registering all feature images together takes all
of this information about the shapes into account.

It is possible to register only one pair of feature images, but our experiments have shown
that registering only distance images does not match the details of the surfaces well enough,
requiring at least the use of an additional curvature feature image. Registering the original
CT or MRI images directly without additional feature images also produces unsatisfying
results as a good registration of the image intensity values often does not guarantee a good
matching of the object surfaces. There are too many points in the images that do not
correspond to each other but share the same intensity value. This problem is less severe if
we use several feature images, as there are less non-corresponding points that share the
same intensity in all feature images. For instance, in the CT and MRI images, all points
on the surface and the inside of a bone share a similar intensity, whereas in the distance
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image only points on the surface share the same intensity. And if we include the curvature
image, only points that are on the surface and share a similar curvature are considered in
the search for corresponding points.

Nevertheless, the registration problem remains ill-posed and we will need to include some
type of regularization into our registration method in order to rule out erratic registration
results. Using regularization is the standard strategy for trying to solve ill-posed problems.
It can be interpreted as including prior knowledge about the possible solutions. The
solutions of the registration problem is given in form of a vector field, referred to as the
correspondence or deformation field. In the most basic form of our proposed registration
method we simply enforce the smoothness of this vector field by controlling the norm of its
first derivative. This type of regularization corresponds to the prior knowledge that a good
registration result should be smooth. However, it turns out that this regularizer, which is
also found in the Demons or Diffusion registration algorithms [67, 49], allows large and
unnatural looking volume change. By penalizing volume change we impose our additional
prior knowledge that the registration result should not compress or expand the objects
excessively. This is achieved by penalizing the linearized volume change caused by the
vector field.

One of the main contributions of this thesis is the formulation, discretization, and
optimization of the registration problem as a continuous functional, integrating all the
different terms described above into a single continuous minimization problem for the
deformation field. This formulation allows for the simple enhancement of the scheme with
further terms and for a straightforward discretization. We present a memory-efficient and
flexible scheme using adaptive finite elements with the local discontinuous Galerkin method.
This specific type of finite element discretization leads to a very simple formulation even of
complex regularization terms and is especially well-suited for speeding up the registration
by using non-conforming locally adapted grids and straight-forward parallelization. It is the
preferred discretization method of our collaborators at the institute of applied mathematics
in Freiburg and is based on software libraries they developed [26, 10, 9, 27].

After introducing the statistical shape model in the next chapter, we will show in
Chapter 5 how the model can itself be used to include prior knowledge that is specific to
the modeled class of objects into the registration algorithm. In this context the advantages
in efficiency and memory consumption of our finite element discretization enable us to
perform registrations with large high resolution 3D statistical deformation models that
where previously not possible.

However, we have taken great care to separate the registration method from the dis-
cretization method we use here. The registration method and the statistical model we will
introduce in the following chapter are formulated in the most general way possible and can
be used with virtually any discretization method.

3.0.1 Prior Work
Non-rigid registration is a well researched problem. For an overview of registration methods
we refer to the survey papers by Zitova and Flusser [77] (image registration), Audette et al.
[6] (surface registration), and in particular the book by Modersitzki [49] for a thorough



discussion of variational methods for image registration. The most basic form of our
method, i.e. leaving out all the optional terms we will introduce, is closely related to
Thirion’s Demons algorithm [67] and Modersitzki’s Diffusion registration algorithm [49].

The idea of surface registration using a distance or level-set representation of surfaces
has been introduced by Paragios et al. [55] and the inclusion of additional feature images,
especially for parametrized surfaces is used for instance in [43]. The use of curvature images
has also been presented in our paper [28].

Volume preserving image registration was introduced by Rohlfing et al. in [60] and Haber
and Modersitzki in [37]. Rohlfing et al. include a term penalizing volume change in a
B-spline based registration framework, while Haber and Modersitzki enforce strict nonlinear
volume preservation in a variational formulation. In our approach, we wish to allow a
limited amount of volume change and therefore use a soft constraint, i.e. an additive penalty
term. For efficiency, we penalize only the linear part of the volume change and we show
that this is equivalent to the linear elastic regularization term first introduced by Broit
and Christensen et al. in [16, 20], even though our motivation for using this regularizer
does not stem from modelling the organs as elastic bodies.

The use of finite elements for image registration goes back at least as far as [33], and we
published a first finite element registration algorithm in [28]. The final model derived in
this paper results in an elliptic problem with a non-linear forcing term. The finite element
discretization for general elliptic problems has now been employed for decades and can
be considered standard. A summary of the standard approach of conforming, continuous
finite elements can be found in [15]. We employ a discontinuous finite element approach,
which allows us to use non-conforming locally adapted grids with distributed memory
parallelization. An overview of this class of schemes can be found in [5]. The method we
use is based on the local discontinuous Galerkin scheme introduced in [21].

3.1 Registration Method

In this section, we provide a detailed description of our registration method.

3.1.1 Level Set Representation

At its core, the registration method we present is an image registration method and as
such can be used directly on images. The first naive approach to bring the example data
sets into correspondence is therefore to use this or another image registration method on
the original CT images. In this way, the complete images, including the bone surface,
in which we are mostly interested, should be automatically brought into correspondence.
However, because of the influence of noise, background objects, and the fact that many
non-corresponding points share the same intensity value, this approach failed to produce a
reliable registration of the bones surfaces in our initial experiments. In addition, for some
of the data sets we acquired, we do not have access to the original CT images but only to
a surface representation.



For these reasons, we decided to develop a method that is able to directly register two
surfaces Γ0,Γ1 ⊂ Rd. These surfaces can be segmented from medical images as described
in Section 2.2 or acquired otherwise. At this point we assume that the surfaces are already
rigidly pre-aligned as described in Section 2.3, so that our algorithm only needs to recover
the non-rigid component of the registration. Moreover, the pre-registration enables us to
choose a common rectangular domain Ω ⊂ Rd which contains all example surfaces. On
this domain we can represent each surface Γ by its signed distance function I : Ω → R:

I(x) :=

⎧⎪⎨⎪⎩
dist(x,Γ) x ∈ outside(Γ)

0 x ∈ Γ

−dist(x,Γ) x ∈ inside(Γ),

(3.1)

where dist(x,Γ) is the Euclidean distance from x to Γ. When registering open surfaces, for
which inside and outside cannot be defined, an unsigned distance function can be used.

Such distance functions can be interpreted as images and registered with an image
registration method. In effect, we are back to registering images, but, contrary to the
original CT images, the distance images contain only information about the surface and no
noise or background information, which made the registration of the original images difficult.
This concentration on the information that is most relevant to our problem comes at a
price, however: It is only possible if we know the surface Γ. Typically is has to be extracted
from the original images by segmentation. Essentially, we are making the registration
problem less ill-posed by first addressing the segmentation problem. As it is possible to
segment our medical images with modest effort, see Section 2.2, this divide-and-conquer
strategy proves to be a good way to reduce the complexity of the registration problem
considerably by focusing on the most relevant information.

The aim of the registration algorithm is now to find a vector field Φ such that the target
surface’s distance function I1 warped with this deformation field, i.e. I1(Φ(x)), is as close as
possible to the distance function of the reference surface given by I0. The registration result
of the distance functions then implies a registration of the surfaces they represent. As is
customary in most registration algorithms, we represent the vector field as Φ(x) = x+ u(x)
and formulate our registration method in terms of the deformation field u : Ω → Rd. This
is equivalent to finding Φ but has the advantage that the deformation that leaves the object
unchanged is represented by u ≡ 0.

We formulate the registration problem as a minimization problem. It is shown in [49]
that virtually all registration methods can be interpreted in this way. The deformation
field u is sought as the minimum of a functional which is the sum of two terms: a distance
and a regularization term. Thus, the registration problem consists of finding the minimum
of the functional

J [u] = D[u] + R[u], (3.2)

with distance term D and regularization term R. The distance term measures the distance
between the reference and the registration target. At its minimum, the warp of the
target is as close as possible to the reference image. The regularization term measures
the smoothness or regularity of the registration result u. The smaller it is, the more



regular the solution will be. By minimizing both terms simultaneously, we try to bring
the reference and target as close together as possible while keeping the deformation field
reasonably smooth. We believe that there is no single generic distance or regularization
term that guarantees a good registration in every scenario. The notion of correspondence
is application-specific, and the more knowledge about the registration task at hand we can
include into the method, the higher the chances will be to obtain a result that meets our
requirements.

3.1.2 Function Spaces
We represent the images or distance functions we wish to register as functions I : Ω → R

and the registration results as deformation fields u : Ω → Rd. In practice, these will always
be given as discrete images or functions. However, because we formulate our registration
method continuously, we should specify what function spaces we assume these continuous
functions to belong to. Certainly, if we wish to use the L2 distance as a distance measure
for our functions, we have to assume at least that I ∈ L2(Ω). If we wish to calculate the
curvature of the image I, we must furthermore assume that the second derivatives of I
exist, at least in the weak sense and therefore have to assume I ∈ H2(Ω).

Similarly, we shall assume that the deformation fields u are at least in the space of
square integrable functions L2(Ω,Rd), but as the regularization terms we introduce in the
following the derivatives of u, we shall assume that u has at least weak first derivatives,
i.e. for the following we assume u ∈ H1(Ω,Rd). In fact, we shall see in Section 3.2.1 that,
with appropriate boundary conditions, a minimum in H1(Ω,Rd) exists for our registration
functional.

For more information on function spaces of weak derivatives see, for instance, [4].

3.1.3 Distance Term
The basis for the distance term D is the L2 difference between the warp of the signed
distance images I1 and the reference I0 of the two surfaces to be registered:

‖I1(x+ u(x)) − I0(x)‖2
L2(Ω) :=

∫
Ω

(I1(x+ u(x)) − I0(x))
2 dx. (3.3)

The distance images of two similar surfaces have a similar range of values, especially
close to the surfaces, which makes the L2 distance measure an appropriate choice for their
comparison. In order to prevent undesirable effects at the boundary, where the distance
function of each surface may be cut off at different values, we bound the distance images
at a certain distance b from the surface:

Ib(x) :=

{
I(x) if I(x) ≤ b

b if I(x) > b,
(3.4)

and register these bounded distance images instead of the original I(x). The bound b ∈ R

should be chosen so that the b level set of each surface we want to register is completely



contained inside our computation domain Ω. In this way, each image has the value b on
the boundary ∂Ω. For illustration, Figure 3.1 shows such a cut-off distance function for a
2D hand shape.

Figure 3.1: A distance image to the outline of a hand, cut off at the value b = 20.

3.1.4 Robust Distance Measures
For noisy or otherwise difficult feature images it can be advantageous to use a robust
distance measure, which dampens the influence of the overly large differences between
the images, see [12] for a review of different robust cost functions. We propose using
a robust distance measure based on the Geman-McClure estimator [12, 34], which has
been successfully used for medical image registration in [54]. It can be easily realized by
weighting the distance measure (3.3) with a term QI(x):

DI [u] :=
1

2

∫
Ω

1

QI(x)
(I1(x+ u(x)) − I0(x))

2 dx. (3.5)

For the Geman-McClure distance measure we have QI(x) = C2 + (I1(x+ u(x)) − I0(x))
2,

with a regularization parameter C ∈ R which controls the robustness of the measure. A
similar term is used in Thirion’s Demons algorithm [67], where the norm of the gradient
of the image replaces C: QI(x) = |∇I1(x + u(x))|2 + (I1(x + u(x)) − I0(x))

2. In our
experiments, both weights yielded similar results. We have found that for distance images
of surfaces that are free from artifacts or excessive noise, it is not necessary to use a
robust distance measure. But it proved to be of good use for the additional feature images
introduced in the following sections, such as the curvature images.

3.1.5 Curvature Guided Registration
When registering surfaces by means of their distance images, the problem arises that, by
definition, the value of the distance function is zero on the whole surface and contains no
additional information on the surface. Therefore, the distance function D is minimized
whenever a point on one surface is registered onto a point on the other surface even if the



Figure 3.2: Two skulls colored according to their mean curvature. We see that corresponding
points have similar mean curvature.

functions or positions of these points do not correspond. In fact, when we try to minimize
the registration functional with a gradient descent scheme, the corresponding point is only
sought in the direction of the gradient of the distance image, i.e. perpendicular to the
surface. This effect is somewhat alleviated by the regularization term, but this is often not
enough to obtain a sensible registration. See Figure 3.4 for an example.

For registration of human bones, we wish to establish correspondence between points that
have a similar anatomical function. So similar bumps, crests, ridges, etc. should be matched.
Such features are well described by the curvature of the surface. In fact, for a large class of
objects, corresponding points on two surfaces have similar curvature. Figure 3.2 illustrates
this for the mean curvature of human skulls. We use the mean curvature as an additional
feature to be matched in our registration algorithm.

With the surfaces represented by their distance images, the curvature is easily calculated
by H(x) = div ∇I

‖∇I‖ . For each x ∈ Ω, H(x) is the mean curvature of the level surface

passing through x. If x is on the zero level set of I, H(x) is the mean curvature of the
surface at that point. Since for distance images ‖∇I‖ = 1 almost everywhere, the curvature
image H is even more easily computed as H = ΔI, which can be interpreted in the weak
sense for I ∈ H2(Ω). If we compute the curvature image as the curvature of the cut off
distance functions introduced above, we additionally know that H ≡ 0 on the boundary
∂Ω of our image domain. Figure 3.3 shows the curvature image for the distance function
from Figure 3.1.

In differential geometry, the curvature of a surface is actually defined by the curvature
tensor. The mean curvature is one of many possible ways to compute a scalar value from
this tensor, namely as the mean of its principal components, the principal curvatures. Other
possible choices include the Gaussian curvature (the product of the principal curvatures),
the shape index, and the curvedness, see [69]. We have chosen the mean curvature because it
can be calculated efficiently for distance functions, but obviously other curvature measures
can be used instead or in addition to the mean curvature. For instance, in some cases it



Figure 3.3: The curvature image for the hand distance image from Figure 3.1.

may be of advantage to use a scale-invariant curvature measure as in [69]. On the other
hand, we have found that even though the mean curvature is not scale-invariant, when
two shapes of different size are registered, the curvature images still encourage a matching
of corresponding surface features as any other matching would incur a higher cost in the
distance function.

The curvature images are included in the registration process with a distance term
analogous to that in Equation (3.5):

DH [u] :=
1

2

∫
Ω

1
QH(x)

(H1(x+ u(x)) −H0(x))
2 dx. (3.6)

The overall distance measure is then given as αDI [u] + βDH [u] with α, β ∈ R+ controlling
the balance and influence of the distance and curvature images. Figure 3.4 shows a toy
example exhibiting the advantage of using the additional curvature image.

Figure 3.4: Toy example for curvature guided registration: On the left: Without curvature
information, the registration of two squares calculates a correspondence field that does not match
the corners of the squares. When the mean curvature images as the image on the right are used
as additional feature images in the registration, it calculates correspondence between the corners
of the two squares, which corresponds much better to our intuitive notion of correspondence.



Additional Feature Images

In an obvious fashion, any number of additional feature images can be added. If we denote
the k-th pair of feature images by Xk

0 , X
k
1 , the full distance term for our registration method

is given as:

D[u] :=
n∑

k=1

αk DXk [u] =
n∑

k=1

αk

2

∫
Ω

1
Q

Xk
(Xk

1 (x+ u(x)) −Xk
0 (x))2 dx, (3.7)

with weighting parameters αk. In our experiments, we have included the original CT scans
from which the bone surfaces where segmented as additional feature images where they
were available. 2D projections of two such CT scans can be seen in Figure 3.5. Additional
image modalities or manual annotations such as images derived from landmarks could also
be included, provided they are available for both surfaces to be registered. For multi-modal
image pairs, more sophisticated multi-modal distance measures can be employed instead
of the L2 distance measures used in Equation (3.7), cf. [49, 29]. In some cases, it may be
necessary to mask out a region of interest so that other objects present in the image do
not influence the registration, especially at the boundary ∂Ω.

Figure 3.5: 2D projections of CT scans of two femurs.

3.1.6 Regularization Term

Registration is an ill-posed problem and any algorithm trying to minimize a distance
measure without enforcing some kind of smoothness or regularity on the solution is bound
to fail. We begin by introducing a very basic regularization term, which is later enhanced
by adding further terms.

One of the most basic ways to control the smoothness of the deformation field u is
through its first derivative Du, which we will, as is customary, denote like a gradient by
∇u. But the reader should bear in mind that u : Ω ⊂ Rd → Rd, and hence ∇u(x) ∈ Rd×d.
We define the basic regularization term as:

Rg[u] :=
1

2

∫
Ω

‖∇u(x)‖2 dx =
1

2

d∑
l=1

∫
Ω

|∇ul(x)|2 dx, (3.8)

where ∇ul(x) ∈ R3 is the gradient of the l-th coordinate function of u. The smaller Rg[u]
is, the smoother the deformation field u is.



Volume Preservation

While the regularization term (3.8) forces the deformation field to be smooth, it still allows
for some quite unnatural deformations. In particular, it allows excessive expansion or
compression of the registered object by the deformation field, see Section 3.4.3 for an
example. The compression or expansion of the warp x + u(x) can be measured by the
determinant of its first derivative det[D(x + u(x))]. A volume preserving deformation field
must satisfy det[D(x + u(x))] ≡ 1. Naturally, as we are mostly interested in registering
bones of different individuals, which in general do not have the same volume, we do
not wish to enforce a strict incompressibility constraint as in fluid dynamics or other
registration approaches [37]. Instead, we add a soft incompressibility constraint to our
existing regularization term based on the linearization of det[D(x+ u(x))]. Thus, volume
change is limited but not completely prohibited.

Since det[D(x+ u(x))] = 1 + div u+ (non-linear terms), it follows that the smaller the
divergence of u, the closer the linearization of the determinant is to 1 and therefore the
field to being volume preserving; provided the values of Du are not too large and the
linearization is justified. Therefore we add the square of the deformation field’s divergence
to the functional:

R[u] := μRg[u] + νRd[u] = μ
1

2

∫
Ω

‖∇u‖2 dx+ ν
1

2

∫
Ω

(div u)2 dx.

In Section 3.2.4, we will see that the Euler-Lagrange equations for the functional (3.9) cor-
respond to those of the well known linear elastic registration methods. Our introduction of
the volume preservation term provides an alternative view on elastic registration. Typically,
elastic registration is motivated by arguing that the registered objects can be modeled as
elastic objects. We, on the other hand, have found that for inter-subject registration, i.e.
the registration anatomic structures of different individuals, it is advantageous to penalize
large volume change, even if none of the involved objects or the mapping between them
can be considered elastic. Using our proposed volume regularization term results in a more
even registration result without over-regularizing or preventing volume change altogether,
and when combined with the standard regularization term (3.8) happens to coincide with
elastic regularization.

An example of how the penalization of volume change enhances the registration result
visibly can be seen in Section 3.4.3. Figure 3.6 shows a toy example of how the volume
preservation term works. In this example, we register two ellipses. Without the volume
preservation term (μ = 0.5, ν = 0), one of the ellipses is deformed to match the other
ellipse. Obviously, this causes local volume change. When the deformation term is used
however (ν = μ = 0.5), the ellipse is rotated instead of deformed, resulting in an equally
good match but without any volume change. Obviously, this is a constructed toy example
and the effect for real examples is more subtle.



Figure 3.6: Toy example for the volume preservation: Without volume preservation the two
ellipses are registered by deformation. With volume preservation, they are rotated, as this causes
no volume change at all.

3.1.7 Full Registration Functional

While many more terms may be introduced into the registration functional, and we will in
fact introduce an additional statistical regularizer in Chapter 5, let us collect all of the
terms we have introduced so far. The full registration functional made up of all the terms
introduced above is given as:

J [u] = D[u] + R[u] (3.9)

=
n∑

k=1

αk

2

∫
Ω

1
Q

Xk
(Xk

1 (x+ u(x)) −Xk
0 (x))2 dx (3.10)

+ μ
1

2

∫
Ω

‖∇u‖2 dx+ ν
1

2

∫
Ω

(div u)2 dx. (3.11)

3.2 Minimization Strategy
The optimal registration result that we can achieve with our algorithm is given as the
global minimum of the functional J [u] = D[u] + R[u]. It is at this minimum that the
distance between the deformed reference and the target image is as small as possible, while
keeping the irregularity of the deformation field, measured by the regularization term R[u]
as small as possible.

In practice, we try to find the minimum of this functional with an iterative minimization
algorithm. If we wish to avoid calculating the derivative of the functional, we may even use
an iteration scheme that is based solely on function evaluations, such as those implemented
in ITK [39], and just hope that this algorithm finds a suitable registration, starting from
an initial guess, typically u ≡ 0.

From a mathematical point of view, it is of course interesting to investigate if a minimum
of the functional even exists, if it is unique, if it can be further characterized, and how



it can be found most efficiently. While we cannot give a definite answer to all of these
questions here, we can at least characterize the problem more precisely.

First of all, we can observe that all terms included in our functional J are integrals of
quadratic terms and hence J is bounded from below by 0. It follows that the infimum of
J exists and is a nonnegative number b := inf J , which is bounded above by any value of
the functional, say J [0]. The question if a minimum of J exists reduces to finding out if
J attains its minimum. That is, if there always exists a u such that J [u] = inf J .

Secondly, we can easily see that if a minimum of J exists, it is in general not unique:
In a similar fashion to the toy examples in Figures 3.4 and 3.6, we can always construct
registration problems that can be easily solved by a simple rotation or translation and that
are completely symmetric and therefore admit at least two global minima.

These observations, which require no complicated mathematical theory, hold for virtually
any choice of distance measure D and regularizer R. We can deduce that even if a minimum
of the functional may not exist, we can certainly always use an iterative optimization
algorithm, which would at least take us closer to the infimum of the functional.

For our specific choice of distance measure and regularizer, we can, with a little help
from the calculus of variations, prove in the following section that at least one minimum
of the registration functional exists, if we prescribe boundary conditions. We can also
characterize the minimum further by observing that the at a minimum u the derivative
(i.e. the first variation) of the functional J ′[u] is equal to zero. The equation

J ′[u] = 0 (3.12)

is known as the Euler-Lagrange equation of the functional. The Euler-Lagrange equation
of our specific functional will be derived in Section 3.2.3.

3.2.1 Existence of Minimizers of the Registration Functional

In order to prove the existence of a minimizer, we employ a theorem from Evan’s book
on partial differential equations [30]. We will paraphrase the theorem to adapt it to our
notation, the original can be found in the chapter “Calculus of Variations” in [30].

As with most problems in partial differential equations or the calculus of variation, we
need to fix boundary conditions for our problem. The existence theorem in [30] is proved
for Dirichlet boundary conditions. That means that the function values are prescribed on
the boundary of our domain ∂Ω. As explained in Sections 3.1.1 to 3.1.5 we can assume that
all the surfaces we wish to register are contained in a common image domain Ω and that
all feature images share the same value on the boundary ∂Ω. Furthermore, the surfaces
are all pre-aligned and lie at a reasonably large distance from the boundary. It therefore
makes sense to prescribe zero Dirichlet boundary conditions. This means that we prescribe
the registration results be zero on the boundary, mapping the boundary onto itself.

The existence theorem proves that a minimizer exists in the appropriate Sobolev function
space. We will see below that in our case this is H1(Ω,Rd). As the elements of Sobolev
function spaces are in general not defined in a pointwise manner, the boundary conditions
have to be understood “in the trace sense”, which means for our case of zero boundary



conditions that the set of admissible functions is that of compactly supported square
integrable functions with weak derivative H1

0 (Ω,Rd). For more details on Sobolev spaces
and traces, see [30] or [4]. Let us state the existence theorem, which is formulated in a
very general way:

3.2.1 Theorem (Existence of Minimizer). Let J [u] be a functional of the form

J [u] =

∫
Ω

L(∇u(x), u(x), x)dx (3.13)

for a function L : Rm×n ×Rm × Ω̄ → R, called the Lagrangian. If L is convex in the first
argument and satisfies the coercivity inequality:

L(P, z, x) ≥ α‖P‖q − β (P ∈ Rm×n, z ∈ Rm, x ∈ Ω) (3.14)

for constants α > 0, β ≥ 0, and if furthermore the admissible set

A := {u ∈ H1,q(Ω,Rm) |u = g on ∂Ω in the trace sense } (3.15)

is nonempty, then there exists u ∈ A solving:

J [u] = min
w∈A

J [w]. (3.16)

Proof. See [30]

Applying this theorem proves that there is a minimum for our registration functional:

3.2.2 Corollary. There exists a minimizer u ∈ H1
0 (Ω) for the functional

J [u] = D[u] + R[u] (3.17)

=
n∑

k=1

αk

2

∫
Ω

1
Q

Xk
(Xk

1 (x+ u(x)) −Xk
0 (x))2 dx (3.18)

+ μ
1

2

∫
Ω

‖∇u‖2 dx+ ν
1

2

∫
Ω

(div u)2 dx. (3.19)

if μ > 0. That is:
J [u] = min

w∈H1
0(Ω,Rd)

J [w]. (3.20)

Proof. In the notation of Theorem 3.2.1, we have the dimensions m,n = 3. The Lagrangian
of our registration functional is therefore a function L : R3×3 ×Rd × Ω̄ → R defined by:

L(P, z, x) =
μ

2
‖P‖2 +

ν

2
(traceP )2 (3.21)

+
n∑

k=1

αk

2
1

Q
Xk

(Xk
1 (x+ z)) −Xk

0 (x))2. (3.22)

This Lagrangian is convex in its first argument P . For μ > 0 it furthermore satisfies the
coercivity condition from Equation 3.14 with α = μ

2
, β = 0, q = 2. It follows that the

appropriate Sobolev function space is H1(Ω,Rd) = H1,2(Ω,Rd). With our zero Dirichlet
boundary conditions, the admissible set is therefore A = H1

0 (Ω,R
d), which is nonempty.

These are all conditions that we need in order to apply Theorem 3.2.1, which proves that
∃u ∈ H1

0 (Ω,Rd) : J [u] = minw∈H1
0(Ω,Rd) J [w].



3.2.2 Euler-Lagrange Equations

We know from the previous sections, that our registration functional admits a minimum
on H1

0 (Ω,Rd) but that the minimum is in general not unique.

For any minimum u ∈ H1
0 (Ω,Rd), we know that:

J [u] ≤ J [w] ∀w ∈ H1
0 (Ω,Rd). (3.23)

therefore, for every variation ϕ ∈ H1
0 (Ω,Rd), the function ε �→ J [u+ εϕ] has a minimum

at ε = 0. It follows that

J ′[u, ϕ] :=
∂

∂ε
J [u+ εϕ]

⏐⏐⏐
ε=0

= 0 ∀ϕ ∈ H1
0 (Ω,Rd), (3.24)

if the derivative exists. The derivative J ′[u, ϕ] is known as the Gateaux derivative of J
and Equation (3.24) as the weak form of the Euler-Lagrange equations of our functional
J . By applying the fundamental lemma of calculus of variations [41], we can make this
independent of the test function ϕ and arrive at the strong formulation:

J ′[u] = 0. (3.25)

This is a system on nonlinear partial differential equations (PDEs) that is satisfied at each
critical point of the functional. We will try to solve it in order to find such critical points.
As it is very difficult to solve such a nonlinear system of PDEs directly, we employ the
method of gradient flow: We introduce an artificial time variable t and try to solve the
time-dependent partial differential equation:

∂tu = −J ′[u] (3.26)

for a function u(x, t), given an initial solution u0 = u(x, 0). This gradient flow will be
discretized in time, resulting in an algorithm that is essentially a gradient descent algorithm
for minimizing the registration functional J . The discretized gradient flow can then be
seen either as an iterative method to solve the nonlinear Euler-Lagrange equations or as
a minimization algorithm for the functional J . If it does find a minimum, and which
minimum it finds if there are several, depends on the initial guess u0 and other factors
such as the time discretization method. For the registration experiments we performed, it
always found a global or at least a suitable local minimum with an initial guess of u0 ≡ 0.
Furthermore, because we calculate the gradient flow in the direction opposite to J ′, it finds
a minimum and no other critical point like a maximum or saddle point of the functional
J , unless J ′[u0] happens to be zero.

The finite element method we will introduce in Section 3.3.2 is based on the weak
formulation of the Euler-Lagrange equations (3.24). We will derive both the strong and
weak formulation in the next section by calculating the Gateaux derivatives of all the
individual terms of our functional. Calculating the derivatives is necessary for most other
types of minimization approaches as well.



3.2.3 Derivatives
Using the standard methods from the calculus of variations we compute the Gateaux
derivatives for each of the terms that make up our registration functional J .

Distance Measure

As the individual terms of the combined distance measure Equation (3.7) are all of the
same form, it suffices to calculate the first variation of the distance measure for only one
feature image DI [u] defined in Equation (3.5).

D′
I [u, ϕ] =

d

dε
D′

I [u+ εϕ]
⏐⏐⏐

ε=0
(3.27)

=
d

dε

1

2

∫
Ω

1
QI

(I1(x+ u(x) + εϕ(x)) − I0(x))
2 dx

⏐⏐⏐
ε=0

(3.28)

=

∫
Ω

1
QI

(I1(x+ u(x)) − I0(x))∇I1(x+ u(x))ϕ(x) dx. (3.29)

The dependency of the weighting term QI on u is neglected for reasons of simplicity and
efficiency. Differentiating this term, which serves only as a weight of the L2 distance
measure, would make the Euler-Lagrange equations much more complicated without any
gain in registration accuracy. The terms of the other feature images are derived analogously,
resulting in the following derivative of the distance measure from Equation (3.7):

D′[u, ϕ] =
n∑

k=1

∫
Ω

αk

Q
Xk

(Xk
1 (x+ u(x)) −Xk

0 )∇Xk
1 (x+ u(x))ϕ(x) dx. (3.30)

Regularization Term

We will continue by calculating the first variation of the regularization term Rg[u] defined
in Equation (3.8).

R′
g[u, ϕ] =

d

dε
Rd[u+ εϕ]

⏐⏐⏐
ε=0

=
d

dε

1

2

∫
Ω

‖∇u(x) + ε∇ϕ(x)‖2 dx
⏐⏐⏐

ε=0

=

∫
Ω

∇u : ∇ϕdx :=
d∑

i=1

∫
Ω

∇ui · ∇ϕi dx, (3.31)

The divergence regularization term introduced in Equation (3.9) is differentiated as:

R′
d[u, ϕ] =

d

dε

1

2

∫
Ω

(div u+ ε divϕ)2 dx
⏐⏐⏐

ε=0

=

∫
Ω

div u divϕ dx. (3.32)



Therefore, the derivative of the regularization functional R[u] from Equation (3.9) is:

R′[u, ϕ] = μR′
g[u, ϕ] + νR′

d[u, ϕ]

=

∫
Ω

μ∇u : ∇ϕ + ν div u divϕ dx. (3.33)

3.2.4 Strong Derivative
In order to derive the strong formulation, for the functional, we first apply integration
by parts on the derivative of the regularization term Equation (3.33). Assuming zero
Neumann or Dirichlet boundary conditions, the boundary terms vanish and we get:

R′[u, ϕ] = −
∫

Ω

μΔu · ϕ + ν ∇ div u · ϕ dx. (3.34)

Now we can collect all the terms making up the weak derivative

J ′[u, ϕ] = D′[u, ϕ] + R′[u, ϕ] (3.35)

and apply the Fundamental Lemma of the Calculus of Variations to each component ϕi of
ϕ which leads to the strong form of the Euler-Lagrange equation:

J ′[u] = 0 ⇔ R′[u] = −D′[u] ⇔ (3.36)

−μΔu− ν∇ div u = −
n∑

k=1

αk

Q
Xk (x)

(Xk
1 (x+ u(x)) −Xk

0 (x))∇Xk
1 (x+ u(x)). (3.37)

This is the well known equilibrium equation from linear elasticity [30] with a nonlinear
forcing term on the right hand side, which is the derivative of the distance term D. Hence,
this is a second order semilinear partial differential equation. The operator J ′[u] is elliptic
for μ > 0, ν ≥ 0 making the gradient flow ∂tu+ J ′[u] = 0 a parabolic partial differential
equation.

3.3 Discretization
We proceed by showing how the gradient flow ∂tu = −J ′[u], with which we wish to
minimize our registration functional can be discretized in order to actually perform a
registration on a computer. We will begin by proposing a time discretization, which is
independent of the space discretization, before finally introduce our finite element space
discretization.

3.3.1 Time Discretization
As is customary with parabolic partial differential equations, we perform time discretization
by treating the gradient flow ∂tu = −J ′[u] like an ordinary differential equation (ODE) in
the (artificial) time variable t and applying standard methods for discretization of ODEs.



That is, we approximate the time dependent function u(x, t) by a discrete number of
functions um(x), which depend only on the spatial variable x. um represents the solution at
the m-th timestep, and u0 is the initial solution of our problem. The timestep size τ ∈ R+,
i.e. the distance in time between to solutions um and um+1 need not necessarily be uniform,
but if it is, we have um(x) = u(x,mτ).

The most straight-forward discretization scheme for ODEs, which is known as the Euler
Scheme, discretizes the time derivative as ∂tu ≈ um+1−um

τ
. The time-discretized gradient

flow is then given as

um+1−um

τ
= −J ′[um] or um+1−um

τ
= −J ′[um+1], (3.38)

depending on whether we evaluate J ′ at the old or the new timestep. In an iterative
fashion, starting with the initial solution u0, each subsequent time step um+1 is calculated
from the previous one um as:

um+1 = um − τJ ′[um] or um+1 = um − τJ ′[um+1]. (3.39)

In the first case, which is known as an explicit Euler scheme, the new solution um+1 can be
computed directly from the old one, by simply evaluating J ′[um]. Unfortunately, because
the derivative of our regularizer R′ is a second order differential operator, this scheme
becomes unstable if the time step τ > ch2, where c is a constant and h describes the
accuracy of the space discretization [15]. For finite element or finite difference grids, h
denotes the grid size. This means that for accurate grids, the time step size has to be
chosen extremely small, resulting in a very large number of iterations necessary to reach a
solution.

The other possibility, the implicit Euler scheme is stable for all time step sizes, but
it requires the solution of a large nonlinear system of equations, as the new solution
um+1 appears not only on the left hand side, but also inside the nonlinear operator
J ′[um+1]. Therefore, we propose to use a semi-implicit time stepping scheme: We split
up the functional J [u] into an explicit part Jexpl[u], containing all terms with nonlinear
derivatives and an implicit part Jimpl[u] containing all terms with linear derivatives. Most
importantly, these linear terms include the second order derivatives of the regularizer,
which are responsible for the time step restriction in the explicit scheme. The iteration
scheme, in its simplest form, is then defined as:

um+1 = um − τJ ′
impl[u

m+1] − τJ ′
expl[u

m]. (3.40)

In our case this means that Jexpl = D and Jimpl = R. If additional terms are introduced,
they can be added to either Jexpl or Jimpl, depending on their linearity. For instance, the
statistical regularizer we will introduce later, will be added to Jimpl. With this semi-implicit
scheme, each iteration step now requires the solution of a linear system of equations. This
scheme still has a time step restriction, but it is much less severe than that of the purely
explicit scheme.

The Euler scheme is a first-order scheme for solving ODEs. Higher order schemes, such
as the IMEX Runge-Kutta schemes [56] exist, and we use them in our implementation,



with the same semi-implicit treatment of the operator J ′ as for the Euler scheme. Such
higher order schemes are able to find a minimum of the registration functional in fewer
iterations.

In our experiments, we use the initial guess u0 ≡ 0 and run the iteration scheme until a
convergence criterion is met or a predefined number of iterations have been performed.

3.3.2 Finite Element Space Discretization
The semi-implicit time discretization introduced in the previous section discretizes only the
(artificial) time variable and essentially provides an iteration scheme to find a minimum for
our registration functional J , thus solving the nonlinear Euler-Lagrange equations. Each
semi-implicit iteration step according to Equation (3.40) does however require the solution
of a system of linear partial differential equation. That is, in each iteration step, we need
to find u ∈ H1

0 (Ω,Rd) such that Equation (3.40) is satisfied on Ω. J ′
impl is a second order

elliptic differential operator. All nonlinear terms are contained in J ′
expl[u

m], making this a
linear system of PDEs for um+1.

Nevertheless, we cannot readily solve even this linear system analytically, and will have to
discretize it in order to compute an approximate solution on a computer. This discretization
is independent of the time discretization and is usually referred to as “space discretization”
as it discretizes the space variable x ∈ Ω. The most straight-forward discretization scheme
is most certainly created by approximating the deformation fields u ∈ H1

0 (Ω,R
d) by a

discrete vector field defined on a regular grid, for instance on the pixel or voxel grid of
the original medical images. The derivatives contained in J ′

impl can then be discretized by
finite differences or even replaced by a smoothing convolution, cf. [67, 49]. This is the type
of discretization scheme we first implemented and used for instance in [2].

While these or many other discretization methods, such as methods based on splines
or wavelets etc. may very well be used on this problem, we propose a finite-element
discretization, because it offers a few important advantages for our specific problem, which
will be discussed in the remainder of this Chapter. The basic idea of the finite element
method is to approximate the solution space of the problem, in our caseH1

0 (Ω,Rd) by a finite
dimensional subspace Vh ⊂ H1

0 (Ω,R
d) spanned by a set of basis functions {ϕ1, . . . , ϕN}.

While in principle any set of basis functions could be used, the basis functions are usually
constructed based on a tesselation, i.e. a grid approximation of the domain Ω. A great
advantage of this method over the image-based methods mentioned above is that this grid
does not need to be uniform. Instead, it can be chosen to be locally adaptive, which means
that the elements of the grid can have a different size in different areas of Ω and therefore
the grid can be very fine-meshed in some places and very coarse in other places. This allows
us to concentrate the available computation and memory resources on the areas of Ω for
which a more accurate solution is required. While we still compute a correspondence field
on the whole domain Ω and will make use of it in some of the applications in Chapter 5,
we would like to focus our calculation on the vicinity of the actual surfaces of our objects
and calculate only a coarse solution further away. This results in considerably lower
memory consumption of the discretized functions, as no precious resources are wasted on
computing a very accurate solutions in areas of only moderate interest. In fact the statistical



regularization term for our registration functional that we will introduce in Chapter 5 was
originally introduced for an image-based uniform discretization in [2], where it could only
be applied to 2D images, because of the vast memory requirements of 3D deformation
fields with a uniform high resolution. With locally adaptive grids, it becomes possible to
store these models of 3D deformation fields in the memory of a standard computer, while
retaining a comparable resolution around the surface of interest.

The specific finite element method we use is known as the local discontinuous Galerkin
(LDG) method. It differs from traditional finite element methods in that it allows discon-
tinuous basis functions ϕi, which gives us additional freedom in choosing the adaptive grids
and allows for an easy splitting of the grid for parallel computations. Furthermore, it turns
out that this method allows for a convenient discretization of the elastic regularization
term, which will be derived in the next section.

Figure 3.7: Locally adaptive multiresolution

Locally Adaptive Multiresolution Strategy

The local grid adaptation can be embedded into a multiresolution strategy, which is a
popular method used in many computer vision applications such as registration or optical
flow calculations, see [18] for example. The solution of the problem is calculated on several
levels of resolution, starting with a very coarse discretization, on which the solution of the
problem can be calculated very quickly, and on which the optimization is less susceptible
to getting trapped in local minima. Then, the solution from the coarse resolution is used
as the initial guess for a finer discretization. In this way, a minimum of the cost functional
is typically found much faster, and because the solution from the previous resolution level
provides a good initialization, the chances of finding the desired global minimum instead
of some unwanted local minimum are much higher compared to starting the calculation
directly on the finest grid with an arbitrary initial guess.

We use this strategy in a locally adaptive way. The first solution is calculated on a
coarse uniform grid, starting with the initial guess u0 ≡ 0. All subsequent solutions are
calculated on grids that are refined locally. This means that these grids do not have a
higher resolution everywhere, as in the traditional multiresolution method, but only in areas
where an accurate solution is needed. In our case, we know that we wish to calculate an



accurate solution around the object surface. Therefore, when moving to a higher resolution,
we refine the grid only in areas where the absolute value of the distance function I0 is below
a threshold, as these areas are close to the surface. The threshold is decreased after each
refinement step, resulting in a mesh whose refinement becomes more and more focused
on the surface of interest. A series of such multiresolution grids is shown in Figure 3.7.
The refinement is continued until a resolution has been reached that meets the accuracy
requirements of the specific registration task.

For other problems, in which it is not clear a-priori which areas of the computation
domain should be refined, it is possible to develop local a-posteriori error estimators, which
indicate the regions in which the solution is not accurate enough and could be improved
by local refinement, see [15] for details.

3.3.3 Local Discontinuous Galerkin Finite Element Discretization

The basic idea of the finite element method is to construct a function space Vh ⊂ H1
0 (Ω,Rd)

of finite dimension N and to solve the Euler-Lagrange equation J ′[u] = 0 not on H1
0 (Ω,Rd)

but on its finite-dimensional subspace Vh. We will denote the discrete solution also with
u. After choosing basis functions ϕ1, . . . , ϕN , a function u ∈ Vh can be represented as
u(x) =

∑N
k=1 ukϕk(x) with a vector of degrees of freedom (DOF) denoted by u = (uk)

N
k=1.

Each iteration of our semi-implicit time stepping scheme Equation (3.40) then becomes a
linear system of equations for the DOF vector u ∈ RN .

We construct the finite dimensional function space Vh as the space of piecewise polynomial
functions based on a tesselation T = {Ti}i∈I of the image domain Ω. A tesselation of Ω is
a collection of geometric primitives Ti which fills Ω with no overlap or gaps, see Figure 3.7
for instance. Typically, these are triangles or rectangles in 2D and tetrahedra or hexahedra
in 3D. For a given polynomial degree q ∈ N, we now define the discrete function space V q

h

as the space of all functions v : Ω → Rd that are polynomials of degree q on each element
Ti of the tesselation. Overall, v is piecewise polynomial. In symbols this can be expressed
as:

V q
h := {v : v|Ti

∈ [Pq(Ti)]
d for i ∈ I}, (3.41)

where Pq(Ti) denotes the space of polynomials on the element Ti of order q.
In the standard finite element method, the Galerkin method [15], there is the additional

requirement that the functions in V q
h have to be continuous on Ω, i.e. V q

h ⊂ C0(Ω,Rd).
This implies additional restrictions on the tesselation T . Here, we use an extension of the
Galerkin method: the Local Discontinuous Galerkin (LDG) method, which does not require
this continuity assumption, so that there is very little restriction on the tesselation. For
instance, the LDG method allows for “hanging nodes” in the tesselation. A hanging node
is a node in the tesselation that is not a vertex of all its adjoining elements. Instead, it
“hangs” on the edge or face of an element. Figure 3.7 contains several hanging nodes. For
instance, there are two hanging nodes in the middle of the rightmost column of triangles of
the figure. In the continuous Galerkin method, hanging nodes are not permitted, which
makes the use of adaptive rectangular and hexahedral meshes cumbersome. Furthermore,
the LDG method allows us to choose orthogonal basis functions {ϕl} of V q

h . These are



easily constructed by chosing on each element T a polynomial basis {φT,1, . . . , φT,r) of
[P q(T )]d satisfying: ∫

T

φT,i(x) · φT,j(x) dx = |T |δij, (3.42)

where |T | denotes the volume of T and δij the Kronecker delta. A basis function ϕl of V q
h is

then chosen to coincide with a polynomial basis function φT,i on one element T and vanish
on all other elements. As these basis functions are discontinuous, they could not have
been used with the standard Galerkin method, even though orthogonal basis functions
have many advantages, for instance in the construction of discrete statistical models in
Section 4.3.

On the downside, the discontinuous ansatz space of the LDG method requires a dis-
cretization of the higher order derivatives of our regularization term R that is slightly more
involved than in the standard Galerkin method. We briefly sketch the LDG approach when
applied to a partial differential equation of the form

R′[u] = F (3.43)

⇔ −μΔu− ν∇ div u = F, (3.44)

where F combines all lower order terms. This corresponds to the strong form of the
Euler-Lagrange Equation (3.36) of our registration functional J , and if we replace u by the
timestep solution um+1 it also corresponds to the system of equations we have to calculate
in each time step of our semi-implicit scheme (3.40). The main step we need to take in
order to be able to discretize this form of equation with the LDG method is rewriting
the second order partial differential equation as a first order system for the vector-valued
functions u,w1, . . . , wd. Equation (3.43) is equivalent to the system:

wk −∇uk = 0 (3.45)

−
d∑

l=1

∂l(μwkl + ν wlk) = Fk, (3.46)

with k = 1, . . . , d. In this system, the elastic regularization term R′ is represented by the
very compact expression ∂l(μwkl + ν wlk). In the weak formulation provided below, this
leads to a formulation involving only first order derivatives on each element T ∈ Th. As we
do not assume zero boundary conditions on each element T , the weak formulation includes
boundary terms for the cell boundary ∂T . These boundary terms are handled by numerical
fluxes over cell the cell boundaries in the LDG method. Focusing on a single element T of
the tesselation, the corresponding weak form of Equation (3.46) takes the following form
if we define the l-th component of the vector-valued function Wk, which represents the



regularization term, as Wkl := (μwkl + ν wlk).∫
T

wk · ϕ+

∫
T

uk divϕ−
∫

∂T

ûk ϕ · n = 0 ∀ϕ ∈ H1
0 (Ω,Rd), (3.47)∫

T

Wk · ∇ψ −
∫

∂T

Ŵk · nψ =

∫
T

Fkψ ∀ψ ∈ H1
0 (Ω). (3.48)

⇔:

∫
T

W : ∇ϕ−
∫

∂T

Ŵn · ϕ =

∫
T

F · ϕ ∀ϕ ∈ H1
0 (Ω,Rd). (3.49)

n denotes the outer surface normal on ∂T . The fluxes ûk and Ŵk can for example be taken
as averages of the values on both sides of the boundary of T or using suitable one-sided
values. For more details on the LDG method see [21, 5]. As explained in Section 3.2.1,
we use zero Dirichlet conditions boundary conditions for the deformation field u on the
domain boundary ∂Ω.

The remainder of the method follows the standard procedure of the Galerkin method. If
we choose in Equation (3.47) u = um+1, the weak form of the lower order term F for each
semi-implicit iteration step is easily derived from Equations (3.36) and (3.40) as:∫

T

Fϕ = −
∫

T

1
τ
(um+1 − um)k · ϕ−

∫
T

J ′
expl[u

m]k · ϕ (3.50)

= −
∫

T

1
τ
(um+1(x) − um(x))k · ϕ(x) dx (3.51)

−
∫

T

n∑
l=1

αl

Q
Xl

(X l
1(x+ um(x)) −X l

0(x))∇X l
1(x+ um(x))k · ϕ(x) dx. (3.52)

Next, we restrict the system to the finite dimensional subspace V q
h = span{ϕ1, . . . , ϕN},

replacing each function u ∈ H1
0 (Ω,Rd) by its approximation

∑N
i=1 uiϕi ∈ V q

h , and using the
basis functions {ϕ1, . . . , ϕN} as test functions in Equations 3.47 and 3.49. That is, it is
not necessary to solve the equations for all ϕ ∈ H1

0 (Ω,Rd), it suffices if they are satisfied
for all basis functions ϕj, j = 1, . . . , N . All derivatives in the system are first derivatives
of the basis functions ϕj, which can be calculated analytically, because on each element
T , the basis functions are polynomials of degree q. Thus, the system of equations 3.47
and 3.49 with the term

∫
T
F · ϕ defined by Equation (3.50) becomes a linear system of

equations for the DOF vectors of the discrete functions u,w1, . . . , wd, which can be solved
on a computer.

For the sake of completeness, we produce the full discrete system of equations, where
the k-th component of a function or vector vi is denoted by vi,k. The fully discretized form
of the weak equation system (3.47) – (3.49) is given as:∫

T

∑
iwk,iϕi · ϕj +

∫
T

∑
iu

m+1
i ϕi,k divϕj −

∫
∂T

∑
iû

m+1
i ϕi,k ϕj · n = 0 ∀j ∈ {1, . . . , N}∫

T

d∑
k=1

∑
iWk,iϕi · ∂kϕj −

∫
∂T

∑
iŴn,iϕi · ϕj =

∫
T

∑
iFiϕi · ϕj ∀j ∈ {1, . . . , N}, (3.53)



where

∫
T

∑
iFiϕi · ϕj = −

∫
T

1
τ
(
∑

iu
m+1
i ϕi(x) −

∑
iu

m
i ϕi(x))k · ϕj(x) dx

−
∫

T

n∑
l=1

αl

Q
Xl

(X l
1(x+

∑
iu

m
i ϕi(x)) −X l

0(x))∇X l
1(x+

∑
iu

m
i ϕi(x))k · ϕj(x) dx. (3.54)

The gradient of the feature images ∇X can be calculated based on the LDG method or a
different discretization method. We actually use a finite difference approximation, as it
is more efficient to evaluate at points (x+ um(x)) without having to determine in which
element T ∈ T this point lies.

3.3.4 Implementational Details
The discretized registration method is implemented in the Dune framework, a software
library allowing the generic implementation of grid-based numerical schemes [10, 9]. The
finite element implementation is based on the Dune-Fem module [26]. Pre- and post
processing, as well as input and output of images are done using ITK and VTK [39, 64].
The distance maps that represent our surfaces are calculated efficiently with the ITK
implementation of the method proposed by Maurer et al. [47].

For constructing and handling the grid on which the finite element method is based,
we use the ALUGrid library [27]. It supports unstructured meshes in 2D and 3D with
non-conforming local adaptivity (i.e. with hanging nodes) and the possibility of domain
decomposition and dynamic load balancing for parallel computations. Figure 3.8 shows
a visualization of such a non-conforming locally adaptive grid. All visualizations in this
thesis have been prepared with VTK and Paraview, [64, 66].

Figure 3.8: Visualization of the registration of two femurs. The deformation field that deforms
one femur to be as similar to the other one as possible is calculated on an adaptive grid.



3.4 Registration Results

In this section, we show a few registration results that show how our algorithm manages to
register 3D surfaces and that show the benefit of the additional terms we introduced into the
registration functional. Because there is no ground truth available for the correspondence
of any of our surfaces, we cannot provide any quantitative evaluation. Further, there is not
a single publicly available implementation of a non-rigid surface registration algorithm that
we know of, which is why we have not compared the algorithm to alternative approaches.
The only thing we can provide here are qualitative examples which show the obvious
improvements gained by the terms we introduced into the basic registration functional and
the fact that the algorithm can in fact be used to calculate approximative correspondence
between different 3D surfaces.

Figure 3.9: Visualization of the correspondence and the transfer of anatomical labeling between
the reference (transparent outline) and a child’s skull.



Figure 3.10: Transfer of the anatomical labelling of the reference (top right) to a variety of
skulls. A transfer like this requires very accurate registration results. Even a mismatch in the
number of teeth is handled properly.

3.4.1 3D Surface Registration

In this first experiment, we can observe, that thanks to the level set representation of the
surfaces, our method allows the registration of two surfaces with what is essentially an
image registration method. Figure 3.8 shows a visualization of this registration for two
femurs on an adaptive finite element grid. Figure 3.9 shows an example of the registration
of the more complicated surface of the human skull. Here, our method benefits from the
fact that the level set representation is independent of the topology of the surface. The
topology of the skull surface is very complicated and, due to acquisition and segmentation
artifacts, not necessarily the same for two different segmented skull surfaces.

In our experiments, only the reference was anatomically labeled and hand-segmented
with high attention to detail. Figure 3.9 visualizes how this labelling and segmentation
can be transferred to another skull anatomy via the registration result. Figure 3.10 shows
that this works over a very large range of examples from infant skulls to large adult skulls.



Even though the concept of correspondence breaks down for different numbers of teeth in
the reference and the target the existing teeth are labelled correctly.

On a standard 3 GHz dual-core desktop PC with two parallel registration processes, a
skull registration with 480 000 degrees of freedom (i.e. 160 000 grid points) takes about
10 minutes, a femur registration with 80 000 degrees of freedom (but more iterations)
about 6 minutes. These are only indicative times to give a feeling for the run time of our
algorithm. Computation times can be further reduced with more parallel processes and
more aggressive parameter tuning. Note that a great advantage of our method is that
the adaptive discretization requires a much inferior number of degrees of freedom than
a uniform discretization. A uniform discretization with a similar resolution around the
surface requires about 18 million degrees of freedom, resulting in a memory consumption
of over 700 MB per deformation field.

Figure 3.11: 14 registered femurs. The original femurs are displayed as a translucent blue
surface. The deformed reference is displayed with a checkerboard pattern in an attempt to
visualize correspondence.

Figure 3.11 shows the registration of a larger number of femurs. The target bones are
visualized as a translucent blue surface, which can hardly be seen as the registered bone, i.e.
the reference deformed by the registration result, matches the target shape almost perfectly.
Only some very fine details of the target bones are not matched due to the regularization



of the registration algorithm. Before applying the deformation the reference bone was
colored with a checkerboard texture in an attempt to visualize correspondence. Indeed, we
see that corresponding parts such as the femoral head or the trochanter major share the
same texture details in all bones. Furthermore, the equal distribution of the texture over
all bones shows that the registration result is smooth and free from unnatural distortions.

3.4.2 Curvature Term

(a) (b)

Figure 3.12: Registration of two femurs with and without curvature term. Without the curvature
term, the correspondence is faulty. The corresponding features of the trochanter minor are not
properly matched. The curvature term ensures a matching of corresponding shape features.

The above experiments were performed with all of the terms introduced in Section 3.1.
We will now report on a couple of experiments that visualize the benefit of all additional
terms, starting with the curvature term introduced in Section 3.1.5.

In Figure 3.12a, a registration between two femurs is performed without the curvature
term, i.e. the surfaces are only represented by the level set functions and the original CT
scans. At first glance, the surfaces are well registered, the deformation field allows us to
deform the reference bone so that it is almost equal to the target bone. However, upon
closer inspection, we see that the implied correspondence is faulty. The deformation field
matches the top of the trochanter minor1 of the reference to the side of the trochanter minor
on the target. Such faulty correspondence causes problems in all subsequent applications
of the registration result, such as building of statistical models or transferring anatomical
labels. In Figure 3.12b, when the curvature term is used, the correspondence is much
more sensible, the top of the trochanter is matched to top and the sides to the sides.

1The trochanter minor is a prominent anatomical feature of the femur. It is the large bulge on the
surfaces in Figure 3.12.



(a) Without curvature (b) With curvature (c) Zoom on thumbs

Figure 3.13: Registration of two hands with and without curvature term. With the curvature
term, the defining features of the hand are matched better.

Including the mean curvature in the registration method results in superior correspondence
calculation.

Figure 3.13 shows a similar example for the registration of 2D hand outlines. We have
marked three areas on each hand in which the better correspondence calculation with the
curvature term is apparent. On the base of the hand, where the hand shape is cut off,
the registration with curvature matches corners to corners, whereas without curvature
information, the corner of one hand is matched to a flat part in the other hand. On the ring
finger the deformation field is almost zero at the point where the two shapes intersect, as
the distance measure without curvature term is almost zero there. With the curvature term,
the deformation field is not zero at this point. Instead, it naturally completes the overall
deformation of the ring finger with arrows pointing to the right. Finally, on the thumb,
for which we provided a magnified visualization in Figure 3.13c, the situation is similar to
that of the trochanter minor in the previous example: With curvature information, the
correspondence is much more sensible, properly matching the tips of the thumbs onto each
other.

3.4.3 Volume Preservation

Figure 3.14a shows the reference bone warped with a deformation field of a registration
without the volume preservation term. To amplify the effect for visualization purposes, we
have warped the reference bone with the deformation field multiplied by 2. The coloring
represents the size of the triangles that make up the surface. We see that in some places
the original reference grid is unnaturally stretched resulting in very large triangles. This is
the effect of large volume expansion in the deformation field. When this volume change is
penalized with the volume preservation term introduced in Section 3.1.6, the resulting mesh
is much more even, while still allowing an equally good matching of the target surface.

In Figure 3.14a, the weighting parameters μ and ν from Equation (3.8) have been chosen
as μ = 2, ν = 0, i.e. no volume preservation term. In Figure 3.14b, as μ = ν = 2, i.e.



(a) (b)

Figure 3.14: Registration of two femurs with and without volume preserving term. When the
term is used, the distribution of area over the triangles of the mesh are much more even because
the limited volume change prohibits strong expansion or compression of the mesh.

equal weight of the gradient and the divergence term. Simply augmenting the weight of
the gradient term, e.g. μ = 4, ν = 0, or even μ = 20, ν = 0 as was done in Figure 3.15 also
results in less volume change, but there is still more volume change than in Figure 3.14b,
while at the same time the matching quality starts to decrease. In this example, a good
trade-off between volume change and matching quality could only be reached with the use
of the volume preservation term.

Figure 3.15: Registration with no volume preservation but increased gradient-based regulariza-
tion. Large volume change is still present, while the matching quality decreases.



3.4.4 Parameters
Our proposed registration method contains many parameters that the user has to choose,
many of which influence each other. Choosing the parameters optimally is an open problem,
especially in the absence of ground truth data, which would provide a fair performance
measure for evaluating the effect of these parameters.

Most parameters control some kind of trade-off, like that between matching accuracy and
smoothness or between accuracy and computation time, and there is no definite optimum.
We have managed to find a set of parameters that seemed to work well with our problem,
but given a certain performance measure, it would most likely be possible to fine-tune the
parameters much further.

Most parameters were chosen the same for all experiments. As the timestep size and
weighting factors of all the individual terms influence each other, we kept the timestep size
τ and the coefficient of the distance image α1 fixed to 1: τ = α1 = 1. We have cut off the
distance image at a value of 35, i.e. 35 mm away from the surface.

When choosing the weighting factors between the feature images, we have to keep in
mind that the range of the values is quite different from that of the distance image. The
distance image reflects the distance from the surface in millimeters, so in our examples
it typically has a range from about -20 to 40. The corresponding curvature image has a
range of about -0.5 to 0.5, whereas the Hounsfield values of the CT images varies between
-1000 and 3000. Therefore, the coefficient for the curvature image was chosen as α2 = 100
and that of the CT images as α3 = 0.1. Further, as the curvature and CT images are more
susceptible to noise, we have used the robust Geman McClure distance measure for these,
while keeping the pure L2 measure for the distance image. These values were kept fixed for
all 3D bone registrations. The regularization values were mostly kept fixed at μ = ν = 4
for most experiments, except the ones targeted specifically at exposing the properties of
the regularization term in Section 3.4.3.

Regarding the discretization, we use hexahedral grids in 3D. We use a very low resolution
grid with cubes of about 2 cm edge length to calculate the first coarse solution. For the
next resolution level, all elements that are closer than a threshold θ = 35 mm to the surface
are refined, i.e. they are split in 4 hexahedra with half the edge length. In each subsequent
level, the threshold for refinement is decreased by 40%, i.e. θ is replaced with 0.6θ, resulting
in a grid that is heavily refined around the surface. We use 5 or 6 refinement levels, and
typically run around 400 iterations of the semi-implicit iteration scheme on the lowest level.
Because the initialization provided for the subsequent level in our adaptive multiresolution
scheme is typically already very good, we can reduce the amount of iterations by half for
each subsequent level.

Most of these parameters have been chosen based on common sense and moderate
parameter-tuning. Typically, the algorithm is not sensible to small changes in the param-
eters. As mentioned above, automatically finding optimal parameters remains an open
problem.



4 The Statistical Shape Model
In this chapter, we describe the statistical model we use to represent the shape information
from the training examples. The main concept is straight-forward: the model represents
shapes by linear combinations of the training examples. A probability distribution over this
vector space of shapes is modeled by a normal distribution estimated from the examples.

This concept of shape modeling was described by Blanz and Vetter [13]. It relies
heavily on the notion of correspondence and that of linear object classes. These are intuitive
concepts that are easy to grasp but difficult or even impossible to define in a mathematically
precise way.

Obviously, not all classes of shapes can be modeled by linear combinations of examples.
We define a linear object class as a collection of shapes that can be reasonably modeled
by the statistical shape models based on linear combinations described in this chapter.
A necessary criterion for this is that linear or at least convex combinations of objects
from the class again belong to the same class. Judging by the successful modeling by
linear combinations of examples, we can assume that faces and bones are linear object
classes. A combined object class including both faces and bones is clearly not a linear
object class, because the linear combination between a face and a skull would not produce
a useful shape. For borderline cases it is difficult to decide if a collection of shapes can
be considered a linear object class or not. Tree-like structures, like vascular or bronchial
trees are typical examples of such borderline cases. While for many of these structures,
forming linear combinations seems possible, it is difficult or impossible to define linear
combinations between structures with a different number of branches.

This brings us to the question of how the linear combination of the objects are formed. In
the Morphable Model [13], shapes are represented by point sets. Each shape is represented
by a finite number of points. This only makes sense if the shapes are in correspondence.
Linear combinations should only be formed of corresponding points. For instance, in a skull
model, the corner of the eye has to be calculated as a linear combination of the corners
of the eyes of the examples. For shapes discretized by a finite set of points, as in [13],
this means that all shapes must have the same number of points and that points with the
same index or position within the set must represent corresponding points on all shapes.
Figure 4.1 shows a few corresponding points for two skulls. An equivalent definition of
the notion of correspondence is that every shape can be represented as a deformation of
a reference shape. In fact, if all shapes are in correspondence, an arbitrary shape can be
selected as the reference and all other shapes can be represented by deformations of this
reference. This definition is actually much closer to the way our registration algorithm
tries to establish correspondence: by deforming a reference to be as close as possible to a
target shape. The shape model can therefore be equivalently thought of as a vector space
of shapes or as a vector space of deformations.
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Figure 4.1: Illustrating the concept of correspondence. The red arrows mark points for
which correspondence is clearly and well defined. The blue arrows mark points for which
the correspondence is not so clear: On the forehead, there are many possible candidates for
correspondence. For the wisdom teeth, it is not clear how correspondence can be defined if they
exist in one skull but are missing in the other.

For some points like the tip of nose or the corners of the eyes, it is obvious which points
correspond to each other in different shapes. For other points, which are not quite so
distinctive, like a random point on the forehead it is quite hard even for a human to identify
a corresponding point in other shapes of the same object class. For such featureless regions,
the obvious solution, which is also what most registration algorithms do implicitly, is to
define the correspondence so that it fits in smoothly with the correspondence of points
representing more distinct features. When one of the shapes suffers from small defects,
like the second skull from Figure 4.1, which is missing its wisdom teeth, we take the same
approach: With a registration algorithm, such as the one described in the previous chapter,
we try to establish correspondence as well as possible by deforming a reference shape to
resemble the training example as closely as possible, and then represent the example by this
deformation. In this way, even though it is almost impossible to give a precise definition of
correspondence and to establish this correspondence perfectly, it is always possible to build
a statistical model based on the deformations produced by a registration algorithm. Of
course, the quality of the model will heavily depend on the quality of the algorithm. The
model will only be as good as the registration, which underlines the outstanding importance
of the registration in the construction of statistical shape models.

As the registration algorithm produces a deformation field on the entire image domain
Ω around the reference shape, we can produce a number of different models all based
on the same concept of correspondence, depending on what we define as the reference.
Closest to the shape models introduced in [13] is the pure surface model: the reference is
defined as the surface of the reference shape and the model is built from the deformation
fields from the registration algorithm restricted to the reference surface. When we wish
to include information about the interior of the shape, we define the complete reference



shape including its interior as the reference and build a model from its deformations. The
same can be done for the outside and even the complete image domain Ω. In this way,
the deformation fields produced by the registration algorithm allow us to build different
models depending on the application.

In fact, the technique is not limited to modeling shapes, but can be used to model other
information, such as image information captured by (medical) imaging devices, or in fact
any type of data that can be reasonably represented by linear combinations of a limited
number of training examples. As shape modeling is our main focus, we will usually refer
to the modeled objects as “shapes”, but the reader should bear in mind that the same
approach may be used for many other types of data.

In the context of shapes, every shape is represented by a deformation of the reference.
Our goal in statistical shape modeling is to reflect the variability of the example shapes. We
wish to find a probability distribution over the space of all deformations that models this
variability. It should quantify the probability with which any given deformation belongs to
the same class of objects as the examples. The probability mass of the distribution should
be centered around the deformations that deform the reference into other valid shapes
of the modeled object class, whereas other deformations that deform the reference into
a shape that is not from the same class should have a very low probability. Obviously,
there is no way to know the “true” distribution, and therefore, as in all statistical methods,
we have to estimate a distribution from the example data. Without any evidence that
would suggest the use of a more complicated model, we assume the most simple nontrivial
distribution applicable in this scenario: the normal distribution. Of course this restricts
the types of object classes we can represent with our statistical model to objects that are
at least approximately normally distributed.

Typically, in the literature statistical shape models are described in discrete form. Based
on the discretization method of the registration algorithm, the models are described in
terms of a finite set of points or a set of spline, wavelet, or finite element coefficients.
While we discretized our registration algorithm with a finite element method, it is defined
continuously in terms of deformation fields u ∈ L2(Ω,Rd), and could be used with any
other discretization method. Similarly, we wish to define the shape models not only for a
specific discretization method but in a general form that can be used with any discretization
method and for many possible application scenarios. Therefore, we present a formulation
that introduces all of these models in a very general form, as models defined on a Hilbert
space H.

A Hilbert space H is a real or complex vector space with a scalar product 〈 ·, ·〉H.
Furthermore it is a complete metric space with respect to the metric induced by the scalar
product. By defining the model on a generic Hilbert space, the concept can be used for
all cases mentioned above as well as for any other scenario where we wish to construct a
statistical model based on training examples u1, . . . , un from a Hilbert space. While the
methods can surely be generalized to complex vector spaces, all our examples are real
vector spaces and therefore we will assume that H is a real vector space, i.e. a vector space
defined of the field R. We will continue by giving the most obvious choices for the Hilbert
space H for different application scenarios. Then, we will explain why we consider Hilbert
spaces as the natural choice for defining our models.



Choices for the Hilbert Space H
• For continuously defined deformation models given on an open and measurable subset

Ω ⊂ Rd such as the image domain of the reference, we choose H = L2(Ω,Rd) with
〈u, v〉H =

∫
Ω
u(x) · v(x) dx.

• For continuously defined surface models that model different shapes as deformations
of a reference surface Γ ⊂ Rd, we have H = L2(Γ,Rd) with the scalar product defined
by the surface integral 〈u, v〉H =

∫
Γ
u(x) · v(x) do(x).

• For discrete models whose training examples can be represented by vectors u ∈ RN ,
we can choose H = RN with 〈u, v〉H = u · v. For instance, the deformations of a
reference defined by k points in Rd, can be represented by vectors u ∈ RN = Rkd. If
the discretization of the reference is not uniform, we can choose a different scalar
product that weights each point differently.

• For any discretization method that represents the functions by a finite set of basis func-
tions ϕ1, . . . , ϕm, we choose H = span{ϕ1, . . . , ϕm} ⊂ L2(Ω,Rd) with the L2 scalar
product 〈u, v〉H = 〈u, v〉L2 =

∫
Ω
u(x) · v(x) dx =

∑m
i,j=1 uivj

∫
Ω
ϕi(x) · ϕj(x) dx =

u · Mv with the matrix (M)ij = 〈ϕi, ϕj〉. This includes functions discretized by
splines, wavelets, kernels, finite elements, etc.

• For models that model not deformations but image intensities, texture or color,
defined on open sets, surfaces, or point sets, the same concepts can be used by
choosing d as the number of image channels. So for single-channel intensity images,
such as CT images, we have d = 1.

Why Hilbert spaces? Hilbert spaces are the most general spaces defined in functional
analysis that satisfy our requirements for building a statistical shape model similar to those
introduced in [13]. In order to represent the modeled shapes by linear combinations of
the training examples, the underlying space needs to be a vector space and in order to
define the covariance, which describes the variation within the shape model, we need a
scalar product 〈 ·, ·〉H. The completeness property of the Hilbert space is a prerequisite,
for instance, to apply the spectral theorem, which takes the role that principal component
analysis (PCA) takes in the classical statistical model [13]. Therefore, Hilbert spaces are
the natural choice for defining such linear shape models in the most general setting and all
models mentioned above are included in this definition.

In some ways however, the Hilbert space formulation is even too general. Some statistical
results and concepts that are straight-forward in finite-dimensional spaces become extremely
difficult and sometimes impossible in infinite-dimensional spaces. For instance, there is no
Lebesgue measure on infinite-dimensional spaces, and therefore no canonical probability
density function. Similarly, the modeling of uncorrelated Gaussian noise, which is typically
used to model the deviation from the model, is much more involved in the infinite-
dimensional setting.

On the other hand, most of the modeling presented in [13] and in this chapter is concerned
with the compact and efficient representation of the shapes information gained from the



training examples. The actual statistical modeling as a normal distribution serves mostly as
a justification for limiting the range of the model parameters to stay close to the parameters
of the training examples. While some parts of this justification are not proved rigorously
for the infinite-dimensional case, all resulting methods and algorithms can be transferred
directly to the case of arbitrary Hilbert spaces H. The actual statistical modeling is
restricted to Sections 4.1.2 and 4.4.3, and some results presented there are only directly
valid for finite-dimensional Hilbert spaces H ∼= Rn.

One can define shape models even more generally than on Hilbert spaces. Some models
defined in the literature require an even more general setting, as they define models on
manifolds such as the manifold of diffeomorphisms, see [36] as a starting point. Manifolds
are in general not vector spaces and therefore not Hilbert spaces. Developing statistical
models on manifolds is mathematically much more involved and would rather obscure the
concepts of the straight-forward statistical models employed in this thesis.

4.1 Shape Models on Hilbert Spaces
In this section we explain how to build a statistical shape model from training examples
u1, . . . , un ∈ H defined on a Hilbert space H. While this kind of model is not limited to
representing shapes but can be used for many other kinds of data, we motivate it based
on the shape models we wish to construct, such as the bone models used throughout this
thesis.

For shape models, the training examples ui represent deformations of a reference shape.
The model we construct represents shapes as linear combinations. In order to define a
Gaussian distribution for the model in Section 4.1.2, we need to estimate the mean and
covariance of the training examples. In every Hilbert space, the mean can be readily
calculated as the arithmetic mean of the examples. In the finite-dimensional case, the
covariance is best described by a covariance matrix, and in [13] it was shown, how a
statistical shape model can be compactly and efficiently represented in terms of the
eigenvectors of this covariance matrix. In the case of a model defined on a general Hilbert
space H, the covariance is best represented by the covariance operator, which is a linear
operator C : H → H and a direct generalization of the covariance matrix as a linear
operator. In this section, we show how the mean and covariance can be estimated for
training examples defined on any Hilbert space and show how the modeled shapes can be
represented in terms of the eigenfunctions of the covariance operator.1 In Section 4.1.2 we
give more details on the Gaussian distribution defined by this mean and covariance.

We use the most straight-forward way to estimate mean and covariance from the training
examples: the maximum likelihood estimators, also known as “sample” or “empirical”
mean and covariance. The sample mean of the training examples ui is given as:

ū =
1

n

n∑
i=1

ui. (4.1)

1We call the eigenvectors of the covariance operator “eigenfunctions” to underline the fact that H is in
general an infinite-dimensional function space not necessarily a finite-dimensional vector space.



The sample covariance is a symmetric bilinear form C : H×H → R:

C[v, w] =
1

n

n∑
i=1

〈v, ui − ū〉H 〈ui − ū, w〉H (4.2)

With the associated covariance operator C : H → H :

C[w] =
1

n

n∑
i=1

(ui − ū) 〈ui − ū, w〉H , (4.3)

the covariance can be expressed in terms of the Hilbert space inner product as:

C[v, w] = 〈v, C[w]〉H . (4.4)

If we define a linear operator X : Rn → H by X (a) =
∑n

i=1 ai(ui− ū) and denote its Hilbert
space adjoint by X ∗, i.e. (X ∗(w))i = 〈ui − ū, w〉H, we can also represent the covariance
operator as:

C =: 1
n
XX ∗, (4.5)

where, as is customary for linear operators and matrices, we use the notation XX ∗ := X ◦X ∗

for compositions of operators. When the elements of H admit a pointwise evaluation, the
covariance can be defined in a pointwise fashion with the covariance function c : Ω×Ω → R

defined by:

c(x, y) =
1

n

n∑
i=1

(ui − ū)(x) (ui − ū)(y)T . (4.6)

The covariance operator can be expressed in terms of the covariance function as: C[w](x) =
〈c(x, ·), w〉H.

In the finite-dimensional case H = RN , the covariance is represented by the covariance
matrix, and all of the different formulations of the covariance operator above represent the
interpretation of the matrix as a tensor, bilinear form, operator, linear function, or 2D
array of real numbers. In the general Hilbert space formulation these interpretations are
given by the covariance, covariance function, and covariance operator defined above. For
the most part, we will be working with the covariance operator C, which will take the same
central role that the covariance matrix takes in the development of the classic statistical
shape models, but most concepts can be equivalently formulated in terms of the covariance
function.

By definition, the covariance operator C is a self adjoint Hilbert-Schmidt integral operator.
Therefore it is a compact normal operator, and we can apply the spectral theorem for
compact normal operators [4], which takes the place of principal component analysis
performed in finite-dimensional statistical models [13]. The spectral theorem effectively
provides a diagonalization or eigenvalue decomposition of the covariance operator, which
greatly simplifies practically any application or theoretical consideration regarding the
shape model. We present the application of the spectral theorem in the following theorem.



4.1.1 Theorem. The covariance operator C defined in Equation (4.3) admits an eigen-
value decomposition with non-negative eigenvalues σ2

i and corresponding orthonormal
eigenfunctions ρi. There are at most n− 1 nonzero eigenvalues σ2

1, . . . , σ
2
m, m < n. C can

be represented as:

C[w] =
m∑

i=1

σ2
i ρi 〈ρi, w〉H , (4.7)

Moreover, the spectral theorem guarantees the orthogonal decomposition of H into the
span of the eigenfunctions ρi and the operator’s kernel (= null space) ker C:

H = span{ρi | i = 1, . . . ,m} ⊥ ker C. (4.8)

Proof. The proof uses results from functional analysis. See [4] for details on the theorems
and concepts used.

By definition, C is a Hilbert-Schmidt integral operator, and therefore compact. It is self-
adjoint and therefore normal. Hence, the spectral theorem for compact normal operators
applies, which proves (4.7) and (4.8). It remains to be shown that the eigenfunctions are
non-negative and that m < n.

As 〈w, C[w]〉H = 1
n

∑n
i=1 〈ui − ū, w〉2H ≥ 0, C is positive semi-definite, and therefore all

eigenvalues are non-negative.
It follows from Equations (4.3) and (4.7), that the range of C is R(C) = span{(ui− ū) | i =

1, . . . , n} = span{ρi |σ2
i > 0}. Because

∑n
i=1(ui − ū) = nū − nū = 0, the (ui − ū) are

linearly dependent and therefore dim(span{(ui − ū) | i = 1, . . . , n}) ≤ n− 1. Because the
ρi are orthonormal and therefore linearly independent, it follows dim(span{ρi |σ2

i > 0}) =
m ≤ n− 1.

The eigenvalue decomposition or diagonalization of the covariance operator provided by
this theorem can also be more compactly expressed in the form of linear operators:

4.1.2 Corollary. If we define the operators U ,Q : Rm → H and W ∈ Rm×m by:

U(α) :=
m∑

i=1

αiρi, Q(α) :=
m∑

i=1

αiσiρi, W2 := diag(σ2
1, . . . , σ

2
m), (4.9)

we have Q = UW and can represent the covariance operator C as:

C = U W2 U∗ = QQ∗, (4.10)

and its pseudoinverse as:
C† = U W−2 U∗ (4.11)

As the eigenfunctions ρi are orthonormal, we have:

U∗U = Im and Q∗Q = W2. (4.12)

U is an isometry from (Rm, 〈 ·, ·〉) to (H, 〈 ·, ·〉H).



Proof. Equations (4.10), (4.11) and (4.12) follow directly from Theorem 4.1.1.
We have for α,β ∈ Rm:

〈α, β〉Rm = 〈α, Imβ〉Rm = 〈α, U∗U β〉Rm = 〈U(α), U(β)〉H , (4.13)

which proves the isometry of U .

The eigenfunctions {ρ1, . . . , ρm}, which we also call “principal components”, span an
m-dimensional linear subspace of H. Together with the mean ū they form the affine
subspace:

M := ū+ span{ρ1, . . . , ρm}. (4.14)

This space, which we call the model space coincides with the affine space spanned by the
training examples, i.e. M := {u ∈ H |u =

∑n
i=1 αiui,

∑n
i=1 αi = 1} = ū + span{u1 −

ū, . . . , un − ū}. Furthermore, we can express M in terms of the operators defined above:

M = ū+ imgX = ū+ img U = ū+ imgQ. (4.15)

M contains all affine combinations of the training examples, which are the deformations
our model can represent. It is an affine subspace of H. If, additionally, 0 ∈ M, it is also a
linear subspace of H. This is the case for instance in a shape model in which the reference
is one of the training examples: the deformation of the reference with 0 ∈ H represents the
reference itself and is therefore part of the model space M.

On M, the covariance operator C is invertible. Thanks to the eigenvalue decomposition,
the inversion on M is easily achieved by inverting the eigenvalues. It coincides with the
formulation of the pseudo-inverse C† on the whole Hilbert space H:

C†[w] =
m∑

i=1

σ−2
i ρi 〈ρi, w〉H = U diag(σ−2

1 , . . . , σ−2
m )U∗. (4.16)

Each function u ∈ M in the model space can be represented by the mean ū plus a linear
combination of the eigenfunctions with coefficients α = (α1, . . . , αm).

u(α) = ū+
m∑

i=1

αi ρi = ū+ U(α) (4.17)

In the literature, the basis functions are often scaled by their corresponding eigenvalues σ2
i .

Then u is represented as:

u(α̃) = ū+
m∑

i=1

α̃iσi ρi = ū+
m∑

i=1

α̃i qi = ū+ U(Wα̃) = ū+ Q(α̃), (4.18)

where qi := σiρi are the scaled eigenfunctions of C, and the coefficients are α̃i = αiσ
−1
i .

The coefficient vector α resp. α̃ for a given deformation field u ∈ M is given by:

α = U∗(u− ū), α̃ = Q∗(u− ū) (4.19)

⇔ αi = 〈ρi, u− ū〉H , α̃i = 〈σiρi, u− ū〉H . (4.20)



4.1.1 Dimensionality Reduction

PCA, which corresponds to the eigenvalue decomposition performed in Theorem (4.1.1) is
often called a “dimensionality reduction” technique. Indeed, it reduces the dimensionality
of the problem in two ways: Firstly, we have seen how the model, which is originally defined
on the possibly infinite-dimensional Hilbert space H, can be represented by m-dimensional
parameter vectors α ∈ Rm thanks to the basis of eigenvectors ρi. Of course, this could
have already been achieved by using the original training examples as a basis.

The second way in which PCA can be used to reduce the dimensionality of the model is
by choosing not all m eigenfunctions ρi of the covariance operator as a basis of the model,
but only a subset. Typically, the eigenfunctions ρi are ordered according to the magnitude
of their corresponding eigenvalues σ2

i and the first m̃ eigenfunctions corresponding to
the m̃ largest eigenvalues are chosen as the basis for the model. It can easily be shown,
see [11] for instance, that this is the m̃-dimensional linear model, which represents the
maximum possible variance of the original data. By choosing m̃ < m, we can reduce the
dimensionality of the model while capturing as much of the variance of the data or the
original model as possible.

In the following sections, we do not distinguish between m̃ and m. So m can be
interpreted either as being the maximum number of nonzero eigenvalues of the covariance
operator or as the dimensionality of a reduced model. In the case that the dimensionality
of H is lower than the number of examples, which hardly ever occurs in shape modeling,
m is of course be limited by the dimensionality of H.

4.1.2 The Normal Distribution

In this section, we describe in more detail how the shapes are modeled statistically by
a normal distribution. We have already estimated the mean ū and covariance operator
C from the training data. With these, we define a normal distribution N (ū, C). In the
finite dimensional setting, C is a covariance matrix, and N (ū, C) is a multivariate normal
distribution. The generalization of the normal distribution to the infinite-dimensional
setting is known as a Gaussian process, Gaussian random function or Gaussian random
field. These are all equivalent concepts, and they are all determined completely by
their mean and covariance. The covariance is typically defined by a covariance operator
or a covariance function, which for our model are defined by Equation (4.3) and (4.6).
Unfortunately, the study of Gaussian processes is theoretically much more involved than
that of finite-dimensional multivariate normal distributions. One reason for this is that on
infinite-dimensional spaces, it is not possible to define a canonical probability distribution
function, because there is no Lebesgue measure with respect to which it could be defined.2

On the other hand, our model is defined only on the finite-dimensional model space

2On finite dimensional spaces, the probability density function is defined as the density (or Radon-Nikodym
derivative) of a probability distribution with respect to the Lebesgue measure. On infinite dimensional
spaces, it is not possible to define or construct a Lebesgue measure, and therefore not possible to define
density functions with respect to a Lebesgue measure. Therefore, the concept of a canonical probability
density function cannot be transferred to infinite dimensional statistics.



M. On the orthogonal complement M⊥, which according to Theorem 4.1.1, coincides
with the kernel of C, the distribution is singular. But constrained to the model space, it is
well-defined. Therefore, we consider the normal distribution N (ū, C) only on the model
space. The model space M is an m-dimensional affine subspace of H with an orthonormal
basis {ρ1, . . . , ρm}. It is isomorph to Rm and, regardless of the dimensionality of the
embedding Hilbert space, N (ū, C) is an m-dimensional multivariate normal distribution on
M. Its probability density function can be expressed as:

p(u) = 1√
(2π)m

Q
i σ2

i

e−
1
2〈u−ū, C†[u−ū]〉H , u ∈ M ∼= Rm. (4.21)

Remember that C† is the pseudoinverse of C, and on M coincides with the inverse C−1.
Equation (4.21) defines the probability density function in terms of elements u ∈ M ⊂ H.
Via the isometry U defined in Corollary 4.1.2 we can equivalently express the probability
density function in terms of coefficient vectors α with respect to the basis {ρ1, . . . , ρm} of
M. As M = ū+ img U , there exists for each u ∈ M an α ∈ Rm such that: u = ū+U(α).
We can therefore express the exponent of Equation (4.21), using Corollary 4.1.2, as:〈

u− ū, C†[u− ū]
〉
H =

〈
U(α), C†[U(α)]

〉
H =

〈
U(α), U W−2 U∗[U(α)]

〉
H

=
〈
U(α), U W−2Imα

〉
H =

〈
U(α), U(W−2α)

〉
H =

〈
α, W−2α

〉
Rm (4.22)

Because for the diagonal matrix W2 = diag(σ2
1, . . . , σ

2
m), we have detW2 =

∏m
i=1 σ

2
i , it

follows that:

p(u) = p(α) = 1√
(2π)m detW2

e−
1
2〈α,W−2 α〉

Rm , u ∈ M,α ∈ Rm (4.23)

This means that in terms of the basis representation from Equation (4.17), the Gaussian
distribution N (ū, C) on the model space M amounts to an m-dimensional multivariate
normal distribution N (0,W2) of the coefficient vectors α with the diagonal covariance
matrix W2.

If we use the scaled eigenvectors qi = σiρi as a basis for M, as in Equation (4.18), we
end up with an even simpler multivariate normal distribution N (0, Im) for the coefficient
vector α̃ with density function:

p(u) = p(α̃) = 1√
(2π)m

e−
1
2
〈α̃, α̃〉Rm . (4.24)

Switching between the scaled and unscaled basis is easy as a function u which is represented
by the parameters α in the unscaled basis is represented by the parameter vector α̃ = W−1α
in the scaled basis.

While the formula for the density function given in Equation (4.21) is defined only for
functions u ∈ M it can be evaluated for any function u ∈ H. Note however that this does
not in general constitute a well-defined density function on H, because, firstly, it is singular
on M⊥ = ker C, and, secondly, on infinite dimensional spaces there is no analogon to the
probability density function known from finite-dimensional statistics.



Nevertheless, the function

p(u) = 1√
(2π)N

Q
i σ2

i

e−
1
2〈u−ū, C†[u−ū]〉H , u ∈ H (4.25)

can be used as a trivial extension of the density function from M to H.
It follows from Theorem 4.1.1 that every function u ∈ H can be decomposed into

u = uM + u⊥ ∈ M⊕M⊥ and we have:

C†[u] = C†[uM] + C†[u⊥] = C†[uM] +
m∑

i=1

σ−2
i ρi

〈
ρi, u

⊥〉
H︸ ︷︷ ︸

=0

= C†[uM]. (4.26)

This means that C† simply ignores u⊥ and evaluates the density of the projection of u
onto the model space. In this sense, f(u) is in fact only a trivial extension of the density
function to H. We call f(u) the “pseudo likelihood function” of the Gaussian distribution
N (ū, C) and will later use it, or rather the negative log-likelihood function

1

2

〈
u− ū, C†[u− ū]

〉
H (4.27)

to motivate statistical regularization of several algorithms using the statistical model. In
terms of the parameters α resp. α̃ = W−1 α, the log-likelihood function reduces to:

1

2
‖W−1 α‖2

Rm =
1

2
‖α̃‖2

Rm . (4.28)

But as this expression ignores u⊥, it can only be used to regularize the model component
uM of a function u ∈ H and we will have to devise a separate strategy for controlling
u⊥ ∈ M⊥ = ker C in Section 4.4.

The quintessence of this section is that no matter what form the Hilbert space H takes,
the model is essentially described by an m-dimensional multivariate normal distribution on
the model space M ⊂ H. The log-likelihood of a function u ∈ M can be expressed by the
squared magnitude of its coefficient vector α̃.



4.1.3 Functional PCA
In Theorem 4.1.1, we have applied the spectral theorem for compact normal operators to
prove that an eigenvalue decomposition of the covariance operator C exists. Among other
advantages, this decomposition allows for an efficient (pseudo-) inversion of C according
to Equation (4.16). For most theoretical considerations, it suffices to know that this
eigenvalue decomposition exists. But obviously, for practical applications, we would like to
explicitly calculate the eigenvalue decomposition of C, i.e. to actually find its eigenvalues
and -functions.

While the training examples and the Gaussian distribution are defined on the possibly
infinite-dimensional Hilbert space H, the model space M is finite-dimensional. By repre-
senting the model space with a finite set of basis functions, the eigenvalue decomposition
of the covariance operator can be reduced to a finite-dimensional eigenvalue decomposition.
At this point, we cannot use the basis of eigenvalues ρi, as these are not yet known. Instead,
we can naturally use the examples functions ui − ū as a basis, or rather as a spanning
system, as the example functions may be linearly dependent. This method for computing
the eigenvalue decomposition largely follows the ideas of functional PCA [59]. The explicit
expressions for the eigenfunctions and -values of our covariance operator C are given in the
following Lemma.

4.1.3 Lemma. Let σ2
1, . . . , σ

2
m be the m < n nonzero eigenvalues of the symmetric matrix

B := 1
n
X ∗X ∈ Rn×n with components bij := 1

n
〈ui − ū, uj − ū〉H . (4.29)

Let vi = (vi1, . . . , vin) ∈ Rn (i = 1, . . . ,m) be their corresponding eigenvectors. Then, the
functions

qi = 1√
n
X (vi) = 1√

n

n∑
j=1

vij (uj − ū) ∈ H (4.30)

are eigenfunctions with eigenvalues σ2
i of the covariance operator C defined in Equation (4.3).

C has no additional nonzero eigenvalues.

Proof. B ∈ Rn×n is symmetric and positive semi-definite and hence has n real non-negative
eigenvalues σ2

i with corresponding orthonormal eigenvectors vi. As
∑n

i=1(ui − ū) =
nū− nū = 0 the rows of B are linearly dependent, and therefore at least one eigenvalue of
B is zero. Without loss of generality, the first m < n eigenvalues are positive.

C[qi] =
1

n
XX ∗[qi] =

1

n
XX ∗[ 1√

n
X (vi)] = 1√

n
X ( 1

n
X ∗X vi)

= 1√
n
X (Bvi) = 1√

n
X (σ2

i vi) = σ2
i

1√
n
X (vi) = σ2

i qi (4.31)

This proves that the σ2
i and qi defined above are indeed eigenvalues and -vectors of C. It

remains to show that there are no additional nonzero eigenvalues of C. Because C = X ◦X ∗,
we have img(C) ⊂ img(X ) = span{ui − ū | i = 1, . . . n}. Since, for each eigenfunction
q of C, we have C[q] = λ q, and therefore λ q ∈ img(C), which implies that λ = 0 or
q ∈ span{ui − ū| i = 1, . . . , n} and hence is of the form given in Equation (4.30), in which
case the above calculation proves that λ is one of the eigenvalues σ2

i of B.



This gives us a practical way to compute all nonzero eigenvalues and the corresponding
eigenfunctions of the covariance operator C by computing a discrete eigenvalue decom-
position of the matrix B ∈ Rn×n. This can be achieved efficiently with a singular value
decomposition of B. The singular value decomposition computes a set of orthonormal
eigenvectors. This means that the coefficient vectors vi are orthonormal (with respect to
the Euclidean scalar product). The resulting eigenfunctions qi are also orthogonal to each
other. In order to make them orthonormal to each other with respect to the inner product
〈 ·, ·〉H, they need to be rescaled by their corresponding eigenvalues.

4.1.4 Lemma. Let B, σ2
i and qi be defined as in Lemma 4.1.3 with an orthonormal set of

eigenvectors {v1, . . . ,vm}. Then, the functions:

ρi =
1

σi

qi i = 1, . . . ,m (4.32)

are orthonormal eigenfunctions of the covariance operator C.

Proof. As multiples of the eigenfunctions qi, the functions ρi are eigenfunctions of C. It
remains to show their orthogonality. The orthonormal eigenvectors of B diagonalize B.
That means:

vT
i Bvj = σ2

i δij (4.33)

It follows:

〈ρi, ρj〉H =
〈

1
σi
qi,

1
σj
qj

〉
H

=
1

σiσj

〈
1√
n
X (vi),

1√
n
X (vj)

〉
H

(4.34)

=
1

σiσj

〈
vi,

1
n
X ∗X (vj)

〉
Rm =

1

σiσj

〈vi, Bvj〉Rm =
1

σiσj

σ2
i δij = δij. (4.35)

This means that the orthonormal eigenfunction ρi have the coefficients 1√
nσi

vij and:

ρi =
1√
nσi

X (vi) =
n∑

j=1

1√
nσi

vij (uj − ū). (4.36)

4.1.5 Corollary. Let V ∈ Rn×m be the matrix whose columns are the eigenvectors vi of
B defined in Lemma 4.1.3. The operators U ,Q : Rm → H defined in Corollary 4.1.2 can
then be represented as:

Q = 1√
n
XV and U = 1√

n
XVW−1. (4.37)

Proof. Follows directly from Lemmas 4.1.3 and 4.1.4 and Corollary 4.1.2.



4.2 Visualization

Apart from a compact and convenient representation of the model and the reduction of its
dimensionality, the eigenfunctions of the covariance operator can be used to visualize and
explore the variability of the model. The eigenvalue σ2

i corresponding to an eigenfunction
ρi quantifies the variation of the model, projected onto that eigenfunction. Therefore,
the eigenfunction corresponding to the largest eigenvalue represents the most prominent
variation of the model. The second eigenfunction represents the second most prominent
variation and so on. The eigenfunctions are orthogonal to each other, and under the
assumed normal distribution this means that they are stochastically independent. Each
eigenfunction represents a characteristic variation of the model, which is independent of
the variations of the other eigenfunctions. This analysis of the data is typically known as
principal component analysis (PCA) and the eigenfunctions are referred to as principal
components [11]. Usually the first few principal components represent obvious variations
that can be easily put into words like the length or size of the bone. Many other components
represent variations that are more difficult to describe and the last few eigenfunctions
represent mostly noise.

first second

third fourth

Figure 4.2: The first four principal components of a skull model. For each component, the mean
is displayed in the middle, and the deformation by ±3σiρi on either side. The first component
reflects the overall size of the skull. As the smallest examples skulls are skulls from infants, this
overall size change is accompanied by the change of the characteristic proportions from infant to
adult skulls.

In Figures 4.4, 4.3, and 4.2, we show the first few principal components of several models
we constructed in the course of our work. Figure 4.3 shows our main example, the femur



model, 4.4 a model of the patella and 4.2 a model of the skull.

In all of these models, the first principal component represents mostly the overall size
of the modeled bone. This confirms the first impression that the most prominent and
obvious variation in bones is their size. The first principal component also shows what
other variations accompany the size change in the example data. For instance, in the skull
model, the smallest examples are skulls of infants and these are not only smaller overall but
have a relatively large back of the head compared to the size of the face. This is reflected in
the first principal component of the skull model. The following few principal components
model the shape variations that are independent of size, such as width, different mandible
shapes or, for the femur model, varying angles like that of the femur neck or the overall
bend of the bone.

first second third

fourth fifth sixth

Figure 4.3: The first six principal components of our femur model. For each component, the
mean is displayed in the middle, and the deformation by the eigenfunctions ρi on either side. The
most prominent variation is the change in overall size and length exhibited by the first principal
component ±3σ1ρ1. The other components reflect the variation in width, angles and bending of
the femur. To make these more visible, we display the deformation by ±4σiρi.



first second third

Figure 4.4: The first three principal components of a patella model. For each component, the
mean is displayed in the middle, and the deformation by ±3σiρi on either side.

4.3 Discrete Models
In Section 4.1, we have proved that the covariance operator C permits an eigenvalue
decomposition. In Section 4.1.3, we have seen how these can be practically calculated from
an eigenvalue decomposition of the matrix B = X ∗X . In order to actually do this, we need
to assemble the matrix B by computing its components

bij = 1
n
〈ui − ū, uj − ū〉H (4.38)

for the given examples ui− ū. Depending on the Hilbert space H and the training examples
ui, these components can either be calculated analytically or they have to be approximated.

Here, we will take a closer look at the case where H is finite-dimensional. In any practical
application, the training examples will always be given in some discrete form. Regardless of
the discretization method, as a finite-dimensional real vector space, H is then isomorphic
to RN , where N ∈ N is the number of degrees of freedom (DOF) of the discretization.
When formulated as a problem in RN , the construction of the statistical model can be
formulated in vector and matrix form.

In the previous section, the covariance operator, on which the construction of the model
is based, was defined in terms of the scalar product 〈 ·, ·〉H. In order to formulate the
construction of the model in RN , we need to use a scalar product on RN . The most straight
forward choice of scalar product in RN seems to be the standard Euclidean scalar product
〈 ·, ·〉RN . This scalar product is implicitly used when the model construction is defined in
terms of standard matrix products as in the classical statistical models [13]. However, we
will see that this is not in general the appropriate choice of scalar product for calculating
the covariance of the statistical model. Instead, we propose to use the scalar product
induced on RN by the Hilbert space scalar product 〈 ·, ·〉H. This means that we use the
scalar product of the Hilbert space on which our model is defined and only express it in
terms of vectors from RN .

In a finite-dimensional Hilbert space H, such as the finite element space we use in our
registration, each element u ∈ H can be represented as a linear combination of basis
functions ϕ1, . . . , ϕN ∈ H:

u(x) =
N∑

k=1

ukϕk, (4.39)

with a coefficient vector u = (u1, . . . , uN ) ∈ RN representing the degrees of freedom (DOF)
of the function u.



The scalar product 〈 ·, ·〉H induces a scalar product on the space of DOF vectors RN .
As all scalar products in Euclidean space, it can be represented by the Euclidean scalar
product weighted with a symmetric positive definite matrix M.

〈u, v〉H = 〈Σkukϕk, Σlvlϕl〉H (4.40)

=
N∑

k,l=1

ukvl 〈ϕk, ϕl〉H (4.41)

=
N∑

k,l=1

ukvl mkl (4.42)

= uTMv = 〈u, Mv〉RN =: 〈u, v〉M . (4.43)

The matrix M with elements: mij = 〈ϕi, ϕj〉H is the Gram matrix of the basis vectors
and is known as the “mass matrix” in the context of finite elements. It only needs to be
calculated once for a given set of basis functions {ϕ1, . . . , ϕM}.

Most discretization methods are based on such a basis representation and can be treated
in the same way, including but not limited to splines, wavelets, Fourier approximations,
and the kernel methods popular in machine learning.3 All other discretization methods
can be reformulated in this way. For the standard choices of basis functions in most
discretization methods, including our finite element method, the elements of M can be
calculated analytically.

In the discontinuous Galerkin finite element discretization we proposed for our registration
method in Chapter 3, we chose orthogonal basis functions ϕi. The support of the i-th
basis function is the i-th element (e.g. triangle or hexahedron) Ti of the tesselation. The
elements of the mass matrix are given as: mij =

∫
Ω
ϕi ·ϕj = δij

∫
Ti

1 = δij |Ti|, where |Ti| is
the area of Ti. This means that the mass matrix M is a diagonal matrix that weights the
scalar product by the area of the tessellation’s elements, or in other words, by the area or
volume a certain degree of freedom represents. In this way, the influence of each degree of
freedom on the statistical model is weighted appropriately.

The statistical shape models [13] are described without specifying a basis {ϕ1, . . . , ϕN}
and simply use the Euclidean scalar product 〈 ·, ·〉RN in the construction of the model. This
corresponds to choosing H = RN and {ϕ1, . . . , ϕN} as the standard basis with (ϕi)j = δij,
weighting each degree of freedom evenly.

On the other hand, these models are described on a grid or a point set and we could
always construct a basis of functions ϕi ∈ L2(Ω,Rd) based on this grid, for instance
using the discontinuous Galerkin basis from above. Then, the weighted scalar product
〈 ·, ·〉M can be used in the construction of the model. It is clear that with or without
explicitly constructing such a basis it makes sense to weight each DOF by the area or
volume it represents. In this light, choosing 〈 ·, ·〉H = 〈 ·, ·〉RN is equivalent to assuming
M = IN , which means that each DOF is weighted equally. Therefore, simply using the

3While kernel methods are typically defined as optimization problems over an infinite dimensional
“Reproducing Kernel Hilbert Space” the (generalized) representer theorem proves that the solutions are
always given as a finite linear combination of kernel functions [63].



Euclidean scalar product of the DOF vectors as in [13] is only justified if each degree of
freedom represents roughly the same area or volume or they are uniformly distributed
according to some other criterion. If the discretization is not uniform, such as in an adaptive
discretization, the scalar product should be weighted accordingly, in order to ensure an
appropriate influence of each degree of freedom in the model. The most straight-forward
weighting scheme is weighting by the volume or area as in the discontinuous Galerkin
method. In fact it is a great advantage of the discontinuous Galerkin method over other
discretization methods including the standard Galerkin method that we are able to choose
orthogonal basis functions resulting in a diagonal mass matrix and therefore such an easy
weighting. In the following however, we do not assume that the mass matrix is diagonal.
But many of the following calculations can be performed more efficiently if it is.

We have seen in Equation (4.43) that for finite-dimensional Hilbert spaces H, the scalar
product can be expressed as a scalar product 〈u, v〉M = uTMv of the DOF vectors.
Therefore, for discrete models, the model building can be expressed in vector and matrix
notation. While this is only a reformulation of the results for general Hilbert spaces, we
will quickly introduce the matrix formulation of the statistical shape models, as it may
provide the key to an easy implementation. We define X ∈ RN×n as the mean-subtracted
data matrix, whose columns are (ui − ū), the DOF vectors of the training examples minus
the mean field ū. With this definition, it follows from Equations (4.29) and (4.43) that:

B = 1
n
XTMX. (4.44)

The eigenvectors of B can be calculated with an SVD of B = VTW2V, with W2 =
diag(σ2

1, . . . , σ
2
n) and an orthonormal matrix V = (vij). The orthonormal eigenfunctions of

the covariance operator C are then, according to Lemma 4.1.4, given as:

ρi(x) =
1√
nσi

n∑
j=1

vij (uj − ū)(x) =
1√
nσi

n∑
j=1

vij

N∑
k=1

(uj − ū)k ϕk(x) (4.45)

=
N∑

k=1

(
1√
nσi

(VX)i

)
k
ϕk(x) (4.46)

It follows that the DOF vector of ρi is given as ρi = 1√
nσi

(VX)i. If we define the matrix

U := [ρ1, . . . ,ρm], we have:

UT = 1√
n
W−1VXT ⇔ 1√

n
X = UWVT . (4.47)

The vectors ρi are constructed so that their associated functions are eigenfunctions of the
symmetric covariance operator C. The functions are orthogonal to each other in the 〈 ·, ·〉H
scalar product.

On the other hand, we can calculate the sample covariance matrix of the DOF vectors of
the training examples as: Σ = 1

n
XXT . Note however, that the vectors ρi are eigenvectors

of Σ if and only if the mass matrix M is equal to the identity matrix IN . Also, the vectors
ρi are orthogonal to each other in the Euclidean scalar product if and only if M = IN .



4.3.1 Lemma. The vectors ρ̃i := M
1
2 ρi = 1√

nσi
M

1
2 (VX)i are orthogonal eigenvectors of

the matrix
Σ̃ = M

1
2ΣM

1
2 = M

1
2XXTM

1
2 . (4.48)

The corresponding eigenvectors are the σ2
i , i.e. the eigenvectors of the matrix B and the

covariance operator defined in Lemma 4.1.3.

Proof. The mass matrix M =
(∫

Ω
ϕk · ϕl

)
kl

is positive definite and symmetric. It therefore

admits an eigenvalue decomposition M = S diag(λ1, . . . , λN)ST and a square root M
1
2 =

S diag(λ
1
2
1 , . . . , λ

1
2
N)ST . M

1
2 is symmetric.

With U := [ρ1, . . . ,ρm] as above, we have:

Σ̃ = M
1
2XXTM

1
2 = M

1
2 UWVTVWUT M

1
2 = (M

1
2U)W2(M

1
2U)T , (4.49)

where we have used the orthonormality of V. This is a diagonalization of the matrix Σ̃
with the matrices M

1
2U and (M

1
2U)T . In order to prove that this factorization is indeed

an eigenvalue decomposition of Σ̃, we need to prove that (M
1
2U)T = (M

1
2U)−1, i.e. that

(M
1
2U) is orthonormal:

(M
1
2U)T (M

1
2U) = UTMU = W−1V XTMX VTW−1 = W−1V B VTW−1

= W−1V VTW2V VTW−1 = W−1 W2 W−1 = Im (4.50)

The vector u of a deformation field represented by the model can be expressed as:

u(α̃) = ū +
m∑

i=1

α̃iσiρi =
m∑

i=1

α̃iσiqi (4.51)

or, equivalently in matrix notation:

u(α̃) = UW α̃ =: ū + Q α̃. (4.52)

Remember that according to Equation (4.23), under the assumption of our statistical
deformation model the coefficients α̃ are distributed according to the m-dimensional
multivariate normal distribution N (0, Im). Accordingly, the DOF vectors u ∈ RN are
distributed according to: N (ū,UW2UT ) = N (ū,Σ). However, as pointed out before, if
M �= IN , the matrices U and Q are not orthogonal with respect to the Euclidean scalar
product, and their rows ρi and qi are not eigenvectors of Σ.

4.3.1 Intensity Model
The model we presented in the previous sections is not limited to representing shape
variations. The method can be applied to any object class that can be represented by
training examples {u1, . . . , un} from a Hilbert space H.



For our main example of bone models, it makes sense to build a model of the CT
intensities, which represent the density of the bone tissue. CT intensities can be interpreted
as functions in L2(Ω), which is of course a Hilbert space. However, in order to form
meaningful linear combinations of the intensity functions of different bones, these need
to be in correspondence, so that linear combinations are taken only of the intensity of
corresponding points.

As our registration results ui from Chapter 3 are defined not only on the surface but also
on the in- and outside of the objects, they can be used to bring the intensity images into
correspondence. The image intensity function of the i-th example is given as a function:
gi ∈ L2(Ω).

For a given point x on the reference Γ, the corresponding point in the i-th example
is given as x + ui(x) and therefore the image intensity of the corresponding point as
gi(x+ui(x)). The function defining the image intensity of the i-th example on the reference
is given as:

g̃i(x) = gi(x+ ui(x)) for x ∈ Γ. (4.53)

This is a “backward warp” or “pullback” with the function id + ui of the i-th intensity
function onto the reference. In many applications, we wish to consider the intensity only
on a part of the image, for instance in our bone example we model only the inside of the
bone. For this purpose, we can restrict the functions gi to a subset Γ̌ ⊂ Γ. If Γ̌ describes
for instance the interior of the reference bone, the functions g̃i will describe the intensity of
the inside of the example bones.

first second third

Figure 4.5: The first three principal of the femur intensity model. For each component, we
display the mean shape cut in half to show the color-coded internal intensity in Hounsfield units.
The mean intensity ḡ is displayed in the middle, and the intensity ḡ ± σg,iρg,i to either side for
each of the three components.

Consequently, we can build a statistical model like defined in Section 4.1 with the Hilbert
space H = L2(Γ̌). In order not to confuse the shape and intensity models, we still denote
the training examples of the intensity model as gi, the modeled intensities as g, and the



coefficients β:

g(β)(x) = ḡ(x) +
m∑

i=1

βi σg,i ρg,i(x) = ḡ(x) +
m∑

i=1

βi qg,i(x) (4.54)

We used this technique to build a statistical intensity model for our femur model, which
is visualized in Figure 4.5. We display the first three principal components of the intensity
model and, in order to visualize the intensity inside the bone, we show a cut through
the bone model. The first component represents mostly the overall density of the bone,
whereas the second and third components seem to model the thickness and intensity of the
bone surrounding the bone marrow canal.

While the 3D Morphable Model [13] was originally only defined on and not inside of the
modeled 3D object and the active appearance model [22] was originally only introduced
for 2D shapes, this is a straight-forward extension of these previously known models.

4.4 Dealing with M⊥

The information about the class of objects we gained from our example data sets is contained
entirely in the model space M, which is the affine span of the example deformations
{u1, . . . , um}.

On the rest of the space of deformations H, more precisely on the orthogonal comple-
ment M⊥ of the model space, the estimated distribution N (ū, C) is singular. That is,
deformations outside the model space are assigned a probability of 0, they are modelled as
impossible.

On the other hand, if we use the pseudo density function f(u) defined in Equation (4.25)
to evaluate the likelihood of a deformation field u, the space M⊥ is ignored altogether.
When we decompose a deformation field u ∈ H into u = uM + u⊥ ∈ M⊕M⊥, we have
f(u) = f(uM). This behavior corresponds to assuming a uniform variance of ∞ on M⊥.

Obviously, neither assuming a variance of 0 or a variance of ∞ on M⊥ is a very sensible
way of extending the model from the model space to the space of all possible deformations.
This is a well-known problem and different methods of dealing with it have been introduced
in the literature. Most of them are equivalent to defining a small uniform variance of σ2 on
the space M⊥. Considering that all observed examples are elements of the model space M,
it makes sense to model deformations from M⊥ as improbable, but not entirely impossible,
which is exactly what this approach achieves.

Here, we introduce two methods that both introduce such a small variance σ2 on M⊥.
The outcome is the same for both methods, but they offer different justifications. The
first, described in [62], states that it is a well known problem in statistics that for small
sample sizes the sample covariance is a poor estimator of the covariance. The problem is
addressed by using a “shrinkage estimator”, which is a convex combination between the
sample covariance and a default covariance, such as that of white Gaussian noise.

The second method is known as PPCA and is described for instance in [11]. This
interpretation and extension of the standard PCA models takes the multivariate normal



distribution N (0, Im) of the coefficients α̃ from Equation (4.24) as its starting point. The
model is then defined by a mapping from the space Rm of coefficients to the space H of
deformation fields, plus white Gaussian noise with variance σ2. This results in a model
that is identical to the model we introduced on the model space M, but assumes a small
variance of σ2 on M⊥, which in this case is interpreted as Gaussian noise.

4.4.1 Shrinkage Estimation

In Equation (4.2), we have used the maximum likelihood estimator to estimate the co-
variance of our statistical model. However, it is well known that for small sample sizes
in a high-dimensional space, this estimator performs poorly, see [62]. The main problem
for our application is already described above: the estimator assigns a probability of 0
for all samples that are not in the model space. No matter how small the deviation from
the model space may be, a sample that is not exactly in the span of the example used to
estimate the sample covariance operator, will always be assigned a probability of 0. The
result is that even new examples from the modeled object class will most likely be assigned
a probability of 0.

On the other hand, if we use the pseudo-inverse of the covariance operator to evaluate
the likelihood of a deformation field as proposed in Equation (4.16), we have the opposite
problem: no matter how far the field is from the model space M, only its projection onto
M is considered. In this way, shapes or deformations that are arbitrarily far away from
the model space, are modeled as probable members of the object class.

Obviously, this is not the desired behavior of our model, and the problem can be
attributed to the poor estimator for the covariance. The prior or default estimator of the
maximum likelihood estimator is the zero covariance operator. The estimated covariance
on the space on which no examples are observed, which is M⊥, is zero, resulting in a
singular covariance. The standard approach to construct a nonsingular estimator is known
as “shrinkage estimation” [62] and consists of taking a linear combination of the sample
covariance operator C and a different default covariance operator, the “shrinkage target”.
The most common shrinkage target is the covariance of white Gaussian noise with variance
σ2. White Gaussian noise has the covariance operator σ2id. In the finite dimensional case
this corresponds to a covariance matrix σ2IN . The shrinkage estimator given in [62] is
given as:

C2 = (1 − λ) C + λσ2id, (4.55)

The parameter λ ∈ (0, 1] is called the “shrinkage intensity” and determines the weight
between C and id. For estimating the mean, we still use the sample mean ū and therefore,
our model becomes N (ū, C2). This distribution does not assign a variance of zero to
deformation fields u outside the model space. Instead, the projection u⊥ of a vector field
onto M⊥ is modeled by the distribution N (0, σ2id). The closer u⊥ is to 0, the closer u
is to M, and the higher the likelihood of u⊥ and u will be. The influence of this term is
controlled by the values λ and σ. These have to be chosen very small in comparison to
the eigenvalues of C, because functions close to the model space should naturally still be
considered much more likely than functions further away. Therefore, we have (1 − λ) ≈ 1



and instead of C2 we can use a simplified estimator

C3 = C + σ2id, (4.56)

of course with a different σ2 than in Equation (4.55). This estimator is also referred to
as a shrinkage estimator in the literature. In [62] and other publications on shrinkage
estimation, the values of σ and λ are estimated from the data, based on a more thorough
statistical consideration of the problem. However, we have found that it is advantageous to
leave σ2 as a free parameter in our applications, to be chosen according to how strongly
the model should weight deviations from the model space.

In our applications, we would like to explicitly evaluate the likelihood, or rather the
negative log-likelihood of a deformation field u ∈ H, similar to Equation (4.27). This
pseudo log-likelihood is given as:

P [u] :=
1

2

〈
u− ū, C−1

3 [u− ū]
〉
H (4.57)

For this purpose, we need to calculate the inverse of covariance operator C3. The (pseudo-)
inverse of the individual operators making up C3 are C† as defined in Equation (4.16) and
σ−2id. Both M and M⊥ are invariant subspaces of H under C3. Therefore, the inverse of
C3 can be computed separately on M and M⊥ and reassembled as a full operator as:

C−1
3 [w] =

m∑
i=1

ηiρi 〈ρi, w〉H + σ−2w. (4.58)

with ηi = (σ2
i +σ2)−1 −σ−2. The calculation leading to this expression is carried out in full

for the discrete case in [2]. Considering σ2 � σ2
i , one can chose to use the approximation

ηi ≈ η̂i := σ−2
i − σ−2, which corresponds to adding the shrinkage term σ2id only on M⊥

but not on M. The log likelihood can then be represented by the compact expression:

P [u] =
1

2

( m∑
i=1

η̂i 〈ρi, u− ū〉2H + σ−2 〈u− ū, u− ū〉H
)
. (4.59)



4.4.2 A Note on Noise
In Equations (4.55) and (4.56), we have used the covariance operator of white Gaussian
noise σ2id as a shrinkage target. In the finite-dimensional case, this corresponds to a
multivariate Normal distribution N (0, σ2IN), modeling uncorrelated Gaussian noise with
a uniform variance for all degrees of freedom of the model. This is the most simple
and therefore most commonly used shrinkage target in the literature, see [14, 62, 25] for
instance. Often its use is rationalized by assuming that it models the noise of a supposed
data acquisition device, like the CT scanner. However, the finer the resolution of the model
becomes, the less appropriate such a noise model becomes, because it becomes less and less
likely that the noise of two adjacent points is really independent when the distance between
points decreases. In the limit case of a model defined on an infinite-dimensional Hilbert
space such as L2(Ω), this noise model permits the independent movement even of two
points that are infinitesimally close to each other. This paradoxical behavior is underlined
by the fact that the covariance function corresponding to the covariance operator id is the
Dirac delta function δ(x, y).

In principle, it is possible, to choose a more appropriate noise model that takes the
distance between two points into account. For instance, when H = L2(R) we could, instead
of using N (0, σ2id) as a shrinkage target, use N (0, σ2K), where K is the covariance operator
defined by the covariance function:

k(x, y) = τ
2
e−τ |x−y|. (4.60)

According to [68], this would, instead of Equation (4.59) result in the log likelihood term:

P [u] =
1

2

( m∑
i=1

ηi 〈ρi, u− ū〉2H + σ−2 〈u− ū, u− ū〉H + σ−2τ−2 〈∇(u− ū), ∇(u− ū〉H
)
.

(4.61)

This does in fact seem like a better model as, by using the gradient, it takes the smoothness
of the deformation fields u− ū into account. Motivated by Equations (4.60) and (4.61), we
could, slightly abusing notation, define K := id+ τ−2∇, and use this as a shrinkage target
for our model in any Hilbert space H, which would surely constitute a more realistic noise
model.

Nevertheless, in this thesis we will continue to use the shrinkage target and noise model
defined by the covariance operator σ2id, because it is the most straight-forward, results in a
log likelihood function (4.59) that is very easy to evaluate, and corresponds to our own and
other author’s previous publications, e.g. the PPCA model presented in the next section.
Furthermore, while we made a point of giving a general definition of our model for arbitrary
Hilbert spaces H, in the very end we will always work with discrete functions, in which
case the use of the simple noise model is at least more justified. But the reader should bear
in mind that this noise model is not without problems and that better alternatives exist.



4.4.3 PPCA
The probabilistic PCA model (PPCA) described in [11] offers a probabilistic interpretation
for the Gaussian model including the shrinkage term introduced in the previous section.
It was derived in a finite-dimensional setting. Here, we generalize the results without
proof to our possibly infinite-dimensional setting. PPCA takes its starting point from
the observation gained from Equation (4.24) that the model is essentially described by an
m-dimensional parameter vector α̃ ∼ N (0, Im). The statistical model is generative model
based on the linear mapping u : Rm → H:

u(α̃) = μ+ Q(α̃) with Q(α̃) =
m∑

i=1

α̃iσi ρi. (4.62)

In PPCA, the shrinkage target σ2id used in Section 4.4.1 is interpreted as additive white
Gaussian noise in this generative model. So with a noise process ε ∼ N (0, σ2id) the PPCA
model uses the mapping:

u(α̃) = μ+ Q(α̃) + ε. (4.63)

The conditional distribution of observing u given the coefficients α̃ is:

p(u | α̃) = N (μ+ Q(α̃), σ2id). (4.64)

In [11] the maximum likelihood solution for the parameters μ,w, σ2 are computed for
the finite-dimensional case. Here, we give their continuous analogons without proof:

μML = ū =
1

n

n∑
i=1

ui (4.65)

QML(α̃)(x) =
m∑

i=1

α̃i(σ
2
i − σ2)

1
2 ρi(x) =

m∑
i=1

α̃i η̂
− 1

2
i ρi(x) (4.66)

σ2
ML =

1

N −m

n∑
i=m+1

σ2
i . (4.67)

We see that μML is the sample mean used in our model and QML is the linear mapping
which corresponds to the likelihood function defined in (4.59).

The number of nonzero eigenvalues and eigenfunctions chosen for use in our model
is denoted by m < n. If we choose all possible nonzero eigenvalues, the maximum
likelihood parameter σ2

ML vanishes. Even if we choose to omit some eigenvalues and their
eigenfunctions, σ2

ML will be very small. Therefore, as mentioned in the previous chapter, we
prefer to leave σ2 as a free parameter which has to be adapted to each individual application
of the model. Furthermore, the parameter N in the formulation of σ2

ML denotes the number
of degrees of freedom of the function space and is not defined in the infinite-dimensional
case.

As mentioned in the previous section, a more appropriate noise model than ε ∼ N (0, σ2id)
could be chosen.





5 Applications

In this chapter, we are able to show some useful applications of the model we defined in
Chapter 4. Most applications of a statistical shape or deformation model are based on at
least one of these properties of the model:

• New instances of the model class can be generated by choosing coefficients α ∈ Rm.

• Given a shape or a deformation, we can seek the parameters α that best fit the given
shape.

• The parameters α determine the whole shape of the modeled object. This can be
used to reconstruct the complete shape from partial information.

• The log-likelihood of a shape or deformation can be computed according to Equa-
tion (4.59). This can be used to penalize unlikely shapes or deformations.

We begin by showing how this penalization of unlikely shapes and deformations with
the model can be used to introduce object class specific regularization into the registration
algorithm that was used to build the model in the first place.

5.1 Statistically Regularized Registration
Registration, introduced in Chapter 3, is a prerequisite to building a statistical shape model.
On the other hand, the registration can itself benefit from an existing statistical model.
The statistical model can be used to favor registration results that are considered likely
by the model. Unlikely solutions are penalized. However, we do not want to constrain
the problem strictly to the model space. Instead, we wish to allow results that are not
contained in the span of the statistical model. We only want to penalize deformations that
go too far from the model space.

Obviously, we already need a number of successful registrations in order to build the
model which we then wish to use to regularize further registrations. These registrations can
then profit from the “experience” gained in the previous registrations. This strategy makes
most sense if we have on one hand a number of “easy” examples, such as high quality,
complete, noise-free data to build the model from; and, on the other hand, “difficult” data
sets whose registration can profit from the use of the statistical model. Difficult data sets
may suffer from low quality/resolution, noise, incomplete data etc. The statistical model
can then support the registration by allowing only results that are known to be reasonable,
based on the knowledge gained from the easy registrations.
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Like the other terms of the registration functional introduced in Chapter 3, the statistical
model is introduced into the registration functional as an additive term. This results in a
model-based regularization without a strict constraint to the model space. We introduced
this idea of adding a statistical regularization term to our registration method in [2], where
the term was derived for a simpler registration method whose discretization was based on
an image grid.

With the general formulation of the statistical model from Chapter 4, the term represent-
ing the statistical model becomes independent of the discretization method. The statistical
regularization term we add is the log-likelihood function defined in Equations (4.57) and
(4.59):

P [u] =
1

2

〈
u− ū, C−1

3 [u− ū]
〉
H

=
1

2

( m∑
i=1

ηi 〈ρi, u− ū〉2H + σ−2 〈u− ū, u− ū〉H
)
, (5.1)

because it is this term that quantifies the plausibility of a deformation field u ∈ H.
It penalizes deformations u that are unlikely according to the statistical model with
distribution N (ū, C3). The covariance operator C3 was defined in Equation (4.56).

All necessary work for including this term was already done Chapter 4. It is also now
that we profit from the general formulation of the statistical model on Hilbert spaces, as
the statistical regularization term can now be included in any discrete or continuously
defined registration method by simply choosing the appropriate Hilbert space H. For our
registration method from Chapter 3, we choose H = L2(Ω,Rd)1. For use in our discretized
finite element algorithm we choose H = Vh, where Vh is the discrete finite element space
endowed with the L2 scalar product. How the term P[u] can be expressed for discrete
deformation fields, was described in Section 4.3.

Like for the other terms of the registration functional, we need to calculate the Gateaux
derivative of this term in order to include it in the minimization scheme of the registration
algorithm described in Section 3.2. Taking into account that the covariance operator C3

and its inverse are linear and self-adjoint, it is easy to compute the first variation of the
statistical model term P as:

P ′[u, ϕ] =
d

dε
P [u+ εϕ]

⏐⏐⏐
ε=0

=
d

dε
1
2

〈
u+ εϕ− u, C−1

3 [u+ εϕ− u]
〉
H

⏐⏐⏐
ε=0

= 1
2

〈
u− u, C−1

3 ϕ
〉
H + 1

2

〈
ϕ, C−1

3 [u− u]
〉
H

=
〈
C−1

3 [u− u], ϕ
〉
H

=
m∑

i=1

ηi 〈ρi, u− ū〉H 〈ρi, ϕ〉H + σ−2 〈u− ū, ϕ〉H . (5.2)

1Technically, we could also choose H = H1
0 (Ω,Rd), but this would imply the use of the more complicated

H1 scalar product.



In the implementation, this term is preceded by a weighting parameter γ ∈ R+ to
balance its influence with the other terms of the registration method. The eigenfunctions
ρi of the covariance operator are calculated from the discrete prior registration results as
described in Section 4.3. Then, at the start of each iteration of our minimization scheme,
the scalar products 〈ρi, u

m − ū〉H can be calculated for the current solution um. The rest
of the statistical term P can be treated implicitly in our semi-implicit iteration scheme
from Section 3.3.1.

Our choice of orthogonal finite element basis functions ϕi mentioned in Section 3.3.2,
which results in a diagonal mass matrix M makes the calculation of the eigenfunctions ρi

relatively easy and straight-forward. This choice of basis functions was made possible by
the use of the local discontinuous Galerkin discretization method.

Prior Work

The concept of statistical deformation models and their inclusion into registration algorithms
has been previously researched by several groups [32, 73, 61, 75]. However, except for the
method of Wang and Staib [73], these methods either constrain the registration result
strictly to the span of the model or perform the statistical regularization in a separate step.
Our statistical regularizer is integrated into our registration method and, unlike all of the
previous methods, is formulated independently of the discretization method.

5.1.1 Registration Results

In these experiments we demonstrate the use and benefit of using prior knowledge in the
form of a statistical model in our registration method. To build the statistical model, we
first performed registrations of 15 intact hands for the 2D example and 45 intact femurs
for the 3D example. From these, statistical deformation models are built as described
in Chapter 4. These models are then used as prior knowledge for registering difficult
or damaged data sets. In Figure 5.1, this prior knowledge allows the registration of the
reference to a hand with a missing ring finger. Here, we would like to compute a registration
result that registers this hand as if it were complete. That is, the shape of the hand should
be well registered where it is intact, while the missing finger should be filled in by the prior
knowledge from the statistical model. Without this prior knowledge, in Figure 5.1a, the ring
finger of the reference is deformed unnaturally in an attempt to match the hand with the
missing finger. Note that the use of a robust distance measure and the regularization terms
prevent a complete disappearance or distortion of the finger. When the prior knowledge
from the statistical deformation model is used in Figure 5.1b, the hand is well-matched
but the model enforces a registration with an intact ring finger, as all its training data sets
include 5 intact fingers.

Note that this result shows a full registration and not merely a fit of the model. This
means that the registration result is not strictly constrained to the model space M of the
statistical model, but only “encouraged” by the penalty term from Equation 5.1 not to lie
too far from the model space. For our example this means that the statistical regularization
term does not permit a registration result with a missing or strongly distorted ring finger.



(a) (b)

Figure 5.1: The reference shape (blue line) is registered onto a hand with a missing finger. The
red line shows the warp of the reference with the resulting deformation field, without (a) and
with statistical regularization (b).

At the same time, it still accurately registers the intact rest of the hand even if it does not
strictly lie in the model space. In this way, we can capture the individual characteristics of
this specific hand. When we add this result as an additional example into our statistical
model, we will actually add new information. If we had constrained the problem strictly to
the model space, we would have only gained information that is already included in the
model.

In Figure 5.2 a similar experiment is shown for 3D bone registration. The prior knowledge
from 45 previous registrations is used in the registration of two damaged femurs. The first
femur has an artificial hip joint prosthesis and the second one a missing trochanter major.
The registration method with statistical regularization registers the complete bones while
complementing the missing parts from its prior knowledge. In these experiments, we have
used 40 modes of variation (principal components) of the model. In a uniform discretization
as that used in [2] with a similar resolution around the surface this registration would have
required 28 GB of memory.

These experiments where performed with a robust distance measure, cf. Section 3.1.3.
In the places with missing data, the regular L2 measure has a very large value and would
dominate the registration process including the statical regularization term.

As with all regularization techniques, a balance between over- and under-regularization
has to be found. If too little weight is placed on the statical regularization term, it fails to
prevent unnatural deformations and we end up with registrations that are too far from the
model space. With too much weight, the result is pulled too close to the model, and we
are essentially only performing model fitting.

Model fitting methods, which fit the statistical model to data by searching for an instance
of the model strictly within the model space are introduced in the next section.



Figure 5.2: Registration of a pair of damaged bones, with and without statistical regularization.
The first bone has an artificial hip joint and in the second, the trochanter major is missing.
Without statistical regularization the damaged bones are matched exactly (left two images). With
statistical regularization, the method recognizes that the damaged parts do not conform with the
prior knowledge and fills in the missing information from the model (right two images).

5.2 Statistical Shape Model Fitting
In the previous section, we have introduced a way to regularize a registration method with
a statistical deformation model. The registration result was purposely not strictly confined
to the model space, in order to allow us to capture shape variations that are not yet part
of the given model. This is an important property if we wish to include the registration
result as an additional example into the model.

However, in other scenarios this is not necessary and we can search for shapes that best
fit a given data set strictly within the model space. The advantage of this approach is
that instead of having to calculate a complete deformation field with a (finite element)
registration algorithm, we only need to find a parameter vector α ∈ Rm of the model, in
order to fit the model to a data set. Additionally, with model fitting, it is possible to fit
the model to more types of data than with registration. The statistical model can be fitted
to many different types of data including but not limited to landmark points, (partial)



surfaces, and complete medical images.
In model fitting we search for shapes that fit this given data only among the model

instances u ∈ M, which can be represented as:

u(α) = ū+
m∑

i=1

αi ρi. (5.3)

In this Chapter, we assume that all functions in H can be evaluated pointwise. For the
sake of readability, we define uα := u(α) and denote the evaluation of a model instance at
a point x ∈ Rd by:

uα(x) := u(α)(x) = ū(x) +
m∑

i=1

αi ρi(x). (5.4)

Different algorithms have to be used for different combinations of model and data. In
order to not repeat the same ideas several times, we first introduce the concepts that apply
to all different ways of model fitting:

Model Instances In a shape model, u represents the deformation of a reference Γ ⊂ Rd,
d = 2, 3. We denote the reference deformed by the deformation field uα by:

Γα = {x+ uα(x) |x ∈ Γ}. (5.5)

In principle, the model can be defined on any set Γ ⊂ Rd, but in practice Γ is usually either
a surface, an open subset of Rd, or a discrete point set representing a shape. Similarly,
the data we wish to fit to can be given in many different forms. Often, it is a subset of
Rd, but one can even imagine more general types of data such as functions or probability
distributions.

Distance Measures All methods we present here are formulated as minimization prob-
lems. A distance measure is defined that measures the difference between the model and
the data. By minimizing this measure with respect to the model parameters α, we hope to
find an instance of the model that matches the given data as well as possible.

We will denote the data by the symbol X, the distance measure will be denoted as a
functional D[X,Γα]. It quantifies the distance between the model and the data set as a
nonnegative real number and typically has to be designed for each application and type
of data set. Fitting the statistical model to the data is then defined as the minimization
problem of finding the model parameters α ∈ Rm that minimize the distance measure:

α = argmin
α∈Rm

D[X,Γα]. (5.6)

In the context of this minimization problem, the data set X and the model Γ are fixed.
Only the parameters α can be changed to minimize the distance measure. Therefore, we
can interpret D as a function:

D(α) : Rm → R+
0 . (5.7)



In order to minimize D with respect to α, we usually have to calculate the gradient ∇D(α),
which, due to the chain rule, involves taking the derivative of the deformation uα with
respect to α. The partial derivatives of the deformations, which appear in all fitting
methods, take a very simple form:

∂αj
uα(x) =

m∑
i=1

∂αj
αiρi(x) =

m∑
i=1

δij ρi(x) = ρj(x). (5.8)

Spatial Transformation As the model is built from example data sets that are aligned
to the reference, the model can only represent shape changes, but not changes to the
position of the model in Rd. Therefore, if we cannot assume that the data set we wish to
fit our model to is perfectly aligned with the reference, we can introduce an additional
spatial transformation Tθ : Rd → Rd with parameters θ to transform the model’s position
in space. Depending on the application, Tθ can for instance be a rigid transform of the
form Tθx = Ax+ b or a similarity transformation of the form Tθx = λAx+ b, in which
case the parameter vector θ represents the rotation matrix A, the translation vector b,
and the scaling factor λ. The deformed and transformed surface is then given as:

Γα,θ = {Tθ(x+ uα(x)) |x ∈ Γ}. (5.9)

The distance measure D becomes a function D(α,θ) of the model and transformation
parameters (α,θ). The additional spatial transformation can be regarded as integrating
a spatial alignment into the fitting process. Depending on the specific application and
model, this alignment can be performed prior to, after, or concurrently with the fitting.
For instance, if landmark information is available the data and model can be aligned before
fitting as described in Section 2.3. In any case, as the spatial transformation does not
provide any valuable insight into the statistical model fitting and can be considered a
relatively easy problem that only makes the following methods and formulae more tedious
and less readable, we assume, with virtually no loss of generality, that the data set X

and the model Γα are already aligned and we only need to optimize with respect to the
parameters α and work with distance measures of the form D(α).

Regularization We try to minimize distance measure D(α) with an iterative minimiza-
tion algorithm or, when possible, analytically. The result is a parameter vector α ∈ Rm for
which the distance measure attains at least a local minimum. It is however not guaranteed
that α represents a valid shape of the object class modeled by the shape model.

From Section 4.1.2 we know that under the assumed normal distribution of our model,
the model parameters α are distributed according to a multivariate normal distribution
N (0,W2) with negative log-likelihood function:

f(α) =
1

2
‖W−1α‖2

Rm =
1

2
‖α̃‖2

Rm . (5.10)

This means that coefficient vectors with high f(α) have a low value of the probability
density function p(α) defined in Equation (4.23) and are considered unlikely by our model.



Therefore, by adding the penalty term R[α] = λf(α) to the distance measure, we discourage
unlikely results, in order to allow only valid members of the object class as possible results.
The weighting term λ ∈ R+ determines the balance between the distance measure and this
regularization term R[α]. The gradient of the regularization term is:

∇R[uα] = W−2α. (5.11)

If the distance measure D(α) is minimized with an iterative optimization algorithm
with a small stepsize and an initial guess of α = 0, it is often not necessary to use the
regularization term, because the algorithm typically never reaches local minima α far away
from the initial guess 0 that would have a large value R[α].

Least Squares While many other types of distance measures are imaginable, all measures
we represent here are defined as integrals or, for discrete point sets, as sums over the points
of the model Γα or the data X. Even more specifically, we introduce all of our fitting
methods with least squares distance measures. This means that all distance measures are
of the form:

D(α) =
1

2

∫
f(α)2 or D(α) =

1

2

∑
i

f(α)2
i (5.12)

with some function f . It is well known that such least squares type distance measures are
only appropriate for relatively noise-free data. When the data sets we wish to fit our model
to exhibit excessive noise, the least squares measure can be replaced with a more robust
distance measure. In this sense, the least squares measures introduced here should be seen
only as a suggestion for one of many possible distance measures.

5.2.1 Fitting with known Correspondence
We begin with the easiest case of model fitting: the case in which the correspondence
between the data X and the model Γα is known a priori. With given correspondence
information, we already know that the data can be represented as a deformation of the
reference Γ, or a subset Γ̌ ⊂ Γ. This means that we already have a deformation field
u : Γ̌ → R3 such that

X = {x+ u(x) |x ∈ Γ̌}. (5.13)

In this case, the fitting problem is reduced to finding α that uα is as close as possible
to u. In general u is not contained in the model space M and therefore we have to find
an approximative solution uα ≈ u. We calculate the least squares approximation by
minimizing the distance measure

D(α) =
1

2
‖u− uα‖2. (5.14)

D is a convex function, with a unique minimum at ∇D = 0 The components of the gradient
∇D(α) are given as:

(∇D(α))j = ∂αj
D(α) =

〈
u− uα, ∂αj

uα

〉
= 〈u− uα, ρj〉 . (5.15)



It follows

∇D(α) = 0 ⇔ 〈u, ρj〉 = 〈uα, ρj〉 ∀j ∈ {1, . . .m} (5.16)

⇔ 〈u, ρj〉 =
m∑

i=1

αi 〈ρi, ρj〉 =
m∑

i=1

αiδij ∀j (5.17)

⇔ αj = 〈u, ρj〉 ∀j, (5.18)

i.e. the least squares approximation of u is simply the orthogonal projection of u onto the
model space M = span{ρ1, . . . , ρm}.

If we add the regularization term R[α], we have:

∇D(α) + R(α) = 0 ⇔ αj = 〈u, ρj〉 − λσ−2
j αj ∀j ∈ {1, . . .m}. (5.19)

Here, we can see clearly, how the regularization term R penalizes large model coefficients
αj.

This is a very straight-forward and simple method to find the parameters α such that
the deformation field uα best fits the given field u in a least squares sense. If we consider
the probabilistic PCA model introduced in Section 4.4.3, we can calculate not only a single
shape uα but a full probability distribution of the parameters α given the deformation
field u. This is of particular interest if u is defined only on a part of the reference Γ̌ as it
allows us to investigate how this part influences the full shape.

Note that both for this and the next section, the fitting of the model to a partial shape
specifically includes the case of the partial shape Γ̌ consisting of a set of isolated landmark
points.

5.2.2 Reconstruction of Partial Shapes
In the previous section we have calculated the model coefficients that best fit a given data
set. The result is a parameter vector that describes the single best-fitting model, as judged
by the distance measure D and regularization term R

In many applications, there may be many possible model instances that fit the given
data equally well, especially if we wish to fit the model to a partial data set X. For instance,
when X is only a part of the bone. In this case we can fit the full model to the partial data,
thus using the model to reconstruct the partial bone to its full shape. However, we may
wish to identify or model all of the possible reconstructions and not just the single one
that fits the data best and/or is judged as the most probable by our model. Considering
all possible reconstruction also gives us an indication of how reliable the proposed best
reconstruction is.

Ideally, we would like to model this with the conditional distribution of the model
parameters α given the data X. This can in principle be computed using the normal
distribution N (ū, C) of our model. However, because our model is built from a finite
number of training examples, usually in the range between 20 and 200, the dimension of
the parameter vector α is usually quite limited. On the other hand, the data X is often
of much higher, theoretically even of infinite dimensionality. Therefore even when only a



small part of the shape is given, the problem of finding the distribution of α given the data
X is usually over-constrained. In other words, the distribution of α given X is singular.
This is partly due to the fact that even the slightest details and even noise present in the
data X can completely determine and even over-constrain the fitting of the model to the
data.

By using the Probabilistic PCA model defined in Section 4.4.3, which introduced a
small variance in addition to the model, we can permit a certain amount of noise and
small inaccuracies in the fitting. This allows us to formulate a nonsingular conditional
distribution for the parameters α given the data X, which models all variations of the
model that fit the given data reasonably well. These are, for instance, all bone shapes that,
up to a small error, fit a given partial bone. The conditional distribution will be close to
singular only if the data X completely determines the shape up to the additional flexibility
introduced by the PPCA model. This is the case, for instance, if X represents the whole
shape.

The PPCA model is formulated in terms of the parameters α̃ = W−1α, which are
distributed according to N (0, I). The conditional distribution of a deformation u given the
parameters α̃ is, according to Section 4.4.3:

p(u | α̃) = N (ū+ Q(α̃), σ2id), (5.20)

with Q(α̃) =
∑m

i=1 α̃iσi ρi. As in the previous section, we assume that the given data X is
in correspondence with a subset Γ̌ ⊆ Γ. The PPCA model for the partial model defined on
Γ̌ takes the same form but with:

Q(α̃) =
m∑

i=1

α̃iσi ρ̌i, (5.21)

using the basis functions restricted to Γ̌: ρ̌i := ρi|Γ̌.
As the data set X is in correspondence with the model, it can be represented by a

deformation of Γ̌ by a deformation field u. The conditional distribution of the model
parameters α̃ given the deformation u can be computed by Bayes Rule:

p(α̃|u) =
p(u | α̃)p(α̃)

p(u)
. (5.22)

In the PPCA model, the deformation field is an affine transformation of the model
parameters α̃. In this simple case of a linear Gaussian model, the conditional distribution
p(α̃|u) is a Gaussian distribution whose mean and covariance can be computed explicitly
and take the form given in the following Proposition:

5.2.1 Proposition (Bayes’ Rule for Linear Gaussian Models). Let G and H be two Hilbert
spaces. Let x be a random function on G and y a random function on H. Given a marginal
Gaussian distribution for x and a conditional distribution for y |x in the form:

p(x) = N (μ,Λ) (5.23)

p(y |x) = N (A(x) + b, L), (5.24)



with a linear operator A : G → H and covariance operators Λ : G → G and L : H → H.
Let A∗ : H → G be the Hilbert space adjoint to A. Then, the marginal distribution of y
and the conditional distribution of x given y are given by:

p(y) = N (A(μ) + b, L+ AΛA∗) (5.25)

p(x|y) = N (ΣA∗L−1(y − b) + Λ−1μ,Σ) (5.26)

where

Σ = (Λ + A∗LA)−1. (5.27)

Proof. This result is proved for G = Rm,H = Rn in Section 2.3.3 of [11].

This result was proved in [11] only for the case G = Rm,H = Rn. The proof relies
heavily on the use of the probability density function (w.r.t. the Lebesgue measure) of the
multivariate normal distribution, which we know does not exist in the infinite-dimensional
case. A proof in a more general case would have to be carried out in terms of Gaussian
processes or Gaussian measures. We do not attempt to give a proof in a more general
case, but are convinced that the result holds at least for our PPCA model, where we have
G = Rm and H the Hilbert space in which our model is defined. For the PCA model we
have:

p(α̃) = N (0, I) (5.28)

p(u | α̃) = N (Q(α̃) + ū, σ−2 id), (5.29)

and hence, by Proposition 5.2.1:

p(α̃|u) = N (μα̃|u,Σα̃|u), (5.30)

with Σα̃|u = (I + σ−2 Q∗Q)−1, (5.31)

μα̃|u = Σα̃|uQ∗(σ−2(u− ū)). (5.32)

As for the PPCA model, G = Rm, the covariance operator Σα̃|u is an m×m-dimensional
covariance matrix. The operator Q∗Q is matrix S ∈ Rm×m with components sij =
〈σiρ̌i, σj ρ̌j〉H. The covariance matrix Σα̃|u is:

Σα̃|u = (I + σ−2S)−1. (5.33)

If Γ̌ = Γ, we have ρ̌i = ρi and because the ρi are orthonormal, S = W = diag(σ2
i ).

Otherwise, S has to be calculated. Using the notation from Section 4.3 and defining Ǔ as
the matrix of the DOF vectors of ρ̌i, S can be calculated for discrete functions as:

S = ǓTMǓ. (5.34)
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Figure 5.3: The two first principal components model of the flexibility model of a femur in
which the distal (colored, bottom) part is fixed.

5.2.3 Flexibility Model
The conditional distribution p(α̃|u) defined above describes the parameters α̃ of all shapes
that, up to small deviations or noise, fit the deformation u which represents the given data
set X. For a parameter vector α̃, the shape is given by deforming the reference by the
deformation:

u(α̃) = ū+ Q(α̃). (5.35)

Depending on whether we use the full basis functions ρi or the restricted ones ρ̌i the full
or the partial shape is reconstructed. Note that in the PPCA model noise modeled by
ε ∼ N (0, σ2id) is added to this shape, see Equation (4.63). However, for reconstructing
the most probable shape for a given parameter vector α̃ we do not add additional noise,
which equates to adding 0, the mean of the noise model.

The conditional distribution p(α̃|u) implies a different distribution on the deformation
fields in H than the original one based on the distribution p(α̃) = N (0, I). The distribution
of the deformation fields whose parameters are distributed according to p(α̃|u) is the
normal distribution N (μα̃|u,Σα̃|u) transformed by Q:

N (Q(μα̃|u),QΣα̃|u Q∗). (5.36)

In the previous section, we have presented the expressions for Q, μα̃|u, and Σα̃|u in
terms of the eigenfunctions ρi of the original model’s covariance operator. For several
purposes, for instance the visualization of the typical deformations of the model described



by N (Q(μα̃|u),QΣα̃|u Q∗), it is advantageous to calculate a new set of basis functions
consisting of the eigenvalues of the covariance operator QΣα̃|u Q∗. This can be achieved
with the methods of functional PCA proposed in Section 4.1.3.

Remember that in Section 4.1.3, the covariance operator could be expressed as C = 1
n
XX ∗.

Therefore, by replacing X with
√
nQΣ

1/2
α̃|u, the complete procedure of building a new model

can be carried out as described in Section 4.1.3 for this new covariance operator. This
amounts to using the training examples

√
n

∑m
k=1 Σ

1/2
α̃|uki

ρk, i = 1, . . . ,m instead of ui − ū

in the construction of the model. The matrix B, whose eigenvalue decomposition was used
to practically compute the eigenvalue decomposition of the covariance operator is for the
new model B = Σ

1/2
α̃|u Q∗QΣ

1/2
α̃|u, and can be equally easily calculated. This method was

first published in [44].

1st principal component mean 2nd principal component

−3σ1 +3σ1 −3σ2 +3σ2

Figure 5.4: When a statistical model of the human femur bone is fitted to given joint surfaces
(grey), considerable flexibility remains, visualized here by the first two principal components with
standard deviation σ1 and σ2. The joint surfaces are taken from the mean, seen in the middle,
colored according to the remaining variability (in mm).

5.2.4 Visualizing the Flexibility
As in Section 4.2, we can use the deformations represented by the principal components to
visualize the main modes of variation of the model. However here, we don’t visualize the



main modes of variation of the full model, but of the model in which a part of the shape is
given or fixed.

Figure 5.3 shows the first two principal components of a femur model in which the
bottom (distal) half of the bone is fixed. We can see that there is a considerable variation
in the shape of the proximal (top) part, especially in the angle of the head and neck of
the femur. Under these deformations, the distal part stays almost, but not completely
fixed. It has to be mentioned that this model is an older femur model built from only 20
examples and calculated with the method from [1], which is similar but not identical to
the one described in the previous chapter.

Figure 5.4 shows a similar experiment with a newer model built from 40 examples, using
the model described in the previous section. Here, we examine how strongly the joint
surfaces influence the shape of the femur bone. Obviously, when the joint surfaces are
given, the shaft of the bone has the largest variability. The two main modes of variation
show that this variability expresses itself most prominently in the form of a bending of the
shaft. On the mean bone in the middle, we display the variability of the flexibility model.
We define the variability of the model at a point p as the square root of the variance at
that point. With the covariance function c(x, y) defined in Equation (4.6), the variability
at p can be calculated as:

√
c(p, p).

(a) (b) (c)

Figure 5.5: Variability of a face model. Figure (a) shows the full variability of the model. In (b),
the most likely reconstruction of the sketch depicted in (c) is shown, together with the remaining
variability.

In Figure 5.5, this variability is visualized for a face model, first for the regular face
shape model, then for one in which eyes, nose and mouth are given in the form of a sketch
similar to a smiley face. Obviously, for the full model, the variability is much higher than
when the features are prescribed.

Figure 5.6 shows an example that is both entertaining and has actual clinical relevance.
The statistical flexibility model can be used to predict the nose for a given face. The
example we show here is an artificial example, in which we have removed the nose from
the shape surface on the computer, but similar cases with real patients who have lost their
nose have been treated in a project with the University Hospital Basel. A case report has
been submitted for publication.



(a) (b) (c)

(d) (e) (f)

Figure 5.6: Reconstruction of a nose: (a) shows a face surface without nose. (b) shows the real
face while (c) shows the reconstructed nose. In (d) and (e) we see ±3σ of the main mode of
variation. (f) shows a nose where the first 7 components are 3σ from the mean.

The actual real nose that belongs to this face in our example is shown in 5.6b. This face
is not one of the training examples for the model. The reconstruction that our statistical
model deems most probable is shown in 5.6c. Interestingly, this nose is larger than the
real one. The first principal component of the flexibility model is shown in 5.6d and
5.6e. Finally, 5.6f shows an example of a very improbable but nevertheless possible nose
reconstruction.

5.2.5 Limitations of the Method

In the method described above, the given points are assumed to be in correspondence with
the model. When we consider them as given or fixed, we take their position in space to be
fixed. For some problems however, this is too strong a constraint. For instance, if we wish
to keep the contour of an object fixed, but don’t know which points of the model make
up the contour, we cannot use this method. We could fix some points on the contour and
model the remaining flexibility as described above, but this model would not reflect the
deformations that produce the same or a very similar contour but with different points.

A similar problem arises regarding the length of the bone in the femur examples in
Figures 5.3 and 5.4. As long as a single point on the top and one on the bottom of the



bone is given, the length is completely determined. Therefore, with our method, we can for
instance not model the shape variations of bones that have a different length but a similar
shape of their joint surfaces.

This problem is even more severe than it seems at first glance: Suppose we are given a
point on the bottom of the bone and one on the shaft. To apply the method described
above, these points need to be in correspondence with the model, and this correspondence
already determines the total length of the bone. For instance, if the point on the shaft
corresponds to a point in the middle of the model, we know that the reconstructed bone
will be twice as long as the distance between our two given points on the bottom and the
shaft of the bone, leaving no flexibility at all. This is why, in Figures 5.3 and 5.4 all bones
share the same length. In reality however, the correspondence may be unsure, especially
on the shaft, which has no distinct features, and therefore, there should be some remaining
flexibility in the length of the bone. Our model can currently not model this flexibility in
length.

This is a conceptual problem, as our shape modeling technique relies heavily on the
concept of correspondence, whereas the flexibility we may wish to model includes the
possibility of uncertain or changing correspondences. Resolving this conflict will have to
be the subject of future research. For now, we can only model the flexibility with respect
to points that are in correspondence with our model. If this correspondence is not known
a priori, it will first have to be established as described in the next section.

5.2.6 Model Fitting without known Correspondence
The fitting and partial shape modelling technique described in the previous section are only
defined for target data sets X that are in correspondence with the model’s reference Γ and
can therefore be directly represented as a deformation of the reference with a deformation
field u ∈ H.

In many practical applications however, the data set X will not be in correspondence
with the model. Instead it can be given in a variety of forms and representation and we
need to design specific distance measures to quantify the distance between the data set
and the model. More often than not, these distance measures will be nonlinear.

Nonlinear Distance Measures Unfortunately, with these distance measures, we cannot
directly apply the methods from the previous section. The likelihood function p(u | α̃) =
N (ū+Q(α̃), σ2id) given in Equation (5.20) corresponds to a least squares distance measure
D(α) = 1

2
‖u− ū+Q(α̃)‖2 from Equation (5.14). If the data set X is not in correspondence

with the model’s reference, we will see in the following that we have to use more complicated
nonlinear distance measures. This typically corresponds to a likelihood function of the form
p(u | α̃) = N (F (ū+ Q(α̃)), σ2id) with some nonlinear function F . With such a likelihood
function, we can no longer apply Proposition 5.2.1, which is based on linear models,
and therefore do not have an explicit representation of the conditional probability of the
coefficients α̃ given the data X. Therefore, in order to use the results for shape reconstruction
and flexibility modeling from Section 5.2.2, we first compute the correspondence in a separate
step and can then compute the conditional distribution according to Proposition 5.2.1.



Furthermore, nonlinear distance measures in general no longer admit a closed-form and
unique solution, instead we have to try to minimize them with an iterative minimization
algorithm, such as gradient descent or the slightly more sophisticated L-BFGS optimizer
[76]. These methods require the derivative of the distance measure, which is why we will
provide the derivative of each of the following distance measures.

Fitting vs. Registration We propose to establish the correspondence between the data
X and the model in a separate step. In some scenarios, the best choice is to establish the
correspondence with the registration algorithm. However, if we already have a statistical
shape model, we can use it to define faster and more robust methods to establish the
correspondence.

In fact, shape model fitting can be interpreted as a registration algorithm with a different
set of basis functions. While the registration algorithm introduced in Chapter 3, tries to
establish correspondence with a deformation field u =

∑N
i=1 uiϕi, where ϕi are finite element

basis functions, a model fitting algorithm finds a deformation field u = ū +
∑m

i=1 αiρi,
where ρi are the orthonormal basis functions of the model space. So instead of searching
the deformation field in the finite element ansatz space V = span{ϕ1, . . . , ϕN}, we search
for it in the model space M = span{ρ1, . . . , ρN}. Of course, the model space is much
smaller and restrictive than V , but it is tailored for the specific object class. As such, there
is less need for the elaborate distance measures and regularizers defined in Chapter 3. The
restriction to the model space and the regularization based on the normal distribution
on M prevents most of the adverse effects the terms of the registration function from
Chapter 3 are meant to penalize. Typically, one of the distance measures defined in this
chapter together with the model-based regularizer defined in Section 5.2 suffices for a
reasonable fitting/registration.

Fitting a Surface Model to a Surface

A common scenario is that we wish to fit the surface model to another (possibly partial)
surface of the same object class, that is not yet in correspondence with the model.

This means that the model Γα is a surface model defined on a reference surface Γ ⊂ Rd,
and the target data X is also a surface X = Γ2 ⊂ Rd, the most efficient way to design
a distance measure is by representing Γ2 by a distance function I : Rd → R. Then
Γ2 = {x ∈ Rd | I(x) = 0} and we can define the distance measure as:

D(α) =
1

2

∫
Γ

(
I
(
x+ uα(x)

))2

do(x). (5.37)

Obviously, when Γα ⊂ Γ2, we have I
(
x+ uα(x)

)
≡ 0 for all x ∈ Γ, and therefore D(α) = 0,

so when the model and the data coincide, the distance measure is at its minimum of 0.
The larger the set Γ2 \ Γα and the further away the points of Γα are from Γ2, the higher
the values of I

(
x+ uα(x)

)
and therefore of D(α) will be. By minimizing D, we try to find

the model that best fits the target surface Γ2.
Note however, that by minimizing D, we only control if Γα ⊂ Γ2 and not if Γ2 ⊂ Γα. In

most scenarios this is not necessary, because both Γα and Γ2 are instances of the object



class modeled by the shape model and whenever Γα ⊂ Γ2, we have at least Γα ≈ Γ2. In
other scenarios, we actually aim for the case Γα � Γ2, i.e. that the model instance is a true
subset of the data, for instance when Γ2 is the output of an edge-detection algorithm that
finds more edges/surfaces than just the actual object surface. For other scenarios, where
solutions with Γα � Γ2 actually pose a problem, a more sophisticated distance measure
has to be designed.

The partial derivatives of the distance measure defined above in Equation (5.37) are
given by:

∂αj
D(α) =

∫
Γ

I
(
x+ uα(x)

)
∇I

(
x+ uα(x)

)
· ∂αj

uα(x) do(x) (5.38)

=

∫
Γ

I
(
x+ uα(x)

)
∇I

(
x+ uα(x)

)
· ρj(x) do(x) (5.39)

Fitting an Appearance Model to an Image

While the fitting of a surface model to a surface is a common problem and arises in many
applications, it usually requires the segmentation of a (d-dimensional) image in order to
acquire the target surface. Instead, we can try to fit the model directly to the image.
Fitting a surface model to the image usually requires some kind of edge detection in the
image, which makes this approach essentially equivalent to the previous approach of surface
fitting.

Instead we can use the intensity model described in Section 4.3.1 to model not only
the surface of the objects by a shape model but also the inside by an intensity model.
Of course, this makes sense only if the intensity of the model and the target image are
comparable, e.g. if they are acquired with the same type of imaging device. Suppose now
that we have a combined shape and intensity model, called an appearance model, with
the shape variations described by the deformation model uα and the intensity variations
described by intensity model g(β). Both are defined on a reference Γ, which we assume
here to be an open measurable subset of Rd, e.g. the inside of the modeled object. We
denote the intensity image by the function I(x). Then we can define the distance measure:

D(α,β) =
1

2

∫
Γ

(
g(β)(x)︸ ︷︷ ︸

model intensity

− I
(
x+ uα(x)

)︸ ︷︷ ︸
image intensity at model point

)2

dx. (5.40)

When the image contains an instance of the object class whose shape is exactly described
by Γα = {x + u(x) |x ∈ Γ} and whose intensity is described by the function g(β), the
distance measure D[α, β] is equal to zero. If the shape and/or intensity are not matched
perfectly, the distance measure will take values greater than 0, depending on how good
the fit is. Remember that if the reference Γ is not aligned with the object in the image,
we need to introduce an additional spatial transformation Tθ into the distance measure.
Additionally, the regularization term R[α] and R[β] as proposed in Equation (5.10) may
be used to penalize unlikely model parameters.



The partial derivatives of this distance measure are given as:

∂αj
D(α,β) =

∫
Γ

(
g(β)(x) − I(x+ uα(x))

)
∇I(x+ uα(x)) · ρj(x) dx (5.41)

∂βj
D(α,β) =

∫
Γ

(
g(β)(x) − I(x+ uα(x))

)
ρg,j(x) dx (5.42)

We hope of course that the distance measure is minimized if and only if the shape
and intensity models Γα and g(β)) coincide with the target object depicted in the image
I(x). But obviously shape and intensity influence each other and a bad fit for one model
may be compensated with the other model. Fortunately, if the modeled objects exhibit a
characteristic intensity pattern, such as in the bone model, the fitting produces reasonable
results.

However, because the distance measure is only evaluated on Γ, resp. Γα, which is typically
the inside of the model, all image information on the outside of Γα is not evaluated. While
the characteristic intensity pattern of the modeled object usually ensures that the fitted
model covers the object in the image quite well, there is usually a small gap between the
real object boundary in the image and the boundary of the model. The model seems to
“shrink” inside the object. A larger discrepancy between object and model would incur a
higher distance measure, but this small gap at the boundary is typically not detected by
this distance measure.

There are two obvious ways to address this problem: 1.) We can complement the distance
measure from Equation (5.40) with a distance measure that measures the distance between
object and model boundary, such as the surface-to-surface distance measure introduced
in Equation (5.37). Of course this brings us back to the problem of detecting the object
boundary, which may be a very difficult problem. 2.) We can complement the appearance
model distance measure with a second region-based distance measure for the outside of
Γ. If we have representative training examples for this region, we can simply construct a
second appearance model and use a second distance measure of the form (5.40).

Unfortunately, in many cases, no useful training data is available for the outside region.
For instance, our femur model is built from isolated bones, as those in Figure 5.7a, where
the outside of the bone is only occupied by air. But we would like to be able to fit it to
a variety of images, like images in which with soft tissue and/or other bones are present
on the outside of the bones as in Figure 5.7b. But we have no representative data for
all possible backgrounds. Similarly, in face modeling there is typically no representative
information about the background in front of which faces are photographed.

In these cases, in which it is not possible to build a second appearance model for the
outside, we propose to design a generic model for the outside. This region-based model
is estimated from the target image itself and does not rely on prior example data. This
method was published in [3].

5.2.7 Generic Outside Model
In this section, we show how the appearance model fitting introduced before can be
complemented by a generic outside model. The outside model is derived from the Mumford-



(a) (b)

Figure 5.7: On the left: a subset of the bones used to build the appearance model. The model
is built from isolated bones. No useful information is available for the outside of the bones that
could be used in real segmentation tasks such as segmenting the femur in the images on the right.

Shah model for image segmentation, which we will briefly introduce next. Of course, the
method could be used on any other region, but for our bone model example, it is the
outside of the bones that we wish to model in this way.

5.2.8 Mumford Shah Model
In their landmark paper [53], Mumford and Shah introduced what is now known as the
Mumford-Shah functional for image segmentation, which seeks to simultaneously find an
edge set C and a piecewise smooth approximation J of an input image I : Ω → R. In [19]
Chan and Vese proposed a simplified version of this functional for the case that C is a
closed contour (represented by a level set function) that separates the image domain Ω
into an inside and an outside, in(C) and out(C) of C. In this case, the Mumford-Shah
functional can be written as:

F (C, J) = λ

∫
in(C)

(Jin − I)2 + λ

∫
out(C)

(Jout − I)2 + μ length(C) + ν

∫
Ω\C

|∇J |2 , (5.43)

where length(C) denotes the length of the segment boundary C and acts as a regularization
term. Typically, the functional is minimized with an interlaced algorithm. In every other
iteration the boundary C is kept fixed and the image approximation J is optimized and in
the next iteration J is fixed and C optimized. Mumford and Shah showed that if C is fixed,
J optimizes the functional if and only if it satisfies the following elliptic boundary value
problem with zero Neumann boundary conditions on each of the segments, here written
out only for out(C):

−Δ Jout =
λ

ν
(I − Jout) on out(C)

∂Jout

∂n
= 0 on ∂(out(C)), (5.44)

where ∂
∂n

denotes the outer normal derivative. This means that J has to be a smoothed
version of I with sharp edges on the boundary C, which is why the functional is minimal



when C coincides with edges in the image, while on the segments the image can be
approximated well by smooth functions. The great advantage over methods based on actual
edge detection is that even when no sharp edges are present in the image, the minimizing
edge set C will still separate the different regions in the image in an optimal way when
F (C, J) is minimized. If λ

ν
→ 0, the optimal approximation J is a piecewise constant

function which takes on the mean value of the function I on each of the segments, i.e.
Jout ≡ cout = 1

|out(C)|
∫

out(C)
I. More sophisticated approximation strategies for Jin,out, e.g.

based on texture can be found in [24].
This segmentation method separates those two regions which can be best approximated

by mean intensities or smooth approximations. However, it is by no means guaranteed
that these coincide with the organs we want to segment in the image.

Combining Inside and Outside Models

We now present a way to combine the prior knowledge of the statistical shape and appearance
model and the generic ad-hoc modeling technique of the Mumford-Shah segmentation
method. For the inside of the object, we use the appearance model exactly as described
in Section 5.2.6. The outside Mumford-Shah model is derived from (5.43) with a few
adjustments. Because only the outside is modeled in this way, we only use the terms
concerning the outside region. Also, the length term can be omitted from the functional
as the regularization properties of the statistical model provide a superior regularization
method.

The terms in Equation (5.43) are defined on a part of the input image domain, whereas
Equation (5.40) is defined on a part of the reference domain. To seamlessly integrate the
outside terms into a common cost function, we need to transform them to the reference
domain. In Equation (5.40), the spatial transformation from the reference model to the
image is given by Φα(x) := x+ uα(x). Remember that if model and image are not already
rigidly aligned, we need to include the additional transformation Tθ. The relevant terms
of the Chan-Vese functional can then be transformed to the domain of the reference as
follows. This can also be seen as a “change of variables” from x to Φα(x).

λ

∫
out(C)

(Jout − I)2 + ν

∫
out(C)

|∇Jout|2 = λ

∫
Φα(Γout)

(Jout − I)2 + ν

∫
Φα(Γout)

|∇Jout|2

= λ

∫
Γout

(Jout ◦ Φα − I ◦ Φα)2 |detDΦα| + ν

∫
Γout

|∇Jout ◦ Φα|2 |detDΦα|, (5.45)

where Γout is the outside of the model in the reference domain. In principle, Γout should
be chosen so that Φα(Γout) = out(C), but in practice, any neighborhood of Γ can be used.
Then, contrary to the original integral from the Mumford-Shah functional, the transformed
integral does not depend on the function or parameters we wish to optimize, which greatly
simplifies the minimization. The only dependence remains in the determinant term from
the transformation formula |detDΦα|. However, this is where we introduce a simplifying
approximation and assume |detDΦα| ≡ 1, as it would be very time-consuming to compute



the derivative of the deformations caused by the matrix Qs. Secondly, this term measures
the volume change caused by Φα and would allow the minimization of the functional
simply by contracting the model to a point, which is not desirable. The combined distance
measure is then given as:

D(α,β) =
1

2

∫
Γ

(
g(β)(x) − I

(
x+ uα(x)

))2
dx

+ λ

∫
Γout

(Jout ◦ Φα − I ◦ Φα)2 + ν

∫
Γout

|∇Jout ◦ Φα|2. (5.46)

The statistical deformation model uα has been defined only for the inside model Γ in
Section 5.2.6. In order to evaluate the new distance measure D(α,β), it has to be extended
to the outside Γout. If the training examples ui from which the model is calculated are
defined on the entire image domain of the reference, which is the case for our registration
algorithm, this extension can be performed in a straight-forward manner. The mean ū is
naturally extended by the mean of the fields on Γout. The eigenfunctions ρi ∈ H which
describe the deformations of the model (see Equation (4.17)) have to be extended in a way
that the outside deformation matches the inside deformation. This can be achieved by the
same linear combination of the training examples on the outside as on the inside. These
linear combination are given in Equation (4.36) as:

ρi =
n∑

j=1

1√
nσi

vij (uj − ū). (5.47)

In terms of the matrix formulation developed in Section 4.3 for discrete models, this can
be written as U = 1√

n
XVW−1, cf. Equation 4.47.

5.2.9 Implementation
The minimization of the functional G defined in Equation (5.46) is handled in an interlaced
algorithm similar to that of the Mumford-Shah method described in Section 5.2.8: We
alternately calculate the ad-hoc model Jout for the current parameters α, β, ρ, and find
the parameters for the next iteration step with a standard optimization algorithm; we
use the LBFGS optimizer [76]. Jout needs to be calculated from the image intensities as
the mean intensity or according to the elliptic equation (5.44) (on Γout instead of out(C)).
Like the inside Γ, we represent Γout by an unstructured grid, and implemented a Gaussian
smoothing with Neumann zero boundary conditions on this grid to approximate the solution
of Equation (5.44). A more exact solution could be achieved by computing a finite element
solution on this grid.



Figure 5.8: On the left: A CT slice with its approximation by the inside and outside model.
The inside is an instance of the statistical model, while the outside is modeled as a smoothed
version of the image intensities. On the right, the outside is modeled as the mean value of the
outside intensities, which works best for uniform outside intensity.

5.2.10 Segmentation Results
We present a few examples of bone segmentations that show the feasibility of segmentation
and model fitting with our proposed combined method and its advantages over the individual
methods of level set and appearance model segmentation. As we are using a strict
shape constraint, none of the segmentation results are perfect. They are only the best
approximation within the space of the shape model that the optimization algorithm was
able to find. We used the LBFGS algorithm with a landmark-based rigid alignment of the
mean model as initialization. The method is not very sensitive to the parameters. For all
experiments, we have chosen λ = 1, ηs = 100, ηt = 10. For the Gaussian smoothing of the
outside model, we have used a variance that corresponds to ν = 300.

Figure 5.8 shows the segmentation of CT slices to illustrate the two proposed methods for
calculating the generic outside models: by computing the mean or a smooth approximation
of the outside region. Only when the outside of the bone is very uniform as for instance
in the case of isolated bones is the constant approximation by the mean preferable over
the smooth approximation. Note that the aim of the outside model is not a perfect
representation of the input image, that would of course be given by the unsmoothed image
itself. The aim is to give a homogeneous representation of the outside which encourages
the correct placement of the model boundary because any other placement would incur a
higher cost in the functional Equation (5.46).

In Figure 5.9a we compared our segmentation method to the pure Mumford-Shah
segmentation provided in the Insight Toolkit, [39, 50]. We see how our method can identify
the femur in a CT image with soft tissue and other bones. In contrast, the Mumford-Shah
level set segmentation finds the most prominent segment boundary in the image, that
between air and everything that is not air. While this is the optimal boundary from the
point of view of this segmentation method, it is not the boundary we are interested in if we
wish to segment femur bones. In Figure 5.9b, we see another successful segmentation with
our combined model, contrasted with a result of using only the inside appearance model.
As expected, the segmentation using only the inside appearance model leaves a narrow gap
around the boundary of the model.



(a) (b)

Figure 5.9: Comparison of the our segmentation method with each of the original methods. The
input images are shown in Figure 5.7. On the left in (a), the proposed method identifies to femur
bone, whereas the original Mumford-Shah level set segmentation on the right separates air from
tissue, and therefore segmentation boundary shows the muscle tissue and not the femur bone.
On the left in (b), the proposed method identifies the femur as well as the model permits, while on
the right the appearance model without outside model “shrinks” and leaves a small gap between
the model and the real bone surface.

5.3 Building Shape Models from Problematic Data
We have already introduced several methods to deal with problematic data, like partial
shapes etc. These methods all require the use of a pre-existing shape model. In [45], we
investigated a strategy to build models directly from problematic data, without the need of
an existing shape model. Instead of making the registration method more robust against
noise or defects as in the previous section, we employed an outlier identification method
[31] to identify the problematic parts and discarded them altogether. Obviously, the data
sets are then incomplete and cannot be used directly as a representative for the correct
and intact anatomy of the imaged object. If we have a large set of these partial data sets
however, we can still build a statistical model from a set of incomplete examples using
the EM algorithm for PPCA [11]. In this algorithm, the missing part in one data set is
completed using the other data sets. Obviously, this only works if the same part is not
missing in the majority of examples. For the EM algorithm, no prior statistical model



is necessary. In an iterative fashion, the algorithm essentially builds a model from the
completed data sets and then uses this model to compute better reconstructions for the
next iteration.

For this algorithm, the data sets need to be in correspondence. Therefore, the data sets
are first registered (without the statistical regularizer introduced in the previous section).
The problematic parts are reflected in the registration result as unnatural deformations,
which can be identified as outliers by [31] and discarded. As the problematic parts typically
influence the registration result in their vicinity, they are discarded with a generous
neighborhood. For our experiments with a skull model, we always discarded the entire
affected anatomical structure. The complete workflow is visualized in Figure 5.10.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.10: Workflow: The reference (a) is registered to a problematic data set (b). The
missing parts lead to unnatural deformations in the registration and are identified as outliers. In
the EM algorithm for PPCA, the outlier parts are automatically reconstructed using information
from other data sets (d), and used in the construction of a statistical shape model. With mean
(e) and first principal component (f). This model is not affected by the missing data, contrary to
the standard PCA model without outlier detection, whose first principal component (g) shows
severe artifacts caused by the missing data of just one skull.

The statistical model computed by the EM algorithm, of which only the mean and first
principal component are shown in Figure 5.10, is virtually unaffected by the missing data
if, over all data sets, there is enough representative information for each part of the shape,
even if each shape has some defect. So far, we have applied this method only to skulls,
as for the other bones, we have a large collection of completely intact bones, and the few
corrupted data sets can be registered using the method described in the previous sections.



5.4 Orthopedic Implant Design

In a research project with a medical device company, which is still in a preliminary stage,
we have started to investigate how the statistical bone model can be used to optimize the
development of implants such as plates for osteosynthesis.

Today, implants are designed based on single bones. In order to fit a wider variety of
bones, an implant family is designed which varies in size and geometry, e.g. the overall
curvature. These features are verified on a few other bones and feedback from doctors.

With the statistical bone model, we can give a much more detailed and comprehensive
analysis of what shape variations an implant family should offer so that it covers the widest
possible variety of bones.

(a) Reference bone with im-
plant.

(b) Bones of different sizes with corresponding implant.

Figure 5.11: Designing implants that fit a variety of different bones by deforming the implant
together with the bone model.



In order to get a first visual impression of the shape variations of an implant, we fitted
an implant, in our example a distal femur plate, to the reference bone of our femur model,
see Figure 5.11a. The implant can then be deformed together with the reference bone and
we can see how the implant would have to be deformed in order to fit the deformed bone.
For instance, the bones of different length seen in Figure 5.11b require implants of different
length.

In a pure surface model, the corresponding deformation of the implant can be found
by using the deformation of the closest points on the bone surface. In our model, the
deformations can be found even more easily. Our registration algorithm introduced in
Chapter 3 registers not only the surface, but also the surrounding space. The distance
functions we use for registration offer a very natural extension of the surface geometry to
the surrounding space. Therefore, the registration results are also available directly for the
implants, and we can use them to warp not only the bone but also the attached implant.

Based on these deformation fields, we can build and visualize different models and
deformations, which can all be used for implant design. First, we can visualize the main
modes of variation of the bone model and simultaneously visualize the corresponding
deformation of the implant. This was done for the first component of the femur model
in Figure 5.11b. The corresponding implant deformations are calculated by employing
the same linear combination of the registration results as in the bone model, like in
Equation (5.47). It is clear that not all deformations that cause a large change in the bone
also impose a large deformation of the implant. Therefore, it makes sense to calculate
the main modes of the implant. This is accomplished by building a separate statistical
shape model of the implant. The original implant, fitted to the reference bone, is used as
the reference shape. The training deformations for this model are the deformation fields
from the bone registration, restricted to the implant. In this way the implant shape model
describes the deformation the implant has to undergo in order to fit the population of
bones represented by the training examples. The first and main mode of variation mostly
models the overall size of the implant and is very similar to the deformation pictured in
Figure 5.11b.

Figure 5.12: Second mode of variation of the implant model. The deformation represents ±3
times the standard deviation σ2.



The second mode of variation is shown in Figure 5.12, which shows the deformations
that represent ±3 times the standard variation σ2 of the plate model. From this we can
deduce that, apart from the overall size, which is represented by the first mode of variation,
the second most important shape variation that a distal femur plate family should offer is
a variable overall curvature resulting in a more or less pronounced “spoon-like” end of the
plate.

In order to visualize what bone shapes are associated with these implant designs, we can
again employ the same linear combinations of the deformation fields, cf. Equation (5.47).
Figure 5.13a shows the same plates as Figure 5.12 but with the associated bones. We see
that a straighter bone with a less pronounced condyle shape calls for a straight plate while
a bone with a more pronounced condyle calls for a more curved plate. In Figure 5.13b,
the same analysis is performed for the third mode of variation. However, the designer
may decide that it is not necessary to reproduce this mode of variation, because the mean
implant would cover this bone variance well enough, simply overlaying more or less of the
condyle.

(a) Second component with associated bone (b) Third component with associated bone

Figure 5.13: The second and third mode of variation of the implant model, together with the
associated bone. This gives a visual overview of what bone variations, call for the main modes of
variation of the implants.

It is still an open question how many implants with what shape variation should be used
in order to best represent the variability of the implant model with as few representatives
as possible. Figure 5.14 shows a scatter plot representing the coordinates of the training
examples with respect to the first and second principal component. This means that each
point represents the coordinates (α̃1, α̃2) of an individual training example. If we wish
to design an implant family based on only the first and second principal component, we



would have to find as few representatives as possible that cover these points and/or the
distribution estimated from them. At this point, it is unclear if it makes more sense to try
to cover the estimated probability distribution in a systematic way or to try a clustering
approach in order to cover the individual training examples optimally, e.g. with a k-nearest
neighbor approach. This, and the question of how many principal components should be
considered will be the object of further research.
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Figure 5.14: Scatter plot showing the coordinates with respect to the first two principal
components of the training examples for the statistical plate shape model.



5.5 Predicting Faces from Skulls
In a similar fashion to how the statistical shape models of bone and implant are linked
together in the previous section, we linked together a face and a skull model in a collaborative
effort within our research group in order to predict faces from skulls and vice versa [57].
We had to deal with the additional difficulty that we had no skull data for the training
examples of the face model. Therefore, the link between the different models could not be
established as easily as for the implants in the previous section.

We addressed this problem by capturing a set of 20 MRI scans in addition to the example
data of the skull and face models. On the MRI scans, both faces and skulls are visible and
we could fit the skull and face models to these MRI scans. This provides a relationship
between the skull and shape model coefficients for 20 examples, from which we estimated
a linear mapping between skull and face model coefficients using ridge regression. Two
results of predicting faces from skulls with this mapping can be seen in Figure 5.15. The
skulls are not shown here as the differences in skull shape are so subtle that the images
provide little visual information.

Original Prediction Prediction Error Original Prediction Prediction Error

Figure 5.15: Results faces predicted from skulls. The best and worst results in terms of the
Mahalanobis norm error were selected. The color-coded prediction error is the per-vertex L2-error
orthogonal to the surface. Large errors occur at the cheeks where the soft tissue thickness depends
strongly on the body weight and age.

As the body weight and age of a person is relatively independent of the skull but has a
strong impact on the face, the prediction results are typically bad when a person’s age and
weight deviate from the norm, which can be observed in the bottom example of Figure 5.15.
Therefore, we have combined the face prediction method with a method for modelling
physical attributes such as age, weight, sex etc. that have an effect on the face. As the
discussion of this model would take us too far into the field of face modeling, we refer the
interested reader to [57] for details.

For our main application area of bone modeling, this method provides a first step towards
combining related but separate bone models such as the different bones of the leg. However,
so far we have only applied it to faces and skulls.



5.6 Visualizing the Density of the Subchondral Bone
One of the major research areas of the Anatomical Institute at the University of Basel
is the study of the subchondral bone plate, see [46] for a comprehensive overview. The
subchondral bone plate is a layer of bone that lies underneath the cartilage of each joint
surface.

The main function of the subchondral bone plate is to provide support for the overlying
articular cartilage. It was shown in [52] and other work reviewed in [46] that the density
and mineralization of the subchondral bone plate is higher in more heavily loaded regions
of the joint surface than in less loaded regions. The density and mineralization of the bone
can be measured by a CT scan and it has been shown that these CT intensities have a
strong correlation with the actual mechanical strength and thickness of the subchondral
bone, see [51] for instance. Strength and thickness of the subchondral bone plate are
in turn influenced by its functional purpose and even adapt over time to the prevalent
mechanical loads. Therefore, the density distribution of the subchondral bone can be seen
as an indicator for the load distribution of the joint surface. It can be used to study the
typical mechanical situation of a given joint surface in a statistical fashion as well as to
assess the quality of a patient’s joint.

Figure 5.16: Maximum intensity projection of the subchondral bone onto the joint surfaces of
four femora. Thanks to the projection in normal direction (with a depth of 4 mm) curved joint
surfaces as those in the femur can be analyzed.

In order to analyze the density distribution, the subchondral bone has to be identified
and its density represented visually in a concise and comprehensive way. The state of
the art method is to go through the CT scan slice by slice and to identify and mark
the subchondral bone plate as well the joint surface by hand. Then, the density of the
subchondral bone is projected onto the joint surface by a maximum intensity projection.
This means that at each point of the joint surface, the maximum density value of the
underlying subchondral bone is displayed, indicating the strength of the subchondral bone
plate at this point. Density distributions displayed in this way can be found in [46] and
references therein. The maximum intensity projection is typically performed in one space
direction. For for curved joint surfaces such as the femoral condyles, multiple projections in



different directions are performed in order to approximate a projection along the normals
of the joint surface.

With the shape modeling methods proposed in this thesis, we can facilitate this process
in several aspects. First, if a collection of bones such as the training examples for our
femur model have been brought into correspondence by registration, it suffices to identify
and label the joint surface on one bone and this label can be automatically transferred
in order to mark the corresponding joint surfaces on all other examples. Next, it follows
from studies of the thickness of the subchondral bone, e.g. [48], and the cartilage, e.g. [65],
that the thickness of the cartilage and subchondral bone plate together is less than 4 mm.
Both the cartilage and the bone underneath the subchondral plate have a lower density.
Therefore, projecting the maximum intensity onto the joint surface in the direction of the
surface normal with a depth of 4 mm is equivalent to the projection of the manually marked
subchondral bone plate. However, the model-based projection has two advantages: Firstly,
it is no longer necessary to meticulously label the entire subchondral plate for each individual
slice of a CT scan. It suffices to label the joint surface, which can even be performed
automatically by registration. Secondly, the maximum intensity is performed orthogonal
to the joint surface. This is a desirable property, which could only be approximated in the
previous approach.

Figure 5.16 shows the maximum intensity projection of the subchondral bone’s density
onto the joint surfaces of four femurs. The density is given in Hounsfield Units, the standard
units for quantifying the radiodensity measured by the CT scanner. The projection along
the surface normal allows the accurate representation of the subchondral bone density even
for the highly curved joint surfaces found in the femoral head and condyles.

Figure 5.17: Maximum intensity projection of the subchondral bone of the tibial plateau of 4
right tibiae.

Figure 5.17 shows a similar result for four tibiae. Here, we can observe the typical density
patterns of the tibia described in [46]: The first tibia shows a standard density distribution,
hinting at an even load distribution. The two tibiae on the right have a considerably higher
density on the medial side than on the lateral side. According to [46], this uneven density
and load distribution hints at a patient with genu varum (“bow legs”). On the contrary,
the second tibia from the left exhibits a higher density on the lateral than on the medial
side, which is also untypical, possibly hinting at a case of genu valgum (“knock legs”).

Going further than examining such individual observations, we can build a statistical
model of the subchondral bone density as described in the section on intensity models,
Section 4.3.1. This allows us to visualize the mean as well as the main modes of variation



of the density. This is done in Figure 5.18 for a subchondral plate density model built from
21 tibia examples. The figure shows the first four modes of variation. The mean intensity
distribution is always displayed in the middle, the density given by the mean ± 3 times
the standard deviation of the mode of variation on either side. The density model shown
here is calculated independently of the shape and all distributions are displayed on the
shape of the tibia model’s reference bone.

We see that the first mode of variation mainly models the overall density level, ranging
from very dense to more delicate subchondral bone plates. We can observe that the density
of the first tibia in Figure 5.17 is indeed quite close to the mean but with an overall
higher density as modeled by the first mode of variation. The second mode of variation
seems to represent the balance between lateral and medial condyle as discussed in the
genu varum/valgum example above. This shows that, next to the overall density level, the
balance between lateral and medial condyle, which reflects the load balance of the knee
joint is in fact the most prominent density variation of the tibial plateau. The third and
fourth modes of variation represent the variability of the position of the density maxima
on the two condyles.

first second

third fourth

Figure 5.18: The four first principal components of the subchondral density model built from
21 tibiae. For each component, the mean is displayed in the middle, and the density μ ± 3σiρi on
either side.



5.7 Fracture Reduction

An important practical application of our statistical bone model that seems to be on its
way to widespread application in surgery planning is the automatic repositioning of the
fragments of a broken bone. This task is referred to as fracture reduction in the medical
domain. Research in this direction has just started and will continue until well after this
thesis in a joint project with a manufacturer of surgical implants. Here, we are able to
present the first results.

(a)

(b) (c)

Figure 5.19: (a) shows a mountain biker who has broken his femur in a training accident. (b)
and (c) show the femur before and after operation [8].

Similar to our introductory example from Chapter 1, Figure 5.19 shows a prominent
mountain biker who has broken his femur this year. While it takes considerable force such
as that encountered in this type of mountain biking to break such a large bone, it is not
an uncommon injury. Such fractures, as well as comparable fractures in other long bones
(such as tibia or humerus) are usually treated by fixing the bone with a long metal nail as
in Figure 5.19c.

While this has become a fairly standard and established procedure, it remains difficult
to accurately reposition the bone fragments. The metal rod is inserted through an incision
near the end of the bone, and typically the fracture site is not visible directly. The only
way for the operating surgeon to control the correct repositioning of the bone is by x-ray
images as in Figure 5.19. These images allow a fairly accurate reposition in the longitudinal
direction of the bone, even though even this alignment is not perfect in Figure 5.19c.
However, rotational alignment around the axis of the bone and the nail poses a much
greater challenge, as it cannot be controlled by x-ray images. In [40] Jaarsma et al. have
found a rotational malalignment of over 15 degrees in 21 out of 76 patients (= 28%) for
this type of operation. This means that the bottom fragment of the femur, and with it the
lower leg of a patient may not be put back in its original position but instead incorrectly



rotated over 15 degrees around its axis.
Obviously, this leaves ample room for improvement. One of the companies that produce

medical implants such as these femur nails is currently developing a system to improve
the intraoperative control of the fracture reduction. The current position of the bone
fragments is tracked in real-time by an electromagnetic tracking system and compared with
an optimal reduction plan. This plan is based on a pre-operative CT image of the fractured
bone. Currently, the plan is prepared manually by extracting the fragment surfaces from
the CT images and aligning these surfaces by hand. The manual alignment of surfaces on
a computer can be rather cumbersome and imprecise.

The application of our statistical bone model is now to automatically propose an optimal
fracture reduction based on the model’s inherent knowledge of the shape of intact femur
bones. Given the fragments of a bone that is broken into two fragments, the model should
predict how one of the fragments should be moved so that it is well aligned with the other
fragment, resulting in a correctly reconstructed bone.

In principle, we are only looking for a rigid alignment of the individual fragments. We
could, therefore, simply compute a rigid alignment of the fragments to an intact bone.
However, this makes sense only if the intact bone has a shape that is very similar to the
broken bone. This could, for instance be the contra-lateral bone, i.e. the same patient’s
corresponding bone from the other side. However, a CT scan of this bone may not be
available for a number of reasons: because of the high additional radiation an additional
CT scan would incur, because it is fractured as well, or because the two contra-lateral
bones differ too much, which is actually the case for some patients.

In our current experiments, we concentrated on the reduction of the two main fragments
of a fractured bone. For long bones, these can typically be described as the proximal and
distal fragment, i.e. the fragment closer or further to the center of the body. Figure 5.20
shows an example of our proposed reduction method. 5.20a shows the segmented surface
of an isolated bone that was broken deliberately for experimental purposes. It was CT
scanned before and after fracturing. The entire bone is actually one of the example data
sets for building our femur model, but it was excluded from the model for this experiment.
At this stage we do not attempt to piece together the fracture as in a jigsaw puzzle. This
is a different problem that may have to be tackled with a completely different method such
as [74].

Instead, we wish to align the proximal and distal fragment with the help of our statistical
model, in order to get an accurate reconstruction regarding the orientation and alignment
of the fragments. For this purpose the model is manually cut into two fragments that
represent roughly the same portion of the bone as the fragments of the broken bone, leaving
out a portion to account for the middle fragment. These model fragments are shown in
their initial position and shape in 5.20a. These are then fitted to the two main bone
fragments with the surface fitting method described in Section 5.2.6.

The fitting consists of finding a rigid transformation for each fragment and a common
set of shape parameters for both fragments together. We denote the distance function to
the broken bone surface as I, the statistical model deformations by uα. The two model
fragments, which are transformed by transformations by Tθ and Tζ, are denoted by Γθ and
Γζ. Then, the fitting can be formulated as minimizing the following distance measure with



(a) Fractured bone with ini-
tial model

(b) Fitted model (c) Completed model (d) Repositioning

Figure 5.20: The proposed automatic fracture reduction: (a) shows a fractured femur and the
initial position of two model fragments. These are then fitted to the fragments of the broken bone
in (b). Presently, we fit only the two main fragments. In the fitting, we find a rigid transformation
for each fragment and a common set of shape parameters. Once these are known, either model
fragment can be completed to the full model (c), and the distal fragment can be repositioned to
the position of the completed model (d).

respect to the shape parameters α and the two sets of rigid transformation parameters θ
and ζ:

D[α,θ, ζ] =
1

2

∫
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(
I
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x+ uα(x)

))2

do(x) +

∫
Γζ

(
I
(
x+ uα(x)

))2

do(x). (5.48)

Once these parameters are known, either model fragment can be completed by applying
the rigid transformation and shape deformation to the full model. In Figure 5.20c, the
proximal fragment is completed in this way. This is the full model that best fits the
position of the proximal fragment as well as the shape of both fragments. As the rigid
transformation from the model to the distal fragment is known, the distal fragment can
then be automatically repositioned to the correct position of within the completed model
as in Figure 5.20d. This is achieved by applying the rigid transformation Tθ ◦ T−1

ζ to the

fragment, aligning it first with the reference model by T−1
ζ and then with the proximal

fragment by Tθ. As a result, we get a proposition of how, based on the model fit, a surgeon
should reconstruct the full bone.



(a) Fractured bone with
initial model

(b) Fitted model (c) Completed model (d) Repositioning

Figure 5.21: (a) shows the fractured bone with the initial model. The model is fitted to the
two main fragments in (b). The proximal model is completed to a full model instance as in (c).
As the rigid transforms between the model and the fragments are known, the distal fragment
can be repositioned as in (d) so that it is properly aligned with the full model and the proximal
fragment.

5.7.1 Open Issues
Figure 5.21 shows a second example of an automatic fracture reduction. We will use it to
illustrate some open issues that will have to be addressed in future research.

Model Fragments

When comparing Figures 5.21 and 5.20, we see that the two bones are fractured in different
places. Consequently, the model fragments that are fitted to the fractured bone have to be
selected differently in order to roughly reflect the same portion of the bone in the model
fragments as in the actual fragments. In the current implementation, we therefore have
to manually cut a different set of fragments from the model for each different fracture.
Obviously, it seems desirable to somehow automate this process in order to automatically
and accurately cut the necessary parts from the model.

Because the proximal fragment in Figure 5.21 is rather short and contains only a small
part of the bone shaft, the accuracy of the fitting, especially at the end of the fragment
where it meets the shaft is not as high as we would like, see Figure 5.21c. Such inaccuracies
could in principle lead to a degradation in the reduction result. On one hand it is a general



problem that smaller fragments, especially those that contain very little of the bone shaft,
provide less information regarding the alignment of the bone. On the other hand, if we
were able to automatically and accurately cut a portion from the model that matches the
actual fragment better, the fitting result at the edge of the fragment should improve.

Bone Length

When we compare the length of the middle fragments, which we did not fit, and the space
that is “reserved” for this fragment in the reconstructed bones in Figures 5.20d and 5.21d,
we see that the reserved space seems to short. Indeed, the reconstructed bone seems a
little too short to fit the middle fragment. This is possible because in the fitting displayed
in Figures 5.20b and 5.21b, the relatively featureless shaft allows for a lengthening or
shortening of the bone without a significant effect in the cost function. In principle, we
would hope that an accurate fit of the prominent features on both ends of the bone, such as
condyles, head and neck of the femur, trochanter etc. would determine the correct length
of the bone, but obviously there is still enough room for error. In fact, while we excluded
the two bones from the model in order to allow for a fair evaluation of the reduction, we
do have the CT scans that were acquired prior to breaking the bones and can use these for
evaluating the reconstruction of the fractured bones. The result of this evaluation can be
seen in Figure 5.22. While we see that the position, orientation and shape of the bones
are accurately reconstructed, we can clearly observe that the length of the intact bone
is not recovered accurately. The problem is not as severe in the first case, Figure 5.22a.
Here, as well as in the example from Figure 5.19 and in an actual operation, the length of
the bone is completely determined by putting together the individual fragments and only
the orientation and rotation of the fragments need to be determined automatically by the
model. Nevertheless, such a reconstruction result is not quite satisfactory.

The problem is much more severe in the second example, Figure 5.22b, where the error
in length estimation is much higher and, secondly, the fracture is so complex that a correct
length estimation could actually support a surgeon in the complicated task of correctly
repositioning the many small fragments of the shattered bone.

So far, it is unclear how this problem in length estimation can be reliably resolved. It
is apparent from these two examples alone that the correlation between the shape of the
proximal and distal ends of the femur and its length is not strong enough to gain a reliable
length estimate just by fitting the proximal and distal ends. If we were able to cut exact
fragments from the model that match the fractured bone’s fragments exactly up to the
fracture site, the fitting result would be improved, including a better length reconstruction.
The problem is however that it is not clear how to cut the correct fragments from the model,
especially since the correct length of the bone is not known and is in general different from
the length of the model’s reference and mean.

With a little bit of user interaction, it would most likely be possible to estimate the total
length of the bone by adding together the length of the individual fragments. Then, the
length of the model could be kept fixed in the fitting process, resulting in a reconstruction
with a more accurate length estimation. This will most likely be the first approach we
will investigate after completion of this thesis, but it would be desirable to find a more



(a) (b)

Figure 5.22: Comparing the reconstructed bones with the known ground truth surfaces, which
were acquired before the bones were broken.

accurate and automatic method, hopefully in conjunction with addressing the other open
questions of repositioning complicated fractures with multiple fragments possibly using
the contour matching approach presented in [74] and automatically cutting appropriate
fragments from the complete model.

It will also be interesting to investigate the correlation between bone shape and length.
Unfortunately, this cannot readily be done with the methods for partial shape modeling
proposed in Section 5.2.3, as these methods assume that the correspondence between model
and target is known, whereas the inaccuracies in the length estimation stem from the fact
that the correspondence in the relatively featureless shaft of the bone are not known and
difficult to estimate.

In conclusion, while our experiments show that it is possible to recover the position
and orientation of bone fragments for an automatic reconstruction, which should rule
out erroneous rotations of over 15 degrees as reported in [40], they also raise many
interesting problems for future research, going as far as posing questions about the concept
of correspondence, which lies at the heart of statistical shape modeling.





6 Discussion

In this thesis, we have presented all the necessary steps for the construction and application
of statistical shape models of human bones. While the broad overall modeling strategy is
still the same as in the Morphable Model introduced in [13], we were able to improve every
step of the process and adapt it to our application of bone modeling.

Because we can hardly expect that anybody will ever adopt the exact same framework
with all the same algorithmic choices and details, we have taken great care to keep the
formulation as general as possible, to separate the theoretical concepts from practical
choices like discretization methods and optimization algorithms.

For our implementation of the registration method, we have chosen the local discontinuous
Galerkin finite element method, because it allows us to compute the registration result
efficiently on an adaptive grid and lends itself particularly well for parallelization. Other
researches may prefer to calculate their registration on a regular grid, possibly using
an implementation on a graphics card to speed up the calculation. By giving a general
continuous formulation of the registration method the complete method, as well as its
individual terms, can be used with any discretization method. In the same way, we can
easily integrate additional terms into our registration functional as long as they are not
specific to a different discretization method.

The lessons we have learned from our experiments certainly apply to all registration
methods: The shapes should be represented by several feature images, at least one that
represents its shape and one that represents its curvature. The standard regularization
term that is based on controlling the first derivative of the registration result should
be complemented with a volume-preservation term to achieve more natural and even
distribution of the volume change that is present in inter-subject registration.

For the shape model, we have also presented a general formulation. It was already seen in
[13] that the same method can be applied to model both the shape and the color of an object.
By formulating the model on a general Hilbert space, we have integrated these and all
other associated models in a single formulation. While this replaced the standard concepts
from linear algebra which were used in [13] with their more complicated counterparts
from functional analysis, we were able to show that all necessary steps for constructing a
model can be formulated on general Hilbert spaces. Specifically, this formulation made
it possible to include the statistical model both in the continuous formulation as well as
in the discretized version of our registration algorithm, in order to make the registration
more robust against outliers and missing data.

We were able to show the benefit of our model in a number of applications, some of
which will hopefully see their adoption into clinical practice in the near future.
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Outlook
How much closer are we to letting computers see and understand images? We were able
to show that for object classes like the femur bone or the skull we can encode a kind of
knowledge about the class in a computer in the form of a statistical shape model and
that this model can be used to find an associated object in an image and interpret it in
terms of the model parameters. Calling this “seeing” and “understanding” is a bit of
an overstatement. But with this model we can perform tasks that are impossible for a
computer without such prior knowledge and that are at least extremely tedious for humans
without computer support. These include describing all shapes that fit a partial data set,
predicting faces from skull shapes, or accurately repositioning the fragments of a broken
bone.

Currently, each object class has to be modeled separately, and we don’t see the develop-
ment of a universal shape model that can model all shapes at once in the future. For the
application of bone modeling for medical applications, this means that a model has to be
constructed for each of the bones in the human body. With new project partners we are
currently acquiring additional data sets for many additional groups of bones. The next
logical step is to combine these models together into a model atlas of the human skeleton.
Our experiments of predicting faces from skull shapes showed how the shape parameters
of two models can be linked together. But modeling complex arrangements like the knee
joint, the spinal column, or the ensemble of bones in the hand will require the additional
modeling of the joint articulation between different bones. Additionally, this requires a
sufficient number of data sets in which several bones are visible. To be able to use more
of the already available data sets, a continued research into methods to use partial and
possibly damaged data is necessary.

Our shape modeling methods can be used to model other objects, for instance other
organs like the heart, liver or kidney. But it is unclear how they can be applied to objects
for which the concept of correspondence does not apply so easily, like vascular trees or
the bronchial tree of the lungs. These can certainly be considered object classes, and
correspondence can be established locally. But establishing overall correspondence like for
the examples in this thesis is not possible, because the individual structure of these trees is
too different from person to person. This also makes it impossible to work with common
reference shapes for these types of object classes.

The strongest point of the Morphable Model is also its weakest point: correspondence.
It allows the efficient modeling of shapes for which correspondence can be established but
also prevents the modeling of shapes for which this is not the case. An important question
for future research is how this concept can be expanded to possibly include uncertain,
multiple, or only locally defined correspondence.

Even for our relatively benign examples of bone models, we have seen that our current
notion of correspondence is too strict for some applications, like the modeling of length
variations of the bone. This problem, along with a better estimation of the bone length
for fracture reduction, will be the next topic we will try to address immediately after
completion of this thesis.
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[28] Andreas Dedner, Marcel Lüthi, Thomas Albrecht, and Thomas Vetter. Curvature
Guided Level Set Registration Using Adaptive Finite Elements. In Pattern Recognition,
volume 4713 of Lecture Notes in Computer Science, pages 527–536. Springer, 29th
DAGM Symposium edition, 2007. pages 17, 18, 29

[29] M. Droske and M. Rumpf. A variational approach to non-rigid morphological registra-
tion. SIAM Appl. Math., 64(2):668–687, 2004. pages 35

[30] Lawrence C. Evans. Partial differential equations. Graduate Studies in Mathematics.
19. Providence, RI: American Mathematical Society (AMS). xvii, 662 p., 1998. pages
19, 38, 39, 42

[31] P. Filzmoser, R. Maronna, and M. Werner. Outlier identification in high dimensions.
Computational Statistics and Data Analysis, 52(3):1694–1711, 2008. pages 106, 107

[32] J.C. Gee and R.K. Bajcsy. Elastic matching: Continuum mechanical and probabilistic
analysis. Brain Warping, 1998. pages 19, 85

[33] J.C. Gee, D.R. Haynor, M. Reivich, and R. Bajcsy. Finite element approach to warping
of brain images. Medical Imaging, pages 327–337, 1994. pages 29

[34] S. Geman and D.E. McClure. Statistical methods for tomographic image reconstruction.
Bulletin of the International Statistical Institute, 52(4):5–21, 1987. pages 32

[35] J.C. Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51, 1975. pages
26

[36] U. Grenander and M.I. Miller. Computational anatomy: An emerging discipline.
Quarterly of applied mathematics, 56(4):694, 1998. pages 19, 22, 61



[37] E. Haber and J. Modersitzki. Numerical methods for volume preserving image
registration. Inverse problems, 20(5):1621–1638, 2004. pages 29, 36

[38] Ian Hylands. Cam McCaul Injury Update. Pinkbike, pages pinkbike.com/news/cam–
McCaul–Injury–update–2010.html, 2010. pages 12

[39] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware,
Inc., 2005. pages 23, 37, 49, 105

[40] RL Jaarsma, DFM Pakvis, N. Verdonschot, J. Biert, and A. van Kampen. Rotational
malalignment after intramedullary nailing of femoral fractures. Journal of orthopaedic
trauma, 18(7):403, 2004. pages 12, 116, 121

[41] S. Lang. Analysis II. Addison-Wesley, 1969. pages 40

[42] Michael E. Leventon, W. Eric L. Grimson, and Olivier Faugeras. Statistical shape
influence in geodesic active contours. cvpr, 01:1316, 2000. pages 13

[43] Nathan Litke, Marc Droske, Martin Rumpf, and Peter Schröder. An image processing
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[57] P. Paysan, M. Lüthi, T. Albrecht, A. Lerch, B. Amberg, F. Santini, and T. Vetter.
Face Reconstruction from Skull Shapes and Physical Attributes. In Proceedings of the
31st DAGM Symposium on Pattern Recognition, page 241. Springer, 2009. pages 19,
112

[58] S. Pieper, M. Halle, and R. Kikinis. 3D SLICER. IEEE International Symposium on
Biomedical Imaging ISBI 2004, 04 2004. pages 23, 24

[59] J.O. Ramsay and BW Silverman. Functional data analysis. Springer Verlag, 2005.
pages 68

[60] T. Rohlfing, CR Maurer Jr, DA Bluemke, and MA Jacobs. Volume-preserving nonrigid
registration of MR breast images using free-form deformation with an incompressibility
constraint. IEEE Transactions on Medical Imaging, 22(6):730–741, 2003. pages 29

[61] D. Rueckert, AF Frangi, and JA Schnabel. Automatic construction of 3-D statistical
deformation models of the brain using nonrigid registration. Medical Imaging, IEEE
Transactions on, 22(8):1014–1025, 2003. pages 85
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