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1 Abbreviations 
11β-HSD1 11β-hydroxysteroid dehydrogenase type 1  

11β-HSD2 11β-hydroxysteroid dehydrogenase type 2  

ABCC ATP-binding cassette, sub-family C (CFTR/MRP), 
member  

ACTH adrenocorticotropic hormone 

ADH alcohol dehydrogenase 

AME apparent mineralocorticoid excess  

ARE antioxidant responsible element 

C/EBP CCAAT/enhancer-binding-protein 

CBX carbenoxolone 

CRD apparent cortisone reductase deficiency  

CRF corticotrophin releasing factor 

CYP11B1 11β-hydroxylase 

DBT dibutyltin 

GA glycerrhetinic acid  

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

GR glucocorticoid receptor 

GRE glucocorticoid response elements 

GSTA2 glutathione S-transferase alpha 2 

H6PDH hexose-6-phosphate dehydrogenase 

HO-1 heme oxygenase 1 

HPA hypothalamic-pituitary-adrenal axis 

HTS high-throughput-screening 

IL-6 interleukine-6 

Keap1 kelch-like ECH-associated protein 1 

MR mineralocorticoid receptor 
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NALD nonalcoholic liver disease 

NASH nonalcoholic steatohepatitis 

NF-κB nuclear factor-kappa B 

NQO1 NAD(P)H dehydrogenase, quinone 1 

Nrf2 nuclear factor (erythroid-derived 2)-like 2 

S sulforaphane 

SCN suprachiasmatic nucleus 

SDR short chain dehydrogenase/reductase  

TBHQ tertiar butyl hydroquinone 

TBT tributyltin 

TNFα tumor-necrosis-factor α 
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2 Summary 
Disturbance of endocrine systems and signaling pathways can lead to severe 

disorders. Such disorders can have endogenous as well exogenous origin. The 

awareness of environmentally occurring xenobiotics that are able to directly interfere 

with and modulate the action of endogenous hormones has driven the need for 

mechanistic studies. Although there is a vast literature on potentially endocrine 

disrupting chemicals, there are only few studies investigating disturbance of 

glucocorticoid action by xenobiotics, despite of the importance of these hormones. In 

this work, the organotin dibutyltin (DBT) was identified as an endocrine disruptor of 

the glucocorticoid pathway. Its extensive use in plastic industry, as well as an 

antifouling agent explains its occurrence in water and seafood. In the present study, 

we were able to show that DBT disturbs GR mediated anti-inflammatory effects. 

Furthermore, DBT was found to potentiate NFκB mediated production of the pro-

inflammatory cytokines IL-6 and TNFα in macrophages. The presented work 

therefore contributes to the mechanistic understanding of DBT-induced 

immunotoxicity.  

There are several therapeutic purposes accompanied by the modulation of the 

endogenous hormone system. In traditional medicines natural compounds, and plant 

extracts are applied since centuries for different purposes, including the treatment of 

diseases such as diabetes and hypertension. The benefits of evidence based 

medicines, even if their mechanisms of action are unknown, are widely accepted. In 

conventional medicine the re-awareness of naturally derived compounds and their 

huge potential promoted the investigation of the underlying specific mechanisms of 

action of such compounds over the last decades. In this context, the present work 

investigated effects of eriobotrya japonica, a plant used for anti-diabetic treatment in 

Chinese medicine. The project aimed to identify potential constituents that are active 

on 11β-HSD1. Several pentacyclic triterpenes were isolated and further 

characterized. These compounds included potent and, compared with 11β-HSD2, 

selective 11β-HSD1 inhibitors such as corosolic acid and urosolic acid, as well as 

urosolic acid derivatives with only low inhibitory potential but considerable synergistic 

effects. Inhibitors for research and/or therapeutic purposes ideally display high 

selectivity to avoid miss-leading interpretations of their action. Furthermore, 

therapeutic intervention requires selective inhibitors to prevent unexpected side 



SUMMARY 

4 
 

effects. The most famous triterpenoid inhibiting 11β-HSD enzymes is glycyrrhetinic 

acid (GA), present in liquorice. GA is a potent, but non-selective inhibitor of both 11β-

HSD isoformes. Recently, GA was used as a starting compound and chemical 

modifications of its back-bone enabled the development of potent and specific 

inhibitors against 11β-HSD2. The present work describes the characterization of 

these novel 11β-HSD2 inhibitors. The inhibitors were characterized for their inhibitory 

potential by determining their IC50 values and selectivity for 11β-HSD enzymes as 

well as their species specificity by using human and mouse enzymes. Moreover, the 

capability for the inhibition of the endogenous 11β-HSD2 enzyme in intact cells was 

investigated. 

Selective inhibition of 11β-HSD1 was proposed over the last years as promising drug 

target to cope with the consequences of obesity and diabetes type II and the 

metabolic syndrome. The present study supports beneficial effects of 11β-HSD1 

inhibition from a different point of view. Our data suggest that excessive 

glucocorticoid activation by 11β-HSD1 may interfere with the antioxidant redox 

pathway by a GR-dependent manner. The present work describes the active 

glucocorticoid-dependent inhibition of classic target genes of the Nrf2-Keap1 

detoxification pathway on both mRNA as well as protein level. Thus, the work 

supports the existence of important cross-talk between GR and Nrf2. Pathologically 

enhanced glucocorticoid activation, as exists in patients with alcoholic liver disease 

(ALD), may impair the cellular detoxification capacity. 

In conclusion, the presented studies highlight different aspects of the interference of 

small molecules with the glucocorticoid pathway, including the endocrine disruption 

by DBT and inhibition of 11β-HSD enzymes, by natural and synthetic compounds. 

The identification and characterization of specific inhibitors against 11β-HSD1 and 

11β-HSD2 offers valuable mechanistic tools. Further, the work provides evidence for 

the interference of 11β-HSD1 action with the antioxidant redox pathway and 

therefore may contribute to a deeper understanding of the pathology of locally 

enhanced glucocorticoids.  

In conclusion, the presented studies should contribute to a better understanding of 

glucocorticoid related pathologies and the underlying mechanisms. 
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3 Introduction 
3.1 Glucocorticoids and mineralocorticoids: a historical 

overview  

In 1951, the Nobel Prize in Medicine or Physiology was awarded to Tadeus 

Reichstein, Philip Showalter Hench and Edward Calvin Kendall for their independent 

work on the “discovery of hormones of the adrenal cortex, their structure and 

biological effects” [1]. However, glucocorticoids were already used back in 1900, 

when Solomon Solis-Cohen administered adrenal extracts to patients suffering from 

asthma [2]. He did not assign the observed beneficial effect to glucocorticoid 

hormones. The isolation and later the chemical synthesis of cortisone allowed to 

investigate the therapeutic effects of glucocorticoids in more depth, and revealed 

their potential in the treatment of inflammatory diseases such as rheumatoid arthritis 

[3, 4]. It is noteworthy, that already in those first studies, side effects such as sodium 

retention, hyperkalemia, psychological changes, as well as bone fractures in 

osteoporotic patients were recorded to accompany systemic glucocorticoid treatment 

[3].  

Synthetic glucocorticoids are potent drugs with a wide spread use in clinics and they 

still represent the most abundantly used and potent anti-inflammatory therapeutic to 

treat infection-related inflammation as well as autoimmune driven inflammatory 

diseases and neuroinflammatory disorders (e.g. multiple sclerosis (MS)) [5-8]. Like 

cortisone, aldosterone was isolated from the adrenals by the group around Tadeus 

Reichstein and reported in 1953 as a compound called “electocortine” [9]. The new 

hormone was isolated, crystallized and described as a hormone “with especially high 

effectiveness on mineral metabolism” [9]. Shortly afterwards electrocortine was first 

termed aldosterone and chemical characterized (C21H28O5) by the same group [10]. 

Hans Selye and co-workers discovered the link between adrenocortical hormones 

and both physiological and pathophysiological stress response [11]. Furthermore, it 

became obvious that glucocorticoids exert important impact on glucose metabolism 

[11]. Selye established a to date existing nomenclature, in order to distinguish 

between glucocorticoids (“sugar active”) and mineralocorticoids (“salt-active”) [11]. 

Indeed, glucocorticoids enhance hepatic gluconeogenesis, reduce glucose uptake in 
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peripheral tissues such as skeletal muscle and thereby retain glucose homeostasis. 

The terminology ”glucocorticoid”, however, does not reflect their highly versatile 

effects on the regulation of expression of up to 20% of the genes in the mammalian 

genome [12]. 

3.1.1 Physiological synthesis and regulation of glucocorticoids 

Systematically, glucocorticoids and mineralocorticoids are synthesized from 

cholesterol by enzymes located in the adrenal glands. The rate limiting step of 

glucocorticoid biosynthesis is controlled by the steroid acute regulatory protein 

(StAR), which regulates uptake of cholesterol into the mitochondrial membrane 

(Figure 1) [13]. 

 

Figure 1. Biosynthesis of steroid hormones in the corresponding zone of the adrenal gland 
(modified from Payne et al. [14]). 

ACTH (adenocorticotropic hormone); StAR (steroid acute regulatory protein); 

CYP11A (P450scc, cholesterol side-chain cleavage); CYP17 (P450c17, 17alpha-

hydroxylase/17, 20 lyase); 3βHSD (3β-hydroxysteroid dehydrogenase/steroid 

isomerase); CYP21 (P450c21, 21 hydroxysteroid dehydrogenase type 1); CYP11B1 

(11β-hydroxylase). 

The final step in the glucocorticoid biosynthesis is mediated by CYP11B1, an 11β-

hydroxylase (Figure 1). The produced glucocorticoids are, regarding their physico-
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chemical properties, expected to pass cellular membranes and enter target cells via 

passive transport. 

The characterization of the adrenal gland and the distinct distribution into three zones 

(Figure 2) was first described in 1886 by Arnolds et al. [15]. 

 

 

Figure 2. Histological overview of a rabbit adrenal gland, reflecting the different functional zones, as well 
as the adrenal medulla and their hormonal release (modified from Austgen et al. [16]). 

The zona glomerulosa forms the outermost area of the adrenal cortex. Following 

stimulation of the renin-angiotensin-system (RAS) (Figure 3) aldosterone, with an 

expected half-life-time of 30 minutes, is secreted into the blood, approximately 250 

μg daily [17]. In contrast, glucocorticoids (cortisol, corticosterone) are synthesised in 

the mid zona of the adrenal cortex, the zona fasciculata. Although the adrenal glands 

secrete certain amounts of cortisone, the majority of the cortisone in the blood is 

produced by the activity of the 11β-hydroxysteroid dehydrogenase type 2 (11β-

HSD2). This enzyme is mainly located in tissues involved in the maintenance of salt-

water homeostasis (see below), where it catalyzes the production of cortisone from 

the circulating free cortisol [18]. 

In plasma, glucocorticoids are 100-1000 times more abundant than 

mineralocorticoids, with a total daily secretion of approximately 20 mg [19] and an 

assumed half-life time of cortisol between 60-80 minutes [20]. The predominant 

glucocorticoid in man is cortisol; however, also small amounts of corticosterone are 
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present in the human plasma. In contrast, cortisol is absent, or has very low plasma 

levels in rodents, with corticosterone being the major active glucocorticoid in mice 

and rats. Glucocorticoid release is daytime-dependent and oscillates following the 

circadian rhythm. The cellular source of the mammalian circadian rhythm is the 

suprachiasmatic nucleus (SCN) localized in the anterior hypothalamus [21]. 

Destruction of the SCN leads to a disturbance in the fluctuation of glucocorticoid 

release over daytime [22]. In human plasma, cortisol reaches the highest levels in the 

morning (20-400 nM) and bottom levels at night (5-100 nM) [23]. 

Glucocorticoid synthesis underlies a strict neuroendocrine regulation controlled via a 

three phased hormonal axis, the hypothalamic-pituitary-adrenal axis (HPA) [24]. 

Glucocorticoids are actively involved in their regulation by various feedback 

mechanisms on their own biosynthesis and secretion [24]. The HPA axis (Figure 3) is 

stress-controlled, thus synthesis of glucocorticoids is enhanced up to five-fold during 

stress [24]. Interference of the renin-angiotensin-aldosterone-system (RAAS) and the 

HPA axis was already shown in animal studies but has not been fully elucidated yet 

in humans [25]. 

 

Figure 3. Overview of HPA axis (blue) and Renin-Angiotensin-System (yellow) with their 
possible interactions. (modified from Baghai et al. [25]). 
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CRH, corticotropin-releasing-hormone; ACTH, adrenocorticotropic hormone; ACE, 

angiotensin-converting enzyme. 

Although free glucocorticoids are secreted into the plasma at high concentrations, 

90% of the plasmatic cortisol and corticosterone is bound to corticosteroid-binding 

globulins (CBG) [26]. These steroid carriers belong to the clade A serine proteinase 

inhibitor (serpin) family, and act as substrates for the neutrophil elastase [26]. 

Proteolytic cleavage of CBG by neutrophil esterases irreversibly destroys 

glucocorticoid binding [26]. Growing evidence suggests, that CBG serves as a 

storage pool for glucocorticoids to enable a direct and acute release of 80% of the 

CBG-bound cortisol at the site of inflammation [27]. Locally released glucocorticoids 

thereby allow a much faster reaction against inflammatory insults. Moreover, in 

mouse strains with low CBG plasma levels (e.g. BC57BL/6) [28] as well as in CBG 

KO-mice [29] an enhanced susceptibility against acute inflammation was observed. 

The main CBG pool is produced by hepatocytes; however, CBG mRNA is also 

expressed in other tissues such as pancreas and kidney that may indicate a defined 

and tissue specific binding of locally occurring glucocorticoids [30]. Low affinity 

binding of cortisol also occurs to albumin in the plasma, thus final free cortisol levels 

are in the range of 4-10% of the total secreted cortisol [31]. Since the affinity of CBG 

is much lower for the inactive glucocorticoid cortisone, and given that the 

concentration of cortisone in the blood is five-times less than that of cortisol, the 

amounts of free cortisol and free cortisone are comparable [18, 32-34]. 

3.1.2 Pathology of impaired glucocorticoid release 

The pathologies of Addison’s disease and Cushing’s syndrome both involve 

disturbances of the glucocorticoid (cortisol) content in the blood and, as a 

consequence, dramatically decreased or increased glucocorticoid-dependent 

functions. Addison’s disease is characterized by reduced cortisol levels leading to 

impaired stress resistance, hypertrophy of the lymphoid organs, weight loss, 

hypoglycaemia and hypotension [35]. Causes for the disease are disruption of 

glucocorticoid biosynthesis as well as autoimmune driven destruction of the adrenal 

cortex. On the other hand, the Cushing’s syndrome is characterized, among others, 

by central obesity, muscle atrophy, hyperglycaemia, elevated cholesterol and insulin 

resistance, as well as severe hypertension and immunodeficiency. This hormonal 
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disorder can be caused by excess of ACTH or CRH, a consequence of pituitary gland 

adenomas or tumors of the adrenal gland [36]. Moreover, iatrogenic causes are 

common after prolonged medication with glucocorticoids [37]. Regardless of the 

reason, the Cushing’s syndrome describes the pathologically enhanced cortisol level 

of the blood. The therapeutic options involve glucocorticoid receptor antagonism 

leading to a normalization of blood pressure [38] or tumor surgery and 

adrenalectomy. 

3.2 Pre-receptor metabolism and action of glucocorticoids 

Although glucocorticoid synthesis and neuroendocrine regulation of glucocorticoid 

release is strictly regulated, glucocorticoid metabolism in peripheral tissues further 

represents a level of regulatory control contributing to the sophisticated network of 

glucocorticoid-mediated regulation of physiological functions. 

3.2.1 11β-hydroxysteroid dehydrogenases 

11β-hydroxysteroid dehydrogenases (11β-HSDs) belong to the superfamily of short 

chain dehydrogenases (SDR), which counts over 46’000 members, of which about 70 

different genes are known in human [39]. Enzymes of the family are present in all 

investigated genomes and seem to be a part of the original enzyme constitution [39]. 

Two distinct functional 11β-HSD glucocorticoid metabolizing enzymes have 

extensively been investigated so far, termed 11β-HSD1 and 11β-HSD2. Both 11β-

HSDs are microsomal, anchoring in the membrane of the endoplasmatic reticulum 

(ER) [40]. The two enzymes share only approximately 18% sequence homology, 

including the active motif consisting of a conserved amino acid triad of tyrosine, 

serine and lysine residues [41]. The catalytic domains of the type 1 and type 2 

enzymes have inverted orientations [42] and opposite catalytic functions 

(summarized in Table 1.). 

Table 1. Overview of biochemical parameters of 11β-hydroxysteroid dehydrogenases type 1 and type 2 

Human 11β-HSD1 11β-HSD2 
CHROMOSOME 1 16 
GENE SIZE [Kb] 30  6.2 
EXON/INTRON 6/5 5/4 
AMINO ACIDS 292 405 
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PROTEIN SIZE [kDa] 34 44 
TOPOLOGY ER-membrane ER-membrane 
CATALYTIC DOMAIN ER luminal orientation Cytoplasmatic orientation 
FUNCTION (IN VIVO) Activation of glucocorticoids Inactivation of glucocorticoids 
COFACTOR NADPH NAD+ 
FUNCTIONALITY Bidirectional  Unidirectional 

REACTION DIRECTION Dehydrogenase and reductase Dehydrogenase 

APPARENT Km 
Cortisone 300-500 nM 
11β-dehydrocorticosterone 300-
500 nM 

Cortisol 50-100 nM 
Corticosterone 5-10 nM 

DOMINANT 
EXPRESSED Adult Fetal/Adult 

FIRST CLONING 1989 (rat liver) 1994 (human and sheep 
kidney) 

DISTRIBUTION 
Hepatocytes, adipocytes, 
macrophages, hippocampal 
neurons, kidney (proximal tubule)

Kidney (distal tubule), colon 
(distal), placenta 

 

3.2.1.1 11β-hydroxysteroid dehydrogenase type 2 

11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) was first cloned from human 

[43] and sheep [44] kidneys, and was found to be highly expressed in kidney, colon, 

pancreas and placenta, as well as in the ovary, prostate, and testis [43]. 11β-HSD2 is 

a NAD+-dependent dehydrogenase catalyzing the conversion of 11β-hydroxy-

glucocorticoids (cortisol, corticosterone) into their inactive counterpart (cortisone, 

11β-dehydrocorticosterone) with high affinity and a Michaelis-Menten constant (Km) 

in the low nanomolar range [43]. 

3.2.1.2 Pathologies related to 11β-hydroxysteroid dehydrogenase type 2 

Cloning of 11β-HSD2 allowed identification of loss-of-function mutations [45]. These 

genetic mutations in the HSD11B2 gene were directly linked to the pathology of the 

syndrome of apparent mineralocorticoid excess (AME) [45, 46]. Patients suffering 

from AME typically present with potassium wasting (hypokalemia) and sodium 

retention, leading to severe hypertension. The treatment includes the administration 

of spironolactone, an unselective antagonist of the mineralocorticoid receptor (MR) 

[47]. In addition, it was shown that liquorice abuse exerts the development of 

symptoms resembling AME [48]. Liquorice contains 11β-glycyrrhetinic acid, an active 

triterpenoid and potent, but unselective inhibitor of both 11β-HSD1 and 11β-HSD2. 
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Mutated 11β-HSD2 raised the molecular explanation for the AME phenotype and 

explained the imbalance between urinary 11β-hydroxy- and 11β-ketoglucocorticoids 

[45, 46]. 

Regarding the action of 11β-HSD2 as “gate-keeper” for the MR, thus primarily 

regulating blood pressure, the deficiency of 11β-HSD2 activity, regardless of its 

reasons (genetic, food-intake/inhibition), can cause of hypertension [49, 50]. 

3.2.1.3 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate-
dehydrogenase 

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) was first cloned from the rat 

liver and reported in 1989 [51]. 11β-HSD1 catalyzes the interconversion of inactive 

(cortisone and 11β-dehydrocorticosterone) and active (cortisol and corticosterone) 

glucocorticoids, however, it acts predominantly as a reductase in intact cells and in 

vivo, using nicotinamideadenine dinucleotide phosphate (NADPH) as cofactor [34]. It 

is highly expressed in liver, gonads, adipose tissue and skeletal muscle, and lower 

expression levels have been found in certain regions of the brain, the lung, testis, 

ovary, adrenal glands and vascular cells [34]. 

In vitro assays using the purified protein revealed that 11β-HSD1 is a bidirectional 

enzyme preferably acting as dehydrogenase catalyzing the oxidation of active 11β-

hydroxyglucocorticoids and using NADP+ as cofactor [41, 52-54]. Initial kinetic 

analyses revealed an apparent Km of 1.8 μM for corticosterone and 17 μM for 

cortisol, respectively [34]. Later, studies with purified protein reported Km values 

between 300-500 nM for corticosterone and cortisol respectively suggesting a loss of 

enzymatic function in some older purification protocols [55]. However, as mentioned 

above, studies in intact cells including fibroblasts, hepatocytes, lung cells, stromal 

adipose cells, and hippocampal neurons revealed that 11β-HSD1 acts predominantly 

as a reducing enzyme generating cortisol or corticosterone and using NADPH as 

cofactor [34]. Data obtained from experiments using intact cells are supported by 

kinetic studies suggesting an apparent Km of about 0.3 μM for cortisone compared 

with a Km of about 2 μM for cortisol [56, 57]. Observations in isolated primary 

hepatocytes led to further confusion since 11β-HSD1 rapidly lost its reductase activity 

after a short cultivation period. In addition, 11β-HSD1 activity was shown to be 

influenced by the differentiation state of a cell, e.g. in 3T3-L1 derived mouse 
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adipocytes, where 11β-HSD1 reductase activity appears during differentiation of 

preadipocytes into adipocytes [58, 59]. 

Recently, the activity of the endoplasmic reticulum luminal enzyme hexose-6-

phosphate dehydrogenase was identified as the determinant of the reaction direction 

of 11β-HSD1 [60] [61]. This enzyme generates NADPH by catalyzing the conversion 

of its substrate glucose-6-phosphate (G6P) to 6-phosphogluconolactone, thereby 

using NADP+ as a cofactor (Figure 4) [60]. Recently, 11β-HSD1 and H6PDH were 

shown to physically interact in the inner part of the endoplasmic reticulum membrane 

[62]. 

 

Figure 4. Physical interaction of H6PDH and 11β-HSD1 in the ER-lumen [63] [62] 

Importantly, a ratio of ten to one or even higher of NADPH/NADP+ is required for 

11β-HSD1 to function as a reductase [54]. Besides the function of H6PDH to 

determine the reaction direction of 11β-HSD1, its activity can modify the effect of 

inhibitors of 11β-HSD1 in intact cells [53]. 

3.2.1.4 Pathologies related to 11β-hydroxysteroid dehydrogenase type 1 

A rare syndrome called apparent cortisone reductase deficiency (CRD) has been 

characterized by androgen excess and decreased urinary excretion of cortisol 

NADPH / NADP+ 

ratio at least 10
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metabolites [64]. Homozygous mutations in the H6PD gene without change in the 

coding sequence of the HSD11B1 [65] as well as heterozygous mutations of the 

HSD11B1 gene without affected H6PD gene [66] were reported for the CRD 

phenotype. 

The metabolic syndrome is characterized by a co-incidence of disturbances such as 

obesity, hypertension, elevated plasma triglycerides, and cardiovascular disease 

(Table 2). Obesity and the possible outcome, the metabolic syndrome, are 

consequences of inappropriate life-style leading to disturbance of multiple pathways. 

Table 2. Metabolic syndrome: proposed components and associated findings (modified from Miranda et 
al. [67]). 

Metabolic syndrome: proposed components and associated 
findings 
Insulin resistance* 
Hyperinsulinemia* 
Obesity: visceral (central), but also generalized obesity * 
Dyslipidemia: high triglycerides, low HDL, small dense LDL* 
Adipocyte dysfunction 
Impaired glucose tolerance or type 2 diabetes mellitus* 
Fatty liver (nonalcoholic steatohepatosis, steatohepatitis) 
Essential hypertension: increased systolic and diastolic blood 
pressure* 
Endothelial dysfunction 
Renal dysfunction: micro- or macroalbuminuria 
Polycystic ovary syndrome 
Inflammation: increased CRP and other inflammatory markers 
Hypercoagulability: increased fibrinogen and PAI-1 
Atherosclerosis leading to increased cardiovascular morbidity and 
mortality * 

*Most widely incorporated into the definition of metabolic syndrome. 

The prevalence of overweight and obesity has been increasing over the last decades 

among the Western population. Nowadays, the metabolic syndrome contributes with 

approximately 10% to the total mortality of developed countries, which is twice as 

high as the tobacco-related mortality [68] (Table 3). Thus, the metabolic syndrome 

has become a serious health concern and represents a cost intensive burden in 

developed countries. 
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Table 3. Contribution of the metabolic syndrome and its components compared with tobacco smoking to 
the total mortality of developed countries [68]. 

account for total mortality in middle-income countries %  
metabolic syndrome 10.00%
high blood pressure (HBP) 5.00%
high cholesterol 2.10%
obesity 2.70%
tobacco smoking 4.00%

 

Although similar symptoms occur in the metabolic syndrome, and in Cushing’s 

syndrome, the metabolic syndrome is not characterized by elevated plasma 

glucocorticoid levels. Interestingly, glucocorticoid levels in the obese but non-diabetic 

condition are even reduced compared with the normal weight status [69]. Obese 

animal models reflect a tissue specific dysregulation of glucocorticoid activation by 

11β-HSD1 in adipose tissue. The animals show normal blood corticosterone levels 

accompanied by increased glucocorticoid activation by 11β-HSD1 in the adipose 

tissue [70]. Results from these in vivo studies resemble those seen in humans with 

similar outcome. Namely, clinical studies clearly demonstrated enhanced 11β-HSD1 

expression in the subcutaneous abdominal adipose tissue in the condition of obesity 

[71-73]. 

Thus, 11β-HSD1 seems to be a promising drug target, and tissue-specific inhibition 

of its reductase activity is expected to be beneficial in obesity and the metabolic 

syndrome, as well as in glaucoma and osteoporosis [34]. 

3.3 The nuclear receptor superfamily 

The nuclear receptor superfamily comprises of 48 members in humans [74]. Most of 

these proteins are ligand-inducible transcription factors involved in the regulation of 

key physiological processes such as metabolism, development and reproduction [74]. 

Receptors of the family share several modulatory domains including the highly 

conserved zinc-finger DNA binding domain (DBD), a more variable carboxy-terminal 

ligand binding domain (LBD) and a highly variable amino-terminal domain [75], 

schematically summarized in Figure 5. 
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Figure 5. Basic common structural organization of the nuclear receptor superfamily (modified from Heizer 
et al. [75]). 

The N-terminal region (NTD) also called A/B domain includes the conserved 

constitutively active transactivation region (AF-1) as well as several autonomous 

transactivation domains (AD). The length of the receptor N-terminus is variable and 

ranges from 50 up to 500 amino acids [76]. 

DNA binding of the receptor is realized by two conserved zinc-finger domains each 

consisting of four cysteines and one Zn2+ ion (P-box). Inside the DBD, the P-box 

generally recognizes the motif AGGTCA in target genes. Furthermore, the DBD is 

responsible for the functional dimerization of the nuclear receptors. Dimerization can 

occur between equal receptors (homodimerization) as well as between different 

nuclear receptors (heterodimerization). The nuclear fate of the receptors is 

dependent on nuclear localization signals (NLS). One of these short sequences is 

located in the hinge (H) region between DBD and LBD. The hinge region is flexible 

and less conserved between the family members [76]. The LBD represents the 

longest coherent region of the sequence. Amino acids forming the motif are less 

conserved; however, the secondary structure comprising 12α-helices is conserved 

among the members. The LBD includes the AF-2 motif responsible for the 

transactivation, as well as a second NLS. Many but not all functions of the LBD are 

ligand-induced, including activator (co-activator binding) and repressor functions (co-

repressor binding) [76]. 

The receptors of the family are defined by a nomenclature based on sequence 

alignments and phylogenetic tree constructs (Table 4). Six different classes are 

distinguished [77]. The systematic nomenclature combines NR for Nuclear Receptor, 

the subfamily 0-6, the group and finally the member number. 
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Table 4. Members and nomenclature and of the nuclear hormone receptors (Modified from Germain et al. 
[77]). 

Names  Nomenclature  Ligand 
TRα NR1A1 Thyroid hormones 
TRβ  NR1A2 Thyroid hormones 
RARα NR1B1 Retinoic acid 
RARβ  NR1B2  Retinoic acid 
RARγ NR1B3 Retinoic acid 

PPARα  NR1C1 Fatty acids, leukotriene B4, fibrates 
PPARβ  NR1C2 Fatty acids 

PPARγ NR1C3 Fatty acids, prostaglandin J2, thiazolidinediones 
Rev-erbα NR1D1 Orphan 
Rev-erbβ NR1D2 Orphan 
RORα NR1F1 Cholesterol, cholesteryl sulfate 
RORβ  NR1F2 Retinoic acid 
RORγ NR1F3 Orphan 
LXRα NR1H3  Oxysterols, T0901317, GW3965 
LXRβ NR1H2  Oxysterols, T0901317, GW3965 
FXRα NR1H4 Bile acids, fexaramine 
FXRβ NR1H5 Lanosterol 

VDR NR1I1 Vitamin D, 1,25-dihydroxyvitamin D3 
PXR NR1I2 Xenobiotics, 16α-cyanopregnenolone 
CAR NR1I3 Xenobiotics, phenobarbital 
HNF4α NR2A1 Orphan 
HNF4γ NR2A2 Orphan 
RXRα NR2B1 Retinoic acid 
RXRβ NR2B2 Retinoic acid 
RXRγ NR2B3 Retinoic acid 
TR2 NR2C1 Orphan 
TR4 NR2C2 Orphan 
TLL NR2E2  Orphan 
PNR  NR2E3 Orphan 
COUP-TFI NR2F1 Orphan 
COUP-TFII NR2F2 Orphan 
EAR2 NR2F6 Orphan 
ERα NR3A1 Estradiol-17β , tamoxifen, raloxifene 
ERβ NR3A2 Estradiol-17β , various synthetic compounds 
ERRα NR3B1 Orphan 
ERRβ NR3B2 DES, 4-OH tamoxifen 
ERRγ NR3B3 DES, 4-OH tamoxifen 

GR NR3C1 Cortisol, dexamethasone, RU486 
MR NR3C2 Aldosterone, spirolactone 
PR NR3C3 Progesterone, medroxyprogesterone acetate, RU486 
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AR NR3C4 Testosterone, flutamide 
NGFI-B NR4A1 Orphan 
NURR1 NR4A2 Orphan 
NOR1 NR4A3 Orphan 
SF1 NR5A1 Orphan 
LRH-1 NR5A2 Orphan 
GCNF NR6A1 Orphan 
DAX-1 NR0B1 Orphan 
SHP NR0B2 Orphan 

 

3.3.1 Glucocorticoid and mineralocorticoid receptor 

Both corticosteroid receptors, the glucocorticoid receptor (GR, NR3C1), and the 

mineralocorticoid receptor (MR, NR3C2), are members of the previously described 

nuclear hormone receptor superfamily. 

In 1985, the GR of human origin was first cloned by Hollenberg and colleges [78], 

soon followed by the cloning of the mouse [79] and rat receptors [80]. Two years 

later, Arriza et al. used complementary DNA of the GR, under the condition of low 

stringency hybridization, to isolate and clone the MR [81]. MR and GR share ~90% of 

the amino acids forming the DNA binding domain (DBD). However, sequence 

homology of the ligand binding domain (LBD) shows only approximately 50% 

homology. GR is expressed in nearly every tissue, whereas MR expression is also 

frequent but more defined. MR is expressed mainly in tissues actively involved in 

salt-water homeostasis. Importantly, however, the receptor is also involved in the 

regulation of biochemical processes that are very distinct from these “classical 

functions”, such as in the limbic system where it regulates behavioral plasticity [82] or 

in the heart [83]. For MR expression and function the presence or absence of 

enzymes controlling the access of active ligand, thereby regulating receptor 

activation need to be considered. (for review see chapter 7). 

The endogenous ligands of GR are cortisol (Kd 10-50 nM) and corticosterone (Kd 

60nM); The widely used synthetic glucocorticoid, dexamethasone has a ten-fold 

higher affinity with a Kd 1-8 nM [84-86]. The MR has broader substrate specificity and 

it binds aldosterone, 11-deoxycorticosterone, corticosterone, cortisol and 

progesterone with Kd 0.5-3 nM [87, 88]. A physiological regulatory mechanism exists 

to protect the MR from activation by glucocorticoids: in tissues where the regulation 
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of the maintenance of salt-water balance takes place, such as the distal tubule and 

the cortical collecting duct of the kidney, distal colon and sweat-glands, the receptor 

is co-expressed with the glucocorticoid inactivating enzyme 11β-HSD2 (see Chapter 

3.2.1 above). A well known GR antagonist is mifepristone (also known as RU-486), 

which was originally developed as a progesterone receptor antagonist to prevent 

pregnancy, but binds also GR with high affinity [89, 90]. The most abundantly used 

unselective MR antagonist is spironolactone, which is still used in the clinics and has 

found recent attention to treat essential hypertension and heart failure [91-93]. Use of 

spironolactone was already reported in 1960 for the treatment of patients suffering 

from edema, congestive cardiac failures and nephrotic syndrome [94]. Another, 

newer MR antagonist is eplerenon (Inspra®), which although selective, has a rather 

low affinity to the receptor (Kd approximately 30 µM) [95]. 

3.3.2 General mechanism of transactivation 

The unliganded receptor is localized in the cytoplasm as part of a multiprotein 

complex, including molecular chaperones such as heat shock protein (HSP) 90, 

HSP70, HSP56, as well as other proteins such as p23 and CYP40. In the presence 

of active hormone ligand, the receptor undergoes conformational changes, dimerizes, 

discloses its NLS and releases associated proteins from the receptor complex [96, 

97].  

Activated GR and MR homodimers translocate to the nucleus with help of the 

importin system [97]. Receptor complexes then bind to glucocorticoid response 

elements (GRE). The GRE consensus sequence is defined as 

GGTACANNNTGTTCT [38]. GREs are located in the promoter region of GR and MR 

target genes. Binding of the active receptor complex and recruitment of the 

transcription machinery leads to the induction or repression of transcription [98, 99]. 

The activity and action of nuclear receptors is further modulated by post-translational 

modifications such as phosphorylation, ubiquitination, SUMOylation, methylation or 

acetylation. Splice variants and variants due to distinct translational initiation with 

different or similar activities of these described nuclear receptors are also known 

[100-104]. 
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3.4 Antioxidant redox pathway 

The antioxidant redox pathway is part of the cellular detoxification system. The 

metabolic detoxification process of cells involves detoxification of xenobiotics as well 

as potential endogenous toxicants with the aim to inactivate the compound and finally 

excrete a water soluble and harmless product. 

In general, detoxification processes can be separated in three different steps, 

involving distinct proteins: 

Phase I reactions: This step is often called functionalization, and reactive groups can 

be introduced in lipophilic molecules to facilitate subsequent conjungation, thereby 

enhancing solubility. Phase I biotransformation involves cytochrom P450 

monooxygenases, monoaminooxigenases and dehydrogenases/reductases that are 

responsible for the oxidation, reduction and hydrolysis of compounds. The metabolic 

products of phase I reactions are often highly reactive metabolites that, if not 

efficiently removed, are able to lead to toxic insults [105, 106]. 

Phase II reactions: These reactions comprise conjugation, of reactive carboxyl, 

hydroxyl, sulfhydryl, and amino groups with glucuronicacid, sulphate or glutathione. 

The products of this metabolic process display higher solubility and are mostly less 

active or even inactive. Conjungation is mediated by a variety of enzymes including 

gluthation-S-transferases, sulfotrasferases, methyltransferases, UDP-glucuronosyl-

transferases and N-acetyltransferases [105, 107]. 

Phase III reactions: These reactions involve transport proteins, such as multidrug 

resistance-related proteins (mdr) and ATP-binding cassette proteins (ABC-

transporters) as well as other transporters and carriers [108], and they mediate 

excretion of the solubilized chemical. 

Enzymes of the antioxidant redox pathway belong to all three phases of the 

detoxification process, with many of them belonging to phase II. However, these 

enzymes and transporters have the commonality of a specific regulatory DNA 

element, which mediates their induced expression after electrophile insults [109-112]. 

One of the first reports on an enzyme later well known as a member of the phase II 

detoxifying machinery was published in 1958 by Ernster et al. [113]. Ernster et al. 
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reported a soluble NAD(P)H: (quinone acceptor) oxidoreductase (NQO1), which was 

present in rat liver homogenates also known as DT-diaphorase [114]. The purified 

NQO1 protein was characterized as a dicoumarol sensitive enzyme, catalyzing a two 

electron reduction reaction [115]. Because of its characteristics, NQO1 was expected 

to play a role in cytoprotection against toxic chemicals [114].  

The identification of additional enzymes responsible for the detoxification of 

xenobiotic insults such as glutathione-S-transferases (GST), promoted research on 

their transcriptional regulation and determining their basal and induced status, 

respectively [116]. Two distinct cis-acting regulatory elements, the xenobiotic 

response element (XRE) and the antioxidant response element (ARE) (also termed 

electrophile response element (EpRE) [117]), were identified and characterized in the 

sequence of GSTs and NQO1 [116, 118-120]. The first characterized XRE was 

known to be part of the regulated DNA of the cytochrome P-450 (CYP1A1) gene. 

However, ARE sequences share little homology with XRE motifs [118] (Table 5). 

Since GST as well as NQO1 are involved in the protection of the cell against 

oxidative stress, AREs were proposed to represent the consensus sequence for a so 

far unidentified transcription factor, which would be constitutively expressed and 

might sense oxidative stress [121]. Additional enzymes such as the billirubin 

converting hemeoxidase 1 (HO-1) [122], and members of the UDP-glucuronosyl 

transferases (UGT) [123], ferritin H, as well as glutamate cysteine ligase catalytic 

subunit [117] were proven to contain AREs in their promoter region. Together, these 

enzymes constitute the family of phase II detoxification enzymes. Enzymes 

responsible for the conjugation of chemicals ensure their final excretion, thereby 

increasing the cellular capacity to cope with endogenous and exogenous oxidants. 

Table 5. Comparison of xenobiotic- (XRE) and antioxidant responsive elements (ARE) [108] 

 Regulatory element 
XRE ARE 

Consensus 
sequence  

5´-C/GT-GCGTG-A/T-3´ 5-gagTcACaGTgAGtCggCAaaatt-3 

First 
identified in  

CYP1A1 GST Ya 

Inducers β-naphthoflavone, tetra-
chlordibenzo-p-dioxin (TCDD) 

t-butylhydroquinone, 
 β-naphthoflavone 

Receptor  Arylhydrocarbon receptor 
(AhR) 

nuclear factor-erythroid 2-related factor 2 
(Nrf2) 
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Later, the nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as Nrf1 were 

shown to be the major transcription factors acting on ARE elements, thereby inducing 

the expression of many phase II enzymes, including NQO1 [124] (Figure 6). 

 
Figure 6. Regulation of NQO1 and GSTA2 by the arylhydrocarbon receptor as well as the Nrf2-Keap1 
pathway reflecting two different detoxification pathways (modified from Nguyen et al. [125]). 

β-NF, β-naphthol; ROS, reactive oxygen species; TCDD, 2,3,7,8-tetraclorodibenzo-p-

dioxin; 3-MC, 3-methylcholanthrene; ARNT, aryl-hydrocarbon receptor nuclear 

translocator; AhR, aryl-hydrocarbon receptor.  

Nrf2 triggers the transcriptional regulation of its target genes upon the induction of a 

broad range of structurally highly diverse chemical classes. 

Chemicals activating ARE include [126]: 

• Synthetic phenolic antioxidants (butylatedhydroantisol, tert-butylhydroquinone) 

• Synthetic antioxidants (ethoxyquin, pyrrolidinedithiocarbamate) 

• Coumarin (hydroxycoumarin) 

• Isothiocyanate (sulforaphane) 

• GSH-depleting agent (diethylmaleate) 

• Phorbol ester (phorbol 12-myristate 13-acetate) 

• Flavonoids (β-naphthoflavone) 

• 1,2-dithiole-3-thione (Oltipraz) 
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3.4.1 Nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2)  

Using the human myelogenous leukaemia cell line K562 and tandem repeats as a 

recognition site Moi et al. cloned a novel member of the NF-EF2 family (Figure 7). 

 

Figure 7. Amino acid sequence of Nrf2 with the already known members of the NF-E2 family (modified 
from Moi et al. [127]). 

The gene was termed Nrf2 and further described as a 2.2 kb transcript, which is 

expressed in heart, brain, placenta, lung, liver, muscle and pancreas and encodes a 

predicted protein of 66 kDa [127]. Cross-species homologs of Nrf2 from chicken 

(ECH) [128] and mouse [129] were identified thereupon. Chromosomal localization of 

the human Nrf2 was defined as 17q2q31 [130]. With respect to the unusual leucine-

zipper motif (hepta repeats of leucines interrupted by a polar asparagine residue) of 

Nrf2, Moi and colleagues postulated Nrf2 to form heterodimers, with a so far 

unidentified protein [127]. Indeed, the interacting protein was isolated by the same 

group and identified as member of the small Maf proteins [131].  

Maf proteins belong to the leucine zipper-containing transcription factors, possessing 

with activator and repressor functions. They lack a transcriptional effector domain 

[132]. Members of the small Maf protein family (MafF, MafG, and MafK) form 

heterodimers with other transcription factors and proteins like Nrf2.  

 

The comparison of the species homologues of the Nrf2 cDNA (Figure 7) led to the 

identification of six conserved regulatory domains (Neh1-6) within the protein [133] 

(Figure 8). 
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Figure 8. The schematic overview of conserved Neh-domains within the Nrf2 protein (modified from Itho 
et al. [133]). 

With respect to its conserved DNA binding domain and the domain responsible for its 

heterodimerization with maf proteins, Nrf2 belong to the Cap n’ Collar (CNC) 

superfamily representing a subclass of the bZIP proteins [134]. 

Nrf2 knock out is not lethal and the transgenes have no obvious phenotype 

concomitant with normal growth and development [135]. However, aged animals 

develop autoimmune related diseases such as multiorgan immune inflammation [136] 

and vacuolar leukoencephalopathy [137]. Furthermore, Nrf2 deficient animals have a 

vastly increased susceptibility for toxic compounds and the development of cancer 

[111, 138-141]. 

3.4.2 The Kelch-like ECH-associated protein1 

The outermost amino-terminal domain (Neh2) of Nrf2 was shown to act as a negative 

regulatory domain [133]. In the same study, a cytoplasmic protein physically 

interacting with Neh2, and negatively influencing the transcriptional activity of Nrf2, 

was identified. The Kelch-like ECH-associated protein 1 (Keap1) [133] was named 

due to its similarity to an actin-binding protein found in Drosophila, and called Kelch 

[142]. Keap1 is able to sequester Nrf2 in the cytoplasm and repress its transcriptional 

activity. Electrophile compounds such as catechol and diethylmaleate abolished 

Keap1-mediated Nrf2 repression in a dose-dependent manner [133]. Chemicals able 

for the activation of the antioxidant redox response pathway (see 3.4) belong to 

different classes comprising highly diverse structures. However, they share the ability 

to modulate and interfere with the Nrf2-Keap1 complex. This action is expected to 

involve oxidative modifications of specific and regulatory cysteines within Keap1 

resulting in a conformational change of Keap1 [143, 144]. Keap1 is a cysteinerich 

protein, and the 25 cysteins of murine Keap1 are conserved for rat and human [133]. 

The different cysteine residues are spread over the five Keap1 domains (Figure 9)  
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Figure 9. Schematic overview of the discrete domains within the Keap1 protein and the localization of 
three important regulatory cysteine residues (modified from Zhang et al. [145]). 

N, N-terminal domain; BTB, Bric-a-brac, Tramtrack, and Broad; Linker, linker-domain; 

kelch, kelch repeat domain; and C, C-terminal domain.  

The protein includes the N-terminal domain, the BTB domain (termed because of the 

similarity to the Drosophila transcription factors Bric-a-brac, Tramtrack, and Broad), 

the central linker domain also called intervening region (IVR), followed by the kelch 

domain, comprising six kelch repeats for human Keap1, and the final the C-terminal 

domain [145, 146]. The kelch-repeats are responsible for binding to cytoskeletal actin 

as well as Nrf2 [133, 147]. The highest modulatory cysteine content can be found in 

the central linker domain [146]. However, not all of these cysteines are regulatory 

[148]. Important cysteines modified by the insult of electrophile compounds are 

mainly located in the central linker domain (C273, C288) but also found in the BTB-

domain (C151). Hereby, the modification pattern and the consequences following on 

the stability of Nrf2 are specific for the electrophile compound [148, 149]. 

Knocking-out the gene encoding Keap1 leads to postnatal lethality [150]. Lethality 

was related to the constitutive activity and dominant nuclear localization of Nrf2 in the 

transgene [150]. Keap1-KO mice suffered from excessive hyperkeratosis, mucosa 

detachment concomitant with inflammatory cell infiltration and, more obvious, severe 

growth retardation [150]. In line with these findings, transgenic mice lacking small Maf 

proteins rescued the lethal phenotype of the Keap1-KO demonstrating that small Maf 

proteins are essential for functionally active Nrf2 in vivo [132]. Confirmative cross-

breeding with Nrf2-KO mice rescued the lethal phenotype of the Keap1-KO [150]. 

The expression of enzymes, known to be part of the inducible detoxification 

machinery regulated by Nrf2, was enhanced in the transgene animal and was further 

shown to be constitutively up regulated without further induction [150]. Impairment of 

Keap1 is further associated with different types of cancer, including lung cancer 

[151]. 
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As a conclusion, both Keap1 and Nrf2 are suggested to act as intracellular sensors 

for oxidative stress, further leading to the transcriptional induction of genes for phase 

II detoxifying enzymes [133]. 

3.4.3 Interaction of Nrf2 and Keap1: Putative mechanism within the 
antioxidant redox pathway 

Upon identification of the key regulators of the ARE pathway (Nrf2, Keap1, MAF) the 

elucidation of the mode of action and of the mechanism responsible for the regulation 

of gene transcription represented a major challenge. Currently, the following 

observations and scenario are accepted among most researchers in the field. 

1. Nrf2 is a functionally active transcription factor that controls basal and 

inducible expression of its target genes [152]. 

2. Keap1 is a constitutively expressed negative regulator of Nrf2. Keap1 acts as 

an adaptor protein, which promotes ubiquitination of Nrf2 by the cullin-3-

dependent pathway [145, 147, 152, 153].  

3. Nrf2 is an unstable protein with short half-life (15-30 min), and its degradation 

via the ubiquitin-pathway is mediated by the 26S-proteasome [154]. 

4. Keap1 contains reactive cysteine residues, some of which were shown to be 

regulatory (Cys: 257, 273, 288, and 297) and therefore expected to act as 

redox sensors. Modification of the regulatory cysteines is electrophile-specific 

and can in some cases stabilize Nrf2 by preventing its degradation [148]. 

Recognition of Nrf2 by Keap1 is mediated by tow highly conserved motifs within the 

Nrf2 protein namely DLG and ETGE. In this process Keap1 is expected to bind Nrf2 

in a Hinge-and-Latch fashion over a two-site-substrate recognition model [155]. The 

stoichiometry of the Nrf2-Keap1 complex is 1:2, while one Nrf2 molecule is bound to 

a homodimer of Keap1. Homodimerization of Keap1 molecules occur between the N-

terminal BTB/POZ motifs. BTB/POZ motifs have been found in zinc-finger proteins, 

and such proteins contain, like Keap1, kelch motifs. Homodimerization instead of 

heterodimerisation is a common characteristic for BTB containing proteins. 

Furthermore, these motifs have been shown to mediate transcriptional repression as 

well as interaction with common co-repressors such as nuclear receptor co-repressor 
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1 (N-CoR) and nuclear receptor corepressor 2 (N-CoR 2 or SMRT). Keap1 acts as 

substrate adaptor protein for the Cul3-dependent E3 ubiquitin ligase complex [145]. 

Ubiquitination of proteins requires a defined lysine residue position on the substrate 

for transfer of the ubiquitin moiety. The DLG motive of the Nrf2 has low affinity for 

Keap1 and functions as latch, responsible for the functional positioning of Nrf2 

molecule for ubiquitination under non stressed conditions [155]. On the other hand, 

the ETGE motif has high affinity and represents the hinge [155]. Within the interaction 

of Nrf2 and Keap1 under non-stressed conditions the lysines comprising the Nhe2 

domain of the Nrf2 substrate are ubiquitinated (Figure 10). 

 

Figure 10. Interaction of Keap1 and Nrf2 over the two-site-substrate mode (modified from Tong et al. 
[155]). 

 

Under stressed conditions, the DLG-mediated binding of Nrf2 to Keap1 is disturbed. 

However, Nrf2 is still bound to Keap1 over the ETGE motif, and ubiquitination of the 

Neh2 domain is no longer possible because of its unfavourable orientation. The 

aforementioned and other findings [110, 125] are also summarized in Figure 11. 
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Figure 11. Putative mechanism for the suppressive action of Keap1 on Nrf2 (right; modified from [110]), 
and the regulation of ARE by Nrf2 (left; modified from [125]). 

Nrf2 itself, without its co-regulator Keap1, is a constitutively expressed nuclear 

protein; however, its cellular localization remained unclear for a long time mainly due 

to technical difficulties [125].  

After protein synthesis of Nrf2 in the cytoplasm, the functional receptor translocates 

into the nucleus. Inside of the nucleus, Nrf2 regulates the transcription of its target 

genes (GSTs, NQO1, HO-1, UGTs, etc.) [118-122]. Hereby Nrf2 forms heterodimers 

with its co-receptor, a member of the small Maf proteins [111, 131]. Under basal 

conditions, Nrf2 undergoes rapid proteosomal degradation [133, 145, 153], a process 

regulated by Keap1. Functional Nrf2 is translated into the cytoplasm, where it is 

sequestered by the constitutively expressed repressor Keap1 [144]. Modification of 

reactive cysteines of Keap1, due to electrophile insult of endogenous or exogenous 

electrophile species renders the capacity of Keap1 to promote Nrf2 proteosomal 

degradation [147, 148, 156]. This cytosolic fraction of Keap1 becomes saturated by 

Nrf2. Freshly produced Nrf2 can now enter the nucleus to regulate the transcription of 

target genes as already described above [110].  

Whether Keap1 is able to translocate into the nucleus to remove Nrf2 by 

ubiquitination from these compartment, or whether Nrf2 is actively shipped from the 

nucleus into the cytoplasm by Keap1 for the later degradation, requires further 

studies [125, 147]. Furthermore, Nrf2 phosphorylation affecting its stability or 

transcriptional activity are described processes; however, there are still open 

questions that remain to be answered [143, 157]. 
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The Study revealed the disruption of GR-dependent action in general and especially 

in inflammation by dibutyltin. 
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In this publication, we used a pharmacophore-based virtual screening approach to reveal 

selective 11β-HSD1 inhibitors from the leaves of loquat (eriobotrya japonica) a known anti 

diabetic in Chinese medicine; the most promising hits were evaluated using in vitro assays. 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

42 
 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

43 
 

 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

44 
 

 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

45 
 

 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

46 
 

 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

47 
 

 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

48 
 

 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

49 
 

 



11β-HSD1 INHIBITORS FROM ERIOBOTRYA JAPONICA 

50 
 

 

 



11β-HSD2 INHIBITORS 

51 
 

6 CHARACTERIZATION OF ACTIVITY AND BINDING 
MODE OF GLYCYRRHETINIC ACID DERIVATIVES 
INHIBITING 11β-HYDROXYSTEROID 
DEHYDROGENASE TYPE 2 

 

Denise V. Kratschmara,1, Anna Vuorinenb,1, Thierry Da Cunhaa, Gerhard Wolberc,d, 

Dirk Classen-Houbene, Otto Doblhoffe, Daniela Schusterb,∗, Alex Odermatta,∗∗ 

 
a Swiss Center for Applied Human Toxicology and Division of Molecular and Systems 

Toxicology, Department of Pharmaceutical Sciences, University of Basel, 

Klingelbergstrasse 50, CH-4056 Basel, Switzerland 
b Institute of Pharmacy, Department of Pharmaceutical Chemistry and Center for 

Molecular Biosciences Innsbruck – CMBI, University of Innsbruck, Innrain 52c, 

A-6020 Innsbruck, Austria 
c Free University Berlin, Institute of Pharmacy, Pharmaceutical Chemistry, Königin-

Luise-Str. 2+4, 14195 Berlin, Germany 
d Inte:Ligand GmbH, Mariahilfer Str. 74B/11, 1070 Vienna, Austria 
e onepharm Research & Development GmbH, Veterinärplatz 1, 1210 Vienna, Austria 

 

 

 

 

 

 

 

In this publication, we characterized a set of novel glycyrrhetinic acid derivates for 

their selective inhibition potential against 11β-HSD2. Inhibitors were developed by 

chemical modification of the glycyrrhetinic acid backbone 
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7 TISSUE-SPECIFIC MODULATION OF 
MINERALOCORTICOID RECEPTOR FUNCTION BY 
11β-HYDROXYSTEROID DEHYDROGENASES: AN 
OVERVIEW 

Alex Odermatt*1 and Denise V. Kratschmar1 

1 Division of Molecular and Systems Toxicology, Department of Pharmaceutical 

Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland 

7.1 Abstract 

In the last decade significant progress has been made in the understanding of mineralocorticoid 
receptor (MR) function and its implications for physiology and disease. The knowledge on the 
essential role of MR in the regulation of electrolyte concentrations and blood pressure has been 
significantly extended, and the relevance of excessive MR activation in promoting inflammation, 
fibrosis and heart disease as well as the adverse effects on brain function is now widely 
recognized. Despite this considerable progress, the mechanisms of MR function in various cell-
types are still poorly understood. Key modulators of MR function include the glucocorticoid 
receptor (GR), which may affect MR function by formation of heterodimers and by differential 
genomic and non-genomic responses on gene expression, and 11β-hydroxysteroid 
dehydrogenases (11β-HSDs), which determine the availability of intracellular concentrations of 
active glucocorticoids. In this review we attempted to provide an overview of the knowledge on MR 
expression with regard to the presence or absence of GR, 11β-HSD2 and 11β-HSD1/hexose-6-
phosphate dehydrogenase (H6PDH) in various tissues and cell types. The consequences of cell-
specific differences in the coexpression of MR with these proteins need to be further investigated 
in order to understand the role of MR in a given tissue as well as its systemic impact. 

 

7.2 Introduction 

The use of complementary DNA of the 
glucocorticoid receptor (GR, systematic name 
NR3C1) and low-stringency hybridization by 
Arizza et al. led to the identification of a cDNA 
coding for a 107 kDa polypeptide, which was 
functionally characterized as mineralocorticoid 
receptor (MR) [1]. The MR is also known as 
aldosterone receptor and under the systematic 
name NR3C2 (Nuclear Receptor subfamily 3, 
group C, member 2). MR and GR share about 
90% amino acid homology in their DNA binding 
domain (DBD) but only about 50% in their 
ligand binding domain (LBD). Evolutionary 
analyses suggested that MR and GR evolved 
from a common ancestor and that the MR was 
the first to diverge from the ancient receptor 
gene [2, 3]. Importantly, MR existed well before 
aldosterone appeared in evolution, whereas 
GR seems to have appeared later in evolution. 
This may explain the rather broad substrate 
specificity of MR, compared with the more 
selective GR. Whereas MR binds aldosterone, 
11-deoxycorticosterone, corticosterone, 

cortisol and progesterone with similarly high 
affinities and Kd values between 0.5 and 3 nM, 
GR shows a higher selectivity to cortisol and 
corticosterone with Kd values of 20-70 nM [1, 
4, 5].  

The cloning of MR allowed its exact 
localization in various tissues and identification 
of specific cell types expressing this receptor. 
The subsequent cloning of 11�-hydroxysteroid 
dehydrogenase type 1 (11�-HSD1)[6] and 
11�-HSD2 [7, 8] and determination of their 
tissue- and cell-specific expression patterns 
then allowed a comparison with the expression 
pattern of MR and GR. It soon became clear 
that MR is not only expressed in cells where 
11β-HSD2 acts as a “gate-keeper” to protect 
MR from high concentrations of glucocorticoids 
and rendering specificity for aldosterone [9, 
10]. As discussed below, the MR plays an 
important role in cells coexpressing 11�-
HSD1, including macrophages, 
preadipocytes/adipocytes, 
osteoblasts/osteoclasts, and microglia cells, by 
modulating cell proliferation and inflammatory 
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response. Thus, the classic view of 
mineralocorticoid target tissues, where MR 
function is strictly regulated by aldosterone, 
has to be reconsidered. 

 

7.3 Kidney 

The kidney is considered as the classical 
mineralocorticoid target tissues. High-affinity 
aldosterone binding sites, corresponding to 
MRs, and lower affinity glucocorticoid binding 
sites, corresponding to GRα, have been 
characterized in rat kidneys almost 40 years 
ago [11, 12]. Aldosterone-induced renal 
epithelial sodium transport was found to be 
dependent on a nuclear transactivating 
receptor that was later identified as MR [1, 13]. 
The MR has similar high affinities to bind 
aldosterone, progesterone, 11-
deoxycorticosterone, corticosterone and 
cortisol, with Kd values between 0.5 and 3 nM 
[1, 4], whereas the GR shows higher ligand 
selectivity but approximately 20-fold lower 
affinity for cortisol and very weak affinity for 
aldosterone (Kd about 500 nM). The 
identification of 11β-HSD2 as a “gate-keeper” 
to protect MR from active 11β-
hydroxyglucocorticoids (cortisol in humans, 
corticosterone in rodents) that are present in 
plasma at about 1000-fold higher 
concentrations than aldosterone provided an 
explanation for the specificity of this receptor 
towards aldosterone [9, 10]. 

Investigation of the expression of MRs in 
human, rat and rabbit kidney revealed 
colocalization with 11β-HSD2 in the distal 
tubules and cortical collecting ducts (Table 1) 
[14-19]. 11β-HSD2 is an endoplasmic 
reticulum (ER) resident enzyme with its 

catalytic domain facing the cytoplasm [20-22]. 
Experiments with cultured cells expressing 
recombinant MR and 11β-HSD2 revealed a 
tethering of the receptor to 11β-HSD2 at the 
ER membrane in the absence of steroid 
hormones as well as in the presence of low 
concentrations of cortisol [23]. In contrast, low 
concentrations of aldosterone were efficient to 
induce almost complete translocation of MRs 
into the nucleus and to stimulate the 
expression of a GR/MR-dependent reporter 
gene (MMTV-lacZ). High concentrations of 
cortisol or corticosterone (>250 nM) led to the 
activation of MR, probably as a result of 
saturation of 11β-HSD2. These experiments 
suggested a close proximity of MR and 11β-
HSD2, allowing the latter to efficiently 
inactivate cortisol at the site of the receptor 
and preventing binding of the active 
glucocorticoid at low concentrations, i.e. at 
nadir of circadian rhythm.  

In a recent study, Ackermann et al. used MR- 
and GR-specific antibodies to determine the 
localization of the receptors in kidneys of rats 
with altered aldosterone and corticosterone 
levels [19]. Immunohistochemistry detected 
MR and GR in the nuclei of the aldosterone-
sensitive distal nephron, including cells of the 
late distal convoluted tubule, connecting tubule 
and collecting duct. These cells also express 
high levels of 11β-HSD2 (Figure 1). 

 

 

Figure 12 Schematic overview of the mineralocorticoid receptor (MR) and glucocorticoid 
receptor (GR) regulation in with respect to the expression of 11β-hydroxysteroid 
dehydrogenases (11β-HSDs) and hexose-6-phosphate dehydrogenase (H6PDH) in cells of pro 
ximal tubules (PCT) and cortical collecting ducts (CCD). 
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In addition, MR and GR expression was found 
in the thick ascending limb and in intercalated 
cells, where 11β-HSD2 is absent. It was 
suggested that MR in intercalated cells may be 
involved in proton secretion, thereby playing an 
essential role in acid/base regulation. The role 
of MR in these cell types remains to be 
elucidated. In rats on a high-salt diet, which is 
known to lower plasma aldosterone, MR 
localization to the nuclei was unchanged, 
whereas GR localized to the cytoplasm in the 
aldosterone-sensitive distal nephron. The 
actual diet-induced changes in circulating 
aldosterone and corticosterone levels, 
however, have not been determined in this 

study. Also, it remains unclear how altered 
aldosterone levels might affect GR but not MR 
localization. Furthermore, the time point where 
the samples have been taken is not indicated, 
and it will be important to compare the 
localization of MR and GR in different cell 
types during peak glucocorticoids and at nadir 
during circadian rhythm. Nevertheless, the 
authors observed cytoplasmic localization of 
both MR and GR in adrenalectomized rats, and 
low dose corticosterone replacement led to 
nuclear translocation of MR but not GR. The 
GR translocated to the nuclei only in cells not 
expressing 11β-HSD2. 

GR was found to be coexpressed with 11β-
HSD1 and H6PDH mainly in the third segment 
of the proximal tubules [24-26] and probably 
plays a role in regulating glucose and lipid 
uptake and metabolism. Chronically elevated 
glucocorticoid activation in proximal tubules is 
likely to cause adverse metabolic effects and 
disturbances in transport processes in these 
cells and warrants further investigation.  

Several investigators reported the expression 
of MR in glomerular mesangial cells and 
observed aldosterone-induced cell proliferation 
[27-32]. A recent study with cultured rat 
mesangial cells provided evidence for the 
involvement of the MR in the stimulation of 
mesangial cell proliferation by high glucose 
medium [29]. Induction of cell proliferation was 
prevented by incubation with an antagonist and 
siRNA against MR and by an inhibitor of 
extracellular signal-regulated kinase kinase 
(MEK). Furthermore, aldosterone-dependent 
apoptotic and mitogenic effects were 
demonstrated in human mesangial cells [30]. 
The pro-apoptotic effects of aldosterone were 
prevented by co-treatment with spironolactone 
as well as by antioxidants and free radical 
scavengers. Aldosterone has been shown to 
increase reactive oxygen species (ROS) 
production by a mechanism involving activation 
of NADPH oxidase in renal and cardiovascular 
tissues [33-38]. Long-term administration of 
aldosterone to rats caused mesangial cell 
proliferation and expansion of the mesangium 
[37]. Thus, exposure to chronically high 
aldosterone levels might cause mesangial cell 
damage, independent of its hemodynamic 
effects.  

Glomerular mesangial cells were initially 
reported to express 11β-HSD1, and an 
upregulation of its expression was observed in 
the presence of the pro-inflammatory cytokines 
TNF-α and IL-1β [39]. However, other 
investigators reported expression of MR, 

aldosterone synthase (CYP11B2) and 11β-
HSD2 in rat mesangial cells, and provided 
evidence for a role of mitogen-activated protein 
kinase 1/2, cyclin D1 and cyclin A in the 
aldosterone-induced mesangial cell 
proliferation and of a Smad2- and TGF-β1-
dependent stimulation of fibronectin production 
[32, 40, 41]. The expression and role of the 
respective 11β-HSD enzyme and species 
differences have to be studied.  

Recent evidence suggested that elevated 
CYP11B2 levels and MR activation in 
podocytes may contribute to the progression of 
diabetic nephropathy [42, 43]. Immortalized 
podocytes expressing MR, CYP11B2 and 11β-
HSD2 were incubated with physiological (5.6 
mM) and high (30 mM) concentrations of 
glucose [42]. MR and CYP11B2 expression 
were increased upon high glucose treatment, 
whereas 11β-HSD2 was not altered. Enhanced 
MR and CYP11B2 expression was also found 
in glomeruli of streptozotocin treated diabetic 
rats, and aldosterone levels were increased in 
these animals. Furthermore, treatment of type 
2 diabetic Otsuka-Long-Evans-Tokushima-
Fatty (OLETF) rats with the MR antagonist 
eplerenone enhanced the blood pressure-
independent anti-proteinuric effects of 
angiotensinogen II type 1 receptor blocker. 
These observations indicate that chronically 
elevated MR activity may contribute to 
impaired glomerular function by adverse 
effects on podocytes.  

The bidirectional enzyme 11β-HSD1 has been 
detected in renal medullary and interstitial cells 
that express GR but not MR [25, 44]. 
Interestingly, H6PDH seems to be absent in 
these cells suggesting that another enzyme 
might provide NADPH in the ER or that 11β-
HSD1 might act as a dehydrogenase in these 
cells to modulate GR activity. The role of 11β-
HSD1 in the modulation of GR function in 
these cells remains to be clarified.  
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Thus, there are several cell types in the kidney 
where the classical view of MR function does 
not apply. Future studies have to face the 
challenge to uncover the mechanisms of MR 
activation and its consequences in these cells 

as well as to elucidate the cross-talk between 
different renal cells, and between renal cells 
and cells of the vasculature, adipose tissue 
and immune system 

 

Table 6 Expression and Protein appearance of MR, GR, 11β-HSD1, 11β-HSD2 and 
H6PDH in kidney specific cell types. 

KIDNEY MR GR 11β-HSD1 11β-HSD2 H6PDH 

 

Protei
n R

N
A

 

Protei
n R

N
A

 

Protei
n R

N
A

 

Protei
n R

N
A

 

Protei
n R

N
A

 

Kidney     

+ 

[25] 

+ 

[46] 

[25]   

+ 

[25] 

+ 

[25] 

Glomerulus 

- 

[15] 

- 

[19] 

[55] 

+ 

[15] 

[19] 

+ 

[19] 

- 

[26]    

+ 

[25]  

Aldosterone-sensitive distal 
nephron (ASDN) 

+ 

[19] 

[56] 

+ 

[56] 

+ 

[19]    

++ 

[19]  

+ 

[25]  

Segment-specific cells of late 
distal convoluted tubule (DCT2) 

+ 

[19] 

[15] 

[14] 

+ 

[19] 

[55] 

+ 

[15] 

+/- 

[19]   

- 

[55] 

++ 

[19] 

[14] 

++ 

[14] 

[55] 

+ 

[25]  

Distal convoluted tubules (DCT) 

+ 

[15] 

[14] 

[50] 

[19] 

[57] 

+ 

[19] 

[58] 

++ 

[55] 

+ 

[15] 

[19] 

+ 

[55] 

[19]  

- 

[55] 

+ 

[53] 

[14] 

[19] 

[24] 

- 

[14] 

+ 

[25]  

Connecting tubule (CNT) 

+ 

[19] 

[15] 

[14] 

+ 

[19] 

+ 

[19] 

[15] 

+ 

[19]   

++ 

[19] 

[53] 

[14] 

++ 

[14] 

+ 

[25]  
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[57] 

Cortex 

+ 

[56] 

+ 

[56] 

[55] 

+ 

[19] 

++ 

[55]   

+ 

[19] 

+ 

[55] 

+ 

[59] 

[25]  

Interstitial cells of the medulla     

+ 

[24] 

[26] 

[25]    

-/(+) 

[25]  

Inner medulla  

+ 

[55] 

+ 

[60] 

+ 

[55]  

+ 

[55]   

++ 

[59] 

++ 

[25]  

Collecting duct (CCD). 

+ 

[19] 

[14] 

[57] 

[15] 

++ 

[19] 

[61] 

[55] 

[58] 

+ 

[19] 

 

+ 

[61] 

[55] 

[19] 

 

- 

[25] 

  

++ 

[19] 

[53] 

[14] 

[62] 

[24] 

[62] 

++ 

[14] 

 

+ 

[25]  

Outer medullary collecting ducts 
(OMCD) 

+ 

[15] 

+ 

[19] 

[55] 

+ 

[15] 

+ 

[19]   

++ 

[14] 

++ 

[14] 

+ 

[25]  

Inner medullary collecting ducts 
(IMCD) 

+ 

[15] 

+ 

[19] 

+ 

[15] 

+ 

[19]   

+ 

[14] 

+ 

[14] 

+ 

[25]  

Intercalated cells (IC) 

- 

[15] 

[14] 

+ 

[19]  

+ 

[19] 

    

+ 

[19]  

+ 

[25]  

Proximal tubule (PT) cells 

- 

[50] 

[15]  

+ 

[50] 

[19] 

++ 

[55] 

+ 

[24] 

+ 

[55]  

- 

[55] 

+ 

[25]  
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Proximal convoluted ( PCT) 

- 

[15] 

- 

[19] 

[55] 

+ 

[19] 

+ 

[19] 

  

+ 

[55]  

- 

[55] 

+ 

[59] 

++ 

[25]  

P1        

- 

[55] 

+/- 

[59] 

[25]  

P2        

- 

[55] 

+ 

[59] 

[25]  

P3     

+ 

[26]   

- 

[55] 

++ 

[59] 

[25]  

Proximal straight tubules (PST) 

- 

[15] 

- 

[19] 

[55] 

- 

[15] 

+ 

[19]    

- 

[55] 

+ 

[25]  

Thick ascending limb (TAL) 

+ 

[19]  

+ 

[19]    

- 

[14] 

- 

[14] 

+ 

[25]  

Outer medullary thick ascending 
limbs (OMTAL) 

++ 

[15] 

+ 

[19] 

+ 

[15] 

+ 

[19]     

+ 

[25]  

Medullary thick ascending limbs 
(MTAL) 

+ 

[15]  

++ 

[15]      

+ 

[25]  

Cortical thick ascending limbs 
(CTAL) 

++ 

[15] 

[14] 

+ 

[19] 

+ 

[15] 

+ 

[19]     

+/- 

[59]  

Macula densa 

+ 

[14]    

+ 

[25]    

+ 

[25]  

Henle's loop thin parts of the loop 

+ 

[15] 

+ 

[58] 

+ 

[15]      

+ 

[25]  

Interstitial cells papilla 

+ 

[15]  

+ 

[15]  

+ 

[24] 

[26]    

- 

[25]  



MR EXPRESSION AND REGULATION 

72 
 

Pappilar surface epithelium 

+ 

[15]  

+ 

[15]      

+ 

[25]  

 

7.4 Gastrointestinal tract 

The MR plays an important role in the 
gastrointestinal tract in water and electrolyte 
control as well as the regulation of 
inflammation. In the stomach aldosterone is 
involved in the regulation of electrolyte 
transport associated with gastric acid 
secretion. Specific aldosterone binding sites 
were detected in the gastric fundic mucosa but 
not in antral mucosa [45]. Colocalization of MR 
with 11β-HSD2 could be shown on the basis of 
protein as well as mRNA in parietal cells of the 
gastric fundic mucosa. In the stomach the 
transport of sodium, potassium, chloride, 
bicarbonate and protons is mainly mediated by 
membrane proteins of parietal cells. The 
gastric fundic mucosa cells therefore resemble 
renal distal tubular epithelial cells as classic 
mineralocorticoid targets. The relevance of 
functional MR in the stomach was further 
demonstrated by the reduced gastric acid 
secretion after adrenalectomy [45]. 

Interestingly, Brereton et al. reported the 
expression of 11β-HSD1 in parietal cells of the 
stomach using immunohistochemistry [24]. The 
expression of 11β-HSD1 in stomach was 
verified by Moore et al. using RNase protection 
assay [46], and H6PDH expression was also 
reported in stomach [25]; however, in these 
studies the specific cell types of expression 
have not been determined and it needs to be 
clarified whether 11β-HSD1 activity indeed 
might play a role in parietal cells or whether it 
is restricted to other cell types. 

The distal colon is a well accepted 
gastrointestinal mineralocorticoid-responsive 
tissue [47-49]. Specific binding of radiolabeled 
aldosterone provided evidence for MR 
expression in sigmoid, descending and 
transverse colon as well as epithelial cells of 
ascending colon, caecum and ileum in humans 
[49]. In contrast, Fukushima et al. detected MR 
in adult human gut cells using a polyclonal 
antibody [50]. They observed high expression 
levels in the ascending colon but weak staining 
in the transverse colon and no signals for 
goblet cells, jejunum and ileum. Hirasawa et al. 
investigated the expression of MR and 11β-
HSD2 in adult and fetal tissues [51, 52]. They 
found coexpression of MR and 11β-HSD2 in 
the absorptive epithelia of duodenum, jejunum, 

ileum, colon, and excretory ducts of anal and 
esophageal glands in adult tissues [52]. High 
expression of MR and 11β-HSD2 was 
observed in colonic epithelium and weak 
expression in the superficial epithelium of the 
small intestine, suggesting relevant MR action 
in the upper fetal gastrointestinal tract [51]. 
Smith et al. reported immunoreactivity for 11β-
HSD2 in ileal enterocytes, colonic absorptive 
cells and epithelial goblet cells. Lamina 
propria, Peyer’s patch and goblet cells within 
the crypts of Lieberkuhn did not stain positive, 
while the rectum contained both negatively and 
positively staining cells. 

The expression of 11β-HSD2 was further 
characterized by Naray-Fejes-Toth et al. in a 
novel transgenic mouse strain expressing a 
Cre recombinase under the control of the 
endogenous 11β-HSD2 promoter [53]. 
Classical mineralocorticoid target tissues as 
well as non-aldosterone-sensitive tissues were 
evaluated for galactosidase-mediated staining 
and results were confirmed by counterstaining 
with specific antibodies against 11β-HSD2. 
The iCre excision could be detected in colon 
epithelial cells, cells of the external muscular 
layers and for the jejunum. 

11β-HSD1 expression has been found in small 
intestine [46]. In addition, 11β-HSD1 
expressing macrophage may play a role in 
inflammation of the colon by producing active 
glucocorticoids locally at the site of 
inflammation. In human and rat colon samples 
upregulation of 11β-HSD1 and a concomitant 
downregulation of 11β-HSD2 was observed in 
colitis, indicating a role for local glucocorticoid 
metabolism in the regulation of colonic 
inflammation [54]. Future studies should 
address the interactions between colon 
epithelial cells and macrophage during 
inflammation. 

7.5 Adrenals 

The adrenal cortex can be divided into the 
zona glomerulosa, zona fasciculata and zona 
reticularis, whereby aldosterone is synthesized 
in the zona glomerulosa, and basal and 
induced glucocorticoid production occurs in the 
zona fasciculata. The distribution of MR and 
GR expression within the adrenal gland 
remains to be investigated. However, studies 
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with GR and MR knockout mice indicated 
important roles of these receptors for adrenal 
function. In fetal adrenal glands of GR 
knockout mice, which die immediately after 
birth, an extensive hypertrophy and 
hyperplasia of the cortical zones of the adrenal 
gland was observed with a disorganized and 
reduced medullary region and a lack of 
adrenalin producing cells [55]. Hubert et al. 
studied the impact of MR gene disruption on 
the renin angiotensin aldosterone system in 8 
days old mice [56]. These mice developed 
pseudohypoaldosteronism type I with high 
plasma renin, angiotensin II and aldosterone. 
Histological analyses revealed a significantly 
enlarged zona glomerulosa, which extended 
more deeply toward the medullary region than 
in wild-type mice. The zona fasciculata was 
reduced and hardly detectable in MR knockout 
animals. Importantly, renin mRNA expression 
was hardly detectable in wild-type and 
heterozygous mice but up to ten-fold higher in 
the enlarged zona glomerulosa of MR 
knockout mice. In contrast, angiotensin 
receptor 1 mRNA was not changed, whereas 
angiotensin receptor 2 was two-fold lower in 
adrenals of MR knockout mice. It is not clear 
whether the observed changes in the adrenal 
glands are exclusively a result of the systemic 
effects of the severe sodium depletion and 
hypovolemia and adaptive responses or 
whether MR and GR in specific cells of the 
adrenal gland might contribute to these 
disturbances. 

Using in situ hybridization Shimojo et al. found 
11β-HSD1 predominantly in cells at the cortico-
medullary junction within the inner cortex, 
where it was proposed to play a role in 
regulating the supply of cortex-derived 
corticosterone to the medullary chromaffin cells 
[57]. Other investigators applied 
immunohistochemistry and detected 11β-
HSD1 in the outer layer of cells corresponding 
to the glomerulosa but not in the fasciculata 
and reticularis [24, 25]. They observed 
occasional spots and short streaks radiating 
through the zona fasciculata and reticularis 
and associated this expression pattern to 
neuronal cells and/or interstitial fibroblasts. 
Some staining for 11β-HSD1 was also 
observed in the medulla. A relatively high 
expression of H6PDH has been found in 
adrenals from rats, with highest expression in 
chromaffin cells [25]. Thus, H6PDH is not 
coexpressed with 11β-HSD1 in chromaffin 
cells and the role of NADPH generation in the 
ER of these cells remains to be determined.  

11β-HSD2 mRNA was more abundant in the 
cortex compared with medulla and its 
expression was uniformly distributed over the 
adrenal gland [57]. In humans, 11β-HSD2 was 
not detected in adult adrenals but in fetal tissue 
[58]. Similarly, 11β-HSD2 could not be 
detected in adrenals from adult mice [53, 59]. 
In contrast, 11β-HSD2 was detected by 
immunohistochemistry in the fasciculata and 
reticularis but not in the glomerulosa and 
medulla. 11β-HSD2 staining was observed in 
cord-like structures, consistent with expression 
in steroid-secreting cells.  

Future studies should address the role of 11β-
HSDs and their corresponding receptors on 
adrenal function. There is limited knowledge on 
impaired function of these enzymes in adrenals 
in inflammation and metabolic diseases.  

7.6 Immune system 

Glucocorticoids are potent modulators of the 
immune system and most of their effects are 
mediated either directly or indirectly by GR [60, 
61]. In clinics, glucocorticoids still belong to the 
most abundantly used and potent anti-
inflammatory therapeutics. Numerous synthetic 
steroids are available such as dexamethasone, 
betamethasone, triamcinolone, budenoside, 
prednisolone and others. Glucocorticoids are 
widely used to treat acute inflammation as well 
as autoimmune driven chronic inflammatory 
diseases and neuroinflammatory disorders [62-
64]. In contrast, much less is known on the role 
of MR in the regulation of immune functions.  

Several studies showed that monocytes and 
macrophages coexpress MR and GR [65-71]. 
Interestingly, 11β-HSD1 is absent in the 
undifferentiated and cycling monocytes [72]. 
Once activated and recruited to the inflamed 
tissue, monocytes undergo differentiation into 
macrophages. During this process 11β-HSD1 
expression is induced and reaches high levels 
in the differentiated macrophages. In addition, 
macrophages show high expression of 
H6DPH. This raises the question how MR and 
GR in the presence of 11β-HSD1/H6PDH can 
be regulated distinctly and how they are 
involved in the coordination of immune 
regulation.  

Usher et al. generated mice specifically lacking 
MR in myeloid cells and showed that MR is 
essential for efficient macrophage activation by 
proinflammatory cytokines [71]. Macrophage 
derived from MR-deficient myeloid cells 
displayed an impaired activation pattern, and in 
mice deletion of MR in macrophages 



MR EXPRESSION AND REGULATION 

74 
 

resembled the effects of MR antagonists and 
protected against cardiac hypertrophy, fibrosis 
and vascular damage caused by treatment 
with angiotensin II/L-NAME. Furthermore, 
myeloid-derived dendritic cells express MR. 
Herrada et al. demonstrated an aldosterone-
mediated increase in CD8+ T-cell activation 
that was dependent on dendritic cells. 
Aldosterone-mediated MR activation induced 
MAPK signaling and secretion of IL-6 and 
TGF-β1 by dendritic cells. Further, aldosterone 
induced Th17 cell-mediated immune response. 
The altered, aldosterone-mediated dendritic 
cell activity might promote inflammatory 
damage in the heart and other organs (see 
also section on heart).  

MR expression was also found in neutrophils 
[73]. Incubation of neutrophils with aldosterone 
inhibited the activation of NF-κB by interleukin-
8 (IL-8) and granulocyte/macrophage colony-
stimulating factor. Spironolactone abolished 
NF-κB inhibitioin by aldosterone, indicating an 
MR-specific effect. Incubation with IL-8 
strongly induced TNF-α mRNA expression, an 
effect that was prevented by aldosterone. 
These results suggest anti-inflammatory 
effects of MR in neutrophils that might be 
relevant when they interact with endothelial 
cells. Thus, MR seems to mediate pro- and 
anti-inflammatory effects, depending on the 
cell type.  

7.7 Brain 

Corticosteroids play a pivotal role in the control 
of brain activity and are involved in regulating 
stress response, mood, sleeping behavior, 
memory function and release of 
neuroendocrine hormones [74]. Both MR and 
GR are expressed in the brain, with differences 
in their sites of expression and functions. 
Immunohistochemistry, in situ hybridization 
and binding of radiolabeled aldosterone 
revealed high expression of MR in neurons of 
the hippocampus, lateral septum, medial and 
central amygdala, olfactory nucleus, layer II of 
the cortex and brain stem sensory and motor 
neurons [75-79]. MR is also found in the 
anterior hypothalamus and circumventricular 
tissues including chorioid plexus. The GR is 
widely expressed in the brain in neurons and 
glial cells [75, 79-81]. High expression is found 
in the limbic system (hippocampus, septum 
and amygdala), in the parvocellular neurons of 
the paraventricular nucleus of the 
hypothalamus and in the supraoptic nucleus. 
High expression of GR is also observed in the 
ascending monoaminergic neurons of the brain 
stems.  

Importantly, in hippocampal neurons and 
microglia cells MR and GR are expressed in 
the absence of 11β-HSD2 [53, 82] but 
presence of 11β-HSD1 [83-85], suggesting 
predominant occupation of the receptors by 
11β-hydroxyglucocorticoids. Low levels of 
glucocorticoids are expected to predominantly 
act through MR, thereby functioning in a 
proactive mode by regulating the sensitivity of 
neuroendocrine stress responses [76, 86]. 
High levels of glucocorticoids, for example 
during stress, lead to the occupancy of MR and 
GR, whereby the GR is thought to play a 
pivotal role in counteracting MR effects and 
mediating recovery from the stress response.  

Confocal laser scanning microscopy revealed 
a specialized nuclear clustering for MR and GR 
in neuronal cells of the CA1 region [87]. The 
two receptors were found in distinct nuclear 
domains but also in clusters where they 
colocalize, indicating the formation of receptor 
homodimers and heterodimers. The formation 
of MR-GR heterodimers in rat hippocampal 
neurons has been demonstrated, and 
activation of GR was shown to inhibit MR-
mediated regulation of neuronal function [88]. 
Using recombinant receptors Trapp et al. 
observed enhanced activation of the mouse 
mammary tumor virus (MMTV) promoter driven 
LacZ gene upon coexpressing MR and GR 
compared with cells transfected with one of the 
receptors only [89]. In contrast, Liu et al. 
coexpressed MR and GR in monkey kidney 
CV-1 cells and observed significantly lower 
activation of a TAT3-TATA-reporter construct 
compared to cells expressing only MR or GR 
[90]. These observations indicate highly cell- 
and promoter-specific effects by MR and GR 
homodimers and heterodimers.  

Inflammation results in increased local and 
circulating levels of active glucocorticoids (for 
review see [63]). The inflammatory response in 
the brain involves a coordinated action of 
monocytes, macrophages, astrocytes and 
microglia cells. Microglia cells express both 
MR and GR in the presence of 11β-HSD1 [91]. 
Like macrophage, microglia cells belong to the 
specialized cells of the immune system. They 
express MHC II (major histocompatibility 
complex) and therefore act as professional 
antigen-presenting cells (APCs) in the brain. 
Microglia cells are able to produce cytokines 
and neurotrophic factors. High doses of the 
synthetic glucocorticoids methylprednisolone 
and dexamethasone were shown to suppress 
the expression of MHC II on the surface of 
microglia cells [92, 93]. The suppressive effect 
of these ligands is likely a result of their high 
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concentrations and GR-selectivity. In contrast, 
low doses of endogenous glucocorticoids that 
mainly act through MR may stimulate the 
inflammatory response.  

Excess glucocorticoid action during stress or 
upon upregulation of 11β-HSD1 by pro-
inflammatory cytokines during inflammation 
exerts adverse effects on hippocampal 
neurons and causes impaired cognitive 
functions. Increased glucocorticoid levels have 
been associated with cognitive impairments 
and hippocampal atrophy both in rodents and 
humans [94, 95]. In aging mice an increase in 
11β-HSD1 levels in the CA3 hippocampus and 
parietal cortex correlated with impaired 
cognitive performance, whereby circulating 
glucocorticoid levels and corticosteroid 
receptor expression did not correlate with 
cognitive function [96]. Transgenic mice 
overexpressing 11β-HSD1 specifically in the 
forebrain region showed premature age-
associated cognitive deficits, suggesting a 
causal role of elevated 11β-HSD1 expression. 
This is supported by the observation that mice 
deficient in 11β-HSD1 have lover 
intrahippocampal corticosterone levels and that 
they show a delayed decline in age-related 
cognitive function [84]. A reduced 11β-HSD1 
expression in transgenic animals as well as 
inhibition of the enzyme resulted in improved 
memory function, suggesting that inhibition of 
11β-HSD1 may show beneficial effects in 
treating age-related cognitive disorders [97]. In 
line with the adverse effects of elevated 
glucocorticoids in the hippocampus, transgenic 
expression of 11β-HSD2 in dentate gyrus 
granule cells reversed the adverse effects of 
high glucocorticoid treatment on granule cell 

and CA1 pyramidal cell excitability and on 
spatial reference memory [98]. 

The observation that 11β-HSD1 in neurons 
catalyzes the regeneration of active 
glucocorticoids indicates the coexpression with 
H6PDH. A recent analysis of H6PDH 
expression revealed a distinct size of the 
immunoreactive protein at 60 kDa in whole 
brain tissue compared with 90 kDa for the 
classical protein [25]. It remains to be clarified 
whether an alternatively spliced variant or a 
post-translationally modified H6PDH is 
expressed in the brain.  

Colocalization of MR and 11β-HSD2, indicating 
aldosterone sensitivity of MR, was 
demonstrated in the nucleus of the solitary 
tract using immunofluorescence [82]. 
Furthermore, MR and 11β-HSD2 were both 
detected in amygdala, subcommissural organ, 
the ventromedial nucleus of the hypothalamus, 
and locus coerulens. The localization of 11β-
HSD2 in these tissues was confirmed in 
transgenic mice expressing β-galactosidase 
under the control of the endogenous HSD11B2 
promoter [53]. 11β-HSD2 expression was 
found in the nucleus of the solitary tract and 
amygdala as observed in earlier studies, in the 
external cuneate nuclei in the medulla, in the 
external granular layer in the cerebellum, in the 
pontine reticular formation and pontine nuclei 
and periaqueductal gray in the pons/midbrain 
region. 11β-HSD2 was also found in the 
hypothalamus and in several thalamic nuclei. 
Coexpression of MR and 11β-HSD2 in the 
periventricular regions render selectivity of MR 
to aldosterone to modulate volume regulation 
and sympathetic outflow as well as salt 
appetite.  

Table 7 Expression and Protein appearance of MR, GR, 11β-HSD1, 11β-HSD2 and 
H6PDH in brain specific cell types. 

BRAIN  MR GR 11β-
HSD1 11β-HSD2 H6PDH 

  

P
rotein

R
N

A 

P
rotein

R
N

A 

P
rotein

R
N

A 

P
rotein

R
N

A 

P
rotein

R
N

A 

Brain   

+ 

[1] 

[86] 

 

+ 

[86] 

[1] 

- 

[25]

+ 

[25]
 

- 

[55] 

+ 

[25]

+ 

[25]

Medulla           

 Nucleus of the 
solitary tract +      +++     
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[106] [53] 

+ 

[106] 

 
Lateral 
reticular 
nucleus 

      
++  

[53] 
   

 

External 
cuneate 
nucleus/ 

cuneate 

      
++++ 

[53] 
   

 
Spinal 
trigeminal 
nucleus 

      
+ 

[53] 
   

Spinal Cord           

 Marginal zone  
++ 

[61] 
 

++ 

[61] 
      

 Substantia 
gelatinosa  

+++ 

[61] 
 

++ 

[61] 
      

 Nucleus 
proprrus  

+++ 

[61] 
 

++ 

[61] 
      

 Cochlear 
nucleus       

++ 

[53] 
   

 Cerebral 
cortex    

+ 

[55] 
  

- 

[53] 

- 

[55] 
  

Cerebellum External 
granular layer      

++ 

[10
7] 

++++ 

[53] 
   

Pons/midbrain           

 Cochlear 
nucleus       

++ 

[53] 
   

 
Trigeminal 
nucleus 
(principal 
sensory) 

      
+ 

[53] 
   

 
Pontine 
reticular 
formation 

      
++++ 

[53] 
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 Pontine nuclei       
++++ 

[53] 
   

 
Pontine 
midline/dorsal 
raphe 

      
++ 

[53] 
   

 Periaqueducta
l gray       

+++/+++
+ 

[53] 
   

 Superior 
colliculus       

+++ 

[53] 
   

Diencephalon/forebrain           

 Hypothalamic 
region       

++/+++ 

[53] 
   

 
Hypothalamic 
paraventricula
r nuclei 

 
++ 

[108] 
 

+ 

[108]
   

+ 

[89] 
  

 
Medial/lateral 
geniculate 
nuclei 

      
+ 

[53] 

+ 

[89] 
  

 Pretectal 
nucleus       

+ 

[53] 
   

Dentate gyrus 
+ 

[57] 

+ 

[108] 

+ 

[109] 

+ 

[55] 
   

- 

[55] 
  

 Granular layer  
++++

+ 

[61] 

+++ 

[109-
111] 

++ 

[61] 

+++ 

[109]

      

 Polymorph layer  
++++

+ 

[61] 
 

++ 

[61] 
      

 
lnduseum 
griseumlfasciola 
cinerea 

 
++++

+ 

[61] 
 

++ 

[61] 
      

Hippcampus 
+ 

[57] 
         

Amygdalohippocampal area  +++  +++  + +++ -   
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[61] [61] [55] [53] [55] 

 Cortical part  
+++ 

[61] 
 

+++ 

[61] 

+ 

[55] 

   
- 

[55] 
  

 Anterior part  
+++ 

[61] 
 

+++ 

[61] 
      

 Submammilothal
amic nucleus   

+ 

[109] 

- 

[110] 

+ 

[109]

 

  

++ 

[53] 

 

   

 Thalamic nuclei  
+ 

[55] 
 

+ 

[55] 
 

+ 

[55]

++/+++ 

[53] 

- 

[55] 
  

 Hypothalamic 
preoptic nuclei   

++ 

[109] 

+ 

[110] 

+++ 

[111] 

+++ 

[109]
  

++ 

[53] 
   

 
ventromedial 
hypothalamic 
nucleus 

  

+++ 

[109] 

[110] 

++ 

[111] 

+++ 

[109]
  

+ 

[106] 
   

 
Subcommisural 
nucleus (under 
posterior 
commissure) 

      
++ 

[53] 

+ 

[89] 
  

 Hippocampus  

+ 

[55, 
60] 

[60] 

 
+ 

[55, 
60] 

 
+ 

[55, 
60] 

- 

[53] 

- 

[55] 
  

 
Hippocampale 
pyramidale 
neuronen 

 
+ 

[61] 
 

++ 

[61] 
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 CA1 (Pyrimidal 
Layers) 

+ 

[61] 

[95] 

[94] 

+ 

[108] 

[61] 

+ 

[61] 

[95] 

[109] 

[110] 

[111] 

+ 

[108]

[94] 

[109]

[55] 

      

 CA2   

+ 

[109] 

[110] 

[111] 

+ 

[55] 

[109]

   
- 

[55] 
  

 CA3 (Pyrimidal 
Layers)  

++ 

[108] 

+ 

[61] 

+ 

[109] 

[110] 

[111] 

+ 

[108]

[109]

      

 CA4 (Pyrimidal 
Layers   

+ 

[109] 

[110] 

[111] 

+ 

[109]
      

Amygdala           

 
Anterior part 

 
 

+ 

[61] 

+ 

[109] 

[110] 

[111] 

++ 

[61] 

[109]

      

 Posterodorsal 
part  

+ 

[61] 

+ 

[109-
111] 

++ 

[1] 

[109]

      

Cerebellum           

 Deep nuclei  

+++ 

[61] 

 

+ 

[109-
111] 

 

++ 

[61] 

[109]

 

      

 (Cortex) Purkinje + ++ ++ ++       
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layer [57] [61] [109] 

[110] 

[111] 

[61] 

[109]

 (Cortex) Granular 
layer  

+ 

[61] 

+++ 

[109-
111] 

++ 

[61] 

[109]

      

Eye           

 Oculomotor (III)  
+++ 

[61] 

++ 

[109] 

+++ 

[110] 

[111] 

++ 

[61] 
      

 Trochlear (IV)  
+++ 

[61] 
 

++ 

[61] 
      

 Abducens (VI)  
+++ 

[61] 

++ 

[109] 

+ 

[110] 

[111] 

++ 

[61] 

[109]

      

Jaw           

 Motor nucleus 
ventral  

+++ 

[61] 
 

++ 

[61] 
      

 Face  
+ 

[61] 

++ 

[109] 

+ 

[110] 

[111] 

++ 

[61] 

[109]

      

 Facial nucleus 
(VII)  

++++ 

[61] 
 

++ 

[61] 
      

Pharynx/larynx           

 
Nucleus 
ambiguus, dorsal 
division 

 
+++ 

[61] 
++ 

[109, 

++ 

[61] 
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110] 

[110] 

+ 

[111] 

[109]

 Hypoglossal 
nucleus (XII)  

++++ 

[61] 

+ 

[109] 

- 

[110] 

[111] 

++ 

[61] 

+ 

[109]

      

Reticular core (including 
central gray and raphe)           

 

Periaqueductal 
gray 

associated with 
PAG 

 
+ +(+)

[61] 

+ 

[109] 

++ 

[61] 
      

 Dorsal tegmental 
nucleus  

++ 

[61] 

+ 

[109] 

++ 

[61] 
      

 Locus coeruleus  
+ 

[61] 

+++ 

[109, 
110] 

[111] 

++ 

[61] 

+++ 

[109]

      

Raphel Dorsal raphe  
+ 

[61] 

+ 

[109] 

++ 

[61] 

[109]

      

 

7.8 Bone 

Maintenance of bone homeostasis critically 
depends on the functional interactions between 
fibroblasts, osteoblasts and osteoclasts, and 
on complex interactions and feed-back 
regulation involving various chemokines, 
cytokines and hormones. Corticosteroid 
receptors and 11β-HSDs play an important role 
in the modulation of bone homeostasis and 
offer opportunities for therapeutic interventions 
in diseases including osteoporosis and 
rheumatoid arthritis. While physiological 
glucocorticoid concentrations promote 
osteoblast differentiation, high concentrations 

promote osteoblast apoptosis thereby inhibiting 
osteoblastogenesis.  

Immunohistochemical analysis of human 
neonatal ribs and iliac crest biopsy specimens 
indicated that MR as well as GRα and GRβ are 
expressed in neonatal and adult human bone 
[99]. MR and both GR variants were found to 
be highly expressed in osteoblasts along bone 
forming surfaces in neonatal rib sections. In 
contrast, expression was considerably lower in 
multinucleated osteoclasts and GRα was 
absent or expressed at very low levels. 
Similarly, iliac crest biopsies showed 
expression of both GR variants in osteoblast-
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like cells in cancellous surfaces, whereas very 
few osteocytes stained positive for GR. MR 
expression was found in osteoblasts and in 
about one-third of cancellous osteocytes. The 
presence of mRNA of the two GR variants and 
of MR was confirmed by RT-PCR in cultured 
primary human osteoblasts. Evidence for the 
lack of GRα but presence of GRβ expression 
in human and rat osteoclasts, and of 
considerably lower GR and MR in osteoclasts 
compared with osteoblasts, was supported by 
other investigators [100, 101]. Interestingly, 
MR was not detected in early fetal bone tissue 
beyond 12 weeks of gestation [102], 
suggesting a role of this receptor in terminal 
differentiation.  

Early observations in patients with apparent 
mineralocorticoid excess (AME) provided 
evidence for a role of 11β-HSD2 in modulating 
bone homeostasis. AME patients suffered, 
among other complications, from retarded 
growth, osteopenia and minimal trauma bone 
fractures, effects that were ameliorated upon 
treatment with the MR antagonist 
spironolactone [103, 104]. Activation of MR by 
aldosterone enhanced proliferation of cultured 
osteoblasts from rat calvaria, an effect inhibited 
by specific MR antagonists [105]. Furthermore, 
MR antagonists inhibited the production of pro-
inflammatory cytokines, including TNF-α and 
INF-γ, and have potential in the treatment of 
arthritis [106].  

Using the MG-63 human osteosarcoma cell 
line, Cooper et al. reported a decreased 
expression of 11β-HSD2 upon treatment with 
TNF-α or IL-1β [107]. In contrast, primary 
osteoblasts express 11β-HSD1 and the levels 
of this enzyme were stimulated by exposure to 
TNF-α or IL-1β, thus leading to enhanced local 
concentrations of active glucocorticoids. The 
authors proposed that pro-inflammatory 
cytokines may exert some of their effects 
within bone, e.g. periarticular erosions in 
inflammatory arthritis, by increasing local 
glucocorticoid concentrations.  

Jia et al. studied the role of glucocorticoids in 
transgenic mice specifically expressing 11β-
HSD2 in osteoclasts [108]. Treatment of wild-
type and transgenic mice with pharmacological 
doses of glucocorticoids enhanced apoptosis 
in cancellous osteoblasts and decreased 
osteoblast, osteoid and bone formation. 
Glucocorticoids stimulated the osteoclast 
marker calcitonin receptor on wild-type but not 
transgenic mice. Importantly, glucocorticoids 
decreased the number of cancellous 
osteoclasts in transgene but not wild-type 

mice. The observed loss of bone density in 
wild-type mice was prevented by 11β-HSD2 
overexpression in the transgene. The authors 
concluded that the early, rapid loss of bone 
caused by glucocorticoid excess resulted from 
direct actions on osteoclasts.  

Glucocorticoids expand the life span of 
osteoblasts and decrease bone density. An 
early increased bone resorption followed by a 
diminished osteoclastogenesis and a 
consequently decreased bone resorption was 
observed in a mouse model of glucocorticoid-
induced osteoporosis [109]. Mice implanted 
with slow release prednisone pellets displayed 
early activation of osteoclastogenesis and 
adipogenesis as well as prolonged 
suppression of osteogenesis [110]. In this 
model the synthetic glucocorticoid receptor 
ligand prednisone required prior activation by 
11β-HSD1 in the liver or locally in the 
osteoblast.  

Buttgereit et al. studied the impact of 
osteoblast-targeted transgenic overexpression 
of 11β-HSD2 on joint inflammation, cartilage 
damage, and bone metabolism in the K/BxN 
mouse serum transfer model of autoimmune 
arthritis [111]. Wild-type and transgenic mice 
developed acute arthritis but in the latter 
arthritis and local inflammatory activity were 
significantly attenuated. Transgenic 
overexpression of 11β-HSD2 ameliorated bone 
resorption as well as loss of bone volume, and 
improved osteoblast activity, suggesting that 
osteoblasts modulate the immune-mediated 
inflammatory response in a glucocorticoid-
dependent manner.  

Intraarticular corticosteroid application in 
patients with inflammatory arthritis reduced 
synovial RANKL expression [112]. 
Glucocorticoids inhibited osteoprotegerin 
expression and increased receptor activator of 
NF-κB ligand (RANKL) synthesis by 
osteoblasts, thereby promoting 
osteoclastogenesis [112, 113]. However, 
following priming with TNF-α, a condition 
mimicking pro-inflammatory milieu of the 
rheumatoid joint, glucocorticoids were found to 
decrease RANKL expression [112]. Thus, 
glucocorticoids affect bone cells differently in 
the presence or absence of inflammatory 
mediators and they may have a bone 
conserving effect in rheumatoid arthritis 
despite of inducing osteoporosis in the spine.  
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7.9 Adipose tissue 

Adipose tissue is derived from lipoblasts 
representing the adipocyte precursor cells. 
Two functionally distinct adipocytes are 
differentiated from these pre-adipocytes, 
forming either brown (BAT) or white adipose 
tissue (WAT). BAT in adults is derived from the 
abundant fat tissue of the fetal and newborn 
mammal organism, where it is responsible for 
the shiver-free heat production. The adverse 
metabolic effects of excessive fat accumulation 
have been associated mainly with WAT. 
Transgenic mice with disruption of uncoupling 
protein function and a primary deficiency of 
BAT were prone to obesity [114]. Functional 
adipose tissue includes additional cell types 
such as endothelial cells enabling its high 
vascularization, fibroblasts, and macrophages 
responsible for the numerous endocrine and 
immune functions. Adipose tissue can be 
broadly categorized in subcutaneous and 
visceral fat depots. Besides its major function 
as lipid storage, fat tissue performs other 
general functions, including protection against 
temperature fluctuations (subcutaneous fat) 
and resistance of organs like stomach, heart 
and kidneys against mechanical stress 
(visceral fat). 

Adipocytes and adipose tissue infiltrating 
macrophages are derived from the same bone 
marrow stem cells, and they express MR and 
GR in the presence 11β-HSD1 and H6PDH. 
There is increasing evidence for a key role of 
MR in mediating adverse effects in metabolic 
disease. Elevated levels of MR were found in 
obese, diabetic mice (ob/ob and db/db), which 
have increased expression of pro-inflammatory 
and pro-fibrotic factors and reduced expression 
of adiponectin and PPARγ in adipose tissue 
[115, 116]. Treatment with the MR selective 
antagonist eplerenone normalized the impaired 
regulation of obesity-related genes, 
suppressed macrophage infiltration and 
attenuated insulin resistance [116]. Moreover, 
incubation of undifferentiated preadipocytes 
with 10 nM aldosterone for 24 h increased the 
expression of TNF-α and MCP1 and 
decreased adiponectin and PPARγ [115]. A 
recent study with cultured 3T3-L1 and 3T3-
F442A adipocytes and human primary 
preadipocytes reported dose-dependent 
inhibition of adipose differentiation and potent 
anti-adipogenic effects of the MR antagonist 
drospirenone [117]. Further evidence for a pro-
inflammatory adipogenic effect of MR was 
provided from a recent study with GR- and 
MR-deficient adipocytes [118]. Expression of 
the pro-inflammatory factors IL-6 and MCP1 

was enhanced in GR knockout adipocytes 
upon treatment with corticosterone, indicating 
an MR-dependent stimulation of the pro-
inflammatory factors. Deletion of MR resulted 
in a complete loss of lipid accumulation, 
whereas deletion of GR led to rather subtle 
disturbances of adipogenesis during early 
differentiation. These observations are in line 
with an earlier study using a brown adipocyte 
cell model [119]. Aldosterone promoted 
adipocyte differentiation, indicated by an 
accumulation of intracytoplasmic lipid droplets 
and a concentrations-dependent increase in 
intracellular triglyceride content. The 
aldosterone-dependent effects were not 
affected by the GR antagonist RU-486 but 
abolished by MR antagonists, indicating a key 
role of MR in the early phase of adipocyte 
differentiation. 

Glucocorticoids control the terminal 
differentiation of adipose precursor cells and 
essentially modulate adipocyte function [120]. 
Given the more than ten-fold higher affinity of 
MR compared with GR for 11β-
hydroxyglucocorticoids, it can be assumed that 
the MR is occupied by 11β-
hydroxyglucocorticoids in preadipocytes and 
adipocytes. Depending on the available 
glucocorticoid concentration lower affinity GRs 
are activated and may counteract the effects of 
MR through mechanisms that need to be 
uncovered but likely include receptor 
heterodimerization. 11β-HSD1 is highly 
expressed in adipose tissue, although its 
expression is considerably lower than in liver. 
In contrast, 11β-HSD2 mRNA and activity was 
detected only at low levels in adipose stromal 
vascular cells [121, 122]. Comparison of the 
expression of 11β-HSD1 and 11β-HSD2 
revealed a 22-fold and 8-fold lower expression 
of the latter in subcutaneous fat, respectively. 
Moreover, in the obese situation infiltrated 
macrophage expressing 11β-HSD1 further 
increase local cortisol production and MR 
activation, thus promoting inflammation [123].  

In mouse preadipocytes isolated from 
mesenteric and subcutaneous fat 11β-HSD1 
was found to function as oxoreductase, 
thereby activating glucocorticoids [124]. 
Treatment of mice with high-fat diet, leading to 
the stimulation of 11β-HSD1 activity, resulted 
in enhanced preadipocyte differentiation in 
wild-type but not 11β-HSD1 knockout animals. 
It was shown that in the widely used 3T3-L1 
fibroblast-like cells 11β-HSD1 expression is 
absent prior to differentiation but increases 
with progression of differentiation and is highly 
expressed in the fully differentiated state [125, 
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126]. Importantly, H6PDH is similarly 
expressed before and after differentiation 
[125]. Furthermore, a continuous expression of 
H6PDH was observed during the differentiation 
of human adipose-derived mesenchymal stem 
cells, indicating that 11β-HSD1 functions as an 
oxoreductase in both preadipocytes and 
adipocytes [127]. H6PDH knockout mice, 
where 11β-HSD1 is thought to act as a 
dehydrogenase, display diminished 
lipogenesis, lipolysis rates and fatty acid 
release upon fasting, and they have 
significantly reduced adipose tissue mass, 
although average adipocyte size was not 
altered [128].  

The association of enhanced local 
glucocorticoid activation by 11β-HSD1 with 
visceral obesity and the development of insulin 
resistance, type 2 diabetes and cardiovascular 
disease is being extensively studied (reviewed 
in [129, 130]). Based on the fact that the MR 
has more than ten-fold higher affinity than GR 
and that it is coexpressed with 11β-HSD1 and 
H6PDH in preadipocytes and adipocytes, we 
propose that the pro-inflammatory and pro-
adipogenic effects of elevated local 
glucocorticoid concentrations are probably 
mainly mediated by activation of MR. Thus, a 
combination of an MR antagonist and an 11β-
HSD1 inhibitor may prove beneficial in the 
treatment of metabolic disease.  

7.10 Heart 

In the heart MR expression has been 
demonstrated in cardiomyocytes and 
fibroblasts, cells of atria and ventricles, the 
aorta and pulmonary artery as well as in 
vascular endothelial and smooth muscle cells 
[131-134]. In addition, macrophage, which 
infiltrate the heart during inflammation, express 
high levels of MR.  

Several clinical studies revealed an association 
of elevated MR activity with vascular 
inflammation and cardiac fibrosis, and an 
increased risk for congestive heart failure. 
Supplementation of the standard therapy of 
angiotensin-converting enzyme inhibitor, loop 
diuretic and digoxin for patients with heart 
failure with the MR antagonists spironolactone 
(RALES [135]) and eplerenone (EPHESUS 
[136]) demonstrated a 30% and 15% 
improvement in mortality. Furthermore, 
treatment with MR antagonists decreased 
blood pressure in patients with essential 
hypertension and left ventricular hypertrophy 
(4E-left ventricular hypertrophy study [137]). 
The MR-dependent exacerbation of tissue 

damage in cardiac ischemia can be 
ameliorated by eplerenone [138]. Thus, MR 
antagonists have a beneficial impact on post-
myocardial infarction therapy and in treatment 
of patients with essential hypertension.  

In line with clinical trials, animal studies 
addressed the mechanisms of MR activation in 
heart disease and provided evidence for 
beneficial effects of antagonists [139-146]. A 
causal role of MR was demonstrated in 
transgenic mice by conditional overexpression 
specifically in cardiomyocytes. These mice 
exhibited cardiac remodeling with severe 
ventricular arrhythmias and increased mortality 
[147]. In mice chronic severe pressure 
overload due to aortic constriction caused 
cardiac hypertrophy, followed by left ventricular 
dilatation and heart failure [148]. 
Cardiomyocyte-specific deletion of MR 
prevented the increase in left ventricular inner 
diastolic diameter and wall tension but did not 
prevent cardiac hypertrophy. Similarly, 
eplerenone did not prevent cardiac 
hypertrophy but delayed the transition to 
myocardial failure [148, 149]. Cardiac fibrosis 
caused by chronic pressure overload was not 
reduced in mice with a specific knockout of MR 
in fibroblasts [148]. However, deletion of MR in 
macrophage attenuated the production of ROS 
in the heart and prevented inflammation and 
fibrosis induced by treatment with 
deoxycorticosterone/salt [69] or angiotensin II 
[71]. These observations indicate a key role of 
MR in infiltrating macrophage in the 
progression of vascular inflammation and 
cardiac fibrosis.  

In humans cardiomyocytes have no or very low 
levels of 11β-HSD1 and 11β-HSD2 [24]. 
Vascular smooth muscle cells do not express 
11β-HSD1 but both endothelial cells and 
vascular smooth muscle cells were reported to 
express 11β-HSD2 [133, 150, 151]. In contrast, 
11β-HSD1 expression was found in rodent 
cardiac vascular smooth muscle cells, whereby 
enzyme activity was higher in quiescent cells 
compared with proliferating cells [152]. 
Although some discrepancies may be due to 
contamination of vascular smooth muscle cell 
preparations with endothelial cells, species-
specific differences need to be considered and 
care should be taken in extrapolating results 
from studies with rodents to the human 
situation.  

Evidence for an important role of 11β-HSD2 in 
the heart was provided from observations in 
11β-HSD2 knockout mice. 11β-HSD2 
expression is low in fetal mouse heart, 
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whereas MR is highly expressed. 
Nevertheless, 11β-HSD2 knockout mice 
exhibit significantly enlarged heart size and a 
high mortality rate [153]. A recent study 
reported a highly significant negative 
correlation between 11β-HSD2 expression and 
the thickness of the left ventricular wall in 
sheep [154]. The chronic administration of 
moderate doses of cortisol during late 
gestation resulted in a significantly decreased 
11β-HSD2 expression in the heart and caused 
an increase of the fetal heart weight.  

Since 11β-HSD2 converts active into inactive 
glucocorticoids, it restores aldosterone 
specificity of MR and inhibits GR activation. 
Thus, both GR and MR might be responsible 
for the development of elevated heart size. 
Interestingly, transgenic mice with a cardiac-
specific overexpression of 11β-HSD2 
developed cardiac hypertrophy, which was 
attenuated after treatment with eplerenone. In 
the presence of high 11β-HSD2 activity, 
circulating glucocorticoids may no longer be 
sufficiently high to activate GR in order to 
counteract aldosterone-dependent MR activity. 
In contrast, a lack of 11β-HSD2 is expected to 
cause glucocorticoid-dependent MR activation 
and GR might no longer be able to efficiently 
counteract the fully activated MR, thus 
providing an explanation why both a lack of 
11β-HSD2 and its overexpression cause 
cardiac hypertrophy. 
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Table 8 Expression and Protein appearance of MR, GR, 11β-HSD1, 11β-HSD2 and 
H6PDH in heart specific cell types. 
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7.11 Skeletal muscle 

Skeletal muscles have a high demand of 
energy, and glucocorticoids are essentially 
regulating insulin-stimulated glucose uptake, 
glycogen storage and carbohydrate 
metabolism. Chronically elevated 
glucocorticoid levels have been associated 
with insulin resistance and impaired 
carbohydrate metabolism as well as catabolic 
pathways causing muscle atrophy. Recent 
studies provided evidence for a functional 
expression of MR (besides GR) in soleus 
muscle [155]. High aldosterone levels, in 
addition to their cardiotoxic effects, led to the 
induction of apoptosis in soleus muscle. In 
soleus muscle high aldosterone levels 
increased NADPH oxidase and the production 
of ROS, decreased Akt phosphorylation and 
GLUT4 expression, and induced insulin 
resistance [156]. Spironolactone ameliorated 
aldosterone-induced cardiac and skeletal 
muscle myopathy, providing evidence for an 
MR-dependent mechanism. As in 
cardiomyocytes, 11β-HSD2 expression could 
not be detected using immunofluorescence 
and ribonuclease protection assay in skeletal 
muscle of normal and Cre-recombinant male 
mice [46, 53].  

11β-HSD1 is expressed in skeletal muscle with 
a 13-times higher level in soleus (type I-rich 
fibers) compared with tibialis anterior (type IIb-
rich fibers)[157]. Impaired regulation of 11β-
HSD1 activity in myotubes from diabetic 
patients may contribute to insulin resistance 
[158-160]. H6PDH is also expressed in soleus 
and tibialis anterior and plays an important role 
in the regulation of muscle cell differentiation 
and function. It can be assumed that chronic 
hyperglycemia leads to enhanced local 
glucocorticoid activation by 11β-HSD1/H6PDH, 
thereby activating local GR and/or MR and 
contributing to impaired glucose transport and 
insulin resistance.  

The role of H6PDH has been further 
investigated in transgenic mice. H6PDH 
deficient mice developed a vacuolating 
myopathy, predominantly manifested in type II 
muscle fibers [161]. In further studies with 
H6PDH/11β-HSD1 double knock-out mice, this 
phenotype was clearly associated with H6PDH 
deficiency, independent of 11β-HSD1 function 
[157]. Fiber type differentiation can be 
influenced by physical activity. Marathon 
runners, for example, show a type I-rich fiber 
composition of the gastrocnemius, whereas a 
type IIb-rich composition is observed in 
sprinters. Thus, fiber type differentiation may 

be modulated by the level of energy demand 
and redox reactions in the endoplasmic 
reticulum. Whether and how glucocorticoids 
are involved in these processes remains 
unclear. The lack of 11β-HSD1 oxoreductase 
activity in knockout mice may be compensated 
by an activation of the HPA axis leading to 
higher circulating corticosterone levels [162], 
although strain-dependent differences need to 
be considered [163]. Contradicting findings 
were reported concerning serum 
corticosterone concentrations in H6PDH-
deficient mice. Significantly increased adrenal 
weight and elevated plasma corticosterone 
concentrations were reported by two 
independent groups [164, 165]; however, two 
other studies reported significantly decreased 
plasma corticosterone levels in H6PDH-
deficient animals [157, 166]. Since all of these 
reports are based on data from transgenic 
mice from the same background, i.e. C57BL6J 
strain, the reason for the observed differences 
remains unclear. Nevertheless, 11β-HSD1 was 
significantly upregulated in H6PDH knockout 
mice in tibialis anterior, but not in soleus or in 
the liver [157].  

7.12 Skin 

Skin consists of different layers, including the 
epidermis, dermis and subcutis (also named 
hypodermis). Innervation, vascularization, the 
presence of secretory glands such as sweat 
glands and sebaceous glands, hair folicles and 
pacinian corpuscles enhance the complexity of 
skin as an organ. Epidermis can be further 
divided into five distinct areas namely stratum 
corneum, stratum lucidum, stratum 
granulosum, stratum spinosum, and final 
stratum basale. The major cell types present in 
the epidermis are keratinocytes, langerhans 
cells and “touch sensors” like merkel-ranvier 
cells. Keratinocytes in the four outer layers 
forming the epidermis are mitotically inactive 
and die upon their travel to the surface 
because of a loss of nutrition supply. During 
this process they undergo keratinization. In 
contrast to the epidermis, the dermis consists 
of connective tissue and contains many blood 
and lymphatic vessels. The subcutis is a highly 
immunologically active tissue and contains 
dendritic cells and fibroblasts as well as 
adipocytes.  

Glucocorticoids are widely used in the 
treatment of inflammatory and 
hyperproliferative skin disorders. A major 
limitation, however, is the development of skin 
atrophy [167]. The relative contribution of GR 
and MR to skin atrophy remains unclear. In situ 
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hybridization and immunohistochemistry 
revealed MR expression in human 
keratinocytes of the epidermis, in sweat glands 
and sebaceous glands and in hair follicles 
[168]. Mice overexpressing MR specifically in 
keratinocytes and hair follicles exhibited 
developmental and post-natal impairments of 
the epidermis and hair follicles [169]. 
Transgenic mice showed premature epidermal 
barrier formation at embryonic day 16.5, 
decreased hair follicle density and epidermal 
atrophy and increased keratinocyte apoptosis 
at embryonic day 18.5 and premature eye 
opening when MR was overexpressed 
throughout gestation. When MR expression 
was induced after birth, mice developed 
alopecia and hair follicle cysts.  

Important information on the role of GR in skin 
was provided from transgenic mice 
overexpressing GR specifically in keratinocytes 
[170]. Newborn mice exhibited severe skin 
lesions due to epidermal hypoplasia and 
underdeveloped dysplastic hair follicles. In 
adult mice, an impaired hyperplastic and 
inflammatory response to the tumor promoting 
agent TPA with impaired NF-κB signaling was 
observed.  

11β-HSD2 activity was found in isolated sweat 
glands but was very low or absent in epidermis 
biopsies [168]. Whereas MR was detected in 
excretory ducts in the basal cell layers, 11β-
HSD2 was found in the luminal cells of the 
ducts [52]. 11β-HSD2 was also absent in 
sebaceous and apocrine glands. 11β-HSD2 
mRNA expression and immunoreactivity was 
detected in the highly vascularized dermis in 
arterioles [150].  

The therapeutic efficacy of dermal applications 
of cortisone and prednisone is dependent on 
the oxoreductase activity of 11β-HSD1, which 
was found to be higher in mouse compared 
with human skin biopsies [171]. H6PDH was 
found to be highly expressed in whole human 
skin specimens, although no specific 
localization was determined. Expression of 
11β-HSD1 in mouse skin was demonstrated by 
several groups using RT-PCR, 
immunodetection as well as transgenic animals 
[46, 53, 171]. Tiganescu et al. localized 11β-
HSD1 expression in mice to keratinocytes in 
the epidermis, and to dermal standing 
fibroblasts and hair follicles [171]. In humans, 
11β-HSD1 expression was shown to be sex-
hormone dependent. Pre-menopausal women 
express higher 11β-HSD1 levels in epidermal 
keratinocytes than post-menopausal women. 
The opposite was found in the dermis, where 

11β-HSD1 expression was higher in post-
menopausal compared with pre-menopausal 
women.  

In a recent study aldosterone was found to 
modulate the deposition of extracellular matrix 
in human skin [172]. Aldosterone stimulated 
the expression of collagen type I and elastin, 
and enhanced elastic fiber deposition in 
primary cultured skin fibroblasts. Interestingly, 
spironolactone and eplerenone stimulated the 
elastogenic effect of aldosterone. The authors 
provided evidence for a MR-independent 
mechanism involving the activation of insulin 
growth factor-I receptor and suggested the use 
of aldosterone in therapy for dermal lesions to 
prevent their recurrence after surgical excision. 
Although the underlying mechanism for these 
observations needs to be elucidated, these 
observations indicated that not all effects of 
aldosterone are mediated by MR.  

7.13 Outlook 

The analysis of expression patterns of MR, 
GR, 11β-HSD2, and 11β-HSD1/H6PDH in 
various organs and cell types contributed 
significantly to the current understanding of MR 
function. However, there are several key 
questions that need to be addressed in future 
studies, including the mechanism of MR 
activation in cells coexpressing 11β-
HSD1/H6PDH, the impact of varying ligand 
availability during circadian rhythm, and the 
functional interaction of MR and GR and 
modulation of their activities by receptor 
specific associated proteins as well as post-
translational modifications of the receptor and 
associated proteins. Further, alternative MR 
ligands and ligand-independent activation of 
MR might be relevant in some situation and 
likely depend on cell-specific regulation.  
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8.1 Abstract 

The antioxidant redox response pathway is essential for the daily metabolic challenge 

of organisms. Thereby nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) and 

its target enzymes such as NAD(P)H dehydrogenase, quinone 1 (NQO1) and heme 

oxygenase 1 (HO-1) reduce oxidative stress derived from electrophilic compounds of 

xenobiotic and endogenous sources. The glucocorticoid receptor (GR) was shown to 

negatively regulate the Nrf2-dependent pathway. In this study, we focused on the 

impact of the 11β-hydroxysterid dehydrogenase 1 (11β-HSD1)–dependent 

glucocorticoid activation on the Nrf2-dependent anti-oxidant response. We show that 

11β-HSD1 activity impairs Nrf2-dependent gene expression. The marker genes 

NQO1 and HO-1 were suppressed by 11β-HSD1 generated glucocorticoids, an effect 

that was reversed by inhibition of 11β-HSD1. Furthermore, our results demonstrate 

that elevated 11β-HSD1 expression renders cellular susceptibility against hydrogen 

peroxide induced cytotoxicity. The negative interference of 11β-HSD1-dependent 

glucocorticoid activation with the Nrf2-dependent pathway was reversed by the use of 

selective inhibitors. In conclusion, we show that inhibition of 11β-HSD1 can improve 

the cellular capacity to cope with oxidative stress and prevent susceptibility to 

oxidative damage. 

8.1.1 Keywords  

11beta-hydroxysteroid dehydrogenase, glucocorticoid receptor, metabolism, 

xenobiotics, redox, glucocorticoid, NQO1, Nrf2. 

8.1.2 Abbreviations  

11β-HSD, 11β-hydroxysteroid dehydrogenase; ER, endoplasmic reticulum; NQO1, 

NAD(P)H dehydrogenase, quinone 1; Nrf2, nuclear factor-erythroid 2 (NF-E2)-related 

factor 2; GR, glucocorticoid receptor; H6PDH, hexose-6-phosphate dehydrogenase; 

SDR, short-chain dehydrogenase/reductase. 

8.2 Introduction 

The liver is a highly metabolically active organ, regulating energy homeostasis, 

including carbohydrate and lipid metabolism, as well as the detoxification of 
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xenobiotics and many reactive endogenous chemicals. Numerous cytoprotective 

genes are expressed in hepatocytes, including those under the control of the 

transcription factor nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2). Nrf2 is 

the key player of the antioxidant redox response pathway, representing a tightly 

regulated multi-diverse defense system [1]. Upon recognition of specific DNA 

elements on the promoters of its target genes Nrf2 regulates the basal as well as 

ligand-induced expression of specialized cytoprotective enzymes [2]. The consensus 

sequence recognized by Nrf2 5-gagTcACaGTgAGtCggCAaaatt-3 is designated as 

antioxidant responsive element (ARE). AREs are located in the promotor region of 

enzymes known to cope with oxidative and chemical stress [3]. The importance of 

Nrf2 is shown in knockout animals (nrf2−/−), which exhibit an enhanced susceptibility 

towards xenobiotic stress due to reduced basal and inducible expression of 

cytoprotective genes [4-7]. NAD(P)H:quinone oxidoreductases (NQO) [8], 

hemeoxygenase 1 (HO-1) [9] and glutathione S-transferases (GST) [10] are key 

phase II detoxification enzymes that are transcriptionally regulated by Nrf2 (for review 

see [1]). The expression of these enzymes is induced by oxidative stress caused by 

various mediators (xenobiotics, antioxidants, heavy metals, UV light, and ionizing 

radiation) [2].  

A recent study reported gender divergent expression of NQO1 in two different but not 

all rat strains [11]. In male Sprague Dawley (SD) rats two-times lower basal hepatic 

NQO1 mRNA expression has been found compared with female rats. Furthermore, 

the induction of NQO1 expression upon treatment with known inducers (butylated 

hydroxyanisole, the drug oltipraz) was shown to be more pronounced in female 

compared with male rats. The authors concluded that females may have a greater 

capacity to combat oxidative stress and thus exhibit a decreased susceptibility to 

carcinogenes [11]. Indeed, it was shown earlier that male rats are more susceptible 

to carcinogenic xenobiotics [12]. Gender related differences were also found for 

humans [13]. 

Activation of the glucocorticoid receptor (GR) by dexamethasone has been shown to 

repress Nrf2-mediated constitutive and oltipraz- or tert-butylhydroquinone (t-BHQ)-

inducible GSTA2 gene induction in the rat hepatoma cell line H4IIE [14]. Silencing 

mediator for retinoid and thyroid hormone receptors (SMRT), a corepressors 

recruited to the activated GR, was supposed to play a key role in the inhibitory 
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mechanism [14]. The literature on glucocorticoid-dependent transcriptional regulation 

is mostly based on experiments with the synthetic glucocorticoid dexamethasone that 

has been shown to also activate PXR at high concentrations [15-17]. Glucocorticoid-

mediated regulation in the liver mainly depends on the expression and activity of 11β-

hydroxysterid dehydrogenase (11β-HSD1), which converts inactive 11β-

ketoglucocorticoids (cortisone, 11-dehydrocorticosterone) into their active 11β-

hydroxy forms (cortisol, corticosterone) [18]. 11β-HSD1 is facing the endoplasmic 

reticulum (ER) and requires NADPH, which is provided by hexose-6-phosphat 

dehydrogenase (H6PDH) [19, 20]. By utilizing glucose-6-phosphate, H6PDH controls 

the NADPH/NADP+ redox couple in the ER and constitutes a link between 

carbohydrate metabolism and hormonal regulation. The impact of 11β-HSD1 on the 

antioxidant redox pathway has not yet been studied. Moreover, gender differences 

have been observed for 11β-HSD1 in rat liver with 18-times lower expression in 

female rats compared with male [21, 22]. 

In this study we used H4IIE cells, known for their endogenous expression of 

functional Nrf2 [14, 23, 24] and required co-regulatory enzymes, as well as H4IIE 

cells transiently or stably transfected with 11β-HSD1 [25] to elucidate the impact of 

11β-HSD1 on the antioxidant redox response pathway. 
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8.3 Experimental procedure 

8.3.1 Materials 

[1,2-3H]-cortisone was purchased from American Radiolabeled Chemicals (St. Louis, 

MO), cell culture media from Invitrogen (Carlsbad, CA), Sulforaphane were obtained 

from Sigma-Aldrich (Buchs, Swizerland) and all other chemicals were obtained from 

Fluka AG (Buchs, Switzerland) of the highest purity available. 8x ARE Reporter 

plasmid, Nrf2 and Keap1 expression constructs have been described earlier [26]. 

8.3.2 Cell culture 

HEK-293 cells were cultured in Dulbecco's modified Eagle medium (DMEM) 

supplemented with 10% fetal bovine serum, 4.5 g/L glucose, 50 U/mL 

penicillin/streptomycin, 2 mM glutamine, and 1 mM HEPES, pH 7.4. Rat H4IIE 

hepatoma cells and H4IIE cells stably expressing 11β-HSD1 (clone H4H1) [25] were 

cultured in antibiotic free Dulbecco's modified Eagle medium (DMEM) supplemented 

as given above. 

8.3.3 Transfection of cells 

HEK-293 cells (200’000 cells/well) were seeded in poly-L-lysine coated 24-well 

plates, incubated for 16 h and transfected using calcium phosphate precipitation with 

8 x ARE-luciferase reporter (0.20 µg/well), pCMV-LacZ galactosidase transfection 

control (0.03 µg/well), human recombinant GR-α (0.20 µg/well) and either human 

Nrf2 (0.20 µg/well). 

H4IIE and H4H1 cells were transfected using electroporation (Neon™, Invitrogen) 

according to the protocol from the manufacturer. Briefly, cells were trypsinized, 

washed once with PBS, centrifuged for 2 min at 100 x g and resuspended in 288 μL 

resuspension buffer with the final transfection density of 1 x 106 cells/mL. Cells were 

than subjected to a single pulse using a 100 μL gold tip at 1375 V for 30 ms, with a 

total amount of 2.5 μg DNA consisting of 8 x ARE-Luciferase reporter (2 µg) and 

pCMV-LacZ galactosidase transfection control (0,5 µg). 
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To assess the impact of 11β-HSD1, H4IIE cells, were transiently transfected as 

described above, with plasmids for 11β-HSD1 (2 µg) or pcDNA3 control (2 µg), 8 x 

ARE-luciferase reporter (2 µg) and pCMV-LacZ galactosidase transfection control 

(0,5 µg). The total amount of DNA was 6 μg. 

To assess the susceptibility of H4IIE cells to hydrogen peroxide-mediated redox 

sensitivity, cells were transfected with either pcDNA3 (2 µg) or 11β-HSD1 (2 µg) and 

4 μg of the cytosolic HyPer-plasmid [27] to yield a total amount of 8 μg of DNA. Cells 

(100’000 cells per well) were cultured in DMEM for 24 h at 37°C in 6-well plates 

containing glass coverslips. Cells were then washed once with charcoal-treated, 

steroid-free DMEM (DMEMct) and incubated for another 3 h. The culture medium 

was replaced with fresh DMEMct containing cortisone (100 nM) with or without 

specific 11β-HSD1 inhibitor T0504 (1 μM) [25, 28] and cells were cultured for another 

24 h.  

8.3.4 Detection of hydrogen peroxide sensitivity by confocal 
microscopy 

For single cell imaging, the Leica confocal microscopy system SP5 was used. 

Scanning was performed at 400 Hz frequency in a 512 x 512 pixel formate. Exitation 

of the protonated form of HyPer [27] was performed using the 405 nm laser line. 

Excitation of the charged form of the chromofore was measured at 488 nm, and 

emission was recorded between 500 and 554 nm. Pictures were taken every 20 

seconds. Ratios between 488 nm and 405 nm were recorded and calculated using 

the Leica confocal microscopy software. 

8.3.5 Nrf2 transactivation assays  

HEK-293 cells were seeded (200’000 cells/well) in 24-well plates were washed twice 

with DMEM 6 h post transfection, followed by cultivation for 16-24 h at 37°C in 

antibiotic-free DMEM to allow sufficient expression. Cells were then washed once 

with steroid- and serum-free DMEM (DMEMsf) and incubated for 3 h at 37°C. The 

culture medium was replaced with fresh DMEMsf containing sulforaphane (10 μM), 

T0504 (1 μM), RU-486 (1 μM), and combinations of them, in the presence or 

absence of steroids (100 nM). After incubation for another 24 h, cells were washed 
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once with PBS and lysed with 60 µl lysis buffer of the Tropix kit (Applied Biosystems, 

Foster City, CA) supplemented with 0.5 mM dithiothreitol. Lysed samples were frozen 

at -80°C for at least 20 min. Lysates (20 µL) were analyzed for luciferase activity 

using a home-made luciferine-solution [29]. β-galactosidase activity was analyzed in 

20 µL sample using the Tropix kit according to the manufacturer. 

8.3.6 Determination of 11β-HSD1 activity in intact H4H1 cells 

Enzymatic activities were determined in intact H4H1 cells stably expressing 11β-

HSD1 as described previously [30]. Briefly, 30’000 cells were seeded per well in 96-

well plates (Becton-Dickinson, Basel, Switzerland). Cells were washed once 24 h 

later with 50 μL DMEMsf and incubated for another 3 h at 37°C. The medium was 

replaced by 40 μL fresh medium containing either vehicle, sulforaphane or T0504, 

and 10 μL medium containing 10 nCi [1,2-3H]-cortisone and 200 nM unlabeled 

cortisone to assess 11β-HSD1 reductase activity. Cells were incubated for 40 min at 

37°C and reactions stopped by adding an excess (2 mM) of unlabeled cortisone and 

cortisol in methanol, followed by separation of steroids by thin layer chromatography 

(TLC) and determination of the conversion of radiolabeled substrate by scintillation 

counting. 

8.3.7 Analysis of mRNA expression by real-time RT-PCR 

Rat H4IIE hepatoma cells (500’000 cells per well) were cultured in 24-well plates with 

DMEM for 12 h at 37°C. Cells were then washed once with DMEMct and incubated 

for another 3 h at 37°C. The culture medium was replaced with fresh DMEMct 

containing sulforaphane (10 μM), T0504 (1 μM), RU-486 (1 μM) and combinations of 

them, in the presence or absence of steroids (100 nM), followed by incubation for 

another 24 h at 37°C. The expression of NQO1 mRNA was determined by real-time 

RT-PCR. Briefly, total mRNA was extracted from either H4IIE or H4H1 cells using the 

Trizol method (Invitrogen, Carlsbad, CA) according to the manufacturer. RNA 

concentration and purity was determined spectrophotometrically by measuring 

fluorescence at 260 nm, 230 nm and 280 nm. Total mRNA (2 μg) was reverse 

transcribed to cDNA using the Superscript-III First-Strand Synthesis System and 

oligodT, as recommended by the manufacturer. (Invitrogen, Carlsbad CA). Relative 

quantification of NQO1 mRNA expression level was performed by RT-PCR on a 
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RotorGene 6000 (Corbett, Australia) and SYBR-Green following the instructions from 

the manufacturer (KAPA SYBR® FAST qPCR Kit (Bosten, United States). The 

relative expression of each gene compared with the internal control GAPDH was 

determined using the delta-delta-CT method. 

8.3.8 Calculations and statistical analysis 

All data (mean ± SD) were obtained from at least three independent experiments and 

significance was assessed using unpaired student t-test or one-way ANOVA followed 

by Bonferroni post tests in the GraphPad Prism 5 software. 
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8.4 Results 

8.4.1 Glucocorticoid-mediated inhibition of Nrf2-dependent reporter 
gene activation in HEK-293 cells 

To assess whether activation of the glucocorticoid receptor (GR) inhibits Nrf2-

dependent gene regulation, we transiently expressed human Nrf2 and human GRα 

together with a luciferase reporter construct driven by a promotor containing an eight-

times repeated antioxidant response element (ARE8L) [26] in HEK-293 cells. 

 

Fig. 1. Glucocorticoid receptor activation impairs Nrf2 activation in HEK-293. Nrf2 
activity was measured in a luminescence based transactivation assay. HEK-293 cells 
transient transfected with human Nrf2, human GRα expression plasmids as well as pCMV-
LacZ and ARE8L reporter plasmids cells were treated over a period of 24 h with DMSO, 10 
μM sulforaphane with or without 100 nM cortisol or simultaneously with 100 nM cortisol and 1 
μM RU-486. Data (obtained from a representative experiment measured in triplicate) 
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represent mean±SD; n =3. *, P < 0.05, **, P < 0.01 *** P < 0.001. P value was obtained using 
a one-way ANOVA followed by Bonferroni post tests compared with control (DMSO). 

 

Incubation of the cells with 10 μM sulforaphane led to a four-fold activation of the 

Nrf2-induced luciferase production. Activation of GR by 100 nM cortisol suppressed 

the Nrf2-dependent activation of the reporter gene by 10 μM Sulforaphane. The GR 

antagonist RU-486 (1 μM) was able to fully restore Nrf2-mediated activation of the 

ARE8L reporter. 

 

8.4.2 Induction of the Nrf2-dependent ARE8L-reporter construct in 
rat H4IIE hepatoma cells 

To characterize the responsiveness of the Nrf2 pathway in rat H4IIE hepatoma cells, 

we transiently transfected the cells with the ARE8L luciferase reporter construct. As 

shown in Fig. 2A, sulforaphane stimulated ARE-dependent reporter activity 

approximately seven-fold. Co-transfection of the cells with recombinant Nrf2 further 

stimulated reporter activity almost two-fold. Since Nrf2 protein has a short half-life (of 

about 15 min), which is significantly enhanced by proteasome inhibitors as reported 

earlier [31, 32], ARE-reporter activity was also assessed in cells treated with 

sulforaphane (10 μM) and the proteasome inhibitor MG132 (10 μM). Total luciferase 

reporter activity was two to three times higher in the presence of the proteasome 

inhibitor compared with its absence.  
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Fig. 2. Activation of the Nrf2-dependent luciferase reporter ARE8L in H4IIE cells. The 
activation of an Nrf2-dependent luciferase reporter driven by a promotor containing eight 
antioxidant response elements (ARE8L). By endogenous and over expressed Nrf2 was 
measured in rat H4IIE hepatoma cells (A) or in H4IIE cells stably expressing 11β-HSD1 
(H4H1 clone) (B). Cells were treated with vehicle (DMSO), sulforaphane (10 μM), or 
sulforaphane (10 μM) and proteasome inhibitor MG132 (10 μM) for 24 h. Data represent 
mean ± SD from at least two independent experiments performed in triplicate. 

 

There are currently no hepatocellular lines available that express the glucocorticoid 

activating enzyme 11β-HSD1. Therefore, we recently constructed a H4IIE cell clone 

with stable expression of 11β-HSD1 (designated as H4H1) [19]. The Nrf2-dependent 

ARE8L-reporter was similarly activated in this clone by sulforaphane both in the 

presence or absence of cotransfected recombinant Nrf2, with the exception that 

inhibition of the proteasome led to a much more pronounced stimulation of reporter 

activity upon over expression of Nrf2 (Fig. 2B). 
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8.4.3 11β-HSD1-mediated glucocorticoid activation suppresses Nrf2 
transactivation capacity  

The observation that over expression and activation of GR in HEK-293 cells inhibits 

the Nrf2-dependent transactivation of the ARE8L reporter gene led us to test whether 

suppression of Nrf2 transactivation by activated GR might be observed in cells 

expressing endogenous levels of these two transcription factors. 

 

Fig. 13. Suppression of Nrf2 transactivation by glucocorticoids in H4IIE cells. H4IIE 
cells were transiently transfected with ARE8L-reporter plasmid and empty vector pcDNA3 (A) 
or with ARE8L and 11β-HSD1 expression plasmid (B). The cells were incubated with vehicle 
or sulforaphane, glucocorticoids and, selective 11β-HSD1 inhibitor (T0504) at the 
concentration indicated for 24 h followed by measurement luciferase activity. Data represent 
mean ± SD from at least two independent experiments measured in triplicate. *, P < 0.05, **, 
P < 0.01 *** P < 0.001. P value was obtained using a one-way ANOVA followed by 
Bonferroni post tests compared with control (DMSO). ns, non significant. 
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Incubation of rat H4IIE hepatoma cells, a widely used liver cell model, with 100 nM 

cortisol almost completely abolished sulforaphane-induced Nrf2 activation of the 

ARE8L reporter gene. Neither the inactive glucocorticoid cortisone (100 nM) nor the 

selective 11β-HSD1 inhibitor T0504 affected Nrf2-dependent transactivation in 

transiently transfected H4IIE cells (Fig. 3A). H4IIE cells are devoid of endogenous 

11β-HSD1 expression, as measured by real-time RT-PCR. 

In H4IIE cells transiently transfected with rat 11β-HSD1 both cortisol and cortisone 

diminished Nrf2 activity. Impairment of Nrf2 transactivation by cortisone in 11β-HSD1 

expressing H4IIE cells was fully reversed in the presence of 1 μM T0504 (Fig. 3B). 

8.4.4 Sulforaphane does not affect 11β-HSD1 activity 

To ensure that the observed effects are not a result of inhibition of 11β-HSD1 by 

sulforaphane, we measured 11β-HSD1-dependent conversion of cortisone to cortisol 

in H4H1 cells. H4H1 cells represent H4IIE cells stably transfected with recombinant 

11β-HSD1 enzyme.  

 

Fig. 14. Sulforaphane does not inhibit 11β-HSD1 activity. Activity was measured by the 
conversion of cortisone to cortisol. H4H1 cells were incubated for 24 h with 10 μM of 
sulforaphane or vehicle (DMSO). Data represent mean ± SD from at least three independent 
experiments measured in triplicate. P-value was determined using unpaired, two-tailed 
student t-test. ns, not significant. 
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Sulforaphane-treated cells showed enzymatic activity that was comparable with that 

of DMSO-treated cells, indicating that sulforaphane does not affect 11β-HSD1 

activity. 

8.4.5 11β-HSD1 inhibitors and GR antagonists improve Nrf2 
transactivation capacity 

To overcome experimental differences due to transfection efficacy and to further 

study the impact of 11β-HSD1 inhibition, on Nrf2-dependent transactivation, we 

applied the H4H1 cells stably transfected 11β-HSD1. 

 

Fig. 15. 11β-HSD1 inhibitors and GR antagonists restore Nrf2-dependent 
transactivation H4H1 cells were transiently transfected with ARE8L and CMV-LacZ. Cells 
were then treated for 24 h with vehicle (DMSO), 100 nM cortisone, 10 μM sulforaphane, 1 
μM of the selective 11β-HSD1 inhibitor T0504 and 1 μM of the GR antagonist RU-486 as 
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indicated, followed by determination of luciferase activity. Data represent two independent 
experiments measured in triplicate. *** P < 0.001. P value was obtained using a one-way 
ANOVA followed by Bonferroni post tests compared with control (DMSO). ns, not significant. 

 

The activation of Nrf2 by 10 μM Sulforaphane resulted in an eight-fold activation of 

the ARE8L-reporter. The activation of the ARE8L-reporter in H4H1 cells treated for 

24 h with 10 μM of sulforaphane and 1 μM of T0504 was slightly higher compared 

with sulforaphane alone; however, the differences did not reach statistic significance. 

Importantly, following 24 h treatment of H4H1 cells with 100 nM cortisol and 10 μM 

sulforaphane significantly suppressed Nrf2-dependent transactivation of the ARE8L 

reporter, and reporter activation was indistinguishable to that from DMSO treated 

cells. The suppression of Nrf2 function due to 11β-HSD1 activity was reversed by the 

presence of 1 μM of the selective 11β-HSD1 inhibitor T0504 or 1 μM of the GR 

antagonist RU-486.  

 

8.4.6 NQO1 expression in H4IIE cells is suppressed by cortisol but 
not by cortisone 

To further support the suppressive effect of glucocorticoids on Nrf2 activity we 

determined the expression of NQO1 and GSTA2 mRNA in H4IIE cells treated with 

sulforaphane in the absence or presence of glucocorticoids. Sulforaphane enhanced 

NQO1 mRNA expression three-fold compared with control cells that were treated 

with DMSO. GSTA2 mRNA expression was four-fold increased by sulforaphane Co-

incubation of H4IIE cells with sulforaphane compared with control cells that were 

treated with DMSO. Cortisol significantly suppressed NQO1 and GSTA2 mRNA 

expression (Fig. 6A). The inactive glucocorticoid cortisone was unable to suppress 

sulforaphane-induced NQO1 mRNA expression in the absence of 11β-HSD1. 
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Fig. 16. Inhibition of Nrf2-mediated expression of NQO1 and GSTA2 by cortisol. H4IIE 
cells were incubated for 24 h at 37°C with 10 μM sulforaphane in the absence or presence of 
100 nM cortisol or cortisone, respectively, followed by determination of NQO1 and GSTA2 
mRNA levels by real-time RT-PCR. Data (mean ± S.D. of triplicates from three independent 
experiments) are relative to the ratio of target NQO1 and GSTA2 mRNA to GAPDH control 
mRNA from cells treated with vehicle (DMSO). *, P < 0.05, **, P < 0.01 *** P < 0.001. P value 
was obtained using a one-way ANOVA followed by Bonferroni post tests compared with 
vehicle control (DMSO). 

 

8.4.7 Inhibition of 11β-HSD1 restored sulforaphane-induced NQO1 
mRNA expression in H4H1 cells 

To investigate the impact of 11β-HSD1 on NQO1 mRNA expression we employed 

H4H1 cells that are stably expressing recombinant 11β-HSD1. Sulforaphane induced 

NQO1 mRNA expression approximately five-fold. The induction was significantly 

reduced upon simultaneous incubation of cells with sulforaphane and cortisone for 24 
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h. The 11β-HSD1 inhibitor glycyrrhetinic acid (GA) showed no significant effect on 

basal or sulforaphane-induced NQO1 mRNA expression of but completely reversed 

the suppressive effect of cortisone. 

 

Fig. 17. Inhibition of 11β-HSD1 reversed the glucocorticoid-dependent suppression of 
Nrf2-mediated NQO1 mRNA expression. In 11β-HSD1 expressing H4H1 cells the addition 
of cortisone decreased sulforaphane-induced NQO1 mRNA expression. H4H1 cells were 
incubated for 24 h at 37°C with 10 μM of sulforaphane in the absence or presence of 100 nM 
cortisol and 1 μM glycyrrhetinic acid (GA). mRNA levels were quantified by real-time RT-
PCR. Data (mean ± S.D. of triplicates from three independent experiments) are relative to the 
ratio NQO1 mRNA to GAPDH control mRNA from cells treated with vehicle (DMSO). *, P < 
0.05, **, P < 0.01 *** P < 0.001. P value was obtained using a one-way ANOVA followed by 
Bonferroni post tests compared with control (DMSO).  
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8.4.8 Glucocorticoid-dependent impairment of HO-1 function and 
susceptibility to H2O2 

Next, we studied the impact of 11β-HSD1 activity on the Nrf2-dependent target gene 

HO-1. H4IIE cells were transiently transfected with a plasmid for the cytosolic 

hydrogen peroxide sensor HyPer and either 11β-HSD1 or pcDNA3 (empty vector). 

Cells were treated with 100 nM of cortisone for 24 h. The real time measurements in 

H4IIE cells transiently transfected with the cytosolic HyPer-senor and pcDNA3 

showed a three-fold increase in the HyPer signal upon addition of 10 μM H2O2. The 

total response was reduced by about 50% after 30 min. In contrast, H4IIE transiently 

transfected with 11β-HSD1 showed an enhanced response to H2O2 with an 

approximately ~four-fold increased HyPer signal, indicating enhanced oxidative 

stress. After 30 min the HyPer signal was only slightly reduced, indicating enhanced 

oxidative stress, due to the impaired activity of HO-1 in 11β-HSD1 expressing H4IIE 

cells. In 11β-HSD1 expressing H4IIE cells simultaneously treated with 100 nM 

cortisone and with 1 μM T0504, the total response was slightly lower compared to 

cells in the absence of the inhibitor, although statistically not significant, and the cells 

recovered more quickly from the H2O2 challenge. Inhibition of 11β-HSD1 seemed to 

be beneficial and the total response was significantly reduced by about 30% after 30 

min (Fig. 8A) compared with cells expressing 11β-HSD1 but in the absence of 

T0504. 

 

Fig. 18. 11β-HSD1 expressing cells are more susceptible to H2O2 induced oxidative 
stress H4IIE cells transiently transfected with either pcDNA3 or 11β-HSD1 expression 
plasmid treated for 24 h with 100 nM cortisone in the presence or absence of 11β-HSD1 
inhibitor T0504. Following incubation the medium was replaced by assay buffer (HBSS) 
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containing 1g/L of glucose. Single cell real-time measurements were performed on a Leica 
confocal microscope SP5. (A) After 5 min baseline adaption, cells were exposed to a final 
concentration of 10 μM H2O2 and recovery was compared between differentially transfected 
cells over a period of 30 min. Data represent mean ± SEM of three different cells for each 
transfection. *, P < 0.05, **, P < 0.01 *** P < 0.001. P value was obtained using a one-way 
ANOVA followed by Bonferroni post tests compared with pcDNA3. (B) After 5 min baseline 
adaption, cells were challenged with a 100 μM H2O2 bolus and reduction of cytosolic 
oxidative stress was measured over a period of 45 min. Data represent mean+SEM of seven 
different cells for each transfection. *** P < 0.001. P value was obtained using unpaired, two-
tailed student t-test. 

 

Further, a higher concentration of H2O2 was used to challenge the cells (Fig. 8B) in 

order to address whether the observed differences were more pronounced. H4IIE 

cells transfected with pcDNA3 or 11β-HSD1 were treated for 24 h with 100 nM of 

cortisone, followed by real-time measurements and challenged with a bolus of 100 

μM H2O2. The pcDNA3 transfected cells showed a three-fold increase in HyPer 

signal, followed by a rapid decline and normalization of the signal. After 45 min, the 

signal reached almost baseline level. On the other hand, 11β-HSD1 expressing cells 

also responded immediately but showed a more pronounced response to H2O2 (five-

fold increase). In addition, the stress signal was only slightly reduced over 45 min 

period, indicating an impaired reduction of reactive oxygen species (ROS). 
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8.5 Discussion 

During lifetime organisms are continuously exposed to toxicants derived from 

endogenous sources like reactive metabolites, reactive oxygen species (OH-, H2O2, 

O2-) as well as environmental xenobiotics. At concentrations exceeding detoxification 

capacities these compounds are able to disturb physiological functions, ultimately 

contributing to severe dysfunctions such as inflammation, cardiovascular and 

neurodegenerative-disorders, diabetes or cancer. To cope with the burden of reactive 

chemicals organisms developed a sophisticated defence mechanism. Key enzymes 

involved in coping with oxidative stress include those induced by the antioxidant 

redox response pathway under the control of Nrf2. Deficiency or impairment of Nrf2 

has been closely related with many diseases such as arthritis [33, 34], diabetes [35, 

36], Parkinson’s [37] and various forms of cancer [38, 39]. Despite the key role of 

Nrf2 in redox regulation its mechanism of action is highly complex and not yet fully 

understood [1, 24, 40]. Only few studies address the cross-talk between Nrf2 and the 

essential glucocorticoid signaling pathway.  

In most toxicology studies addressing the impact of glucocorticoids on detoxification 

reactions the potent synthetic ligand dexamethasone was used. However, 

dexamethasone has clearly distinct properties than cortisol the endogenous 

glucocorticoid. Because of its “constitutive” activity dexamethasone circumvents the 

important interconversion by 11β-HSD enzymes, which is in contrast to the 

endogenous glucocorticoids. Endogenous glucocorticoids can be metabolically 

inactivated by 11β-HSD2 in tissues such as the kidney and regenerated by 11β-

HSD1 mainly in the liver. This is not the case for dexamethasone, since 

dexamethasone is not efficiently converted to 11-ketodexamethasone and because 

11-ketodexamethasone is still a potent GR agonist [29]. In addition dexamethasone 

is approximately ten-times more potent than cortisol, and it has been shown that high 

concentrations of dexamethasone can activate pregnane-X receptor (PXR) [15]. PXR 

and its co-receptor the retinoid-X receptor (RXR) are involved in the detoxification of 

xenobiotics while they transcriptionally regulate the expression of phase I (CYP3A4) 

and phase II enzymes [15]. Some of the phase II enzymes regulated by Nrf2 (e.g. 

NQO1) contain both XRE and ARE motifs [41] in their promoter regions. Differential 

regulation by the use of high concentrations of dexamethasone due to PXR activation 



11β-HSD1 ACTIVITY IMPAIRS NRF2-DEPENDENT PATHWAY 

120 
 

has been reported for glutathione-S-transferase (GSTA2) [42, 43]. Therefore, it is 

important to distinguish between effects of synthetic and endogenous 

glucocorticoids. 

In this study we focused on effects of endogenous glucocorticoids and on the role of 

glucocorticoid activation by 11β-HSD1 upstream of the GR on the Nrf2 pathway. 

Concentrations close to physiological levels (i.e. 100 nM) were used the present 

study, providing valuable information on the regulation of Nrf2 under physiological 

conditions.  

Using H4IIE cells, we show that in the absence of 11β-HSD1 cortisol but not 

cortisone affects Nrf2 activity as measured in transactivation assays or in NQO1 

mRNA expression (Fig.3 and Fig. 6). Thus, in tissues lacking 11β-HSD1 expression 

or in tissues expressing 11β-HSD2 (placenta, renal distal tubulus, distal colon) the 

Nrf2 pathway is modulated by extracellular availability or even insensitive to 

glucocorticoids, which is in clear contrast to tissues with high 11β-HSD1 expression 

(liver, adipose, hippocampal neurones).  

A recent study reported an increased hepatic 11β-HSD1 expression in patients with 

alcoholic liver disease (ALD) [44]. ALD associated disorders are fatty liver, 

inflammation, and cirrhosis and hepatocellular carcinoma in patients with liver 

cirrhosis [45]. Nrf2 prevents ethanol-induced liver injury by detoxification of 

acetaldehyde and inhibition of metabolite accumulation. Nrf2 knockout animals (nrf2 -

/-) showed dramatically increased mortality after feeding of ethanol doses which are 

well tolerated in wild-type mice [46].  

On a basic cellular level our results indicate that 11β-HSD1 inhibition might be 

beneficial to restore the capacity for detoxification processes regulated by Nrf2. This 

was supported by transactivation assays, NQO1 mRNA expression levels (Fig. 7), 

and by the use of the intracellular redox-sensor HyPer reflecting the activity of HO-1 

after challenge by H2O2 (Fig 8). In the case of ALD the authors claimed that inhibition 

of 11β-HSD1 could be a novel therapeutic approach to treat alcoholic pseudo-

Cushing’s [44]. We therefore hypothesize that inhibition of 11β-HSD1 may be further 

beneficial for the detoxification capacity of the liver, at least in patients with ALD. 
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Expression of 11β-HSD1 is increased in adipose tissue of obese humans and 

rodents. Transgenic mice selectively over expressing 11β-HSD1 (aP2-HSD1) in the 

adipose tissue develop the metabolic syndrome including visceral obesity, 

dyslipidemia, insulin resistance, diabetes, and hypertension [47]. In comparison to 

the human metabolic syndrome, plasma corticosterone levels in the aP2-HSD1 mice 

are unaltered while local glucocorticoid activation in adipose tissue is enhanced. In 

aP2-HSD1 mice hepatic 11β-HSD1 is not altered. However, corticosterone delivery 

to the liver is tree-times increased because of excessive activation of glucocorticoids 

derived from adipose tissue [47]. Obesity involves chronic inflammation and as a 

consequence enhanced infiltration of macrophages [48]. Macrophages express 11β-

HSD1, thereby further enhancing locally active glucocorticoids. Thus, in obesity the 

Nrf2 pathway may be suppressed by elevated glucocorticoid levels. In contrast, 11β-

HSD1 knockout animals fed with high fat diet showed reduced cytotoxic T-cell and 

macrophage infiltration in visceral fat compared with wild-type mice [49]. Reduced 

macrophage infiltration in adipose tissue observed for the 11β-HSD1 transgene 

further supports the assumption that 11β-HSD1 inhibition is beneficial in these 

situations. To study the effect of 11β-HSD1 inhibition in adipose tissue and the 

consequences for the Nrf2 pathway, a fatcell-specific inhibitor as developed recently 

[50] would provide a unique mechanistic tool. This inhibitor was successfully shown 

to protect against diet-induced obesity in mice [50]. In obese patients with type 2 

diabetes hepatic 11β-HSD1 activity was found to be sustained, coincident with an 

increased whole body 11β-HSD1 activity compared with normal weight patients [51]. 

The transgenic ApoE-mice over expressing 11β-HSD1 specifically in the liver exhibit 

a phenotype resembling humans suffering under non-alcoholic fatty liver disease 

[52]. The phenotype includes insulin-resistance, hypertension and metabolic 

syndrome symptomatic concomitant with a normal weight status [53, 54]. 

In contrast to obesity a clinical study investigating morbidly obese patients showed a 

20-fold higher 11β-HSD1 mRNA expression in liver compared with adipose tissue 

[56]. The study further convincingly showed that hepatic 11β-HSD1 expression in 

these patients is directly proportional to the body mass index (BMI). According to the 

outcome of the study the authors suggested that 11β-HSD1 activity in hepatic as well 

as visceral adipose tissue might be pathogenic in obesity [55]. Thus, enhanced 11β-

HSD1 expression in liver or adipose tissue leads to an increased local activation of 
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glucocorticoids. 11β-hydroxygluocorticoids are then further able to repress the Nrf2 

related activation of phase II detoxification enzymes including NQO1 and HO-1 (Fig. 

3 and Fig. 6). 

In conclusion, the present study contributes to the knowledge of the defined 

regulation of the antioxidant redox response pathway. It further suggests that 

inhibition of 11β-HSD1 may improve Nrf2-dependent cell defense, which may be 

beneficial for patients with ALD or obesity as well as patients with chronic 

inflammation such as diabetes or rheumatoid arthritis. To investigate these potentially 

beneficial effects in vivo further studies are needed.  
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9 Conclusion and Outlook 
11β-HSD1-mediated glucocorticoid activation is essential for the regulation of GR 

function. A subtle fine-tuning of 11β-HSD1 activity is critical and locally enhanced 

levels of cortisol (corticosterone in rodents) have been associated with metabolic 

disorders. This was best demonstrated, in studies with transgenic mouse models. 

The present work focused in a major part on the characterization of specific inhibitors 

against the glucocorticoid metabolizing enzymes 11β-HSD1 and 11β-HSD2 some of 

the inhibitors were isolated from the natural source loquat, others were synthesized 

by modification of 18β-glycyrrhetinic acid, the active constituent of the roots and 

rhizomes of licorice (Glycyrrhiza spp.). 

11β-HSD1 is currently considered as a promising drug target for the therapeutic 

intervention of obesity and its outcome, the metabolic syndrome. Results from 

studies with transgenic mice promoted the development of 11β-HSD1 inhibitors. 11β-

HSD1 overexpression specifically in adipose tissue results in a pathologic phenotype 

described by accumulation of visceral fat and diabetic characteristics such as glucose 

intolerance, insulin- and leptin-resistance, increased free-fatty acids, as well as 

hypertension and chronic inflammation [158]. Furthermore, adipose specific 

overexpression resulted in enhanced intra-adipose glucocorticoid activation. This 

leads to higher adipose and portal corticosterone concentrations without affecting 

systemic glucocorticoid levels, measured in plasma [159]. In transgene mice with 

liver specific overexpression of 11β-HSD1 neither obesity nor glucose intolerance 

was obvious; however, the animals developed symptoms of the metabolic syndrome, 

including enhanced hepatic lipid synthesis, mild insulin resistance and steatosis 

[160]. In contrast, reduction of 11β-HSD1 activity by knock-down or knock-out 

protects against diet induced obesity concomitant with a lean and non-diabetic 

phenotype [161, 162]. Taken together, these studies among others revealed 11β-

HSD1 as a potential drug target for the therapeutic intervention of metabolic diseases 

[159]. 

Inhibition of 11β-HSD1 for therapeutic purpose requires highly selective inhibitors 

whereby 11β-HSD2 is the first anti-target to be considered for selectivity assessment. 

Non-selective inhibitors such as 18β-glycyrrhetinic acid (GA) have been shown to 

cause hypertension as a result of potassium wasting and sodium retention due to 
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glucocorticoid-dependent activation of the MR [163]. Furthermore, other enzymes 

such as 17β-HSDs have to be considered in these approaches, to guarantee that sex 

hormone regulation is not affected by these inhibitors. In general, it would be more 

beneficial to use tissue-specific delivery of inhibitors, or pro-drugs that are activated 

specifically in the tissue of interest. Alternatively, topic instead of systemic 

applications may help to prevent unwanted side-effects as well as adverse 

compensatory effects. Recently, an adipose tissue-targeted 11β-HSD1 inhibitor was 

described, with beneficial outcome against diet induced obesity [164]. 

In contrast to synthetic pharmaceutical inhibitors, only few studies address the 

potential use of compounds from natural sources. The present work contributes to 

the identification of 11β-HSD1 inhibitors from natural sources. It further describes the 

mechanism and the site of action of the isolated compounds. Moreover, we 

highlighted the chemical class of pentacyclic triterpenes of the ursane type as active 

inhibitory compounds of 11β-HSD1. 

Loquat (eriobotrya japonica) is used in Chinese medicine as an anti-diabetic. 

However, the mechanism of action was not fully elucidated. We described active 

plant constituents that may be responsible for some of the beneficial effects of loquat 

consumption in diabetes. For the discovery, a ligand-based pharmacophore model 

was used and selected hits were further evaluated by docking into the 11β-HSD1 

binding site and the use of in vitro activity assays. Compounds isolated from loquat 

leaves were characterized as pentacyclic triterpenes. These compounds inhibited 

11β-HSD1 and unlike GA they showed no or only weak effects on 11β-HSD2. The 

most potent compounds isolated from the extracts were corosolic acid with an IC50 of 
0.8 μM, followed by urosolic acid with an IC50 of 2 μM for 11β-HSD1. From the 

dichlormethane extracts 12 different triterpenoids were identified, including already 

described constituents of E. japonica such as maslinic acid methyl ester, 3-O-trans-p-

coumaroyltormentic acid, 3-O-cis-p-coumaroyltormentic acid and tormentic acid. 

However, two compounds identified as 2-α hydroxy-3-oxo urs-12-en-28-oic acid and 

uvaol have previously not been reported for this commonly used plant source. 

Several of the identified triterpenoids exerted only weak inhibitory effect; However, a 

mixture of these individual compounds at concentrations were they exerted little or no 

effect, inhibited up to 90% of 11β-HSD1 activity, indicating a remarkable synergistic 
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effect. This observation is in line with the opinion that natural products might have 

more pronounced effects when used as whole plant extracts rather than as single 

isolated compounds due to synergistically active constituents. Traditional medicines 

are based on naturally derived products and the potential of nature to accommodate 

many potent and/or selective drugs seems to be huge. High throughput screening 

(HTS) approaches may reveal further compounds which can be used directly or 

serve as basis for the development of therapeutically valuable drugs. However, HTS 

is cost intensive; therefore, 3D-modeling accompanied with in vitro biological assays 

are an alternative to exploit the available structural knowledge of target proteins for 

identification of novel active entities. The predictive potential of these approaches for 

active drugs and/or possible adverse effects increases our understanding of the 

mechanisms behind drugs.  

Natural compounds used in traditional medicines, and herbs and plants known as 

“household remedies” represent drugs that are of mechanistic value and that are 

broadly accepted in the population because of their natural source. The identification 

of substance classes, as shown in our study, therefore improves the existing 

knowledge on natural bioactive compounds. 

With respect to its potency and selectivity for 11β-HSD1, corosolic acid may be used 

as a starting point for chemical modifications that might lead to more potent inhibitors 

with improved pharmacokinetic properties.  

This approach was recently used for the development of selective 11β-HSD1 and 

11β-HSD2 inhibitors using the non-selective GA as a starting compound. In the 

present work, we characterized nine selective 11β-HSD1 and fifteen 11β-HSD2 

inhibitors for their biological activity and species specificity on 11β-HSD2. Species-

specific differences of inhibitors need to considered; and have been described for 

11β-HSD1 inhibition by GA-derivatives and other inhibitor classes [165, 166]. We 

showed that the starting compound GA was comparably active toward mouse and 

human 11β-HSD2. However, the chemical modification of three tested GA-

derivatives enhanced the species-specificity for the human compared with the mouse 

enzyme. With respect to animal experiments and restriction to existing animal models 

for the proof-of-concept regarding subsequent clinical trials, species-specific 

variability represents an important aspect. The use of docking and pharmacophore 
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models might lead to an improved prediction of species-specific variability and 

potency of bioactive compounds. 

11β-HSD2 is well accepted as an off-target with respect to hypertension and 

cardiovascular complications as a result of cortisol-dependent activation of renal MR. 

Recently, potential applications for the beneficial use of 11β-HSD2 inhibitors have 

been suggested. These approaches include end-stage renal disease patients on 

hemodialysis. In these patients, treatment of hyperkalemia to lower the risk of 

hyperkalemic arrhythmias is essential [167]. Inhibition of 11β-HSD2 by licorice 

consumption was able to reduce serum potassium in hemodialysis patients, probably 

by enhanced intestinal secretion as a result of 11β-HSD2 inhibition and MR activation 

in the distal colon. However, high doses of GA were used in short-time applications, 

and long-term studies have to address potential adverse effects. Furthermore, GA is 

a non-selective inhibitor of both 11β-HSD enzymes. The inhibition of 11β-HSD1 for 

example in liver, renal proximal tubules, in testicular leydig cells, and in the 

hypothalamus might cause adverse effects. Moreover, there is evidence that GA 

inhibits some 17β-HSD enzymes. Therefore, selective inhibitors are required for 

follow-up studies to confirm and clearly address the effects seen with licorice.  

Hyperkalemia is also a rare but underestimated event for metastatic infiltration of the 

adrenals as a consequence of breast and lung cancers with the outcome of adrenal 

insufficiency [168]. In patients with adrenal insufficiency and for treatment of 

symptoms such as hypotension, hyperkalemia and hyponatremia selective 11β-

HSD2 inhibitors might be beneficial. Acute intoxication with paramethoxy-

metamphetamin, a frequently used party drug, can be lethal at least in part because 

of hyperkalemia and hypoglycemia [169]. Thus, selective inhibition of 11β-HSD2 may 

lead to an increase in cortisol, thereby increasing blood glucose levels and reduce 

hypoglycemia. Cortisol activation of MR in the intestine might be beneficial in such 

cases of hypokalemia as well.  

In recent studies, elevated 11β-HSD2 expression was also reported for some forms 

of cancer and in chronic colon inflammation [170, 171]. However, most of these 

studies used GA. Thus, in further studies selective inhibitors against 11β-HSD2 

should be used to confirm the beneficial effects of 11β-HSD2 inhibition.  
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Specific 11β-HSD2 inhibitors coupled with cell-permeable peptides such as oligo-

arginines [172] also containing a metalloproteinase cleaving sites are conceivable. 

Metalloproteinases (MMP) are commonly secreted from tumors [173, 174]. Specific 

release of the inhibitor around the tumor tissue might be beneficial to suppress 11β-

HSD2 in such situations, without affecting for example. renal 11β-HSD2 function. A 

possible structure for such a coupled inhibitor construct is given in Figure 14. 

 

 

Figure 12. Schematic representation of a putative selective inhibitor coupled to a cell permeable peptide 
and including an MMP-7 recognition site. 

Arg, Arginine; Pro-Leu-Gly, specific MMP-7 recognition site. 

The cell-permeable peptide of this construct is an oligo-arginine, its beneficial length 

is dependent on the cell-type and varies between nine and twelve repeated 

arginines. The peptide is expected to enter the cell by macropinocytosis [172]. The 

specific recognition site Pro-Leu-Gly will be recognized by MMP-7 [175], a 

metalloproteinase also secreted from pancreas and colon cancer. The linker peptide 

may be required for functional coupling of the inhibitor and/or to protect the cleavage 

site from steric hindrance by the inhibitor. The last linker amino acid should contain 

an additional free amino group (lysine (Lys), arginine (Arg)) since this may be 

beneficial for chemical coupling of the inhibitor. However, in my example, I chose 

compound 19 (see chapter 6). This selective inhibitor of 11β-HSD2 has a free amino 

group, which might be easily linked to the terminal carboxy-group of glycine from the 
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tripeptide motif that functions as specific MMP-7 recognition site. The following 

aspects should be considered in general for such a hypothetic construct. 

1) The total construct must be cell-permeable. 

2) The cytotoxicity must be negligible for the total as well as the cleaved 

product(s). 

3) The cleavage of the inhibitor must be possible and specific.  

4) The inhibitor must be still active, even after structural changes due to cleavage 

from the pro-drug. 

5) The construct must be soluble in a water based solution at pH 7.4. 

Selective 11β-HSD2 inhibitors are highly valuable as tools for basic research. The 

awareness of a mosaic like expression pattern for 11β-HSD1 and 11β-HSD2 in many 

tissues may explain contradictive findings for the use of non-selective inhibitors. In 

this work, we reviewed MR expression in various organs. MR has broader substrate 

specificity compared with GR; therefore, MR function is tightly defined by the 

presence or absence of glucocorticoid metabolizing enzymes. Selective inhibition of 

11β-HSD1 and 11β-HSD2 is required to clearly address mechanistic findings in vivo 

and in vitro. 

A challenge for biologically used compounds remains cellular uptake. Therefore, the 

inhibitors characterized in this work were also used in intact SW-620 colon cells, 

known for the endogenous expression of 11β-HSD2. The tested inhibitors were found 

to be highly active for endogenous 11β-HSD2 inhibition in SW-620 cells. 

Interestingly, IC50 values obtained from SW-620 cells were lower compared with data 

obtained from HEK-293 cells or even from cell lysates. This may be explained by 

compound removal due to transport mechanisms in HEK-293 cells, or compound 

accumulation by SW-620 cells, if compared with lysates. 

Compounds may act differently in intact cells compared with lysates because of 

active transport mechanisms that are able to remove the substance from the cell, and 

the specific chemical characteristics. The chemical structure per se might prevent 

cellular uptake, for example when containing highly charged groups. Further 

possibilities for cellular inactivity might be protein binding of the compound within the 
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cell, or binding to serum proteins such as albumin contained in the culture media. A 

general challenge is the solubility in the water-based culture media as well as the 

stability of the compound over the cultivation period at the temperature of 37°C and 

at neutral pH value. Thus, the compound must be sufficiently soluble to reach the 

active concentration at the site of the target enzyme. Besides, the chemical stability is 

essential for storage of the compound, to guarantee continuous activity without 

accumulation of decomposition products.  

Detoxification of reactive metabolites or toxic xenobiotics is in part mediated by 

enzymes of the antioxidant redox response pathway. In the present study, I showed 

that 11β-HSD1 activity modulates the cellular capacity to cope with oxidative stress. 

The 11β-HSD1-dependent glucocorticoid activation suppresses the activity of Nrf2 

and its target enzymes. The effect of glucocorticoids was GR-dependent [176]. 

Therefore, I suggest that the inhibition of 11β-HSD1 may have beneficial effects by 

restoring the Nrf2-dependent cell defense system. This may also contribute to the 

beneficial effects in obesity and the metabolic syndrome were oxidative stress-

dependent damage is a major problem. 

The dominant hepatic outcome of the metabolic syndrome is designated nonalcoholic 

fatty liver disease (NAFLD), The most severe form is nonalcoholic steatohepatitis 

(NASH). NASH is characterized by hepatic inflammation and fibrosis, ultimately 

leading to cirrhosis and hepatocellular carcinoma [177]. Both liver-specific 

overexpression of 11β-HSD1 in mice, and human visceral fat accumulation has been 

associated with the pathogenesis of NAFLD [178]. In general, fat accumulation is 

accompanied by enhanced expression of 11β-HSD1 and locally elevated active 

glucocorticoid levels. In the present work, 11β-HSD1-mediated activation of 

glucocorticoids was shown to suppress the Nrf2-dependent antioxidant redox 

response pathway. Nrf2 knock-out mice were investigated by Sugimoto et al. for the 

development of nutritional steatohepatitis [179]. They found that Nrf2 depletion leads 

to an increase of nutrition-mediated inflammation and fibrosis marker gene 

expression and the onset of NASH [139, 179]. In my experiments, I found that cortisol 

is able to reduce the induction of Nrf2-dependent transactivation in the rat hepatoma 

cell line H4IIE. Furthermore, I could show that NQO1 expression is reduced in H4H1 

cells, upon treatment with cortisone. H4H1 cells stably express 11β-HSD1 and 

therefore efficiently convert inactive cortisone into the active glucocorticoid cortisol. 
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Cortisol is able to suppress Nrf2 induced expression of NQO1 and GSTA2, followed 

by a reduced detoxification capacity of the cell. A direct comparison of transiently 

11β-HSD1 transfected H4IIE cells revealed that 11β-HSD1 expression reduces the 

detoxification of hydrogen peroxide (H2O2). H2O2 is removed by HO-1, another 

essential target enzyme of Nrf2.  

These observations suggest that Nrf2-dependent detoxification pathway is at least in 

part suppressed by elevated glucocorticoids as a result of enhanced 11β-HSD1 

expression. With respect to the data presented in this work, it might be possible that 

obesity, accompanied with chronically enhanced 11β-HSD1 activity and higher 

cortisol levels leads to a reduction of Nrf2-dependent detoxification capacity, which 

might further contribute to damage by increasing oxidative stress in chronically 

inflamed hepatic tissue. To evaluate this hypothesis, in vivo studies and selective 

11β-HSD1 inhibition are needed. Besides, the metabolic syndrome, and its 

increasing importance with respect to increasing costs for treatment in industrial 

countries, acute and chronic liver toxicity are of interest for clinical as well as basic 

research. The discovery of underlying mechanisms for example of ethanol-mediated 

toxicity has been extensively studied; however, there are still several open questions 

and further research is required. Alcoholic liver disease in human is accompanied 

with a five-fold increase in hepatic 11β-HSD1 expression compared with healthy 

subjects or patients with chronic liver diseases [180]. Thus, in line with the nutrition 

mediated hepatic outcome also alcohol consumption and abuse is associated with 

fatty liver, inflammation fibrosis and cirrhosis.  

Since Nrf2-induced expression is involved in ethanol detoxification, Nrf2 knock-out 

animals (Nrf2-/-) are highly susceptible to ethanol doses which are well tolerated by 

wild-type animals (WT) [181]. Serum levels of interleukine-6 (IL-6) and tumor-

necrosis-factor-α (TNFα) are significantly enhanced in transgenic mice accompanied 

with increased infiltration of kupffer-cells (macrophages) [181]. Macrophages express 

11β-HSD1 and pro-inflammatory cytokines were shown to enhance 11β-HSD1 

expression. Therefore, inflammation, regardless of its source, will further increase 

11β-HSD1 expression and lead to enhanced local levels of active glucocorticoids. 

Locally enhanced glucocorticoid levels in inflamed tissue may be able to suppress 

the Nrf2-dependent detoxification machinery. 
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In general, inflammation is associated with increased cytokine release mediated by 

enhanced infiltration of macrophages. Independent of obesity, it was shown that 

adipose tissue inflammation is associated with hepatic fat accumulation [182]. This 

information suggest that in situations favoring chronic inflammation elevated 11β-

HSD1 may lead to a reduced capacity of the antioxidant redox response pathway, 

which would lead to further oxidative damage in the inflamed tissue. 

There is a clear positive correlation between tobaccos consumption and lung cancer; 

however, not all smokers will develop lung cancer. Gender differences in lung cancer 

patients have been recognized, but there are some controversies. Compared with 

gender-matched non-smokers male smokers have a 22-fold higher risk to develop 

lung cancer than non-smokers compared with a in twelve-fold higher of risk for 

female smokers compared with non-smokers [183]. Furthermore, the incidence for 

cancer development in man is higher, concomitant with a significantly lower relative 

survival rate over one and five years compared with women [184]. On the other hand 

some studies reported a higher risk for female smokers to develop lung cancer [185]. 

These contradictive findings may be related to age-differences of the individuals e.g. 

pre- versus post-menopausal women, to lifestyle changes, or to the investigated 

carcinogen causative for cancer development. 11β-HSD1 and Nrf2 are both involved 

in the detoxification of tobacco toxins. Furthermore, the expression of both 11β-HSD1 

and the Nrf2-dependent target NQO1 were shown to be gender-dependent. 11β-

HSD1 shows higher expression in male [186, 187] whereas NQO1 expression was 

found to be lower in male compared with female [188]. However, these studies reflect 

the expression in the rat and are not directly translatable to the human situation. 11β-

HSD1 expression in smokers is subject to high interindividual variances with respect 

to protein activity and expression [183]. However, gene expression analysis between 

smokers with or without lung cancer revealed a significantly lower expression of 22 

known Nrf2-regulated genes, including NQO1, for smokers with lung cancer [189]. 

Therefore, further studies for tissue specific expression of 11β-HSD1 in association 

with Nrf2 target genes not only in lung cancer would be desirable.  

In general, imbalances in the expression or activity of any gene and protein can be 

associated with pathological effects. Therefore, a sophisticated regulatory network 

has to control key nuclear receptors such as Nrf2 to control their function. Thus, 

besides the beneficial effects of Nrf2 in detoxification reactions, unbalanced 
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activation of Nrf2 is associated with disorders, including lung cancer. Within the 

antioxidant redox response pathway, Keap1 is a negative regulator for Nrf2. It 

mediates ubiquitination of Nrf2 and thereby promotes its proteosomal removal. 

Keap1 gene silencing due to promotor methylation, low expression levels, as well as 

loss-of-function mutations are directly related to some types of lung cancer and have 

been shown for cancer cell lines [151, 190]. Furthermore, 11β-HSD1 may also be 

beneficial for the detoxification of lung cancer carcinogens. The nitrosamine 4-

methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) exerts carcinogenic properties 

after Cyp450-dependent metabolism [183]. 11β-HSD1 can catalyze the reduction of 

NNK to the non-carcinogenic 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL), 

however, other enzymes belonging to the aldo-keto reductase family seem to be 

more important regarding NKK metabolism [183]. 

The action of 11β-HSD1 and Nrf2 are bivalent and interference with both underlying 

pathways can be beneficial as well as harmful. Well defined studies and experiments 

should assess potential therapeutic applications. 

To further study the impact of 11β-HSD1 in the antioxidant redox response pathway, 

the use of liver-specific 11β-HSD1 knock-out animals would be highly useful. 

Elucidation of the susceptibility of the transgene compared with the wild-type animal 

to hepatotoxic compounds such as acetaminophen or ethanol should help to 

understand the role of 11β-HSD1 for liver detoxification. Moreover, H6PDH knock-out 

animals may be used to address beneficial effects of 11β-HSD1 inhibition since in 

these animals 11β-HSD1 is unable to convert cortisone to cortisol because of a 

depletion of its cofactor NADPH. 
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