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Abstract 
 

Malaria remains a major public health problem and the increasing number of resistant 

strains underscores the need for new drugs with new modes of action (MOAs). 

It was the aim of the present thesis to characterize a novel antimalarial lead compound 

with respect to MOA and in vitro properties. 

The lead compound, ACT-AM, inhibited in vitro proliferation of all tested P. falciparum 

strains, irrespective of their drug resistance properties, with IC50 values in the low single-

digit nanomolar range. ACT-AM was further shown to equally and rapidly affect all 

asexual blood stages of the parasite. The novel molecule is therefore comparable to the 

most efficacious registered antimalarial drugs in terms of in vitro activity.  

To investigate the MOA of ACT-AM, a chemical derivative of the compound able to 

form covalent bonds upon UV activation was utilized. This advantageous UV-dependent 

system was adapted and implemented for P. falciparum- notably for the use in intact cells 

and proved to be appropriate for various biochemical methods including pull-down 

experiments, fluorescent imaging and Far Western blotting. Pull-down experiments 

revealed numerous target candidates, three of which were shown to interact with ACT-

AM in vitro, namely MDR (multidrug resistance protein), ENT4 (equilibrative nucleoside 

transporter 4) and CRT (chloroquine resistance transporter). These proteins could 

represent actual targets or might confer resistance to the compound.  

Microarray and hematin interaction studies suggested that ACT-AM has an MOA distinct 

from that of several registered antimalarials, a factor that bodes well for possible 

combination therapies. 

The promising in vitro activity of the compound and the indication of a novel MOA 

emphasize the potential of ACT-AM or analogues of the same chemical class as 

therapeutic agents for the treatment of malaria. 
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Zusammenfassung 
 

Malaria ist noch immer eines der grössten Gesundheitsprobleme weltweit und die 

Zunahme an resistenten Stämmen unterstreicht die Notwendigkeit neuer Medikamente 

mit neuen Wirkmechanismen. 

Das Ziel der vorliegenden Arbeit war, eine neuartige Leitstruktur gegen Malaria 

hinsichtlich Wirkmechanismus und in vitro Eigenschaften zu charakterisieren.  

Diese Leitstruktur, ACT-AM, hemmte in vitro das Wachstum aller getesteten P. 

falciparum-Stämme, unabhängig von deren Resistenzeigenschaften und wies IC50-Werte 

im niedrigen einstelligen nanomolaren Bereich auf. Zudem zeigte ACT-AM ein schnelle 

Wirksamkeit gegen alle asexuellen Blutstadien des Parasiten und ist somit bezüglich in 

vitro Aktivität vergleichbar mit den effizientesten zugelassenen Malariamedikamenten. 

Um den Wirkmechanismus von ACT-AM zu untersuchen, wurden chemische Derivate 

der Verbindung eingesetzt, die nach UV-Aktivierung kovalente Bindungen eingehen 

können. Dieses vorteilhafte UV-abhängige System wurde adaptiert und implementiert für 

den Gebrauch mit P. falciparum – insbesondere für intakte Zellen und erwies sich als 

geeignet für verschiedene biochemische Methoden wie „Pull-down“-Experimente, 

„Fluorescent Imaging“ und „Far Western Blotting“. Mittels „Pull-down“-Experimenten 

wurden mehrere Zielstruktur-Kandidaten identifiziert, wovon bei den folgenden drei eine 

in vitro Interaktion mit ACT-AM nachgewiesen werden konnte: MDR (multidrug 

resistance protein), ENT4 (equilibrative nucleoside transporter 4) und CRT (chloroquine 

resistance transporter). Diese Proteine könnten tatsächliche Zielstrukturen sein oder aber 

Resistenz gegen ACT-AM bewirken. 

„Microarray-Studien“ und Hematin-Interaktionsexperimente lassen vermuten, dass die 

neue Leitstruktur einen Wirkmechanismus aufweist, der sich von diversen registrierten 

Malariamedikamenten unterscheidet, was eine Voraussetzung für potenzielle 

Kombinationstherapien ist. 

Die vielversprechende in vitro Aktivität von ACT-AM sowie der Hinweis auf einen 

neuartigen Wirkmechanismus betonen das Potenzial dieser Verbindung oder analoger 

Substanzen derselben chemischen Klasse als Therapeutika zur Behandlung von Malaria. 
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1 Introduction 
 

1.1 A general introduction to malaria 
 

Malaria, caused by protozoan parasites of the genus Plasmodium was first scientifically 

described by Laveran in 1880 (Laveran 1880) and is still a major health problem. More 

than 240 million cases of malaria occur every year and the number of fatalities is 

estimated at over 800’000 (Word Health Organization 2010). The disease accounts for 

20% of all childhood deaths in Africa (WHO 2010). There are four malaria species that 

commonly infect humans: P. falciparum, P. vivax, P. ovale, and P. malariae (reviewed 

by Tuteja 2007). Isolated cases of transmission of nonhuman primate malaria parasites 

such as P. knowlesi to humans have been reported, but do not seem to be a major threat 

(Singh et al. 2004; Van den Eede et al. 2009). Malaria is endemic in 99 countries 

(Feachem et al. 2010) and occurs mainly in sub-Saharan Africa, Asia, Latin America, and 

to a lesser extent in the Middle East and parts of Europe, as shown for the most common 

species, P. falciparum and P. vivax (Figure 1.1).  

 

 
 

Figure 1.1. Categorization of countries according to whether human malaria is predominantly caused by P. falciparum, P. 

vivax, or both. Adapted from Feachem et al. 2010. 
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Malaria tropica, the most severe and potentially fatal form of malaria, is caused by P. 

falciparum (WHO 2010). The parasite is transmitted through the bites of female 

mosquitoes of the genus Anopheles. In the human host, the complex life cycle of P. 

falciparum (Figure 1.2) begins upon injection of sporozoites from the salivary gland of 

the mosquito into the subcutaneous tissue or directly into blood vessels (reviewed by 

Miller et al. 2002). Via the bloodstream, sporozoites are transported to the liver where 

they infect hepatocytes (reviewed by Kappe et al. 2010). On their way to the liver, the 

motile sporozoites are able to traverse several cell types of the host (Mota et al. 2001). 

Sporozoites remain for 9–16 days in the liver and undergo asexual replication (reviewed 

by Tuteja 2007) whereby each sporozoite develops into thousands of first generation 

merozoites which are released into the bloodstream (reviewed by Kappe et al. 2010). 

Each merozoite can rapidly invade a red blood cell (RBC), (reviewed by Cowman & 

Crabb 2006) and initiate the intraerythrocytic cycle: P. falciparum develops over 48 

hours in RBCs, exhibiting three morphologically distinct forms (Elmendorf & Haldar 

1993): Rings [0-24h post invasion (p.i.)], trophozoites (24-36h p.i.), and schizonts (36-

48h p.i.). Each mature schizont produces 8 - 32 merozoites which can infect new RBCs. 

After several rounds of asexual replication, up to 10% of all RBCs can become infected 

and most clinical features of malaria (see below) are associated with this intraerythrocytic 

cycle of the parasite  (reviewed by Wirth 2002). Eventually, a small fraction of 

merozoites differentiates into sexual blood stages, micro- and macrogametocytes (male 

and female, respectively), which are taken up by mosquitoes during another blood meal. 

Upon nuclear division and exflagellation in the midgut of the mosquito, 

microgametocytes form microgametes and fuse with female macrogametes to form a 

zygote. The zygote in turn develops into the ookinete, capable of penetrating the gut wall 

and forming an oocyst. After sporogony and rupture of the oocyst, sporozoites are 

released and migrate to the salivary gland rendering the mosquito infective for 1-2 

months. The mosquito vector can then initiate a new P. falciparum infection (reviewed 

by Tuteja 2007).  
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Figure 1.2. Life cycle of Plasmodium falciparum. Adapted from Miller et al. 2002. 

 

 

Malaria symptoms appear approximately one week after infection. Regular symptoms 

include fever, shivering, cough, respiratory distress, pain in the joints, headache, watery 

diarrhea, vomiting and convulsions (reviewed by Miller et al. 2002). Untreated malaria 

fevers are typically periodic (48h for P. falciparum) because they coincide with the 

synchronous release of merozoites and cytokines into the bloodstream (reviewed by 

Tuteja 2007). 

In most cases of malaria, there are no fatal complications. The factors triggering the 

transition from an uncomplicated to a severe (life-threatening) malaria are still unknown 

(Snow & Marsh 1998). A key-characteristic of P. falciparum leading to potentially fatal 

symptoms such as severe anaemia, impaired consciousness, and renal failure (reviewed 

by Miller et al. 2002) is termed sequestration. Infected RBCs display adhesive parasite-

derived proteins on their surface causing them to adhere to uninfected RBCs, endothelial 

cells of small blood vessels and in some cases to placental cells (Baruch 1999) thereby 

sequestering the parasite from being cleared in the spleen. Additionally, adherence of 
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infected RBCs to small blood vessels or organs gives rise to serious forms of the disease 

(reviewed by Tuteja 2007), namely placental or cerebral malaria (Figure 1.2.). Due to 

these two potential complications, malaria is especially dangerous for pregnant women 

and small children (van Geertruyden et al. 2004). In sub-Saharan Africa, where 

transmission rates are high, people gradually become semi-immune after repeated 

exposure to the parasite (McGregor 1974); it is children under the age of five, too young 

to develop semi-immunity, who are most at risk of severe malaria (WHO 2010).  

 

1.2 Treatment of malaria 
 

The phenomenon of semi-immunity (see 1.1) offers a plausible rationale for the 

development of malaria vaccines. Nevertheless, after decades of research, no registered 

vaccine is available (reviewed by Crompton et al. 2010). Therefore, malaria treatment 

today is still solely reliant on parasite chemotherapy.  

The most widely used antimalarial compounds belong to the classes of quinolines, 

antifolate drugs, artemisinins, atoquavone, and antibiotics (reviewed by Cunha-Rodrigues 

et al. 2006).  

 

Quinoline-based compounds, such as quinine, piperaquine, chloroquine and mefloquine 

are historically among the most successful antimalarial agents. Quinine-containing 

extracts from the bark of the South American cinchona tree were introduced to Western 

medicine as early as the 17th century (reviewed by Toovey 2004). 

Inspite of extensive use since 1947 (reviewed by Solomon & H. Lee 2009), the molecular 

target of chloroquine, the most famous member of the quinolines, is still a matter of 

debate (reviewed by Cunha-Rodrigues et al. 2006). An often discussed mode of action of 

chloroquine and other quinolines is thought to involve interference of the compound with 

the detoxification of heme (reviewed by Sullivan 2002): Intraerythrocytic P. falciparum 

parasites enzymatically digest hemoglobin in special acidic compartments, called food 

vacuoles, whereby toxic heme is released and spontaneously converted to a less reactive 

dimer, the “malaria pigment” or hemozoin (Slater et al. 1991; Egan et al. 2002; Pagola et 

al. 2000). Chloroquine and related compounds have been shown to inhibit synthetic 
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hemozoin (beta-hematin) formation in vitro (Slater & Cerami 1992; Egan et al. 1994; 

Dorn et al. 1995; Sullivan et al. 1996). However, a number of other targets have been 

proposed for the quinoline family, including tyrosine kinases (Sharma & Mishra 1999), 

DNA (Ciak & Hahn 1966), and phospholipases (Kubo & Hostetler 1985). 

 

The most well-known antifolates, designed to affect nucleotide synthesis and amino acid 

metabolism, are pyrimethamine, chloroguanide (proguanil), and sulfadoxine (reviewed 

by Cunha-Rodrigues et al. 2006). Type-1 antifolates, e.g. sulfadoxine (Y. Zhang & 

Meshnick 1991), inhibit dihydropteroate synthase (DHPS), whereas type-2 antifolates, 

e.g. pyrimethamine and proguanil, affect dihydrofolate reductase (DHFR), (Ferone et al. 

1969). The mode of action of this class of antimalarials is based on the inability of the 

parasite to salvage certain folate cofactors from their human host. Inhibiting the synthesis 

of these essential cofactors is therefore an attractive point of attack (reviewed by Olliaro 

2001). As the name implies, antifolates, or folate antagonists, are believed to mimic the 

substrates of their target enzymes thereby competing for the active site of the latter: 

Type-1 antifolates mimic p-aminobenzoic acid inhibiting DHPS. Likewise, type-2 

antifolates mimic dihydrofolic acid and compete for the active site of DHFR (reviewed 

by Olliaro 2001). Compared to quinolines, antifolates act in general less rapidly and, as 

shown for sulfadoxine and pyrimethamine (Dieckmann & Jung 1986), affect late forms 

of the asexual P. falciparum blood stage that undergo nuclear division (reviewed by 

Cunha-Rodrigues et al. 2006). 

 

A different mode of action is attributed to the antimalarial drug atovaquone which 

apparently interferes with plasmodial mitochondria. The exact mechanism leading to 

inhibition of parasite proliferation is yet not fully understood. However, atovaquone is 

thought to affect mitochondria at the level of the plasmodial cytochrome bc1 complex 

which differs structurally from its human counterpart (Vaidya et al. 1993). Atovaquone 

probably interferes with the cytochrome bc1 complex by mimicking ubiquinone (Fry & 

Pudney 1992; Hudson 1993; Srivastava et al. 1997), which was shown to inhibit 

mitochondrial electron transport (Fry & Beesley 1991) and to collapse mitochondrial 

membrane potential (Srivastava et al. 1997; Painter et al. 2007). 
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Artemisinin-based compounds, e.g. artemether, artesunate, and dihydroartemisinin, are 

currently among the most important antimalarials (reviewed by Fidock 2010). The 

excellent effectiveness of these molecules is largely attributable to their fast onset of 

action and their activity against all three asexual blood stages (ter Kuile et al. 1993; 

White 2008). In addition, artemisinins counteract malaria transmission because they are 

active against gametocytes (Chen et al. 1994). The starting material of this class of 

compounds, artemisinin, is purified from sweet wormwood (Artemisia annua), extracts of 

which have been in use for more than 2000 years in China (reviewed by Meshnick et al. 

1996). Chemically, artemisinins belong to the class of sesquiterpene lactones and have an 

endoperoxide bridge which is essential for antimalarial activity (reviewed by White 

2008). Studies on how artemisinins exert their action, are numerous but controversial 

(reviewed by Ding et al. 2011). An often proposed mode of action involves iron-mediated 

activation of artemisinins whereby the endoperoxide bridge is thought to be decomposed 

upon contact with ferrous heme leading to the formation of free radicals (reviewed by  

Meshnick 2002). This mechanism would also explain the selective activity against 

parasites (reviewed by Meshnik 2002). On the other hand, this often cited hypothesis is in 

contradiction to findings that all blood stages of the parasite – even early rings (Skinner 

et al. 1996) and gametocytes (Chen et al. 1994) which are apparently devoid of 

hemozoin- are susceptible to these drugs. Other potential modes of action include more 

specific targets such as PfATP6, a SERCA (sarco/endoplasmic reticulum)-type Ca2+ 

dependent ATPase (Eckstein-Ludwig et al. 2003) or cysteine protease (Pandey et al. 

1999). 

 

Antibiotics define another class of antimalarials. 

Several apicomplexan parasites are believed to be susceptible to antibiotics due to their 

special organelle, the apicoplast, which carries transcription and translation machineries 

similar to those of prokaryotes (reviewed by Cunha-Rodrigues et al. 2006). A well 

studied member of this class is the slowly acting prokaryotic translation inhibitor 

azithromycin which has been used in numerous clinical trials (van Eijk & Terlouw 2011). 

In bacteria, azithromycin binds to the 50S ribosomal subunit thereby inhibiting protein 

synthesis. For P. falciparum, in contrast, the MOA remains unknown but the molecule is 
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believed to affect house keeping functions of the apicoplast (Dahl & Rosenthal 2008). 

Van Eijk and coworkers have recently published an analysis of 15 clinical antimalarial 

trials involving azithromycin. Their findings suggest that “azithromycin is a weak 

antimalarial” which depends on the activity of combination partners. The authors 

concluded that this antibiotic’s “future for the treatment of malaria does not look 

promising” (van Eijk & Terlouw 2011).  

 

 

1.3 Resistance to antimalarials 
 

Malaria is a potentially fatal but, if treated correctly, curable disease. However, 

worldwide emerging resistance to the existing antimalarial drugs has been threatening 

current treatment regimens (reviewed by Fidock 2010).  

 

In the case of chloroquine, the scale of the problem becomes apparent, as areas of 

reported resistance have been shown to more and more overlap with endemic regions 

(Figure 1.3). 

The molecular mechanism underlying resistance to chloroquine is mostly assigned to 

mutant forms of the chloroquine resistance transporter (pfCRT). Mutant transporters are 

thought to lead to a decrease in chloroquine concentration inside the food vacuole, 

allegedly the site of action of the antimalarial (Fidock et al. 2000; Martin et al. 2009). 

Another transporter, the multidrug resistance protein (pfMDR), seems to play a role in 

both resistance to mefloquine and chloroquine. In vitro, variants of this p-glycoprotein 

homologue were shown to transport chloroquine (Sanchez et al. 2008) and in vitro 

susceptibility to mefloquine and quinine apparently correlates with the copy number of 

the transporter (Sidhu et al. 2006). 

 

Spread of resistance to the antifolates pyrimethamine and sulfadoxine is probably as 

pronounced as for chloroquine (reviewed by Wongsrichanalai et al. 2002; Mita et al. 

2009), (Figure 1.3).  
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In contrast to chloroquine resistance, mutations of the actual target enzymes, DHFR and 

DHPS, lead to increased tolerance to pyrimethamine and sulfadoxine, respectively 

(Plowe et al. 1997).  

 

 

 

Figure 1.3. Resistance to chloroquine and chloroquine + sulphadoxine-pyrimethamine. Malaria-endemic regions are 

colored in red. Source: Fidock et al., 2004.  Data are from the World Health Organization and are adapted from Ridley, 

2002 © Macmillan Magazine Ltd (2002). 

 

 

Atovaquone is also prone to resistance development, as monotherapies with the generally 

very potent substance rapidly led to elevated in vitro tolerance and to early observed 

recrudescence in clinical trials (Looareesuwan et al. 1996). To counter this weakness of 

atovaquone, the compound was developed in combination with proguanil (1.2), a 

compound with a different mode of action (Looareesuwan et al. 1996). The genetic basis 

of resistance to the drug seems to stem from point mutations in the cytochrome b 

complex of the parasite (Korsinczky et al. 2000; Peters et al. 2002). 

 

Even for the current mainstay of antimalarial treatment, the artemisinins (reviewed by 

Fidock 2010), the first cases of reduced effectiveness were recently published (Dondorp 



Introduction 
   

 
 

 - 18 - 
 

et al. 2009), questioned (Taylor et al. 2009) and confirmed for the Thai–Cambodia border 

(Dondorp et al. 2010; Enserink 2010). The mechanism behind these first signs of 

artemisinin resistance is a matter of intense investigation but remains obscure (White 

2010; Ding et al. 2011). In order to protect artemisinin-based therapies, the WHO has 

launched an unprecedented action plan to try and stop possibly emerging resistance at an 

early stage (Burr 2011). 

Table 1.1. provides an overview of currently used drugs and their status of resistance.  

 
Table 1.1. Existing antimalarial drugs, their use and status of resistance. 

Common name Chemical class Clinical use Resistance 
 

Artemisinins: 

Artemether, 

Artesunate, 

Dihydroartemisinin 

Sesquiterpene 

lactone 

endoperoxide 

In artemisinin-based combination 

therapies (ACTs) 
Possibly emerging 

Lumefantrine  Arylamino alcohol 

 

Most common first-line 

antimalarial therapy in Africa, in 

combination with artemether 

 

No evidence 

Amodiaquine Quinoline 

 

In combination with artesunate 

in parts of Africa 

 

Limited crossresistance 

with chloroquine 

Piperaquine Quinoline 

 

In combination with 

dihydroartemisinin in 

parts of southeast Asia 

 

Observed in China 

following single-drug 

therapy 

Mefloquine Quinoline 
In combination with artesunate 

in parts of southeast Asia 

Prevalent in 

southeast Asia 

Quinine/quinidine Quinoline 

 

Mainly for treating severe 

malaria, often with antibiotics 
Exists at a low level 

Atovaquone Naphthoquinone 

 

In combination with proguanil 

for treatment or prevention 

 

Has been observed 

clinically 

Chloroquine Quinoline 

 

Former first-line treatment for 

uncomplicated malaria 

 

Widespread 

Pyrimethamine Diaminopyrimidine 

 

For intermittent preventive 

treatment, combined with 

sulphadoxine 

Widespread 

 

Adapted from Fidock 2010. 
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1.4 The need for novel antimalarial agents 
 

In many temperate areas such as Western Europe or North America, malaria has been 

controlled or eliminated (reviewed by Tuteja 2007). In contrast, poor regions face two 

main problems fighting the disease: High-priced antimalarials (Laxminarayan et al. 2010) 

and the increasing drug resistance of the parasite (1.3). Therefore, the need for new and 

affordable drugs is urgent and indisputable.  

In 2007, the Bill and Melinda Gates Foundation unveiled an agenda with the overall goal 

of the extinction of all Plasmodium species causing human malaria (Okie 2008). This 

goal is pursued in conjunction with several other institutes such as the Roll Back Malaria 

partnership of the WHO (www.rollbackmalaria.org) and one main nonprofit private 

public partnership Medicines for Malaria Venture (MMV, www.mmv.org). Such strong 

partnerships were a boost for antimalarial research leading to an encouraging MMV 

antimalarial portfolio (MMV 2011) which currently contains over 10 projects (preclinical 

to phase IV). Furthermore, a plenitude of chemical structures, potentially serving as 

starting points for new antimalarial lead substances, was recently disclosed after 

extensive compound screenings (Gamo et al. 2010; Guiguemde et al. 2010).  

Nevertheless, since 1996, not a single new chemical class of antimalarials has been 

registered (Gamo et al. 2010) and the current global drug portfolio (MMV 2011) relies 

largely on novel combinations – not novel compounds, underscoring the urgent need for 

drugs with new modes of action. 
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1.5 Discovery of a novel antimalarial chemotype at  

       Actelion Ltd. 
 
 
In the quest for a novel antimalarial compound, researchers at Actelion Ltd initially 

confined their drug screening activities on food-vacuolar plasmepsins (PM) as drug 

targets. These efforts resulted in very potent plasmepsin inhibitors which showed only 

poor activity against in vitro-cultured P. falciparum parasites (Boss et al. 2003; 

Corminboeuf et al. 2006). Therefore, cell-based antimalarial screens were performed in 

order to find new lead structures independent of molecular targets. In a library with an 

assortment of aspartic protease inhibitors and compounds with undefined targets, novel 

piperazine-containing compounds were identified. These compounds were considerably 

more potent than the previously known PM inhibitors that served as positive controls for 

the screen. Medicinal chemistry efforts at Actelion led to improved potency of the 

piperazine-containing compounds with IC50 values in the low nanomolar range. Herein, a 

lead compound, representative of this novel class of antimalarial agents will be further 

described: ACT-AM (for Actelion antimalarial). 
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1.6 Objectives  
 
As described above, antimalarial drugs with new MOAs are urgently needed. 

It was the main goal of this thesis to investigate the MOA of a novel antimalarial 

chemotype. To this end, six major groups of experiments were performed: 

 

1)  Pull-down assays using several chemical derivatives of the lead compound aimed 

at identifying possible interaction partners of the latter. 

 Potential targets were then tested for sensitivity to ACT-AM in vitro. 

 

2)  Microarray studies: In vitro gene expression of ACT-AM-treated vs. untreated P. 

falciparum parasites was compared to expression under treatment with 20 known 

antimalarial compounds. 

 Microarray results were confirmed with quantitative real-time PCR (qPCR). 

 

3)  Fluorescent imaging: To determine the intracellular localization of the site of 

action of the compound, fluorescent imaging experiments using derivatives of the 

new pharmacophore were conducted. 

 

4) Hematin-interaction studies: To exclude the often cited MOA of certain 

quinolines (see above), the in vitro interaction of the compound with hematin was 

investigated. 

 

5) In vitro pharmacodynamic experiments: Time-, stage-, and concentration-

dependent effects of ACT-AM were assessed using synchronous cultures of the 

parasite. 

 

6) In order to exclude cross-resistance, the in vitro activity of ACT-AM against a 

panel of resistant and sensitive P. falciparum strains was determined by means of 

[3H]-hypoxanthine incorporation assays. 
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2 Materials 
 

2.1 Chemicals and proteins 
 

Acetic acid 96% Synopharm, Schweizerhalle, Basel, CH 

Albumax Gibco-BRL life tech. AG, Basel, CH 

Artesunate Guilin Pharma corporation, China 

ß-mercaptoethanol Fluka, Buchs, CH 

Bromophenolblue Merck, Darmstadt, D 

Bovine Serum Albumin (BSA) Sigma, Buchs, CH 

CAPS Sigma, Buchs, CH 

Chlorophorm Sigma, Buchs, CH 

Chloroquine Sigma, Buchs, CH 

DAPI Sigma, Buchs, CH 

d-Biotin Sigma, Buchs, CH 

DMSO Sigma, Buchs, CH 

DTT Sigma, Buchs, CH 

Ethanol Merck, Darmstadt, D 

Ethanolamine-HCL Sigma, Buchs, CH 

EDTA Merck, Darmstadt, D 

D-Fructose 1,6-bisphosphate  

Trisodium salt hydrate Sigma, Buchs, CH 

Gas mixture for parasite cultivation Garbogaz, Basel, CH 

Giemsa solution Sigma, Buchs, CH 

Glutaraldehyde Sigma, Buchs, CH 

Glycerol Merk, Darmstadt, D 

Glycine Sigma, Buchs, CH 

α-GDH/TPI                 Sigma, Buchs, CH 

Glycine Merk, Darmstadt, D 

HCl Merk, Darmstadt, D 
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Hemin Sigma, Buchs, CH 

HEPES Fluka, Buchs, CH 

Hypoxanthine Fluka, Buchs, CH 

[8-3H]-hypoxanthine ANAWA trading SA, CH 

Isopropanol Sigma, Buchs, CH 

KH2PO4 Merk, Darmstadt, D 

KCl Sigma, Buchs 

KOH Merk, Darmstadt, D 

Methanol Merk, Darmstadt, D 

NaCl Merk, Darmstadt, D 

β-NADH, disodium salt hydrate        Sigma, Buchs, CH 

NaHCO3 Merk, Darmstadt, D 

Na2HPO4 Merk, Darmstadt, D 

NaOH Merk, Darmstadt, D 

Neomycin Sigma, Buchs, CH 

NP-40 (Nonidet P-40) Fluka, Buchs, CH 

Protease inhibitor cocktail tablet Roche applied Science, CH 

Pyrimethamine Roche, Basel, CH 

RPMI 1640 Gibcobrl life tech. AG, Basel, CH 

Saponin Sigma, Buchs, CH 

Scintillation fluid Perkin Elmer, Schwerzenbach, CH 

SDS Sigma, Buchs, CH 

d-Sorbitol Fluka, Buchs, CH 

Tris/Trizma-base Sigma, Buchs, CH 

Triton X-100 Sigma, Buchs, CH 

Trizol (TRI Reagent) Ambion, Rotkreuz, CH 

Tween 20 Merk, Darmstadt, D 

Vectashield mounting solution Vector laboratories, USA 
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2.2 Chemical probes and antimalarials 
 
 
Table 2.1 Chemical probes and reference antimalarials. 
 

Compound 
 

Description 
 

Solvent 

ACT-AM novel antimalarial compound from Actelion DMSO 

ACT-AM-EN2 less active enantiomer of  ACT-AM DMSO 

ACT-AM-UV 
derivative of ACT-AM linked to UV-activatable capture 
group (forms nitrene upon activation) and to sorting 
group (biotin) 
 

DMSO 

ACT-AM-UV-Neg 
less active derivative of ACT-AM-UV: same capture and 
sorting group, different (incomplete) parent scaffold 
 

DMSO 

ACT-AM-Biotin derivative of ACT-AM linked to biotin DMSO 

ACT-AM-Fluo derivative of ACT-AM linked to fluorescein DMSO 

ACT-Seph precursor of ACT-AM conjugatable to sepharose beads  DMSO 

Artesunate R.A. DMSO 

Chloroquine R.A. ddH2O 

Pyrimethamine R.A. DMSO 
 

Mainly used chemical probes from Actelion and reference antimalarials (R.A.). Compounds were dissolved in the 

indicated solvent. 
 
 

 

2.3 Solutions, buffers and experimental devices 

2.3.1 Frequently used stock solutions 
 
10x PBS 

137mM NaCl, 2.7mM KCl, 10mM Na2HPO4 and 2mM KH2PO4 in ddH2O. The pH was 

adjusted to 7.4 with HCl and the solution autoclaved. 
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10x TBS 

137mM NaCl, 2.7mM KCl, and 24.8mM Tris-base in ddH2O. The pH was adjusted to 7.4 

with HCl. 

 

T-PBS 

0.1% Tween 20 in PBS 

 

10mM d-biotin 

10mM d-biotin in DMSO. 

 

 

2.3.2 Parasite cultivation and growth assays 
 
Culture medium (CM) 

10.44g RPMI 1640, 5.94g HEPES, 50mg hypoxanthine, 5.0g Albumax,  

2.1g NaHCO3, 10ml neomycin solution 10µg/l, filled up to 1l with ddH2O. After 2h 

stirring, the medium was sterile-filtered through a 0.22µm filter into autoclaved bottles 

under sterile conditions. The medium was stored up to two weeks at 4°C. 

 

Screening medium  

10.44g RPMI 1640, 5.94g HEPES, 5.0g Albumax, 2.1g NaHCO3, 10ml neomycin 

solution 10µg/l, filled up to 1l with ddH2O. After 2h stirring, the medium was sterile-

filtered through a 0.22µm filter into autoclaved bottles under sterile conditions. The 

medium was stored up to two weeks at 4°C. 

 

Giemsa solution 

Giemsa buffer contains 4.2g KH2PO4, 12.5g Na2HPO4 in 10l ddH2O. 10ml of Giemsa 

stock solution was mixed with 100ml of Giemsa buffer. 
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[3H]-hypoxanthine working solution 

Stock solution: [3H]-hypoxanthine was diluted 1:2 in 50% EtOH/ddH2O, aliquoted (1ml) 

and stored at -20°C. The working solution was obtained by mixing 1ml stock solution 

with 49ml screening medium (resulting in 0.5mCi). 

 

2.3.3 SDS-PAGE, (Far-) Western blotting and silver staining 
 
5x SDS-PAGE sample buffer 

500mM Tris pH6.8, 10% SDS, 25% Glycerol, 5% ß-mercaptoethanol, 0.2% 

bromophenolblue 

 

Polyacrylamide gels and protein size marker 

4-12% Bis-Tris polyacrylamide pre-cast gels 

SeeBlue Plus2 Standard (both Invitrogen) 

 

SDS-PAGE and protein transfer 

Gel running chambers, protein transfer devices, nitrocellulose membranes as well as all 

needed chemicals were from Invitrogen and used according to the manufacturer.  

 

Coomassie staining 

InstantBlue, Expedeon 

 

Silver staining 

SilverQuest Staining Kit, Invitrogen 
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2.3.4 Pull-down assays 

 

Monomeric avidin beads 

Pierce Monomeric Avidin Kit 

 

Biotin Blocking and Elution buffer 

2mM d-biotin/ PBS (Pierce Monomeric Avidin Kit) 

 

Regeneration buffer 

0.1M glycine, pH 2.8 (Pierce Monomeric Avidin Kit) 

 
 

2.4 Plasmodium falciparum strains 
 
 
Table 2.2. List of used Plasmodium falciparum strains. 

Isolate Origin Provider Resistance 

NF54 Airport, Netherlands SwissTPH (Roche Ltd, MRA-1000) _ 

3D7 Airport, Netherlands Cloned from NF54 by limiting dilution (MRA-102) _ 

D6 Sierra Leone D. Kyle (MRA-285) _ 

K1 Thailand SwissTPH (MRA-159) CQ, PYR 

W2 Indochina SwissTPH (Roche, MRA-157) CQ, PYR 

7G8 Brazil SwissTPH (MRA-152) CQ, PYR 

TM90C2A Thailand D. Kyle (MRA-202) CQ, PYR 

V1/S Vietnam L. Vivas (MRA-176) CQ, PYR 

 

Plasmodium falciparum strains, their origin, provider and sensitivity / resistance to chloroquine and pyrimethamine are 

indicated. MR4 numbers according to mr4.org. 
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3 Methods 
 

3.1 Parasite cultivation 

All used P. falciparum strains were cultivated by standard methods (Trager & Jensen 

1976). Parasites were kept in culture medium containing AB type RBCs (hematocrit 5%). 

Cultures were incubated at 37˚C in an atmospheric chamber (standard conditions: 3% O2, 

4% CO2 and 93% N2). The culture medium was changed daily if parasitemia exceeded 

2%.  

 

3.1.1 Giemsa slide preparation 

To determine parasitemia and life cycle stages of parasite cultures, a sample of 200µl was 

pelleted and 10µl of the pellet was smeared on glass slides. After fixation for > 10sec in 

100% MeOH, staining was performed by incubation in Giemsa solution for > 15min. 

 

3.1.2 Culture synchronization 

Cultures were synchronized as described previously (Lambros & Vanderberg 1979):  

All solutions were pre-warmed to 37°C. RBCs were pelleted by centrifugation at 

1500rpm for 5min. After removal of the supernatant, the pellet was resuspended in 5% d-

sorbitol/ddH2O solution (five pellet volumes) and incubated for 5min at 37°C. The 

culture was then centrifuged a second time at 1500rpm for 5min followed by removal of 

the supernatant. The pellet was resuspended in culture medium and the hematocrit 

adjusted to 5% with fresh RBCs. Synchronized cultures were then either washed twice 

with 10ml culture medium if immediately used for experiments or washed once and 

transferred to new dishes for further cultivation.  
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3.1.3 Saponin lysis 

Cultures were pelleted at 1500rpm for 5min. The supernatant was removed and pellets 

were resuspended in 0.15% Saponin/PBS solution (4°C, four pellet volumes). The 

suspension was incubated for 10min on ice. Lysed RBCs were removed by centrifugation 

for 10min at 4000rpm (4°C). Parasites were washed 3x in 1x PBS (> 10 pellet volumes) 

until supernatant became clear. 

 

3.2 [3H]hypoxanthine incorporation assays 

3.2.1 In vitro growth assay 

In vitro growth assays were performed as described previously (Desjardins et al. 1979): 

P. falciparum growth was determined by measuring incorporation of the nucleic acid 

precursor [3H]hypoxanthine. Test compounds were diluted in screening medium and 

titrated over a 64-fold range in 96-well plates (Figure 3.1): 

After adding 100μl screening medium to each well, 100μl of dissolved compounds, 

containing 4x the highest test concentration, were added to wells of row B in duplicates. 

2x serial drug dilutions were prepared using a multichannel pipette: 100μl were taken 

from wells of row B and transferred, after mixing, to wells of row C and so forth down to 

row H. The 100μl removed from wells of row H were discarded. Infected erythrocytes 

(2.5% hematocrit and 0.3% parasitemia) were then added to each well except for A9-

A12, to which 100μl uninfected RBCs (diluted in screening medium to 2.5% hematocrit) 

were added as a negative control. The final culture parameters of the assay were thus 

1.25% hematocrit and 0.3% parasitemia. Wells A1-A8 served as positive controls. After a 

48h incubation period (parasite cultivation, 3.1), 50μl of [3H]hypoxanthine working 

solution was added to each well (0.5μCi per well). Plates were incubated for an additional 

24h period then frozen at -20°C. After thawing, the content of the plates was harvested 

onto glass-fiber filters using a Betaplate cell harvester (1295-004 Betaplate; Wallac 

Perkin Elmer). The micro wave-dried filters were drenched in 10ml of scintillation fluid 

in a plastic foil and the [3H]hypoxanthine incorporation was measured using a Betaplate 

liquid scintillation counter (1205 Betaplate; Wallac Perkin Elmer). The result of each 
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well was recorded as counts/min and expressed as percentage of the untreated (positive) 

control. The negative control was used for background subtraction. Fifty percent 

inhibitory concentrations (IC50s) were estimated by linear interpolation (Huber & Koella 

1993). 

 

 

 
Figure 3.1. Schematic plate layout of the [3H]hypoxanthine incorporation assay. Test 

compounds were added in duplicate to 96-well plates (row B). Compounds were then 

titrated (6 times a 2-fold dilution). The positive control contained infected RBCs in 

absence of antimalarial compounds, whereas the negative control consisted of 

uninfected RBCs. 

 

 

 

3.2.2 In vitro activities of test compounds against a panel of resistant 

Plasmodium falciparum strains 

 
IC50s of test compounds against resistant P. falciparum strains were determined as 

described in the above paragraph (3.2.1). 
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3.2.3 In vitro pharmacodynamics 

Stage specificity and onset of action of test compounds were assessed as described 

previously (Maerki et al. 2006; Hofer et al. 2008): Synchronized cultures (two 

synchronization steps, 7h apart) of young 3D7 trophozoites (approx. 20h p.i.) with 

parasite counts of 0.15% and a hematocrit of 5% were divided into three 10ml petri 

dishes. Two dishes were further incubated for 16h and 32h (cultivation of parasites, 3.1) 

for maturation into early schizonts (approx. 36h p.i.) and early ring stages (approx 4h 

p.i.), respectively. Parasite stages were monitored using Giemsa stained cells. Early 

trophozoites were directly exposed to test compounds for a 1, 6, 12 or 24h period. 

Compounds were diluted in screening medium to a final starting concentration of approx. 

100x the respective IC50s and titrated over a 64-fold concentration range. The subsequent 

in vitro growth assay was performed as described above (3.2.1) with the following 

modifications: 

The final assay parasitemia and hematocrit were adjusted to 0.15% and 2.5%, 

respectively. After incubation in presence of compounds, the plates were washed four 

times with 150μl screening medium (centrifugation steps: 2000rpm, 3min) and in a final 

step, 150μl screening medium and 50μl [3H]hypoxanthine working solution were added 

resulting in a 1280-fold dilution of free compound. After another incubation period of 

24h, the plates were frozen at –20°C. For the IC50 determination, plates were thawed and 

harvested as described above (3.2.1). 

 

 

3.3 Methods based on UV-activatable compounds  
 
UV-activatable compounds (see materials section) were used for several biochemical 

methods and are trifunctional probes consisting of 

 

1. A selectivity function (the compound of interest) 

2. A reactivity function forming a nitrene upon UV-activation, which enables the  

    compound to irreversibly form covalent bonds with nearby molecular structures 

3. A sorting function (biotin)  
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3.4 Fluorescent imaging 

All used parasites were of the P. falciparum 3D7 strain. Incubation steps with living 

parasites were always carried out under standard incubation conditions (3.1). A Leica 

DM5000B fluorescence microscope and a Leica DC200 camera were used. 

 

3.4.1 Fluorescent imaging using acetone/MeOH fixed cells 

1ml iRBCs (5% hematocrit, 2-5% parasitemia) were incubated with 500nM ACT-AM-

UV or with ACT-AM-UV-Neg (negative control) in a 24-well plate for 2h. Cultures were 

transferred to 1.5ml Eppendorf tubes and washed 3x with 1ml culture medium 

(centrifugation steps: 1500rpm for 0.5min). Cultures were resuspended in 1ml ice cold 

PBS and UV-irradiated at 4°C for 3x 3min on the cover of a 6-well plate using a 

Caprotec UV device. The suspension was mixed after every 3min irradiation period. As a 

second negative control, iRBCs incubated with ACT-AM-UV were stored at 4°C while 

the respective samples were UV-irradiated. The pelleted iRBCs were smeared on glass 

slides, air dried and fixed in pre-cooled (-20°C) acetone/MeOH solution (40:60 v/v) for 

2min. Fixed slides were air dried. After blocking for 1h in blocking solution (1% 

BSA/PBS), Alexa488-streptavidin, 2mg/ml (Invitrogen) diluted 1/200 in blocking 

solution was added and the slides were incubated in the dark for 1h at room temperature. 

Samples were washed 3x with 1ml 0.05% Tween20/TBS before mounting with 

Vectashield (Vector laboratories) containing 1.5μg/ml DAPI. 

 

3.4.2 Fluorescent imaging using living cells 

To assess the fluorescence pattern of ACT-AM in living cells, a derivative of the 

compound covalently linked to fluorescein was used (ACT-AM-Fluo). 

1ml iRBCs (2.5% hematocrit, 2-5% parasitemia) were incubated in presence of 20μM 

(ACT-AM-Fluo) or 40μM fluorescein (negative control) in screening medium in a 24-

well plate for 4h. Cultures were transferred to 1.5ml Eppendorf tubes and washed 4x with 

1ml TBS (centrifugation steps: 1500rpm for 0.5min). Pellets were resuspended in 500μl 

TBS containing DAPI (1μg/ml) and incubated for 30min in the dark. 
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Cells were washed with 1ml TBS and 3μl of pelleted cells were mixed with 10μl 

Vectashield mounting medium (Vector laboratories) and directly mounted on glass slides.  

 

 

3.5 SDS-PAGE 
 
Samples for SDS-PAGE were resuspended in 5x SDS-PAGE sample buffer (e.g. 20μl 

sample + 5μl of 5x SDS-PAGE sample buffer) and incubated for 4min at 95°C. 18μl of 

denaturated samples were separated on a 4-12% Bis-Tris polyacrylamide pre-cast gel 

(Invitrogen) for 75min (30mA, 150V) using 1x MOPS as a running buffer. 

 

 

3.6 Far Western blotting 
 

3.6.1   Lysate Preparation 

Lysates were prepared as described below (3.7 pull-downs, i) with the following 

exceptions: 

1. One sample consisted of 30ml 3D7 culture (5% hematocrit, approx. 5% 

parasitemia)  

 

2. Four different samples were used: 

 

A) sample treated with ACT-AM-UV, irradiated with UV light 

B) same as A) without UV-irradiation 

C) sample treated with ACT-AM-UV-Neg, irradiated with UV light 

D) sample treated with DMSO, irradiated with UV light 

 

3. Samples were lysed in 150μl of 1% SDS lysis buffer (3.7.i) 
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3.6.2  Blotting procedure 

After gel electrophoresis (3.5.), samples were transferred to a nitrocellulose membrane 

using an iBlot device (Invitrogen) according to the protocol of the manufacturer.  

The membrane was blocked in 10ml of blocking solution (2% membrane blocking agent, 

GE in T-PBS) for 1h at room temperature. After removal of the solution, the membrane 

was incubated with HRP-labeled streptavidin (Pierce, 1mg/ml, diluted 1:2000 in 10ml 

blocking solution) for 45min at RT. The membrane was washed 5x (2x for 10sec with 

30ml, 3x for 5min with 50ml T-PBS).  

10ml of blotting substrate (Western Lightning, Perkin Elmer) was pipetted directly on the 

membrane. After incubation for 1min, films (Amersham Hyperfilm ECL, 18 × 24 cm,  

GE Healthcare) were exposed to the membrane in a dark room and developed after 1 to 

60min exposure. 

 

 

 

3.7   Pull-down experiments based on UV-activatable     

  compounds 
 

3.7.1  UV-activation of compounds in parasites after saponin lysis 
 
 
i) Protocol used for whole gel analysis 
 
Lysate preparation 
 
One sample consisted of 60ml 3D7 culture (5% hematocrit, 5-10% parasitemia). 

Samples were treated with 100nM (approx. 2x IC90) of ACT-AM-UV and incubated 

under normal culture conditions for 2h at 37°C.  

Two pairs (sample and respective negative control) were used: 

Negative control A: Competition: Cultures were incubated for 15min with 10μM of 

ACT-AM prior to the addition of ACT-AM-UV.  
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Sample A: Cultures were treated with the respective amount of DSMO for 15min prior to 

the addition of ACT-AM-UV. 

Negative control B: Cultures were incubated with 100nM of ACT-AM-UV-Neg instead 

of ACT-AM-UV.  

Sample B: Cultures were directly incubated with ACT-AM-UV. 

After incubation, samples were centrifuged at 2000rpm for 5min. Pelleted cells were 

resuspended in 4 pellet volumes of a 0.15% Saponin/PBS solution and incubated for 

8min on ice. Lysed RBCs were separated from parasites by centrifugation (4000rpm, 

8min, 4°C). Pelleted parasites were washed 3x with 10ml PBS, (4000rpm, 5min, 4°C). 

Pellets were resuspended in 1ml of ice cold PBS and transferred to a cover of a petri dish 

(6cm in diameter) which was placed in the cover of a 96-well plate filled with ddH2O (for 

efficient cooling). Parasites were UV-irradiated (UV device of Caprotec) at 4°C for 3x 

3min, the suspension was mixed after every 3min irradiation period. 

Irradiated samples were transferred to 1.5ml Eppendorf tubes and centrifuged (5000rpm, 

5min, 4°C). Pellets were resuspended in 50μl PBS by vortexing and lysed in 1ml SDS 

lysis buffer for 10min at room temperature. Lysates were stored at -80°C. 

1% SDS lysis buffer consisted of 1% SDS, 1x protease inhibitors, 1mM DTT in PBS. 

 

Pull-down procedure 

For 1 sample: 

After thawing, lysates were passed 5x through a needle (0.6mm in diameter) and 

centrifuged for 5min at 13000rpm. 900μl of supernatant was transferred to 200μl 

resuspended beads (magnetic Dynabeads MyOne Streptavidin C1, Invitrogen) which 

were washed twice with 1ml PBS before usage. The suspension was incubated for 1h at 

room temperature on a rotating wheel. Beads were washed with 1ml of 1) 1% SDS in 

PBS, 2) 1x wash buffer of Caprotec, 3) see 2), 4) 1% SDS in PBS, 5) ddH2O. 

Beads were then incubated in 25μl of 1.5x SDS loading buffer for 10min at 94°C. The 

supernatant was centrifuged for 5min at 13000rpm to remove all remaining beads. 18μl 

of the upper fraction of the supernatant was loaded on a polyacrylamide gel which was 

run as described above (3.5) and stained for 2h with 50ml of InstantBlue Coomassie 

stain. 
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The gel was washed 3x in 50ml ddH2O and every lane was cut into 10 bands which were 

used for mass spectrometry; the samples and their respective negative controls were cut 

in parallel. 

 

ii) Protocol used for partial gel analysis  

As described above under i) with the following modifications: 

 
Lysate preparation 

1. One sample consisted of 120ml 3D7 culture (5% hematocrit, 5-10% 

parasitemia). 

2. Parasites treated with ACT-AM-UV-Neg instead of ACT-AM-UV were used 

as a negative control. 

3. SDS lysis buffer consisted of 2% SDS and 1mM DTT in PBS. 

 

Pull-down procedure 

1. 300μl of resuspended beads were used. 

2. The gel was silver stained, washed 3x in 50ml ddH2O and areas which differed in 

the amount of protein (sample vs. control) were cut out for mass spectrometry. 

 
 

3.7.2 UV-activation of compounds in living cells before saponin lysis 
 
As described above under i) with the following modifications: 
 
Lysate preparation 

1. One sample consisted of 60ml 3D7 culture (5% hematocrit, 5-10% 

parasitemia). 

2. Negative control A: Competition: Cultures were incubated for 30min with 

1μM of ACT-AM prior to the addition of ACT-AM-UV.  

3. Before UV-irradiation, parasites were washed 2x with 12ml culture medium 

and resuspended in 15ml PBS. 
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4. Parasites in PBS were transferred to the cover of a 96-well plate and UV-

irradiated before saponin lysis. 

5. SDS lysis buffer consisted of 2% SDS and 1mM DTT in PBS 

 
Pull-down procedure 

1. Lysates were not passed through a needle. 

2. The gel was silver stained, washed 3x in 50ml ddH2O and bands which differed in 

the amount of protein (sample vs. control) were cut out for mass spectrometry. 

 
 
 

3.8 Pull-down experiments using monomeric avidin systems 

3.8.1 Triton lysates 

Pellets of six 30ml dishes of a mixed 3D7 culture and of six 30ml dishes of a once 

synchronized 3D7 culture (parasitemia > 8%, hematocrit 5%) were pooled. After Saponin 

lysis and 3x 10ml PBS washes (3.1.3), parasites were resuspended in 6.5ml Triton lysis 

buffer and incubated for 30min on ice. The solution was centrifuged for 5min at 

4000rpm. The supernatant was aliquoted in 1.5ml Eppendorf tubes (6x 1ml) and stored at 

-80°C. 

After thawing, lysates were centrifuged for 5min at 13000rpm. The clear supernatant was 

used for pull-down assays. 

The Triton lysis buffer consisted of 20mM Hepes pH7.9, 150mM NaCl, 10% glycerol, 1x 

protease inhibitors, 1% Triton X-100, 1mM EDTA, 1mM DTT. 

 

3.8.2 Pull-down procedure 

100μl of settled beads (monomeric avidin beads, Pierce) were used per sample. 200μl of 

settled beads were washed with 2x 1ml PBS and non-reversible biotin binding sites were 

blocked with 3x 250μl of Biotin Blocking and Elution buffer. Biotin was removed from 

the reversible binding sites by washing the beads with Regeneration Buffer (0.5 / 1.0 / 

0.5ml), followed by 3 washes with 1ml PBS. Beads were divided into two 1.5ml 
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Eppendorf tubes (sample and negative control). The biotinylated compounds (ACT-AM-

Biotin) and the negative control (less active derivative of ACT-AM-Biotin: same biotin 

group, different i.e. incomplete parent scaffold) were coupled to the reversible binding 

sites: Suspensions of beads and biotinylated compounds (approx. 15μM in 900μl PBS) 

were incubated for 1h at room temperature on a rotating wheel. Coupled beads were 

washed with 2x 900μl PBS before incubation with 900μl of lysate for 1h at room 

temperature on a rotating wheel. Beads were then washed 6x with 1ml PBS and elution 

was performed 4x for 2min with 150μl of Biotin Blocking and Elution buffer. Pooled 

elutions were concentrated/dried using a Vacufuge (Eppendorf). 

 

 

3.9   Pull-down experiments using streptavidin systems 

3.9.1  Triton lysates 

Triton lysates were prepared as described above (3.8.1).  
 

3.9.2   Pull-down procedure 

50μl of settled beads (streptavidin beads, GE) were used per sample. 100μl of settled 

beads were washed with 3x 0.5ml PBS and coupled to ACT-AM-Biotin (30μM in 900μl 

PBS) for 1h at room temperature on a rotating wheel. After 3 washes with 0.8ml PBS, 

beads were divided into two 0.5ml Eppendorf tubes (sample and negative control). For 

the negative control, 450μl of lysate was blocked with a more active non-biotinylated 

precursor of ACT-AM-Biotin (approx. 10μM) whereas the lysate for the sample was 

treated with the corresponding amount of DMSO. Lysates were added to beads and 

incubated for 1h at room temperature on a rotating wheel. After incubation, beads were 

washed 6x with 800μl PBS in mini columns (1ml, Pierce). In order to break the 

biotin:streptavidin bond, 35μl of drained beads were incubated with 25μl of 1.5x SDS 

sample buffer for 4min at 95°C. The supernatant was used for gel electrophoresis. 
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3.10   Pull-down experiments using compounds directly linked  

  to beads 
 

3.10.1   Covalent coupling of compounds to Sepharose beads 

600μl of settled beads (activated Sepharose 4 Fast Flow, GE) were washed with 13ml of 

ice cold ddH2O and activated with 10ml of an ice cold 1mM HCl solution.  

Activated beads were coupled to ACT-Seph (12μmoles in 600μl DMSO, negative 

control: 600μl DMSO only) for 3h at room temperature on a rotating wheel. Beads were 

washed with 2x 10ml ddH2O and blocked with 10ml of blocking solution (0.5M 

ethanolamine-HCL, 0.5 M NaCl, pH8.3) overnight at 4°C. Beads were washed with 5ml 

of a 0.1M Tris-HCl buffer, pH8 followed by 5ml of a 0.1M acetate buffer, 0.5M NaCl, 

pH4. The washing procedure was repeated 4 times. Before storage in 20% ethanol, beads 

were washed with 10ml ddH2O. 

 

3.10.2   Lysate preparation 

Lysates were prepared as described above (3.8.1) but parasites were lysed for 5min only 

and the lysis buffer consisted of 20mM Hepes pH7.9, 10mM KCl, 1mM EDTA, 1mM 

DTT, 1 X protease inhibitors and 0.65% NP-40. 

 

3.10.3   Pull-down procedure 

50μl of settled beads per sample were washed 2x with 450μl ddH2O and equilibrated 3x 

with 450μl equilibration buffer. 450μl of lysate was added to the beads and incubated for 

2h at room temperature on a rotating wheel. Beads were washed 8x with equilibration 

buffer, 2x with 1M KCl buffer, 2x with 2M KCl buffer and equilibrated 5x with 

equilibration buffer (always 450μl per step). Competition with a relatively soluble 

precursor of ACT-AM was performed using 2x 2nM and 2x 50μM solutions in 100μl 

equilibration buffer. Beads were again equilibrated with 3x 100μl equilibration buffer. 

Beads were washed 3x with low pH buffer, pH3.0, 2x with equilibration buffer, pH7.9 
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and 3x with high pH buffer, pH10.0 (always 100μl per wash). 10μl of drained beads were 

incubated with 25μl of 1x SDS sample buffer for 4min at 95°C. The supernatant was used 

for gel electrophoresis.  

 

Buffers  

Equilibration buffer:  

20mM Hepes, 10mM KCl, 1mM EDTA, 1mM DTT, 0.1% NP-40, pH7.9 

 

KCl buffer: 

20mM Hepes, 1 and 2M KCl, 0.1% NP-40, pH7.9 

 

Low pH buffer: 

20mM Glycine, 10mM KCL, 0.1% NP-40, pH3.0 

 

High pH buffer:  

20mM CAPS, 10mM KCL, 0.1% NP-40, pH10.0 

 

 

 

3.11   Mass spectrometry 
 
Mass spectrometry was carried out by Suzette Moes in the laboratory of Paul Jenö at the 

Biocenter in Basel. 

 

3.11.1   Protein digestion 

Solutions: 

Trypsin solution: Sequencing grade (Promega), 12.5ng/µl in 50mM NH4HCO3 

10mM DTT in 100mM Tris-HCl, pH8.0 

50mM iodoacetamide in 100mM Tris-HCl, pH8.0 
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Gel slices were cut into small cubes and washed once with 50µl of 40% n-propanol and 

five times with 50µl of 50% acetonitrile/0.1M NH4HCO3. Gel pieces were then 

completely immersed in 50% acetonitrile/0.1M NH4HCO3 and incubated for 2h at room 

temperature. Residual liquid was left to evaporate at room temperature. Proteins were 

reduced with 50µl of 10mM DTT for 2h at 37°C and alkylated with 50µl of 50mM 

iodoacetamide for 15min at room temperature in the dark. Gel pieces were washed five 

times with 50µl of 50% acetonitrile/0.1M NH4HCO3 and air dried at room temperature. 

For digestion, gel pieces were soaked in 10µl trypsin solution, completely covered with 

additional 50mM NH4HCO3 solution and incubated overnight at 37°C. Peptides of the 

supernatant were collected and gel pieces were extracted with 50µl of 0.1% acetic 

acid/50% acetonitrile. The extract was pooled with the tryptic peptides, the pooled digest 

was dried in a speed vac and redissolved in 50µl of 0.1% trifluoroacetic acid. 

 

 

3.11.2   LC-MS/MS Analysis 

LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry) analysis was 

performed as previously described (Soulard et al. 2010). 

 

 

3.11.3   Protein identification, databank searching 

LC-MS/MS data were searched using the SEQUEST search engine, version 3.3 (Eng et 

al. 1994) against the P. falciparum databank (PlasmoDB version 5.5, July 2008) and the 

NCBI human databank (version June 2010). The precursor ion and fragment ion mass 

tolerances were set to 10ppm (parts per million) and 0.6Da, respectively. Two missed 

cleavages were allowed. 
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3.12   Validation of target candidates 

3.12.1   Multidrug resistance protein  
 
In vitro interactions of ACT-AM with the multidrug resistance protein (MDR or MDR1, 

gene ID: PFE1150w) were studied by Corinna Mattheis in the laboratory of David Fidock 

in New York.  

IC50 values of ACT-AM against P. falciparum strains exhibiting either one or two gene 

copies of mdr were determined as described previously (Sidhu et al. 2006) and essentially 

as above (3.2). Mefloquine was used as a positive control. Statistical analysis of the 

results was performed by Christian Schindler in the following way:  

Data were log-transformed for analysis. 95%-confidence intervals for the means of the 

log-transformed data were determined by using appropriate quantiles (0.975) of the t-

distribution. Data were then backtransformed to provide 95%-confidence intervals for the 

geometric mean of the untransformed data which coincides with the median for variables 

with a log-symmetric distribution. 

 
 

3.12.2   Equilibrative Nucleoside Transporter 4 
 
Interactions of the Equilibrative Nucleoside Transporter 4 (ENT4 gene ID: PFA0160c: 

nucleoside transporter, putative) with ACT-AM were investigated in vitro by I. J. Frame 

in the laboratory of Myles Akabas in New York.  

Transport studies were conducted using Xenopus laevis oocyte expression systems 

(Downie et al. 2006). Oocytes were injected with mRNA for PfENT4, PvENT4 

(Plasmodium vivax), PfENT1, or with diethylpyrocarbonate-treated ddH2O and were 

incubated for expression at 16°C for 72h. mRNA for PfENT4 was expressed using a 

synthetic gene that has been optimized for expression in Xenopus laevis. The sequence of 

the synthetic gene is not yet published. Before exposure to radiolabeled adenine, oocytes 

were preincubated for 15min in transport buffer in presence of 1μM and 10μM ACT-AM 

/ ACT-AM-EN2 or solvent control. Oocytes were then transferred to transport buffer 

containing 150nM [3H]adenine with either compounds or solvent control. After 
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incubation for 60min, oocytes were washed 5x with ice-cold transport buffer and 

solubilized individually in 5%-SDS. Uptake of [3H]adenine was measured using liquid 

scintillation spectrometry. Background levels of [3H]adenine accumulation from ddH2O-

injected oocytes were subtracted from uptake values obtained from oocytes injected with 

mRNA. Baseline-subtracted uptake values were then normalized to % of solvent controls.  

 

Transport buffer composition:  

96mM NaCl, 1mM MgCl2, 2mM KCl, 1.8mM CaCl2, 10mM HEPES, 10mM MES pH 

7.4. 

 

3.12.3   Chloroquine Resistance Transporter 
 
Chloroquine Resistance Transporter (CRT, gene ID: MAL7P1.27) was tested for in vitro 

activity under treatment with ACT-AM by Sebastiano Bellanca in the laboratory of 

Michael Lanzer in Heidelberg. 

Transport studies using Xenopus oocytes were essentially performed as described in the 

above paragraph, with the following modifications: 

 

1.  The CRT of the chloroquine-resistant P. falciparum strain Dd2 (Wellems et al. 

1990) was expressed at 18°C. 

  

2. Oocytes were simultaneously exposed to the substrate (50nM of [3H]CQ) and to 

ACT-AM / ACT-AM-EN2. 

 

3. Transport buffer composition:  

96mM NaCl, 1mM MgCl2, 2mM KCl, 1.8mM CaCl2, 10mM TRIS, 10mM MES 

pH 6.0. 
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3.12.4   Aldolase  
 
Fructose-bisphosphate aldolase (ID: PF14_0425) was kindly provided by J. Bosch: wt 

aldolase (Bosch et al. 2007) and by H. Doebeli: mt aldolase: K365 to N (Döbeli et al. 

1990). Both enzymes were tested; the protocols and results were similar and are shown 

for wt aldolase. 

 

In vitro assay 

The in vitro assay was performed according to the manufacturer (Sigma): 

The biochemical principle of this method is: 

 

Aldolase:  fructose 1,6-diphosphate + H2O    G3-P + DHAP 
 
TPI:   G3-P    DHAP 
 
α-GDH: 2 DHAP + 2 β-NADH    2 α-glycerophosphate + 2 β-NAD 
 
 
The decrease in A340nm (of β-NADH) / t is proportional to the activity of aldolase and was 

monitored in Fisherbrand cuvettes (336-850nm) using a UV–visible spectrophotometer 

(Cary50, Varian). 

 
Abbreviations: 

Aldolase: fructose-bisphosphate aldolase 

G3-P:  glyceraldehyde 3-phosphate 

DHAP: dihydroxyacetone phosphate 

TPI:  triosephosphate isomerase 

α-GDH: glycerophosphate dehydrogenase 

β-NADH: nicotinamide adenine dinucleotide, reduced form 

β-NAD: nicotinamide adenine dinucleotide, oxidized form 
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Kinetics and Michaelis Constant (KM) 

One reaction, final concentration in 725μl: 

 

86mM Tris pH7.4 

140μM β-NADH 

1.25 units of α-GDH/ TPI (based on α-GDH units) 

0.5μg aldolase 

 

Increasing substrate (fructose 1,6-diphosphate) concentrations were used. 

Before adding aldolase, the solution was mixed and the A340nm was monitored until 

constant. After adding aldolase, the solution was mixed again and the decrease in A340nm 

was recorded for 4min. The activity (ΔA340nm/t) was expressed as (µM NADH/min*mg) 

Curve fitting and KM determination was performed using Prism software. 

 

Validation of enzyme activity 

One reaction, final concentration in 725μl, as described in the above paragraph with the 

following modifications: 

1. Fructose 1,6-diphosphate concentration: 2x KM (42μM) 

2. Variable aldolase concentrations were used 

3. Enzyme activity was plotted against enzyme concentration 

 

Inhibition assay  

One reaction, final concentrations in 725μl, as described in the above paragraph with the 

following modifications: 

1. Fructose 1,6-diphosphate concentration: KM (21μM) 

2. Enzyme activity was measured in presence and absence (DMSO) of ACT-AM 
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3.12.5   M17 leucyl aminopeptidase  

M17 leucyl aminopeptidase (PF14_0439) was tested for in vitro activity under treatment 

with ACT-AM in the laboratory of Colin Stack in Sydney. The assay was performed as 

previously described (Stack et al. 2007) measuring the release of the fluorogenic leaving 

group, NHMec (aminomethyl coumarylamide), from several fluorogenic peptide 

substrates. 

 

 

3.12.6   Spermidine synthase, S-adenosylmethionine synthetase, and  

  secreted acid phosphatase 
 
In vitro activities of spermidine synthase (PF11_0301), S-adenosylmethionine synthetase 

(PFI1090w), and secreted acid phosphatase (PFI0880c) under treatment with ACT-AM 

were tested according to (Haider et al. 2005; Dufe et al. 2007), (Das Gupta 2005), 

(Müller et al. 2010), respectively. All tests were performed by Ingrid Müller in the 

laboratory of Rolf Walter in Hamburg. 

 

 

3.13   Hematin interaction studies 

3.13.1   Inhibition of beta-hematin formation 

The following assay was carried out with Sandra Vargas who had adapted the method 

from (Ncokazi & Egan 2005) in the laboratory of Karine Ndjoko in Geneva. 

10μl of test compound stock solutions, 100μl of a hematin solution and 10μl of a 1M HCl 

solution were added in triplicate to 96-well plates (2ml-wells) and mixed at 900rpm for 

10min. 10μl of a chloroquine stock solution / 10μl solvent were used as a positive / 

negative control. 60μl of saturated acetate solution (60°C) was added and the mixture was 

stirred for 1min. After incubation at 60°C for 90min, 750μl of pyridine solution was 

added. The mixture was incubated for 10min at 900rpm and allowed to settle during 
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15min at room temperature. Formation of a red complex indicated inhibition of beta-

hematin formation whereas solutions without inhibition remained colorless. 

Solutions especially used for the above assay: 

 

- Stock solutions of compounds (50mM) were prepared in  

  HCl (Merck), 0.1M / MeOH (Chromanorm) / DMSO (Acros Organics): (5/3/2). 

- Hematin solution (1.68mM): 6.8mg of bovine hemin (Sigma) adjusted to 10ml with   

  0.1M NaOH (Merck) 

- Saturated acetate solution, pH5.0: 18g of sodium acetate (Fluka), 24ml of glacial acetic     

  acid (Acros Organics) and 10ml ddH2O 

- 15% pyridine (Acros Organics) in 20mM Hepes (Fluka) 

 

 

3.13.2   Spectrophotometric measurement of hematin interactions 

Interaction of hematin with test compounds was studied as described previously (Egan & 

Ncokazi 2004). 

Hematin solutions were prepared as 2μM hematin in 40% aqueous DMSO (v/v) 

containing 0.02M Hepes buffer, pH7.4. 

Solutions of test compounds were prepared in 80% aqueous DMSO (v/v) containing 

0.02M Hepes buffer, pH7.4. The background absorbance of the test compounds was 

subtracted (obtained from blank titrations performed in the absence of hematin). The 

measuring procedure was: 

1. Baseline: solvent: 40% aqueous DMSO (v/v) containing 0.02M Hepes buffer, pH7.4 

2. Baseline: compounds at test concentrations (0, 2, 4, 8, 16μM) in solvent (1) 

3. Spectrophotometric measurement of hematin solutions in presence of 0, 2, 4, 8 or 

16μM of test compounds 

The absorbance of the test solutions was monitored from 300 to 500nm in Eppendorf 

cuvettes (UVette, 220-1600nm) using a UV–visible spectrophotometer (Cary50, Varian). 
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3.14   Microarray 
 

3.14.1   Experimental conditions for microarray 
 

1. 3D7 parasites were tightly synchronized as described above (3.1.3). The time 

window (oldest - youngest parasites) was 6h. 

2. The experiment was initiated at t0 = 32h p.i. 

3. Samples were treated with an IC90 (13nM) of ACT-AM and control samples with 

the respective amount of DMSO for 1h, 2h, 4h, 6h and 8h. 

4. One sample consisted of a 50ml culture (in flasks), 5.0% hematocrit and 2.0% 

parasitemia. 

 
 

3.14.2   IC90 determination under microarray conditions 
 
Feasibility-study of IC90 determination experiment under microarray conditions 

In order to test whether IC50 determination was possible under microarray conditions, 

IC90/50 tests of ACT-AM were performed as described above (3.2) with the following 

exceptions: 

1. Synchronization, t0, hematocrit and parasitemia as described under 3.14.1. 

2. After 16h of compound exposure, 150μl of screening medium was replaced to 

prevent starvation of the parasites as their number was higher than the one used in 

regular IC50 experiments. 

 

IC90 determination experiment under microarray conditions 

The actual IC90 determination experiment was performed as described in the above 

paragraph. To ensure that the conditions were comparable to the situation described 

under 3.14.1, the following changes were applied: 

1. All volumes were scaled-up 10-fold. 

2. 6-well plates were used instead of 96-well plates.  

3. For harvesting, 250μl of each well were transferred to the corresponding wells of 

96-well plates. 
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3.14.3   Sample preparation for microarray and RNA extraction 
 
For every timepoint, treated and untreated samples (described under 3.14.1) were 

processed as follows: 

After centrifugation (2000rpm, 5min, 4°C), pelleted cells were resuspended in 10ml of a 

0.15% Saponin/PBS solution and incubated for 10min on ice. Lysed RBCs were 

separated from parasites by centrifugation (4000rpm, 10min, 4°C). Pelleted parasites 

were immediately lysed in 6ml Trizol (TRI Reagent) and incubated for 5min at room 

temperature. 500μl of lysate was separated for later qPCR validation and samples were 

stored at -80°C. 

For RNA extraction, samples were thawed and 1.1ml of chlorophorm was added. 

Samples were shaken vigorously for 1min and left at room temperature for 5min. After 

centrifugation (4000rpm, 30min, 4°C), 2ml of the upper aqueous phase was transferred to 

1.6ml isopropanol for RNA precipitation. After moderate vortexing for 10sec and 

incubation for 5min at room temperature, the RNA samples were stored at -80°C. 

 

3.14.4   Reference RNA extraction for microarray 
 
11x 30ml of synchronized cultures (time window: 10h, ca 5% parasitemia, 5% 

hematocrit) together spanning the whole life cycle of asexual parasite blood stages were 

processed as described under 3.14.3 for RNA extraction. 

 

3.14.5   Microarray analysis 
 
Microarray hybridization, analysis and comparison of transcriptional profiles (ACT-AM 

vs. 20 different antimalarial compounds) were performed by Zbyinek Bozdech and 

Enghow Lim in Singapore. 

Hybridization and genome-wide gene expression profiling was carried out using long 

oligonucleotides representing all 5.363 P. falciparum genes as previously described (Hu 

et al. 2007). The microarray results were compared to those obtained for 20 previously 

assessed antimalarial compounds by means of functional enrichment and hierarchical 

clustering analysis (Hu et al. 2010).  
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For the in-house analysis of microarray data and the generation of array heatmaps, genes 

were clustered by average linkage clustering using Gene Cluster 3.0 (Eisen et al. 1998). 

The similarity score of two joined elements was calculated by uncentered Pearson 

correlation. Heatmaps were generated using Java Treeview (Saldanha 2004). 

 
 
 

3.15  qPCR 

3.15.1  Total RNA isolation 

Total RNA for qPCR was isolated according to the protocol of the manufacturer (Qiagen, 

RNeasy): 

250μl Trizol lysate of microarray samples (corresponding to approx. 0.2 x 108 parasites) 

were incubated for 5min at 37ºC. After adding 50μl chloroform, the solution was shaken 

vigorously for 1min and centrifuged at 13000rpm for 10min. 

100μl of the aqueous phase was added to 400μl Lysis buffer RLT and the solution was 

mixed by pipetting and vortexing. The solution was transferred to a gDNA Eliminator 

spin column placed in a 2ml collection tube and centrifuged for 30s at 8000g. The flow-

through was saved, 500μl of 70% ethanol was added and the solutions were mixed by 

pipetting. The resulting 1000μl were transferred in 2 steps (2x 500μl) to an RNeasy spin 

column placed in a 2ml collection tube. The column was centrifuged for 15s at 8000g and 

the flow-through was discarded. 700μl Buffer RW1 was added to the spin column which 

was centrifuged for 15s at 8000g to wash the spin column membrane. The flow-through 

was discarded. 500μl Buffer RPE was added to the spin column which was again 

centrifuged for 15s at 8000g. The RPE washing step was repeated once and the flow-

through was discarded. The spin column was placed in a new 2ml collection tube and 

centrifuged at full speed for 1 min. The spin column was placed in a new 1.5ml collection 

tube. 45μl of RNase-free ddH2O was directly added to the spin column membrane and the 

RNA was eluted by spinning for 1min at 8000g. 
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3.15.2  cDNA preparation 

Unless stated otherwise, all subsequent steps were performed on ice, reagents were from 

Ambion. 

 
Removal of contaminating gDNA from total RNA (1 reaction): 

45μl total RNA  

5μl of 10x TURBO DNA-free buffer 

1.5μl TURBO DNAse  

The solution was mixed and incubated for 30min at 37°C. 

DNAse was inactivated by adding 5μl DNAse inactivation reagent and incubation for 

5min at room temperature with repeated mixing by flicking the tube. The inactivation 

reagent was pelleted by centrifugation at 13000rpm for 3min. 40μl total RNA was 

transferred to a fresh 1.5ml Eppendorf tube.  5μl total RNA was stored separately as a 

negative control for qPCR to prove absence of contaminating gDNA. 

 

Reverse transcription (1 reaction) 

10μl RNA  

1.6μl random decamers 

16.8μl RNAse-free ddH2O 

After mixing, RNA was denatured for 3min at 80°C and immediately chilled on ice. 

 

Added were:  

4μl of 10x reverse transcription buffer 

6μl dNTPs 

0.8μl MMLV (Moloney Murine Leukemia Virus) reverse transcriptase 

0.8μl RNAse inhibitor 

 

Reverse transcription was performed at 43°C for 1h and stopped by incubation at 92°C 

for 2min. 

cDNA for qPCR was diltuted ½  by adding 40μl ddH2O and stored at 4°C. 
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3.15.3  qPCR procedure 

qPCR was performed using a Step One Plus System (qPCR device and reagents from 

Applied Biosystems). 

1 qPCR reaction mixture consisted of: 

 
3μl ddH2O 

6μl SYBR Green Mix 

1μl primer mix (forward and reverse primers, 5μM) 

2μl cDNA 

 

The qPCR program is shown below (Figure 3.2). 

 

 

 

 
Figure 3.2. qPCR run method. Ramp rates were set at 100%. The last temperature increment for the melt curve was set 

at + 0.3°C. 

 

 

50°C 
 
120s 

95°C 
 
600s 

95°C
 
15s 

58°C
 
60s 

95°C
 
15s 

95°C
 
15s 

60°C 
 
60s 

Melt Curve Stage Cycling Stage (40 cycles) Holding Stage 

Te
m

pe
ra

tu
re

 



Methods 
   

 
 

 - 53 - 
 

Primers  

Primer pairs used for qPCR are shown in Table 3.1. 

 
Table 3.1. Primers used for qPCR. 
 

Gene ID 
Product description 

Forward primer  (5' to 3') Reverse primer (5' to 3') 

 

PFL0035c 

acyl-CoA synthetase, PfACS7 
TGTGGAGAACCCGAAAATTA TCTGGAACACCAGTACCTTCA 

 

PF10_0380 

serine/threonine protein kinase, FIKK family 
GGTTTGACGGAGATCAAGAA CATTGCTTTCTGCCTCACTT 

 

PF13_0196 

MSP7-like protein 
ACAAACGTCTAGTCCCGATG TCGATCCTCTTGGTTGTGAT 

 

PF14_0545 

thioredoxin, putative 
TTGCCCCATTTTATGAAGAA TTTAAAGGTTGGCATGGAAG 

 

PFA0310c 

calcium-transporting ATPase 
ATTAAATGCTGCCGTAGGTG AATTTCCCACTTCCCATCTC 

 

PFL1550w 

lipoamide dehydrogenase 
TTGGAGGTGGTGTTATAGGG TCAGCATCAAGAAAACCACA 

 

PFL0900c 

arginyl-tRNA synthetase   

adapted from Frank et al. 2006 

AAGAGATGCATGTTGGTCATTT GAGTACCCCAATCACCTACA 

 

Primer pairs used for qPCR and respective gene identification. 

 

 

 

Primer validation 

All primers were validated with respect to the melting curve patterns of their products 

and with respect to their amplification efficiencies. Primers were used for qPCR if they 

yielded 1 amplification product only as judged by their melting curves and if their 

amplification efficiencies were comparable. Amplification efficiencies were compared as 

follows: For every gene, CT values were determined with gDNA templates spanning 5 

logs (base 10). ΔCT values (CT of target gene – CT of endogenous control) were 

calculated for every log of template amount. According to Applied Biosystems, the 
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absolute value of the slope of the graph (ΔCT vs. log of template amount) should not 

exceed 0.1. 

 

 

Comparative CT (ΔΔCT) method 

The ΔΔCT method is used to determine the relative target (gene X) quantity in samples. 

For this method, amplification of gene X and of the endogenous control (e.g. a 

housekeeping gene) in samples (here: treated with a substance) and in a reference sample 

(here: untreated) are measured and normalized using the endogenous control. The relative 

quantity of gene X in every sample is determined by comparing normalized gene X 

quantity in every sample to normalized gene X quantity in the reference sample. 

The amount of target (treated), relative to a reference (untreated) and normalized to an 

endogenous control (housekeeping gene: HK), is given by:  

2 
–ΔΔC

T  whereby 

ΔΔCT =   ΔCT, treated – ΔCT, untreated = 

(CT of gene X, treated – CT of HK, treated) – (CT of gene X, untreated – CT  of HK, untreated)
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4 Results 
 

4.1 In vitro activities of test compounds 
 
During the course of this project, a number of chemical derivatives of ACT-AM were 

used as tool compounds for mode of action studies. The introduction of functional groups 

such as biotin into pharmacophores may significantly reduce their activity, implying that 

the derivative no longer hits the target of its precursor. Prior to further experiments, all 

chemically derivatized tool compounds of ACT-AM as well as negative controls were 

thus tested for their in vitro activities against P. falciparum using [3H]hypoxanthine 

incorporation assays (3.2). Activities against the sequenced 3D7 strain (Gardner et al. 

2002) are expressed as IC50 values and summarized in Table 4.1. Chloroquine was used 

as a reference antimalarial; IC50 values obtained for chloroquine were in the range of 

those published (Vennerstrom et al. 2004; Maerki et al. 2006). 

All tested compounds showed desirable activities i.e. extensively modified compounds 

largely retained the activity of their precursors, whereas compounds used as negative 

controls were significantly less active. 

 

Table 4.1 In vitro activities of test compounds against P. falciparum 3D7. 

 

Compound 
 

Description 
 

IC50 [mean ± SD (nM)] 

ACT-AM novel antimalarial compound from Actelion   3.8 ±  0.3 

ACT-AM-EN2 less active enantiomer of  ACT-AM 186.7 ±  26.7 

ACT-AM-UV 

 
derivative of ACT-AM linked to UV-activatable 
capture group (forms nitrene upon activation) 
and to sorting group (biotin) 
 

34.1 ±  2.9 

ACT-AM-UV-Neg 

 
less active derivative of ACT-AM-UV: same 
capture and sorting group, different 
(incomplete) parent scaffold 
 

11785.1 ±  3411.0 

ACT-AM-Biotin derivative of ACT-AM linked to biotin 25.4 ±  5.0 

ACT-AM-Fluo derivative of ACT-AM linked to fluorescein   607.5 ±  124.0 

ACT-Seph precursor of ACT-AM conjugatable to 
sepharose beads  161.9 ±  12.9 
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Chloroquine reference antimalarial  8.1 ±  0.1 
 

Mean IC50 values of test compounds against P. falciparum 3D7 ± standard deviations (n ≥ 3 independent experiments) 

measured by [3H]hypoxanthine incorporation. CQ was used as a control in every experiment, representative values for CQ 

were determined simultaneously with values for ACT-AM. 

 
 

4.2 Panel of resistant Plasmodium falciparum strains 
 
Prove of activity against key drug resistant P. falciparum strains is a progression criterion 

for novel antimalarial compounds (MMV 2008). Therefore, IC50 values of ACT-AM and 

reference compounds were determined as described above (4.1) for five resistant and two 

sensitive strains. 

ACT-AM was shown to be very potent (comparable to artesunate) against all tested 

strains (Table 4.2). 

 
Table 4.2. Mean IC50 values for ACT-AM, CQ, PYR and AS against a panel of several resistant 

and sensitive P. falciparum strains.  

                                                                       IC50 [mean ± SD (nM)] 

Isolate Origin Resistance CQ PYR AS ACT-AM 

NF54 Airport, NL -- 11 ± 2 18 ± 1 3.7 ± 0.5      1.0 ± 0.1 

K1 Thailand CQ, PYR 303 ± 37  10138 ± 705 2.7 ± 0.4 0.46 ± 0.04 

W2 Indochina CQ, PYR 326 ± 38 13923 ± 3525 2.4 ± 0.7 0.42 ± 0.09 

7G8 Brazil PYR 137 ± 21 10484 ± 2574     1.8 ± 0.2 1.2 ± 0.2 

TM90C2A Thailand CQ, PYR 174 ± 19 19248 ± 3876 4.6 ± 1.7 2.7 ± 0.4 

D6 Sierra L. -- 16 ± 1   5.4  ± 1.3 7.1 ± 1.9 1.3 ± 0.2 

V1/S Vietnam CQ, PYR 458 ± 66  21936 ± 1072 3.2 ± 0.5 0.65 ± 0.12 

Max   458 21936 7.1 2.7 

Min   11 5.4 1.8 0.42 

Max/Min   42 4062 4 7 
 

IC50 values were determined by [3H]hypoxanthine incorporation. Data are the means ± SD of n = 3 independent 

experiments. 
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4.3 In vitro pharmacodynamics 
 
Stage specificity and onset of action of ACT-AM and ACT-AM-UV were assessed with 

synchronous 3D7 cultures. Pyrimethamine served as a stage (schizont) specific control 

(Dieckmann & Jung 1986; Maerki et al. 2006). All compounds were tested in three 

independent experiments. Growth was quantified relative to untreated controls after 

incubation for 1, 6, 12 or 24h in presence of approx. 1x, 10x and 100x the IC50 values of 

the respective compounds. After these incubation periods, parasites were extensively 

washed resulting in a 1280x dilution of free compound before growth was measured. 

ACT-AM rapidly reduced parasite growth (onset of action already after 1h of compound 

exposure) and affected all blood stages equally in a time- and concentration-dependent 

manner (Figure 4.1.A). 

ACT-AM-UV displayed a similar pattern but seemed not to be as potent and fast acting 

as its precursor (Figure 4.1.B). The control experiment showed the characteristic 

specificity of pyrimethamine for late parasite stages (Figure 4.1.C). 
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Figure 4.1. In vitro concentration- and stage-dependent effects of A) ACT-AM, B) ACT-AM-UV, C) Pyrimethamine (~1x, 

~10x and ~100x the IC50) on the growth of synchronous cultures of P. falciparum strain 3D7 determined by 

[3H]hypoxanthine incorporation. Parasites were exposed to compounds for 1, 6, 12 or 24h. After removal of the 

compounds, parasites were incubated for 24h in the presence of [3H]hypoxanthine. Results are expressed as the 

percentage of growth of the respective development stage relative to an untreated control. Each bar represents the mean 

+ SD of n = 3 independent experiments. 
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4.4 Fluorescent imaging 
 

4.4.1 Fluorescent imaging with acetone/MeOH fixed cells 

 
To investigate the cellular localization of ACT-AM and to probe whether UV-activatable 

compounds are applicable for P. falciparum, fluorescent imaging was performed. Using 

UV-activatable compounds, cells had to be fixed with acetone/MeOH, since the applied 

fluorescent probe (Alexa488-streptavidin) was unable to penetrate intact membranes.  

Living 3D7 parasites were incubated with either ACT-AM-UV or ACT-AM-UV-Neg 

(first negative control) before activation of the compounds with UV light. (In this 

context, UV-activation means formation of a nitrene which enables the compounds to 

form covalent bonds with nearby molecular structures, detailed in methods 3.3). As a 

second negative control, UV-activation was omitted. Cells were washed and after fixation 

and blocking, the biotin moieties of the compounds were detected using Alexa488-

streptavidin. 

For all parasite stages, the fluorescent signal was restricted to the parasite and suggested a 

cytosolic distribution of the compound (Figure 4.2). Fluorescence could also be detected 

in membranous structures, most notably for schizonts. Both negative controls gave only 

weak signals which clearly differed from those of the samples. 

Furthermore, the results show that UV light reaches into the parasite and that the applied 

fluorescent imaging method depends on UV-irradiation, since compounds which were 

incapable of covalent bond formation (absence of UV light) were presumably washed 

away in the experimental process (Figure 4.2). 

 



Results 
   

 
 

 - 61 - 
 

 
Figure 4.2. Fluorescent imaging with acetone/MeOH fixed cells using UV-activatable 

compounds. Living P. falciparum 3D7 cultures were incubated with ACT-AM-UV prior to 

fixation with acetone/MeOH. Cells were then washed, UV-irradiated and blocked. After 

incubation with Alexa488-Strepatvidin, cells were mounted in DAPI-containing mounting 

medium and examined under a fluorescence microscope. Negative control 1: No UV-

activation. Negative control 2: UV-activatable mock substance (ACT-AM-UV-Neg). Bar: 

1μm. 
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4.4.2 Fluorescent imaging with living cells 

The cellular localization of ACT-AM in living cells was studied using the fluorescein-

labeled derivative ACT-AM-Fluo. 

Living 3D7 parasites were incubated with ACT-AM-Fluo or fluorescein only (negative 

control). Cells were washed in TBS and directly mounted on glass slides.  

Fluorescence was visible in infected red blood cells and seemed to peak in parasites (all 

stages, Figure 4.3). The observed signal was more diffuse than for the UV-activatable 

compound (Figure 4.2). This is presumably a result of the shorter half-life of the 

fluorescein signal (compared to Alexa488) and the fact that living cells were used. 

Nevertheless, the results seemed to be comparable to those obtained with fixed cells 

(4.4.1), since the main signals also appeared to be cytosolic.  

 



Results 
   

 
 

 - 63 - 
 

 
Figure 4.3. Fluorescent imaging with living cells using ACT-AM-Fluo. Living 3D7 cultures 

were incubated with ACT-AM-Fluo (negative control: fluorescein) and washed. After 

nuclear staining with DAPI, cells were mounted and examined under a fluorescence 

microscope. Bar: 1μm. 
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4.5 Far Western blotting 
 
Far Western blotting was used to validate that UV-activatable compounds covalently 

bind to proteins within P. falciparum parasites upon activation with UV light. 

Four different samples (differently treated 3D7 parasites) were used: 

 

A) Sample treated with ACT-AM-UV, irradiated with UV light 

B) Same as A) without UV-irradiation 

C) Sample treated with ACT-AM-UV-Neg, irradiated with UV light 

D) Sample treated with DMSO, irradiated with UV light 

 

Parasite cultures were treated with saponin prior to UV-irradiation to reduce the 

absorbance of UV light by RBCs. After blotting, proteins bound to UV-activatable 

compounds were detected with HRP-labeled streptavidin. The resulting signals were 

weak, probably due to the low concentrations of ACT-AM-UV (approx. 2x IC90) and the 

limited loading capacity of the protein gel. However, the signal was stronger in lane A 

than in lane B, indicating that covalent linking of ACT-AM-UV to proteins is dependent 

on UV light (Figure 4.4). Furthermore, no defined bands were detected in lane C or D, 

which suggests that the signals of lane A were attributable to ACT-AM-UV only. 

 

 
Figure 4.4. Far Western assay. Lysates were separated on a polyacrylamide gel and 

subsequently blotted on a nitrocellulose membrane. Biotinylated probes were 

detected with streptavidin-HRP. All samples except for B were UV irradiated. A) 

sample treated with ACT-AM-UV,  B) A without UV-irradiation, C) sample treated with 

ACT-AM-UV-Neg, D) sample treated with DMSO. 
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4.6 Pull-down experiments based on UV-activatable 

compounds  

 

To identify potential targets of ACT-AM, various pull-down experiments were performed 

using several chemical probes, lysates and beads. 

Target candidates were obtained from mass spectrometric analysis of pull-down results. 

Listed are proteins that were detected in treated samples only, i.e. proteins found in 

negative controls were subtracted from the respective candidate lists.  

 

4.6.1 UV-activation of compounds in parasites after saponin lysis 
 
i) Whole gel analysis  
 
Whole gel analysis was performed to gain information about the maximal number of 

proteins potentially binding to ACT-AM. 

Samples (3D7 P. falciparum cultures) for pull-down experiments were treated with ACT-

AM-UV and incubated under normal culture conditions. Two pairs of samples and 

respective negative controls were used: 

 

-Negative control A:  

Competition: Cultures were incubated with an excess of ACT-AM prior to the addition of 

ACT-AM-UV.  

-Sample A:  

Cultures were treated with DSMO (to compensate for the DMSO-effects of the ACT-AM 

treatment of the negative control) prior to the addition of ACT-AM-UV. 

 

-Negative control B:  

Cultures were incubated with the mock substance ACT-AM-UV-Neg instead of ACT-

AM-UV. 

-Sample B:  
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Cultures were directly incubated with ACT-AM-UV. 

 

After saponin treatment (removal of RBCs), samples were UV-irradiated and lysed in 

SDS lysis buffer. For pull-downs, lysed samples were incubated with magnetic 

streptavidin beads which were rigorously washed with SDS buffer before elution (94°C) 

of captured proteins. Eluted proteins were separated on a polyacrylamide gel which was 

entirely cut into small fragments used for mass spectrometry. Identified proteins are listed 

in Tables 4.3 and 4.4. 

 

 

 
Table 4.3. Target candidates from pull-downs with UV-activatable compounds using a 

competitive control and whole gel analysis. 

Gene ID Protein 
Length Product Description Annotated GO Function 

PFA0375c 1470 lipid/sterol:H+ symporter hedgehog receptor activity 

PFB0210c 504 hexose transporter, PfHT1 monosaccharide transmembrane 
transporter activity 

PFD1050w 450 alpha-tubulin ii structural molecule activity, GTP 
binding, GTPase activity 

PFE1050w 479 
adenosylhomocysteinase(S-
adenosyl-L-homocystein e 
hydrolase) 

binding, adenosylhomocysteinase 
activity 

PFE1150w 1419 multidrug resistance protein 

ATP binding, multidrug efflux pump 
activity, ATPase activity, coupled to 
transmembrane movement of 
substances 

PFE1195w 1123 karyopherin beta binding 
PFF0690c 853 organic anion transporter null 

PFF0940c 828 cell division cycle protein 48 
homologue, putative ATP binding, ATPase activity 

PF07_0029 745 heat shock protein 86 ATP binding, unfolded protein binding 
PF07_0033 873 Cg4 protein ATP binding 

PF07_0101 2190 conserved Plasmodium protein, 
unknown function null 

PFI0880c 396 glideosome-associated protein 50 null 

PFI1090w 402 S-adenosylmethionine synthetase methionine adenosyltransferase 
activity, ATP binding 

PF10_0084 445 tubulin beta chain, putative structural constituent of cytoskeleton, 
GTP binding, GTPase activity 

PF11_0172 455 folate/biopterin transporter, 
putative molecular function 

PFL1070c 821 endoplasmin homolog precursor, 
putative ATP binding, unfolded protein binding 
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PFL2215w 376 actin I structural constituent of cytoskeleton, 
protein binding 

PF13_0272 208 thioredoxin-related protein, 
putative protein disulfide isomerase activity 

PF14_0352 847 ribonucleoside-diphosphate 
reductase, large subunit 

molecular function, ribonucleoside-
diphosphate reductase activity, 
protein binding 

PF14_0425 369 fructose-bisphosphate aldolase fructose-bisphosphate aldolase 
activity 

PF14_0528 282 hemolysin, putative molecular function 
 

Target candidates are listed according to gene IDs. Protein characteristics are from PlasmoDB.org. The sample was 

treated with ACT-AM-UV, the negative control with an excess of ACT-AM. Proteins detected in samples and negative 

controls were excluded. 

 

 

 

 
Table 4.4. Target candidates from pull-downs with UV-activatable compounds using a non-

competitive control and whole gel analysis. 

Gene ID Protein 
Length Product Description Annotated GO Function 

PFA0160c 434 nucleoside transporter, putative null 
PFA0375c 1470 lipid/sterol:H+ symporter hedgehog receptor activity 

PFB0585w 365 Leu/Phe-tRNA protein transferase, 
putative 

transferase activity, transferring 
amino-acyl groups, catalytic activity 

PFC0120w 1417 Cytoadherence linked asexual 
protein 3.1 cell adhesion molecule binding 

PFD1110w 372 conserved Plasmodium membrane 
protein, unknown function null 

PFE0065w 337 skeleton-binding protein 1 null 
PFE0080c 398 rhoptry-associated protein 2, RAP2 null 

PFE1285w 300 membrane skeletal protein IMC1-
related null 

PFF0435w 414 ornithine aminotransferase 
pyridoxal phosphate binding, 
ornithine-oxo-acid transaminase 
activity 

PFF1300w 511 pyruvate kinase magnesium ion binding, potassium 
ion binding, pyruvate kinase activity 

MAL7P1.228 661 Heat Shock 70 KDa Protein, 
(HSP70) ATP binding 

MAL7P1.27 424 chloroquine resistance transporter drug transporter activity 

PF07_0101 2190 conserved Plasmodium protein, 
unknown function null 

MAL8P1.53 514 conserved Plasmodium protein, 
unknown function null 

PFI0880c 396 glideosome-associated protein 50 null 

PFI1090w 402 S-adenosylmethionine synthetase methionine adenosyltransferase 
activity, ATP binding 



Results 
   

 
 

 - 68 - 
 

PFI1270w 217 conserved Plasmodium protein, 
unknown function null 

PFI1445w 1378 High molecular weight rhoptry 
protein-2 null 

PF11_0069 266 conserved Plasmodium protein, 
unknown function molecular function 

PF11_0098 343 endoplasmic reticulum-resident 
calcium binding protein calcium ion binding 

PF11_0281 287 protein phosphatase, putative phosphatase activity 
PF11_0301 321 spermidine synthase spermidine synthase activity 
PF11_0506 6093 Antigen 332, DBL-like protein molecular function, receptor activity 

PFL2215w 376 actin I structural constituent of cytoskeleton, 
protein binding 

PF13_0143 437 phosphoribosylpyrophosphate 
synthetase 

ribose phosphate diphosphokinase 
activity, magnesium ion binding 

PF13_0272 208 thioredoxin-related protein, putative protein disulfide isomerase activity 
PF14_0075 449 plasmepsin IV aspartic-type endopeptidase activity 
PF14_0076 452 plasmepsin I aspartic-type endopeptidase activity 
PF14_0077 453 plasmepsin II aspartic-type endopeptidase activity 

PF14_0105 334 conserved Plasmodium protein, 
unknown function molecular function 

PF14_0486 832 elongation factor 2 translation elongation factor activity, 
GTP binding, GTPase activity 

PF14_0541 717 V-type H(+)-translocating 
pyrophosphatase, putative 

hydrogen-translocating 
pyrophosphatase activity, hydrogen 
ion transmembrane transporter 
activity, inorganic diphosphatase 
activity 

PF14_0598 337 glyceraldehyde-3-phosphate 
dehydrogenase 

glyceraldehyde-3-phosphate 
dehydrogenase (phosphorylating) 
activity, NAD or NADH binding 

PF14_0655 398 helicase 45 

translation initiation factor activity, 
RNA cap binding, ATP binding, 
mRNA binding, ATP-dependent 
helicase activity 

 
Target candidates are listed according to gene IDs. Protein characteristics are from PlasmoDB.org. The sample was 

treated with ACT-AM-UV, the negative control with ACT-AM-UV-Neg. Proteins detected in samples and negative 

controls were excluded. 

 

 

 

ii) Partial gel analysis  

 

Pull-downs for partial gel analysis were essentially performed as described above under i) 

with the modifications that parasites treated with ACT-AM-UV-Neg instead of ACT-

AM-UV were used as a negative control, the resulting protein gel was silver stained and 
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only the areas which differed in the amount of protein (sample vs. control, Figure 4.5) 

were cut out for mass spectrometry. Partial gel analysis thus enabled the visual exclusion 

of probably unspecific binding partners of ACT-AM prior to mass spectrometry. 

Identified proteins are listed in Table 4.5. 

 

 

 
Figure 4.5. Silver staining of pull-down experiments using compounds UV-

activated after saponin lysis.  The sample was treated with ACT-AM-UV, the 

negative control with ACT-AM-UV-Neg. M) marker, A) first wash,  B) first wash of 

negative control, C) last wash, D) last wash of negative control, E) elution, F) 

elution of negative control. Differentially stained areas of the gel (in lanes E and F) 

were cut out for mass spectrometry. 

 
 
 
 
 

Table 4.5. Target candidates from pull-downs with UV-activatable compounds using partial gel 

analysis and a non-competitive control. 

Gene ID Protein 
Length Product Description Annotated GO Function 

PFA0160c 434 nucleoside transporter, putative null 
PFA0760w 379 rifin molecular function 

PFB0210c 504 hexose transporter, PfHT1 monosaccharide transmembrane 
transporter activity 

PFB0220w 354 ubiE/COQ5 methyltransferase family, 
putative 

quinone cofactor methyltransferase 
activity 

PFC0730w 221 HVA22/TB2/DP1 family protein, 
putative molecular function 
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PFC0775w 161 40S ribosomal protein S11, putative structural constituent of ribosome 
PFD1055w 170 40S ribosomal protein S19, putative structural constituent of ribosome 

PFE1155c 534 mitochondrial processing peptidase 
alpha subunit, putative 

ubiquinol-cytochrome-c reductase 
activity, zinc ion binding 

PFE1285w 300 membrane skeletal protein IMC1-
related null 

PFF0435w 414 ornithine aminotransferase pyridoxal phosphate binding, ornithine-
oxo-acid transaminase activity 

PFF0690c 853 organic anion transporter null 

PFF0815w 521 malate:quinone oxidoreductase, 
putative 

malate dehydrogenase (acceptor) 
activity 

PFF0825c 377 mitochondrial import receptor subunit 
tom40 voltage-gated anion channel activity 

PFF0870w 795 conserved Plasmodium membrane 
protein, unknown function null 

PFF1025c 301 pyridoxine/pyridoxal 5-phosphate 
biosynthesis enzyme catalytic activity 

PFF1300w 511 pyruvate kinase magnesium ion binding, potassium ion 
binding, pyruvate kinase activity 

MAL7P1.229 1394 Cytoadherence linked asexual 
protein null 

MAL7P1.27 424 chloroquine resistance transporter drug transporter activity 
PF07_0088 195 40S ribosomal protein S5, putative structural constituent of ribosome 
MAL8P1.69 262 14-3-3 protein, putative protein domain specific binding 
PF08_0054 677 heat shock 70 kDa protein ATP binding 

PFI0385c 416 P1 nuclease, putative hydrolase activity, acting on ester 
bonds 

PFI0880c 396 glideosome-associated protein 50 null 
PFI0930c 269 nucleosome assembly protein null 

PFI1270w 217 conserved Plasmodium protein, 
unknown function null 

PFI1310w 839 NAD synthase, putative ATP binding, NAD+ synthase 
(glutamine-hydrolyzing) activity 

PFI1370c 353 phosphatidylserine decarboxylase phosphatidylserine decarboxylase 
activity 

PF10_0068 246 RNA binding protein, putative nucleic acid binding 

PF10_0212a 2072 conserved Plasmodium protein, 
unknown function null 

PF10_0366 301 ADP/ATP transporter on adenylate 
translocase ATP:ADP antiporter activity, binding 

PF11_0069 266 conserved Plasmodium protein, 
unknown function molecular function 

PF11_0246 1336 conserved Plasmodium protein, 
unknown function molecular function 

PF11_0313 316 60S ribosomal protein P0 structural constituent of ribosome 

PFL0210c 161 eukaryotic initiation factor 5a, 
putative translation initiation factor activity 

PFL0720w 245 conserved Plasmodium membrane 
protein, unknown function molecular function 

PFL1720w 442 serine hydroxymethyltransferase glycine hydroxymethyltransferase 
activity 

PFL2005w 336 replication factor C subunit 4 ATP binding, DNA clamp loader activity 

PFL2060c 459 rabGDI protein Rab GDP-dissociation inhibitor activity, 
Rab GTPase activator activity 
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PFL2275c 304 FK506-binding protein (FKBP)-type 
peptidyl-propyl isomerase 

FK506 binding, peptidyl-prolyl cis-trans 
isomerase activity 

PF13_0033 393 26S proteasome regulatory subunit, 
putative 

ATP binding, nucleoside-
triphosphatase activity, endopeptidase 
activity 

PF13_0143 437 phosphoribosylpyrophosphate 
synthetase 

ribose phosphate diphosphokinase 
activity, magnesium ion binding 

MAL13P1.221 375 aspartate carbamoyltransferase amino acid binding, aspartate 
carbamoyltransferase activity 

MAL13P1.413 249 membrane associated histidine-rich 
protein, MAHRP-1 null 

PF14_0105 334 conserved Plasmodium protein, 
unknown function molecular function 

PF14_0201 969 surface protein, Pf113 molecular function 
PF14_0439 605 M17 leucyl aminopeptidase manganese ion binding 

PF14_0541 717 V-type H(+)-translocating 
pyrophosphatase, putative 

hydrogen-translocating 
pyrophosphatase activity, inorganic 
diphosphatase activity, hydrogen ion 
transmembrane transporter activity 

PF14_0543 412 signal peptide peptidase aspartic-type endopeptidase activity 

PF14_0567 340 conserved Plasmodium protein, 
unknown function molecular function 

PF14_0655 398 helicase 45 

translation initiation factor activity, RNA 
cap binding, ATP binding, ATP-
dependent helicase activity, mRNA 
binding 

 

Target candidates are listed according to gene IDs. Protein characteristics are from PlasmoDB.org. The sample was 

treated with ACT-AM-UV, the negative control with ACT-AM-UV-Neg. Proteins detected in samples and negative controls 

were excluded. 

 

 

4.6.2 UV-activation of compounds in living cells before saponin lysis 
 
Pull-downs using 3D7 cultures UV-irradiated before saponin treatment were conducted to 

probe whether the UV-dependent pull-down system is applicable for parasites within 

intact RBCs. The experiments were essentially carried out as described above under 4.6.1 

i). The negative control consisted of cultures incubated with an excess of ACT-AM 

(competition) prior to the addition of ACT-AM-UV whereas the sample was treated with 

ACT-AM-UV only. Differentially silver stained areas of the gel (Figure 4.6) were cut out 

for mass spectrometry. MDR (multidrug resistance protein, PFE1150w) was the only 

identified protein (samples vs. negative controls). 
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Figure 4.6. Silver staining of pull-down experiments using compounds UV-

activated in living cells. The sample was treated with ACT-AM-UV, the 

negative control with an excess of ACT-AM (competition) prior to the addition 

of ACT-AM-UV. M) marker, A) first wash,  B) first wash of negative control, C) 

last wash, D) last wash of negative control, E) elution, F) elution of negative 

control. Differentially stained areas of the gel (in lanes E and F) were cut out 

for mass spectrometry. 

 
 
 
 

4.7   Pull-down experiments using monomeric avidin systems 

Pull-downs with monomeric avidin systems were used in early attempts to find targets of 

ACT-AM. This method seemed helpful as it enables specific and mild elution conditions 

using competition with biotin instead of denaturation at 94°C.  

Parasites used for pull-downs with monomeric avidin beads were lysed in Triton X-100 

lysis buffer. Beads were charged with the biotinylated compounds (ACT-AM-Biotin) and 

the negative control (less active derivative of ACT-AM-Biotin: same biotin group, 

different i.e. incomplete parent scaffold) before incubation with lysate. Bound proteins 

were eluted and separated on a protein gel. As depicted in a representative gel (Figure 

4.7), using this method, no differences between samples and controls were visible, 
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probably due to the fact that parasite lysates which partially exhibit denatured proteins 

had to be incubated with ACT-AM-Biotin. 

 

 

 
Figure 4.7. Silver staining of pull-down experiments using monomeric avidin 

systems. The sample beads were charged with ACT-AM-Biotin and the beads of 

the negative control with a less active derivative of ACT-AM-Biotin (same biotin 

group, different i.e. incomplete parent scaffold). M) marker, A) first wash, B) first 

wash of negative control, C) third wash, D) third wash of negative control, E) last 

wash, F) last wash of negative control, G) elution, H) elution of negative control.  

 

 

 

4.8   Early pull-down experiments 
 

Numerous early experiments using non-magnetic streptavidin beads in conjunction with 

ACT-AM-Biotin or compounds which were directly linked to sepharose beads (ACT-

Seph) did not lead to reproducible differences in band patterns (sample vs. control, data 

not shown). Probably, this was again largely attributable to the fact that lysed i.e. 

denatured parasites had to be used for both methods. 

191kD

97kD

64kD

51kD

39kD

28kD

19kD

M    A    B             C    D            E    F             G    H  

191kD191kD

97kD97kD

64kD64kD

51kD51kD

39kD39kD

28kD28kD

19kD19kD

M    A    B             C    D            E    F             G    H  



Results 
   

 
 

 - 74 - 
 

4.9   Overlap of target candidates 

 

Target candidates which were independently identified at least twice (using at least two 

different UV-dependent pull-down methods) are listed in Table 4.6.  

 

Table 4.6. Overlap of target candidates identified by several pull-down experiments. 

Gene ID Protein 
Length Product Description Annotated GO Function 

MAL7P1.27 424 chloroquine resistance transporter drug transporter activity 

PF07_0101 2190 conserved Plasmodium protein, 
unknown function null 

PF11_0069 266 conserved Plasmodium protein, 
unknown function molecular function 

PF13_0143 437 phosphoribosylpyrophosphate 
synthetase 

ribose phosphate diphosphokinase 
activity, magnesium ion binding 

PF13_0272 208 thioredoxin-related protein, 
putative protein disulfide isomerase activity 

PF14_0105 334 conserved Plasmodium protein, 
unknown function molecular function 

PF14_0541 717 V-type H(+)-translocating 
pyrophosphatase, putative 

hydrogen-translocating 
pyrophosphatase activity, hydrogen 
ion transmembrane transporter 
activity, inorganic diphosphatase 
activity 

PF14_0655 398 helicase 45 

translation initiation factor activity, 
RNA cap binding, ATP binding, 
mRNA binding, ATP-dependent 
helicase activity 

PFA0160c 434 nucleoside transporter, putative null 

PFA0375c 1470 lipid/sterol:H+ symporter hedgehog receptor activity 

PFE1150w 1419 multidrug resistance protein 

ATP binding, multidrug efflux pump 
activity, ATPase activity, coupled to 
transmembrane movement of 
substances 

PFB0210c 504 hexose transporter, PfHT1 monosaccharide transmembrane 
transporter activity 

PFE1285w 300 membrane skeletal protein IMC1-
related null 

PFF0435w 414 ornithine aminotransferase 
pyridoxal phosphate binding, 
ornithine-oxo-acid transaminase 
activity 

PFF0690c 853 organic anion transporter null 
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PFF1300w 511 pyruvate kinase magnesium ion binding, potassium 
ion binding, pyruvate kinase activity 

PFI0880c * 396 glideosome-associated protein 50 null 

PFI1090w 402 S-adenosylmethionine synthetase methionine adenosyltransferase 
activity, ATP binding 

PFI1270w 217 conserved Plasmodium protein, 
unknown function null 

PFL2215w 376 actin I structural constituent of cytoskeleton, 
protein binding 

 

Target candidates independently identified at least twice (with at least two different UV-dependent pull-down 

methods) are listed according to gene IDs. Protein characteristics are from PlasmoDB.org. Proteins detected in 

samples and negative controls were excluded. * Independently identified three times (with three different pull-down 

methods). 

 

 

 

4.10  Validation of target candidates 

Target candidates were chosen for validation based on reproducibility (detected using 

several methods and experiments: pull-downs and microarray, see 4.12) and feasibility of 

in vitro activity assays. A further criterion for target candidates was expression in all 

asexual P. falciparum blood stages, since ACT-AM was shown to act in a stage 

unspecific way (Figure 4.1). 

 

 

4.10.1   Multi drug resistance protein  
 
Interactions of ACT-AM with the multidrug resistance protein (MDR, ID: PFE1150w) 

were investigated in vitro by Corinna Mattheis in the laboratory of David Fidock in New 

York.  

In vitro susceptibility of P. falciparum to several antimalarials has been demonstrated to 

correlate with the gene copy number of mdr (Sidhu et al. 2006). This was shown for 

mefloquine and related drugs by measuring IC50 values against two P. falciparum strains 

with either 1 (strain 1) or 2 (strain 2) mdr gene copies, respectively. The gene copy 

number was found to correlate to the amount of protein and to the respective IC50 values 



Results 
   

 
 

 - 76 - 
 

as strain 2 was significantly less susceptible to mefloquine than strain 1 (Sidhu et al. 

2006). 

 

ACT-AM showed the same pattern as the positive control mefloquine with respect to in 

vitro activity against the two strains (Table 4.7), thus implicating an interaction of the 

compound with MDR. 

 

 
Table 4.7. In vitro antimalarial response of P. falciparum strains exhibiting either 1 or 2 multidrug 

resistance protein (mdr) gene copies. 

 ACT-AM mefloquine 
    
 IC50s (nM) 

 
IC50s (nM) 

 

 strain 2 strain 1 strain 2 strain 1 
 (2 copies) (1copy) ratio strain 2:1 (2 copies) (1copy) ratio strain 2:1
    
Exp1 4.9 2.4 2.1  43.1 17.6 2.4 
Exp2 3.9 1.9 2.1  34.4 14.1 2.4 
Exp3 1.4 0.6 2.1  25.9 13.4 1.9 
Exp4 0.8 0.4 1.9  6.7 5.5 1.2 
 

In vitro activities of ACT-AM and mefloquine against P. falciparum strains with either 1 or 2 multidrug resistance protein 

(mdr) gene copies were determined by Corinna Mattheis according to Sidhu et al., 2006 in the laboratory of David 

Fidock in New York. Exp: Experiment. 

 

 

Statistical analysis showed that the IC50 patterns of ACT-AM and mefloquine are not 

significantly different (Table 4.8).  

The confidence intervals of the geometric mean ratios for ACT-AM and mefloquine 

include 2, meaning that both geometric mean ratios are not significantly different from 2 

at the usual 5%-level. On the other hand, both geometric mean ratios are significantly 

different from 1 at the 5%-level as their confidence intervals do not include 1.  

Finally, the ratio of geometric mean ratios between ACT-AM and mefloquine is very 

close to 1 and the 95%-confidence interval includes 1, showing that this ratio is not 

significantly different from 1 at the 5%-level. 
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Table 4.8. Statistical analysis of in vitro activities of ACT-AM and mefloquine 

against P. falciparum strains with either 1 or 2 multidrug resistance protein (mdr) 

gene copies. 

  

geometric mean ratio 
ratio: (IC50s strain 2: IC50s strain 1) 

 

95%-confidence interval 

ACT-AM 2.10 1.88 to 2.35 
mefloquine 1.94 1.15 to 3.27 
   
 ratio of geometric mean ratios 

(ACT-AM vs. mefloquine) 
 

 1.09 0.65 to 1.82 
 

Geometric means of IC50-ratios between P. falciparum strains with 1 or 2 multidrug resistance protein 

(mdr) gene copies were statistically analyzed to compare the in vitro responses to ACT-AM and 

mefloquine. 

 

 

 

4.10.2   Equilibrative Nucleoside Transporter 4 
 
In vitro interactions of the Equilibrative Nucleoside Transporter 4 (ENT4 gene ID: 

PFA0160c: nucleoside transporter, putative) with ACT-AM were studied by I. J. Frame 

in the laboratory of Myles Akabas in New York.  

[3H]adenine uptake of Xenopus laevis oocytes heterologously expressing PfENT4, 

PvENT4 (Plasmodium vivax) or PfENT1 was measured under treatment with ACT-AM 

or its enantiomer ACT-AM-EN2 which was less active against P. falciparum in vitro 

(Table 4.1).  

In presence of ACT-AM, PfENT4-mediated transport of [3H]adenine was found to 

decrease in a concentration-dependent manner (Figure 4.8.A).  

The effect of ACT-AM seemed more pronounced for PfENT4 than for PvENT4, whereas 

no effect was observed for PfENT1 (Figure 4.8.B).  

ACT-AM and ACT-AM-EN2 were shown to affect [3H]adenine uptake to an equal 

extent, therefore, both enantiomers seem to similarly interact with the transporter in this 

assay (Figure 4.8.C). 
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A 

 
     
B 

 
 

     
C 

 
Figure 4.8. In vitro effect of ACT-AM on [3H]adenine transport via Plasmodium Equilibrative 

Nucleoside Transporters expressed in Xenopus laevis oocytes. Before exposure to [3H]adenine, 

oocytes were preincubated in transport buffer with ACT-AM (black bars), solvent control (white 

bars) or ACT-AM-EN2 (grey bars). Bars represent the mean uptake of 7 or 8 oocytes and error 

bars are standard deviations. Tests were performed by I. J. Frame in the laboratory of Myles 

Akabas in New York. 
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4.10.3   Chloroquine Resistance Transporter 
 
Interactions of ACT-AM with the Chloroquine Resistance Transporter (CRT, gene ID: 

MAL7P1.27) were investigated in vitro using Xenopus laevis oocytes by Sebastiano 

Bellanca in the laboratory of Michael Lanzer in Heidelberg.  

Both, ACT-AM and ACT-AM-EN2, showed a concentration-dependent effect on CRT-

mediated [3H]CQ transport suggesting an interaction between the compounds and the 

transporter (Figure 4.9.A). The observed effect was more attributable to the compounds 

than to DMSO (Figure 4.9.B). 

 

 

 

A 



Results 
   

 
 

 - 80 - 
 

B 

 
 
Figure 4.9. In vitro effect of ACT-AM on [3H]CQ transport via P. falciparum Chloroquine Resistance Transporter expressed in 

Xenopus laevis oocytes. Oocytes were incubated in transport buffer (white bars) with ACT-AM (black bars) or ACT-AM-EN2 

(grey bars: Figure A only). Bars represent the mean uptake of 10 oocytes and error bars are standard deviations. Tests were 

performed by Sebastiano Bellanca in the laboratory of Michael Lanzer in Heidelberg. 

 

 

 

4.10.4   Aldolase  

Coupled to a NADH-consuming reaction, the in vitro activity of aldolase (fructose-

bisphosphate aldolase, PF14_0425) can be measured photometrically (3.12.4).  

The enzymatic assay itself was first validated using increasing aldolase concentrations 

while all other factors were kept constant. The activity appeared to be directly 

proportional to the amount of aldolase (Figure 4.10.A).  

To avoid saturation of the tested enzyme, inhibition assays were performed at the 

experimentally determined KM (Michaelis Constant). The measured KM was approx. 

21μM (Figure 4.10.B). 
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 Figure 4.10. In vitro fructose-bisphosphate aldolase activity. Aldolase activity was photometrically determined in a 

NADH-consuming coupled assay. A) Enzyme activity was directly proportional to aldolase concentration (final volume: 

725μl), R2 = 0.9993.  B) Saturation curve of aldolase. The kinetics data were fitted and the KM was determined using 

Prism software, KM = 21μM. 
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To test whether ACT-AM inhibits aldolase activity in vitro, the substrate concentration 

was set equal to the KM value (approx. 21μM) while ACT-AM was applied at 1 and 

10μM. For both concentrations (approx. 10μM being the highest possible concentration 

in aqueous solution for solubility reasons), ACT-AM displayed no inhibitory effect on 

aldolase activity (Table 4.9.). 

 

 

 
Table 4.9. Effect of ACT-AM on aldolase activity. 

 

 

no inhibitor 
(DMSO) 

 

ACT-AM (1μM) 
 

ACT-AM (10μM) 

 

Activity (μM NADH/min*mg) 
 

15777 ± 246 
 

15981 ± 85 
 

16334 ± 32 

Activity compared to untreated     - + 1.22% + 3.5% 
 

Mean in vitro activity of fructose-bisphosphate aldolase ± standard deviations (n = 3 independent experiments) in 

presence and absence of ACT-AM measured by photometry.  

 

 

 

4.10.5   M17 leucyl aminopeptidase  

M17 leucyl aminopeptidase (PF14_0439) was tested for its in vitro activity under 

treatment with ACT-AM in the laboratory of Colin Stack in Sydney.  

In contrast to the reference compounds, ACT-AM does not seem to inhibit the enzyme 

(Figure 4.11). 
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Figure 4.11. Effect of ACT-AM on M17 leucyl aminopeptidase. In vitro enzyme activity was determined using several 

fluorogenic peptide substrates by the method of Stack et al., 2006. Tests were performed in the laboratory of Colin Stack 

in Sydney. Positive controls: Bestatin and Compound 4. RFU: relative fluorescence units. 

 

 

 

 

4.10.6   Spermidine synthase, S-adenosylmethionine synthetase, and        

  secreted acid phosphatase 
 
In vitro activities of spermidine synthase (PF11_0301), S-adenosylmethionine synthetase 

(PFI1090w), and secreted acid phosphatase (or glideosome-associated protein 50: 

PFI0880c) were tested by Ingrid Müller in the laboratory of Rolf Walter in Hamburg. 

None of the tested enzymes were inhibited by ACT-AM (Figure 4.12, Figure 4.13, Figure 

4.14). 
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Figure 4.12. Spermidine synthase activity under treatment with ACT-AM. In vitro activity of 

spermidine synthase was tested after Haider et al., 2005 and Dufe et al., 2007 by 

measuring the formation of [14C] labeled reaction products from [14C]putrescine. Tests were 

performed by Ingrid Müller in the laboratory of Rolf Walter in Hamburg. Data are the means 

± SD of n = 3 independent experiments.  
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Figure 4.13. Effect of ACT-AM on S-adenosylmethionine synthetase.  Enzyme activity was 

measured in vitro using [14C]S-adenosyl-L-(methyl-)methionine as a substrate according to 

Das Gupta 2005. Tests were performed by Ingrid Müller in the laboratory of Rolf Walter in 

Hamburg. Data are the means ± SD of n = 5 independent experiments. 
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Figure 4.14. Effect of ACT-AM on secreted acid phosphatase. In vitro activity of secreted acid phosphatase 

was measured using [14C]ATP as a substrate by the method of Müller et al., 2010. Tests were performed by 

Ingrid Müller in the laboratory of Rolf Walter in Hamburg. Data are the means ± SD of n = 3 independent 

experiments.  

 

 

 

4.11  Hematin interaction studies 

 
An often published MOA of chloroquine and other quinolines involves the inhibition of 

synthetic hemozoin (beta-hematin) formation (introduction 1.2). To examine if ACT-AM 

exhibits an MOA similar to that of quinolines, interaction studies of the compound with 

hematin were conducted. 

 

4.11.1  Inhibition of beta-hematin formation 

Quinoline antimalarials were shown to inhibit the formation of synthetic hemozoin from 

hematin in vitro, resulting in unreacted hematin (Egan et al. 1994). This process can be 

monitored using pyridine which coordinates to unreacted hematin (not to hemozoin) 

leading to a reddish complex (Ncokazi & Egan 2005). 

In vitro beta-hematin (hemozoin) formation can be brought about when hematin is 

incubated with a saturated acetate solution at 60°C.  
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Inhibition of beta-hematin formation was shown for chloroquine (positive control, red), 

whereas ACT-AM and solvent (negative control, colorless) showed no inhibition (Figure 

4.15). 

The experiment was carried out with Sandra Vargas who had adapted the method from 

(Ncokazi & Egan 2005) in the laboratory of Karine Ndjoko in Geneva. 

 

 

 
 

Figure 4.15. Beta-hematin formation assay. Detection of a red complex 

indicated inhibition of beta-hematin formation, whereas solutions without 

inhibition remained colorless. Positive control: Chloroquine. Negative control: 

Solvent. 

 
 
 
 

4.11.2  Spectrophotometric measurement of hematin interactions 

Compounds interacting with hematin such as quinolines which inhibit beta-hematin 

formation were demonstrated to alter the absorbance of hematin solutions in vitro 

(reviewed by Egan 2006). This change in absorbance is thought to be caused by 

quinolines forming π–π complexes with hematin (Egan & Ncokazi 2004). 

Neither ACT-AM nor ACT-AM-EN2 showed a concentration-dependent effect on 

hematin absorbance (Figure 4.16.A, B, respectively). For the positive controls, 

chloroquine and mefloquine, a clear dose-dependent effect was observed (Figure 4.16.C, 

D, respectively), whereas pyrimethamine (negative control) did not alter the absorbance 

of hematin (Figure 4.16.E). 
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Figure 4.16. Spectrophotometric measurement of hematin interactions. The absorbance of hematin solutions titrated with 

test compounds was monitored using a UV–visible spectrophotometer.  A) ACT-AM, B) ACT-AM-EN2 C) chloroquine, D) 

mefloquine, E) pyrimethamine. 
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4.12  Microarray 
 
 

In order to learn more about the MOA of ACT-AM, microarray studies were performed. 

In vitro gene expression of ACT-AM-treated vs. untreated 3D7 parasites was compared 

to expression patterns induced by several previously assessed antimalarial compounds 

(Hu et al. 2010). 

Highly synchronized 3D7 P. falciparum parasites were treated with an IC90 of ACT-AM 

and control samples with the respective amount of DMSO starting at t0 = 32h post-

infection for 1, 2, 4, 6, and 8h.  

Hybridization and comparison to expression patterns of 20 different antimalarial 

compounds were performed by Enghow Lim and Zbynek Bozdech, respectively in 

Singapore. 

Additional analysis of the differentially regulated genes was conducted in-house; the 

results, including a detailed heat map, are summarized in the appendix (6.1). 

For the comparison of transcriptional responses to treatments (ACT-AM vs. other 

antimalarial compounds), Zbynek Bozdech included genes which were differentially 

expressed under treatment with ACT-AM by at least two-fold at more than one time 

point. Applying these criteria, ACT-AM altered the expression of 552 genes of which 

407 were up- and 145 down-regulated (Figure 4.17.A). For the up-regulated genes, 

functional enrichment analysis has revealed statistical overrepresentation of several basic 

cellular and metabolic pathways (Figure 4.17.B). These include protein synthesis 

(ribosomal subunits and assembly factors) and posttranslational modifications of proteins 

(N-myristoylation, S-acylation and prenylation). Furthermore, a major lipid metabolism 

pathway (phosphatidylethanolamine and phosphatidylserine metabolism) and its 

supporting glycine and serine metabolic pathway were significantly up-regulated. In 

addition, a total of 18 protein kinases was found to be up-regulated by ACT-AM. On the 

other hand, treatment with the compound caused significant down-regulation of 

numerous components of the merozoite invasion machinery. 
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Hu and coworkers have recently characterized and profiled gene expression patterns 

induced by 20 different antimalarial compounds (Hu et al. 2010). The compounds are 

described in Table 4.10. 

The comparison of the transcriptional response induced by ACT-AM to these 20 

established profiles is summarized in Figures 4.17.C and D.   

Hierarchical clustering analysis revealed four principal groups of the 20 perturbations 

(Hu et al. 2010) based on similarities in induced expression patterns. The results are 

depicted as a principal coordinate plot (Figure 4.17.C) or a dendrogram (Figure 4.17.D). 

ACT-AM clustered closely with a subset of the perturbations which included generic 

protein kinase inhibitors such as staurosporine and ML-7 on one side and retinol A (a 

vitamin A alcohol interacting with membranes) or the serine protease inhibitor PMSF on 

the other side. Importantly, ACT-AM was not found in the same cluster as the 

antimalarial drugs chloroquine, quinine and artemisinin (Figure 4.17.C and D). 
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Figure 4.17. Analyses of genome-wide transcriptional response of P. falciparum parasites to treatment with ACT-AM. Highly 

synchronized 3D7 schizonts were treated with ACT-AM (IC90) and control samples with the respective amount of DMSO. RNA was 

collected after 1, 2, 4, 6 and 8h of treatment. A) The heat map represents clustering of genes found to be differentially expressed by 
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at least two fold at more than one time point. B) The pie charts show significantly enriched pathways under treatment (P < 0.05) 

identified by functional enrichment analysis. Depicted is the fraction of differentially expressed genes which are within (colored) and 

not within (grey) the enriched functional pathways, the number and percentage of genes in each cluster are indicated. C) 3-

dimensional principal coordinate plot in which distances between points indicate the degree in similarity between transcriptional 

profiles of individual antimalarial compounds. D) Dendrogram of hierarchical clustering of transcriptional responses to compounds 

revealed four distinct clusters. The color code is consistent in C and D. 

 

 

 

Table 4.10. Comparator compounds of microarray analysis. 

 

Compound 
 

Description 
 

 

EGTA ethylene glycol tetraacetic acid, chelating agent, high affinity to calcium 
(Lau & Gnegy 1982)  

Na3VO4 sodium orthovanadate, phosphatase inhibitor (Harayama et al. 2004)  

Colchicine microtubule polymerization inhibitor (Margolis & L. Wilson 1977)  

Roscovitine cyclin-dependent kinase inhibitor (Ma et al. 2003)  

FK506 tacrolimus, calcineurin pathway inhibitor (Hu et al. 2010)  

Cyclosporine A calcineurin pathway inhibitor (Hu et al. 2010)  

Febrifugine antimalarial activity, unknown MOA (McLaughlin & Evans 2010)  

E64 
 

N-(trans-epoxysuccinyl)-l-leucine-4-guanidinobutylamide, cysteine 
peptidase inhibitor (Parikh et al. 2006) 
 

 

Leupeptin cysteine, serine and threonine peptidase inhibitor (Rawlings 2010)   

KN93 calmodulin kinase II (CaMKII) inhibitor (Silva-Neto et al. 2002)  

W-7 calcium/calmodulin-dependent protein kinase inhibitor (Hu et al. 2010)  

Apicidine histone deacetylase inhibitor (Hu et al. 2010)   

Trichostatin A histone deacetylase inhibitor (Hu et al. 2010)  

ML-7 calcium/calmodulin-dependent protein kinase inhibitor (Hu et al. 2010)   

Staurosporine inhibitor of multiple kinases (Karaman et al. 2008)  

Retinol A 
 

probable interaction with phospholipid molecules of intracellular 
membranes (Hamzah et al. 2004) 
 

 

PMSF 
 

phenylmethanesulfonylfluoride, serine protease inhibitor (Rupp et al. 
2008) 

 
 

Description of compounds which were used for P. falciparum transcriptional profiling by Hu et al. 2010. 
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4.13   Overlap of pull-down and microarray results 

 

Gene candidates which were identified in both pull-down and microarray experiments are 

listed in Table 4.11.  

 

 

 
Table 4.11. Overlap of gene candidates identified by both pull-down and microarray 

experiments. 

Gene ID Product Description Annotated GO Function  

PFA0760w rifin molecular function 

PFE1150w multidrug resistance protein 
ATP binding, multidrug efflux pump activity, 
ATPase activity, coupled to transmembrane 
movement of substances 

PFF0815w malate:quinone 
oxidoreductase, putative malate dehydrogenase (acceptor) activity 

PFF0825c mitochondrial import 
receptor subunit tom40 voltage-gated anion channel activity 

MAL7P1.228 Heat Shock 70 KDa Protein, 
(HSP70) ATP binding 

PF07_0029 heat shock protein 86 ATP binding, unfolded protein binding 

PF07_0033 Cg4 protein ATP binding 

PF08_0054 heat shock 70 kDa protein ATP binding 

PF11_0506 Antigen 332, DBL-like 
protein molecular function, receptor activity 

MAL13P1.221 aspartate 
carbamoyltransferase 

amino acid binding, aspartate 
carbamoyltransferase activity 

MAL13P1.413 
membrane associated 
histidine-rich protein, 
MAHRP-1 

null 

PF14_0076 plasmepsin I aspartic-type endopeptidase activity 

U 

P 
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PFC0120w Cytoadherence linked 
asexual protein 3.1 cell adhesion molecule binding 

PFE0080c rhoptry-associated protein 2, 
RAP2 null 

PFE1285w membrane skeletal protein 
IMC1-related null 

PFF0870w 
conserved Plasmodium 
membrane protein, unknown 
function 

null 

 

 

D 

O 

W 

N 

 



Results 
   

 
 

 - 94 - 
 

PFI0880c glideosome-associated 
protein 50 null 

PFI1445w High molecular weight 
rhoptry protein-2 null 

PFL0210c eukaryotic initiation factor 
5a, putative translation initiation factor activity 

PFL0720w 
conserved Plasmodium 
membrane protein, unknown 
function 

molecular function 

PFL2215w actin I structural constituent of cytoskeleton, protein 
binding 

PF14_0425 fructose-bisphosphate 
aldolase fructose-bisphosphate aldolase activity 
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PF14_0439 M17 leucyl aminopeptidase manganese ion binding  
 

Target candidates identified in both pull-down and microarray experiments are listed according to gene IDs. Protein 

characteristics are from PlasmoDB.org. Candidates of the microarray experiment which showed at least a 2-fold 

expression change at > one time point under treatment were used for analysis. 

 

 

 

4.14  qPCR 
 
 
Microarray results were validated by means of qPCR (Real-Time quantitative PCR) using 

the ΔΔCT method. Primers were validated with regard to amplification efficiencies 

(detailed in appendix 6.2). 

 

The ΔΔCT method is used to determine the relative target (gene X) quantity in samples 

and is therefore an often used tool to validate data from microarray experiments.  

Six randomly chosen genes of the microarray data set (two up-regulated, two down-

regulated, two invariant at timepoint 3 = 4h) were compared (microarray vs. qPCR). For 

this method, amplification of these genes (here described for one gene X) and of the 

endogenous control (e.g. a housekeeping gene: HK, here: PFL0900c, arginyl-tRNA 

synthetase) in samples (treated with ACT-AM) and in a reference sample (untreated) 

were measured and normalized using the endogenous control. The relative quantity of the 

genes in every sample was determined by comparing normalized gene X quantity in 
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every sample to normalized gene X quantity in the reference sample. The amount of gene 

X (treated), relative to the reference (untreated) and normalized to the endogenous 

control (HK), is given by:   

 

2 
–ΔΔC

T  whereby  

ΔΔCT =   ΔCT, treated – ΔCT, untreated = 

(CT of gene X, treated – CT of HK, treated) – (CT of gene X, untreated – CT  of HK, untreated) 

 

According to the validation, the qPCR results are comparable to those of the microarray 

experiment (Figure 4.18). 

 

 

 
 

Figure 4.18. Validation of microarray data using qPCR. The fold change (treated with an IC90 of ACT-AM vs. untreated) is 

given by 2 
–ΔΔC

T,  ΔΔCT =   ΔCT, treated – ΔCT, untreated = (CT of gene X, treated – CT of HK, treated) – (CT of gene X, 

untreated – CT  of HK, untreated), HK: housekeeping gene: PFL0900c, arginyl-tRNA synthetase. Six randomly chosen 

genes of the microarray data set (two up-regulated, two down-regulated, two invariant at timepoint 3 = 4h) were 

investigated. Gene A: PFL0035c, acyl-CoA synthetase, PfACS7; gene B:  PF10_0380, serine/threonine protein kinase, 

FIKK family; gene C: PF13_0196, MSP7-like protein; gene D: PF14_0545, thioredoxin, putative; gene E: PFA0310c, 

calcium-transporting ATPase; gene F: PFL1550w, lipoamide dehydrogenase. Bars represent one experiment (microarray) 

and the mean of n = 3 values (wells) of the same experiment (qPCR). 

-3 
-2 
-1 
0 
1 
2 
3 
4 

Gene A Gene B Gene C Gene D Gene E Gene F 

Lo
g 2

 e
xp

re
ss

io
n 

ra
tio
 

Microarray 
qPCR 



Discussion 
   

 
 

 - 96 - 
 

5 Discussion 
 

5.1 In vitro activity of ACT-AM and derivatives 
 
The investigated antimalarial lead compound, ACT-AM, showed an IC50 against 

erythrocytic P. falciparum in the low single-digit nanomolar range, a value that is 

comparable to those of the most efficacious registered drugs. Semisynthetic artemisinin 

derivatives, for instance, which are the base of highly potent and widely used 

combination therapies (reviewed by Fidock 2010), have similar in vitro activities. One 

example, artesunate, used as a reference drug for this thesis, had IC50 values between 1.8 

and 7.1nM (determined for seven strains), whereas for ACT-AM, IC50 values between 0.4 

and 3.8nM were measured (Tables 4.1 and 4.2). Even recently published very promising 

novel antimalarial pharmacophores have in vitro activities comparable to that of ACT-

AM, with IC50s in the range of 0.5 to 1.4nM for the spiroindolone NITD609 (Rottmann et 

al. 2010) and 2.8 to 3.4nM for the ozonide OZ439, respectively (Charman et al. 2011).  

Artemisinin derivatives owe their clinical efficacy largely to their fast onset of action and 

activity against all three asexual blood stages of the parasite (reviewed by White 2008). 

In vitro these two key features are shared with ACT-AM as demonstrated measuring the 

time-, stage-, and concentration-dependent effect of the molecule on synchronous 

cultures of P. falciparum (Figure 4.1). 

Since resistance to conventional malaria treatment is rapidly spreading (reviewed by 

Fidock 2010), novel lead compounds with antimalarial activity are routinely tested 

against drug resistant laboratory strains. ACT-AM proved to be highly active against 

seven tested strains in vitro, irrespective of their resistance properties.  

Chemical modifications of pharmacophores can dramatically influence their activity 

(Dumas et al. 1999), therefore, all chemical probes used for the characterization of ACT-

AM, were validated with regard to in vitro activity. Every applied probe i.e. compounds 

used for pull-down experiments or fluorescent imaging largely retained the activity of 

their precursor, suggesting that they still interacted with the same molecular structures of 

the parasite.  
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Furthermore, the enantiomer-specific in vitro activity of ACT-AM points towards an 

enantioselective and distinct target. 

 
 

5.2 UV-activatable compounds  
 

The decision to use photo-activatable capture compounds was a turning point in the 

project as it enabled the application of biochemical methods such as pull-downs, Far 

Western blotting, and fluorescent imaging which were not feasible with conventional 

non-UV-activatable chemical probes. The main advantage of UV-activatable compounds 

lies in their ability to covalently bind to interacting molecular structures upon activation 

(Lenz et al. 2010). This allows the use of harsh conditions in sample processing, such as 

SDS lysis or fixation without loss of the interaction. On the contrary, weaker interactions 

between compounds and their binding partners can easily be broken, as was presumably 

the case for earlier unsuccessful pull-down and fluorescent imaging studies using non-

UV-activatable compounds. These probes have most likely lost contact to their targets 

after extensive washes or fixation with acetone/methanol. 

The formation of a covalent bond between target and compound allows another crucial 

feature of UV-activatable molecules which is the ability to use living or partially 

(saponin) lysed cells. Working under physiological conditions offers the advantage that 

target structures are in their native conformation at the time of activation of the 

compound, i.e. prior to lysis of the parasite. This is in sharp contrast to conventional 

methods for which lysates are mostly prepared before incubation with chemical probes 

whereby target structures may loose their original conformation (see discussion of pull-

down experiments). 

 

Before being used in biochemical binding assays, the UV-activatable capture compound 

ACT-AM-UV was tested for its in vitro activity and pharmacodynamic properties. Not 

only did the compound largely retain the activity of the original antimalarial, it also 

showed a similar in vitro pharmacodynamic pattern and therefore was qualified for 

characterization studies. Moreover, using Far Western blot, fluorescent imaging and pull-



Discussion 
   

 
 

 - 98 - 
 

down experiments (see results section), it could be demonstrated that photo-activatable 

compounds are applicable for P. falciparum in a UV-dependant manner, dispelling the 

concern that UV-light might be unable to penetrate RBCs densely packed with 

hemoglobin (Hawkey et al. 1991). To my knowledge, this is the first time that this 

advantageous UV-dependent system has been implemented for P. falciparum- notably for 

living and partially (saponin) lysed cells. 

 

 

5.3 Fluorescent imaging 
 

Experiments using fluorescent probes were conducted to determine the intracellular 

localization of the site of action of the ACT-AM and to define which fraction of the 

parasite extract was to be used for pull-down experiments. Since pull-downs were 

eventually performed with methods based on photo-activation, compatible to lysis of the 

whole cell using SDS, the fractionation of lysates was omitted.  

The applied fluorescent imaging methods were either direct, using a fluorescein-labeled 

derivative of ACT-AM, or indirect, using a UV-activatable derivative of ACT-AM 

followed by detection of the latter with a streptavidin conjugate. 

With both methods, fluorescent signals were obtained for all investigated parasite stages 

(Figures 4.2 and 4.3) which was in line with the lead compound being effective against 

all asexual blood stages of the parasite. The signals mainly suggested a cytosolic 

distribution of the compound but fluorescence seemed to be detectable in membranous 

structures as well. Membrane localization of ACT-AM would be in agreement with the 

observation of several transporters in pull-down experiments. 

Fluorescent imaging can shed some light on the site of action of a compound, but even 

using electron microscopy, it is difficult to draw conclusions about the MOA based on 

imaging techniques alone. More thorough imaging experiments aimed at target 

identification were therefore not undertaken. 
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5.4 Far Western blotting 
 

Far Western blotting was largely applied to validate the use of UV-activatable 

compounds in P. falciparum. 

It could be shown that the method was compound-, control- and UV-dependent. These 

findings were in accordance with the results of the fluorescent imaging studies and 

therefore encouraged the application of UV-activatable compounds for downstream 

experiments. 

In order not to provoke unspecific signals and to maintain experimental conditions 

comparable to those of pull-down experiments, the concentration of ACT-AM-UV was 

kept low (approx. 2x IC90). Probably due to the low compound concentrations, the limited 

loading capacity of the protein gel and the blotting procedure, the resulting signals were 

generally weak and not congruent with respective gel-patterns of pull-down experiments. 

These limiting factors of the method, in conjunction with the fact that proteins bound to 

blotting membranes are not suitable for mass spectrometry led to the omission of this 

technique for direct target identification studies. 

 

 

5.5 Pull-down experiments  
 
Pull-downs were performed employing a variety of systems with respect to chemical 

probes, controls, lysates and beads. Intriguingly, all significant results of pull-down 

experiments stem from methods using UV-activatable capture compounds, whereas 

attempts with conventional pull-down methods were not successful (sections 4.7 and 4.8). 

The main reason for this observation might be that target structures were in their native 

conformation at the time of interaction with ACT-AM-UV, whereas in the case of 

conventional techniques, cells have to be lysed before interactions can be studied. 

Especially complex structures with multiple membrane-spanning domains easily loose 

their native conformation after detergent-based lysis of membranes (Mancia & Love 

2010). It is therefore plausible that the three identified interaction partners of ACT-AM, 

being complex transporters, were only identifiable using the UV-dependent approach. 
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Moreover, the covalent bond formed between UV-activatable compounds and their 

binding partners allows for harsh washing conditions thereby drastically reducing 

unspecific background, which is usually not feasible with conventional methods without 

loosing target candidates.  

 

 

5.5.1 Validation of target candidates 
 

Numerous target candidates were identified using pull-down experiments (section 4.6). 

Eight target candidates could be tested in vitro, three of which were positive (probable 

interaction with ACT-AM) and five were negative (probably no interaction with ACT-

AM). The three probable interaction partners are discussed below and in the MOA 

section: 

 

MDR (multidrug resistance protein, PFE1150w) 

It could be demonstrated that the in vitro susceptibility of P. falciparum to ACT-AM 

correlated with the gene copy number of mdr suggesting an interaction between the 

compound and the transporter (Tables 4.7 and 4.8). Notably, the effect of ACT-AM on 

MDR was studied using P. falciparum, offering a system much closer to natural 

conditions than e.g. heterologous expression in E. coli. The kind of interaction, however, 

cannot be determined with this system. Either ACT-AM is transported by MDR or the 

compound acts as an inhibitor of the transporter. A straight forward experiment 

addressing the question of how ACT-AM and MDR interact would involve in vitro 

transport studies. Sanchez and coworkers have established such an in vitro system based 

on MDR-expressing Xenopus laevis oocytes to measure the transport of several 3H-

labeled antimalarials (Sanchez et al. 2008). By means of this system and radiolabeled 

ACT-AM, it would be feasible to  

A) Validate the mdr gene copy number-dependent results 

B) Demonstrate transport of ACT-AM  

C) Show inhibition (if MDR-activity decreases in an ACT-AM-dependent way without  

     simultaneous transport of the compound) 
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D) Test the enantioselectivity of the protein 

 

 

ENT4 (Equilibrative Nucleoside Transporter 4, PFA0160c) 

Using Xenopus laevis oocytes, it was found that PfENT4-mediated transport of 

[3H]adenine decreased in an ACT-AM-concentration-dependent manner (Figure 4.8). The 

measured effect of the compound was more pronounced for PfENT4 than for PvENT4 

(P. vivax), and no effect was observed for PfENT1 implying a specific interaction. As 

discussed above for MDR, the nature of interaction (transport or inhibition) between 

ACT-AM and ENT4, needs to be elucidated using a radiolabeled version of the 

compound. 

 

Several limitations of the observed inhibition can be considered: 

First, in this assay, both enantiomers of ACT-AM affected the transporter to a similar 

extent even though they differ in in vitro activity by a factor of about 50 (Table 4.1). It 

can be speculated that this clear difference in in vitro activity against the parasite should 

be reproducible when studying the isolated target. From this point of view, ENT4 could 

be deleted from the list of target candidates. On the other hand, it could still be that the 

enantiomer-specific activity of ACT-AM is caused by a mechanism upstream of the 

actual target, e.g. by an enantiomer-specific transporter which moves the compound to its 

enantiomer-unspecific site of action. Enantiomer-specific transporters are not uncommon; 

the proton-coupled folate transporter (PCFT) has been shown to stereoselectively 

transport methotrexate (ratio: L- / D-form: 40) in mammalian cells (Narawa & Itoh 

2010). 

A second limitation of the experimental system itself was the application of a synthetic 

gene that displayed optimized codons for Xenopus laevis expression, meaning that the 

studied transporter may differ from the genuine PfENT4. 

Third, the concentrations of ACT-AM leading to a clearly reduced activity of the 

transporter were in the low micromolar range rather than the low nanomolar in vitro 

activity observed against the parasite (Figure 4.8 and Table 4.1). This observation does 

however not completely rule out ENT4 as a target of ACT-AM. A similar discrepancy 



Discussion 
   

 
 

 - 102 - 
 

between on-target (in Xenopus) and in vitro growth assays was published for artemisinins 

against PfATP6 (introduction 1.2), in which case the authors concluded that the protein is 

the target of artemisinins (Eckstein-Ludwig et al. 2003). 

The observed discrepancy could be explained in the following ways:  

A) ENT4 is not the target but a transporter of ACT-AM. 

B) The assay conditions in Xenopus oocytes differ from those of the in vitro growth 

assays, therefore the resulting activities may not be directly compared. The key 

differences between the two assays are (Xenopus- vs. Plasmodium-based system, 

respectively): 

 - Oocytes vs. parasites 

- Time of exposure to compound (1h vs. 72h) 

- Amount / concentration of the transporter (arbitrary vs. natural) 

- Experimental temperature (16°C vs. 37°C) 

- Recodoned sequence of the transporter (synthetic vs. natural, see above) 

C) Artemisinins were demonstrated to be concentrated within the parasite by several 

hundred-fold (Gu et al. 1984). This might also be the case for ACT-AM leading to a 

lower apparent IC50 against the parasite in contrast to the actual IC50 against the isolated 

target. 

D) The transporter might need other cell-derived co-factors in order to exhibit its proper 

function which might not be provided by Xenopus oocytes. 

 

 

CRT (Chloroquine Resistance Transporter, MAL7P1.27) 

As for ENT4, in vitro interactions of ACT-AM (and its enantiomer) with CRT were 

observed using Xenopus oocytes (Figure 4.9).  Mainly therefore, essentially the same 

limitations as discussed for ENT4 (see above, 1, 2, and 3A-D) regarding experimental 

conditions and results also apply to CRT. An exception was the amino acid sequence of 

the investigated CRT which was cloned from the chloroquine-resistant P. falciparum 

strain Dd2 (Wellems et al. 1990) thereby differing in several codons from the actually 

identified one of the 3D7 strain (Gardner et al. 2002). 
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As the name implies, the transporter is associated with resistance (Fidock et al. 2000); 

especially therefore, it should be clarified if the type of interaction between ACT-AM and 

CRT is based on transport or on inhibition. This could again (see above) be studied with 

the same experimental Xenopus- setting using a radiolabeled version of the compound. 

 

 

5.6 Microarray 
 

In order to gain more information about the MOA of ACT-AM and, above all, potentially 

exclude several specific MOAs, the in vitro gene expression under treatment with ACT-

AM was compared to previously established expression patterns induced by 20 different 

compounds with antimalarial activity (Hu et al. 2010). The comparison was based on the 

assumption that compounds with different MOAs induce different gene expression 

patterns. 

The transcriptional response of in vitro treated 3D7 parasites to ACT-AM involved more 

than 550 differentially expressed genes, most of which were deregulated in a time-

dependent manner (Figure 4.17). Functional enrichment analysis of deregulated genes has 

revealed an overrepresentation of several pathways (Figure 4.17.B). In the case of up-

regulated genes, these pathways were mainly associated with synthesis and 

posttranslational modifications of proteins as well as lipid metabolism and kinase-

dependent signaling. Down-regulation on the other hand was predominantly observed for 

several components of the merozoite invasion machinery, suggesting that the parasite 

holds the development of the late schizont under treatment with ACT-AM. 

The actual comparison of ACT-AM to the other 20 antimalarial compounds revealed that 

ACT-AM very tightly clustered with generic protein kinase inhibitors (staurosporine and 

ML7), retinol A (a vitamin A alcohol interacting with membranes) and the serine 

protease inhibitor PMSF (Figure 4.17.D). Given that ACT-AM is exceptionally lipophilic 

(data not shown), the clustering with retinol A is noteworthy (see below). On the other 

hand, ACT-AM did not exhibit in vitro activity against several mammalian kinases in a 

commercial screen (data not shown) nor did the compound inhibit any of the investigated 

P. falciparum proteases [M17 leucyl aminopeptidase (Figure 4.11), plasmepsin 1, 2 and 4 
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(tested at Actelion, data not shown)]. Furthermore, apart from the above stated enzymes, 

there was no significant overlap between results of pull-down and microarray 

experiments with respect to kinases and proteases (Table 4.11), indicating that the 

similarity of the induced expression changes to that seen with inhibitors of kinases and 

proteases is most likely only due to downstream effects of the compound. 

Remarkably, ACT-AM was not found in the same cluster as the antimalarials 

chloroquine, quinine and artemisinin (Figure 4.17.C and D). This result is of particular 

importance when it comes to choosing a potential partner drug for combination therapies. 

It should be noted that even though the experimental protocols of the compared 

microarray studies (ACT-AM vs. the 20 comparator molecules) were essentially the 

same, the individual experiments have been carried out in different laboratories at 

different times. This limitation should be considered when interpretating the comparisons 

of the studies and follow-up experiments confirming the effect of ACT-AM on the 

different pathways will therefore be required. Nevertheless, taking solely microarray data 

into account, it could be hypothesized that ACT-AM may interfere with parasite 

membranes, as proposed for retinol A (Hamzah et al. 2004) or through intracellular 

signaling similar to kinase inhibitors. 

 

 

5.7 Mode of action 
 

Knowing the mode of action of a molecule is of significant importance in drug 

development.  

In general, if a novel molecule is to be combined with an existing drug, the combination 

partners should have different MOAs and not interfere with the MOA of the partner. This 

applies in particular to antimalarials, for which monotherapies ought to be avoided to 

prevent further spread of resistance (reviewed by White 1999). In addition, identification 

of the specific target of a substance could allow molecular modeling of novel compounds 

and, if assays using the purified target are feasible, direct structure activity relationship 

studies can be conducted in vitro. If the human counterpart of the target is testable in 
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vitro as well, the selectivity of the compound can be determined, which enables an early 

estimation of side effects prior to clinical trials. 

Furthermore, detailed knowledge about the MOA could facilitate the registration of a 

novel treatment, largely for the above stated reasons. Nevertheless, the definition of the 

exact MOA is not a prerequisite for registration of antimalarial drugs; there are various 

examples of antimalarials which were approved without knowledge of their targets (see 

introduction). 

 

The results of this thesis contribute to the formation of several hypotheses of how ACT-

AM might exert its action and to the exclusion of a number of known MOAs: 

 

 

5.7.1 MOA of ACT-AM: Hypotheses 
 

Pull-down experiments with UV-activatable derivatives of ACT-AM revealed three 

binding partners which were shown to interact with the original lead compound in vitro 

(results section 4.10). Hypotheses of how these target candidates might be involved in the 

MOA of ACT-AM are discussed below. 

 

 

MDR (multidrug resistance protein, PFE1150w) 

MDR consists of 12 transmembrane domains, is predominantly located at the membrane 

of the digestive vacuole and partially present at the parasite plasma membrane (Cowman 

et al. 1991; Sanchez et al. 2007). 

The identification of MDR via pull-down experiments has two opposing implications: 

MDR could  either represents a target of ACT-AM or confer resistance to the compound.  

The target hypothesis is favored by the observation that the transporter is probably 

essential (Sidhu et al. 2005). The natural function of MDR in P. falciparum remains 

elusive but MDRs are well known from cancer cells and microorganisms, in which 

contexts they have been shown to actively expel chemotherapeutic agents (Higgins 

2007). In any case, MDRs seem to enable their organisms to dispose of harmful 
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substances, i.e. to detoxify themselves. Compounds interfering with this process could 

thus be detrimental. A current example making use of a similar mechanism is the 

registered drug bortezomib which leads to proteotoxic stress within cancer cells by 

inhibiting the abolishment of misfolded or damaged proteins (Neznanov et al. 2009). 

MDR has been associated with resistance to several antimalarials such as quinine and 

mefloquine (Wilson et al. 1993; Cowman et al. 1994; Sidhu et al. 2006). ACT-AM 

probably interacting with the transporter might therefore suggest as well that the 

compound is prone to resistance development. This possibility needs to be carefully 

investigated (see outlook). 

 

 

ENT4 (Equilibrative Nucleoside Transporter 4, PFA0160c) 

According to PlasmoDB.org, ENT4 is predicted to have 11 transmembrane domains; 

apart from that, very little has been published about the structure or localization of the 

transporter. It is however known that P. falciparum cannot synthesize purines including 

adenosine, hypoxanthine and inosine de novo (Baldwin et al. 2007). The parasite thus 

depends on salvage of these essential nutrients from its host (reviewed by de Koning et 

al. 2005). Purine salvage is thought to be mediated by transporters such as ENTs, which 

makes them promising and often cited potential drug targets (Parker et al. 2000; Baldwin 

et al. 2007). In this light, it might be that ACT-AM interferes with purine salvage via 

ENT4, however, since it is not proven if the transporter is essential in the first place, this 

hypothesis is very speculative and needs further validation. 

 

 

CRT (Chloroquine Resistance Transporter, MAL7P1.27) 

CRT has 10 predicted transmembrane domains and was shown to localize to the digestive 

vacuole of the parasite (Fidock et al. 2000). 

The transporter confers resistance to chloroquine and the failure to create CRT knockout 

strains implies that the protein is essential for parasite survival (Fidock et al. 2000; 

Sanchez et al. 2008). The essential function of CRT is not completely understood but is 

thought to involve the transport of ions and amino acids or peptides across the digestive 
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vacuole membrane (Zhang et al. 2002; Martin & Kirk 2004; Zhang et al. 2004). 

Whatever the natural role of CRT turns out to be, if it truly is essential, ACT-AM might 

be targeting it. 

As discussed for MDR (see above), the interaction of ACT-AM with CRT might also 

indicate a tendency towards resistance development of the compound, which needs to be 

carefully addressed. 

 

It is striking that all three positively tested target candidates are transporters. This 

prompts the hypothesis that ACT-AM has a general affinity to transporters of P. 

falciparum and that the actual target is a transporter. It is therefore possible that the target 

is either one of the three tested transporters or can be found among the not yet tested / not 

yet testable transporter candidates (results section). Moreover, one could postulate that 

only the inhibition of more than one of the three discussed transporters is sufficient to kill 

the parasite. Nevertheless, it can as well be speculated that the three mentioned 

transporters are merely indirectly involved in the MOA of ACT-AM e.g. transporting the 

compound to its site of action, suggesting that the actual target still remains to be 

identified.  

 

 

5.7.2 Exclusion of published MOAs 
 

First, ACT-AM most likely has a mode of action distinct from that of stage-specific 

antimalarials because it is effective against all three asexual blood stages of the parasite. 

Examples of stage-specific antimalarials are Pyrimethamine (Dieckmann & Jung 1986; 

Maerki et al. 2006) or the novel spiroindolone NITD609 (Rottmann et al. 2010). 

Second, according to hematin interaction experiments, ACT-AM does not interfere with 

the formation of beta-hematin in vitro, which is in contrast to chloroquine, mefloquine 

and other molecules of the quinoline class (Egan 2006).  

Microarray studies offered a third way to exclude MOAs of other compounds with 

antimalarial activity, since ACT-AM seemed to induce an expression pattern distinct 

from previously assessed molecules (Hu et al. 2010). MOAs which can probably be 
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excluded on the basis of the microarray data are associated with e.g. inhibitors of 

phosphatases, inhibitors of microtubule polymerization and importantly quinine, 

chloroquine and artemisinin (Figure 4.17). 

In addition, several distinct target candidates can be excluded based on negative in vitro 

inhibition assays, namely fructose-bisphosphate aldolase, M17 leucyl aminopeptidase, 

spermidine synthase, S-adenosylmethionine synthetase, and secreted acid phosphatase 

(Figures 4.11-4.14, respectively). 

 

 

 

5.8 Outlook 
 

Most of the following experiments are planned for the near future or are already ongoing.  

 

 

MOA studies 

 

- Interaction between MDR and ACT-AM was demonstrated in an mdr gene copy 

number-dependent assay and should be validated by means of MDR-expressing Xenopus 

laevis oocytes. 

 

- It is crucial to experimentally define the nature of interaction (inhibition vs. transport) 

between ACT-AM and the three transporters MDR, ENT4 and CRT. This could ideally 

be addressed using radiolabeled ACT-AM for Xenopus- based transporter studies. 

 

- Interaction of ACT-AM with MDR and CRT raises concerns about resistance 

development. It is therefore critical to assess the ability of P. falciparum to develop 

resistance against ACT-AM which can be performed by continuously applying sub-lethal 

concentrations of the compound to in vitro cultures of the parasite (Jiang et al. 2008). 
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- Numerous target candidates were identified using pull-down experiments and are listed 

in the results section. Some of the candidates have been successfully tested, others were 

not testable or even unknown. The candidate lists ought to be carefully reassessed with 

regard to probability of interaction with ACT-AM and feasibility of in vitro assays. 

 

- Microarray: MOAs associated with compounds which have induced gene expression 

patterns similar to that of ACT-AM should be considered for further investigations. An 

interesting example would be the MOA of retinol A, since both ACT-AM and retinol A 

are highly lipophilic and show expression patterns which cluster closely. 

 

- In order to reduce the complexity of lysates i.e. of putative binding partners of ACT-

AM, pull-down experiments using UV-activatable compounds should be repeated with 

highly synchronized parasites. It is noteworthy that this has already been attempted using 

synchronized rings. Unfortunately, competition with an excess of ACT-AM led to a 

drastic growth reduction of the negative control. The resulting difference in amount of 

proteins (sample vs. negative control) did not allow for an unbiased comparison of 

protein band intensities after gel electrophoresis (data not shown). Therefore, similar 

experiments should be conducted using later stages of synchronized parasites as the 

difference in biomass (sample vs. negative control) might turn out to be less pronounced 

in the latter case. 

 

 

Fluorescent imaging 

To provide a more detailed view of the site of action of ACT-AM, colocalization studies 

using ACT-AM-UV and e.g. cytosolic or membrane markers such as GAPDH 

(Daubenberger et al. 2003) or MDR (Cowman et al. 1991), respectively should be 

conducted. Especially to dissect signals from membranous structures, confocal or 

electron microscopy using ACT-AM-UV should be performed in addition. 
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Far Western blotting 

Signals obtained from Far Western blots using UV-activatable compounds were 

relatively weak. This might partly be explained by the low concentration of ACT-AM-

UV and the limited capacity of the protein gels. Since increasing the concentration of the 

compound could result in more unspecific signals, a way of obtaining stronger signals per 

gel might be to pool several lysate samples which can be concentrated using a vacuum 

centrifuge or protein precipitation techniques. 

 

 

5.9 Conclusion  
 

The purpose of this thesis was the characterization of a novel antimalarial lead compound 

with respect to MOA and in vitro properties. 

This molecule, ACT-AM, which was discovered in a collaboration between Actelion 

Pharmaceuticals Ltd and the Swiss TPH was shown to display promising in vitro activity. 

First, ACT-AM inhibited erythrocytic P. falciparum growth at low nanomolar 

concentrations. Second, the compound was effective against a panel of drug resistant 

strains and third, equally affected all asexual blood stages of the parasite with a fast onset 

of action. These in vitro qualities are similar to those of artemisinins, the most potent 

currently used antimalarials. In addition, the results of this thesis indicate that ACT-AM 

has an MOA which differs from that of known antimalarial drugs. 

MOA studies involved pull-down methods aimed at directly identifying molecular targets 

and techniques such as microarray and hematin interaction studies to exclude MOAs of 

existing antimalarials. Through pull-down experiments, more than 50 target candidates 

were revealed. Three of these candidates were shown to interact with ACT-AM in vitro: 

MDR (multidrug resistance protein), ENT4 (equilibrative nucleoside transporter 4) and 

CRT (chloroquine resistance transporter). The nature of interaction (inhibition vs. 

transport) between ACT-AM and these transporters remains unknown and will need to be 

characterized in the future, ideally using radiolabeled ACT-AM for experiments in 

Xenopus laevis oocytes.  
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MOAs related to several antimalarial compounds and registered drugs including 

chloroquine, quinine, and artemisinin can probably be ruled out based on differences in 

gene expression patterns and hematin interaction studies. This is of particular importance 

for potential combination therapies. Given that ACT-AM seems to have an MOA distinct 

from artemisinins but shares properties of these peroxides i.e. fast onset of action and 

activity against all asexual blood stages, ACT-AM or analogues could be substitutes of 

this class of drugs threatened by resistance development. 

Taken together, the results described in this thesis suggest that ACT-AM has promising 

in vitro activity and is likely to have a novel mode of action against P. falciparum. The 

findings therefore warrant further efforts to explore the potential of ACT-AM or other 

molecules of the same chemical class as therapeutic agents for the treatment of malaria.
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6 Appendix 
 

6.1 Microarray 
 

The transcriptional response of P. falciparum 3D7 parasites to ACT-AM involved 1299 

differentially expressed genes (expression altered by at least two-fold at > one time point, 

max. one of five time point values missing). Of these 1299 genes, 874 were up- and 350 

down-regulated. Genes were considered up-regulated if up-regulation (at least two-fold) 

was observed for at least one time point and if no down-regulation was observed at all; 

the opposite applied for genes considered down-regulated. For the remaining 75 genes, 

both up-and down-regulation was observed at different time points. 

In Figure 6.1, 165 genes with a four or greater fold expression change (treated vs. 

untreated) at > one time point are shown. Up-regulated, down-regulated, and both up-and 

down-regulated at different timepoints were 101, 36, and 28 genes, respectively. Up-and 

down-regulation was defined as described in the above paragraph, except for the four or 

greater fold expression change criterion. 
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Figure 6.1. Transcriptional response of P. falciparum 3D7 to ACT-AM. Highly synchronized 

parasites were treated with ACT-AM (IC90) and control samples with the respective amount of 

DMSO. RNA was collected after 1, 2, 4, 6 and 8h of treatment. Genes with a four or greater fold 

expression change (treated vs. untreated) at > one time point are shown. Grey: No signal. 

Hybridization was performed in the laboratory of Zbynek Bozdech in Singapore. 
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6.2 qPCR: Primer validation 
 
 
Primers can only be used for the qPCR ΔΔCT method if their amplification efficiencies 

are comparable. 

To validate primers, CT values were determined with DNA templates spanning 5 logs 

(base 10) for every gene. ΔCT values [CT of target gene – CT of endogenous control 

(PFL0900c, arginyl-tRNA synthetase)] were calculated for every log of template amount. 

According to the manufacturer of the qPCR system (Applied Biosystems) the absolute 

value of the slope of the resulting graph (ΔCT vs. log of template amount) should not 

exceed 0.1 which was shown for all used genes (Table 6.2). 

 

 
Table 6.2. Validation of primers used for qPCR. 
 

Primer           Gene ID 
                       Product description 

 

Absolute value of slope 
(ΔCT vs. log of template amount) 

 

PFL0035c 

acyl-CoA synthetase, PfACS7 
0.02 

 

PF10_0380 

serine/threonine protein kinase, FIKK family 
0.04 

 

PF13_0196 

MSP7-like protein 
0.001 

 

PF14_0545 

thioredoxin, putative 
0.01 

 

PFA0310c 

calcium-transporting ATPase 
0.05 

 

PFL1550w 

lipoamide dehydrogenase 
0.03 

 

PFL0900c 

arginyl-tRNA synthetase,  adapted from Frank et al. 2006 
N.A. 

 

Primers for qPCR were validated using the absolute value of the slope of the graph ΔCT vs. log10 of template 

amount. Values below 0.1 were acceptable. ΔCT = [CT of target gene – CT of endogenous control (PFL0900c, 

arginyl-tRNA synthetase)]. 
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