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Thesis Summary 

 

The assembly of neuronal circuits depends critically on the sequential activation 

of transcriptional programs in distinct neuronal subpopulations. In the spinal cord, 

retrograde signaling interactions from the periphery have been shown to be 

essential for the onset of these programs and the establishment of specific 

sensory-motor connectivity (Lin et al., 1998; Wenner and Frank, 1995). Target-

induced transcriptional programs of the ETS transcription factor family control 

several important aspects of late motor circuit assembly in the spinal cord, both 

in spinal motor neurons as well as in proprioceptive sensory neurons, two 

neuronal subpopulations connected in the spinal monosynaptic reflex circuit 

(Arber et al., 2000; Livet et al., 2002; Patel et al., 2003; Vrieseling and Arber, 

2006). 

This study provides a genome-wide analysis of target-induced gene cascades in 

proprioceptive afferents and defines in an unbiased way the pathways linking 

target-derived factors to central motor circuit assembly. We used gene 

expression profiling of purified proprioceptive afferents in combination with 

Affymetrix chip technology to study genes regulated by peripheral neurotrophin 3 

(NT3). Data mining of our results demonstrates that several parallel signaling 

pathways influence differentiation of proprioceptive afferents retrogradely. Thus 

these findings suggest that NT3 does not solely induce the transcriptional 

program orchestrated by the ETS transcription factor Er81 in proprioceptive 

afferents, but also triggers additional pathways, which may influence connectivity 

of motor circuits in the spinal cord in a retrograde manner. 

In addition to its expression in proprioceptors, Er81 has also been shown to be 

expressed in a subpopulation developing cortical neurons. In a collaborative 

study with the laboratory of Francois Guillemot, the second part of this thesis 

focuses at elucidating the role of Er81 in these neurons and our results provide 

deeper insights into the specification of rostral Cajal-Retzius cells in the 

developing cortex.  
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1. Aim of the Thesis 

 

Biology, especially the field of neurobiology, has benefited greatly from the recent 

advantages in molecular biology and cellular imaging and thus has brought us 

closer to understanding the molecular and functional logic of neuronal circuits. 

Sophisticated labeling techniques as well as state of the art loss-of-function or 

gain-of-function analysis are enabling us to dissect specific neuronal circuits at 

great detail. However, targeted manipulation of cell types not only requires 

knowledge about individual functional or morphological properties, but for this 

work, the identification of specific molecular markers is of key importance. 

  

The aim of this thesis was to reveal genes involved in the specification of distinct 

primary sensory afferent populations during development, with an emphasis on 

characterizing the genetic pathways activated by target derived retrograde 

signaling interactions in the monosynaptic stretch reflex circuit of the spinal cord. 

In doing so, we were especially interested in late aspects of neuronal circuit 

development, specifying the functional and synaptic properties of this circuit. 

Furthermore, we investigated the plastic properties of the system in the adult by 

asking how exercise might reshape the molecular information of the involved 

sensory neurons. The information gained through the present work will provide 

many novel entry points into studying the connectivity of spinal cord networks 

throughout development.  
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2. Introduction 

 

The nervous system is composed of interconnected neuronal circuits, which 

ultimately orchestrate our perception and behavior. Individual neuronal circuits 

are specialized in specific neuronal functions ranging from sensory perception, 

simple reflexes and rhythmic movement control to cognitive processes such as 

emotion, learning and memory. The function of neuronal circuits is largely 

determined by the integrity of the circuit architecture, which is based on selective 

synaptic connections between neurons. The main layout for neuronal circuits is 

established early during embryogenesis and early development and is generated 

by the specification of distinct neuronal types and subsequent circuit assembly. 

The development of the nervous system is a continuous process, which is highly 

organized and underlies the initial formation of neuronal circuits. During 

development, the connections between subpopulations of neurons are 

established through multiple coordinated events. These developmental 

processes are organized both spatially and temporally and form the basis for the 

formation of specific neuronal circuits in the adulthood. 

 

Neuronal circuit assembly is characterized by a series of interdependent and 

characteristic developmental steps ((Albright et al., 2000; Dasen, 2009; Jessell 

and Sanes, 2000; Ladle et al., 2007), Fig.1). First of all, the generation of 

neurons is a critical step for later circuit assembly, which involves processes 

such as neural induction and neurogenesis. In the following stages, newly born 

neurons become progressively specified to give rise to a particular neuronal cell 

types. This process of neuronal specification is regulated in a spatio-temporal 

manner by extrinsic and intrinsic factors, which initially define the progenitor and 

subsequently postmitotic identity of neuronal cells arising from these progenitors. 
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Fig. 1: Sequential steps in neuronal differentiation and connectivity 

 

Postmitotic neurons migrate to specific locations in the central nervous system 

and also initiate neurite outgrowth. Neurons extend axonal projections towards 

the target region, a process followed by selection of the appropriate target 

neurons within the termination zone. In parallel, neurons develop highly specific 

dendritic trees receive synaptic connections. All these steps are essential to set 

up selective connectivity between individual neurons and are likely to be 

orchestrated by interactions of cell autonomous as well as extrinsic factors during 

development. In general, the phases of circuit assembly such as axonal path 

finding and dendritic patterning are activity-independent and are controlled by a 

variety of axon guidance molecules as well as neurotrophic factors. Finally, the 

process of synaptogenesis occurs between the neurons. Synaptogenesis 

includes the formation of a presynaptic neurotransmitter release site, 
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postsynaptic density assembly as well as the alignment of the newly formed pre- 

and post-synaptic specializations. 

 

Over the last decades, studies at the molecular level have revealed a large array 

of evolutionarily conserved genes, which have critical roles in the development of 

the nervous system and during the described steps of neuronal circuit assembly. 

A particular advantageous system to assay the involvement of specific molecules 

in specified developmental steps of neuronal circuit assembly is the 

monosynaptic reflex circuit in the spinal cord. This is mainly due to the simple 

reflex circuit architecture, in its most simple description comprising two neuronal 

classes. A large body of work characterizes this circuitry at the level of both 

circuit organization as well as physiological function in great detail. At present, 

the monosynaptic stretch reflex circuit in the spinal cord is one of the best-

understood neuronal circuits within the vertebrate nervous system (Brown, 1981; 

Eccles et al., 1957; Glover, 2000; Sherrington, 1910).  

 

 

 

2.1 Development of the proprioceptive reflex circuit 

 

2.1.1 Basic Anatomy and connectivity in the spinal cord 

 

In the spinal cord, the axons of sensory neurons of dorsal root ganglia (DRG) 

terminate in distinct layers, depending on their functional characteristics. 

Cutaneous afferents are passing on cutaneous and noxious stimuli from the 

periphery to the central nervous system, terminating in the superficial layers of 

the dorsal horn (Mirnics and Koerber, 1995; Molliver et al., 1995). 

Mechanoreceptive afferents convey pressure-related information towards the 

deeper layers of the dorsal horn (Mirnics and Koerber, 1995; Sanes and 

Yamagata, 1999). Proprioceptive afferents, receiving feedback from sensory 

organs in individual muscles, are the most ventrally projecting sensory neurons, 
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with group Ia and II proprioceptive afferents forming connections to interneurons 

in the intermediate zone of the spinal cord and to motor neurons in the deep 

ventral horn and group Ib proprioceptive afferents projecting to the intermediate 

zone of the spinal cord (Maier, 1997; Ozaki and Snider, 1997; Sanes and 

Yamagata, 1999; Zelena, 1994; Zelena and Soukup, 1977). 

 

Interestingly, different classes of DRG sensory neurons do not only exhibit 

unique central and peripheral connectivity. They also can be distinguished by 

selective expression of neurotrophic factor receptors (Farinas, 1999). Cutaneous 

afferents are marked by the tyrosine kinase receptor TrkA (Minichiello et al., 

1995; Molliver et al., 1995). In contrast, mechanoreceptive neurons express the 

receptor TrkB and proprioceptive afferents are marked by the expression of TrkC 

(Klein et al., 1994; Marmigere and Ernfors, 2007; Minichiello et al., 1995). These 

different receptors bind to different ligands present in the corresponding 

peripheral targets of these neurons. Nerve growth factor (NGF) binds to TrkA, 

brain-derived neurotrophic factor (BDNF) binds to TrkB, and neurotrophin 3 

(NT3) mainly activates TrkC with some crossing activities to TrkA and B (Bibel 

and Barde, 2000; Huang and Reichardt, 2001; Reichardt, 2006). In addition, 

distinct subpopulations of DRG neurons coexpress the low affinity receptor p75, 

which – either alone or in combination with a Trk receptor - also interacts with all 

neurotrophins (Reichardt, 2006), adding another layer of complexity to the 

system. It should be mentioned that an additional population of DRG neurons 

expresses the receptor tyrosine kinase Ret, which signals through glia cell line 

derived neurotrophic factor (GDNF) (Luo et al., 2007).  

 

 

2.1.2 Development and diversity of sensory neurons 

 

Developmentally, all DRG sensory neurons arise from neural crest cells (NCC) 

whose induction involves bone morphogenetic protein (BMP) and Wnt signaling 

(Lee et al., 2004; Marmigere and Ernfors, 2007). Expressing the common 
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transcription factor islet1 (Isl1) (Avivi and Goldstein, 1999; Pfaff et al., 1996), 

these cells derive from the dorsal neural tube during early embryonic 

development and subsequently settle next to the neural tube to form the 

developing DRG (Marmigere and Ernfors, 2007). During proliferation, 

neurogenesis occurs in three successive waves.  The first two waves depend on 

the joint activities of the basic-helix-loop-helix transcription factors neurogenin 1 

(ngn1) and neurogenin 2 (ngn2), with ngn2 initiating the first wave giving only rise 

to TrkB/TrkC proprioceptive and mechanoreceptive sensory neurons. The 

second wave is being initiated by ngn1 and results in the generation of TrkA 

nociceptive and thermoreceptive sensory neurons as well as TrkB/TrkC neurons 

(Frank and Sanes, 1991; Ma et al., 1999). Cells of the third wave originate from 

boundary cap cells and result almost exclusively in a small population of TrkA 

DRG neurons as well as peripheral glia (Maro et al., 2004). However, it should be 

noted that these steps only define the fate of DRG neurons, not their 

competence.  
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2.1.3 Target derived mechanisms of sensory neuron 

development 

 

The assembly of neuronal circuits represents a sequential process, during which 

neuronal subpopulations initiate the establishment of cell-type specific axonal 

trajectories, project towards their postsynaptic neuronal targets, elaborate 

terminal branches and establish synaptic connections. Many aspects of neuronal 

differentiation are regulated by cell-intrinsic programs, which are set up at stages 

when progenitor cells proliferate and give rise to postmitotic neuronal populations 

(Marmigere and Ernfors, 2007). These intrinsic cell type specific differences are 

often known to be reflected at the level of gene expression, where an individual 

cell type expresses a unique set of genes, allowing it to steer the initial axon 

guidance decisions toward the target region without additional interventions and 

adjustments at the gene expression level.  

 

As axons extend towards their target region, they have to interpret and integrate 

various axon guidance cues along their path (Dickson, 2002). While many of the 

downstream responses occur only locally (Huber et al., 2003), there are however 

signals acting retrogradely on the cell body (Hippenmeyer et al., 2004). For 

example, primary sensory neurons in somato-sensory systems project to 

innervate various types of peripheral sense organs and relay information 

measured at these sensory terminals directly to distinct neuronal populations in 

the central nervous system. This principle applies to many different types of 

primary sensory neurons, including trigeminal sensory neurons innervating 

whiskers or dorsal root ganglia (DRG) sensory neurons innervating end organs in 

the skin and muscle among other targets (Hodge et al., 2007; Patel et al., 2003). 

Sensory neurons detect and relay functionally distinct information. These 

differential properties also manifest themselves at the level of gene expression, 

leading to the expression of distinct transcriptional factors and transmembrane 

receptors in functionally diverse sensory neuron subsets (Ernsberger, 2009; Luo 

et al., 2007; Patel et al., 2003). One of the most well studied receptor families in 
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the context of sensory neuron diversification are transmembrane receptors 

binding to neurotrophic factors (Bibel and Barde, 2000; Reichardt, 2006). 

A distinct group of neurotrophic factors are the neurotrophins, four closely related 

proteins sharing homologies in sequence and structure: NGF (Levi-Montalcini 

and Booker, 1960), BDNF (Barde et al., 1982; Hofer and Barde, 1988), NT3 and 

NT4 (Hohn et al., 1990; Ip et al., 1992; Maisonpierre et al., 1990). Acting through 

activation of the previously mentioned Trk receptors as well as the receptor p75 

the neurotrophins play an essential role in survival and development of neurons 

(Bibel and Barde, 2000; Reichardt, 2006; Tucker et al., 2001). For instance, the 

tyrosine kinase receptors TrkA and TrkC are expressed by functionally distinct 

DRG sensory neuron populations and during development, survival of these 

neurons is regulated by the target-derived factors nerve growth factor (NGF) and 

Neurotrophin-3 (NT3). More specifically, NGF provided by target structures in the 

skin regulates neuronal survival of TrkA expressing small diameter sensory 

neurons (Crowley et al., 1994), whereas NT3 plays important roles in promoting 

neuronal survival of TrkC expressing proprioceptors projecting to 

mechanoreceptive sense organs embedded within skeletal muscles (Ernfors et 

al., 1994; Farinas et al., 1994; Tessarollo et al., 1994).  

 

Notably, peripheral neurotrophic signals are known to induce expression of the 

ETS transcription factors Er81 and Pea3 in distinct subpopulations of DRG 

neurons (Sharrocks, 2001) as well as motor neuron pools several days after 

these neurons become postmitotic (Arber et al., 2000; Haase et al., 2002; Lin et 

al., 1998; Livet et al., 2002; Patel et al., 2003). Within the spinal cord both 

transcription factors control distinct aspects of monosynaptic circuit assembly 

(Arber et al., 2000; Livet et al., 2002; Vrieseling and Arber, 2006). Induction of 

Er81 in proprioceptive DRG neurons is mediated by peripheral NT3 (Patel et al., 

2003) and in Er81 or in NT-3/Bax mutant mice, Ia proprioceptive afferents fail to 

invade the ventral horn of the spinal cord, thus resulting in an absence of 

synaptic connections to motor neurons (Arber et al., 2000; Patel et al., 2003). In 

addition, induction of Pea3 in MNs is mediated by target derived Glial cell line 
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derived neurotrophic factor (GDNF) (Haase et al., 2002; Livet et al., 2002) and in 

distinct cervical MN pools, Pea3 was shown to be necessary for the control of 

dendrite patterning and the selectivity of group Ia afferent connectivity (Vrieseling 

and Arber, 2006). These results imply that Er81 and Pea3 both control certain 

aspects of late sensory or motor neuron differentiation at stages when DRG and 

MNs become dependent on target derived signals, suggesting that controlled 

induction of Er81 and Pea3 in distinct subpopulations could be necessary for the 

control of late aspects of neuronal differentiation, such as invasion and branching 

within a target region.  

 

Interestingly, other parts of the CNS also express Er81 and Pea3 in distinct 

subpopulations of cells. But their role during development in these regions has 

not been analyzed in more detail. Nevertheless, a growing body of work has 

been dedicated towards the involvement of neurotrophins in the late aspects of 

neuronal differentiation, which intersect with the initial transcriptional profiles in 

neuronal subpopulations (Huang and Reichardt, 2001; Lu et al., 2005; Sharma et 

al., 2010a). However, information about how profound these changes are at the 

gene expression level in identified neuronal populations at the genome-wide level 

is currently sparse and filling this gap is one of the main goals of this thesis. 

 

 

2.2 Introduction to the monosynaptic stretch reflex circuit 

 

A critical action of spinal reflexes is the linkage of sensory information from the 

periphery to central motor units in order to achieve coordination of movement. 

This important “body sense” is called proprioception, which provides central 

feedback on how one own limbs are oriented in space. In more detail, 

proprioception is an internal representation of static positions of the body as well 

as changes in body movement. Loss of proprioception is typically associated with 

impairments in postural stability, motor planning and motor control, showing that 

specific sensory input is central for the regulation and control of coordinated 
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movements. This was first proposed by Charles Sherrington in the beginning of 

the 20th century when he stated that complex movements were based on basic 

units of elemental and stereotypic movement units that get recruited upon 

activation of sensory receptors in the periphery (Sherrington, 1906 ). As a 

famous example, the monosynaptic stretch reflex circuit controls stereotyped 

sensory-motor behavior (Brown, 1981; Eccles et al., 1957).  

 

A standard test to assay the stretch reflex circuitry is a so called ‘functionality 

test’, in which one taps on the patellar tendon, which connects the kneecap to the 

shin bone. This tapping in turn results in the reflexive extension of the lower leg. 

This spinal reflex involves the interplay of a sensory and a motor unit, which 

causes a contraction of muscle as a result of changes in the length and/or 

tension of the respective muscle. The sensory information on the current state of 

muscle contraction is transmitted from the periphery from intrafusal muscle fibers 

to the central motor unit through the proprioceptive afferents of the DRG (Brown, 

1981; Eccles et al., 1957), which provide the basis for this kind of sensory 

integration in the spinal cord. 

 

The motor unit in the spinal cord comprises α-motor neurons and the 

corresponding innervated extrafusal muscle fibers at the neuromuscular junction 

(NMJ) of the respective muscle. The cell bodies or α-motor neurons are located 

in the ventral horn of the spinal cord where they form characteristic cell clusters 

referred to as motor neuron pools (Landmesser, 2001). Proprioceptive sensory 

neurons consist of two major classes, which are distinguished by their axonal 

projection into the spinal cord and their specific association peripheral 

transduction cells (Fig. 2; (Brown, 1981; Zelena, 1994)). The first group - Ia 

afferents - form two major termination zones: A) in the ventral spinal cord where 

Ia proprioceptive afferents form direct excitatory connections to α-motor neurons 

(Brown, 1981; Eccles et al., 1957; Frank and Wenner, 1993; Glover, 2000); B) in 

the intermediate spinal cord where group Ia collaterals establish synapses onto 

interneurons of the Clarke’s column which in turn project to granule cells in the 
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cerebellum (Hantman and Jessell, 2010). Notably, only group Ia and II 

proprioceptive afferents form direct monosynaptic connections with α-motor 

neurons and these connections are known to exhibit a high degree of selectivity 

with respect to the contacted motor neuron pool (Brown, 1981; Eccles et al., 

1957; Frank and Wenner, 1993; Glover, 2000). In the periphery, group Ia 

proprioceptive afferents innervate intrafusal muscle spindles, small encapsulated 

spindle-like shaped sensory mechanoreceptors. Muscle spindles are sensitive to 

changes in muscle length and are embedded in parallel within extrafusal muscle 

fibers (Maier, 1997; Zelena, 1994). The second group - Ib proprioceptive 

afferents - innervate Golgi tendon organs (GTOs) which are located at the 

junction between muscle fibers and tendon. Golgi tendon organs are sensitive to 

changes in muscle tension (Zelena and Soukup, 1977).  

 

Fig. 2: Spinal reflex circuitry of proprioceptive sensory neurons 

Central and peripheral projections of group Ia (blue) and Ib (light blue) proprioceptive DRG 
neurons. Left: group Ib afferents innervate Golgi tendon organs (GTO) in the periphery at the 
myo-tendinous junctions of skeletal limb muscles and project centrally to the intermediate spinal 
cord to form synapses with interneurons (orange), thus indirectly connecting with spinal α-motor 
neurons (purple). Right: group Ia afferents innervate muscle spindles at the periphery and form 
centraly direct monosynaptic connections to homo- and heteronymous α-motor neurons (purple). 
α-motor neurons projecting to antagonistic muscles (grey) are innervated in a disynaptic fashion 
through Ia inhibitory interneurons (red). Abbreviations: GTO = Golgi Tendon Organ; IN = 
interneuron; NMJ = neuromuscular junction. (Adapted from Arber et al., 2000.) 
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At the circuit level, group Ia afferents form specific central synapses with α-motor 

neurons innervating the same muscle, which is referred to as homonymous 

connections. In addition, group Ia afferents connect to motor neurons innervating 

muscles with a similar mechanical function, representing heteronymous 

connections. In contrast, so called ‘antagonistic’ α-motor neurons do not receive 

direct excitatory input from group Ia afferents from these two functionally related 

muscle groups, but instead receive indirect inhibitory input through group Ia 

afferents that synapse onto GABAergic interneurons in the spinal cord (Frank 

and Wenner, 1993; Glover, 2000; Wenner and Frank, 1995). Notably, the 

specificity of this neuronal connectivity is crucial for appropriate sensory-motor 

processing in order to control the contraction of specific muscles. The 

characteristic developmental phases of the monosynaptic stretch-reflex circuit 

assembly comprise the initial axon outgrowth to muscle targets in the periphery 

(Tessier-Lavigne and Goodman, 1996), the specific selection of the termination 

zone within the corresponding target regions (Sanes and Yamagata, 1999) as 

well as the selective synapse formation in the spinal cord (Smith and Frank, 

1988). Activity of this circuit is not needed to establish specific synaptic 

connections (Mendelson and Frank, 1991), suggesting molecular cues at work in 

the formation of this circuit. 

 

In summary, the spinal monosynaptic reflex circuit in its most simple illustration is 

composed of two neuronal classes, namely the α-motor neurons and group Ia 

proprioceptive afferents. This simple stretch reflex circuit contributes critically to 

motor behavior by controlling the appropriate movement and its feedback at any 

given time. Altogether, the monosynaptic stretch reflex circuit therefore 

represents an optimal system to investigate the molecular basis of circuit 

assembly during development.  
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3. Target derived effect of NT3 on transcriptional regulation in 

the spinal monosynaptic reflex circuit 

 

3.1 Introduction 

 

The prominent role of NGF and NT3 in regulating DRG sensory neuron survival 

has prevented genetic studies on elucidating possible other roles of neurotrophin 

signaling pathways in neuronal differentiation and connectivity. However, elegant 

studies and the insightful observation that cell death of DRG sensory neurons 

can be successfully prevented by coincident mutation of neurotrophins and the 

proapoptotic gene Bax, have opened new avenues allowing studies on non-

survival functions of NGF and NT3 signaling pathways (Patel et al., 2000; Patel 

et al., 2003). Analysis of NGF-/-Bax-/- mutant mice for example revealed an 

important role of NGF signaling in peripheral target invasion and branching, but 

no role in the establishment of central trajectories of TrkAon sensory neurons 

(Patel et al., 2000). In contrast, retrograde NT3 signaling to proprioceptive 

sensory neurons innervating muscular sense organs is instrumental in setting up 

the appropriate central trajectory of group Ia proprioceptive afferents to project 

and establish connections with motor neurons in the ventral spinal cord (Patel et 

al., 2003). Together, these findings provide evidence that retrograde signaling by 

peripheral neurotrophic factors influences the maturation of sensory circuits in 

pronounced ways, and raise the question of the identity of the transcriptional 

pathways in DRG sensory neuron populations downstream of Neurotrophins 

implementing the various cell-type specific morphological programs and 

connections. 

 

Small diameter TrkA expressing DRG sensory neurons make up the majority of 

all neurons within a DRG (~80-90%; (Ernsberger, 2009; Farinas et al., 1998; 

Snider, 1994)), and it has therefore been possible to carry out gene expression 

profiling experiments by direct isolation and comparison of entire wild-type and 
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NGF-/-Bax-/- mutant DRG in order to characterize transcriptional pathways 

downstream of NGF signaling (Guo et al., 2011). It is now known that intricate 

transcriptional signaling programs are central players in reading out and 

translating retrograde NGF-signaling in TrkAon sensory neurons (Guo et al., 

2011; Luo et al., 2007). TrkCon proprioceptive afferents make up a minority of all 

DRG neurons (~10-20% depending on the spinal level (Ernsberger, 2009; 

Farinas et al., 1998; Snider, 1994))) and it has therefore not been feasible to 

acquire good transcriptional profiles by simple comparison of entire DRG from 

wild-type and NT3-/-Bax-/- mutant mice. Nevertheless, a study on candidate genes 

with known roles in proprioceptor differentiation showed that the expression of 

the ETS transcription factor Etv1 is induced by retrograde NT3 signaling in 

proprioceptive afferents (Patel et al., 2003) and Etv1 mutant mice show defects 

in the establishment of proprioceptive afferent trajectories into the ventral spinal 

cord (Arber et al., 2000). It remains unknown however how proprioceptive 

afferents respond more generally to retrograde NT3 signaling by adjusting 

transcriptional pathways and whether variation in the levels of peripheral NT3 is 

able to modulate gene expression specifically within proprioceptive afferents. 

 

In this study, we establish a strategy to dissociate and purify proprioceptive 

afferents using a genetic green fluorescent protein (GFP) tag selectively 

expressed in DRG proprioceptive afferents but not in non-proprioceptive cells of 

the DRG. We exploit this genetic tool to compare genome-wide transcriptomes of 

purified proprioceptors isolated from different NT3 signaling mutant mouse 

strains by Affymetrix chip technology. Taken together, our study aims at 

identifying genome-wide transcriptional cascades in proprioceptors, specifically 

regulated by NT3 signaling and thereby providing evidence for the pronounced 

regulatory roles of target-derived factors in the regulation of neuronal subtype 

specific transcriptional programs. 
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3.2 Results 

 

3.2.1 TrkC Bac line as a reporter line for TrkCon proprioceptive 

neurons  

 

To isolate genes with enriched expression in DRG proprioceptive afferents, we 

made use of a GENSAT BAC transgenic mouse line, in which the expression of 

enhanced green fluorescent protein (GFP) is controlled by genomic regulatory 

elements of the neurotrophic factor receptor TrkC (TrkCGFP) (Gong et al., 2003). 

We first determined the faithfulness of transgene expression in order to verify its 

association with proprioceptive afferents in the DRG. Costaining with antibodies 

targeting GFP and TrkC revealed that only a subpopulation of TrkC neurons are 

GFP positive (Fig. 3B), suggesting that only the proprioceptive population of 

TrkC neurons might be labeled. Because the expression of the Runt domain 

transcription factor Runx3 has previously been shown to be highly restricted to 

proprioceptive DRG neurons (Chen et al., 2006; Kramer et al., 2006), we next 

determined the overlap between Runx3 and GFP expression in TrkCGFP 

transgenic mice. We found that in p0 lumbar DRG, the majority of GFPon DRG 

neurons coexpressed Runx3, and conversely, also most Runx3on neurons were 

associated with GFP expression (Fig. 3A), providing support for the selective 

expression of the GFP transgene in proprioceptors. 

 

With this knowledge in hand, we crossbred our GFP line with NT3 transgene 

(Taylor et al., 2001) and mutant (Farinas et al., 1994) mouse lines in order to 

specifically label proprioceptive DRG neurons in these mouse lines for FACS 

purification and subsequent Affymetrix analysis (Haeberle et al., 2004; Okaty et 

al., 2011). In addition, we harvested wild type cells (TrkCGFP only) at additional 

time points  - namely E14, E16 and p4 - enabling us to generate a wild type time 

course profile of genes of interest (Fig. 4). 
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Fig. 3: TrkCGFP BAC line shows enriched expression in proprioceptors 
(A) Immunohistochemisty to quantify GFP (left) and Runx3 (right) on representative lumbar DRG 
section from p0 TrkCGFP BAC transgenic mouse line. Quantification of percentage of Runx3on 
cells co-expressing GFP (black bar: 86.4% ± SEM) and of percentage of GFPon neurons co-
expressing Runx3 (grey bar: 97.6% ± SEM) in p0 TrkCGFP mice (n=3 animals; >20 sections each)  
(B) Immunohistochemisty to quantify GFP (left) and TrkC (right) on representative lumbar DRG 
section from p0 TrkCGFP BAC transgenic mouse line. Quantification of percentage of TrkCon cells 
co-expressing GFP (black bar: 49.6% ± SEM) and of percentage of GFPon neurons co-expressing 
TrkC (grey bar: 98.5% ± SEM) in p0 TrkCGFP mice (n=3 animals; >20 sections each) 
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Fig. 4: Breeding scheme 

Displaying the various conditions generated for FACS and subsequent Affymetrix genechip 
analysis. 

 
 
 

3.2.2 Distribution of Trk receptors among DRG sensory neurons 

 

While we expected that the absence of NT3 would have the biggest impact on 

neurons within the population of TrkC positive population, we were also aware of 

the fact that NT3 is able to activate other Trk receptors as well as the p75 

receptor (Bibel and Barde, 2000; Reichardt, 2006). However, whereas the 

distribution of the Trk receptors has been well documented for the embryonic 

stages (Ernsberger, 2009), the postnatal distribution of the Trk receptors and the 

p75 receptor within the DRG has been less well studied. Bearing in mind the fact 

that p75 is coexpressed with a certain percentage of Trk receptors we 

considered the postnatal distribution of p75 to be important. To quantify it we co-

stained p4 wild type DRG with antibodies targeting different Trk receptors and 

p75 (Fig. 5).   
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The quantification of the relative population size of each receptor revealed that 

the percentage of TrkC and TrkB neurons postnatally is in line with previously 

published ratios at earlier developmental stages (Ernsberger, 2009). However, 

the percentage of TrkA neurons is smaller than at earlier stages (Fig. 5B), most 

likely due to an increase in Ret+ neurons at these later stages (Luo et al., 2007; 

Molliver and Snider, 1997). While within the TrkA and TrkC population, only a 

subgroup of neurons coexpresses the p75 receptor, almost all TrkB neurons 

were p75 positive (Fig. 5A). In general, the distribution of p75 and the nonTrkC 

receptors implies that NT3 might carry out its effect differently in various non-

proprioceptive subpopulations in addition to its activity on proprioceptors. 
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Fig. 5: Quantification of Trk and p75 receptor distribution in wild type DRG 
(A) Immunohistochemistry to quantify the ratio of Trk and p75 receptor expressing cells. Ratio of 
TrkA/p75 coexpressing cells: 13.2% ± SEM; 29.9% (± SEM) of all TrkA cells expressed p75. 
Ratio of TrkB/p75 coexpressing cells: 5.9% ± SEM; 84% (± SEM) of all TrkB cells expressed p75. 
Ratio of TrkC/p75 coexpressing cells: 6.2% ± SEM; 53.7% (± SEM) of all TrkC cells expressed 
p75. (B) Quantification of total receptor distribution with p4 wild type DRG: TrkA = 57% (± SEM); 
TrkB = 7% (± SEM) ; TrkC =  11.3% (± SEM); p75 = 25.6% (± SEM); (n>3 animals; >5 sections 
each) 
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3.2.3 Validation of FACS result and identification of marker for 

all proprioceptive neurons or subsets 

 

We next dissociated bilaterally collected p0 lumbar DRG (levels L1-L6) into 

single cell suspensions, and separated GFPon proprioceptive from GFPoff non-

proprioceptive populations by Fluorescent Activated Cell Sorting (FACS). 

 

To determine possible gene expression differences between these two 

populations, we performed Affymetrix microarray experiments comparing 

genome-wide transcriptional differences (Haeberle et al., 2004; Okaty et al., 

2011). These experiments revealed many genes with significant expression 

differences between the two populations. In order to get a first impression of how 

efficient this approach is in detecting genes with proprioceptor-enriched gene 

expression, we analyzed expression profiles of four genes with previously known 

association to proprioceptors. Confirming the selective expression of GFP in 

TrkCon proprioceptors, the expression of TrkC was highly enriched in the GFPon 

population when compared to the non-proprioceptor GFPoff population. Similarly, 

the transcription factors Runx3 and Er81, as well as the gene encoding for the 

calcium binding protein Parvalbumin (Pvalb) scored as highly enriched in our 

analysis (Supp. 1).  
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Fig. 6: Isolation of genes with enriched expression in proprioceptors 
(A) Affymetrix gene expression profiling data showing genes enriched in TrkCon proprioceptors 
and TrkCoff non-proprioceptors. Diagonal lines indicate cut-off for genes with expression values 
>5 fold change (outermost dotted lines), >2 fold change (middle dotted lines) and ≤2 fold change 
(grey squares around central diagonal line). TrkCon proprioceptor data points with enrichment ≥2 
fold are displayed in turquoise and TrkCoff non-proprioceptors with the same criteria in purple. (B) 
Venn diagram illustrating the number of genes enriched ≥2 fold in proprioceptors and non-
proprioceptors respectively. (C) Analysis of the 25 genes with highest fold changes displayed in 
detail. Values of two samples of each p0 TrkCon proprioceptors (left) and TrkCoff non-
proprioceptors (right) are shown. Grey scale values represent row z-score values and log2 unit 
average expression values are shown to the right of each probe (scales plotted bottom left). Gene 
names are displayed to the left of each row. (D-G) Four examples of individual genes with highly 
enriched expression in proprioceptors (TrkC) when compared to non-proprioceptors (non-TrkC) 
are displayed. Each panel shows Affymetrix expression values to the left (y-scale expression 
values; ± SEM) and verification by either in situ hybridization on wild-type and TrkC mutant 
lumbar DRG sections (D-F) or immunohistochemistry in ventral spinal cord lamina IX (G; green: 
Cx36; red: vGlut1, p20 wild type tissue) to the right. 
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To perform a quantitative genome-wide analysis of gene expression differences 

between TrkCon and TrkCoff populations, we used a significance threshold of 

p≤0.02 and an enrichment factor of ≥2 fold. Using these criteria, we found that 

1198 of ~45K expressed probes on the Affymetrix chip set used were enriched in 

TrkCon proprioceptors, and conversely, 723 probes exhibited clear enrichment in 

the TrkCoff non-proprioceptor population (Fig. 6A,B). We were able to this 

analysis at all observed time points consistently (Supp. 2). 

 

We next analyzed in more detail the 25 probes with the highest observed 

expression differences based on fold changes between TrkCon and TrkCoff 

populations (Fig. 6C), and found that these genes encompassed genes of 

various expression levels, indicating no particular bias towards a specific 

expression level as a contributing factor to enrichment. In addition, and in 

agreement with the high fold changes detected, z-score analysis reveals a strong 

deviation of the two populations from the distribution mean (Fig. 6C). These 

findings demonstrate that many genes show enriched expression in 

proprioceptors. 

 

To further probe the reliability of our data at the single gene level, we picked four 

genes not previously known to exhibit proprioceptor-enriched gene expression 

profiles and performed in situ hybridization or immunohistochemical experiments 

on DRG at lumbar spinal levels (Fig. 6D-G). To verify the selective expression 

pattern of these genes, we carried out in situ hybridization experiments on tissue 

from both wild-type and TrkC mutant mice, in which proprioceptors are eliminated 

at early developmental stages due to the absence of neurotrophic factor 

signaling essential for proprioceptor survival (Klein et al., 1994). The orphan 

transcription factor estrogen related receptor Esrrg, with previously shown 

expression in gamma motor neurons in the ventral spinal cord (Friese et al., 

2009), also exhibited highly selective enrichment in proprioceptors by the 

Affymetrix gene expression profiles and in situ hybridization verified the complete 

absence of expression in TrkC mutant mice (Fig. 6D). Parathyroid hormone 1 
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receptor (Pth1r), a receptor with prominent role in bone formation (Guo et al., 

2002) and currently unknown function in the nervous system, also exhibited 

highly enriched expression in proprioceptors within the DRG and displayed 

complete absence of expression in TrkC mutant mice (Fig. 6E). Metabotropic 

glutamate receptor 3 (Grm3), a gene with significant gene variant associations 

linked to memory performance in humans (de Quervain and Papassotiropoulos, 

2006), revealed scattered cells within the DRG by in situ hybridization, a pattern 

absent in TrkC mutant mice (Fig. 6F). In contrast to Esrr3 and Pth1r however, 

Grm3 exhibited a much sparser labeling density within the DRG, indicating that 

its expression is confined to only a restricted subset of proprioceptors. These 

findings demonstrate that our approach not only picks up genes expressed by all 

TrkCon DRG neurons, but is sensitive enough to isolate genes with expression in 

subsets of proprioceptors, a feature further exploited later in this study. Lastly, we 

also determined whether genes expressed by proprioceptors produce proteins 

transported to central synapses, exploiting the example of connexin 36 (Cx36), a 

gap junction protein with known neuronal expression and required for gap 

junction function in several systems (Allen et al., 2011; Deans et al., 2001; Van 

Der Giessen et al., 2008) (Fig. 6G). Using an antibody to Cx36, we determined 

whether proprioceptor terminals in the ventral spinal cord marked by the selective 

accumulation of vesicular glutamate transporter 1 (vGlut1) (Vrieseling and Arber, 

2006) exhibit colocalization with the gap junction protein Cx36. We found 

association of vGlut1on proprioceptive terminals in spinal lamina IX with Cx36on 

signal, suggesting that gap junction proteins are present and might play a role at 

proprioceptive central synapses. Together, these findings demonstrate the 

reliability of our Affymetrix gene expression experiments in isolating genes with 

highly enriched expression in proprioceptive afferents when compared to non-

proprioceptor populations, and allow us to exploit this method further to study the 

regulation of these genes by perturbation of peripheral neurotrophic factor 

signaling cascades. 
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3.2.4 Identification of NT3 dependent gene regulation in 

proprioceptive afferents 

 

Since NT3 mutant mice exhibit pronounced neuronal cell death in DRG at early 

developmental stages due to an essential role of NT3 in promoting neuronal 

survival (Ernfors et al., 1994; Farinas et al., 1994; Tessarollo et al., 1994), we 

made use of the observation that concurrent elimination of the proaptototic gene 

Bax in mice circumvents DRG neuronal cell death and allows studying a role of 

NT3 other than the regulation of neuronal survival (Patel et al., 2003).   

 

To determine the effect of absence of NT3 on gene expression in DRG neurons, 

we compared genome-wide expression profiles of proprioceptors and non-

proprioceptors isolated through the TrkCGFP BAC allele, in each of the three 

genetic backgrounds of wild-type, NT3-/-Bax-/-, and Bax-/- DRG. This three-way 

comparison would allow us to avoid isolating genes affected in expression solely 

due to Bax mutation (Fig. 7). Comparison of gene expression data from these 

three different genotypes and the two separate cell populations each, revealed 

that 473 probe sets (328 genes) were significantly enriched in p0 proprioceptors, 

and also significantly downregulated in proprioceptors of NT3-/-Bax-/- but not 

affected in Bax-/- mice (fig; p≤0.02; regulation ≥2 fold) (Fig. 7A). In contrast, only 

a small fraction of genes (33 probes; 29 genes) with proprioceptor-enriched 

expression profile were upregulated in NT3-/-Bax-/- proprioceptors (Fig. 7B; 

p≤0.02; regulation ≥2 fold). To probe the reliability of these results, we 

determined the expression profiles of several individual genes in more detail. We 

first analyzed the expression profiles of Etv1, a member of the ETS transcription 

factor family with previously described regulation by peripheral NT3 (Patel et al., 

2003). We found that Etv1 expression was highly enriched in proprioceptors of 

both wild-type and Bax-/- mice, much in contrast to the observed expression in 

NT3-/-Bax-/- mice, where Etv1 expression was very low, a pattern which was also 

confirmed by in situ hybridization on DRG sections (Fig. 7C). 
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Fig. 7: NT3 deletion alters proprioceptor gene expression 
(A, B) Analysis of the 25 most downregulated (A) or 33 most upregulated (B) genes with highest 
fold changes in NT3-/-Bax-/- mice is displayed. Values of two samples of each p0 TrkCon 
proprioceptors (left; TrkC) and TrkCoff non-proprioceptors (right; non-TrkC) isolated from wild-
type, Bax-/- and NT3-/-Bax-/- mice are shown. Grey scale values represent row z-score values and 
log2 unit average expression values are shown to the right of each probe (scales plotted top right 
of each panel). Gene names are displayed to the left of each row, and genes analyzed below 
shown in bold. The number of probes and genes regulated in proprioceptors (p≤0.02; regulation 
≥2 fold) is shown below the plots. (C, D) Detailed expression analysis of two individual genes 
downregulated (Etv1 and Pth1r) and two genes upregulated (Lmo1 and Psd2) in proprioceptors 
of NT3-/-Bax-/- but not in Bax-/- mice is shown (Affymetrix analysis: y-scale displays expression 
values; ± SEM). For Etv1 and Pthr1, also confirmation by in situ hybridization on p0 lumbar DRG 
of in Bax-/- and NT3-/-Bax-/- mice is displayed to the right. 
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Moreover, we also determined the expression of Pth1r, a gene which scored 

amongst the highest-fold genes regulated by NT3 based on the analysis of NT3-/-

Bax-/- profiles. We found that its expression in proprioceptors is high in wild-type 

and Bax-/- mice, but dramatically downregulated in NT3-/-Bax-/- mice (Fig. 7C). 

Conversely, the gene encoding the Lim-domain containing protein Lmo1 

exhibited only low-level expression and enrichment in proprioceptors in wild-type 

and Bax-/- mice, but showed striking upregulation in NT3-/-Bax-/- proprioceptors, 

similar to the gene encoding Pleckstrin and Sec7 domain containing protein 2 

(Psd2) (Fig. 7D). Together, these findings demonstrate that genetic elimination of 

NT3 affects gene expression of a selective subset of genes with enriched 

expression in proprioceptors, and of the genes affected, most genes with 

significant changes in expression levels in isolated proprioceptive afferents are 

downregulated by developmental genetic deprivation of NT3. 

  

Since complete genetic elimination of NT3 by virtue of studying NT3-/-Bax-/- mice 

revealed pronounced effects on gene expression in proprioceptors, we next 

sought to determine whether raising NT3 levels in skeletal muscles would also 

affect proprioceptor gene expression. Previous work demonstrated that altering 

NT3 levels genetically to abnormally high values by transgenic expression of NT3 

using the skeletal muscle promoter myosin light chain (mlc) leads to a dramatic 

breakdown of the specificity in central connectivity between proprioceptors of the 

group Ia afferent subtype with motor neuron pools (Wang et al., 2007), 

suggesting that accurate NT3 levels in the muscle might be influential in 

controlling central connectivity by retrograde signaling. 

 

To study whether gene expression in proprioceptors cannot only be influenced by 

complete elimination of NT3 signaling, but also by raising peripheral NT3 levels, 

we compared gene expression profiles in TrkCGFP proprioceptors to the non-

proprioceptive population in mlcNT3 mice (Wang et al., 2007) (Fig. 8). A genome-

wide analysis of gene expression differences showed 88 probe sets (78 genes) 

with significant upregulation of expression in proprioceptors, but without any 
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coincident expression changes in non-proprioceptive populations (fig; p≤0.02; 

regulation ≥1.5 fold). Conversely, 180 probe sets (168 genes) scored as 

significantly downregulated in proprioceptors of mlcNT3 mice (fig; p≤0.02; 

regulation ≥1.5 fold) (Fig. 8A, B). Again, these gene expression changes could 

be confirmed at the level of individual genes (Fig. 8C, D), where for example the 

genes encoding for insulin-growth factor 1 (Igf1) and Src homology 2 domain 

containing family member 4 (Shc4) were upregulated in mlcNT3 mice (Fig. 8C), 

whereas Tachykinin receptor 3 (Tacr3) and Myoblastosis oncogene (Myb) were 

downregulated (Fig. 8D). Together, these findings demonstrate that not only 

complete elimination of NT3 affects gene expression in proprioceptors, but even 

the more subtle genetic manipulation to raise NT3 levels in skeletal muscles 

leads to profound and significant gene expression changes in proprioceptors, 

yielding possible molecular entry points to understand the observed central 

connectivity defects in mlcNT3 mice (Wang et al., 2007). Not unexpectedly though, 

expression changes detected in mlcNT3 mice were less dramatic and numerous 

than in NT3-/-Bax-/- mice, we had therefore lowered our fold change cut off from 2 

fold to 1.5 fold and focused in future experiments on the analysis of the NT3-/-

Bax-/- mice. 

 

We next performed an analysis of genes with enriched and altered expression in 

proprioceptors by combining the two strategies of genetic manipulations, the 

elimination of NT3 expression in NT3-/-Bax-/- mice and the rise in endogenous 

NT3 expression in mlcNT3 mice (Fig. 9). We reasoned that genes with 

anticorrelative expression profiles in proprioceptors would likely be those most 

perceptive in sensing changes in endogenous NT3 levels, and therefore reacting 

in opposite directions in adjusting expression levels in response to peripheral 

signals. Since most genes with significant changes in expression changes in 

NT3-/-Bax-/- mice were downregulated in proprioceptors (328 down vs 29 up), we 

were most interested in which ones of these genes were upregulated in mlcNT3 

mice. In this anti-correlative analysis, we found 41 genes matching these criteria. 

These findings indicate that almost 50% of all genes upregulated upon rising  
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Fig. 8: Surplus skeletal muscle NT3 alters proprioceptor gene expression 
(A, B) Analysis of the 25 most upregulated (A) or downregulated (B) genes with highest fold 
changes in mlcNT3 mice is displayed. Values of two samples of each p0 TrkCon proprioceptors 
(left; TrkC) and TrkCoff non-proprioceptors (right; non-TrkC) isolated from wild-type and mlcNT3 
mice are shown. Grey scale values represent row z-score values and log2 unit average 
expression values are shown to the right of each probe (scales plotted top right of each panel). 
Gene names are displayed to the left of each row, and genes analyzed below shown in bold. The 
number of probes and genes regulated in proprioceptors (p≤0.02; regulation ≥1.5 fold) is shown 
below the plots. Because the transcriptional changes in these samples were less numerous 
compared to the NT3-/-Bax-/- data (Fig. 7) we had lowered our fold change cut off from 2 fold to 
1.5 fold.  (C, D) Detailed expression analysis of two individual genes upregulated (Igf1 and Shc4) 
and two genes downregulated (Tacr3 and Myb) in proprioceptors of mlcNT3 mice is shown 
(Affymetrix analysis: y-scale displays expression values; ± SEM).  
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peripheral NT3 were regulated in the opposite direction upon complete genetic 

elimination of NT3, whereas the majority of genes downregulated in NT3-/-Bax-/- 

mice were not altered in mlcNT3 mice. The opposite anticorrelative analysis was 

less rewarding, but nevertheless, we identified 11 genes with increased 

expression in NT3-/-Bax-/- mice and decrease in mlcNT3 mice. 

 

 
Fig. 9: Identification of anticorrelative gene populations 
By comparing the populations significantly regulated in NT3-/-Bax-/- mice and mlcNT3 mice we 
isolated genes with an anticorrelative behavior. 41 genes (purple arrow no. 1) were significantly 
down regulated in the absence of NT3 and upregulated by surplus NT3. In contrast to that only 11 
genes which were upregulated in the absence of NT3 were downregulated by surplus NT3. 
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3.2.5 Identification of NT3 dependent gene regulation in non-

proprioceptive afferents 

 

While NT3 might not be necessary for the survival of non-proprioceptive DRG 

neurons, there is evidence suggesting that NT3 plays a role for their further 

specification postnatally (Airaksinen et al., 1996; Krimm et al., 2004; McIlwrath et 

al., 2007). Consistent with this possibility, NT3 also seems to be able to weakly 

activate the TrkA and TrkB receptors (Bibel and Barde, 2000; Reichardt, 2006). 

In addition, its effect on the p75 receptor is also well documented (Bibel and 

Barde, 2000; Lu et al., 2005; Reichardt, 2006). Taken together we had to assume 

that deletion of NT3 would also affect transcriptional regulation in non-

proprioceptive DRG neurons. To identify the transcriptional changes of NT3 

removal upon non-proprioceptive afferents we filtered the previously established 

list of probe sets with an enrichment in the wild type TrkCoff population (p ≤ 0.02, 

at least 2 fold change difference), asking how many of those probe sets were 

significantly changed at least 2 fold upon removal of NT3. Arguing that the 

removal of NT3 seemed to have a more pronounced effect upon the 

transcriptional regulation of DRG neurons, we focused on the analysis of NT3-/- 

Bax-/- mutants.  

 

We found that 105 wild type TrkCoff marker (100 genes) were downregulated 

using these filter settings (Fig. 10). In contrast, 32 wild type TrkCoff marker (32 

genes) were upregulated significantly, demonstrating that the genetic elimination 

of NT3 affects gene expression of a selective subset of genes with enriched 

expression in non proprioceptive afferents. The question remain open, how and 

when these neurons switch to a dependency on NT3 expression. 

 



32 
 

 

Fig. 10: Identification of NT3 dependent gene regulation in non-proprioceptive afferents 
(A, B) Analysis of the 25 most downregulated (A) or 32 most upregulated (B) genes with highest 
fold changes in NT3-/-Bax-/- mice is displayed. Values of two samples of each p0 TrkCon 
proprioceptors (turquoise; TrkC) and TrkCoff non-proprioceptors (purple; non-TrkC) isolated from 
wild-type, Bax-/- and NT3-/-Bax-/- mice are shown. Grey scale values represent row z-score values 
and log2 unit average expression values are shown to the right of each probe (scales plotted top 
right of each panel). Gene names are displayed to the left of each row, and genes analyzed 
below shown in bold. The number of probes and genes regulated in proprioceptors (p≤0.02; 
regulation ≥2 fold) is shown below the plots. (C, D) Detailed expression analysis of two individual 
genes downregulated (Ldb2 and Slc45a3) and two genes upregulated (Gpr116 and Sepp1) in 
non-proprioceptors of NT3-/-Bax-/- but not in Bax-/- mice is shown (Affymetrix analysis: y-scale 
displays expression values; ± SEM).  
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3.2.6 Comparison between gene expression of target-dependent 

and target-independent phase of sensory neuron development 

 

As mentioned in the introduction, the development of sensory neurons can be 

divided into a target independent (Marmigere and Ernfors, 2007) and dependent 

phase (Hippenmeyer et al., 2004). Consistent with this, we know of 

proprioceptive marker genes, which are target independent (Kramer et al., 2006) 

and target-dependent (Arber et al., 2000; Patel et al., 2003). As was the case for 

the analysis of NT3-/-Bax-/- mice (Fig. 7), also in mlcNT3 mice (Fig. 8), we 

observed many genes with enriched expression in proprioceptors, but which did 

not show a perturbation in expression by raising peripheral NT3 levels. 

While we previously filtered our screens for proprioceptive markers, which are 

target-dependent, our current data also allows us to filter for genes, which are 

enriched in proprioceptive populations but not dependent on NT3 expression. 

Assuming that these target independent proprioceptive marker genes should 

already be enriched in TrkCon neurons at early developmental stages, we cross-

filtered those NT3 independent markers with our E14 TrkC marker list. This 

filtering resulted in a list of 29 probe sets (26 genes) (Fig. 11).  
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Fig. 11: Target independent gene expression in DRG sensory neurons 
(A) 26 genes (29 probe sets) with potentially target independent expression were identified. 
Values of p0 TrkCon proprioceptors and TrkCoff non-proprioceptors isolated from wild-type, Bax-/-, 
NT3-/-Bax-/- and mlcNT3 mice are shown. Grey scale values represent row z-score values and log2 
unit average expression values are shown to the left of each probe (scales plotted top right of 
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panel). Gene names are displayed to the right of each row, and genes analyzed below shown in 
bold (p≤0.02; regulation ≥2 fold). (B) Detailed expression analysis of two individual genes (Nrsn2 
and Fam155a) enriched in proprioceptors of all mutant backgrounds and at E14 is shown 
(Affymetrix analysis: y-scale displays expression values; ± SEM).  
 

The list includes Ntrk3 (TrkC) and Runx3, two known target independent genes 

of the proprioceptive population (Supp. 1), thus validating our way of filtering for 

genes expressed in a target independent manner. Interestingly, the list also 

contains markers for genes encoding functionally relevant proteins such as 

Scn2a1 (Boiko et al., 2001; Kaplan et al., 2001), a voltage gated sodium channel 

or Gria2 (Meng et al., 2003), an ionotropic glutamate receptor. While at this point 

we can only tell that the transcription for these genes is activated, we have no 

evidence for possible translational effects at the observed time points. 

 

In summary, the expression phase for target independent and target dependent 

genes do not seem to be temporally separated but tightly interlinked with each 

other, suggesting that the target independent gene population might also take 

over additional roles in later developmental stages.  

 

: 
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3.2.7 Identification of Er81 dependent gene expression  

 

Previous work from our lab had focused on changes in the transcriptional profile 

upon Er81 mutation in mice (Friese, 2010). Since Er81 expression is dependent 

on NT3 (Patel et al., 2003), comparing these previous data with our results was 

an interesting avenue to pursue, in particular with respect to the following 

aspects: 

 

1. Identify genes in our NT3 mutant proprioceptor analysis, which are also 

regulated by Er81, to map how pronounced the transcriptional pathway 

downstream of Er81 is in relation to all genes regulated by NT3 signaling. 

2. Having the same gene downregulated in two independent screens made a 

comparison between the two screens very interesting in terms of 

consistency. 

 

Ideally we would expect all downregulated genes from the Er81 mutant 

proprioceptor data also to be downregulated in proprioceptors isolated from NT3 

mutant mice, considering the fact that Er81 is a downstream target of NT3 

signaling. However, one should bear in mind that the methodology applied in the 

two sets of experiments is not identical. While the NT3 mutant proprioceptor 

profiling described in this thesis was performed at p0, the Er81 mutant analysis 

was carried out at E16 (Friese, 2010). Additionally, Friese et al used a 

PVCre::TauGFP binary transgenic line to label proprioceptive afferents, while the 

NT3 mutant screen in my thesis utilized a BAC TrkCGFP transgene approach.  

 

Filtering for probes, which were significantly downregulated (p ≤ 0.02) at least 2 

fold in both conditions (Er81-/-and NT3-/-Bax-/- mice) led to the identification of 29 

probe sets (29 genes) (Fig. 12A). Among the hits identified, we also isolated 

Er81 (Etv1) (Fig. 12B), confirming previously published findings (Patel et al., 

2003). While we did not expect a high number of probe sets to be shared 

between the two datasets, we were also surprised to only identify 29 common  
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Fig. 12: Identification of Er81 dependent gene expression 
(A) 29 genes (29 probe sets) potentially downstream the NT3-Er81 signaling pathway were 
identified. Values of p0 TrkCon proprioceptors and TrkCoff non-proprioceptors isolated from wild-
type E16, E16 Er81-/-, p0 Bax-/- and p0 NT3-/-Bax-/- mice are shown. Grey scale values represent 
row z-score values and log2 unit average expression values are shown to the left of each probe 
(scales plotted top right of panel). Gene names are displayed to the right of each row, and genes 
analyzed below shown in bold (p≤0.02; regulation ≥2 fold). (B) Detailed expression analysis of 
two individual genes (Er81 and Vsnl1) is shown (Affymetrix analysis: y-scale displays expression 
values; ± SEM).  
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genes, suggesting that our different technical approaches might have played a 

bigger role than expected. Alternatively, only a small fraction of genes regulated 

by NT3 are in fact downstream of Er81 and/or the developmental differences in 

the profiling experiments influences the gene lists identified. 

 

 

3.3 Discussion 

 

In this study, we use genome-wide gene expression profiling to determine the 

transcriptional consequences of NT3 signaling in proprioceptive sensory 

neurons. By transgenic fluorescent tagging of proprioceptors in order to 

specifically purify this minor DRG sensory neuron subpopulation, we identify 

genes with highly enriched expression profiles in proprioceptors when compared 

to non-proprioceptive sensory neurons. The expression level of many of these 

proprioceptor-enriched genes is dramatically regulated by genetic elimination of 

NT3 in the absence of neuronal cell death, leading to the identification of genes 

dependent on NT3 signaling but not involved in neuronal survival related 

activities. Combined with analysis of mice with surplus NT3 expression in skeletal 

muscles, we identify a specifically anticorrelated gene subset reacting in opposite 

directions to lower or higher NT3 levels in proprioceptors. 

 

Transgenic marking of proprioceptors in mice allowed us to isolate a large 

number of genes with highly enriched expression in proprioceptors of the DRG. 

Neuronal purification was a prerequisite to success since proprioceptors only 

make up a minority of all neurons in the DRG. Our observations add to a number 

of studies on gene expression profiling in the nervous system demonstrating that 

genes with highly enriched expression in defined neuronal cell types making up 

small fractions of a sampled structure can be isolated with much higher success 

rates upon neuronal purification (Okaty et al., 2011). Nevertheless, the 

proprioceptor population studied here does not represent a functionally unique 
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neuronal population. It can be further subdivided into group Ia/II afferents 

innervating muscle spindles and group Ib afferents targeting Golgi tendon organs 

in the periphery (Chen et al., 2003; Zelena, 1994; Zelena and Soukup, 1977). 

Each individual proprioceptive neuron also only targets one peripheral muscle 

and mechanisms controlling the establishment of axonal trajectories peripherally 

as well as the selection of specific central target neurons are currently unknown. 

The identification of genes expressed by subpopulations of proprioceptors may 

therefore provide an important entry point to study further cell type diversification 

amongst the proprioceptor population, both with respect to functional subtypes as 

well as projection targets. Taking motor neurons in the ventral spinal cord as an 

example, recent work provides evidence for dedicated molecular programs acting 

at the level of motor neuron pools projecting to distinct peripheral muscles as well 

as within functional subtypes of motor neurons innervating intra- and extrafusal 

muscle fibers (Bonanomi and Pfaff, 2010; Dalla Torre di Sanguinetto, 2009; 

Friese, 2010). Similar mechanistic insight is missing on DRG sensory neuron 

subpopulations, most likely due to the scattered neuronal cell body distribution 

within the DRG, in contrast to the highly organized and clustered organization of 

motor neuron pools. Our study now provides a database to mine for genes 

expressed in all proprioceptors or subpopulations thereof, and we already 

provide evidence for at least some genes with clearly non-panproprioceptor 

expression profiles.  

 

 

Cellular and transcriptional effects of retrograde signaling in 

neuronal subpopulations 

 

The approach of isolating specific neuronal populations in genetic mouse 

mutants has allowed us to study in detail the effect of the NT3 signaling pathway 

on transcription in proprioceptors. NT3 represents an important signaling system 

not only for the control of proprioceptor cell survival (Klein et al., 1994; Oakley et 

al., 1995; Tessarollo et al., 1994), but from loss-of-function experiments 
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preventing cell death phenotypes has also been shown to play a role in the 

establishment of the central trajectory of group Ia afferents towards motor 

neurons (Patel et al., 2003) and by studies overexpressing NT3 in skeletal 

muscles is known to influence the selection process of synaptic connections 

between group Ia afferents and specific motor neuron pools (Wang et al., 2007). 

Our study provides insight into the transcriptional consequences of these NT3 

level manipulations at the cell type specific level. We found that NT3 elimination 

in NT3-/-Bax-/- mice elicits a much more prominent downregulatory effect on 

proprioceptor gene expression than further raising their expression, suggesting 

that the normal role of NT3 is to mainly promote and/or enhance proprioceptor 

gene expression. Changes in gene expression upon raising muscular NT3 levels 

were more modest, most likely reflecting the fact that not all genes have the 

ability to scale expression gradually in response to differing NT3 levels, and may 

instead already reach saturating expression levels in the wild-type. It is the 

anticorrelative combinatorial analysis carried out in this study, which may point 

specifically to genes sensitive to gradual changes in NT3 levels.  

 

Our study has specifically focused on genes with enriched expression in wild-

type proprioceptors and analyzed the effect of NT3 signaling on these genes. 

However, we also observed transcriptional effects of NT3 on non-proprioceptors. 

These findings are not surprising, since in addition to TrkC, NT3 can also signal 

through p75 and to a minor extent through TrkA and TrkB, all three expressed in 

subpopulations of DRG sensory neurons (Bibel and Barde, 2000; Reichardt, 

2006). It will therefore also be interesting in the future to determine which 

transcriptional effects of NT3 signaling can be attributed to which receptor in non-

proprioceptor subpopulations.  

 

Keeping in mind the fact that certain non-proprioceptive DRG neurons survive 

the deletion of NT3 until birth (Patel et al., 2003), but die within the first postnatal 

weeks (in NT3+/- animals, (Airaksinen et al., 1996)), one has to consider the 

possibility that subpopulations of DRG neurons are initially not target dependent 
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but then undergo a switch to target dependency. This in turn suggests that target 

derived NT3 might play additional roles in late stages of spinal circuit 

development, a possibility which will be explored further in this thesis. 

 

An emerging feature in studies on the influence of target-derived retrograde 

neuronal responses is the observation that postmitotic neurons are capable to 

adjust their transcriptional programs in the cell body in order to react to these 

signals by changing specifically their cellular phenotypes. These changes can 

become apparent by a variety of different readouts. Studies on retrograde 

signaling pathways in NGF-responsive TrkA expressing DRG sensory neurons 

have provided evidence that retrograde NGF signaling promotes a switch to the 

emergence of non-peptidergic Ret-expressing sensory neurons, by virtue of 

inducing expression of Ret and GFRalpha coreceptors as well as other 

characteristic receptor genes in these neurons (Luo et al., 2007). Non-peptidergic 

Ret neurons gradually lose NGF-responsiveness at postnatal stages, providing 

evidence that retrograde signaling pathways can profoundly alter neuronal 

phenotypes as circuits mature. In the trigeminal somatosensory system, 

retrograde signaling by TGFbeta family members also acts to change 

transcriptional profiles in these whisker innervating sensory neurons, inducing the 

transcription factor Onecut2, which in turn is involved in the regulation of central 

projections (Hodge et al., 2007).  The genome-wide analysis performed on 

proprioceptive afferents in this study lends support to the notion that retrograde 

signaling from the target area intersects in a very profound way with the 

transcriptional programs set up at stages before axons invade their targets. It 

also demonstrates however the parallel existence of proprioceptor-specific gene 

programs not influenced by target-derived cues, exemplified by TrkC and Runx3.  
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4. Inhibitory control of the monosynaptic reflex circuit 

 

4.1 Introduction 

 

Considering the vast amount of information relayed by sensory neurons towards 

motor output circuitry, it can be assumed that incoming impulses are modulated 

in order for the system to adapt and focus on certain inputs. Most commonly, 

inhibitory mechanisms act at the postsynaptic side, mediated by GABAergic or 

glycinergic synapses, which are either axo-dendritic or axo-somatic. However, 

seminal work in the monosynaptic stretch reflex circuit of the spinal cord 

described a depression of the excitatory postsynaptic potential (EPSP) occurring 

without any change in the postsynaptic potential or any change in motoneuronal 

excitability (Frank and Fuortes, 1957), initially termed “remote inhibition”. 

Subsequent observations confirmed these findings (Eccles et al., 1961) and led 

to the concept of “presynaptic inhibition”, where in so-called axo-axonic 

synapses, GABAergic terminals contact proprioceptive afferents, their 

postsynaptic partners in this synapse, in order to cause a primary afferent 

depolarization (PAD). In the motor nuclei of the spinal cord, the involved boutons 

are presynaptic to Ia afferent terminals (Conradi et al., 1983; Fyffe and Light, 

1984; Pierce and Mendell, 1993; Watson and Bazzaz, 2001). Additionally, these 

presynaptic boutons are immunoreactive for an isoform of glutamic acid 

decarboxylase (GAD65) (Hughes et al., 2005) as well as its synthesis product 

GABA (Destombes et al., 1996; Holstege and Calkoen, 1990; Ornung et al., 

1996; Watson and Bazzaz, 2001), strongly supporting the idea that these 

boutons are the source of presynaptic inhibition on Ia proprioceptive afferents. 

The involved inhibitory interneurons are generated by two populations of 

neurons: DI4 and DILA, both specified by the Ptf1a and Lbx1 transcription factors 

(Betley et al., 2009; Glasgow et al., 2005; Gross et al., 2002; Muller et al., 2002). 
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An open question in the field of presynaptic inhibition of this circuit concerns the 

composition of the GABAA receptors involved in presynaptic inhibition located in 

Ia afferent synapses postsynaptically. GABAA receptors are a heterogeneous 

group of ionotropic receptors and ligand gated ion channels mediating the main 

synaptic actions of the dominant inhibitory neurotransmitter GABA (Luscher et 

al., 2011). Once activated, the GABAA receptor changes conformation, allowing 

Cl- to pass which ultimately usually leads to a hyperpolarization of the cells’ 

resting potential. Because excitation through depolarization now is less likely, the 

end result is inhibitory. However, DRG neurons have a high intracellular Cl- 

concentration (Sung et al., 2000) and as a result GABAA receptor activation there 

has a depolarizing effect, thus decreasing the effect of the incoming axonal 

spike. Hence the term “primary afferent depolarization” (PAD). The high attention 

these receptors receive arises from their diverse response patterns towards a 

broad range of psychopharmaca. GABAA receptors are composed of five 

subunits (two homomers, one monomer) and so far, 19 subunits have been 

identified (Luscher et al., 2011). Their diverse composition provides the basis for 

their flexibility in signal transduction and drug induced modulation (Fritschy and 

Mohler, 1995; Levitan et al., 1988; Olsen, 1982). Generally, a combination of -, 

- and -subunit seem to be required in order to form a fully functional GABAA 

receptor (Luscher et al., 2011), but depending on the subunit composition, the 

channel will exhibit different functional features.  

 

So far, the rules underlying the assembly of GABAA receptors are poorly 

understood. Some data suggests that the composition might be a mass-driven 

event, regulated by the rate of translation of compatible subunits: The deletion of 

1 subunit is compensated by the upregulation of receptors containing other 

subunits (Kralic et al., 2002a; Kralic et al., 2002b; Kralic et al., 2006; Sur et al., 

2001). Mice expressing ectopic 6 subunits in pyramidal cells of the 

hippocampus gained more 62 receptors at the cost of other postsynaptic 

receptors (Wisden 2002). 
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The data described in this PhD thesis provides an entry point to closer 

investigation of GABAA receptor composition in proprioceptive afferents. In 

addition, it provides deeper insight into the molecular pathways involved in 

synaptic development and/or functionality of proprioceptive afferents by means of 

regulation by target derived mechanisms.  

 

 

4.2 Results 

 

4.2.1 NT3 dependent expression of functionally relevant 

proprioceptive marker genes  

 

The validation of our proprioceptor enriched geneset data revealed among others 

also functionally relevant genes such as Cx36 (Fig. 6G). While it is well known 

that neurotrophins play a role in development and survival, the notion that they 

retrogradely induce the expression of functionally relevant genes is quite recent. 

Even though recent data has shown that for example retrograde NGF is 

necessary to induce pre- and postsynaptic structures (Sharma et al., 2010a), 

there is so far still no data about the involved genetic pathways.  

 

We therefore addressed the question, which genes with a known role in synaptic 

structure and function might be regulated by the expression of NT3 (Fig. 13). 

Filtering our list of proprioceptor enriched genes for the appropriate GO terms, 

we compiled a list of 168 probe sets (120 genes, blue ring, Fig. 13A) with a 

known role in synaptic structure or function.  Consistent with our previous cut off 

values, we again selected those probe sets with a significance of p ≤ 0.02 and a 

2 fold expression difference between the wild type TrkCon and TrkCoff population. 

Within this group,  
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Fig. 13: NT3 dependent expression of functionally relevant proprioceptive marker genes 
(A) Venn diagram of GO term analysis: 168 probe sets (120 genes, blue ring) encoded 
components of synaptic structure and function and were enriched in the wild type TrkCon 
population. Within this group 67 probe sets (51 genes, red ring) are downregulated in the 
absence of NT3. 28 probe sets (20 genes, green ring) encode postsynaptic components of 
synaptic structure and function. GO = Gene Ontology 
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(B) Visualization of the 67 NT3 regulated probe sets (51 genes, red ring, Fig. 13A) encoding 
components of synaptic structure and function. Values of p0 TrkCon proprioceptors (turquoise) 
and TrkCoff non-proprioceptors (purple) isolated from wild-type, Bax-/- and NT3-/-Bax-/- mice are 
shown. Grey scale values represent row z-score values and log2 unit average expression values 
are shown to the left of each probe (scales plotted top right of panel). Gene names are displayed 
to the right of each row, and genes analyzed below shown in bold (p≤0.02; regulation ≥2 fold). 
Green dots correspond with the postsynaptic probe sets in the green ring (Fig. 13A). (C) Detailed 
expression analysis of the four TrkCon specific, NT3 regulated, postsynaptic marker genes: 
Gabrg1, Glrb, Grm3 and Lin7b is shown (Affymetrix analysis: y-scale displays expression values; 
± SEM).  
 

 

61 probe sets (47 genes, red ring, Fig. 13A, B) showed an NT3 dependent 

expression profile, analyzing the loss of function data set. While the vast majority 

of those NT3 dependent genes play a role in various aspect of the function of 

presynaptic sites, four genes encoded proteins usually found at postsynaptic 

sites: Gabrg1, Grm3, Glrb, Lin7b (Fig. 13C) and could therefore play a role in 

presynaptic modulation or inhibition. Especially the expression of Gabrg1 is 

interesting, as it encodes the 1 subunit of the GABAA receptor, implying that 

target derived NT3 is taking part in the regulation of GABAA receptor 

composition. 

 

 

4.2.2 Only the regulation of Gabrg1 is NT3 dependent 

 

Because GABAA receptors consist of several subunits, we next wondered 

whether other GABAA receptor subunits might be expressed in a NT3 dependent 

manner. Though we were able to identify several GABAA receptor subunits 

specific for the proprioceptive population, only Gabrg1 is regulated in an NT3 

dependent manner (Fig. 14). Its expression is downregulated in NT3 mutant 

proprioceptors and also significantly upregulated in mice with ectopic skeletal 

muscle expression of NT3. Upon removal of NT3, we did not detect changes in 

the expression of 5 and an increased expression of 3 and 2 receptors. In the 

cases of alpha 2 and alpha 4 receptor subunits, no reliable statement can be 

made, since it seems that part of the effect is a result of the deletion of Bax. 
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Considering the fact that we have also analyzed proprioceptor enriched gene 

expression at several time points throughout development, the question arises 

whether TrkC specificity of those GABAA receptor subunits marks only a 

transient stage or is a consistent phenomenon throughout development. We 

therefore sought to map the expression time course of all GABAA receptor 

subunits, we are able to detect at p0 in wild type. 40 subunits were detected this 

way and are displayed according to their expression fold change in 

proprioceptors in a descending ranking order (Fig. 15). Several subunits – 

namely those, which were identified to be expressed in a proprioceptor-enriched 

manner – show consistent specificity throughout the developmental stages, 

though it should be noted that at E14, in some cases the specificity is not fully 

recognizable.  

 

Interestingly, we do not observe clear enrichment amongst the GABA receptor 

subgroup for the non-proprioceptive DRG populations, an observation which 

might be explained by the fact that this population is not homogeneous and also 

still in a state of afferent remodeling in the dorsal horn from p0 on (Airaksinen et 

al., 1996; Krimm et al., 2004; Luo et al., 2007). 
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Fig. 14: TrkCon enriched GABAA receptor subunits and their expression in absence of NT3 

Six GABAA receptor subunits with an enrichment in wild type TrkCon cells were identified: 

Gabrg1, Gabra5, Gabrb2, Gabra3, Gabra4 and Gabra2. Only Gabrg1 seems to be 

downregulated in absence of NT3. Black bar: TrkCon cells; grey bar: TrkCoff cells 
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Fig. 15: Time course analysis of all GABAA receptor subunits expressed at wild type p0 

Wild type p0 screen data was filtered for GABAA receptor subunits. Bold printed names mark 

subunits with an enriched expression in TrkCon cells (see also Fig. 14). Values of wild type E14, 
E16, p0 and p4 TrkCon proprioceptors and TrkCoff non-proprioceptors are shown. Grey scale 
values represent row z-score values and log2 unit average expression values are shown to the 
left of each probe (scales plotted top right of panel). Gene names are displayed to the right of 
each row, and genes analyzed below shown in bold (p≤0.02; regulation ≥2 fold). Note the low 
average expression value (log2) of most probes.  
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While in some cases, in individual time points specificity for the TrkCon or TrkCoff 

population can be observed, it is usually only a transient temporal effect. 

However, we see receptor subunits with ubiquitous expression in either DRG 

population, e.g. Gabrg2, a prominent GABAA receptor subunit (Luscher et al., 

2011) or Gabrb1. It should be pointed out that even though we detect many 

subunits, the actual expression value of many of those is rather low (see colored 

bar at the side). This does not necessarily mean that we measure noise but 

leaves room for speculation about the DRG cell subtypes with unique GABAA 

receptor signatures at the level of individual cells. 

 

 

4.2.3 Gabrg1 expression is confined to subsets of TrkC neurons 

and exhibits rostro-caudal gradient 

 

Because Gabrg1 showed a very striking expression profile across all mutants, it 

prompted us to analyze its expression in more detail. We first confirmed its high 

enrichment in TrkCon proprioceptors of lumbar DRG when compared to non-

proprioceptors as predicted from the Affymetrix expression profile data (Fig. 

16A). Using in situ hybridization on DRG of wild-type and TrkC mutant mice, we 

found an almost complete absence of Gabrg1 expression in TrkC mutant DRG. 

Moreover, assessing individual Affymetrix microarray profiles of Gabrg1, we 

found that its expression was nearly completely downregulated in NT3-/-Bax-/- 

mice while increased significantly and selectively in proprioceptors of mlcNT3 mice 

(Fig. 16B). Expression in non-proprioceptor populations was not altered in any of 

the mutants and was at low levels throughout. 

 



51 
 

 
Fig. 16: Peculiar Gabrg1 expression pattern 
(A) In situ hybridization of Gabrg1 on wild type and TrkC-/- tissue. In wild type Gabrg1 seems to 
be confined to a subset of TrkCon cells. In TrkC-/- DRG most of the Gabrg1 signal is gone. (B) 
Genechip expression data shows the NT3 dependent expression of Gabrg1. (C) Along the rostro-
caudal axis Gabrg1 displays a level specific expression pattern. (D) Quantification of Gabrg1on 
cells at lumbar levels on p0 wild type tissue. (E) Quantification of Gabrg1on cells at cervical levels 
on p0 wild type tissue. (F) Gabrg1 maintains the level specific expression pattern also in adult 
tissue (p40). 
 

While performing in situ hybridization experiments, we noticed an unequal 

density of Gabrg1on cells along the rostro-caudal axis (Fig. 16C). Since L1-L6 

DRG were pooled for Affymetrix microarray analysis, this observation prompted 
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us to perform in situ hybridization experiments to carefully quantify the number of 

cells detected at different segmental levels. We found a progressive increase in 

the number of Gabrg1on cells when comparing L1, L3 and L5, and a drop of 

expression at the L6 level (Fig. 16D). This rostro-caudal increase is not a simple 

reflection of the higher number of TrkCon neurons in more caudal lumbar DRG, 

since we observed differences of similar magnitude for expression values of 

Gabrg1 measured from separately collected L1 and L5 TrkCon proprioceptors, 

using FACS in TrkCGFP mice ((Friese et al., 2009), data not shown), and in situ 

hybridization signal intensity of labeled cells did not obviously differ across DRG. 

We next determined whether Gabrg1 expression is restricted to lumbar DRG 

levels or can also be detected at cervical levels. Quantitative assessment of 

Gabrg1on cell number across cervical level DRG C1-C8 revealed a similar 

gradient in expression as at lumbar levels, with low numbers of Gabrg1on cells at 

C1-C4, and gradually increasing numbers at C5-C7 (Fig. 16E).  

 

To assess whether the subset restricted expression profile of Gabrg1 is 

maintained in adult DRG, when GABA receptors are predicted to have a 

functional role, we first carried out in situ hybridization experiments at L1 and L5 

DRG of adult mice (p40) (Fig. 16F). We found that also in the adult, Gabrg1 

expression in lumbar DRG was confined to sparsely scattered cells and exhibited 

rostro-caudal density differences between L1 and L5. Together, these findings 

provide evidence that Gabrg1 expression in lumbar DRG exhibits pronounced 

rostro-caudal differences also at adult stages, a pattern likely maintained from 

early postnatal stages. 
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4.2.4 Functional analysis of Gabrg1: generation of mutant mice 

 

Because only a small subset of TrkC cells expresses Gabrg1, the likelihood of 

finding the corresponding synapse within the spinal cord is quite low. However, 

the level specific expression pattern is interesting in a way that it indicates that 

Gabrg1on TrkC neurons can be preferably found in DRG with neurons projecting 

to distal muscle groups (Landmesser and Morris, 1975; Prats-Galino et al., 

1999). This suggests that the Gabrg1 could play a role in presynaptic inhibition of 

distinct muscular units.  

 

Because the receptor is so sparsely expressed and subsequently locating and 

analyzing it with immunofluorecence would be time consuming and challenging 

we sought to generate a mutant mouse using a knock-In approach (Hippenmeyer 

et al., 2005). Inserting a Cre expressing cassette into the ATG start site of 

Gabrg1 would allow us to combine the heterozygous animal with a conditional 

reporter strain, which in turn would allow us to easily visualize and analyze the 

neurons of interests ((Hippenmeyer et al., 2005) and Fig. 17). The homozygous 

animal would further serve as a model to study the effects of Gabrg1 on motor 

behavior. 

 

While we received chimeric animals with the cassette inserted into the correct 

site, we failed to get successful LacZ staining in offspring mice. Crossing the 

animals with Tau-LSL-GFP mice led to the expected ratio of offspring 

combinations, however only 50% of the double positive animals had a detectable 

GFP signal. Analyzing only animals with detectable GFP, we neither were able to 

identify the level specific pattern we found with using in situ hybridization nor 

were we able to recapitulate the number of cells we counted using in in situ 

hybridization.  
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Fig. 17: Cloning scheme for a Gabrg1 knock-in construct 

 

 

Aiming to generate homozygous animals for further analysis, we generated 

several intersectional breedings. We aimed at identifying the mutants using PCR 

and Southern Blot. In both cases, however, we never were able to obtain mutant 

offspring. To this date there is no report of a possible embryonic lethal knockout 

of GABA receptors, however we nevertheless checked at E16 and E12 for 

knockouts, without success.  

 

In summary, the generation of Gabrg1 mutant mice in the future will allow 

studying the role of this subunit in presynaptic inhibition, but our scheme of 

mutation unfortunately did not yield to a strain of mice for analysis, for reasons 

currently unknown. 
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4.3 Discussion 

 

A striking feature revealed by our genome-wide expression profiling analysis was 

the observation that many genes encoding synaptic components were regulated 

by genetically altering NT3 signaling in proprioceptors. One of the most dramatic 

examples identified in our analysis was the gene encoding for the GABAA 

receptors subunit Gabrg1, a previously very poorly studied receptor subunit 

(Esmaeili et al., 2009). We found that Gabrg1 expression is profoundly regulated 

in opposite directions by genetic NT3 level manipulations.  

 

What could be possible roles for postsynaptic receptor components in neurons 

with purely axonal extensions? It is well-known that central branches of DRG 

sensory neurons not only establish synaptic contacts with a variety of central 

spinal neurons themselves, but that their synaptic terminals also provide 

postsynaptic substrates for inhibitory axo-axonal synapses (Eccles et al., 1962; 

Frank and Fuortes, 1957; Rudomin and Schmidt, 1999). It is thought that through 

these axo-axonal synapses, presynaptic inhibition or primary afferent 

depolarization (PAD) can selectively shunt incoming sensory information at the 

level of individual sensory synapses, thus preventing or significantly reducing a 

postsynaptic effect of sensory signals on spinal neurons (Eccles et al., 1962; 

Frank and Fuortes, 1957; Rudomin and Schmidt, 1999). Electrophysiological 

studies using pharmacological interventions provide evidence, that GABAA 

receptors are involved in presynaptic inhibition (Rudomin and Schmidt, 1999), 

but which receptor components contribute and whether perhaps different sensory 

afferents assemble receptors of different composition is currently unknown. 

Moreover, receptors for neurotransmitters other than GABA are also still being 

considered for their involvement in PAD regulation (Hochman et al., 2010; 

Rudomin and Schmidt, 1999), suggesting that also other proprioceptors-enriched 

and in part NT3 regulated postsynaptic receptor components identified here (e.g. 

Htr2c) may be relevant for this process. 
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Our findings show that Gabrg1 is expressed preferentially by proprioceptors of 

more caudal level DRG both at lumbar and cervical spinal levels. These spinal 

segments are known to innervate distal limb muscles, in contrast to more rostral 

segments innervating proximal limb muscles (Landmesser and Morris, 1975; 

Prats-Galino et al., 1999). Our inability to generate antibodies or reporter mice to 

detect Gabrg1 protein in the spinal cord unfortunately prevented us from directly 

assessing whether only subsets of vGlut1on proprioceptive terminals accumulate 

Gabrg1 protein centrally, as would be predicted from our in situ hybridization 

experiments. Analysis of Affymetrix gene expression profiles of other subunits of 

GABAA receptors in DRG sensory neurons support the idea that receptors of 

different subunit composition can be assembled in sensory neurons, but only 

Gabrg1 exhibits profound transcriptional regulation in response to NT3 

manipulations in both directions. GABAA receptors of different subunit 

composition are known to exhibit channel properties of different dynamics or 

magnitude (Levitan et al., 1988; Olsen, 1982) and alterations in subunit 

composition would therefore, in principle, be in a position to influence the effect 

of presynaptic inhibition at central proprioceptive synapses. A possible function of 

Gabrg1 and other receptor component subunits in regulation of presynaptic 

inhibition will therefore be an important avenue to pursue in the future to 

understand the function of presynaptic inhibition in processing of motor output 

information.  

 

Our work provides an entry point raising the interesting possibility that 

postsynaptic components of this presynaptic inhibitory circuit may not be 

expressed ubiquitously by all sensory neurons, and that NT3 signaling may 

influence the functionality of this pathway. On a broader scale, our data further 

confirms the involvement of target derived neurotrophins in the specification of 

synaptic identity and provides detailed genetic targets for additional detailed 

analysis. 
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5. Plasticity in adult spinal circuits 

 

5.1 Introduction 

 

One of the key factors for survival of an organism is its ability to adapt, to react 

appropriately to changes in its environment. At the level of the nervous system, 

these abilities are being displayed as the plastic properties of neurons. Initially 

thought to be hard wired, an undeniable amount of evidence has been provided 

within the last decades pointing towards the fact that neurons are indeed able to 

change their properties according to their activity, having led to important 

advances in the treatment of various neurological conditions such as stroke 

(Bach-y-Rita, 1983; Dombovy and Bach-y-Rita, 1988) and language deficits 

(Merzenich et al., 1996). 

 

We now know that activity dependent plasticity can be observed at various 

levels. Neuronal plasticity can be observed during events such as gene activation 

(Demarque and Spitzer, 2010), neurogenesis (van Praag et al., 2005) and 

cellular morphology (Ruediger et al., 2011). Synaptic plasticity includes events 

such as long-term potentiation (LTP) and long-term depression (LTD) (Bear and 

Malenka, 1994). One remarkable finding is the physiological and histochemical 

effect of treadmill training on the spinal cord. Here, using treadmill training in 

combination with pharmacological and electrical stimulation in paralyzed rats led 

to a functional remodeling of the spinal locomotor circuits, ultimately allowing a 

coordinated function of the paralyzed hindlimbs (Courtine et al., 2009).  

 

Again, the transcriptional pathways activated during these events are largely 

unknown. However there is evidence that exercise alone leads to increase in 

levels of neurotrophins: Within the spinal cord, bike- and step-training results in a 

significant increase of BDNF, NT3 and NT4 (Cote et al., 2011; Gomez-Pinilla et 

al., 2001; Sharma et al., 2010b).  In addition, exercise also seems to lead to an 

increase of NT3 in the muscle (Gomez-Pinilla et al., 2001). Considering our work 
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introduced in the previous chapters, we therefore wondered whether exercise 

might also influence gene expression in DRG neurons transcriptionally, and 

perhaps thereby contribute to plasticity of sensory feedback circuits.  

 

 

5.2 Results 

 

5.2.1 Exercise dependent increase of Gabrg1 expressing 

neurons 

 

Among the NT3 dependent genes identified in our study, with a possible 

functional role (Fig. 13), four were known to be expressed at the postsynapse 

(Fig. 13C). This suggests that these proteins are not found at the axo-dendritic 

synapses between sensory neuron and motor neuron but at the axo-axonic 

synapse between interneuron and sensory neuron (Conradi et al., 1983; Fyffe 

and Light, 1984). We had chosen Gabrg1 for further analysis and found its 

expression pattern to be quite peculiar, indicating that it might be specific for 

sensory neurons projecting preferably to the distal muscle groups. Hypothesizing 

that there, Gabrg1 might play a role in presynaptic inhibition (Hochman et al., 

2010; Rudomin and Schmidt, 1999), we assumed that it could play a role in fine-

tuning of motor output. 

 

Because expression of Gabrg1 was strongly influenced by NT3 removal and 

surplus expression in muscles (Fig. 16B), we wondered whether the 

transcriptional regulation might be dynamically regulated through exercise. Past 

work had shown that exercise of mice leads to a rise of NT3 in muscle (Gomez-

Pinilla et al., 2001). Because GABAA receptor levels might either be regulated at 

a cell autonomous level or at a population level, we first aimed to investigate 

whether we would notice a total change of Gabrg1on neurons in the DRG. 

Triplicates of mice were trained for several weeks in a voluntary running wheel, 
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DRG were then removed for ISH. Quantification of the ISH signal revealed 

indeed an increase in Gabrg1 expressing DRG neurons (Fig. 18A), however only  

 

 
Fig. 18: Level specific increase of Gabrg1 expression after exercise 
(A) DRG from trained and untrained mice (n = 4) were removed and prepared for ISH. All 
sections were kept for quantification. Black bar: wild type; grey bar: trained mice. Data for L4: wild 
type = 93.3 ± SEM; trained = 184.4 ± SEM. 
(B) L1 and L5 DRG from trained (w/o run) and untrained mice (run) (n = 3) were removed and 
prepared for RNA extraction, cDNA synthesis and subsequent qPCR. Signals were normalized to 
TrkC qPCR signal. Black bars = L1; grey bars = L5 
 

significant at L4. To assess whether there also might be a cell autonomous 

increase in Gabrg1 levels, we took L1 and L5 DRG from trained mice for RT-

PCR (Fig. 18B). Consistent with our previous findings we registered a stronger 

qPCR signal from the L5 DRG than from the L1 DRG in wild type. After exercise, 

we detect a significant increase of Gabrg1 signal in the L5 DRG only, on the one 

hand confirming again that Gabrg1 expression is being upregulated by exercise, 

on the other hand suggesting that there also might be a cell internal increase of 

the transcript, since in L5 DRG we are not able to quantify an increase in Gabrg1 

expressing neurons (Fig. 18A).  
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5.2.2 Effect of exercise on transcriptional regulation in DRG 

sensory neurons 

 

Gabrg1 is regulated by NT3 signaling and pronounced expression differences 

were detected at birth in mutants genetically eliminating NT3 or raising NT3 

levels. These findings prompted us to investigate whether exercise, which has 

previously been described to raise NT3 levels in skeletal muscles (Sharma et al., 

2010b), may also influence gene expression in DRG neurons transcriptionally.  

For this purpose, p35 mice were kept in cages with running wheels, monitoring 

distances run for 5 weeks before L1 and L5 DRG were isolated and compared by 

Affymetrix gene expression profiling to DRG isolated from littermates kept in 

cages without running wheel (Fig. 19). We first assessed the number of genes 

with significantly different expression values between L1 and L5 of control mice 

(p≤0.02; regulation ≥1.5 fold) and found 15 genes with L1 enrichment and 88 

genes with higher expression levels at L5 (Fig. 19A-C). Performing the same 

analysis on samples isolated from mice with running wheel experience yielded 

122 genes with expression enriched at L5 when compared to L1 (Fig. 19C). 

Since these adult expression profiles were derived from whole DRG samples, we 

next determined how many of these genes with higher expression values at L5 

also scored at proprioceptor-enriched in the p0 analysis. For mice without 

running experience, all (88/88) genes scored as p0 proprioceptor enriched 

(p≤0.02; regulation ≥2 fold) indicating that at least at adult stages (Fig. 19C), 

L1/L5 enriched ratios may be a feature specifically of proprioceptor but not of 

non-proprioceptor enriched genes. In contrast, only 141/450 genes expressed 

with L5 enrichment in DRG isolated from mice with running wheel experience 

were also proprioceptor-enriched in p0 DRG (Fig. 19C), suggesting that running 

wheel exercise also affects genes expression in non-proprioceptor populations. 

Lastly, we also analyzed how many of the isolated genes were regulated by NT3 

signaling and found that 33/88 genes derived from animals without running and 

64/141 genes from animals with running experience scored amongst the cohort 

of NT3 regulated genes.  
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Fig. 19: Effect of exercise on 
DRG gene expression 
(A, B) Examples for level specifc 
gene expression in adult DRG. (C) 
Comparison of gene expression 
between wild type L1 and L5 DRG 
led to the identification of 15 L1 
enriched and 88 L5 enriched probe 
sets (p≤0.02; regulation ≥ 1.5 fold), 
notably all prbe sets had been 
identified as TrkCon marker in our 
wild type screen (Fig. 6). Focusing 
on the L5 population we found that 
all 38 of 88 probesets (33/77 
genes) had been identified as NT3 
dependent. After exercise, of the 
521 probe sets (450 genes) 
enriched in L5, 162 probes (141 
genes) had been identified as 
TrkCon marker. 64 of 162 probe 
sets (60/141 genes) had been 
previously identified as NT3 
dependent.  
(D) The array data confirms again 
the level specific expression of 
Gabrg1 and its increase after 
exercise. 
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Amongst the 33 NT3 regulated genes, Gabrg1 exhibited a very clear Affymetrix 

gene expression profile. Running wheel experience at the L1 level did not 

significantly alter Gabrg1 expression, but at the L5 segmental level, showed a 

significant increase in expression detected at the whole DRG level, a feature that 

was also confirmed using quantitative PCR (Fig. 18B). Wondering whether the 

increase in expression might be a general feature we checked the expression 

profile of TrkC. However, no difference in expression was detected (Fig. 19D). 

Together, these findings support the notion that Gabrg1 is not only regulated by 

peripheral retrograde signaling in subpopulations of DRG neurons at embryonic 

and neonatal stages, but its expression can still be modulated by behavioral 

interventions in the adult. 

 

Wondering whether exercise would further increase the already existing level 

specificity of a gene, we checked how many of the L1 and L5 enriched genes in 

WT would fall into this category. Interestingly, only Gabrg1 fulfilled these 

conditions. All other level specific proprioceptor markers either lost their 

specificity or did not change significantly. 
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5.3 Discussion 

  

Using a voluntary running paradigm, we provide evidence of exercise induced 

transcriptional regulation in unsorted DRG neurons. While the exact nature of this 

regulation is still unclear, previous work suggests that upregulation of 

neurotrophins in the target area might play a role, by retrogradely activating the 

transcriptional program of the cell (da Silva and Wang, 2011; Hippenmeyer et al., 

2004; Huberman, 2006).  

 

Considering the fact that target derived NT3 is necessary for survival of certain 

non proprioceptive afferents at adult stages, our findings regarding the influence 

of voluntary running on gene expression in DRG sensory neurons further support 

the notion that retrograde signals have life-long roles in adjusting gene 

expression programs. The fact that genes developmentally regulated by target-

derived signals reappear in the behavioral paradigm carried out in our study in 

the adult suggests that expression of at least subsets of genes remains plastic 

also in the adult, a feature that may be important for the design of strategies 

interfering with pain or neuronal injury. 
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6. Supplementals  

 

 

Supp. 1: Genechip expression data of four known proprioceptive marker marker genes in 
wild type p0 DRG. Black bar: expression in TrkCon cells; grey bar: expression in TrkCoff cells (n 
= 2)  
 

 

 
Supp. 2: Quantification of population specific marker at various time points 
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7. Material & Methods  

 

 

Mouse genetics 

Transgenic mice analyzed in this study were TrkCGFP (Gong et al., 2003), 

Bax-/- (Deckwerth et al., 1996), NT3-/- (Farinas et al., 1994), MlcNT3 (Taylor et al., 

2001). 

 

 

Sample preparation and analysis for Affymetrix gene expression profiling 

experiments 

For the study of the role of NT3 in the transcriptional regulation of DRG 

sensory neurons we used a total of 16 arrays representing 8 different groups 

(duplicates for each condition). For wild-type screens (e14.5, e16.5, p0.5 and 

p4.5) and the adult exercise screens, we used a total of 30 arrays representing 

10 different groups (triplicates for each condition).  

 

 

Dorsal Root Ganglia Dissection and Dissociation 

1.) Isolation of DRG 

 laminectomy was performed in ice cold HBSS medium w/o Ca2+/Mg2+, 

tissue should be covered in medium at all times 

 coat FACS tube with sterile filtered, inactivated FCS (at least 15 min) 

 remove FCS, refill FACS tube with 1ml ice cold HBSS medium w/o 

Ca2+/Mg2+, transfer isolated DRG into tube (use 1000 μl siliconized 

pipette tip to transfer DRG) 

 

2.) Trypsin / Collagenase H Treatment 

 centrifuge tubes for 7 min at 800 rpm. Remove HBSS medium with fire 

polished Pasteur pipette, take care not to lose any DRG 
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 add 1 ml 0.25% trypsin solution and 100 μl Collagenase H enzyme 

solution (final concentration 0.1%) 

 mix gently by flipping with fingers the bottom of the tube 

 incubate mix for 10 minutes at 37°C (15 min for p4 DRG). Flip the tube 

carefully every 5 min. 

 stop digestion step by adding 2.5 ml HBSS medium. Mix gently and 

centrifuge the mix for 7 minutes at 800 rpm. 

 Carefully discard the supernatant using a fire polished Pasteur pipette. 

 Resuspend cell pellet in 1 ml ice cold HBSS medium. Tissue will appear 

as a lump. 

 

3.) Trituration 

 Dissociate cells by drawing them through a fire polished Pasteur pipette 

tip and expelling them along the Falcon tube. Repeat step approximately 

20 times until the tissue is dissociated. The older the tissue, the more 

repetitions it will take. 

 Check for single cell suspension under the binocular dissection 

microscope. 

 Single cell solution was passed through a custom made gauze filter (40 

m mesh size) and transferred into a new previously FCS coated tube 

 

 

Fluorescent Activated Cell Sorting 

For Fluorescent Activated Cell Sorting a MoFlo (DAKO) high-speed 4-way cell 

sorter was used. It has a 3-laser set-up: two water-cooled Coherent Enterprise II 

lasers (Model610 emitting at 488nm and Model653 allowing UV excitation) and 

one air-cooled Spectra Physics Helium-Neon laser emitting at 633nm. To sort 

DRG sensory neurons, a 100μm nozzle was used at 20psi. Sorted cells were 

collected in 1 ml Eppendorff tubes filled with 50μl Trizol.  
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Microarray analysis 

RNA extraction and amplification was performed by the FMI Microarray facility. 

For microarray analysis Affymetrix GeneChip Mouse Genome 430A 2.0 arrays 

were used. 

 

Raw array data were read into R (v.2.9) and probeset condensation and RMA 

normalization were performed using the justRMA() function of the Affymetrix 

package from R/Bioconductor (2.3). Normalized probeset-level data was 

exported to a file and loaded into Genedata Analyst v2.2. Lists of differential 

genes were generated using the moderated ttest function (p ≤ 0.02) and an 

additional cut-off of an at least 2 fold change in expression levels. Heatmaps 

were generated in R using the heatmap function of the gplot package.  

 

 

In situ hybridization and immunohistochemistry 

Protocols: (Arber et al., 2000; Hippenmeyer et al., 2005) 
 

Probe sequences: 

(Friese, 2010); Gabrg1 and Grm3 from Allen Brain Atlas 

 

 

Staining protocol for Cx36 staining 

(For details check also (Ciolofan et al., 2007)) 
  

 Mice were deeply anesthetized with a rombutan/ketamin solution and 

transcardially perfused with 3 ml of cold 50 mM sodium phosphate buffer, 

pH 7.4, containing 0.9% NaCl, 0.1 M sodium nitrite and 1 U/ml heparin, 

followed by 40 ml of cold 0.16 M sodium phosphate buffer, pH 7.6, 

containing 1% formaldehyde and 0.2% picric acid. 

 After perfusion fixation, tissue was removed and cryoprotected for 24–

72h. Sections of spinal cord were cut (12 µm) on a cryostat and collected 

on coated glass slides. 
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 Sections were washed for 20 min in 50 mM Tris-HCl, pH 7.4, containing 

1.5% sodium chloride (TBS) and 0.3% Triton X-100 (TBSTr). For double-

immunofluorescence labeling, sections were incubated simultaneously 

with  primary antibody for Cx36 (1:100 dilution) rabbit polyclonal (Life 

technologies) for 12h at 4°C, then washed for 1h in TBSTr, and incubated 

for 1.5h at room temperature simultaneously with appropriate 

combinations of secondary antibodies 

 All antibodies were diluted in TBSTr containing 5% normal goat or 

normal donkey serum. After secondary antibody incubations, sections 

were washed in TBSTr for 20 min; in 50 mM Tris-HCl buffer, pH 7.4, for 30 

min; covered with antifade medium; and coverslipped.  

 

 

Southern Blot 

Protocol: (Arber et al., 2000; Hippenmeyer et al., 2007; Hippenmeyer et al., 2005) 

Probe sequence:  Forward: 5`- ttcttatagctgctgtcagaacca-3’ 

   Reverse: 5’-aaggattatttaacggtttcaca-3’ 

Digest with EcoRI 

 

 

Voluntary running experiments with adult mice 

5 weeks old male Bl6 mice were put into running wheels for 5 weeks. Distances 

were measured with a counter attached to the running wheel.  

 

 

RNA isolation of DRG (for subsequent qPCR) 

(adapted from http://www.ebi.ac.uk/arrayexpress/files/E-MEXP-976/E-MEXP-

976.idf.txt) 

1. Clean glass homogenizer first with detergent (Deacon). Rinse 3-4x with 

dH2O. Add 0.5ml Trizol and clean. Remove this. 
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2. Add 50μl Trizol to tissue and transfer to clean homogenizer. Homogenise 

for 2-3 min. Add another 50μl Trizol, homogenize and finally add 400μl 

Trizol. Transfer to clean 1.4ml tube and add another 750 μl of Trizol. Store 

on ice. Clean glass homogenizer as above and process second sample.  

3. Load the lysate (maximum volume 700 μl) onto a QIAshredder spin 

column sitting in a 2 ml collection tube and spin for 2 min at maximum 

speed in a microfuge. Repeat with the remaining of the sample. 

4. Transfer sample to a 1.5 ml tube and incubate 5 min at 15-30°C. 

5. Add 0.2 volumes of chloroform (or chloroform-isoamyl alcohol). Cap tubes 

and shake vigorously for 15 seconds. Do not vortex!! Allow sample to 

stand at room temperature for 2-15 min.  

6. Follow the protocol provided by the Qiagen RNeasy mini kit.  

 

 

qPCR probes 

 
gabrg1 

forward 5’-cataaacatggagtatacaatag-‘3 

reverse 5’-gagttcctgaagaaagtgtc-‘3 

 

trkC 

forward 5’-cagtcagtgtgatctcccag-‘3 

reverse 5’-gtccagttcagattggtc-‘3 

 

 

Material 

 Binocular dissecting microscope 

 Dissection tools 

 Waterbath 

 1000 μl pipette with regular and siliconized tips 

 Centrifuge for 15 ml reaction tubes, 800 rpm 
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 Fire polished Pasteur pipette 

 Hank’s modified solution, Hank’s balanced salt solution (HBSS) medium 

w/o Ca2+/Mg2+, Gibco Nr. 14170-138 

 Fetal Calf Serum, Amimed, Bioconcepts, 500 ml, heat inactivate for 30 

minutes in 56°C, store at -20°C in appropriate aliquots 

 Trypsin 0.25%, Amimed, Bioconcepts Nr. 5-50 F00-H07, 100 ml, or Sigma 

Nr. T-8253, store at -20°C in appropriate aliquots 

 1 g Collagenase H, Boehringer Mannheim Nr. 1074032, dilute to 1% in 

HBSS medium w/o Ca2+/Mg2+, sterilization of the medium through 0.45 

μm filter under a laminar flow hood, store 100 μl aliquots at -20°C 

 For generation of cDNA: ThermoScript RT-PCR System (Invitrogen no. 

11146057) 

 Platinum Sybr Green Super mix UDG with ROX (Invitrogen no. 11790-

01K) 

 Images were taken with either OLYMPUS BX61 Fluoview or Zeiss 

LSM700 

 

 

 

List of Antibodies 

 neurotrophin receptor tyrosine kinase antibodies (Trks) and the islet1 

used as described in (Kramer et al., 2006) 

 Rabbit anti Runx3: (Kramer et al., 2006) 

 Goat anti p75: Neuromics; cat #: GT15057; dilution 1:5.000 

 Rabbit anti p75: (Reichert); dilution 1:8.000 

 Rabbit anti Cx36: Invitrogen; cat #: 3646000; dilution 1:100 

 Guinea pig anti vGlut1: Chemicon; cat. #: AB5905; dilution 1:20.000 

 Chicken anti GFP: Molecular Probes; cat. #: A10262 
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6. Role of Fgf8 signalling in the specification of rostral Cajal-

Retzius cells 

 

Development. 2010 Jan;137(2):293-302. 
Céline Zimmer1, Jun Lee, Amélie Griveau, Silvia Arber, Alessandra Pierani, 
Sonia Garel and François Guillemot 
 

 

SUMMARY 

 

Cajal-Retzius (CR) cells play a key role in the formation of the cerebral cortex. 

These pioneer neurons are distributed throughout the cortical marginal zone in 

distinct graded distributions. Fate mapping and cell lineage tracing studies have 

recently shown that CR cells arise from restricted domains of the pallial 

ventricular zone, which are associated with signalling centres involved in the 

early regionalisation of the telencephalic vesicles. In this study, we identified a 

subpopulation of CR cells in the rostral telencephalon that expresses Er81, a 

downstream target of Fgf8 signalling. We investigated the role of the rostral 

telencephalic patterning centre, which secretes FGF molecules, in the 

specification of these cells. Using pharmacological inhibitors and genetic 

inactivation of Fgf8, we showed that production of Fgf8 by the rostral 

telencephalic signalling centre is required for the specification of the Er81+ CR 

cell population. Moreover, the analysis of Fgf8 gain-of-function in cultivated 

mouse embryos and of Emx2 and Gli3 mutant embryos revealed that ectopic 

Fgf8 signalling promotes the generation of CR cells with a rostral phenotype from 

the dorsal pallium. These data showed that Fgf8 signalling is both required and 

sufficient to induce rostral CR cells. Together, our results shed light on the 

mechanisms specifying rostral CR cells and further emphasise the crucial role of 

telencephalic signalling centres in the generation of distinct CR cell populations. 
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INTRODUCTION 

 

The cerebral cortex contains different subclasses of excitatory projection 

neurons derived from the dorsal telencephalon or pallium, as well as inhibitory 

interneurons originating from the ventral telencephalon or subpallium (Marin and 

Rubenstein, 2003; Molyneaux et al., 2007). The cerebral cortex is subdivided into 

different regions with divergent evolutionary histories, i.e. the archicortex, 

neocortex and paleocortex, and into areas with distinct functions, i.e. the motor, 

somatosensory, visual and auditory cortical areas (O'Leary et al., 2007; Rakic, 

1988; Rash and Grove, 2006; Sur and Rubenstein, 2005). The cortex is also 

organised into six layers containing neurons with different morphological, 

molecular and physiological characteristics and unique patterns of connectivity. 

This cytoarchitecture is tightly regulated, with a defined number of neurons 

adopting specific laminar features in each zone, which is crucial for the proper 

activity of the cerebral cortex. Cajal-Retzius (CR) cells are among the first 

neurons to be generated between E10.5 and E13.5 in mouse (Hevner et al., 

2001; Takiguchi-Hayashi et al., 2004), and they die during the first postnatal 

weeks (Abraham and Meyer, 2003; del Rio et al., 1995; Derer and Derer, 1990; 

Marin-Padilla, 1990; Marin-Padilla, 1992; Zecevic and Rakic, 2001). This 

transient pioneer neuronal population was discovered more than a century ago, 

in humans by G. Retzius and in lagomorphs by S. Ramon y Cajal, but the 

features and functions of these cells remain largely unknown. They appear to 

play a key role in the radial migration of cortical neurons and in the laminar 

organisation of the mouse and human cortex, largely through the production of 

the extracellular glycoprotein reelin (D'Arcangelo et al., 1995; Ogawa et al., 1995; 

Rice and Curran, 2001; Super et al., 2000). 

CR cells populate the marginal zone (MZ) of the cortex evenly in the 

prospective neocortex, but accumulate at distinct locations such as at the 

olfactory piriform cortex. Various CR cell subpopulations have been identified 

and shown to differentially express several molecular markers, including reelin, 

calretinin (calbindin 2 – Mouse Genome Informatics) and p73 (Trp73 – Mouse 
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Genome Informatics) (Bielle et al., 2005; Meyer et al., 2002; Takiguchi-Hayashi 

et al., 2004). CR cells have long been assumed to arise from the whole pallial 

ventricular zone (VZ) and to migrate radially to the cortical surface, similarly to 

other glutamatergic cortical neurons (del Rio et al., 1995; Hevner et al., 2003; 

Marin-Padilla, 1998). However, Meyer and colleagues identified restricted sites of 

generation of CR cells based on the expression of p73, a transcription factor 

that is expressed by different CR cell subpopulations (Meyer et al., 2002). 

Consistently, fate mapping and cell lineage tracing studies have shown that CR 

cells arise from specific locations along the rostrocaudal and dorsoventral axes of 

the pallial VZ (Bielle et al., 2005; Garcia-Moreno et al., 2007; Imayoshi et al., 

2008; Monuki et al., 2001; Takiguchi-Hayashi et al., 2004; Yoshida et al., 2006; 

Zhao et al., 2006). Four different sites of CR generation have been identified, 

comprising the pallial domain of the septum in the rostromedial (RM) pallium 

(Bielle et al., 2005), the ventral pallium (VP) laterally (Bielle et al., 2005), the 

prospective choroid plexus, and the cortical hem (CH) caudally (Garcia-Moreno 

et al., 2007; Imayoshi et al., 2008; Monuki et al., 2001; Takiguchi-Hayashi et al., 

2004; Yoshida et al., 2006; Zhao et al., 2006). CR cells migrate tangentially from 

these focal sites to populate the entire cortical surface. Furthermore, fate 

mapping studies have shown that CR cells originating from different sources 

preferentially settle in distinct regions of the cortex (Bielle et al., 2005; Imayoshi 

et al., 2008; Takiguchi-Hayashi et al., 2004; Yoshida et al., 2006; Zhao et al., 

2006). Indeed, ablation of the CH results in a substantial depletion of CR cells, 

except in the rostral cortex, thus demonstrating that CH-derived CR cells mainly 

populate the caudal cortex (Yoshida et al., 2006). 

Intriguingly, the neuroepithelial domains that generate CR cells are closely 

associated with signalling centres involved in the early regionalisation of the 

telencephalic vesicles. These signaling centres secrete morphogens that provide 

positional and proliferative cues to the surrounding telencephalic neuroepithelium 

(O'Leary et al., 2007; Rash and Grove, 2006; Sur and Rubenstein, 2005). 

Recently, the signals produced by the CH in the caudomedial telencephalon, 

which include TGF molecules, were shown to be necessary for the generation 
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of caudal CR cells (Friedrichs et al., 2008; Hanashima et al., 2007; Siegenthaler 

and Miller, 2008; Theil, 2005). Morphogens produced by the commissural plate 

(CoP) in the RM telencephalon and by the putative anti-hem in the lateral 

telencephalon might similarly participate in CR cell generation. In contrast to the 

substantial progress that has been made in understanding how caudal CR cell 

populations are specified, the mechanisms underlying the specification of rostral 

CR cells have remained poorly characterised. 

FGF signalling has been shown to play an essential role in patterning the 

rostral telencephalon (Cholfin and Rubenstein, 2007; Cholfin and Rubenstein, 

2008; Fukuchi-Shimogori and Grove, 2001; Fukuchi-Shimogori and Grove, 2003; 

Garel et al., 2003; Paek et al., 2009; Shimogori et al., 2004; Storm et al., 2006). 

Fgf8 is expressed early on at the rostral tip of the neural tube (called the anterior 

neural ridge or ANR) (Crossley and Martin, 1995; Crossley et al., 2001; 

Shimamura and Rubenstein, 1997) and its expression persists after fusion of the 

ANR to form the CoP at the rostrodorsal midline of the telencephalon (Crossley 

et al., 2001). Fgf8 is the main secreted factor produced by the rostral organising 

centre, where it regulates the expression of Fgf17 and Fgf18 and is involved in 

patterning both the dorsal and ventral telencephalon, as well as in promoting cell 

survival (Bachler and Neubuser, 2001; Borello et al., 2008; Chi et al., 2003; 

Cholfin and Rubenstein, 2008; Fukuchi-Shimogori and Grove, 2003; Gimeno and 

Martinez, 2007; Gutin et al., 2006; Lee et al., 2000; Ohkubo et al., 2002; 

Shanmugalingam et al., 2000; Storm et al., 2006; Storm et al., 2003). 

In this study, we have examined the mechanisms engaged in the 

specification of rostral CR cells and asked specifically whether Fgf8 signalling 

from the rostral patterning centre is involved in this process. We found that Er81, 

an ETS transcription factor downstream of Fgf8 signalling, is specifically 

expressed at early stages by CR cells in the rostral cortex and not by caudal CH-

derived CR cells. These rostral Er81+ CR cells derive largely from the RM 

pallium, as shown by their persistence in Pax6 mutants. We used 

pharmacological inhibitors and genetic inactivation of Fgf8 to demonstrate that 

the Fgf8 telencephalic signalling centre is required for the specification of Er81+ 
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CR cells. We have also used an Fgf8 gain-of-function approach in vitro and 

analysed Emx2 and Gli3 mutant mouse embryos, which express Fgf8 ectopically, 

to show that ectopic Fgf8 signalling promotes the generation of rostral-type CR 

cells from the dorsal pallium. Together, our results shed light on the mechanisms 

that specify rostral CR cells. 

 

 

RESULTS 

 

Rostral CR cells express Er81, a downstream target of FGF 

signaling 

 

Genetic ablation of the CH-derived CR cell subpopulation has revealed 

the extent of the remaining CR cell subpopulations in the rostral telencephalon 

(Yoshida et al., 2006). The signalling activity of the CH during telencephalic 

patterning is balanced by the activity of the rostral CoP (O'Leary et al., 2007; 

Rash and Grove, 2006; Sur and Rubenstein, 2005). We thus hypothesised that 

rostral CR cells, which are spared by the ablation of the CH, might be induced by 

FGF signals emanating from the CoP. 

To address this issue, we first mapped the domains of Fgf8 signalling 

activity by characterising the expression patterns of the ETS transcription factors 

Erm, Pea3 and Er81 (also known as Etv5, Etv4 and Etv1, respectively), which 

are effectors of Fgf8 signalling (Cholfin and Rubenstein, 2008; Fukuchi-

Shimogori and Grove, 2003). We conducted our analysis at different rostrocaudal 

levels of the mouse telencephalon at E11.5 (Fig. 1B-D’‘‘). At rostral levels, Erm 

and Pea3 were expressed medially throughout the dorsoventral extent of the 

telencephalic VZ (Fig. 1B,B’,C,C’), whereas Er81 expression was restricted to the 

MZ of the whole cortex at this level (Fig. 1D,D’). More caudally, Erm and Pea3 

were expressed at low levels in the CH (Fig. 1B’’,C’’), whereas Er81 was absent 

(Fig. 1D’’). Further caudally, expression of all three genes was absent  
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Fig. 1.: Expression patterns of FGF signalling-induced ETS factors in the mouse 
embryonic telencephalon. (A-A‴) Schemes of coronal sections of E11.5 telencephalon 
analysed at different rostral-caudal levels showing expression domains of Fgf8 and Fgf18 (red), 
Fgf17 (green) and Fgf8/17/18 (yellow). (B-D‴) In situ hybridisation of coronal sections of the 
telencephalon at E11.5. (B-B‴) Erm is expressed in the medial VZ of the telencephalon (B,B′), in 
the CH and the PSB (B″), and in the diencephalon but not the telencephalon at caudal levels 
(B‴). (C-C‴) Pea3 shows a similar expression pattern to Erm, except in the PSB (C″). (D-D‴) Er81 
is expressed in the MZ of the medial (arrowhead) and dorsal (white arrow) cortex and in the 
olfactory piriform cortex (yellow arrow), where preplate cells are localised (D). Caudally, Er81 is 
weakly expressed in the SP (asterisk in D″) and in the diencephalon (D‴). CH, cortical hem; CoP, 
commissural plate; dien, diencephalon; P, pallium; PSB, pallium-subpallium boundary; S, septum; 
SP, subpallium; VZ, ventricular zone; MZ, marginal zone. Scale bar: 210 μm. 
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from the telencephalon (Fig. 1B’’’,C’’’,D’’’). FGF signalling activity thus correlated 

well with Fgf expression domains and was elevated within the RM pallium, which 

includes the pallial septum (Fig. 1A-A’’’). Er81 expression was detected in the 

rostral cortex, where it started to decline at E12.5 and was absent at E13.5 (data 

not shown), suggesting a transient FGF signalling activity in postmitotic neurons. 

  We characterised the Er81-expressing cells of the rostral cortex by co-

immunolabelling for Er81 and cell type-specific markers at E11.5. All Er81+ cells 

expressed Tbr1, a T-box transcription factor that labels both CR and preplate 

neurons (see Fig. S1C-F in the supplementary material) (Hevner et al., 2001). 

Using reelin and calretinin as specific CR cell markers (Alcantara et al., 1998; del 

Rio et al., 1995), we further determined that ~75% of Er81+ cells were positive 

for reelin or calretinin and had a similar distribution in the different cortical areas 

analysed (Fig. 2B-C’’; see Fig. S2 in the supplementary material). Using p73 as 

a marker of CR cells derived from the pallial septum (A.G. and A.P., unpublished) 

(Hanashima et al., 2007), we also observed that some cells expressed both Er81 

and p73, representing more than 30% of the Er81+ population in the medial 

cortex (Fig. 2D-D’’). These data suggest that rostral CR cells are likely to 

represent two distinct CR cell types, one p73+ and one p73–. Together with 

the spatial analysis of Er81 expression (Fig. 1D,D’’’), these data showed that 

rostral CR cells mainly express reelin, calretinin and the ETS transcription factor 

Er81 at E11.5. The co-expression of Er81 with reelin or calretinin can thus be 

used to discriminate rostral CR cells from CH-derived CR cells, which express 

neither Er81 nor calretinin at early developmental stages (E10.5-E12.5). 
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Fig. 2.: Er81 expression in rostral Cajal-Retzius (CR) cells. (A) Scheme of a coronal section of 
mouse E11.5 telencephalon at rostral level. (B,B′,C,C′,D,D′) Co-immunolabelling for Er81 and 
reelin (B,B′), Er81 and calretinin (C,C′), Er81 and p73α (D,D′) in the dorsal and medial cortex (B-
D) and the lateral and ventral cortex (olfactory piriform cortex) (B′-D′). (B″,C″, D″) Cortical 
distribution of Er81+ cells that co-express reelin (V, 72.2±5.4%; L, 68.6±7.9%; D, 70.9±7.7%; M, 
71.9±8.4%), calretinin (V, 85±2%; L, 81.2±5.3%; D, 71.2±3.8; M, 69.6±6%) and p73α (V, 
2.6±0.9%; L, 3.1±0.8%; D, 8±2.4%; M, 33.8±3%). D, dorsal; L, lateral; M, medial; V, ventral. 
Scale bar: 50 μm.  
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The pallial septum gives rise to Er81+  CR cells 

 

We then examined which progenitor domains give rise to Er81+ CR cells 

at E11.5. CR cells of the rostral cortex are mainly derived from the VP, located 

laterally, and from the pallial septum, located medially (A.G. and A.P., 

unpublished) (Bielle et al., 2005). Dbx1 is expressed by progenitors of the VP 

and also by early postmitotic cells derivedfrom the pallial septum (A.G. and A.P., 

unpublished) (Bielle et al., 2005). We thus analysed the rostral cortex of 

heterozygous Dbx1nls-lacZ mice using co-immunolabelling for Er81 and -

galactosidase (-gal), which can be used to trace the short-term progeny of 

Dbx1-expressing cells (Fig. 3A-A’’). Most -gal+ cells co-expressed Er81 (Fig. 

3A’’), indicating that a substantial fraction of Er81+ CR cells derive from Dbx1-

expressing cells located rostrally in the lateral pallium and the medial cortex. 

To further assess whether Er81+ cells were derived from the RM pallium 

domain, we analysed rostral CR cells in the Pax6 mutant, in which the VP is not 

specified and no longer expresses Dbx1 (data not shown) (Carney et al., 2009; 

Yun et al., 2001), whereas the pallial septum is unaffected and remains positive 

for Dbx1 expression (data not shown). We found no significant difference in Er81 

and reelin co-immunolabelling between wild-type and Pax6 mutant embryos in 

medial, dorsal (Fig. 3B-E; see Table S1 in the supplementary material), lateral 

and ventral domains of the rostral cortex at E12.5 (see Fig. S3 in the 

supplementary material). These results indicate that Er81+ CR cells are still 

specified in the absence of a lateral VP domain and must therefore originate from 

a medial location. Hence, the pallial septum gives rise to rostral Er81+ CR cells 

populating the rostral cortex. 
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Fig. 3.: Er81+ CR cells originate particularly from the pallial septum. (A-A″) Co-
immunolabelling for Er81 and β-galactosidase on sections of rostral telencephalon of 
heterozygous Dbx1nls-lacZ mouse embryos at E11.5, showing that some Er81+ cells derive from 
Dbx1+ cells. (B-D) Co-immunolabelling for Er81 and reelin in the dorsal (B,C) and medial (B′,C′) 
cortex of wild type (WT) or Pax6 mutant (Pax6 KO) at E12.5 (see scheme in D). (E) Similar 
numbers (see Table S1 in the supplementary material) of rostral CR cells marked by double 
labelling for Er81 and reelin are found in the dorsal and medial cortex of both wild-type and Pax6 
mutant embryos. Scale bars: 100 μm in A-A″; 25 μm in B-C′.  
 

 

 

Ectopic expression of Fgf8 induces rostral CR cells 

 

Our previous observations suggested that the RM pallium, including the 

pallial septum, is exposed to the FGF signalling activity of the CoP and the septal 

VZ (Figs 1-3). We thus examined whether Fgf8, which is the main output of the 

rostral patterning centre, is involved in the generation of rostral CR cells. We first 

used a gain-of-function (GOF) approach, whereby a -gal plasmid was co-
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electroporated with an Fgf8 expression construct, or electroporated alone in 

control experiments, in the rostrodorsal pallium of E10.5 embryos, which were 

then cultivated for 2 days before analysis (see Fig. S4 in the supplementary 

material). As expected, Fgf8 electroporation resulted in the ectopic induction of 

several Fgf8 signalling targets, including Er81, Pea3, Erm, Spry2 and Fgfr1 (Fig. 

4A-E). Although Fgf8 has a crucial role in patterning the rostral telencephalon 

(Cholfin and Rubenstein, 2008; Garel et al., 2003; Shimogori et al., 2004; Storm 

et al., 2006), ectopic Fgf8 did not affect the expression of pallial progenitor 

markers such as Lhx2, Pax6 or Ngn2 (Neurog2) (Fig. 4G-I), nor that of the 

telencephalic marker Foxg1 (Fig. 4F), as previously reported in an Fgf8 GOF 

study performed at E11.5 (Shimogori et al., 2004). Hence, the telencephalic 

identity of the electroporated tissue was maintained upon Fgf8 GOF, but the 

dorsal pallium adopted a RM pallial identity as shown by the ectopic expression 

of Erm, Pea3, Spry2 and Fgfr1. 

Ectopic Fgf8 also markedly increased the number of reelinexpressing cells 

in the dorsal cortex as compared with the control electroporation or the non-

electroporated side (Fig. 5A,B,C’,D’,E’,F’). Co-immunolabelling experiments for 

-gal, to mark the progeny of electroporated cells, and for rostral CR cellspecific 

markers showed that most -gal+, reelin+ cells also expressed Tbr1 (Fig. 5D-

D’’’), Er81 (Fig. 5F-F’’’) and calretinin (see Fig. S5A,C-C’’’,E-E’’’ in the 

supplementary material), demonstrating that ectopic Fgf8 specifically induces CR 

cells of the rostral type. Moreover, we did not observe any change in Dbx1 or 

p73 labelling (data not shown; see Fig. S5B,D-D’’ in the 

supplementarymaterial), indicating that Fgf8 is not sufficient to induce their 

expression. Coelectroporation of a constitutively active form of FGF receptor 1 

(Fgfr1) with -gal also resulted in the generation of -gal+ cells that co-expressed 

reelin and Er81 (see Fig. S6A-A’’’ in the supplementary material). Thus, Fgf8 

signalling acts cell-autonomously to induce rostral CR cell generation in the 

rostrodorsal pallium. 
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Fig. 4. (previous page): Expression of telencephalic markers following Fgf8 
overexpression. (A-I) In situ hybridisation (A-F,I) and immunolabelling (G,H) on coronal sections 
of E10.5 mouse telencephalon co-electroporated on the right-hand side (marked by +) with 
plasmids expressing nls-lacZ and Fgf8 and cultivated for 2 days in vitro (DIV). (A-E) Fgf8 
overexpression results in ectopic expression of the Fgf8 signalling targets Er81, Erm, Pea3, 
Spry2 and Fgfr1 in the electroporated area. Note that the ectopic domains of expression are 
maintained in the MZ (A) or the VZ (B-E), depending on the endogenous domain of expression. 
(F-I) Foxg1, Lhx2, Pax6 and Ngn2 show similar expression patterns on the electroporated and 
non-electroporated sides. n≥8. Scale bars: 210 μm. 

 

 

 
Fig. 5.: Overexpression of Fgf8 in the dorsal pallium induces the generation of Er81+ 
rostral CR cells. Immunolabelling of sections of mouse rostral telencephalon electroporated at 
E10.5 and cultivated for 2 DIV. (A) Control electroporation (nls-lacZ) does not affect reelin 
expression on the electroporated side (marked by +) as compared with the non-electroporated 
side (marked by –). (B) Co-electroporation of Fgf8 and nls-lacZ leads to an increase in reelin 
expression (arrows). The yellow rectangles mark the dorsal cortex area shown at larger 
magnification in C-F‴. (C-D‴) Co-expression of reelin and Tbr1 in electroporated β-gal+ cells 
demonstrating that ectopic reelin+ cells are CR cells. The white rectangles outline the areas 
shown at higher magnification to the far right. (E-F‴) Co-expression of Er81 and reelin in 
electroporated β-gal+ cells shows that ectopic CR cells have a rostral identity. β-gal, β-
galactosidase. For each condition for reelin, n>20, and for Er81/reelin or Tbr1/reelin, n=10. Scale 
bars: 210 μm in A,B; 25 μm in C-F‴.  

 

Fgf8 promotes the neurogenesis of rostral CR cells 

 

We further analysed the mechanisms by which ectopic Fgf8 expression 

promotes the generation of rostral CR cells. Ectopic expression of Fgf8 had no 
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significant effect on cell proliferation in electroporated embryos cultivated for 1 or 

2 days (see Fig. S7 and Tables S2, S3 in the supplementary material). To 

determine whether Fgf8 promoted the generation of new neurons, we labeled 

progenitors in S phase 24 hours after electroporation by a 20-minute exposure of 

cultured embryos to BrdU, and examined the differentiation of BrdU-labelled 

progenitors 24 hours later by double labelling for BrdU and TUJ1 [III-tubulin 

(Tubb3) – Mouse Genome Informatics]. Fgf8 expression significantly increased 

the fraction of BrdU+ cells that expressed TUJ1 (Fig. 6A-C; see Table S4 in the 

supplementary material), indicating that Fgf8 promotes the generation of new 

neurons from pallial progenitors. 

To determine whether Fgf8 was specifically inducing CR cells or having a 

more general neurogenic effect, we examined the expression of reelin among 

Fgf8-induced neurons. Fgf8 expression significantly increased the fraction of 

TUJ1+, -gal+ electroporated neurons that coexpressed reelin (Fig. 6D-F; see 

Table S5 in the supplementary material). Similar results were obtained when a 

construct expressing a constitutively active form of Fgfr1 was electroporated (see 

Fig. S6B-B’’’ in the supplementary material). Altogether, these results 

demonstrate that Fgf8 signalling specifically promotes the generation of CR cells 

from pallial progenitors in a cell-autonomous manner. 
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Fig. 6: Fgf8 overexpression promotes the differentiation of CR cells in the dorsal cortex. 
Immunolabelling of sections of mouse rostral telencephalon electroporated at E10.5 and 
cultivated for 2 DIV. (A-C) Triple labelling for BrdU, following a 20-minute pulse at 1 DIV and a 
24-hour chase, and for β-gal and TUJ1 to mark newborn neurons. Ectopic Fgf8 significantly 
promotes neuronal differentiation in the dorsal cortex (Student's t-test, **P=0.002; see Table S4 in 
the supplementary material), whereas it does not significantly affect the rate of proliferation as 
measured by the fraction of cells double labelled for BrdU and β-gal (P=0.77). (D-F) Double 
labelling for reelin and TUJ1 to mark CR cells shows that ectopic Fgf8 specifically promotes the 
differentiation of this cell type (**P=0.004; see Table S5 in the supplementary material). Scale 
bars: 25 μm.  
 

 

Ectopic expression of Fgf8 in vivo promotes the generation of 

rostral CR cells 

 

To extend these findings to ectopic expression of endogenous Fgf8, we 

examined Emx2 mutant mice, which present a caudal extension and persistence 

of the Fgf8, Fgf17 and Fgf18 rostral expression domains, and a concomitant 

reduction of the caudal Wnt/BMPsecreting telencephalic centre of the CH 

(Cholfin and Rubenstein, 2008; Fukuchi-Shimogori and Grove, 2003; Kimura et 

al., 2005; Shimogori et al., 2004). More cells expressed Pea3 within the RM 
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pallium in these mutants than in control embryos (Fig. 7C,C’), as previously 

described (Cholfin and Rubenstein, 2008; Fukuchi-Shimogori and Grove, 2003). 

We then found a significant increase in the number of Tbr1+, reelin+ CR cells in 

E12.5 Emx2 mutant embryos at rostrodorsal and medial levels (Fig. 

7A,B,D,D’,G,G’; see Table S6 in the supplementary material). Co-labelling for 

Er81 and reelin showed that the majority of reelin+ cells were of the rostral CR 

type (Fig. 7E,E’,H,H’) and that the population of p73+, Er81– CHderived CR 

cells was in fact reduced in the medial cortex of Emx2 mutant embryos (Fig. 

7I,I’). We also analysed Gli3 mutant mice, in which an upregulation of Fgf8 

signalling in the pallium and a loss of p73+ CH-derived CR cells have been 

reported (Kuschel et al., 2003; Okada et al., 2008; Rash and Grove, 2007; Theil 

et al., 1999). We found an increase in Pea3-expressing cells in the RM pallium at 

E12.5 (see Fig. S1B,B’ in the supplementary material), as well as clusters of 

Er81+, Tbr1+, reelin+ rostral CR cells in the medial cortex (see Fig. S1C-F’ in the 

supplementary material). These data suggest that the enlarged Fgf8 domain in 

Emx2 or Gli3 mutant pallium results in an expanded and persistent rostral CR 

cell progenitor domain, and supports the conclusion that ectopic Fgf8 signalling 

promotes the generation of rostral CR cells, both in embryo culture and in vivo. 
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Fig. 7: Increased number of rostral CR cells in the dorsal cortex of Emx2 mutant mouse 
embryos. (A) Schemes of coronal telencephalic sections showing the levels analysed at E12.5. 
(B) The proportion of CR cells is significantly increased in the rostrodorsal cortex of Emx2 
knockout (KO) embryos (Student's t-test, **P=0.006; see Table S6 in the supplementary 
material). (C,C′) More cells express Pea3 in the RM pallium of Emx2 knockout than of wild-type 
embryos. (D-I′) The boxed areas are shown at high magnification beneath in single channel and 
merge. (D,D′,G,G′) Co-expression of Tbr1 and reelin identifies CR cells. (E,E′,H,H′) Mainly Er81 
and reelin are co-expressed in the dorsal and medial cortex demonstrating that ectopic CR cells 
in Emx2 KO cortex have a rostral identity. (F,F′,I,I′) p73α expression is decreased in the medial 
cortex, whereas Er81 expression is increased, even at more medial levels (see scheme in A). 
Scale bars: 25 μm.  
 

 

In vitro inhibition of FGF signalling prevents the generation of 

rostral CR cells 

 

To investigate whether Fgf8 signalling is not only sufficient, but also 

required for the generation of CR cells, we set up an explant culture system in 
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which Fgf8 signalling could be manipulated pharmacologically. The rostral head 

of E9.5 (21- to 23-somite) embryos was cultivated on a filter for 2 days in vitro 

(DIV), during which the explants maintained a dorsoventral organisation, as 

shown by labelling for Mash1 (Ascl1) and Ngn2 (see Fig. S8 in the 

supplementary material). TUJ1+ neurons were only observed in the nasal 

placodes at the beginning of the culture, whereas TUJ1+ neurons were found in 

the telencephalic part of the explant and particularly at its dorsal periphery after 2 

DIV (see Fig. S8 in the supplementary material). Labelling for reelin, Er81 and 

calretinin showed that most of the TUJ1+ neurons generated during the culture 

were rostral CR cells (see Fig. S8 in the supplementary material). To assess the 

role of Fgf8 signalling, we used the pharmacological inhibitors SU5402, which 

inhibits signal transduction by FGF receptors (Mohammadi et al., 1997), and 

UO126, which prevents phosphorylation of MEK1/2 (Map2k1/2) kinases (Favata 

et al., 1998). Cultures exposed for 2 DIV to SU5402 (Fig. 8B-B’’’) or UO126 (Fig. 

8D-D’’’) showed a strong decrease in TUJ1, calretinin and reelin labelling 

compared with DMSO-treated control explants in the dorsal part of the explants 

(Fig. 8A-A’’’,C-C’’’, arrows), whereas the lateral part of the explants was less 

affected. These results indicate that lowering Fgf8 signalling significantly reduces 

the rostral CR cell population. 
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Fig. 8: Impairment of FGF signalling with pharmacological inhibitors decreases rostral CR 
cell generation in telencephalic explants. (A-D‴) Whole-mount immunohistochemistry for 
calretinin and TUJ1 and in situ hybridisation for reelin on mouse rostral telencephalic explants 
harvested at 22 somites and cultivated for 2 DIV (see Fig. S8 in the supplementary material). 
Exposure to SU5402 (B-B‴ versus A-A‴ control) or UO126 (D-D‴ versus C-C‴ control) leads to a 
decrease in the generation of CR cells (calretinin+/TUJ1+ or reelin+) in the part of the explant that 
corresponds to the dorsal telencephalon (arrow), whereas the neuronal population (TUJ1+ cells) 
is, overall, less affected. Neurogenesis appears to be less affected by exposure to FGF signalling 
inhibitors in the part of the explant that corresponds to the lateral cortex. For each condition for 
calretinin/TUJ1, n≥15, and for reelin, n≥5. Scale bar: 400 μm.  
 

 

In vivo reduction in Fgf8 signalling decreases rostral CR cell 

generation 

 

The requirement for Fgf8 signalling in the generation of CR cells was 

further examined in Fgf8Null/Neo mouse embryos, in which Fgf8 signalling 

activity in the rostral signalling centre is reduced (Storm et al., 2006; Storm et al., 

2003), as a complete loss of Fgf8 has drastic effects on telencephalic 

development that preclude examination of CR cells (Meyers et al., 1998). Tbr1+, 



90 
 

reelin+ CR cells were completely absent from the RM cortex in E11.5 

Fgf8Null/Neo mutant embryos (Fig. 9C,C’,J; see Table S7 in the supplementary 

material), and there was a reduction of this population in the rostrodorsal cortex 

and piriform cortex in these embryos (Fig. 9D-E’,J; see Table S7 in the 

supplementary material). By contrast, Tbr1+, reelin+ CR cells were found in 

normal numbers in the caudal olfactory cortex (Fig. 9F,F’), indicating that Fgf8 

signalling is required only rostrally for the generation of CR cells. In addition, 

Er81 expression was almost completely absent in Fgf8Null/Neo mutant embryos 

(Fig. 9G,G’), indicating that CR cells generated in the mutant have lost their 

rostral identity. Moreover, expression of the progenitor marker Pea3 was absent 

from the mutant RM pallium (Fig. 9I,I’), indicating that this territory was not 

properly specified in Fgf8Null/Neo embryos. We then analysed the p73 

expression pattern at E12.5 to determine whether the decrease in rostral CR 

cells resulted in an expansion of CH-derived CR cells. However, we did not 

observe an increase in p73-expressing cells (Fig. 9H,H’), suggesting that CH-

derived CR cells had not invaded the rostroventral cortex in Fgf8Null/Neo 

embryos at the stage examined. We also asked whether eliminating the Fgf8-

secreting rostral signalling centre would affect the generation of rostral CR cells 

by analyzing embryos with a telencephalon-specific deletion of Fgf8 (Fgf8TelKO) 

(see Fig. S9 in the supplementary material) (Storm et al., 2006; Storm et al., 

2003). We compared reelin expression in E12.5-13 whole telencephalon from 

wild-type, Fgf8Null/Neo and Fgf8TelKO embryos and found a strong reduction in 

reelinexpressing cells in the medial and dorsal domains of the telencephalon of 

both Fgf8 mutants as compared with the wild type (see Fig. S9 in the 

supplementary material). Altogether, these results establish that Fgf8 signalling 

activity is required for the specification of rostral CR cells originating from the RM 

pallium.  
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Fig. 9: Generation of rostral CR cells is reduced in Fgf8Null/Neo mutant mouse embryos. 
(A,B) Schemes indicating the cortical regions analysed at E11.5 (A) and E12.5 (B). (C-J) 
Immunolabelling of coronal sections of different cortical regions in wild-type and Fgf8Null/Neo 
mutant embryos. (C-F′,J) Tbr1 and reelin co-expression identifies CR cells. The proportion of CR 
cells is significantly decreased in the mutant RM cortex (C,C′,J; see Table S7 in the 
supplementary material) and is reduced in dorsal (D,D′,J; see Table S7 in the supplementary 
material) and piriform cortex (E,E′,J; see Table S7 in the supplementary material), but is not 
affected in the caudal cortex (F,F′,J; see Table S7 in the supplementary material), indicating that 
Fgf8 signalling is mainly required in the RM pallium. (G,G′) Er81 is only weakly expressed in the 
mutant cortex. (H,H′) At E12.5, there is no compensatory increase in p73α-expressing cells in the 
mutant piriform cortex. (I,I′) Pea3 expression is lost in the RM pallium, in agreement with the loss 
of CR cells in this area. Scale bars: 25 μm.  
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DISCUSSION 

 

In this study, we have shown that rostral CR cells express the ETS 

transcription factor Er81, a downstream target of Fgf8 signalling, in addition to 

reelin, calretinin and p73. We found that Er81+ CR cells originate largely from 

the pallial septum, which is under the patterning influence of Fgf8 signalling, 

suggesting that this pathway could play a role in the specification of this rostral 

CR cell population. In agreement with this, we showed that ectopic activation of 

Fgf8 signalling in the dorsal pallium in vitro and in vivo results in ectopic 

generation of rostral CR cells. We also demonstrated that Fgf8 signalling activity 

is required in vitro and in vivo for the specification of the RM pallium, including 

the pallial septum, and for the generation of rostral CR cells. Altogether, our data 

establish a new role for the rostral signalling centre in the specification of rostral 

CR cells and further emphasise the involvement of telencephalic signalling 

centres in the generation of a diverse array of CR cells. 

 

 

Er81+ CR cells present unique defects in mutant mice 

 

The existence of distinct origins and the fairly limited number of available 

markers might have complicated the analysis of CR cell subpopulations (Bielle et 

al., 2005; Garcia-Moreno et al., 2007; Imayoshi et al., 2008; Monuki et al., 2001; 

Takiguchi-Hayashi et al., 2004; Yoshida et al., 2006; Zhao et al., 2006). 

Expression of the ETS factor Er81 by rostral CR cells distinguishes them from 

CR cells located in the subpallium and the caudal pallium, where Er81 is not 

expressed. We thus used the co-expression of reelin and Er81 to identify rostral 

CR cells and re-examined the generation of CR cells in Pax6, Emx2 and Gli3 

mutant mice. 

Emx2 and Pax6, which cross-repress each other, are considered as 

positive and negative regulators of CR cell generation, respectively (Bishop et al., 
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2003; Mallamaci et al., 2000; Shinozaki et al., 2002; Stoykova et al., 2003). We 

found, however, that a Er81+, reelin+ rostral CR cell population is still present in 

Pax6 mutants, indicating that in contrast to other cell types (Tuoc and Stoykova, 

2008), some Er81-expressing rostral CR cells are not dependent on Pax6 

activity. 

Our finding that loss of Emx2 promotes the generation of rostral CR cells 

through derepression of Fgf8 signalling (Cholfin and Rubenstein, 2008; Fukuchi-

Shimogori and Grove, 2003; Shimogori et al., 2004) is in agreement with the 

increase in reelin expression observed in Emx2 mutant cortex (Mallamaci et al., 

2000), although a loss of CR cells in Emx2 mutants at later stages has been 

more widely documented (Bishop et al., 2003; Mallamaci et al., 2000; Yoshida et 

al., 1997). We can now associate this later phenotype with the loss of the CH-

derived subpopulation, which we found already impaired at E12.5. 

The generation of CR cells is impaired in Gli3 mutant embryos, with the 

loss of caudal signals resulting in a substantial decrease in p73+ CR cells and 

in a derepression of Dbx1 in the dorsolateral pallium, which adopts a VP-like 

identity (Friedrichs et al., 2008; Hanashima et al., 2007; Theil, 2005). In 

agreement with these previous studies, we observed ectopic clusters of Er81+ 

CR cells in the lateral cortex in the Gli3 mutant (data not shown). However, we 

also noted clusters of Er81+ CR cells in the medial cortex, as well as an increase 

in Pea3-expressing cells, reflecting the upregulation of Fgf8 signalling in these 

mutants (Okada et al., 2008; Rash and Grove, 2007; Theil, 2005; Theil et al., 

1999). Thus, mutations in patterning genes differentially affect the 

subpopulations of CR cells because of their distinct effects on the different 

telencephalic signalling centres. 
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Multiple roles for Fgf8 signalling in the generation of rostral CR 

cells 

 

The rostral signalling centre is characterised by the activity of FGF 

molecules, with Fgf8 playing the main role. We identified two distinct functions of 

Fgf8 signalling by challenging its activity in vitro and by analysing Fgf8 gain- and 

loss-of-function phenotypes in mice. Firstly, Fgf8 signalling is involved in the 

specification of a progenitor domain within the RM pallium that gives rise to 

rostral CR cells, which is in line with its role in rostral telencephalic patterning. 

Secondly, Fgf8 signalling promotes the generation of rostral CR cells from mitotic 

progenitors. 

Our GOF analysis showed that Fgf8 specifically promotes the generation 

of rostral CR cells. In contrast to a recent study in which ectopic Fgf8 expression 

resulted in re-patterning of the dorsal pallium into dorsal midline tissue (Okada et 

al., 2008), we observed that Fgf8-expressing cells maintained the expression of 

pallial progenitor markers such as Lhx2, Pax6 and Ngn2. These differences 

between the two studies can be explained by: (1) the competence of the tissue, 

as Okada et al. performed their experiment in younger embryos than we did 

(E9.5 as compared with E10.5); (2) the level of Fgf8 overexpression, as they 

used a stronger promoter to express Fgf8 (the pCaggs vector versus pMiw in our 

study); and (3) the shorter time of exposure to Fgf8 (at 1 DIV versus 2 DIV). The 

importance of Fgf8 concentration and duration of action in determining its activity 

has been previously reported in various systems, including the CoP and the 

midhindbrain boundary (Basson et al., 2008; Liu et al., 2003; Sato et al., 2001). 

Altogether, these data lead us to suggest that a short exposure to a high Fgf8 

concentration promotes a rostral midline identity (Okada et al., 2008), whereas a 

longer exposure to a lower Fgf8 concentration promotes RM pallial identity. 

We have not detected any effect of ectopic Fgf8 on the proliferation of 

pallial progenitors, which is in agreement with previous studies demonstrating 

that Fgf8 regulates rostral telencephalic patterning but not cell proliferation 

(Crossley et al., 2001; Fukuchi-Shimogori and Grove, 2003; Okada et al., 2008; 
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Shimogori et al., 2004). However, we observed that Fgf8 induces neurogenesis, 

a function that has been previously reported in the eye, in the basal 

telencephalon (Crossley et al., 2001), and in the developing olfactory system 

(Bailey et al., 2006; Kawauchi et al., 2005). 

CR cells originate from progenitor domains that are not only restricted 

spatially, but also short lived (e.g. (Imayoshi et al., 2008)). Our data show that the 

arrest of production of rostral CR cells after E12.5 might be a consequence of the 

reduction of Fgf8 signalling in the RM pallium at this stage. Hence, a longer 

exposure to Fgf8 signalling in Emx2 mutants or in electroporated embryos not 

only induced ectopic rostral CR cell production, but also extended the period of 

generation of this CR cell population. 

In conclusion, our data establish that the rostral telencephalic signalling 

centre specifies a rostral CR cell population. Our study thus provides new 

evidence that CR cell progenitor domains are closely associated with 

telencephalic signalling centres and strengthens the hypothesis that CR cells 

participate in regional patterning of the cortex (Bielle et al., 2005; Meyer et al., 

2004; Meyer et al., 2002). Because they migrate above progenitors at early 

developmental stages, CR cells are good candidates to provide telencephalic 

progenitors with instructive cues (Nomura et al., 2008; Soriano et al., 1997) (A.G. 

and A.P., unpublished). Thus, characterising CR cell subpopulations and their 

progenitor domains might help to unravel the mechanisms that control the early 

stages of development of the whole telencephalon. 

 

 

MATERIALS AND METHODS 

Mice 

MF1, Parkes and F1 (CBA/CA _C57Bl/10) mice were used. All transgenic mouse 

lines were genotyped as previously described: Dbx1nls-lacZ (Bielle et al., 2005), 

Pax6 (Stoykova et al., 1996), Emx2 (Pellegrini et al., 1996), Gli3 [Extra-

toes/Extra-toes (Buscher et al., 1998)] Fgf8Null/Neo (Storm et al., 2003) and 

Fgf8TelKO [Foxg1Cre; Fgf8Flox/Neo (Storm et al., 2006)]. At least three 
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embryos were analysed per condition, unless specified otherwise. Midday of the 

day of vaginal plug discovery was considered as E0.5. All mouse experiments 

used protocols approved under the UK Animal (Scientific Procedures) Act. 

 

Embryo culture and electroporation 

E10.5 mouse embryos were dissected in Tyrode’s solution, cultivated for 1 hour 

in rat serum at 37°C, 65% O2/5% CO2 (rolling incubator, BTC Engineering), 

injected (Femtojet, Eppendorf) and electroporated (chamber, CUY520P20; 

electroporator, Nepa Gene ECM830; 50 V, five pulses of 50 milliseconds, 1 

second interval). Vectors: 1 mg/ml for pCaggs::IRES-nls- GFP (gift from J. 

Briscoe, NIMR, London, UK), pCaggs::IRES-nls-lacZ (gift from S. Price, UCL, 

London, UK) and pCDNA3::Fgfr1-DA (Freeman et al., 2003), or 0.8 mg/ml for 

pMiwIII::Fgf8 (b isoform, gift from A. Joyner, NYU, New York, USA); the vectors 

are referred to as nls-GFP, nls-lacZ, Pgfr1-DA and Fgf8, respectively, in the 

figures. Twenty-four hours after electroporation, embryos were transferred into 

fresh rat serum at 37°C, 100% O2, and cultured for a further 24 hours. For cell 

cycle studies, 40 mM BrdU was added to the culture medium for 20 minutes. 

 

Rostral telencephalic explants 

E9.5 mouse embryos were dissected in Tyrode’s solution. Only 22- to 24- somite 

embryos were used (see Fig. S8 in the supplementary material) (Storm et al., 

2003). FGF signalling inhibitors (10 mM, DMSO diluted): SU5402 (#572630, 

Calbiochem); UO126 (#19-147, Millipore). Cell proliferation was only weakly 

affected by these inhibitors and could not account for the observed phenotypes. 

At 2 DIV, explants were: (1) washed in cold PBS, fixed for 30 minutes and 

washed in PBS for immunochemistry; or, (2) fixed overnight, washed in PBS, 

dehydrated in successive PBS/ethanol baths and kept in 100% ethanol at –20°C, 

for whole-mount in situ hybridisation. 

 

Histology 
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Embryos were collected in PBS, heads fixed for 1 hour for immunohistochemistry 

or 3 hours for in situ hybridisation, washed with PBS, transferred into 15% 

sucrose in phosphate buffer (PB) pH 7.2 overnight, embedded in 7.5% gelatin, 

15% sucrose in PB at 42°C, frozen in –40°C isopentane and stored at –80°C. 

Sections (10 mm) were prepared using a Microm cryostat (Zeiss). 

For in situ hybridisation, tissues were processed as described by Hirsch et al. for 

sections (Hirsch et al., 2007) and by Bielle et al. for whole-mount (Bielle et al., 

2005). Probes: Erm (IMAGE 4036564), Pea3, Er81, Mash1 (C. Goridis, ENS, 

Paris, France), Ngn2, reelin (Y. Hayashizaki, RIKEN, OSC, Kanagawa, Japan), 

p73a (IMAGE 6812399), Fgfr1 (J. Partanen, University of Helsinki, Finland), 

Spry2 (G. Martin, UCSF, San Francisco, USA) and Foxg1 (J. Mason, University 

of Edinburgh, UK). For immunohistochemistry, frozen sections were air dried, 

washed in PBS at 42°C to remove the gelatin and processed for 

immunofluorescence. Primary antibodies: mouse anti-reelin (1/375, #MAB5364, 

Chemicon), mouse antip73a (1/200, #MS762PO, LabVision), mouse (#6B3) or 

rabbit (#7699) anticalretinin (both at 1/2000, Swant), goat anti-b-galactosidase 

(1/1000, #ab12081, Abcam), sheep anti-GFP (1/750, #47451051, Biogenesis), 

mouse anti-TUJ1 (1/1000, #MMS435P, Babco), rat anti-BrdU (1/1000, 

#OBT0030CX, Serotec; denaturation in 2N HCl for 30 minutes at 37°C washes 

with 0.1 M sodium borate pH 8.0), mouse anti-Pax6 (1/20, Developmental 

Studies Hybridoma Bank), rabbit anti-Er81 and rabbit anti- Pea3, rabbit anti-Tbr1 

(gift from R. Hevner, University of Washington, Seattle, USA) and rabbit anti-

Lhx2 (gift from E. Monuki, University of California, Irvine, USA). Fluorescent 

secondary antibodies were Alexa 488 (Millipore) or Cy3 or Cy5 (Jackson 

ImmunoResearch) conjugated. Note that to perform the co-detection of Er81 and 

Tbr1, rabbit anti-Tbr1 was directly labelled with Cy5 using the Zenon Kit 

(Molecular Probes). For explant immunostaining, 1 hour blocking at room 

temperature was followed by incubation with antibody overnight at 4°C and 

washing in PBS. 

 

Image analysis, quantifications and statistics 
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Images were captured using a ProgRes C14 camera (Jenoptik) linked to an 

Axioplan II microscope (Zeiss), a QImaging camera linked to MZ16/MZ16F 

scopes (Leica), or a Radiance 2100 confocal microscope (BioRad). Images were 

processed with Openlab (Perkin Elmer), ImageJ (NIH), Photoshop (Adobe) or 

FreeHand (Adobe). Quantifications were performed on confocal photographs 

(200 mm _200 mm; stack of 2 or 3 mm) using Photoshop. For example, in Fig. 2 

the number of Er81+ cells was counted by marking the cells with a dot on a 

transparent layer linked to the Er81 staining layer in Photoshop. Then each 

Er81+ cell was assessed for its expression of either reelin, calretinin or p73a, 

using another transparent layer linked to each of these stainings. The same 

principle was used to perform all counts. In Fig. 2, four stacks per area from two 

wild-type embryos were analysed. For electroporated embryos, two to three 

stacks were analysed per embryo. Because of electroporation variability, results 

were normalised for each embryo before being gathered for statistical analysis 

using a paired Student’s t-test (see tables in the supplementary material). For 

quantification in mutant embryos, three to four stacks were analysed per area. 
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Supplementals 

 

Fig. S1. Rostral Cajal-Retzius (CR) cells expressing Er81, reelin and Tbr1 accumulate in 
rostromedial Gli3 mutant at E12.5. (A,A′) DAPI staining of coronal sections of wild-type (WT) 
and Gli3 mutant (Extra-toes/Extra-toes) rostral telencephalon at E12.5, illustrating the 
morphological changes and the area depicted in B-F′. (B,B′) More Pea3+ cells are detected in the 
RM pallium in the Gli3 mutant. (C-F′) Triple immunolabelling of coronal sections of wild-type and 
Gli3 mutants as indicated on the left. Co-expression of Er81 and Tbr1 shows that all Er81+ cells 
express Tbr1 in wild type and Gli3 mutant, indicating their pallial identity. Most Er81+ cells co-
express reelin, indicating their rostral CR cell identity. Scale bars: 210 µm for A,A′; 25 µm for B-F′.  



100 
 

 

Fig. S2. Rostral Cajal-Retzius cells express Er81. (A) Scheme of a coronal section of E11.5 
telencephalon at rostral level. Dashed rectangles indicate the areas analysed. (B-E′′) 
Immunolabelling of coronal sections of E11.5 telencephalon. Er81 is co-expressed with reelin 
(B′′,D′′) and with calretinin (C′′,E′′), in the ventral cortex or olfactory piriform cortex (D′′,E′′) and the 
dorsal cortex (B′′,C′′). The boxed areas are shown at higher magnification to the right. Scale bars: 
25 µm.  
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Fig. S3. Er81+ CR cells derive mainly from the pallial septum. (A-I′′) Immunolabelling of 
coronal sections of E12.5 rostral telencephalon from wild type or Pax6 mutant. (A,C) Co-
immunolabelling for Tbr1 and reelin highlights CR cells. Dashed white rectangle shows the zone 
of the lateral cortex analyzed in B-D′′ and white rectangle shows the zone of the ventral cortex 
analyzed in F-I′′. Note that the ventral cortex (outlined in yellow, see also F,H) is compacted 
around the olfactory-like bulb structure (dashed circle), which is mislocalized in the mutant (see 
Jimenez et al., 2000; Tomura et al., 2004). (B-H′′′) Er81+, reelin+ rostral CR cells are present in 
similar numbers in ventral (WT, 149.7±8.3; KO, 144.1±15.1; t-test, P=0.1) and lateral cortex (WT, 
36.6±5.1; KO, 33.9±5.6; t-test, P=0.2) of wild-type and Pax6 mutant telencephalon, showing that 
rostral Er81+ CR cells are mostly derived from the RM pallium. (G-I′′) p73α+ CR cells of the ventral 
cortex co-express Er81 both in the wild type and Pax6 mutant, showing that they derive from the 
RM pallium, which includes the pallial septum. Scale bar: 25 µm.  
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Fig. S4. Illustration of the electroporation procedure used in this study. (A-C′) 
Immunolabelling of coronal sections of rostral telencephalon electroporated with nls-GFP at 
E10.5 and cultivated for 2 DIV. Different rostral telencephalic levels of the electroporation are 
shown. GFP immunolabelling is compared with that for Mash1, which is highly expressed in the 
ventral telencephalon or subpallium (SP) at this stage (the pallium-subpallium boundary is 
delineated by a yellow dotted line). The electroporation targets dorsal or pallial (P) progenitors. 
Note that migrating cells, which express high levels of GFP, are detected all around the 
telencephalon. (D,D′) Head of an embryo electroporated at E10.5 and cultivated for 2 DIV. Profile 
(D) and dorsal (D′) views are shown. The whole telencephalic vesicle is outlined with a white 
dashed line. Rostral levels depicted in A-C are indicated by solid white lines. Scale bar: 210 µm  
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Fig. S5. Specific increase in the generation of rostral CR cells in Fgf8b gain-of-function 
experiments. (A-E′′′′) Immunolabelling of coronal telencephalic sections of embryos co-
electroporated with nls-lacZ and Fgf8b at E10.5 and cultivated for 2 DIV. (A,C-C′′) Rostral CR 
cells expressing calretinin are over-produced in the pallium (arrowheads); see also E-E′′′′ for co-
expression of reelin and calretinin. (B,D-D′′) No change in CR cells expressing p73α upon Fgf8b 
gain-of-function. n≥8. Scale bars: 210 µm for A,B; 25 µm for C-C′′,D-D′′,E-E′′′′.  
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Fig. S6. Specific increase in the generation of rostral CR cells in Fgfr1-DA gain-of-function 
experiments. (A-A′′′′) Immunolabelling of coronal telencephalic sections of embryos co-
electroporated with nls-lacZ and a dominant-active form of Fgfr1 (FgfR1-DA) at E10.5 and 
cultivated for 2 DIV. β-gal co-expression with Er81 and reelin shows that rostral CR cells are 
over-produced in the pallium upon Fgfr1-DA gain-of-function. (B-B′′′′) β-gal co-expression with 
reelin and TUJ1 shows that CR cells are specifically differentiated upon Fgfr1-DA gain-of-
function. These data indicate that the effects observed upon Fgf8b gain-of-function are cell-
autonomous. n≥8. Scale bar: 25 µm.  
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Fig. S7. Fgf8b gain-of-function at E10.5 does not promote cell proliferation in the dorsal 
pallium after 1 or 2 days. (A,A′,C,C′) Immunolabelling of coronal telencephalic sections of 
embryos co-electroporated with nls-lacZ and Fgf8b at E10.5 and cultivated for 1 or 2 DIV, as 
indicated on the left. Note that the images represent the dorsal pallium (boxed area in Fig. 4B). 
To analyse cell proliferation, BrdU was incubated for 20 minutes in the culture medium before 
arresting the culture at 1 DIV or 2 DIV. (A,C) Control electroporation with nls-lacZ. (A′,C′) Co-
electroporation of nls-lacZ and Fgf8b. (B) At 1 DIV, similar proportions were obtained in control 
and Fgf8b-electroporated embryos for proliferative cells, labelled by BrdU+, β-gal+ (t-test, P=0.3, 
see Table S2) or for differentiated cells labelled as TUJ1+, β-gal+ (t-test, P=0.14, see Table S2). 
(D) At 2 DIV, similar proportions were obtained for proliferative cells labelled as BrdU+, β-gal+ (t-
test, P=0.14, see Table S3). An increase in the proportion of differentiated cells labelled as 
TUJ1+, β-gal+ was observed upon Fgf8b gain-of-function (t-test, P=0.02, see Table S3), indicating 
that Fgf8b gain-of-function induces differentiation after 2 DIV. Scale bar: 25 µm.  
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Fig. S8. Rostral telencephalic explant cultures at E9.5. Whole-mount in situ hybridisation on 
E9.5 mouse embryo (A,B) or rostral telencephalic explants (C,C′,E,F). (A) Head of E9.5 embryo 
showing the plan of section used to generate rostral telencephalic explants, which were flattened 
on a filter. (B,B′) At zero time point (t=0), Fgf8 is expressed in the anterior neural ridge (anr) and 
in the nasal placodes (np), which are the only territories containing TUJ1+ neurons at that stage. 
(C-C′′) After 2 DIV, the explants are well developed and present a normal dorsoventral 
organisation of the rostral telencephalon, with Ngn2 expressed dorsally and Mash1 highly 
expressed ventrally. Many neurons have been generated after 2 DIV. Neurons expressing both 
calretinin and TUJ1 are easily identifiable at the dorsal periphery of the explants. The boxed area 
in C′′ is analysed in D-F. (D-F) TUJ1+, calretinin+ neurons at the edge of the explant correspond to 
cells expressing reelin and Er81, and therefore to rostral CR cells. Scale bar: 170 µm.  
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Fig. S9. Strong reduction in Cajal-Retzius cells generated from medial progenitor domains 
in Fgf8B>TelKO mutant embryos. (A-C′′) Telencephalon whole-mount in situ hybridization using 
reelin probe in wild type (Fgf8+/+; A,B,C), Fgf8 hypomorphic mutants (Fgf8Null/Neo; A′,B′,C′) and 
conditional telencephalic Fgf8 mutants (Fgf8TelKO; A′′,B′′,C′′) at E12.5-13. There is a strong 
reduction in CR cells located in dorsal and medial domains in both Fgf8Null/Neo and Fgf8TelKO 
compared with the wild type. CR cells could mainly be detected in the caudolateral domain in 
Fgf8TelKO.  
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7. Abbreviations 
 

ANR anterior neural ridge 
BAC Bacterial Artificial Chromosome 
BDNF braind derived neurotrophic factor 
BrdU Bromodeoxyuridine 
CR cells Cajal-Retzius cell 
CNS central nervous system 
CoP commissural plate 
CH cortical hem 
DIV days in vitro 
DMSO Dimethylsulfoxid 
DRG dorsal root ganglion 
EPSP excitatory postsynaptic potential 
FACS Fluorescent Activated Cell Sorting 
GOF gain of function 
GABA gamma aminobutyric acid 
GDNF glia cell line derived neurotrophic factor 
GTO Golgi tendon organ 
GFP Green Fluorescent Protein 
ISH in sity Hybridization 
KO knock out 
LTD long term depression 
LTP long term potentation 
LOF Loss of function 
LSL lox-STOP-lox 
MZ marginal zone 
mlc myosin light chain 
NGF nerve growth factor 
NMJ neuromuscular juction 
NT3 neurotrophin 3 
NT4 neurotrophin 4 
PAD primary afferent depolarization 
RM rostromedial 
SEM Standard Error of the Mean 
Trk tyrosine receptor kinase 
VP ventral pallium 
VZ ventricular zone 
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