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Abstract 

Near-infrared (NIR) spectroscopy offers tremendous advantages for pharmaceutical 

manufacturing as a fast and non-destructive method of quantitative and qualitative 

analysis. Content uniformity (end-product analytics) and process analytics are two 

important applications of the method. 

Both modes of analysis, diffuse transmission (DT) and diffuse reflection (DR) are 

sensitive to changes in sample physical parameters. Scaling as well as baseline shifts due 

to tableting variations would be a potential cause of many outliers and prediction errors, 

and therefore these effects need to be more clearly understood. Moreover, there is 

currently no clear literature information about the sampling span in both modes 

(horizontal or radial in DT, and vertical or information depth in DR). This information is 

vital in content prediction using NIR in cases where inhomogeneities in the sample are 

detrimental (e.g. low-dose API in large samples). 

The press effect was investigated using placebo tablets of different thickness and 

porosity ranges, which showed an exponential relationship with the diffuse 

transmission (DT) signal. The drug content of 2.5% m/m folic acid tablets produced 

under different compaction conditions was predicted and found to be in statistical 

agreement with UV assay results after inclusion of physical outliers to the training sets. 

To determine the sampling span in DT, placebo tablets of 10 mm diameter were covered 

by different paper filters with incremental central block and the DT maximum at 8880 

cm-1 was used to assess the degree of block. 90% of the signal was detected from a 

diameter of up to 7 mm. 

For DR information depth assessment, three experiment approaches were pursued: I. 

0.5–10 mm incremental thickness placebo tablets with constant porosity, II. 

MCC/Phenylbutazone (PBZ) double layered (DL) tablets (PBZ layer 0-100% in 0.5 mm 

steps) and III. Comparison of placebo and 30% caffeine tablet cores with incremental 

film coating (film thickness of 0 – 0.35 mm). Incremental thickness and cluster analysis 

of DL tablets showed that DR information depth was < 0.5 mm, while the data fitting 

from incremental coating showed that signal drop reached 50% at 0.05 – 0.07 mm 

depending on the wavenumber and 90% signal drop (10% information content) can be 

seen between 0.2 – 0.25 mm without extrapolation. 
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1. Introduction 

Near-infrared spectroscopy (NIRS) is the measurement of the wavelength and intensity 

of absorption of near-infrared (NIR) light by a sample. The NIR spectral region spans the 

range from 700 to 2,500 nm (14,285 – 4,000 cm-1) with absorptions representing 

overtone and combinations from the fundamental molecular vibrations found in the 

mid-infrared (MIR) region. These overtones and combinations mainly are associated 

with C–H, N–H, O–H and S–H functional groups. NIRS uses chemometrics to analyze the 

functional groups present in a sample mixture. As a quality and process control 

technique NIRS analysis methods are applied to raw material, intermediates and 

finished products. NIRS historically was developed as a quantitative analysis technique, 

but during the past 10 years chemometrics methods have led to qualitative applications. 

As NIRS continues to grow in importance as a useful analytical technique, it offers 

unique potential as a rapid, non-destructive method of quantitative and qualitative 

evaluation. NIRS has been used extensively in the food and agricultural industries for 

many years to determine moisture, protein, and starch content in grains. The 

pharmaceutical industry has been cautiously slow to accept NIRS as a commonly used 

technique, probably because of the absence of primary absorption bands. In recent 

years, an increasing amount of academic research is being carried out on the theory 

behind NIR. The use of NIRS for pharmaceutical applications has grown owing, in part, 

to technological advances in instrumentation and software. 
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1.1 Historical overview 
In his famous work, “Experiments on the Refrangibility of the Invisible Rays of the Sun,” 

presented to the Royal Society (Hershel 1800), Sir William F. Herschel first 

demonstrated the existence of optical radiation beyond the limits of the visible 

spectrum. In a series of experiments probing the relationship between colour and heat, 

Herschel observed an increase in temperature from violet to red. In a serendipitous 

moment, however, he discovered that the hottest temperature was actually beyond the 

red limit of visible light. This invisible radiation, which he initially termed as “calorific 

rays,” is actually what has come to be known as short-wave near-infrared. 

The NIR spectral region was largely ignored as an analytical asset for nearly 150 years 

following Herschel’s discovery (Burns and Ciurczak 2001) until Karl Norris, an 

agricultural engineer working for the U.S. Department of Agriculture (USDA), saw its 

potential for rapid, quantitative analysis of complex biological samples. Norris’s work 

eventually initiated the development of an NIR industry that produced analyzers capable 

of rapidly determining the concentration of constituents in whole foodstuffs with very 

little sample preparation. From the mid-1960s until 1986 the rate of publications on NIR 

spectroscopy increased dramatically, with most articles concerned primarily with the 

analysis of food and agricultural products and in 1987 Phil Williams and Karl Norris 

edited a comprehensive text with nearly 1000 references on the subject of NIR 

technologies (Williams and Norris 2001). 

NIR technology has generally advanced by following technology developments in 

seemingly unrelated industries. The interest in the NIR region of the electromagnetic 

spectrum lagged behind the UV, VIS and MIR regions for most of the twentieth century. 

Unlike the sharp absorbance bands of the MIR fingerprint region utilized for qualitative 

analyses in synthetic organic chemistry, the absorbance bands in the NIR are weak, 

broad, overlapping,  and of great complexity to interpret. Moreover, early chemists had 

difficulty specifying baseline effects in the NIR region, and they viewed NIR spectroscopy 

as being less reliable for quantitative assays relative to UV/VIS spectrophotometry.  

As enabling technologies began to appear in the mid of the 20th century, Karl Norris’s 

early work was revolutionary in that it utilized grating/prism monochromators, new 

broad-band detectors and powerful digital computing capabilities (Norris and Williams 

1984). After that, the popularity of NIR spectroscopy accelerated during the 1970s and 

1980s with the development of low-cost personal computers. 
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After the 1990s, NIRS grew more with the introduction of InGaAs diode array detectors, 

tunable NIR lasers and fibre-optics and the method started to earn its reputation as a 

powerful analytical technology in its own right. It was not until then that the negative 

aspects of the technology were turned into positive features and NIRS was ultimately 

found to be useful because the relatively weak absorbance bands in the region allow for 

interrogation of sample matrices to greater depth than is possible in the IR and UV/VIS 

regions. 

The complex nature of NIR absorbance bands and baseline effects initially posed a 

dilemma. The study of chemometrics has yielded the ability to resolve NIR spectra for 

simultaneous multi-component analyses. The scope of data treatment display and 

interpretation was enhanced to include MLR, PLS, PCA, and cluster analysis and third-

party software suppliers started to offer a wide choice of chemometrics software freeing 

users from the constraints of instrument suppliers. 

Today, NIRS have gained wide acceptance from many industries, including 

pharmaceutical, and is being tested and used in many areas of production starting from 

identification of raw materials, process control and end product analysis. 
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1.2 Theoretical aspects 
An important point to be realized is that the NIRS has unique features among other 

regions of the electromagnetic spectrum. Therefore, treating the NIR region as an 

extension of IR or UV/VIS during method development or application will only lead to 

failure because of the unique aspect of the interaction between solid materials and NIR 

radiation at the molecular and particle scales set NIR spectroscopy apart from other 

methods. 

1.2.1 Molecular vibrations 

Atoms in a molecule are in a continuous movement even close to the absolute zero 

temperature. The physical scale of the vibrational movement of atoms in molecules is 

rather small. This movement is confined within this narrow range by a potential energy 

well, formed between the binding potential of the bonding electrons, and the repulsive 

(mainly electrostatic) force between the atomic nuclei a quantum distribution of energy 

levels is expected (Figure 1A) with a set of discrete allowed energy levels of equal 

intervals of energy between them and a non-zero potential energy within the well. 

However, real molecules show non-conformity to the potential energy well in with the 

simple harmonic model. In the simple harmonic model, the potential well is entirely 

symmetrical and the potential energy rises equally with displacement in both positive 

and negative directions from the equilibrium position. This is counter-intuitive because 

the forces responsible for the rise in potential energy are different in the two cases. In 

the bond-stretching case the dominant factor is the shifting of the molecular orbital 

away from its minimum energy configuration. In the bond-compression case, there is the 

additional factor of electrostatic repulsive energy as the positively charged atomic nuclei 

approach each other. Thus one would expect the potential energy curve to rise more 

steeply on the compaction cycle, and (due to the weakening of the bond with 

displacement) to flatten off at large displacements on the decompression cycle (Figure 

1B). 

There are two effects of the anharmonicity of the quantised energy levels described 

above, which have significance for NIRS. First, the gap between adjacent energy levels is 

no longer constant, as it was in the simple harmonic case. The energy levels converge as 

n increases. Secondly, weak absorptions can occur with Δn = ±2 (first overtone band), or 

±3 (second overtone band), etc. 
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Figure 1: Schematic representation of the harmonic (A) and anharmonic (B) models for 

the potential energy of a diatomic molecule.  

de = equilibrium distance (U = minimum) (Pasquini 2003) 

1.2.2 The origin of absorption bands in the NIR region 

The match of radiation energy with the energy difference between two vibrational levels 

causes a selective response of the molecular system to the incident radiation. It means 

that in a given wavelength range, some frequencies will be absorbed; others (that do not 

match any of the energy differences possible for that molecule) will not be absorbed 

while some will be partially absorbed. This complex figure of the intensity of absorption 

versus wavelength constitutes the absorption spectra of a substance or sample. For a 

vibration to be active, it is necessary that the electrical oscillating field of the 

electromagnetic wave can interact with the molecule. This can only occur if the 

displacement of the atoms in a vibrational mode can produce a change in the dipole 

moment of the molecule or in the local group of vibrating atoms.  

In polyatomic molecules, transitions to excited states involving two vibrational modes at 

once (combination bands) are also weakly allowed, and are also affected by the 

anharmonicity of the potential. The role of combination bands in the NIR can be 

significant. The only functional groups likely to impact the NIR spectrum directly as 

overtone absorptions are those containing C-H, N-H, O-H or similar functionalities. 

However, in combination with these hydride-bond overtone vibrations, contributions 

from other, lower-frequency fundamental bands such as C=O and C-C can be involved as 

overtone-combination bands. The effect may not be dramatic in the rather broad and 

overcrowded NIR absorption spectrum, but it can still be evident and useful in 

quantitative analysis. For combination bands to occur, it would be necessary that only 
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one of the combining vibrations be active (causing dipole change). This feature may 

cause some vibrations, which cannot be observed in the middle infrared, to be displayed 

by a NIR spectrum. 

The intensity of a given absorption band is associated with the magnitude of the dipole 

change during the displacement of atoms in a vibration and with its degree of 

anharmonicity. Both phenomena are present in great intensity associated with bonds 

involving the hydrogen atom and some other heavier element such as carbon, nitrogen 

and sulphur. The O-H, C-H, N-H and S-H bonds tend to present high anharmonicity and 

high bond energy with fundamental vibrational transitions in the region of 3000 – 4000 

nm. Intensities are in between 10, for combinations, up to 1000, for successive 

overtones, times lower than the absorption resulting from fundamental vibrations. The 

spectral occurrences in the NIR region are dominated by overtones and combination 

absorption bands. Coupling or resonance between different vibrations of the same 

functional group and Fermi resonance between a fundamental and an overtone when 

their difference in energy is very low also occur resulting in a greater separation 

between the position of the two bands and in the intensification of the overtone band. 

The complexity of the combination spectral region in the NIR spectrum of hydrocarbons 

is partly due the possibility of resonance between the combination bands and high order 

overtone for C-H bonds. The primary practical consequence of both types of resonance 

on a NIR spectrum is the possibility of the appearance of two instead of one band in the 

combination region (1600 – 2500 nm).  
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1.3 NIR diffuse transmission for solids 
One of the most important aspects of the interaction between NIR radiation and 

particulate solids is the unique combination of relatively weak absorbance intensity 

with high scattering efficiency. This combination allows the NIR radiation to probe the 

interior of many solid samples with little or no sample preparation. The spectroscopic 

analyses of solids in the NIR region are performed using two primary modes of sampling 

geometry: transmittance and diffuse reflectance (DR). The transmittance measurement 

through particulate solids is a distinctive capability of spectroscopy in the NIR relative to 

UV/VIS and IR.  

In general, sample transmittance, T, is estimated as the ratio of intensities for light 

transmitted through an empty path (e.g., cuvette), I0, and light transmitted through an 

equal distance of a particulate sample, Is. Transmittance data are most often reported in 

terms of Beer-Lambert absorbance: 
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where, for a single wavelength, γ: 

A = Beer-Lambert optical absorbance 

T = transmittance ratio 

a = absorption coefficient, cm-1 

b = pathlength (or sample thickness), cm 

c = concentration of absorbing species. 

 

In contrast to UV/VIS (transmission) absorption spectrophotometry, which is typically 

performed in dilute solution, the transmittance of NIR radiation through a sample 

matrix comprised of tightly packed solid particles is expected to deviate nonlinearly 

from the Beer-Lambert law of absorption. The source of these deviations becomes 

apparent when the derivation and simplifying assumptions of the Beer-Lambert law, or 

simply Beer’s law, are considered. The most notable deviations from Beer’s law for NIR 

transmittance through clear liquids are due to changes in absorption coefficients across 

wide ranges of concentration. Beer’s law assumes that the response between optical 

absorption, A, and concentration c, is expected to be linear. The transmittance through 

particulate solids is less accurately described by the Beer-Lambert law, however, 

because it also assumes that all radiation encountering an absorbing particle will either 

be transmitted or absorbed. There is, however, a finite probability that incident photons 

will be scattered or reflected either forward or backward relative to the direction of 



propagation of the incident beam, I

transmitted directly through particulate samples; rather

through the material with multiple opportunities for scattering and backward reflection 

(Figure 3). 

Figure 2: The optical interactions, of which the three fluxes are comprised of: (a) 

incident beam absorption, (b) specular reflectance, (c) transmittance, (d) forward 

scatter, (e) back scatter, (f) anisotropic scattering intensity fields
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transmittance spectroscopy.
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(Dahm and Dahm 2001). 

propagation of the incident beam, I0 (Figure 2). Thus, the incident photons are not 

transmitted directly through particulate samples; rather, they take a tortuous path 

through the material with multiple opportunities for scattering and backward reflection 

e optical interactions, of which the three fluxes are comprised of: (a) 

incident beam absorption, (b) specular reflectance, (c) transmittance, (d) forward 

scatter, (e) back scatter, (f) anisotropic scattering intensity fields

Because the intensity of scattered radiation decreases along with absorptivity, the 

transmittance through a solid sample will become less diffuse as the absorptivity 

decreases. These effects tend to increase the path a photon will travel before being 

emitted from the sample. Thus, the effective pathlength for transmittance through a 

plane of compressed particulates of thickness b will be a normally distributed amount 

greater than b. Furthermore, as b increases, the transmitted radiation will become more 

diffuse until the diffuse thickness is achieved (Birth and Hecht 1987), at which point the 

maximum amount of incident radiation reflected back toward the source occurs. Hence, 

state transmittance in the NIR region might more aptly be termed diffuse 

transmittance spectroscopy. 

DT NIRS is usually performed in the third overtone region, between 780

Although scatter coefficients increase in the NIR with increasing frequency, the 

scattering efficiency in the third overtone region is low because the amount of radiation 

loss to backward reflection is reduced along due to the decreasing absorption coefficient 
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e optical interactions, of which the three fluxes are comprised of: (a) 

incident beam absorption, (b) specular reflectance, (c) transmittance, (d) forward 

scatter, (e) back scatter, (f) anisotropic scattering intensity fields 

ered radiation decreases along with absorptivity, the 

transmittance through a solid sample will become less diffuse as the absorptivity 

decreases. These effects tend to increase the path a photon will travel before being 

effective pathlength for transmittance through a 

plane of compressed particulates of thickness b will be a normally distributed amount 

greater than b. Furthermore, as b increases, the transmitted radiation will become more 

, at which point the 

maximum amount of incident radiation reflected back toward the source occurs. Hence, 

ght more aptly be termed diffuse 

DT NIRS is usually performed in the third overtone region, between 780-1100 nm. 

Although scatter coefficients increase in the NIR with increasing frequency, the 

overtone region is low because the amount of radiation 

loss to backward reflection is reduced along due to the decreasing absorption coefficient 



The absorptivity, reflectance, and scattering characteristics for a particular sample are 

dependent on multiple material qualities, such as particle size and morphology, packing 

density, and index of refraction. Hence, the effective pathlength and the level of 

nonlinearity relative to Beer’s law are difficult to predict in practical situations.

Figure 3: Diagram showing the types of light interaction in the NIR region with 

particulate solids. In practice, only diffuse reflection and transmission are 
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ance, and scattering characteristics for a particular sample are 

dependent on multiple material qualities, such as particle size and morphology, packing 

density, and index of refraction. Hence, the effective pathlength and the level of 

e to Beer’s law are difficult to predict in practical situations. 

 

: Diagram showing the types of light interaction in the NIR region with 

particulate solids. In practice, only diffuse reflection and transmission are observed 
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1.4 NIR diffuse reflection for solids and its 

theories 

1.4.1 Early theories 

NIR DR analysis is a defining quality of the method which permits quantitative analysis 

of material qualities for granular or particulate samples in fluidized beds, mixing vessels, 

or on moving belts.  

The sample reflectance, R, is most often estimated as the ratio of intensities for light 

reflected from a non-absorbing, diffusely reflecting surface (e.g., white ceramic or inner 

surface of an integrating sphere), I0, and light reflected from the sample, IS. Reflectance is 

most often reported in terms of absorbance units, log (1/R), regardless of the derivation 

of Beer’s law mentioned earlier. These apparent absorbance spectra collected in 

reflectance are also treated as being linearly correlated with the concentration 

according to Beer’s law with nonlinearities being either ignored over a narrow 

concentration range or are approximated by additional empirical model factors or 

nonlinear terms. 

The earliest attempts to describe DR treated it strictly as a surface phenomenon. 

Bouguer (1760) suggested it as mirror-type reflections from microcrystalline faces 

statistically distributed over all possible angles.  

Lambert cosine law (Lambert 1760) went a step further by describing a mathematical 

relationship between the intensity of an incident beam of light, angle of incidence and 

angle of observation. The problem was that an ideal diffuse reflector postulated by the 

theory has never been found, and this was the reason why the theory fails in practice. 

Seeliger (1888) was the first to consider DR as penetrating the surface of materials, 

where it is either absorbed or returned to the surface via reflection, refraction, or 

diffraction from the surfaces of the internal microstructure (summation of surface 

reflection and elastic scatter). 

Mie Theory (Mie 1908) was one of the major works describing elastic scattering 

phenomenon and its relationship with the frequency of radiation. The theory’s central 

assumption is that scattering is associated with isolated, spherical particles. According 

to this theory, scattering is not distributed isotropically (uniform optical properties in all 
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directions); rather, a complex pattern is produced; with forward scatter preferred over 

reverse scatter. 
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where 

λ  = single wavelength under consideration 

Iθscat  = intensity of scattered radiation at distance R and angle π from the centre 

of the scattering particle 

i1, i2  = Complex functions of the angle of the scattered radiation, the spherical 

harmonics, or their derivatives with respect to the cosine of the angle of 

scattered radiation, the refractive index of both the sphere and 

surrounding medium, and the ratio of the particle circumference to 

wavelength 

 

Equation (0.2) shows that as the wavelength increases, the intensity of scattered 

radiation will increase, one of the factors contributing to the shape of the upward-

sloping baseline observed in the NIR absorbance of solids (downward sloping if 

reflectance is reported). 

However, particles in real solid systems are not isolated but in intimate contact with one 

another. Additionally, the theory did not consider multiple forward- or back-scattering 

events. Theissing (Theissing 1950) showed that as the number of times a photon is 

scattered increases the distribution of scattered radiation will deviate further from Mie’s 

theory, becoming more isotropic and with greater proportion of the radiation being 

scattered in the reverse direction.  

1.4.2 Later works and Kubelka-Monk’s theory 

Most other theories have evolved from energy transfer treatments, which describe the 

change in intensity of a beam of radiation of a given wavelength in a sample of a given 

density and pathlength due to total radiation loss from scattering and absorption that 

corresponds an attenuation coefficient (Truelove 1988) and (Craig and Incropera 1984). 

Schuster (1905) reported a simplified solution of the radiation transfer equation for the 

case of reflectance by assuming the total radiation flux is comprised of two components, 

one flux travelling in the forward direction and a second flux travelling in the reverse 

direction. 
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Kubelka and Munk (1931) made more assumptions in their derivation of a simplified 

solution to the radiation transfer equation. The final derivation is shown in equation 

(0.3) and shows that the measured DR (R∞) is dependent on the ratio of K and S 

(absorption and scattering coefficients respectively). 
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Kubelka and Munk’s solution is the most widely accepted DR explanation since it is a 

two-constant equation and therefore experimentally testable. Moreover, many other 

derivations by other workers like Smith (1931), Amy (1937) and Bruce (1926) have 

been shown to be derivable from Kubelka and Munk’s work. 

1.5 Instrumentation and analyzer technologies 

1.5.1 Light sources 

The tungsten-halogen source is almost universally used for NIRS. It has a broadband, 

pseudo-blackbody emission spectrum with no significant structure. It is inexpensive and 

remarkably long-lived if operated at appropriate filament temperature and lamp 

wattage. The peak spectral radiance of a tungsten lamp is located at approximately 

10,000 cm-1 (1000 nm) with a lifetime of around 10,000 hours. 

1.5.2 Photon detectors 

The most frequently employed detectors for the NIR spectral region are based on silicon, 

PbS and InGaAs photoconductive materials. The latter possess a very high photo-

detectivity and response speed. Together with high powered radiation sources (a 

tungsten coil or a halogen lamp, see above) these detectors can impart a very high signal-

to-noise ratio for NIR measurements. This fact partially compensates for the lower 

intensities of NIR absorption bands. 

1.5.3 Wavelength section methods 

1.5.3.1 Filter-based instruments 

Filter instruments often employ a set of 10–20 interference filters mounted on a high-

speed rotating filter wheel positioned between collection optics and a single detector. 

High-speed measurement is possible (approximately as fast as a diode array 

spectrometer) by spinning the filter wheel at a very high rate (10,000 rpm). Fast Fourier 
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transform (FFT) of the detected signal can be used to isolate the spectral intensity data 

from instrumental noise effects, which, along with the simple, efficient design, make 

filter instruments very robust devices for single-material measurement. Filter 

instruments have been significantly deployed as in-line moisture gauges, though some 

have been successfully calibrated for multi-constituent content predictions. However, 

they provide limited spectral information and are more expensive compared with low-

cost diode array systems. (Scott 1995) 

1.5.3.2 LED-based instruments 

To reduce the price and size of the instruments, Light Emitting Diodes (LED) technology 

is used in some applications. These devices can produce NIR radiation with a band width 

of about 30 - 50 nm, centred in any wavelength of the spectral region. The instruments 

can employ a set of LEDs as sources of narrow bands of near infrared radiation28-30 or use 

them to produce a polychromatic, highly stable source whose radiation is dispersed by 

using common monochromator devices such as those based on gratings or filter optics. 

However, LEDs operating at wavelengths higher than 1100 nm are still expensive. 

(Wilson, Barnes et al. 1995) 

1.5.3.3 AOTF instruments 

Acousto-Optical Tunable Filter (AOTFs) technology allows constructing instruments 

with no moving parts, capable of reaching very high scan speeds over a broad range of 

the NIR spectral region. Any number of wavelengths necessary to perform a given 

analytical determination can be easily implemented with scan speeds of up to 2000 

wavelengths per second, which is only limited by the detector response time. 

An AOTF is a device made of a birefringent crystal of TeO2, cut in a special angle and a 

piezoelectric material (usually LiNiO4) is attached to one end of the crystal which, under 

excitation from an external RF signal, producing an acoustic wave which propagates 

through the crystal and produces a periodic variation of the refractive index of the 

crystal in a frequency determined by the RF signal, in the range of 50 to 120 MHz. The 

interaction of the electromagnetic wave and the acoustic wave causes the crystal to 

refract selectively a narrow wavelength band. The birefringence of the TeO2 crystal leads 

to the production of two monochromatic beams and both or only one diffracted beam 

can be used by NIR instruments (Figure 4). 

This non-moving parts concept of the AOTF-based NIR spectrophotometers impart to 

them some unbeatable qualifying characteristics for use in the field or on the factory 

floor, aiming at in-line monitoring. The wavelength precision is about ±0.05 nm and the 



resolution is dependent on the wavelength, with typical values in the range 5 to 15 nm 

for the wavelength in the range 1000 to 2500 nm. 

Figure 4: Schematic representation of AOTF 

1.5.3.4 Dispersive optics-based instruments

Diffraction gratings dispersive instruments were among the earliest technologies 

employed in NIR (Figure 5). These instruments have the advantage of a relatively low 

cost when compared with other scanning instruments employing modern technologies. 

The main disadvantages, however, is the slow scan 

which deteriorates with time due to mechanically driven mechanism fatigue, which 

limits the use of dispersive instruments in production environments.

Figure 5: Diffraction grating NIRS. The inc

mirror and guided on to the diffraction grating, where it is spatially split into its 

different spectral components. A second concave mirror focuses the various spectral 

components of the light onto different co

light's spectrum in a single acquisition.

Nevertheless, recent evolution in sensor production technology gave dispersive optics a 

longer life by constructing linear arrays of PbS and InGaAs sensors containing u

independent elements. This allowed scanning an entire spectrum in a few milliseconds 

and eliminated the moving parts.

ion is dependent on the wavelength, with typical values in the range 5 to 15 nm 

for the wavelength in the range 1000 to 2500 nm. (Tran 1992) 

: Schematic representation of AOTF (Davidson, Spring et al. 2006)

based instruments 

Diffraction gratings dispersive instruments were among the earliest technologies 

). These instruments have the advantage of a relatively low 

cost when compared with other scanning instruments employing modern technologies. 

The main disadvantages, however, is the slow scan speed and low wavelength precision, 

which deteriorates with time due to mechanically driven mechanism fatigue, which 

limits the use of dispersive instruments in production environments. 

 

: Diffraction grating NIRS. The incident light is first collimated by a concave 

mirror and guided on to the diffraction grating, where it is spatially split into its 

different spectral components. A second concave mirror focuses the various spectral 

components of the light onto different columns of the CCD detector, thus capturing the 

light's spectrum in a single acquisition. 

Nevertheless, recent evolution in sensor production technology gave dispersive optics a 

longer life by constructing linear arrays of PbS and InGaAs sensors containing u

independent elements. This allowed scanning an entire spectrum in a few milliseconds 

and eliminated the moving parts. 
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ion is dependent on the wavelength, with typical values in the range 5 to 15 nm 
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Diffraction gratings dispersive instruments were among the earliest technologies 

). These instruments have the advantage of a relatively low 

cost when compared with other scanning instruments employing modern technologies. 

speed and low wavelength precision, 
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ident light is first collimated by a concave 

mirror and guided on to the diffraction grating, where it is spatially split into its 

different spectral components. A second concave mirror focuses the various spectral 

lumns of the CCD detector, thus capturing the 

Nevertheless, recent evolution in sensor production technology gave dispersive optics a 

longer life by constructing linear arrays of PbS and InGaAs sensors containing up to 256 

independent elements. This allowed scanning an entire spectrum in a few milliseconds 
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1.5.3.5 Fourier transform (FT) instruments 

FT-NIR spectrometers are most advantageous when high-resolution capabilities are 

important or if the spectrometer needs to have many options for sample interaction. The 

spectral resolution of an FT-NIR analyzer is constant across the spectral range detected 

and is adjusted by varying the length of the interferogram. In a Michelson 

interferometer, this corresponds to the range of displacement for the moving mirror and 

will require longer scan times for equivalent performance in terms of signal-to-noise 

ratio (SNR). 

The FT spectrometers have a combination of three theoretical advantages, which make 

the technology attractive: 

All frequencies (wavelengths) are detected simultaneously (Fellgett’s advantage) 

Wavelength accuracy is constantly maintained by an internal laser line (Connes 

advantage) 

The interferometer has much higher optical throughput than other (dispersive) 

technologies (Jacquinot’s advantage) 

In contrast to the analyses of gases or liquids, the resolution needs for most applications 

of NIR for the analysis of pharmaceutical solids could be met with relatively low 

resolution (8–64 cm-1 or 6–12 nm). This is due to the extensive coupling of molecular 

bond vibrations in pharmaceutical solids, which results in rather wide absorbance 

bands, which offers the advantage of a higher SNR. The spectral range of modern FT-NIR 

spectrometers is mainly limited by the sensitivity of the detector material, rather than 

the mechanical stability of the optical platform.  

The polarizer interferometer (Ciurczak 2005) relies on a two-piece birefringent crystal 

wedge polarizer and birefringent compensator to modulate optical energy in the pattern 

of a Fourier interferogram. Figure 6 shows that randomly polarized radiation passes 

through a linear polarizer and a birefringent crystal, which separates the light into two 

orthogonally polarized parallel rays with a (wavelength specific) phase shift, thereby 

slightly rotating the plane of polarization. The phase-shifted rays are transmitted 

through the two-piece wedge polarizer, which then rotates the plane of polarization in 

the opposite direction, reducing the phase shift. The angle of polarization rotation is 

dependent on the effective pathlength through the wedge polarizer, and wavelength. At 

the initial position, the thickness of the wedge polarizer is set so that the polarization 

rotation angle (at all wavelengths) perfectly offsets the compensator, resetting the 

polarization state to that of the first polarizer. In this state, the maximum light energy at 

all wavelengths will pass through the second polarizer (DC intensity). As the thickness of 
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the wedge polarizer is varied, the polarization angle incident on the second polarizer 

will vary in a sinusoidal pattern between 0 and 100% transmittance; the frequency of 

the sinusoidal pattern will vary according to optical frequency. Therefore, the sum of the 

components incident on the detector will produce an optical interferogram. The optical 

efficiency of the device is limited by absorption in the beam path, especially as the 

thickness of the wedge polarizer reaches a maximum (which will limit maximum 

resolution). 

 

Figure 6: Overall schematic of the polarization interferometer. A sample is placed after 

the last lens and before the detector. A second lens then is needed to compensate for 

signal divergence through the sample. (Ciurczak 2005) 

Early polarisation instrument models suffered from some wavelength stability 

problems, recent upgrades of the technology have yielded a very robust instrument with 

more than adequate resolution capability (Cogdill and James K. Drennen 2006), (Buchi). 

Because there is only a single optical path through the instrument (compared with the 

dual path of Michelson, Sagnac, or Mach-Zender interferometers), the polarization 

interferometer is less affected by small misalignments in the beam path, the sort of 

which might arise during at-line or in situ operation. Furthermore, the simple design is 

more cost-effective and can be produced with a smaller footprint.  
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1.6 Application-based instrument selection 

criteria 
Modern NIR instrumentation for the analysis of pharmaceutical solids is best classified 

according to the demands of the application, as follows (FDA 2004): 

At-line and off-line: Measurement where the sample is removed, isolated from, 

and analyzed in close proximity to (at-line) or away from (off-line) the process 

stream. 

Applications include raw material identification, investigation of in-process (sampling) 

and finished materials, and data collection for method development. Many at-line NIR 

analyzers have automated sample conveyors and/or fibre-coupled probes. As they may 

be used for a wide variety of tasks, at-line analyzers generally offer the widest spectral 

range (often covering the entire NIR region), the highest spectral resolution, and 

internal means for background correction and performance qualification. These 

analyzers can be both interferometric, usually FT-NIR, or dispersive, typically utilizing a 

grating monochromator. 

On-line: Measurement where the sample is diverted from the manufacturing 

process and may be returned to the process stream. 

Process analyzers are often located in hazardous or controlled environments and their 

performance must be stable and robust to environmental variation. In addition, frequent 

instrument standardization and maintenance may be hindered by access or scheduling 

restrictions. Furthermore, frequent re-standardization or calibration updates can 

become a regulatory problem. The other critical factor affecting technology selection 

(and method development) is robustness (Zeaiter, Roger et al. 2004). 

An at-line type of spectrometer can be adapted for on-line use by employing an 

automated sample handling mechanism if analysis speed was not critical. However, 

speed will often be a critical factor for on-line analyses of in-process materials or 

finished products. Thus, spectral range, resolution, sensitivity, or SNR may be sacrificed 

to increase the measurement speed. FT-NIR instruments have been developed for on-

line applications by significantly reducing the length of measured interferograms. 

Grating monochromators can also be deployed effectively for some on-line applications. 

Acousto-optic tunable filter (AOTF) and holographic grating diode arrays have also some 

advantages in this field. 
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In-line: Measurement where the sample is not removed from the process stream. 

The main difference from on-line instruments is the way the sensor interacts with the 

process. In-line measurements are typically performed by non-invasive or noncontact 

sensing directly through an optical window while the process is running.  

Because the material being analyzed by in-line sensors is typically in motion, very high-

speed spectrometers, especially diode array devices, are preferred. Slower-scanning 

instruments will often work for dynamic processes, provided that scan time is much less 

than the overall process time. In common with on-line applications, robust design of the 

sampling system is also a critical aspect of in-line sensor design. The spectrometer 

window should be resistant to material-wearing effects (e.g., sapphire) and might have 

an automated cleaning mechanism.  In-line instruments may often be small and like to 

resemble a sensor much more than an analyzer. The use of RF wireless communication 

and battery-powered source illumination allow process spectrometers to be attached to 

moving equipment (e.g. blenders).  

Diode array instruments are usually the most ideal for in-line use. Because in-line 

applications often involve long-term measurement of a single type of material, filter-

type instruments (discrete photometers) are another option. Fast Fourier transform 

(FFT) of the detector signal can be used to isolate the spectral intensity data from 

instrumental noise effects, which, along with the simple, efficient design, make filter 

instruments very robust devices for single-material measurement.  

Recently, NIR “micro-spectrometers” have been developed, which has the potential to 

greatly increase the pervasiveness of NIR process monitoring by producing extremely 

small, relatively inexpensive devices, based on microscopic tunable Fabry-Perot 

interferometers that are built into a single microchip. (Axsun) 
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2. Chemometrics 

The term chemometrics was first used in 1971 to describe the growing use of 

mathematical models, statistical principles, and other logic-based methods in the field of 

chemistry and, in particular, the field of analytical chemistry. Chemometrics is an 

interdisciplinary field that involves multivariate statistics, mathematical modelling, 

computer science, and analytical chemistry. 

Rapid technological advances, especially in the area of computerized instruments for 

analytical chemistry, have enabled and necessitated phenomenal growth in the field of 

chemometrics over the past 30 years.  

Multivariate analysis 

Because our environment is inherently multivariate, it is only logical to treat multiple 

measurements simultaneously in any data analysis procedure. By properly considering 

the distribution of multiple variables simultaneously, more information is obtained than 

could be obtained by considering each variable individually.  

The additional information comes to us in the form of correlation which is overlooked if 

one variable at a time was examined. The advantages of chemometrics are often the 

consequence of using multivariate methods. Multivariate methods offer many 

advantages compared with univariate methods. Noise reduction is possible by 

eliminating redundant variables and partially selective measurements can be obtained 

free of the effects of interfering signals. Also, easier identification of false-identity or 

low-grade samples because the calibration is dependent on multiple factors which are 

more likely to point in the wrong direction in such cases (Bro 2003). 
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2.1 Spectral pre-processing (pretreatments) 
The successful application of multivariate calibration methods is hindered by the 

presence of uninformative variance in the NIR spectra. Baseline effects may occur from 

small changes in sample properties (packing density, surface texture, temperature and 

humidity, inhomogeneities, etc.). In addition, uninformative variance may be introduced 

into a data set by changes in the operational parameters of the NIR spectrometer. 

One approach to minimise these effects, is by applying mathematical pre-treatments to 

spectra. There are many types of such pre-treatments options, some of which are 

commonly indicated for certain conditions (like derivatives to exclude baseline shifts), 

while in many cases their use is strictly sample- and application-dependent.  

2.1.1 Mean Centring and Variance Scaling 

The application of mean centring and variance scaling is auto-scaling. Mean centring is 

applied by subtracting the mean spectrum of the data set from every spectrum in the 

data set, equation (0.4). 
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where 

R = Spectrum j in an array of J spectra 

i = wavelength data point 

 

In a multivariate sense, this pre-processing method translates the collection of data to 

the origin of the multivariate space where analysis will be performed. The practical 

consequence of mean-centring data is often a more simple and interpretable regression 

model. In effect, mean centring removes the need for an intercept from the regression 

model. Consequently, since fewer terms in the regression model may need to be 

estimated, estimated analyte concentrations may be more precise following mean 

centring of the data. 

Variance scaling is applied to the jth wavelength of every spectrum by division of the 

standard deviation of the jth wavelength over all spectra in the calibration set. Thus, by 

variance scaling, the impact each variable has in determining the parameters of the 

calibration model is equalized. 
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Equation (0.5) shows that variance scaling is performed by dividing mean centred 

spectra by variance at each wavelength over all wavelengths. Variance scaling is best 

employed when the variance of a particular wavelength has no correlation to the useful 

information content of that particular wavelength. Variance-scaled data gives equal 

weight to all wavelengths, regardless of whether they represent a vibrational overtone, 

scattering, or just baseline noise. Consequently, variance scaling is seldom beneficial for 

NIR calibration. However, in instances where the analytically useful signal is very weak 

compared to other absorbances, variable scaling can be essential. 

2.1.2 Smoothing 

With smoothing, it is possible to improve the signal-to-noise ratio of a signal recorded, 

for example, as a function of time or more commonly, wavelength.  

Caution must be used when smoothing data. Strong smoothing gives better signal-to-

noise ratios than weak smoothing, but strong smoothing may adversely reduce the 

resolution of the signal and hence affects methods involving spectra with sharp peaks or 

shoulders. 

The simplest method of smoothing is to calculate a running average for a narrow 

window of points. The smoothed spectrum is generated by using the average value from 

the window. This causes problems at the endpoints of the curve, and numerous authors 

have described different methods for treating them. 

The most commonly used type of smoothing is polynomial smoothing, also called 

Savitzky-Golay smoothing (Savitzky and Golay 1964). Polynomial smoothing works by 

fitting of a smooth polynomial function to the data in a sliding window of width w, where 

w is usually an odd number. Smoothed points are generated by evaluating the 

polynomial function at its midpoint. The window is moved to the right by dropping the 

oldest point from the window and adding the newest point to the window until the 

entire curve has been smoothed. The degree of smoothing is controlled by varying the 

width of the window, w, and by changing the degree of the fitted polynomial function. 
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2.1.3 First and second derivatives 

Taking the derivative of a continuous function can be used to remove baseline offsets, 

because the derivative of a constant is zero. In practice, the derivative of a digitized 

curve can be closely approximated by numerical methods to effectively remove baseline 

offsets. (Brown, Vega-Montoto et al. 2000) 

The derivative transformation is linear, and curves produced by taking the derivative 

retain the quantitative aspects of the original signal. The most commonly used method is 

based on polynomial smoothing. As in polynomial smoothing, a sliding window is used; 

however, the coefficients for the smoothing operation produce the derivative of the 

polynomial function fitted to the data. As in polynomial smoothing, the frequency-

response function of these types of filters is not ideal, and it is possible to introduce 

distortions and artefacts if the technique is misused. Zero crossing points can be used to 

identify the location of peaks in the original spectra. 

2.1.4 Normalisation 

Here, each spectrum is normalized to constant area, thus removing the effect of the 

fluctuating signal. The simplest normalization technique is to simply set the sum of 

squares for each spectrum to 1, i.e., each spectrum has unit length. This procedure is 

similar to variance scaling, except the method is applied to rows in the data matrix 

rather than columns. Many other normalization schemes can be employed, depending 

on the needs dictated by the application. Normalisations by height, local band area or 

largest peak are other methods commonly used in spectroscopy. 
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2.1.5 Multiplicative scatter correction (MSC) and standard 

normal variate (SNV) 

MSC is used a method to correct differences in baseline offsets and path length due to 

differences in particle-size distributions in near-infrared reflectance spectra of 

powdered samples. (Isaksson and Naes 1988) 

In NIR reflectance measurements, there are two components of reflected light that reach 

the detector: specular reflectance (light reflected without being absorbed or interacting 

with the sample) and diffuse reflectance (light that is reflected by the sample after 

penetrating the sample particles, where some of the light is absorbed by the chemical 

components present in the particles). Powdered samples with very small uniform 

particles tend to pack very efficiently compared to samples with large, irregularly 

shaped particles. Samples with small, efficiently packed particles give a greater intensity 

of specular reflectance, and after transformation as log(1/reflectance), the higher levels 

of specular reflectance appear as increased baseline offsets; thus samples with smaller 

particle-size distributions tend to have larger baseline offsets. Beam penetration is 

shallow in samples with small, efficiently packed particles; thus these kinds of samples 

tend to have shorter effective path lengths compared to samples with larger irregularly 

shaped particles. MSC attempts to compensate these two measurement artefacts by 

making a simple linear regression of each spectrum against a reference spectrum. The 

mean spectrum of a set of training spectra or calibration spectra is usually used as the 

reference. The least-squares coefficients are first estimated and then used to calculate 

the MSC-corrected spectrum. 

MSC has been shown to work well in several empirical studies, which showed an 

improvement in the performance of multivariate calibrations and a reduction in the 

number of factors in PCA. (Geladi, MacDougall et al. 1985) 

However, in SNV transformation, the mean of each spectrum is subtracted and the 

length is normalized to 1, and it produces results similar to MSC in many cases, which 

sometimes makes it difficult to choose between the two methods. In practice, it is best to 

try both methods and select the pre-processing method that gives superior performance. 
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2.2 Multiple-linear regression (MLR) 
MLR generalizes the simple linear regression model by allowing for many terms in a 

mean function rather than just one intercept and one slope. 

Considering a response Y to a variable X1 and the simple linear regression mean function 

with a slope of β1 and an intercept of β0: 

 ( )1 1 0 1 1E |  Y X x xβ β= = +  (0.6) 

By adding a second variable X2, with which to predict the response, a mean function that 

depends on both the value of X1 and the value of X2 is needed: 

 ( )1 1 2 2 0 1 1 2 2E | ,  Y X x X x x xβ β β= = = + +  (0.7) 

The main idea in adding X2 is to explain the part of Y that has not already been explained 

by X1 (Weisberg 2005) .  The equation can be expanded to: 

 ( ) 0 1 1 p pE |    Y X x xβ β β= + + … +  (0.8) 

With NIR spectroscopy, the correlation of absorbances (or transmissions) of adjacent 

wavelengths leads to collinearity. Also, there are usually fewer calibration samples 

available than there are recorded wavelengths in NIR spectra. Consequently, MLR often 

leads to unstable estimates of the response E. Also, the MLR model will fit the calibration 

set well, but if the regression vector is unstable, small random errors in future samples 

will be magnified. This may result in large prediction error in future samples. 

However, MLR should not be summarily rejected. For applications with a small number 

of wavelengths (i.e., data from filter-wheel spectrometers), MLR is a potentially good 

method. In some cases, application of MLR following judicious selection of a wavelength 

may outperform other calibration methods. (Boysworth and Booksh 2001) 
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2.3 Principle component analysis (PCA) and 

regression (PCR) 
The term principal component analysis (PCA) refers to a method of data analysis for 

building linear multivariate models of complex data sets (Thielemans and Massart 

1985). The linear multivariate PCA models are developed using orthogonal basis vectors 

(eigenvectors, also called loadings), which are usually called principal components. 

One of the significant goals of PCA is to eliminate the principal components associated 

with noise, thereby reducing the dimensionality of complex problems and minimizing 

the effects of measurement error. 

PCA is a statistical method that tries to explain the covariance structure of data by 

means of a small number of components. These components are linear combinations of 

the original variables, and often allow for an interpretation and a better understanding 

of the different sources of variation. Because PCA is concerned with data reduction, it is 

widely used for the analysis of high-dimensional data, which are frequently encountered 

in chemometrics. PCA is then often the first step of the data analysis, followed by 

classification, cluster analysis, or other multivariate techniques. It is thus important to 

find those principal components that contain most of the information (Hubert and 

Engelen 2004). 

In the classical approach, the first principal component corresponds to the direction in 

which the projected observations have the largest variance. The second component is 

then orthogonal to the first and again maximizes the variance of the data points 

projected on it. Continuing in this way produces all the principal components, which 

correspond to the eigenvectors of the empirical covariance matrix. 

This method would also be very sensitive to anomalous observations. Consequently, the 

first components are often attracted toward outlying points and thus may not capture 

the variation of the regular observations. Therefore, data reduction based on classical 

PCA (CPCA) becomes unreliable if outliers are present in the data. 
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There are algorithms that can calculate the factors for a data matrix. The two most 

common are the NIPALS (nonlinear iterative partial least squares) algorithm, and SVD 
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2.3.2 Factor selection 

This is critical because retaining more factors than needed would only add more noise to 

predictions. On the other hand, if less than enough factors are kept, potentially 

meaningful information would be discarded that could be necessary for a successful 

calibration. There are a number of tools to help in the decision making process: 

Indicator functions (for data sets for which no reference values, or y-data, are 

available), which provide less reliable selection. 

PRESS for validation data 

One of the best ways to determine how many factors to use in a PCR calibration is 

to generate a calibration for every possible rank (number of factors retained) and 

use each calibration to predict the concentrations for a set of independently 

measured, independent validation samples. The predicted residual error sum-of-

squares, or PRESS, is calculated for each calibration according, and the calibration 

that provides the best results is chosen. The number of factors used in that 

calibration is the optimal rank for that system. 

Cross-validation 

In some cases, a sufficient set of independent validation samples with which to calculate 

PRESS is not available. In such instances, the original training set can be used to simulate 

a validation set. This approach is called cross-validation. The most common form of 

cross-validation is performed as follows: 

Calculate a calibration matrix using all of the training set samples except for one. 

Use the calibration to predict the concentrations of the components in the sample 

that was left out of the training set. 

Calculate the sum-squared of errors between the expected and predicted 

concentrations for the sample that was left out. 

Return the excluded sample to the training set, and leave out a different sample. 

Calculate a new calibration for this new subset of the original training set. 

Return to Step 2, above. Add the new PRESS value calculated in step 3, to the 

PRESS values calculated so far. Continue this process until PRESS values for all 

combinations of "leave one out" have been computed and summed. 

Steps 1 - 6 are repeated for calibrations generated with every possible rank (number of 

factors). The PRESS is examined for each of the calibrations to choose the one that gives 

the best results. The number of factors used in that calibration is the rank of the system. 

This procedure is known as "leave one out" cross-validation. This is not the only cross-

validation method, but rather the most popular. (Kramer 1998) 
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2.3.3 Spectral reconstruction and model calculation 

By discarding the noise eigenvectors, it is possible to remove a portion of the noise from 

the data. The spectra which are generated after noise removal are the reconstructed 

spectra. When principal component regression, there is not really a separate, explicit 

data regeneration step, but by operating with the new coordinate system however, the 

spectra are automatically reconstructed with fewer noise using the factors that explain 

the spectral variation related to the change in the property under study rather than 

other influencing factors. 

2.3.4 Predicting unknowns 

To predict the concentrations in an unknown sample from its measured spectrum 

(Aunknwon), the calibration matrix (Fcal) calculated with the pre-selected factors is used to 

give: 

Cunknown = Fcal Aunknwon 

The prediction accuracy can be evaluated in light of the calibration model qualities 

obtained from validation (or cross-validation), as well as the closeness of the spectrum 

to the calibration data set (residual information – discussed in the following chapter). 
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2.4 Partial least squares (PLS) regression 

(PLSR) 
PLS is a variation of PCR that takes its concept one step further by using a different 

strategy to find a coordinate system that can have advantages over the coordinate 

system used for PCR. This strategy involves finding factors for both the spectral and the 

referencing data. 

The reasoning behind this approach is twofold: First, to utilize the noise removal 

capabilities of PCA and remove some of the noise from the reference data. Second, and 

because the noise in the spectral data will, in general, deflect each eigenvector slightly 

out of the plane containing the theoretical, noise-free data in some randomly different 

direction than the deflection of the corresponding spectral eigenvector (since noise in 

the reference and spectral data are independent of each other). PLS will rotate the 

vectors back toward each other until they are aligned, and provide better noise removal 

by bringing the vectors closer to the ideal planes containing the noise-free spectral and 

concentration data. 

2.4.1 PLS principles 

In addition to the set of new coordinate axes (basis space) for the spectral data (the x-

block), we also find a set of new coordinate axes (basis space) for the referencing data 

(the y-block). These referencing data are expressed as projections onto the 

concentration factors (basis vectors) in a way similar to expressing the spectral data as 

projections onto the spectral factors (basis vectors). 

Each pair of factors is rotated towards each other on a factor-by-factor basis to 

maximize the fit of the linear regression between the projections of the spectra onto the 

spectral factor with the projections of the reference data onto the concentration factor. 

The calibration (regression) coefficients are then calculated using linear regression 

between the projections of the spectra on each individual spectral factor with the 

projections of the reference data on each corresponding referencing factor of the same 

order. 

The prediction step for PLS is also slightly different than for PCR where it is also 

performed on a rank-by-rank basis using pairs of spectral and referencing factors. 

Taking predicting concentration as an example, for each component, the projection of 

the unknown spectrum onto the first spectral factor is scaled by a response coefficient to 

become a corresponding projection on the first concentration factor. This yields the 
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contribution to the total concentration for that component that is captured by the first 

pair of spectral and concentration factors. The process is then repeated for the second 

pair of factors, adding its concentration contribution to the contribution from the first 

pair of factors, and continued until all of the factors in the basis space have been used. 

2.4.2 Factor rotation in PLS 

PLS will search for a single vector, W, that represents the best compromise between the 

spectral factor and the reference factor, which is not necessarily the factor that lies 

exactly half-way between them. It is, instead, the factor that maximizes the linear 

relationship between the projections (scores) of the spectral points onto the factor and 

the projections (scores) of the corresponding reference points onto this same factor and 

maximizes the covariance between the two. 

2.5 Cluster analysis 
The term ‘‘cluster’’ has the meaning of ‘‘concentrated’’ group. Cluster analysis tries to 

identify concentrated groups (i.e., clusters) of objects, while no information about any 

group membership is available, and usually not even the number of clusters is known. In 

other words, cluster analysis tries to find groups containing similar objects (Ripley 

1996).  The task of identifying concentrated groups of objects presumes that such a 

group structure is inherent in the data. This does not, however, lead to the assumption 

that an object belongs to only one group. Thus, clustering methods that perform a 

partitioning of the objects into separated groups will not always give the desired 

solution. For this reason many clustering algorithms have been proposed in the 

literature that do not only perform differently, but that even work on different 

principles. 

2.5.1 Principal component analysis (PCA) 

The first few principal components or factors represent a relevant part of the total data 

variance. Thus, when plotting pairs of principal component scores or factors, the data 

structure can be visually inspected in two dimensions in order to identify groups of 

objects. This approach works fine as long as objects of different groups are sufficiently 

different in the variable space, and the multidimensional space can be well represented 

by a projection (low intrinsic dimensionality), which is often the case. 

Like PCR, PCA transforms a data matrix X(n×m), containing data for n objects with m 

variables, into a matrix of lower dimension T(n×a). In the matrix T, each object is 

characterized by a relative small number (a) of PCA scores (PCs, latent variables). 
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Score ti of the ith object xi is a linear combination of the vector components (variables) of 

vector xi and the vector components (loadings) of a PCA loading vector p. The score 

vector tk of PCA component k contains the scores for all n objects; T is the score matrix 

for n objects and a components; P is the corresponding loading matrix. 

PCA is usually the first choice to visualize multivariate data by scatter plots and 

transform highly correlating variables into a smaller set of uncorrelated variables. 

Outliers may heavily influence the result of PCA and diagnostic plots help to find outliers 

(leverage points and orthogonal outliers) falling outside the hyper-ellipsoid which 

defines the PCA model. 

In cases where PCA fails because of a complicated data structure, nonlinear methods like 

Kohonen mapping, Sammon’s NLM, and cluster analysis with a dendogram can be useful 

alternatives, which are beyond the scope of this research. 
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3. Calibration model development 

Univariate calibration is specific to situations where the instrument response depends 

only on the target analyte concentration. With multivariate calibration, however, model 

parameters can be estimated where responses depend on the target analyte in addition 

to other chemical or physical variables and, hence, multivariate calibration corrects for 

these interfering effects. 

With multivariate calibration, wavelengths no longer have to be selective for only the 

analyte, but can now respond to other chemical species in the samples. Additionally, a 

set of calibration standards must be selected that are representative of the samples 

containing any interfering species. It would be possible to build a calibration model that 

compensates for the interfering species. However, due to spectroscopic noise and 

spectral collinearity (spectral overlap or selectivity), concentration estimates can be 

seriously degraded. Thus, selection of specific wavelengths to be included in the model is 

critical to the performance of the model. 

3.1 Data sets and representative sampling 
Calibration samples must include representation for every responding chemical species 

in a system under study. Spectral shifts and changes in instrument readings for mixtures 

due to interactions between components, changes in pH, temperature, ionic strength, 

and index of refraction are well known. The use of mixtures instead of pure standards 

during calibration enables multivariate calibration methods to form approximate linear 

models for such interactions over narrow assay working ranges, thereby providing more 

precise results. 

The calibration samples must cover a sufficiently broad range of composition that a 

suitable change in measured response is instrumentally detectable. For simple systems, 

it is usually possible to prepare mixtures according to the principles of experimental 

design, where concentrations for all ingredients are varied over a suitable range. 

Because it is more desirable to make interpolations rather than extrapolations when 

making predictions from a calibration model, the range of concentrations in the 

calibration standards should exceed the expected working range of the assay. 

Calibration sample compositions should give a fairly uniform coverage across the range 

of interest. However, if the range is too large, deviations from linearity could begin to 

appear. The recommended minimum number of calibration samples is 30 to 50, 

although this depends on the complexity of the problem (ASTM 1999). 
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It is very important that validation sets do not contain aliquots of samples used for 

calibration. The validation sample set must form a truly independent set of samples. 

Another equally important point is that the composition of validation samples should be 

designed to lie at points in between calibration points, so as to exercise the interpolating 

ability of the calibration model.  

Different validation data sets should be prepared to investigate every source of expected 

variation in the instrument response, operational environment changes, as well as 

expected sample variability. 

Proper setup of calibration sets yields calibrations that are superior in terms of both 

precision and accuracy. The complexity of calibration development has not allowed, yet, 

completely automated mathematically modelling in any current software. In any case, 

the most critical step in calibration is the proper collection of samples to represent the 

population for routine analysis. 

3.2 Method development and evaluation 
It is the best mathematical model that when applied to photometric data obtained from 

a sample of unknown concentration will compute a reliable, accurate, and reproducible 

value of percent composition for the component(s) of interest. The ideal mathematical 

model will be “blind” to endogenous instrument variation, temperature effects, 

background interferences, and the like, and at the same time be most sensitive to 

changes in the concentration of the component(s) of interest. the commonly used 

calibration techniques include the rigor of experimental design, calibration modelling, 

and validation testing. 

3.2.1 Wavelength selection 

When performing multivariate analysis on such mixtures, the analyst musts elect 

wavelengths where the molar absorptivities for the components are most different. Only 

with perfectly error-free data will any wavelength set permit the generation of a 

calibration equation that fits the data perfectly. 

With complex matrices, it is impossible to know if an ideal set of wavelengths has been 

selected for a calibration equation. Often when new instrumental effects are indicated 

and when new calibration sets are selected, new wavelengths are chosen for the same 

application. 
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Different wavelengths will, of course, give rise to different values for the calibration 

coefficients, reflecting the different values of the extinction coefficients at different 

wavelengths.  

In simple calibrations, the differences between the spectra would be considerable and 

can be ascertained visually and the wavelengths to use for the discriminations selected 

manually. If the spectra are very similar, or if there are so many different materials 

involved that visual inspection becomes confusing, then such an a priori selection would 

not be possible. In the absence of a prior knowledge of which wavelengths are suitable 

for performing the desired discriminations, a method of selecting the optimum set of 

wavelengths is needed that maximizes the distances between groups that are close 

together in the multidimensional space, in other words, a criterion that emphasizes the 

differences between those materials that have similar spectra but different reference 

values. A solution to this problem would to compute all the intergroup distances and 

select the variables that maximize the distance between the closest pair of groups.  

One method of wavelength selection that has been devised for implementation with the 

current algorithms in use in NIR is to calculate the distances D, between all pairs of 

groups i and j, and the sum of the inverse squared distance, in other words, (1/Dij) is 

formed. The groups that are closest together will contribute most heavily to this sum; 

thus selecting those wavelengths that cause this sum to be smallest results in the 

selection of the wavelengths that best separate the closest groups, in other words, best 

distinguish the most similar spectra. This approach has an advantage over the simpler 

one in that this technique will optimize among all groups that are comparably closely 

spaced rather than concentrating on only the single closest pair (Mark 2001).  

3.2.2 Model evaluation and optimisation 

Many parameters can be used to assess the performance of NIR calibration models. 

Although automatic optimisation routines exist in literature and practice, manual 

intervention is needed because, depending on the application, each calibration will be 

evaluated differently. 

3.2.2.1 Coefficient of Multiple Determination (r2 or R2)  

Also termed total explained variation, this statistic allows us to determine the amount of 

variation in the data that is adequately modelled by the calibration equation as a total 

fraction of 1. Thus R2 = 1.00 indicates the calibration equation models 100% of the 

variation within the data, while an R2 = 0.50 indicates that 50% of the variation in the 

difference between the actual values for the data points and the predicted or estimated 
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values for these points are explained by the calibration equation (mathematical model), 

and 50% is not explained. R2 values approaching 1.00 are attempted when developing 

calibration. 

3.2.2.2 Student's t value for regression or residuals (t, √F) 

This statistic is used to determine of the correlation between X and Y data. It can be used 

to determine whether there is a true correlation between an NIR value and the primary 

chemical analysis for that sample. It is used to test the hypothesis that the correlation 

really exists and has not happened only by chance. A large t value indicates a real 

(statistically significant) correlation between X and Y. 

When used for residuals, the test allows evaluating criteria for assessing the variation 

between an NIR value and its primary chemical value, and t values greater than 2.5 are 

considered significant and such predictions may possibly be outliers. Most often, high t-

test values here indicate poor laboratory results or a problem with sample presentation 

and positioning. 

3.2.2.3 Standard error of estimate (SEE), or standard error of calibration (SEC) 

This statistic, equation (0.9), is the standard deviation for the residuals due to 

differences between actual (primary wet laboratory analytical values) and the NIR 

predicted values for samples within the calibration set. It is an indication of the total 

residual error due to the particular regression equation to which it applies. The SEC will 

generally decrease with higher number of wavelengths (independent variable terms) 

used within an equation, indicating that increasing the number of terms will allow more 

variation within the data to be explained, or “fitted”. 
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where 

N = total number of samples used in the calibration 

yi = a singular y value for the ith sample 

ŷi = estimated y  value given a regression line 

 

The SEC statistic is a useful estimate of the theoretical “best” accuracy obtainable for a 

specified set of wavelengths used to develop a calibration equation. 
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3.2.2.4 Standard Error of Prediction (SEP) 

The SEP is also termed the standard error of performance, is the standard deviation for 

the residuals due to differences between actual (primary wet chemical analytical values) 

and the NIR predicted values for samples outside of the calibration set. The SEP is 

calculated from equation (0.9) using validation instead of calibration samples. It allows 

for comparison between NIR-observed predicted values and wet laboratory values. 

The SEP is generally greater than the SEC but could be smaller in some cases due to 

chance alone. When calculating the SEP, it is critical that the constituent distribution be 

uniform and the wet chemistry be very accurate for the validation sample set. If these 

criteria are not met for validation sample sets, the calculated SEP may not have validity 

as an accurate indicator of overall calibration performance. 

3.2.2.5 Standard Error of Cross-Validation (SECV) 

The calculation of SECV is a method for determining the “best” number of independent 

variables to use i n building a calibration equation. The SECV method is based on an 

iterative (repetitive) algorithm that selects samples from a sample set population to 

develop the calibration equation and then predicts on the remaining unselected 

samples. Some procedures for calculating SECV may calibrate using two-thirds of the 

samples while predicting on the remaining one-third of the samples. The SECV is an 

estimate of the SEP and is calculated as SEP or SECV as the square root of the mean 

square of the residuals for N - 1 degrees of freedom, where the residual equals the actual 

minus the predicted value. 

3.2.2.6 Bias-Corrected Standard Error 

Bias-corrected standard error measurements allow more accurate evaluation of error in 

cases where model bias has been evaluated. The bias value (b0) is calculated as the mean 

difference between two columns of data, most commonly actual minus NIR predicted 

values. 
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where 

N = total number of samples used in the calibration 

yi = a singular y value for the ith sample 

ŷi = estimated y  value given a regression line 
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3.2.2.7 PRESS (Prediction Sum of Squares) 

This statistic calculates the error sum square (between predicted and reference values) 

as a function of the number of factors (eigenvectors, principal components or principal 

factors). The optimum number of PC is always given by the smallest number of PC where 

the PRESS function for the calibration and validation sets is approximately equal and 

minimal. 
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where 

N = total number of samples used in the calibration 

yi = a singular y value for the ith sample 

ŷi = estimated y  value given a regression line 

 

3.2.2.8 Other performance indicators 

3.2.2.8.1 SEC / SEP RATIO 

This describes the relation between the standard errors of the calibration and validation 

sets. An SEC much higher than SEP indicates over-fitting of the model to the calibration 

samples. 

3.2.2.8.2 BIAS 

This is the average deviation between the calibration and validation predictions, 

calculated from equation (0.12) below. 
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where 

N = total number of samples used in the calibration 

yi = a singular y value for the ith sample 

ŷi = estimated y  value given a regression line 

 

3.2.2.8.3 REGRESSION COEFFICIENT, INTERCEPT AND SLOPE 

Absolute regression coefficient near 1.0 shows that two properties are linearly 

dependent. Slope should be as close as possible to 1.0 and intercept to 0. 
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3.2.2.8.4 DURBIN-WATSON STATISTIC 

This statistic can be used to assess the lack of inter-correlation between data points in 

the regression. Since the correlation coefficient R only describes the tendency of the line, 

not the trueness of fit to a linear model. If there is no inter-correlation of the residuals 

described by the Durbin–Watson statistic, then a linear model is appropriate and may be 

used.  A value closest to 2 indicates good linear correlation referenced and predicted 

values. 

3.2.2.8.5 LEVERAGE 

The concept of leverage in statistics is comparable to the physical model of a lever. The 

hinge for the calibration line lies the centre of the x-values. Calibration samples close to 

the mean of the x-values tend to exert little force on the slope of the calibration curve. 

Calibration samples farthest from the mean of the x-values can put forth a greater force 

on the slope of the calibration curve, so that their residuals are made as small as 

possible.  Leverage plots can be used to find optimal factors or to detect outliers. 

3.3 Method validation 
Validation of a multivariate calibration model is a critical step that must take place prior 

to widespread adoption and use of the calibration model for routine assays or in 

production environments.  Many official monograms, standards, papers and published 

guidelines exist, directed both to NIR use in general, or specific for pharmaceutical 

release purposes. Of these, the most notable guidelines are through: 

USP (USP 30 NF25 2007) 

1119 – Near-infrared spectrophotometry 

1225 – Validation of compendia procedures 

EP and BP (BP 2007, EP 5.5) 

Ph. Eur. method 2.2.40 – Near-infrared spectrophotometry 

SC III F. Validation of analytical procedures 

EMEA 

“Note for guidance on the use of near infrared spectroscopy by the 

pharmaceutical industry and the data requirements for new submissions and 

variations” , 2003 

ICH guidelines 

Q2(R1) “Validation of analytical procedures: text and methodology” 

PASG 
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Guidelines for the development and validation of near infrared (NIR) 

spectroscopic methods, 2001 

Assuming that an appropriate quality assurance program is in place, three criteria must 

be met: validation of the software; validation of the hardware; and validation of the NIR 

spectroscopic method (or any analytical method). Currently, reputable NIR software and 

hardware manufacturers provide considerable regular automated suitability tests using 

approved standards in order to validate NIR software and hardware. 

The purpose of method (or model) validation is to determine the reproducibility of a 

multivariate calibration, its bias against a known method or accepted values, and its 

long-term ruggedness (robustness). Regardless of the numerous sources providing 

general direction to the method developer, validation is an extremely complex 

regulatory issue that is not easily defined. 

The term validation, in the regulatory context of a NIR method, refers to the 

establishment of appropriate data and documentation to certify that the method 

performs as intended. 

Provided that instrument and software validation have been established, as well as 

following cGMP and cGLP guidelines, NIR method validation can be achieved by 

observing the points outlined below. 

3.3.1 Specificity 

Specificity is the ability to assess unequivocally the analyte in the presence of 

components that may be expected to be present. A major problem with utilizing NIR to 

accurately determine concentrations of actives in solid dosage forms is that the analysis 

is performed without removing the analyte from its matrix. 

The very property that makes NIR so attractive, allowing analysis of intact dosage forms 

and intermediate products without dissolution/extraction of the active agent, is also the 

issue that could potentially limit its application to pharmaceutical analysis, if we are 

restricted to current validation regulations. 

Because NIR spectra represent all materials present in the formulation, including the 

active, specificity is a major validation hurdle that must be overcome if NIR is to be used 

as a release testing technique. 
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One mechanism that is proposed to address this problem is to first identify the product 

being tested before quantifying the analyte of interest, using several lots of product with 

varying analyte values.  

3.3.2 Linearity 

The linearity of a NIR spectroscopic method is determined from the multiple correlation 

coefficients (R) of the NIR predicted values of either the calibration or validation set 

with respect to reference values. It may be argued that this is an insufficient proof of 

linearity since the analyst is comparing information from two separate instrumental 

methods, and thus simple linearity correlation of NIR data through regression versus 

some primary method is largely inappropriate without other supporting statistics. 

A potentially more appropriate statistical tool, that being the Durbin–Watson statistic 

(d) (Draper and Smith 1998), can be used to assess the lack of inter-correlation between 

data points in the regression. The Durbin–Watson statistic is more of a test for 

nonlinearity, calculated from residuals obtained from fitting a straight line. The statistic 

evaluates for sequential dependence in which error is correlated with those before and 

after the sequence. 

If successive residuals are positively serially correlated, that is, positively correlated in 

their sequence, d will be near zero. If successive residuals are negatively correlated, d 

will be near 4, so that 4 - d will be near zero. The distribution of d is symmetric about 2. 

3.3.3 Range 

The ICH guidelines recommend a minimum range of 80 to 120% of the test 

concentrations for assay of a drug substance or a finished product and 70 to 130% of the 

test concentration for content uniformity. 

This brings about the need for out-of-specification samples to extend the very narrow 

concentration ranges from production samples to this range. This might seem trivial, but 

in reality, is not so simple. The first problem is that it would mostly be impossible to 

provide out-of-specification product in the production environment. 

Manufacturing these out-of-specification samples in a pilot plant or laboratory will lead 

to further problems. Despite the use of identical raw materials (relative to the 

production samples), the ‘‘process signature’’ is often so significantly different from 

laboratory to production to pilot scale that significant calibration errors will arise. For 
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example, the dwell time, compaction force, and feed rate variations that exist between 

the different scales of manufacturing can cause significant variations in sample 

properties and hence NIR spectra, even when formulations are identical. Thus, 

expansion of the range of concentration values through the use of laboratory or pilot 

plant samples is, in most cases, impractical. It is possible that the range problem is the 

single most significant issue prohibiting a uniform approach in wide implementation of 

quantitative NIR techniques in the industry. 

3.3.4 Ruggedness/Robustness 

The robustness of any method may be measured by inflicting small, deliberate variations 

in the method and ascertaining whether any changes in the predictions gleaned are 

significant, e.g. turning the tablet over from one side to the other. Method developers 

must consider tests to evaluate algorithm stability during the development and 

validation processes. 

For solid dosage forms in particular, this issue is of prime importance, and if the 

variation in physical parameters as a result of small process variability is not sufficient 

to flag the sample as an outlier, it is still unknown whether or not this variation would 

contribute to significant prediction errors. This issue is one the topics investigated in 

this research. 

The evaluation of robustness should be considered during the development phase and 

depends on the type of procedure under study. It should show the reliability of an 

analysis with respect to deliberate variations in method parameters. One consequence 

of the evaluation of robustness should be that a series of system suitability parameters 

(e.g., resolution test) is established to ensure that the validity of the analytical procedure 

is maintained whenever used. (ICH 2005) 

3.3.5 Accuracy 

The accuracy of an analytical procedure expresses the closeness of agreement between 

the value which is accepted either as a conventional true value or an accepted reference 

value and the value found (trueness).  There are several methods of establishing 

accuracy (ICH 2005): 

Application of the analytical procedure to synthetic mixtures of the drug product 

components to which known quantities of the drug substance to be analysed 

have been added. 
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Compare the results obtained from a second, well characterized procedure, the 

accuracy of which is stated and/or defined. 

Accuracy may be inferred once precision, linearity and specificity have been 

established.  

3.3.6 Precision 

Precision of any analytical procedure describes how close the agreement is, between a 

series of measurements obtained from multiple sampling of the same homogenous 

sample under the prescribed conditions. The precision of an analytical procedure is 

usually expressed as the variance, standard deviation or coefficient of variation of a 

series of measurements and can be described in terms of:  

Repeatability 

This is precision under the same operating conditions over a short interval of time. 

Repeatability is also termed intra-assay precision and should be assessed using:  

Minimum of 9 determinations covering the specified range for the procedure (e.g. 

3 concentrations/3 replicates each); or  

Minimum of 6 determinations at 100% of the test concentration.  

Intermediate precision 

This expresses within-laboratories variations and should establish the effects of 

random events on the precision of the analytical procedure. Typical variations to 

be studied include days, analysts, equipment, etc. It is not considered necessary 

to study these effects individually. 

Reproducibility 

This describes the precision between laboratories (collaborative studies, usually 

applied to standardization of methodology).  

Since this discussion is specific to intact dosage forms, repeatability takes on a slightly 

different colour than for HPLC methods. While sample preparation is usually 

significantly reduced for NIR methods in comparison to traditional wet chemical 

methods, thus reducing method error from dissolution, extraction, and the like, the 

diffuse reflectance and diffuse transmittance methods common to NIR practice are 

susceptible to other factors that can ultimately reduce precision. The ‘‘repack error’’ 

once described for ground grain samples that were repacked into the traditional NIR 

sample cup may more aptly be described as a ‘‘positioning error’’ for today’s non-

destructive analyses of intact dosage forms. Appropriate sample handling and various 



 
60 Calibration model development 

mathematical routines allow minimization of the spectral variability and imprecision 

arising from this type of error. 

3.3.7 Detection and quantification limits 

The detection limit of an individual analytical procedure is the lowest amount of analyte 

in a sample which can be detected but not necessarily quantified as an exact value, while 

the quantification limit is the lowest amount of analyte in a sample which can be 

quantitatively determined with suitable precision and accuracy. The quantification limit 

is a parameter of quantitative assays for low levels of compounds in sample matrices, 

and is used particularly for the determination of impurities and/or degradation 

products. 
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4. NIRS and process analytics 

In 2004, the US FDA announced their guidance document on process analytical 

technology (PAT) and triggered a rapidly growing movement within the pharmaceutical 

industry. In the FDA definition, PAT consists of “Systems for the analysis and control of 

manufacturing processes based on timely measurements, during processing of critical 

quality parameters and performance attributes of raw materials and in-process materials 

and processes to assure acceptable end product quality at the completion of the process” 

(Hussain 2002). 

From this definition, the PAT toolbox consists of four main elements: 

Multivariate data acquisition and analysis tools 

Modern process analysers or process analytical chemistry tools 

Process and endpoint monitoring and control tools 

continuous improvement and knowledge management tools 

Since then, PAT has been an important subject of research and industry, suppliers, 

government, and academia are still wrestling with a huge number of method 

development and implementation issues. Despite this tremendous effort, PAT is in an 

early stage of development in the pharmaceutical manufacturing industry. 

Although PAT has been applied extensively in other industries (e.g., chemical and food 

processing), the nature of pharmaceutical manufacturing presents new challenges in 

terms of regulation, risk, and complexity. In addition, PAT applications will place new 

demands on the existing industrial infrastructure and a significant amount of practical, 

application-specific research is required to support the deployment, operation, and 

maintenance of associated analytical methods. 

Critical issues that must be considered during PAT method development include 

(Cogdill, Anderson et al. 2004): 

risk analysis of the process 

feasibility studies 

experimental design 

sensors and technology selection 

model development and transfer 

process sampling 
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information management 

The integration of these concepts and issues into the development effort will produce a 

more effective method and a better grasp of the technology. This understanding 

corresponds to fundamental knowledge about the basis for method operation and 

critical factors affecting method performance. The result of integrated development is a 

validated method that provides information about the process.  

Near infrared (NIR) spectroscopy is an important process analyser and is perhaps the 

most dominant technology within this group of process analysers. Because NIR spectra 

are capable of providing a very detailed physical and chemical picture of the process at 

many positions in the manufacturing line, this makes NIR such a versatile and powerful 

instrument for PAT applications.  
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5. Sample properties affecting spectra 

As has been discussed in previous sections, NIR spectra are the convolution of chemical 

and physical interactions between the sample and NIR radiation. 

Although the value of the chemical information in NIR spectra is obvious, the physical 

factors, which affect NIR spectra may also yield useful information related to the quality 

(state) of the sample material. In other cases, the presence of strong variations in 

concomitant physical parameters may overwhelm the analytical signal of interest.  

5.1 Particle Size 
The particle size distribution (PSD) and mean particle size are critical quality control 

factors for pharmaceutical solids (e.g. raw material quality or process control). Drug and 

excipient PSD variability can affect dosage form performance by altering dissolution rate 

or bioavailability, or it can affect drug product quality in manufacturing by altering the 

flow properties of the materials. 

Since the angle of optical diffraction for a single-particle event is inversely proportional 

to particle size, the actual angle of diffraction will depend not only on particle size and 

wavelength of incident light but also on particle morphology and refractive index, as 

described by Mie and Fraunhofer theories of optical scattering (Ingle and Crouch 1988). 

Thus, as particle size varies, the relative level of forward and backward scattering events 

will vary as well, causing a change in apparent optical absorption. Larger particles, for 

example, will have a greater proportion of forward scatter, which reduces the 

probability that a diffusely scattered photon from an incident beam will be returned to 

the surface of a sample in DR (Figure 8). 
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Figure 8: NIR DR spectra of (from below up) 40, 100, and 200µ aspirin powder samples 

Particle size variation will also affect particle packing characteristics, leading to more 

complex spectral effects. Hence, there has been great interest in using NIR spectroscopy 

for rapidly determining MMPS or PSD of pharmaceutical solids and granules. Ciurczak 

(1986) published some of the first pharmaceutical work relating the particle size of 

pharmaceutical raw materials to variation in NIR spectra, demonstrating a linear 

relationship between the absorbance at any wavelength and the reciprocal of particle 

size as measured using low-angle laser light scattering. 

Numerous references on the use of NIR for particle size analysis followed. Examples 

include the application of NIR for real-time median particle size determination during 

granulation (Rantanen and Yliruusi 1998) and MPS of API in a binary mixture (Frake, 

Luscombe et al. 1998). Laser diffraction or sieve analysis was used for reference testing 

in all cases. 
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5.2 Crushing strength-related physical 

properties 
Crushing strength (hardness) has been observed to have a measurable effect on NIR 

spectra. Tablet crushing strength is a common product release parameter and is 

important for process control, because varying crushing strength might affect product 

friability, disintegration, dissolution, and ultimately, bioavailability. The crushing 

strength and apparent density (or porosity, solid fraction) are common parameters for 

process control during roller compaction. 

Drennen published the first examples of using NIR spectroscopy and chemometrics for 

non-destructive tablet crushing strength in 1991. Subsequent publications by Ciurczak 

and Drennen  (1992)  and Drennen and Lodder (1993) further explored the application 

using both quantitative and qualitative methods. It was observed in all of these 

experiments that changes in dosage form crushing strength are indicated by a sloping 

baseline shift of the apparent absorption spectrum measured in reflectance. 

As the tablet (or compact) crushing strength increases, the apparent absorption baseline 

increases. Although the root cause of the spectral effect is not conclusively established, 

some references do posit hypotheses. It is suggested however, that as tablet crushing 

strength increases (and the total surface area of inter-particle contact increases), less 

fraction of the radiation is backscattered due to the air–particle interface, reducing the 

magnitude of reverse flux. At the same time, a greater fraction of the radiation 

propagates through points of inter-particle intimate contact, increasing the magnitude of 

forward flux. As fewer scattered photons reach the reflectance detector via reverse flux, 

the apparent absorbance increases (measured reflectance decreases). This hypothesis is 

supported by the observed relationship between the tablet crushing strength and NIR 

transmittance, whereby increasing crushing strength reduces the apparent tablet 

absorbance. 



 
66 Sample properties affecting spectra 

 

Figure 9: Effect of increasing crushing strength on NIR Transmittance (downward 
arrows) and reflectance spectra (upward arrows). Arrows indicate direction of 

increasing crushing strength. (Cogdill and James K. Drennen 2006) 

As is for the effect of particle size, the rate of baseline increase is more pronounced near 

strong absorption bands. Although baseline shifting is the most pronounced spectral 

change observed with varying tablet crushing strength, other spectral changes (e.g., 

peak shifting) have been observed. 

It has been shown that the crushing strength can be predicted with reasonable accuracy 

by simply fitting linear or nonlinear functions to the NIR baseline (Guo, Skinner et al. 

1999) and then correlating crushing strength to selected coefficients of the baseline fit. 
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5.3 NIR sampling span 
The need for effective sampling is common to all analytical techniques. With NIR 

spectroscopy, a great deal of attention is usually given in the selection of calibration 

samples highly representative of end product units over different batches. However, 

another aspect of sampling is as equally important and sometimes overlooked. NIR 

radiation in classical diffuse reflection mode is reflected from a central area of the 

surface and is only assumed rather than proven representative of the whole tablet.  

The scale of mass to be assayed ‘scale of scrutiny’ (Donoso, Kildsig et al. 2003), 

(Berntsson, Danielsson et al. 1998) by any method depends on both the magnitude of 

the unit dose in question and the application. For example, monitoring blend uniformity 

requires minimal effective sampling mass, while the reverse is true for individual dosage 

forms. Moreover, the effective sampling mass has a complex and nonlinear effect on NIR 

transmittance and reflectance spectra. (Bull 1990) 

5.3.1 Diffuse reflectance 

There is little experimental evidence of how deep the radiation penetrates the surface in 

diffuse reflection. This penetration is sample-dependant and the difference between 

loose and compacted powders is significant. 

Few researchers have tried to DR estimate information depth for powder mixtures. 

Olinger and Griffiths (2001) used absorbance values for mixtures with known 

absorptivities and particle size values and reported an upper boundary of 1 mm at 1653 

nm. It was also reported that if scattering effect was to be considered, this range would 

unlikely be more than 300 µm. Others have reported different values but without 

supporting experimental or theoretical evidence: 5 mm (MacDonald and Prebble 1993), 

1-2 cm (Ciurczak 1991), 1-4 mm (Olinger and Griffiths 1992), 0.5 mm (Stephen Victor 

Hammond 1997).  

The evidence is even smaller for compacted solids. Iyer (Iyer, Morris et al. 2002) have 

tried to estimate the sampled mass in DR using single and double-layered tablets and 

second derivative spectra. He concluded that the effective sampling depth was between 

1.9 and 2.7 mm depending on the wavelength. Another study by Andersson  (Andersson, 

Josefson et al. 1999) showed different values and suggested an information depth of 0.1 

- 0.2 mm using incremental coating and tablets with 2 different components. The 

authors however maintained that these figures are only rough estimates because the 
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results were obtained using extrapolation and may only be valid for specific materials 

and instruments. 

Because of such varying views on DR information depth, the exact value is still not clear 

to operators of the method. Additionally, since the majority of pharmaceutical tablets 

range in thickness between 1 – 4 mm, determining this depth is crucial to the selection 

of appropriate measurement modes for different coated, uncoated and multi-layered 

tablets and can provide better understanding of the performance differences between 

DR and DT modes. 

5.3.2 Diffuse transmission 

Diffuse transmission mode penetrates the whole thickness of the tablet and would 

theoretically be more representative of the whole tablet (Berntsson, Burger et al. 1999) 

especially for low-dose units where aggregation has a higher effect. It is not clear, 

however, what path the radiation follows inside the tablet and hence the percentage 

actually being scanned. Moreover, transmission is more sensitive to path-length and 

density variability. Iyer et al. (2002) did a series of experiments to address this issue. 

They calculated a wavelength-dependent information depth for reflection ranging 

between 1.9 to 2.7 mm using second derivative spectra from tablets of increasing 

thickness. They also showed a limiting tablet thickness of 3.5 – 4.8 mm for transmission. 

Another set of experiments showed an effective transmission diameter of 7 mm and 

concluded that the mass sampled for both modes was comparable and around 200 mg. 

However, the radiation intensity inside this diameter is fading towards the periphery in 

all directions making the mass over-estimated in this case, especially for reflection. Also, 

the fact that sampled mass is largely dependent on physical properties of the sample, 

mainly crushing strength and packing, makes this issue an open question. 
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6. Pharmaceutical Tableting 

The oral route is the most common way of administering drugs, and among the oral 

dosage forms tablets of various different types are the most common. The EP defines 

tablets as ‘solid preparations each containing a single dose of one or more active 

ingredients and obtained by compressing uniform volumes of particles’ (EP 2006). 

Tablets are prepared by forcing particles into close proximity to each other by powder 

compaction, which enables the particles to cohere into a porous, solid specimen of 

specified geometry. This compaction takes place in a die by the action of two punches, 

the lower and the upper, by which the compressive force is applied.  

Powder compaction is the reduction in volume of a powder by the application of a force. 

Because of the increased proximity of particle surfaces accomplished during 

compaction, bonds are formed between particles which provides coherency to the 

powder, i.e. a compact is formed. 

 

Figure 10: Stages of tablet manufacture (encyclopaedia of ph tech, p 3654) 

Irrespective of the press type used, a complete tablet manufacturing cycle occurs in the 

following steps (Figure 10): (i) the die is filled and adjusted (scraped), (ii) the tablet is 

compacted, and (iii) the tablet ejected from the die. 
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6.1 Single-punch press (eccentric press) 
Eccentric tablet presses are single station tablet presses that use an eccentric shaft con-

nected to a rotating wheel to control the displacement of the upper punch into the die. In 

an eccentric press, the displacement profile of the upper punch is sinusoidal and the 

displacement rate is controlled by adjusting the rotation rate of the eccentric wheel 

(Figure 11). The lower punch remains stationary during the compaction and acts only to 

enable uniform die filling prior to tablet formation and tablet ejection after tablet 

formation. Eccentric presses utilize single-sided compaction to make tablets, where as 

rotary presses use double-sided compaction. Also, eccentric press compaction cycles do 

not have a dwell time, where rotary presses typically use a punch head flat which 

enables a dwell time as the punch passes under the compaction roller. Finally, the 

degree of machine deflection is different for these different presses. (Augsburger and 

Hoag 2008) 

 

Figure 11: Displacement profile of an eccentric press compared to a rotary press 

(Augsburger and Hoag 2008) 
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6.2 Rotary press 
The rotary press was developed to increase the output rate of tablet production. A 

rotary press operates with a number of dies and sets of punches. The dies are mounted 

in a circle in the die table and both the die table and the punches rotate together during 

operation of the machine, so that one die is always associated with one pair of punches. 

The vertical movement of the punches is controlled by tracks that pass over cams and 

rolls used to control the volume of powder fed into the die and the pressure applied 

during compaction. The powder is held in a hopper whose lower opening is located just 

above the die table. The powder flows by gravity on to the die table and is fed into the 

die by a feed frame. The reproducibility of the die feeding can be improved by a rotating 

device, referred to as a force-feeding device. During powder compaction both punches 

operate by vertical movement. After tablet ejection, the tablet is knocked away as the die 

passes the feed frame. 

 

Figure 12: Rotary press production cycle a) top view, b) unfolded view (Sinka and 

Motazedian 2009) 

The location of the compaction roll on the punch head determines the phase of 

compaction. The loading phase begins when the upper punch first makes contact with 

the compaction roller, and lasts until the compaction roller reaches the edge of the flat 

portion of the punch head. At this point the dwell phase begins and continues until the 

compaction roller rolls off the top of the torus (Augsburger and Hoag 2008). During the 

dwell phase the strain is constant, with unloading beginning at roll-off and continues 

until the punch stress drops to zero; this point is called lift-off. Once the punch stress is 
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zero the relaxation phase begins and continues until the tablet is ejected from the die. 

The stress created during compaction is a consequence of a reduction in tableting 

material volume. 

6.3 Compaction mechanics 
The compaction process can be described by a series of sequential phases: 

Particle rearrangement 

Elastic, viscoelastic, and plastic deformation of particles 

Fragmentation of particles 

Formation of inter-particulate bonds 

As the powder volume is reduced, the particles become rearranged into a closer packing 

structure. At a certain point, the packing characteristics of the particles and inter-

particulate friction between particles will prevent any further particle rearrangement. 

At this point, the further reduction in compact volume results in the elastic, viscoelastic, 

and plastic deformation of the particles. (Wu, Ruddy et al. 2005) 

Elastic deformation is reversible, whereas the plastic deformation is irreversible. In 

addition, particle fragmentation or breakage results in smaller particles, which further 

decreases in compact volume. As the volume is further reduced, the smaller particles 

formed by fragmentation can undergo deformation. As a consequence of these 

processes, particle surfaces are brought into close proximity to each other which can 

lead to the formation of inter-particulate bonds. These bonds may later break which 

facilitates further compaction. 

All materials posses varying degrees of elastic, viscoelastic, plastic, and brittle 

characteristics, and the type of volume reduction mechanism that will predominate for a 

specific material is dependent on factors such as temperature and compaction rate. 

Three types of bond mechanisms can occur during tableting: mechanical interlocking 

between irregularly shaped particles, inter-particulate attraction forces (Van der Waal 

forces, hydrogen and electrostatic forces) and melting solid bridges. 
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6.4 Tablet production by direct compaction 
The aim of direct compaction, as opposed to tableting via granulation, is to minimize the 

number of operations involved in the pre-treatment of the powder mixture before 

tableting. Tablet production by direct compaction involves only two operations in 

sequence, powder mixing and tableting. The advantage with direct compaction is 

primarily a reduced production cost. However, in a direct compactable formulation, 

specially designed fillers and dry binders are normally required, which usually are more 

expensive than the traditional ones. They may also require a larger number of quality 

tests before processing. As heat and water are not involved, product stability can be 

improved. Finally, drug dissolution is generally faster from a tablet prepared by direct 

compaction owing to fast tablet disintegration into primary drug particles (depending 

on formulation). (Göran Alderborn 1995) 

The disadvantages of direct compaction are mainly technological. In order to handle a 

powder of acceptable flowability and bulk density, relatively large particles must be 

used which, firstly, may be difficult to mix to a high homogeneity; and secondly are 

prone to segregate. Moreover, a powder consisting mainly of drug will be difficult to 

form into tablets if the drug itself has poor compactibility. Finally, an even colouring of 

tablets can be difficult to achieve with a colourant in dry particulate form. 
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6.5 Tableting excipients 
In addition to the active ingredient(s), a series of excipients are normally included in a 

tablet; their role is to ensure that the tableting operation can run satisfactorily and to 

ensure that tablets of specified quality are prepared. Depending on the intended main 

function, excipients to be used in tablets are subcategorized into different groups. 

However, one excipient can affect the properties of a powder or the tablet in a series of 

ways, and many substances used in tablet formulations can thus be described as mul-

tifunctional. The functions of the most common types of excipients used in tablets are 

given in Table 1 (Aulton 2002). 

Table 1: Common tableting excipients 

Excipient category Examples 

Filler Lactose 
 Sucrose 
 Glucose 
 Mannitol 
 Sorbitol 
 Calcium phosphate 
 Calcium carbonate 
 Cellulose 
Disintegrate Starch 
 Cellulose 
 Cross-linked polyvinyl pyrrolidone 
 Sodium starch glycolate 
 Sodium carboxymethyl cellulose 
Solution binder Gelatine 
 Polyvinyl pyrrolidone 
 Cellulose derivatives 
 (e.g. hydroxypropylmethyl cellulose) 
 Polyethylene glycol 
 Sucrose 
 Starch 
Dry binder Cellulose 
 Methyl cellulose 
 Polyvinyl pyrrolidone 
 Polyethylene glycol 
Glidant Silica 
 Magnesium stearate 
 Talc 
Lubricant Magnesium stearate 
 Stearic acid 
 Polyethylene glycol 
 Sodium lauryl sulphate 
 Sodium stearyl fumarate 
 Liquid paraffin 
Antiadherent Magnesium stearate 
 Talc 
 Starch 
 Cellulose 
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6.6 Determinants of the compaction process 
As discussed previously, the bulk volume reduction during compaction ( compression) is 

a complex process involving several events. Thus, the success and efficiency of compact 

formation can be influenced by numerous factors. These factors could be 

product/formulation related, process/equipment related and/or environment related. 

Some of the most important factors affecting the compressibility/compactibility of 

pharmaceutical materials are: 

6.6.1 Crystallinity/Polymorphism 

Polymorphism, pseudo-polymorphism, and the crystal ordering/disordering of pharma-

ceutical materials are known to affect their densification behaviour and the final 

compact attributes. Typically, crystalline materials undergo brittle fragmentation 

whereas amorphous materials undergo plastic deformation (Singhal and Curatolo 

2004). 

6.6.2 Porosity and Bulk Density 

The relative density and hence porosity vary largely among pharmaceutical materials. 

Moreover, the porosity of these materials may change significantly during processing. 

Since the process of compaction is aimed at reducing the porosity of a powder or 

granule, the initial porosity largely determines the extent to which the porosity can be 

reduced in a given tablet press. Also, increases in the original intra-granular porosity 

increased the compressibility at a given applied pressure (Eriksson and Alderborn 

1995). 

6.6.3 Particle size and shape 

The particle size, size distribution, and shape are among the important determinants of 

the deformation behaviour of pharmaceutical powders and granules. Increasing the 

irregularity and roughness of granules changed the compaction behaviour from plastic 

deformation towards a more complex process including fragmentation and attrition of 

the granules. Compressibility is generally better in larger particle size systems due to a 

greater degree of densification. This is attributed to increased frictional and cohesive 

forces associated with the smaller size range; which tends to restrict particle flow and 

thus reduce densification (Fichtner, Rasmuson et al. 2005). 
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6.6.4 Compaction Force 

Compaction force is the major driving force in the powder densification process. The 

rate and extent of the applied force on the powder bed not only affects the way particles 

physically deform but also determines the integrity of the compact formed (crushing 

strength/tensile strength). There is a positive correlation between compaction force and 

compactibility of the material up to a threshold pressure beyond which either the 

crushing force of compact remains unchanged, decreases or results in manufacturing 

problems like capping and lamination (Wu, Ruddy et al. 2005). 

6.6.5 Lubricants and Glidants 

Lubricants are usually added to formulations to reduce die-wall friction, although they 

may also help improve flow properties (those having a glidant characteristic), as well as 

function as anti-adherents. The amount of lubricant added and the extent or duration of 

mixing a lubricant have been shown to affect several formulation properties including 

powder flow, deformation behaviour, crushing strength, and dissolution rate. It has been 

traditionally observed that increasing the concentration of lubricant in a formulation 

results in tablets with decreased crushing strength. This effect is attributed to a decrease 

in the degree of cohesiveness between the particles as well as decreased frictional 

effects at the punch faces and die-wall (Moody, Rubinstein et al. 1981). 

Glidants are typically incorporated in solid dosage formulations to improve the flow 

properties of granules or powders. There are several mechanisms by with a glidant can 

increase the flowability of formulations, including 

• Decreasing surface roughness of the particles by forming a uniform coating 

around them; thus, reducing the frictional drag between the particles. 

• Acting as physical barriers between particles which reduces attractive forces 

between particles. 

• Removing absorbed moisture from the surface of the particles, making them 

drier and more flowable. 

 

6.6.6 Moisture 

Moisture is known to affect a wide range of properties, such as powder flow, 

compactibility, and stability (physical chemical and microbiological). The interaction 

between moisture and a solid is complex and can occur in a variety of ways. For 

example, water can be stoichiometrically incorporated into a solid's crystal structure in 
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the form of a hydrate (pseudo-hydrate). In addition, moisture can have nonspecific 

interactions with a solid by adsorbing on the surface or being absorbed into the material 

and acting as a plasticizer, and these interactions are more common in amorphous or 

semi crystalline materials. 

Absorbed moisture increases the deformability of the material by facilitating a 

temporary transition of the amorphous material from a glassy to a rubbery state 

(particularly for long chain polymeric materials), occurring during the compaction 

phase, resulting in the formation of solid bridges (due to evaporation of moisture during 

processing) with a subsequent increased inter-particulate bonding area, which increases 

the deformability of the particles (Sun 2008). 

6.6.7 Tableting speed 

The deformation behaviour of many pharmaceutical materials is time-dependent and 

the nature of this time dependency is often related to the mechanism of compaction for a 

given material. It is thought that time dependency or speed sensitivity arises from the 

viscoelastic or viscoplastic characteristics of a material. In contrast, studies have shown 

that brittle materials are much less speed dependent that ductile materials because 

yielding and fragmentation are not as dependent on the rate of compaction. It is also 

believed that the particle size and size distribution of the powder or granules have an 

important role in the speed sensitivity due to the fact that this property affects the pre-

dominant mechanism of deformation. 

The speed sensitivity of pharmaceutical materials can have serious implications on the 

final tablet attributes. The effect of punch velocity can be pronounced when a material is 

transferred from a single station laboratory press to a rotary press or scaled up to a very 

high speed industrial press. Several studies have found that materials that have a high 

degree of elastic recovery or deform via plastic deformation tend to show a decrease in 

tablet strength with increase in tableting speed, and problems like capping and 

lamination are more likely to occur when such materials are scaled up to a high-speed 

press (Akande, Rubinstein et al. 1997). 
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6.7 Compaction simulators 
A compaction simulator is a tool for the characterization, scale-up, and troubleshooting 

of powder compaction performance. In the simplest of terms, a compaction simulator is 

a highly instrumented single station compaction machine fitted with an upper punch, 

lower punch, and die that is capable of mimicking a modelled compaction event. These 

machines are either hydraulically or mechanically powered to deliver a range of 

compaction forces using highly controlled punch displacement profiles. Compaction 

simulators use sophisticated instrumentation to monitor, at minimum, the displacement 

and force profiles associated with the compaction event. Therefore, the data generated 

while using a compaction simulator offers a significant advantage over traditional 

pharmaceutical unit operations for studying and understanding powder compaction 

behaviour. 

6.7.1 Hydraulic Compaction Simulators 

The hydraulic system is electronically controlled, with either compaction force cycles or 

movement of the punches being freely adjustable. The primary aim is to mimic the 

densification process of a rotary machine and the mechanical factors influencing it. 

The force-time profile of a rotary tableting machine can be theoretically deduced and 

calculated using machine geometries (Oates  and Mitchell 1989). But this is only possible 

to a certain extent, because of the amount of factors influencing the measured force 

outside the simulation, e.g. the tableted material, the geometries of the machine, the 

machine wear time, tableting speed, and tableting tools (Pudipeddi , Venkatesh  et al. 

1993). Similarly, the displacement-time profile of a tableting machine, especially a 

rotary tableting machine, is very difficult to calculate. Thus either an approximated 

displacement-time profile can be used for programming the compaction simulator or 

approximation of real punch movement is only possible using recorded data from real 

tableting machines 

However, hydraulic compaction simulators are still used in research for basic material 

characterization. They show the advantage of controlling speed exactly and of using low 

and high punch travel speeds, between 10 and 300 mm s-1. 
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6.7.2 Mechanical Compaction Simulators 

These employ a single pair of punches moving linearly forth and back on a lower and an 

upper punch track. For tableting, the punches pass along exchangeable compaction 

wheels which are equivalent in dimensions to those of rotary tableting machines used in 

practice (Natoli, Levin et al. 2009). 

Tableting speed can be varied and different tableting machines are simulated by using 

similar dwell times. In addition, pre-compaction wheels can also be mounted to simulate 

pre-compaction. Therefore, mechanical compaction simulators allow process simulation 

of rotary tableting machines to a greater extent than when using hydraulic compaction 

simulators when used for formulation development and scale-up (e.g. Presster™, section 

12.2.1 - page 159). 

6.7.2.1 Dwell time 

Because different presses employ different number of stations and pitch circle 

diameters, matching tablet press speed (rpm) has no real scientific value. The solution 

would be to express tableting speed in terms of dwell time or contact time. 

Functionally, the effective dwell time (EDT) can be defined as the time it taken by the 

force–time curve to traverse the 90% of the peak height (with effective contact time 

(ECT) being the time between points at 10% of the peak height). 

Mechanical Definitions of dwell and contact times disregard material properties and 

concentrate on press and punch geometry. They would be preferred for dwell time 

calculations because they serve as an objective material-independent measure of 

compaction speed: 

1. Contact time can be defined as the time the punch is in contact with the 

compaction wheel; and 

2. Dwell time, equation (0.13), is defined as the time the flat portion of punch head is 

in contact with the compaction wheel (time at maximum punch displacement, or 

time when the punch does not move in vertical direction). 

 ( ) 3,600,000
 mesc

L NS
DT

PCD TPHπ
⋅ ⋅=

⋅ ⋅
 (0.13) 

where 

DT = dwell time in (msec) 

L = length of the flat portion of the punch head (mm) 
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NS = number of stations 

PCD = pitch circle diameter of the turret (mm) 

TPH = tableting speed (tablets per hour) 

 

6.8 Powder deformation during compaction 
The material property that predominantly affects the tableting of powders is the 

deformation behaviour of powder under stress. The deformation characteristics may be 

elastic, plastic, brittle fracture or a combination of these deformation mechanisms. 

Various parameters that characterize the deformation characteristics of powders 

include Young's modulus, Poisson's ratio, yield stress, and fracture toughness. 

Elastic deformation is time independent, reversible deformation of a particle, and can 

create residual stresses within the compact during the decompression phase of the 

compaction cycle. The force applied on a compact or powder divided by the surface area 

of a compact causes a change in dimensions. The linear portion of the stress-strain plot 

and the proportionality constant between stress and strain is given by the Young's 

modulus (DWIDEDI, OATES et al. 1992). 

For elastic deformation:  

 d Eσ ε=  (0.14) 

Where E is the Young's modulus of elasticity of material, ε is the deformation strain 

and σd is the deformation stress (Rowe and Roberts 1996). 

Plastic deformation is the permanent deformation of a particle that is controlled by the 

applied stress. The amount of plastic deformation depends on the overall time of 

compaction, contact time or rate of application of compaction force and the time during 

which the material is subjected to maximum force (dwell time). Plastic deformation 

facilitates the formation of permanent particle–particle contact regions during 

compaction, and is given by: 

 d yσ σ=  (0.15) 

Where σy is the yield stress of material, which is the stress beyond which material is not 

elastic. When the yield stress is exceeded, the material may either flow or break upon 

compaction (Cartensen 1993). 
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And for brittle fracture: 

 ic
d

AK

d
σ =  (0.16) 

Where Kic is the critical stress intensity factor of material that provides an indication of 

the stress required to produce propagation of crack, d is the particle size diameter 

and A is a constant depending on geometry and stress application. Kic describes the state 

of stress around an unstable crack, and is a measure of the resistance of material to 

cracking via tensile stresses normal to the crack walls (Roberts, Rowe et al. 1993). 

6.9 Analysis of the tableting process 
Instrumented tableting variables, namely force, time, displacement, and temperature, 

can be combined differently and can be analyzed afterward. From the functional 

relations, conclusions can be drawn about the compaction and compaction behaviour of 

the materials. 

6.9.1 Changes in bed density or porosity during compaction 

During tableting, the bed density or porosity of the powder changes as the compaction 

force is applied. This reduction in volume or density of the compact upon application of 

force can be calculated using the Heckel equation (Heckel 1061), and is given by the 

mean yield pressure, PY: 

 ( )Ln 1/1 D KP A− = +  (0.17) 

Where D is the relative density of the compact in die at the pressure P. K and A are 

regression coefficients of the linear portion of the curve, and the reciprocal of K is the 

mean yield pressure, PY. 

The Heckel equation is applicable to systems that deform plastically, but deviations from 

linearity at low applied stress tend to suggest alternative compaction mechanisms such 

as brittle fracture. The Heckel equation has been used to distinguish three types of 

volume reduction mechanisms based on the effect of stress on initial powder bed 

density. 
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Figure 13: Heckel plot (Ruegger, Royce et al. 2007) 

 

These materials were categorized by compressing different particle size fractions of 

various powders. In type A materials, the variation in initial bed densities results in 

different final bed densities under applied stress. Particle size fractions had different 

initial packing fractions and the plots remained parallel as the compaction pressure was 

increased. In these densification takes place by plastic flow preceded by particle 

rearrangement. In type B materials, irrespective of the initial bed density, a single linear 

relationship occurs above certain pressures. Below this pressure plots are slightly 

curved at initial stages of compaction. Powder densification happens by fragmentation 

of particles. The initial structure of the powder column is completely destroyed by 

fragmentation and hence differences in initial packing have no effect on further 

densification. In type C materials, the plots have an initial steep linear portion after 

which they become coincidental with only trivial volume reduction. Powder 

densification occurs by plastic flow but no initial particle rearrangement is observed. 

(Paronen and Iikka 1996) 

6.9.2 Tablet indices 

Strain index, P/ET, is obtained from dynamic indentation hardness, P, and the reduced 

Young's Modulus, E,. E, is given by: 

 ( )
1

2
11

E
E

υ
′ =

−
 (0.18) 
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Where E1 is the elastic modulus of the compact and υ1 its Poisson's ratio. Strain index is 

indicative of the relative strain or change in size during elastic recovery after plastic 

deformation, and is indirectly related to the proximity of surfaces that remain in contact 

after decompression. The values of P/ET range from 0–0.04. A high P/ET implies 

potential structural failures such as capping or lamination (Shah and Davar 1995). 

Brittle Fracture Index (BFI) is the ratio of the tensile strength of the tablets with, (σT), 

and without a hole, (αTo), at their centre. This ratio may indicate the ability or inability of 

compact to relieve stress at a crack tip within the compact by plastic deformation. 

 
/ 1

BFI
2

T Toσ σ −=  (0.19) 

BFI is a measure of brittleness, which is the principal cause of capping and lamination. A 

BFI of <0.2 indicates better compacting properties, whereas values >0.2 indicate 

tendencies to cap and laminate (Shah and Davar 1995). 

6.9.3 Force displacement curves 

By adding a displacement transducer to the instrumented press, the upper punch force 

is measured against punch-tip displacement. The resulting curve shows a progressively 

increasing slope, reaching maximum force as the punch achieves maximum penetration. 

The characteristic shape of the force-displacement curves, recognizable in terms of its 

slope and elastic recovery, can be correlated to the ability of material to undergo plastic 

deformation and form strong compacts.  

The gross work done in compaction and the proportion of the total applied energy 

absorbed by the material are indicated by the area under the curve and are considered a 

measure of the tablet strength, although this value includes the work done to overcome 

die wall friction. Several limitations to the use of this approach include concerns with 

accurate measurement of punch displacement, errors introduced because of 

multiplication of a large number (punch pressure) with a small number (punch 

displacement at maximum pressure), die wall friction, deformation of machine parts 

under pressure, and separation of net work from gross work (Watt 1988). 
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Figure 14: A theoretical force-displacement compaction profile. 

Triangle ACD describes the mechanical energy (energy of compaction); triangle BCD is the theoretical energy (energy 

of compaction, excluding initial packing phase, AB); curve BCD is the total energy (energy involved during 

compaction, excluding initial packing and interparticulate friction); curve BCB is the frictional energy (friction arising 

due to particle-particle and particle-die wall friction, i.e., difference between theoretical energy and total energy); 

curve CDE is the elastic energy (energy released as a result of elastic deformation during compaction unloading); and 

curve BCE is the net energy (energy required to yield a particle under force). (Patel, Kaushal et al. 2007) 

6.9.4 Elastic recovery during multiple compaction 

Work done in each compaction cycle is calculated by integration of each 

force/displacement curve. When this work becomes constant, this force-displacement 

value is assumed as the work done to produce the elastic deformation during 

compaction and is an indicator of the elasticity of material. Elastic recovery (ER) is 

defined as percentage of axial expansion of the compact after ejection, relative to its 

height at maximum pressure: 

 ER 100c

c

h h

h

 −= ⋅ 
 

 (0.20) 

Where hc and h are the heights under compaction and after ejection, respectively. The 

plastic deformation takes place during initial compaction and, after a certain number of 

compaction cycles, elastic deformation is predominant. The fewer the number of 

compaction cycles required for arriving at constant work, the more readily is plastic 

deformation completed, exhibiting increased plasticity (Watt 1988). 
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6.9.5 Deformation hardness 

Deformation hardness of a tablet can be correlated with the compressive stresses during 

compaction (Leuenberger and Rohera 1986), assuming that increasing the relative 

density of the compact allows more particles to come into contact and increases the 

deformation hardness, P: 

 
y Sc 

maxP P (l e )π−= −  (0.21) 

Pmax denotes the theoretical maximum deformation (Brinell) hardness when the number 

of non-bonding points is reduced to zero and the applied compressive stress, Sc, is 

highest or infinite. A low Pmax value shows a relatively poor compactibility, for even with 

high compaction stress this limiting value cannot be exceeded. The parameter γ specifies 

the rate at which the compact hardness P builds-up with an increase in applied 

compaction stress and provides information about compressibility. A high value of γ will 

imply P=Pmax and a sharp decrease in compact porosity may be attained with low 

compaction forces. A plastically deforming material will have a high value of γ and a low 

value of Pmax, whereas the reverse is the case for brittle materials. 

6.9.6 Compaction force versus tablet strength 

The effect of compaction force on tablet strength is obtained by operating the tablet 

press at any given speed for an extended range of compaction forces. The crushing 

strength and friability of the resulting tablets are evaluated to obtain the range of 

compaction parameters in which the formulation performs best. Tablet compaction 

profiles and crushing-strength data provide useful information for limiting compaction 

forces during tableting and can provide additional information about lamination or 

capping. The slope of a compaction-force versus crushing-strength profile provides 

qualitative information about the ability of material to produce strong tablets. A very 

high slope value may suggest potential problems in production processes as a small 

change in the compaction force could cause significant increases in the tablet crushing 

strength, which could result in capping or variability in disintegration and dissolution of 

resultant tablets. 

Crushing strength or breaking force F measures the force, which when applied across a 

specific plane of a compact produces fracture in tablets. It is a function of compact 

geometry and does not take into account the mode of fracture or the dimensions of the 

tablet (Davies and Newton 1996). Crushing strength can be affected by the presence of 

lubricant, its concentration, and state of subdivision and location of particles; pre- 
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compaction processing, including wet or dry processes; time and scale of mixing; storage 

condition; compaction force; variations in time of consolidation, dwell and contact; die 

residence and ejection; amount of bound or free moisture and initial porosity of the 

powder bed. (Shotton and Lewis 1964) 

Crushing strength is only a limited index of the compaction properties of starting 

materials. Most materials will either deform elastically or plastically, or fracture under 

the influence of applied stress. Therefore, measuring the final force required to produce 

fracture does not truly reflect the conditions during compaction. The strain rate and 

thus the time during which materials are subjected to compressive stress is another 

important variable for consideration. 

6.9.7 Tensile strength 

The radial tensile strength, which measures the tablet failure as a result of the 

application of tensile stress only, is given by the relationship: 
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Where σx is the tensile strength, F is the force required to break the tablet, D is the 

diameter of the tablet, and T is the tablet thickness. Various factors, such as test 

conditions, deformation properties of the material, homogeneity of the compact, 

adhesion conditions between the compact and its support, and tablet shape, may 

influence the tensile strength measurement (David and Augsberger 1974). 

In the axial tensile strength test, the tablet cleaves in a plane along its axis. It is 

measured by straining the face of the tablet, mounted between a pair of adapters, and 

determining the maximum force required to cause failure due to tensile stresses 

(Leuenberger and Rohera 1986). The axial tensile strength, σz, is given by: 
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Where F is the force required to break the tablet and D is the diameter of the tablet. A 

comparison of radial and axial tensile strengths is indicative of the bonding strength in 

two directions and may provide information about the laminating and capping 

tendencies of the material (Alderborn and Nystrom 1984).  
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7. Research aims 

This research aims to evaluate various factors affecting NIRS applications, in particular 

quantitative methods. 

The first study aims to assess the effects of tablet press variability, in terms of 

compaction force, on content predictions for low-dose tablets. Calibration model 

performance, as well as the effects on spectra, are investigated. 

The second study examines the horizontal sampling span for pharmaceutical tablets in 

DT mode. 

The third study is a series of experiments aiming to investigate and estimate the 

information depth for DR mode in pharmaceutical tablets. 

The three studies would provide better evidence and understanding on the use and 

applicability of both DR and DT modes for pharmaceutical tablets, and the critical 

aspects affecting their performance and selection criteria. 
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8. Press effect on NIR predictions of low-

dose tablets and DT sampling span 

The work on this section is summarised in the original scientific publication from the 

author (below), with detailed experimental methods and results in Appendices I & II. 
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8.1 Assessment of diffuse transmission mode 

in near-infrared quantification - part I: The 

press effect on low-dose pharmaceutical 

tablets (original paper) 
Journal of Pharmaceutical Sciences. Volume 98, Issue 12, 2009, Pages 4877-4886 

8.1.1 Keywords 

process analytical technology • diffuse transmission • porosity • optical pathway • 

compaction simulation • press effect 

8.1.2 Abstract 

Quantitative applications for pharmaceutical solid dosage forms using near-infrared 

(NIR) spectroscopy are central to process analytical technology (PAT) manufacturing 

designs. A series of studies were conducted to evaluate the use of NIR transmission 

mode under various pharmaceutical settings. The spectral variability in relation to tablet 

physical parameters were investigated using placebo tablets with different thickness 

and porosity steps and both variables showed an exponential relationship with the 

detected transmittance signal drop. The drug content of 2.5% m/m folic acid tablets 

produced under extremely different compaction conditions was predicted and found to 

agree with UV assay results after inclusion of extreme physical outliers to the training 

sets. NIR transmission was also shown to traverse a wide section of the tablet by 

comparing relative blocking intensities from different regions of the tablet surface and 

>90% of the signal was detected through a central area of 7 mm diameters of the tablet 

surface. NIR Quantification of both film thickness and active ingredient for film-coated 

tablets are examined in part II of this study. © 2009 Wiley-Liss, Inc. and the American 

Pharmacists Association J Pharm Sci 98:4877-4886, 2009 

8.1.3 Introduction 

8.1.3.1 NIR Spectroscopy and PAT 

Near-infrared (NIR) spectroscopy is the measurement of absorbed radiation in the 

spectral region of 780-2500 nm (12,800-4000 cm-1). The absorption bands arise from 

overtones and combinations of fundamental mid-IR stretching and bending modes. It 

offers unique advantages of being fast, non-destructive, with no sample preparation 

requirements and strong identification and quantification abilities. Therefore, NIR 
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spectroscopy possesses great potentials for in-process control and end-product 

analytics. 

The recent developments in the applications of near-infrared spectroscopy (NIRS) for 

pharmaceutical manufacturing have been the strongest manifestation of the push for 

successful implementations of process analytical technology (PAT) applications, and 

were facilitated by the explosive growth in both the types and sophistication of NIR 

equipment and software. If successful, PAT manufacturing can deliver quality products 

that require minimal or no end-product testing (real-time release), owing to the fact that 

they will be produced through critically controlled processes designed to produce in-

spec products (Davies 2004). 

Although NIR spectroscopy has now been long-investigated for a vast range of 

applications, from fuels to food and feed industries, its use in the pharmaceutical field 

has picked up momentum only recently. One issue for NIR in this tightly regulated 

industry is the fact that use of this technique involves careful ‘risk-assessment’, mainly 

because predictions are the result of statistical correlations with established assays 

rather than being a primary assay. This logically leads to the need for establishing 

concrete methodology for NIR quantification which is specific for solid dosage forms and 

thus minimising (rather than completely eliminating) physical properties effects that 

dominate the spectra down to an acceptable threshold of error (Blanco, Eustaquio et al. 

2000). 

8.1.3.2 Quantification Using NIR Spectroscopy 

The work by Sherken (1968) contained the earliest published NIR determination of 

actives in tablets after extraction. The analysis of intact dosage forms, however, was 

reported as early as 1987 through the works of Lodder et al (1987). In common with 

other spectroscopic methods, NIR quantification relies on regression over variations in 

one or more spectral regions, which follow the change of one component's concentration 

in the sample relative to the rest. However, unlike UV assays where very dilute 

concentrations of samples are needed to avoid nonlinearity and deviations from Beer-

Lambert law, NIR applications perform best with a 50:50 ratio of components 

(measured-entity relative to other entities), and difficulties start to materialise at either 

end of the scale. Low-dose (specifically low-concentration) tablets would have a higher 

relative standard error of estimation and smaller fluctuations in tableting parameters 

could have a bigger influence on NIR predictions in such conditions. Low-dose tablets 

are unavoidable with potent drugs and smaller tablets are usually utilised to minimise 

manufacturing problems. But there is a limit to how small a tablet can be manufactured 
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and yet easily handled by patients, which brings about the need for an evidence base 

supporting the use of NIR quantification under such conditions. 

8.1.3.3 NIR Transmission in the Solid State 

The combination of relatively weak absorbance and high scattering efficiency is an 

important characteristic of the interaction between NIR radiation and particulate solids. 

This combination allows the radiation to propagate through the voids inside tightly 

packed solid particles. However, transmittance is expected to deviate nonlinearly for 

Beer-Lambert law of absorption for very dilute and clear solutions, because it does not 

take into account the probability that incident photons will be scattered or reflected 

backward or forward relative to the incident beam direction. This produces changes in 

absorption coefficients across a wide range of concentrations as light takes a tortuous 

path through voids with continuous scattering and back-reflection. This makes the 

transmittance more and more diffuse as it travels through the sample before being 

detected (Birth and Hecht 1987). 

It has still proved difficult to describe the nonlinearity from Beer-Lambert because the 

absorptivity/reflectance/scattering characteristics of a certain solid compact would be 

dependent on particle size and morphology, packing density, index of refraction and 

many other sample qualities. Nevertheless, many still consider Absorbance = log 

(1/Transmittance) as a simple, but working, approximation (Cogdill and Drennen 2006). 

Micro-cavities inside tablets (porosity) cause light scattering due to rapid spatial 

changes in refractive index. Consequently, this scattering is very dependent on the 

manufacturing process, (compaction force, compacted mass, grain size, etc.). 

Abrahamsson et al. (2005) suggested that the scattering in a tablet is about 3-4 orders of 

magnitude larger than the absorption resulting in very long optical path lengths, so that 

a typical 3.5-mm thick tablet can have a mean optical transmission path length of 20-30 

cm. This implies that some photons can find optical pathways of few millimetres while 

others span a meter before being detected. However, the high reproducibility of NIR 

spectra of the same sample in transmission indicates that this phenomenon is occurring 

in a consistent manner, but with great dependence on sample density (solid fraction or 

porosity) and thickness. 

In his work on normalising weight variations of predicted samples, Baxter (1994) 

concluded that the variation in NIR reflection spectra is a picture of active per unit area 

and does not allow the detection of tablet weight, highlighting the need for correcting 

assay results from reference assay methods and again the NIR prediction results for 
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tablet weight. A reduction in residual values from 2.17% to 1.56% was reported by 

Baxter when he used this method. 

Pretreatments, tighter wavelengths and various chemometric techniques have been 

used to minimise baseline effects for both reflection and transmission modes. The main 

problem in correcting density and thickness effects in transmission mode is the 

presence of nonlinear spectral scaling. This can also explain the difficulty in predicting 

tablets made with slightly different manufacturing conditions (e.g. different batches) 

from calibration samples (Blanco, Romero et al. 2004). 

Numerous studies in literature examined the use of NIRS to predict tablet density and 

hardness. Many of the published papers describe baseline shifts in reflection mode in 

correlation with sample densities (Cogdill, Herkert et al. 2007), (Kirsch and Drennen 

1999). Research from Ciurczak and Drennen (2001) on predicting tablet hardness using 

NIR suggested that the increased absorption in harder tablets is probably due to a 

reduction of light scattering on the smoother surface of these harder tablets, allowing 

more light to penetrate. The effect of hardness on spectra was so pronounced that the 

publisher indicated that level of error in NIR hardness prediction is in the 

neighbourhood of traditional destructive crushing-strength tests of 0.5 kP. On the other 

hand, there are no clear mathematical models that relate transmittance to apparent 

sample density and thickness because of the absence of a complete theory defining NIR 

transmittance. 

8.1.3.4 Effective Mass Sampled during NIR Analysis 

The need for effective sampling is common to all analytical techniques. With NIR 

spectroscopy, a great deal of attention is usually given in the selection of calibration 

samples highly representative of end product units over different batches. However, 

another aspect of sampling is sometimes overlooked. NIR radiation in classical diffuse 

reflection mode is reflected from a central area of the surface and is only assumed rather 

than proven representative of the whole tablet. 

The scale of mass to be assayed ‘scale of scrutiny’ (Donoso, Kildsig et al. 2003), 

(Berntsson, Danielsson et al. 1998) by any method depends on both the magnitude of 

the unit dose in question and the application. For example, monitoring blend uniformity 

requires minimal effective sampling mass, while the reverse is true for individual dosage 

forms. Moreover, the effective sampling mass has a complex and nonlinear effect on NIR 

transmittance and reflectance spectra (Bull 1990). 
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There is little experimental evidence of how deep the radiation penetrates the surface in 

diffuse reflection. This penetration is sample-dependent and the difference between 

loose and compacted powders is significant. One paper assessed reflectance in NIR 

imaging and estimated a 50% signal drop over 27-180 µm depending on the wavelength 

(Clarke, Hammond et al. 2002). Other papers considered NIR reflection to have a 

penetration depth of less than 1 mm (Li, Bashai-Woldu et al. 2007). Olinger and Griffiths 

(1992),(2001) estimated an information depth around 1 mm using diffuse reflection and 

a mixture of powders. Considering that this penetration is occurring in a dissipating 

manner, this mode is logically even less useful for coated or multi-layered tablets. 

Diffuse transmission mode on the other hand penetrates the whole thickness of the 

tablet and would theoretically be more representative of the whole tablet, (Berntsson, 

Burger et al. 1999) especially for low-dose units where aggregation has a higher effect. It 

is not clear, however, what path the radiation follows inside the tablet and hence the 

percentage actually being scanned. Moreover, transmission is more sensitive to path-

length and density variability. Iyer et al. (2002) did a series of experiments at Duquesne 

University to address this issue. They calculated a wavelength-dependent information 

depth for reflection ranging between 1.9 and 2.7 mm using second derivative spectra 

from tablets of increasing thickness. They also showed a limiting tablet thickness of 3.5-

4.8 mm for transmission. Another set of experiments showed an effective transmission 

diameter of 7 mm and concluded that the mass sampled for both modes was comparable 

and around 200 mg. However, the radiation intensity inside this diameter is fading 

towards the periphery in all directions making the mass over-estimated in this case, 

especially for reflection. Also, the fact that sampled mass is largely dependent on 

physical properties of the sample, mainly hardness and packing, makes this issue an 

open question. 

8.1.3.5 Study Aims 

The aims of this study were to assess the effects of compaction variability introduced to 

the tableting process on the performance of content prediction using NIR diffuse 

transmission mode, as well as examining the effects of variation in tablet thickness 

and/or porosity on the spectra; and finally, to elucidate the proportional contribution of 

various areas of a tablet to the final NIR spectrum in diffuse transmission mode. 
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8.1.4 Experimental 

8.1.4.1 Materials 

Folic acid USP, Sigma-Aldrich, USA; Micro-crystalline cellulose (MCC) Sanaq 102G, 

Pharmatrans Sanaq AG, Basel, Switzerland; AcDiSol Croscarmellose Sodium, NF, Ph. Eur., 

FMC Biopolymer, Brussels, Belgium; Magnesium Stearate, Novartis Pharma AG, Basel, 

Switzerland. 

8.1.4.2 Folic acid tablets 

A directly-compactable tablet formulation was used to make 2 sets of 220 folic acid 

tablets in 11 batches per set (table 1) with an API range of 0-10 mg (0-5% m/m in 0.5% 

steps and 20 tablets per step). Optimizing particle size and mixing times was of prime 

importance to obtain a consistent API content within each batch. Powders were sieved 

with 90 µm mesh to minimise segregation potential and then mixed in a Turbula mixer 

for 12 minutes in a mix-sieve-mix manner. 

TABLE 1: Folic acid tablet formulation 

Substance Percentage (m/m) Function

Folic acid USP 0-5 % active
MCC 102 93.75-88.75 % filler

Ac-Di-Sol 6 % disintegrant
Mg Stearate 0.25 % lubricant

 

The tablets were produced by means of a tablet press compaction simulator (Presster™ - 

Metropolitan Computing Corporation) which is capable of constructing linear models of 

an industrial-scale rotary press by replicating its dwell time, compaction and pre-

compaction forces, and ejection angle. Dwell time was adjusted by changing compaction 

speed while compaction force was a function of punch gap adjustments – hence the need 

for calibrating gap size against compaction force, tablet hardness and thickness. All 

press functions were instrumented and controlled by a computer terminal. 

The first set of tablets was used to obtain NIR calibration models for low-dose folic acid 

tablets and test the model with an external 2.5% m/m batch (same formulation as the 

calibration set, but not involved in the calibration) while the second set was used to 

examine the press effect on predictions. Table 2 details the press settings and tablet 

specifications for the both sets. 
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Table 2: Tableting parameters 

First Set Average (SD) 

Tablet mass 200.46 (0.31) mg 
Diameter (flat face) 10.00 (0.01) mm 
Thickness 2.39 (0.01) mm 
Resistance to crushing 95.33 (1.51) N 
Porosity 30.79 (0.26) % 
Speed 10800 TPH 
Dwell time 118.30 msec 
Gap size 1.80 mm 
Upper compaction force 3.90 kN 
Pre-compaction None 
Second set – extra parameters 
Porosity range 18-40% 
Gap size range 1.14-1.8 mm 
Compaction force range 10-3 kN 

 

8.1.4.3 NIR measurements 

All NIR measurements were performed on NIRFlex-N500 Fourier transform NIR 

spectrometer with solids transmittance measurement cell from Büchi (Switzerland) in 

diffuse transmission mode, using 64 scans and 16 cm-1 resolution in the 11520 - 6000 

cm-1 range. NIRCal 5.2 chemometrics software was used for calibration model 

development and predictions. All models used PLS (partial least squares) regression. 

Validation was through an independent validation set (1/3 of spectra) rather than cross 

validation. 

8.1.4.4 UV referencing 

Folic acid is soluble in slightly alkaline solutions. Sodium hydroxide solution (0.1 M) was 

used to dissolve each ground tablet and the filtered solution was measured in a 1 cm cell 

at 235 nm and a UV calibration line with r2 ≥ 0.999 was obtained in that medium. 

2.5 Effect of porosity and thickness on spectra 

Porosity in 6 tablets (formulation in table 1 with 0% fold acid) was fixed while varying 

thickness by adjusting tablet mass and compaction force. In the same manner, thickness 

was varied while keeping porosity constant in 3 more tablets (Table 3). 
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Table 3: Tablet porosity and thickness, varying one variable at a time 

Tablet Mass [mg] Thickness [mm] Porosity [%]

P1 200 2.66 38.00
P2 240 2.54 22.08
P3 280 2.61 11.53
T1 100 1.00 20.4
T2 200 1.99 20.0
T3 300 3.00 20.4
T4 400 4.06 21.6
T5 500 5.09 21.8
T6 600 6.10 21.7

 

8.1.4.5 Radiation convergence 

Figure 15 illustrates how paper with LaserJet ink print (100% coverage) scales down 

the spectrum of a placebo tablet by at least 88%, compared to the same tablet covered 

with a blank paper.  

 

Figure 15: Transmission spectra of a 0% tablet (A) covered with white paper, (B) same 

tablet covered with LaserJet ink printed on paper 

This can be exploited to examine the effect of blocking different areas of the surface of a 

single tablet using printed rings with varying internal diameters Figure 16. Each ring 

was sized such that fitting the paper inside any position on the tablet plate aligns the 

centres. These rings would block the tablet periphery, leaving a hole (white paper area) 

in the centre ranging between 9 to 1 mm in diameter. These paper filters were applied to 

the 0% batch with varying porosity and thickness. Each tablet/filter combination was 

scanned 3 times and the average of transmittance maximum at 8880 cm-1 was used. 

 

Figure 16: 10-mm printed rings used to produce a block effect. The number indicates the 

internal diameter in mm. The block from each filter to that from F0 was used to calculate 

block percentage. 
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8.1.5 Results and discussion 

8.1.5.1 The first calibration 

Visual inspection of the pre-treated 0%, 2.5% and 5% spectra (normalisation by closure 

- ncl) showed wavelength regions related best with the folic acid property (Figure 17). It 

also showed the low signal of folic acid compared to the filler, which adds a further 

complication to the low-dose API problem. 

 

Figure 17: Transmission spectra of 0%, 2.5% and %5 m/m folic acid tablets before and 

after pre-treatments 

Although ncl or SNV (standard normal variate) pre-treatments produced good order and 

grouping amongst the spectra (Figure 17, zoomed pane), the spectral noise from tablet-

to-tablet variations in physical properties overwhelmed the element of folic acid in the 

spectra. The batches showed little difference in transmittance apart from a small shift in 

the transmission maximum at 8880 cm-1 and spectral scaling. At that point, to what 

extent the effect of small variations in tablet properties on spectral scale and hence 

predictions was unknown. Five PLS models were developed with different parameters 

and comparable performance (Table 4). Each model can be evaluated in accordance with 

the EMEA / ICH guidelines for new method development by inspecting its respective 

parameters. 
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Table 4: Calibration models’ parameters 

NIRF1 NIRF2 NIRF3 NIRF4 NIRF5 NIRVAR

Wavelengths 
Calibration Set

6000-
11520

7400-
11520

8500-
11520 

6000-
11520

7400-
11520

6000-
10600

Data 
Pretreatment 

Sequence
MSC full  MSC full  SNV 

1st

derivative 
BCAP,

SNV

1st

derivative 
BCAP, SNV

MSC full,
normalisati

on by closure

PCs 7 7 6 3 3 12
V-Set BIAS 0.020901 -0.02879 0.017055 -0.000960 -0.001550 0.015475
C-Set SEE

(SEC)
0.249761 0.323872 0.259507 0.286846 0.286303 0.312529

V-Set SEE 
(SEP)

0.258087 0.317960 0.254297 0.292198 0.290546 0.311205

Consistency 96.77390 101.8590 102.049 98.16820 98.53960 100.4260
Regression linearity

C-Set 
Coefficient

0.997209 0.995125 0.996986 0.996318 0.996332 0.995599

V-Set 
Coefficient

0.995108 0.994061 0.995263 0.993946 0.994011 0.992966

C-Set 
Intercept

0.027482 0.049445 0.029669 0.036633 0.036495 0.042896

V-Set 
Intercept

0.039841 -0.01142 0.056711 0.037676 0.041552 0.019216

C-Set Slope 0.994425 0.990275 0.993981 0.99265 0.992678 0.991217
V-Set Slope 0.987660 1.008510 0.985014 0.992555 0.991889 0.992981

Accuracy (n=20)
Mean 4.6663 4.5753 4.7229 4.7786 4.7784 4.7793

SD 0.2221 0.2527 0.2331 0.1845 0.1850 0.1849
texp 3.5304 3.8238 2.0392 1.3580 1.3702 1.3713

tcritical 1.7291 1.7291 1.7291 1.7291 1.7291 1.7282
P (texp < 

tcritical)
0.0011 0.0006 0.0278 0.0952 0.0933 0.0920

Repeatability (1 tablet x 10, same operator)
SD 0.0381 0.0365 0.0448 0.0311 0.0306 0.0308

RSD 0.8165% 0.7978% 0.9486% 0.6508% 0.6404% 0.6446%

 

Figure 18 shows the difference between folic acid predictions and UV assay results for 

all five models using a 2.5% set external to the model. Models 4 and 5 had the best 

agreement. The same conclusion can be reached by inspecting model protocol produced 

in NIRCal (a compromise between best consistency, best correlation and least SEP).  



 
99 Press effect on NIR predictions of low-dose tablets and DT sampling span 

 

Figure 18: Absolute difference [mg folic a.] of NIR predictions from reference method for 

an external batch 

8.1.5.2 The press effect 

Figure 19A shows untreated transmission spectra for MCC placebo tablets made with 

varying porosity, thickness and hardness by applying increasing compaction force. 

There is a stark scaling effect, almost exponential, relating to apparent sample density 

(and hence tablet porosity and hardness) and thickness. This exaggeration in variability 

was used to demonstrate how difficult it is to completely remove the density and 

thickness element from spectra using pre-treatments (Figure 19B). A partial solution 

was to use multiple narrow wavelength regions where the spectra were grouped. 

 

Figure 19: (A) Untreated spectra for placebo tablets made with varying compaction 

force. Thinner tablets with lower porosity have an upward scaled spectrum. (B) 

Pretreatment examples for same spectra, from left to right: normalization, 1st derivative 

and multiplicative scatter correction. 
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NIR predictions of the variable compaction force tablets are shown in Figure 20. Twenty 

2.5% folic acid tablets made with varying porosities showed deviations from the 

reference method in varying degrees which are more pronounced on the high-porosity 

side (due to the exponential spectral relationship with  thickness and density, see below). 

This highlights the need for careful model development for high density tablets.  

 

Figure 20: NIR predictions for 2.5% m/m folic acid tablets made with varying 

compaction force. All models perform well in a porosity range (31%) similar to that of 

calibration tablets. Calibration set with different porosities was added to model VAR 

which is more robust to porosity change. 

Pharmaceutical tablets are made within a range of acceptable physical properties in line 

with friability requirements and desired dissolution/disintegration qualities. Although 

tablets are made within a narrow range of hardness (resistance to crushing – EP 25) to 

obtain consistent properties and therapeutic effects, the limits are set by manufactures 

according to the formulation requirements, which can be broad. This means that a 

harder tablet that still complies with analytical limits would have a scaled spectrum and 

can either show up as an outlier when predicted with NIR or be over-/under-predicted. 

VAR is a sixth calibration model constructed from folic acid tablets with an extremely 

varying porosity range across all API concentrations for the calibration/validation set. 

This model (Table 4) had similar performance to the previous models but was much 

more robust in terms of tolerance to porosity variance (Figure 20). 

However, the inclusion of samples with such extreme hardness variability makes the 

model very robust for hardness but would also render it more susceptible to other 

outlier effect, such as positioning, surface texture, particle size, raw material grades, etc. 

when tighter wavelengths and more principle components are used. A better 

compromise is the inclusion of maximum and minimum hardness samples from 

production batches to minimise the potential of future prediction errors and high 

spectral residuals. 
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8.1.5.3 Uniscalar effect of  porosity and thickness 

A change in any of tablet mass, density (hence porosity and hardness) or thickness 

would affect the other two. To assess the effect of one variable at a time, mass had to be 

adjusted in order to fix porosity with different tablet thickness values or vice versa 

(Table 3). Transmittance at 8880 cm-1 showed an exponential relationship with porosity 

(Figure 21A) and thickness (Figure 21B).  The effects from these two variables were 

additive when tablets were pressed with varying compaction force and the resulting 

spectral scale was inversely related to both thickness and porosity (Figure 19A). These 

results offer a better understanding of the spectral relationship with tablet hardness 

presented in literature. (Cogdill, Herkert et al. 2007), (Kirsch and Drennen 1999), 

(Ciurczak and Drennen 2001) This also illustrates why tablets with thickness of less 

than 4 mm can have a significant spectral scaling when produced with a thickness SD as 

low as 0.1 mm, which can add to prediction errors and outlier potential (Figure 19B and 

Figure 21). 

 

Figure 21: Transmittance at 8800 cm-1 of untreated placebo tablet spectra. (A) variable 

porosity and fixed thickness (B) variable thickness and fixed porosity 

8.1.5.4 Transmittance through the tablet 

To obtain an estimation of what percentage of the tablet volume is scanned in NIR 

transmission spectroscopy, untreated transmittance values at 8880 cm-1 were compared 
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as the same tablet was covered with laser-jet printed rings of different inner diameters 

(Figure 16). Tablets of varying porosities were used to examine different settings. Figure 

22 shows that increasing the block area over a tablet towards its centre reduced the 

signal at the detector (transmittance at 8880 cm-1) in a sigmoidal pattern, which was 

similar across different porosities. This suggests that porosity has little or no role in the 

distribution of NIR radiation coming out of the tablet surface. 

 

Figure 22: Reduction of detected signal with different paper filters. Different porosities 

show similar shape but different scale. 

In Figure 23, average transmittance values from 10 tablets after block from all filters 

were expressed in relative terms to the intensity of a tablet covered by a white paper 

with no ink. This was also compared to the ratio of white area of each filter to the whole 

tablet surface area (drop in the signal if distribution was assumed to be equal across the 

tablet surface, Figure 23 - dark line). 

 

Figure 23: Reduction of detected signal with different paper filters relative to blank 

paper (grey) compared to ideal reduction if distribution was assumed equal across all 

regions of the tablet (black). Central regions carry more signal than peripheral. 

If the tablet was visualised to be composed of 1 mm rings of decreasing internal 

diameters, the intensities from each ring can be estimated from the experimental data 
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above and compared to the theoretical intensity that the ring should transmit according 

to its area. This is also shown in Figure 23 and Figure 24 and modelled in Figure 25. 

 

Figure 24: Actual distribution of transmittance through 1mm ring sections of a tablet 

from periphery to centre (grey) compared to ideal distribution if distribution was 

assumed equal across all regions of the tablet (black). Central rings carry more than 

their relative surface area. 

A gradual reduction of the signal was followed by a sharp drop beyond a diameter of 7 

mm across the tablet centre. However, the peripheral 3 mm also contributed by a small 

amount to the signal (<10%). Similar results were described by Iyer et al. 21 This also 

means that for a 10 mm tablet, the central 5 mm of a tablet carry 77% of the signal (area 

25% of the whole surface) and the peripheral 5 mm of the tablet carry 23% of the signal 

(area 75% of the whole surface). This modelled distribution, coupled with the fact that 

radiation traverses the whole thickness, provides evidence that NIR transmission mode 

holds information representative of a big percentage of the tablet space. In addition, the 

fact that spectral representation of the tablet fades towards the periphery makes 

estimation of the sampled mass for both diffuse reflection and transmission modes 

overestimated and very much dependant on the tablet physical properties. 

 

Figure 25: Final model representing NIR transmission through a 10-mm pharmaceutical 

tablet with a flat surface. Darker areas indicate higher signal contribution.  There is a 

gradual fade from the centre with >90% of the signal carried through the central 7mm. 
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8.1.6 Conclusions 

The time- and cost-saving benefits of NIR spectroscopy in quantifying solid dosage 

forms are too big to be ignored. Transmission mode is highly representative of 

pharmaceutical tablets but much more liable for interference from physical variations. 

This brings about the need for careful calibration model planning at the outset, with the 

inclusion of intended physical outliers in various possibilities in the calibration and 

validation sets, while employing representative sampling techniques and possibly 

partial factorial design for complex systems. On the other hand, the element of tableting 

parameters in spectra is a valuable resource in understanding the process, which is the 

rationale behind PAT manufacturing. 

The technique was shown to perform well compared to the UV assay even under very 

challenging parameters (minimal spectral variation related to active principal and 

maximum density and thickness interference) but only after proper sampling design. 

The arrangement and actual length of NIR optical pathways through a tablet have a 

major impact on spectra and, if not accounted for, predictions. Sources of variability 

such as pore size, shape, arrangement and total percentage inside a compacted tablet 

are important determinants of detected NIR absorption and intensity as well as the 

robustness of calibration models and can have potential answers for many issues related 

to prediction outliers. 



 
105 Press effect on NIR predictions of low-dose tablets and DT sampling span 

8.2 Supplementary discussion to the published 

paper 

8.2.1 Sample preparation 

Folic acid is a water-insoluble and light sensitive drug and hence a good example where 

NIR spectroscopic analytics present clear advantages over wet-chemistry assays. 

Moreover, it is administered in very low doses (typically 5 mg), which would present 

more challenge to NIR methods. 

Direct-compaction was chosen as a method of tableting for this experiment and tablets 

were compressed directly from mixtures of the drug and excipients without any 

preliminary treatment (granulation, pelletisation, etc.). 

The mixture to be compacted must have adequate flow properties and cohere under 

pressure.  Since most active compounds have less of such properties, they are mixed 

with other materials are directly compactable and serve as tablet diluents. This means 

that direct-compaction properties usually derive from the diluent, and potent drugs (like 

folic acid) which are presented in low doses can be mixed with generous amounts of 

diluent and still have a low table mass. 

With direct-compaction, the original individual particles are still present and influence 

the compact properties and add to batch-to-batch variation problems. Further 

disadvantages of direct-compaction are segregation of mixture components which can 

further compromise tablet properties, adversely affect content uniformity and, in the 

case of NIR content analysis, present question marks on the validity of prediction.  

The most frequently used direct-compaction diluent is microcrystalline cellulose which 

has a low bulk density and is highly compactable to form strong compacts that 

disintegrate readily in water. An important feature of direct compaction diluents is their 

capacity or dilution potential which is the amount by which they can incorporate 

substances which are not directly compactable and yet still produce acceptable tablets 

(Lund 1994). 

An essential influence on the compaction process has likewise the crystal form and the 

grain size. A grain size between 0.5 and 1mm is regarded as optimal in direct-

compaction. The requirement for the success of direct-compaction tableting is, that the 



 
106 Press effect on NIR predictions of low-dose tablets and DT sampling span 

substances are dry, i.e. just showing a low residual moisture, which is the case in the 

prepared powder mixture (section 12.4.1.1). 

Ideal directly compactable diluents should be physically and chemically inert and free 

flowing to ensure homogenous and rapid flow of powder for uniform die filling. High 

compactibility is also required and the mass must remain in the compact form once the 

compaction force is removed. Few excipients can be compacted directly without elastic 

recovery. Such fillers should also remain unchanged chemically and physically during 

the compaction process. 

Diluents should have a particle size equivalent to the active ingredient present in the 

formulation which is consistent from batch to batch and produce uniform blending with 

and minimum segregation. This is why all mixture components were sieved with 90 µ 

sieve before mixing, without much sacrifice in tablet hardness (section 12.4.1.6). 

Lubricants have a more adverse effect on the filler properties, and the softening effects 

as well as the hydrophobic effect of alkaline stearates can be controlled by optimising 

the length of blending time to as little as 2-5 min, as well as have lubricant concentration 

below 0.5%. 

The Presster (section 12.2.1) was chosen because it presents a perfect tool to produce 

tablets of varying thickness, as well as its ability to simulate industrial-scale presses 

(dwell time). However, another aspect of tablet presses which is of prime importance to 

NIR methods is tablet mass and die filling variability, in relation to tablet press speed. 

This would mass variability would reflect on tablet thickness and porosity and hence 

might affect predictions. However, this variability is also dependant on the powder mix 

flow properties as well as feeding speed and container scale, and therefore is not a 

trivial factor to be simulated by lab-scale tools. 
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8.2.2 Calibration models

The use of NIR Flex N500 for analysis allowed spectral acquisition of tablets 

wavelength accuracy, good spectral resolution (16 cm

reproducibility. The regular SST provided high reliability of the readings throughout the 

experiment. 

The calibration range chosen (0

guidelines of 70-130% of the SD of the target batch (around 1.75

have the potential for higher SEP. Slightly narrower range might achieve better 

predictions than in this experiment.

Another point is predicting total tablet API content (mg) versus predicting API 

concentration (mg mg-1). NIRS like other spectroscopic techniques probe sample 

portions through their optical pathway, and hence optimally predict concentration 

(Figure 26). 

Figure 26: Spectroscopic assays, test tubes A and B are identical to the method because 

they have the same concentration, although B has more total drug content.

Although in DT, it is still not exactly known how much of the tab

(also discussed in experiment II), but in all cases not all the tablet volume would be 

scanned. This means that NIR methods predicting total content are being able to do so 

because tablet mass variation is within a narrow range, and

prediction. Hence predicting percentage and converting to total content using precise 

tablet mass would be more accurate.

The UV method standard calibration curve was constructed from mixtures rather than 

folic acid stocks because the tablet contents would not be chromatically separated, like 

in HPLC, and all the components will be present in the sample solution. Although this 

was filtered before UV analysis and the components are not that soluble, but MCC is 
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wavelength accuracy, good spectral resolution (16 cm-1, capable of 8 cm

reproducibility. The regular SST provided high reliability of the readings throughout the 

The calibration range chosen (0-5% for testing 2.5% batches) was higher than the ICH 

130% of the SD of the target batch (around 1.75-3.25%) and big ranges 
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scanned. This means that NIR methods predicting total content are being able to do so 
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The use of NIR Flex N500 for analysis allowed spectral acquisition of tablets with high 
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scanned. This means that NIR methods predicting total content are being able to do so 

still this adds to the SE of 

prediction. Hence predicting percentage and converting to total content using precise 

The UV method standard calibration curve was constructed from mixtures rather than 

ause the tablet contents would not be chromatically separated, like 

in HPLC, and all the components will be present in the sample solution. Although this 

was filtered before UV analysis and the components are not that soluble, but MCC is 



 
108 Press effect on NIR predictions of low-dose tablets and DT sampling span 

slightly soluble in weak alkaline solutions and be might present in the cuvette during 

analysis. A calibration line made from such mixtures would perform in the same 

accuracy when a tablet is dissolved and assayed. The calibration fit had a zero intercept 

because the 0% tablets were inside the calibration and should not be assayed less than 0 

(apart from –SD). 

Because folic acid had very high UV absorption (light sensitive), 10.00 mg of the crushed 

tablet rather than the whole tablet was dissolved for assay sampling in order to remove 

the need for dilutions, the same applies to choosing 235 nm which is not the absorption 

peak, but rather 20 nm before it and lower in absorbance. 

This might be argued as adding error to the method, but dilutions would be more 

problematic, especially the need for huge amounts of NaOH stocks (which need dilution) 

and the fact that the drug is light sensitive. 

Every analytic method has its SD (or SE), and this is different than the SD of the UV 

apparatus itself. The SE of the whole method stems from errors in each step in the 

method, and in this experiment could be: sampling errors and scale SE, inhomogeneities 

not sampled (minimized by crushing and grinding), NaOH stock preparation, dissolution 

(complete or not), filtration (efficiency), cuvette cleanliness, and UV accuracy 

(wavelength and absorbance). To estimate the UV SEE, a more accurate analytic method 

needs to be available for comparison, and since that was not the case, SD can be used as 

a measure of SEE, in this case it was 0.1133 mg. This means that the NIR method will 

never have an SEP less than this figure, and in best cases will be 2 times that SEP. 

With regards to the calibration model set, excluding the 0 and 5% API batches from the 

validation was needed, otherwise the calibration performance would be understated, 

because these spectra are at the periphery of the property space and their predictions 

would be in most cases extrapolated and hence fall as outliers or potential outliers. The 

limits of any calibration model should not be the target for validation, but rather the 

centre. 

Outliers are spectra which, when applied to the constructed PCR or PLS calibration, 

cannot be fitted with the majority of the calibration model data. They can be identified 

by having residuals or scores outside the normally distributed SDs of the calibration 

model residuals and scores. There are many possible causes for outliers, but can 

generally classified into: 
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a. Abnormal sample (true outlier), e.g. wrong constituents or physical properties of 

the tablet 

b. Abnormal spectral acquisition, e.g. tablets out of position in the sampling plate or 

instrument problems. This can sometimes be excluded by re-scanning the 

sample. 

c. Abnormal referencing, e.g. errors in UV or HPLC dilutions, sampling, 

measurements, etc. This is difficult to detect due to the destructive nature of the 

referencing methods. 

d. Poor calibration model, e.g. models with numerous outliers should be re-

evaluated. 

In Figure 68, an outlier can be visually detected in the “predicted vs. original”, as well as 

the leverage plots. In many cases, it would be safe to exclude outliers from the model, 

especially if they are very infrequent. In other cases however, they might be an 

important indicator of the model’s performance, especially in terms of robustness. 

Although this amount of validation spectra are good enough to generate data that can 

fully validate the method, an external prediction batch that was not involved in the 

model development is needed, especially when model robustness is in question. In such 

cases, external batches taken at different points of time over the process life time would 

be the best approach. 

In NIRCal, there are two aspects unique to the software, namely Q-value and the model 

wizard. Both were researched and patented (Bossart and Grabinski 2002) and 

ultimately included in NIRCal in attempt to simplify calibration model optimization and 

evaluation. The Q-value (Figure 27) is a pool of weighted model indicators that sum up 

to a value between 0 and 1. Models above Q-value of 0.75 are claimed to be useful and 

those above 0.95 excellent. 

This Q-value is also used to find near optimum model optimization by changing the 

model variables (pretreatments, wavelength regions, number of PCs, and even sample 

sets) until the best Q-value is found. 
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Figure 27: NIRCal’s Q-value overview (Bossart and Grabinski 2002) 

During this experiment, both tools proved to be as good as (in some cases better than) 

manual optimization and evaluation of models. The only aspect where manual 

intervention is needed was wavelength selection. 

An SEP of 0.2731 mg (5.452% of prediction batch content) is 2.4 times the SD of the 

reference method and can be considered adequate. It must be noted however, the SEP is 

normally distributed and it means that 95% of the samples will be ±2×SD and 68% 

within 1×±SD (Figure 28). 
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Figure 28: Normal distribution of standard error 

The t-test results show that there is significant difference between the three models and 

the UV reference method. This shows typically how NIR models can be over-fitted to the 

training set, and fail with external prediction (see section 12.4.3, page 192 for better 

models). However this result should also be viewed in light of the low (20) sample size. 

Moreover, ICH guidelines permit for accuracy to be inferred once other parameters have 

been validated (page 58). 

8.2.3 Press effect 

It is known that density affects NIR spectra in both DT and DR modes. In tablets, 

however, there is a complex relationship between compaction force, tablet thickness 

and porosity (apparent density), which is further affected by fluctuations in tablet mass 

(Figure 29). 

Therefore, it is essential to investigate these effects on spectra, both in combination and 

singularly. The normal variability range might not show a clear effect on NIR spectra, 

apart from contributing to the SEP of prediction. However, when this variability was 

extended, the dependency of the spectra in DT mode to the compaction force was very 

clear (Figure 75). 

The spectral scale was non-linearly proportional to compaction force, and as the powder 

particles were more compacted and voids became smaller and less numerous (less 

porous), the air/solid interface total area became also smaller and therefore scatter was 

reduced. This meant that photons had a greater chance of escaping to the other side and 
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be detected. The accompanying reduction in tablet thickness 

voids independent from porosity.

 

Figure 29: Relationship between compaction force and tablet parameters. Compaction 

will affect thickness and porosity, so does die filling (tablet mass). Porosity will i

affect tablet hardness and dissolution profile.

The scale was bigger in spectral regions that had more transmittance (less absorbance). 

This dependency on absorbance was the main reason why all pre

group the spectra (Figure 79

scale variations, meaning there is a limit to how much pre

the remainder will be prediction errors. Therefore, novel pretreatments that can tak

this effect into account (sample

Compaction speed, on the other hand, can also contribute to the variability picture. 

However, and in the case of the MCC diluent, there was no clear relationship between 

tableting speed and any of the tablet physical parameters, and hence predictions (

75 and Figure 78). Other diluents which have compaction profile that are more clearly 

dependent on compaction durati
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be detected. The accompanying reduction in tablet thickness produced a reduction in 

voids independent from porosity. 

: Relationship between compaction force and tablet parameters. Compaction 

will affect thickness and porosity, so does die filling (tablet mass). Porosity will i

affect tablet hardness and dissolution profile. 

The scale was bigger in spectral regions that had more transmittance (less absorbance). 

This dependency on absorbance was the main reason why all pre-treatments failed to 

79), and this failure on big-scale would be reflected on small

scale variations, meaning there is a limit to how much pre-treatments can correct, and 

the remainder will be prediction errors. Therefore, novel pretreatments that can tak

this effect into account (sample-dependent) would potentially improve predictions.

Compaction speed, on the other hand, can also contribute to the variability picture. 
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produced a reduction in 

 

: Relationship between compaction force and tablet parameters. Compaction 

will affect thickness and porosity, so does die filling (tablet mass). Porosity will in turn 

The scale was bigger in spectral regions that had more transmittance (less absorbance). 

treatments failed to 

scale would be reflected on small-

treatments can correct, and 

the remainder will be prediction errors. Therefore, novel pretreatments that can take 

dependent) would potentially improve predictions. 

Compaction speed, on the other hand, can also contribute to the variability picture. 

However, and in the case of the MCC diluent, there was no clear relationship between 

ableting speed and any of the tablet physical parameters, and hence predictions (Figure 

). Other diluents which have compaction profile that are more clearly 

on might show a different picture and are yet to be 
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The effect of compaction force variability on predictions is clearly illustrated in Figure 

80 when all models show gradual drift in prediction from the referenced content, except 

in the porosity region they were trained for. 

It was possible, however, to develop a model that was robust to this variability by 

adding spectra of variable compaction force across all calibration concentrations (Figure 

81). Only then was the content predicted across the whole porosity range, of course with 

higher SEP and using much bigger number of PCs. 

Finally, the spectral scale relation to tablet thickness and porosity, each singularly is 

illustrated in Figure 82 and Figure 83. The scaling in both cases was exponential and 

running in the same direction of the compaction force change. 

8.2.4 Tablet sampling span in diffuse transmission 

The effect of placing a black paper over a tablet on DT spectra had to be tested first, and 

Figure 15 shows the scaled-down spectrum of an MCC tablet and blank paper. It also 

shows the effect of laser ink 100% coverage on paper over the tablet. The spectrum was 

scaled-down even further but in both cases preserved the same MCC spectral features. 

This meant that scaling, represented by transmittance at a single wavenumber can be 

taken to represent the degree of block, hence the maximum at 8880 cm-1 was chosen.  

With the application of paper filters F0 – F10 (from Figure 16) on the tablet, the DT 

spectra were scaled-down gradually with each increase in the block inner diameter 

(Figure 69). F1 and F2 block was small and difficult to judge whether due to positioning 

noise effect (most peripheral blocks) or real signal block. From F3 onwards, the block 

was strongly evident. 

In Figure 22, all porosity ranges tested showed similar sigmoidal block pattern, an 

indication that porosity change (in that range), was not affecting the signal distribution 

to a big degree. The plots do, however, have different scales, and it is due to due increase 

in radiation scatter at lower sample densities (higher porosity) – see press effect, 

chapter 8. 

The decrease in absolute transmittance at 8880 cm-1 was taken as a measure of the 

drop, and converted to proportional drop in comparison to F0 spectrum (section 11.2.4). 

Because F10 (100% coverage) would never scale-down the signal to 0%, the 

corresponding theoretical (ideal) distribution was also scaled-up to match this partial 

block. 
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The theoretical block describes how the block pattern should be if the DT radiation was 

assumed uniform across tablet surface, and used for comparison to appreciate the area 

of the block. 

The central areas were found to carry represent more of the signal than their 

proportional area (as expected). However, the representation of the tablet was 

continued up to 7 mm in diameter (90.6% of signal). However, although much less, the 

outer area is still represented in the spectrum, but eventually, tablets with bigger 

diameters have even smaller area sampled by the NIR radiation. Such big tablets in most 

cases have higher drug loadings (main reason behind increased tablet size) and would 

have less problems of drug segregation. 
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9. Tablet sampling span in diffuse 

reflection 

The work on this section is summarised in the original scientific publication from the 

author (below), with more detailed experimental methods and results sections in 

Appendix III. 
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9.1 Assessment of diffuse transmission and 

reflection modes in near-infrared 

quantification – part II: diffuse reflection 

information depth (original paper) 
 

J Pharm Sci. 2011 Mar;100(3):1130-41. 

9.1.1 Keywords 

process analytical technology • diffuse reflection • sampled depth • information depth • 

content uniformity • coated tablets • double-layer tablets 

9.1.2 Abstract 

Near-infrared (NIR) spectroscopy offers tremendous advantages for pharmaceutical 

manufacturing as a fast and non-destructive method of quantitative and qualitative 

analysis. Content uniformity (end product analytics) and process analytics are two 

important applications of the method. In part I of the study, diffuse transmission (DT) 

and the effect of tableting press and horizontal sampling span were discussed. 

Experimental evidence showed that 90% of the signal was detectable from a diameter of 

up to 7 mm. 

On the other hand, DR information depth (vertical sampling span) assessment is of equal 

importance in content prediction applications and to understand the effect of 

inhomogeneities in the sample. Three experiments were conducted: I. 0.5 – 10 mm 

incremental thickness MCC tablets with constant porosity, II. MCC/Phenylbutazone 

(PBZ) double layered (DL) tablets (PBZ layer 0-100% in 0.5 mm steps) and III. 

Comparison of placebo and 30% caffeine tablet cores with incremental film coating (film 

thickness of 0 – 0.35 mm). Incremental thickness and cluster analysis of DL tablets 

showed that DR information depth was < 0.5 mm, while the data fitting from 

incremental coating showed that signal drop reached 50% at 0.05 – 0.07 mm depending 

on the wavenumber and 90% signal drop (10% information content) can be seen 

between 0.2 – 0.25 mm without extrapolation. 
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9.1.3 Introduction 

Near infrared (NIR) spectroscopic methods have been widely used in pharmaceutical 

analysis for both qualitative and quantitative purposes, providing results of comparable 

quality in a more simple and expeditious manner. Therefore, they constitute effective 

alternatives to chromatographic techniques in many cases, encouraged by additional 

factors such as the ease of sample preparation and the reproducibility of measurements, 

which have often dictated their use in quality control analyses of both raw materials and 

finished products. The differential sensitivity and selectivity of spectroscopic techniques 

have so far dictated their specific uses. For example, UV-Vis spectroscopy has typically 

been used for quantitative analysis by virtue of its high sensitivity, while infrared (IR) 

spectrometry has been employed mainly for the identification of chemical compounds 

on account of its high selectivity.  

9.1.3.1 Theoretical aspects of diffuse reflection 

In NIR spectroscopy (NIRS), X-H (X is C, N or O) functional groups are almost exclusively 

involved in NIR spectroscopy (NIRS) because the overtones and combinations of their 

fundamental frequencies in the mid-IR and produce absorption bands of useful intensity 

in the NIR. The absorptivities of these overtone and combination bands are so much 

weaker than in mid-IR spectroscopy, and it is due to this fact that spectra of condensed 

phase, physically thick samples can be measured without sample dilution (non-

destructive analysis) and hence no sample preparation. The other advantage of low 

absorptivity is that measurements involving scattering effects are possible (diffuse 

transmission and refection). (Simpson 2005)  

Reflectance (R%) can be interpreted from equation (0.24), where IR is the intensity of 

the diffusely reflected light and I0 is the intensity of the incident light. Absorbance can be 

approximated as log of reciprocal reflectance, equation (0.25). 
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Diffuse reflectance (DR) differs from specular reflectance in that light penetrates the 

material up to some distance, where it is partially scattered on the surface of particles, 

as well as being partially absorbed. Therefore, considerable attempts have been made to 

describe it mathematically, the earliest being Lambert cosine law (Lambert 1760) in 
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which he proposed a correlation between the remitted radiation and the angle of 

observation for matte surfaces. Kortüm (1969) suggested that this law can be derived 

from the second law of thermodynamics but valid only for ideal diffuse reflectors and 

hence deviation from this law will occur in practice. 

Mie (1908) developed a more accepted theory that described the angular distribution of 

intensity and polarization of scattered radiation for a single scattering by one particle. 

This makes it applicable only to chemical systems in which particles are well separated. 

In practice, samples are expected to have multiple scattering taking place which led 

Theissing (1950) to take this theory a step further by including multiple scattering, but 

still particles in NIR/DR analyses are so densely packed that phase relations and 

interferences between scattered beams which have not been accounted for do exist. 

Thus for samples of this type no general quantitative solution to the problem of multiple 

scattering has been found. (Griffiths and Olinger 2002) 

Most other theories have evolved from energy transfer treatments, which describe the 

change in intensity of a beam of radiation of a given wavelength in a sample of a given 

density and pathlength due to total radiation loss from scattering and absorption that 

corresponds an attenuation coefficient, (Truelove 1988) and (Craig and Incropera 

1984). Schuster (1905) made an attempt to find simpler solutions to the radiation 

transfer equations by using different vectors for the light being incident or being 

remitted by the sample. 

Kubelka and Munk (1931) made more assumptions in their derivation of a simplified 

solution to the radiation transfer equation. The final derivation is shown in equation 

(0.26) and shows that the measured DR (R∞) is dependent on the ratio of K and S 

(absorption and scattering coefficients respectively). Kubelka and Munk’s solution is the 

most widely accepted DR explanation since it is a two-constant equation and therefore 

experimentally testable. Moreover, many other derivations by other workers like Smith 

(1931), Amy (1937) and Bruce (1926) have been shown to be derivable from Kubelka 

and Munk’s work. 
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For diffuse transmission (DT) on the other hand, light travelling in a medium is 

attenuated by absorption and scattering. The energy that is transmitted along the 

regular path is reduced more the longer it propagates in the medium or when the 
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concentration of the absorbing ingredient in the medium is higher. For a medium that 

does not cause significant multiple scattering, the radiant flux density of the transmitted 

light is related to the radiant flux density of the incident light by Beer-Lambert law, 

which holds true only when the effect of multiple scattering is negligible because the 

energy scattered forwards by one particle can be scattered backwards by a second 

particle. Although the interaction of light with materials was studied extensively, 

especially at the visual range (light propagation theory and optical dispersion (Lee 

2005), the complexity of the optical path inside a compacted material and the 

dependence of this path on physical properties of the compact (packing density, particle 

size, thickness, absorbing species concentration and distribution, etc.) hindered the 

development of a complete theory describing (DT) to date.  

As mentioned before, variations in the physical properties of samples can have 

significant effects on spectra. For tablets, mainly variation in bulk density (porosity and 

hardness); and in particle size range of compacted material would change the total 

surface area of the compacted particles and the ratio of voids to solids, hence spectral 

scaling will be evident for both effects. In DR mode, this will show as baseline shifts that 

can complicate content analysis or form the basis for hardness predictions (Short 2009 

and Blanco 2006), and is one of the reasons for using various pre-processing techniques 

(Shi and Anderson 2009). 

Another important aspect in the determination of content uniformity (CU) in 

pharmaceutical tablets is portion being sampled. The higher this portion is, the less 

likely the predictions will be affected by non-homogeneity in the tablet contents. In DT 

mode, experimental evidence have shown that >90% of the spectral information is from 

the central 7-mm of a typical pharmaceutical tablet, (Saeed et al, 2009) and the fact that 

radiation traverses the whole thickness of the sample means that this mode scans a 

considerable portion of the tablet volume.  

In DR mode however, the information depth (the depth of the sample contributing to the 

final detected radiation and for which the spectrum is representative) would determine 

the sampled portion of the tablet. Moreover, the extent of this depth would determine 

the applicability of this mode to coated or multi-layered tablets. 

9.1.3.2 Current evidence on DR information depth 

Few researchers have tried to DR estimate information depth for powder mixtures. 

Olinger and Griffiths (1992), (2002) used absorbance values for mixtures with known 

absorptivities and particle size values and reported an upper boundary of 1 mm at 1653 

nm. It was also reported that if scattering effect was to be considered, this range would 
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unlikely be more than 300 µm. Others have reported different values but without 

supporting experimental or theoretical evidence: 5 mm (MacDonald and Prebble 1993), 

1-2 cm (Ciurczak 1991), 1-4 mm (Olinger and Griffiths 1992), 0.5 mm (Stephen Victor 

Hammond 1997).  

The evidence is even smaller for compacted solids. Iyer et al. (2002) have tried to 

estimate the sampled mass in DR using single and double-layered tablets and second 

derivative spectra. He concluded that the effective sampling depth was between 1.9 and 

2.7 mm depending on the wavelength. Another study by Andersson et al. (1999) showed 

different values and suggested an information depth of 0.1 - 0.2 mm using incremental 

coating and tablets with 2 different components. The authors however maintained that 

these figures are only rough estimates because the results were obtained using 

extrapolation and may only be valid for specific materials and instruments. 

Because of such varying views on DR information depth, the exact value is still not clear 

to operators of the method. Additionally, since the majority of pharmaceutical tablets 

range in thickness between 1 – 4 mm, determining this depth is crucial to the selection 

of appropriate measurement modes for different coated, uncoated and multi-layered 

tablets and can provide better understanding of the performance differences between 

DR and DT modes. 

9.1.3.3 Study aims 

The study aims to determine the portion of the tablet contributing to DR spectral 

information (DR information depth). Because the evidence would be experimental and 

in many cases indirect, three different studies are made using tablets with increasing 

thickness, double-layered and incrementally coated tablets. Finally, an estimation of the 

pharmaceutical tablet depth at which 50% and 95% drop in the DR information is to be 

proposed. 

9.1.4 Experimental 

9.1.4.1 Materials 

Microcrystalline cellulose 102 (MCC SANAQ 102 G) (Pharmatrans SANAQ AG, Basel, 

Switzerland), Phenylbutazone (Sigma-Aldrich, Buchs, Switzerland), Caffeine anhydrous 

powder (BASF AG, Schaffhausen, Switzerland), Magnesium Stearate (Sigma-Aldrich, 

Buchs, Switzerland), FD+C Red 3 LA (Sigma-Aldrich, Buchs, Switzerland), Pharmacoat 

603 (HPMC) (Novartis Pharma AG, Basel, Switzerland), Aquacoat ECD 30 (FMC 

Biopolymer, Houston, TX), Triethylcitrate (Sigma-Aldrich, Buchs, Switzerland). 



 
121 Tablet sampling span in diffuse reflection 

9.1.4.2 Tableting 

Variable thickness tablets were compacted on a Zwick Material Testing Machine (Zwick 

GmbH & Co., Ulm, Germany). Double layer tablets were compacted on a Presster™ tablet 

press simulator (Metropolitan Computing Corporation, East Hanover, New Jersey). 

Tablets for coating were compacted on an eccentric press (Korsch Schweiz GmbH, 

Trimbach, Switzerland). 

True density measurements were performed using a helium pycnometer (AccuPyc 1330, 

Micromeritics, Norcross, GA, USA) at room temperature. Air was extracted to generate a 

vacuum and then Helium was pumped-in 5 times until equilibrium was reached. Tablet 

thickness was measured using a digital calliper (Mitutoyo, Tokyo, Japan), and tablet 

mass was measured using an analytical scale AX204 (Mettler Toledo, Switzerland). 

Detailed method description is given in sections 14.3.1-14.3.3. 

9.1.4.3 Coating 

Tablets were coated inside Strea-1 laboratory fluid-bed (Aeromatic AG, Muttenz, 

Switzerland) and coat material was fed using a rotary pump. 

9.1.4.4 NIR measurements 

Tablets were scanned with NIRFlex N-500 (Büchi Labortechnik, Flawil, Switzerland), a 

Fourier-Transform spectrometer based on quartz polarization interferometer and a 

Tungsten halogen source. DR measurements used NIRFlex Solids cell with tablets add-

on and DT measurements used NIRFlex Solids Transmission cell with a sample size-

adjustable sample holder. Both cells use an extended range InGaAs detector 

(temperature controlled). More details are given in section 14.2.2. 

9.1.4.5 Data processing 

Data was fitted in a 3-way curve using Tablecurve 3D (Statcon, Germany). Spectral data 

processing and chemometrics were performed using NIRCal v5 (Büchi, Flawil, 

Switzerland). Exported spectra were averaged and correlated using standard Microsoft 

Excel functions and a VB macro to examine the entire wavenumber regions. 

9.1.4.6 Experiment 1: Variable-thickness tablets 

MCC powder was compacted into 0.5 – 10 mm thick tablets in a porosity range of 25 – 

33% using the Zwick. The mass of each tablet was calculated from the porosity equation 

(0.27) where porosity of the tablet (F) is related to the density of the compact (ρ) and 
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the true density of the powder mix (ρ0). Ρ was simply the tablet mass (m) over its 

volume (V). 

 
0 0

1 1

m

VF
ρ
ρ ρ

= − = −  (0.27) 

Because the Zwick is a hydraulic press where the force of compaction rather than the 

gap is set, and because this force is dependent on both the final tablet thickness and 

mass for the same powder mix, the press was calibrated using different powder masses 

and different tablet thickness and the data was fitted on a 3-dimensional calibration 

curve (Figure 30) to calculate compaction forces for all tablets made (Table 5). DR 

spectra where then collected from all tablets, both the upper and lower surfaces. The 

collected DR spectra were processed with and without pre-treatments (normalisations, 

1st and 2nd derivatives, standard normal variate and multiplicative scatter corrections). 

However, non-pretreated spectra in this case showed the best grouping, because the 

sample density was tightly controlled. 

Table 5: Incremental thickness tablet details 

Tablet mass [mg] Thickness [mm] after 24h Porosity

41.90 0.50 25.68%

83.80 1.00 25.39%

125.50 1.52 26.24%

167.20 2.01 25.86%

208.90 2.50 25.63%

252.80 3.01 25.24%

293.30 3.52 25.85%

335.20 4.05 26.27%

380.00 4.56 25.72%

419.80 5.06 26.06%

461.40 5.55 25.91%

504.20 6.07 25.99%

545.90 6.58 26.09%

589.70 7.07 25.75%

630.30 7.57 25.84%

672.40 8.05 25.65%

714.00 8.57 25.83%

757.00 9.12 26.06%

799.90 9.54 25.35%

840.30 10.06 25.63%

 
Mean 25.80%

 
SD 2.79E-03
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Figure 30: Three-factorial fitting of tablet thickness, mass and compaction force of MCC 

102 on Zwick 

 

9.1.4.7 Experiment 2: double-layered tablets 

In these tablets, the lower layer contained phenylbutazone (PBZ), pigment and lubricant 

while the upper layer contained MCC and lubricant only (Table 6). The tablets where 

compacted in Presster™ using a flat face 10 mm punch. The powders where manually fed 

for each tablet. The lower layer was fed first and loosely compacted. The compaction 

was interrupted before ejection and the upper layer was fed on top and both where 

compacted and the double-layered tablet was ejected. Table 6 also lists the proportions 

of each layer, compaction forces used and compacted thickness. DR and DT spectra 

where then collected from both sides of the tablets and a principal component analysis 

(PCA) cluster models were constructed using different pretreatments, wavelength 

regions and number of PCs, and models with the best clustering (least amount of SE) 

were selected. 
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Table 6: Double-layered tableting 

Upper layer (PBZ) Lower layer (MCC) Final tablet

mass
Comp

-action 
gap

Thickness after 
compaction

mass
Comp

-action 
gap

Thickness after 
compaction

mass
Thick
ness

mg mm mm % tablet mg mm mm % tablet mg mm

0 0.0 0.00 0.0 400 3.2 4.27 100.0 394.7 4.27
50 0.6 0.50 11.7 350 3.2 3.77 88.3 391.0 4.27

100 1.8 0.95 23.5 300 3.2 3.10 76.5 396.6 4.05
150 2.8 1.58 38.7 250 3.2 2.50 61.3 394.1 4.08
200 3 2.09 49.2 200 3.2 2.16 50.8 388.5 4.25
250 3 2.7 65.1 150 3.2 1.45 34.9 391.1 4.15
300 3.4 3.21 75.5 100 3.2 1.04 24.5 393.2 4.25
350 3.4 3.8 88.4 50 3.2 0.50 11.6 392.9 4.30
400 3.2 4.45 100.0 0 0 0.00 0.0 389.4 4.45

 

9.1.4.8 Experiment 3: Coating experiment 

Placebo (99% MCC and 1% MgSt) and caffeine (30% caffeine, 69% MCC and 1% MgSt) 

tablets where compacted using a Korsch eccentric press and 7 mm concave punch with a 

5.5 mm curvature radius. Tableting involved strict and frequent in-process-control 

sampling. Both batches produced tablets with 100.57 mg (SD 1.03) mass and 3.16 mm 

(SD 0.022) thickness. 

Both placebo and caffeine tablets were coated (separately) with a typical film coat 

formulation (Aquacoat ECD – Table 7) inside a fluidized bed. The process was stopped 

every 50 g of coat sprayed and samples were collected for analysis. The process was 

stopped after 6 batches because the coating started to be non-homogeneous. Figure 31 

shows the weight and thickness gain along the process. It is noticeable that coating was 

continued much beyond normal film coating (10 – 100 µm) (Swarbrick and Boylan 

1988) in order to investigate the DR information depth. NIR DR and DT spectra were 

then collected for all coat levels. The spectral data were then exported to Excel for 

analysis. 

Table 7: Film coat formulation 

Component Proportion %

Aquacoat ECD-30 (30% w/w) 22.22
Pharmacoat 603 (19% w/w) 35.09

Triethylcitrate 1.33
FD+C Red 3 LA 7

Water (dist.) 34.36

 



Figure 31: Film-

9.1.5 Results and discussion

9.1.5.1 Incremental thickness tablets

Table 5 shows the gradual and uniform increase in tablets thickness

mm. It was not possible to manufacture a tablet with a thickness of less than 0.5 mm, 

and 10 mm was chosen because it was higher than any published data on DR depth. The 

tablets had a uniform porosity (mean of 25.8%), as shown from the 

graphically in Figure 32 (no correlation with thickness). Any changes in porosity with 

thickness would make interpretation of the spectra very difficult.

Figure 32: Plot of tablet thickness against porosity for incremental thickness tablets 
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-coat increase for both MCC and Caffeine batches

Results and discussion 

Incremental thickness tablets 

shows the gradual and uniform increase in tablets thickness, from 0.5 mm to 10 

mm. It was not possible to manufacture a tablet with a thickness of less than 0.5 mm, 

and 10 mm was chosen because it was higher than any published data on DR depth. The 

tablets had a uniform porosity (mean of 25.8%), as shown from the 

(no correlation with thickness). Any changes in porosity with 

thickness would make interpretation of the spectra very difficult. 

ablet thickness against porosity for incremental thickness tablets 

showing no correlation 

3.4 3.6 3.8

tablet thickness [mm]

R² = 3E
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Thickness [cm]
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coat increase for both MCC and Caffeine batches 

, from 0.5 mm to 10 

mm. It was not possible to manufacture a tablet with a thickness of less than 0.5 mm, 

and 10 mm was chosen because it was higher than any published data on DR depth. The 

tablets had a uniform porosity (mean of 25.8%), as shown from the small SD and 

(no correlation with thickness). Any changes in porosity with 

 

ablet thickness against porosity for incremental thickness tablets 

4

MCC

Caffeine

R² = 3E-08

1.2
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Figure 33 shows a plot of several DR spectral maxima of the increasing thickness tablets, 

from both upper and lower surface scans. There was a gradual increase in reflectance 

with thickness, until 2-3 mm, followed by a gradual drop until 7 mm, and then another 

increase. This pattern was seen in all scans and cannot be relied upon for estimation of 

the depth with any certainty. One possibility was that the information depth was already 

missed with the thinnest tablet (0.5 mm). Both the upper and lower surfaces were 

scanned because tablets compacted in Zwick have different density distributions across 

its surfaces. However, the same pattern was observed. 

 

Figure 33: DR spectral changes with increasing tablet thickness, both for the upper and 

lower tablet surfaces and different spectral maxima. The blue bars indicate porosity of 

the same tablets (secondary axis) 

Since all the tablets were produced from the same raw material batch (MCC only) with 

excluded effect of porosity (Figure 34), the pattern could also be due to instrument-

related density distribution or tablet surface texture changes with different compaction 

force/tablet mass profiles. This meant that the experiment did not yield useful 

information and other approaches had to be tried. 

9.1.5.2 Double-layer tablets 

The selected Presster compaction scheme was able to produce double-layered tablets of 

uniform layers (Table 6 and Figure 35). Again, the thinnest layer was 0.5 mm and less 

than that cannot achieve homogenous and complete layer. Figure 36 shows SNV 

pretreated DR spectra of double-layered tablets, scanned with the PBZ layer 

downwards, as well as single layered MCC and PBZ tablets (white and pink respectively). 



There was a marked spectral difference betwe

several regions (marked red) which enabled a good interpretation of the results.

Figure 34: Plot of DR against tablet porosity of increasing thickness tablets, for upper 

and lower surface at di

Figure 35: Layer thickness of double
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There was a marked spectral difference between the MCC- and PBZ

several regions (marked red) which enabled a good interpretation of the results.

: Plot of DR against tablet porosity of increasing thickness tablets, for upper 

and lower surface at different spectral maxima. No correlation was observed.

: Layer thickness of double-layered tablets versus layer mass, showing uniform 

layers 
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and PBZ-only tablets in 

several regions (marked red) which enabled a good interpretation of the results. 

 

: Plot of DR against tablet porosity of increasing thickness tablets, for upper 

fferent spectral maxima. No correlation was observed. 

 

layered tablets versus layer mass, showing uniform 

7648 1/cm lower surface

5980 1/cm upper surface

MCC layer

PBZ layer



Figure 36: Double-layer tablets DR spectra (PBZ down

spectra are non-distinguishable from PBZ, except the single layer MCC tablet.

If there was any DR radiation penetration beyond the thinnest PBZ layer (0.5 mm) into 

the MCC layer, the spectra of these tablets should have carrie

spectrum, which was not the case in 

compared with DT spectra of the same tablets in the same orientation (

this mode which penetrates both layers, there was a gradual change of spectral features 

from the PBZ-only tablets, and then the double layers with decreasing PBZ layer 

thickness, until the MCC-only tablet. Because this picture is not

double-layered tablets, the conclusion would be that DR information depth should be 

less than 0.5 mm. 

Tablet sampling span in diffuse reflection

layer tablets DR spectra (PBZ downwards, SNV pretreatment). All 

distinguishable from PBZ, except the single layer MCC tablet.

If there was any DR radiation penetration beyond the thinnest PBZ layer (0.5 mm) into 

the MCC layer, the spectra of these tablets should have carried some features of the MCC 

spectrum, which was not the case in Figure 36. The picture becomes more clear when 

compared with DT spectra of the same tablets in the same orientation (

this mode which penetrates both layers, there was a gradual change of spectral features 

only tablets, and then the double layers with decreasing PBZ layer 

only tablet. Because this picture is not shown in any of the 

layered tablets, the conclusion would be that DR information depth should be 
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wards, SNV pretreatment). All 

distinguishable from PBZ, except the single layer MCC tablet. 

If there was any DR radiation penetration beyond the thinnest PBZ layer (0.5 mm) into 

d some features of the MCC 

. The picture becomes more clear when 

compared with DT spectra of the same tablets in the same orientation (Figure 37). In 

this mode which penetrates both layers, there was a gradual change of spectral features 

only tablets, and then the double layers with decreasing PBZ layer 

shown in any of the 

layered tablets, the conclusion would be that DR information depth should be 



Figure 37: Double-layer tablets DT spectra (PBZ downwards, db1 and ncl 

pretreatments). Spectra feature cha

Because the results above depended on visual inspection of the spectra, they had to be 

confirmed by cluster analysis chemometric models. 

scores of the DR spectra, referenced as MCC property (blue), except the PBZ

labelled as PBZ (green). This was to see if the model can identify any of the double

layered tablets as MCC when the MCC layer is upwards (and hence 

across PBZ). The score plot very clearly show

grouped with the PBZ-only tablet away from the MCC

spectral features are available to distinguish them. The model had a very l

(<0.4). 
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layer tablets DT spectra (PBZ downwards, db1 and ncl 

pretreatments). Spectra feature change gradually from PBZ to MCC as PBZ layer 

thickness decreases 

Because the results above depended on visual inspection of the spectra, they had to be 

confirmed by cluster analysis chemometric models. Figure 38 shows

scores of the DR spectra, referenced as MCC property (blue), except the PBZ

labelled as PBZ (green). This was to see if the model can identify any of the double

layered tablets as MCC when the MCC layer is upwards (and hence 

across PBZ). The score plot very clearly shows that all the double-layered tablets were 

only tablet away from the MCC-only tablet because no MCC 

spectral features are available to distinguish them. The model had a very l
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layer tablets DT spectra (PBZ downwards, db1 and ncl 

nge gradually from PBZ to MCC as PBZ layer 

Because the results above depended on visual inspection of the spectra, they had to be 

s PC 1 versus PC 2 

scores of the DR spectra, referenced as MCC property (blue), except the PBZ-only tablet 

labelled as PBZ (green). This was to see if the model can identify any of the double-

layered tablets as MCC when the MCC layer is upwards (and hence DR penetration 

layered tablets were 

only tablet because no MCC 

spectral features are available to distinguish them. The model had a very low Q-value 



Figure 38: Cluster analysis of double

tablets labelled as MCC (upper layer) was grouped with the MCC

had scores similar to the PBZ

This was not the case with DT cluster analysis of the same tablets (

the double-layered tablets were correctly identified and clustered with the MCC

tablet, with scores moving towa

a very high Q-value (>0.9) and other models consisting of one PC were also possible.

Tablet sampling span in diffuse reflection

: Cluster analysis of double-layer tablets in DR mode. None of the double

tablets labelled as MCC (upper layer) was grouped with the MCC-only tablet, and instead 

had scores similar to the PBZ-only tablet 

This was not the case with DT cluster analysis of the same tablets (Figure 

layered tablets were correctly identified and clustered with the MCC

tablet, with scores moving towards the PBZ with increasing PBZ content. The model had 

value (>0.9) and other models consisting of one PC were also possible.
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layer tablets in DR mode. None of the double-layer 

only tablet, and instead 

Figure 39) where all 

layered tablets were correctly identified and clustered with the MCC-only 

rds the PBZ with increasing PBZ content. The model had 

value (>0.9) and other models consisting of one PC were also possible. 



Figure 39: Cluster analysis of double

tablets labelled as MCC (upper layer) were grouped with the MCC

scores gradually moving to the PBZ cluster as its layer gets bigger

9.1.5.3 Incremental tablet coating

The coating process for both tablet batches (MCC and caffeine tablets) produced 

incremental coatings, as shown from the thickness and mass

Another crucial fact was to have comparable coating thickness mean at each coating step 

for both batches (Figure 31), otherwise data analysis and interpretation would be very 

difficult. The maximum coat thickness possibly was 0.35 

coats were pitted and cracking and therefore useless.

Tablet sampling span in diffuse ref

: Cluster analysis of double-layer tablets in DT mode. All of the double

ablets labelled as MCC (upper layer) were grouped with the MCC-only tablet, with 

scores gradually moving to the PBZ cluster as its layer gets bigger

Incremental tablet coating 

The coating process for both tablet batches (MCC and caffeine tablets) produced 

incremental coatings, as shown from the thickness and mass-gain data (

Another crucial fact was to have comparable coating thickness mean at each coating step 

), otherwise data analysis and interpretation would be very 

difficult. The maximum coat thickness possibly was 0.35 – 0.37 mm, beyond that the 

coats were pitted and cracking and therefore useless. 
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layer tablets in DT mode. All of the double-layer 

only tablet, with 

scores gradually moving to the PBZ cluster as its layer gets bigger 

The coating process for both tablet batches (MCC and caffeine tablets) produced uniform 

gain data (Table 8). 

Another crucial fact was to have comparable coating thickness mean at each coating step 

), otherwise data analysis and interpretation would be very 

0.37 mm, beyond that the 
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Table 8: Incremental coating details, showing mass and thickness increasing with 

coating (average of 10 tablets). Coat thickness from one side was calculated by dividing 

thickness gain by 2. 

Coat level 0 1 2 3 4 5 6

M
C

C
 t

ab
le

ts
 

mass [mg] 100.57 104.97 110.10 116.20 120.54 126.93 133.34

Mass SD 1.03 1.05 1.29 1.03 1.90 1.86 2.03

Mass gain [mg] 0.00 4.40 9.53 15.63 19.97 26.36 32.77

Thickness [mm] 3.169 3.258 3.393 3.504 3.612 3.756 3.879

Thickness SD 0.022 0.027 0.037 0.040 0.043 0.051 0.037

Coat thickness [mm] 0.000 0.045 0.112 0.168 0.222 0.294 0.355

ca
ff

ei
n

e 
ta

b
le

ts
 

mass [mg] 100.65 105.06 109.53 116.00 122.18 128.48 135.32

Mass SD 2.04 1.16 0.78 1.12 0.88 1.79 1.76

Mass gain [mg] 0.00 4.41 8.88 15.35 21.53 27.83 34.67

Thickness [mm] 3.141 3.222 3.355 3.487 3.623 3.725 3.880

Thickness SD 0.023 0.027 0.017 0.026 0.032 0.046 0.041

Coat thickness [mm] 0.000 0.041 0.107 0.173 0.241 0.292 0.370

 

Figure 40 (lower part) shows the DR spectra of both batches. The MCC tablets (blue) and 

caffeine tablets (green) spectra have different spectral features (example 6000 – 7000 

cm-1 shown in the zoomed pane) that are evident for uncoated tablets, and start to 

decrease gradually with incremental coatings of both batches until both MCC and 

caffeine spectra are indistinguishable, an indication that the spectrum carried 

information from the coat only. DT scans of these tablets show a different picture 

(Figure 31, upper part). Here, spectral features for both MCC and caffeine batches were 

preserved in all coating steps, because the radiation was always probing the tablet core, 

even at exaggerated film coat thickness. 



Figure 40: Pretreated spectra of 

(above) and DR (below) modes, with the area between 6000

Cluster analysis of these spectra was also performed, and PC plots are shown in 

41 (upper part DT and lower part DR spectra). In DR mode, 

classify all the MCC and caffeine spectra separately with any number of PCs, because 

there are spectra with indistinguishable features (hence coat information only). In DT, 

all the spectra from each batch (MCC and caffeine) were clearly separable with only one 

PC. 
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: Pretreated spectra of MCC and caffeine incrementally coated tablets in DT 

(above) and DR (below) modes, with the area between 6000-7000 cm

Cluster analysis of these spectra was also performed, and PC plots are shown in 

(upper part DT and lower part DR spectra). In DR mode, it was not possibl

classify all the MCC and caffeine spectra separately with any number of PCs, because 

there are spectra with indistinguishable features (hence coat information only). In DT, 

l the spectra from each batch (MCC and caffeine) were clearly separable with only one 
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MCC and caffeine incrementally coated tablets in DT 

7000 cm-1 zoomed. 

Cluster analysis of these spectra was also performed, and PC plots are shown in Figure 

t was not possible to 

classify all the MCC and caffeine spectra separately with any number of PCs, because 

there are spectra with indistinguishable features (hence coat information only). In DT, 

l the spectra from each batch (MCC and caffeine) were clearly separable with only one 



Figure 41: Cluster analysis of coated tablets in DT (above) and DR (below) modes, 

showing scores vs. PCs plots

In Figure 42, the cluster analysis results are very striking when “scores versus scores” 

plot is viewed. In DT, all spectra are grouped separately with o

spectra are only well separated in the uncoated and thin coated batches, and move 

closer together until inseparable at the 4

that the DR information depth and radiation penetration sho

maximum coat thickness reached (0.37 mm).
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: Cluster analysis of coated tablets in DT (above) and DR (below) modes, 

showing scores vs. PCs plots. Calibration and validation spectra are identified by pluses 

and squares, respectively. 

, the cluster analysis results are very striking when “scores versus scores” 

plot is viewed. In DT, all spectra are grouped separately with one PC, while in DR, the 

spectra are only well separated in the uncoated and thin coated batches, and move 

closer together until inseparable at the 4th and 5th coating levels. This clearly suggests 

that the DR information depth and radiation penetration should be less than the 

maximum coat thickness reached (0.37 mm). 

 
134 Tablet sampling span in diffuse reflection 

 

: Cluster analysis of coated tablets in DT (above) and DR (below) modes, 

spectra are identified by pluses 

, the cluster analysis results are very striking when “scores versus scores” 

ne PC, while in DR, the 

spectra are only well separated in the uncoated and thin coated batches, and move 

coating levels. This clearly suggests 

uld be less than the 



Figure 42: Cluster analysis of coated tablets in DT (above) and DR (below) modes, 

showing scores vs. scores plots

pluses and squares, respectively.

From the DR spectra analysed above, different spectral regions can from both MCC and 

caffeine batches can be plotted together against coat thickness (

showed how the spectral differences decreased gradually between the two batches. 

These differences can be expressed in terms of percentage from the maximum spectral 

difference in the uncoated tablets (100% difference = 100% information between MCC 

and caffeine DR spectra). This is shown in 

drop in spectra differentiation (= DR spectral information) with coat thickness and a 

very high correlation coefficient (r
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: Cluster analysis of coated tablets in DT (above) and DR (below) modes, 

showing scores vs. scores plots. Calibration and validation spectra are identified 

pluses and squares, respectively. 

From the DR spectra analysed above, different spectral regions can from both MCC and 

caffeine batches can be plotted together against coat thickness (Figure 

wed how the spectral differences decreased gradually between the two batches. 

These differences can be expressed in terms of percentage from the maximum spectral 

difference in the uncoated tablets (100% difference = 100% information between MCC 

e DR spectra). This is shown in Figure 44 which also show an exponential 

drop in spectra differentiation (= DR spectral information) with coat thickness and a 

very high correlation coefficient (r2>0.99). 
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: Cluster analysis of coated tablets in DT (above) and DR (below) modes, 

Calibration and validation spectra are identified by 

From the DR spectra analysed above, different spectral regions can from both MCC and 

Figure 43). These plots 

wed how the spectral differences decreased gradually between the two batches. 

These differences can be expressed in terms of percentage from the maximum spectral 

difference in the uncoated tablets (100% difference = 100% information between MCC 

which also show an exponential 

drop in spectra differentiation (= DR spectral information) with coat thickness and a 



Figure 43: DR values of both MCC and caffeine tablets against coat thickness,  at 6220 

cm-1 and db1 pretreatment (above); and 4420 cm

The drop reached 50% at 0.05 

Figure 45). The 90% signal drop (10% information content) can be seen between 0.2 

0.25 mm without extrapolation, while the 99% drop is a bit further at 0.3 

(extrapolated and higher SD). 
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: DR values of both MCC and caffeine tablets against coat thickness,  at 6220 

and db1 pretreatment (above); and 4420 cm-1 and mf pretreatment (below)

The drop reached 50% at 0.05 – 0.07 mm depending on the wavenumber (

). The 90% signal drop (10% information content) can be seen between 0.2 

0.25 mm without extrapolation, while the 99% drop is a bit further at 0.3 
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: DR values of both MCC and caffeine tablets against coat thickness,  at 6220 

and mf pretreatment (below) 

0.07 mm depending on the wavenumber (Figure 44 and 

). The 90% signal drop (10% information content) can be seen between 0.2 – 

0.25 mm without extrapolation, while the 99% drop is a bit further at 0.3 – 0.4 mm 
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Figure 44: Plot of DR spectral difference between MCC and caffeine tablets against coat 

thickness. The difference was taken as percentage of the maximum difference at coat 

level 0 (uncoated tablets). Two different spectral positions and pretreatments are 

As shown, this signal drop depth decreased with decreasing wavenumbers (increasing 

wavelength). Figure 46 show a 3.5 mm

percentage from the experimental exponential fit represented converted to red colour 

values, fading gradually with increasing penetration depth. This illustrate

small the DR sampling span is for typical pharmaceutical tablets

not the entire lower surface area is scanned, but only a central area (no determined yet) 

that depends on the instrument setup and the sampling slit.
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: Plot of DR spectral difference between MCC and caffeine tablets against coat 

thickness. The difference was taken as percentage of the maximum difference at coat 

lets). Two different spectral positions and pretreatments are 

shown. 

As shown, this signal drop depth decreased with decreasing wavenumbers (increasing 

show a 3.5 mm-thick tablet model with the DR information 

percentage from the experimental exponential fit represented converted to red colour 

values, fading gradually with increasing penetration depth. This illustrate

small the DR sampling span is for typical pharmaceutical tablets, taking into account that 

not the entire lower surface area is scanned, but only a central area (no determined yet) 

that depends on the instrument setup and the sampling slit. 
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: Plot of DR spectral difference between MCC and caffeine tablets against coat 

thickness. The difference was taken as percentage of the maximum difference at coat 

lets). Two different spectral positions and pretreatments are 

As shown, this signal drop depth decreased with decreasing wavenumbers (increasing 

he DR information 

percentage from the experimental exponential fit represented converted to red colour 

values, fading gradually with increasing penetration depth. This illustrated clearly how 

, taking into account that 

not the entire lower surface area is scanned, but only a central area (no determined yet) 
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Figure 45: DR Signal drop at various NIR wavelengths

and mf pretreatment. Only data with R

9.1.6 Conclusion 

The evidence collected to determine DR information depth was three

tablet thickness showed no constant relationship to spectra and indicated

depth was less than 0.5 mm. The double

through cluster analysis and finally, incremental coatings of tablets with different cores 

permitted the estimation of pattern and extent of the DR information drop

sample depth. 

The radiation in DR mode was found to be decaying exponentially after penetrating the 

tablet’s surface; hence no single depth can be defined as a margin for the sampled mass. 

Instead, the percentage of spectral information representin

be expressed. 50% of the spectral information represented 0.05 
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representation of all the tablet contents, hence more potential for errors. 
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Tablet sampling span in diffuse reflection

: DR Signal drop at various NIR wavelengths based on the coating experiment 

and mf pretreatment. Only data with R2>0.99 are shown

The evidence collected to determine DR information depth was three

tablet thickness showed no constant relationship to spectra and indicated

depth was less than 0.5 mm. The double-layered tablets confirmed this assumption 

through cluster analysis and finally, incremental coatings of tablets with different cores 

permitted the estimation of pattern and extent of the DR information drop

The radiation in DR mode was found to be decaying exponentially after penetrating the 

tablet’s surface; hence no single depth can be defined as a margin for the sampled mass. 

Instead, the percentage of spectral information representing a certain tablet depth can 

be expressed. 50% of the spectral information represented 0.05 – 0.07 mm, and 90% of 

the spectrum represented no more than 0.2 - 0.25 mm of the tablet. This means that NIR 

in DR mode is really a surface-effect phenomenon, and content predictions using this 

mode are only possible when the tablet surface contain accurate proportional 

representation of all the tablet contents, hence more potential for errors. 

The other aspect is its applicability to coated tablets. Most film-coate

manufactured with coat thickness of 10 – 100 µm; hence DR mode is in effect capable of 

probing the core and predicting content. In thicker coats, however, DR mode core 

quantification would not be that successful and DT mode in such cases is m

0.2-1.0 mm and sugar coating – few millimetres). On the other 
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based on the coating experiment 

>0.99 are shown 

The evidence collected to determine DR information depth was three-fold. Incremental 

tablet thickness showed no constant relationship to spectra and indicated that this 

layered tablets confirmed this assumption 

through cluster analysis and finally, incremental coatings of tablets with different cores 

permitted the estimation of pattern and extent of the DR information drop across 

The radiation in DR mode was found to be decaying exponentially after penetrating the 

tablet’s surface; hence no single depth can be defined as a margin for the sampled mass. 

g a certain tablet depth can 

0.07 mm, and 90% of 

0.25 mm of the tablet. This means that NIR 

ontent predictions using this 

mode are only possible when the tablet surface contain accurate proportional 

representation of all the tablet contents, hence more potential for errors.  

coated tablets are 

100 µm; hence DR mode is in effect capable of 

probing the core and predicting content. In thicker coats, however, DR mode core 

quantification would not be that successful and DT mode in such cases is more suitable 

few millimetres). On the other 

50% signal drop

90% signal drop

99% signal drop



hand, DR mode would be the ideal tool to study surface qualities, most importantly film

coat thickness, homogeneity and quality.

 

 

Figure 46: DR information depth for a typical pharmaceutical tablet, based on the 

exponential fitting in Figure 

estimate was based on area under curve 

Tablet sampling span in diffuse reflection

hand, DR mode would be the ideal tool to study surface qualities, most importantly film

coat thickness, homogeneity and quality. 

: DR information depth for a typical pharmaceutical tablet, based on the 

Figure 44 (lower plot). The 90% of information from 0.25 mm 

estimate was based on area under curve calculation.
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hand, DR mode would be the ideal tool to study surface qualities, most importantly film-

  

: DR information depth for a typical pharmaceutical tablet, based on the 

(lower plot). The 90% of information from 0.25 mm 

calculation. 
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10. Research conclusions and prospective 

Throughout this research, different aspects of NIR spectroscopy for pharmaceutical 

tablets were assessed. These aspects are of prime practical importance to using the 

method in various applications, especially content determination. 

DT measurement mode was found able to perform well with quantification applications 

tablets, even for low-dose tablets. Such applications have the potential of completely 

replacing wet-chemistry assays and offer tremendous time, cost and even 

environmental savings. 

A crucial issue in such applications was seen to be method development and validation, 

which in some cases not a trivial matter, especially when the method was to be tested 

over extended production time-lines and potentially varying process conditions in 

response to varying starting materials. 

This leads to the second issue in method development, which is robustness, and a wait-

and-see approach to collect and include predictions outliers over time in hope of a 

robust model would not constitute a system that fits any PAT definition. Instead, all the 

parameters that have the potential of variability which would critically affect the 

method should be identified, studied and included in the model from the outset. 

Tableting press variability was seen to present potential problems for NIR methods. The 

radiation in DT mode traverses the entire thickness of the tablet, and hence is more 

liable for any variation that affects the internal structure, geometry, percentage and 

distribution of the voids within the tablet, hence porosity and tablet thickness variability 

was found to contribute significantly to prediction error or most importantly prediction 

failure and outliers. Pretreatments can minimise such effects but never completely 

remove them, and at a higher variability scale can introduce more errors. The best 

solution is a model with all possible variability sources included at their full possible 

scale (or even bigger scale). 

Another issue in DT mode is that the radiation interaction with compacted particulate 

solids remains little understood to date, and attempts to describe the spectral 

relationship to sample properties mathematically is as important as the development of 

high precision instruments. The experiments conducted studied the effects of tablets 
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12.2.2 NIRFlex N-500 

This is an FT NIR spectrometer from Büchi Labortechnik AG (Flawil, Switzerland). It is a 

quartz polarization interferometer consisting of two crystal wedges which splits 45° 

polarized light into two vectors, which traverse the crystal at different phase velocities. 

By moving one wedge relative to the other, the vectors undergo a systematically varied 

phase shift relative to each other. This changes the polarization of the combined beam. 

For monochromatic light, this results in a sinusoidal variation of the radiation after the 

second polarizer, while for polychromatic light an interferogram is formed. 

The spectrometer also has various gray filters and a wavelength standard, enabling 

wavelength accuracy, signal-to-noise ratio, and linearity to be checked in a series of tests 

(System Suitability Test - SST) to ensure validation of the spectrometer before any 

measurement session, including qualification and performance verification 

requirements of pharmacopoeial chapters “1119” (USP) and 2.2.40 (EP) on Near-

Infrared. The SST produces automatic validation reports and complies with 21 CFR Part 

11. 

 

Figure 58: NIRFlex N-500 specifications 

12.2.2.1 NIRFlex Solids Transmittance 

NIRFlex is a modular spectrometer enabling the use of different modules depending on 

the application. The “Solids Transmittance” module is optimized to perform 

transmission measurements of solid dosage forms, like tablets or capsules, using 

custom-made sample plates which are also designed and coated to prevent stray light.  
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Figure 59: Specifications of NIRFlex Solids Transmittance module 

12.2.3 Other apparatus 

12.2.3.1 UV spectrophotometer 

• Beckman - Du ® Series 500, instrument type UV-DU 530, series N° U 300 2050, 

(Beckman, Germany) 

12.2.3.2 Turbula mixer 

• Turbula, type T2A (Wily A Bachofen AG, Switzerland) 

12.2.3.3 Pycnometer 

• AccuPyc1330 (Micromeritics, Norcross, GA) 

• helium gas at room temperature 

12.2.3.4 Digital callipers 

12.2.3.5 Electron microscope 

• Philips XL30 ESEM (Philips, Eindhoven, Netherlands) 

12.2.3.6 Disintegration tester 

• DT2, Sotax, Switzerland 

12.2.3.7 Infrared balance 

• Mettler Toledo Type LP 16M (Mettler instruments, Switzerland) 

12.2.3.8 Scales 

• Delta Range®, instrument type AX204, (Mettler Toledo, Switzerland) 
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12.3 Methods 

12.3.1 Powder characterisation 

12.3.1.1 Residual moisture content 

USP30-NF25, 731: Loss on drying 

The residual moisture of a powder mixture is calculated from the moisture content of its 

components, equation (0.28), where wtot is the water content of the compound, ai is the 

fraction of the component in % (m/m) and wi is the residual moisture of the mixture in 

% (m/m). 

 1 1 2 2

1

...
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i i n n
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a w a w a w a w
w

=

⋅ ⋅ + ⋅ + + ⋅= =∑  (0.28) 

Moisture content was determined using the loss on drying method with an infrared 

balance Mettler Toledo Type LP 16M (Mettler instruments, Switzerland) and standard 

USP methods. Samples of 1.0-1.5 g were heated for 15 min at 105°C and the mass loss 

was reported in percent to sampled mass. 

12.3.1.2 Bulk and tapped density 

USP30-NF25: Bulk and tapped density (method I) 

A comparison of the bulk and tapped densities can be often used as an index of the 

ability of the powder to flow. The bulk density often is the bulk density of the powder “as 

poured” or as passively filled into a measuring vessel. The tapped density is a limiting 

density attained after tapping down, usually in a device that lifts and drops a volumetric 

measuring cylinder containing the powder a fixed distance. 

1. A quantity of material sufficient to complete the test was passed through a 1.00-

mm (No. 18) screen to break up agglomerates . 

2. Approximately 100 g (M) of powder was introduced in a dry 250-mL cylinder, 

without compacting. 

3. The powder was levelled carefully without compacting and read the apparent 

volume, V0 to the nearest graduated unit. 

4. Bulk density, in g per cm3, was calculated by the formula: (M) / (V0). 

5. The cylinder was mechanically tapped (STAV 2003, J. Engelsmann AG) 500 times 

initially and the tapped volume Va was measured. 
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6. Tapping was repeated an additional 750 times the tapped volume, Vb, was 

measured. 

7. When the difference between the two volumes was < 2%, Vb was taken as the final 

tapped volume, Vf , otherwise tapping was repeated in increments of 1250 taps 

until the difference between succeeding measurements was < 2%. 

8. The tapped density, in g per mL, was calculated by the formula: (M ) / (Vf). 

12.3.1.3 Compressibility and Hausner factor 

The Compressibility Index, equation (0.29), and Hausner factor (or ratio), equation 

(0.30), are measures of the degree to which a powder can be compressed. As such, they 

are measures of the relative importance of inter-particulate interactions. 

In a free-flowing powder, such interactions are generally less significant, and the bulk 

and tapped densities will be closer in value. 

For poorer flowing materials, there are frequently greater inter-particle interactions, 

and a greater difference between the bulk and tapped densities will be observed. These 

differences are reflected in the Compressibility Index and the Hausner factor. 

 
0

0

Compressibility index 100 fV V

V

−
= ⋅  (0.29) 

 
0

Hausner Factor= fV

V
 (0.30) 

12.3.1.4 Particle Size Measurement  

A laser scattering particle sizer (MasterSizer X Long Bed, Malvern Instruments, UK) was 

used to determine the particle size distribution, employing an MSX64 – Manual Dry 

Powder Feeder (Malvern Instruments, UK) to apply a dry analysis method. Data analysis 

of the results and the apparatus system were operated using MasterSizer X version 2.19 

software (Malvern Instruments, UK). 

12.3.1.5 True density 

The true density powders and powder mixtures were measured with a helium 

pycnometer (AccuPyc 1330, Micromeritics, Norcross, GA) at room temperature. Air was 

extracted to generate a vacuum and then Helium was pumped-in 5 times until 

equilibrium was reached.  
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12.3.1.6 Scanning Electron Microscopy (SEM) 

Images were taken using a Philips XL30 ESEM (Philips, Eindhoven, Netherlands) 

electron microscope. Powder samples were mounted on aluminium stubs and sputtered 

with Platinum coating of 20nm. 

12.3.2 Low-dose folic acid tablets 

12.3.2.1 Formulation 

• A directly compactable folic acid tablet formulation was devised using MCC 102 

as filler, Ac Di Sol as disintegrant and magnesium stearate as lubricant (Gohel 

2005). 

• Tablet weight was 200 mg. 

• The nominal dose of folic acid was 5 mg per tablet (2.5%) 

• NIR calibration batches had folic acid content varying from 0 to 5%. Other 

components were kept constant and the filler was adjusted to accommodate the 

change. 

• Of each concentration step (batch), 20 tablets where compacted to make a total of 

220 calibration and validation samples. 

• The formulations of the 11 folic acid batches in the API range of 0 to 5% are 

summarized in Table 9. 

Table 9: Formulation of folic acid tablets (calibration and validation batches) 

Folic acid % m/m MCC % m/m Ac-Di-Sol % m/m Mg-stearate % m/m

0.0 93.75 6.0 0.25

0.5 93.25 6.0 0.25

1.0 92.75 6.0 0.25

1.5 92.25 6.0 0.25

2.0 91.75 6.0 0.25

2.5 91.25 6.0 0.25

3.0 90.75 6.0 0.25

3.5 90.25 6.0 0.25

4.0 89.75 6.0 0.25

4.5 89.25 6.0 0.25

5.0 88.75 6.0 0.25

 

12.3.2.2 Powder preparation and mixing 

• Foe each batch, the powdered components were screened through a 90 µm mesh 

before weighing on Mettler Toledo scales - Delta Range ®, instrument type 

AX204, series N° 1121140335, Switzerland).  
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• Powder mixtures ware transferred to 100 mL amber glass bottles 

• Mixing was made using a Turbula blender (type T2A, Wily A Bachofen AG, 

Switzerland).  

• Folic acid was pre-mixed with MCC for 5 minutes. 

• The remaining excipients, except of magnesium stearate, were added and lot 

mixed for 5 minutes.  

• Magnesium stearate was finally added and the mixture was blended for another 2 

minutes. 

12.3.2.3 Powder compaction 

The tableting process was controlled using the Presster™ (MCC, NJ, USA) with software 

version 3.8.4. 

• Korsch rotary press PH336 was selected for simulation. 

• The default press speed (10800 TPH) and dwell time (118.3 msec) were used.  

• A flat face punch with a diameter of 10.0 mm was used for compaction. 

• Gap vs. thickness and gap vs. hardness plots for 200 mg tablet mixtures was 

performed (see Appendix I.1-2, Figure 60 and Figure 61) 

o The gap size was decreased gradually from 2.7 mm until satisfactory 

tablet crushing strength was reached. 

o Tablet thickness and crushing strength was measured with each 

adjustment step. 

• A crushing strength around 104 N, a thickness around 2.41 mm and an upper 

compaction around 3.9 kN were achieved with a gap size of 1.8 mm. 



Figure 60: Presster plot: 

Figure 
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: Presster plot: gap size vs. upper punch force for 200 mg tablets

Figure 61: Hardness vs. upper punch force 
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gap size vs. upper punch force for 200 mg tablets 
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12.3.2.4 Tablet production 

• Powder mixture mass for each tablet (around 208 mg to accommodate for loss 

during compaction) was weighted manually for each tablet by using an analytical 

balance. 

• The powder mixture was filled carefully inside the press well. 

• “One tablet” was ordered from Presster software 

• 24 hours after the compaction of the tablet the thickness was measured by a 

digital calliper and the tablet mass was measured by an analytical balance. (see 

Appendix IV.3) 

• The tablets were put in tablet holders and were provided with batch and tablet 

number and stored protected from light inside a box.  

• Two batches of the 2.5% tablets were manufactured. One set was referenced by 

the UV analytical method before light exposure and the other set of ten 2.5% 

tablets after light exposure. 

• To exclude the effect of light exposure on predictions, ten 2.5% tablets were used 

as light exposure control and were exposed to light whenever any batch was 

handled to record the NIR spectra for the development of the calibration model. 

12.3.3 Tablet characterisation 

12.3.3.1 Resistance to crushing (hardness’) 

Ph. Eur. 5, method 2.9.8: Resistance to Crushing of Tablets 

Crushing strength is a measure of the load where the tablet breaks under diametrical 

compaction between two flat platens. 

Tablets crushing strength was measured after 24 hours using an automated tablet 

hardness tester Dr. Schleuniger® (Tablet Tester 8M, Pharmatron, Switzerland). 

12.3.3.2 Tensile strength 

Tensile strength is a fundamental measurement of the resistance to fracture. Crushing 

strength can be converted into tensile strength (σ  in [N/cm2]) using equation (0.31). 

 
2 cS

D T
σ

π
⋅=

⋅ ⋅
 (0.31) 

where 

Sc =  crushing strength in N 

D = tablet diameter in cm 

T =  tablet thickness in cm 
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However, this equation is only applicable to round flat-faced tablets when they fail in 

tension by splitting cleanly into halves under diametric compaction. 

12.3.3.3 Porosity 

The porosity of the tablets was calculated from equation (0.32). 

 
1

1 100
M

V
ε

ρ
 = − ⋅ × 
 

 (0.32) 

where 

ε  = porosity in % (v/v) 

M = tablet mass in g 

V = tablet volume in cm3 

ρ = true density of the powder mixture in g cm-3 

 

12.3.3.4 Disintegration time 

USP30 NF25, 701: Disintegration 

Disintegration time of three tablets was measured using a disintegration tester (DT2, 

Sotax, Switzerland) with a disk. The disintegration medium consisted of distilled water 

maintained at 37°C ±  0.5.  

12.3.3.5 Scanning Electron Microscopy (SEM) 

Refer to “Scanning Electron Microscopy (SEM)” page 165. 
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12.3.4 NIR quantitative model development 

12.3.4.1 NIR spectral collection 

• Tablets from all batches were scanned on NIRFlex N-500 spectrometer using the 

solids transmittance mode and adjustable plate using default instrument settings. 

• The spectra were labelled so as to identify each spectrum to its tablet. 

• Two quantitative properties were created (folic acid nominal and UV) and added 

to the spectral set. 

• Nominal content of each tablet was referenced for each spectrum in the nominal 

property field. 

12.3.4.2 UV assay standardisation  

• 0.1 M NaOH (molar mass = 40 g/mol) was used as a solvent for folic acid in the 

UV assay. 

• 4 grams of NaOH were dissolved in 1 L distilled water to produce NaOH 0.1 M 

solution. 

• For added accuracy, the UV calibration curve was constructed from tablet 

mixtures with standard folic acid concentration rather than from folic acid alone. 

• 10 mg of every 200 mg powder mixture with folic acid in an API range of 0 to 5% 

was dissolved in 10 ml NaOH 0.1M of a test tube.  

• A 1ml syringe with a filter attachment was used to take some of the solution out 

of the test tube after dissolution of folic acid into a 1 cm quartz glass cuvette of 1 

cm. 

• UV absorbance at 235 nm was measured and NaOH 0.1M stock solution as blank. 

• The powder mixtures of all 11 batches were used to create a linear calibration 

line with the UV spectrophotometer with a zero intercept. (see Appendix IV.4-5) 

• To get an estimation of the assay SD, 10 absorption measurements of the 1% 

powder mixture had been taken to calculate the average and the standard 

deviation of the content. 

12.3.4.3 UV Content determination (spectral referencing) 

• Each tablet was weighed, crushed and homogenised using a pestle and mortar. 

• 10 mg was sampled and dissolved, similar to the above method and UV 

absorbance taken and content per tablet calculated in mg using: 

100
10

tablet
tablet calib abs

mass
API Slope UV

mg
= × × ×  

• shows the referenced data for all tablets 

• API reference value (in mg per tablet) for each tablet was added in the “folic acid 

UV” property field of its respective NIR spectrum in the database. 
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12.3.4.4 NIR Calibration model development 

• A new project was created in NIRCal and tablet spectra imported from the 

database 

• One third of the spectra set to validation (except 0% and 5% batches), the rest set 

to calibration spectra 

• One property was selected for the model (first nominal folic acid and then UV 

reference) 

• Both manual (Figure 62) and automatic (Q value wizard) were tried to search for 

best model optimisation. 

• Models were evaluated using  

o Q-value: as close to 1 as possible 

o SEP: as low as possible 

o consistency: as close to 100 as possible 

o bias: as low as possible 

o regression coefficient and slope: as close to 0.999 as possible 
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Figure 62: Suggested calibration model flow-chart (NIRCal 5.2 user manual) 

12.3.4.5 External prediction 

• The selected optimal calibration models were used to predict the content of 2.5% 

folic acid tablets which were not used for developing the calibration model. 
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• The spectra of the 2.5% folic acid tablets were recorded and the API content of 

these tablets was predicted. 

• To evaluate the calibration model the predicted values were compared with the 

values obtained in the UV reference method. 

• An independent t-test for the significance of the difference between the means of 

two samples, was applied to assess a possible significant difference between the 

NIR and the UV reference method: 

o H0: there is no significant difference between the UV assay results and NIR 

predictions of folic acid content in tablets 

against 

o H1: there is a significant difference 

o Rejecting H0 indicates that the differences between UV and NIR are 

significant and not due to chance only. 

o H0 can be rejected with 95% confidence if P<0.05 
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12.3.5 Press effect on NIRS predictions 

12.3.5.1 Porosity and thickness outliers (i) 

• The same folic acid tablet formulation was used (Table 9, page 165) 

• For each batch (0%-5% API), the same method for making the fixed porosity 

tablets was repeated, except the following: 

o Presster gap size set for 1.0 mm 

o 2 tablets made 

o Gap increased by 0.1 mm 

o 2 more tablets and gap increments until gap size of 1.9 mm was reached 

and 20 tablets were made 

• Tablets were weighed, stored, thickness measured after 24h, and UV referenced 

(Appendix V.1). 

12.3.5.2 Porosity and thickness outlier external prediction (ii) 

• An 2.5% API external prediction batch (20 tablets) was also manufactured with 

the same gap range as above (Appendix V.2) 

12.3.5.3 Tableting speed (possible) outliers (iii) 

• 15 2.5% API folic acid tablets (Table 9, page 165) were manufactured in Presster: 

o 1.8 mm gap size 

o Tableting speed range from  15,000 – 135,000 TPH (85.2-9.5 ms dwell 

time) 

• Tablets were weighed, stored, thickness measured after 24h, and UV referenced 

12.3.5.4 Testing model robustness 

• 5 different NIR calibration models (F1-F5) developed using previous folic acid 

calibration spectra. 

• Batches from items (ii) and (iii) above where predicted using these models and 

predictions compared to their UV assay content. 

• A further model (FV) constructed by adding spectra of variable compaction force 

(item i above) and prediction batch (item ii above) was predicted and evaluated. 

12.3.5.5 Effect of tablet porosity and thickness change on spectra 

• 2 sets of placebo tablets (formulation Table 9, page 165)  manufactured on 

Presster: 

o Varying porosity and constant thickness, mass-adjusted tablets 

(Table 3, P1-3) 
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o Varying thickness and constant porosity, mass adjusted tablets 

(Table 3, T1-6) 

• Tablets were scanned on NIRFlex N-500 solids transmittance and 

maximum at 8880  cm-1  plotted against thickness and porosity 
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12.4 Results 

12.4.1 Characterisation 

12.4.1.1 Loss on drying 

Table 10: water content in excipients 

excipient water content in % [m/m]

Ac-Di-Sol® 7.3
MCC 4.2

Mg-stearate 3.9

 

• The theoretical residual moisture was 4.39% 

• Powder mixture loss on drying for all mixtures was 4.45 (±0.08) % 

12.4.1.2 Bulk and tapped density, Hausner factor 

• Bulk and tapped volumes are listed in Appendix I.6 

• Hausner Factor of 2.5 powder mix = 1.1951 

12.4.1.3 Particle Size Measurement  

• 90% of the MCC 102 particles were ≤ 111.12 µm 

• 90% of the Ac-Di-Sol® particles were ≤ 78.0 µm 

• 90% of the folic acid particles were ≤ 62.5 µm 

• 90% of the Magnesium Stearate particles were ≤ 25.4 µm 

12.4.1.4 True density 

• Average true density was 1.544 (±0.0046) g cm-3 for 5 runs 

Table 11: True density of 2.5% powder mixture 

run density [g cm-3]

1 1.540
2 1.551
3 1.546
4 1.541
5 1.543

 

 

12.4.1.5 Scanning Electron Microscopy (SEM) 

• The SEM images of excipients are shown in the methods section (pages 152-158) 
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• The SEM images of the 2.5% powder mixture is shown in SEM of 2.5% powder 

mixture (Figure 63) 

• The SEM images of a 2.5% API tablet surface is shown Figure 64 

  

 

  

Figure 63: SEM of 2.5% powder 

mixture 
Figure 64: SEM of 2.5% tablet 

surface 



12.4.1.6 Tablets physical parameters

Description 

• The tablets had a flat smooth surface, sharp edges and colour varying from white 

to faint yellow to yellow, increasing with the API con

• No signs of capping or lamination were observed on any of the tablets.

Figure 65: 1 tablet of each of the 11 batches of folic acid tablets, from 0% (far left) to 5% 

Thickness and crushing strength

• The diameter, the thickness and the crushing strength was measured for 2.5% 

(m/m) folic acid tablets. 

Table 12: Tablet thickness and crushing strength for 2.5% batch

tablet diameter [mm]

1
2
3
4
5
6

Average (SD)

 

Tensile strength: 

•  
2 cS
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Disintegration time 

• The tablets disintegrated within 34.5 (

Tablets physical parameters 

The tablets had a flat smooth surface, sharp edges and colour varying from white 

to faint yellow to yellow, increasing with the API content (Figure 

No signs of capping or lamination were observed on any of the tablets.

: 1 tablet of each of the 11 batches of folic acid tablets, from 0% (far left) to 5% 

(far right) API 

kness and crushing strength 

The diameter, the thickness and the crushing strength was measured for 2.5% 

(m/m) folic acid tablets.  

: Tablet thickness and crushing strength for 2.5% batch 

diameter [mm] thickness [cm]

10.00 2.39
10.00 2.38
10.00 2.39
10.00 2.40
10.00 2.39
10.00 2.38

10.00 (0) 2.39 (0.007)

2

2 95.33
253.93 253.93 N cm
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N N
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g

The tablets disintegrated within 34.5 (±2.3) seconds 
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The tablets had a flat smooth surface, sharp edges and colour varying from white 

Figure 65). 

No signs of capping or lamination were observed on any of the tablets. 

 

: 1 tablet of each of the 11 batches of folic acid tablets, from 0% (far left) to 5% 

The diameter, the thickness and the crushing strength was measured for 2.5% 

crushing strength [N]

95
94
96
98
95
94

95.33 (1.52)

1253.93 253.93 N cm−
 

%73.30100 =
 



12.4.2 First calibration models

12.4.2.1 SD of UV method 

• The average of the content was 2.2089 mg and the standard deviation of the 

content was 0.1133 mg. The recorded absorption values and the calcu

content of folic acid are shown below (

Table 13: UV standard deviation for a 10 mg 1% API powder mixture

12.4.2.2 Calibration models

• Calibration project is shown in 

property. Spectra showed no v

except scaling. Figure 

why there is no obvious peak shifts with the API change.

Figure 66: NIR spectra of a 100% filler (MCC) tablet (red), and 100% API (folic acid) 

• Leverage plot showed 2 potential outliers (

First calibration models 

The average of the content was 2.2089 mg and the standard deviation of the 

content was 0.1133 mg. The recorded absorption values and the calcu

ic acid are shown below (Table 13). 

: UV standard deviation for a 10 mg 1% API powder mixture 

UV A UV content [mg]

0.243 2.3729
0.211 2.0604
0.229 2.2362
0.213 2.0800
0.230 2.2460
0.223 2.1776
0.223 2.1776
0.237 2.3143
0.240 2.3436
0.213 2.0800

mean 2.2089

SD 0.1133

Calibration models 

Calibration project is shown in Figure 67, using nominal content as calibration 

property. Spectra showed no visible peak changes with folic acid concentration, 

Figure 66 show the spectra of MCC and folic acid and gives an idea 

why there is no obvious peak shifts with the API change. 

IR spectra of a 100% filler (MCC) tablet (red), and 100% API (folic acid) 

tablet (blue) 

Leverage plot showed 2 potential outliers (Figure 67). 

 
179 Appendix I 

The average of the content was 2.2089 mg and the standard deviation of the 

content was 0.1133 mg. The recorded absorption values and the calculated 

, using nominal content as calibration 

isible peak changes with folic acid concentration, 

show the spectra of MCC and folic acid and gives an idea 

 

IR spectra of a 100% filler (MCC) tablet (red), and 100% API (folic acid) 
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• Applying normalisation, first derivative and 1 PC selection improved the model 

(consistency) and leverage showed 1 outlier (Figure 68). 

• Figure 69 show the model (A1) with UV reference data used as calibration 

property, with still 2 prediction outliers. 

• Two more calibration models developed, A2 (Figure 70 and Figure 71) and A3 

(Figure 72 and Figure 73) employing different pretreatments, wavelength 

selection and wavelength regions. 

• First derivative reveal 2 small peak changes at 8500 and 8800 cm-1 (Figure 70). 

• NIRCal data (Table 16) show that A1 is the best model (lowest SEP, highest r2, 

best consistency). The software's Q-value agreed with this evaluation and was a 

good total evaluation tool. (Full calibration protocols in appendices I.7,8,9) 

 

 

Figure 67: A new NIRCal project with folic acid spectra (before optimization) 
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Figure 68: Applying ncl and db1 pretreatments and fact selection (1 PC) 

 



Figure 69: Calibration model (A1) applying db1 and nle pretreatments and 5 PCs

Figure 70: Calibration model (A2) applying ncl, db1 and SNV pret

Figure 71: Calibration model (A2) wavelength regression
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: Calibration model (A1) applying db1 and nle pretreatments and 5 PCs 

 

reatments and 4 PCs 

 

: Calibration model (A2) wavelength regression 
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Figure 72: Calibration model (A3) applying nsd pretreatment, 8 PCs and tight 

wavelength selection 

 

Figure 73: Calibration model (A3) wavelength regression 

 

 

• NIR SEP (0.2731 mg) should be evaluated in terms of the UV own SE (SD=0.1133 

mg), 2.4 times larger. 

• SEP should also be evaluated in terms of the target content evaluated (5 mg folic 

acid per 2.5% tablet) and relative NIR SEP was 5.462%. 

• External prediction by the three models is shown in Figure 74.. Tablets 1,2,8,15 

and 19 show relatively big differences from UV method. 

• A two-tailed student t-test show that all three models are statistically different 

from the UV method, with A1 being the best model (Table 17). 
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• Light effect (Table 18) was small and the average drop in folic acid content was 

0.0733 mg over the whole process (tablet analytics, referencing and NIR 

scanning). This should be much less if the referencing step was omitted (after 

complete NIR method development). 

• If the referencing method was HPLC, this light effect is expected to be much 

higher due to longer analysis time and NIR prediction would have had more 

benefit. 

 

Table 14: External prediction set tablets (mass and UV content) 

tablet 
number

mass 
[mg]

UV A 1 UV A 2 UV A 3 UV A 4 UV A 5
UV A 

average

UV 
content 

[mg]

1 205.50 0.697 0.697 0.698 0.698 0.698 0.698 6.045
2 200.40 0.749 0.751 0.751 0.750 0.750 0.750 6.340
3 198.40 0.577 0.577 0.577 0.577 0.578 0.577 4.829
4 204.10 0.543 0.543 0.543 0.543 0.544 0.543 4.675
5 200.30 0.609 0.609 0.609 0.609 0.609 0.609 5.144
6 202.40 0.651 0.651 0.651 0.650 0.650 0.651 5.553
7 202.00 0.580 0.581 0.581 0.582 0.582 0.581 4.951
8 205.40 0.720 0.720 0.720 0.720 0.719 0.720 6.235
9 199.40 0.627 0.627 0.627 0.627 0.628 0.627 5.274

10 202.80 0.573 0.573 0.573 0.573 0.572 0.573 4.899
11 203.50 0.594 0.594 0.594 0.594 0.594 0.594 5.097
12 198.00 0.576 0.577 0.577 0.578 0.578 0.577 4.819
13 204.20 0.566 0.564 0.565 0.567 0.565 0.565 4.869
14 200.90 0.608 0.607 0.607 0.607 0.607 0.607 5.144
15 204.40 0.688 0.689 0.689 0.689 0.689 0.689 5.937
16 201.50 0.589 0.589 0.589 0.588 0.588 0.589 5.001
17 200.40 0.633 0.635 0.635 0.635 0.635 0.635 5.363
18 204.00 0.617 0.617 0.619 0.619 0.619 0.618 5.318
19 203.90 0.551 0.551 0.551 0.550 0.550 0.551 4.734
20 204.40 0.657 0.659 0.659 0.658 0.658 0.658 5.673

 



Table 15: UV content and NIR external prediction from 3 calibration models

tablet 
number

mass 
[mg]

UV 
[mg]

1 205.5 6.045

2 200.4 6.34

3 198.4 4.829

4 204.1 4.675

5 200.3 5.144

6 202.4 5.553

7 202.0 4.951

8 205.4 6.235

9 199.4 5.274

10 202.8 4.899

11 203.5 5.097

12 198.0 4.819

13 204.2 4.869

14 200.9 5.144

15 204.4 5.937

16 201.5 5.001

17 200.4 5.363

18 204.0 5.318

19 203.9 4.734

20 204.4 5.673

 

Figure 74: Folic acid content in external prediction set, UV assay vs. three NIR models. 

Bars indicate residuals of respective model, with A2 residuals (green) scaled down 20 
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: UV content and NIR external prediction from 3 calibration models

UV 
[mg]

NIR A1 
[mg]

NIR A2 
[mg]

NIR A3 
[mg]

Residuals

A1

6.045 4.953 4.562 4.678 0.000450

6.340 5.079 4.795 4.984 0.000492

4.829 5.000 4.773 5.091 0.000484

4.675 5.269 4.686 5.421 0.000548

5.144 5.009 4.626 5.241 0.000416

5.553 5.359 4.890 5.306 0.000538

4.951 5.236 4.794 5.450 0.000449

6.235 5.391 4.984 4.716 0.000444

5.274 4.589 4.367 4.700 0.000454

4.899 5.088 4.733 5.318 0.000433

5.097 5.013 4.694 4.748 0.000412

4.819 4.865 4.589 5.110 0.000442

4.869 5.153 4.718 4.999 0.000440

5.144 4.753 4.598 4.560 0.000433

5.937 4.885 4.561 4.676 0.000406

5.001 4.919 4.666 4.749 0.000439

5.363 4.880 4.529 4.428 0.000416

5.318 5.111 4.677 4.716 0.000488

4.734 5.079 4.732 4.506 0.000403

5.673 4.815 4.539 4.574 0.000501

: Folic acid content in external prediction set, UV assay vs. three NIR models. 

te residuals of respective model, with A2 residuals (green) scaled down 20 

times for clarity. 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tablet number

UV [mg]

NIR A1 [mg]

NIR A2 [mg]

NIR A3 [mg]
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: UV content and NIR external prediction from 3 calibration models 

Residuals 

A2 A3

0.019094 0.000569

0.018114 0.000624

0.017422 0.000666

0.020807 0.000776

0.016324 0.000592

0.019485 0.000986

0.018312 0.000498

0.017114 0.000754

0.017491 0.00057

0.016305 0.000516

0.016304 0.000601

0.017455 0.000625

0.017268 0.000449

0.016335 0.000634

0.016557 0.000631

0.016356 0.000463

0.016017 0.000406

0.019164 0.000615

0.016390 0.000446

0.018945 0.000616

 

: Folic acid content in external prediction set, UV assay vs. three NIR models. 

te residuals of respective model, with A2 residuals (green) scaled down 20 

UV [mg]

NIR A1 [mg]

NIR A2 [mg]

NIR A3 [mg]
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Table 16: Overview of the 3 NIR calibration models 

calibration model  A1 A2 A3

method PLS PLS PLS
pretreatments db1,nle ncl,db1, SNV nsd

wavelength selection [cm-1] 6000-10600 8500-10600
8876-9216, 

10488-10724
PCs 5 4 8

Q-value 0.8782 0.877 0.862
SEC  [mg] 0.2731 0.2958 0.3365
SEP  [mg] 0.2739 0.291 0.3385

consistency 99.72 101.67 99.4
V-set Bias [mg] 0.0727 0.0208 0.0277

V-set regression coefficient 0.9945 0.9936 0.9913

 

Table 17: Statistical evaluation of the 3 NIR models 

 UV NIR A1 NIR A2 NIR A3

Mean 5.289471 5.022145 4.675565 4.89848
Variance 0.263305 0.04077 0.019195 0.104224

Observations 20 20 20 20
Hypothesized Mean Difference 0 0 0

df 25 22 32
t Stat 2.16803 5.16544 2.884266

P(T<=t) one-tail 0.019939 1.77E-05 0.003482
t Critical one-tail 1.708141 1.717144 1.693889

P(T<=t) two-tail 0.039878 3.53E-05 0.006963
t Critical two-tail 2.059539 2.073873 2.036933

 

Table 18: Possible light effect on predictions during whole experiment 

Without light exposure With light exposure
tablet 

number
tablet mass 

[mg] 
thickness 

[mm]
UV content 

[mg]
tablet 

mass [mg] 
thickness 

[mm]
UV content 

[mg]

1 0.2005 2.41 5.0777 0.2003 2.39 4.8500
2 0.1995 2.37 4.9596 0.2004 2.39 5.0693
3 0.2008 2.39 5.0524 0.2008 2.40 4.7825
4 0.2009 2.40 5.0861 0.2005 2.40 5.0440
5 0.2004 2.40 5.1199 0.2009 2.41 4.8415
6 0.2006 2.39 5.0271 0.2008 2.39 5.1199
7 0.2004 2.38 4.9596 0.2008 2.39 5.0271
8 0.2009 2.39 5.0355 0.2008 2.39 5.0440
9 0.2002 2.38 4.8668 0.2004 2.38 4.7825

10 0.2009 2.39 4.9933 0.2009 2.39 4.8837

Average 
(SD)

0.2005 
(0.0004332)

2.39 
(0.01155)

5.0178 
(0.07487)

0.2007 
(0.0002319)

2.39 
(0.008233)

4.9445  
(0.1285)
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12.4.3 Tablet press effect 

• As the upper punch compaction force increased, the tablets became thinner and 

denser (less porous). They also became slightly darker in colour (Figure 76). 

• In terms of NIR, transmittance spectra showed upward scaling with increased 

compaction force. One factor is reduced scattering and more light reaching the 

detector. This can also be considered reduction in apparent absorption (Figure 

75). 

• Although pretreatments are considered as a tool to reduce baseline and scale 

effects on spectra, this was not the case for such a wide change in compaction 

differences, as shown in Figure 79. No single pretreatment was able to group the 

spectra because scaling was not only higher with higher frequency (in 

transmittance), but also absorption dependant. 

 

Figure 75: Raw spectra of placebo tablets with increasing compaction force. Gap size 

from 0.8 mm (biggest spectrum) to 1.7 (smallest spectrum) 

 

Figure 76: 2.5% folic acid tablet compacted with gap 0.8 mm (left) and 1.8 mm (right) 
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• Increasing tableting speed, in terms of dwell time (Table 19) had no observable 

effect on NIR spectra (Figure 77). 

• Prediction of this variable speed batch also showed no difference pattern from 

the UV-assayed content (Figure 78), indicating that tableting speed (for the 

current tablet formulation) had no effect on NIR predictions. This cannot be 

generalised however, and other diluents may show different behaviour. 

Table 19: Presster tableting to assess speed (dwell time) effect on predictions 

No. 
Gap / 

mm
Thickne
ss / mm

Upper
Force / 

kN

Powder
mass / 

mg

Speed / 
TPH

Dwell
time / 

ms
UV

NIR 
F2

NIR 
F3

1 1.8 2.40 3.5 202.6 15000 85.2 5.200 5.092 5.216
2 1.8 2.41 3.5 201.2 25000 51.1 5.175 5.135 5.157
3 1.8 2.43 3.6 202.1 35000 36.5 5.225 5.339 5.176
4 1.8 2.42 3.7 201.3 45000 28.4 5.075 5.154 5.174
5 1.8 2.44 3.7 201.7 55000 23.2 5.250 5.368 5.274
6 1.8 2.42 3.7 202.0 65000 19.7 5.075 5.287 5.198
7 1.8 2.43 3.6 202.0 75000 17.0 5.200 5.308 5.264
8 1.8 2.43 3.9 202.0 85000 15.0 5.250 5.454 5.237
9 1.8 2.43 3.7 202.9 95000 13.5 5.125 5.375 5.193

10 1.8 2.45 4.0 203.0 105000 12.2 5.250 5.435 5.324
11 1.8 2.45 3.8 202.3 115000 11.1 5.058 4.832 4.987
12 1.8 2.42 2.7 202.2 125000 10.2 5.065 5.004 5.054
13 1.8 2.42 3.6 201.2 135000 9.5 5.020 5.028 5.043
14 1.8 2.43 3.6 201.6 145000 8.8 5.033 4.969 5.062
15 1.8 2.46 3.7 202.3 155000 8.2 5.025 5.017 5.096

mean 2.43 3.6385 202.0 n/a n/a 5.135 5.186 5.164

SD 0.01183 0.3070 0.5317 n/a n/a
0.089

39
0.193

2
0.096

68

 



Figure 77: Raw spectra of 2.5

Figure 78: Prediction of variable compaction speed tablets by two NIR models, 

compared to the UV assay content
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compared to the UV assay content 

5 6 7 8 9 10 11 12 13 14 15

Tablet

 
189 Appendix I 

 

% folic acid tablets compacted in a dwell time range of 85.2 

 

: Prediction of variable compaction speed tablets by two NIR models, 

15

UV assay

NIR 2

NIR 3



Figure 79: Various pretreatments applied to transmittance spectra of variable 

Figure 80: UV assay vs.
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Table 20: Variable compaction force prediction set, UV content and NIR predictions 

# Mass 
Thick
ness

Poros
ity

UV F1 F2 F3 F4 F5 FV

mg mm % mg mg mg mg mg mg mg

1 204.5 1.99 0.15 5.17 19.96 1.58 -12.19 6.43 6.48 5.13

2 206.7 2.00 0.15 5.11 20.53 1.60 -12.80 6.57 6.61 5.10

3 200.2 2.00 0.17 5.01 16.45 3.14 -6.95 6.40 6.46 5.08

4 199.8 2.00 0.18 5.00 16.31 3.23 -6.43 6.46 6.52 5.04

5 204.0 2.07 0.19 5.14 13.18 4.21 -2.87 6.48 6.54 5.25

6 205.7 2.08 0.18 5.10 13.56 4.02 -3.31 6.48 6.53 5.15

7 200.8 2.10 0.21 5.02 10.76 5.19 0.80 6.37 6.42 5.16

8 200.0 2.11 0.22 5.00 9.86 5.05 1.37 6.24 6.29 5.09

9 202.2 2.20 0.24 5.14 8.31 6.04 3.85 6.11 6.14 5.17

10 205.7 2.20 0.23 5.06 8.34 5.70 3.53 6.17 6.20 5.25

11 196.0 2.22 0.27 5.09 5.91 5.35 5.11 5.70 5.74 4.56

12 203.7 2.28 0.26 4.90 6.05 5.28 5.15 5.69 5.71 4.66

13 199.2 2.31 0.29 4.98 5.62 5.42 5.55 5.47 5.49 4.69

14 199.0 2.30 0.29 4.98 5.93 5.30 5.61 5.52 5.54 4.74

15 194.5 2.37 0.32 4.97 5.20 4.73 5.36 5.10 5.10 4.68

16 200.9 2.39 0.31 4.86 5.27 4.95 5.41 5.00 5.02 4.85

17 198.7 2.45 0.33 4.97 5.55 5.36 5.85 5.05 5.04 4.47

18 202.2 2.47 0.32 5.02 5.32 4.33 5.29 4.87 4.87 4.70

19 198.9 2.53 0.35 5.06 5.99 5.95 6.95 5.37 5.31 4.12

20 194.7 2.55 0.37 4.87 5.67 5.69 6.11 4.91 4.88 3.87

 

 

• The five NIR models details constructed from fixed compaction folic acid tablets 

(F1-F5) are shown in Table 21. F4 and F5 had no statistically significant 

difference from the UV assay, as shown from Table 22. 

• Predicting the variable compaction tablets by F1-F5 models showed gradual drift 

with the change of tablets porosity (and thickness) from UV content and accuracy 

only in the porosity region of 33%, in which the calibration tablets are made 

(Figure 80 and Table 20).  
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Table 21: Overview of fixed compaction force calibration models (F0-F5) and model 

with additional variable compaction force spectra (FV) 

 F1 F2 F3 F4 F5 FV

Wavelengths 
Project Set

6000-
11520. (total 
1381/1381)

6000-
11520. (total 
1381/1381) 

6000-
11520. (total 
1381/1381)

6000-
11520. (total 
1381/1381) 

6000-
11520. (total 
1381/1381)

6000-
11520. (total 
1381/1381)

Wavelengths 
Calibration Set

6000-
11520. (total 
1381/1381)

7400-
11520. (total 
1031/1381) 

8500-
11520. (total 

756/1381)

6000-
11520. (total 
1381/1381) 

7400-
11520. (total 
1031/1381)

6000-
10600. (total 
1151/1381)

Data Pretreatment 
Sequence (short form)

mf mf SNV db1,SNV db1,SNV mf, ncl

Method PLS PLS PLS PLS PLS PLS

Max Iterations 3000 3000 3000 3000 3000 3000

Mean Centring yes yes yes yes yes yes

Number of Primary 
PCs

9 9 8 3 3 14

Secondary/Calibrati
on PCs

1-7. (total 
7/9)

1-7. (total 
7/9) 

1-6. (total 
6/8)

1-3. (total 
3/3) 

1-3. (total 
3/3)

1-12. 
(total 12/14)

V-Set BIAS 0.020901 -0.02879 0.017055 -0.00096 -0.00155
0.015475

3

C-Set SEE (SEC) 0.249761 0.323872 0.259507 0.286846 0.286303 0.312529

V-Set SEE (SEP) 0.258087 0.31796 0.254297 0.292198 0.290546 0.311205

Consistency 96.7739 101.859 102.049 98.1682 98.5396 100.426

 
  C-Set Regression 

Coefficient 0.997209 0.995125 0.996986 0.996318 0.996332 0.995599
V-Set Regression 

Coefficient 0.995108 0.994061 0.995263 0.993946 0.994011 0.992966
C-Set Regression 

Intercept 0.027482 0.049445 0.029669 0.036633 0.036495
0.042895

7
V-Set Regression 

Intercept 0.039841 -0.01142 0.056711 0.037676 0.041552
0.019216

4
C-Set Regression 

Slope 0.994425 0.990275 0.993981 0.99265 0.992678 0.991217
V-Set Regression 

Slope 0.98766 1.00851 0.985014 0.992555 0.991889 0.992981

 
  V-Set t-value 0.600605 0.799727 0.497373 0.024149 0.039284 0.540175

Confidence % 44.9384 57.3671 37.9055 1.91752 3.11883 40.9897

 

• Model FV consisted of 440 calibration/validation spectra, by adding the variable 

compaction calibration set (appendix V.1) to the previous set (appendix I.3). The 

model details are set in Table 21. 

• This model (FV) was able to predict the variable compaction tablets across the 

whole porosity range and is hence completely robust to press compaction 

variability (Figure 81 and Table 20). 

• Although FV model has slightly worse SEP (0.31 mg) than models F4 and F5 (0.29 

mg), it was still statistically equivalent to the UV method (Table 22). 



Table 22: Statistical evaluation of the fixed

 

Mean 4.832661

Variance 0.085586

Observations

Pooled Variance

Hypothesized
Mean

Difference

df

t Stat

P(T<=t) one-tail

t Critical one-tail

P(T<=t) two-tail

t Critical two-tail

Mean 4.832661

Figure 81: Prediction of variable compaction force tablets using the new model FV
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: Prediction of variable compaction force tablets using the new model FV
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and variable compaction models 

F5 FV

Sample Assuming Equal Variances 
4.77842 4.77842

0.03421
0.034210

211

20 20

0.817354
0.817354

149

0 0

19 19

-1.3702
-

1.370196485

0.0933
0.093299

869

1.729133
1.729132

792
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0.186599

738

2.093024
2.093024

05

4.77842 4.77842

 

: Prediction of variable compaction force tablets using the new model FV 

38.00%

NIR FV UV



• Figure 82 shows the spectral down

cm-1) with increasing tablet thickness and constant porosity. The drop was 

exponential and relates to decreasing NIR radiation reaching the detector in 

diffuse transmittance as the ta

the spectrum was very small but still preserved its shape and whether a 

calibration model is achievable at such tablet thickness remains to be 

investigated. 

• Increasing porosity in tablets with constant thick

similar effect, but this time less radiation is being detected due to more scattering 

(forward as well as backward) in higher porosity and less chances for photons to 

find their way to the tablet's other 

porosity range chosen represents the normal manufacturing range of commercial 

tablets. 

• The two parameters, tablet thickness and porosity are both exerting an 

exponential scaling effect, in the same direction, 

(Figure 75). 

Figure 82: Effect of tablet thickness on transmittance spectra, with fixed porosity 
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shows the spectral down-scaling at one wavenumber position (8880 

) with increasing tablet thickness and constant porosity. The drop was 

exponential and relates to decreasing NIR radiation reaching the detector in 

diffuse transmittance as the tablets became thicker and thicker. Beyond is 5 mm 

the spectrum was very small but still preserved its shape and whether a 

calibration model is achievable at such tablet thickness remains to be 

Increasing porosity in tablets with constant thickness (Figure 

similar effect, but this time less radiation is being detected due to more scattering 

(forward as well as backward) in higher porosity and less chances for photons to 

find their way to the tablet's other surface. The drop was also exponential and the 

porosity range chosen represents the normal manufacturing range of commercial 

The two parameters, tablet thickness and porosity are both exerting an 

exponential scaling effect, in the same direction, during compaction variability 

: Effect of tablet thickness on transmittance spectra, with fixed porosity 
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scaling at one wavenumber position (8880 

) with increasing tablet thickness and constant porosity. The drop was 

exponential and relates to decreasing NIR radiation reaching the detector in 

blets became thicker and thicker. Beyond is 5 mm 

the spectrum was very small but still preserved its shape and whether a 

calibration model is achievable at such tablet thickness remains to be 

Figure 83) caused a 

similar effect, but this time less radiation is being detected due to more scattering 

(forward as well as backward) in higher porosity and less chances for photons to 

surface. The drop was also exponential and the 

porosity range chosen represents the normal manufacturing range of commercial 

The two parameters, tablet thickness and porosity are both exerting an 

during compaction variability 

 

 

: Effect of tablet thickness on transmittance spectra, with fixed porosity 
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Figure 83: Effect of tablet porosity on transmittance spectra, with fixed tablet thickness
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: Effect of tablet porosity on transmittance spectra, with fixed tablet thickness 
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13. Appendix II 

Expanded methods and results sections: Tablet 

sampling span in diffuse transmittance 
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13.1 Materials and instruments 

13.1.1 Micro-crystalline cellulose 

Please refer to section 12.1.2, page 153. 

13.1.2 Carboxymethylcellulose sodium 

Please refer to section 12.1.3 page 155. 

13.1.3 Magnesium stearate 

Please refer to section 12.1.4, page 157. 

13.1.4 White paper 

• A4 standard printer paper 

• 80 g m-2 

13.1.5 Laser printer 

• HP LaserJet 2200dn network printer 

• 1200×1200 dpi 

• HP LaserJet C4096 family printer cartridge 

13.1.6 Presster 

Please refer to sections 12.2.1, page 159. 

13.1.7 NIRFlex N-500 with Solids Transmittance cell 

Please refer to section 12.2.2, page 161. 
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13.2 Methods 

13.2.1 Tableting 

• Placebo tablet mixture was prepared from formulation in Table 9. 

• 200 mg tablets were compacted in Presster. 

• Korsch rotary press PH336 was selected for simulation, with of a speed 10800 

TPH and dwell time of 118.3 msec.  

• A flat face punch with a diameter of 10.0 mm was used for compaction. 

• Presster gap size set for 1.0 mm 

• 1 tablets made 

• Gap increased by 0.1 mm 

• 1 more tablets and gap increments until gap size of 1.4 mm was reached and 5 

tablets were made. 

13.2.2 Paper filters 

• 10 boxes were drawn in word, with 13 mm width and height. 

• Over each box, a circle of 10 mm diameter and black fill was drawn, centre-align 

to the box above. 

• Over the above circle, another white-filled circle, centre-aligned was drawn. The 

diameter of that circle was decreasing from 9 (filter F1) to 1 mm filter (F9). 

• Filter F10 had no white circle (complete block). 

• Filter F0 had no circles (no block). 

• Figure 16 shows the filters and their labelling and Appendix VI.1 shows an exact 

print-out of the filters. 

• After printing, each box was carefully cut and kept for scanning. 

• 3 sets of each filter were made to assess experimental error. 



 
199 Appendix II 

13.2.3 NIR Spectral collection 

• Each tablet was placed on the DT sample tray, and one type of paper filter placed 

on top of the tablet with forceps, so that the box corners align with the tablet tray 

position walls. 

• The tablet was scanned. 

• The filter was carefully removed and another placed on the same way and the 

tablet was scanned. 

• The process was repeated until all filters are used. 

• The second tablet was taken and the same steps undertaken until spectra of the 

five tablets, each covered by all filter types were obtained. 

13.2.4 Data processing and calculations 

• Transmittance at 8880 cm-1 for one tablet (one porosity) was plotted against 

filter types (average of 3 measurements for three filters of the same type). 

• This was also compared with the same for other tablets (different porosities). 

• Theoretical signal drop for filter Fx was calculated as a ratio between the block 

(black) area and tablet surface area: 

100%x block
x theor

tablet

A
Drop

A
= ⋅  

o This represents the block ratio of each filter if the NIR radiation was 

equally distributed across the whole tablet surface. 

o This was scaled because complete block was not 100% according to the 

DT data (see discussion). 

• Actual (measured) signal drop for filter Fx was calculated as a ratio between 

transmittance at 8800 cm-1 from filter Fx and the transmittance at 8800 cm-1 

from filter F0: 

8880

8880
0

100%Fx
x actual

F

DT
Drop

DT
= ⋅  

• Theoretical signal drop for each ring was calculated by subtracting the 

Droptheor of each filter, from Droptheor  of the subsequent filter: 

1x theor x theor x theorRing Drop Drop+= −  

o This made the tablet surface consist of 10 rings, each 1 mm thick. 

o It represents the signal drop due to the block of one ring, if the NIR 

radiation was equally distributed across the whole tablet surface. 

• Actual (measured) signal drop for each ring was calculated by subtracting the 

actual drop Dropactual of each filter, from Dropactual of the subsequent filter: 
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1x actual x actual x actualRing Drop Drop+= −  

o It represents the measured signal drop due to the block of one ring. 

• Theoretical signal distribution for each ring was calculated by dividing the 

theoretical signal drop from each ring by the sum of theoretical signal drop due 

to all rings, multiplied by 100%: 

9

0

100%x theor
x theor

i theor
i

Ring
Contribution

Ring
=

= ⋅
∑

 

o This represents the share of each ring in the total signal drop in that filter, 

if the NIR radiation was equally distributed across the tablet surface. 

o In this case it will be simply related to the ring area. 

• Measured signal distribution for each ring was calculated by dividing the 

measured signal drop from each ring by the sum of measured signal drop due to 

all rings, multiplied by 100%: 

9

0

100%x actual
x actual

i actual
i

Ring
Contribution

Ring
=

= ⋅
∑

 

o This represents the measured share of each ring in the total signal drop in 

that filter in DT mode 

o Plotting this for all filters gives a picture of the distribution of the 

radiation emerging from the tablet surface in DT mode. 



13.3 Results 
With the application of paper filters F0 

spectra were scaled-down gradually with each increase in the block inner diameter 

(Figure 84). F1 and F2 block was small and difficult to judge whether due to positioning 

noise effect (most peripheral blocks) or real signal block. From F3 onwards, the block 

was strongly evident. 

In Figure 22, the DT filters block test was repeated for tablets with different porosities 

(15 - 25%) and 8880 cm-1 

block pattern, an indication that porosity change (in that range), was not affecting the 

signal distribution to a big degree. The plots do, however, have different scales, and it is 

due to due increase in radiation scatter at lower sample densities (higher porosity) 

press effect, chapter 8. 

Figure 84: DT spectra of MCC tablet covered with paper filters F0

down

 

Table 23 shows the calculated actual and theoretical signal drop, and drop due to each 1

mm ring of gradually decreasing diameters. The latter values were converted to 

proportions of the total block due to all rin

drop across tablet surface.  This was also graphically illustrated in 

shows that central areas carry represent more of the signal than their proportional area 

With the application of paper filters F0 – F10 (from Figure 16) on the tablet, the DT 

down gradually with each increase in the block inner diameter 

). F1 and F2 block was small and difficult to judge whether due to positioning 

ise effect (most peripheral blocks) or real signal block. From F3 onwards, the block 

, the DT filters block test was repeated for tablets with different porosities 

 maxima plotted. All the tablets showed similar sigmoidal 

block pattern, an indication that porosity change (in that range), was not affecting the 

signal distribution to a big degree. The plots do, however, have different scales, and it is 

adiation scatter at lower sample densities (higher porosity) 

: DT spectra of MCC tablet covered with paper filters F0-F10, showing spectral 

down-scaling with increasing block. 

shows the calculated actual and theoretical signal drop, and drop due to each 1

mm ring of gradually decreasing diameters. The latter values were converted to 

proportions of the total block due to all rings and would represent the distribution of the 

drop across tablet surface.  This was also graphically illustrated in 

shows that central areas carry represent more of the signal than their proportional area 
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) on the tablet, the DT 

down gradually with each increase in the block inner diameter 

). F1 and F2 block was small and difficult to judge whether due to positioning 

ise effect (most peripheral blocks) or real signal block. From F3 onwards, the block 

, the DT filters block test was repeated for tablets with different porosities 

plotted. All the tablets showed similar sigmoidal 

block pattern, an indication that porosity change (in that range), was not affecting the 

signal distribution to a big degree. The plots do, however, have different scales, and it is 

adiation scatter at lower sample densities (higher porosity) – see 

 

F10, showing spectral 

shows the calculated actual and theoretical signal drop, and drop due to each 1-

mm ring of gradually decreasing diameters. The latter values were converted to 

gs and would represent the distribution of the 

drop across tablet surface.  This was also graphically illustrated in Figure 24 which 

shows that central areas carry represent more of the signal than their proportional area 
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(as expected). However, the representation of the tablet was continued up to 7 mm in 

diameter (90.6% of signal). 

Table 23: Measured and theoretical relative drops with each filter, and respective drop 

for block rings. 

Filte
r

Dropactual Droptheor
Ring 

#
Ringactu

al

Ringtheo

r

Contributionactu

al

Contributiontheo

r

F0 100.00% 100.00%

F1 96.89% 87.24% 1 3.11% 12.76% 3.30% 14.43%

F2 94.04% 75.34% 2 2.85% 11.89% 3.02% 13.45%

F3 96.95% 64.32% 3 2.90% 11.02% 3.08% 12.46%

F4 92.24% 54.17% 4 4.70% 10.15% 4.99% 11.48%

F5 83.92% 44.89% 5 8.32% 9.28% 8.82% 10.49%

F6 65.05% 36.48% 6 18.87% 8.41% 20.01% 9.51%

F7 53.39% 28.94% 7 11.67% 7.54% 12.37% 8.52%

F8 32.04% 22.28% 8 21.35% 6.67% 22.64% 7.54%

F9 19.32% 16.48% 9 12.71% 5.79% 13.48% 6.55%

F10 11.51% 11.56% 10 7.81% 4.92% 8.29% 5.57%

 
Sum 100.00% 100.00%
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14. Appendix III 

Expanded methods section: Tablet sampling span in 

diffuse reflection 
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14.1 Materials 

14.1.1 Micro-crystalline cellulose 

Please refer to section 12.1.2, page 153. 

14.1.2 Phenylbutazone 

• source 

o Sigma-Aldrich, Buchs, Switzerland 

• functional category 

o API 

o Cyclo-oxygenase inhibitor; pyrazolone analgesic 

• empirical formula: C19H20N2O2 

• molecular mass: 308.37 g mol-1 

• structural formula (Figure 85) 

 

Figure 85: Molecular structure of phenylbutazone 

• Appearance 

o White or almost white, crystalline powder. 

• Solubility 

o Practically insoluble in water, sparingly soluble in alcohol. It dissolves in 

alkaline solutions. 

• Storage 

o Store in an air-tight container 

• Particle size 

o 90% of the particles < 38.2 μm 
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14.1.3 Caffeine (anhydrous) 

• source 

o BASF AG, Schaffhausen, Switzerland 

• functional category 

o  API 

o Central nervous system stimulant  

• empirical formula: C8H10N4O2 

• molecular mass: 194.19 g mol-1 

• structural formula (Figure 86) 

 

Figure 86: Molecular structure of caffeine 

• Appearance 

o White or almost white, crystalline powder or silky, white or almost white, 

crystals. 

• Solubility 

o Sparingly soluble in water, freely soluble in boiling water, slightly soluble 

in ethanol (96 per cent). 

o Dissolves in concentrated solutions of alkali benzoates or salicylates. 

o Readily sublimes. 

• Storage 

o Store in an air-tight container 

• Particle size 

o 90% of the particles < 37 μm 
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14.1.4 Magnesium stearate 

Please refer to section 12.1.4, page 157. 

14.1.5 FD+C Red 3 LA 

• E number 

o E127 

• Common name 

o Erythrosine 

• source 

o Sandoz Pharma, Switzerland 

• functional category 

o  Colouring agent 

• empirical formula: C20H6I4Na2O5 

• molecular mass: 879.86 g mol-1 

• structural formula (Figure 87) 

 

Figure 87: Molecular structure of erythrosine 

• Appearance 

o Cherry red powder. 

• Solubility 

o Soluble in water and alcohol and acidic solutions. 

o Insoluble in alkaline solutions. 

• Storage 

o Store in an air-tight container 



 
207 Appendix III 

14.1.6 Hydroxypropylmethylcellulose 

• source 

o Pharmacoat 603, Novartis Pharma AG, Basel, Switzerland 

• functional category 

o sustained release; stabilizing agent; suspending agent; tablet binder; 

viscosity-increasing agent.  

• non-proprietary name 

o Hypromellosum (Ph. Eur.) 

• empirical formula: C6H7O2(OH)x(OCH3)y(OC3H7)z 

• molecular mass: 10 000–1 500 000 g mol-1 

• structural formula (Figure 88) 

 

Figure 88: Molecular structure of HPMC 

• pharmaceutical applications 

o In oral products, HPMC is primarily used as a tablet binder, in film-coating, 

and as a matrix for use in extended-release tablet formulations. 

Concentrations of 2–20% w/w are used for film-forming solutions to film-

coat tablets. Lower-viscosity grades are used in aqueous film-coating 

solutions, while higher-viscosity grades are used with organic solvents. 

• appearance and characteristics 

o odourless and tasteless, white or creamy white fibrous or granular 

powder. 

• stability and storage conditions 

o should be stored in a well-closed container in a cool, dry place. 

• incompatibilities 

o Since it is non-ionic, hypromellose will not complex with metallic salts or 

ionic organics to form insoluble precipitates. 

• safety 

o generally regarded as a nontoxic and non-irritant material. 

• Solubility 
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o soluble in cold water, forming a viscous colloidal solution; practically 

insoluble in chloroform, ethanol (95%), and ether. 

14.1.7 Ethylcellulose 

• source 

o Aquacoat ECD 30, FMC Biopolymer, Houston, TX 

• functional category 

o Coating agent; viscosity-increasing agent.  

• non-proprietary name 

o Ethylcellulosum (Ph. Eur.) 

• empirical formula: C12H23O6(C12H22O5)nC12H23O5 

• structural formula (Figure 88) 

 

Figure 89: Molecular structure of ethylcellulose 

• pharmaceutical applications 

o The main use of ethylcellulose in oral formulations is as a hydrophobic 

coating agent for tablets and granules and modify the release of a drug, to 

mask an unpleasant taste, or to improve the stability of a formulation. 

Higher-viscosity ethylcellulose grades tend to produce stronger and more 

durable films. Ethylcellulose films may be modified to alter their solubility, 

by the addition of hypromellose or a plasticizer. An aqueous polymer 

dispersion of ethylcellulose such as Aquacoat ECD may also be used to 

produce ethylcellulose films without the need for organic solvents. 

• Glass transition temperature: 129–133°C 

• appearance and characteristics 

o tasteless, free-flowing, white powder. 

• incompatibilities 

o Incompatible with paraffin wax and microcrystalline wax. 

• safety 

o safe, used in food products, not metabolised enterally. 

• Solubility 
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o practically insoluble in glycerine, propylene glycol, and water. Solubility 

depends on the percentage of ethoxyl groups. 

14.1.8 Triethyl citrate 

• source 

o Triethyl citrate, FCC FEMA 3083, Sigma-Aldrich, Buchs, Switzerland. 

• functional category 

o Plasticizer 

• non-proprietary name 

o Triethylis citras (Ph. Eur.) 

• empirical formula: C12H20O7 276.29 

• molecular mass: 276.29 g mol-1 

• structural formula (Figure 90) 

 

Figure 90: Molecular structure of triethyl citrate 

• pharmaceutical applications 

o Used to plasticize polymers in formulated pharmaceutical coatings. 

• appearance and characteristics 

o a clear, odourless, practically colourless, oily liquid. 

• incompatibilities 

o Incompatible with strong alkalis and oxidizing materials. 

• safety 

o Generally regarded as a nontoxic and non-irritant material. 

• Solubility 

o soluble 1 in 15 of water. Miscible with ethanol (95%), acetone, and 

propan-2-ol. 

• Viscosity (dynamic) 

o 35.2 mPa s (35.2 cP) at 25°C 
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14.2 Instruments, apparatus and software 

14.2.1 Zwick Material Tester 

This is a hydraulic press (Type 1478TM, Wick Roell, Germany) designed to mimic the 

compaction cycle of any prescribed shape by using hydraulic control mechanisms that 

are driving a punch in and out of the die. 

Under computer control, the hydraulic actuator maintain load, position, and strain 

associated with the punch. The simulation can be achieved by controlling the force (load 

control) or punch displacement at any given moment of time, while the machine plots 

the compaction and punch displacement profiles. 

14.2.2 NIRFlex N-500 with solids measurement cell 

Please refer to section 12.2.2, page 161. The solids measurements cell scans samples in 

diffuse reflection mode (Figure 91). The tablets where mounted on a tablet sample plate 

with adjustable holding mechanism. 

 

Figure 91: Specifications of the Solids measurement cell 

14.2.3 Strea-1™ Fluid-bed 

This is a fluid-bed coater/dryer/granulator from Aeromatic-Fielder (Bubendorf, 

Switzerland), with a 16.5 l container and 2 m3 min-1 air flow. Spraying is possible from 

top or bottom and product temperature, air volume, filter resistance are continuously 

instrumented. 
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14.2.4 Eccentric tablet press 

This is an electric, single station eccentric tableting machine from Korsch (Germany) 

with adjustable tableting speed, lower punch filling position and upper punch gap 

position. 

14.2.5 Presster™ tablet press simulator 

Please refer to section 12.2.1, page 159. 

14.2.6 Other instruments 

For scales, Turbula mixer, micrometer, please refer to section 12.2.3, page 162. 

14.2.7 Software 

14.2.7.1 NIR Cal 

This is a chemometrics software from Büchi, used for spectral pretreatments and 

calibration model development. 

14.2.7.2 Table Curve 3D 

This is a n-factorial fitting software from Statcon (Wizenhausen, Germany). 

14.2.7.3 Excel 2007 with VBA 

This is a spreadsheet software, used with the built-in Visual Basic for Applications 

module to write and run macros. 
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14.3 Methods 

14.3.1 Incremental thickness tablets 

This experiment was used to test the effect of increasing tablet thickness (with fixed 

tablet composition and density) on DR spectra, and hence the possibility of reaching a 

thickness with minimum spectral variability that may present a candidate for 

determining DR information depth. 

• Zwick hydraulic press was used with a 10 mm die and flat punches. 

• A 3D curve fitting was calculated using TableCurve3D between tablet mass, 

thickness and compaction force was calculated: 

o Powder masses of 30, 100, 200, 300 and 430 mg were fed in the die. 

o For each powder mass, 500 – 5000 N compaction forces were tried in 4 

steps 

o With each trial, the tablet mass was measured. 

o The mass, thickness and force data were imported in TableCruve3D and 

the best and simplest fitting was selected (Figure 30). 

o The fitting equation was used to determine the compaction force for 

experimental samples. 

• 20 MCC tablets with thickness of 0.5 – 10 mm (in 0.5 mm steps) and a porosity of 

25% were compacted in the Zwick using compaction force determined from the 

fitting equation (Appendix VII.3). 

• Tablet thickness and porosity were determined after 24h, and a plot of tablet 

thickness against porosity was used to determine whether or not porosity and 

thickness variabilities were co-related. 

• Tablets were scanned in DR mode and spectra imported in NIRCal. 

• Spectral data table was obtained by clicking “G” and imported in Excel. 

• Various spectral positions, with and without pretreatments, were examined for 

correlation with tablet thickness. 
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14.3.2 Double-layer tablets 

Tablets consisting of 2 layers (PBZ-phenylbutazone and MCC) of varying layer 

thicknesses were used to possibility of detecting DR spectral features of one layer 

through the other. The DR information depth would be less than the lower layer 

thickness if the upper layer is undistinguishable. 

 

Figure 92: Overview of double layer tablets 

• The formulations of upper and lower layers are shown in table. 

• Samples were tableted in Presster with a 10-mm flat punch and Korsch PH 336 

press simulation. 

• The PBZ layer was fed first and pre-compacted. 

• The station was moved back to home position and the upper punch was cleaned. 

• The MCC layer powder was fed and both layers were compacted and tablet 

ejected. 

• Tablets were weighed, thickness measured and DR were spectra collected for 

both sides by flipping the tablets. 

• Spectra were imported in NIRCal and layer features inspected in comparison to 

tablets 1 and 10 using different pretreatments. 

• Each spectrum was assigned 2 qualitative properties, PBZ and MCC. Tablets 

scanned with PBZ layer down were checked as PBZ and those with MCC layer 

down as MCC. Tablet 1 was MCC and 10 PBZ (Figure 92). Same applied to spectra 

of flipped tablets. 

• Cluster analysis models were started in NIRCal, one for each qualitative property. 

PC scores were used to analyse the ability to cluster tablets: 



o For PBZ property, clustering tablets scanned with the PBZ layer down 

with MCC-only tablet.

o For MCC property, clustering tablets scanned with the MCC layer down 

with PBZ-only tablet.

Table 24: Double-layered tablets for

Phenylbutazone

MCC layer
PBZ layer

 

14.3.3 Incremental tablet coating

This experiment was used to examine DR information depth by scanning tablets coated 

with increasingly thicker coats. Thi

its minimum. A second batch of tablets of different core and same coating conditions 

was used to confirm this estimation of information depth.

Figure 93: Overview of increment

• A simple directly compactable tablet formulation was used to make to batches of 

tablets, MCC placebo and 30% caffeine tablets (

• Tablets were compacted on en eccentric Korsch press with a concave pun

mm diameter, 5.5 dome height).

• The tableting mixture was fed into the hopper and the press was manually 

adjusted to produce tablet having:

o Mass 100 ±1.5% mg

o Thickness 3.1 

o Hardness 90-110 N

• The press was then run and tableting continued with 

• The same procedure was used for the second batch.

For PBZ property, clustering tablets scanned with the PBZ layer down 

only tablet. 

For MCC property, clustering tablets scanned with the MCC layer down 

only tablet. 

layered tablets formulation 

Phenylbutazone Pigment MCC 102 MgSt

- - 99%
98% 1% -

Incremental tablet coating 

This experiment was used to examine DR information depth by scanning tablets coated 

with increasingly thicker coats. This depth is reached after spectral variability reaches 

its minimum. A second batch of tablets of different core and same coating conditions 

was used to confirm this estimation of information depth. 

: Overview of incremental coating experiment

A simple directly compactable tablet formulation was used to make to batches of 

tablets, MCC placebo and 30% caffeine tablets (Table 25). 

Tablets were compacted on en eccentric Korsch press with a concave pun

mm diameter, 5.5 dome height). 

The tableting mixture was fed into the hopper and the press was manually 

adjusted to produce tablet having: 

1.5% mg 

Thickness 3.1 – 3.2 mm 

110 N 

The press was then run and tableting continued with IPC every 50 samples.

The same procedure was used for the second batch. 
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For PBZ property, clustering tablets scanned with the PBZ layer down 

For MCC property, clustering tablets scanned with the MCC layer down 

MgSt Total

1% 100%
1% 100%

This experiment was used to examine DR information depth by scanning tablets coated 

s depth is reached after spectral variability reaches 

its minimum. A second batch of tablets of different core and same coating conditions 

 

al coating experiment 

A simple directly compactable tablet formulation was used to make to batches of 

Tablets were compacted on en eccentric Korsch press with a concave punch (7 

The tableting mixture was fed into the hopper and the press was manually 

IPC every 50 samples. 



 
215 Appendix III 

Table 25: MCC and caffeine tablet formulation 

MCC tablets Caffeine tablets

MCC 102 99 % 69 %
Caffeine - 30 %

MgSt 1 % 1 %

Total 100 % 100 %

 

• An Aquacoat film coat formulation was derived from Aquacoat ECD product 

manual (FMC Biopolymer, PA, USA) to coat the tablets (Table 26): 

o 19% Pharmacoat 603 solution was prepared. 

o (A) Triethylcitrate and Aquacoat were added to a beaker and mixed for 30 

minute with a magnetic stirrer. 

o (B) The dye powder was sieved over the Pharmacoat solution and mixed 

for 5 minutes. 

o (A) and (B) were mixed together with stirred with paddle throughout the 

coating process 

Table 26: Aquacoat film coat formulation 

Component Percentage [%] 

Aquacoat ECD 30 (30% m/m) 22.22 
Pharmacoat 603 (19% m/m) 35.09 

Triethylcitrate 1.33 
Fd+C Red 3 LA 7.00 

Water (dist.) 34.36 

Total 100.00 

 

Table 27: Aeromatic process parameter for Aquacoat film coating 

Parameter Value

Inlet temperature 60 .0 °C 
Outlet temperature 35 .0 °C 

Product temperature 47.5 °C 
Atomising pressure 0.8 Bar 

Spray rate 52.4 mg s-1 

 

• The tablets were incrementally coated inside the Aeromatic fluid bed: 

o 250 g of tablets were fed in the product chamber and preheated to the 

product temperature (Table 27). 

o The coat suspension was fed using a pump at the specified rate. 

o Coating was interrupted after 50 g of coat suspension was used. 

o Tablets were dried for 1 minute and 10 tablets were sampled for analysis 

and then coating was continued for another 50 g of coat suspension. 
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o 5 coating steps were possible (+1 uncoated) before tablets showed 

cracked, and pitted surfaces and coating was terminated. 

o The same coating process was repeated for the caffeine tablets using the 

same film coat formulation. 

• Mass and thickness of tablets from all coating steps and for both tablet batches 

were determined. 

• DR and DT spectra were collected from all tablets. 

• 2 qualitative properties (MCC and Caffeine) were created and assigned for the 

respective tablets’ DR and DT spectra. 

• The decay curve in different spectral regions was estimated: 

o The spectra were imported in NIRCal and spectral data were exported to 

excel using different pre-treatments (each spectrum in a column). 

o An Excel macro (Appendix VII.2) was used to search for spectral regions 

with difference between MCC and caffeine DR spectra of the same coating 

level highly correlating with the coat thickness; using r2 of an exponential 

fit (other fittings did not produce any correlation). 

o When the DR difference was converted to percentage, (100% being the 

maximum difference of the uncoated tablets), the fit represented the DR 

signal decay with increasing coat thickness. 

• The spectra were also investigated using cluster analysis to assess the possibility 

of predicting a tablet correctly (MCC or Caffeine) with increasing coat thickness: 

o DR spectra were imported in a qualitative CLU model in NIRCal. 

o One third of the spectra were assigned as validation. 

o Best qualitative model was searched for using manual and automatic 

model optimizations, using Q value as a performance indicator. 

o Clustering was visualized using the Scores vs. Scores plot. 

o The same was repeated for the DT spectra and the results were compared 

with DR. 
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15. Appendix IV 

Appendix IV.1: Presster compaction profile for folic acid tablets 

tablet 
number 

tablet 
mass 
[mg] 

thick
ness 
[mm] 

crushin
g strength 

[N] 

CO step motor 
position (gap size) 

[mm] 

upper 
compaction [kN] 

1 203.2 3.31 27 2.7 1.4 
2 198.1 2.90 40 2.3 1.9 
3 201.3 2.92 47 2.3 2.1 
4 200.1 2.67 75 2.0 2.8 
5 201.6 2.44 104 1.8 4.0 
6 200.3 2.44 104 1.8 3.9 
7 201.8 2.48 109 1.8 3.9 
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Appendix IV.2: Complete data from Presster compaction profile for folic acid tablets 

b
atch 

# 

bat
ch tablet 

# 

press brand press 
model 

desired 
press speed [TPH] 

desired dwell 
time [ms] 

achieved 
dwell time [ms] 

0 0 KORSCH PH336 10'800 118.3 31.1 
0 0 KORSCH PH336 10'800 118.3 31.1 
0 0 KORSCH PH336 10'800 118.3 31.6 
0 0 KORSCH PH336 10'800 118.3 31.1 
0 0 KORSCH PH336 10'800 118.3 31.1 
0 0 KORSCH PH336 10'800 118.3 31.1 
0 0 KORSCH PH336 10'800 118.3 31.1 
b

atch 
# 

bat
ch tablet 

# 

effective 
dwell time [ms] 

upper pre-
compression 

peak [kN] 

lower pre-
compression peak 

[kN] 

upper 
compression peak 

[kN] 

lower 
compression peak 

[kN] 
0 0 5.1 0.1 0.1 1.4 0.6 
0 0 15.2 0.2 0.1 1.9 1.2 
0 0 5.1 0.1 0.1 2.1 1.2 
0 0 17.7 0.1 0.1 2.8 2.1 
0 0 10.1 0.1 0.1 4.0 3.0 
0 0 10.1 0.1 0.1 3.9 2.9 
0 0 12.6 0.1 0.1 3.9 3.0 
b

atch 
# 

bat
ch tablet 

# 

maximum 
upper punch 

displacement 
[mm] 

maximum 
lower punch 

displacement 
[mm] 

peak ejection 
[N] 

peak take-off 
[N] 

peak radial 
die wall pressure 

[MPa] 

0 0 4.300 6.670 119.4 16.0500 20.5100 
0 0 4.290 6.280 156.3 16.0500 24.3600 
0 0 4.300 6.290 139.9 16.0500 21.4300 
0 0 4.290 6.030 144.0 16.0500 24.0400 
0 0 4.300 5.850 139.9 16.0500 24.1000 
0 0 4.300 5.840 115.4 16.0500 23.7400 
0 0 4.290 5.850 107.2 16.0500 27.2100 
b

atch 
# 

bat
ch tablet 

# 

punch ID tool type effective 
contact time [ms] 

effective rise 
time [ms] 

effective fall 
time [ms] 

0 0 Flat Face 
10.0 mm 

EU B 75.8 53.0 17.7 

0 0 Flat Face 
10.0 mm 

EU B 73.2 35.4 22.7 

0 0 Flat Face 
10.0 mm 

EU B 101.0 45.5 50.5 

0 0 Flat Face 
10.0 mm 

EU B 75.8 37.9 20.2 

0 0 Flat Face 
10.0 mm 

EU B 83.3 48.0 25.3 

0 0 Flat Face 
10.0 mm 

EU B 85.9 53.0 22.7 

0 0 Flat Face 
10.0 mm 

EU B 80.8 40.4 27.8 

b
atch 

# 

bat
ch tablet 

# 

minimum 
punch gap [mm] 

corrected 
gap [mm] 

CO step 
motor position 

[mm] 

dosing step 
motor position [mm] 

PCO step 
motor position 

[mm] 
0 0 2.82  2.7 17.4 14.3 
0 0 2.47  2.3 17.4 14.3 
0 0 2.46  2.3 17.4 14.3 
0 0 2.23  2.0 17.4 14.3 
0 0 2.05  1.8 17.4 14.3 
0 0 2.05  1.8 17.4 14.3 
0 0 2.06  1.8 17.4 14.3 
b

atch 
# 

bat
ch tablet 

# 

EJ step 
motor position 

[deg] 

number of 
stations 

achieved 
RPM 

sampling rate 
[Hz] 

achieved 
linear speed [m/s] 

0 0 10.9 36.0 19.0 396.0 0.408 
0 0 10.9 36.0 19.0 396.0 0.408 
0 0 10.9 36.0 18.7 396.0 0.402 
0 0 10.9 36.0 19.0 396.0 0.408 
0 0 10.9 36.0 19.0 396.0 0.408 
0 0 10.9 36.0 19.0 396.0 0.408 
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0 0 10.9 36.0 19.0 396.0 0.408 
b

atch 
# 

bat
ch tablet 

# 

desired RPM desired 
linear speed 

[m/s] 

punch head 
flat [mm] 

achieved press 
speed [TPH] 

depth of fill 
[mm] 

0 0 5.0 0.107 12.7 41'037 11.3 
0 0 5.0 0.107 12.7 41'037 10.8 
0 0 5.0 0.107 12.7 40'489 11.1 
0 0 5.0 0.107 12.7 41'037 10.6 
0 0 5.0 0.107 12.7 41'037 10.5 
0 0 5.0 0.107 12.7 41'037 10.5 
0 0 5.0 0.107 12.7 41'037 10.5 
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Appendix IV.3: Calibration/validation folic acid tablets physical parameters 

# Batc
h 

tablet  tablet [mg]  thickness [mm] Porosity [%] 

1 0.0% 1 200.5 2.40 31.10845 

2 0.0% 2 200.3 2.39 30.88921 

3 0.0% 3 200.4 2.40 31.14281 

4 0.0% 4 200.2 2.38 30.63347 

5 0.0% 5 200.3 2.38 30.59883 

6 0.0% 6 200.6 2.39 30.78570 

7 0.0% 7 200.1 2.38 30.66812 

8 0.0% 8 200.2 2.38 30.63347 

9 0.0% 9 200.2 2.38 30.63347 

10 0.0% 10 200.2 2.39 30.92371 

11 0.0% 11 200.6 2.39 30.78570 

12 0.0% 12 200.5 2.40 31.10845 

13 0.0% 13 200.4 2.39 30.85470 

14 0.0% 14 200.5 2.39 30.82020 

15 0.0% 15 200.6 2.40 31.07409 

16 0.0% 16 200.5 2.40 31.10845 

17 0.0% 17 200.5 2.39 30.82020 

18 0.0% 18 200.3 2.38 30.59883 

19 0.0% 19 200.1 2.37 30.37558 

20 0.0% 20 200.5 2.39 30.82020 

21 0.5% 1 200.0 2.38 30.70277 

22 0.5% 2 200.2 2.38 30.63347 

23 0.5% 3 200.3 2.39 30.88921 

24 0.5% 4 200.4 2.40 31.14281 

25 0.5% 5 200.4 2.39 30.85470 

26 0.5% 6 200.6 2.39 30.78570 

27 0.5% 7 200.2 2.38 30.63347 

28 0.5% 8 200.9 2.40 30.97101 

29 0.5% 9 200.6 2.39 30.78570 

30 0.5% 10 200.5 2.38 30.52953 

31 0.5% 11 200.0 2.38 30.70277 

32 0.5% 12 200.4 2.39 30.85470 

33 0.5% 13 200.9 2.40 30.97101 

34 0.5% 14 200.2 2.39 30.92371 

35 0.5% 15 200.3 2.39 30.88921 

36 0.5% 16 200.8 2.38 30.42558 

37 0.5% 17 200.4 2.40 31.14281 

38 0.5% 18 201.1 2.40 30.90229 

39 0.5% 19 200.5 2.39 30.82020 

40 0.5% 20 200.7 2.40 31.03973 

41 1.0% 1 200.6 2.39 30.78570 

42 1.0% 2 200.0 2.38 30.70277 

43 1.0% 3 200.6 2.40 31.07409 

44 1.0% 4 201.0 2.41 31.22322 



 
221 Appendix IV 

45 1.0% 5 200.8 2.40 31.00537 

46 1.0% 6 200.9 2.41 31.25744 

47 1.0% 7 200.1 2.39 30.95822 

48 1.0% 8 200.2 2.39 30.92371 

49 1.0% 9 201.1 2.41 31.18900 

50 1.0% 10 200.6 2.39 30.78570 

51 1.0% 11 200.5 2.39 30.82020 

52 1.0% 12 200.9 2.38 30.39093 

53 1.0% 13 200.6 2.39 30.78570 

54 1.0% 14 200.6 2.40 31.07409 

55 1.0% 15 200.6 2.39 30.78570 

56 1.0% 16 200.2 2.38 30.63347 

57 1.0% 17 200.6 2.40 31.07409 

58 1.0% 18 200.6 2.39 30.78570 

59 1.0% 19 200.5 2.39 30.82020 

60 1.0% 20 200.8 2.39 30.71669 

61 1.5% 1 200.7 2.41 31.32587 

62 1.5% 2 200.2 2.39 30.92371 

63 1.5% 3 200.5 2.38 30.52953 

64 1.5% 4 200.6 2.40 31.07409 

65 1.5% 5 201.0 2.40 30.93665 

66 1.5% 6 199.9 2.37 30.44517 

67 1.5% 7 200.0 2.40 31.28025 

68 1.5% 8 200.6 2.38 30.49488 

69 1.5% 9 200.4 2.40 31.14281 

70 1.5% 10 200.8 2.40 31.00537 

71 1.5% 11 200.8 2.40 31.00537 

72 1.5% 12 200.7 2.38 30.46023 

73 1.5% 13 200.0 2.37 30.41038 

74 1.5% 14 200.5 2.38 30.52953 

75 1.5% 15 200.6 2.39 30.78570 

76 1.5% 16 200.9 2.40 30.97101 

77 1.5% 17 200.2 2.38 30.63347 

78 1.5% 18 200.3 2.37 30.30599 

79 1.5% 19 200.8 2.38 30.42558 

80 1.5% 20 200.6 2.39 30.78570 

81 2.0% 1 200.2 2.38 30.63347 

82 2.0% 2 200.5 2.38 30.52953 

83 2.0% 3 200.1 2.39 30.95822 

84 2.0% 4 200.3 2.37 30.30599 

85 2.0% 5 200.4 2.40 31.14281 

86 2.0% 6 200.6 2.40 31.07409 

87 2.0% 7 200.1 2.39 30.95822 

88 2.0% 8 200.1 2.39 30.95822 

89 2.0% 9 200.4 2.39 30.85470 

90 2.0% 10 200.8 2.39 30.71669 

91 2.0% 11 200.3 2.39 30.88921 
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92 2.0% 12 200.1 2.38 30.66812 

93 2.0% 13 200.8 2.38 30.42558 

94 2.0% 14 200.3 2.39 30.88921 

95 2.0% 15 200.3 2.39 30.88921 

96 2.0% 16 200.5 2.39 30.82020 

97 2.0% 17 200.3 2.38 30.59883 

98 2.0% 18 200.3 2.38 30.59883 

99 2.0% 19 200.3 2.38 30.59883 

100 2.0% 20 200.4 2.39 30.85470 

101 2.5% 1 200.9 2.39 30.68219 

102 2.5% 2 201.1 2.40 30.90229 

103 2.5% 3 201.1 2.41 31.18900 

104 2.5% 4 201.0 2.38 30.35629 

105 2.5% 5 200.9 2.37 30.09723 

106 2.5% 6 200.2 2.36 30.04562 

107 2.5% 7 201.0 2.40 30.93665 

108 2.5% 8 200.4 2.40 31.14281 

109 2.5% 9 200.9 2.39 30.68219 

110 2.5% 10 200.4 2.41 31.42852 

111 2.5% 11 200.3 2.41 31.46274 

112 2.5% 12 200.7 2.41 31.32587 

113 2.5% 13 201.0 2.40 30.93665 

114 2.5% 14 200.6 2.38 30.49488 

115 2.5% 15 200.5 2.40 31.10845 

116 2.5% 16 200.8 2.39 30.71669 

117 2.5% 17 201.0 2.40 30.93665 

118 2.5% 18 200.9 2.40 30.97101 

119 2.5% 19 200.6 2.40 31.07409 

120 2.5% 20 200.5 2.39 30.82020 

121 3.0% 1 199.8 2.37 30.47997 

122 3.0% 2 200.5 2.39 30.82020 

123 3.0% 3 200.1 2.40 31.24589 

124 3.0% 4 200.1 2.40 31.24589 

125 3.0% 5 200.0 2.37 30.41038 

126 3.0% 6 200.6 2.39 30.78570 

127 3.0% 7 200.7 2.40 31.03973 

128 3.0% 8 200.0 2.37 30.41038 

129 3.0% 9 201.0 2.38 30.35629 

130 3.0% 10 200.9 2.41 31.25744 

131 3.0% 11 200.3 2.38 30.59883 

132 3.0% 12 200.8 2.40 31.00537 

133 3.0% 13 200.7 2.39 30.75119 

134 3.0% 14 200.1 2.37 30.37558 

135 3.0% 15 200.6 2.39 30.78570 

136 3.0% 16 200.9 2.41 31.25744 

137 3.0% 17 200.6 2.39 30.78570 

138 3.0% 18 200.4 2.38 30.56418 
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139 3.0% 19 200.6 2.40 31.07409 

140 3.0% 20 200.5 2.40 31.10845 

141 3.5% 1 200.4 2.39 30.85470 

142 3.5% 2 200.3 2.39 30.88921 

143 3.5% 3 200.3 2.39 30.88921 

144 3.5% 4 200.8 2.40 31.00537 

145 3.5% 5 200.4 2.40 31.14281 

146 3.5% 6 200.4 2.39 30.85470 

147 3.5% 7 200.8 2.39 30.71669 

148 3.5% 8 200.6 2.39 30.78570 

149 3.5% 9 200.7 2.39 30.75119 

150 3.5% 10 200.7 2.38 30.46023 

151 3.5% 11 200.1 2.38 30.66812 

152 3.5% 12 200.6 2.40 31.07409 

153 3.5% 13 200.2 2.38 30.63347 

154 3.5% 14 200.3 2.38 30.59883 

155 3.5% 15 200.6 2.40 31.07409 

156 3.5% 16 200.6 2.39 30.78570 

157 3.5% 17 199.9 2.37 30.44517 

158 3.5% 18 200.6 2.40 31.07409 

159 3.5% 19 200.9 2.37 30.09723 

160 3.5% 20 200.7 2.38 30.46023 

161 4.0% 1 200.2 2.38 30.63347 

162 4.0% 2 199.8 2.37 30.47997 

163 4.0% 3 200.5 2.39 30.82020 

164 4.0% 4 200.6 2.40 31.07409 

165 4.0% 5 200.5 2.39 30.82020 

166 4.0% 6 201.0 2.41 31.22322 

167 4.0% 7 200.6 2.39 30.78570 

168 4.0% 8 199.8 2.37 30.47997 

169 4.0% 9 200.2 2.38 30.63347 

170 4.0% 10 200.6 2.39 30.78570 

171 4.0% 11 200.4 2.38 30.56418 

172 4.0% 12 200.2 2.38 30.63347 

173 4.0% 13 200.3 2.39 30.88921 

174 4.0% 14 200.1 2.38 30.66812 

175 4.0% 15 200.0 2.37 30.41038 

176 4.0% 16 200.3 2.38 30.59883 

177 4.0% 17 200.1 2.38 30.66812 

178 4.0% 18 200.7 2.39 30.75119 

179 4.0% 19 200.2 2.38 30.63347 

180 4.0% 20 200.5 2.40 31.10845 

181 4.5% 1 200.0 2.37 30.41038 

182 4.5% 2 200.4 2.38 30.56418 

183 4.5% 3 200.1 2.38 30.66812 

184 4.5% 4 200.4 2.38 30.56418 

185 4.5% 5 200.0 2.37 30.41038 
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186 4.5% 6 200.9 2.41 31.25744 

187 4.5% 7 200.4 2.39 30.85470 

188 4.5% 8 200.3 2.38 30.59883 

189 4.5% 9 200.2 2.38 30.63347 

190 4.5% 10 201.0 2.41 31.22322 

191 4.5% 11 200.1 2.38 30.66812 

192 4.5% 12 200.5 2.39 30.82020 

193 4.5% 13 200.8 2.40 31.00537 

194 4.5% 14 200.8 2.40 31.00537 

195 4.5% 15 200.6 2.39 30.78570 

196 4.5% 16 200.8 2.39 30.71669 

197 4.5% 17 200.4 2.38 30.56418 

198 4.5% 18 200.3 2.38 30.59883 

199 4.5% 19 200.5 2.39 30.82020 

200 4.5% 20 200.4 2.38 30.56418 

201 5.0% 1 200.0 2.38 30.70277 

202 5.0% 2 200.8 2.39 30.71669 

203 5.0% 3 200.3 2.38 30.59883 

204 5.0% 4 200.3 2.38 30.59883 

205 5.0% 5 200.5 2.39 30.82020 

206 5.0% 6 201.0 2.41 31.22322 

207 5.0% 7 200.4 2.38 30.56418 

208 5.0% 8 200.4 2.38 30.56418 

209 5.0% 9 200.6 2.38 30.49488 

210 5.0% 10 199.8 2.39 31.06173 

211 5.0% 11 200.2 2.38 30.63347 

212 5.0% 12 200.6 2.39 30.78570 

213 5.0% 13 199.7 2.37 30.51476 

214 5.0% 14 199.8 2.37 30.47997 

215 5.0% 15 200.2 2.38 30.63347 

216 5.0% 16 200.2 2.38 30.63347 

217 5.0% 17 200.5 2.39 30.82020 

218 5.0% 18 200.2 2.38 30.63347 

219 5.0% 19 200.5 2.39 30.82020 

220 5.0% 20 199.9 2.37 30.44517 
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Appendix IV.4: UV assay calibration 

nominal content [mg] conc. [g/100ml]

0 0.0000
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2 0.0010
3 0.0015
4 0.0020
5 0.0025
6 0.0030
7 0.0035
8 0.0040
9 0.0045

10 0.0050

Appendix IV.5: UV assay calibration line for folic acid tablets 
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conc. [g/100ml] UV A 

0.0000 0.002 
0.0005 0.119 
0.0010 0.234 
0.0015 0.343 
0.0020 0.456 
0.0025 0.581 
0.0030 0.724 
0.0035 0.839 
0.0040 0.947 
0.0045 1.071 
0.0050 1.186 

 

y = 4.217x

R² > 0.999

UV calibration line for folic acid tablets

UV assay

Linear (UV assay)
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Appendix IV.1: UV referencing for calibration / validation folic acid tablets 

# tab
let  

tablet 
mass[mg]  

UV Abs nominal 
[mg] 

referenced content 
[mg] 

1 1 200.5 0.00300 0.00000 0.02537 

2 2 200.3 0.00200 0.00000 0.01689 

3 3 200.4 0.00400 0.00000 0.03381 

4 4 200.2 0.00500 0.00000 0.04222 

5 5 200.3 0.00500 0.00000 0.04224 

6 6 200.6 0.00100 0.00000 0.00846 

7 7 200.1 0.00200 0.00000 0.01688 

8 8 200.2 0.00600 0.00000 0.05066 

9 9 200.2 0.00300 0.00000 0.02533 

10 10 200.2 0.00400 0.00000 0.03377 

11 11 200.6 0.00300 0.00000 0.02538 

12 12 200.5 0.00200 0.00000 0.01691 

13 13 200.4 0.00200 0.00000 0.01690 

14 14 200.5 0.00100 0.00000 0.00846 

15 15 200.6 0.00300 0.00000 0.02538 

16 16 200.5 0.00100 0.00000 0.00846 

17 17 200.5 0.00200 0.00000 0.01691 

18 18 200.3 0.00100 0.00000 0.00845 

19 19 200.1 0.00300 0.00000 0.02532 

20 20 200.5 0.00100 0.00000 0.00846 

21 1 200.0 0.14400 1.00000 1.21460 

22 2 200.2 0.15400 1.00000 1.30024 

23 3 200.3 0.13400 1.00000 1.13195 

24 4 200.4 0.13100 1.00000 1.10716 

25 5 200.4 0.14600 1.00000 1.23393 

26 6 200.6 0.14700 1.00000 1.24362 

27 7 200.2 0.14600 1.00000 1.23270 

28 8 200.9 0.11200 1.00000 0.94894 

29 9 200.6 0.14000 1.00000 1.18440 

30 10 200.5 0.14100 1.00000 1.19227 

31 11 200.0 0.14100 1.00000 1.18929 

32 12 200.4 0.12900 1.00000 1.09025 

33 13 200.9 0.11600 1.00000 0.98283 

34 14 200.2 0.11900 1.00000 1.00473 

35 15 200.3 0.12200 1.00000 1.03058 

36 16 200.8 0.14200 1.00000 1.20252 

37 17 200.4 0.11200 1.00000 0.94658 

38 18 201.1 0.13400 1.00000 1.13647 

39 19 200.5 0.14100 1.00000 1.19227 

40 20 200.7 0.12100 1.00000 1.02417 

41 1 200.6 0.23500 2.00000 1.98810 

42 2 200.0 0.22500 2.00000 1.89781 

43 3 200.6 0.25400 2.00000 2.14884 

44 4 201.0 0.24300 2.00000 2.05988 
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# tab
let  

tablet 
mass[mg]  

UV Abs nominal 
[mg] 

referenced content 
[mg] 

45 5 200.8 0.22000 2.00000 1.86306 

46 6 200.9 0.22600 2.00000 1.91482 

47 7 200.1 0.22400 2.00000 1.89032 

48 8 200.2 0.25200 2.00000 2.12767 

49 9 201.1 0.25500 2.00000 2.16268 

50 10 200.6 0.22200 2.00000 1.87812 

51 11 200.5 0.23400 2.00000 1.97865 

52 12 200.9 0.22700 2.00000 1.92329 

53 13 200.6 0.21000 2.00000 1.77660 

54 14 200.6 0.21400 2.00000 1.81044 

55 15 200.6 0.25100 2.00000 2.12346 

56 16 200.2 0.24100 2.00000 2.03480 

57 17 200.6 0.24000 2.00000 2.03040 

58 18 200.6 0.20800 2.00000 1.75968 

59 19 200.5 0.22300 2.00000 1.88564 

60 20 200.8 0.25300 2.00000 2.14252 

61 1 200.7 0.31900 3.00000 2.70009 

62 2 200.2 0.35600 3.00000 3.00576 

63 3 200.5 0.31500 3.00000 2.66357 

64 4 200.6 0.33300 3.00000 2.81718 

65 5 201.0 0.34400 3.00000 2.91604 

66 6 199.9 0.31200 3.00000 2.63031 

67 7 200.0 0.33600 3.00000 2.83406 

68 8 200.6 0.34100 3.00000 2.88486 

69 9 200.4 0.36400 3.00000 3.07637 

70 10 200.8 0.33900 3.00000 2.87080 

71 11 200.8 0.32600 3.00000 2.76071 

72 12 200.7 0.36700 3.00000 3.10637 

73 13 200.0 0.37400 3.00000 3.15458 

74 14 200.5 0.35100 3.00000 2.96798 

75 15 200.6 0.32900 3.00000 2.78334 

76 16 200.9 0.33700 3.00000 2.85529 

77 17 200.2 0.35500 3.00000 2.99731 

78 18 200.3 0.33200 3.00000 2.80452 

79 19 200.8 0.31900 3.00000 2.70143 

80 20 200.6 0.34300 3.00000 2.90178 

81 1 200.2 0.40400 4.00000 3.41103 

82 2 200.5 0.46400 4.00000 3.92349 

83 3 200.1 0.43400 4.00000 3.66249 

84 4 200.3 0.46200 4.00000 3.90268 

85 5 200.4 0.46400 4.00000 3.92153 

86 6 200.6 0.45000 4.00000 3.80700 

87 7 200.1 0.44500 4.00000 3.75532 

88 8 200.1 0.41500 4.00000 3.50215 

89 9 200.4 0.44800 4.00000 3.78630 
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# tab
let  

tablet 
mass[mg]  

UV Abs nominal 
[mg] 

referenced content 
[mg] 

90 10 200.8 0.46600 4.00000 3.94629 

91 11 200.3 0.45300 4.00000 3.82665 

92 12 200.1 0.47400 4.00000 4.00005 

93 13 200.8 0.47700 4.00000 4.03945 

94 14 200.3 0.42600 4.00000 3.59857 

95 15 200.3 0.50300 4.00000 4.24902 

96 16 200.5 0.49100 4.00000 4.15179 

97 17 200.3 0.44400 4.00000 3.75062 

98 18 200.3 0.43600 4.00000 3.68305 

99 19 200.3 0.48000 4.00000 4.05473 

100 20 200.4 0.46900 4.00000 3.96379 

101 1 200.9 0.55500 5.00000 4.70232 

102 2 201.1 0.58000 5.00000 4.91903 

103 3 201.1 0.59800 5.00000 5.07169 

104 4 201.0 0.59400 5.00000 5.03526 

105 5 200.9 0.58500 5.00000 4.95650 

106 6 200.2 0.54200 5.00000 4.57618 

107 7 201.0 0.57500 5.00000 4.87420 

108 8 200.4 0.54100 5.00000 4.57230 

109 9 200.9 0.61500 5.00000 5.21068 

110 10 200.4 0.62700 5.00000 5.29913 

111 11 200.3 0.61700 5.00000 5.21202 

112 12 200.7 0.56700 5.00000 4.79921 

113 13 201.0 0.58600 5.00000 4.96745 

114 14 200.6 0.58000 5.00000 4.90680 

115 15 200.5 0.63200 5.00000 5.34406 

116 16 200.8 0.63100 5.00000 5.34358 

117 17 201.0 0.57300 5.00000 4.85725 

118 18 200.9 0.57900 5.00000 4.90567 

119 19 200.6 0.58700 5.00000 4.96602 

120 20 200.5 0.59400 5.00000 5.02274 

121 1 199.8 0.76000 6.00000 6.40396 

122 2 200.5 0.66000 6.00000 5.58082 

123 3 200.1 0.76200 6.00000 6.43046 

124 4 200.1 0.64900 6.00000 5.47686 

125 5 200.0 0.68100 6.00000 5.74403 

126 6 200.6 0.70500 6.00000 5.96430 

127 7 200.7 0.69700 6.00000 5.89956 

128 8 200.0 0.67500 6.00000 5.69342 

129 9 201.0 0.68300 6.00000 5.78970 

130 10 200.9 0.74800 6.00000 6.33755 

131 11 200.3 0.75600 6.00000 6.38620 

132 12 200.8 0.72100 6.00000 6.10574 

133 13 200.7 0.68500 6.00000 5.79799 

134 14 200.1 0.72700 6.00000 6.13509 
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# tab
let  

tablet 
mass[mg]  

UV Abs nominal 
[mg] 

referenced content 
[mg] 

135 15 200.6 0.68700 6.00000 5.81202 

136 16 200.9 0.72300 6.00000 6.12573 

137 17 200.6 0.72500 6.00000 6.13350 

138 18 200.4 0.73900 6.00000 6.24571 

139 19 200.6 0.74200 6.00000 6.27732 

140 20 200.5 0.73800 6.00000 6.24037 

141 1 200.4 0.80600 7.00000 6.81196 

142 2 200.3 0.81200 7.00000 6.85925 

143 3 200.3 0.79400 7.00000 6.70720 

144 4 200.8 0.86300 7.00000 7.30826 

145 5 200.4 0.79900 7.00000 6.75280 

146 6 200.4 0.82200 7.00000 6.94719 

147 7 200.8 0.83800 7.00000 7.09655 

148 8 200.6 0.86200 7.00000 7.29252 

149 9 200.7 0.85500 7.00000 7.23691 

150 10 200.7 0.87300 7.00000 7.38927 

151 11 200.1 0.80300 7.00000 6.77645 

152 12 200.6 0.79300 7.00000 6.70878 

153 13 200.2 0.81200 7.00000 6.85583 

154 14 200.3 0.87700 7.00000 7.40833 

155 15 200.6 0.80500 7.00000 6.81030 

156 16 200.6 0.81800 7.00000 6.92028 

157 17 199.9 0.83900 7.00000 7.07317 

158 18 200.6 0.82700 7.00000 6.99642 

159 19 200.9 0.84300 7.00000 7.14245 

160 20 200.7 0.81600 7.00000 6.90680 

161 1 200.2 0.94400 8.00000 7.97032 

162 2 199.8 0.95700 8.00000 8.06394 

163 3 200.5 0.93500 8.00000 7.90616 

164 4 200.6 0.90600 8.00000 7.66476 

165 5 200.5 0.96000 8.00000 8.11756 

166 6 201.0 0.91600 8.00000 7.76482 

167 7 200.6 0.91300 8.00000 7.72398 

168 8 199.8 0.92500 8.00000 7.79430 

169 9 200.2 0.94600 8.00000 7.98721 

170 10 200.6 0.92200 8.00000 7.80012 

171 11 200.4 0.98900 8.00000 8.35860 

172 12 200.2 0.98400 8.00000 8.30804 

173 13 200.3 0.92500 8.00000 7.81380 

174 14 200.1 0.93100 8.00000 7.85663 

175 15 200.0 0.92700 8.00000 7.81897 

176 16 200.3 0.92100 8.00000 7.78001 

177 17 200.1 0.92600 8.00000 7.81444 

178 18 200.7 0.94600 8.00000 8.00715 

179 19 200.2 0.98500 8.00000 8.31649 
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# tab
let  

tablet 
mass[mg]  

UV Abs nominal 
[mg] 

referenced content 
[mg] 

180 20 200.5 0.92100 8.00000 7.78778 

181 1 200.0 1.07400 9.00000 9.05887 

182 2 200.4 1.03100 9.00000 8.71357 

183 3 200.1 1.05900 9.00000 8.93681 

184 4 200.4 1.05500 9.00000 8.91641 

185 5 200.0 1.07000 9.00000 9.02513 

186 6 200.9 1.07300 9.00000 9.09116 

187 7 200.4 1.07100 9.00000 9.05163 

188 8 200.3 1.01300 9.00000 8.55717 

189 9 200.2 1.02100 9.00000 8.62044 

190 10 201.0 1.07600 9.00000 9.12112 

191 11 200.1 1.08400 9.00000 9.14779 

192 12 200.5 1.04000 9.00000 8.79402 

193 13 200.8 1.05300 9.00000 8.91727 

194 14 200.8 1.08700 9.00000 9.20519 

195 15 200.6 1.05700 9.00000 8.94222 

196 16 200.8 1.08600 9.00000 9.19672 

197 17 200.4 1.08200 9.00000 9.14460 

198 18 200.3 1.07700 9.00000 9.09780 

199 19 200.5 1.06300 9.00000 8.98850 

200 20 200.4 1.06800 9.00000 9.02628 

201 1 200.0 1.15300 10.00000 9.72521 

202 2 200.8 1.18100 10.00000 10.00123 

203 3 200.3 1.15300 10.00000 9.73980 

204 4 200.3 1.17900 10.00000 9.95943 

205 5 200.5 1.12200 10.00000 9.48739 

206 6 201.0 1.20000 10.00000 10.17225 

207 7 200.4 1.16900 10.00000 9.87988 

208 8 200.4 1.18700 10.00000 10.03201 

209 9 200.6 1.16900 10.00000 9.88974 

210 10 199.8 1.17400 10.00000 9.89244 

211 11 200.2 1.18600 10.00000 10.01356 

212 12 200.6 1.18400 10.00000 10.01664 

213 13 199.7 1.18900 10.00000 10.01382 

214 14 199.8 1.13300 10.00000 9.54696 

215 15 200.2 1.19700 10.00000 10.10643 

216 16 200.2 1.15200 10.00000 9.72649 

217 17 200.5 1.17800 10.00000 9.96092 

218 18 200.2 1.17600 10.00000 9.92913 

219 19 200.5 1.16300 10.00000 9.83408 

220 20 199.9 1.15700 10.00000 9.75407 

Average 200.46    

SD 0.031    

Max 201.10    

Min 199.70    
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Appendix IV.6: Bulk and tapped volume data 

 MCC Ac-Di-Sol Mg-stearate 

mass [g] 43.75 73.17 22.91 

        

bulk volume [ml] 112 132 96 

        

tapped volume [ml]    

after 10 taps 110 126 94 

after 500 taps 96 112 83 

after 1250 taps 94 111 76 

 after 2500 taps     74 



 
232 Appendix IV 

 



 
233 Appendix IV 

Appendix IV.7: Calibration protocol of NIR model A1 

Software NIRCal V5.2 (Build 1000) 

Project File Name folic acid 

Project Comment  

Project GUID {68EA7997-6ACB-4021-9791-F8D94B542C86}P    

Calibration Name A1 

Calibration Comment  

Calibration GUID {073F90A1-75C3-42B7-AB76-F87557A16636} 

Calibration Version 0 

_____________________________
____ 

 

  

Properties in Project Folic acid, Folic acid nominal. (total 2/2) 

Properties in Calibration Set Folic acid. (total 1/2) 

_____________________________
____ 

 

  

Spectra in Project 220 

Spectra in Calibration Set 161 

Spectra in Validation Set 59 

  

Spectra in Calibration Set 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 

 25-26, 28-29, 31-32, 34-35, 37-38, 40-41, 43-44, 46-
47, 

 49-50, 52-53, 55, 58-62, 64-65, 67-68, 70-71, 73-74, 
76-77, 

 79-83, 85-86, 88-89, 91-93, 95, 99-106, 109, 112-113, 

 115-116, 118-119, 121-122, 124-125, 127-128, 130-
131, 

 133-134, 136-137, 139-140, 142-143, 145-146, 148-
149, 

 151-152, 154-155, 157-158, 160-164, 166-167, 169-
170, 

 172-173, 175-216, 218, 220. 

  

Spectra in Validation Set 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 
48, 

 51, 54, 56-57, 63, 66, 69, 72, 75, 78, 84, 87, 90, 94, 
96-98, 

 107-108, 110-111, 114, 117, 120, 123, 126, 129, 132, 
135, 

 138, 141, 144, 147, 150, 153, 156, 159, 165, 168, 
171, ) 

 174, 217, 219. 

  

Validation Method Validation Set 

  

C-Set Spectra  

Instrument type / serial NIRFlex N500 / 600000281 

y-Unit / Measurements / Scans Transmittance / 1 / 64 

  

V-Set Spectra  

Instrument type / serial NIRFlex N500 / 600000281 



 
234 Appendix IV 

y-Unit / Measurements / Scans Transmittance / 1 / 64 

  

Spectra Resolution 4 1/cm 

Spectra y-Unit Transmittance 

Wavelengths Project Set 6000-11520. (total 1381/1381) 

Wavelengths Calibration Set 6000-10600. (total 1151/1381) 

  

Number of Data Pretreatments 2 

Data Pretreatment Sequence  db1,nle 

Data Pretreatment Sequence  1. First Derivative BCAP 

 2. Normalization to Unit Length*, 

  6000-10600. 

Method PLS 

Max Iterations 3000 

Mean Centring yes 

Number of Primary PCs 5 

Secondary/Calibration PCs 1-5. (total 5/5) 

  

Blow Up Parameter  

Residual Blow Up 2 

Score Blow Up 1.05 

  

Max C-Set Spectra Residual 0.000556 

Max Allowed Residual for 
Calibration 

0.001113 

_____________________________  

  

Q-Value V5 0.878166 

Validation Method Validation Set 

  

C-Set Residual too big 0 

V-Set Residual too big 0 

  

Num Properties 1 

Rel. Consistency 0.000604 

Weighted BIAS 0.007186 

Validity 0.005527 

Comparability 0.002164 

Precision 0.027079 

Weighted Accuracy 0.088387 

_____________________________  

  

Property Statistics Folic acid [mg] 

  

C-Set BIAS 0 

V-Set BIAS 0.072673 

C-Set SEE (SEC) 0.273086 

V-Set SEE (SEP) 0.273855 

Consistency 99.7192 
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C-Set Regression Coefficient 0.996637 

V-Set Regression Coefficient 0.994473 

C-Set Regression Intercept 0.033263 

V-Set Regression Intercept 0.063931 

C-Set Regression Slope 0.993286 

V-Set Regression Slope 0.972477 

C-Set Orig. min 0.008435 

V-Set Orig. min 1.02903 

C-Set Orig. max 10.1216 

V-Set Orig. max 9.16008 

C-Set Orig. mean 4.954 

V-Set Orig. mean 4.96332 

C-Set Orig. sdev 3.3327 

V-Set Orig. sdev 2.57637 

  

C-Set Pred. min -0.13916 

V-Set Pred. min 0.893304 

C-Set Pred. max 10.3353 

V-Set Pred. max 9.07157 

C-Set Pred. mean 4.954 

V-Set Pred. mean 4.89065 

C-Set Pred. sdev 3.32149 

V-Set Pred. sdev 2.51938 

  

C-Set RSS 11.9321 

V-Set RSS 4.6614 

  

C-Set Durbin-Watson 1.86243 

C-Set Durbin-Watson in range 1.5 
to 2.5 

Yes 

V-Set Durbin-Watson 1.28254 

V-Set Durbin-Watson in range 1.5 
to 2.5 

No 

  

C-Set Resid. min -1.32909 

V-Set Resid. min -0.44622 

C-Set Resid. max 0.643026 

V-Set Resid. max 1.06942 

  

V-Set t-value 2.03836 

V-Set t-Test(n-1,2-tail) Confidence 
[%] 

95.3918 

  

C-Set n 161 

V-Set n 59 
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Appendix IV.8: Calibration protocol of NIR model A2 

Software NIRCal V5.2 (Build 3000) 

Project File Name folic acid  

Project Comment  

Project GUID {9A382F82-8E6E-42E7-9C70-AFD3F9B17884} 

Calibration Name A2 

Calibration Comment  

Calibration GUID {DF1DCEDF-3DFA-410F-B9D0-EC5B7E510DCD} 

Calibration Version 0 

_____________________________
____ 

 

  

Properties in Project Folic acid, Folic acid nominal. (total 2/2) 

Properties in Calibration Set Folic acid. (total 1/2) 

_____________________________
____ 

 

  

Spectra in Project 220 

Spectra in Calibration Set 161 

Spectra in Validation Set 59 

  

Spectra in Calibration Set 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29,  

 31-32, 34-35, 

 37-38, 40-41, 43-44, 46-47, 49-50, 52-53, 55-56, 58-59, 61-62, 

  64-65, 67-68, 

 70-71, 73-74, 76-77, 79-80, 82-83, 85, 88-89, 91-95, 97-98,  

 100-101, 103-104, 

 106-107, 109-110, 112-113, 115-116, 118-119, 121-122,  

 124-125, 127-128, 130-131, 

 133-134, 136-137, 139-140, 142-143, 145-146, 148-149,  

 151-152, 154-155, 157-158, 

 160-161, 163-164, 166-167, 169-170, 172-173, 175-218, 220.  

  

Spectra in Validation Set 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54,  

 57, 60, 63, 

 66, 69, 72, 75, 78, 81, 84, 86-87, 90, 96, 99, 102, 105, 108, 111,  

 114, 117, 

 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 
162, 165, 168, 171, 174, 219 

  

Validation Method Validation Set 

  

C-Set Spectra  

Instrument type / serial NIRFlex N500 / 600000281 

y-Unit / Measurements / Scans Transmittance / 1 / 64 

Spectra Resolution 4 1/cm 

Spectra y-Unit Transmittance 

_____________________________
____ 
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Wavelengths Project Set 6000-11520. (total 1381/1381) 

Wavelengths Calibration Set 8500-10600. (total 526/1381) 

  

Number of Data Pretreatments 3 

Data Pretreatment Sequence  ncl,db1,SNV 

Data Pretreatment Sequence  1. Normalization by Closure*, 6000-11520.  

 2. First Derivative BCAP 

 3. SNV Standard Normal Variate*, 8500-10600.  

  

Method PLS 

Max Iterations 3000 

Mean Centring yes 

Number of Primary PCs 4 

Secondary/Calibration PCs 1-4. (total 4/4) 

Blow Up Parameter  

Residual Blow Up 2 

Score Blow Up 1.05 

  

Max C-Set Spectra Residual 0.019124 

Max Allowed Residual for 
Calibration 

0.038248 

_____________________________
____ 

 

  

Q-Value V5 0.876954 

Validation Method Validation Set 

  

C-Set Residual too big 0 

V-Set Residual too big 0 

  

Num Properties 1 

Rel. Consistency 0.003751 

Weighted BIAS 0.00206 

Validity 0.00645 

Comparability 0.002509 

Precision 0.028773 

Weighted Accuracy 0.090958 

_____________________________  

  

Property Statistics Folic acid [mg] 

  

C-Set BIAS 0 

V-Set BIAS 0.02083 

C-Set SEE (SEC) 0.295844 

V-Set SEE (SEP) 0.290983 

Consistency 101.67 

  

C-Set Regression Coefficient 0.996059 

V-Set Regression Coefficient 0.99355 

C-Set Regression Intercept 0.039039 
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V-Set Regression Intercept 0.035007 

C-Set Regression Slope 0.992134 

V-Set Regression Slope 0.988696 

C-Set Pred. min -0.08475 

V-Set Pred. min 0.880036 

C-Set Pred. max 10.6774 

V-Set Pred. max 9.42144 

C-Set Pred. mean 4.96275 

V-Set Pred. mean 4.91862 

C-Set Pred. sdev 3.32248 

V-Set Pred. sdev 2.55331 

  

C-Set RSS 14.0038 

V-Set RSS 4.93652 

  

C-Set Durbin-Watson 1.97961 

C-Set Durbin-Watson in range 1.5 
to 2.5 

Yes 

V-Set Durbin-Watson 1.63596 

V-Set Durbin-Watson in range 1.5 
to 2.5 

Yes 

  

C-Set Resid. min -1.69417 

V-Set Resid. min -0.86411 

C-Set Resid. max 0.786573 

V-Set Resid. max 1.02183 

  

V-Set t-value 0.549857 

V-Set t-Test(n-1,2-tail) Confidence 
[%] 

41.5471 

  

C-Set n 161 

V-Set n 59 
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Appendix IV.9: Calibration protocol of NIR model A3 

Software NIRCal V5.2 (Build 3000) 

Project File Name folic acid 

Project Comment 

Project GUID {9A382F82-8E6E-42E7-9C70-AFD3F9B17884} 

Calibration Name A3 

Calibration Comment 

Calibration GUID {DF1DCEDF-3DFA-410F-B9D0-EC5B7E510DCD} 

Calibration Version 1 

_____________________________________ 

  

Properties in Project Folic acid, Folic acid nominal. (total 2/2) 

Properties in Calibration Set Folic acid. (total 1/2) 

_____________________________________ 

  

Spectra in Project 220 

Spectra in Calibration Set 160 

Spectra in Validation Set 59 

  

Spectra in Calibration Set 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29,  

 31-32, 34-35, 

 37-38, 40-41, 43-44, 46-47, 49-50, 52-53, 55-56, 58-59, 61-62,  

 64-65, 67-68, 

 70-71, 73-74, 76-77, 79-80, 82-83, 85, 88-89, 91-92, 94-95, 97-98, 100-101, 

 103-104, 106-107, 109-110, 112-113, 115-116, 118-119, 121-122, 124-125, 
127-128, 

 130-131, 133-134, 136-137, 139-140, 142-143, 145-146, 148-149, 151-152, 
154-155, 

 157-158, 160-161, 163-164, 166-167, 169-170, 172-173, 175-218, 220.  

  

Spectra in Validation Set 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 

 66, 69, 72, 75, 78, 81, 84, 86-87, 90, 96, 99, 102, 105, 108, 111,  

 114, 117, 

 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156,  

 159, 162, 165, 

 168, 171, 174, 219.  

Validation Method Validation Set 

  

C-Set Spectra 

Instrument type / serial NIRFlex N500 / 600000281 

y-Unit / Measurements / Scans Transmittance / 1 / 64 

  

V-Set Spectra 

Instrument type / serial NIRFlex N500 / 600000281 

y-Unit / Measurements / Scans Transmittance / 1 / 64 

Spectra Resolution 4 1/cm 

Spectra y-Unit Transmittance 

_____________________________________ 
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Wavelengths Project Set 6000-11520. (total 1381/1381) 

Wavelengths Calibration Set 8876-9216, 10488-10724. (total 146/1381) 

  

Number of Data Pretreatments 1 

Data Pretreatment Sequence  nsd 

Data Pretreatment Sequence  1. Normalization by Sdev*, 6000-11520. 

  

Method PLS 

Max Iterations 3000 

Mean Centring yes 

Number of Primary PCs 8 

Secondary/Calibration PCs 1-8. (total 8/8) 

  

Blow Up Parameter 

Residual Blow Up 2 

Score Blow Up 1.05 

  

Max C-Set Spectra Residual 0.000995 

Max Allowed Residual for 
Calibration 

0.00199 

_____________________________________ 

  

Q-Value V5 0.861954 

Validation Method Validation Set 

  

C-Set Residual too big 0 

V-Set Residual too big 0 

  

Num Properties 1 

Rel. Consistency 0.001525 

Weighted BIAS 0.002738 

Validity 0.008658 

Comparability 0.003589 

Precision 0.033474 

Weighted Accuracy 0.105905 

_____________________________________ 

  

Property Statistics            Folic acid [mg] 

  

C-Set BIAS 0 

V-Set BIAS 0.027694 

C-Set SEE (SEC) 0.336494 

V-Set SEE (SEP) 0.338533 

Consistency 99.3978 

  

C-Set Regression Coefficient 0.994931 

V-Set Regression Coefficient 0.991342 

C-Set Regression Intercept 0.050189 

V-Set Regression Intercept -0.00555 
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C-Set Regression Slope 0.989887 

V-Set Regression Slope 0.995517 

C-Set Orig. min 0.008435 

V-Set Orig. min 1.02903 

C-Set Orig. max 10.1216 

V-Set Orig. max 9.16008 

C-Set Orig. mean 4.96287 

V-Set Orig. mean 4.93945 

C-Set Orig. sdev 3.34609 

V-Set Orig. sdev 2.56585 

  

C-Set Pred. min -0.07869 

V-Set Pred. min 0.80691 

C-Set Pred. max 11.5259 

V-Set Pred. max 9.73067 

C-Set Pred. mean 4.96287 

V-Set Pred. mean 4.91175 

C-Set Pred. sdev 3.32913 

V-Set Pred. sdev 2.57666 

  

C-Set RSS 18.0033 

V-Set RSS 6.69232 

  

C-Set Durbin-Watson 1.50282 

C-Set Durbin-Watson in range 
1.5 to 2.5 

Yes 

V-Set Durbin-Watson 1.69863 

V-Set Durbin-Watson in range 
1.5 to 2.5 

Yes 

  

C-Set Resid. min -1.42957 

V-Set Resid. min -1.11547 

C-Set Resid. max 0.798551 

V-Set Resid. max 0.904472 

  

V-Set t-value 0.628364 

V-Set t-Test(n-1,2-tail) 
Confidence [%] 

46.7768 

  

C-Set n 160 

V-Set n 59 
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16. Appendix V 

Appendix V.1: Porosity and thickness outlier folic acid tablets 

Batch No. Gap 
size 

[mm] 

Uppe
r force 

[kN] 

Mass 
[mg] 

Thick
ness [mm] 

Volum
e [cm3] 

Poro
sity [%] 

UV 
Content 

0.0% 1 1.00 12.87 199.30 1.98 0.1555 16.97 0.0000 

0.0% 2 1.00 13.44 204.90 2.02 0.1590 16.53 0.0000 

0.0% 3 1.10 10.49 196.40 2.02 0.1586 19.78 0.0000 

0.0% 4 1.10 10.07 200.00 2.05 0.1608 19.46 0.0000 

0.0% 5 1.20 9.52 200.20 2.11 0.1659 21.83 0.0000 

0.0% 6 1.20 8.40 198.50 2.10 0.1648 21.99 0.0000 

0.0% 7 1.30 7.94 199.10 2.17 0.1701 24.20 0.0000 

0.0% 8 1.30 7.96 202.50 2.19 0.1722 23.86 0.0000 

0.0% 9 1.40 7.47 198.20 2.22 0.1745 26.42 0.0000 

0.0% 10 1.40 7.58 205.00 2.28 0.1787 25.72 0.0000 

0.0% 11 1.50 6.65 196.70 2.27 0.1785 28.61 0.0000 

0.0% 12 1.50 6.02 197.30 2.28 0.1788 28.54 0.0000 

0.0% 13 1.60 4.00 203.00 2.39 0.1873 29.82 0.0000 

0.0% 14 1.60 4.13 201.50 2.37 0.1864 29.98 0.0000 

0.0% 15 1.70 4.31 198.00 2.41 0.1891 32.19 0.0000 

0.0% 16 1.70 5.21 198.10 2.41 0.1892 32.18 0.0000 

0.0% 17 1.80 3.23 200.80 2.49 0.1958 33.58 0.0000 

0.0% 18 1.80 3.33 195.20 2.45 0.1923 34.25 0.0000 

0.0% 19 1.90 3.91 203.70 2.58 0.2025 34.86 0.0000 

0.0% 20 1.90 3.72 200.90 2.56 0.2008 35.20 0.0000 

0.5% 1 1.00 12.03 202.50 2.01 0.1575 16.71 1.0125 

0.5% 2 1.00 12.24 196.90 1.96 0.1540 17.17 0.9845 

0.5% 3 1.10 11.35 204.50 2.08 0.1637 19.07 1.0225 

0.5% 4 1.10 10.86 204.60 2.08 0.1637 19.06 1.0230 

0.5% 5 1.20 10.20 203.00 2.13 0.1676 21.57 1.0150 

0.5% 6 1.20 10.19 201.50 2.12 0.1667 21.71 1.0075 

0.5% 7 1.30 8.98 200.20 2.17 0.1708 24.09 1.0010 

0.5% 8 1.30 7.57 203.80 2.20 0.1731 23.73 1.0190 

0.5% 9 1.40 6.74 200.50 2.24 0.1759 26.18 1.0025 

0.5% 10 1.40 6.77 197.70 2.22 0.1742 26.48 0.9885 

0.5% 11 1.50 5.04 193.80 2.25 0.1766 28.94 0.9690 

0.5% 12 1.50 6.54 198.70 2.29 0.1797 28.39 0.9935 

0.5% 13 1.60 4.93 191.70 2.29 0.1802 31.11 0.9585 

0.5% 14 1.60 4.55 193.60 2.31 0.1814 30.89 0.9680 

0.5% 15 1.70 4.58 195.50 2.39 0.1875 32.49 0.9775 

0.5% 16 1.70 3.77 192.50 2.36 0.1857 32.85 0.9625 

0.5% 17 1.80 4.59 194.80 2.45 0.1920 34.30 0.9740 
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Batch No. Gap 
size 

[mm] 

Uppe
r force 

[kN] 

Mass 
[mg] 

Thick
ness [mm] 

Volum
e [cm3] 

Poro
sity [%] 

UV 
Content 

0.5% 18 1.80 4.63 193.40 2.43 0.1912 34.47 0.9670 

0.5% 19 1.90 3.11 197.00 2.53 0.1983 35.67 0.9850 

0.5% 20 1.90 4.20 196.10 2.52 0.1978 35.78 0.9805 

1.0% 1 1.00 11.76 202.40 2.00 0.1574 16.72 2.0240 

1.0% 2 1.00 13.04 202.30 2.00 0.1573 16.73 2.0230 

1.0% 3 1.10 11.51 201.60 2.06 0.1618 19.32 2.0160 

1.0% 4 1.10 11.16 202.00 2.06 0.1621 19.28 2.0200 

1.0% 5 1.20 10.18 200.40 2.11 0.1660 21.81 2.0040 

1.0% 6 1.20 9.33 199.60 2.11 0.1655 21.89 1.9960 

1.0% 7 1.30 8.54 198.90 2.16 0.1700 24.22 1.9890 

1.0% 8 1.30 8.67 194.40 2.13 0.1672 24.68 1.9440 

1.0% 9 1.40 6.38 197.50 2.22 0.1740 26.50 1.9750 

1.0% 10 1.40 7.05 197.30 2.21 0.1739 26.52 1.9730 

1.0% 11 1.50 5.34 204.30 2.33 0.1832 27.78 2.0430 

1.0% 12 1.50 6.17 203.00 2.32 0.1824 27.92 2.0300 

1.0% 13 1.60 3.93 197.40 2.34 0.1838 30.45 1.9740 

1.0% 14 1.60 4.64 198.30 2.35 0.1844 30.34 1.9830 

1.0% 15 1.70 4.86 196.60 2.40 0.1882 32.36 1.9660 

1.0% 16 1.70 5.16 198.70 2.41 0.1896 32.11 1.9870 

1.0% 17 1.80 4.32 189.90 2.41 0.1890 34.91 1.8990 

1.0% 18 1.80 2.96 190.80 2.41 0.1895 34.79 1.9080 

1.0% 19 1.90 4.26 193.90 2.50 0.1964 36.05 1.9390 

1.0% 20 1.90 2.57 191.80 2.48 0.1951 36.32 1.9180 

1.5% 1 1.00 11.88 213.60 2.09 0.1644 15.87 3.2040 

1.5% 2 1.00 12.98 210.70 2.07 0.1626 16.09 3.1605 

1.5% 3 1.10 11.79 206.30 2.10 0.1648 18.92 3.0945 

1.5% 4 1.10 11.43 208.90 2.12 0.1664 18.70 3.1335 

1.5% 5 1.20 8.75 209.40 2.19 0.1717 20.99 3.1410 

1.5% 6 1.20 10.15 207.90 2.17 0.1707 21.13 3.1185 

1.5% 7 1.30 7.17 206.40 2.22 0.1747 23.48 3.0960 

1.5% 8 1.30 7.68 205.90 2.22 0.1744 23.53 3.0885 

1.5% 9 1.40 6.70 203.00 2.26 0.1775 25.92 3.0450 

1.5% 10 1.40 6.08 203.30 2.26 0.1777 25.89 3.0495 

1.5% 11 1.50 5.58 201.60 2.31 0.1815 28.07 3.0240 

1.5% 12 1.50 6.46 203.90 2.33 0.1830 27.83 3.0585 

1.5% 13 1.60 5.19 200.00 2.36 0.1854 30.15 3.0000 

1.5% 14 1.60 5.42 201.70 2.37 0.1865 29.96 3.0255 

1.5% 15 1.70 3.63 197.90 2.41 0.1891 32.20 2.9685 

1.5% 16 1.70 4.93 195.60 2.39 0.1876 32.47 2.9340 

1.5% 17 1.80 2.99 199.30 2.48 0.1949 33.76 2.9895 

1.5% 18 1.80 4.32 203.70 2.52 0.1976 33.24 3.0555 

1.5% 19 1.90 2.84 189.00 2.46 0.1933 36.68 2.8350 

1.5% 20 1.90 3.93 192.70 2.49 0.1956 36.20 2.8905 
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Batch No. Gap 
size 

[mm] 

Uppe
r force 

[kN] 

Mass 
[mg] 

Thick
ness [mm] 

Volum
e [cm3] 

Poro
sity [%] 

UV 
Content 

2.0% 1 1.00 12.12 207.40 2.04 0.1606 16.33 4.1480 

2.0% 2 1.00 12.05 206.70 2.04 0.1601 16.39 4.1340 

2.0% 3 1.10 11.93 203.80 2.08 0.1632 19.13 4.0760 

2.0% 4 1.10 11.69 203.70 2.08 0.1632 19.14 4.0740 

2.0% 5 1.20 8.88 204.20 2.14 0.1684 21.46 4.0840 

2.0% 6 1.20 9.50 204.40 2.15 0.1685 21.44 4.0880 

2.0% 7 1.30 7.19 203.70 2.20 0.1730 23.74 4.0740 

2.0% 8 1.30 7.37 204.00 2.21 0.1732 23.71 4.0800 

2.0% 9 1.40 5.94 204.00 2.27 0.1781 25.82 4.0800 

2.0% 10 1.40 5.83 202.40 2.26 0.1771 25.98 4.0480 

2.0% 11 1.50 5.81 198.40 2.29 0.1795 28.42 3.9680 

2.0% 12 1.50 4.81 197.10 2.28 0.1787 28.57 3.9420 

2.0% 13 1.60 4.45 198.90 2.35 0.1848 30.28 3.9780 

2.0% 14 1.60 4.60 197.40 2.34 0.1838 30.45 3.9480 

2.0% 15 1.70 3.58 207.30 2.48 0.1950 31.13 4.1460 

2.0% 16 1.70 5.14 206.60 2.48 0.1945 31.21 4.1320 

2.0% 17 1.80 4.63 201.80 2.50 0.1964 33.46 4.0360 

2.0% 18 1.80 4.23 198.50 2.47 0.1944 33.85 3.9700 

2.0% 19 1.90 2.87 195.20 2.51 0.1972 35.89 3.9040 

2.0% 20 1.90 4.02 191.80 2.48 0.1951 36.32 3.8360 

2.5% 1 1.00 12.48 202.00 2.00 0.1572 16.75 6.0338 

2.5% 2 1.00 12.74 200.20 1.99 0.1560 16.90 5.6306 

2.5% 3 1.10 10.15 198.20 2.03 0.1597 19.62 5.6361 

2.5% 4 1.10 11.78 196.10 2.02 0.1584 19.81 5.3084 

2.5% 5 1.20 9.35 198.00 2.09 0.1645 22.04 5.3442 

2.5% 6 1.20 9.70 200.60 2.12 0.1661 21.79 4.8061 

2.5% 7 1.30 8.95 195.90 2.14 0.1681 24.52 4.9318 

2.5% 8 1.30 7.65 201.10 2.18 0.1714 24.00 4.9550 

2.5% 9 1.40 7.54 195.90 2.20 0.1730 26.67 5.1005 

2.5% 10 1.40 6.83 197.60 2.22 0.1741 26.49 5.2911 

2.5% 11 1.50 6.51 200.50 2.30 0.1808 28.19 4.5771 

2.5% 12 1.50 4.85 199.70 2.30 0.1803 28.28 4.5889 

2.5% 13 1.60 4.47 203.20 2.39 0.1875 29.79 4.6009 

2.5% 14 1.60 5.48 198.00 2.35 0.1842 30.38 5.0326 

2.5% 15 1.70 4.36 201.50 2.44 0.1913 31.79 4.7504 

2.5% 16 1.70 3.38 203.30 2.45 0.1924 31.58 5.0950 

2.5% 17 1.80 4.02 197.70 2.47 0.1939 33.95 4.8643 

2.5% 18 1.80 3.23 197.20 2.46 0.1935 34.01 4.9474 

2.5% 19 1.90 2.59 204.20 2.58 0.2029 34.81 4.9098 

2.5% 20 1.90 4.35 201.20 2.56 0.2010 35.16 4.8904 

3.0% 1 1.00 13.19 201.70 2.00 0.1570 16.78 4.7589 

3.0% 2 1.00 12.78 202.50 2.01 0.1575 16.71 5.5332 
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Batch No. Gap 
size 

[mm] 

Uppe
r force 

[kN] 

Mass 
[mg] 

Thick
ness [mm] 

Volum
e [cm3] 

Poro
sity [%] 

UV 
Content 

3.0% 3 1.10 10.05 203.90 2.08 0.1633 19.12 5.7137 

3.0% 4 1.10 10.58 204.90 2.09 0.1639 19.03 5.9321 

3.0% 5 1.20 10.26 208.50 2.18 0.1711 21.07 6.3522 

3.0% 6 1.20 9.61 202.50 2.13 0.1673 21.62 5.7970 

3.0% 7 1.30 8.09 205.40 2.22 0.1741 23.58 5.9251 

3.0% 8 1.30 7.99 202.00 2.19 0.1719 23.91 5.5902 

3.0% 9 1.40 6.67 203.60 2.26 0.1779 25.86 6.0681 

3.0% 10 1.40 7.19 197.70 2.22 0.1742 26.48 5.8722 

3.0% 11 1.50 5.71 202.60 2.32 0.1822 27.96 7.3678 

3.0% 12 1.50 5.13 203.40 2.33 0.1827 27.88 6.7621 

3.0% 13 1.60 5.16 202.30 2.38 0.1869 29.89 5.9944 

3.0% 14 1.60 4.84 200.90 2.37 0.1860 30.05 6.0639 

3.0% 15 1.70 4.01 198.40 2.41 0.1894 32.14 5.5717 

3.0% 16 1.70 5.00 200.90 2.43 0.1909 31.85 5.8893 

3.0% 17 1.80 3.42 201.50 2.50 0.1962 33.50 6.0658 

3.0% 18 1.80 3.87 196.20 2.46 0.1929 34.13 5.9427 

3.0% 19 1.90 2.49 198.00 2.53 0.1990 35.55 6.0381 

3.0% 20 1.90 3.52 194.30 2.50 0.1966 36.00 5.7991 

3.5% 1 1.00 12.76 204.40 2.02 0.1587 16.56 7.1540 

3.5% 2 1.00 13.47 203.30 2.01 0.1580 16.65 7.1155 

3.5% 3 1.10 11.46 208.40 2.11 0.1661 18.74 7.2940 

3.5% 4 1.10 11.55 206.30 2.10 0.1648 18.92 7.2205 

3.5% 5 1.20 8.54 207.60 2.17 0.1705 21.15 7.2660 

3.5% 6 1.20 9.55 202.10 2.13 0.1671 21.65 7.0735 

3.5% 7 1.30 7.07 206.50 2.23 0.1748 23.47 7.2275 

3.5% 8 1.30 7.93 200.70 2.18 0.1711 24.04 7.0245 

3.5% 9 1.40 7.77 209.90 2.32 0.1818 25.23 7.3465 

3.5% 10 1.40 7.13 197.50 2.22 0.1740 26.50 6.9125 

3.5% 11 1.50 6.19 200.50 2.30 0.1808 28.19 7.0175 

3.5% 12 1.50 6.07 202.20 2.32 0.1819 28.01 7.0770 

3.5% 13 1.60 4.30 202.70 2.38 0.1871 29.85 7.0945 

3.5% 14 1.60 4.80 201.50 2.37 0.1864 29.98 7.0525 

3.5% 15 1.70 4.15 200.60 2.43 0.1907 31.89 7.0210 

3.5% 16 1.70 3.68 203.00 2.45 0.1923 31.61 7.1050 

3.5% 17 1.80 4.50 206.80 2.54 0.1996 32.89 7.2380 

3.5% 18 1.80 2.79 198.50 2.47 0.1944 33.85 6.9475 

3.5% 19 1.90 2.60 194.40 2.50 0.1967 35.99 6.8040 

3.5% 20 1.90 2.77 194.30 2.50 0.1966 36.00 6.8005 

4.0% 1 1.00 12.27 194.40 1.94 0.1524 17.37 7.7760 

4.0% 2 1.00 12.20 197.40 1.96 0.1543 17.12 7.8960 

4.0% 3 1.10 11.85 206.40 2.10 0.1648 18.91 8.2560 

4.0% 4 1.10 11.11 197.50 2.03 0.1593 19.68 7.9000 

4.0% 5 1.20 10.19 204.60 2.15 0.1686 21.42 8.1840 
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Batch No. Gap 
size 

[mm] 

Uppe
r force 

[kN] 

Mass 
[mg] 

Thick
ness [mm] 

Volum
e [cm3] 

Poro
sity [%] 

UV 
Content 

4.0% 6 1.20 10.24 196.60 2.08 0.1636 22.18 7.8640 

4.0% 7 1.30 7.89 200.20 2.17 0.1708 24.09 8.0080 

4.0% 8 1.30 8.23 201.50 2.19 0.1716 23.96 8.0600 

4.0% 9 1.40 7.02 202.20 2.25 0.1770 26.00 8.0880 

4.0% 10 1.40 7.53 205.60 2.28 0.1791 25.66 8.2240 

4.0% 11 1.50 6.35 202.00 2.31 0.1818 28.03 8.0800 

4.0% 12 1.50 5.25 203.50 2.33 0.1827 27.87 8.1400 

4.0% 13 1.60 4.78 201.10 2.37 0.1861 30.03 8.0440 

4.0% 14 1.60 5.18 197.70 2.34 0.1840 30.41 7.9080 

4.0% 15 1.70 3.92 198.10 2.41 0.1892 32.18 7.9240 

4.0% 16 1.70 3.83 201.20 2.43 0.1911 31.82 8.0480 

4.0% 17 1.80 3.20 195.80 2.45 0.1927 34.18 7.8320 

4.0% 18 1.80 4.36 194.20 2.44 0.1917 34.37 7.7680 

4.0% 19 1.90 2.98 197.30 2.53 0.1985 35.63 7.8920 

4.0% 20 1.90 2.44 196.90 2.52 0.1983 35.68 7.8760 

4.5% 1 1.00 13.16 200.10 1.99 0.1560 16.91 9.0045 

4.5% 2 1.00 12.76 202.30 2.00 0.1573 16.73 9.1035 

4.5% 3 1.10 9.95 201.40 2.06 0.1617 19.33 9.0630 

4.5% 4 1.10 10.47 203.00 2.07 0.1627 19.20 9.1350 

4.5% 5 1.20 10.19 203.80 2.14 0.1681 21.50 9.1710 

4.5% 6 1.20 8.94 202.20 2.13 0.1671 21.64 9.0990 

4.5% 7 1.30 8.26 203.10 2.20 0.1726 23.80 9.1395 

4.5% 8 1.30 8.66 197.70 2.15 0.1692 24.34 8.8965 

4.5% 9 1.40 7.17 201.00 2.24 0.1762 26.13 9.0450 

4.5% 10 1.40 7.11 199.80 2.23 0.1755 26.25 8.9910 

4.5% 11 1.50 6.40 200.20 2.30 0.1806 28.22 9.0090 

4.5% 12 1.50 5.19 203.80 2.33 0.1829 27.84 9.1710 

4.5% 13 1.60 5.30 199.50 2.36 0.1851 30.21 8.9775 

4.5% 14 1.60 4.21 202.50 2.38 0.1870 29.87 9.1125 

4.5% 15 1.70 4.11 201.90 2.44 0.1916 31.74 9.0855 

4.5% 16 1.70 3.43 199.60 2.42 0.1901 32.00 8.9820 

4.5% 17 1.80 4.35 200.60 2.49 0.1957 33.60 9.0270 

4.5% 18 1.80 4.50 201.60 2.50 0.1963 33.49 9.0720 

4.5% 19 1.90 2.49 193.80 2.50 0.1963 36.07 8.7210 

4.5% 20 1.90 2.78 198.30 2.54 0.1992 35.51 8.9235 

5.0% 1 1.00 12.46 201.60 2.00 0.1569 16.79 10.0800 

5.0% 2 1.00 13.11 201.90 2.00 0.1571 16.76 10.0950 

5.0% 3 1.10 10.59 204.80 2.09 0.1638 19.04 10.2400 

5.0% 4 1.10 10.22 200.90 2.05 0.1614 19.38 10.0450 

5.0% 5 1.20 8.97 200.30 2.11 0.1659 21.82 10.0150 

5.0% 6 1.20 10.23 202.30 2.13 0.1672 21.63 10.1150 

5.0% 7 1.30 7.02 198.70 2.16 0.1699 24.24 9.9350 

5.0% 8 1.30 8.72 201.10 2.18 0.1714 24.00 10.0550 
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Batch No. Gap 
size 

[mm] 

Uppe
r force 

[kN] 

Mass 
[mg] 

Thick
ness [mm] 

Volum
e [cm3] 

Poro
sity [%] 

UV 
Content 

5.0% 9 1.40 6.67 201.70 2.25 0.1767 26.06 10.0850 

5.0% 10 1.40 6.50 200.00 2.24 0.1756 26.23 10.0000 

5.0% 11 1.50 5.65 200.30 2.30 0.1807 28.21 10.0150 

5.0% 12 1.50 6.52 202.00 2.31 0.1818 28.03 10.1000 

5.0% 13 1.60 5.22 199.40 2.36 0.1851 30.22 9.9700 

5.0% 14 1.60 5.48 194.60 2.32 0.1821 30.77 9.7300 

5.0% 15 1.70 3.93 195.00 2.38 0.1872 32.55 9.7500 

5.0% 16 1.70 3.62 194.30 2.38 0.1868 32.63 9.7150 

5.0% 17 1.80 3.37 199.70 2.48 0.1951 33.71 9.9850 

5.0% 18 1.80 3.85 198.00 2.47 0.1940 33.91 9.9000 

5.0% 19 1.90 3.92 207.20 2.61 0.2047 34.46 10.3600 

5.0% 20 1.90 2.82 206.90 2.60 0.2046 34.49 10.3450 
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Appendix V.2: Variable porosity and thickness folic acid tablets external prediction 

batch 

# mass [mg] thickness [mm] porosity UV content 
[mg] 

1 204.5 1.99 18.67% 5.1125 

2 206.7 2.00 19.42% 5.1675 

3 200.2 2.00 20.18% 5.0050 

4 199.8 2.00 21.43% 4.9950 

5 204.0 2.07 22.69% 5.1000 

6 205.7 2.08 23.33% 5.1425 

7 200.8 2.10 23.98% 5.0200 

8 200.0 2.11 25.51% 5.0000 

9 202.2 2.20 27.04% 5.0550 

10 205.7 2.20 27.88% 5.1425 

11 196.0 2.22 28.71% 4.9000 

12 203.7 2.28 29.96% 5.0925 

13 199.2 2.31 31.21% 4.9800 

14 199.0 2.30 32.16% 4.9750 

15 194.5 2.37 33.10% 4.8625 

16 200.9 2.39 34.27% 5.0225 

17 198.7 2.45 35.43% 4.9675 

18 202.2 2.47 36.23% 5.0550 

19 198.9 2.53 37.03% 4.9725 

20 194.7 2.55 37.50% 4.8675 
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17. Appendix VI 

Appendix VI.1: Printed paper filters (exact experimental size) 

 

 

 

Appendix VI.2: Tableting data of DT sampling span tablets 

# Gap size 
[mm] 

Upper force 
[kN] 

Weight 
[mg] 

Thickness 
[mm] 

Volume 
[cm3] 

Porosity 
[%] 

1 1.00 12.40 199.77 1.95 0.1532 15.52 

2 1.10 11.82 202.65 2.01 0.1579 16.86 

3 1.20 9.24 204.73 2.11 0.1657 19.99 

4 1.30 8.79 202.64 2.16 0.1696 22.64 

5 1.40 6.11 204.55 2.26 0.1775 25.36 
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Appendix VI.3: DT data at 8880 cm-1 for 5 tablets and all filters. A, B and C represent 3 

measurements for the same filter type, (Fx). 

 Transmittance (non-pretreated) 

 15.52% 16.86% 19.99% 22.64% 25.36% 

F0      

A 0.000594 0.000465 0.00039 0.000289 0.000251 

B 0.0005987 0.0004728 0.000397 0.000296 0.000255 

C 0.0005893 0.0004572 0.000383 0.000282 0.000247 

F1      

A 0.000605 0.000429 0.000369 0.000287 0.000242 

B 0.0006097 0.0004368 0.000376 0.000294 0.000246 

C 0.0006003 0.0004212 0.000362 0.00028 0.000238 

F2      

A 0.000582 0.000432 0.000364 0.000275 0.000228 

B 0.0005867 0.0004398 0.000371 0.000282 0.000232 

C 0.0005773 0.0004242 0.000357 0.000268 0.000224 

F3      

A 0.00057 0.000449 0.000374 0.000291 0.00024 

B 0.0005747 0.0004568 0.000381 0.000298 0.000244 

C 0.0005653 0.0004412 0.000367 0.000284 0.000236 

F4      

A 0.000528 0.000425 0.00037 0.000274 0.000229 

B 0.0005327 0.0004328 0.000377 0.000281 0.000233 

C 0.0005233 0.0004172 0.000363 0.000267 0.000225 

F5      

A 0.000498 0.000387 0.000337 0.000236 0.000212 

B 0.0005027 0.0003948 0.000344 0.000243 0.000216 

C 0.0004933 0.0003792 0.00033 0.000229 0.000208 

F6      

A 0.000385 0.000311 0.000263 0.000178 0.000162 

B 0.0003897 0.0003188 0.00027 0.000185 0.000166 

C 0.0003803 0.0003032 0.000256 0.000171 0.000158 

F7      

A 0.000326 0.000261 0.00017 0.00016 0.000143 

B 0.0003307 0.0002688 0.000177 0.000167 0.000147 

C 0.0003213 0.0002532 0.000163 0.000153 0.000139 

F8      

A 0.000199 0.000166 0.000104 0.000088 0.000085 

B 0.0002037 0.0001738 0.000111 9.47E-05 8.93E-05 

C 0.0001943 0.0001582 9.73E-05 8.13E-05 8.07E-05 

F9      

A 0.000116 0.000083 0.000077 0.00006 0.000047 

B 0.0001207 0.0000908 8.37E-05 6.67E-05 5.13E-05 

C 0.0001113 0.0000752 7.03E-05 5.33E-05 4.27E-05 

F10      
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A 0.00007 0.00005 0.000044 0.000034 0.00003 

B 0.0000747 0.0000578 5.07E-05 4.07E-05 3.43E-05 

C 0.0000653 0.0000422 3.73E-05 2.73E-05 2.57E-05 
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18. Appendix VII 

Appendix VII.1: Incremental thickness tableting data (Zwick) 

Nominal thickness [mm] 
Powder mass 

[mg] Calculated force [N] 
Achieved force 

[N] 

0.5 42.12 4018 4058 
1.0 84.23 3788 3791 
1.5 126.35 3659 3641 
2.0 168.47 3571 3550 
2.5 210.58 3504 3494 
3.0 252.70 3450 3456 
3.5 294.82 3405 3413 
4.0 336.94 3366 3373 
4.5 379.05 3332 3370 
5.0 421.17 3303 3372 
5.5 463.29 3276 3370 
6.0 505.40 3252 3385 
6.5 547.52 3230 3369 
7.0 589.64 3209 3383 
7.5 631.75 3190 3370 
8.0 673.87 3173 3404 
8.5 715.59 3157 3417 
9.0 758.11 3141 3424 
9.5 800.22 3127 3439 

10.0 842.34 3113 3460 
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Appendix VII.2: Excel macro VBA code 

 

Sub Macro2() 
' 
' Macro2 Macro 
' 
' Keyboard Shortcut: Ctrl+w 
' 
     
    For i = 1 To 1501 
     
    ActiveCell.Offset(0, -2).Range("A1:B1").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Sheets("graph").Select 
    Range("B2").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Application.Calculate 
    Sheets("conclusion").Select 
    Range("L29:Q29").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
    Sheets("macro2").Select 
    ActiveCell.Offset(0, 2).Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    ActiveCell.Offset(1, 0).Range("A1").Select 
     
    Next 
End Sub 
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