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1. Introduction 

1.1 The cytoskeleton 

Unlike insects and plant cells, which are protected respectively by a hard chitin 

exoskeleton or by a cellulose cell wall, vertebrate cells are only surrounded by a fine 

lipid bilayer. To maintain their shapes and organelles organization, vertebrate cells 

lean on the cell cytoskeleton which consists of three different filament-forming 

polymer networks. The thinnest filaments of about 6nm diameter called 

microfilaments are made up of two twisted helical chains of globular G-actin (Holmes 

et al., 1990)1. The largest filaments called microtubules have a diameter of 25nm and 

form a hollow tube of 13 to 15 protofilaments consisting of globular α and β tubulin 

heterodimers. The filaments we will focus on have a diameter of 7 to 16 nm and are 

consequently called intermediate filaments (IFs). IFs have unique properties 

compared to microtubules and actin microfilaments. First, the elementary IFs building 

blocks are elongated α-helical proteins. Such long monomeric α-helices are unstable 

in aqueous solutions and associate into multimers to preserve, as globular proteins, a 

hydrophobic core and expose to their surface hydrophilic amino-acids (Crick, 1953)2. 

IFs dimers can already be observed by electron microscopy (Aebi et al., 1988). This 

fibrous rope-like nature confers them more flexibility and resistance to stress than 

microfilaments and microtubules (Janmey et al., 1991)3. Second, in contrast to 

microtubules and microfilaments, assembled IFs are apolar since elementary dimers 

adopt both “up and down” directions relative to the filament axis. Finally, IFs are 

highly polymorphic as their number of subunits varies, even within the same filament 

protein type. Altogether, these IFs properties mirror their biological functions. Their 

high mechanical resistance prevents cell disruption upon stress whereas their 

flexibility procures to cells and tissues a sufficient malleability to suite with dynamic 

processes like, for instance, leukocyte extravasation or muscular contraction. As 

apolar structures, IFs have never been shown to drive directional motor processes as 

myosin with actin or kinesin and dynein with microtubules. Lastly, IFs polymorphism 

may explain the diverse cell or tissue specific requirements for cytoplasmic 

organization or resistance to stress. 
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1.2 Intermediate filaments 

Intermediate filaments are tissue-specific proteins encoded by a multi-gene family of 

70 genes (Hesse et al., 2001)4. At least 72 pathologies are associated to IFs 

mutations. Such a large amount of information is accessible online through the 

human IF database (Szeverenyi et al., 2008)5. 

A detailed sequence comparison allows their classification into six sequence 

homology classes (SHC): acidic keratins (SHC I), basic keratins (SHC II), desmin-

/vimentin-type proteins (SHC III), neurofilaments (SHC IV), nuclear lamins (SHC V) 

and eye-lens filaments (SHC VI) (Fuchs et al., 1994, Hess et al., 1998)6,7. This thesis 

only focuses on SHC III IFs.  

The primary sequence analysis reveals several features of IFs. First, one can 

observe an underlying heptad repeat sequence of the form (a-b-c-d-e-f-g)n where the 

a and d positions are predominantly occupied by apolar residues like leucine, valine 

and isoleucine. Such repeat is characteristic for twined α-helices into two-stranded 

left-handed coiled-coils. This ~310 amino acids (~350 for nuclear lamins and 

invertebrates) long α-helical rod domain is flanked by variable in length and non 

helical N-terminal “head” and C-terminal “tail” domains. In addition, the heptad repeat 

discontinues at three positions called linkers L1, L12 and L2. The linker L1 divides 

the coil 1 into the 1A and 1B subdomains and the linker L2 splits the coil 2 into 2A 

and 2B. The linker L12 is found in-between coil 1 and coil 2 (Figure 1.2.1). 

 

Figure 1.2.1 The domain organization of vimentin (SHC III): the rod domain, which consists of 
two coils separated by the linker L12, is flanked by the non-helical N-terminal head and the C-
terminal tail domains. The coil 1 is divided into the two sub-domains 1A and 1B by the linker 
L1. Similarly, the coil 2 has two sub-domains 2A and 2B interrupted by the linker L2. 

Remarkably, the number of residues in heptad-containing regions is absolutely 

conserved in cytoplasmic IF of vertebrates. Links, except L2, are more variable 

(Table 1.2.1). 
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Type Head 1A L1 1B L12 2A L2 2B Tail 
Ia variable 35 11 101 16 19 8 116 variable 
Ib " 35 11-14 101 16 19 8 116 " 
IIa " 35 10 101 17 19 8 116 " 
IIb " 35 11-14 101 17 19 8 116 " 
III " 35 8 101 16,18 19 8 116 55 

IV-L 91 35 10 101 17 19 8 116 143 
IV-M 102 35 10 101 17 19 8 116 variable 
IV-H 95 35 10 101 22 19 8 116 " 

IV-INX 94* 35 10 101 15 19 8 116 97* 
V " 41 0 148 19 19 8 116 variable 

Table 1.2.1 The number of residues in segments of the different SHCs is absolutely conserved 
in segments 1A, 1B, 2A and 2B and L2 with the exception of nuclear lamins (SHC V). The SHC 
Ia and IIa are the hard keratins, Ib and IIb the epidermal keratins and the neurofilaments (SHC 
IV) are divided in low (NF-L), middle (NF-M) and high (NF-H) according to their polypeptide 
chain mass. *Only one sequence is available for IV-INX (α-internexin). The number of residues 
for coil 2B has been adjusted to Table adapted from Parry and Steinert, 1995

8
. 

Finally, two sequence motifs are found at opposite end of the rod domain. The first 

one corresponds to the first three heptads of the coil 1A and has eight absolutely 

conserved residues. The second motif is located at the end of coil 2B and harbor the 

IF „consensus motif‟ YRKLLEGEE. These motifs have been shown to be critical for 

filament assembly and point mutations within produce severe phenotypes (Strelkov et 

al., 2002)9.  

 

1.3 Atomic structures of intermediate filaments 

The history of IFs structure is linked to famous biology discoveries of the 20 century. 

The correct interpretation of hard keratin X-ray diffraction pattern by William Astbury 

in 1930 required Linus Pauling‟s description of α-helices in 195110  and their 

organization into coiled coils by Francis Crick in 19522,11. It is only in 1981 that the 

first coiled coil single crystal structures, i.e. the influenza virus heamagglutinin 

glycoprotein (Wilson et al., 1981)12  and the catabolite gene activator protein (McKay 

et al., 1981, 1982)13,14 were published. The interest in coiled coil grew up in the 90s 

when several transcription factors were shown to harbor the periodic signature of 

coiled coils (Landschulz et al., 1988; O'Shea et al., 1991)15,16. In 1998, the analysis of 

the long 18 heptads structure of the oligomerization domain of cortexilin I (Burkhard 

et al., 1998) 17 reveals that the proper assembly of α-helices in coiled coil requires a 

13-residues pattern or „trigger sites‟ (Kammerer et al., 1998)18. Analogous „trigger 
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sites‟ have been identified in IFs (Wu et al., 2000)19 and form a remarkable network 

of intra- and interhelical salt bridges. 

First knowledge about IFs atomic structure was essentially inherited from other coiled 

coil structures, as attempts to crystallize entire or large segments of IFs failed 

(Herrmann et al., 2004)20. The reason behind is that complete IFs or coiled coil 

fragments of >100 residues become flexible and have a limited rotational diffusion in 

solution. Thus, such long fragments cannot align properly to form a crystal lattice. To 

overcome this problem, a „divide-and-conquer‟ strategy consisting of crystallizing 

shorter rod fragments <100 residues was established. This approach is however only 

valid for IF proteins since the coiled coil folding does not require a precise 

surrounding as for globular proteins (Strelkov et al., 2001)21.  

The first crystallized IF fragment was a fusion between the yeast GCN4 coiled coil 

leucine-zipper domain and the vimentin carboxy-terminal consensus motif, residues 

385-412. This chimera construct was designed to ensure a proper coil formation. It 

confirms the presence of the hydrophobic seam in a and d positions and the 

presence of an interhelical salt bridge between the Glu396(g) and Arg401(e) of the 

other chain stabilizing the end of coil 2. Intrahelical salt bridges are found between 

Lys390(a) and Asp394(d). Interestingly, the helices bent away from the coiled-coil 

axis after residue Leu405, what defines the exact end of the coil 2 (Herrmann et al., 

2000)22. 

This chimera construct was confirmed by the crystallization of an overlapping 

vimentin fragment („Cys2‟) from residues 328 to 411. This structure exhibits a 

discontinuity of the coiled coil geometry, called „stutter‟, where α-helices shortly run in 

parallel. A stutter (residues 351-354) can be considered as a heptad repeat plus four 

residues or as a heptad minus three residues (Strelkov et al., 2002)9. 

The third known fragment represents the vimentin A coil 1A from residues 102-138 

(Strelkov et al., 2002)9. This fragment behaves as a monomer both in solution and 

within the crystal. Surprisingly, its α-helix adopts the same bending as in a coiled coil. 

One can thus conclude that the α-helical bending only depends of the primary amino 

acid sequence. The coiled coil dimer model was created by superimposing the coil 

1A to the GCN4-vimentin structure. The modeled dimer reveals a strong extra-helical 

salt bridge between Lys120(g) and Glu125(e). Recently, the same fragment with a 
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single stabilizing mutation (Y117L) crystallized as a coiled coil dimer(Meier et al., 

2009)23. 

 

1.4 Coiled coil analysis 

 

Figure 1.4.1 The two major parameters two describe a coiled coil are the coiled coil pitch and 
the coiled coil radius. The pitch corresponds to the distance needed for a coiled coil to do a full 
rotation. The coiled coil radius is the distance between the helix axis and the coiled coil axis. 

There are few important parameters to describe a coiled coil. First, the distance 

required for a coiled coil to do a complete turn is called the pitch. The second 

required parameter is the coiled coil radius, which corresponds to the distance 

between one helix axis and the coiled coil axis (Strelkov et al., 2002)24. Alternatively, 

Crick used a vector representation to describe coiled coils (Crick, 1953)25. In addition 

each α-helices present in coiled coils are described by their pitch, radius and α-

helical rise. The α-helical rise represents the distance along the helix axis per 

residue. Within this thesis, the program Twister has been used to calculate coiled-coil 

parameters (Strelkov et al., 2002)24 

The classical coiled coil, as present in the IF rod domain, has a heptad pattern repeat 

of residues with ~3.5 residues per turn and is left-handed to compensate the small 

difference of the parallel α-helix 3.6 residues per turn. Alternatively, some coiled coils 

have hendecads (11-residues) periodicities and can be treated as a heptad (7 

residues) plus stutter (4 residues). Such α-helices have ~3.7 residues per turn and a 

resulting right-handed tetramer coiled-coil has been observed in a fragment of the 

tetrabrachion protein from Staphylothermus marinus (Stetefeld et al., 2000)26. Finally, 

a pentadecad periodicity was found in the NMR structure of the tetramerization 

domain of the Mnt repressor of Salmonella. These coiled coils are right-handed with 

an α-helical number of residues per turn of 3.8 (Nooren et al., 1999)27. 
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1.5 Intermediate filaments assembly 

There are three assembly groups; the keratins (SHC I and II) forms obligate 

heterodimers while the desmin-/vimentin-type (SHC III) and neurofilaments (SHC IV) 

form homopolymers in vitro. However, in vivo, filaments of SHC III and IV are 

frequently observed as copolymers. Finally, lamins (SHV V) are not cytoplasmic 

proteins but constitute the nuclear lamina attached to the inner nuclear membrane. 

Denatured vimentin filaments already forms dimers at an urea concentration of 6M. 

At 4.5M urea, vimentin further assemble into tetramers. Upon dialysis into buffers 

close to physiological conditions, vimentin forms long and uniform filaments. In low 

ionic strength buffer (5mM Tris-HCl, pH 8.4 or 2mM sodium phosphate, pH 7.5) only 

tetramers species are observed. Increasing the ionic strength of the solution by 

adding salts readily initiates filament formation. Thus, the assembly process can be 

monitored at different time points by arresting filament polymerization with 

glutaraldehyde (Figure 1.5.1).   

Within 2s after salt addition, rod-like structures of ~60nm length and ~16nm diameter 

are observed (Figure 1.5.1A). Such structures, called unit-length-filaments (ULFs), 

result from antiparallel half-staggered tetramers. ULFs then longitudinally anneal into 

long filaments (Figure 1.5.1B). Concomitantly with a further extension, filaments 

undergo a structural rearrangement of their subunits to produce mature filaments of 

~11nm diameter (Figure 1.5.1C) (Strelkov et al., 2003)28. 

 

Figure 1.5.1 Electron microscopy time-course pictures of recombinant vimentin assembly. (A) 
Within 2s after salt addition, unit-length filament structures (ULFs) of about 60nm of length for 
16nm diameter are observed. (B) ULFs then longitudinally assemble into immature filaments. 
(C) Concomitantly with filament elongation, filaments undergo an internal rearrangement or 
“radial compaction process” to yield mature filaments of about 11nm diameter. 
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Within this thesis I focus only on SHC III IFs. It should however be mentioned here 

that the assembly processes considerably vary between IF types. 

 

1.6 Desmin and desmin-related myopathies 

Desmin (old name skeletin, MW ~52kDa) is a muscle-specific protein which forms a 

cytoplasmic scaffold to interconnect myofibers and links the contractile apparatus to 

the sarcolemma (Morita et al, 2005)29, the mitochondria (Tokuyasu et al., 1983)30,31 

and the nucleus (Stromer et al., 1988)32. Desmin is also found in cell-cell adhesion 

complexes as desmosomes in cardiac muscle (Clark et al., 2002)33 and costamers in 

skeletal muscles (Lazarides, 1980)34 (Figure 1.5.1). 

Desmin knock-out mice are still viable and reproduce normally. However, these mice 

exhibit a loss of lateral alignment of myofibrils, disrupted anchorage of myofibrils to 

the sarcolemma and disturbed mitochondrial function. Muscle pathologies as 

degeneration, necrosis and calcification were more pronounced with increased 

muscle usage (Clark et al., 2002)33. 

 

Figure 1.5.1 Schematic view of desmin localization within cardiac muscle cell. Desmin laterally 
interlink the myofibril Z-discs and connects them to the sarcolemma, nuclear membrane and 
desmosomes (Morita et al, 2005)

29
. 
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Desmin-related myopathies or desminopathies (DRMs; OMIM 601419) in humans 

are characterized by a progressive skeletal myopathy, cardiomyopathy and 

respiratory insufficiencies, leading to death by cardiac arrest. Histologically, DRMs 

are classified in two distinct groups; in the first group desmin deposits are punctual 

cytoplasmic inclusions or “spherical bodies” whereas the second group consists of 

disseminated accumulation of granulofilamentous material (Goebel et al., 2000)35. 

DRMs have been associated to missense or deletion mutations of the desmin gene 

(Goldfarb et al., 1998)36. Desminopathies were often misdiagnosed; one can 

reasonably expect that their number will still increase over time. Interestingly, most of 

desmin mutations resides in the coil 2B (Figure 1.5.2) and are to proline, a residue 

considered as a “helix-breaker” (Chou and Fasman, 1974)37. 

 

Figure 1.5.2 Schematic view of desmin structure and localization of known desmin mutations 
(Bar et al., 2004)

38
.  

Both ΔN366 and ΔE359-S361 desmin deletions were modeled according to the coil 

2B vimentin structure (Kaminska et al., 2004)39. The ΔN359-S369 deletion generates 

an additional stutter after the natural occurring one (residues F356-E359) and further 

unwinds the coiled-coil. In contrast, the ΔN366 deletion close to the stutter converts it 

to a stammer structure which corresponds to a four residue deletion in the heptad 

repeat motif. Stammers are predicted to overwind coiled coil structures (Brown et al. 

1996; Strelkov and Burkhard, 2002)24,40. These coiled coil geometry distortions 

modify the angular positions of head and tail domains altering the filament assembly 

(Figure 1.5.3). 
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Figure 1.5.3 Coiled coil model of desmin partly based on the vimentin coil 2B structure.  The 
naturally occurring stutter in wt desmin locally unwinds the coiled coil. The ΔN366 deletion 
produces a stammer which corresponds to a coil overwinding whereas the ΔE359-S361 
deletion generates a second stutter which further unwind the coil 2B. The tail angles are 
drastically modified compared to the wt (picture from Kaminska et al., 2004)

39
.  
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2. Aim of this thesis 

2.1 Atomic structure of the N-terminal part of coil 2 

One goal of this thesis was to obtain further vimentin X-ray atomic structures. Thus 

far, only two atomic structures of the vimentin rod domain are available, i.e. the coil 

1A and coil 2B. Here, we were interested to obtain a crystal structure around the L2 

region, which length of eight residues is remarkably conserved between IFs (cf. table 

1.2.1).  

Early predictions showed that this region maintains a high α-helical content. 

Moreover, modeling attempts to extend the classical heptad periodicity from coil 2A 

into the linker 2 were compromised since the apolar stripe formed by residues in a 

and d positions in coil 2B would have been externalized. Consequently, it was 

suggested that the linker 2 was forming particular non-helical structures separating 

classical coiled coil 2A and 2B (cf. Figure 1.2.1) (Steinert et al., 1994)41. 

 

Figure 2.1 Coil 2 alignments of representatives of the IF SHC, the cytokeratins 18(I) and 8(II), 
vimentin(III), the low neurofilament and lamin A. The heptad repeat is marked as (abcdefg) and 
core positions (a and d) are high-lighted in yellow. This alignment shows a clear separation 
between coil 2A and coil 2B. (from Strelkov et al., 2003)

28
. 

However, it has been recently hypothesized that the sequence of coil 2A and linker 2 

corresponds to a hendecad residue periodicity (Parry et al., 2006)42. These repeats 

were already reported by Pauling as a coil possibility and can be treated has a 

heptad repeat plus a stutter. The existence of coils with hendecad-residue repeat 

was demonstrated later by crystallography in the RH4 artificial protein (Harbury et al., 

1998)43 and in the tetrabrachion protein (Stetefeld et al., 2000)26. Both structures are 

parallel right-handed coiled coil tetramer. Therefore, it was suggested that the 25 first 
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residues of coil 2 form a long-period right-handed coil followed by a shorter-pitch 

classical left-handed coil. 

 

2.2 Impact of myopathic mutations on desmin structure 

With desmin, we wanted to understand how some myopathic point mutations located 

in coil 2B alter the desmin structure. For this purpose, we wanted to obtain crystal 

structures of a desmin fragment homologous to the previously crystallized fragments 

of coil 2B in vimentin (cys2) and lamin A (lam1) containing seven myopathic 

mutations. In addition, some of these fragments were analyzed by gel-filtration, 

analytical ultracentrifugation and circular dichroism.  

Four of these mutations are to proline, a residue often considered as a helix-breaker 

since it cannot form a hydrogen bond with the residue -4 of the helix. However, 

helices containing proline after the fourth position exist and have a pronounced kink 

(cf. Figure 2.2.1) (Woolfson et al., 1990)44. 

 

Figure 2.2.1 Illustration of kinked alpha-helices by a proline residue. In A) the mellitin chain A 
residues 1 to 26 (PDB entry 1MLT) and in B) the adenylate kinase residues 99 to 113 (PDB entry 
3ADK).   
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Surprisingly however, some desmin mutants as A360P assemble to seemingly 

normal filaments in vitro (Bar et al., 2005)45. It could thus be imagined that some of 

these proline mutations, within the much broader context of the desmin rod domain, 

have only a limited local impact on desmin structure. As an ultimate goal, this study 

may give some insights into the impact of proline in coiled coils. 

In addition to the proline mutations, we were interested in one deletion supposed to 

produce a stammer (Δ366). To date, stammers are only speculative structures and 

have never been experimentally observed. 

Lastly, the mutation E401S may disrupt a potential salt bridge with R406. However, 

this salt bridge was shown to only a partial occupancy in available crystal structures 

of 2B and may consequently not be necessary for the dimer stabilization (Strelkov et 

al., 2002)9. 

 

2.3  Small angle X-ray scattering analysis of desmin wt and mutants 

With SAXS we will compare and analyze assembly complexes of full-length 

recombinant desmin myopathic mutants versus desmin wild-type in various buffers. 

For this, it was shown that the desmin filament assembly can be triggered in vitro 

from a low ionic strength buffer by increasing either the ionic strength or by 

decreasing the pH (Stromer, 1987)46. Therefore, we will first dialyze our 8M urea 

denatured desmin samples to a low ionic strength buffer called tetramer buffer. Then, 

we will initiate desmin polymerization by adding to these samples different NaCl 

concentration or assembly buffer which both increases the ionic strength and lower 

the pH. For each sample we will probe their viscosity or gel-formation by pipetting. 

Only the intensity curves of sample solutions sufficiently fluid to be handled in the 

SAXS synchrotron machinery will be then be collected.  

The resulting desmin intensity curves will be sorted according to their correlation R-

factor within a correct angular range window corresponding to the middle part of the 

curve. This window will be chosen to contain the tertiary structure information of our 

desmin samples. With this, we will be able to compare and classify desmin mutant 

assembly complexes versus desmin wt. 
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Then, a specific treatment of these intensity curves for rod-shaped molecules will be 

used to calculate the averaged cross-section diameter of desmin assemblies. The 

cross-section diameter will help us to determine how mutant desmin complexes 

deviate from wt assembly. 

Finally, our SAXS results will be compared to available data in the literature, i.e. 

desmin pathologies, analytical ultracentrifugation and electron microscopy data. 
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3. Material and methods 

3.1 Molecular biology techniques 

3.1.1 Template vectors 

Project „Atomic structure of the N-terminal part of coil 2 

A plasmid containing the full-length human vimentin cDNA (EMBL, Z19544) was 

kindly provided to us by H. Herrmann (DKFZ, Heidelberg, Germany). 

Project „Impact of myopathic mutations on desmin structure‟ 

We received six pPET-T expression plasmids containing fragments of desmin wild-

type and mutants from H. Bär (DKFZ, Heidelberg, Germany). The human desmin 

protein fragments (residues 332 to 416) are expressed with an N-terminal His-tagged 

laminin (residues 1799 to 1832) moiety delineated from the desmin fragment by a 

thrombin cleavage site (LVPR↓ GS) (Figure 3.2.1.1). The pPET-T vector contains an 

ampicillin resistance gene. 

 

Figure 3.2.1.1 Schematic representation of the pPET-T vector. Desmin fragments are expressed 
together with an N-terminal His-tagged laminin. Desmin fragments are obtained by cleaving the 
chimera protein with thrombin. 

These desmin plasmids contained the following myopathic point mutations: L345P, 

A360P, L370P, L385P and E401S. 

3.1.2 Primers 

All primers were ordered to Microsynth AG, Switzerland. 

Project „Atomic structure of the N-terminal part of coil 2 

Six different vimentin DNA fragments (D1-D7) were amplified by PCR from the full-

length vimentin plasmid. Forward primers have a BamH1 restriction site whereas 

reverse primers contain an EcoR1 restriction site (Table 3.2.2.1). The melting 
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temperature Tm was calculated according to the following formula which works for 

small oligonuclotides (about <20 bp):  

Tm [°C] = 4 x number of G˚C + 2 x number of A˚T 

 
fragment (sequence) primers (5‟ to 3‟) Tm [°C] 

D1 forward (209-283)  GTGG↓GATCCGATGTTGACAATGCGTCT 52 
D1 reverse TATG↓AATTCTTAGTTCTTGGCAGCCACACT 56 

D3 forward (261-335) ATTTG↓GGATCCAAGCCTGACCTCAC 54 
D3 reverse TATG↓AATTCTTATCCTTTAAGGGCATCCAC 54 

D4 forward (261-326) ATTTG↓GGATCCAAGCCTGACCTCAC 54 
D4 reverse TATG↓AATTCTTAGGTGAGGGACTGCAC 50 

D5 forward (251-330) ATTTG↓GGATCCGAACAGCATGTCCAAATC 52 
D5 reverse TATG↓AATTCTTAGGTGAGGGACTGCAC 50 

D6 forward (261-350) ATTTG↓GGATCCAAGCCTGACCTCAC 54 
D6 reverse TATG↓AATTCTTAGTTCTCTTCCATTTCACG 52 

D7 forward (216-310) ATTTG↓GGATCCGCACGTCTTGACCTTGAA 54 
D7 reverse TATG↓AATTCTTAGCGCAGGGCGTCATT 50 

Table 3.2.2.1 Forward and reverse primers used for PCR amplification of vimentin fragments 
(D1-D7) around the coil 2A region. The corresponding amino acid positions in vimentin are 
indicated in bracket. All primers are indicated in the 5‟ to 3‟ sense. The down arrow (↓) 
indicates the cleavage position by BamH1 for forward primers and EcoR1 for reverse primers. 

Project „Impact of myopathic mutations on desmin structure‟ 

The table 3.2.2.2 describes oligonucleotides used to remove the N-terminal cystein of 

initial desmin fragments and to remove Asp366 (cf. stammer chapter 1.6) using the 

Stratagene Quickchange method. This formula is recommended by Stratagene for 

long oligonucleotides (>25 bp) : 

Tm [°C] = 81.5 + 0.41(%GC) – 675/N with N = primer length in base pairs 

desmin deletions oligonucleotides (5‟ to 3‟) Tm [°C] 

ΔC333 (forward) CGTGGATCCACCGAGATTGACGCCC 80.7 

ΔC333 (reverse) GGGCGTCAATCTCGGTGGATCCACG 80.7 

ΔN366 (forward) GGCTACCAGGACATTGCACGCCTGG 80.7 

ΔN366 (reverse) CCAGGCGTGCAATGTCCTGGTAGCC 80.7 

Table 3.2.2.2 Oligonucleotides used to delete the N-terminal desmin cystein 333 and the asparagine 366 
by the Quickchange method. 

Furthermore, several shorter desmin fragments were amplified by PCR. The initial 

plasmids from H. Bär were used as templates. The table 3.2.2.3 describes the 

primers used for „shifting‟ desmin sequences. Forward primers have BamH1 and 
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reverse primers EcoR1 restriction sites. A combinatorial approach was used to 

generate amplicons. The melting temperature was calculated as in table 3.2.2.1. 

 „shifts‟ primers (5‟ to 3‟) Tm [°C] 

N+00 (332) CCACCCGG↓GATCCACCTGCGAGATTG 60 

N+11 (343) CCACCCGG↓GATCCGACTCCCTGATGAGGCAGATGC 60 

C-00 (416) CCACCCGG↓AATTCTTAGATCCGGCTCTC 60 

C-05 (411) CCACCCGG↓AATTCTTATCCCTCCAGCAGCTTCCG 62 

Table 3.2.2.3 Primers used for „shifting‟ desmin fragment sequences. Sequence shifts are 
indicated by N+number of amino acids and C-number of amino acids. The numbers in brackets 
correspond to the amino acid positions in desmin. N+00 and C-00 primers are equivalent to the 
template plasmid sequence. 

Lastly, we wanted to analyze these mutations in a lamin context. The lamin A wt 

pPEP-T plasmid was provided to us by L. Kapinos (Biozentrum, Basel). The 

expressed lamin A fragment (lam1) is homologuous to desmin. The table 3.2.2.4 

presents primers which were used to introduce point and deletion mutations by the 

Stratagene Quickchange method. For convenience, point and deletion mutations are 

named according to the desmin ones. The melting temperature was calculated as in 

table 3.2.2.2. 

mutations oligonucleotides (5‟ to 3‟) Tm [°C] 

L345P (forward) CAGCTGGCAGCCCCGGAGGCGAAGCTTC 86.7 

L345P (reverse) GAAGCTTCGCCTCCGGGGCTGCCAGCTG 86.7 

A360P (forward) GCCGGCTGGTGTCCGGCTCACGGGCC 88.7 

A360P (reverse) GGCCCGTGAGCCGGACACCAGCCGGC 88.7 

L370P (forward) CTGCTGGCGGAACCGGAGCGGGAGATG 82.6 

L370P (reverse) CATCTCCCGCTCCGGTTCCGCCAGCAG 82.6 

L377P (forward) GAGATGGCCGAGCCGCGGGCAAGGATG 85.3 

L377P (reverse) CATCCTTGCCCGCGGCTCGGCCATCTC 85.3 

L385P (forward) GATGCAGCAGCAGCCGGACGAGTACCAG 83.7 

L385P (reverse) CTGGTACTCGTCCGGCTGCTGCTGCATC 83.7 

ΔN366 (forward) CACCAGCCGGCGGCTGGCGGAAAAGG 85.5 

ΔN366 (reverse) CCTTTTCCGCCAGCCGCCGGCTGGTG 85.5 

E401S (forward) GCCCTGGACATGTCGATCCACGCCTAC 82.3 

E401S (reverse) GTAGGCGTGGATCGACATGTCCAGGGC 82.3 

Table 3.2.2.4 Primers to mutate or delete the lamin A sequence. Mutation residues and 
numbers correspond to the desmin ones. The lamin mutant „L377P‟ was introduced after a 
mistake in primer design. 
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3.1.3 Insert preparation by PCR 

Phusion polymerase and buffers are from New England Biolabs. The table 3.2.3.1 

describes the PCR mixes used during this thesis.  

Components Final concentrations 

32.5 μl ddH2O - 

10 μl of 5x Phusion HF buffer - 

2.5 μl dNTPs from 2.5mM stock 100 μM each 

1.25 μl Forward primer (20 μM stock) 600 μM 

1.25 μl Reverse primer (20 μM stock) 600 μM 

1 μl DNA template - 

1 μl DMSO 2% 

0.5 μl Phusion DNA polymerase* 0.02 U/μl 

Table 3.2.3.1 Components and final concentrations of PCR mix. The Phusion polymerase was introduced 
in the PCR mix after „hot-start‟. 

DNA was amplified in the thermocycler using the parameters of table 3.2.3.2. The 

annealing temperature was chosen according to the calculated Tm. When PCR 

reactions were done in parallel, the lowest Tm was used. The Phusion polymerase 

was added to the PCR mix after 3 min at 95°C („hot-start‟). 

cycle T°C (time) description 

1 95 (3min) hot-start 

2 95 (30s) denaturation 

3 ~55* (30s) annealing 

4 72 (1min/kbp) elongation 

5  35 x back to step 2 

6 72 (10min)  

7 4 (pause)  

 

Table 3.2.3.1 Thermocycler cycles description. The Phusion polymerase was added to the PCR 
mix after 3 min. The annealing temperature was chosen according to the calculated Tm. 

The Qiagen QIAquick PCR Purification Kit was used to clean-up the PCR reaction. 

As a small modification, the DNA was eluted from the „spin-column‟ with 30 μl ddH2O 

instead of 50 μl of the kit buffer. 

After cleaning, the DNA size was controlled by migrating 3 μl of the sample (10%) on 

1 x TAE agarose gel (50X TAE stock solution: 2M Tris, 57 ml glacial acetic acid, 100 

ml of 0.5M EDTA solution pH 8, water added to 1l ) 
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3.1.4 Mutations and deletions with the QuickChange method  

This protocol was adapted from the Stratagen QuickChange manual. The main idea 

is to amplify the template plasmid by PCR using primers which contain the point 

mutation(s) or deletion(s) of interest. The „artificial‟ plasmids, generated by PCR, do 

not contain methylated cytosines. Thus, the methyl-cytosine specific restriction 

enzyme Dpn1, which is added to the PCR mix after reaction, cleaves template 

plasmids but let newly generated plasmids intact. Competent cells cannot be 

transformed with linear DNA. Consequently, after transformation(see chapter 3.2.8) 

and plating, the resulting colonies only contain the plasmid harboring the point 

mutation(s) or deletion(s). 

The table 3.2.4.1 describes the PCR mix used for whole plasmid amplification. 

Components Final concentrations 

26 μl ddH2O - 

10 μl of 5x Phusion HF buffer - 

10 μl dNTPs from 1 mM stock 200 μM each 

1 μl Forward primer (20 μM stock) 400 μM 

1 μl Reverse primer (20 μM stock) 400 μM 

1 μl DNA template (20 ng/μl) 400 pg  

1 μl Phusion DNA polymerase 0.04 U/μl 

Table 3.2.4.1 PCR mix for QuickChange PCR reaction. 

  The thermocycler was programmed as mentioned in table 3.2.4.2. 

cycle T°C (time) description 

1 95 (3 min) hot-start 

2 95 (30s) denaturation 

3 55 (30s) annealing 

4 72 (2 min/kbp) elongation 

5  16 x back to step 2 

6 72 (10 min)  

7 4 (pause)  

 

Table 3.2.4.2 Thermocycler program for the QuickChange PCR reaction. The elongation time is 
overestimated to ensure complete reactions. Here the Phusion polymerase was already 
introduced into the PCR mix before the „hot-start‟. 

After the PCR reaction, 1μl of Dpn1 is added to the PCR mix and incubated for 3 

hours at 37°C. The PCR mix is then heated at 65°C for 15 min to inactivate enzymes 

before cell transformation. 
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3.2.6 Digestion 

All the vectors and inserts used in this thesis were digested with BamH1 and EcoR1. 

These enzymes were provided by New England Biolabs (NEB). The mix is presented 

in table 3.2.6.1. 

components insert plasmid 

ddH2O 10 μl 23 μl 

NEB buffer for EcoR1 5 μl 5 μl 

BSA (diluted 1:10) 5 μl 5 μl 

Insert / plasmid 28 μl 5 μl 

BamH1 1 μl 1 μl 

EcoR1 1 μl 1 μl 

Table 3.2.6.1 Digestion of inserts and plasmids for cloning using BamH1 and EcoR1 restriction 
enzymes. 

The double digestions were performed overnight at 37°C. Inserts and plasmid were 

then purified on a 1.5% TAE agarose gel. Gel slices were cut out and purified using 

the Qiagen QIAquick Gel Extraction Kit. The DNA samples were eluted in 30 μl 

ddH2O instead of the recommended kit buffer. 

 

 

 

 

 

 

Figure 3.2.6.1 Example of a digested pPET-T vector which was migrated on a 1% TAE agarose 
gel.  

 

3.2.7 Ligation 

3 μl of digested insert and plasmid were migrated together on a 1.5% agarose gel to 

estimate the ligation ration. The usual insert-to-plasmid ratio evaluated by eyes was 

digested vector 

insert from the 

digested vector 
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of 3:1. The table 3.2.7.1 summarizes the ligation with the T4 DNA ligase provided 

from New England Biolabs. All ligations were done overnight at 16°C. 

components volume 

ddH2O 4 μl 

Insert 3 μl 

Vector 1 μl 

10X T4 DNA ligase buffer 1 μl 

T4 DNA ligase 1 μl 

Table 3.2.7.1 T4 DNA ligation of vector and insert as done in this thesis. 

 

3.2.8 E.coli transformation 

Two type of E.coli cells were used during this thesis. The DH5-α competent cells 

were transformed after ligation to amplify DNA and BL-21(DE3) competent cells were 

used to produce high amounts of protein fragments. Both cell types were transformed 

using heat-shock procedure. Briefly, cells are incubated on ice for 20 min together 

with 1 μl of plasmid. Cells are then „heat-shocked‟ for 1 min at 42°C and transferred 

again on ice for 2 min. The lysogenic broth media (LB) is added to the sample which 

is then incubated for 1 hour at 37°C. Cells are then platted on LB agar plates 

containing the 0.1 μg/ml of ampicillin. 

 

3.2.9 DNA purification 

Single colonies from plates were grown in 4 ml LB medium and purified using the 

Qiagen Spin Miniprep Kit. DNA was eluted with 30 μl ddH2O instead of the 

recommended buffer. All plasmids in this study were sent to Microsynth AG, 

Switzerland for sequencing. 

 

3.3 Fragments purification 

Both desmin and vimentin protein fragments were purified during this thesis. This 

protocol applies for „Atomic structure of the N-terminal part of vimentin‟ and „Impact of 

myopathic mutations on desmin structure‟ projects. 
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E.coli BL-21 cells transformed with pPEP-T (thrombin cleavage site) or pPEP-TEV 

(Tobacco Etch Virus protease cleavage site) expression plasmids were grown at 

37°C in 1-2 l of LB media supplied with ampicillin to 0.1 μg/ml.  At OD600 = 0.7, the 

protein fragments expression was induced for 4 hours with 1mM isopropyl β-D-1 

thiogalacto-pyranoside (IPTG). Cells were then harvested by centrifugation at 5‟000 

rpm on a Sigma 6K 15 centrifuge. The cell pellet was then washed in 20 mM Tris pH 

7.5 and resuspended in 35 ml elution buffer (10 mM Tris, 100mM NaH2PO4, 8M urea 

pH 8.0). Cells were disrupted by sonication (40% amplitude, 3s/3s on/off, 5 min) and 

centrifuged for 40 min at 16‟000 rpm (Sigma 6K 15) to remove cellular dust. The 

supernatant was then incubated for 1 hour with Sigma His-Select Nickel Affinity resin 

pre-equilibrated with elution buffer pH 8.0.  

Variant 1 for desmin protein fragments 

Desmin protein fragments were eluted by washing the column with elution buffers of 

lower pH‟s, respectively of pH 6.3, 5.9 and 4.5. Pure desmin fractions were then 

dialyzed in „thrombin buffer‟ (20 mM Tris pH 8.4, 150mM NaCl, 2.5mM CaCl2) and 

cleaved overnight at 4°C with 0.75U human thrombin (Sigma T6884) per mg of 

protein. The digestion was checked on SDS-PAGE and the sample dialyzed back in 

elution buffer. A second Ni-chelating column was used to remove undigested 

fragment and His-tagged laminin. Samples were dialyzed back in a gel-filtration 

buffer (2 mM Tris, 0.1M NaCl, 1mM β-mercaptoethanol, pH 8.4) and a final „polishing‟ 

gel-filtration was performed in a semi-analytic Superdex 75pg 16/60 GE Healthcare 

column. 

Variant 2 for vimentin protein fragments 

The vimentin protein fragments were eluted directly with 1M imidazole. Fractions 

were then analyzed on SDS-page gels. Vimentin protein fragments were dialyzed in 

„TEV buffer‟ (50mM Tris pH 8.0, 100mM NaCl, 2mM DTT) and cleaved overnight at 

4°C with 1mg of recombinant TEV protease per 40mg of protein. TEV and thrombin 

cleavages were then verified on SDS-PAGE. The protein sample was then dialyzed 

again in elution buffer and passed a second time through a His-Select Nickel Affinity 

resin to remove undigested fragments and His-tagged laminin fragments. The 

collected fragments were then dialyzed in gel-filtration buffer (2 mM Tris, 0.1M NaCl, 
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1mM β-mercaptoethanol, pH 8.4). A final „polishing‟ gel-filtration was performed in a 

semi-analytic Superdex 75pg 16/60 GE Healthcare column. 

Protein sample were then concentrated with a centrifugal ultrafiltration device 

(Amicon, 5kDa cut-off). 

 

3.4 Analytical ultracentrifugation 

Some desmin samples were analyzed by analytical ultracentrifugation by Ariel Lustig 

(Biozentrum, Basel). The vimentin D3 fragment was analyzed by Norbert Mücke 

(DKFZ, Heidelberg, Germany). 

 

3.5 Circular dichroism 

Some desmin samples were analyzed by circular dichroism (CD). Shortly, in a CD 

experiment, the light is passed through a polarizer and decomposed into its left- and 

right- circular components. If the polarized light crosses a solution containing polar 

chromophores, typically protein helices, sheets and random coils, then light left- and 

right absorption is different. Typical CD spectra recorded for proteins are shown in 

figure 3.5.1. The instrument was a special Jasco photospectrometer that records the 

difference in absorption ΔA = AL – AR. Using the Beer-Lambert equation for ΔA << 1, 

we get ΔA = (εL – εR) x C x l with the molar concentration C and the light path l. CD 

spectra are often given in molar elipsity [θ] = α x (εL – εR) with α = 3298 m2 mol-1. 

Before the experiment, the desmin samples concentration was precisely adjusted to 

125 μg/ml. Characteristic minima for α-helices are at 208 and 222 nm. Spectra were 

then deconvoluted against known protein spectra to estimate the secondary 

structures content using the program CDNN version 2.1 from Gerald Bohm, Martin-

Luther-Universität Halle-Wittenberg, Germany. 
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Table 3.5.1 Theorical CD spectra of known protein secondary structures. The α-helices have 
two characteristic minima at 208 and 222 nm.  

 

3.6 X-ray crystallography 

3.6.1 Crystallization 

The crystallization conditions were searched based on the sparse-matrix screening 

technique. The commercial kits used during this study are listed in table 3.6.1.1. 

Initial protein samples were either kept in gel-filtration buffer or dialyzed into a low 

ionic strength buffer (10 mM Tris, 1 mM EDTA, 5mM DTT, pH 8.4) to maximize the 

crystallization mother liquor effect. 

crystallization kit (number of conditions) company 

Crystal screen 1 and 2 (96) Hampton research 

Crystal screen cryo 1 and 2 (96) Hampton research 

Index (96) Hampton research 

Additive screen (96) Hampton research 

JCSG+ (96) Qiagen 

AmSO4 Suite (96) Qiagen 

Wizard I and II (96) Emerald BioSystems 

Table 3.6.1.1 Crystallization kits used during this thesis. The Hampton crystal screen 1 and 2 
have been „replaced‟ by the Index kit. Both the AmSO4 Suite and Additive screen are 
„optimization‟ kits. 
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Protein samples were concentrated to at least 4 mg/ml and mixed in a 1 μl:1 μl ratio 

with the crystallization condition using the hanging drop technique. The protein 

screens were randomly placed at 22°C or 4°C and inspected visually under 

microscope for at least 1 month. Initial potential conditions showing crystals or 

crystal-like structures were optimized by refining the kit „hit‟, e.g. by modifying the 

precipitant , salt concentrations, pH‟s and/or the protein concentration. 

 

3.6.2 Crystal mounting and data acquisition 

Crystals were mounted in Hampton cryo-loops and transferred, if necessary, to 

adequate cryo-solutions preventing formation of ice crystals. Crystals were flash-

frozen in liquid nitrogen and kept in until synchrotron data acquisition. As an 

advantage, the radiation damage is reduced with frozen crystals. 

The data acquisition was done at synchrotrons Soleil (France), SLS (Switzerland) 

and DESY (Germany). There, the mounted crystals were kept frozen under nitrogen 

flow (100K) during data collection. 

The wavelengths for data collection of single wavelength anomalous dispersion 

(SAD) or multiple wavelength anomalous dispersion (MAD) were chosen according to 

a prior fluorescence scan. For this, the crystal is exposed to a low dose X-ray 

radiation and the fluorescence intensity per energy (or wavelength) is recorded. In a 

SAD experiment, only the peak dataset is used, whereas in a MAD experiment, both 

peak and inflexion datasets are used.  

A typical fluorescence scan as collected for the vimentin crystal D3 is shown in figure 

3.6.2.1. 
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Figure 3.6.2.1 The recorded fluorescence scan for the vimentin D3 fragment. The experimental 
measured fluorescence intensities are marked by a cross. Inflexion and peak wavelengths are 
determined from the maxima of the first derivative (f‟) and the minima of the second derivative 
(f‟‟) curves respectively. 

   

3.6.3 Data processing 

Data were processed with the program iMosflm47. Space-groups having the smallest 

unit cell and the highest symmetry are always selected. Screw-axes (e.g. P2X) are 

chosen by looking at systematic absences in reflexions. Additional rotational axis 

(e.g. P212x2y) can only be determined by processing (or re-scaling) frames and 

inspecting the Rsym value: 

      
               

        
 

where Ii,h is the ith observation of Ih and  Ih  is the mean of of Nh measurements. 

The additional rotational axis is kept if the Rsym value does not change after 

reprocessing [nb: the Rmerge term is sometimes wrongly used instead of the Rsym 

value. Rmerge is used to compare different crystal datasets]. Processed data were 

then scaled using Scala47. The main purpose of scaling is to correct the intensity 

decay due to radiation damage. 
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3.6.4 Phasing and model building 

Multi-wavelength anomalous dispersion phasing (MAD) datasets were collected 

according to the fluorescence peak (Figure 3.6.2.1). The datasets were processed 

and scaled without merging F+ and F- Bijvoet pairs. The electron density map was 

calculated by the program autoSharp48 and the model was built with Buccaneer and 

Coot47. 

3.6.5 Refinement 

A particular attention was given to the refinement. For technical reasons, the 

refinement statistics using the program Refmac47 were worse than with the program 

Phenix49. Moreover, statistics were better by using the vimentin D3 peak dataset 

(Rwork=0.29, Rfree=0.33) instead of the native dataset (Rwork=0.34, Rfree=0.39). It might 

be that the heavy atom stabilized the crystal packing. In addition, external restraint 

options of Phenix were used to define α-helical geometry and help to correctly place 

amino acids at the C-termini were the electron density map quality is poorer. The final 

model has an excellent geometry (see Table 4.1.1), with a Molprobity (Davis et al., 

2007)50 score of 1.7 and 98.9% of residues in favoured regions of the Ramachandran 

plot with no outliers. The refined structure includes residues 264 to 334. The four N-

terminal residues GGSKP (including two exogenous glycines and the first three 

residues of the vimentin fragment) as well as the C-terminal residue Gly335 are 

disordered. The final coordinates and experimental structure factors have been 

deposited to the PDB with accession code 3KLT. 

3.6.6 Structure analysis and modeling 

The coiled coil parameters (see chapter 1.4) of the vimentin D3 fragment were 

calculated using the program Twister (Strelkov et al., 2002)24. This program does not 

only output coil parameters, but also returns the α-helices and coiled coil axis.  

These axes were used to move the N-terminal part (chains A and B) of the vimentin 

D3 structure forming an unusual tetramer to a physiological dimer using simple 

geometry. The distance between parallel helices was reduced to 9Å which is twice 

the average radius of the left-handed coiled coil in the C-terminal part. The model 

was then idealized with Refmac47. 
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3.7 Small angle X-ray scattering 

3.7.1 Desmin samples source and purification 

The desmin mutants samples A213V, E245D, A337P, L345P, R350P, A357P, 

ΔE359-S361, ΔN366, L370P, L385P, Q389P, D399Y, R406W, N342D, E413K and 

I451M were provided to us by Harald Bär, DKFZ, Heidelberg, Germany.  Brielfy, 

desmin wt and mutant sequences were cloned into a pDS5 expression vector as 

previously (Herrmann et al., 1999)51 and expressed in a JM109 E. coli strain. Cells 

were lyzed with 1% NP-40 and washed with 0.5% Triton X-100 buffers. Inclusion 

bodies enriched with desmin were solubilized in urea-containing buffer depleted of 

detergent and loaded on DEAE and CM Sepharose columns (for a detailed protocol 

see Herrmann et al., 2004)52. Fractions were then analyzed on a Coomassie-stained 

SDS-PAGE (Figure 3.7.1.1 A) 

Alternative desmin wild type and mutant samples L345P, A360P, L370P and R406W 

were provided to us from Lidiya Kurochkina, Intstitute of Bioorganic Chemistry, 

Moscow, Russia. Here, desmin samples were cloned into a Novagen pET-23b(+) 

vector and expressed in BL21(DE3) E. coli cells. After cell lysis by sonication and 

centrifugation, the resulting pellet containing desmin and cellular debris was 

dissolved in 50mM Tris-HCl pH 7.5, 1mM EDTA, 1mM DTT, 8M urea buffer and 

loaded on a 10ml hand-made Q-Sepharose column. The protein was eluted with a 

gradient of the same buffer to 0.3M KCl. The fractions purity was probed on 

Coomassie-stained SDS-PAGE (Figure 3.7.1.1 B) 

All desmin samples were provided to us in 8M urea denaturing conditions and frozen.  
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Figure 3.7.1.1 Coomassie-stained SDS-PAGE A)  Desmin wt fractions from the CM-Sepharose 
column elution as done by Bär et al. and B) alternative desmin elution from a Q-Sepharose 
column as done by L. Kurochkina. 

 

3.7.2 Samples preparation 

Denatured desmin samples were dialyzed in regenerated cellulose membranes of 

3.5kDa cut-off (Spectra/Por) at 4°C in 1l of tetramer buffer (5mM Tris pH 8.4, 0.1mM 

EGTA, 1mM EDTA, 1mM DTT) supplied with 8M urea. Using a peristaltic pump, 4l of 

tetramer buffer were added gradually. The remaining urea (about 1.6M), was then 

removed by two consecutive dialysis in 4l tetramer buffers (about 1/1002 v/v dialyze 

ratio). Samples were concentrated from 0.2 to 5.0 mg/ml in centrifugal ultrafiltration 

devices (Amicon) of 5 kDa cut-off. The sample concentration was determined by OD 

at 280 nm. 

Desmin polymerization was initiated by adding NaCl to the final salt concentrations of 

15, 20, 30 and 75 mM in 50 µl aliquots. Alternatively, 10X assembly buffer (250mM 

Tris, 500mM NaCl, pH 7.0) was added to the 50 µl aliquots to a final salt 

concentrations of 10, 20 and 50mM NaCl. The pH of desmin samples respectively 



29 
 

shifted to pH 8.24, 8.20 and 8.0. The desmin polymerization lasted for at least one 

hour prior to synchrotron measurements.  

Before data acquisition, desmin samples were centrifuged for 10 min at 5000 x rcf to 

remove insoluble protein aggregates and dust. We could then see either a phase 

separation, with a lowest phase being very viscous, or one single phase. This single 

phase was probed by pipetting. In some cases it was found to be fluid or very 

viscous. 

3.7.3 Data collection 

SAXS measurements were done at the dedicated SAXS beamline X33 of the 

Deutsche Elektronen-Synchrotron (DESY), Hamburg, Germany and at the beamline 

SWING of the Soleil synchrotron, St-Aubin, France. 

Desmin samples and buffers were manually injected into the SAXS device (Figure 

3.7.3.1) and pumped into the glass capillary exposed to the X-ray beam. The 

thinness (0.1 mm) of the tubing system prevents data acquisition of gel-forming or too 

viscous samples. The temperature of the SAXS devices was kept constant at 20°C. 

 

Figure 3.7.3.1 schematic view of a small-angle scattering device. The sample is loaded in the 
injection system and pumped into the capillary (in blue) exposed to the X-ray beam. The whole 
device, including the detector (in magenta), is under vacuum to prevent air-scattering. The 
detector can be moved to have a suitable scattering angle (2θ). 

The device records several frames while the sample flows through the glass capillary.  

These frames were automatically processed at synchrotron places and we obtained 

text files containing angles versus the averaged intensity. The intensity from diluted 

monodisperse samples is measured using the following formula:                

       
       

  
  

 

   
 with s being the scattering angle,         the spherical average 

of the intensity and p(r) the electron density for a sphere radius of radius r. For all 

measurements, the scattering angle θ was kept below 5° to ensure the relationship 

sin(θ)  θ. 
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3.7.4 Data processing 

First, the sample intensity curves were subtracted to their corresponding buffer 

intensity curves using the program Primus (Konarev et al., 2003)53. This operation is 

allowed as X-ray intensity is additive. Thus, the resulting intensity curves only 

represent the protein scattering. Finally, all intensity curves were adjusted to have the 

same SAXS angular convention defined as Q [nm-1] = 4π sin(θ) / λ with λ being the 

X-ray wavelength.  

 

3.7.5 Data classification 

A rational method using the correlation R-factor was used to classify our desmin 

intensity curves. The R-factor between two intensity curves I1(s) and I2(s) with Q 

being the scattering angle of desmin samples was calculated for all datasets. The 

formula for the R-factor is 

   
                       

 
   

           
 

with I1(Qi), I2(Qi) the datasets intensities at the angle Qi,       the mean intensity of 

each datasets and          the standard deviation of each datasets defined as follow: 

       
 

 
                 
 

   

 

The angular window for the scattering angle Q was chosen to be between 1 and 2.5 

[nm-1]. This window contains the tertiary structure information of our samples. 

Further, this window is nearly insensitive to the intensity deviation due to desmin 

sample aggregation observed at low angles (Q < 0.7) or to very low signal to noise 

ratio (Q > 3). Samples were then classified according to their R-factor difference (in 

percent). 

The R-factor calculation was done using a small software called „Rfactor_simple‟ 

written by Anna Sokolova and dedicated for SAXS intensities comparison. 
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3.7.6 Distance distribution function calculation 

The distance distribution function p(r) for monodisperse solutions or the size 

distribution function D(r) for polydisperse functions can be calculated with the 

software Gnom. The distance distribution function is defined as follow: 

     
 

   
     

       

  
  

    

   

 

 

Concretely, the distance distribution function represents all possible vectors that can 

be traced within the protein. The Dmax value corresponds to the longest vector, ie. the 

protein maximum diameter (Figure 3.7.6.1). 

 

Figure 3.7.6.1 Distance distribution function of a sphere. In (A) the software calculates all 
vectors within the sphere. The longest vector, Dmax, corresponds to the sphere diameter. (B) 
The resulting Gaussian-like function is centered on the sphere radius. Dmax is found when p(r) 
= 0. For ellipsoid-shaped particles, the function maximum is shifted to the averaged radius. 

 

Within this thesis, I will deal with a particular case of SAXS processing for rod-like 

particles. Here, the software Gnom was used to calculate the distance distribution of 

the cross-section Pcr (Figure 3.7.6.2). Technically, the cross-section Pcr is obtained 

from the Kratky-Porod approximation      
 

   
 

     

  with L being the rod-particle 

length and R its radius for L being much bigger than R.  
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Figure 3.7.6.2 For elongated rod-like particles, the software Gnom calculates an average of the 
cross-section (black arrows) distance distribution Pcr  along the whole particle. 

To obtain the distance distribution functions of the cross-section, several Dmax 

values ranging from 10 to 25 nm were tried in Gnom. Further, the angular range Q for 

processing data was usually comprised between 1 and 3 nm-1. This angle range 

excludes the low scattering angle deviation due to protein-protein interactions and 

the low signal to noise of high scattering angles (in our case for Q > 3 nm.1). The 

resulting curves were then smoothed by finding a reasonable α factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

4 Results 

4.1 Atomic structure of vimentin coil 2 domain 

 

4.1.1 Fragments design 

 
Seven (D1–D7) vimentin fragments (Figure 4.1.1.1) covering the predicted linkers 

L12 and L2 were cloned, expressed in E. coli and purified. While the success of 

protein crystallization cannot be predicted, working with multiple overlapping 

fragments can highly improve the chances for obtaining suitable crystals (see e.g. 

Strelkov et al., 2001)21. The secondary structure prediction program Jpred (Cole et 

al., 2008)54 predicts the stretch including residues 200–360 to be α-helical, except 

within the linker L12 region 212 (residues 248–262). The fragments D3, D5, and D6 

were designed to overlap with the previously crystallized cys2 fragment. Fragments 

D1, D2, and D7 included parts of coil 1B and the whole length of the predicted linker 

L12, in the hope to support the presumably flexible linker by α-helical segments on 

both sides. 

 

 

 

Figure 4.1.1.1 Schematic view of human vimentin chain and the used fragments. Above, the 
widely accepted predicted structure of an IF chain including four coiled-coil segments 1A, 1B, 
2A, and 2B is shown (see e.g. Strelkov et al., 2003)

28
. Below, the fragment cys2 with the known 

crystal structure (Strelkov et al., 2002)
9
 as well as the other designed fragments are indicated. 
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4.1.2 Overall structure of the D3 fragment 

 
After extensive crystallization screening, only crystals for the fragment D3 including 

residues 261–335 (Figure 4.1.1.1) could be obtained. The refined D3 crystals 

diffracted X-rays to 2.4 Å resolution (see Table 4.1.2.1). After MAD phasing, the 

obtained electron density map (Figure 4.1.2.1A) could be readily used for model 

tracing. It shows a purely α-helical structure. Four protein chains were found within 

the crystallographic asymmetric unit. There are two parallel in-register dimers formed 

by chains A and B, and also chains C and D. These dimers feature a standard left-

handed coiled coil in their C-terminal parts (residues 303–334). Most interestingly, 

the dimers overlap in their N-terminal parts (residues 264–302) to yield a symmetrical 

tetrameric assembly which features a nearly straight α-helical bundle (Figure 

4.1.2.1B). The nearest neighboring helices (A and C, A and D and so forth, see 

Figure 4.1.2.1B) of the bundle are in antiparallel orientation, so that the residues 

Asn283 of all four chains are aligned. 

 

 

 

 

Figure 4.1.2.1 Crystal structure of the D3 fragment. (A) Experimental MAD-phased electron 
density map after solvent flattening. (B) Ribbon diagram of the structure. The N-terminal 
overlap part forming the tetramer is shown in blue. C-terminal parts forming coiled coils are in 
red. The residues in core positions of the heptad and those of the hendecad repeats are in 
yellow (compare Figure 4.1.3.1B). Residues Asn283 are shown in orange. 
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Table 4.1.1.2 Crystallography statistics of the vimentin D3 fragment. 

 

At this point, we used analytical ultracentrifugation to investigate whether the 

observed crystallographic tetramer is the solution form. Equilibrium runs with the D3 
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fragment (0.25–0.9 mg/ml) in either 5 mM Tris–HCl buffer, 1mM DTT (pH 8.4) or 

5mM Tris–HCl buffer, 160 mM NaCl, 1mM DTT (pH 7.5) revealed average molecular 

masses of 8.7 and 8.4 kDa, respectively. This is in a perfect agreement with the 

calculated mass of the monomeric fragment (8.6 kDa). Hence we conclude that up to 

at least 1 mg/ml concentration there is no noticeable oligomerization of the D3 

fragment in solution. During crystallization however, concentrated (5 mg/ml) protein 

solution was exposed to high concentrations of PEG in the presence of Ca2+ ions, 

which apparently drives the formation of the tetramers and their subsequent 

crystallization. It should be noted in particular that in the resulting crystal structure 

five stretches of PEG molecules were found to be bound inside the relatively „loose‟ 

tetramer, making multiple hydrogen bonds with the protein (to be discussed below). 

 

4.1.3 C-terminal part (residues 303-334) is a left-handed coiled coil 

The geometry of the D3 structure was analyzed using the program Twister (Strelkov 

and Burkhard, 2002)24 which in particular computes the local coiled-coil radius and 

pitch as a function of residue number (Figure 4.1.3.1A). On input, a pair of parallel 

chains (i.e. either dimer AB or CD) was taken, and the results of dimers AB and CD 

were averaged. The C-terminal part (residues 303–334) was found to have a typical 

left-handed coiled-coil geometry with an average pitch of about 140 Å and an 

average radius of 4.5 Å. In comparison, the GCN4 dimer has a pitch of 148 Å and a 

radius of 4.9 Å (Harbury et al., 1993)55. Furthermore, the program Twister can assign 

the heptad positions in standard left-handed coiled coils. Thereby the first position of 

the heptad (a) is recognized by a small positive value (~20°) of the so-called Crick 

angle which defines the side-chain position with respect to the coiled-coil axis (for 

details, see Strelkov and Burkhard, 2002)24. For the C-terminal part of the structure, 

the heptad assignment found by this structural criterion (Figure 4.1.3.1B) coincides 

with the assignment previously made on the basis of sequence analyses (see e.g. 

Fig. 1B in Strelkov et al., 2003)28. 
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  B 

    abcdefghijk  

261 (GG)SKPDLTAA  
269 LRDVRQQYESV  

280 AAKNLQEAEEW   

291 YKSKFADLSEA      

302 ANRNNDA        

309 LRQAKQE 

316 STEYRRQ           

323 VQSLTCE 

330 VDALKG 

    abcdefg 
 
 
Figure 4.1.3.1 Geometry and repeat patterns within the D3 fragment. (A) The coiled-coil radius 
(red) and pitch (blue) as a function of residue number. (B) Amino-acid sequence formatted to 
show the hendecad repeat pattern (abcdefghijk) in the N-terminal part up to residue 302 and 
heptad repeats (abcdefg) in the C-terminal part. The residues highlighted in magenta contribute 
to the hydrophobic core of the N-terminal tetrameric part and are involved in the interaction of 
both the „nearest neighbor‟ (antiparallel) and diagonally located (parallel) α-helices (see text for 
explanations). The residues highlighted in green are only involved in the „nearest neighbor‟ 
interactions, as determined by the PISA server (Krissinel and Henrick, 2007)

56
. The residues in 

a and h positions highlighted in gray point towards the axis of the tetramer but however are too 
far away to form a dense hydrophobic core. The residues forming the core of the C-terminal 
coiled coil are highlighted in yellow. The actual vimentin sequence starting with residue 261 is 
preceded by two exogenous glycines. Disordered residues at N- and C-termini are shown in 
italics. 
 
 
 



38 
 

4.1.4 N-terminal part (residues 264-302) is a parallel α-helical bundle 

 

Within the N-terminal parallel bundle, the program Twister reveals a left-handed 

geometry for residues 264–277 and downstream of residue 298 but a right-handed 

one for residues 278–297. However, the coiled-coil pitch value exceeds 700 Å every-  

where up to the residue 297 indicating that the supercoiling is negligible. However, 

the coiled-coil radius, which is equal to half the distance between the parallel helices 

(A–B or C–D), varies considerably. It starts at a value of about 7 Å near the N-

terminus, increases to a maximum of 9.9 Å at residue 281 and decreases again to 

6.1 Å at residue 302 (Figure 4.1.3.1A). This implies, on one hand, that the helices 

within the N-terminal stretch are curved (just like helices forming a standard coiled 

coil (Strelkov et al., 2002)9 despite the absence of the supercoiling). On the other 

hand, the tetramer bundle reveals a pronounced „bulging‟ in the middle (residue 283), 

with α-helices separating much more than in a typical four-stranded coiled coil (such 

as e.g. the tetrameric GCN4 mutant which has a coiled-coil radius of 7.6 Å (Harbury 

et al., 1993)55. The possible reasons for this „bulging‟ lie in the packing of the 

tetramer, to be discussed below.  

Furthermore, residues 269, 280, and 291 have small positive values for the Crick 

angles that are reminiscent of residues in the a positions in a heptad repeat. In the 

parallel bundle, these residues mark the start points of three consecutive hendecad 

repeats abcdefghijk, wherea, d, e, and h are the core positions. This assignment 

largely coincides with the sequence-based prediction by Parry (2006)42. As should be 

expected for a hendecad-based structure (see Figure 2D in Kuhnel et al., 2004)57, all 

residues in the a and h positions point roughly in the direction of the bundle axis. 

However, the direct contact between the pairs of chains belonging to the same dimer 

(i.e. A–B and C–D) is limited. Indeed, it is only the residues Leu265 (position h), 

Leu269(a), Tyr291(a), and Leu298(h)  that are directly packing against each other, 

while the large distance between the helices in the middle of the tetramer precludes a 

direct contact of residues Tyr276(h), Ala280(a), and Ala287(h) of these parallel 

chains. At the same time, the major factor stabilizing the tetramer appears to be the 

hydrophobic contacts between the nearest neighbor antiparallel helices, such as 

between helices A and C, A and D, etc. (see Figure 4.1.2.1A). Notably, nearly every 

residue in a, b, d, e, g, h, and k positions is involved in this contact, as highlighted in 

Figure 4.1.3.1B. This behavior is well correlated with the predominantly hydrophobic 
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character of residues in these positions. In contrast, the residues in positions c, f, i, 

and j are mostly polar (see Figure 4.1.3.1B).  

As already mentioned, the middle part of the tetramer centered on residue 283 

features a very loose packing. In particular, the core residues Ala280(a), Asn283(d), 

and Ala287(h) are not engaged in any interhelical contacts. This is linked to the fact 

that, with the coiled-coil radius up to 9.9 Å in this region, the distance between the 

axes of the adjacent antiparallel helices and the parallel helices belonging to the 

same dimer can be as large as 14.0 and 19.8 Å, respectively. Interestingly, the voids 

between the helices in this region were found to be occupied by five partially ordered 

polyethylene glycol molecules (Figure 4.1.4.1A). Four of these are located in a quasi-

symmetrical way (one per protein chain), wrapped around the side chain of Asn283, 

and reside in a hydrophobic pocket formed by residues Trp290, Tyr291, Tyr276, 

Val279, and Ala287. A reason for the described „bulging out‟ in the middle part of the 

tetramer may lie in the presence of two symmetrical aromatic clusters (Figure 

4.1.4.1A). Such cluster is formed by the Tyr276 residues of two „upstream‟ chains 

and the Trp290 and Tyr291 residues of two „downstream‟ chains. These residues are 

located roughly in the same plane perpendicular to the tetramer axis (Figure 

4.1.4.1B). Since accommodating these bulky residues requires considerable volume, 

the helices are pushed further to a larger distance from each other than those near 

either end of the tetrameric bundle. Apparently, due to the intrinsic rigidity of an α-

helix this further causes a yet larger separation of the chains near residue 283. 

 

A   
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B 

 

Figure 4.1.4.1 Structural features of tetrameric α-helical bundle formed by residues 264–302. 
(A) Structure diagram showing the five bound PEG molecules. Side chains of Asn283 are in 
orange. Two aromatic clusters formed by the side chains of Tyr276, Trp290, and Tyr291 are 
shown in gray. (B) The aromatic cluster of Tyr276, Trp290, and Tyr291 viewed along the 
tetramer axis. 

 

4.1.5 Native dimer model 

As discussed above, within the α-helical bundle part the distance between the two 

helices of the same D3 dimer is considerably higher than expected for the full-length 

native dimer structure. Consequently, the native situation was modeled by bringing 

the N-terminal parts of the helices closer. The distance between the α-helical axes 

was chosen to be 9 Å which is twice the average radius of the left-handed coiled coil 

in the C-terminal part. The resulting model was energy-minimized whereby the side 

chains conformations were adjusted to avoid steric clashes (Figure 4.1.5.1). In 

agreement with the theoretical predictions (Kuhnel et al., 2004; Peters et al., 

1996)57,58, the helices within the constructed dimer interact mainly via hydrophobic 

packing of the residues in a, d, e, and h positions of the hendecad repeat (compare 

Fig. 3B). Starting from the N-terminus, the residues Leu265(h), Leu269(a), Val272(d), 

Arg273(e), and Tyr276(h) (all representing frequent side-chain types in the core 

positions of coiled coils (Walshaw and Woolfson, 2001)59 appear to provide for a 

reasonable hydrophobic core). However, the downstream core residues Ala280(a), 

Asn283(d), and Ala287(h) are all suboptimal for a good hydrophobic stabilization. 

The next core residue Tyr291(a) is preceded by a bulky Trp290(k). Whereas in the 
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crystallographic tetramer this tryptophan is inserted into the hydrophobic core (Figure 

4.1.4.1B), in the native dimer it is highly exposed (Figure 4.1.4.5). 

 

 

Figure 4.1.4.5 Stereo image of the native D3 dimer model. Residues in hydrophobic core 
positions are in yellow. 
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4.2 Impact of myopathic mutations on desmin structure 

 

4.2.1 Fragment design 

The initial expression pPEP-T vectors of desmin wt and myopathic mutants L345P, 

A360P, L370P, L385P and E401S fragments were provided to us by Harald Bär, 

DKFZ, Heidelberg, Germany. In addition, a short protein fragment of the deletion 

mutant ∆N366 (stammer) was synthesized chemically. This deletion was later 

introduced in our desmin wt fragment pPEP-T vector. To maximize our chances of 

crystallization, all our desmin fragments (residues 332-416) are homologous to the 

previously crystallized vimentin cys2 fragment (residues 328-411) (pdb entry 1gk4, 

ref) and lamin A lam1 fragment (residues 305-387) (pdb entry 1x8y, ref). The 

purification of desmin and lam1 fragments involves a thrombin cleavage (LVPR/GS) 

which lets exogenous GS residues at their N-termini. In contrast, such extra-residues 

are absent of the cys2 fragment obtained by chemical cleavage of the full-length 

recombinant desmin at two cystein positions (Figure 4.2.1.1). 

 

 

Figure 4.2.1.1 Multiple alignments of the desmin wt fragment with vimentin cys2 and lamin A 
lam1. Conserved residues (*) are in red and similar residues (:) in green. Desmin fragments 
have 75% identity with cys2 and 41% with lam1. The alignment was produced with NPS@. 

 

We choose mutants in coil 2B which belong to different assembly groups as 

observed by Bär et al. (2005, 2006)45,59. Further, these mutants cover different 

positions of the heptad repeat abcdefg (Table 4.2.1.1). Last but not least, four of 

these mutations are replacements to a proline residue expected to cause a 

pronounced local distortion of the helical structure due to the sterical properties of 

this amino acid (cf Figure 2.2.1). 
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desmin mutant heptad position assembly group 

L345P d IV 
A360P a I 
∆N366 g - 
L370P d IV 
L385P e II 
E401S g - 

Table 4.2.1.1 Mutants studied in this thesis with their heptad position and corresponding 
assembly group according to Bär et al. (2005, 2006)

45,59
. Mutants of the assembly group I form 

seemingly normal filaments. Mutants of the group II have a regular unit-length filament (ULF) 
formation but reduced longitudinal annealing properties. Mutants of group III (not studied here) 
form heavy aggregates and mutants of group IV form short-living assembly precursors that 
rapidly disintegrate. 

 

The A360P mutant (assembly group I) forms filaments quite similar to the wild-type 

ones both in vitro and in vivo. However, the measurements using STEM reveal that 

the A360P filaments have a somewhat larger width (14.5±1.3 nm) than the wild-type 

filaments (12.6±1.3 nm) (Bär et al., 2006)59. These filaments also appear more 

flexible and sometimes kinked and branched. The L385P mutant (assembly group II) 

is capable of forming ULFs which, however, fail to elongate and radially compact 

properly. Correspondingly, after the initiation of assembly the viscosity of the L385P 

solution does not increase significantly past the value typical for isolated ULFs. 

Finally, the L345P and L370P mutants (assembly group IV) are capable of forming 

ULF-like structures which, however, aggregate rapidly. The deletion ∆N366 is 

predicted to produce a „stammer‟ structure (cf Figure 1.5.3). However, this mutation 

has never been observed in any coiled coil structure (Kaminska et al., 2004; 

Burkhard et al., 2001)39,45,60. Finally, the mutation E401S may disrupt a predicted 

interhelical salt bridge between residues E401 and R406.  

 

4.2.2 Purification, characterization and stability of initial desmin 

fragments 

The desmin wt fragment and mutants were successfully purified in Ni-chelating 

columns and each yield ~30 mg/ml of pure protein per litre of culture. To the 

exception of the L385P mutant which was less soluble, all of them were concentrated 

to 7-10 mg/ml. 
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We also investigate the oligomeric state of our desmin samples. For this purpose, 

analytical ultracentrifugation experiments were carried out by Ariel Lustig, 

Biozentrum, Basel. Interestingly, both the wild-type and L345P mutant fragments are 

dimers in solution, whereas the A360P and E401S mutant fragment tend to be 

monomers (Table 4.2.2.1).  

 

 
Calculated mass (kDa) AUC average (kDa) Type 

Desmin wild-type  20.3 18.1 dimer 

Desmin L345P 20.3 23.6 dimer 

Desmin A360P  20.3 12.5 monomer + dimer 

Desmin E401S 19.9 13.3 monomer + dimer 

Desmin stammer (synthetic) 12.7 7.3 monomer 

Table 4.2.2.1 Analytical ultracentrifugation results of desmin wild-type and mutants L345P, 
A360P and E401S; the wild-type and L345P desmin fragment are dimers whereas the mutant 
fragments A360P and E401S are mostly monomeric. All samples were measured at three 
different concentrations and two speeds (28‟000 and 34‟000 rpm). The desmin stammer sample 
has been measured at three different speeds (26‟000, 32‟000 and 42‟000 rpm). 

All our protein fragments were screened towards crystallization using the hanging-

drop technique in commercially available kits. Since no crystal hits were found, we 

investigated the stability of the desmin wild-type fragment. For this, our wild-type 

sample at 7 mg/ml kept during one month at 4°C was eluted in a semi-analytic 

chromatography column (Superdex 75pg 16/60) separating proteins by size from 3 to 

70 kDa. The major part of this sample eluted in the void volume (i.e. >70kDa) (Figure 

4.2.2.1A), which means that it forms aggregates or polymers of at least eight 

monomers (10.2 kDa / monomer). Further, the void volume peak is not a 

consequence of our high sample concentration, since the same sample diluted to 1 

mg/ml applied to the gel-filtration column yields the same void volume peak to dimer 

peak ratio (Figure 4.2.2.1B). However, the dimer peak gets more prominent when the 

protein was denatured in 8M urea and renatured in our protein buffer containing fresh 

DTT prior gel-filtration (Figure 4.2.2.1C). This suggests that DTT oxidizes over time 

allowing the N-terminal cystein (residue 333) residues to form cross-bridges yielding 

to aggregates. 
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Figure 4.2.2.1 Gel-fitration elution profiles of the desmin wild-type fragment at 7 mg/ml 
containing the N-terminal cystein after one month of storage at 4°C (A). The same sample 
diluted to 1mg/ml (B) has the same void volume peak to dimer ratio. In the same sample (7 
mg/ml) denatured in 8M urea and renatured in a buffer containing fresh DTT, the dimer peak 
gets more prominent (C) 

Consequently, we envisaged to produce another set of pPEP-T vectors with desmin 

wild-type lacking the N-terminal cystein.  

 

4.2.3 Desmin wild-type and mutants protein fragments lacking the N-

terminal cystein 

The seven desmin fragments lacking cystein (Figure 4.2.3.1) were expressing at the 

same level than of the cystein-containing desmin fragments, yielding also ~30 mg/ml 

protein per liter of culture. These fragments were gel-filtered and screened towards 

crystallization.  

 

Figure 4.2.3.1 Desmin fragments (residues 332-416) lacking the N-terminal Cys333. 

We showed by circular dichroism spectra (cf. Chapter 3.5) that all fragments have a 

predominance of α-helical structure (Figure 4.2.3.1A). The differences in the spectra 

are caused by scaling due to inaccuracies in protein concentration determination. 

The cystein deletion does not alter the α-helical content. The gel-filtration shows that 

the sample „aggregation‟ (void volume) is reduced (Figure 4.2.3.1B). However, 

despite the fact that the quality of desmin samples was largely improved, the 

crystallization screen did not yield crystal. Therefore, we opt for another 

crystallization strategy by modifying the fragment sequences. 

void 

volume 

dimer 
dimer 

void 

volume 
dimer 

void 

volume 
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Figure 4.2.3.1 (A) Circular dichroism spectra of the desmin wild-type protein fragment (residues 
332-416) and of the desmin protein fragment lacking the N-terminal cystein Cys333. Minima at 
208 and 222 nm are characteristic of α-helical samples. (B) Gel-filtration elution profiles of 
desmin wt (in blue) and mutant L345P (in red) with and without cystein (continuous and dashed 
line respectively).  The void volume peaks are nearly absent in cystein-depleted fragments.  

 

4.2.4 Desmin wild-type and mutant sequence „shifts‟ 

The pPEP-T constructs with sequence shifts were generated by combining forward 

primers starting eleven residues after the N-terminus (at residue 343) and reverse 

primers lacking five residues at the C-terminus (at residue 411) compared to our 

desmin original plasmids (residues 332-416). The three possible derived wild-type 

sequences were cloned as well as six randomly chosen mutants (Figure 4.2.4.1). 

 

Figure 4.2.4.1 Desmin sequences shifts with residues highlighted in yellow representing the 
heptad repeat positions a. The residues in red are the mutations. 

These proteins were expressing at levels comparable to the wild-type desmin 

fragment. The circular dichroism measurement of two shifted samples (Figure 

4.2.4.2A), i.e. desmin wild-type fragments 332-411 and 343-411, showed that the α-

helicity was more pronounced than of the original fragment sequence (residues 332-

416). The geometry conservation is confirmed by gel-filtration since elution peaks are 

A 

B 
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almost proportional to the samples molecular weights (Figure 4.2.6B). Unfortunately 

none of these shifted wt and mutant fragments yield crystal. 

 

 

 

Figure 4.2.4.2 A) Circular dichroism spectra of the desmin wild-type protein fragment including 
cystein (residues 332-416, in blue) and of the desmin wild-type fragments residues 332-411 
(black) and 343-416 (red). Minima at 208 and 222 nm, characteristic of α-helical samples, are 
more pronounced for the „shifted‟ fragments. B) Gel-filtration profiles of desmin wt fragments. 
The elution volume peaks are almost proportional to the fragment masses, showing that the 
overall secondary structure of these fragments is conserved: desmin wt 332-416 MW = 20 kDa, 
desmin wt 343-416 MW = 18 kDa, desmin wt 332-411 MW = 19 kDa, desmin wt 343-411, MW = 17 
kDa (dimer masses). 

 

 

4.2.5 Point mutation in a lamin A context 

We then decided to insert desmin-related mutations in the homologous lam1 

fragment (PDB entry 1x8y Strelkov et al., 2004)61. We choose the lam1 protein 

fragment since it crystallizes readily in several different conditions and has a high 

symmetry space group (P 65 2 2). For convenience, these lamin fragments are 

followed by the number which corresponds to the desmin mutation position. Anyway, 

one can rapidly calculate the lamin A residue number by subtracting 28 to the desmin 

residue number (Figure 4.2.5.1). The lamin 377 was produced after a mistake in 

primers design.  

A 
B 

68 ml 

ml ml 

69 ml 

mlmml 
66 ml 

64 ml 
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Figure 4.2.5.1 Desmin mutation inserted into the lamin A lam1 sequence. The desmin mutations 
number were kept for convenience. The relationship is lamin A residue number = desmin 
residue number – 28. 

As a control, the lam1 fragment was reproduced and crystallized readily in many 

different crystallization conditions (Figure 4.2.5.2), indicating that our purification and 

crystallization procedures are correct.  

 

Figure 4.2.5.2 The lamin A (lam1) reproduced crystal. This crystal grew out of the initial screen 
without any further crystallization optimizations. The six-fold symmetry is evident from the 
crystal shape.  

CD spectra of the lam1 and lamin 401 fragments do not reveal particular features 

(Figure 4.2.5.3A). These lamin samples have an α-helical content similar that of 

homologous desmin samples.  

The gel-filtration of lamin fragments, containing cysteins, has a comparable void 

volume to dimer peak ratio as observed for desmin fragments. An interesting feature 

of lamin fragments 345, 360, 370 and 385 is the presence of a third peak at ~78 ml 

elution volume which corresponds to monomers. Even, the lamin 370 is exclusively 

monomeric. Here gel-filtration (Figure 4.2.5.3B) supports analytical ultracentrifugation 

result showing that the lamin wt fragment is a dimer in solution (Strelkov, 2004)61. We 

also noticed by analytical centrifugation that desmin L345P and A360P fragments 

(Table 4.2.2.1) are of a mixture of dimers and monomers in solution. Again, gel-

filtration shows the presence of monomeric peak for both the homologous lamin 345 

and 360 fragments. However, a great care should be taken by comparing desmin and 

lamin fragments. For instance, no monomer peak is found for the lamin 401 which 

corresponding desmin E401S analytical ultracentrifugation also showed to be a 

mixture of dimer and monomer.  

100 μm 
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Unfortunately, the crystallization of lamin fragments containing desmin mutations was 

unsuccessful. 

 

 

 

 

 

 

 

  

 

A 

B 

Figure 4.2.5.3 A) CD spectra of desmin and lamin wt and mutant 401. B) Gel-filtrations of lamin 
fragments. The void-volume peaks (45ml) size of lamins are comparable, if not bigger, to 
desmin. In contrast to desmin samples, the lamin fragments wt, 345, 360, 370 and 385 have an 
additional peak around 80ml corresponding to monomers. For both lamin 345 and 360, the 
presence of a monomeric peak can be correlated with analytical ultracentrifugation showing a 
mixture of monomers and dimers. However, the lamin 370 is exclusively monomeric whereas 

analytical ultracentrifugation profiles of its homologous desmin L370P showed only dimers. 
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4.3 Small angle X-ray scattering analysis of desmin wt and mutants 

 

4.3.1 Buffer conditions and samples 

All desmin samples were first dialyzed in tetramer buffer. After concentration, we 

added either NaCl or assembly buffer to our samples. The table 4.3.1.1 describes the 

different buffer conditions we used in this SAXS experiment. 

 

 

* estimate of the ionic strength based on the molarity of Tris buffer and added salt 

** NaCl molarity resulting after addition of an appropriate volume of 10X AB 

*** pH as measured after addition of an appropriate volume of 10X AB 

 

Table 4.3.1.1 Buffers used for SAXS measurements. The ionic strength has been calculated 
using the following formula: I [mol l

-1
] = 0.5 x Σ (Ci zi

2
) with Ci being the molar concentration in 

mol x l
-1

 and zi the ion charge. The Tris charge has been chosen to be +1. 

 

The table 4.3.1.2 (next page) shows all collected samples, their buffer conditions and 

concentrations as measured by OD at 280 nm.  
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Table 4.3.1.2 SAXS measured samples. For each sample, the sample number is given in bold, 
followed by a letter indicating the beamline used (H for Hamburg, S for Soleil) and the 
concentration of the sample. Refer to the table 4.3.1.1 for a complete description of buffers. 
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4.3.2 Desmin wt and mutants viscosity 

We added NaCl and assembly buffer in aliquots of our dialysed samples in tetramer 

and let them polymerize for at least one hour. Before data acquisition these samples 

were centrifuged. Some samples formed two visible phases. The viscosity of samples 

forming a single phase or of the supernatant, when phase separation occurred, was 

probed by pipetting. This qualitative indication of desmin samples viscosity already 

demonstrates that several desmin mutants behave differently that of desmin wt under 

the same buffer conditions (see Table 4.3.2.1). 

 

Table 4.3.2.1 Desmin wt and mutants qualitative solubility assay in tetramer buffer (TB) or with 
TB supplied with NaCl or assembly buffer (AB). The green cases are samples which stayed 
liquid. In orange, samples only formed a single but very viscous phase after centrifugation. In 
red the samples did form a gel. In that case, only the upper phase after centrifugation, when 
fluid enough to be pipetted, was measured. No measurements were done for samples in white 
cases. 

Samples solubility in tetramer buffer 

Samples in tetramer buffer can be classified into three solubility classes. First, the 

desmin wt and mutants E245D, L345P, R350P, A360P, L370P, L385P, R406W, 

E413K and I451M remain soluble after dialysis and at high concentrations (>1mg/ml). 



53 
 

As for comparison, the vimentin sample also belonged to this class. Second, the 

samples A213V, A337P, N342D, A357P, ∆E359-S361, ∆N366 and D399Y were still 

soluble after dialysis but tend to form gel at concentrations higher than 1 mg/ml. 

Finally, the mutant Q389P already formed a gel into the dialysis bag at a 

concentration of 0.2 mg/ml. Consequently, all samples in tetramer buffer except 

Q389P were sufficiently fluid to flow into the small 0.1 mm capillaries of the SAXS 

machine (cf. Figure 3.7.3.1). 

Samples solubility with salt or assembly buffer addition 

The viscosity of desmin samples supplied with of 15, 30 and 75 mM NaCl was found 

to be equivalent to the addition of 10, 20 and 50 mM assembly buffer respectively. 

Our ionic strength calculation shows that the Tris buffer present in assembly buffer 

respectively compensates the excess of NaCl. 

Here also, mutants can be classified in three groups. First, the mutants E245D, 

A360P, R406W, E413K and I451M stayed as fluid as desmin and vimentin wt up to 

30 mM NaCl addition. Second, the mutants L345P, R350P, ∆E359-S361, ∆N366 and 

D399Y had a single viscous phase up to 30 mM NaCl addition. However, with 30 mM 

NaCl addition, these mutants turned into gel. Third, the mutants A337P, A357P, 

N342D, L370P and L385P already formed a gel with 15 mM NaCl addition. Finally, 

the mutant A213V cannot be classified since its viscosity was not probed with 15 mM 

NaCl addition. 

 

4.3.3 Desmin wt assembly complexes as monitored by SAXS 

Before starting to analyze our desmin mutants against desmin wt, we will first show 

how the desmin wt SAXS intensity curves and distance distribution functions vary in 

tetramer buffer and increased ionic strength buffers. 

Several measurements of desmin wt were done in tetramer buffer. According to the 

R-factor tests done with intensity curves between the angular Q range 1 to 2.5 [nm-1], 

only one of our five desmin wt curve moderately deviates (Rf > 5%) from other 

measurements (Table 4.3.3.1). Interestingly, this desmin wt in tetramer buffer 

„outsider‟ is not from a different purification batch and thus such deviation might be 
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related to few impurities or air bubbles within the sample or SAXS machinery. 

Therefore, I decided to skip this sample since it is more likely to compromise further 

analysis and comparison with desmin mutants. 

 

 conc. [mg/ml] 0.5 1.0 2.5 5.0 1.7 
0.5 - 

    1.0 4.9% - 
   2.5 4.4% 5.0% - 

  5.0 5.0% 6.2% 1.8% - 
 1.7 4.2% 5.1% 2.3% 2.8% - 

1.0* 4.2% 5.5% 1.9% 2.3% 2.2% 
 

Table 4.3.3.1 Desmin wt at different concentrations in tetramer buffer and R-factor differences 
as calculated between the angular Q ranges from 1 to 2.5 nm

-1
. The differences below 5% are in 

green, whereas differences of >5% are in yellow. The dataset marked with a * at 1 mg/ml 
correspond to another purification preparation.  

The fact we measured desmin wt in tetramer buffer with different concentrations (0.5 

mg/ml to 5 mg/ml) (Figure 4.3.2.1) permits us to determine if desmin intensity curves 

deviates at low angles. Such deviations are either due to aggregation or close 

proximity between molecules present in the sample. Indeed, at low angles the 

intensity curve for the molecules attracting themselves will go up whereas intensity 

curves for the molecules repulsing each others will go down. These effects are 

typically seen at the lowest scattering angles (Q below 0.5 nm-1). 

All our R-factor comparisons were done in a Q scattering angle range from 1 to 2.5 

nm-1 independent of such effects. 

 

Figure 4.3.2.1 Scattering curves of all desmin wt samples at the lowest angles. No aggregation 
is observed. 
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The SAXS curves of desmin wt in tetramer buffer and with increased ionic strength 

(Figure 4.3.2.2A) reveal that the cross-section diameter (Dmax) of desmin wt in 

tetramer buffer is of ~12 nm and increased to ~20 nm with increased ionic strength 

buffers (Figure 4.3.2.2B). The distance distribution function in the tetramer buffer 

shows only one maximum at ~1.5-2 nm whereas upon salt addition a second smaller 

peak at ~7 nm emerges. While there is a distinct difference between the desmin wt 

curve in tetramer buffer and after 10 mM AB addition, any further addition of AB or 

salt does not lead to significant changes in the SAXS signal and, correspondingly, 

the distance distribution function curve. It should be concluded that, with 10-15 mM 

salt addition, desmin wt already reaches its maximal cross-section diameter. This is 

an unexpected result compared to the vimentin SAXS experiment (Sokolova et al.)62. 

First, the vimentin curves measured in tetramer buffer showed a diameter of ~6 nm 

(see Sokolova et al.62, table 1 and figure 1A and B) that is half the diameter we 

observed for desmin. Second, the desmin cross-section diameter (~12 nm) in 

tetramer buffer is similar to vimentin supplied with 20 mM NaCl. Third, the maximal 

cross-section diameter of desmin (~20 nm) is somewhat larger than vimentin (Dmax 

~16 nm). Therefore, we can conclude that desmin form bigger species than vimentin 

in tetramer buffer and requires less salt to reach its maximal cross-section diameter. 

However, a detailed direct comparison of wt desmin and vimentin needs to be carried 

out in future SAXS experiments to verify these conclusions.  

 

Figure 4.3.3.2 Desmin wt in tetramer buffer is show in blue, desmin wt in 10mM AB in green, 
with 20 mM NaCl in red, with 75 mM NaCl in dark blue and with 20 mM AB in brown. The 
intensity curves (A) show a neat slope difference between desmin wt in tetramer buffer (blue) 

A B 
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and desmin wt supplied with salts or assembly buffer. The distance distribution functions (B) 
indicate that the cross-section diameter of desmin wt in tetramer buffer is of ~12 nm whereas it 
increases to 19-22 nm for desmin wt supplied with salts or assembly buffer. 

 

4.3.4 Desmin mutants in tetramer buffer  

The analysis of desmin wt serves as a template to determine if desmin mutants 

resemble or not to desmin wt complexes. For this, a complete R-factor analysis was 

done to sort our samples in different classes. The R-factor difference between 

mutants and the averaged five desmin wt samples is shown in Table 4.3.4.1. We 

consider here mutants to be similar if their R-factors are < 5%, moderately different if 

their R-factor is comprised between 5% and 10% and different for Rf  > 10%. The 5% 

difference in R-factor corresponds to the observed difference within desmin wt 

datasets in tetramer buffer. 

sample %Rf vs. desWt Dmax [nm] 

Desmin wt up to 5% 12.0 

L345P 3.4% 11.8 

R406W 3.7% 9.5 

R350P 3.9% 11.0 

A360P 3.9% 13.0 

ΔN366 4.3% 12.5 

A337P 4.7% 12.3 

N342D 4.9% 12.1 

E413K 6.5% 12.0 

A357P 6.8% 12.0 

ΔE359-S361 7.1% 11.0 

L385P 8.2% 12.0 

E245D 8.4% 12.0 

A213V 8.5% 11.0 

D399Y 11.5% 11.0 

I451M 11.9% 13.0 

L370P 17.3% 22.0 
 

Table 4.3.4.1 Desmin mutants in tetramer buffer sorted according to their averaged R-factor 
difference with desmin wt in tetramer buffer. Desmin mutant samples with a R-factor difference 
of <5%, in green, are considered to be equivalent to desmin wt. Desmin mutants having a R-
factor comprised between 5 and 12%, in yellow, are considered as moderately different. 
Desmin mutants with a R-factor difference of more than 12%, in red, strongly deviate of desmin 
wt. Except L370P, all these mutants have a cross-section diameter close to desmin wt (average 
= 11.7 nm, excluding wt and L370P). 

Except for L370P, all mutants in tetramer buffer were found to have the same cross-

section diameter (Dmax of ~10 nm) as desmin wt. The shape of the distance 

distribution function has been investigated in more detail. For the first group of 
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mutants (i.e. L345P, R406W, R350P, A360P, ΔN366, A337P and N342D), the 

distance distribution functions closely resemble the one of desmin wt and have only 

one maximum at ~2 nm (Figure 4.3.4.1A). However the distance distribution function 

of mutants forming the second group (i.e. E413K, A357P, ΔE359-S361, L385P, 

E245D, A213V, D399Y and I451M) exhibits two maxima at ~2 nm and ~3.7 nm 

(Figure 4.3.4.1B). This peak duplicity indicates either a mixture of two different 

species or a less compact core structure within the filament precursor core than 

desmin wt. Finally, the mutant L370P strongly deviates and forms our last group 

(Figure 4.3.4.1C). Interestingly, the mutant L370P reaches the same cross-section 

diameter as desmin wt in higher ionic strength buffers (~22 nm).  



58 
 

 

Figure 4.3.4.1 Distance distribution functions of desmin mutants and desmin wt (black curves). 
(A) The first group of mutants share similar distance distributions than of the wt. These curves 
have only one maximum at ~2 nm. (B) The second group of mutants have distance distribution 
functions exhibiting a second maxima at ~4 nm. (C) The mutant L370P has a cross-section 
diameter of ~22 nm which is twice the size than of desmin wt in tetramer buffer.  
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4.3.5 Desmin mutants after salt or assembly buffer addition 

We have seen that almost all our mutants in tetramer buffer, except L370P, look 

similar to desmin wt.  

However, as discussed above (section 4.3.2), only some of the studied mutants did 

not reveal gel formation upon addition of 15 mM NaCl. These are the mutants 

E245D, A360P, R406W, E413K and I451M. 

The SAXS data recorded after salt or assembly buffer addition reveal (Figure 4.3.5.1) 

that all of the above-mentioned mutants but R406W assemble in roughly the same 

way as the wt. For all these mutants in increased ionic strength buffers, a second 

maximum at ~7 nm appears, whereas the cross-section diameter (Dmax) increases 

to ~15 nm. Interestingly, mutants E245D and I451M show disappearance of the 

distance distribution peak at ~2 nm which is present in all other curves. 

The mutant R406W has revealed a slower assembly than the wt (Figure 4.3.5.1), 

since the 7 nm peak in the distance distribution function was much weaker even with 

30 mM NaCl addition. 

As discussed in section 4.3.2, for many mutants, addition of salt or assembly buffer 

resulted in gel formation. Often (see Table 4.3.2.1) the sample could be separated 

into two phases: the lower gel phase and the upper soluble phase. In the case of 

mutants L345P, ΔS359-E361, ΔN366, R350P, A357P and D399Y the upper phase 

could still be measured (Table 4.3.1.2 and Figure 4.3.5.1). However it should be 

stressed that the resulting SAXS curve does not represent the complete sample but 

only the still soluble part. As seen in figure 4.3.5.1, the distance distribution functions 

of all these samples show profiles that are only somewhat „thicker‟ than that for the wt 

desmin in tetramer buffer, with a single maximum at ~2 nm. The second peak at ~6 

nm is much weaker for most of these mutants. 

It should be therefore concluded that the upper fluid phase of these samples contains 

a predominance of an oligomeric species similar to that present in the tetramer buffer 

(most likely a tetramer, see the discussion section below). 

Finally, the mutants A213V, A337P, N342D, L370P and L385P could not be 

measured since they already formed a gel in the tetramer buffer supplied with 15 mM 

NaCl. For two of these mutants, A337P and N342D, this confirms a previous EM and 

viscometry study showing that they tend to stick and aggregate (Bar et al., 2005)45.  
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Figure 4.3.5.1 Distance distribution functions of desmin mutants supplied with salts or 
assembly buffer. 

 

4.3.6 Conclusions of the SAXS study 

By taking into account all obtained data, we can summarize the conclusions in a table 

(Table 4.3.6.1). We would classify the studied mutants into two large groups. 

The first group includes the mutants that show the overall assembly behavior in 

tetramer buffer and upon ionic strength increase similar to the wt. Most of these 

mutants were also studied by Bär et al.45,59. In particular, most mutants revealed a 

sedimentation coefficient in tetramer buffer which is close to that of the wt (5.2S). 

Correspondingly, these mutants are assumed to be present as tetramers in the 

tetramer buffer. Moreover, using EM Bär et al. observed normal filaments assembly 

after addition of an equal amount of assembly buffer (45 mM Tris°HCl pH 7.0, 100 

mM NaCl) to the tetramer buffer. Correspondingly, Bär et al. have classified these 

mutants as belonging to the „Class I‟. 

In particular, the mutants A360P and E245D were found by EM to belong to the class 

I. Our SAXS measurement confirms that these two mutants assemble as the wt. 

Further, our SAXS data show that the mutant R406W assemble less than the wt 

(Figure 4.3.5.1). This correlates to the fact that it shows abnormalities by EM and was 

classified in the assembly class II (disturbed longitudinal annealing and radial 

compaction). Moreover, the mutant R406W distance distribution function shows 

several maxima (~2, 6, 11, 14... nm) that might be characteristic for a less dense 

core due to a radial compaction defect. Further, its cross-section diameter (~19 nm) 

stays close to the desmin wt (~22 nm). However, we cannot conclude if ULFs anneal 

or not since our SAXS datasets resolution is below the ULF size. Finally, it would be 

interesting to verify by EM if the mutants I451M and E413K, which were not studied 

by Bär et al. also assemble as desmin wt. 

The second big group that we have observed includes mutants that assemble more 

readily even after minimal increase in the ionic strength. Many, but not all of these 

mutants belonging to this group were showing signs of gel formation already in the 

tetramer buffer at concentrations above 1 mg/ml. The gel formation was distinct as 

soon as some salt or assembly buffer was added. In some cases, the resulting 
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sample could be separated into the gel fraction and the supernatant. We could 

measure the supernatant by SAXS, but it should be stressed that the obtained curves 

did not represent the complete sample. 

For instance, the supernatant of the mutant L345P and R350P contains species 

which have a similar cross-section diameter (~ 15 nm) that of desmin wt in tetramer 

buffer (~ 12 nm). These mutants were shown by Bär et al. to form ULFs which rapidly 

degrade into small fibrous and roundish ~50 nm aggregates (class IV). In our case, 

these aggregates were most likely removed by the centrifugal step and our SAXS 

curves show that these two mutants do not form filaments. Further, the distance 

distribution functions of these two mutants confirm that they only partly assemble, 

since they have only a weak second peak at ~7 nm compared to the desmin wt. 

The mutants A337P, N342D and A357P of our second group of mutants were shown 

by Bär et al. to have an enhanced adhesiveness and aggregate formation (class III). 

Indeed, all these mutants formed a gel already in tetramer buffer. With salt addition, 

the solution turns so viscous for mutants A337P and N342D that no SAXS data could 

be measured. The supernatant of the mutant A357P was measured and showed a 

distance distribution function similar than that of the wt. This suggests that this 

mutant still form filaments as observed by Bär et al.  

Finally, the mutant D399Y was shown by EM to form seemingly normal filaments. In 

our case, this mutant turned into a gel in both tetramer buffer and higher ionic 

strength buffers. Further, the SAXS curve of the supernatant of this mutant in 

tetramer buffer and 10 mM assembly buffer has a very weak second peak at ~7 nm, 

suggesting to us that it does only partly assemble. However, we could not exclude 

that complete but sticky filaments were not removed by the centrifugal step before 

SAXS acquisition. 

Interestingly, the sedimentation coefficients in tetramer buffer of mutants D399Y 

(~12S) and Q389P (~10S) were shown to be higher than desmin wt and most 

mutants (5.2S). The mutant Q389P has precipitated in our hands already in tetramer 

buffer, suggesting that it rapidly form higher species or aggregates. 

Lastly, the mutant L370P was soluble in tetramer buffer but formed abnormally large 

oligomers (Dmax = 22 nm). This observation contradicts the data by Bär et al. that 



64 
 

measured normal sedimentation coefficients in tetramer buffer. At the same time, the 

further assembly that they have observed was also not normal; this filament was 

shown to have a conserved ULF formation that break down into small aggregates 

(class IV). 

 

 

 

 

 

 

 

 

Table 4.3.6.1 

Group I: mutants similar to desmin wt 

 Tetramer buffer 
(TB) 

  + 10 mM AB or                 
15 mM NaCl 

AUC 
sed. 

coef in 
TB 

Class 
Bär et 

al.  Gel 
form1 

SAXS Rf 2 
in % 

Gel form1 
SAXS Rf 3 

in % 

WT no up to 5 no - 5.2 I 
E245D no 8.4 no - / 3.5 5.7 I 
A360P no 3.9 no 3.4 / 4.4 5.2 I 
E413K no 6.5 no 5.8 / 3.4 n/a n/a 
I451M no 11.9 no 6.8 / - n/a n/a 

R406W* no 3.7 no 4.9 / - 5.4 II 

 

1
 as in Table 4.3.2.1 

2
 R-factor versus desmin wt in tetramer buffer as in Table 4.3.4.1 

3 
R-factor versus desmin wt in the same condition (1

st
 number with 10 mM AB, 2

nd
 with 15 mM NaCl) 

* 
 R406W revealed decreased assembly upon buffer addition 
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Group II: mutants similar to desmin wt in tetramer buffer but increased assembly 

upon ionic strength increase 

 

 Tetramer buffer     
(TB) 

+ 10 mM AB or                  
15 mM NaCl 

AUC 
sed. 

coef in 
TB 

Class 
Bär et 

al.  
Gel form1 

SAXS Rf 2 
in % 

Gel form1 
SAXS Rf 3 

in % 

L345P no 3.4 yes - / 8.1 4.9 IV 

R350P no 3.9 yes - / 9.7 4.8 IV 

L385P no 8.2 yes n/a 5.3 II 

A213V yes 8.5 yes n/a 5.0 I 

A337P yes 4.7 yes n/a 5.3 III 

N342D yes 4.9 yes n/a 5.0 III 

A357P# yes 6.8 yes 18.0 5.2 III 

ΔE359-
S361 

yes 7.1 Yes - / 5.8 n/a n/a 

ΔN366 yes 4.3 Yes - / 4.6 n/a n/a 

D399Y yes 11.5 yes 17.9 / - 
11.9/ 
12.7 

I 

 

Outliers: L370P forms large oligomers already in tetramer buffer and Q389P 

precipitates 

 

 Tetramer buffer (TB) 
+ 10 mM AB or               

15 mM NaCl 
AUC 
sed. 

coef in 
TB 

Class 
Bär et 

al  
Gel 

form1 
SAXS Rf 2 

in % 
Gel form1 

SAXS Rf 3 
in % 

L370P no 17.3 yes n/a 5.2 IV 

Q389P precip n/a n/a n/a 9.5/10.6 I 

       
1
 as in Table 4.3.2.1 

2
 R-factor versus desmin wt in tetramer buffer as in Table 4.3.4.1 

3 
R-factor versus desmin wt in the same condition (1

st
 number with 10 mM AB, 2

nd
 with 15 mM NaCl 

#
 comparison in tetramer buffer + 20 mM assembly buffer 
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5 Discussion 

5.1 Atomic structure of vimentin coil 2 domain 

5.1.1 Hendecad-based parallel α-helical bundle near the N-term of coil 2 

The crystal structure described here represents the regions of the vimentin molecule 

formerly designated as coil 2A, linker L2 and the beginning of coil 2B. Importantly, we 

show that this region forms a single, contiguous α-helix. This is in agreement with the 

secondary structure predictions made for the amino-acid sequence, as noted earlier 

(Hess et al., 2006; Parry, 2006)42,63. Our findings call for a revision of the widely 

accepted separation of coil 2 into segments 2A and 2B by the proposed non-helical 

linker L2. We show that the only substructure that could be found within coil 2 is 

linked to the differences in the hydrophobic repeat period and therefore the degree of 

supercoiling. The N-terminal part starting with Pro263 and ending with Ala302 is not 

twisted and should therefore be designated as a parallel α-helical bundle rather than 

a coiled coil. The rest of coil 2 is a standard coiled coil with a fairly regular left-handed 

geometry, with the exception of a short unwound region near the stutter at position 

351. Along with the ubiquitous heptad repeat pattern, the hendecad periodicity in the 

distribution of hydrophobic side chains has also been recognized as a possible α-

helical oligomerization motif (Peters et al., 1996)58. While theoretical calculations for 

such a hendecad periodicity originally suggested a right-handed coiled-coil structure 

(Peters et al., 1996)58, the few crystal structures that have become available recently 

all indicate essentially a parallel geometry. For instance, analysis of the tetrabrachion 

RHCC structure (Stetefeld et al., 2000)26 using the program Twister yields an overall 

coiled-coil pitch of ~4200 Å for the part featuring hendecad repeats (residues 19–52), 

meaning that the supercoiling is indeed negligible. 

Unexpectedly, the crystal structure of the D3 fragment did not reveal an in-register 

dimer for its entire length, an arrangement that would be expected for this region 

within the native full-length IF dimer. This is likely due to the differences in the 

properties of the isolated relatively short fragment and the full-length protein. Indeed, 

we have shown that the D3 fragment stays monomeric in solution, just like the two 

earlier vimentin fragments including the L2 region, namely 2AB (residues 225–335) 

and cys1 (residues 254–327) (Strelkov et al., 2001)21. This finding nicely correlates 

with the analysis of the hydrophobic core of the „reconstructed‟ native dimer which 
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suggests that the coiled coil in this region is only marginally stable. A similar property 

was previously observed for another relatively short vimentin fragment corresponding 

to the 1A segment, which forms a monomeric α-helix in solution (Strelkov et al., 

2002)9. However, after introducing a single stabilizing Y117L mutation into this 

fragment, a stable dimeric coiled coil is observed (Meier et al., 2009)23. 

Evidence for a continuous α-helical structure near the N-terminus of vimentin coil 2 

has previously been obtained from the SDSL–EPR experiments (Hess et al., 2006)63. 

These studies, performed with assembled vimentin filaments, suggest a highly 

ordered structure for residues 281–304. This stretch is situated within the α-helical 

bundle according to our crystal data. Furthermore, EPR spectra point to the residues 

of the two parallel chains that are positioned especially close to each other (as 

revealed by a high d1/d ratio; see Table 1 in Hess et al., 2006) 63. Notably, the pattern 

of these residues exhibits a distinct hendecad period, even though the authors do not 

discuss this. Moreover, the highest d1/d ratios are observed for residues in core 

positions, in perfect agreement with our assignment (Figure 4.1.3.1B). Finally, Hess 

et al. (2006) suggest that the regular left-handed coiled coil starts with the residue 

302, which again fully agrees with our crystallographic data. 

 

5.1.2 Molecular structure and properties of IF coil 2 

There is some variability in the length of coil 1 across different IF types, which is 

caused, in particular, by a highly variable linker L1 in different IFs and a longer 1B 

segment in nuclear lamins (Strelkov et al., 2003)28. However, coil 2 is generally more 

conserved in sequence across different IFs than coil 1, and its length (which is the 

total length of segments formerly known as coil 2A, linker L2 and coil 2B) is 

absolutely conserved (Parry and Steinert, 1999)64. Sequence alignment of coil 2 of 

vimentin including residues 264–405 (Figure 5.1.2.1A) with the same region of other 

IF types points to a considerable sequence conservation especially near its N-

terminus i.e. within the hendecad repeat region (as analyzed in detail by Parry 

(2006)42 and within the C-terminal region known as the IF consensus sequence. The 

overall sequence similarity between coil 2 of vimentin and every other IF type is 

indeed considerable, amounting to 80% for NFL protein and to about 60% for both 

keratin types and nuclear lamins (Figure 5.1.2.1B). 
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Correspondingly, the parallel bundle assembly exemplified by our vimentin D3 

fragment is clearly a conserved structural feature of all IF proteins. While the initiation 

of the α-helical structure of vimentin coil 2 is likely to be facilitated by the N-terminal 

capping by the Pro263 residue, most other IF types have a different amino acid in 

this position (Figure 5.1.2.1A). Importantly, our D3 dimer structure (Figure 4.1.4.5) 

can be fused with the previously determined structure of the cys2 fragment (Strelkov 

et al., 2002)9, since both fragments include residues 328–335. Upon superimposing 

the two structures by this region, the root mean-square deviation of their Cα positions 

is 1.3 Å indicating a good match. As a result, we can obtain a complete atomic model 

of vimentin coil 2 (Figure 5.1.2.1C). The length of the 141-residue long coil 2 as 

measured for this model is 21 nm. Notably, this value that should be conserved for all 

IF types exactly matches the ~21-nm longitudinal beading periodicity that was 

consistently found in the EM micrographs of various assembled IFs after glycerol 

spraying and rotary metal shadowing (Milam and Erickson, 1982; Heins et al., 

1993)65,66. This is an interesting correlation, although the observed periodicity in EM 

pictures is likely to depend on a number of additional parameters, such as the 

overlap length in staggered interdimer contacts (i.e. A11 and A22 modes) and 

positions of terminal domains within the mature IF architecture (Parry and Steinert, 

1999)64.  

Last but not least, the observation of a contiguous α-helical structure for the entire 

length of coil 2 has an important implication with regard to the mechanical properties 

of the IF dimer. In particular, coil 2 should be considered as a single comparably rigid 

„rod-like‟ structure based on two intertwined α-helices. Indeed, the persistence length 

of a regular two-stranded coiled coil has been estimated as 25 ± 15 nm (Schwaiger et 

al., 2002)67 which is somewhat longer than the contour length of coil 2. This stiffness 

of coil 2 is rather opposite to the properties of the preceding linker L12 and the 

downstream tail domain which are expected to be quite flexible (Parry, 2006)42. 
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        -ghijkabcdefghijkabcdefghijkabcdefghijkabcdefgabcdefgabcdefgabcdefgabcdefg 

Vim  263 PDLTAALRDVRQQYESVAAKNLQEAEEWYKSKFADLSEAANRNNDALRQAKQESTEYRRQVQSLTCEVDALKGT 336 

NFL  252 PDLSAALKDIRAQYEKLAAKNMQNAEEWFKSRFTVLTESAAKNTDAVRAAKDEVSESRRLLKAKTLEIEACRGM 325 

K8   254 LDMDSIIAEVKAQYEDIANRSRAEAESMYQIKYEELQSLAGKHGDDLRRTKTEISEMNRNISRLQAEIEGLKGQ 327 

K18  243 QDLAKIMADIRAQYDELARKNREELDKYWSQQIEESTTVVTTQSAEVGAAETTLTELRRTVQSLEIDLDSMRNL 316 

LaA  239 YRLADALQELRAQHEDQVEQYKKELEKTYSAKLDNARQSAERNSNLVGAAHEELQQSRIRIDSLSAQLSQLQKQ 312 

LaB1 240 SKLAQALHEMREQHDAQVRLYKEELEQTYHAKLENARLSSEMNTSTVNSAREELMESRMRIESLSSQLSNLQKE 313 
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337 NESLERQMREMEENFAVEAANYQDTIGRLQDEIQNMKEEMARHLREYQDLLNVKMALDIEIATYRKLLE 405 Vim 

326 NEALEKQLQELEDKQNADISAMQDTINKLENELRTTKSEMARYLKEYQDLLNVKMALDIEIAAYRKLLE 394 NFL 

328 RASLEAAIADAEQRGELAIKDANAKLSELEAALQRAKQDMARQLREYQELMNVKLALDIEIATYRKLLE 396 K8 

317 KASLENSLREVEARYALQMEQLNGILLHLESELAQTRAEGQRQAQEYEALLNIKVKLEAEIATYRRLLE 385 K18 

313 LAAKEAKLRDLEDSLARERDTSRRLLAEKEREMAEMRARMQQQLDEYQELLDIKLALDMEIHAYRKLLE 381 LaA 

314 SRACLERIQELEDLLAKEKDNSRRMLTDKEREMAEIRDQMQQQLNDYEQLLDVKLALDMEISAYRKLLE 382 LaB1 

     ..:x  x.x:*:. :.:... . .x .:x xx. .x :x.::x.x*:.*x:x*xx*x:**:.**x***   

 

 

 Vim NFL K8 K18 LaA LaB1 

S
e
q

u
e
n

c
e
 s

im
il
a

ri
ty

 

Vim X 80 63 58 60 60 

NFL 57 X 60 61 60 57 

K8 41 38 X 63 52 49 

K18 33 33 31 X 56 56 

LaA 32 32 32 33 X 83 

LaB1 29 30 25 33 62 X 

                Sequence identity 

 

 

Figure 5.1.2.1 Structure of IF coil 2. (A) Alignment of the coil 2 sequences for different IF types 
including human vimentin (type III protein), neurofilament L protein (type IV), cytokeratin 8 
(type I), cytokeratin 18 (type II), and lamins A and B1 (type V). New assignment of the hendecad 
positions in the N-terminal region is highlighted in cyan. Assignment of the heptad positions is 
in yellow. Stutter is in green. The line below the sequences indicates the sequence 
conservation score calculated as in Strelkov et al., 2002)

9
. (B) Amino-acid sequence identity 

(below the diagonal) and similarity (above the diagonal) for coil 2 of different IF types. The 
values shown are in percent rounded up to an integer value. For sequence similarity 
calculation, Blosum62 matrix was used (Henikoff and Henikoff, 1992)

68
. (C) Atomic model of the 

full vimentin coil 2 shown as ribbon diagram and semitransparent molecular surface. The N-
terminal parallel bundle is colored blue, the rest of the D3 fragment is in orange and the 
previously determined C-terminal cys2 fragment is in yellow. The stutter is colored green. 
 

A 

B 
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5.2 Impact of myopathic mutations on desmin structure 

 

Despite the fact we get strong expressions and large quantities (up to ~10 mg per 

purification batches) of pure and relatively well soluble desmin wt and mutant 

fragments, our crystallization trials were unsuccessful. Also, the desmin fragments 

stability over time was greatly increased by removing the N-terminal cystein, which 

was shown to oxidize over time. These cystein-less fragments make us confident that 

the nature of our protein fragments during our crystallization process, which was 

followed for all our samples up to ~3 month (dried drops), stayed the same. 

Together with crystallization trials, our protein fragments were partly characterized by 

circular dichroism, analytical ultracentrifugation and semi-analytical gel-filtrations. 

Clearly, all our CD spectra showed that these fragments were α-helical. However, 

with respect to analytical ultracentrifugation and gel-filtration, many of our desmin 

samples contained a relatively high amount of monomers. In the crystallographer‟s 

logic, one would expect IF fragments dimers to crystallize better than monomers, 

since our relatively short fragments may nearly adopt a globular shape favoring 

crystal contacts. However, this perspective has to be revisited, since several IF 

fragment structures do crystallize, even though their solution state was of a 

monomer. This perspective is reinforced in this thesis by our N-terminal coil 2 

structure which was measured as a monomer in solution. 

We also made up the assumption that a strong homology or identity with previously 

crystallized IF fragments (as shown in Figure 4.2.1.1) favor the crystallization of our 

desmin and lamin fragments. Obviously, such predictions for coiled coils were too 

naïve and keeps opened more perspectives for fundamental research within this 

field. One reason behind might be that coiled coils do not necessary staggered 

among their length into the crystal, but rather crystallize into various spacegroups 

suggesting that only few crystal contacts are sufficient for crystallization. Also, the D3 

structure shown previously reveals that PEG molecules can support a relatively loose 

helix packing by forming several intermolecular hydrogen bridges.  

No crystals were obtained out of the homologous lamin A fragments carrying 

homologous desmin mutation despite the wild-type fragment readily crystallized in 

~10% of our conditions. Therefore, it is likely that the mutations we introduced deeply 

disturb the α-helical structure of our fragments. Further, our desmin wt fragment  
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which shares 63% homology (40% identity) to the lamin A fragment did never 

crystallized. Thus, it would be interesting to mutate several desmin amino-acids into 

their lamin corresponding ones to get the desmin fragment crystallized. However, 

according to our mutated lamin experience, I believe that these mutants would not 

crystallize, even into a desmin context. 

Alternatively, all the desmin fragments „shifts‟ we produced were smaller than our 

desmin template. If we consider that the proline mutations accommodate within a 

coiled coil, then we may eventually consider producing longer flanking sequences to 

the mutations. With our vimentin D3 structure, we know now that the coiled coil starts 

already at desmin residue 307 (first heptad a position). 

Another consideration is the presence of a mixture of cis- and trans- proline in our 

expressed mutants, the trans form being the energetically favored one. Here, we 

cannot exclude that such a conformational mixture prevented crystallization. One 

idea would be to incubate our desmin mutant fragments with cis- or trans- prolyl 

isomerases prior to crystallization. 

Finally, one might try to get nuclear magnetic resonance (NMR) structures of IF 

fragments. The NMR technique was already used in 1999 to solve ~35kDa proteins 

(Yu, 1999)69, what is large enough to solve our IF fragments which are usually 

~20kDa (as dimers).  

 

5.3 Small angle X-ray scattering analysis of desmin wt and mutants 

In addition to our efforts to get atomic structures of desmin mutants, we compared 

with SAXS our desmin mutant assembly complexes versus the desmin wt ones.  

In tetramer buffer, we were able to sort our mutants into three classes. The first class 

of mutants has a similar distance distribution functions than desmin wt, with only one 

maxima and about the same cross-section diameter as desmin wt. The second class 

has distance distribution functions showing a second maximum, suggesting the 

presence of other assembly species. Alternatively, a less dense core due to a 

„bulging‟ within an oligomeric assembly could explain the presence of this second 

maximum. However, their cross-section diameters (Dmax) stay comparable to that of 

desmin wt.  



72 
 

Finally, our mutant L370P is an outlier which forms our latest class. It has about twice 

the size of desmin wt in tetramer buffer. This cross-section size matches the one we 

observed for our biggest observed desmin wt assembly species (~20 nm) which is 

comparable to those as measured by EM (~16 nm) for the ULFs. With SAXS 

measurements, one has to take into account the presence of a hydration shell with 

ordered water molecules. This hydration shell accounts for few additional nm, but 

cannot explain such a large discrepancy. 

We then added salts or assembly buffer to our samples. Our first observation was 

that when we triggered desmin assembly in higher ionic strength buffers, about half 

of our samples turned into gel. In tetramer buffer, however, the only gel-forming 

mutant was Q389P. This mutant, together with D399Y, was shown to have a high 

sedimentation coefficient but was not shown to form a gel (Class I, Bar et al., 2006)59.  

With our measurements in increased ionic strength buffer, we were then able to 

define two major assembly classes (cf. table 4.3.6.1). The first class of mutants is 

composed of mutants that behave as desmin wt. All of them stay fluid, either in 

tetramer buffer or with increased ionic strength buffers.  

For two of these mutants, i.e. E245D and A360P, our SAXS experiment confirms the 

EM observation that they form seemingly normal filaments (Bär et al.)59. Further, the 

mutant R406W, which was shown to have a disturbed longitudinal annealing and 

radial compaction defect (Class II), assembles in our experiment more slowly than wt 

(Figure 4.3.5.1). However, with our SAXS resolution, we cannot assess if ULFs 

anneal or not. Finally the desmin mutants E413K and I451M were never measured 

previously, but our SAXS data suggest that they assemble as desmin wt. 

Our second group consists of mutants that are similar to desmin wt in tetramer buffer 

but have an increased assembly upon ionic strength increase. Three of these 

mutants, i.e A337P, N342D and A357P were shown by EM to have enhanced 

filament adhesiveness and to form aggregates (Class III). Correspondingly, these 

mutants turned into gel in our experiment. We could only measure the supernatant of 

the sample A357P which revealed to have a similar distance distribution function as 

desmin wt, suggesting that indeed this mutant is able to form filament intermediates 

like tetramer and ULFs. 
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In addition, the mutants L345P and R350P, which were shown to have a conserved 

ULF formation but deterioration of assembly and break-down into small aggregates 

(Class II), also belong into our second class. These two mutants turned into a gel 

only after salt addition. Most likely, these aggregates were removed by our centrifugal 

step prior to the SAXS measurement. Here, the disappearance of a second peak in 

their distance distribution function compared to the desmin wt correlates the EM 

observation of a partial assembly. 

Lastly, we had a third group composed of two outliers. First, the mutant Q389P 

completely precipitate in tetramer buffer, despite it was shown by EM to form 

seemingly normal filaments (Class I). Second, the mutant L370P was shown by 

SAXS to already assemble in large species. This mutant was reported to have a 

conserved ULF formation which degrades into small aggregates (Class IV). Bär et al. 

reports that this mutant often retained the outline of earlier precursors, and we cannot 

exclude here that we measured one of them.  

However, we also have some discrepancies between the EM studies and our SAXS 

data. The mutants A213V, D399Y and Q389P were shown by EM to behave as 

desmin wt. The most striking difference concerns the mutant Q389P which, as 

mentioned, precipitate. Interestingly, this mutant and the mutant D399Y had a high 

sedimentation coefficient in tetramer buffer, suggesting that this two mutants deviates 

already at the early stages of assembly. Bär et al. also reported that the mutant 

A213V formed a gel that clogged the viscosimeter at concentrations higher than 0.1 

mg/ml. Here, the difference we observed might be related to the difference in 

concentration of our sample (2.4 mg/ml), which may have favored precipitation and 

gel formation. 

As another limitation, we cannot determine with SAXS if our solutions were mono- or 

polydisperse. Due to the complex nature of intermediate filaments, we may consider 

that most of our measurements are of mixtures, and may thus deviate of EM or AUC 

analysis. To overcome this difficulty, it might be interesting in the future to measure 

desmin assembly in „real-time‟ by adding salts directly to the sample under X-rays. 

Such way would also help us to catch desmin filament intermediates which we have 

missed in our experiment. Also, we should take some EM pictures to determine if our 

experimental procedure did not lead to badly assembled filaments. 
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In particular, it has to be mentioned that while most of the mutants were provided to 

us by H. Bär / H. Herrmann (Heidelberg), the desmin wt and mutants A360P, L370P 

and R406W were provided to us by L. Kurochkina (Moscow). Both groups used 

different expression plasmids and purification protocols as discussed in material and 

methods (section 3.7.1). Potentially, minor differences may lead to different assembly 

species and a precise EM comparison between these samples should be carried on. 

Last but not least, there were also some differences in the way we prepared our 

samples. First, Bär et al. dialyzed their samples in a high molecular weight 

regenerated cellulose dialysis tubing (50 kDa cut-off) which excludes impurities but 

retains desmin monomers (53 kDa). In our case, desmin samples were dialyzed in 

3.5 kDa cut-off membranes, yielding to less pure samples. However, we dialyzed our 

samples more slowly than Bär et al., as 4l of tetramer buffer were gradually added 

overnight, using a peristaltic pump, to 1l of 8M urea tetramer buffer. We then dialyzed 

twice more our samples (at 1.6M urea) in 4l tetramer buffer to remove almost all 

urea. Second, Bär et al. initiate filament assembly by adding an equal amount of 

assembly buffer to the sample in tetramer buffer yielding to the exact final pH of 7.5. 

In our case, various amounts of assembly buffer were added, lowering our sample 

pH‟s to only pH 8.0. Finally, we added NaCl directly to our samples, which is a 

procedure which was not used by Bär et al. Such differences might also be 

investigated in the future, since they may modify the assembly of desmin. 
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