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“The belief that there was nothing and nothing happened to
nothing and then nothing magically exploded for no reason,

creating everything, and then a bunch of everything magically
rearranged itself for no reason whatsoever into self-replicating

bits which then turned into dinosaurs.
Makes perfect sense”.
[Unknown author]

“We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil”.

[Donald Knuth]

“Do not optimize a running program, never”.
[Christian Tschudin]

(during a brainstorming session)





Abstract

The use of mobile code in embedded, resource limited sys-
tems like Wireless Sensor Networks (WSN) is an opportu-
nity and a challenge at the same time. The opportunity
lies in the dynamic re-tasking and run-time adaption that
can considerably extend the functional envelope of the de-
ployed hardware. The price to pay, however, is additional
communication overhead that results in shorter lifetime and
decreased performance. That is why the system’s scarce
resources must be utilized with even more efficiency than
usual. But optimization methods applied at design-time
lead to case-restricted solutions, or the dismissal of mobile
code solutions altogether.

In this work, we challenge ourselves with an integrated
design of a system that addresses the increase of commu-
nication overhead by online code compression. The main
task of the proposed method is to extract semantics from
the transmitted mobile code at run-time and to tie it to
the on-node holder, a dictionary of some type, avoiding
costly code (re-)transmissions. By doing so, the actual code
representation is brought to a near optimal form for each
specific task covering both, the dynamic re-tasking and the
reduction of communication overhead.

The distinctive feature of the method is that it can adapt to
the changes in code structure, code content, and regional us-
age patterns at run-time without interruption of system op-
eration. The low computational complexity of the method
allows to use it in resource-constrained devices like WSN
and to implement time-sensitive applications.
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Introduction

We begin this work with giving a quick overview of embedded sys-
tems (ES) and their distinguishing features. We are particularly
interested in the special network-oriented sub-class – Wireless
Sensor Networks (WSN). We discuss the state-of-the-art in hard-
ware and software support for WSN. We refer to the environment
monitoring project PermaSense as an example, one which we have
contributed to and which has been a key factor in the motivation
for this research. We then state the main research challenge of
the current work as to create a model of building task-optimized
configurations for ES at run-time. Our assumption is that this
goal can be achieved through dynamic code morphing. We have a
closer look at the concepts of code morphing, stack composition
and Virtual Segmentation. Code compression turns out to be an
essential part of task optimization process. Finally, we briefly
outline our contributions to this work and provide a roadmap for
the rest of the document.



1. Introduction

1.1 Embedded Systems

An embedded computer system is normally designed to implement one
or a few specialized functions. This is somehow dictated by the fact that
an Embedded System (ES) is traditionally associated with a number of
constraints such as limited computational (memory, CPU) and energy
resources (battery), high requirements on reliability (some systems
must be able to cope with harsh environments), real-time support, etc.
Note that usually not all of the limitations above exist. For example, if
an ES is AC-powered, there is obviously no power constraint. Another
example would be wireless sensornets, discussed later in Section 1.2,
which generally do not provide support for real-time operation. Every
ES is dedicated to a specific task and that task poses a certain level of
constraints. For example, WSN feature radio chips with a very short
reliable range of 20–30 meters. Constraints vary widely. Even within
a little sub-class of ES there might be a huge variation of available
resources on different platforms (e.g., compare two WSN platforms
Mica and iMote2 from Table 1.1, Section 1.3.1). And, therefore, a system
can be optimized in terms of reducing the size and cost and increasing
reliability and performance in various ways.

An ES is specified using a set of hardware and software components
it incorporates. The hardware part normally consists of a micropro-
cessor (plus an optional DSP-core), memory unit, Flash and a set of
specialized controllers. The controllers may include communication
units (e.g., radio, serial interfaces, etc.), actuators, and sensing elements.
Often and most commonly components such as CPU, memory and
I/O ports are integrated into one chip. This significantly reduces form-
factor, energy budget, and cost. Typical examples of this approach are
microcontrollers (MCU), ASIC/FPGA arrays and SoC. The software
part (often referred to as firmware) provides support for the hardware
components and makes the system work as a whole. The type of the
software used depends on the level of abstraction and interactivity the
system must provide. It can be just a set of independent hardware
drivers (simple control loop or interrupt controlled system) or a com-
plex distributed network-oriented operating system with support for
preemptive multi-tasking. We discuss the state-of-the-art in hardware
and software for WSN in Section 1.3.
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1.2 WSN – Network Embedded System

1.2 WSN – Network Embedded System
The variety of ES is huge. They range from small portable devices (e.g.,
PDA, GPS receivers) to large stationary installations (e.g., traffic light
control). In this work, we limit our research to the very special type of
ES called Wireless Sensor Networks (WSN). These miniature devices
(sometimes referred to as motes) add two main distinctive features to
the design of ES: 1) support for wireless radio communication, and 2)
sensors. This enables a new way of creating monitoring and control
systems. The latest trends show a rising interest to incorporate actua-
tors into motes design. With this, the passive monitoring systems of
today will become reactive to changes in the environment.

Motes are completely self-contained devices featuring the hardware
architecture shown in Figure 1.1.
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Figure 1.1: Typical Hardware Architecture of a WSN Mote

All central components (ROM, RAM, CPU) are integrated into the mi-
crocontroller. All peripheral parts are connected to it via I/O ports.
These include: radio chip, extra Flash (to store measurements), sensors,
actuators, additional communication interfaces, indicators. Typically,
a WSN mote is battery operated but many platforms provide an AC-
supply interface too. Hardware design allows motes to operate on
a pair of single AA-batteries for years (at 1% duty cycle TelosB can
last for almost three years, Mica2 mote for one and a half, MicaZ for
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1. Introduction

one; see Table 1.1). Energy harvesting methods [Mos09] can prolong
it even further. Future architectures will probably integrate all parts
including radio, sensors/actuators and power source in one chip thus
making the initial concept of Smart Dust [WLLP01] real. For the time
being, nodes are still being composed mainly of independent compo-
nents. Figure 1.2 demonstrates the sensor module used in PermaSense
project (see Section 1.4). The node’s architecture (for more details see
[BGH+09]) reflects the typical one shown in Figure 1.1.

Figure 1.2: PermaDAQ SIB Module

The new ideology and the extra hardware components require a
new level of software support. Motes are supposed to be organized
in a network. The network must be able to collect and forward data
(measurements) towards the access point in the network where it can
be sucked out and post-processed. This point is often called a sink or a
gateway node. There can be multiple sinks in a single network. The
sink node normally features extra communication interfaces (Ethernet,
GPRS, WiFi, etc.) to provide connection to the Internet. Alternatively,
it can be directly connected to a PC. Also, a sink traditionally has
more computational and power resources as it is supposed to process
and transmit large amounts of data and stay active most of the time.
Between regular motes, the situation is different. Since the provided
radio communication range is relatively short (20–30 meters) networks
have to be organized in a multi-hop fashion with all-to-one directional
packet flow. In order to better utilize the available energy budget WSN
normally work in a duty cycle mode: wake-up → sense → store locally
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1.3 State-Of-The-Art in WSN

→ transmit/receive one hop → sleep. An example of one of the most
commonly used WSN architecture is shown in Figure 1.3.
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Figure 1.3: Typical WSN System Architecture

As Figure 1.3 shows, some advanced WSN feature the feedback
channel providing control over the ad-hoc part of the system. Depend-
ing on the context it is used in, other unique characteristics of the WSN
may include:

– the ability to withstand harsh environmental conditions,
– the ability to cope with communication and node failures,
– unattended operation,
– mobility of nodes and dynamic network topology,
– heterogeneity of nodes, and
– large and variable deployment scale.

WSN find application in environmental and habitat monitoring,
industrial processes, machine health monitoring, health-care control,
home automation, and traffic control, and others.

1.3 State-Of-The-Art in WSN
For nearly a decade WSN has been in active research. Many concepts
in hardware and software design have been introduced, although no
official standards exist yet. Here, we give an overview of the most no-
table representatives of hardware/software solutions for WSN domain
of today.
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1. Introduction

1.3.1 Hardware Platforms
Many prototype hardware WSN platforms have been proposed so far.
Some of them are aimed at general research, others offer more specific
features. What makes all those prototypes look similar is that their
main architectural principle follows the one shown earlier in Figure 1.1.
Hardware components used in those prototypes are normally cheap,
mass production units. This keeps the price of the entire module
low. A retrospective list of WSN hardware prototypes along with their
characteristics is presented in Table 1.1.

The main trends in WSN platform design over time are: 1) form-
factor and overall power consumption reduction, and 2) addition of
new communication interfaces. In the past two years, more and more
manufactures have focused on offering commercial OEM solutions:
ArchRock (former EPIC), Crossbow (former Mica family, TelosB). These
out-of-the-box solutions ease installation and deployment of WSN
systems, functional principles remain the same.

1.3.2 Software Platforms
WSN is a relatively complex system, which requires proper software
support in a form of an Operating System (OS), in order to be able to
build distributed end-user applications for it. OS for WSN nodes are
typically much simpler than general-purpose OS. This is caused by the
specific requirements of WSN applications and the resource constraints
in WSN hardware stated above in Section 1.3.1.

WSN hardware is very similar to traditional ES. The reason why
the existing embedded OS, like eCos and uC/OS, are not commonly
used on sensor nodes is that such OS are often designed with real-time
properties in mind that are normally not required by WSN applications.

TinyOS [LMP+04] was the first OS specifically designed for WSN. It
uses an event-driven programming model instead of multi-threading.
TinyOS programs are constructed of event handlers and tasks. When an
external event (e.g., incoming data packet, sensor reading, etc.) occurs,
TinyOS calls the suitable handler to process it. Event handlers can
post tasks that are scheduled by the TinyOS kernel for later execution.
The TinyOS kernel, hardware drivers, and user programs for TinyOS
are written in a special programming language called nesC [GLvB+03].
NesC is very likely an extension (clone) of the C programming language.
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Platform Microcontroller Radio Program +
Data Mem Ext Mem Year

René AT90LS8535 TR1000, 10 kbps,
OOK, 916 MHz

0.5 kB RAM
+ 8 kB Flash

32 kB
24LC256,
I2C

1999

René2 ATmega163 same 1 kB RAM +
16 kB Flash same 2000

Mica
ATmega128
(4 MHz
8 MIPS)

TR1000, 916 Mhz,
ASK, 40 kbps,
UART

4 kB RAM +
128 kB
Flash

AT45DB041B,
512 kB, SPI 2001

Mica2
ATmega128L
(8 MHz
8 MIPS)

Chipcon CC1000,
868/916 Mhz, FSK,
38.4 kbps, SPI

same same 2002

MicaZ ATmega128L

Chipcon CC2420,
2.4 Ghz, O-QPSK,
250 kbps, SPI,
802.15.4/ZigBee

same same 2004

Telos TI MSP430
(8 MHz) same

10 kB RAM
+ 48 kB
Flash

1024 kB ST
M25P80,
SPI

2004

iMote ARM 7TDMI
12–48 Mhz ZV4002 Bluetooth 64 kB

SRAM
512 kB
Flash 2004

BTnode
rev3 ATmega128L

Chipcon CC1000,
433–915 Mhz +
ZV4002 Bluetooth
2.4 Ghz

128 kB
Flash ROM
+ 4 kB
EEPROM

64+180 kB
SRAM 2004

TelosB
(Tmote
Sky)

TI MSP430
Chipcon CC2420,
250 kbps, 2.4 GHz,
IEEE 802.15.4

10 kB RAM
+ 48 kB
Flash

1024 kB
STM25P 2004

eyesIFXv2 TI MSP430
Infineon TDA5250,
ASK/FSK,
868 Mhz, 64 kbps

same 4 Mb
AT45DB041B 2005

Fleck Atmega128L
Nordic nRF903,
433 Mhz, GFSK,
76 kbps

512 kB 2005

TinyNode-
584 TI MSP430 Xemics XE1205,

868 Mhz, 153 kbps
512 kB
Flash 2006

iMote2
Intel PXA271
+ ARM
11–400 MHz

Chipcon CC2420
802.15.4/ZigBee

32 MB
SDRAM

32 MB
Flash 2006

SunSPOT
Java

180 MHz
32-bit
ARM920T

Chipcon CC2420,
2.4 GHz, IEEE
802.15.4

512 kB
RAM +
4 Mb Flash

2006

IRIS ATmega1281 Atmel AT86RF230
802.15.4/ZigBee 8 kB RAM 128 kB

Flash 2008

EPIC TI MSP430
Chipcon CC2420,
250 kbps, 2.4 GHz
IEEE 802.15.4

10 kB RAM
+ 48 kB
Flash

2008

Jcreate
Sentilla TI MSP430 Chipcon CC2420

10 kB RAM
+ 48 kB
Flash

2008

Table 1.1: List of WSN Hardware Platforms

7



1. Introduction

NesC was designed to be able to detect race conditions between tasks,
event handlers, and device drivers. Programs for TinyOS are compiled
along with the OS kernel to form a single executable image.

There are also OS for WSN that allow programming in pure C. Ex-
amples of such operating systems include ContikiOS, MantisOS, BTnut,
and Nano-RK.

ContikiOS [DGV04] was designed to support loading of modules
over the network and, therefore, it offers run-time linking of standard
ELF files [DFEV06b]. The ContikiOS kernel is event-driven, like TinyOS,
but the system supports multi-threading on a per-application basis.
Furthermore, ContikiOS includes protothreads that provide a thread-
like programming abstraction but with a very small memory overhead.

Unlike the event-driven ContikiOS kernel, the MantisOS [BCD+05]
and Nano-RK [ERR05] kernels are based on preemptive multi-threading.
With preemptive multi-threading, applications do not need to explicitly
yield the microprocessor to other processes. Instead, the kernel divides
the time between the active processes.

Nano-RK is a real-time kernel that allows detailed control of how
tasks get CPU time, networking and sensors.

Similar to TinyOS and ContikiOS, SOS [HRS+05] is an event-driven
OS. Like ContikiOS, it supports for loadable modules. An entire pro-
gram image is constructed of smaller modules, possibly at run-time.
Thus, SOS provides support for dynamic memory management, as
well.

BTnut [Beu06] is based on cooperative multi-threading and plain
C code. It was specifically designed to support BTnode hardware plat-
form.

LiteOS offers UNIX-like interface and support for C programming
language. For instance, it allows end users to issue commands in the
following manner: ls to ping the sensor network and to display the
nodes, or cp to transfer data to or from sensor nodes.

Many other, less popular OS designs for WSN exist including Mag-
netOS, AmbientRT, EYES/PEEROS and others.

Above the OS level, a WSN software bundle is traditionally com-
posed using the modular approach as shown in Figure 1.4. The MAC-
layer on WSN platforms is implemented in software. The configuration
of system services may differ and highly depends on the application’s
needs. An optional middleware provides the high level programming
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abstractions for user applications. Those are created according to the
underlying architecture using OS system calls or middleware abstrac-
tions.
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Figure 1.4: Software Suite on a Typical WSN Mote

Generally, there are several reasons, which have driven the software
development for WSN beyond the OS level: limited energy budget,
short communication range, large scale, and various deployment sce-
narios. Hence, algorithms and protocols for WSN are traditionally
designed in a distributed fashion to address the following issues:

– multi-hop communication,
– lifetime maximization (data aggregation, power cycling, topology

control),
– robustness and fault tolerance,
– self-configuration,
– security of data, and
– mobility of nodes.
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Which of the above or totally new issues to address is defined by
the end-user application’s needs and the context that application is
used in. Addressing all of them is normally not possible because of the
lack of enough available resources. As an example, in Section 1.4 we
discuss a real-world environment monitoring project which has posed
many of previously undiscovered challenges.

1.4 Example: PermaSense Project
The author of the present work has been involved in the environment
monitoring project called PermaSense [THGT07] in which he was re-
sponsible for basic architecture design and performed several engineer-
ing tasks as well. Here, we would like to take this project as an example
and show how such systems are built and how they work. This will
help to understand what has motivated the research described in this
thesis.

The main objective of the PermaSense project was to build and cus-
tomize a set of wireless measurement units for use in remote areas with
harsh environmental conditions. The second goal was the gathering of
environmental data that help to understand the processes that connect
climate change and rock fall in permafrost areas. To this end, several
sensor fields are deployed and operated in the Swiss Alps over several
years. Although our main contribution was made during the prototyp-
ing stage, we know the current state of the system quite well to discuss
it here.

Wireless sensors enable monitoring of large and remote permafrost
areas with spatially and temporally distributed measurements, leading
to better predictions on the consequences of global warming for alpine
regions. Beyond helping with the modeling of permafrost processes,
this research is also applicable to natural hazard surveillance. The idea
is to fill the niche of easy to deploy, stand-alone geo-monitoring and
warning systems that are low-cost, cheap in maintenance and easily
re-configurable when deployed. With better wireless sensor solutions,
larger hazard areas can permanently be monitored and linked to warn-
ing systems that help to protect human lives.

The selected environment dictated the following unusual condi-
tions:

– unattended operation for most of the time,
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1.4 Example: PermaSense Project

– long-term deployment with extended node’s lifetime (several
years on the same power supply),

– extremely harsh weather accompanied by severe climatic varia-
tions, and

– highly variable link quality with a high chance of disconnected
operation.

All these needed to be taken into account when choosing system
architecture and hardware components, while designing protocols,
and during the deployment stage. Technically, the system has all the
features of a typical WSN (see Figure 1.3):

– periodical data sampling (a set of sensors attached to every node),
– to save power the operation is based on duty cycling,
– in-network time synchronization and correlation with UTC post-

hoc,
– multi-hop communication between nodes,
– connected to the Internet via wireless GSM/GPRS channel,
– back-end with web-interface, visualization, database, logs and

configuration scripts, and
– ability to send control commands from the back-end to the net-

work.

Where does the project stand now? The project began in 2006
with the first prototypes deployed in the Jungfraujoch region of the
Swiss Alps and field experience gathered in the summer of 2006 (see
Figures 1.5a and 1.5c). Subsequently, a second deployment site was
set up on the Matterhorn and a second generation wireless system
deployed to both sides (see Figures 1.5b and 1.5d). From mid summer
2008, the PermaSense project has been actively collecting data. In the
meantime, the engineering team from ETH Zürich has introduced many
improvements to the initial setup. These include a modern system
architecture1 based on new hardware platforms with extended features
[BGH+09], extra equipment such as weather stations, high resolution
imaging systems [KYB09] to remotely monitor on-site operation, solar
panels for renewable power supply, WiFi connection to the base station,

1Please refer to http://www.permasense.ch/technology/overview.html for more up-
to-date information.
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and installations on new sites. Recently, the project has evolved even
further, changing its profile to provide support for similar projects in
the area of sensing in extreme environments [BBF+11] and currently is
known under the name of X-Sense.

To the best of our knowledge and based on the analysis of the two
example installation sites in Figure 1.5 we can say that, besides many
similarities in the underlying technology, these two setups have very
different profiles. We can name the following:

– network size,
– used sensor types, and
– geo-topological location.

The first two parameters define the amount and type of data the
system produces. The last one is responsible for shaping the data flow.
Moreover, even within a single profile we can distinguish a big number
of independent tasks. These tasks may include:

Sensor configuration: Multiple sensors can be attached to the same
node. A set of sensors differs from node to node even at the same
site (weather stations, visual cameras, geophysical sensors, GPS).

Node configuration: Multiple heterogeneous nodes co-exist in the net-
work (sensor nodes, base station, core stations, video units). Ad-
ditionally, node re-configuration may be caused by different envi-
ronmental conditions within network partitions. For example, in
case of Jungfraujoch site where two clouds are installed on the
south and north slopes we might need to correct the node’s clock
drifts using different coefficients. And, this correction may have
to change over a period of one day.

Data flow management: Generated data vary in a sample size, sam-
pling rate, sample window. Therefore, we generate variable data
volumes on different paths.1

Interaction with a user.

These are some but not all possible tasks the system may have
to perform. Depending on how carefully the system is designed the
impact on data quality, data yield and network lifetime could be huge.

1In [BBF+11] the authors call it in-network data fusion as we process data from
different time and space scales.
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(a) Jungfraujoch (1st deploy-
ment, since 2006/2007)

(b) Matterhorn (2nd deploy-
ment, since 2007)

(c) Sphinx Observatory at
Jungfraujoch, 3500 m a.s.l.

(d) Hörnli ridge of Matterhorn,
3450 m a.s.l.

Figure 1.5: PermaSense Installations Sites in the Swiss Alps. Pictures
and information derived from http://www.permasense.ch/research/
field-sites.html
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1.5 Motivation and Problem Statement
As it has been shown in Section 1.4 the research field of WSN is cur-
rently at the stage where multi-tasking becomes an integral part of the
system’s ideology. The multi-tasking is mainly caused by the need to
manage the continuously growing hardware and software complexity.
We believe that a new generation of WSN architectures is approach-
ing where system operation will be viewed as a set of parallel and
interacting network-wide tasks rather than a single-task process. This
will eventually lead us to the point where task composition and task
exchange will cause system profile to change dramatically over time,
at run-time. And, the question of optimal profile representation in the
context of limited WSN resources will be raised. Systems will have to
find the most optimal configuration and encoding of multiple tasks in
order to fit it into existing resource constraints.

In this work, we try to make an initial step towards task-specific
optimization in ES at the code level. In the next few sections, we state
the main research challenge of this work using the newly introduced
terminology.

1.5.1 Virtual Segmentation
Virtual Segmentation (VS) is the process of dividing a physical net-
work into so-called profiles.1 Each profile describes a task (or a com-
bination of tasks) in which every node in that cloud is supposed to
act (see Figure 1.6a). Profiles can be rather complex; they can contain
multiple independent tasks. Profiles can overlap on the physical topol-
ogy, physically disconnected nodes can belong to the same profile.2
In this case, a node becomes a member of two independent profiles
bridging nodes between the two of them. For example, in Figure 1.6a
one physical node takes a part in two profiles, A and B.

The example in Figure 1.6a is complex: multiple overlapping pro-
files, fully distributed peer-to-peer operations within each profile. In
most experiments in this work, we consider a much simpler case where

1Sometimes we also refer to them as clouds, but it has nothing to do with “cloud
computing”.

2Note that the concept of profiles is rather abstract. Programming the system in a
way so that tasks are grouped together creates profiles. There is no “profile description
language” available at the moment.
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Figure 1.6: Virtual Segments and Network Profiles

we have a single profile with a dedicated leader as shown in Figure 1.6b.
The leader is a regular node which is assigned to initiate and control
all the operations and tasks within the profile. The complex scenario
in Figure 1.6a can be decomposed into a set of interconnected simpler
ones with each profile having the structure shown in Figure 1.6b.

Profiles can be added/removed to/from the system. They can be
modified too. The system can switch between profiles at run-time or
execute multiple profiles simultaneously.

1.5.2 Task-Oriented Network Morphing
The VS from Section 1.5.1 are the main building blocks of a task-
oriented network tuning framework. The process of bringing a general
network representation to a task-specific form we call task-specific
network morphing. This process is continuous; it does not happen at
compile-time only. The system is forced to find the most optimal rep-
resentation by throwing out unnecessary elements, or adding missing
ones at run-time.1

1.5.3 Embedded Stack Composition
Although VS and network morphing can be seen from different angles
including high-level programming paradigms in this work we push
ourselves to the system level, the level of network stacks. WSN seems

1Adding new functionality should normally be triggered by some sort of supervisor,
or the system must know where to find the missing pieces.
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to be a perfect place to be in this case as all protocol layers (except for
the physical and link layers) are fully re-programmable.

All network protocols share the same pieces of code between each
other and between several protocol layers. For example, MAC, time-
sync and routing use periodic beaconing as well as similar data struc-
tures and, therefore, similar system calls to the underlying OS. Between
OS and middleware, we propose to use a so-called netware level which
provides a set of commonly used network entities for constructing new
protocol stacks. Those entities can be encoded in a very efficient way
and shared by many targets. For instance, a Forward Error Correction
(FEC) support could be provided as an external function, which is
delivered and integrated into the protocol stack when bit error level
exceeds a certain threshold. The system could even support several
FEC schemes with different error detection and correction properties
and switch between them depending on the current channel link qual-
ity. We call this process stack composition, the term originally used
in [IT10]. The stack composition made for a specific task and in an on
the fly manner can be seen as a sub-class of the network morphing
introduced in Section 1.5.2. In Chapter 7 we refer to a special form
of stack composition called sponge protocols the distinctive feature
of which being a very fine granularity of building blocks – instead of
modules, the system operates with single instructions which, however,
may be quite complicated.

1.5.4 Dynamic Code Morphing
Finally, for each profile the system must be able to find an optimized
(compressed) form. This is needed to make the whole design more
energy and computationally efficient.

By having VS in a system we can optimize each profile (e.g., each
stack) independently. We put the main focus of our research on how
each profile can be brought to an optimal representation at the code level:
mobile code implementing the profile (stack) is re-encoded at run-time
in order to reduce its size and eventually the amount of transmitted
code.

For example, if we use a centralized approach from Figure 1.6b to
control the optimization process, a single leader is elected to run the
compression and updates are sent around the network. Eventually,
the system should learn and start using a better representation for the
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code moving across the network; nodes agree on a new, compressed
“language” on the fly. This learning process can be organized in a
distributed fashion, but the main principle remains the same.

By doing so, we should be able to provide a positive effect on
system’s lifetime. Additionally, the system should be able to gain
some level of adaptability and autonomy. The rest of the document is
dedicated to how this can be achieved.

1.6 Contributions
In this work, we make the following contributions to the area of dy-
namic code optimization techniques:

– We develop and implement two embedded execution environ-
ments for morphable mobile code. One of them, called ChameleonVM,
employs traditional concepts of active networking and mobile
code adapted for WSN domain; the other, called FragletVM, sup-
ports a new way of building network protocols using principles
of artificial chemistry.

– We create and analyze a model of building task-specific configu-
rations for WSN based on VS.

– We create a model for dynamic code optimization across task-
tailored network segments.

– We analyze in every detail a part of the model concerning run-
time code compression.

– We provide an experimental setting showing how our code op-
timization model could be applied to the code in real execution
environments using two previously self-designed frameworks
and code types plus we test it on a third-party code stream type.

By following the steps listed above we expect to retrieve a detailed
image of what level of positive/negative impacts the run-time code
optimization techniques may bring on overall performance and energy
consumption characteristics of a network ES. The power consumption
and wireless channel bandwidth utilization should enhance. At the
same time, the run-time (de-)compression may cause some drop in
performance and increase memory usage. With this work, we mainly
contribute to the area of embedded network systems where the gain is
expected to be the biggest. Standalone and traditional network (e.g.,
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Internet) systems may not find our methodology much beneficial, as
they do not feature the constraints that we address in this work.

1.7 Roadmap
This dissertation is organized into eight chapters.

Chapter 1: The chapter gives an introduction to the world of ES
and its network-oriented sub-class called WSN. We discuss hardware
and software design principles of WSN. We show in the example of an
environment-monitoring project how WSN can be used for building
a real application. We highlight the shortcomings of the current WSN
architectures and explain what exactly has motivated our research.
After that we state the main hypothesis.

Chapter 2: In this chapter, we try to briefly classify and analyze
major current networking paradigms and draw some future directions.
We locate our own work in this landscape.

Chapter 3: We start the chapter by discussing various methods of
changing WSN behavior: re-configuration, re-programming, and re-
tasking. We come up with a new model of creating task-specific WSN
configurations using the concept of VS. We present two embedded exe-
cution environments, ChameleonVM and FragletVM, which are used to
build task-tailored systems. We discuss, in detail, design and working
principles of both.

Chapter 4: The ability to create task-specific setups brings us to
the challenge of optimizing task representation. We explore how task
representation could be changed at run-time and what implications this
would have on the robustness of the system. We pay special attention to
the part of the optimization process, which involves code compression.

Chapter 5: This chapter presents the online code compression
framework which becomes an integral part of the design of both,
ChameleonVM and FragletVM, execution environments. We explain
its system architecture, working principle, and provide some perfor-
mance metrics for various types of code streams and various network
settings.

Chapter 6: We evaluate our online code compression scheme in sev-
eral examples. We consider three code models: traditional active net-
working (ChameleonVM), chemical networking protocols (FragletVM),
and a third-party model based on mobile agents.
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Chapter 7: The chapter serves as a polygon for better understanding
of what has been achieved with this work so far and to outline future
possible directions.

Chapter 8: We make the final conclusions to our work and complete
the picture.

In Appendices, we provide block-diagrams and source code of the
algorithms and protocols used throughout the rest of the document,
which are needed for better understanding of their working principles.

1.8 Summary
In the introduction, we have given an overview of ES and their special
network sub-class called WSN. We have shown that characteristics of
such systems pose many design issues resulting from the extremely
limited resources. This we have demonstrated by giving references
to a real-world project example. Having a clear understanding of
the existing problems we have formulated one possible solution and
outlined our research plan along with a list of major contributions.
A brief introduction to the main concepts must help the reader with
the rest of the document. We will operate with them throughout this
work. Finally, the thesis structure must help to navigate through the
document easily.
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2

On Present and Future
Network Models

Before unfolding the main part of our research, dynamic mobile
code optimization, we discuss the state-of-the-art and several fu-
ture promising paradigms in networking. This will help us to
better position our contribution inside the global image and to
better understand what we would like to achieve with the new
method. We start this discussion with the classic packet-switching
approach, which is the foundation of today’s Internet technology.
Following this, we give an overview of methodology known as
active networking and the idea of mobile code, its main build-
ing block. We continue by referring to the concept of autonomic
computing and autonomic architectures. As an example of this
currently active, vast research domain we discuss Chemical Net-
working Protocols (CNP). To complete the picture we mention
several non-traditional ways of networking like Delay-Tolerant
Networks (DTN), gossip protocols, Content-Centric Networks
(CCN) as well as networks with self-organized properties like
WSN and MANET.



2. On Present and Future Network Models

2.1 Data Packet Networks
Data packet networks came first. By saying that, we assume any type
of network for which the functional principles are based on the idea of
packet exchange. Packets carry two types of information: actual data
and current state of the network (e.g., routing information, time, etc.).
Network information is transmitted from node to node; it is analyzed
and some re- or pro-active steps are taken to keep the system going.

Encapsulation of information in a packet allows for almost natural
sharing of the same communication channel among multiple data flows
and/or multiple data types (e.g., video, voice, text) between multiple
nodes. The corresponding network infrastructure (routers, switches,
etc.) decides how to regulate the packet traffic and how to deliver
the information. The decision-making on how to deal with the traffic
is fully decentralized. Moreover, often the data type is kept out of
consideration in contrast to content-oriented approaches like the one
described in Section 2.5.3. Hence, this approach might suffer from
variable bit rates and long delays, although it allows to better utilizing
the channel capacity. The technology responsible for this is called
packet switching. The most well known use of packet switching is
the Internet and Local Area Networks (LAN). Some other examples
include Multi-Protocol Label Switching (MPLS) and, used in mobile
phone technology, General Packet Radio Service (GPRS). In contrast, a
second method, called circuit switching, sets up dedicated connections
between particular nodes. This solution allows the provision of a
requested quality of service (constant bit rate, constant delay) and
thus is primarily used in digital telephony-related services (e.g., ISDN,
GSM).

Although data packet networks still exist and are still the primary
choice in many cases, they leave many questions open: maintenance,
scalability, adaptability, protection against attacks, and many others.
So, how can we deal with all of these?

2.2 Active Networking and Mobile Code
One of the answers to the above question was, and still is, active net-
working. It is a communication model that allows packets flowing
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through a network to dynamically modify the operation of the net-
work.1

Active network architecture is composed of execution environments
(that can execute active packets, a combination of code and data) and
of active hardware capable of routing or switching as well as executing
code within active packets. This is different from the traditional net-
work architecture, which increases robustness and stability by remov-
ing complexity and the ability to change its fundamental functions from
underlying network components. The network components remain
passive blocks with pre-defined functionality. Network processors
are one means of implementing active networking concepts. Active
networks have also been implemented as overlay (software-only) net-
works. The most famous proposals in this area are ANTS [WGT98] and
PAN [NGK99].

Active networking brings the possibility of highly tailored and
rapid “real-time” changes to the underlying network operation. This
enables such ideas as sending code along with information packets.
This allows the data to change its form (code) to match the channel char-
acteristics. We discuss what is the smallest program that can generate
a sequence of data in Section 5.1, when we speak about the definition
of Kolmogorov Complexity (KC). The use of real-time genetic algo-
rithms within the network to compose network services is also enabled
by active networking (see Section 7.2).

One of the biggest challenges with active networks is how to opti-
mally allocate computation versus communication within networks.
A similar problem related to the compression of code as a measure of
complexity is addressed via Algorithmic Information Theory (AIT)
which we will also discuss in Section 5.1.

Closely connected to active networking is the concept of mobile
code. Although mobile code can support different paradigms, from
Java applets (code on demand) to grid computing (remote evaluation),
here we relate it to the idea of mobile agents.2 A mobile agent is a
composition of code and data, which is able to migrate (move) from one
node to another autonomously keeping its state (able to continue its

1The text below partially cites and is based on the Wikipedia article retrieved from
http://en.wikipedia.org/wiki/Active_networking.

2Sometimes also referred to as messengers, or active packets, or capsules, or
molecules.
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execution on the destination node). The last requirement is not manda-
tory (some agents do not carry their state along) but is a good practice
while designing systems based on this technology. Mobile agents are
capable of performing appropriately in the new environment, i.e., they
are able to adapt to the changes. Sometimes the decision making func-
tionality on when and where to move is encapsulated inside the agent,
sometimes this is a function of an execution environment.

Due to higher requirements on resources active networks find very
limited use in embedded systems including WSN. For instance, Aglets
do not run on Java ME. The examples of mobile code used in WSN
are: Agilla agents, ChameleonVM capsules and Fraglets. The first one
[FRL09a] belongs to the class of classic mobile agents. ChameleonVM
capsules (see Section 3.2) are a highly morphable form of mobile code
designed specifically for use in resource-constrained systems. Fraglets
implement the concept of chemical networking (see Section 2.4).

Hereinafter, when we refer to the mobile code we will assume the
following properties:

– encapsulates code and data,
– delivered to a node and executed there,
– can generate other code pieces,
– can be merged/split/erased, and
– requires a different approach to protocol design.

As the development of active networking and mobile code pro-
gressed in different areas, the following question was raised: Do all
protocols need to be implemented in an active network fashion? And,
the answer would rather be no. This is especially true for systems
posing high requirements on security, reliable delivery and real-time
operation. Although WSN might seem to be one of those “no-go”
architectures in this work we show that it can definitely benefit from
implementing some of its software components using the mobile code
concept (see Section 3.2). This will result in a provision of more flexible
system design with high re-programmability level, the feature that
is vital for WSN. Following this, optimization of message exchange
mechanism will help to improve an overall performance of the system.

24



2.3 Autonomic Architectures

2.3 Autonomic Architectures
Autonomic Computing (followed by Autonomic Networking) was
an initiative started by IBM in 2001. Its ultimate goal is to design a new
generation of computer systems capable of self-management. Self-
management allows for overcome of the rapidly increasing complexity
of computing systems management. In other words, autonomic com-
puting offers the new self-managing characteristics of distributed com-
puting resources. Such systems can adapt to unpredictable changes; the
intrinsic complexity is hidden to users. Autonomic systems make deci-
sions on their own by using high-level policies. They constantly check
and optimize their status and automatically adapt themselves to chang-
ing conditions. An autonomic computing framework is composed of
Autonomic Components (AC) interacting with each other. An AC can
be seen if a form of two main control loops (local and global) with
sensors (for self-monitoring), effectors (for self-adjustment), knowl-
edge and planer/adapter (for implementation of policies based on self-
and environment awareness). Driven by such a model, a number of
architectural frameworks based on “self-regulating” AC have been re-
cently proposed (e.g., ANA project [BJT+10]). Most of these approaches,
however, exploit centralized or cluster-based server architectures.

Normally, the following four elements of the above IBM’s auto-
nomic computing initiative are used to describe a typical autonomic
system:

– self-configuring: automatic test and installation of software re-
leases, parametrization,

– self-healing: system can restart applications if they fail,
– self-protecting: pro-active intrusion detection and prevention,

and
– self-optimizing: task-driven run-time software customization.

Below we discuss these four principles in detail.

2.3.1 Self-Organizing Networks
From Section 2.3 we have learned that self-organization (or self-config-
uration) is one of the key factors of the autonomic network architecture.
The level at which the system can be called self-configurable is flexible
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though. It can be seen from different angles: name/address auto-
resolution, topology build-up, synchronization, etc. Not all the systems
named “autonomic” have all features, most have only a few. Let us
consider two specialized network architectures, which feature some
aspects of self-organization.

Mobile Ad hoc Networks (MANET): These are fully decentralized,
infrastructure-less wireless networks. They have no administrative
management, i.e., no network operator. Therefore, in contrast to In-
ternet there is no “managed” support for system services like routing,
name resolution, etc. The entire networking operation depends on
incentives to collaborate from participating users (nodes). Another two
key features of MANET include: 1) nodes are both hosts and routers,
and 2) nodes can be mobile. The latter still remains one of the biggest
challenges in MANET design and slows down their wide usage. What
is more or less successfully deployed nowadays is mesh networking.
This is a distributed radio network with a static core and relatively
static or lightly mobile end users. Mesh protocols are operated only
by the static core providing an Internet-like interface to end users (e.g.,
DHCP, DNS, SMTP, etc.).

Wireless Sensor Networks (WSN): In contrast to MANET this is
normally a centralized network. Sensor nodes typically collaborate to
collect/process/store the measured data and transfer it to one or many
data sink(s). A WSN is typically a dedicated system; it is designed for
performing one particular task in some particular environment. WSN
can be mobile. Even if WSN is fully static, it can show some properties
of a mobile network due to unstable radio links. WSN was one of the
first attempts to apply the idea of Data-Centric Networking (DCN)
(or Content-Centric Networking (CCN)) in practice (see Section 2.5.3).
In contrast to classical networking where routing is based on nodes and
addresses (i.e., unique global identifiers), with CCN routing is based
on data labeled with some attributes [IGE00].

2.3.2 Self-Healing Protocols
Hardware/software is not perfect. This is especially true for complex
systems such as networks. Three steps can be outlined in the process
of dealing with malfunction behavior:

– error detection (diagnosis),
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– error handling (undoing the harm), and
– fault tolerance (prevent from faulting again and delivering correct

service in the presence of faults), self-protection.

If the system provides a certain level of the above properties, we say
that it belongs to the class of self-healing systems. The concept of self-
healing is closely related to the idea of self-protection as a prevention
mechanism before self-healing might kick in. Self-protection relies on
several forms of redundancy for being able to recover:

– hardware redundancy: parallel execution, majority filters,
– software redundancy: software copies,
– time redundancy: sequential multiple execution, majority filters,

and
– information redundancy: error correcting codes.

Since the redundancy always comes with a need to use extra system
resources (CPU time, memory, etc.) special ways to approach it are used
in ES where resources are extremely limited. In systems like Maté and
Agilla the self-protection is implemented at the level of the execution
environment. The corresponding VM controls program execution, and
when an error occurs the program is suspended or removed. The new
code distribution is then needed. ChameleonVM extends this function-
ality with an idea of capsules’ lifetime. Capsules decay after a certain
time allowing the system to update its execution context almost natu-
rally. In this case, damaged code vanishes automatically and is replaced
with a healthy copy. Fraglets use the idea of Quines, never-ending self-
replicating pieces of code which can also be used to re-generate other
code pieces. This approach might be sometimes harmful to itself if the
population of ever-growing Quines is not regulated properly. More-
over, as it is shown in [Mey10] sometimes Quines can start to grow
unexpectedly. The above methods provide self-healing properties at
the code execution level. An additional technique, which can be used
on top, is FEC, which provides code redundancy at the encoding level.
We discuss code robustness further in Section 4.5.

2.3.3 Self-Optimizing Systems
Autonomic architectures must be smart enough to adapt to the changes
in the environment. If a system is built using mobile code it is more
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easily achieved than with static packets as we can change code on
the fly. Mobile code means late binding of functionality that in turn
means communication becomes instruction-based. This provides more
granularity for network operations and code deployment. That is
why many mobile code platforms use some sort of byte-code. In this
work, we try to occupy the niche of dynamic mobile code optimization
allowing reaching a better code representation and a better utilization
of system resources.

2.4 Chemical Networking and Fraglets
An Artificial Chemistry (AC) [MYT08a] is a bio-inspired computer
model used to simulate various types of systems. AC is in some ways
similar to a chemical reaction, hence the name. Chemical Networking
Protocols (CNP) [MT09] are a follow-up field of study which uses
a chemical representation to simulate and design new networking
protocols.

Mentioned above, Fraglets [Tsc03], is a framework (programming
language, simulator, execution environment) to design, build and eval-
uate networking protocols based on the principals of CNP. Formally,
fraglets are tiny computation fragments (hence the name) designed to
be integrated into infrastructure of an active network. Thus, fraglets
can not only carry passive data along through the network, but also
execute code (themselves) on routers and nodes that they pass by.

“There are two ways to look at Fraglets. First, fraglets implement a
chemical reaction model where computations are carried out by having
fraglets ‘react’ with each other. Alternatively, fraglets can be seen as
data flow tokens that work themselves through communication media
and routing tables – conceptually, the CPU is turned inside out such that
the network becomes the CPU’s bus. An interesting twist (with both
views) is that fraglets blend the notion of code and data, overcoming
the discrepancy between ‘classic’ and ‘active’ networking.”1

Based on fraglets, CNP addresses the problem of in-network packet
processing through the prism of chemical kinetics. CNP helps to de-
velop and analyze network protocols in a highly dynamic, reaction-
oriented fashion. The dynamic nature of CNP comes with an over-
whelming message complexity. It requires messages exchange of rela-

1Borrowed from http://www.fraglets.net/.
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tively small size but high intensity. For us, this is a perfect target, as it
would allow observation of how message complexity can be reduced.

2.5 Unconventional Networking Styles
In the following section we discuss several modern styles in network-
ing. These “styles” are not new paradigms on their own, rather they
exploit the existing ones and add new functionality on top in order to
adapt to special contexts. The reason why we talk about them here is
that these concepts find applications at different levels in the WSN do-
main and because some of our examples from Chapter 6 use them too.
In particular, we have a look at the following topics: Delay-Tolerant
Networking (see Section 2.5.1), gossip protocols (see Section 2.5.2) and
Content-Centric Networking (see Section 2.5.3).

2.5.1 Delay-Tolerant Networking
The first principle we mention is Delay-Tolerant Networking (DTN).
This is an approach to architecture computer networks that seeks to ad-
dress the issue of lacking continuous network connectivity. Examples
of such networks are those operating in harsh terrestrial environments,
mobile or in-space networks (a.k.a., inter-planetary Internet). Disrup-
tion in connectivity may occur because of the limited range of wireless
radio, mobility of nodes, energy resource constraints, as well as inten-
tional attacks and channel noise. Classical network architectures like
Internet are built on the following underlying assumptions: 1) continu-
ous, bidirectional end-to-end path, 2) short round-trips, 3) symmetric
data rates, and 4) low error rates. In contrast, the DTN [Fal03] inverts
these characteristics to: 1) intermittent connectivity, 2) long or variable
delay, 3) asymmetric data rates, and 4) high error rates. As can be seen
WSN feature all of the above and can, therefore, be approached using
the DTN model taking into account specific limitations of WSN [Lou06].
Alternative field-tailored solutions exist. For example, in [TST08] we
proposed a “multi-level in-network cache” method to provide reliable
data delivery in intermittently connected WSN.

2.5.2 Gossip Protocols
The second is the Gossip protocol (a.k.a., epidemic protocol) which is
a network communication model inspired by the form of gossip seen
in social networks and its information spread function. The model
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involves periodic, pair-wise, inter-process interactions. Reliable com-
munication is not assumed. The frequency of the interactions is defined
by the main protocol task and is normally relatively high compared to
more classic counterparts. Communication peers are selected using ei-
ther some form of randomness or a continuous peer sampling/ranking
mechanism.

Gossip protocols are often used by modern distributed systems to
solve problems that might be difficult to address using more traditional
approaches. The following reasons are normally the cause why one can
start using gossip-based methods: 1) the underlying network has an
inconvenient structure, 2) the network is extremely large, or 3) some-
times gossip-based solutions show a better performance. The following
three types of the gossip model are distinguished: dissemination, data
replication and aggregation protocols.

Dissemination protocols are the most used form of gossip model
in WSN (a.k.a., flooding or viral protocols). They are widely used by
broadcast services to disseminate control messages. These services
include: maintenance of routing tables, building hierarchies, directed
diffusion, code propagation, time synchronization, etc. However, flood-
ing produces an excessive number of unnecessary control packets,
markedly increasing overhead. To address this, a more field-specific
models are used sometimes. In [Tal08] the problem of time synchro-
nization with minimal message complexity is discussed. We lately use
this example in Section 6.4.6. Another example we use in our work is
described in Section 6.5, a classic data aggregation gossip protocol with
huge message overhead.

2.5.3 Content-Centric Networks

Content-Centric Networking (CCN) (a.k.a., Content-Based Network-
ing, Data-Oriented Networking or Named Data Networking) is an
alternative approach to the design of computer networks whose fun-
damental principle is that data is retrieved by name, not by location.
In this model, there is no specific, physical location identifier like an
IP-address in the Internet. Instead, CCN introduces a named content
model. At the same time, CCN is built using TCP/IP design patterns.
That is why it can support any current networking application in the
Internet.
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The CCN approach comes with a wide range of benefits including:
1) content caching to reduce congestion and latency and improve de-
livery speed, 2) significantly simpler configuration of network devices
(since there are no actual end points), 3) improves network reliability
and performance, and 4) integrates security (both authentication and
ciphering) into the network and at the data level.

In the WSN domain the CCN ideology has a long history in a form
of content-centric middleware and routing protocols [IGE00]. This
is mainly dictated by the fact that WSN are naturally data-oriented
networks. This type of middleware provides a simple abstraction
through which applications can request/exchange uniquely identified
content. We discuss this further in Section 3.1.2.

2.6 Summary
In this chapter, we have given an overview of the past, present and
future of the networking technology. The trend to design systems with
more “self”-features has greatly evolved since the first attempts to use
mobile code for building network protocols and applications. Systems
are gaining more autonomous, self-organization and self-configuration
properties. Run-time self-optimization is becoming, more and more,
an essential part of system design. It allows tuning of the system to
perform a particular task. This is a specifically welcomed feature for
resource-constrained systems like WSN. Finally, self-healing tries to
manage an (un-)intentional system misbehavior. We have looked at
one of the prospective methods, which describes network interactions
through chemical reaction metaphors. As we show later, to some extent
the concepts of this method can be applied to embedded network
applications as well. At the end we have also listed a number of
non-traditional approaches to networking which have already found
applications in the embedded world.
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3

Configurable VMs for
Embedded Networking

First, this chapter gives an overview of the existing re-
programming and re-tasking solutions for WSN. We analyze
these solutions and report their basic features. We find that none
of them are suitable for our further research. Thus, we propose
two prototype platforms which will be used in the later chap-
ters: ChameleonVM and FragletVM. The first is an example of a
“traditional” Virtual Machine (VM) for active networking with
sequential execution flow. In addition, it introduces the properties
of dynamic code optimization discussed in Chapter 4. The second
is an embedded implementation of the Fraglets system, which es-
sentially models the chemical networking environment with frag-
mented and parallel execution. We present system architectures
of both, the code and data representation they use, instruction sets
and execution flows. Special attention is paid to describe one of
the main building blocks of both designs responsible for dynamic
code compression, which is further described in Chapter 5. The
content of this chapter is essential for understanding the program
examples from Chapter 6.



3. Configurable VMs for Embedded Networking

3.1 Existing Solutions for WSN Morphing
In the introduction (Section 1.5) we have explained why we consider
morphing to be an essential feature of any network system. In this
chapter, we first give an overview of the existing solutions for net-
work morphing and then present the corresponding toolkits we have
developed for two different network environments: WSN and Fraglets.

Hereinafter, by saying morphing we assume changes made to the
network software which lead to a change in network behavior. The
following approaches can be considered as different forms of a mor-
phing process: re-configuration (re-calibration), re-programming and
re-tasking.

Re-configuration (or re-calibration) is a process of tuning certain
network parameters which allows to better reflect current traffic and
topology conditions in the network. For example, re-configuration
is triggered when nodes join/leave the network (address and slot re-
assignment), when timings of a network protocol must be adjusted1

and when instead of taking samples every minute we would like to
do it only hourly (change of a sampling rate). This is soft-morphing
because it does not require any changes to the code but to the data struc-
tures this code has access to. Normally soft-morphing is a functional
part of the original protocol architecture meaning that the protocol
can make decisions and react to those changes without commands
from the outside. This comes with a challenge: the protocol must be
algorithmically ready for various situations; this functionality must be
pre-programmed. This results in protocol functional expansion and
yet a lack of sufficient functionality for some specific cases. On the
other hand, re-configuration can be established via external commands
(e.g., “set threshold number 5 to value 10”). In this case, the network
protocol must have a number of entry-points – the more of these points
it provides the more fine-grained tuning can be done on it. The posi-
tive side of re-configuration is low intensity and small packet size of
inter-node communications required as well as no issues with harmful
operation.

Re-programming assumes a partial or a full replacement of the pro-
gram image. This allows any level of changes to the running software;

1Most WSN protocols do not allow doing that at run-time.
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software is distributed in a pre-compiled platform-oriented (machinery,
binary) form. For making this possible, the system must provide a sup-
port mechanism – the engine which will replace some parts (modules)
or the entire image. This requires memory space. The other two nega-
tive aspects of re-programming are intensive use of the communication
channel while the image is being replaced (requires much power) and
disruption of execution (the program should be stopped and can be
started again only after the new image (module) has been put in place
and configured). We call re-programming a hard-morphing. Of all
three processes described here this is the most systematic way of chang-
ing the system behavior as every aspect of the original functionality
can be changed.

Re-tasking is an approach based on using a non-platform-native
coding scheme. To execute such code each node in the network must be
equipped with an appropriate execution environment, a VM of some
type. The code can be distributed in a text (script) or pre-compiled
(byte-code) form. Many middleware solutions fall into this category,
some kind of on-node interpreter is normally required. This method has
a very big advantage over the previous two as it solves two problems:
1) network functionality can be deeply modified, and 2) it does not
require distributing a new heavyweight program image each time. Its
negative side is the need for a VM instance on each node, which must
be pre-installed. Additionally, as this VM is normally implemented as
an application it is not given enough rights to make any changes at
the OS level – even updating its own code is normally not supported.
As this type of morphing does not make any changes to the actual
network behavior but rather helps to describe high-level tasks, we call
it abstract morphing.

As it has been shown above, each of the three approaches has its
own advantages and disadvantages in terms of required resources and
provided services. In the ideal case the line between OS, VM and mid-
dleware should be erased. All OS, discussed in Section 1.3.2, provide
only very basic software support (drivers, scheduler, memory space
allocation, etc.). VM is responsible for providing higher level interfaces
and further protection of process execution than OS. Middleware gives
an opportunity to describe tasks using abstractions, which are close to
natural language commands (e.g., SQL-like queries). The higher we
move through this hierarchy the less control over underlying levels we
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normally get. It is a very debatable subject of what level of granularity
each level should provide. The current situation is rather restrictive,
access to the underlying layers is not offered (middleware ! VM !
OS). Our focus is put on creating a so-called netware1 level where
network functionality can be regulated at the level of system services
or even MAC-layer (see Figure 1.4; we should have a chance to replace
or modify any of the system services as desired: middleware → VM
→ OS) and yet this task should be carried out using some level of
abstraction (without making OS system calls). Additionally, this level
should offer a set of well-defined interfaces which could be used by
higher levels independently: middleware netware−−−−→ OS and VM netware−−−−→
OS). Further integration with an OS core could be done via callbacks:
netware ! OS. Why would having such a layer be useful? The answer,
we would like to have a tool for building task-specific configurations
on the fly. This is currently impossible. Instead of having all functional-
ity pre-programmed and (maybe) configurable we would like to have a
system tailored to some specific task at a time (e.g., at time τ1 we want
our system to measure and deliver data, at time τ2 the system should
only aggregate accumulated data, make in-network decisions and steer
actuators; system profiles at times τ1 and τ2 should be independent).
Switching between tasks (between profiles) should also be possible.
Moreover, it is not required to have all the profiles available on a node at
all time; profiles can be delivered or removed from a node on-demand.
Having a temporary task-oriented profile in the system will allow us
to optimize communications involved in carrying it out by reducing
the amount of information (packet size) needed to be exchanged be-
tween nodes and, therefore, minimize energy consumption. It has been
shown in [BA03] that the trade-off between communication intensity
and computation complexity might be tricky (the less we transmit the
more that has to be done on encoding/decoding side). The idea would
then be to create a system where the encoding/decoding stage is simple
enough to be carried out by resource-constrained devices like WSN.

The attracting thing about WSN for applying such a technique to is
that you can go as deep as you want in modifying and customizing the
underlying layers (MAC/link layer is fully re-programmable in WSN).
In contrast with, for example WiFi routers, this gives a huge level of

1Do not confuse with the Novell NetWare network operating system.
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freedom for a developer. However, the same technique can be used on
systems with lower modifiability.

We intentionally do not position our work as middleware but as an
execution environment for network protocols (netware). To show the
difference we will borrow the code dissemination classification from
[BS06] and [HKSS05]. As shown in Figure 3.1 the following stages in a
code dissemination are distinguishable:
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Figure 3.1: Code Dissemination (partially borrowed from [BS06])

As can be seen from Figure 3.1 middleware normally performs
data acquisition and processing tasks whereas netware is involved into
carrying out in-network services. Since netware is based on mobile code
it borrows elements from the code dissemination shown in Figure 3.1.
To understand which services the netware level must support lets have
a look at each sub-type of code dissemination in detail.

Dissemination protocols: Dissemination protocols are used to de-
liver software updates to WSN nodes. These solutions normally con-
centrate on how to deliver data rather than what to deliver. Software
updates are pre-compiled binary images of a relatively big size (com-
parable with the total amount of memory available on most WSN
platforms which is 30–40 kB). Examples include: Deluge [HC04], De-
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ployment Support Network (DSN) [DBK+07], Impala/ZebraNet, Infuse,
MNP, MOAP [SHE03], Trickle [LPCS04], XNP.

Size reduction: In contrast to dissemination protocols this sub-type
addresses an issue of bulky data transmissions by modular organiza-
tion of software and incremental updates. This is normally done on a
host, which can be either an access point computer or another node.
However, it still assumes pre-compiled platform-oriented code similar
to dissemination protocols. Examples include: Reijers, Rsync, Remote
Incremental Linking.

Execution environments: Instead of distributing binary code these
solutions introduce high-level programming schemes which allow
description of network interactions using fewer instructions (e.g., using
single “send” instruction instead of making a system call with many
parameters). Examples include: Agilla [FRL09a], COMiS, Contiki VM
[Dun07], cSimplex, Mantis/MOS, Maté/Bombilla [LC02], REAP, SINA, SP
(Spatial Programming), Szumel et al’s Mobile Agent Framework, Pushpin,
ScatterWeb, SensorWare, SOS DVM [BHR+06].

Most execution environments were designed to implement data ac-
quisition, middleware tasks. This is similar to building a data collection
application as we show in Section 6.4.7. That is the reason why they
lack a number of fundamental features such as code manipulation, code
morphing and compression, code navigation, etc., which are required
for creating low-level protocols. On the other hand, they provide a big
number of data processing functions, which are not needed for this
type of operation. The last normally overwhelms their design.

As we have mentioned above, our focus is put on the so-called
netware level, which would allow us easy access to system network
functions from inside the network. For example, node A wants to
move some code chunks to node B which is two hops away. Node A
has to be able to do that in an elegant and easy manner but without
having an underlying propagation layer with huge message complex-
ity. Decision-making is delegated to the nodes. The model should
use a fully decentralized architecture; a need for session leaders or
control signals from outside is not necessary. The last point is especially
important for autonomic systems. Furthermore, the system must be
relatively lightweight (memory, computations) so that WSN nodes can
easily adopt it. It might seem similar to mobile agents technology like

38



3.1 Existing Solutions for WSN Morphing

Agilla mentioned above but there is one fundamental difference, mobile
agents live in user-space and are not allowed to make any changes to
the media they use. We propose a system, which in fact consists of
multiple morphing-prone agents. The last statement means that agents
are not static, their “filling” and, therefore, functionality can change.
By prototyping such a system which features switchable task-specific
profiles at a time, we will obtain a tool for our further work, namely
carrying out analysis on dynamic code compression techniques (see
Figure 3.2). The last element, in our vision, is an essential part of auto-
matic construction of optimized network protocol stacks on the fly from
fractions of code flooding the network (so-called sponge protocols).
The step of automatic protocol construction we have not achieved in
this work but we discuss it in Chapter 7.
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Figure 3.2: Profiles Building and Switching

Figure 3.2 can also be seen as a process of building a solution which
solves a specific problem at a time from a set of available functional
building blocks. Following this, the solution’s encoding is optimized.
In our case the optimization criterion is the resulting code size. Other
criteria such as message complexity can be used instead or in combina-
tion.

Before describing the details of the netware level we would like to
propose a slightly different classification of code dissemination tech-
niques, based not on their place in the network or their functionality
but the level of control over code morphing they offer.
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3.1.1 Frameworks for Re-Programming
Re-programming requires access to low-level (OS-level) services, thus
it is normally implemented as a part of OS. A classical representative of
this type is Deluge [HC04] in TinyOS which pioneered a lot of principles
for code dissemination in WSN. Deluge allows to wirelessly install a new
binary program image. This is accomplished by propagating a program
binary over the wireless network and having each node program itself
with the new image. After all the images have been delivered the node
can switch between them and run different applications on demand.

This approach is the least error-prone because the entire program
image is replaced. Although it comes with a number of disadvantages,
one of which is the significant power consumption due to the need of
transmitting the entire program image (in case of TinyOS it includes
the OS code as well, and might be as big as 30–40 kB). The other big
disadvantage is the disruption of network services and, therefore, the
lack of operation during maintenance.

Systems like ContikiOS [DGV04] and SoS [HRS+05] tried to improve
this mechanism by utilizing their modular architecture and allowing
transmission and installation of separate modules [DFEV06b] instead
of full images. The issue with power consumption in this approach still
remains, as modules are still too big. Moreover, each module has to
carry information needed for the dynamic linking on a node.

Code remains static and immobile (it is delivered and installed);
further in-network interactions are based on exchanging data packets
as usual.

3.1.2 Frameworks for Re-Tasking
In contrast to re-programming, re-tasking brings the morphing task
to the user level. Basically, all middleware solutions fall into this
category as they hide system-level complexity and provide a set of
simplified programming abstractions which should be enough to de-
scribe any task in a particular application domain. The middleware
population for WSN is rather huge. Particularly, it includes: node
centric (e.g., Hood, Abstract Regions, Logical Neighborhoods, Virtual Nodes)
and macro-programming (e.g., Regiment, Kairos, ATaG) abstractions,
VM (e.g., Maté, ASVM, DAViM), distributed databases (e.g., Cougar,
TinyDB, SINA, SwissQM). Additionally, middleware solutions can be
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event- (e.g., Mires) and application- (e.g., MiLAN) driven, component-
based (e.g., RUNES, MWSAN); with further extensions like tuple spaces
(e.g., TinyLime, TeenyLime) and tuple channels (e.g., TCMote) or mobile
agents (e.g., Agilla, MAWSN, actorNet). For further information on
existing middleware solutions and their comprehensive classification
and analysis, refer to [MP09].

In these solutions code mobility is typically limited and pre-deter-
mined: code goes where it is told to, normally it does this only once
and resides on a node until it is removed. Code cannot make decisions
by itself. Many solutions do not even use the concept of code but rather
commands or queries which are translated in some form of a bytecode.
The only exception which goes beyond these limitations are mobile
agents.

In general, middleware provides abstractions from the underlying
network layers. We would like to bring interest back to the network
level. Below we will consider two of the above, the most inspiring
solutions for this work: VM (see Section 3.1.2.1) and mobile agents (see
Section 3.1.2.2).

3.1.2.1 Virtual Machines for WSN

Maté was the first VM specifically designed for use in WSN. It is written
in nesC [GLvB+03] programming language used in TinyOS. Maté uses
Trickle protocol [LPCS04] as an underlying code propagation layer.
Programs are encoded using a special assembler-like language. Code
dissemination is done using small capsules of 24 bytes. If a program
requires more code it can be divided into several capsules which are
delivered to a node, installed and run as a single program. Maté’s
capsules can forward themselves to other nodes. In the heart of Maté
lies a byte-code interpreter also providing network, logging, hardware
and boot/scheduler capabilities. Later Maté was later extended to
ASVM [LGC04], [LGC05] which allows to specify an instruction set at
compile-time.

Other VM exist for WSN. The most notable solutions and their
remarkable features are shown in Table 3.1.

3.1.2.2 Mobile Agents for WSN

Mobile agents serve for re-tasking as well. A good example in WSN
is Agilla [FRL09a] which is a middleware that provides a mobile-agent
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Name

Memory
Footprint
(code/-
data)

Application
Execution
Method

Programming
Model

Domain
Specific
VM

Remarkable
Features

M
id

dl
ew

ar
e

Le
ve

lV
M

Maté 7.5 kB /
600 bytes Interpretive Stack-based No Tiny program

capsules

Scylla
Unknown
(rich
nodes)

Native
code

Register-
based No

Runs native code
using on the fly
compiler.

SensorWare 180 kB /
unknown Interpretive Unknown Supports Multiple

applications (script)

DVM 13 kB /
600 bytes Interpretive Stack-based Yes

Native code
exposed as VM
instructions;
dynamic, multiple
applications.

DAViM
Unknown
(rich
nodes)

Interpretive Stack-based Yes Dynamic

QM 33 kB /
3 kB Interpretive Stack-based No

Choice of
instruction set,
compact and space
efficient
representation;
multiple
applications.

ASVM 38 kB /
2.9 kB Interpretive Stack-based Yes

Based on Maté.
Adds customizable
instruction sets.

VM* 6 kB /
200 bytes Interpretive Stack-based Supports

Class compaction;
dynamic,
serializable
representation of
objects;
quasi-threading
dispatch; multiple
applications.

Sy
st

em
Le

ve
lV

M

MagnetOS 1.3 MB /
unknown Interpretive Stack-based No

Multiple
applications;
network resources
management.

Squawk 660 kB /
unknown Interpretive Stack-based No

Compacted
bytecode; multiple
applications;
debugging.

S- and
E-VM

1000 lines
of code /
unknown

Unknown Unknown No
Targeted for timing
code, rather than
functional code.

TinyVM
and leJOS

<10 kB;
17 kB /
unknown

Interpretive Stack-based No Compact class files

Table 3.1: Classification of VM for WSN (borrowed from [CPS07])

42



3.1 Existing Solutions for WSN Morphing

style of programming. Applications are constructed of mobile agents
that can migrate their code and state across the network; programs can
now control where they go and to maintain both their code and state
across migrations. Functionally, mobile agents are able to

– provide more flexibility as they allow applications to control how
they propagate and self-distribute in the network,

– bring themselves to the most optimal locations within the current
configuration to perform application-specific tasks,

– save energy by bringing computation to the big amount of data
rather than requiring the data be sent over unreliable wireless
links to the location where the computation sits,

– re-distribute the functionality inside a WSN field by “attaching”
themselves to specific locations that better meet the current ap-
plication’s requirements (instead of spreading the repetitive code
throughout an entire network), and

– share the resources of a single node, i.e., multiple mobile agents
can reside on each WSN node.

The following advantages of using mobile agents can be thought of:

– network re-tasking (since new agents can be injected into a pre-
existing network),

– multiple applications can co-exist (since each agent executes au-
tonomously and multiple agents can simultaneously be executed
on a node), and

– quick adaptation to changes in an environment (since mobile
agents can move and clone).

The fact that Agilla is essentially middleware limits its use to user-
level applications. Agents can clone themselves and migrate from
node to node but these actions use pre-determined algorithms (e.g.,
moving through a grid in case of Agilla). Moreover, mobile agents do
not have control over underlying layers (transport, MAC). Another
disadvantage is that mobile agents are static in terms of their own
structure, they are pre-programmed pieces of code which cannot be
modified.1

1The description is borrowed from http://mobilab.cse.wustl.edu/projects/
agilla/.

43



3. Configurable VMs for Embedded Networking

Servilla [FRL09b] brings the mobile-agent concept to the next level.
It is a highly flexible service-provisioning framework for enabling ap-
plications to execute within heterogeneous WSN. It features a service-
oriented programming model and a modular Agilla-like middleware
layer. This combination enables to construct platform-independent
applications over a set of devices with diverse computational resources
and sensors (e.g., PDA, WSN nodes, laptops, etc.). The Servilla’s mid-
dleware architecture can be customized to devices with a wide range of
resources and the application’s functionality can be distributed accord-
ing to the available resources on each node. In fact, Servilla provides a
set of mobile agents spread over the network. On top of that Servilla
uses binding configuration scripts which enable it to build and deliver
a service to a specific position in the network. A distinctive feature
of Servilla is its support for dynamic discovery and binding to local
and remote services. All these allow building computationally- and
energy-efficient in-network processing applications.

The main shortcoming remains the same as with Agilla, code itself
is immorphable and the abstraction level is too high to be able to build
truly task-specific network configurations. Another disadvantage is
that both Agilla and Servilla use an underlying code propagation layer
with a huge message complexity.

Another examples of mobile agent systems for WSN include: Wave
[GVVL06], Impala [LM03], SensorWare [BHS04], SmartMessages [KBX+04],
etc.

3.1.3 Netware

None of the above solutions described in Section 3.1.2 are suitable for
our further research since the level of task description is too high and
certain design limitations exist (e.g., pre-defined code dissemination
layer, fixed execution flow, etc.). In our work we want to bring focus
on having what we call netware, the level helping to build task-specific
protocol stacks using OS-level network abstractions. It is supposed to
become a foundation on which network stacks can be designed in a
mobile code manner, deployed, executed and steered. Additionally, we
would like to pay an attention to autonomic “self-*” features (deploy-
ment, organization, maintenance) of network applications. Besides all
that applications must stay resource- and energy-aware.
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The principal difference between classic network protocols and
those based on mobile code is the following: traditional network pro-
tocols use data packets to exchange information about their current
state between nodes. Upon receiving a packet each node makes a local
decision on what it should do next. The mobile code approach assumes
that no external decision making is needed. Parts of the program con-
tinuously travel through the network and are executed on each node.
By doing so, they carry along all necessary information and further
algorithmic steps to be made. We propose the netware, the level ly-
ing between OS and user application or middleware and substituting
the current static network protocol stack. Although we develop the
system for use in WSN domain, netware can also serve as a mobile
code plane across heterogeneous networks and nodes (e.g., WSN nodes
using different hardware platforms, or WSN nodes and WiFi routers).
We illustrate this in Figure 3.3.
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Figure 3.3: Netware Level within Node’s Software Structure
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Netware isolates custom network protocols from OS platform-
specific complicated primitives (Active Messages (AM) in TinyOS or
sockets on Linux-based routers). Its sole task is to be used as a build-
ing plane for task-specific network protocols. Network protocols are
supposed to be created in a mobile code fashion. Netware allows them
to be platform-independent. For instance, the same code will be under-
stood by WSN and WiFi routers and executed using low-level platform
primitives. In this work, we present netware for a WSN domain, fur-
ther ports are pending. Netware is designed to live side-by-side with
existing network protocols and to use their functionality if required. At
the same time it provides tools for building custom protocols.

Lets consider an example of a simple network protocol (e.g., time
sync protocol presented in Section 6.4.6 and Listings A.1 and A.2). In
Figure 4.1a we show how this protocol was implemented using tradi-
tional principles (using static code and exchange of data packets) and
one of many possible implementations using mobile code (Figure 4.1b).
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Figure 3.4: A Network Protocol Implementation: Static Code and Packet
Exchange vs Mobile Code

Traditional implementation is set up as follows: local variables
(reside on a node), packet (state) variables (carried with a packet) and a
set of methods (“send” (when we need to send a packet), “receive” (is
called upon arrival of a packet), “calc” (makes calculations using local
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and state variables) and “service” (is called when additional actions are
to be done, e.g., initialization)) on each node. In case of our simple time
synchronization protocol from Listing A.1 those variables and methods
would be translated as follows:

– “state variables”: myNodeId, validSkewFlag, currentSkew,
– “local variables”: all others,
– “send”: at beacon send time,
– “receive”: at beacon reception time,
– “calc”: at end-of-wake time, and
– “service”: at wake-up time.

In the mobile code version the picture changes dramatically: we
have locally installed “service” functions and local variables, the rest of
the functionality is encapsulated in the migrating capsule in the middle
(see Figure 4.1b). Upon arrival to node A or B this capsule makes some
calculations, updates in-capsule and local variables correspondingly
and schedules its own departure. We do not need dedicated methods
for incoming and outgoing packet processing as it is the capsule itself.
Please note, that this is not the only configuration of mobile code
possible. For instance, “service” functions can also become mobile, or
local variables can be carried along as well.

The biggest challenge in designing network protocols in mobile
code fashion is to find an optimal configuration which allows to per-
form a task in the most efficient way. The biggest advantage of this
approach is an opportunity to have no code pre-installed in the system.
Code resides in the media rather than permanently on a node. A node
becomes just an execution engine. Code can be dynamically injected
into the system and removed from it. This is true for individual parts of
the original code set too. For instance, if we want to change the “calc”
method we just replace the corresponding code section.

Compared to existing middleware and other approaches for WSN
which provide the following features only partially or do not provide
them at all, netware incorporates them all using very simple principles:

In-network decision making: This is the most important feature. Net-
work protocols can be designed in a way that they become able
to make decisions according to the current conditions.
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For example, in the PermaSense project (see Section 1.4) we had a
problem with quartz oscillators drifting away at different speeds
on the nodes in the north and south clusters due to huge temper-
ature variations between two sides of the slope (see Figure 1.5a).
The temperature difference between the sunny and shady sides
could be as big as 20 ◦C and change as the day goes by. A quartz
oscillator is the source for time sub-system and time-related ser-
vices like time-synchronization on WSN nodes. Using previous
generation hardware platform and static protocols we had to in-
troduce a drift correction table on each node, otherwise nodes got
desynchronized and lost connection to each other. The drift cor-
rection was measured for certain temperature levels. Each node
then had to compensate its drift in the software. In our mobile
example above this task becomes much easier to carry as we can
just extend the “calc” method with a new “drift compensation”
code.
The most interesting part of in-network decision making is that
new code can be generated inside the network by mutating the
existing code set. Code injection from outside is needed only
when brand new functionality is requested.

Optimal representation: As described earlier in 3.1, we use the con-
cept of network profiles, optimal network stack configurations
to perform a specific task. The process of finding an optimal
representation runs constantly (see Chapter 5), adapting to the
current software configuration.

Distribution of computations: By doing task-clustering of a network
(moving computations to specific locations; see Section 1.5.1)
we can achieve much better figures on performance compared
to “each-node-does-everything” approach. We can call it task
delegation.

Remote deployment: No pre-installed code is required on a node, ex-
cept for netware execution environment (see Section 3.2.6), which
in turn can be implemented as OS module or part of OS image.

No overlay network: Since many existing middleware solutions create
an overlay network, we allow applications to use the existing
infrastructure (existing protocol stacks including dissemination
layer) as much as they can. Although in order to make this
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possible, some changes to the existing code are required (see
Section 3.2.12).

Since we do not intend to develop an underlying code propaga-
tion/migration layer, nor to preserve the state of the execution (in
contrast to mobile agents discussed in Section 3.1.2.2), we can imple-
ment the features which are missing in the existing systems. Namely
they are: 1) code manipulation, and 2) code optimization.

Obviously, a system like netware highly relies on network connec-
tivity: code can be lost or corrupted (which is more probable while
transmitting rather than while locally executing it – see Section 4.5).
Therefore, special protection methods can be used to keep the system
alive like code replication and code preservation. We use a simple MAC-
layer acknowledgment scheme for code exchange (see Section 3.2.6).
This simplifies design and keeps power consumption low.

In general, netware requires a total rethinking of how network pro-
tocols are designed today. Below we present two types of netware. The
first one, called ChameleonVM (see Section 3.2), is WSN-oriented. It
was created for use on sensor nodes, however, its design principles can
be easily adopted for other network devices, e.g., routers. The second
example is FragletVM (see Section 3.3), the netware execution environ-
ment for chemical protocols. Later, in Chapter 5, we use both systems
to analyze the code optimization methods we propose in Chapter 4.

3.2 ChameleonVM
ChameleonVM is a netware level for WSN. However, some design ideas
in ChameleonVM are similar to those found in the existing execution
environments for WSN like Maté (e.g., scheduler, memory organiza-
tion). The reasons for that are simple design and the need to meet
specific constraints of WSN-nodes. Nevertheless, some parts of the
design proposed here are debatable. For example, we use Round-Robin
scheduling which is proved not be the best for real-time applications;
preemptive, prioritized multi-tasking would be more preferable in
this case. We use simple solutions where it was acceptable in order
to achieve fast prototyping and directly go to the core of our design.
Moreover, we try to position our system for use in a wide variety of
network ES including and for example, Linux-based network routers –
in this case a more appropriate module configuration should be chosen.
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Although we sometimes borrow the existing principles there is a big
number of new architectural principles discussed below.

The main task of ChameleonVM is to allow building, execution and
providing support for network protocols. These can be protocols de-
signed using the tools provided by ChameleonVM or external protocols
(e.g., created using Rime [DOH07]) which can be made compatible with
ChameleonVM (e.g., external protocols can be tweaked to exchange infor-
mation with the running ChameleonVM programs; see Section 3.2.12).

Like Maté, ChameleonVM uses the concept of capsules (see Sec-
tion 3.2.2) for code propagation. Capsules are small self-sufficient
fragments of code which flood the network. Each capsule contains data
and code. In contrast to Maté, ChameleonVM does not have an under-
lying code propagation layer; ChameleonVM programs either rely on
existing layers or should use in-built features to propagate themselves
through the network. The way propagation is done will have effect on
how efficient and reliable the final protocol behaves. ChameleonVM is
build using the functional blocks shown in Figure 3.5:

In the incoming path there are: packet multiplexer (MUX), code
verification (CVM), dictionary (DICT) and updater (DICT UPDATER),
decompressor (DECOMP). Multiplexer redirects packets according to
their type. Data packets are forwarded to the local data storage (RAM,
Flash) or go directly out if they are meant to (e.g., forwarding packets
of the underlying layers). Dictionary updates are sent further down to
the dictionary where they are applied. The third type of packets are
capsules. First, capsules go through code verification module which
is responsible to make sure that corrupted or malicious code does not
go any further. Then capsules are moved through the decompressing
stage after which they are finally ready for execution; they are put in a
waiting queue from where they are picked according to the scheduling.

The outgoing path is much simpler and consists of compressor
(COMP) and demultiplexer (DEMUX) only. Compressor accepts cap-
sules scheduled for sending them out. Demultiplexer is used to move
three sources (packets from RAM or Flash, capsules and dictionary
events (rules)) into the network.

The central execution module (CEM) fetches capsules from the
queue according to the scheduling and executes them. After the capsule
has been executed once there are three possible destinations for it:
it can be put back into the queue (as a whole), gets combined with

50



3.2 ChameleonVM

!"#$%&%"'()*+,)-.'%(/)%0-,)-.'1*2
3!45#678%&%#.0/%30/&5,.9:*/((.*
#;7%&%#.0/%</*-!,1)-.'%9.0+=/
#47%&%#.0/%/>/,+)-.'%9.0+=/
3!457?@%&%81,A/)(%30/59+=)-:=/>/*

!"#$

!%#&'(

#&'(

!"#$)
*(!+$%,

#-'

%,,&,)
.+/!0%,

1

2

3

/

444

#B8C?D4
C$6EBF4
G?4?4

#%'

'
*
5

!
%
'
*
5

H8?$H

HF4$H

01)1
:1,A/)(

-',.9-'I
:1,A/)(

.+)I.-'I
:1,A/)(

,1:(+=/(

,1:(+=/(

0-,)-.'1*2
+:01)/(

=.,1=%().*1I/%3EB7J%K=1(L5
.*%0-*/,)=2%).%!47?@

=.,1=%().*1I/%3EB7J%K=1(L5
.*%0-*/,)=2%M*.9%7?@

01)1
:1,A/)(

HC4N!H

HC8D"$%O%74EF4%O
E4&4@4#?$4H

*+=/(

*+=/(

,.0/%1'1=2(-(

*+=/(

"!O</*(-.'%,.')*.=

Figure 3.5: ChameleonVM: System Architecture

other capsules or split and put back into the queue, or leaves the node
through the compressor and demultiplexer.

Capsules can take up various functions: management (initialization,
reset), communication (send, receive), computation. Capsules can be
mobile (can navigate themselves through the network) or static (can
be sent out by others but do not encapsulate this functionality in their
own code).

According to block structure in Figure 3.5 we can highlight three
main functional layers the VM consists of: Code Control Plane (CCP),
Code Execution Plane (CEP) and Code Optimization Plane (COP) as
shown on the right side of Figure 3.6. CCP (see Section 3.2.6) is used
to deploy and control code propagation. As there is no specialized
propagation layer the way a capsule would like to move through the
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network must be pre-programmed (e.g., “go to all neighbors” or “go
one level up in the spanning tree”). Therefore, there is no particular
module responsible for disseminating code over the network.1 CCP is
also responsible for installing and versioning code updates. CEP allows
first to verify code and then to execute it on a node. CVM and CEM
modules (see Sections 3.2.3 and 3.2.5) are the main functional blocks
in this plane. COP brings an optimal representation to the code by
constantly observing the code structure and re-encoding instructions
to achieve the smallest code size. DICT, COMP and DECOMP modules
are responsible for that (see Sections 3.2.9, 3.2.10 and 3.2.11).
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Figure 3.6: ChameleonVM: Functional Planes and Data Flows

In Figure 3.6 we also show the relationship between code and data
in a system which uses ChameleonVM. As integration at the code level
between ChameleonVM and existing protocols may be a real challenge
(different coding and execution styles) we decided to provide inter-
action between them via data. The existing protocols can be easily
instrumented to enable regularly reading/writing of individual fields
or whole structures into memory. Rather than creating a whole new
complicated interface between them we allow existing protocols to ac-
cess the data memory space of ChameleonVM through a number of very

1ChameleonVM does not support update of its own code. This must be done through
the underlying OS if it is possible.
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simple methods (see Section 3.2.12). When data is there, ChameleonVM
can start using it to provide on-top functionality. This mechanism
also allows for external protocols to read information provided by
ChameleonVM. Such approach is very universal as we do not know
which protocol might want to integrate with our VM: it might be time
sync, routing or something else. Additionally, we allow the existing
(platform-specific) software to access our dictionary engine – instruc-
tion can be added/changed/removed. In particular, this allows to
assign platform-oriented methods a unique code in our instruction set
and after that can be used as an alias whenever we need to call upon it
(see Section 3.2.12).

Before we discuss the more complex aspects of the system archi-
tecture let us have a look at the very simple code example which will
explain some basic principles of ChameleonVM. The program in List-
ing 3.1 is a trivial alarm sensor. It is continuously, with a 1 second
interval, taking temperature measurements on a node and if the tem-
perature drops below 30 ◦C then the red LED goes off otherwise it is lit
on.

1 # Example: switch red led ON if temp raise beyond 30 C, switch
2 # OFF otherwise
3
4 .sys # SYSTEM segment
5 Autoupdate On # capsule ’s parameters
6 Lifetime 10s
7 Id 0x10
8
9 .code.timer0 # CODE segment "timer"

10 sense TEMP # sense temperature
11 jmple 30,L1 # > or < 30 C?
12 led RED ,ON # switch the red led on
13 jmp L2
14 L1: led RED ,OFF # switch the red led off
15 L2: delay 1000 # sleep for 1s and do it again

Listing 3.1: Simple Alarm Sensor in ChameleonVM

ChameleonVM uses an assembler-like language for programming.
The assembler code is then pre-compiled by the user into byte-code
form which can be interpreted by on-node instances of ChameleonVM.
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Sometimes in this work we use reduced programming notations in the
listings. These notations can be easily expanded into real code stream.

3.2.1 System Architecture
ChameleonVM uses stack-based architecture. All operations use stack to
grab arguments from, and put results back, on the stack. This allows for
extreme simplification of the VM kernel as it does not require complex
address resolution and long data transfers (e.g., “fetching data from
the main memory at the address specified by a register given by other
register”). Another thing the stack provides is easy control over its state
and easy protection of program execution. Also, the stack normally
allows to use less program space to perform certain operations as they
use the stack as explicit operand.

We allow the stack to have variable resolutions. It can operate
as 8-, 16-, 32-bit word storage depending on which operation is be-
ing executed. Non-traditional word-widths are also possible, although
nothing will be gained on the memory side from using them on existing
hardware platforms: 5-bit value will still be stored a 8- or 16-bit word
on most platforms. This starts to make sense when we switch from local
operations to communications. Although word-wrapping is also used
at the link-layer saving can be made from truncating operations and
operands before we transmit them. For instance, if we use 5-bit words,
then over transmitting 8 such words we can save 3 bytes (8 words ∗
8 bits − 8 words ∗ 5 bits = 24 bits). To this end, a resolution of each op-
eration (a resolution of each argument) can be changed individually by
specifying this in the on-board dictionary (see Section 3.2.9). By send-
ing dictionary updates to other nodes this change can be committed for
the entire network. Additionally, ChameleonVM can natively learn from
the execution context. For example, if we sense some value and it never
goes beyond 255 ChameleonVM can reduce this field to 8 bits instead
of default 16. We refer to this as resolution-variable instructions. In
theory, any operation can have variable resolution if it operates with
primitive (numerical) arguments.

ChameleonVM is a single stack-based machinery, the result of each
operation is put back on the same stack which arguments are taken
from. This dramatically simplifies the design. Therefore, function calls
(subroutines) are not supported. Each capsule can be considered as
an individual function which can be locally and remotely addressed
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by its ID. Stack’s maximum capacity can be adjusted at compile-time,
dynamic change of stack’s size is not supported.

There are several types of memory regions in ChameleonVM: heap
(dedicated memory pool for each capsule), shared memory (shared be-
tween capsules) and capsule store. The last is used for storing capsules
and cannot be directly accessed from an application, it is managed by
VM.

Heap: Each capsule has its own random access memory pool called
a heap. This memory can be used for aggregating intermediate
results, status info, etc. Two subtypes are available: on-node
(uses on-node memory resources; the information stored in here
stays on the node and does not migrate along with the capsule
when it moves; denoted as BUFS) and in-capsule (a part of the
capsule’s memory space which resides in the data segment of each
capsule; information stored there travels along with the capsule;
denoted as BUFC). The first subtype can be used to accommodate
intermediate results or program states which can be preserved on
the node between capsule’s trips; can be implicitly released when
capsule leaves a node using the die command. In contrast to
Maté our VM does not provide automatic garbage collection. The
second subtype is an integral part of a capsule, it is released when
capsule “dies”. Both heaps offer similar operations to access and
process the data (read, write, append). By default the heaps in
ChameleonVM behave like a circular buffer. The append operation
will add a new item to a heap in a circular fashion. Extra service
functions over the heaps (min/max/average calculations, sort,
etc.) can be implemented using aliases (see Section 3.2.4).

Shared memory: Shared memory in ChameleonVM represents a class
of random access memory which can be used by any capsule
installed in the system. It is a responsibility of each capsule to
maintain the integrity of the shared memory. Supported opera-
tions are similar to heaps: read, write, append, etc.

Capsule store: Capsule Store contains all the capsules installed in the
system (node). Although there is no direct access to this memory
from an application, some operations over capsules (e.g., split
or merge) can have an effect on the memory usage.
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The memory organization of ChameleonVM is shown in Figure 3.7.
Common capsule structure is shown on the right; it is discussed in
detail in Section 3.2.2. On the node’s side each capsule is represented
by context as shown in Figure 3.7 on the left. Instruction pointer keeps
track of the current instruction being executed. Error register accu-
mulates various flags related to the execution: stack overflow, invalid
instruction, etc. Error flags are further discussed in Section 3.2.5. Dic-
tionary selector indicates the dictionary currently in use.
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Figure 3.7: ChameleonVM: Memory Structure

ChameleonVM provides a safe execution environment which en-
sures that programs will not damage anything and will be executed in
the best error-free manner. Each capsule is executed in its own name
and memory spaces, they do not have access to the name space of each
other. However, capsules can perform management actions on other
capsules. For example, a capsule can request a merger with another
capsule. Deletion is not possible though. We discuss merge, split and
other capsule-related operations in Section 3.2.2.

ChameleonVM prevents occurrence of race conditions by applying
resource arbitration to all operations. Resource management implic-
itly locks all shared components (send/receive buffers, sensor read-
ings, Flash memory, etc.) and releases them when they are not in use
anymore. Resource locks cannot be manipulated explicitly. The only
exception is that the data in the shared memory (SHMEM) is not locked.
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In order to plan tasks ChameleonVM implements a simple Round-
Robin scheduling scheme. There are no priorities. Task (context)
switching is done every 1 ms and is not affected by long operations. All
operations in ChameleonVM are blocking which means that regardless
how complex an operation is (either it is a simple pop (take something
from the stack) or a send N (send a packet to node N), the execution
will not continue until the operation is fully completed (all buffers are
empty, all status information and return codes have been received, etc.).
This does not affect context switching and scheduling.

Nevertheless, ChameleonVM is a concurrent engine which allows
several capsules be executed simultaneously. This means if execution
of the current capsule is postponed due to another event (e.g., waiting
to finish transmitting a packet or sensing some value) then another
capsule can be given a chance to execute at least a part of its code.
Installed capsules are in charge of any possible execution dead-locks.

3.2.2 Programming Model
Code processed by ChameleonVM is broken in so-called capsules. The
max size of a capsule is limited by the execution environment and,
therefore, is adjustable (e.g., for WSN the upper payload limit is ap-
proximately 30 bytes). Each capsule contains data and program seg-
ments as shown in Figure 3.8. Flags include, for instance, AUTOUPDATE
(enable/disable autoupdate of capsules), TIMEUNIT (switching between
s and ms units for the LIFETIME field), dictionary selector (2 bits), REASM
(used to re-assemble capsules for long programs, this is different to
capsule merger discussed below; see Section 7.3), dictionary to use and
others. Flags, ID/version and lifetime fields are further discussed in
Section 4.4. Data segment size defines the size of the in-capsule data
buffer (BUFC). All the above is a part of the system segment. The system
segment is followed by a data segment. The last also contains imme-
diate volatile (non-fixed) stack operands (not addresses or references
to system constants like ALL, NOW, ME, etc.). The rest of the capsule’s
memory space is occupied by the code segment which extends to the
end of the capsule.

ChameleonVM partially separates data and code. Volatile (immedi-
ate) operands are removed from the original program stream and are
stored separately within data segment. Static variables stay with the
code. This allows to reduce code entropy and improve compression.
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Figure 3.8: ChameleonVM: Capsule Structure

Similar to Maté, ChameleonVM programs can be composed (de-
ployed) of multiple capsules. Although only initial multi-capsule prop-
agation is allowed. After re-assembling is done no partitioning of code
is possible anymore. The reason for choosing such architecture is to
make capsules autonomic units without any linking and dependency
resolution needed. This simplifies design, makes it more robust and
on the other hand it requires non-traditional thinking of how network
protocols are built. This is achieved by advanced communication ca-
pabilities possible between capsules. Capsules can merge and split
forming various contexts depending on the situation. As we show
later in Chapter 6 some protocols will have to wait for the compression
scheme to reduce them down to the point where they are able to fit
their mobile parts in a packet and transmit it.

Merge: Capsules merger allows two or more capsules to combine
their computation abilities in order to provide more efficiency to
the programs they are used in. The main constraint is that the
resulting capsule’s size should not exceed the platform-specific
limit (in case of WSN it is about 30 bytes). If the resulting capsule
exceeds the limit the operation is canceled and capsules stay
untouched. Merger is done using merge instruction which takes
the following arguments: capsule’s ID (ID of the capsule the
merger should be carried out with), reactant (the part in the
original capsule which should be used during merger; the value
can be: ABOVE (code above the current position), BELOW (code
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below the current position), ALL (entire handler)), reaction type
(reactions can be prefix-like or appendix-like; the value can be:
BEFORE (prefix the code before the corresponding handler in the
second capsule), AFTER (appendix code after the corresponding
handler in the second handler)).1 The way merge operation works
is shown in Figure 3.9.
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Figure 3.9: ChameleonVM: Merge Operation

There are several constraints with merge operation:

– Merger can attach code only to the beginning or to the end
of another code piece. Insert is not possible.

– Merger fails if the resulting capsule’s size exceeds the cap-
sule’s size limit.

– Only handlers of the same type can be merged.
– Flags and other parameters within system segment are in-

herited from the second capsule (in Figure 3.9 it is B). The
same for data segment. This brings some limitations on
using in-capsule variables.

– Currently there is no “merger marker”. It might be intro-
duced in the future. In this case, the merger range will be

1Handlers are explained in Section 3.2.3.
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limited by those markers rather than segment borders (see
split operation below).

Clone: Clone is a specific case of merger which preserves the original
capsule. Basically, clone operation causes copying some code and
removing only the clone operator itself from the original capsule.
This is shown in Figure 3.10.
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Figure 3.10: ChameleonVM: Clone Operation

All limitation of the merge instruction remain true for the clone
too.
Although there is no obvious need for that but a capsule’s copy
can be created by sending the capsule to the current node, receiv-
ing and installing it.1 This can be done from the same capsule or
from an other capsule.

Split: Split operation allows capsules to break down into smaller
pieces. Later, capsules can be reassembled using merger opera-
tion. Split breaks capsule into two parts at the position where it
appears. If the original capsule has more than one handler it pre-
serves them, the splitting segment is removed, otherwise capsule

1ChameleonVM will not use radio channel in this case.
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is erased as it becomes empty. As a result, two new capsules are
created with the following features (also see Figure 3.11):

– System segment is copied from the original capsule.
– Data segment is copied from the original capsule.

!"#$%&'()*(+++(,"-./&0!)012
((((((((((((((((((34%56
((((((((((((((((((+++(,-&%.70!)012

!"#$%&'(8*(+++

!"#$%&'()

!"#$%&'()*(+++(,"-./&0!)012!"#$%&'(8*(+++

!"#$%&'()*

!"#$%&'()*(+++(,-&%.70!)012

!"#$%&'()+ !"#$%&'(),

Figure 3.11: ChameleonVM: Split Operation

By using merge and split the optimal software configuration can be
found. We designed merge and split operations to make re-configuration
process efficient. Hence, merger is supposed to enhance functionality
by bringing and embedding new computational blocks into the existing
framework. Split allows to easily extract unwanted parts.

Capsules cannot remove other capsules from the system. Instead,
ChameleonVM uses the mechanism of self-decaying code. This is
achieved by using a lifetime field for each capsule (see Section 4.4).

ChameleonVM is a type-free machinery. Data type (resolution) is
defined for each instruction. Type checks are not performed; no type
casting is available. Memory is not typed either; each memory region
can hold various data types at the same time. Argument type is defined
by the instruction accessing it. Stack architecture eliminates the need
for variables. This provides better code integration and distribution
facilities as no dependency resolution is needed.

Operation polymorphism is natively supported by ChameleonVM.
This means that operation execution flow depends on the dictionary
currently being used (e.g., add can mean “add two 8-bit values from
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the top of the stack and push the result back” or “add three 16-bit
immediate operands and push the result onto the stack”). Instruction
polymorphism is further explained in Section 4.3.

3.2.3 Execution Model
Capsules in ChameleonVM cannot trigger each others execution. Also,
there are no sub-routine (function) calls within a capsule. This limita-
tion is overcome by using on-board dictionary and instruction assign-
ments (see Section 3.2.9) which allows to introduce aliases.

ChameleonVM does not require to reboot each time it receives a new
code. Capsules are scheduled for execution as soon as they have been
installed onto a node, all needed resources have been allocated and
verification has been accomplished successfully. At its time, control
jumps to the first instruction of the capsule and executes until it reaches
the end of the capsule (if there are multiple capsules, execution may
be interrupted by context switching). Merger/split operations stop
execution of the existing capsule, newly created capsules are scheduled
for execution again. In case if the capsule would like to be executed
again this functionality must be programmed in the capsule. execute
method puts the capsule back into the waiting queue at the point of
call. This is needed only for the code within handlers of common type
only; packet handlers and timers are executed on-event and do not
need to be rescheduled each time.

As it was mentioned above, capsules address- and name-spaces are
fully isolated from other capsules in the system. Within each capsule’s
code segment one or more handlers can be placed. Handlers are event-
driven code sections which are called in response to some event in the
system. The type of handlers a capsule has defines to which events it
can react.

The following handlers are currently supported:

– Initialization (denoted by .code.init): Is executed only once for
newly installed capsules. Can be used to initialize some values
or setup timers.

– Receive message (denoted by .code.pack): Is executed each time
a message (everything which is not a capsule or dictionary up-
date) arrives.
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– Receive capsule (denoted by .code.cap): Is executed each time a
capsule arrives to a node.

– Timer (denoted by .code.timerN): Currently there are only two
timers available (denoted as timer0 and timer1) which should be
sufficient for most tasks.

– Common (denoted by .code.common): Can be used to perform
some auxiliary actions. Re-execution of this handler should be
explicitly requested using execute instruction from inside itself
or any other handler.

Under the hood everything in ChameleonVM is done in response to
reception of a packet/capsule. This means that execute instruction or
timer expiry event are signaled by actually sending a capsule of special
type to itself. The only difference from a real capsule reception is that
ChameleonVM does not use radio channel in this case to save energy.

Handlers allow isolation of specific information processing. More-
over, handlers can be borrowed from other capsules using merge or
clone operations. If some handlers are not needed anymore they can
be removed using split method.

3.2.4 Instruction Set
ChameleonVM instruction set is dictionary based which means that
the definition of each instruction is given through one or more on-
board dictionaries. It is extensible and changeable. Some primitive
instructions (e.g., push, pop) are mandatory and cannot be removed, but
can be modified. Others are compound instructions. For example, push
A B (pushing 2 values on the stack; it is compound) can be specified via
primitive push instruction:

push A B = push A+ push B

Instruction polymorphism is naturally supported through overload-
ing. New instructions can be defined. Two categories of newly defined
instructions exist: 1) defined via existing instructions, and 2) aliases
(calling these instructions causes execution of native pre-compiled func-
tions). As it was briefly discussed in Section 3.2.1 instructions with
variable resolution are supported via re-defining them in the dictionary.
Note that, for example, for having simultaneously push 8-bit and 16-bit
versions the system must define two separate instructions.
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All instructions are stack-based. However, immediate arguments
can be used by instructions as well. Moreover, both types can be mixed
within one instruction.1 The result is always pushed back on the stack.
The configuration of arguments is done through the dictionary. Using
only stack operand is preferable as it makes program design more
straightforward and robust. Figure 3.12 shows all incoming data and
code sources for an instruction. This also demonstrates various types
of addressing used by ChameleonVM.
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Figure 3.12: ChameleonVM: Instruction Data and Code Sources

The following instruction classes are currently defined:

– Stack: Stack operations manipulate with data stack. These in-
clude: push, pop, swap, dup, etc.

– Arithmetic: Perform arithmetic computations on the values on
the stack. The result appears on top of the stack. These include:
add, sub, mult, div, etc.

– Binary/Logic: Perform binary/logic operations on the values on
the stack. The result appears on top of the stack. These include:
and, or, not, xor, etc.

1In this document we usually use notation instr A B C to show how many argu-
ments the instruction takes up. They can be fetched either from the stack or given as
immediate parameters.
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– Control: Execution flow can be managed using jmpeq, jmplt, jmp,
etc.

– Capsule manipulation: Operates with capsules and handlers
inside them. These include: merge, split, clone discussed above
in Section 3.2.2.

– Communication: Are used to provide communication facilities
with other nodes. These include: send and sendd, get (child,
parent, nodeid).

– Memory access (heap and shared memory): read, write, etc.
– Miscellaneous: set (nodeid), led, etc.
– Aliases: In fact, these instructions are just references to the pre-

compiled native functions provided by other layers or other
ChameleonVM instructions. For example, sort implements sort of
an array which resides in the shared memory, or rand which gen-
erates a random number. The first makes a call to the user-defined
function, the second is a callback to the OS library function.

Most of the instructions shown above are primitive – they cannot
be specified using other instructions. The full ChameleonVM instruction
set is presented in Appendix C.

Many support instructions like set and get are specific to WSN im-
plementation. For example, on other platforms get’s functionality can
be achieved using in-memory inter-protocol interaction as described in
Section 3.2.12.

3.2.5 Code Verification
Code verification is an essential part of a system based on mobile
code. The fact that code comes from various sources which are not
always identifiable, requires treating it with a precaution. ChameleonVM
verifies incoming code twice: upon arrival and at run-time.

Code verification module (CVM) in Figure 3.5 from Section 3.2 is
responsible for the first type of check – upon arrival. The following
characteristics of an incoming capsule are checked: 1) integrity (cap-
sule’s structure, segment borders), and 2) ID/version pair. Capsules
having corrupted internal structure are not passed through, they are
simply dumped. In order to check if ID/version numbers are correct,
CVM sends a request to the capsule storage. ChameleonVM defines a
range of allowed capsule IDs. If the received value falls out of this
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range, the capsule is rejected. If there is already a capsule with a newer
version number in the system, the capsule is rejected too.

Run-time code verification ensures that the system stays operating
at all time. ChameleonVM keeps track of the following possible collisions
which can happen while executing capsules:

– Stack under-/overflow: An attempt to read from the empty stack
or write more values than its maximum size.

– Hang-up: Each instruction is served by a watch-dog timer. Time-
out is triggered.

– Invalid instruction: If invalid instruction code is met.
– Invalid instructions pattern: If instruction does not fit any pat-

tern in the dictionary map (e.g., wrong number of argument,
arguments of wrong type, etc.).

– Address out of range (heap or shared memory): If while accessing
memory the address falls out of range.

– Lack of memory: Memory resources are fully occupied.

When one of the situations above occurs the capsule execution is
interrupted and the corresponding flag is flipped in the Error Reg-
ister (see Figure 3.7). This register can be read onto the stack using
push ERREG call. In the current implementation the infected capsule is
just removed from the system. This is not the best possible handling.
Alternatively, a “damaged capsule” notification could be sent to the
neighboring nodes in response to which those nodes who have a copy
of this capsule would send back a healthy replica.

ChameleonVM cannot not detect dead-locks between capsules. There-
fore, it is a responsibility of capsules to be sure they do not get blocked
on each other. Concurrent access to resources by blocking a particular
resource while it is in use by some capsule. It is released when the
capsule does not need it anymore.

Re-definition of instructions in the presence of running code may
cause errors in code integrity and generate mismatching code versions.
It must be done with high precaution.

3.2.6 Code Propagation and Deployment
ChameleonVM does NOT provide a self-propagation feature like for
instance Trickle in Maté. There are two ways to propagate code using
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ChameleonVM: 1) a capsule should navigate itself from source to des-
tination (this functionality must be placed inside the capsule), or 2) a
capsule can rely on the underlying protocols (MAC, routing) and the
status information provided by them.

The following instructions can be useful for building an ad-hoc
self-routing in ChameleonVM:

– send W,N: It is the main instruction to support communication
between nodes. It has two arguments: what to send (W) and
where to (N). The following values can be used as W parameter
(what to send): ME (this capsule), PACK (the packet being processed
if called from .code.pack handler – see Section 3.2.3), another
capsule’s ID given as a numerical value. Parameter N (destination)
can be: another node’s ID, ALL (broadcast), UP (one hop up the
spanning tree; works if only the spanning tree exists), DOWN (one
hop down the spanning tree; works if only the spanning tree
exists), ANY (random neighbor, or any random address), GROUP
(group members).1

– sendd W,N,DN: In contrast to send which uses an absolute, next-
hop address (PACK.TO) sendd also allows to specify an address of
the final destination as a third parameter (e.g., top of a spanning
tree; PACK.DST). Otherwise, two instructions are identical.

– get W:2 Is used to get the communication data from other layers.
The only parameter W denotes what exactly we need. It can be:
NUMN (number of neighbors), CHILS (node IDs of all children), CHIL
(node ID of a random child), PAR (node ID of the parent), NID (host
node ID), ME.ID (this capsule’s ID), GROUP (group’s ID this capsule
belongs to).

As can be seen communication primitives can use many parameters
provided by the underlying layers. The presented set is specific for
WSN but can be defined for other platforms as well. Additionally, this
requires a very close integration between capsules and the existing
protocols (see Section 3.2.12).

Every capsule in ChameleonVM has two flags: AUTOUPDATE and
AUTOEXEC. AUTOUPDATE (default is on) allows to control capsule prop-

1This is specific to TinyOS.
2get W is equivalent to push W.

67



3. Configurable VMs for Embedded Networking

agation and installation. If on then new capsules are installed auto-
matically. AUTOEXEC (default is on) specifies if the capsule should also
be executed automatically upon installation. Execution of postponed
capsules can be triggered by other capsules. This feature is useful for
propagation of the initial code set, especially in case of long programs
which are propagated using multiple capsules.

In cooperation with code versioning (see Section 4.4) the presented
communication primitives are sufficient to embed a self-propagation
feature into a capsule.

In contrast to Trickle used in Maté which propagates, installs and
executes the same code on each node in the network ChameleonVM
follows different ideology. Capsules can decide themselves where in
the network to go to execute their code. No dissemination support
is provided. A simple acknowledgment scheme is used for code ex-
change to provide some degree of communication reliability. Further
enhancements can be done at the application level.

3.2.7 Packet Processing
One of the main ChameleonVM’s functions is packet processing. In
mind we have the scenario when a set of capsules reside on each node
and by switching between them a various types of packet processing
could be accomplished. Therefore, for example, there is no need to have
pre-defined routing rules and tables, or even a specialized scripting
engine [Gra10].

If a capsule wants to be capable of doing packet processing, it
should implement .code.pack handler. After that the capsule will be
notified about all incoming packets (which are not capsules or dic-
tionary updates). If multiple capsules provide .code.pack handler a
packet is processed by all capsules sequentially. For example, if cap-
sules A and B want to process packet P, then first P is processed by
A (or B), then it is passed to B (or A). The order of processing (A,B or
B,A) is not pre-determined and cannot be fixed. While the packet is
being processed, an access to it for other capsules is blocked to avoid
race conditions. If the packet is erased or sent out before some capsule
gets access to it the notification request is annulled. This avoid packet
duplication which may occur. Locally generated packets can be first
processed by the locally installed code. For this we would need to send
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packets first to ourselves. To do it from outside, this trick requires to
use a separate system call provided by ChameleonVM.

In a similar manner .code.cap can be used to process incoming
capsules.

3.2.8 Node-To-Node Communication
We can distinguish several communication “threads” between nodes
using netware and equipped with ChameleonVM. Those “threads” in-
clude:

– Exchange of capsules.
– Exchange of data packets: Any type of packet which is not a

capsule or a dictionary update. This includes, for example, MAC-
layer and routing packets.

– Announcement of dictionary updates: Dictionary updates are
sent in order to keep nodes’ dictionaries synchronized. More on
dictionary synchronization see Section 3.2.10.

These threads run in parallel. The collisions are managed using
either a pre-deployed MAC-layer or at the application level. Two nodes
communication model can be seen as shown in Figure 3.13.
Multi-node communication model is just a scaled version of the picture
above.

3.2.9 On-Board Dictionary
An on-board dictionary is the central part of our design. It serves as
a semantics holder for Instruction Set Architecture (ISA). At the same
time, it is a data bank on which constant instruction re-encoding is
performed. Dictionary records can be updated through so-called dictio-
nary updates sent by other nodes. Alternatively, they can be changed
from outside, by external applications using ChameleonVM system calls
(see Section 3.2.12). In the current architecture ChameleonVM requires a
single session leader. This session leader carries out compression and
sends out updates to the rest of the network. This is different from Fra-
gletVM discussed in Section 3.3 where updates can be initiated by any
node (see Sections 3.3.8 – 3.3.10); in other words FragletVM employs
a fully distributed architecture. The session leader is must be elected
(pre-configured) before the compression process starts. Currently, this
is done manually.
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Figure 3.13: ChameleonVM: Communication Model Between Nodes

Each node can have more than one dictionary. Switching between
dictionaries is done via command sent by the leader. Each capsule has
a dictionary pointer which reflects this command (see Section 3.2.1).

Each record in the dictionary has the structure shown in Figure 3.14.
In fact, ChameleonVM dictionary is a mapping allowing to form new
instructions out of those which are already in the dictionary. Dictionary
start growing from a set of primitive instructions (see Section 3.2.4),
like stack, arithmetic, etc.

Each opcode in the dictionary is a linked list of one or more instruc-
tions, a pool of operands and an opcode specification. The list ends
with an end marker. In turn, each member of the list can be an entry on
itself (with the same structure): in Figure 3.14 opcodei−1 is a sub-entry
of opcodei entry. The dictionary ensures to not have mutually nested
entries.

The operands pool is a set of parameters passed while call opcodei is
made. When opcodei is called, the execution is passed to opcodei1. The
operands for opcodei1, which is essentially opcodei−1, are picked from
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Figure 3.14: ChameleonVM: Dictionary Structure

the operands pool according to the specification of opcodei−1. Then
opcodei2 is called and the next set of operands are picked. The process
continues until the end marker is reached. The number of operands in
the operand pool of opcodei must be equal to the sum of operands of
all opcodes in the list:

k

∑
j=0

operandi j =
p

∑
l=0

opcodeil

s

∑
t=0

operandil t

If the condition above fails the run-time execution error is indicated.
The error is triggered too if the argument type is incorrect (see Sec-
tion 3.2.5). The type for each argument is given by opcode specification
table. It includes the number of operands, and a type for each operand.
The last can be a numerical value (in this case its resolution is specified),
as address in one of the memory regions (BUFC, BUFS or SHMEM), code
offset (for flow control instructions like jmp) or a reserved name which
is translated by ChameleonVM in the actual object at run-time (for ex-
ample, ME.ID is converted into numerical value representing capsule’s
ID).
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Lets consider a simple example in order to show how dictionary
mapping and operand resolution work. We would like to introduce the
following compound instruction: jmpeq L1 5. This operator is a com-
position of the following primitive instruction which are supposed to
be executed in a sequence: jmpeq −→ push 5 −→ swap. The dictionary
entry for this instruction would look like as it is shown in Figure 3.15.
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Figure 3.15: ChameleonVM: Example of Compound Dictionary Entry

Note that even simple instructions (push, swap, etc.) are also the
records but most of them are protected from changes. The protection
can be removed as described in Section 3.2.10.

The dictionary in ChameleonVM can be filled dynamically at run-
time. This is quite different from the approach used in ASVM [LGC04]
[LGC05] where customized triggering events and computational primi-
tives, ISA records are generated from XML specification files at compile-
time. On the other hand, customized triggering events, handlers (see
Section 3.2.3) are not supported in ChameleonVM.

3.2.10 Dictionary Updates and Synchronization
In order to keep nodes understand each other, their local dictionaries
must be synchronized. To this end, ChameleonVM incorporates the
concept of dictionary updates which are sent out by the leader as soon
as the change has been made. The changes take effect as soon as they
have been acknowledged by all the nodes. Since nodes are expected
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to have up-to-date copies the update process relies on distributing
changes only, the delta from the current copy. The following changes
can be made to a local copy of the dictionary:

– Add a new instruction: A new instruction (with a new opcode) is
added to the dictionary. In the example for jmpeq L1 5 instruc-
tion from Section 3.2.9 the update command might look as shown
in Figure 3.16.
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Figure 3.16: ChameleonVM: “add new instruction” command

In this example, we have 5-bit encoding scheme (each instruction
is encoded using 5 bits). Therefore, the total size of the message
is 40 bits.

– Remove an instruction: An existing instruction is erased from
the dictionary. For jmpeq L1 5 instruction the update command
would look as shown in Figure 3.17.
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Figure 3.17: ChameleonVM: “delete existing instruction” command

The total size of the update message is 9 bits.
– Update an existing instruction: An existing instruction is changed.

For jmpeq L1 5 instruction the update command would look as
shown in Figure 3.18.
“Update” instruction is similar to “add”, the new semantic rule
has to be forwarded.

– Protection enable/disable: This allows to set/remove the flag
which protects each instruction from changes. For primitive
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Figure 3.18: ChameleonVM: “update existing instruction” command

instructions (stack, arithmetic, etc.) this flag is enabled by default.
If some instructions are not needed they can be removed. The
functionality for primitive instructions cannot be removed from
a node, though, as it is a part of the ChameleonVM core. The
command format is shown in Figure 3.19. Command encoding
takes 10 bits.
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Figure 3.19: ChameleonVM: “enable/disable protection from changes”
command

As has been said before, ChameleonVM employs the centric-oriented
dictionary update/synchronization scheme. This is the simplest pos-
sible configuration which allows us to explore the main properties of
the synchronization process. The network has a leader as shown in Fig-
ure 3.20. It should not necessarily be an access (sink) node. The leader
constantly performs code analysis and assignment of new instruction
codes. Afterwards it sends out an “add new instruction” message
to neighboring nodes which propagate it further. Each node has to
acknowledge that it has received an update and agreed on it. Only
after acknowledgments from the entire network has been received, the
change is applied. Local dictionary copies of non-leading nodes are not
synchronized between each other but with the leader’s copy only. This
architecture can be extended to multiple scattered profiles as discussed
in Section 1.5.1 and shown in Figure 1.6a.

74



3.2 ChameleonVM

!"#$%&

!"#$%'

!"#$%(
!"#$%)

'*+,%-%
.+#/01

'*+,%-

'*+,%-%
.+#/01

!"#$%&'(&)$"

'*+,%2%
.+#/01 '*+,%2%

.+#/01

'*+,%2%
.+#/01 '*+,%2%

.+#/01

'*+,%2

3 3
!"#$%4

'*+,%-%
.+#/01 '*+,%-%

.+#/01

*+

*,

#+

#,

"+

",

-+

-,

$+

$,

$%
*.
%)
&#
/0
(1
2$
#.
"3

4#*5&)6
!"$'7

"&.3

Figure 3.20: ChameleonVM: Propagation of Dictionary Updates

Also, as shown in Figure 3.20 a node can hold more than one dictio-
nary at a time. Each capsule in the system segment has 2-bit dictionary
selector (see Figure 3.8) which is copied to the dictionary selector reg-
ister when capsule is installed on a node (see Figure 3.7). Switching
between dictionaries can be initiated from code using dict N instruc-
tion which takes dictionary number to switch to as a parameter. If the
node does not possess a certain dictionary it ignores the corresponding
updates and commands.

In order to improve dictionary synchronization robustness, a sort of
periodical consistency check can be used as well. The acknowledgment
for updates sent back by nodes is calculated as an integrity function ϕ
over the current dictionary copy. We propose to use a hash-function like
CRC over the set of opcodes. The reason for that is that CRC is simple
and fast to compute and validate, and it is easily adaptable to data
resolution via changing its polynomial length. On top of per-update
acknowledgments a periodical integrity check cycle could take place:
nodes periodically sent out its integrity function, other nodes check
and confirm. In the example in Figure 3.20 all ϕi1 must be identical.
The same for all ϕi2. If integrity check fails, the node could claim a new
copy of the dictionary from the leader. Moreover, integrity check could
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be organized in a distributed fashion, neighbors watching might be
sufficient and no centric approach is needed.

3.2.11 Compression and Decompression
Compression is performed on outgoing capsules only. They are marked
upon arrival, later only those capsules participate in the compression
process. Decompression is done when the capsule arrives to a node.
In the capsule storage (see Figure 3.5) all capsules have uncompressed
representation in order to speed up their execution. Although it can be
done in real time as well – dictionary-based architecture allows this.

Compression is a continuous process. It takes time for the system
to converge to the optimal instruction encoding. In some cases as
discussed in Chapter 5 the encoding can diverge from the optimum
temporarily but eventually the system will find the way. Optimiza-
tion of the instruction encoding belongs to the class of NP-problems.
Obviously, ES do not have enough resources to completely solve it.
Moreover, the task must be carried out at run-time yet keeping a mem-
ory footprint as small as possible. All these restrictions were taken
into account while developing the compression scheme architecture
we present in Chapter 5.

3.2.12 Support for Existing (External) Software
Before we have mentioned that ChameleonVM provides the support for
existing software (network protocols). This support is given through
a set of interfaces which external protocols can use. The interaction is
made via memory – external protocols can write/read to ChameleonVM’s
stack, shared memory (SHMEM), on-node heap (BUFS) and individual cap-
sule’s memory buffer (BUFC). By sharing memory resources, capsules
and existing protocols can exchange necessary data. For example, the
existing routing protocol can be configured to always write the cur-
rent “next hop” address to a corresponding capsule’s internal buffer,
then the capsule can use this value to forward itself. The capsule does
not have to make any extra write/read calls; it should not even know
where this value comes from. Other exchange values might include:
an upstream hop in a spanning tree, an aggregated value, a number
of neighbors, etc. Alternatively, a capsule can leave some value in the
buffer which can be later used by some external protocol.
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We give a description of support calls in a from of C-function pro-
totypes as shown in Table 3.2. The calls in Table 3.2 have a number of
restrictions. Currently, aliases cannot have a return value and can only
accept numerical (integer) parameters (example with led instruction).
All calls for memory access do not take effect if memory boundaries
are not respected (if copying buffers exceed the maximum allowed size
or out-of-range addresses are used). Capsules cannot be manipulated
through those calls; ChameleonVM keeps an exclusive access to capsule
storage, they cannot be called or sent via aliases. A special care must
be taken with using aliases. As an alias contains an address of the local
function it should NOT be used in migrating capsules.

Call Description

void push(int capid, char *buf, int
length)

Push on the stack of the capsule with ID capid. The
data of length is taken from buf.

char *pop(int length)
Pop from the stack of the capsule with ID capid. The
data of length is copied to the main memory. The
pointer is returned.

void write bufc(int capid, int
offset, char *buf, int length)

Write the internal buffer of the capsule with ID capid
starting from the position offset. The data of length is
taken from buf.

char *read bufc(int capid, int offset,
int length)

Read the internal buffer of the capsule with ID capid
starting from the position offset. The data of length is
copied to the main memory. The pointer is returned.

void write bufs(int capid, int
offset, char *buf, int length)

Write the heap of the capsule with ID capid starting
from the position offset. The data of length is taken
from buf.

char *read bufs(int capid, int offset,
int length)

Read the heap of the capsule with ID capid starting
from the position offset. The data of length is copied
to the main memory. The pointer is returned.

void add alias(void
(*func ptr)(. . .)) Create an alias for the function func ptr.

void del alias(void
(*func ptr)(. . .)) Delete an alias for the function func ptr.

Table 3.2: ChameleonVM: Support Calls for Existing Protocols

As Table 3.2 external software can also directly access and change
dictionary records. Only access to aliases is provided. By using these
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methods an alias to an external function call can be created in the
dictionary.

One of the further improvements of the mechanism above is called
exported functions. A capsule can export its functionality (for exam-
ple the .code.common segment, or a pre-compiled library function) as
a function which will permanently reside on a node and could be as-
signed an instruction to make a call to. Export functions provide more
uniform access to the external functionality.

3.2.13 Exported Functions
An export function is a special instruction in ISA which refers to a
pre-installed code. In our case, when a dictionary basically describes
each instruction as a sequence of simpler operations there is not so
much difference between standard instruction and exported functions.
The only difference is that exported code is not stored inside the dictio-
nary. Calling such an instruction is similar to making a function call
with limited parameters. Hereinafter, aliases are referred to as export
functions and vice verse.

We use the export function concept in one of our examples later in
Section 6.4.6. The pre-compiled function getSkewAdjust() (Listing A.6)
is distributed as a module, registered in ChameleonVM namespace,
assigned an opcode in ISA and called using this opcode from other
capsules (see Listing A.4).

3.3 FragletVM
FragletVM is the first attempt to create an execution environment for
chemical approach of networking and its descriptive language called
Fraglets [Tsc03]. The original work on Fraglets [Mey10] has been pri-
marily based on using the Fraglets simulator. Our sole task is to design
a prototype implementation for ES showing basic functionality of the
Fraglets; hence we do not implement the entire instruction set and
some extra advanced features. More focus is put on how to enable
easy embeddability and meet specific requirements of resource-limited
devices. We take WSN as a target platform.

FragletVM operates with so-called vessels, a non-ordered collection
(a.k.a., soup) of small code pieces, fraglets. A typical vessel is shown
in Figure 3.21.
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Figure 3.21: FragletVM: Vessels

Fraglets in a vessel interact with each other using match* instruc-
tions and probabilistic approach. During this interaction some fraglets
may become obsolete,1 or naturally disappear, or sent out. New fra-
glets may be created as a result, or received from other nodes, or added
manually. That is how fraglets population is maintained.

Normally, a node has one vessel. A vessel can contain sub-vessels
(code sub-group with isolated name space; fraglets can be moved
in/out of such a group) but for the reason of memory-saving these are
not available in the FragletVM implementation (see Section 3.3.2).

3.3.1 Fraglets Language
Fraglets is a prefix-like (a.k.a., tag- or header-rewriting) language used
to model networks in a form of chemical reactions. The basic idea con-
sists in using some fundamental properties from chemistry to represent
in-network activities. To this end, the following notions are introduced:

– Molecule,2 an independent program task similar to capsules; see
Section 3.2.

– Reaction, an interaction of two code pieces, i.e., molecules, result-
ing in producing a new one, consuming an existing one and/or
mutating the reacting molecules.

1Although there is no lifetime concept in FragletVM as the one in ChameleonVM (see
Section 4.4) fraglets which have not been touched for quite a while are removed from the
system by the engine. This reflects the self-decay process.

2Also referred to as fraglet but molecule more likely represents a functional entity.
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– Mutation, the ability of code to mutate over time.
– Concentration is used as a numerical estimate of some parameter

or a value which is indicated through the multiplicity of some
molecule.

– Vessel, an execution context.

The distinguishable feature of the Fraglets language, as of any prefix-
like language, is that a type of the next item in the code stream is defined
by the result of the previously executed items. The type can be: named
operand, value or instruction.

Fraglets are composed by concatenation of symbols. Fraglets can
be of different lengths. In the original version there are three different
symbol classes:

– Instruction, a finite set of symbols denoting a transformation or
a reaction, e.g., dup, match, ssum, etc.

– Identifier, a string that tags a fraglet (passive fraglet; see below),
a variable name, e.g., x, count, etc.

– Value of various possible types (string, integer, float, etc.), e.g.,
"x", 5, etc.

For our implementation we had to make the following changes and
apply certain restrictions to the above definitions:

– Instruction, an opcode denoting a transformation or a reaction,
e.g., dup, match, ssum, etc. (encoded in a certain way).

– Tag, a synchronization symbol halting an execution of the current
fraglet till the next match is met, e.g., x, count, etc. (encoded in a
certain way).

– Argument, a binary value (8-, 16- or 32-bits). Variable-length
arguments are not supported at the moment.

At a time, each fraglet can belong to one of the two main classes:1

– active, a fraglet which starts with a match-like instruction, or
– passive, a fraglet which starts with a synchronization symbol.

1Obviously, a fraglet can move classes during execution.
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The third class, let call it immediate, starts with a constant value
or an immediately consuming instruction (e.g., sum). More on how
different classes of fraglets interact see Section 3.3.4.

In order to demonstrate how fraglets are composed and interact
with each other let us consider a trivial example:

[match x spush 1 ssum x] + [x 5] −→ [spush 1 ssum x 5] −→
[ssum x 5 1] −→ [x 6]

In the example above we perform an increment of the variable x
with an initial value of 5. The order of execution is not guaranteed. Lets
consider the following setting:

[matchp x spush 1 ssum x] + [x 5]

or [x 7]

or [x 9]

Execution model does not guarantee which value will be incre-
mented first. Execution order follows mass action and randomization
laws (the more the concentration the higher the probability of execution
is, and as a consequence, if two reactions are equally probable then the
next reaction to execute is picked randomly; see Section 3.3.4). This is
similar to execution of desynchronized program threads. If we would
like to have those reactions synchronized we would need to use some
type of markers (similar to the idea of UNIX semaphores).

The following change to both fraglets (active and passive) makes
only one pair to react:

[matchp x seq sif nul spush 1 ssum x 7] + [x 7 7]

Alternatively it can be done this way (only active fraglet is changed):

[matchp x seq sif nul spush 1 ssum x 7 7] + [x 7]

Before we discuss more complex aspects of the system architecture
let us consider the example from Section 3.2, an alarm sensor, and show
how it can be implemented using fraglets. The program in Listing 3.2 is
similar to the one from Listing 3.1. It is continuously taking temperature
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measurements on a node and if the temperature drops below 30 ◦C
then the red LED goes off otherwise it is lit on. The only difference
is that the fraglets implementation does not have a timer. Otherwise,
both implementations are identical.

1 # Example: switch red led ON if temp raise beyond 30 C, switch
2 # OFF otherwise
3
4 [sense T TEMP] --> [T X]
5
6 [matchp T gt G L 30] + [T X] --> [gt G L 30 X] --> [G 30 X] or
7 [L 30 X]
8
9 [match G led 1 1] + [G 30 X] --> red led ON

10
11 [match L led 0 1] + [L 30 X] --> red led OFF

Listing 3.2: Simple Alarm Sensor in FragletVM

3.3.2 System Architecture
FragletVM is built on top of an OS and uses system calls to perform
low-level operations (e.g., sending a fraglet).

Run-time environment: FragletVM must be pre-installed on each
node in the network. One node plays a role of an “access point” (or
a “base station”) to send control commands and upload code to the
network and to collect various run-time information. Programs can
be injected into the running network via access node in either of two
ways: “all together” (the front-end software reads a source file, injects
molecules (fraglets) on each node and triggers their execution at the
end), or “one-by-one” (fraglets are injected manually, code execution is
initiated manually as well). Additionally, FragletVM offers an option to
execute molecules one-by-one inspecting the result of each operation.
This may be useful for debugging purposes. Currently, there is no way
too remove installed molecules (fraglets). This somehow follows one
of the main principles of CNP [MT09] which stimulates developing of
self-regulating protocols: we can inject another molecule that will react
with and destroy the undesired one.

Program and data memory: There is no program or data memory in
FragletVM, all logic and data is encapsulated in fraglets. Therefore, we
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use a specific form of storing fraglets in our system. In fact, it is a big
hash table with tags used as keys and fraglets tagged with those keys as
values. All programs are executed in the same program space. Logically
all fraglets can be grouped according to their tag. Those groups we will
call classes. Classes can interact by using the same tag at some point.
Each fraglet can be seen as a small stack-oriented program of one of
two types: “left-to-right” vanishing (fraglet is consumed sequentially
from the head to the tail) or “dual” vanishing (fraglet is consumed
sequentially from the head to the tail; the tail is used as a data stack for
some instructions). This is shown in Figure 3.22.

!!!"#$%&'()*'$+%&,"-.'.,"'./&0"!!!

*+-1"&'.*2 -.'."&'.*2

31.- '.$4

Figure 3.22: FragletVM: Fraglet Structure

Data types: There is no distinguish between code and data. Data
fields can be occupied by instructions, and, therefore, data can become
executable at some point. Each instruction has a certain structure and
number of arguments (on code or data stack); in turn, each argument
has a certain type. From the FragletVM’s perspective everything is
seen as a bit stream where data can be 8-, 16- or 32-bit long chunks.
Extensible data types may be introduced later.

Program Execution Table (PET): As it was mentioned above, fraglets
are stored inside FragletVM as a big hash table with the structure shown
in Figure 3.23.1

The PET is being continuously re-written as reactions are executed
according to the next reaction selection algorithm described in Sec-
tion 3.3.4. The algorithm operates on PET.

1[match x] and [x] prefixes are actually not stored in this table for memory saving
purposes, only tails are stored.
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Figure 3.23: FragletVM: Program Execution Look-Up Table

Variables, namespaces and shared memory: FragletVM does not of-
fer data memory. Therefore, there are no variables. However, tags
can be seen as some sort of variables. All fraglets are executed within
one single namespace called soup, meaning that all those fraglets can
interact which match. All memory resources of the soup are shared.

Vessels and sub-vessels: In the original implementation there is the
notion of vessels and sub-vessels. Although the latter is not available
in FragletVM we briefly explain it here. Fraglets can be incorporated
into sub-vessels to separate their execution from those in the rest of
the soup. This means that only fraglets within the sub-vessel will
interact. Fraglets can be moved in/out a sub-vessel using inject/expel
instructions. Sub-vessels can be nested (see Figure 3.24).

Resource management: In order to avoid problems with sharing of
resources all operations are blocking. This means the next instructions
can be executed if and only if the previous one has been completed and
all resources have been released. This should be taken into account
while using operation like send which may take significant amount of
time to complete.

84



3.3 FragletVM

!"#$%&'

!#$%&'!#$%('

!#)%*'

!#+",-./%"%0%1'

"#-$2-3%4%5'
"! #0%1'

#4%5'

Figure 3.24: FragletVM: Sub-Vessels

Instruction dictionary: FragletVM uses similar dictionary-based ap-
proach to specify its instruction set as ChameleonVM (see Section 3.2.9).
Structurally they are absolutely identical. Moreover, the update mecha-
nism is the same too (see Section 3.3.9).

Error handling: FragletVM controls the following execution errors:
1) invalid opcode (invalid opcodes are consumed immediately), 2)
memory overflow, 3) fraglet oversize, etc. All current errors can be
observed using erreg instruction which extracts the content of the
system error register.

Trying to generally compare the FragletVM and the original de-
sign from [Mey10] we can say that the former lacks some features
making the system fit into memory-constrained devices. For example,
FragletVM does not support sub-vessels (similar to functions) and in-
terfaces (similar to sockets). Many original instructions are excluded
or simplified.

3.3.3 Programming Model
Fraglets programming model differs from the conventional, sequential
programming style. However, nearly the same functionality can be
achieved using Fraglets as with traditional programming paradigms.1

1One of the exceptions would be “if-no” branching which is not possible using
current FragletVM instruction set.
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Figure 3.25: Traditional vs CNP Programming Models

In contrast to sequential execution Fraglets programs normally do not
give time guarantees.

Programs can be built in either of two ways: as a one single fraglet
or as a set of interacting fraglets. A fraglet, in fact, can be seen as an
encapsulated program having two stacks: code stack at the head and
data stack at the tail. Which stack is addressed at the moment depends
on the instruction type used. Fraglets react according to the matching
tags at a certain moment in time.

Using only symbolic features of Fraglets is enough to create fully
functional programs. However, in this case those programs would be
similar to their more traditional mobile-code counterparts, i.e., pro-
grams based on ChameleonVM’s capsules (see Section 3.2). In CNP the
focus is put on designing network protocols using dynamic nature of
chemical reactions. Protocol operations are controlled using the con-
cept of concentration. This is easier to understand if we start thinking
about network traffic as of packet flows each having a certain number
of molecules of some type, i.e., concentration, as shown in Figure3.25.1
For this case Fraglets offer all necessary tools as well. In Section 6.5.1
we discuss a typical example of a protocol built on the principles of
CNP.

1Concentration of molecules is used to represent some parameter (value) instead of
representing it with a data field.
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3.3.4 Execution Model
Fraglets execution model incorporates various concepts from chem-
istry: reactions, mutations, etc. Fraglets reactions are modeled using a
probabilistic method rather then a deterministic traditional program
execution. The next reaction from the soup is picked according to
its probability to happen. In the artificial chemistry the most famous
method to model such a system is called Law of Mass Action (LoMA)
[Gil77], [MT11]. It has been shown that this method gives the best fair-
ness regarding the selection of a next reaction. In our implementation
we used an adapted version of LoMA for embedded devices which
required much less memory than the original design.

The original LoMA-based look-up algorithm over the PET (see
Section 3.3.2) which allows to choose the next reaction to execute looks
like as follows:

1. Calculate the weight wsi of each reaction class.
2. Pick the next reaction class according to its weight and a selec-

tive algorithm based on randomization (one possible selective
algorithm is shown below): S1. The original implementation also
schedules the reaction for the time point τ = 1

W (see how W is
calculated below). Here we assume that instructions are executed
sequentially – without time gaps and overlapping. Delays are
implemented with timers. However, FragletVM also provides the
way to execute programs on “ticks”. In this case, execution flow
is clocked at some frequency (currently, granularity is seconds);
blocking operations are not interrupted and molecules are not
thrown out if timings cannot be met.

3. Pick randomly1 two molecules (fraglets) to react: AFs1i and PFs1 j
(always one active and one passive are involved in a reaction).

4. Concatenate two fraglets (active with a corresponding passive).
5. Execute all the instructions till we meet the next passive tag (a.k.a.,

variable name or synchronization symbol).
6. Insert the new fraglet into the look-up table to the appropriate

class according to the new tag.

1This better represents chemical reactions model but we are also thinking about
introducing prioritized queues instead, which might bring even more fairness to the
model.
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7. Loop. Goto step 1.

A version of the selective algorithm based on randomization to
choose the next reaction class, i.e., a tag, to execute is presented below
(the example is based on Figure 3.26):
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Figure 3.26: FragletVM: Original Selective Algorithm

1. Calculate the weight for each reaction class: wsi = |AFsi | ∗ |PFsi |

2. Calculate the total weight: W =
n

∑
i=0

wsi

3. Generate a random number on the interval [0, W1]: r = 15
4. Keep checking all sub-intervals before the first match:

15 < 8 −→ FALSE
r − 8 = 15 − 8 = 7 < 2 −→ FALSE
r − 2 = 7 − 2 = 5 < 10 −→ TRUE

5. Pick S3 as the next reaction class.

In our implementation we employ the ideas from the algorithms
shown above but in order to save memory space and computation time
we avoid keeping track of every single weight. Instead each node has
an array-based PET of equal size. Next reaction selection is made by
choosing two random reactions from PET as shown in Figure 3.27.

The free space provides the necessary probabilistic effect. A reac-
tion happens if the following requirements are met: 1) one passive and
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Figure 3.27: FragletVM: Customized Selective Algorithm

one active fraglets have been selected, 2) synchronization tags in two
fraglets match, and 3) reactions are valid. If at least one of these require-
ments fails (i.e., an empty fraglet has been picked) nothing happens
and the system goes to the next iteration of the selective algorithm.

As soon as the reaction has been picked and executed, the pro-
gram execution process continues until the next synchronization tag is
reached or the reaction is completely consumed. This means that all
computational operations are carried out immediately for the entire
fraglet.

3.3.5 Instruction Set
The full Fraglets ISA specification can be found in [Mey10]. For the
embeddable version we have picked only necessary instructions. Not
the entire original set is supported. Moreover, some of the operations
have been modified to simplify their execution.

There are two variants of most of the instructions, one that con-
sumes arguments from the head (immediate) and another that con-
sumes arguments from the tail of a fraglet (stack). Not all the instruc-
tions are present in both versions. One of the fundamental concepts is
that each operation must result in consuming at least one argument.
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We enforce the product to be smaller; hence the instruction format.
This is done to avoid uncontrolled growing of fraglets which are con-
structed or interact improperly.1 The currently supported instructions
are presented in Appendix D.

Encoding of fraglets is done in a straightforward fashion. Each
fraglet is encoded in a bitstream as shown in Figure 3.22. For packing
and unpacking the bit-shift is used to get a more compact represen-
tation. Hence, the numerical parameter’s resolution is limited to the
instruction’s resolution. This is due to fraglets’ data/code intermix
nature.

3.3.6 Code Propagation and Deployment
In principle, there are two totally different ways of delivering code
to a node: using a third party code dissemination method (shipped
with an OS) or a fully implemented propagation layer in fraglets (e.g.,
“viral” propagation). In this work, we used the former method; the
code is spread as loadable modules. Currently, the Fraglets philosophy
makes code deployment a non-trivial task. The reason for that is there
is no “no-match” primitive (compare to match-like instructions from
Table D.7). Moreover, there is no easy way to erase the existing code
either. That is why code exchange process may require some tricks.

3.3.7 Node-To-Node Communication

Nodes can communicate to each other using send instruction1 (see
Table D.8). For unicast operation a node address must be specified
as an argument (see Figure 3.28). ALL denotes broadcast transmission.
FragletVM does not support anycast transmissions. Nor it supports
interfaces between nodes (dedicated communication channels similar
to sockets).2 The original implementation does.

Forwarding can be easily done with fraglets as shown in Figure 3.29.

1This is somehow similar to the situation in sequential programming when dynamic
memory is allocated and not released which leads to memory leakage.

1When send instruction appears in a fraglet it refers to the rest of the fraglet only, not
the entire soup.

2We might introduce them in the future since by having interfaces and using opera-
tion polymorphism (see Section 4.3) we could just do the send usb ... instead of print,
send radio ... instead of send N, send led ... instead of blink, etc.
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Figure 3.28: FragletVM: Sending Fraglets Between Nodes
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Figure 3.29: FragletVM: Forwarding Fraglets

As with ChameleonVM (see Section 3.2) one of the restrictions of the
FragletVM implementation is that fraglets sent over network cannot
exceed a certain size. This is a limitation of the WSN link layer (about
30 bytes). In Section 7.3 we set it as an open question. Locally executed
fraglets can be of any size permitted by the memory capacity of a node.

Compared to the node-to-node communication model for ChameleonVM
from Section 3.2.8, FragletVM does not offer data packet exchange. Data
must be integrated into fraglets before it can be transmitted. A detailed
two nodes communication model can be seen as shown in Figure 3.30.
Again, a multi-node communication model is just a scaled version of
the picture above.

3.3.8 On-Board Dictionary
The structure of the on-board dictionary in FragletVM is identical to
the one found in ChameleonVM. It was previously discussed in detail in
Section 3.2.9.

The main difference is that FragletVM employs a distributed ar-
chitecture where dictionary updates can be initiated by any node in
the network. In practice, the architecture is not fully distributed. It
rather allows to elect a session leader and assign this role to any node.
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Figure 3.30: FragletVM: Communication Model Between Nodes

This session leader carries out compression and sent out updates to
the rest of the network. In ChameleonVM the leader role is fixed to the
access node. We explain this mechanism in Sections 5.6 and 5.7. A truly
distributed compression is further discussed in Section 5.7.

As with ChameleonVM each node can have more than one dictionary.
But in FragletVM dictionaries are created on a per-link basis (between
every two communicating nodes). Switching between dictionaries is
done automatically depending on which neighbor a node is talking to
at the moment.

3.3.9 Dictionary Updates and Synchronization
In each pair of nodes a leader is elected. After that the dictionary
synchronization process turns into the group compression model de-
scribed in Section 5.6. Dictionary updating mechanism is identical to
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the one used by ChameleonVM and described in Section 3.2.10. The only
difference that it runs in a distributed fashion. The process is shown in
Figure 3.31.
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Figure 3.31: FragletVM: Exchange of Dictionary Updates

In addition to automatic dictionary update mechanism FragletVM
has an extra instruction newinstr which allows to create new instruc-
tions manually. However, the use of this instruction is limited at the
moment. Only instruction with no parameters can be combined to-
gether. As a result a new instruction opcode is created in the on-board
dictionary. The idea of using the newinstr is simple but the trans-
formation function is not trivial as it requires to combine instruction
semantics (this is not implemented yet):

[ssum send N x y] −→ N[(x+y)]

[newinstr ssum send N x y] −→ [ssum#send N x y] −→ N[(x+y)]

As with ChameleonVM a periodical dictionary consistency check is
done in order to improve dictionary robustness (see Section 3.2.10). A
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simple CRC-based integrity function ϕ is used for this purpose. This is
shown in Figure 3.31.

3.3.10 Compression and Decompression
The (de-)compression engine in ChameleonVM and FragletVM is the
same. Hence, (de-)compression principles remain the same too (see
Section 3.2.11). Compression is performed on outgoing fraglets only;
locally executed code is kept untouched.

3.4 Implementation Remarks
In Sections 3.2 and 3.3 we have presented two execution environments
for network embedded systems. Besides having these frameworks
simulated we also partially prototyped both systems on TelosB hard-
ware platform with ContikiOS support. Initially ChameleonVM was also
prototyped under TinyOS. Later we switched to ContikiOS because
of its modular, flexible structure, support for loadable modules and
plain C programming environment. We also made an attempt to im-
plement FragletVM on Sentilla Perk with Java ME CLDC 1.1. The last
platform allows easy Java programming and fast prototyping as all
needed system level protocols (e.g., MAC) are automatically provided.
Although we did not implement the entire functionality “in hardware”
two prototypes have shown that the proposed designs can be fit in
resource-limited devices like WSN.

3.5 Summary
To this point we have analyzed the existing work in the area of net-
work morphing for WSN. We have proposed our own extended and
generalized model of WSN re-tasking. The model is based on using
spacial and time separation of tasks (profiles) on different network VS.
After that we have presented two example implementations for two
different network models, classical active network with mobile agents
and chemical reaction network. Both examples are based on using a
small embedded re-configurable VM. In our designs we use properties
of the existing systems but at the same time add a number of unique
features, especially in the area of mobile code run-time processing. We
have described in detail main architectural aspects and building blocks
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of these two systems giving when it was necessary a comparison to the
existing solutions.
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4

Overview of Code
Optimization Techniques

In Chapter 1 we briefly discussed why the focus of this work was
put on code optimization techniques. So far, in the literature
mainly compile-time code optimization have been researched. We
believe that by “tweaking” code in run-time (i.e., “online”) fur-
ther improvements in performance and energy consumption can
be archived. Although every improvement comes with a certain
overhead; hence, a trade-off must be found. In this chapter, we
discuss the following optimization steps in details: code shrinking
(code size reduction), compression, polymorphism, versioning
and robustness. The last two methods are not actually a part of
the optimization process, rather they play a complementary roles
of controlling code distribution and execution, and making code
more reliable and resilient to corruption.



4. Overview of Code Optimization Techniques

4.1 Code Shrinking
The first optimization technique we going to explore is code shrinking.
Code shrinking basically assumes getting rid of those parts of the
program which are not needed anymore. This process takes place
continuously while executing a program. The removed parts are not
necessarily removed from the system (they can be kept for future
use), rather from the execution process. We will demonstrate how
code shrinking works on two variations of one simple examples for
ChameleonVM which is discussed in Section 3.2.1

For this example we take a program which does the following:

– turn on LED2 number 1 on node 1,
– turn on LED number 2 on node 2,
– turn on LED number 3 on node 3, and
– turn on all LEDs on all other nodes.

This algorithm demonstrates a very common programming lan-
guage concept called branching. We assume unique nodes numbering.
The aim we are pursuing is the following: as soon as the original pro-
gram reaches node 1, 2 or 3, we erase the corresponding chunk of code
and propagate it further, as those nodes are unique and it is not needed
to address them anymore. On the other hand, the code section targeted
at the rest of the nodes must be kept till the entire set is processed.

The first problem we face is structural. The efficiency of the method
strictly depends on how the original code was designed. Lets consider
two variations. The first variation belongs to the class of case-branching
(see Listing 4.1).3

1 ADDR || CODE
2 ==============================================================
3 0003 || send ME,ALL # broadcast itself

1Code compression is used by ChameleonVM and FragletVM. Additionally,
ChameleonVM also uses other optimization steps described in Chapter 4.

2LED (Light Emission Diode) – indicator scheme available on most WSN platforms,
normally used for debugging purposes.

3For simplification, the presented code assumes the von Neumann principle of
intermixed code and data. In reality, ChameleonVM uses the Harvard architecture (see
Section 3.2.2).
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4 0005 || push NID # put node id on the stack
5 0008 || jmpeq 1,L1
6 0011 || jmpeq 2,L2
7 0014 || jmpeq 3,L3
8 0016 || led 0x7 # nodes !=1,2,3: all leds
9 0017 || exit

10 0018 || --- # erase marker
11 0020 || L1: led 0x1 # node == 1: led #1
12 0021 || exit # stop execution
13 0023 || erase UP # erase up to the nearest marker
14 0024 || ---
15 0026 || L2: led 0x2 # node == 2: led #2
16 0027 || exit
17 0029 || erase UP
18 0030 || ---
19 0032 || L3: led 0x4 # node == 3: led #3
20 0033 || exit
21 0035 || erase UP

Listing 4.1: Example of “Case”-Branching

The second variation refers to the class of if-branching (see List-
ing 4.2). Compared to the previous case this one is characterized by a
bigger overhead the original code gets.

1 ADDR || CODE
2 ========================================================
3 0003 || send ME,ALL # broadcast itself
4 0005 || push NID # put node id on the stack
5 0006 || ---
6 0009 || jmpeq 1,L1
7 0011 || jmp L4
8 0013 || L1: led 0x1
9 0014 || exit

10 0016 || erase UP
11 0017 || ---
12 0020 || L4: jmpeq 2,L2
13 0022 || jmp L5
14 0024 || L2: led 0x2
15 0025 || exit
16 0027 || erase UP
17 0028 || ---
18 0031 || L5: jmpeq 3,L3
19 0033 || jmp L6
20 0035 || L3: led 0x4
21 0036 || exit
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22 0038 || erase UP
23 0040 || L6: led 0x7

Listing 4.2: Example of “If”-Branching

In order to make the difference between the above examples clear
lets look at the algorithmic representation. From Figure 4.1 it is becomes
obvious that these two cases are not isomorphic.
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(b) “If”-Branching

Figure 4.1: “Case”-Branching vs “If”-Branching

Now lets have a look at how code shrinking works. Operator ---
stands for an erase marker which, if it is referred later by erase UP
operator initiates deleting of the code in between those two. Operator
erase can take one of the following arguments:

What the impact does it have to introduce that overhead in your
code? It highly depends on the context, i.e., the current configuration
and the propagation process (the sequence of nodes a capsule passes
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Argument Meaning

UP up to the nearest --- operator
DOWN down to the nearest --- operator
TOP up to the beginning of the capsule (or the current segment)
BOTTOM down to the end of the capsule (or the current segment)

through). For the case-version and various propagation scenarios we
will have:

Propagation
Scenario Code Reduction (symbols)

1 → 2 → 3 → . . . 35 → 29 → 23 → 17 → the same

The sequence in which nodes 1, 2 and 3 are passed by is not im-
portant for this example (e.g., 1 → 2 → 3 → to 3 → 1 → 2 →) because
each of those steps initiates removal of 6 bytes. In case of different
processing on each node it will matter. Passing by a node being not
from the set (1, 2, 3) does not change the code as soon as we keep the
corresponding slice for later. Similarly, for the if-version we have:

Propagation
Scenario Code Reduction (symbols)

1 → 2 → 3 → . . . 41 → 30 → 19 → 8 → the same

Again, the order of processing does not matter as the size of each
chunk is the same.

This comparison shows one of the fundamental features of code
shrinking: the more overhead the original code has the better shrinking
rates can be archived.

4.2 Code Compression
The next technique we are going to give a try is code compression. In
Chapter 5 we discuss in detail the scheme we propose called online
code compression. Here, we will briefly discuss our view of the com-
pression world, various methods used to compress the code, what they
feature and lack, and what eventually motivated us to develop a new
method.
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Data compression (or source coding) is the process of encoding in-
formation using fewer information symbols (particularly bits) than an
unencoded representation would use, through use of specific encoding
methods. The basic goal of every data compression scheme is to get
rid off redundancy in an original data stream, and keep it still decod-
able. Compression is traditionally used in two areas: communications
(to improve channel utilization) and data storage (to improve storage
media utilization). Both, transmitter and receiver (writer and reader),
must be familiar with the encoding scheme being used in order to un-
derstand each other. One of the biggest challenges with designing an
appropriate compression scheme is to make it meet the resource- and
time-constraints of the system. That is, an encoding/decoding engine
should fit into system’s resource space (e.g., in case of limited memory)
and still allow the main system’s task(s) to be executed within a certain
time range (time-critical applications). For instance, a compression
scheme for VoIP/video may require extra memory and processing cy-
cles for the sound/video stream to be decompressed fast enough to be
heard/viewed as it is being decoded (full decoding before use might
be unacceptable because it requires much time and more storage space
than the system can normally provide). The design of data compression
schemes, therefore, involves trade-offs among many factors, includ-
ing the degree of compression, the amount of distortion introduced
(if using a compression scheme with losses), and the computational
resources required to compress and uncompress the data.

Compression methods can be divided into two main groups: lossy
and lossless compression methods. Lossy data compression is used if
some loss of fidelity is acceptable. Generally, this method allows some
data to be removed from an original source without losing the sense
of what this data represents. This means that input of an encoder and
output of a decoder are never the same. Lossy schemes accept some
loss of data in order to achieve higher compression, thus it is mainly
used in image- (e.g., JPEG), video- (e.g., MPEG) and sound- (e.g., VoIP)
related applications which do require only a certain level of precision
distinguishable by human’s receptors. Lossless compression schemes
are reversible so that the original data can be reconstructed. Lossless
compression algorithms usually exploit statistical redundancy in such
a way as to represent the sender’s data more concisely without error.
Lossless compression is possible because most real-world data has
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statistical redundancy. However, lossless data compression algorithms
will always fail to compress some data sets; indeed, any compression
algorithm will necessarily fail to compress any data containing no dis-
cernible patterns. Attempts to compress data that has been compressed
already will, therefore, usually result in an expansion (we will show
this later in Chapter 5 how it easily happens with run-length encod-
ing). The same is true for most encrypted streams. In practice, lossy
data compression will also come to a point where compressing again
does not work (removing beyond that level will result in losing data
meaning).

An example of lossless vs lossy compression is the following string:

0.33333333333333333333333333333333333333333333333333

Using lossless compression this string can be compressed as:

0.3[50]

The original string can be perfectly recreated from the above com-
pressed form. In a lossy system, using

0.33333

instead, the exact original data is lost, at the benefit of a smaller data
set. In the scheme, we propose later, we state that we do not need
0.33333 in the encoded stream either, the only thing we need to store is
a descriptor r = 1/3 and a link to the string “0.3...” of any desirable
level of precision which can be obtained through a dictionary. The
following statement follows: for any lossless compression scheme there
exist a lossy compression scheme providing better compression factor
(or the same as in the above example).

Compression Factor (CF)1 is the characteristic which is used to find
how good a certain compression method performs, i.e., to quantify the
reduction in data-representation size produced by a data compression
algorithm. It is calculated as follows:2

1In literature it is also sometimes referred to as compression ratio or compression
power.

2Many sources define it only as a fraction, not as a percentage.
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compression f actor (CF) =
compressed code size

original code size
∗ 100% (4.1)

In the example above it is 5/50≈10% for lossless compression,
5/50≈10% for lossy compression (the same as lossless but precision is
lost), and 1/52≈2% for our hypothetical technique scheme.
In a similar way, the space saving can be defined as follows:

space saving (CF) = (1 − compressed code size
original code size

) ∗ 100% (4.2)

Here we come to a very important point of our discussion: data
and code data sources are naturally different. Code stream has much
higher entropy than data, thus much less statistical redundancy men-
tioned above (which is needed for lossless compression schemes to be
efficient). There are two main reasons for that: 1) code streams have
less patterns, and 2) code streams are normally finite and relatively
short. Most solutions proposed so far have focused on applying data
compression techniques to the code world, and in our opinion they all
have failed to some extent because of ignoring the different nature of
the code. The embedded world makes it even more obvious. Although
some relatively good CF may be archived, a compressing/decompress-
ing engine cannot be normally fitted in the system profile because
it requires too many computational resources. Let us take an exam-
ple from [TDV08a], where applying various compression algorithms
(including gzip) to pre-compiled ELF software modules a CF of approx-
imately 50% can be archived. This comes with a memory footprint of
7.7 kB out of 10 kB totally available in the system and decompression
time on the order of several seconds depending on the module’s size.

From now on we will focus on lossless compression methods only.
Our choice is dictated by the fact that if some pieces of code are re-
moved from an original stream, therefore, decoder will not be able
to reproduce it later, then the code needs to have some kind of “self-
healing” feature to restore the missing parts. This might be a good
research question for systems like Fraglets which can potentially heal
themselves. Some insights can be taken from the works on resilience to
knock-out attacks and software self-healing properties [MYT08b]. The

104



4.2 Code Compression

lossless compression methods can be grouped into several main cate-
gories we discuss in the upcoming sections: very basic encoding forms
(Section 4.2.1), transform-based coding (Section 4.2.2), prediction-based
coding (Section 4.2.3), dictionary-based coding (Section 4.2.4) and proba-
bility (entropy) coding (Section 4.2.5). We will also pay some attention
to special coding schemes such as building coders with infinite inputs
and coders for the distributed environment.1

4.2.1 Primitive Methods

4.2.1.1 Run-Length Encoding

Run-Length Encoding (RLE) encodes repetitive symbolic or binary se-
quences as a single symbol followed by a number of repetitions. The
example of this scheme was shown in Section 4.2. This method is very
effective if there are many such sequences in the incoming stream. De-
coding is very simple as it requires stream expansion only. As we show
in Chapter 5 this method cannot cope well with code streams having
naturally high entropy on which it could greatly increase the original
stream size. Sometimes it gets combined with Huffman coding (see
Section 4.2.5.1) to improve the CF.

4.2.1.2 Delta Encoding

Delta encoding (or delta differencing) is a method based on using relative
entropy.2 The resulting streams contains not the actual data but dif-
ferences between sequential data. Delta encoding can greatly reduce
redundancy if the stream evolves gradually, i.e., differences are small.

The best known example of delta encoding is VCDIFF format. Also
can be used in HTTP [32202]. Sometimes the results get better if delta
encoding is followed by RLE (see Section 4.2.1.1).

1The descriptions in Sections 4.2.1–4.2.6 discuss the existing methods at the time of
writing; they partially cite and are based on [Ble10] and the Wikipedia articles rooted
at http://en.wikipedia.org/wiki/Data_compression (these pages contain proper refer-
encing to the original sources). Copyrights are held by the corresponding authors.

2The difference between two data values is the information required to obtain one
value from the other.
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4.2.2 Transform-based Encoding
4.2.2.1 Move-To-Front Transform

The Move-To-Front (MTF) transform [Rya80] is an improvement over
entropy encoding discussed in Section 4.2.5. The main idea is that each
symbol in the stream is replaced by its index in the stack of “recently
used symbols”. For example, long sequences of identical symbols are
replaced with as many zeroes, whereas when a symbol that has not
been used recently appears, it is replaced with a large code. This is
achieved by moving an encoded value to the front of the list before
continuing to the next value. At the end the stream is transformed into
a sequence of codes; if the data exhibits a lot of local correlations of
frequencies, then these integers tend to be small. However, not all data
exhibits this type of local correlation, and for some streams, the MTF
transform may actually increase the entropy.

Normally, MTF is used in cooperation with Burrows-Wheeler Trans-
form (BWT) discussed in Section 4.2.2.2. The BWT is very good at
producing a sequence that exhibits local frequency correlation from
certain classes of data, mainly text. However, it does not decrease the
entropy, it does reordering only. Compression becomes more effective
if BWT is followed by MTF before the final entropy-based encoding step
(see Section 4.2.5).

4.2.2.2 Burrows-Wheeler Transform

Burrows-Wheeler Transform (BWT) [BW94] permutes the order of the
symbols in the stream, it does not change their values. If the origi-
nal stream has several patterns that occur often, then the transformed
stream will have several places where a single symbol is repeated mul-
tiple times in a row. This is useful for further entropy-based compression
step using techniques such as MTF (see Section 4.2.2.1) or RLE (see
Section 4.2.1.1).

There are two important aspects of BWT to mention: 1) it is a
reversible sort, allowing the original stream to be re-generated, and 2)
it expands its input slightly.

4.2.3 Prediction-based Encoding
Prediction by Partial Matching: Prediction by Partial Matching (PPM)
[CW84] is an adaptive statistical data compression technique based on
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context modeling and prediction. PPM models use a set of previous
symbols in the uncompressed symbol stream to predict the next symbol
in the stream. Predictions are usually reduced to symbol rankings.
PPM is normally followed by Dynamic Markov Compression (DMC). The
actual symbol selection is usually made using arithmetic coding (see
Section 4.2.5.2), though it is also possible to use Huffman encoding (see
Section 4.2.5.1) or even some type of dictionary coding technique (see
Section 4.2.4). Markov modeling can be replaced as well. Multiple
symbols prediction is possible. Normally, PPM-oriented algorithms
require a significant amount of RAM. PPM is used by many popular
compression formats such as ZIP, RAR, 7z. The best performance
metrics have been shown for the natural language text.

Context mixing: Context mixing [Mah05] is a type of compression in
which the next-symbol predictions of two or more statistical models
are combined to yield a prediction that is often more accurate than any
of the individual predictions. Some methods average the probabilities
assigned by each model, the others outputs the prediction that is the
mode1 of the predictions output by individual models. The PAQ series
of data compression programs use context mixing to assign probabil-
ities to individual bits of the input. This model is used in the bzip2
compression format too.

Dynamic Markov Compression: Dynamic Markov Compression (DMC)
[CH87] algorithm uses predictive arithmetic coding similar to PPM, ex-
cept that the input is predicted one bit at a time (rather than one byte
at a time). DMC has also a lot of similarities with context mixing al-
gorithms except that DMC uses only one context per prediction. The
predicted bit is then coded using arithmetic coding (see Section 4.2.5.2).
DMC has a good compression ratio and moderate speed, similar to
PPM, but requires more RAM than PPM.

4.2.4 Dictionary Encoders
A dictionary coder operates by searching for matches between the
stream to be compressed and a set of strings contained in a data struc-
ture called the dictionary and maintained by the encoder. When the
encoder finds such a match, it substitutes a reference to the string’s

1In statistics, the mode is the value that occurs most frequently in a data set or a
probability distribution.
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position in the data structure. The resulting dictionary has to be carried
along with the encoded data.

Some coders use a static dictionary. In this case, a full set of strings
is determined before coding begins and does not change during the
coding process. This approach is most often used when the message
or set of messages to be encoded is fixed and large. More common are
methods where the dictionary starts in some predetermined state but
the contents change during the encoding process, based on the data
that has already been encoded. Both the LZ77 and LZ78 algorithms
discussed below work on this principle.

Lempel-Ziv-1 (LZ77) and Lempel-Ziv-2 (LZ78): In LZ77, a data struc-
ture called the sliding window is used to hold the last N symbols of
data processed; this window serves as the dictionary, effectively storing
every substring that has appeared in the past N symbols as dictionary
entries. Instead of a single index identifying a dictionary entry, two
values are needed: the length, indicating the length of the matched
sequence, and the offset (also called the distance), indicating that the
match is found in the sliding window starting offset symbols before
the current stream.

In contrast, LZ78 uses a more explicit dictionary structure; at the
beginning of the encoding process, the dictionary only needs to contain
entries for the symbols of the alphabet used in the stream to be com-
pressed, but the indexes are numbered so as to leave spaces for many
more entries. At each step of the encoding process, the longest entry
in the dictionary that matches the sequence is found, and its index is
written to the output; the combination of that entry and the symbol
that followed it in the stream is then added to the dictionary as a new
entry.

The most popular LZ77-based compression method is DEFLATE
[19596]. It combines LZ77 with Huffman coding. The LZ78 was popu-
lated by the LZW algorithm.

Lempel-Ziv-Welch (LZW): LZW [ZL77] is an improved version of
LZ78 algorithm with various refinements for different applications.
That is why it is important that the encoder and decoder agree on which
type of LZW is being used: the size of the alphabet, the maximum code
width, whether variable-width encoding is being used, the initial code
size, whether to use the clear and stop codes (and what values they
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have). Most formats that employ LZW embed this information into the
format specification or provide explicit fields for them in a compression
header for the data.

The algorithm works best on streams with repeated patterns, so
the initial parts of the stream will see little compression; longer input
streams are typically necessary before the compression builds up effi-
ciency. As the message grows, however, the compression ratio tends
asymptotically to the maximum.

Statistical LZW: Statistical LZW [KH01] may be viewed as a variant
of the general Lempel-Ziv (LZ) method. The contribution of this concept
is to include the statistical properties of the source information to
identify the useful data that should be put into the dictionary (search
window) while most of the LZ-based compression methods, such as
LZ78 and LZW do not take this property into consideration. Statistical
LZ improves the compression ratio compared with LZ77 because more
useful data can be kept in the dictionary. The dictionary can be smaller
in size for keeping the useful data and hence less memory required
in the decompressor. Since not all the data has to be shifted into the
window, less processing power is required on the decompressor.

Many derivatives from LZ77, LZ78 and LZW exist [Sal97] which are
meant to improve the CF: LZMW, LZAP, LZWL, LZMA, LZSS, LZJB,
and others.

Byte-Pair Encoding (BPE): Byte-Pair Encoding [Gag94] is another sim-
ple dictionary-based coding scheme, where a symbol that does not ap-
pear in the source stream is assigned to represent the most commonly
appearing consecutive two-symbol combination. This can be done
repeatedly as long as there are symbols that do not appear in the source
stream, and symbols that are already representing combinations of
other streams can themselves appear in combinations. A table of the
replacements is required to rebuild the original stream.

Our online compression scheme discussed in Chapter 5 borrows the
main principle from BPE because of its simplicity. One significant
advantage of the both algorithms is that compression never increases
the stream size. In contrast, LZW can greatly inflate the size of certain
data sets, such as randomized data or pre-compressed fields. LZW
compression adapts linearly to frequently occurring patterns, building
up strings one character at a time. The BPE and online compression
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algorithms adapt exponentially to patterns, since both symbol in a pair
can represent previously defined pair codes. The previously defined
pair codes can themselves contain nested codes and can expand into
long strings.

4.2.5 Entropy Encoding
Increased CF can often be achieved with an adaptive entropy encoder.
Such a coder estimates the probability distribution for the value of the
next symbol, based on the observed frequencies of values so far. A
standard entropy encoding such as Huffman coding or arithmetic coding
then uses shorter codes for values with higher probabilities.

4.2.5.1 Huffman Coding

The method [Huf52] uses a variable-length code (a.k.a., prefix code) table
for encoding a source symbol. The variable-length code table is derived
in a particular way based on the estimated probability of occurrence for
each possible value of the source symbol. Although Huffman’s original
algorithm is optimal for a symbol-by-symbol coding (i.e., a stream
of unrelated symbols) with a known input probability distribution,
it is not optimal when the symbol-by-symbol restriction is dropped,
or when the probability mass functions are unknown, not identically
distributed, or not independent. Other methods such as arithmetic cod-
ing and LZW coding often have better compression capability: both
of these methods can combine an arbitrary number of symbols for
more efficient coding, and generally adapt to the actual input statistics,
the latter of which is useful when input probabilities are not precisely
known or vary significantly within the stream. However, Huffman-
encoding can be used adaptively, accommodating unknown, changing,
or context-dependent probabilities. In the case of known independent
and identically-distributed random variables, combining symbols to-
gether reduces inefficiency in a way that approaches optimality as the
number of symbols combined increases. Prefix codes including Huffman
tend to have inefficiency on small alphabets.

Many variations of Huffman coding exist including adaptive Huffman
encoding and Shannon-Fano coding.

Adaptive Huffman coding [Vit87] (a.k.a Dynamic Huffman coding)
allows building the code as the symbols are being transmitted, hav-
ing no initial knowledge of source distribution, that allows one-pass
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encoding and adaptation to changing conditions in data. The benefit
of one-pass procedure is that the source can be encoded in real time,
though it becomes more sensitive to transmission errors, since just a
single loss ruins the whole code.

Shannon-Fano coding [Sha48] [Fan49] constructs a prefix code based
on a set of symbols and their probabilities (estimated or measured).
It is suboptimal in the sense that it does not achieve the lowest possi-
ble expected code word length like Huffman-coding; however, unlike
Huffman-coding, it does guarantee that all code word lengths are within
one bit of their theoretical ideal. The algorithm works, it produces
fairly efficient but not always optimal prefix codes. In contrast, Huffman-
coding is almost as computationally simple and produces prefix codes
that always achieve the lowest expected code word length. That is why
Shannon-Fano coding is rarely used in practice.

4.2.5.2 Arithmetic Coding

It is a form of variable-length entropy encoding [Ris76] [RL79] [WNC87]:
frequently used characters are stored with fewer bits and not-so-fre-
quently occurring characters are stored with more bits, resulting in
fewer bits used in total. Arithmetic coding differs from other forms of
entropy encoding such as Huffman coding in that rather than separating
the input into component symbols and replacing each with a code,
arithmetic coding encodes the entire message into a single number, a
fraction n where 0 ≤ n < 1.

In general, arithmetic coders can produce near-optimal output for
any given set of symbols and probabilities. Compression algorithms
that use arithmetic coding start by determining a model of the data – ba-
sically a prediction of what patterns will be found in the symbols of the
message. The more accurate this prediction is, the closer to optimality
the output will be. Arithmetic coding has higher computational com-
plexity than Huffman or Shannon-Fano but can produce greater overall
compression.

Range encoding [NM79] is sometimes considered as a different
form of arithmetic coding. When processing is applied as one step per
symbol, it is range coding, and when one step is required per every
bit it is arithmetic coding. Range encoding conceptually encodes all the
symbols of the stream into one number, unlike Huffman coding which
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assigns each symbol a bit-pattern and concatenates all the bit-patterns
together.

4.2.5.3 Static Codes

In order to be able to use this type of coding the approximate entropy
characteristics of a data stream must be known in advance. Moreover,
these models are normally very general and assume infinite input
streams. They can be divided into two main sub-groups: universal and
non-universal codes.

Non-Universal Codes: Non-Universal codes are specifically designed
for the streams with certain properties (distributions).

Golomb coding [Gol66] require alphabets to follow a geometric dis-
tribution to achieve an optimal prefix-like Golomb code. This makes
Golomb coding highly suitable for situations in which the occurrence of
small values in the input stream is significantly more likely than large
values.

Rice coding [RP71] denotes using a subset of the family of Golomb
codes to produce a simpler (but possibly suboptimal) prefix code. It is
especially suitable for use with binary arithmetics.

Unary coding is an entropy encoding that represents a natural num-
ber, n, with n ones followed by a zero (if natural number is understood
as non-negative integer) or with n − 1 ones followed by a zero (if
natural number is understood as strictly positive integer).

Universal Codes: Universal codes for integers are prefix codes that
map the positive integers onto binary codewords, with the additional
property that whatever the true probability distribution on integers,
as long as the distribution is monotonic (i.e., p(i) ≥ p(i + 1) for all
positive i), the expected lengths of the codewords are within a constant
factor of the expected lengths that the optimal code for that probability
distribution would have assigned. Universal codes are generally not
used for precisely known probability distributions, and no universal
code is known to be optimal for any distribution used in practice.

These are some universal codes for integers [Mac03]: Elias codes,
Exp-Golomb coding, Fibonacci coding, Levenstein coding.

Huffman coding and arithmetic encoding when they can be used give
at least as good, and often better compression than any universal code.
However, universal codes are useful when Huffman coding cannot be
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used – for example, when the exact probability of each message are
no known, but only the rankings of their probabilities. Universal codes
are also useful when Huffman codes are inconvenient. For example,
when the transmitter but not the receiver knows the probabilities of the
messages, Huffman coding requires an overhead of transmitting those
probabilities to the receiver. Using a universal code does not have that
overhead.

4.2.6 Distributed Source Coding
Distributed Source Coding (DSC) (a.k.a., Slepian-Wolf coding [SW73])
describes the compression of multiple correlated information sources
that do not communicate with each other. By modeling the correlation
between multiple sources at the decoder side together with channel
codes, DSC is able to shift the computational complexity from encoder
side to decoder side, therefore, provide appropriate frameworks for ap-
plications with complexity-constrained sender, such as WSN [XLC04]
and video/multimedia compression. One of the main properties of
DSC is that the computational burden in encoders is shifted to the joint
decoder. Two sub-models exist: asymmetric DSC and symmetric DSC.
Asymmetric DSC means that, different bitrates are used in coding the
input sources, while same bitrate is used in symmetric DSC. Although
most research is focused on DSC with two dependent sources, the more
than two input sources cases have been studied as well [XK08].

4.2.7 Compression in Embedded Systems
As it is stated in [Phi05], compression/decompression may require a
large amount of CPU processing and can be especially difficult on mi-
crocontrollers with small word sizes and limited memory. However, the
savings achieved in data propagation are normally not over-shadowed
by the CPU cycles for decompression in an ES such as WSN since com-
munication is the biggest energy spending part on such platforms. So
far, the focus has been put on applying data compression methods to
pre-compiled code modules. With no surprise, most of the solutions
described above show bad figures, especially in embedded applications
[TDV08a].

Use of a high level language which is interpreted by a VM is an-
other approach to reduce the amount of data that is transmitted. The
language’s instructions “resemble common unit operations that are
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carried out by a typical sensor network application, such as ‘sense the
temperature and transmit it to the base station’. Thus updating the
application merely requires transmitting a new script to the network.
This approach does not support updating the VM or the underlying
OS, however.” Most of the solutions mentioned above in Section 3.1
somehow follow this idea by introducing new instruction sets which
are better suited for a particular application group. ASVM [LGC05],
build on top of Maté VM [LC02], goes a bit further and allows to config-
ure the instruction set at compile-time to better fit it into application’s
context. Our belief is that in order to build a truly flexible (adaptable)
system, the system itself must be able to change its instruction set at
run-time, that is the system must possess some features of autonomic
computing. By doing so, the system must be able to find its own way to
an optimal instruction set in the particular context, at some particular
point in time.

Ideally, our hypothetical system must be able to learn communi-
cation patterns from scratch, by analyzing incoming active packets of
different formats and building a new compression rules according to
the current code landscape (code adaptation process). In this work,
we simplified our task and started from a higher level, i.e., a level of
VM instructions (we do not research here the translation step from exe-
cutable (native, machine) to interpretable code – see Figure 4.2). Having
a relatively short and transparent instruction set makes compression
an easier task and eliminates all the problems with compatibility.
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Figure 4.2: Code Adaptation Process
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In Chapter 5 we propose an online compression scheme and analyze
various scenario of its use. The basic principle of our solution is that
there is no compression in the first place. Code floods the network,
is installed on nodes and put into operation. Constantly, while being
executed, this code is put through a compressor chain which does
not take an effect on execution flow straight away. Rather, over time,
the network nodes, by analyzing current execution patterns, pick a
potentially optimal encoding and apply it without interrupting the
running software. As soon as the new software pieces are injected
and the old ones are replaced the system gradually adapts to those
changes and modifies coding on the fly. This allows to archive nearly
optimal coding (compressed representation) for the program. As it has
been said, program execution is not interrupted. The implementation is
simple and does not require much computations or memory usage, thus
it can be easily implemented in most types of ES which exist nowadays.
In some situations communication between nodes is needed in order to
agree on the next steps in compressing process to be made; our method
was designed to minimize communication activities and thus prolong
the nodes’ lifetime. In Chapter 5 we also analyze various scenario of
using this scheme: local, group, cloud and distributed compression
variants.

4.3 Code Polymorphism
The next code reduction technique we will consider refers to the concept
of code polymorphism.1 Polymorphism can be of different nature.
Code polymorphism is the ability to create a variable, a function, or
an object that has more than one form with the same name. When and
which form is put into operation by calling it by the common name
depends on the context. Type polymorphism allows program code to
work with various types. We will distinguish between two types of
polymorphism here: space- and time- types of code polymorphism.

Lets consider the following example which essentially just takes a
measurement, puts it in a buffer (stack), then after having 10 measure-

1Do not confuse with “polymorphic code which is code that uses a polymorphic
engine to mutate while keeping the original algorithm intact. That is, the code changes
itself each time it runs, but the function of the code (its semantics) does not change at
all.”
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ments in the buffer it calculates a mean. The code doing this is shown
in Listing 4.3 below.

1 sense # sense the very first value
2 L1: sense # sense some value
3 add # do "add" with two top values on the stack
4 add 2,1 # increment counter by 1 (position 2)
5 jmpneq 2,10,L1 # keep doing so until 10 measurements have
6 # been taken
7 div # do "div" with two top values on the stack

Listing 4.3: Code Space-Polymorphism Example

Let us illustrate it with the following picture which shows what is
happening on the stack (see Figure 4.3).
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Figure 4.3: Stack Operations for the “Sense-Calculate-Mean” Example

Obviously, what this piece of code does highly depends on the seman-
tics of add and div operators. Lets consider two variations:

1. add means “take two top elements from the stack, do arithmetic
addition on them, and put the result back on top of the stack”
and div means “take the top value from the stack, do arithmetic
division of that value by the next value on the stack (position
’top-1’), and put the result back on top of the stack”.1

1To keep it simple, we do not take into account possible overflow or division by 0
exceptions.
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2. add means “take two top elements from the stack, do arithmetic
addition on their inverses, and put the result back on top of the
stack” and div means “take the second top value from the stack
(position ’top-1’), do arithmetic division of that value by the first
top value on the stack (position ’top’), and put the result back on
top of the stack”.

So, what would be the result of both cases? Essentially, the first calcu-
lates an arithmetic mean:

x̄ =
1
n

n

∑
i=1

xi =
1
n
(x1 + . . . + xn)

and the second calculates a harmonic mean:

x̄ =
n

∑n
i=1

1
xi

=
n

1
x1

+ 1
x2

+ . . . + 1
xn

This eventually means that by switching the internal semantics of only
two operators, add and div, we can change the behavior of the code.
Semantic reassignments are made through a dictionary how it has been
explained in Section 3.2.9.

This example demonstrates that having the same code on different
nodes, we can make them implement different algorithm by changing
their on-board dictionaries. We call it space-polymorphism. By apply-
ing the same principle for the time domain we can obtain what we
call time-polymorphism: each node can behave differently over time
by using different semantics for the same code. This is archived by
switching between dictionaries – this mechanism was also explained
in Section 3.2.9.

In the example above operators add and add 2 1 are actually the
same operator taking a different number of arguments. This allows to
encode them identically. The number of arguments and their values are
processed at run-time. This mechanism was explained in Section 3.2.9.

4.4 Code Versioning and Lifecycle
Code versioning allows to keep software on all nodes up-to-date and
to control code installation and removal. Each capsule in the system
has unique ID and version number. The unique ID allows to identify
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capsule’s type, the version number – its age, or generation. Addition-
ally, for every capsule a lifetime can be specified – as an absolute value
(time units, number of packets/capsules processed). All that is done
with the following directives:

1 Autoupdate 1 # 0 - autoupdate disabled
2 # 1 - autoupdate enabled
3 Lifetime 10s # lifetime (0 - stay alive forever)
4 Id 0x41 # capsule ’s ID/version

Listing 4.4: Capsule’s Control Directives

AUTOUPDATE enables (0) or disables (1) autoupdate feature. If autoup-
date is enabled then a capsule with the newer version and the same
ID replaces the older one automatically (it is installed and put into
execution by the VM; no further actions from the capsule itself are
required). If two capsules have the same ID – no replacement is made
automatically. If autoupdate is disabled capsule’s replacement is still
possible but this must be encoded in the incoming (new) capsule with
replace operator which takes the replacing capsule’s ID as an implicit
argument.

If multiple capsules are used to implement some task, only capsules
with the same version can react. This avoids version inconsistency. In
case if only one capsule in a set is updated and others remain the same,
a bind operator exists which, if it is called by some capsule on a node,
updates all other capsules to its version number. This operation can be
potentially dangerous and must be used with care.

LIFETIME defines the lifecycle of a capsule. It is specified as an
absolute value (currently milliseconds, seconds and minutes are sup-
ported: 50 ms, 5 s, 1 m; plus a number of packets/capsules processed:
10p). After the time (or the threshold) is expired (exceeded) the capsule
is removed from the node automatically. If lifetime is set to 0, the
capsule will stay alive forever, unless it is erased using die operator.
die operator can be called from within this capsule only. To call the
same functionality from an other capsule installed on a node use kill
operator; it takes removing capsule’s ID as an argument. Its use is not
appreciated though.
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Finally, ID field specifies capsule’s ID and version number. In the
current implementation of ChameleonVM, for example, it is an 8-bit
value.1 The most bits specify capsule’s ID, the least – version number.

Having all those parameters in place allows to finely control cap-
sule’s lifecycle. Lifetime determines for how long the capsule will exist
in the system; autoupdate, ID and version number guarantee that no
version conflict will happen while upgrading to a newer version. Addi-
tionally, versioning in general and the AUTOUPDATE feature in particular
contribute to an easy and robust implementation of the viral propa-
gation method widely used in WSN by avoiding loops in broadcast
transmissions.

4.5 Code Robustness
The last aspect we discuss in this chapter is code robustness. Code
robustness is an essential part of any computer system. In the net-
working it becomes a critical point as the number of potential sources
of errors is bigger: in addition to memory and execution faults, also
we have interference (powerline and wireless), packet losses, incorrect
signal reception and detection due to the use of weak radio chips. If
most network traffic consists of data packets containing user informa-
tion (content), which is the case in traditional networks (e.g., Internet),
those faults could lead to an incorrect content to get delivered, or to a
malfunctioning service to get provided, the network functionality will
remain the same. In case of active networking model and migrating
code the situation changes. Having lost or misinterpreted packets may
lead to critical issues, and eventually a collapse.

Code robustness can be seen from many different angles: structural
robustness, algorithmic (behavioral) robustness, channel coding, robust
instruction set.

Structural robustness refers to how software system is organized.
A good example is modular architecture of all modern OS. If some
module starts malfunctioning, it can be safely removed from the system
and replaced by the good one, the system stays alive.

Algorithmic robustness allows the code to encapsulate some anti-
fault strategies. Compared to the structural robustness which comes
from the outside (in our example – from the OS), the algorithmic one

1FragletVM does not support the concept of code versioning.
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makes code self-protective: the code can potentially detect if something
goes wrong, and take a set of actions to prevent or to heal malfunc-
tioning behavior. One of the methods using algorithmic robustness
is based on Quines, programs with no input which produce a copy
of their own source code as the only output. The main idea of using
Quines is to have pieces of code which are continuously replicating
(regenerating) themselves. In case of code deletion the corresponding
Quine will create a new copy of the missing code fragment. Corrupted
code will not survive and will be erased as, most probably, it will not
be able to replicate itself. The first attempt of using Quines for building
network protocols was made in the context of CNP [MSTY08].

The next type of robustness exploits the idea of securing the com-
munication channel used for packet exchange. The technique is called
Forward Error Correction (FEC) and is widely used in radio commu-
nications as well as in storage medias (e.g., Reed-Solomon codes in
CD-drives, SECDED (Single-Error-Correcting and Double-Error-Detecting)
variant of Hamming code in RAM). Sometimes FEC is combined with
the re-transmission Automatic Repeat reQuest (ARQ) scheme to form a
class of hybrid error-control methods. A lot of studies have been done
on applying FEC techniques to WSN domain. Various error control
coding schemes and the impact of their use on error rates and energy
efficiency have been analyzed, namely, simple systematic XOR-based
schemes like SECDED and DECTED [JE03], BCH and Reed-Solomon (RS)
codes [KFC04], convolutional [DOM06] codes, as well as some modifica-
tions of the above methods. With no surprise, RS codes with different
error correction capabilities prove to be the best choice for WSN. Hav-
ing said that, many papers argue the benefit of using FEC in WSN to
be rather minimal. The reason for that is the strict requirements on
packet size and power saving in WSN. Most WSN platforms set the
limit on packet size to approximately 30 bytes of payload. As soon as
FEC assumes introducing a significant overhead this becomes unac-
ceptable for many applications as it requires more energy spending
thus reducing a lifetime of the system.

A number of hybrid schemes have been proposed to deal with
increasing energy consumption. Some of those solutions combine
error correction with routing [WDHN03], some provide multi-hop
decoding methods [QR07]. Packet combining [DFEV06a] also uses the
idea of multi-hop processing for corrupted data recovery. But the
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experiments have shown that a simple CRC (Cycling Redundancy
Check) in each packet (for error detection) accompanied with ARQ (for
error correction) still remains the main error-control approach in the
area.

Some recent studies have made an attempt to make a use of modern
codes in WSN. One of them can be seen as a developing of the Deluge
idea which we discussed earlier in Section 3.1.1. Deluge implement
error recovery through ARQ. In order to deal with multiple channel
errors Synapse [RZS+08] propose to use a hybrid ARQ scheme in which
the prior encoding is done using Fountain codes. Deluge and Synapse
naturally focus on dissemination whole program images, that is big
amounts of bulky data (code).

In our work we decided to have a look at the problem of robustness
from the instruction set point of view. In our system we assume using
some kind of pre-compiled interpretable meta-code which is similar to
byte-code. Code pieces are normally small to make them fit into one
packet (∼ 30 bytes). Having those two requirements it becomes obvious
that there is no room for FEC. Another important aspect is that the
meta-code is intended to implement real-time tasks meaning that ARQ
is not the answer either. The next question we faced was: is it possible
to encapsulate robustness in the code at the instruction level, and if
yes what degree of robustness we could obtain? We have not found
the ultimate solution for this problem yet but some considerations are
present below.

First, in computing, there is a so-called robustness principle stating
the following:1

“Be conservative in what you send; be liberal in what you accept.”

In terms of communication protocols this principle can be reformulated
as follows:

“Code that sends commands or data to other machines (or to other programs
on the same machine) should conform completely to the specifications, but
code that receives input should accept non-conformant input as long as the

meaning is clear.”

1Both formulations below taken from the Wikipedia article located at http://en.
wikipedia.org/wiki/Robustness_principle.
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The other idea we apply is straightforward: The less code we have, the
less errors can occur while executing or transmitting it.

The most obvious solution for making code more robust is to in-
troduce some type of redundancy. Adding a complementary parity
bit to each instruction would allow detection of 1-bit errors but add
an overhead. The same would happen in case of using some type
of majority filter. This method assumes duplicating each instruction
multiple times. In case of “3:1” filter we will have:

1 ...
2 add
3 add -> sub
4 add
5 ...

If one of the consecutive add instructions is mutated to something else,
say sub, the code will be able to detect it and execute add anyway.

Another option is to use the feature of Hamming distance (or Ham-
ming cube) for encoding. That would mean stretching each instruction
code to the farthest vertex (the biggest Hamming distance) on the Ham-
ming cube. Lets illustrate this with Figure 4.4.
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Figure 4.4: 4-bit Hamming Binary Hypercube
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If we have 3 instructions we encode them as follows: 0000, 0111 and
1101. These three codes have the largest possible distance which is 3.
This encoding is not unique, other combinations are possible as well
(e.g., 0010, 0101 and 1111).

The bigger is code distance the less are the chances that one instruc-
tion mutates into an other. The hypercube can be grown further thus
allowing to increase the distance between codewords but this means
again introducing redundancy as more bits would be needed. One
thing which hypercube allows us to do is to use a probabilistic execu-
tion approach. As 1-bit alterations are more probable than multi-bit
ones, then if only 1 bit is flipped we could stretch the code back to the
original one (the nearest). For example, if code 0000 has been mutated
to 0010 (and 0010 is free), we push it back to 0000 and try to execute
it. Alternatively, if we have enough free coding space, we can assign
all neighboring vertexes to the same instruction: in the example above
it would mean assigning 0000, 0001, 0010, 0100 and 1000 to the same
instruction. In this case, if 1-bit error happens the code will still be
executed correctly. Yet another approach proposed by Thomas Meyer
in [Mey10] is to map all free instructions in the Hamming hypercube to
the nop operator, so that if some instruction is mutated the execution is
not interrupted and that instruction is just skipped.

The next thing to mention is that our method of dictionary-based
instruction set naturally provides higher chances to detect incorrect
instructions. First, instructions are supposed to be long (or to grow
in size). Thus, error detection can be done by analyzing instruction
patterns. Later, error correction can be done by choosing the instruction
which actually fits the pattern. This refers to the idea of probabilistic
execution stated above. Some execution pattern are more probable than
others. By analyzing a code (which can be done in real time as well)
we can rate occurrence of each instruction. If we look at the example
in Listing 4.1 once again we can generate an occurrence rate for each
instruction pair (see Figure 4.5).

By analyzing this pattern we can see that exit are more probable
to follow led instruction in this example, and in case if me meet an
unknown instruction followed by exit we could assume that we should
execute led.

This probabilistic approach have some shortcomings. For example,
errors in arguments (not in their number), or two instructions with
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Figure 4.5: Instruction Pair Occurrence Rate

identical patterns are undetectable. Harvard architecture (physically
separated storage and signal pathways for instructions and data)?

Using dictionary-based instruction sets give us one more option to
detect errors. Dictionary errors might be controlled by locally storing
replicas of neighbors’ dictionaries.

4.6 Summary
In this chapter, we have described and analyzed five main aspects
of run-time optimization of mobile code in network ES: code shrink-
ing, compression, polymorphism, versioning and lifecycle, robustness.
Each of these has a significant contribution to the process of changing
code representation. For successful operation the system must include
all these blocks. However, we have decided to focus our attention on
the code compression methods as the most interesting step of the opti-
mization. We have presented the existing work in the area of data and
code compression and outlined what is currently missing. It turned out
that there is no specialized technique has been developed for use with
short instruction sequences. We have planned to do more research in
the field of dictionary encoders and try to apply those methods to vari-
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ous types of code streams, especially the ones we already developed as
part of the two network engines from Chapter 3.

125





5

Online Code Compression
Framework

This chapter presents an online code compression scheme, the
core part of the dynamic code morphing framework introduced
in Section 1.5.4. In cooperation with the code shrinking and
code polymorphism discussed in Chapter 4, code compression pro-
vides more efficient code representation which eventually allows
reduction in code transmission energy costs. This is especially
critical for battery-supplied embedded systems (ES) like WSN. In
the beginning we carry out analysis on existing hardware and
software based code compression schemes in ES. Then we describe
our method in detail and discuss possible application scenarios
of different complexity: single-node compression, compression
in a group of nodes, distributed version, cloud-compression for
networks using Virtual Segmentation (see Section 1.5.1). We
look at various aspects of the solution in order to understand its
efficiency in terms of compression factor, convergence speed and
with regard to the existing schemes mentioned in Section 4.2.



5. Online Code Compression Framework

5.1 Kolmogorov Complexity of Code Streams
The field of code compression relates to the Algorithmic Information
Theory (AIT) which studies relationship between computation, infor-
mation and randomness, or, in particular, complexity measures on
strings (or other data structures). Any code stream can be described in
terms of strings and symbols, thus AIT can be applied here.

In the context of AIT the information content of a string is equiva-
lent to the length of the shortest possible self-contained representation
of that string, which is in fact a program in some language. This pro-
gram outputs the original string. As it can easily be seen this essentially
employs the concept of compressibility. Sometimes the term algorith-
mic information is also referred to as Kolmogorov Complexity (KC)
or Algorithmic Complexity (AC).

Although KC in general is an incomputable function, here in order
to establish a correlation between compressibility of code streams and
KC we use it as a numeric metric of complexity and compressibility.
Let us consider an example where the string

“01010101010101010101”

has the short description “10 of ‘01’”, while the string

“01101011110110101110”

most probably has no simpler description other than the original string.
Now we can calculate KC for both strings: K(s1) = 8 and K(s2) =

20. Note, KC is not a unique function; it depends on the selected
representation. For example, if we choose to represent the first string
as “10x01” then KC of this string would be K(s1) = 5.

In the next two sections we will try to translate the concept of
KC to the domain of code compression. We will start from a very
common compression case in Section 5.1.1 and move towards the code
compression in Section 5.1.2.1 This will help us to understand what
can be expected from the proposed method.

1The text in Sections 5.1.1–5.1.2 partially cites and is based on the Wikipedia articles
rooted at http://en.wikipedia.org/wiki/Kolmogorov_complexity (these pages contain
proper referencing to the original sources). Copyrights are held by the corresponding
authors.
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5.1.1 Translation of KC for a Common Compression

It is straightforward to compute upper bounds for K(s): simply com-
press the string s with some method, implement the corresponding
decompressor in the chosen language, concatenate the decompressor
to the compressed string, and measure the resulting string’s length.

A string s is compressible by a number c if it has a description
whose length does not exceed |s| − c. This is equivalent to saying
K(s) ≤ |s| − c. Otherwise s is incompressible by c. Incompressible
strings exist, since there are 2n bit strings of length n but only 2n − 1
shorter strings, that is strings of length n − 1 or less.

For the same reason, most strings cannot be significantly com-
pressed: K(s) is not much smaller than |s|, the length of s in bits.

Additionally, in the theory is has been proven that with the uniform
probability distribution on the space of bitstrings of length n, the prob-
ability that a string is incompressible by c is at least 1 − 2−c+1 + 2−n.

5.1.2 Translation of KC for Online Code Compression

First, we specify a description language L for strings (code stream). In
our case these are two assembler-like dialects (ChameleonVM, Agilla),
LC and LA, and one prefix-rewriting language (FragletVM), LF. These
were discussed in Sections 3.2 and 3.3, respectively. An encoding is
a function which associates to each Turing-machine M (this is our
compression engine) a bitstring 〈M〉. If M is a Turing-machine which
on input x outputs string s, then the concatenated string 〈M〉 x is a
description of s.

As it has been said, formally, the KC of a string is the length of the
string’s shortest description in some fixed description (programming)
language L, or its sub-class (LC, LA or LF). This can be written down
as follows:

K(s) = |description(s)| = |〈M〉 x| (5.1)

In AIT there are many important theorems and corollaries, which
relate to the KC. Here we provide only a few, which seem to be relevant
to our further work:
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– The choice of description language affects the value of KS and
the effect of changing the description language on the value of
KC is bounded:

∀s, L1, L2 |K1(s)− K2(s)| ≤ c

This means that by changing the description language (e.g., from
LC to LF) the KC of the encoded stream will change only by the
additive constant which depends only on the language.

– It can be shown that the KC of any string cannot be more than a
few bytes larger than the length of the string itself:

∀s K(s) ≤ |s|+ c

In the worst-case scenario when the compression fails to reduce
the size of the input stream we can expect at least that it will
oversize it too much with system information.

– Among algorithms that decode strings from their descriptions
(codes) there exists an optimal one. This algorithm, for all strings,
allows codes as short as allowed by any other algorithm up to
an additive constant that depends on the algorithms, but not
on the strings themselves [Kol65]. This theorem means that the
algorithm will work for any program if it works for one.

– “Full employment theorem”: There is no perfect size-optimizing
compiler.

– “Chaitin’s incompleteness theorem”: In the set of all possible
strings, most strings are complex in the sense that they cannot be
described in any significantly “compressed” way. However, the
fact that a specific string is complex cannot be formally proved, if
the string’s complexity is above a certain threshold.

The last two rather theoretical statements leave us with a chance
that some types of code streams might stay incompressible or that they
would require a different compression approach.

5.2 Analysis of Existing Solutions
In Chapter 1 we discussed our motivation behind developing a new
code compression scheme, as well as a number of supportive concepts
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our design involves, namely, the task-oriented approach and network
VS. Later, in Section 4.2 we listed and analyzed the most notable general
compression techniques. Those methods can be applied for any type of
stream but the question of effectiveness remains open. Here, we first
would like to analyze the existing compression solutions, which are
more specifically tailored to code streams and make a statement as to
why there is a need for a new method.

ES feature very limited computational and energy resources. Nor-
mally, “sending a single bit of data can consume the same energy as
executing thousands of instructions to produce that bit of data” [HM06].
Hence, more should be done on representation of what is to go out
before the actual transmission. In Section 4.2 we came to the conclu-
sion that all known data compression schemes more or less fail while
being applied to the code. Although these methods offer a number of
fundamental features which we will use in our design.

Different criteria can be used to categorize code compression tech-
niques. In general, they can be grouped as follows:

– Compression of pre-compiled platform native code using stan-
dard compression algorithms from the data world.

– Various native code optimization tricks at compile-time.1

– Bytecode compression.
– Modification to ISA to provide shorter opcodes for most fre-

quently used instructions.
– Providing ad-hoc ISA sub-sets for different tasks (e.g., for DSP-

related operations).
– User-definable ISA.

These methods can be either compile-time or run-time based and
they can be implemented either in hard- or software. Additionally, they
can be specifically designed either for the native (binary) code or some
sort of bytecode (e.g., Java).

1Also, some works exist where a binary file is optimized (link-time program re-
writing) instead of the source code which allows to compact statically allocated data as
well [SBB05].
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5.2.1 Data Compression Techniques for Code

A number of attempts have been made to apply standard data-oriented
compression methods to code.

In [TDV08b] the authors use DEFLATE [19596] (GZIP [Deu96]) to
compress loadable binary ContikiOS’s ELF modules. They report a 67%
dissemination time cut (multi-hop) and a 69% energy consumption
saving if GZIP is in use. Additionally, they state that using other com-
pression methods like arithmetic coding [RL79], VCDIFF [KMMV02],
LZARI, LZO1X, S-LZW [SM06] and SBZIP (Burrows-Wheeler Transform
[BW94]) show worse results in terms of performance but sometimes
those ones feature a smaller memory footprint which might be critically
beneficial for some applications.

The authors of [MuuR07] apply several general-purpose data com-
pression techniques to software-based self-test (SBST) programs in
WSN. They demonstrate node energy savings by using an adaptive test
program compression scheme with a small memory footprint based
upon the Bentley-Sleator-Tarjan-Wei (BSTW) [BSTW86] algorithm in con-
junction with Golomb-Rice coding. By comparing it to LZW and Dynamic
Huffman (a.k.a., Faller-Gallager-Knuth (FGK) algorithm) implementations
they obtain the results which show that BSTW’s compression rates are
more than two times lower than LZW (however, sometimes BSTW
outperforms FGK) but in terms of memory footprint their solution is
unbeatable taking, 15 times less memory space than LZW.

The TinyVM [BSE06] (forked into leJOS, Java for LEGO Mindstorms)
project offered a specific bytecode/binary code mixed-mode execution
environment for WSN where frequently executed code is compiled
to binary code and less frequently executed code is compiled to byte-
code. This approach is similar to [HATW99] used in the TriMedia VLIW
processor. To disseminate the bytecode part of the resulting image
they split the bytecode stream into op-code stream, number stream and
symbol stream [DE02]. After that each stream is compressed using Huff-
man encoding. Adding a dictionary-based approach further improves
compression rates. Their experiments showed that Huffman-encoded
bytecode occupies only 36%–57% of the space of the corresponding
binary code, it executes only 2–36 times slower on TinyVM (on ARM
Xscale processor) than binary code with a speed-up of a factor of 3.
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Another approach is to incorporate compression into the instruction
fetch inside a VM using Huffman codes [LF03].

The solutions above are meant to work with a program image. This
means that decompression is done on a target by some software module.
After that the code is fed into an actual code processor.1 A number of
schemes have been proposed where the compression engine becomes
an integral part of the CPU itself. In this case, the code processor
“naturally” knows how to execute the compressed code. This does
not eliminate a need for the decoding stage but at least no additional
software support is required. The solutions of this kind featuring
dictionary-based, arithmetic- and Huffman-coding, Hamming distance and
operand factorization exist for RISC [WC92] and VLIW architectures
[RS04].

As can be seen all the solutions above utilize the classic data com-
pression methods. In our opinion this limits their use and performance
drastically.

5.2.2 Compression of Native vs Bytecode
A number of original bytecode compression schemes have been pro-
posed. Most of those solutions are Java-oriented but to some extent
could be applied to other forms of bytecode. All of them are rather
complex and sophisticated and do not meet the resource requirements
of most WSN platforms [Pug99], [CSCM00].

Native code compression is similar to bytecode but uses specific
features of the binary format for a specific platform. This normally
allows to achieve better compression rates [CM99], [EEF+97], [LW99],
[LBCM97], [LM98].

Both approaches are static and software-based; an image is com-
pressed at compile-time.

5.2.3 Instruction Set Compression
Traditionally, code compression is seen as compacting pre-compiled
code, binary or any form of byte-code (see Sections 5.2.1 and 5.2.2).
We consider it as a problem of changing code representation at run-
time by modifying (optimizing) the instruction set. We applied this
technique to our own byte-code by creating a task-specific ISA (in fact,

1Which can also be software-based in case it is a VM.
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a specification for the byte-code) at run-time. It turns out that some
similar solutions can be found in the field of microprocessor ISA.

Most of the related techniques are implemented in hardware. There-
fore, they are hard-wired and not flexible. On the other hand, hardware
implementations offer much better performance measures, which are
not achievable using software solutions. Two groups of hardware
compression techniques exist:

Hand-tuned ISA: Most commonly used in CISC and DSP worlds. This
method reduces instruction size by designing a compact ISA
based on operation frequencies. It makes the ISA more complex
and the decoding stage more expensive; also it makes the ISA
non-orthogonal, which eventually hampers compiler optimiza-
tions. Another disadvantage is that ISA becomes inflexible for
any future extensions.

Ad-hoc ISA: Typically specifies two instruction modes: compressed
and uncompressed. The main advantage is that decoding is sim-
ple and fast since instructions stay compressed in cache. However,
decompression is on the critical path and compression rates are
low. Mostly used in RISC embedded processors.

Hardware implementations of code compression are used inside
microprocessors in order to reduce memory footprint of the on-board
program image. Mainly those architectures are used in embedded
solutions where memory resources are limited. The reason why com-
pression is used is because all those microprocessors employ RISC
architecture, which means they have poor code density. CISC families,
such as Motorola 68K and Intel x86, do not need code compression –
their standard code density is still better than the compressed modes of
the RISC chips. The architectures discussed below belong to the class
of RISC-processors. The survey below partially cites and is based on
[Tur04].

ARM Thumb: Thumb is a second, independent instruction set mapped
onto ARM’s standard RISC instruction set. One can switch between the
two instruction sets through a mode-switch instruction in the program
code. The Thumb ISA consists of 16-bit instructions, about 36 in total. By
using short instructions instead of ARM’s normal 32-bit instructions the
size of some code can be reduced by 20 to 30%. Thumb code cannot be
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intermixed with normal ARM code. Instead, an explicit switch between
standard ISA and Thumb is required every time. Thumb includes the ba-
sic add, subtract, branch, and rotate operations. Because of its simplistic
nature some operations are not possible in Thumb mode. For example,
Thumb cannot handle interrupts, exceptions, long-displacement jumps,
atomic memory transactions or coprocessor operations. This limits its
use to basic arithmetic or logical operations. Everything else has to be
done using ARM’s standard 32-bit instructions. Parameters are passed
between ARM code and Thumb code through the stack or through a
number of registers available in both modes. Switching to and from
the Thumb mode also takes time and adds code. Several dozen bytes of
preamble and postamble are needed to organize pointers and flush the
CPU pipeline. Because of this overhead switching makes sense only if
the processor remains in Thumb mode for several dozen instructions
at a time. Performance in Thumb mode drops by 15%. This is mainly
caused by the overhead of switching between 16- and 32-bit modes.
Thumb instructions are also less flexible than their 32-bit counterparts
(more Thumb instructions are needed to do the same job compared
to 32-bit instructions). However, Thumb makes caches more effective
because the instructions are only half as long.

MIPS: MIPS employs a second, 16-bit instruction similar to ARM’s
Thumb. The MIPS16e instruction set includes a bunch of 16-bit short-
hand versions of standard MIPS arithmetic, logic, and branch opera-
tions. As with Thumb, one has to switch in and out of MIPS16e mode, a
process that introduces some overhead in time and code space. As with
Thumb, the space savings amount to 20 to 30% in most cases. Neither
MIPS16e nor Thumb really compress code. They just offer alternative
opcodes for some operations and the amount of “compression” seen
depends on the ratio of short opcodes to long ones. That, in turn, de-
pends on what the code is doing. System-level code, like operating
systems and interrupt handlers, cannot use 16-bit instructions at all
since its functionality is not enough, so they do not benefit in anyway.
Long computations using a lot of arithmetic show a relatively good
response to compression. Data does not compress at all, only code. If
applications include a lot of static data structures the overall memory
savings may be small and at the same time performance degrades by
15%.
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Thumb-2: Thumb-2 operates like ARCompact (see Section 5.2.4) or Mo-
torola 68K, allowing to mix 16-bit and 32-bit instructions without mode
switching. Overall, Thumb-2 offers a little bit less compression than
Thumb but with a less reduction in performance. To this end, ARM has
a hole in its opcode map: BL (“branch and link”), the instruction that
switches between Thumb and ARM modes. BL has some unused opcode
bits, those previously undefined bit patterns now provide an extension
of a whole new instruction set. The biggest advantage of Thumb-2 is
that it is a complete ISA. Programs need never switch back to “nor-
mal” 32-bit ARM mode. Programs can now handle interrupts, set up
MMUs, manage caches and generally behave like real microprocessors.
However, Thumb-2 still causes a decrease in performance. Even though,
there is no mode-switching overhead it still takes more Thumb-2 in-
structions to perform certain tasks compared with standard ARM code.
Those extra instructions (and extra cycles) add up to between 15 and
25% speed lost. Eventually, Thumb-2 replaces both the ARM and Thumb
instruction sets with a single, more compact instruction set.

As can be seen, in the case of MIPS16e and ARM Thumb, one can
choose which parts of code to compact and which not. PowerPC Code-
Pack offers compression of an entire image only.

IBM PowerPC CodePack: This approach is hybrid. Compression
is done in software, decompression in hardware. Unlike Thumb and
MIPS16e, CodePack really does compress executable code. It works
like running a compression program (e.g., GZIP) on PowerPC code.
CodePack analyzes and compresses entire programs, producing a com-
pressed version that has to be decompressed and executed on the fly.
For all its complexity, CodePack delivers about the same 20 to 30% space
savings as the others. PowerPC code is compiled in the normal way,
using standard tools. CodePack even works on existing code, with
or without source code. Before the code is burnt into ROM it is run
through the CodePack compression utility. It analyzes instruction dis-
tributions and produces a pair of unique keys specific to this program
only (the upper and lower 16 bits are compressed separately because
the upper half of each PowerPC instruction (which holds the opcodes
bits) has a different frequency distribution than the lower half (which
typically holds constants, displacements, or masks – using two differ-
ent compression algorithms produced better results than any single
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algorithm). When this compressed program is executed, a CodePack-
equipped processor uses the keys to decrypt the compressed code
on the fly. The decompression adds a tiny amount of latency to the
processor’s pipeline. In general, CodePack’s performance effects are
negligible. However, a number of shortcomings exist. Since every
compressed program produces a different set of compression keys,
CodePack is essentially an encryption system as well as a compression
system. Without the keys a program cannot be executed. This also
means that compressed PowerPC programs are not binary compatible.
One cannot just exchange compressed programs with other systems
unless their decompression keys are also provided. This makes code
distribution tricky.

The main problem with hardware implementations is that they are
not scalable and in most cases cannot be modified. They are tailored to
a specific instruction set. Most compression schemes have a negative
effect on performance. Moreover, compression rate highly depends on
the code being compressed.

5.2.4 User-Definable ISA
This class introduces a task-specific instruction set for every job. Both
software-based (e.g., ASVM [LGC05], [LGC04] based on Maté), hardware-
based (e.g., Xtensa, ARCompact) and hybrid (e.g., Altera NIOS soft-core)
implementations exist. ISA is modified offline and tailored to perform
a particular task. Further changes are not possible. This approach gives
the best performance gain.

ARCompact: The ARCtangent processor has a user-definable instruc-
tion set. Hence, any changes to ISA are possible. In the case of ARCom-
pact, a number of 16-bit instructions are added to improve code density.
What makes ARCompact different from Thumb and MIPS16e, is that it
can freely intermix 16-bit and 32-bit instructions. This process requires
no mode switching and there is no overhead. ARC’s compilers insert
16-bit operations whenever possible. Though the code 32-bit alignment
might suffer. The reason why mixing is possible is because compared
to ARM, MIPS or PowerPC, ARC has a bit in the instruction word to
determine size. This allows having variable-length instructions. The
feature exists on other architectures like Tensilica Xtensa, Intel x86 or
Motorola 68K as well.

137



5. Online Code Compression Framework

NIOS-II: Is a 32-bit RISC soft-core processor architecture which is
implemented entirely in the programmable logic and memory blocks
of Altera FPGA. The soft-core allows the user to specify and generate a
custom instruction set tailored to a specific application’s requirements.

ASVM: This is an extension for the Maté VM mentioned in Section 3.1.2.1.
It allows for definition of application-specific bytecode instructions at
run-time and to compile it as a part of the VM image. Following this,
disseminated programs can use the newly defined opcodes, increasing
the code density.

Custom instruction sets provide a very high level of flexibility. They
allow the task’s representation to reach near optimum. The only prob-
lem is that all the solutions are static. Run-time re-definition of ISA is
not possible.

5.3 Requirements
Having outlined the existing work in the field we are now ready to
formulate what we actually expect from the new scheme.

First, code compression becomes pointless in most configurations,
which do not use communications as per bit of memory storage price
is dropping and the memory chips’ density is going up. Our scheme
was originally designed for mobile code, every bit of which being
added/removed affects the system’s lifetime.

The hardware and software solutions presented in Section 5.2 lack
a number of features which are necessary for running programs based
on mobile code. For our purposes we mainly assume building network
protocols using the netware paradigm discussed in Section 3.1.3. There-
fore, in the design of our compression scheme we tried to address the
following issues:

Run-time operation: Our compression scheme works “online”, which
means that code is being compressed/decompressed at run-time
while the system is running. Pre-compression of the entire pro-
gram image is not required, nor pre-decompression.1 The need to

1To be precise, compression/decompression phases exist but they are transparent
from the execution engine. The only cause of delay is the dictionary search operation,
which is fast because the dictionaries are small.

138



5.3 Requirements

meet tight time requirements is critical for building network pro-
tocols. The response time for such a system should be negligible
in respect to time characteristics of protocols built on top of it.

On-the-fly support: Ability to execute compressed code is important
to provide the run-time operation discussed above. Duplication
of capsules as mentioned in Section 3.2.11 is the process when
capsules are stored in the on-board storage in a decompressed
form only. The compression process, running constantly, creates
a compressed reference, which is updated as new rules are being
introduced. When a capsule leaves a node the compressed refer-
ence is sent out. This approach allows compression of code and
at the same time no loss of speed while the code is being executed
on a node. However, the compression engine can be configured
to work in a full on the fly mode – no references are created, the
storage contains compressed code.

Small memory footprint: Using compression schemes from Section 4.2
normally requires a lot of memory resources. Those compres-
sion/decompression algorithms are computationally expensive.
Dictionary compression methods require a lot of space to store
dictionary structures. We designed our scheme with the very
limited memory resources of ES in mind. Dictionary structure
allows representation of even very complicated instructions with
very few bits of information. During dictionary synchronization
only delta is transmitted, this operation does not consume too
much energy. Moreover, dictionary size can be regulated using
various parameters, which will not allow it to grow unexpectedly.

No pre-deployed dictionary: Since an instruction dictionary is created
while the system is already in a running state, no pre-distribution
of dictionaries is required. This saves power on dissemination of
the dictionaries.

Adaptability: This is a key factor for building task-specific configura-
tions. Our system can adapt to changes in the environment. The
configuration of software, which is currently in use has impact
on code compression, this impact becomes visible over time. Fur-
thermore, introduction of the idea to use network VS (overlaid
task clouds) allows extension of adaptability to the space domain
as explained in Section 1.5.1.
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As shown in Figure 5.1, it might take some time until the system
reaches a compressed form (see Section 5.4.9). By introducing new
software pieces or removing old ones, we will break this equilibrium.
In order for it to settle down again it will take some time.
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Figure 5.1: Characteristic of Online Compression in Time and Resource
Domains

From the “initial code size” the system shrinks down to the level
given by the parameters of the compression scheme (e.g., alphabet
size, free space, etc. – see Section 5.4.8 below). While program size
has a tendency to get smaller, dictionary size grows inversely. Some
fluctuations in the program size reduction curve are caused by wrong
decisions, which the system might occasionally make while trying to
compress the code. As previously stated, it can also happen when new
software pieces are introduced into the system and old ones leave. This
mechanism is further discussed in Section 5.4.

Similarly to a lower limit the system also has an upper limit defined
by the available physical memory on a node. This may cause the
dictionary to stop growing at some point where its size gets too big.

5.4 System Architecture
Our compression scheme is based on the principle of constantly re-
writing instruction sequences in the code stream, i.e., dynamic contin-
uous instruction re-encoding. When a piece of code (a capsule in case
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of ChameleonVM or a fraglet in case of FragletVM) is picked from the
local storage for execution, it is sent through a chain of modules which
analyze the stream, make a decision on what instructions should be
combined next and rewrite the original stream according to the new
rules. This mechanism is shown in Figure 5.2.

!"##$%&'
())*+%,$%&)

-#$$'!./$'
)0(!$

(%(123$#

!"#
$%%&'!("!)

*+",-$."*

*$//*

%)$)%0
%&!'-"1#"&'2)%3
,$&+"/1#"&'2)%3

-&!4%3
5+""1%,$."

/&.)&6!$+7
4$))$1
.#'!1$

.#'!(0)"1$'
)&.#(+$

)01*&&$#'5
!1&$#

&!%)+8.)&6!1"!.6/&!'1-66498,

&*,$'5
!./$')0(!$
$)&*,(&.#

!-)"+168)1/$)$3
%,-&)1:&)%)+"$(

"%)&($)"1)&(&!'%3
%",$+$)"1-6.$-1$!/
*!")#6+4*1.6/"

#$6#*&*%+

+8-"%1%)$)%

$7$!"&*.%
$%+*%$

";';1<2$("-"6!=>
6+1?+$'-")%=>

&!.6(&!'
.$,%8-"%

68)'6&!'
.$,%8-"%

Figure 5.2: Online Compression Scheme: System Architecture

5.4.1 Pair-Wise Stream Search

Code fragments are picked from the capsule storage (a.k.a., vessel in
FragletVM). If we deal with fragmented code stream (see Section 5.4.4),
then the splitter picks the next code piece (i.e., fraglet). At the same
time the filter separates the data and code (see Section 5.4.5). Time
and code space estimation is then performed. At this stage the system
tries to figure out if the further changes would still allow the code
to meet time requirements (if the code has to go out immediately the
execution interrupts), local code gets separated from the one, which is
supposed to be sent later. Later, the result is fed into the analyzer which
calculates various metrics for the code (weights for each instruction,
each instruction pair, etc.). The information already stored in the dictio-
nary is used too. The analyzer is also responsible for making the final
decision on which new instruction assignment should be made next.
When the decision is made the corresponding change is committed to
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the on-board dictionary. After that the original code is re-written using
new encoding and put back into the storage.1

Code analysis is the central part of the chain described above. Our
algorithm for finding the next possible assignment is based on the idea
of using a pair-wise sliding window as shown in Figure 5.3.
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Figure 5.3: Online Compression Scheme: Sliding Window

For the supplied code stream we first calculate the weights of each
single instruction, then for each pair of consecutive instructions. By
doing this we also keep track of how many links (appearance rate)
each instruction already has in the dictionary as well as the level of
nesting (depth). Based on this information the most promising pair of
instructions is picked. This pair is encoded as a new single instruction.
After that the original code stream is re-written where the picked pair
is replaced with the new opcode, and the process repeats again.

Example. Let us demonstrate how this works using a concrete exam-
ple. We will use the code from Listings 4.1 and 4.2, Section 4.1. This
example code is simple and has many patterns. For simplification, let’s

1ChameleonVM saves a compressed reference to the original code which is used
only at the communication stage. The local uncompressed copy is used further by the
execution engine.

142



5.4 System Architecture

eliminate all data fields from the original stream first.1 Now, we use a
search algorithm described above to find the most frequent pairs and
pack them in a dictionary by replacing with new opcodes. The iterative
processes for the two code pieces are shown in Figures 5.4 and 5.5,
respectively, in a form of a compression tree; the instruction sequences
being replaced are marked with blue.

Note that --- operators intervene the compression process, as they
are used for code shrinking as described in Section 4.1. The compres-
sion stops when there are no more pairs of instructions. We assume we
have at least 3 free opcodes, otherwise the compression will stop earlier.
In the first example (see Figures 5.4), we can observe that instruction
pairs having the same weight are chosen randomly which is not exactly
true as the pre-existing dictionary content can influence the selection
process (see Section 5.4.2). In the second example (see Figures 5.5), we
assume that we have only 3 free opcodes, no more. This pushes the
instr3 to grow instead of creating new entries in the dictionary. We
can also see that the algorithm is smart enough to discover overlapping
sequences and to correspondingly adjust their weights (marked with
red in Figure 5.5).

In these examples the selection is straightforward because of the
structure of the code. In other cases, the selection procedure might
require more steps than just a pair-wise weighting, as described in
Section 5.4.2.

5.4.2 Selection Algorithm
The algorithm of selecting the next pair of instructions is straightfor-
ward and is based on analysis of the frequency distribution of instruc-
tions in the original stream. The following criterion is used first:

max ω(Ai, Ai+1)

as a pair of consecutive instructions having the biggest weight (appear-
ance frequency). If only one candidate exists, it is picked. If not, for all
found pairs we collect the weight for each of the two members in the
pair:

ω(Ai), ω(Ai+1)

1In fact, this is done by a compiler and the ChameleonVM engine at run-time.
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Figure 5.4: Online Compression Scheme: Compression Tree Example (for
the code in Listing 4.2)
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Figure 5.5: Online Compression Scheme: Compression Tree Example (for
the code in Listing 4.1)
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and find the one having the maximum value of:

max (ω(Ai) + ω(Ai+1))

If the one is found, it is picked. If not, in order to incorporate the
information on a structure of the existing dictionary records in the
equation we take the sum of the links the two instructions already have
in the dictionary:

max (λ(Ai) + λ(Ai+1))

Additionally, the information extracted from the existing dictionary
gives the following constraints to the selection process:

– no duplicates: e.g., assignment A → D → E is not allowed if A →
B → C already exists,

– no cycles: e.g., assignment C → A → B is not allowed if A → B →
C → D already exists, and

– rough estimation on the effect of replacement: e.g., assignments in
a form of A → B → C and A → D → E → F are estimated in
order to understand if the replacement is profitable. This gives
no guarantees. Nested sub-branches are not analyzed.

Using the above constraints, the pair with the highest number of
links is selected. In case of still having multiple choices the random
selection is made.

The proposed selection is simple and fast, at the same time it allows,
with high probability, to find a nearly optimal pair for the next step. A
more sophisticated algorithm can be used instead but this would lead
to a very long time in the selection process (see more on convergence
speed in Section 5.9). The fluctuations in Figure 5.1 are caused by the
fact that selection is not always optimal.

5.4.3 Pairs vs Multi-Sequences
The selection process runs on a pair-basis as was shown in Figure 5.3.
The reason being, that forming instructions into pairs provides more
granularity for the selection process compared to triplets or larger
sequences. Eventually, this allows to achieve better compression factors.
However, it results in slowing down the convergence speed. The only
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case where larger sequences would be better than a pair-based selection
is equi-weight code streams, i.e., streams with no patterns. In reality, it
is not the case.

Using the terminology from Section 5.1 we would say that the string
will respond more quickly to compression based on multi-sequence
selection if the string satisfies the property of Kolmogorov Random-
ness. This property defines a string “as being random if, and only if,
it is shorter than any source that can produce that string”. Since “it is
impossible to come up with a representation of a random string using a
source with the length shorter than the length of the original string”, the
theory declares that Kolmogorov random strings are “incompressible”.
Below we show that even completely, randomly generated strings have
patterns.

5.4.4 Continuous vs Fragmented Code Stream

In the analysis below we consider two cases: continuous and frag-
mented code streams. The ideal continuous code stream is non-reachable
abstraction as any code stream has some level of fragmentation. This
fragmentation is caused by mainly two reasons. The first is that
code is naturally fragmented at the programming stage. In case of
ChameleonVM we operate with capsules and their size has an upper
bound dictated by the technological constraints of radio chips on WSN
nodes. Fraglets are by definition separate computational units. The
second cause of fragmentation is an ability of both capsules and fraglets
to split and merge their execution flows (split and merge operations
in ChameleonVM; split(at) and match in FragletVM). Obviously, if the
execution flow splits into multiple threads or merges from multiple
thread, it has an impact on the compression process, which would have
to revert assignments in a form of: A → B → split → C.

Reverting might be a very complicated operation affecting many
dictionary records and breaking dependencies. In order to avoid this
our compression algorithm interrupts and wraps up every time it meets
split or merge operations and continues afterwards. As shown in
Section 5.5, in the set of experiments with different fragmentation rates,
this gives smaller compression factors but eliminates very complex
reverse assignments which are critical for timings.
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5.4.5 Data and Code Mix
The von Neumann architecture assumes that code and data are mixed
together in one stream. This is in contrast to the Harvard approach
where code and data come from different locations. ChameleonVM
uses a single-stack-based architecture where immediate operands are
stored separately from the code. In FragletVM there is no distinction
between code and data, the fraglets stream is prefix-driven in the sense
that the type of the next item in the stream (operand, instruction or
synchronization tag) depends on the type of the previous one.

In our research, we focus on compressing instruction sets and code
only. Therefore, data is excluded from the compression process as
shown in Figure 5.6.1
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Figure 5.6: Online Compression Scheme: Data and Code Mix

This does not affect the performance. ChameleonVM is a stack-based
machine which means that parameters are taken from the stack and
the results are put back on the stack. Immediate operands are stored
separately from the code segment (in the special region of BUFC data
buffer) and accessed by an address. In case of FragletVM, there is
no distinction between data and code which means that code can be
treated like data and data like code depending on the execution context.
This concept allows us to consider everything as code in this situation.

5.4.6 Dictionary Sub-Classing
ChameleonVM and FragletVM incorporate different dictionary models.
In ChameleonVM each node can have multiple dictionaries for each
profile and switch between them. Switching depends on the profile
a node is currently executing. This is explained in more detail in

1In case of ChameleonVM this picture is rather illustrative because there is no real
intermix between code and data.
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Sections 3.2.9 and 3.2.10 and illustrated in Figure 5.7. FragletVM holds
a single dictionary which is created and maintained in a distributed
fashion. Each node can commit changes to the common dictionary.
Those changes take effect after they have been accepted by all the
nodes (see Section 3.3.8).
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Figure 5.7: Online Compression Scheme: Dictionary-Profile Interlink

Regardless the engine we are using, each of those newly created
task-specific dictionaries can be considered as a derivative from the
original dictionary. We call this dictionary sub-classing and it is shown
in Figure 5.8.

Assume that node A has a dictionary DA consisting of N − 1 instruc-
tions. Each derivative DA

i is, therefore, a sub-class of DA consisting of
Ni − 1 instructions.

The dictionary update mechanism is also different in ChameleonVM
and FragletVM. While ChameleonVM employs a centralized approach
with multiple leaders, in FragletVM it is built around a fully distributed
architecture. As shown in Figure 5.9a, a ChameleonVM-based network
can have multiple clouds (profiles), each of those profiles must have
at least one leader. The profile leader runs the process of profile opti-
mization. Each node can be a member of multiple profiles (e.g., nodes
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Figure 5.8: Online Compression Scheme: Dictionary Sub-Classing

2, 4 and 5 in Figure 5.9a).1 With FragletVM every node in the network
can become a temporary leader. A node should announce a change to
the rest of the network. When the change is accepted all the nodes start
using it. This is shown in Figure 5.9b.

5.4.7 Instruction Nesting and Unfolding
Instruction nesting happens when a new record is introduced into
the dictionary. The opposite effect is known as instruction unfolding.
Our compression algorithm uses a number of constraints described
in Section 5.4.2. The main principle we exploit is to avoid a reverse
of previously made assignments. Instead, the system keeps “hoping”
to achieve better results over future steps. This is the reason why the
compression curve shows fluctuation and reaches a local optimum
at each step only. In other words, the compression process holds the
Markov property.

5.4.8 Parameters
Before carrying out experiments on real code in Chapter 6 we run simu-
lations on abstract, randomly generated strings of symbols representing

1Nodes 3 and 5 in Figure 5.9a belong to different profiles and can communicate
directly only using the common dictionary level D (see Figure 5.8).
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Figure 5.9: Online Compression Scheme: Dictionary Update Models

instructions. We analyze the influence of several system parameters. In
particular, these parameters include:

– Program Size (PS): The size of code stream being compressed.
Continuous code stream is defined by one single parameter, while
fragmented stream by a combination of two: number of frag-
ments (FN) and fragment length (FL).

– Alphabet Size (AS): The number of unique symbols (instruc-
tions) in the original code stream. This depends on the type of
program.

– Free Code Space (FCS): Basically this parameter defines the dic-
tionary capacity. By tuning this parameter we can regulate up to
the size we allow the dictionary to grow. Bigger FCS provides
more opportunities for the compression process to find a better
representation for the code.

Note, in reality PS and AS are defined by the program, The only
tunable parameter in a real setting is FCS. In fact, FCS shows the
biggest impact on the compression performance metrics. Nevertheless,
in the simulations below we have a closer look at each of the system
parameters.

5.4.9 Algorithm Speed
Our compression scheme is a continuous process constantly running
in parallel to other system activities. The faster the algorithm works
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the quicker better code representation can be found (the higher con-
vergence speed). On the other hand, compression consumes system
resources (memory, CPU). Additionally, dictionary updates have to be
sent around. This consumes energy. Therefore, when the compression
is running it should not affect system performance and interrupt other
system services. In other words, the algorithm speed must be adapted
in each particular case according to the duty cycle of the system. That
is why in our experiments we measure compression speed in terms of
the number of iterations rather than absolute time. Convergence speed
is discussed in detail in Section 5.9.

5.4.10 Algorithm Complexity
In order to express our algorithm’s complexity we use the “big-O”
notation. By considering the selection algorithm from Section 5.4.2 we
have:

O(n2), where n is the size of the code stream.

n is the total size of all programs (capsules or fraglets) used in
the compression process. Only opcodes are counted. In the estima-
tion 5.4.10 we ignore the constant number of extra selection steps and
access to the dictionary. The equation 5.4.10 can be easily understood if
our compression is considered as a form of sorting algorithm. Then it
is similar to the “bubble sort” which has quadratic complexity.

5.4.11 Reference Compression Methods
In order to compare how our compression scheme performs in respect
to the existing solutions we have chosen, as a reference, the following
classic compression methods:

– transform-based encoding: run-length coding (see Section 4.2.2),
and

– dictionary-based encoding: LZW (see Section 4.2.4).

We do not consider entropy encoding, i.e., Huffman-coding from
Section 4.2.5, because it does not actually reduce the number of symbols.
Rather it offers an optimal bit-level encoding of the symbols based on
the frequency of their appearance in the stream. In fact, Huffman-coding
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5.4 System Architecture

Parameter Notation Value Remarks

MAXPROGSIZE PS 100 max program size (continuous stream, no
fragmentation)

MINPROGSIZE 2 min program size (continuous stream, no
fragmentation)

FRAGNUM FN 20 number of fraglets to generate
MAXFRAGLEN FL 20 max fraglet’s length
MINFRAGLEN 2 min fraglet’s length

CURINSTRNUM AS 40 number of instructions currently in use; typical
ISA size for most embedded VM

FREEINSTRNUM FCS 24 number of free codes for new instructions; should
be at least half the size of ISA

SAMPNUM — 10 number of samples for each measure; reduces
uncertainty introduced by randomness

REPRATE — 0/1/2/3 fragment duplication rate: 0 - fully random, 1 -
100%, 2 - 50%, 3 - 33%, etc.

Table 5.1: Online Code Compression: Simulation Test Setting for Random
Code Streams

can be used on top of the online compression for better utilization of
binary representation.

5.4.12 Test Setting For Random Code Streams

In the following simulations we model the input code stream using the
settings listed in Table 5.1.

As can be seen, we distinguish between “continuous” and “frag-
mented” code streams. Although there are no ideal infinite code
streams and every stream ends at some point some of them, like fraglets,
introduce an extra fragmentation degree which we have to take into
account. Continuous streams are defined by one parameter, program
size (PS), whereas fragmented streams by two, number of fragments
(FN) and length of fragments (FL), as discussed in Section 5.4.8.

We reduce the effect which might be introduced by a random code
generation process by using averaging over multiple samples (see
parameter SAMPNUM in Table 5.1).

Additionally, we use a pattern generation technique which allows
us to regulate the number of duplicates (instruction sequences) in the
code stream. The REPRATE parameter basically defines the duplication
rate as a percentage of the original code size.
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Variable Parameter Function Stream Type Reference

Program Size (PS)

C
om

pr
es

si
on

Fa
ct

or
(C

F) Continuous Figure 5.11, page 151
Alphabet Size (AS) Continuous Figure 5.12, page 152
Free Code Space (FCS) Continuous Figure 5.13, page 153
Number of Fragments
(FN) Fragmented Figure 5.14, page 154

Length of Fragments (FL) Fragmented Figure 5.15, page 155
Alphabet Size (AS) Fragmented Figure 5.16, page 156
Free Code Space (FCS) Fragmented Figure 5.17, page 157

Table 5.2: Single-Node Compression Model: Simulation Overview

5.5 Single-Node Compression Method
We start analyzing different compression models with a very basic one
which is the core for all the advanced types discussed further. It is a
single-node compression. The model is shown in Figure 5.10.

!"#$%&''(")
&)*()&!"+&

)"+&

+(!,(")-%.

&/&!0,(")
&)*()&

Figure 5.10: Online Compression Scheme: Single-Node Model

In this model, compression is run locally on an individual node only.
No code leaves the node, nor dictionary updates are sent out. Techni-
cally, it works as it has been discussed in Section 5.4.

Table 5.2 gives an overview of all the simulation runs we have done
and the dependencies which have been obtained for the single-node
compression model.
The following observations can be made based on analysis of the pre-
sented graphs (see Figures 5.11 – 5.17):

– In some of the graphs in Figures 5.11 – 5.17 the characteristic
for the run-length algorithm goes out of range which means
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5.6 Group Compression

that the “compressed” code size is bigger than the original one
(CF>100%).

– Online compression outperforms LZW even on highly repetitive
streams.

– In continuous streams:

– The duplication rate has no effect on performance with the
same program size (see Figure 5.11, page 151). At the same
time, bigger streams give better compression factors as more
statistics can be collected.

– The growing alphabet size “breaks” LZW, online compres-
sion can resist (see Figure 5.12, page 152).

– FCS gives a huge positive effect on performance whereas
LZW cannot naturally benefit from it (see Figure 5.13, page 153).

– In fragmented streams:

– The growing number of fragments affects the online com-
pression in a negative way since the algorithm resets at each
new fragment. Nevertheless, even this allows for better
results than LZW (see Figure 5.14, page 154).

– The length of fraglets has a “saddle” on its characteristics
which depends on the duplication rate. The higher duplica-
tion rate the further the saddle is located: FL = 8, 12, 18, . . .
(see Figure 5.15, page 155).

– The growing alphabet size causes online compression to
slow down its performance (see Figure 5.16, page 156).

– FCS again shows a huge gain as with continuous streams
(see Figure 5.17, page 157).

5.6 Group Compression
Group compression is a base for the profile-based tasking which has
been previously discussed in Section 5.4.6. This model assumes one
leader per profile. The leader runs compression and announces dic-
tionary updates to all the nodes in the profile. The driven nodes only
update their local dictionary and execute code. In Figure 5.9a there are
two profiles controlled by nodes 1 and 7. They are the leaders. The
more common group model structure is shown in Figure 5.18.
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Figure 5.11: Single-Node Compression Model, Continuous Stream: CF vs
PS
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Figure 5.12: Single-Node Compression Model, Continuous Stream: CF vs
AS
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Figure 5.13: Single-Node Compression Model, Continuous Stream: CF vs
FCS
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Figure 5.14: Single-Node Compression Model, Fragmented Stream: CF
vs FN
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Figure 5.15: Single-Node Compression Model, Fragmented Stream: CF
vs FL
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Figure 5.16: Single-Node Compression Model, Fragmented Stream: CF
vs AS
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Figure 5.17: Single-Node Compression Model, Fragmented Stream: CF
vs FCS
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Figure 5.18: Online Compression Scheme: Group Model

In principle, every node can become a leader in this model if it be-
longs to the corresponding profile. Generally, the election of a leader is
not a trivial task. For the moment, we use a manual leader assignment.
Dictionary updates are disseminated using a viral propagation method.

5.7 Distributed Compression
Distributed compression is actually the most sophisticated and com-
plicated model of all considered. The following types of distributed
compression can be distinguished:

– All nodes hold the same code, different nodes can make a decision
on the next compression step at different moments in time. Every
node features the architecture shown in Figure 5.10. To announce
the decision the node has to send a dictionary update to the
others. In our leader-based approach (see Section 5.6) we simplify
this scenario by electing a single leader for the entire profile.
By doing so, we achieve less transmission load and require less
coordination between nodes.

– Nodes hold different code. In this case, nodes have to agree
on a common optimal representation for the code chunk which
resides remotely. In this work, we do not consider this type of
compression as it goes against the whole concept of profiles and
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5. Online Code Compression Framework

VS, i.e., grouping nodes having the same code to execute together.
We discuss how this could possibly be done in Chapter 7.

– Per-link compression. This type can potentially find a use with
fraglets. In this case, a separate dictionary is created on a per-link
basis between every two nodes. This would allow achievement
of much better compression rates on each particular link rather
than on average, which might be beneficial for communication-
intensive methods like CNP. In fact, this can also be considered
as a special case of the group compression (see Section 5.6) for 2
nodes.1 In this case, one node becomes a leader for the pair.

5.8 Cloud Compression
Cloud compression is an extended version of a group compression (see
Section 5.6) with multiple possibly overlapping profiles (clouds). This
model is the closest of all to the real setting. We simulate it by using
a so-called “network map” file which describes network structure in
terms of clouds, inter-cloud communication and code size. We consider
two examples: a very general cloud setting (see Section 5.8.1) and a
quasi-real setting (see Section 5.8.2).

5.8.1 General Setting
For the general setting we use the map file shown in Listing 5.1. This
setting gives no restrictions on random code generation process. This
is the main difference from the quasi-setting.

1 # cloud | parent | nodes | i n t e r l o c u t o r | nodes | nodes | in−cloud | i n t e r−cloud
2 # name | cloud | in the | | speaking | speaking | code s i z e | code s i z e
3 # | | sub−cloud | | forward | back | ( s i z e / f r a g s ) | ( s i z e / f r a g s )
4 A1 A 5 S 2 1 50/5 5/1
5 A2 A 1 S 1 1 50/5 4/1
6 S S 4 A1 1 2 100/7 10/2
7 B B 3 S 1 1 70/10 5/1
8
9 # t h i s must be the l a s t record in the f i l e

10 a l l a l l − − − − 500/30 −

Listing 5.1: General Cloud Model Setting Map File

1This is true if only both nodes hold the same code. If code is different we revert
back to the previous case.
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5.8 Cloud Compression

This file, for example, may describe the network like the one shown in
Figure 5.19.1
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Figure 5.19: Online Compression Scheme: Example of Profile-Oriented
Network

Using this map-file we generate code for the entire network (all profiles
on all nodes) and fed it to the compression engine.

The results for continuous and fragmented streams are shown in
Figures 5.20, page 161 and 5.21, page 162, respectively. As with single-
node compression (see Section 5.5), bigger continuous code streams
allow us to collect more statistics on them and, therefore, to provide
better compression. Alphabet size has very little or no effect. FCS still
remains the most influential parameter. This can be easily explained
as giving more freedom to the algorithm we allow it to find a better
solution (see Figure 5.20, page 161).

With fragmented streams the characteristics remain very similar to
those discovered for continuous ones. Growing fragmentation level,
length of fragments (with a “saddle” in the middle of the curve) and

1The general structure is correct, although the number of nodes in the picture 5.19 is
different from what is specified in the map-file of Listing 5.1.
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Figure 5.20: Cloud Compression Model: Continuous Stream

alphabet size have a negative impact on the compression factor whereas
larger FCS enhances it (see Figure 5.21, page 162).

5.8.2 Quasi-Real Setting
The quasi-real setting is different from the general one in the num-
ber of constraints applied. The quasi-real setting features continuous
(non-fragmented) stream only, pre-defined code size distribution, fixed
initial number of needed instructions (40) and variable free code space
size (24).

As FCS seems to be the most interesting parameter, for this test we
only show how system performance depends on it. The results are
presented in Figure 5.22, page 163.

As we can see in the quasi-real setting the compression factor can
be up to 20% for continuous streams and up to 23% for fragmented
streams. The convergence speed is very fast at the beginning and slows
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Figure 5.21: Cloud Compression Model: Fragmented Stream
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Figure 5.22: Cloud Compression Model: Quasi-Real Setting
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Variable Parameter Function Model Stream
Type Reference

Program Size (PS)

C
on

ve
rg

en
ce

Sp
ee

d
(#

nu
m

be
r

of
ite

ra
tio

ns
)

Single-
node Continuous Figure 5.23, page 165

Number of Fragments (FN) Single-
node Fragmented Figure 5.24, page 166

Length of Fragments (FL) Single-
node Fragmented Figure 5.25, page 167

Alphabet Size (AS) Single-
node

Continuous
and
fragmented

Figure 5.26, page 168

Free Code Space (FCS) Single-
node

Continuous
and
fragmented

Figure 5.27, page 169

Program Size (PS) Cloud Continuous Figure 5.28, page 170
Number of Fragments (FN) Cloud Fragmented Figure 5.29, page 171
Length of Fragments (FL) Cloud Fragmented Figure 5.30, page172

Alphabet Size (AS) Cloud
Continuous
and
fragmented

Figure 5.31, page 173

Free Code Space (FCS) Cloud
Continuous
and
fragmented

Figure 5.32, page 174

Table 5.3: Convergence Speed: Simulation Overview

down dramatically after some point. This can be explained by the fact
that at the beginning the algorithm is capable of finding multiple pairs
very easily. Over time as the code shrinks instruction pair distribution
becomes more uniform which causes the algorithm to lose speed as
appearance frequency drops.

5.9 Convergence Speed
At the end of our analysis we would like to take a more detailed look
at the convergence speed of our algorithm. This parameter is very
important as it shows how quickly the system can adapt to changes in
software configuration.

Table 5.3 gives an overview of all the situations where we have
measured the convergence speed.
The following observations can be made based on analysis of the pre-
sented graphs (see Figures 5.23 – 5.32):

– In continuous streams the convergence speed is a linear func-
tion of the program size (see Figure 5.23, page 165). For frag-
mented streams it is difficult to establish any analytic link be-
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Figure 5.23: Single-Node Compression Model, Continuous Stream: Con-
vergence vs PS

tween code size and convergence (see Figures 5.24, page 166
and 5.25, page 167) but in general it seems there is an optimal
number of fragments (8–15) of a particular length (10–18) when
the convergence speed reaches maximum.

– Beyond a certain level the alphabet size has no further effect on
the convergence speed (see Figure 5.26, page 168).

– The same is true for FCS (see Figure 5.27, page 169).
– Extending the case up to the cloud model does not produce any

exceptions nor unexpected anomalies (see Figures 5.28, 5.29, 5.30,
5.31, 5.32, pages 170 – 174).
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Figure 5.24: Single-Node Compression Model, Fragmented Stream: Con-
vergence vs FN
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Figure 5.25: Single-Node Compression Model, Fragmented Stream: Con-
vergence vs FL
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Figure 5.26: Single-Node Compression Model: Convergence vs AS
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Figure 5.27: Single-Node Compression Model: Convergence vs FCS
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Figure 5.28: Cloud Compression Model, Continuous Stream: Conver-
gence vs PS
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Figure 5.29: Cloud Compression Model, Fragmented Stream: Conver-
gence vs FN
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Figure 5.30: Cloud Compression Model, Fragmented Stream: Conver-
gence vs FL
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Figure 5.31: Cloud Compression Model: Convergence vs AS
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Figure 5.32: Cloud Compression Model: Convergence vs FCS
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5.10 Summary
Based on the concepts from AIT and KC theories we have described
the core part of our work, the run-time code compression method. We
have shown that just an attempt to apply an existing data compression
method to code streams does not normally give the desired perfor-
mance. This is due to the different nature of code streams. The new
view at code compression allowed us to develop the method which can
potentially outperform the existing solutions. After analysis of specific
requirements posed by WSN we have given a detailed description of
the method and provided a set of simulation results on how the method
behaves in various configurations scenarios. The relatively small com-
putational complexity of the method allows it to be integrated into
resource-constrained devices like WSN nodes.
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6

Experimental Setup

Having introduced the tools, ChameleonVM and FragletVM,
in Chapter 3, code optimization methodology in Chapter 4 and
our contemporary code compression scheme in Chapter 5, we
will now show how all these can be used to build task-specific
network protocols. We present a set of widely needed protocols
such as a spanning tree builder, route discovery, node ID assign-
ment, time synchronization and others. In these examples we
use ChameleonVM as a programming environment. For gener-
alization, we take a look at a real-world scenario of building and
optimizing a data collection WSN application. We show that by
adding new functional blocks on the fly and applying our compres-
sion scheme to optimize code representation we achieve a certain
level of power consumption cuts. Additionally, we consider an ex-
ample for FragletVM, the chemical aggregation protocol. In order
to demonstrate how our method can be used in foreign systems we
pick, compress and analyze a third-party code, the fire-tracking
application using Agilla’s mobile agents.



6. Experimental Setup

6.1 Overview
In order to demonstrate how our code optimization techniques (see
Chapters 4 and 5) can be used in practice we consider a number of
examples which traditionally form a part in many real-world network
embedded applications. These examples include topology-related tasks
(building a spanning tree on a set of nodes, route discovery between
two nodes in the network), time synchronization which is a crucial
part of most WSN systems, utility functions (count the number of
nodes in the network, carry out ID (re-)assignment). We perform
these experiments on ChameleonVM code (see Section 6.4). In each
case we show what impact every optimization step (code shrinking,
code compression, code polymorphism and code versioning) has on the
program code size and energy saving. Finally, we build a data collection
application based on the traditional WSN architectural approach where
nodes are formed in a tree with the top at the so-called sink node.
Measurements are periodically taken and forwarded by each node
towards the sink where they are accumulated in a buffer. Further
processing may include putting this data in an online database like it is
done with PermaSense samples (see Section 1.4). From the programming
point of view we use the developed practice of adding new functional
blocks on the fly in a form of capsules. When the code is deployed
we enable our compression scheme and keep a track of how the code
representation changes over time. Later we estimate the potential
long-term energy cut caused by reduction in code size.

Capsules and mobile code are an alternative to packet-switching
networking. Still, applications based on mobile code normally reflect
the traditional “request-reply” paradigm, though now not only static
data fields are exchanged but also code. To develop this further we
look at the CNP (see Section 2.4), a concept which introduces highly
fragmented and extremely intensive communication. We pick the
protocol called Disperser which we have re-implemented for FragletVM
(see Section 3.3). It is a gossip-like aggregation protocol where each
value (all summands and the average) represented by a concentration
of small packets (molecules). By balancing the number of those packets
on all the nodes an average can be computed. We show that chemical
networking can also benefit from code compression as it employs a lot
of code transmissions (see Section 6.5).
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Characteristic Capsule
(ChameleonVM)

Fraglet
(FragletVM)

Mobile Agent
(Agilla)

Data segment

size of BUFC
(constants and
immediate stack
operands)

none

immediate stack
operands and
current heap’s
content

Instructions total number of instructions in the program code
Code resolution log2(number of instructions)

Code segment only code, data is
excluded everything only code, data is

excluded

System info header, segment
separators, etc. none header

In the end (see Section 6.6), we show that our compression scheme
can be adapted for different types of mobile code. For this, we pick
a fire-tracking application from Agilla’s distribution. The application
uses an idea of migrating agents, which create a perimeter around the
place on fire. It turns out that Agilla’s code is perfectly suitable for our
method and shows a good performance.

In terms of fragmentation and transmission rates the three code
streams above can be classified as follows:

– capsules (low fragmentation, low rates),
– fraglets (high fragmentation, high rate), and
– mobile agents (no fragmentation, very low rates).

In Table 6.1 we list all the applications analyzed later in the chapter
along with a set of their code characteristics. The corresponding fields
in Table 6.1 must be read as follows:

Note that Agilla implements code migration in several steps: stack,
code, heap, state. In our code size estimations we include the code
exchange phase only. Agilla code migration is further discussed in
Section 6.6.

In all the cases we do not refer to the actual packet size, which may
be different on different platforms, but to the packet payload size.

6.2 Test Settings
In all, except one, of our tests we assume there is an underlying MAC-
layer provided by OS, which is responsible for resolving various col-
lisions in transmissions. Nevertheless, in 6.4.6 we present our own
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Application
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ChameleonVM

“Hello
World!” 5 8 2 2.0 7.0 12.0

Route
discovery 27 43 3 16.125 21.125 48.125

Spanning tree 25 47 4 23.5 28.5 53.5
Network size
estimator 6 10 2 2.5 6.5 12.5

ID
re-assignment 22 45 4 22.5 26.5 48.5

SBTSP 71 151 4 75.5 80.5 151.5
Data collection
application 136 273 5 170.625 180.625 316.625

FragletVM

Disperser 0 16 3 6.0 6.0 6.0

Agilla

Fire Tracker 43 78 5 48.75 52.75 95.75

Table 6.1: Characteristics of Test Applications: Program Size
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TDMA-like time synchronization scheme which can be used as a sim-
ple MAC-layer. Although the number of nodes in the network remains
constant, we explore different topologies as described in Section 6.3.

In Section 5.4.8 we discussed various parameters which can be
tuned in our compression scheme. As the program size (including the
number of fragments) and the alphabet size are fixed for each particular
application, the only parameter we tweak in the tests is the Free Code
Space (FCS). We allow FCS to grow up to two times of the original
alphabet size.

In order to make estimations on energy spending we have incorpo-
rated two radio chip models in our design (see Section 6.3). Therefore,
a long term energy assessment is made by extrapolating the values
obtained within a short period (e.g., a cycle).1 The proposed model is
relatively rough, as it does not include power consumption for the rest
of the module (only the radio chip itself), nor any extra spending on
communication, e.g., on re-transmissions.

6.2.1 Code Pre-Processing
Below, in Sections 6.4 – 6.6 for our experiments we use the code of three
different types. To represent the code we use a readable, source code
form. However, the code that is fed to the compression engine requires
some pre-processing. The steps listed below are applied to all three
code types, even to the Agilla system which in reality uses a different
compilation strategy.

First, compact representation is expanded. Then code and data
segments get partially separated according to 3.2.2. Relative addresses
used in control execution (e.g., jmp L1) are translated into offsets. The
same happens to memory access operands (e.g., BUFS[0]). System vari-
ables and constants (e.g., ME.ID) are left untouched, they are replaced at
run-time. Following this, all volatile immediate operands are moved to
the data segment where they stay till the execution starts. They are not
involved in the compression. All system information (segments, flags,
etc.) is removed, as they have no impact on the compression process

1Hereinafter, we widely use the term protocol cycle. In fact, it has rather a compound
meaning. Protocol cycle includes all the operations, which need to be executed in order to
complement one logical section. For example, in case of spanning tree building it would
mean creating the entire tree from scratch one time, or in case of time-sync protocol this
would mean just a single synchronization cycle.
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Platform Radio Chip

Max
Data
Rate
[kbps],
RTelosB or
RTinyNode

MCU +
Radio RX
[mA],
RXTelosB
or
RXTinyNode

MCU +
Radio TX
(0dBm)
[mA],
TXTelosB
or
TXTinyNode

Min Supply
Voltage [V],
VCCTelosB or
VCCTinyNode

TelosB Chipcon CC2420
2.4 GHz 250 21.8 19.5 1.8

TinyNode-
584

Semtech XE1205
868 MHz 153 16 25 2.4

Table 6.2: Radio Characteristics of TelosB and TinyNode WSN Platforms

either. The resulting “stripped” code is passed to the compression
engine.

6.3 Energy Model
In order to estimate the energy consumption benefits that our method
brings to a system we use the following technique. Consumption
is estimated for one cycle and then extrapolated over a long-term
period. This makes sense since most of our test cases are constantly
running protocols. We have picked two modern WSN platforms: TelosB
[PSC05] and TinyNode [FFMM06].1 The radio characteristics used for
our calculations are shown in Table 6.2.

For each test case we take the following measurements:

– PT, number of received packets (by all nodes participating in the
protocol),

– PR, number of received packets (by all nodes participating in the
protocol),

– SPI , initial packet size before compression,
– SPR , reduced packet size after compression, and
– F, the number of fragments in the code.

Additionally, we use the electrical parameters from Table 6.2. Hav-
ing this information we can estimate the energy saving of the two
platforms in terms of transmitted code. The energy spent on transmis-
sions (plus reception) of the original code is expressed as:

1TinyNode platform was used for outdoor installations of PermaSense project, TelosB
is a convenient tool for lab use.
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energy spentTelosBI =
F

∑
i=0

SPI ∗ PT
RTelosB

∗ TXTelosB ∗ VCCTelosB +

+
F

∑
i=0

SPI ∗ PR
RTelosB

∗ RXTelosB ∗ VCCTelosB (6.1)

Therefore, the energy spent on transmissions (and reception) of the
compressed code can be expressed as follows:

energy spentTelosBR =
F

∑
i=0

SPR ∗ PT
RTelosB

∗ TXTelosB ∗ VCCTelosB +

+
F

∑
i=0

SPR ∗ PR
RTelosB

∗ RXTelosB ∗ VCCTelosB (6.2)

In fact, using equations 6.1 and 6.2 we simply integrate power
consumption over a period of time specified by the number of trans-
missions in one cycle. The absolute duration of one cycle may vary.
Similar equations can be obtained for TinyNode by replacing the electri-
cal parameters in Table 6.2.

Finally, the overall energy saving for TelosB is estimated as follows
(equivalently, for TinyNode):

energy savingTelosB = energy spentTelosBI − energy spentTelosBR (6.3)

The equation 6.3 is used as a plot function for energy-related graphs
in this chapter (for a visual convenience we take log10 of the value
derived from 6.3 which in turn is computed by integrating over 1000
protocol cycles).

Topology has a potentially huge impact on how code is dissem-
inated. Therefore, energy spent on disseminating the same code in
different topologies is unlikely to be the same. We have chosen a set
of indicative topologies as shown in Tables 6.3, 6.4 and 6.5. For each
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topology we provide a set of equations to estimate the number of
transmissions/receptions1 in each cycle of the particular protocol.

The following conventions are used:

– N, number of nodes (vertices),
– E, number of edges, and
– M, number of passive molecules (in case of fraglets).

Another approach to obtain energy figures would have been using
[DOTH07] but this requires extra code instrumentation and long-term
experiments in a distributed fashion which is not easy.

Note, in the equation 6.2 we do not take into account the energy
spent on dissemination of dictionary updates. This depends on many
factors: program size, frequency of re-configuration, compression pa-
rameters. Fairly, this should be added to the total energy spending of
the system.

6.4 Optimizing ChameleonVM’s Code
We show how ChameleonVM’s code can be optimized using several
examples, each of which represents a typical building block of a WSN
system. We start with a very simple case of a route discovery service
and go towards the attempt to build a TDMA-like time-sync proto-
col. In the end we demonstrate how multiple building blocks can
be assembled together in a single application. At each step we run
code compression, which allows gradual reduction of code size as new
blocks are being added.

6.4.1 Mobile Code Version of “Hello World!”
The first example is a basic demonstration of how ChameleonVM code
can be used to execute a single command on a node (in this case we
“toggle a red LED ten times”). The code is presented in Listing 6.1
below.

1 .sys # SYSTEM segment

1In the presence of MAC-layer only addressed receptions are counted. For broadcast
transmissions the number of receptions must be multiplied by the number of physical
neighbors. The equations in Tables 6.3, 6.4 and 6.5 are without MAC.
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Application Number of transmission (TX) and receptions (RX)a

ChameleonVM (N = 20)

H-topology
(all-to-one)

A-topology
(all-to-all)

V-topology
(all-in-line)

M-topology
(mesh)

“Hello
World!”

RX =
(N − 1) ∗ 2
TX = N

RX =
(N − 1) ∗ N
TX = N

RX = 1 + (N −
2) ∗ 2 + 1
TX = N

RX = N ∗ 2
TX = N

Route
discovery

RX = (N − 1) +
1 + (N − 2)
TX =
1 + (N − 2) + 1

RX =
(N − 1) ∗ N
TX =
1 + (N − 2) + 1

RX =
1 + ( N

2 − 2) ∗ 2 +
1 + ( N

2 − 2)
TX = 2 ∗ N

2 − 2

RX = N ∗ 2
TX = 2 ∗ N

2 − 2

Spanning
tree

RX =
(N − 1) ∗ 2
TX = N

RX =
(N − 1) ∗ N
TX = N

RX = 1 + (N −
2) ∗ 2 + 1
TX = N

RX = N ∗ 2
TX = N

Network
size
estimator

RXF =
(N − 1) ∗ 2
TXF = N
RXB = N − 1
TXB = N − 1

RXF =
(N − 1) ∗ N
TXF = N
RXB =
(N − 1) ∗ (N − 1)
TXB = N − 1

RXF = 1 + (N −
2) ∗ 2 + 1
TXF = N
RXB =
N2 + N − 1
TXB =
sum(1..N − 1)

RXF = N ∗ 2
TXF = N
RXB = N ∗ 2
TXB = N

ID re-
assignment

the same as
above

the same as
above

the same as
above

the same as
above

SBTSP
RX =
(N − 1) ∗ 2
TX = N

RX =
(N − 1) ∗ N
TX = N

RX = 1 + (N −
2) ∗ 2 + 1
TX = N

RX = N ∗ 2
TX = N

Data
collection
applica-
tion

“sense and collect” activities:

RX =
(N − 1) ∗ 2
TX = N

RX =
(N − 1) ∗ N
TX = N

RX = 1 + (N −
2) ∗ 2 + 1
TX = N

RX = N ∗ 2
TX = N

+ a combination of the above (spanning tree + ID re-assignment + time-sync)

Table 6.3: Characteristics of Test Applications: Message Exchange Inten-
sity (ChameleonVM)

aTXF and RXF denote a capsule going forward, TXB and RXB – a capsule going
backward. This happens when the original capsule splits.
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Application Number of transmission (TX) and receptions (RX)a

FragletVM (N = 4, E = 4, M = 100)

Fixed Test Topology

Disperser RX = 2∗E∗M
N TX = 4∗E∗M

N

Table 6.4: Characteristics of Test Applications: Message Exchange Inten-
sity (FragletVM)

aTXF and RXF denote a capsule going forward, TXB and RXB – a capsule going
backward. This happens when the original capsule splits.

Application Number of transmission (TX) and receptions (RX)a

Agilla (N = 25)

Grid Topology

Fire Tracker depends on where in topology agents are injected

Table 6.5: Characteristics of Test Applications: Message Exchange Inten-
sity (Agilla)

aTXF and RXF denote a capsule going forward, TXB and RXB – a capsule going
backward. This happens when the original capsule splits.
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Short
Notation

Executing
Code Function

send ME,ALL push ALL Broadcast itself
push 0x01
send

led
RED,TOGGLE

push 0x22 toggle the red LED

led
delay 1000 push 0 fire one-shot timer in 1 second

push 1000
timer

Table 6.6: ChameleonVM: Source Code Notations

2 Autoupdate On # enable autoupdate (capsules of the
3 # higher version will be accepted ,
4 # capsules of the same or lower
5 # versions will be declined)
6 Lifetime 10s # recognized post -fixes: ms (millisec),
7 # s (sec), p (packets)
8 Id 0x10 # 4-bit ID + 4-bit version number
9

10 .code.init # CODE segment "init"
11 send ME,ALL # broadcast itself
12
13 .code.timer0 # CODE segment "timer"
14 led RED ,TOGGLE # toggle the red led
15 delay 1000 # sleep for 1s

Listing 6.1: WSN Version of “Hello World!”

Hereinafter, in code listings we often use a short and better under-
stood notation as shown below in Table 6.6.1

This capsule is capable of self-propagating itself using the code in
the .code.init segment. It is not accepted by the nodes which already
have this capsule installed.2 The space occupied by the capsule is freed
up after 10 seconds giving it a chance to toggle the red LED only 10
times.

Logically, the code consists of three segments: the system seg-
ment (.sys; various parameters of the capsule), initialization segment

1The short notation reflects the actual byte-code but is not necessarily a one-to-one
correspondence.

2We limit the lifetime by 10 seconds, after this time the capsule will be destroyed
and if it comes back again the node will install it.
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(.code.init; executed only once when the capsule is installed on a
node) and timer segment (.code.timer; this is essentially a timer han-
dler). The initialization segment is responsible for self-disseminating
(ME) the capsule. Here we use broadcast (ALL) transmission. The timer
segment encapsulates the logic for toggling the red LED every second.

If we now apply the compression algorithm to this code in the
final stage the code would most likely look different, as it is shown in
the short notation in Table 6.6. ChameleonVM may run compression
over several segments in order to achieve better results. This type of
code can reach an extremely good Compression Factor (CF) since all
static data (addresses, constants) are stored separately within the data
segment.

Note that we can use a modified version of the code by moving
everything to the initialization segment as shown in Listing 6.2.

1 .code.init # CODE segment "init"
2 send ME,ALL # broadcast itself
3 L1:
4 led RED ,TOGGLE # toggle the red led
5 delay 1000 # sleep for 1s
6 jmp L1 # do it periodically

Listing 6.2: Alternative WSN Version of “Hello World!”

This code would result in a small size increase. What is more
important is that the delay operation becomes blocking if it is used
outside of .code.timer segment. The execution will not proceed until
the timer expires. In the first version timer just sets up a timer for
the future and execution continues. Despite this, both versions are
functionally identical.

According to the test settings (see Section 6.2) and the topology
variants from Section 6.3 we obtain the results shown in Figure 6.1.
In our experiments the autoupdate is always switched on in order to
avoid backward (viral) propagation.

6.4.2 Route Discovery
As was discussed in Section 3.2.7 capsules can be used for packet
processing and traffic control. In this example, we show how to use
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Figure 6.1: Code Compression Process: “Hello World!” Application
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capsules to establish a temporary forwarding channel between two
nodes in the network. The scenario is displayed in Figure 6.2.

!

"

#
$

%

&

Figure 6.2: Route Discovery

Here two nodes, A and C, would like to establish a dedicated path
for packet exchange. First, let’s have a look at the code which achieves
this (see Listing 6.3).

1 .sys # SYSTEM segment
2 Autoupdate On
3 Lifetime 10s
4 Id 0x20
5
6 .bufc # DATA segment
7 from=A # we start discovering from node A
8 to
9

10 .code.init # CODE segment "init" (executed once)
11 mov from ,ME.FROM # remember the "previous" hop
12 jmpeq NID ,C,L1
13 send ME,ALL # broadcast itself
14 exit
15 L1: send NULL ,from # send a null packet back
16
17 .code.pack # CODE segment "receive packet"
18 jmpeq PACK.SRC ,A,L2
19 jmpeq PACK.SRC ,C,L3
20 exit
21 L2: jmpeq PACK.DST ,C,L5
22 exit # exit point (the capsule stays alive)
23 L3: jmpeq PACK.DST ,A,L4
24 exit # exit point (the capsule stays alive)
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25 L4: send PACK ,from # process packets from C to A
26 mov to,PACK.FROM # remember the "next" hop
27 exit
28 L5: send PACK ,to # process packets from A to C

Listing 6.3: Route Discovery

The following conventions are used: *.SRC and *.DST are addresses
encoded in the underlying link-layer’s header (source and destina-
tion), their representation depends on the execution environment.
PACK.SRC and PACK.DST are fixed for each packet and do not change,
while PACK.FROM and PACK.TO define previous and subsequent hops and
change as the packet goes through. The same is valid for capsules but
the CAP.* identifier must be used instead. ME.* identifies this capsule.

The shown code essentially does the following:

1. Upon arrival on a new node we first check if we have yet reached
our destination (C). If yes, we send an empty (NULL) packet back to
the source. Otherwise, we virally self-propagate the code further.
The empty packet sent back is used to establish a bi-directional
channel between two end points (A and C), so that the destination
(C) would be able to send packets to the source (A) as well.

2. On all intermediary nodes we just keep a track of “previous” and
“next” hops in the path (the “previous” hop is recorded when the
capsule goes towards C and the “next” hop is determined when
the empty packet passes by).

3. Starting from this point all packets originated in the source A and
addressed for the destination C will be directly delivered to C.
Similarly, for packets generated by C for A.

Table 6.7 shows the address assignment process for the case illustrated
in Figure 6.2.

A number of extra features could be potentially useful within this
code. The route discovery process is supposed to start from the source
node (A) and run towards the destination node (C). In case the capsule
is injected to a node different from A we would have to discover node A
first, i.e., to complement the code with this functionality. Additionally,
we might want to preserve the capsules in the established route from
decay after 10 s.
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Address A 1 2 C

capsule propagation (A → C)

src A A A A
dst C C C C
from A A 1 2
to ? ? ? ?

empty packet propagation (C → A)

src C C C C
dst A A A A
from A A 1 2
to 1 2 C C

Table 6.7: Example: Address Assignments During Route Discovery Pro-
cess

The code seen from node C highlights the feature of ChameleonVM
that even locally generated packets first go through pre-processing by
capsules and only afterwards are sent out.

The presented code allows organizing a temporary forwarding
without using underlying topological information, e.g., routing tables.
The capsule approach for modifying the default routing rules is more
convenient as it does not require maintenance of routing tables on
each node and can be used point-wise. Since the example is rather
simplistic it does not try to find an optimal route. Furthermore, packet
duplication might occur, as multiple paths may be active at the same
time.

In order to test how this route discovery code reacts to the code com-
pression we make the following assumption: for V- and M-topologies
from Table 6.3 the length of the discovered route must be a half of
the total number of nodes (L = N

2 = 20
2 = 10). This is necessary as

the result highly depends on the topology. The results are shown in
Figure 6.3.

As it can be seen from the graphs in Figure 6.3 even the doubled
FCS does not allow the code to fully converge. The required size of
FCS would be 11 in this case.

6.4.3 Spanning Tree
The next example we consider involves building a spanning tree (see
Listing 6.4), a typical architectural solution for sensor nets. The existing
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Figure 6.3: Code Compression Process: Route Discovery
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data gathering protocols like [BvRW07]1 support very sophisticated
tree building and maintenance mechanisms. They allow reconstruction
of parts of the tree, optimization of its structure and are energy efficient
at the same time. Our algorithm is rather simple. It cannot react to
possible changes in the topology (e.g., in case of mobile nodes) in a
traditional way by modifying its structure. Instead, we periodically
create a snapshot of the tree and use it for a limited period of time.
The changes in the topology are reflected when the tree is re-built
again from scratch. Obviously, such an approach comes with a huge
transmission load, which we try to compensate using our compression
scheme. To list the other negative aspects, we do not take into account
possible collisions during packet transfers, e.g., bad links, different
load on links, etc. Nevertheless, the algorithm demonstrates how
to temporarily structure the group of nodes in a way to make data
extraction possible. Later, in Sections 6.4.4 and 6.4.5, we show how
some useful functions can be executed based on this structure.

1 .sys # SYSTEM segment
2 Autoupdate Off # disable autoupdate
3 Lifetime 10s
4 Id 0x30
5
6 .bufc # DATA segment (allocated inside the
7 # capsule)
8 from=S # "S" is some real network address
9 hops=0 # these are local variables

10
11 .code.init # CODE segment "init" (executed once)
12 inc hops
13 push BUFS [0] # first we check the ID
14 jmpeq ME.ID ,L1 # "ME.*" - this capsule , "CAP .*" -
15 # capsule , "PACK .*" - packet
16 mov BUFS[0],ME.ID # store ID and "hops" in the shared
17 mov BUFS[1],hops # memory BUFS (allocated from the
18 jmp L2 # node ’s memory pool)
19 L1: push BUFS [1] # check the distance (level)
20 jmplet hops ,L3
21 replace # replace the existing capsule
22 L2: mov from ,ME.FROM
23 send ME,ALL # broadcast itself
24 exit

1The modified version of Dozer is used in PermaSense installations.
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25 L3: die # if none - kill the capsule
26
27 .code.pack # CODE segment "receive packet"
28 # (executed upon receiving a packet)
29 jmpeq PACK.DST ,S,L4 # process packets addressed to S
30 # (sink node)
31 exit # exit point (the capsule stays
32 # alive)
33 L4: jmplet PACK.TO,NID ,L5 # ignore all packets addresses to
34 exit # the others
35 L5:
36 send PACK ,from # send a packet up the spanning tree

Listing 6.4: Spanning Tree

Schematically, the spanning tree building algorithm is shown in
Figure 6.4.
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Figure 6.4: Building Spanning Tree Algorithm

In this example, we see that by disabling autoupdate we can control
the capsule installation process. Depending on the situation capsules
can decide whether to replace the already installed code or not. As
with the “Hello World!” example, this code is self-propagating and
time-limited. After installation on a node, the code only processes
data packets addressed to the sink node (S) via this path and ignores
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Figure 6.5: Code Compression Process: Spanning Tree Builder

everything else. Packets generated locally or received from the children
are pushed upwards in the spanning tree. In order to reflect changes
in the tree structure this capsule must periodically (10 s) flood the
network. The distribution of the code is supposed to start from the sink
node.

The performance of the method depends on the topology as cap-
sules can replace each other while they are leveling the tree. In case
of uneven code propagation multiple transmissions are possible. In
our experiments we assume uniform code propagation, i.e., each node
transmits only once. The results are shown in Figure 6.5.

6.4.4 Count the Number of Nodes
As it has been mentioned before having a structured network allows
implementing various useful functions on it. In the next two examples
we assume the spanning tree structure of the network, i.e., that the

200



6.4 Optimizing ChameleonVM’s Code

capsule from Section 6.4.3 is already installed and running.1 Note that
the spanning tree source code from Listing 6.4 must be slightly changed
to be able to process capsules, not packets.

The first utility allows counting of the number of nodes in the
system and collection of this information at the sink node that is to
perform network size estimation. The program contains two capsules:
the capsule which propagates through the network and marks each
node, the “traveling marker”, and the capsule which resides on the
sink node and collects information, the “collector”. Traveling markers
move down the spanning tree. Its code is presented in Listing 6.5.

1 .sys # SYSTEM segment
2 Autoupdate On
3 Lifetime 10s
4 Id 0x40
5
6 .code.init # CODE segment "init"
7 send ME,ALL # broadcast itself
8 erase TOP # clean the code located above
9 sendd ME ,ME.FROM ,S # send it up the spanning tree

10 die

Listing 6.5: Network Size Estimator: Traveling Marker (node)

Note, we used sendd instruction instead of send. sendd allows us
to specify the final destination address (*.DST) as well as the next hop
(*.TO). send accepts the next hop only.

What a traveling marker essentially does is: it self-propagates and
when it reaches a new node it clones to the neighboring nodes, self-
modifies into a “signal” capsule and self-navigates to the base. Signals
move up the spanning tree. This example demonstrates how code
shrinking (see Section 4.1) allows to reduce the size of the code while it
moves across the network. This process is shown in Figure 6.6.

Lines 7–8 in Listing 6.5 will be removed from the traveling marker’s
code when it turns into a signal. This will reduce pure code size from 9
to 5 instructions.

The “collector” (see Listing 6.6) resides on the sink, counts incoming
signal capsules and accumulates it as a readable value.

1A network can be sequentially programmed with capsules of different nature. Those
capsules will co-exist on the same node and interact, if necessary.
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Figure 6.6: Network Size Estimation using Capsules

1 .sys # SYSTEM segment
2 Autoupdate On
3 Lifetime 10s
4 Id 0x50
5
6 .code.cap # CODE segment "receive capsule"
7 push CAP.ID # count"our" capsules only
8 jmpeq 0x40 ,L1
9 exit

10 L1: inc BUFS [0]

Listing 6.6: Network Size Estimator: Collector (sink)

In our experiments on code compression rate we consider only
the forth (traveling marker) capsule (see Figures 6.7a – 6.7c) whereas
energy estimations are made separately for forth and back (signal)
capsules. The moment of conversion of one into the other is shown in
Figure 6.7d. As it can be seen, code shrinking allows to significantly
reducing the size even on the compressed code. In Section 3.2.2 we
explained the mechanism of ChameleonVM which allows it to efficiently
process compressed code in case of split/merge operations. The shown
graphs do not include the impact of having a spanning tree builder
running as a parallel process. In Section 6.4.7 we demonstrate how code
size and energy estimations for a complex application can be done.
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Figure 6.7: Code Compression Process: Network Size Estimator
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6.4.5 ID Assignment
The second of our two examples is a node ID (re-)assignment program.
We design it as an extension of the count-program from Section 6.4.4.
The main working principle remains the same: the initial capsule prop-
agates through the network, renumbers nodes (assigns them unique
new IDs), converts into a signal capsule containing the newly assigned
ID and moves back to the root where all IDs are accumulated in a
buffer.

Sometimes it is required to (re-)assign new IDs to already deployed
nodes. This could be required for various reasons including optimiza-
tion of address space or in case of nodes with the same ID colliding.
This is particularly important for WSN applications where a local node
ID is used as a network-wide ID in many protocols. Again, we use
the spanning tree from Section 6.4.3 as a base for our program. The
(re-)assignment is done using the capsule shown in Listing 6.7.

1 .sys # SYSTEM segment
2 Autoupdate On
3 Lifetime 10s
4 Id 0x60
5
6 .code.init # CODE segment "init"
7 send ME,ALL # broadcast itself
8 sense TEMP # choose initializer for A
9 pop BUFS [0] # A = 18000 * (A & 65535) + (A >> 16)

10 push BUFS [0]
11 and 65535
12 mult 18000
13 push BUFS [0]
14 rsh 16
15 add
16 sense TEMP # choose initializer for B
17 pop BUFS [0] # B = 36969 * (B & 65535) + (B >> 16)
18 push BUFS [0]
19 and 65535
20 mult 36969
21 push BUFS [0]
22 rsh 16
23 add
24 lsh 16 # (B << 16) + A (32-bit result)
25 add
26 pop BUFC [0] # store the new ID in the capsule
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27 erase TOP # clean up the top part
28 sendd ME ,ME.FROM ,S # send it up the spanning tree
29 die

Listing 6.7: Node ID Assignment: Traveling Capsule (node)

This capsule performs automatic node ID assignment based on a
measured temperature value (can be humidity, or any other available
16-bit sensor, or a mix) and a simple pseudo-random number generator
shown in Listing 6.8.1 The use of sensor values allows generating truly
random IDs.

1 m_w = <choose -initializer >; /* must not be zero */
2 m_z = <choose -initializer >; /* must not be zero */
3
4 uint get_random ()
5 {
6 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
7 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
8 return (m_z << 16) + m_w; /* 32-bit result */
9 }

Listing 6.8: Node ID Assignment: “Multiply-With-Carry” Random Num-
ber Generator

The capsule in Listing 6.7 is distributed only once. Upon arrival on
a node it is executed there. The new ID is assigned to the node. As a
result a signal capsule is formed which contains the newly generated
node ID. This capsule makes its way back to the top of the spanning
tree.

Similarly to the “collector” from Section 6.4.4, a simple capsule
could be designed which would reside on the sink node, collect all
incoming signal capsules containing IDs and store them in a buffer.

The results of running code compression on this code are shown in
Figure 6.8. As with the count-example from Section 6.4.4, we show only
the forth (traveling) capsule in the code compression related graphs
(see Figures 6.8a – 6.8c) whereas energy estimations are illustrated sep-
arately for forth and back (signal) capsules. The turning moment and
its implication in code size reduction process are shown in Figure 6.8d.

1The shown implementation is of G. Marsaglia.
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Figure 6.8: Code Compression Process: Node ID Assignment
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6.4.6 Skew-Balance Time Synchronization Protocol
After analyzing the relatively simple examples in Sections 6.4.1 – 6.4.5
we move towards building a more sophisticated program and for that
we re-design a lightweight time synchronization protocol [Tal08] which
we previously developed during the test-phases of the PermaSense
project mentioned in Section 1.4. The initial implementation was done
under TinyOS 1.x. The pseudo-code and TinyOS-code for the protocol
are shown in Appendix A, in Listings A.1 and A.2, respectively.

Time synchronization is an essential part of many WSN applications.
Measurement series have value only when they are arranged in time.
A time division approach also allows putting nodes into deep sleep
between measurement and data exchange cycles, thus saving energy.
A lot of research has been done in the area of time-synchronization for
WSN domain [RN10]. The most notable works include: RBS [EGE02],
TPSN [GKS03], Römer’s scheme [R0̈1], LTS [vGR03], FTSP [MKSL04],
GTSP [SW09], PulseSync [LSW09]. Our goal at that stage of the Per-
maSense project was to develop a simple protocol for use in prototyping
our WSN-based system, at the same time it was meant to be tailored to
the specific needs of our project.

Skew Balance Time Synchronization Protocol (SBTSP) consists of a col-
laborative clock drift compensation and separating wake-up sync from
clock calibration which is done post-hoc. This unloads complex compu-
tations of drift estimates from a sensor node and permits more detailed
failure analysis, ultimately resulting in a more accurately calibrated
time stamp assigned to each data packet. Local clocks are not adjusted.
Instead, clock differences are recorded as events (clock skew events)
and used to reconstruct global time at the database side (a PC con-
nected to the sink node). Clock drift has nevertheless to be corrected
at run-time in order to let nodes periodically wake up at the same
time to deliver data and exchange system information. Additionally,
the protocol can handle extended periods of network partitioning that
naturally occur in environmental monitoring. To this end, the protocol
features a recovery strategy, which is applied to fully desynchronized
or newly joining nodes. Besides its time sync capabilities, the protocol
can be used as a simple TDMA-like MAC-layer.

The protocol is based on a common sync time window where each
node has a time slot when it has to send a beacon message. This beacon
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Figure 6.9: SBTSP: Working Principles

message is broadcast and serves for: 1) letting other nodes measure how
much skew their local clock has when compared to the sender, and 2)
letting the node announce how much skew on average it measures. The
beacon exchange process is shown in Figure 6.9a. Figure 6.9b illustrates
how two nodes mutually measure their skew. The mathematical model
and the proof of convergence of the algorithm are discussed in detail in
[Tal08]. The document also describes various aspects of the design such
as recovery strategies, scaling mechanism, post-hoc calibration. Here
we do not discuss them, as it is not important in the current context.

The original implementation was based on the traditional message
exchange mechanism (see Figure 6.10a). We have re-designed the
protocol using the concept of mobile code and the programming tools
provided by ChameleonVM. If we compare these two versions we will
see that the implementation based on code exchange (see Figure 6.10b)
is more straight-forward and has a clearer structure; functionally the
two versions are identical.

In the mobile code version, the protocol is functionally encapsu-
lated into three capsules and one export function (for more on export
functions see Section 3.2.13). The initialization capsule (see Listing A.3
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in Appendix A) sets up necessary variables and constants. A resi-
dent capsule resides on each node and switches the system between
sleep and awake modes (Listing A.4, Appendix A). The beacon capsule
moves across the network and allows nodes to measure and correct
their mutual skews (Listing A.5, Appendix A). This process is shown
in Figure 6.10c. The export function getSkewAdjust (Listing A.6, Ap-
pendix A) implements a linear regression algorithm which is used to
correct skews; it is called from the resident capsule.1

The init and resident capsules are disseminated only once. More-
over, the init capsules needs to be executed only once, after that it can
be removed from a node. The capsule dissemination order matters: 1)
the resident capsule must be installed before the init, and 2) the beacon
capsule must be installed after the init and resident. Both limitations
can be overcome by switching the AUTOEXEC flag off (see Section 3.2.6)
for all the capsules and then triggering execution of the init capsule
manually. Alternatively, the capsule’s presence can be checked from
the source code but this would increase the size. To simplify the design
we distribute a linear regression algorithm as a ContikiOS loadable
module. It is then called from ChameleonVM capsules as an export
function through an instruction assignment.

The beacon capsule is moving across the network all the time in
order to keep the nodes synchronized. The protocol uses local node
IDs as a reference for the slot within the synchronization window (see
Figure 6.9a: node A (ID=1) transmits in the first slot, node B (ID=2)
in the second, C (ID=3) in the third, and so on). Each node transmits
exactly 1 and receives N − 1 beacon capsules in every round. Previous
capsules are replaced by newer ones, the last (out of N − 1) arrived
capsule is used by the node itself to participate in the synchronization
round. As it can be seen from the code in Listing A.5 the init segment
of the beacon capsule plays the role of message.received() handler on
the recipient side. Algorithmically, the process can be seen as in Fig-
ure 6.10c where in each cycle the beacon capsule travels the same path:

1In the program listings, in order to save space we use a pseudo C-like code which
can be easily translated into ChameleonVM notation used above. SHMEM[X], BUFS[X],
BUFC[X] denote the memory region where the corresponding variable or constant X
resides.
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Static code
(exchange of data
packets)

Mobile code (exchange of compressed
ChameleonVM capsules)

resident code size 2 kB 108 bytes + 0.5 kB (export function)

uncompressed mobile code
size — 152 bytes

packet payload size 4 bytes 72 bytes (fully compressed code + data)

dictionary size — 25 entries

Table 6.8: SBTSP: Comparison of Static and Mobile Versions

1 → 2 → 3 → 4 → 5.2 In reality, in Figure 6.10c nodes might not even
be physically interconnected with each other via direct links, but via
multiple hops. Logically, code goes around the network and gets back
to the node 1 where it waits for the beginning of the next synchroniza-
tion cycle. Since ChameleonVM environment is dynamic, the process
continues as long as the beacon capsule keeps moving across, with no
connectivity for a long period of time the code will decay.

The mobile version of the protocol behaves identically to its static
TinyOS-based predecessor. The experiment carried out on the real
network of 20 TelosB nodes grouped in a fully meshed topology and
observed for about 14 hours is shown in Figure 6.11a. Test results with
different topologies and settings are presented in [Tal08]. The mutually
measured skew shown in the graph is proportional to the adjustment
(see Figure 6.11b) applied on each node to correct its wake-up time
(the output of the getSkewAdjust function from Listing A.6). The first
8 rounds are without any skew adjustments because nodes are filling
their circular averaging buffer. Then comes a sudden onset where skew
is fully corrected and afterwards we have gradual adjustments due to
the drift. After this initial phase we have about 20 rounds where the
system tries to set itself up and converge. After reaching a balanced
state, the system applies just a slight correction in each round in order
to maintain this state.

Table 6.8 shows a comparison between static and mobile versions
of the protocol in regard to code size.

2Schematically it seems to be one single capsule traveling the network. In fact, it is
continuously being replaced by a newly arrived copy.
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(a) Measured Skew

(b) Adjustment

Figure 6.11: SBTSP: 5 min sync interval, almost fully mesh topology, first
14 hours of the run shown
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Figure 6.12: Code Compression Process: SBTSP

With mobile code version the packet size increases significantly,
since now we transmit actual code and not only static data fields. This
will indeed have a negative impact on the energy spending in a long
term. On the other hand, applying code compression to the traveling
code we manage to almost half the packet size (see Table 6.8: 152 vs
72 bytes).

Our solution does not suffer from possible code losses, as there is
always, at least, one copy of the beacon capsule on each node. In this
respect it is similar to the static counterpart.

Since the init and resident capsules are supposed to be disseminated
only once they are not included in the compression process. Thus,
we consider only the beacon capsule here. The results are shown in
Figure 6.12.

A couple of observations could be made from the analysis of the
graphs in Figure 6.12. Full convergence (single instruction encoding) is

213



6. Experimental Setup

possible if FCS is big enough. In case of SBTSP the threshold is 26 free
opcodes. Pushing FCS beyond this level does not result in any gain in
compression. The curve in Figure 6.12b has a clear exponential decay
form. This was not so obvious in the previous examples. This is easily
explainable. The original stream has more pair-wise patterns. The more
code shrinks the fewer patterns can be found. Consequently, the con-
vergence speed (number of algorithmic cycles) in Figure 6.12c shows
an exponential growth. In fact, it is inverse to the CF in Figure 6.12b.

6.4.7 Data Collection Application
Finally, we come to the point where we can start building a real-world
scenario using the software pieces presented above. We intend to build
a data-collection WSN application with the following features:

– The WSN has one sink which is also used as an access node. Code
dissemination starts from the sink.

– Data sensing is done periodically, data is pushed towards the
sink in each cycle if there is connectivity.

– Measurements must be synchronized in time.
– The sink stores the collected data in a buffer for further process-

ing.
– No pre-configured software apart from the ChameleonVM instance

is installed on each node.
– Nodes do not have pre-configured addresses.

In order to achieve all of these goals we use the independent code
pieces previously described. The following capsules are used as build-
ing blocks for the application:

1. MAC-layer and time-sync: SBTSP (Section 6.4.6),
2. routing: spanning tree builder (Section 6.4.3),
3. address resolution: ID assignment (Section 6.4.5), and
4. sense/collect functionality.

The only part, which is still missing is the sense/collect functionality.
The following two capsules are responsible for taking and collecting
measurements. As before, the algorithm assumes that we already have
an established tree topology in the network. The node-based capsule
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periodically initiates sensing on each node, accumulates a buffer of 10
measurements and sends it back up to the top of the spanning tree.
The code is present in Listing 6.9. The sink node does not execute this
capsule.

1 .sys # SYSTEM segment
2 AUTOUPDATE On
3 LIFETIME 0 # live forever
4 ID 0x70
5
6 .code.init
7 push 10
8 append BUFC ,NID # prepend the buffer with node ID
9

10 .code.timer0
11 dec
12 L1: ifeq 0,L2 # check the counter
13 sense # "sense" is "sense TEMP" on this node
14 append BUFC # append to BUFC
15 delay 60s # sleep 1 min
16 exit
17 L2: push 10 # start loop again
18 append BUFC ,NID # prepend the buffer with node ID
19 delay 60s
20 erase TOP
21 sendd ME ,ME.FROM ,S # send the buffer up
22 die

Listing 6.9: Data Collection Application: sense and send measurements
to the sink

The resulting application would have code size characteristics as speci-
fied in Table 6.1 (sink-based capsule is excluded).

Line 13 in Listing 6.9 above is an example of using code polymor-
phism. Instead of explicitly specifying the parameter (what to measure:
temperature, humidity, etc.) for the sense operation by pushing it
on the stack, the definition is made directly in the dictionary. This
eliminates the need to specify it in the code. On multiple nodes this in-
struction can be defined differently bringing different sensing in action
when it is called. The transmitted code becomes more generic. Also
note, this capsule does not have a lifetime limitation. It stays on each
node forever.
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The last capsule of the application framework resides on the sink
node. It receives measurements from the other nodes and stores them
in the SHMEM buffer (see Listing 6.10) in the following format:

[nodeid1, 10 values], [nodeid2, 10 values], . . .

This data can be read out by an external program for further processing
using access methods to the shared memory.

1 .sys # SYSTEM segment
2 AUTOUPDATE On
3 LIFETIME 0
4 ID 0x80
5
6 .code.cap # CODE segment "receive capsule"
7 push CAP.ID # count "our" capsules only
8 jmpeq 0x70 ,L1
9 exit

10 L1: append SHMEM ,CAP.BUFC # append to shared memory:
11 # [ID1 ,10 values], [ID2 ,10 values],
12 # ...

Listing 6.10: Data Collection Application: collect and store measurements
in a sink’s buffer

The resulting code (all capsules in the set) has 26 unique instructions
and a code resolution of 5 bits, correspondingly. Table 6.9 illustrates
the code size estimates of each capsule in the set.

Obviously, the number of instructions remains the same but the
growing alphabet size causes the binary code stream to increase in
size, as more bits are needed to encode each instruction. This simple
rule is a fundamental principle of task-specific profiles used in our
design. The instruction set is optimized at run-time to provide only
necessary instructions to encode the task. By extending functionality of
the application we increase the common alphabet, which has an impact
on the code size. This principle also works if we remove functionality.
Consequently, the compressed form changes as well. This is shown in
Figure 6.13.

Another important feature of the scheme is that it re-encodes the
entire stream from the beginning if some block has been added or
removed. This allows achievement of a better CF. In Figure 6.14 we
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FCS SBTSP Spanning tree Sense and
deliver

ID
assignment

independently, local alphabeta [instr/bytes]

0 151/75.5 47/23.5 30/15.0 45/22.5
5 85/42.5 28/14.0 15/7.5 30/15.0
10 67/33.5 23/11.5 2/1.0 4/2.0
20 42/21.0 1/0.5 2/1.0 2/1.0
30 1/0.5 1/0.5 2/1.0 2/1.0

independently, task-specific global alphabetb [instr/bytes]

0 151/94.375 47/29.375 30/18.75 45/28.125
5 85/53.12 28/17.5 15/9.38 30/18.75
10 67/41.88 23/14.38 2/1.25 4/2.5
20 42/26.25 1/0.62 2/1.25 2/1.25
30 1/0.62 1/0.62 2/1.25 2/1.25

independently, common global alphabetc [instr/bytes]

0 151/113.25 47/35.25 30/22.5 45/33.75
5 85/63.75 28/21.0 15/11.25 30/22.5
10 67/50.25 23/17.25 2/1.5 4/3.0
20 42/31.50 1/0.75 2/1.5 2/1.5
30 1/0.75 1/0.75 2/1.5 2/1.5

in the extending set, global alphabetd [instr/bytes]

0 151/75.5 198/123.75 228/142.5 273/170.625
5 85/42.5 116/72.5 140/87.5 176/110.0
10 67/33.5 96/60.0 119/74.38 150/93.75
20 42/21.0 64/40.0 86/53.75 121/75.62
30 1/0.5 41/25.62 67/41.88 85/53.12
40 1/0.5 2/1.25 4/2.5 70/43.75
50 1/0.5 2/1.25 4/2.5 6/3.75

Table 6.9: Code Size Estimation: Data Collection Application

aAssess each module using only its own opcode range independently from other
modules in the set.

bAssess each module using common opcode range (26 opcodes) but independently
from other modules in the set.

cAssess each module using common opcode range (50 opcodes) but independently
from other modules in the set.

dAssess each module using common opcode range within the extending set (capsules
are being added up).
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Figure 6.13: Data Collection Application: Code Build-Up

Capsule Dissemination/Execution
Frequency (times)

SBTSP 10 (nominal)
Spanning tree 1 (nominal/10)
Sense and deliver 0.1 (nominal/100)
ID assignment 0.01 (nominal/1000)

Table 6.10: Data Collection Application: Dissemination Frequency Setting

present the results for the set of 4 capsules: SBTSP, spanning tree, sense
(Listing 6.9) and ID assignment. The collector capsule (Listing 6.10) is
excluded as it statically resides on the sink node.

Different capsules building up the application are disseminated and
executed with different frequencies. In order to estimate energy saving
(see Figure 6.14d) we used the setting from Table 6.10. Furthermore, we
assumed that the system is in the stable state. This means that we do
not take into account energy spent on initial deployment of capsules or
propagation of dictionary updates.

6.5 Optimizing FragletVM’s Code
Chemical protocols as discussed in Section 2.4 are normally communi-
cation-abundant. Compared to packet-based traditional architectures,
the number of transmissions required by CNP is much higher due to
the dynamic nature of protocol design. CNP operate with concentra-
tions rather than data fields. That is, some protocol parameters are
represented by the number of molecules rather than a symbolic value.
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Figure 6.14: Code Compression Process: Data Collection Application
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Transmissions (packets/molecules) are short but the transmission fre-
quency is high. This model shows a potential use for our compression
method. As an example we take the protocol developed in [Mey10] and
re-encoded it for FragletVM (see Section 3.3): Disperser, a gossip-style
aggregation protocol.

6.5.1 Disperser
Disperser was developed and analyzed for various topologies and con-
figurations in detail in [Mey10]. Disperser is a CNP that calculates the
average of distributed values. That is, it can be used as an aggregation
protocol, which in turn is a typical task in many WSN applications. The
computation of the average values is carried out by the dynamics of
the distributed reaction system.

Lets demonstrate this with a simple example. The network consists
of N nodes taking temperature measurements. We would like to know
the average of the temperature value over the entire field (each node
must learn the average value through providing its own measurement
and interaction with other nodes). Using a more classic approach we
would need to use a suitable routing protocol, one of the aggrega-
tion functions and some efficient data representation as described in
[FRWZ07]. With CNP things become much simpler as this networking
principle basically requires only three steps: 1) to represent a particular
value as concentration of passive molecules (operands; in our case
30 ◦C would be probably represented as 30 passive molecules),1 2) to
introduce control molecules on each node, and 3) to choose a proper
scheduling. Although the key factor to provide the right level of dy-
namics is to use the Law of Mass Action (LoMA) scheduling (probabilistic
selection, [MT11]), our simplified scheduling mechanism for embed-
ded implementations using quasi-random selection (see Section 3.3.4)
provides an equivalent level of dynamics and has shown very similar
results.

In [Mey10] the protocol has been proven to work for any topologies
given that the number of control molecules is equal for each link in the
network. Here we pick two implementations: 1) 4-nodes with fixed
links, a simplified version we use to explain the protocol’s design, and

1Negative values could be represented with concentrations as well by defining an
offset. It depends how we select the “temperature-concentration” conversion function.
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2) a generalized version for unknown topologies which we apply our
compression scheme to.

Logically the protocol consists of two fraglets (molecules): 1) control
(active), and 2) operand (passive). To simplify things we assume that
the control fraglet is manually pre-installed on each node.2 First, we
consider the 4-nodes setting example, code for which is shown in
Listing 6.11.

1 # Distributes a load (average some value) equally over the set
2 # of 4 nodes
3
4 # Disperser program for node n1
5 f matchp X send n2 X # Send [X] to neighbor n2
6 p 100 # Inject 100 X molecules
7 f X
8
9 # Disperser program for node n2

10 f matchp X send n1 X # Send [X] to neighbor n1
11 f matchp X send n3 X # Send [X] to neighbor n3
12 f matchp X send n4 X # Send [X] to neighbor n4
13
14 # Disperser program for node n3
15 f matchp X send n2 X # Send [X] to neighbor n2
16 f matchp X send n4 X # Send [X] to neighbor n4
17
18 # Disperser program for node n4
19 f matchp X send n2 X # Send [X] to neighbor n2
20 f matchp X send n3 X # Send [X] to neighbor n3

Listing 6.11: Disperser Protocol: 4-nodes topology with fixed links

In this program we assume that X is a passive molecule representing
a physical value (e.g., temperature). The more X that are generated
locally by the node, the bigger the sensor reading is. Each node also
contains a number of control molecules, which are proportional to the
number of links the nodes has. This is required for the protocol to
operate properly. The number of nodes and the topology are fixed and

2Viral propagation and deployment using fraglets is currently an unresolved issue
since there is no “no-match” operation. To overcome this limitation a special form of
control fraglets (Quines) should be used. These control loops regulate fraglets’ popula-
tion by continuously generating new fraglets (but not allowing them to overcrowd the
network) in exchange for those being consumed and re-generating themselves at the
same time. More on Quines see [Mey10].
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do not change over time. The topology which corresponds to the code
in Listing 6.11 is shown in Figure 6.15.
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Figure 6.15: Disperser Protocol: 4-nodes topology with fixed links

Here we avoid a detailed analysis of the chemical reaction network
for this protocol. The more interesting question is what type of message
exchange this scheme triggers. We simulate the reading by injecting 100
X molecules on node n1 (see Figure 6.15). These passive molecules start
interacting with active fraglets on node n1 which results in sending
passive fraglets to n2. Their reaction continues and propagates further.
Eventually, the entire network converts into a never-ending reaction
flow where molecules react locally and generate new molecules, which
are sent to the neighboring nodes and so on. The protocol guarantees
that after a number of cycles and with some acceptable deviation the
concentration of passive molecules X will be the same on each node.
This process is illustrated in Figure 6.16.

Unfortunately from the compression point of view the above ex-
ample is a no-go since nodes only exchange static information (syn-
chronization tag X), no active code exchange is done. That is why we
have to have a look at the more general version of the protocol which
uses active messages (see Listing 6.12). In this version the protocol can
automatically discover its network neighborhood. In fact, the neighbor
discovery capability brings active code to the protocol. As before, for
the very first time the fraglet must be installed on each node.

1 # Distributes a load (average some value) equally over the set
2 # of nodes
3
4 n i # Disperser program for node i
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Figure 6.16: Disperser Protocol: Convergence

5 # Discover the neighbor and send [X] to him
6 f matchps X send all snodeid _ send i spush X match X send
7 p 100 # Inject 100 X molecules
8 f X

Listing 6.12: Disperser Protocol: unknown topology

Compared to the 4-nodes example from Listing 6.11 this implemen-
tation uses code exchange. The following communication steps are
involved in each protocol cycle:

1. Each node i broadcasts the fraglet to all the neighbors: snodeid
send i spush X match X send. The original active fraglet re-

mains on the node, plus an extra copy of X is generated to com-
pensate the consumed one.

2. Each neighbor j executes the received fraglet by appending the
local node ID to its tail and sending it back to the originating
node: spush X match X send j.

3. The returned fraglet is restructured to become a control fraglet:
match X send j X.

4. The control fraglet reacts with a passive X molecule and sends it
to the previously discovered neighbor j.

The neighbor discovery functionality (see Listing 6.13) can be ex-
tracted from the code and used as a building block for a routing pro-
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tocol. Additionally, the source node ID can be obtained via snodeid
operation at the beginning of the original fraglet instead of explicitly
specifying it in the code. This would make code more portable.

1 f snodeid _ send all snodeid _ send

Listing 6.13: Neighbor Discovery

In order to show the experimental results of applying our com-
pression scheme to the fraglets code stream we pick the network from
Figure 6.15 and install the code from Listing 6.12 on it. Because of the
dynamic and morphable nature of fraglets the resulting code traveling
the network is normally much bigger than the original encoded stream.
This explains the amount of code actually transmitted in each cycle as
specified in Table 6.1. The number of transmissions from Table 6.4 is
given by the fact that for each link we:

– transmit snodeid send i spush X match X send,
– receive spush X match X send j, and
– transmit X again.

The results are presented in Figure 6.17. The fraglet’s code shows a
good response to the compression. This can be explained by a normally
high rate of duplicates (patterns) in the transmitted code. As with the
data collection application from Section 6.4.7 our energy estimations
here are based on the fact that the system is in the stable state. Moreover,
the results are valid only for the scheduling scheme used by FragletVM,
a tick-based quasi-random scheduling. With the original LoMA which
requires a non-discrete time base the results would be different as the
transmission rate is not correlated with the clock domain (ticks).

The last but not the least thing to say is that we do not try to argue
the potential application of fraglets in real WSN installations. This
communication model is rather targeted at computationally rich envi-
ronments. From the energy consumption point of view the chemical
approach can hardly compete with classical energy-aware protocols.
Here, we have only shown how a different approach to protocol design
could benefit from our code compression methodology.

224



6.5 Optimizing FragletVM’s Code

0 2 4 6 8 10 12 14 16
free code space

2

4

6

8

10

12

14

16

nu
m

be
ro

fi
ns

tr
uc

tio
ns

code size
dictionary size

(a)

0 2 4 6 8 10 12 14 16
free code space

0.2

0.5

0.8

1.0

co
m

pr
es

si
on

compression factor

(b)

0 2 4 6 8 10 12 14 16
free code space

2

4

6

8

10

nu
m

be
ro

fi
te

ra
tio

ns

convergence speed

(c)

0 2 4 6 8 10 12 14 16
free code space

0.5

1.0

1.5

2.0

2.5

3.0

3.5

en
er

gy
sa

vi
ng

(4
no

de
s)

integrated over 1000 protocol cycles,log10,[mW]

TelosB (fixed topology)
TinyNode-584 (fixed topology)

(d)

Figure 6.17: Code Compression Process: Disperser Protocol
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Instruction Description

smove
Performs a strong migration to a remote node. A strong migration does not
affect the execution of the agent (the program counter, stack and heap are all
maintained).

wmove
Performs a weak migration to a remote node. A weak migration does not save
the agent execution state. The agent restarts from the beginning when it arrives.

sclone
Clones an agent to a remote node. The clone inherits all of the original agent’s
execution state.

wclone
Clones an agent to a remote node. The clone resumes running from the
beginning.

Table 6.11: Agilla: Agent Manipulation Instructions

6.6 Optimizing Foreign Code: Fire Tracker in
Agilla

In order to demonstrate how our method could be used with a third-
party code we have picked a fire tracking application designed for
Agilla, by its author, as a demo.

Agilla is based on Maté but uses its own customized instruction
set. Initially we wanted to use the original Maté code but finding an
example was a problem. Maté uses an underlying propagation layer.
Hence, programs do not normally incorporate the mobile features. Al-
though the code moves it does not have control over this. Nevertheless,
Maté supports the forw instruction which is used to transmit a capsule
to other nodes. First, the capsule is broadcast to network neighbors.
These nodes install it and then call forw again when they execute the
capsule’s code. This way, the capsule is forwarded to their local neigh-
bors; and so on. As reported in [LC02], “a capsule can also forward
other installed capsules with the forwo (‘forward other’) instruction.
This is useful if the desired program is composed of several capsules; a
temporary clock capsule that forwards every capsule can be installed,
then as each component capsule is installed it will be forwarded. Once
the entire network has installed all of these capsules, the clock capsule
can be replaced with a program to drive the application”. Agilla oper-
ates with mobile agents and, therefore, provides a set of instructions to
manipulate the installed entities as shown in Table 6.11.

Agilla also features instructions to manage local and remote tuple
spaces (access to remote data sets). Agilla is also capable of managing
information about neighbors in a high-level manner. These all are made

226



6.6 Optimizing Foreign Code: Fire Tracker in Agilla

(a) Topology 1 (b) Topology 2 (c) Topology 3 (d) Topology 4

Figure 6.18: Fire Tracker Possible Topologies

possible by the background middleware-like activities carried out by
the framework. For an application most operations remain transparent.

For our experiments we have borrowed a fire-tracking application
from Agilla’s distribution. The original implementation consists of
two parts: 1) a fire tracking agent (tracks the fire), and 2) a fire agent
(simulates the fire). We are interested only in the second part whose
source code is shown in Listing B.1, Appendix B and the schematic
algorithm in Figure B.1.

In this example, the network is built in a grid topology (5x5 nodes;
see Table 6.5). After injection the fire tracker code detects and forms a
perimeter around a fire, which has been previously modeled by the fire
agent. The fire-tracking agent initially moves across the network look-
ing for fire. Upon arrival to a node, it checks if any neighbors are on fire.
In case it is true, the cloning happens onto nodes within two horizontal
and vertical hops off the fire in the grid. The clones repeat this process
as well. Eventually, a perimeter around the hotbed is formed. Fire
detection agents continuously check the fire and proactively move to
surround the hotbed. Some possible agent propagation scenarios are
shown in Figure 6.18.12

We used the topologies in Figure 6.18 to model energy saving of the
compressed code according to the propagation rules just mentioned.

As mentioned previously, Agilla instances are continuously exchang-
ing a lot of system messages in order to maintain the backbone network

1The fire agent is colored with green, area on fire with red, and the agent propagation
path with gray.

2This example is borrowed from http://mobilab.cse.wustl.edu/projects/agilla/
Examples/single_agent_fire_detection/index.html.
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Figure 6.19: Code Compression Process: Fire Tracker

ready for agent migration. Moreover, the Agilla’s agent migration pro-
cess is divided into phases: heap, stack, code and tuple spaces are
transmitted separately. We do not take all these into account, only pure
code transmissions. The results of applying code compression to the
fire tracker agent’s code are shown in Figure 6.19. Energy estimations
are made using the scenario from Figure 6.18.

Agilla is based on Maté VM whose architecture and, therefore, code
execution style is slightly different from the one used in ChameleonVM.
We had to pre-modify the code in Listing B.1 to be able to feed it to our
compressor: intermediate operands (numeric values) were removed. In
contrast to ChameleonVM, Agilla does not use the concept of code merg-
er/split. An entire agent is always transmitted and code compression
is applied to the entire code block.

As can be seen from the Figure 6.19 the Agilla’s code responds to
code compression well, very similar to the ChameleonVM’s code. The
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reason is that bytecode streams of both have a very similar structure,
though the binary representations differ. As a result the agent’s size
can be reduced significantly.

6.7 Final Considerations
At the end we would like to outline some common trends on com-
pression of various code streams presented in this chapter. The level
of success in compressing a code stream depends on many factors
including:

– stream type,
– stream size,
– fragmentation level, and
– patterns.

The above characteristics are given by the source stream and nor-
mally cannot be changed, although some sort of pre-arrangement of
the source code (code re-factoring) can be done before applying com-
pression (see Sections 4.1 and 4.3). Parameters of the compression
algorithm have a high impact on the process as well. In our experi-
ments we have mainly explored the influence of FCS, the number of
spare opcodes in the entire ISA. Table 6.12 shows the original dictionary
size for each application and the point of convergence, the number of
newly introduced instructions which leads to more compressed code
representation. Pushing FCS beyond this point does not give any fur-
ther gain in compression. As can be seen there is no common law.
Some code streams require FCS to be as big as at least the original
dictionary; others need it to be even twice the size to converge. The
last statement is mainly true for bigger streams with relatively large
original dictionaries.

Table 6.13 and Figure 6.20 show the results of the online compres-
sion for all test applications presented earlier. In most cases we can
see that the CF has a clear exponential decay characteristic in the most
part of the curve. Most characteristics also have a cut at the end where
the algorithm shows the highest convergence. The larger code streams
take more iteration to converge as the algorithm processes only a pair
of instructions in each cycle.
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Application Dictionary
Size

Point of
Convergence

ChameleonVM

“Hello World!” 4 4
Route discovery 5 11
Spanning tree 11 12
Network Size Estimator 5 4
ID re-assignment 13 13
SBTSP 15 26
Data Collection Application 26 47

FragletVM

Disperser 8 5

Agilla

Fire Tracker 30 16

Table 6.12: Dictionary Size and Point of Convergence of Test Applications

Application FCS=3 FCS=5 FCS=10 FCS=20 FCS=30 FCS=40 FCS=50

ChameleonVM

“Hello World!” 37.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%
Route discovery 51.2% 37.2% 14.0% 2.3% 2.3% 2.3% 2.3%
Spanning tree 68.1% 59.6% 48.9% 2.1% 2.1% 2.1% 2.1%
Network Size
Estimator 60.0% 20.0% 20.0% 20.0% 20.0% 20.0% 20.0%

ID
re-assignment 75.6% 66.7% 24.4% 4.4% 4.4% 4.4% 4.4%

SBTSP 64.9% 56.3% 44.4% 27.8% 0.7% 0.7% 0.7%
Data Collection
Application 71.1% 64.5% 54.9% 44.3% 31.1% 25.6% 2.2%

FragletVM

Disperser 43.8% 18.8% 18.8% 18.8% 18.8% 18.8% 18.8%

Agilla

Fire Tracker 79.5% 74.4% 53.8% 1.3% 1.3% 1.3% 1.3%

Table 6.13: Compression Factor of Test Applications

230



6.7 Final Considerations

0 10 20 30 40 50
free code space

20.0

40.0

60.0

80.0

100.0
co

m
pr

es
si

on
fa

ct
or

[

”Hello World!”
Route discovery
Spanning tree builder
Network size estimator
ID re-assignment
Skew Balance Time-Sync Protocol
Data collection application
Disperser (fraglets)
Fire tracker (Agilla)

Figure 6.20: Compression Factor of Test Applications

Our energy estimations should be seen only as approximations as
many other factors such as the topology can potentially influence the
power consumption. In our model we have tried to cover the most
common situations.

Besides all the positive aspects caused by applying code compres-
sion a number of negative sides can be highlighted. By extracting
semantics from the traveling code and putting it in the on-board dic-
tionary we occupy memory resources of the node. This has not been
a problem for our test cases but extremely big dictionary sizes might
become a significant constraint.

Some complex protocols might require initial packets to be of a
relatively big size, which in turn might not fit into the platforms-specific
packet format. In this case, we would have to split code into pieces,
disseminate the entire code in a form of several packets (currently, this
is already supported by ChameleonVM), assemble them back together
on the node, run the code compression up the point where code can
fit into payload limit and only after that initiate protocol execution.
Compression could then be continued at run-time.

Another thing to mention is that our compression is a rather leisurely
process. Results can be seen only after many cycles. In this context,
frequent re-configuration activities might not be efficient at the end.
Re-programming requires energy to disseminate program updates and
compression itself requires energy to announce dictionary updates to
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the rest of the network. This trade-off must be assessed beforehand on
a case-by-case basis.

6.8 Summary
In this chapter, we have carried out a set of experiments on code op-
timization techniques previously described in Chapters 4 and 5 us-
ing three types of code streams with different properties. For these
experiments we tried to pick examples, which can find a use in real-
world scenarios. We have proofed that our method shows comparable
performance for all analyzed code stream. Moreover, it outperforms
the-best-in-class existing solutions. Besides evaluation of the code size
related properties we have also established the correlation with en-
ergy consumption for long-term operations. We have found out that
our method can potentially provide big energy savings for a system.
The trade-off between code reduction and computational complexity
accompanied by communication overhead still allows the method to
show positive effect on the system characteristics.
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7

Discussion and Future
Directions

In the previous chapters, we have presented the set of methods
for dynamic code morphing in network embedded systems (ES).
Many questions remain open though. These questions point at
the design level as well as at the implementation details. In this
chapter, we first give a formal evaluation of the proposed method
and discuss its possible applications. Then, we try to summarize
all open issues and find some directions of how to address them
in the future. We also highlight several conceptual offshoots,
which may stimulate further research in the area. We show how
our results could be used to achieve that, and what benefits or
drawbacks we should expect.



7. Discussion and Future Directions

7.1 Formal Evaluation of the Proposed Method
In this work, we have investigated the research problem of bringing
program code representation (encoding) to a form, which is most op-
timal in the current context, for the current task being performed. It
belongs to the class of NP-problems like many types of optimization
tasks. This means there is neither optimal nor fast solution known.
The time and computational resources required to locate such a solu-
tion increases very quickly as the size of the problem grows. In our
case, this would mean growing alphabet size, total program size and
free code space. In Section 5.9 we have shown how these algorithm
parameters affect the convergence speed. In the world of embedded
devices, where resources are extremely limited, this becomes even a
bigger issue. Traditionally, NP-complete problems are often addressed
by using approximation algorithms. We have adopted this technique
in our research too. We do not try to find the most optimal represen-
tation but rather to push the system towards it at each iteration of the
algorithm. The local solutions made may not be optimal and could
even make the system drift away temporarily. But in the long term, the
behavior must show a positive tendency. This behavior was explained
in Section 5.3. Our method satisfies these two assumptions.

From the system architecture point of view, the method employs
some characteristics of intelligent decision-making. Although its ca-
pabilities are limited, as the available resources do not allow building
comprehensive algorithmic structures. The system is naturally adap-
tive and capable of doing “switch”-logic. This means it can adapt to
changes in the environment that is software re-configuration in our
case.

7.2 Application Fields
The code morphing techniques described in this work are of a broader
nature than just network ES. Moreover, generally code morphing is not
limited to the network systems only. Task-specific code optimization
can be applied to the local code too if memory/CPU constraints are too
tight. Such optimization might potentially save energy. However, the
effect of local compression might not be very big. In this case, tradi-
tional compiler- and linker-level optimization tricks would probably
be more efficient.
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So far in this work we have mainly concentrated on ES and WSN
in particular. Two recent network-related paradigms, discussed below,
could potentially benefit from using code morphing as well.

NoC (Network-on-a-Chip): This is a hardware-oriented approach to
designing the communication layer between IP cores in a SoC (System-
on-Chip), a sub-class of VLSI systems. In [SSM+01] the authors also
referred to it as “the layered-stack approach to the design of the on-
chip intercore communications”. NoC applies networking principles
and methods to on-board (on-chip) communication. This allows for
overcoming the limitations of traditional bus/link interconnections.
According to [NK08], in a NoC system, modules (e.g., processor soft-
cores, memory units, specialized IP blocks) exchange data chunks
using network principles. It is made up of multiple point-to-point
data lines (de-)multiplexed by switches (a.k.a., routers). The switches
make routing decisions so that message exchange can be established
between any source and any destination modules over several lines. A
NoC shows many similarities with a traditional telecommunications
network that uses bit-packet switching over multiple interconnected
links. Proposals utilizing circuit-switching techniques exist too. NoC
improves the scalability of SoC, as well as the power efficiency.

The NoC paradigm does not specify the topology of the on-chip
network. Currently, there is a rising wave of research on synthesis of
application-specific NoC topologies. We believe that the next stage of
this process would be integration of code exchange between modules
into such on-chip architectures. Looking further ahead we can see the
blending between local and inter-node communication channels and
creation of a global transparent communication bus between nodes and
modules inside the nodes. Applying our code compression method
to this communication model may be beneficial, as it would provide
higher bandwidth for such a bus.

Dynamic stack composition: This as another emerging field of re-
search where an optimal network stack structure is considered as a
target. Compared to the traditional static stacks, the process of dynamic
composition allows adapting the stack to the continuously changing
external factors; e.g., traffic conditions, channel quality, functional
redundancy/shortcoming. Various approaches have been proposed.
[KHM+08] look at the problem from the traditional point of view by
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creating modularity at all levels of the stack architecture and providing
a rebinding property for dynamic re-configuration. In [RMYT08] the
authors propose to make the system run “continuous experiments with
alternative protocols online, in parallel as well as serially, in order to
automatically select those that best match the application’s needs under
the current network conditions”. The work of [IT10] brings the above
two ideas together. The highly decomposed protocol stacks are built
at run-time from multiple independent functional blocks (e.g., FEC
modules of different types, network and transport layers with different
properties, etc.) by learning about the optimal configuration from the
environment using genetic algorithms.

The stack composition can be seen as a special case of our task-
oriented network profiling technique. The difference is that stack com-
position looks only at the communication level whereas our concept
is more general and can be used to describe any type of in-network
activities. In this sense, code compression has every chance to be useful
for stack composition as well. That is, after bringing the stack to the
desired, optimal configuration of modules the further optimization at
the encoding level could be made using our method.

Emulation mode: ChameleonVM presented in Section 3.2 can be used
outside the code morphing framework. Because of its dynamically
tunable ISA it can be used to emulate other existing VM. We have
not investigated this though. Potentially, many problems will rise in
the emulation mode regarding task scheduling, memory usage, etc.
Moreover, if the semantics of some instruction cannot be emulated
using basic ISA provided by ChameleonVM then it should be added to
the system at compile-time which contradicts the main principle of our
framework’s design.

The presented examples show that the proposed method can be
useful in other domain different from WSN where optimal program
representation is important.

7.3 Open Questions
In our research, we have not answered many questions regarding the
architecture and behavior of our re-tasking and compression method,
and the tools. On one hand, these issues are not critical for develop-
ment of working implementations. On the other hand, there are some
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situations in which our system has not been analyzed and tested yet.
The further understanding is necessary to make the picture complete.
We discuss these below.

Auxiliary data compression: Our compression scheme is code-oriented.
It does not deal with the data part of a program stream. That is why
in ChameleonVM code and data are separated at the system level (see
Section 3.2.2). An improvement would be to extend the design and to
also apply compression to the data part. This extra compression step
could involve one of the data-oriented methods (e.g., LZW or some
other discussed in Section 4.2). It is not obvious if our method could be
applied here or not. Generally, data have much higher entropy. How-
ever, in the case of capsules there are not many immediate operands in
the stream, mostly static addresses and system variables which opcodes
are fixed. Therefore, entropy of such a stream should not be too high.
More analysis is needed here. By complementing code compression
with data compression, we could achieve even better results.

Packet size: Network ES feature cheap, short-range radio compo-
nents. Such systems dictate a certain level of limitation on packet
transmission size. Normally, a packet in such systems can be of vari-
able length up to a fixed maximum size.

For example, CC2420 packet1 radio chip used on many popular
WSN platforms like MicaZ and TelosB has the maximum size of a packet
of 128 bytes2 including its headers and CRC, which is demanded by
the IEEE 802.15.4 PHY specification. Increasing the packet size will
increase data throughput and RAM consumption, but will also increase
the probability that interference will cause the packet to be destroyed
and need to be re-transmitted.

On older platforms like Mica2 which used CC1000 radio chip some
developers have reported successful transmissions with a size of over
200 bytes. This was caused by CC1000 which is a bit radio, i.e., each bit
is sent directly by the MCU through the radio and out on the air. This
means a packet size can be increased up to 256 (the length field is only
8 bits).

1Packet radio chip buffers the entire packet in the radio hardware itself before
sending it over the air. This means that the number of payload bytes is limited to the size
of the hardware buffer.

2The default value in TinyOS 2.x is 29+1 bytes.
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Normally, these limitations are not critical for protocols based on
data exchange. The situation changes dramatically when we switch to
mobile code implementations. As it was shown in Table 6.1, Section 6.1
some applications can easily produce packets exceeding the limits
stated above. This would mean that such protocols are not operational
in the first place, before they are compressed. We have solved this
problem using the following trick:

1. Split code in multiple chunks.
2. Disseminate the chunks.
3. Re-assemble code again on a node.
4. Run compression without running the protocol itself up to the

point when the packet size fits the platform limit.
5. Continue to run protocol and compression in parallel.

Obviously, this greatly limits the use of the method but currently
we have no better solution.

Fully distributed compression: In this setting, briefly mentioned in
Section 5.7, different nodes holding different programs run a sort of
cooperative compression on a heterogeneous code set. There are two
main questions raised by this process: 1) how to schedule compression
iterations between multiple nodes, e.g., Round-Robin or priority-based
according to the code size on each node,1 and 2) how to coordinate
information exchange between those nodes.2 As can be seen, it is not
a trivial scenario. Alternatively, in order to avoid a very complicated
coordination between nodes, we could just combine multiple program
images on one node, run the compression on the entire set and then
disseminate the final result to the others. This case would be a reduced
form of that described in Section 5.6.

Auxiliary Huffman-coding: As it was mentioned in Section 5.4.11
Huffman-coding could be used on top of our code compression scheme
to better utilize the code space. As is well known, Huffman-coding
does not reduce the size, i.e., it does not actually compress. It rather

1Obviously, the node having more code can make better compression decisions since
there is more statistics available.

2Each node after making a decision must announce it to the rest of the network. The
others can agree or not if the new rule contradicts any previous assignments or if they
aware of a better decision. The change can be applied if only all nodes have confirmed it.
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allows encoding more frequent codes with fewer bits. Our scheme
could definitely benefit from it.

Corrupted code: Mobile code can be corrupted during transmissions.
In most WSN OS there is a simple CRC check on each packet. If the
CRC check fails the packet is simply dropped and requested for re-
transmission. For time critical applications this might not be the case.
In Section 4.5 we discussed how the robustness of mobile code could
be improved. This should be investigated further. Having the code
robust at the instruction and structural levels would make possible
a full-grown self-recovery feature which still remains a hot topic in
mobile code based applications.

Security: What is the definition of malicious code in ES? Can we trust
the code we receive? How can we check code validity? These are
the questions we have not touched in this work. There has been a
lot of research done [BN08] on the protection of sensing and dissem-
inating data in WSN from various types of attacks. These solutions
include hardware- and software-based security architectures. Both
could potentially be used to provide code validation in our system.

7.4 Future Directions
Besides the open questions from Section 7.3 we would like to emphasize
some ideas which could bring this work up to the next research level.
These ideas can mainly be grouped around two things: the tools we
use and the compression method itself. We first take a look at the tools.

Sponge protocols: In the current implementation capsules or fraglets
can only be combined with each other according to the pre-defined
rules (merge instruction in ChameleonVM, or match-es in FragletVM)
within the code only. This gives a very pre-deterministic behavior
to the system and in terms of stack composition an expected stack
structure. This is not bad but it requires different protocol parts to
be aware of connection points between each other. In our opinion
this could be done in a more elegant way by using the concept of
prioritization, or attraction (gravity) levels between parts of the code.
For example, in case of high noise inside a communication channel this
would increase the attraction level of Reed-Solomon FEC module to
the network-layer module rather than simple CRC-check. This would
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also allow start to build network protocols in a more probabilistic and
proactive fashion.

In contrast to the stack composition mentioned in Section 1.5.3
with sponge protocols we assume finer granularity. Sponge proto-
cols are supposed to be constructed out of single instructions. Those
instructions may have very complex semantics though.

Another distinguishing feature of sponge protocols1 would be an
ability for self-organization according to some sort of specification
listing a set of modules spread over the network. Current stack compo-
sition approaches assume that all modules are available locally. Sponge
protocols would be able to detect which parts are missing, locate them
in the network, deliver to a node and include them in the composition
process. The concept of attraction levels would help here again as we
would have to look only for the pieces we like at that moment based
on the current conditions and express this feeling somehow to the rest
of the network. The matching pieces would be gravitated towards us.
Ideally, this process would be fully automated.

The model could be extended to physical nodes as well: a node
would attract molecules with some properties according to the assigned
role for this node. Taking a materially minded example, this would
make a sink re-assignment (see Figure 7.1) in WSN an easy task.
The node with a new role “sink” will attract capsules specific to this
role, e.g., “collect”, “send to Internet”, etc. Those capsules will migrate
from the old sink to the new one to satisfy the new role. Inversely,
capsules for the role “regular node” will migrate (or replicate from the
neighbors) to the old sink.

Distributed labels: This concept somehow extends the idea of cap-
sules to building applications spread over multiple nodes. The applica-
tion itself remains transparent at the code level as shown in Figure 7.2.

The program execution flow would switch between physical nodes
as it goes on. Execution control instructions would force the system to
execute code on different nodes. For instance, as shown in Figure 7.2,
jmp L2 calling on node 1 would pass control to node 2 at the position

1Here we draw the analogy with animals of the phylum Porifera which “are known
for regenerating from fragments that are broken off, although this only works if the frag-
ments include the right types of cells”. This enables “sponges that have been squeezed
through a fine cloth to regenerate”. [information taken from the Wikipedia article located
at http://en.wikipedia.org/wiki/Sponge]
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Figure 7.1: Sink Role Re-Assignment

marked with L2. This execution method would probably involve some
non-trivial code localization tricks.

In-network data fusion: It is hard to believe but network steering
still remains mainly manned. The concept of capsules could easily be
adapted to provide a certain level of automatic control over network
activities. We have shown one simple example with temporary traffic
redirection in Section 6.4.2. This would bring us to the idea of “smart
agents” sitting inside the network, observing the situation and taking
some corrective actions according to the situation. Those actions could
even be taken as a prophylaxis.

As an example, we can take the X-Sense (former PermaSense) project
mentioned in Section 1.4. In [BBF+11] the authors state that “the data
retrieved from the network will still contain artifacts”. This happens
because of many factors: clocks drifts, packet duplication, packet loss,
system misbehavior, etc. These factors are normally aggravated by
harsh environmental conditions some systems, like WSN, are working
in. In X-Sense, in order to meet qualitative and quantitative require-
ments, i.e., data integrity, a lot of data post-processing steps are in-
volved in the reception and database side. These steps include: data
cleaning/ordering, data conversion/mapping, domain user process-
ing (filtering, aggregation). All this processing is done post-hoc. Our
belief is that it could be done with smart agents using an injection of
processing rules (meta-data) and units (agents) into the network. The
job would be done in place and in time.
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Figure 7.2: Distributed Labels

Identity management: As a side effect we could have information
collected about existing profiles. This information could be used for
the purpose of routing, address resolution and manipulating multiple
name spaces within the network. This way, nodes performing a com-
mon task could be addressed collectively. Communication between
nodes in the same profile could be optimized too, e.g., to use a short
address version between “colleges”. This can be considered as a step
towards “cognitive” networks.

Additionally, we have the following ideas in mind regarding our
compression method:

Hardware acceleration: In order to improve performance for extremely
time critical applications an FPGA-accelerator could be used for code
(de-)compression. Here we can refer to the recent work [M1̈0] on
data stream processing on FPGA which adapts the WSN-based query
system introduced by SwissQM [MAK07] to the world of FPGA. The
author even creates a query-to-hardware compiler to translate SQL-like
queries into FPGA primitives.

In our case the system would look like the one shown in Figure 7.3.
The hardware accelerator would continuously grab pieces of code
from the code pool, (de-)compress them according to the algorithm
presented in Section 5.4, drop the (de-)compressed code back to the pool
and update the dictionary. The in-memory code pool would require
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some scheduling mechanism implemented by the FPGA side to decide
which parts of code is to (de-)compress and when. Alternatively, the
entire system could be organized inside a FPGA chip. In fact, in this
case the VM would become a soft-core processor.
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Figure 7.3: Hardware Acceleration for Code Compression

Deliverable semantics: The last thing we would like to mention in
this section refers to the fact that so far we have considered code morph-
ing based on pre-defined semantics only. Our ideal environment, e.g.,
based on ChameleonVM, would consist of an abstract execution engine
only. This engine would initially know nothing about ISA, instruction
specifications or how it should execute them. This would be coming
along with a new code. The execution engine would be able to change
the semantic rules so that when the code leaves the node and moves
somewhere else it would carry the new semantics along. This process
is shown in Figure 7.4.

The method of delivering semantics along with the code may have
a huge implication on protocol design in the future. In this case, not
only code but also code semantics can be re-written at run-time while
the code is moving. This process will bring the system to a totally new
level of flexibility. However, performance (semantics processing) and
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resource consuming (semantics delivery) issues might become critical
for the system operation in this case.

7.5 Summary
During the discussion we have tried to assess the scientific significance
of the proposed models and methods. This helped us to find the new
potential application domains for the obtained results. It turned out
that applicability is surprisingly wide, many fields can potentially ben-
efit from using our work. We have found a number of open questions,
which have to be answered first though. At the end we have outlined
some future directions for our work which give us plenty of research
opportunities: from using self-designed mobile code to perform tasks
like in-network management and distributed computations to proto-
typing the proposed compression method in hardware or extending it
with new architectural principles.
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8

Conclusions

The final chapter of this work summarizes and assesses all our
findings made so far. We try to clarify how the initial motivation
and the stated goals from Chapter 1 correlate with what has been
achieved at the end. Once again we are having a retrospective
look at our contributions discussed briefly in Section 1.6 and
re-estimate them from the perspective of the finished work.



8. Conclusions

At the beginning of this work in Chapter 1, we stated several
goals which we would like to pursue in our research along with some
premises. We are pleased to see that most of them have lived up to our
expectations.

Tools for carrying out network tasks based on mobile code: In the
center of our research we put the idea of run-time task optimization in
network ES. In this context a task may come in different forms: a pro-
tocol stack (native code), an execution environment, or a middleware
script (bytecode), a user-level abstraction (query). Initially, we did not
want to limit our research to some specific form of task representation.
Later we realized that certain forms have a significant advantage over
the others. For instance, the bytecode form normally provides more
possibilities to manipulate the code and modify it. This is in contrast to
the machinery (binary) form or human-like query languages. Bytecode
gives the necessary level of abstraction from hardware and OS-level
complexity, at the same time keeping full, detailed control over pro-
gram execution flow. This mix of simple programming abstractions
and fine granularity of the resulting code led us to focus on this form
of task encoding.1 Having made this decision we built two mobile
bytecode execution environments. The first one, ChameleonVM, em-
ploys the ideas of classic active networking and mobile code, the other,
FragletVM, is an adaptation of the execution environment originally
invented to support protocol design based on chemical reactions. Both
solutions were tailored for use in the context of embedded network
systems, WSN in particular. We were surprised how many minor ques-
tions arise, when well-established methodologies, developed with a
different mindset, are being adapted to the resource-limited contexts.

Based on the gained experience we can say that using mobile code
in embedded applications is feasible with some restrictions dictated by
the limited available resources on most embedded platforms. Therefore,
the two basic principles for such systems are: 1) code must meet the size
requirements (storage/transmission), and 2) code must meet the time
requirements (in-time execution). Moreover, using mobile code in a
system would require a total rethink of how protocols are designed. The
design of a mobile version of well-known protocols has been another
interesting experience.

1Moreover, two other forms can be translated to the bytecode easily.
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A model of building task-specific WSN configurations: The devel-
oped mobile code frameworks allowed us to do system re-tasking at
run-time. We later used it as a base for the newly created model of
building task-specific WSN configurations. We truly believe that the
future of continuously growing and complicating WSN technology lies
in the area of building specific network configurations by customization
of available common abstractions. We call this process task-specific
profiling. As some requirements may not be known in advance, at
design-time, the system must be able to adapt, to profile itself at run-
time, when it is probably already deployed and up and running. The
decision on what is needed for proper system operation and which
parts of the software can be thrown out is a big challenge. We have not
completely covered this topic in our research; we have rather proposed
a set of policies and tools for doing it. In our examples, the decision-
making is still done manually. We think that our model can satisfy most
system scenarios available today. The recent research efforts show that
deployment (programming and operating) of a network configuration
across a wide variety of (unforeseen) circumstances is one of the hottest
topics in research and development of ES. However, most projects still
follow the traditional way of trying to predict and pre-define system
behavior at design-time for as many situations as possible. From this
point of view, our approach is different as we first deploy the system
and only after that we learn the current conditions. The system is
meant to be tweaked at run-time. We think this fundamental difference
is the first step to creating a new generation of self-configuring and
self-regulating ES.

Methods for dynamic code morphing: When the task-specific con-
figuration is ready the next question arises. Since many unnecessary
components are out at this stage, would it be possible to change the
task representation (encoding) in a way to better utilize the released
resources? And, if yes, how should we optimize the representation to
achieve better results? The reason for doing that is simply defined by
the context we are working in. In most ES energy budget is the main
factor, which defines the system’s lifetime. This budget is important for
being able to provide unmanned operation over extended periods of
time. In turn, the amount of information we have to exchange defines
how much power we have to spend on transmissions. We have studied
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various methods of optimizing the task encoding, from structural to
algorithmic, and even bit-level coding. We were more interested in not
how a task is programmed but rather how it is encoded. This led us to
creating the next model as a part of our research plan which we called
dynamic code optimization (or dynamic code morphing). This model
includes various optimization steps from code shrinking by cutting
off unneeded pieces as the program executes to code compression at
the instruction level. As the experiments showed the system responds
to the new model positively, code reduction was significant.

Mobile code robustness: Code morphing may not be necessarily
intentional. Code may be corrupted due to an imperfect execution
environment. This has a higher chance to happen if we deal with mo-
bile code as communication channels normally give an extra bag of
errors. We tried to analyze how code robustness could be increased
in this case to prevent malicious code execution. We have not come
up with an ultimate solution but rather have outlined the directions
in which robustness can be improved. This highly depends on the ap-
plication domain and many other factors (hardware support, software
configuration, etc.).

A model of online code compression: As our research progressed
we realized that code compression seems to be a prominent part of the
optimization process. We have developed a model and a framework
for a so-called online code compression. The last became an integral
part of two of our mobile code execution environments mentioned
earlier. We have analyzed the model in detail for various types of code
streams and various network settings. Our compression scheme has
shown higher compression rates compared with the existing solutions
as we demonstrated with different models of mobile code: traditional
active networking, chemical networking protocols and a model based
on using mobile agents. We were glad to see that our model can
support different code streams, which makes it possible to apply to
many application domains.

The emerging trends in ES and applications mainly include adding
in “smartness” in a form of new features and functions. But this
“smartness” plays against the other principles of the embedded world:
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low-power, small physical form factor/footprint, low radiation/emis-
sion/thermal dissipation, ruggedness in design, and robustness in
operation. That is why the design of ES must be kept energy-aware
in the newly appearing contexts to allow final products to adapt their
energy resources to the continuously changing demands at run-time.
In this work, we have examined the dynamic code morphing methods,
which we hope will assist in achieving this goal.
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Appendix A

Pseudo- and
Program-Code for SBTSP

1 CONSTANTS:
2
3 GUARD - guard interval [ms]
4 SLOT - number of slots (nodes)
5 SYNCWINDOW - sync interval [ms]
6 DATA - data exchange interval [ms]
7 SLEEP - offline interval [ms]
8
9 VARIABLES:

10
11 integer refTime
12 integer currentSkew
13 bool validSkewFlag
14 circBuffer skewTable
15 "skew measurement variables"
16 "received skew variables"
17 "constants (upper -case)"
18
19 EVENTS:
20
21 at wake -up time (= refTime ):
22 reset skew measurement variables
23 reset received skew variables
24 start timer for sending beacon at "reftime + GUARD + myNodeId
25 * SLOT"
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26
27 at beacon b=<id,validS ,s> reception:
28 accumulate measured skew = now() - (" reftime + GUARD + b.id
29 * SLOT")
30 if b.validS then
31 accumulate received b.s
32 fi
33
34 at beacon send time:
35 send beacon <myNodeId , validSkewFlag ,currentSkew >
36 start timer for end -of -wake at "reftime + 2* GUARD + SYNCWINDOW
37 + DATA"
38
39 at end -of-wake time:
40 if any beacons received then
41 skewTable.add(average(measuredSkews ))
42 else
43 if missedTooManyBeacons then
44 validSkewFlag = FALSE skewTable.reset()
45 fi
46 fi
47 if skewTable.isFull () then
48 currentSkew = skewTable.getAverage ()
49 validSkewFlag = TRUE
50 fi
51 if any valid skews received AND validSkewFlag then
52 skewTable.adjust(diff /2)
53 diff = currentSkew - average(receivedSkews)
54 currentSkew = currentSkew + diff/2
55 reftime = reftime + diff/2
56 fi
57 reftime = reftime + "GUARD + SYNCWINDOW + GUARD + DATA
58 + SLEEP"
59 sleepUntil(reftime)

Listing A.1: Pseudo-Code for SBTSP

1 // time -sync exchange message
2 typedef nx_struct SkewMsg
3 {
4 nx_uint16_t nodeid;
5 nx_int16_t skew;
6 } SkewMsg;
7
8 // constants
9 enum

10 {
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11 AM_SKEWMSG = 42,
12
13 STATE_SLEEPING = 0,
14 STATE_SYNCWINDOW = 1,
15 STATE_STOPPING = 2,
16 STATE_SENSING = 3,
17 STATE_BOOTING = 10,
18
19 FLAG_VALIDSKEW = 1<<15,
20 FLAG_HUNTMODE = 1<<14,
21 FLAG_MASK = (FLAG_VALIDSKEW | FLAG_HUNTMODE),
22
23 SKEW_MAXENTRIES = 8,
24
25 SY_NUMBER_OF_NODES = 10,
26 SY_SLEEP_DURATION = 3*1024 , // 3 s
27 SY_GUARD_DURATION = 50, // 50 ms
28 SY_SLOT_DURATION = 50,
29 SY_SYNC_DURATION = SY_NUMBER_OF_NODES * SY_SLOT_DURATION ,
30 SY_SENSE_DURATION = 500,
31 SY_CYCLE_DURATION = 2 * SY_GUARD_DURATION + SY_SYNC_DURATION
32 + SY_SENSE_DURATION + SY_SLEEP_DURATION ,
33 SY_BOOT_DURATION = SY_CYCLE_DURATION ,
34 };
35
36 // variables
37 uint8_t state = STATE_SLEEPING;
38 uint16_t nodeid;
39 uint32_t reftime;
40
41 message_t sndpacket;
42
43 int16_t skew;
44 int16_t lastmeasured;
45 int16_t adjSum;
46 int32_t lastAdj;
47
48 int32_t msrdSkewSum;
49 uint8_t msrdSkewCnt;
50 int32_t rcvdSkewSum;
51 uint8_t rcvdSkewCnt;
52
53 int16_t skewArray[SKEW_MAXENTRIES ];
54 uint8_t skewNext , skewCnt , skewGap;
55
56 // initial state
57 command void init()
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58 {
59 state = STATE_BOOTING;
60 nodeid = call AMPckt.address ();
61 call MilliTimer0.startOneShot(SY_BOOT_DURATION );
62 }
63
64 // calculate the skew adjustment using linear regression
65 // algorithm
66 int32_t getSkewAdjust ()
67 {
68 uint8_t i;
69 int32_t tmp = 0;
70
71 if(skewCnt > 0)
72 {
73 skewGap ++;
74 if(skewGap >= SKEW_MAXENTRIES /2)
75 skew = skewCnt = skewGap = lastAdj = 0;
76 }
77
78 if(msrdSkewCnt == 0) return lastAdj;
79
80 skewGap = 0;
81 skewArray[skewNext] = msrdSkewSum / msrdSkewCnt;
82 skewNext = (skewNext +1) % SKEW_MAXENTRIES;
83 if(skewCnt < SKEW_MAXENTRIES)
84 {
85 skewCnt ++;
86 return 0;
87 }
88
89 for(i = 0, tmp = 0; i < SKEW_MAXENTRIES; i++)
90 tmp += skewArray[i];
91 skew = tmp / SKEW_MAXENTRIES;
92
93 if(rcvdSkewCnt == 0) return lastAdj;
94
95 tmp = (skew - rcvdSkewSum / rcvdSkewCnt) / 2;
96 for(i = 0; i < SKEW_MAXENTRIES; i++) skewArray[i] -= tmp;
97 skew -= tmp;
98
99 adjSum += tmp;

100 lastAdj = tmp;
101 return tmp;
102 }
103
104 // upon sending a message to the neighbors - do nothing
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105 event void SkewSend.sendDone(message_t *bufPtr ,
106 error_t error)
107 {
108 }
109
110 // upon reception of a new message - correct the times
111 event message_t *SkewRecv.receive(message_t *bufPtr ,
112 void *payload ,
113 uint8_t len)
114 {
115 SkewMsg *sm = (SkewMsg *) payload;
116
117 if(state == STATE_BOOTING)
118 {
119 sm ->nodeid &= ˜FLAG_MASK;
120 state = STATE_SENSING;
121 reftime = call MilliTimer0.getNow () - (SY_GUARD_DURATION +
122 sm->nodeid*SY_SLOT_DURATION );
123 call MilliTimer0.stop ();
124 call MilliTimer0.startOneShotAt(reftime , 2* SY_GUARD_DURATION
125 + SY_SYNC_DURATION );
126 }
127 else if(state != STATE_SLEEPING)
128 {
129 lastmeasured = call MilliTimer0.getNow () - (reftime +
130 SY_GUARD_DURATION + (sm ->nodeid &
131 ˜FLAG_MASK )* SY_SLOT_DURATION );
132 msrdSkewSum += lastmeasured;
133 msrdSkewCnt ++;
134 if(sm->nodeid & FLAG_VALIDSKEW)
135 {
136 rcvdSkewSum += sm->skew;
137 rcvdSkewCnt ++;
138 }
139 }
140
141 return bufPtr;
142 }
143
144 // when timer fires - make a decision what to do
145 event void MilliTimer0.fired ()
146 {
147 SkewMsg *sm;
148
149 switch(state)
150 {
151 case STATE_SLEEPING:
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152 state = STATE_SYNCWINDOW; // now is "reftime"
153 rcvdSkewCnt = msrdSkewCnt = msrdSkewSum = rcvdSkewSum = 0;
154 call MilliTimer0.startOneShotAt(reftime ,
155 SY_GUARD_DURATION +
156 nodeid*SY_SLOT_DURATION );
157 break;
158 case STATE_BOOTING:
159 reftime = call MilliTimer0.getNow () - (SY_GUARD_DURATION +
160 nodeid*SY_SLOT_DURATION );
161 case STATE_SYNCWINDOW:
162 state = STATE_SENSING;
163 call MilliTimer0.startOneShotAt(reftime ,
164 2* SY_GUARD_DURATION +
165 SY_SYNC_DURATION );
166 sm = (SkewMsg *) call SkewPack.getPayload (&sndpacket ,
167 NULL);
168 sm->nodeid = nodeid;
169 if(skewCnt == SKEW_MAXENTRIES)
170 {
171 sm->skew = skew;
172 sm->nodeid |= FLAG_VALIDSKEW;
173 }
174 else sm->skew = 0;
175 call SkewSend.send(AM_BROADCAST_ADDR , &sndpacket ,
176 sizeof(SkewMsg ));
177 break;
178 case STATE_SENSING:
179 state = STATE_STOPPING;
180 call MilliTimer0.startOneShotAt(reftime ,
181 2* SY_GUARD_DURATION +
182 SY_SYNC_DURATION +
183 SY_SENSE_DURATION );
184 // do some sensing and probably data exchange ...
185 break;
186 case STATE_STOPPING:
187 state = STATE_SLEEPING;
188 reftime += SY_CYCLE_DURATION + getSkewAdjust ();
189 call MilliTimer0.startOneShotAt(reftime , 0);
190 }
191 }

Listing A.2: TinyOS Code for SBTSP

1 { .code.init
2 SHMEM[SY_NUMBER_OF_NODES] = 20;
3 SHMEM[SY_GUARD_DURATION] = 50; // 50 ms
4 SHMEM[SY_SLEEP_DURATION] = 5*60*1024; // ˜5 min
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5 SHMEM[SY_SLOT_DURATION] = 50; // 50 ms
6 SHMEM[SY_SYNC_DURATION] = SHMEM[SY_NUMBER_OF_NODES] *
7 SHMEM[SY_SLOT_DURATION],
8 SHMEM[SY_CYCLE_DURATION] = 2 * SHMEM[SY_GUARD_DURATION] +
9 SHMEM[SY_SYNC_DURATION] +

10 SHMEM[SY_SENSE_DURATION] +
11 SHMEM[SY_SLEEP_DURATION ];
12 SHMEM[SY_BOOT_DURATION] = SHMEM[SY_CYCLE_DURATION ];
13
14 SHMEM[SKEW_MAXENTRIES] = 8;
15
16 SHMEM[state] = STATE_BOOTING;
17 call Timer0.startOneShot(SHMEM[SY_BOOT_DURATION ]);
18 }

Listing A.3: SBTSP: Initialization Capsule

1 { .code.timer0
2 switch(SHMEM[state ]) {
3 case STATE_SLEEPING:
4 SHMEM[state] = STATE_SYNCWINDOW;
5 call Timer0.startOneShotAt(SHMEM[reftime] +
6 SHMEM[SY_GUARD_DURATION] +
7 getNodeid ()* SHMEM[SY_SLOT_DURATION ]);
8 break;
9 case STATE_BOOTING:

10 if the beacon capsule is installed {
11 SHMEM[state] = STATE_SYNCWINDOW;
12 SHMEM[reftime] = call Timer0.getNow () -
13 (SHMEM[SY_GUARD_DURATION] +
14 getNodeid ()* SHMEM[SY_SLOT_DURATION ]);
15 call "timer0" handler of the beacon capsule
16 break;
17 }
18 else {
19 call Timer0.startOneShot(SHMEM[SY_BOOT_DURATION ]);
20 break;
21 }
22 case STATE_STOPPING:
23 SHMEM[state] = STATE_SLEEPING;
24 getSkewAdjust ();
25 SHMEM[reftime] += SHMEM[SY_CYCLE_DURATION] +
26 BUFS[adjustment ];
27 call Timer0.startOneShotAt(SHMEM[reftime ]);
28 }}

Listing A.4: SBTSP: Resident Capsule
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1 { .code.init
2 BUFS[msrdSkewSum] = BUFS[msrdSkewCnt] =
3 BUFS[rcvdSkewCnt] = BUFS[rcvdSkewSum] = 0;
4 if(SHMEM[state] == STATE_BOOTING) {
5 BUFC[nodeid] &= ˜SHMEM[FLAG_MASK ];
6 SHMEM[state] = STATE_STOPPING;
7 SHMEM[reftime] = call Timer0.getNow () -
8 (SHMEM[SY_GUARD_DURATION] +
9 BUFC[nodeid ]*SHMEM[SY_SLOT_DURATION ]);

10 call Timer0.startOneShotAt(SHMEM[reftime] +
11 2*SHMEM[SY_GUARD_DURATION] + SHMEM[SY_SYNC_DURATION ]);
12 }
13 else if(SHMEM[state] != STATE_SLEEPING) {
14 BUFS[msrdSkewSum] += call Timer0.getNow () -
15 (SHMEM[reftime] + SHMEM[SY_GUARD_DURATION] +
16 (BUFC[nodeid] &
17 ˜SHMEM[FLAG_MASK ])* SHMEM[SY_SLOT_DURATION ]);
18 BUFS[msrdSkewCnt ]++;
19 if(BUFC[nodeid] & SHMEM[FLAG_VALIDSKEW ]) {
20 BUFS[rcvdSkewSum] += BUFC[skew];
21 BUFS[rcvdSkewCnt ]++;
22 }
23 }
24
25 .code.timer0
26 if(SHMEM[state] == STATE_SYNCWINDOW) {
27 SHMEM[state] == STATE_STOPPING;
28 call Timer0.startOneShotAt(SHMEM[reftime] +
29 2*SHMEM[SY_GUARD_DURATION] + SHMEM[SY_SYNC_DURATION ]);
30 if(BUFS[skewCnt] == SHMEM[SKEW_MAXENTRIES ]) {
31 BUFC[nodeid] = call getNodeId () |
32 SHMEM[FLAG_VALIDSKEW ];
33 }
34 else {
35 BUFC[nodeid] = call getNodeId ();
36 BUFC[skew] = 0;
37 }
38 send "BEACON capsule" to ALL
39 }}

Listing A.5: SBTSP: Beacon Capsule

1 int32_t getSkewAdjust () {
2 // read out in-capsule fields
3 int32_t *msrdSkewSum = read(0x11 , 0, 4);
4 uint8_t *msrdSkewCnt = read(0x11 , 4, 1);
5 int32_t *rcvdSkewSum = read(0x11 , 5, 4);
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6 uint8_t *rcvdSkewCnt = read(0x11 , 9, 1);
7
8 static uint8_t skewNext , skewGap;
9 uint8_t *skewCnt = read(0x11 , 10, 1);

10
11 static int32_t lastAdj;
12 int16_t *skew = read(0x11 , 11, 2);
13
14 static int16_t skewArray[SHMEM[SKEW_MAXENTRIES ]];
15
16 uint8_t i;
17 int32_t tmp;
18
19 if(* skewCnt > 0) {
20 skewGap ++;
21 if(skewGap >= SHMEM[SKEW_MAXENTRIES ]/2) *skew =
22 *skewCnt = skewGap = lastAdj = 0;
23 }
24
25 if(* msrdSkewCnt == 0) {
26 write_bufs (0x11 , 13, &lastAdj , 4);
27 exit ();
28 }
29
30 skewGap = 0;
31 skewArray[skewNext] = *msrdSkewSum / *msrdSkewCnt;
32 skewNext = (skewNext +1) % SHMEM[SKEW_MAXENTRIES ];
33 if(* skewCnt < SHMEM[SKEW_MAXENTRIES ]) {
34 *skewCnt ++;
35 write_bufs (0x11 , 13, NULL , 4); # write 0s
36 exit ();
37 }
38
39 for(i = 0, tmp = 0; i < SHMEM[SKEW_MAXENTRIES ]; i++)
40 tmp += skewArray[i];
41 *skew = tmp / SHMEM[SKEW_MAXENTRIES ];
42
43 if(* rcvdSkewCnt == 0) {
44 write_bufs (0x11 , 13, &lastAdj , 4);
45 exit ();
46 }
47
48 lastAdj = (*skew - *rcvdSkewSum / *rcvdSkewCnt) / 2;
49 for(i = 0; i < SHMEM[SKEW_MAXENTRIES ]; i++)
50 skewArray[i] -= lastAdj;
51 *skew -= lastAdj;
52
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53 // write down in-capsule fields
54 write_bufs (0x11 , 0, msrdSkewSum , 4); # int32_t
55 write_bufs (0x11 , 4, msrdSkewCnt , 1); # uint8_t
56 write_bufs (0x11 , 5, rcvdSkewSum , 4); # int32_t
57 write_bufs (0x11 , 9, rcvdSkewCnt , 1); # uint8_t
58 write_bufs (0x11 , 10, skewCnt , 1); # uint8_t
59 write_bufs (0x11 , 11, skew , 2); # int16_t
60 write_bufs (0x12 , 0, &lastAdj , 4); # int32_t
61 }

Listing A.6: SBTSP: Export Function
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Pseudo- and
Program-Code for
Fire-Tracking using Agilla

The algorithm and program code given below are borrowed from
the demo application presented at http://mobilab.cse.wustl.edu/
projects/agilla/Examples/single_agent_fire_detection/index.html.
We use these algorithm and code “as is”.

1 BEGIN pushn det // check whether a detector
2 pushc 1 // is already here
3 rdp
4 rjumpc DIE
5 OUT_DETECTOR pushn det // detector not here , OUT a
6 pushc 1 // detector tuple
7 out // atomic with respect to
8 rjump REGISTER_RXN // the rdp b/c of min # of
9 DIE halt // instructions (fix me)

10 RXN_FIRED pushc 9
11 putled // turn off green and yellow
12 pushn det // LEDs
13 pushc 1
14 inp // remove fire detector
15 halt // tuple
16 REGISTER_RXN pushn fir
17 pushc 1
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18 pushc RXN_FIRED
19 regrxn // register fire reaction ,
20 CHECK_NEIGHBORS pushc 28 // die when reaction fires
21 putled // toggle yellow LED
22 pushn fir
23 pushc 1
24 rrdpg // check if any neighbors
25 rjumpc FORM_BARRIER // are on fire
26 RANDOM_MOVE pushn det
27 pushc 1
28 inp // remove the detector tuple
29 pushc 9
30 putled // turn off yellow and green
31 randnbr // LEDs
32 wmove // weak move to random
33 halt // neighbor
34 FORM_BARRIER pushc 2
35 putled // turn on the green LED
36 // (turn everything else
37 // off)
38 pushc 0 // for each neighbor whose
39 // dist <= 2 of fire ,
40 // wclone to it
41 setvar 9 // heap [9] = neighbor
42 BARRIER_LOOP getvar 9 // counter , init=0
43 numnbrs
44 ceq
45 rjumpc BARRIER_DONE // done checking all
46 getvar 9 // neighbors
47 getnbr // get the i’th neighbor
48 vicinity
49 rjumpc BARRIER_FIRE
50 pushcl BARRIER_NXT2 // not close to fire , skip
51 jumps
52 BARRIER_DONE rand
53 pushc 63
54 land
55 pushc 20
56 add
57 sleep // sleep between 5/8 -20/8s
58 pushc CHECK_NEIGHBORS
59 jumps
60 BARRIER_FIRE pushn det // check if neighbor is on
61 pushc 1 // fire
62 getvar 9
63 getnbr
64 rrdp // check if neighbor has a
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65 // detector
66 pushcl BARRIER_NXT // jump to BARRIER_NXT if
67 jumpc // neighbor is on fire
68 pushn fir
69 pushc 1
70 getvar 9
71 getnbr
72 rrdp // check if neighbor is on
73 rjumpc BARRIER_NXT // fire
74 getvar 9
75 getnbr
76 wclone // clone self on neighbor
77 rjumpc BARRIER_NXT2
78 BARRIER_NXT clear // clear the op stack
79 BARRIER_NXT2 getvar 9
80 inc
81 setvar 9 // proceed to next neighbor
82 pushcl BARRIER_LOOP
83 jumps // proceed to next neighbor

Listing B.1: Assembler-Code for Fire-Tracking using Agilla
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Figure B.1: Block-Diagram for Fire-Tracking using Agilla
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ChameleonVM’s Basic
Instruction Set

The tables below contain the ChameleonVM’s basic instruction set. In
the used syntax ∗ represents the rest of the stack.

Instruction Semantics Stack state / Remarks

push value on the stack push x ∗ ⇒ ∗ , x
pop value from the stack pop ∗ , x ⇒ ∗
swap the top two values on the stack swap ∗ , y , x ⇒ ∗ , x , y
duplicate the top value on the stack dup ∗ , x ⇒ ∗ , x , x

execute command from the data stack exec
∗ , c ⇒ ∗ ; execute c as
command

Table C.1: ChameleonVM’s Basic Instruction Set: Stack Operations

Instruction Semantics Stack state / Remarks

sum two top values on the stack add ∗ , y , x ⇒ ∗ , (y + x)
subtract two top values on the stack sub ∗ , y , x ⇒ ∗ , (y − x)
multiply two top values on the stack mult ∗ , y , x ⇒ ∗ , (y ∗ x)
divide (quotient) two top values on the stack div ∗ , y , x ⇒ ∗ , (y / x)
divide (get the remainder) two top values on the
stack rem ∗ , y , x ⇒ ∗ , (y % x)

Table C.2: ChameleonVM’s Basic Instruction Set: Arithmetic Operations
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Instruction Semantics Stack state / Remarks

binary “and” of the two top values on the stack and ∗ , y , x ⇒ ∗ , (y & x)
binary “or” of the two top values on the stack or ∗ , y , x ⇒ ∗ , (y | x)
binary “not” of the two top values on the stack not ∗ , x ⇒ ∗ , (! x)
binary “xor” of the two top values on the stack xor ∗ , y , x ⇒ ∗ , (y ˆ x)

binary right shift rsh
∗ , x , shi f t ⇒ ∗ , (x >>
shi f t)

binary left shift lsh
∗ , x , shi f t ⇒ ∗ , (x <<
shi f t)

Table C.3: ChameleonVM’s Basic Instruction Set: Binary/Logic Opera-
tions

Instruction Semantics Stack state / Remarks

jump if equal jmpeq ∗ , y , x , l ⇒ ∗ ; if x == y then PC = l
jump if less jmplt ∗ , y , x , l ⇒ ∗ ; if x < y then PC = l
jump if less or equal jmple ∗ , y , x , l ⇒ ∗ ; if x ≤ y then PC = l
jump jmp ∗ , l ⇒ ∗ ; PC = l

Table C.4: ChameleonVM’s Basic Instruction Set: Flow Control
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Instruction Semantics Stack state / Remarks

merge two capsules merge
∗ , #ID , ABOVE/BELOW/ALL , BEFORE/AFTER ⇒
∗ ; see Section 3.2.2

split the capsule split does not use the stack ; see Section 3.2.2
clone the capsule clone same as merge ; see Section 3.2.2
replace the capsule replace ∗ , #ID ⇒ ∗ ; see Section 4.4
re-schedule the
current capsule execute does not use the stack

free memory
resources die does not use the stack

suspend execution exit does not use the stack
remove the capsule kill ∗ , #ID ⇒ ∗ ; see Section 4.4
erase a part of the
capsule’s code erase

∗ , TOP/BOTTOM/UP/DOWN ⇒ ∗ ; see
Section 4.1

explicitly
reschedule
execution of this
capsule

execap does not use the stack ; see Section 3.2.2

synchronize the
versions bind does not use the stack

Table C.5: ChameleonVM’s Basic Instruction Set: Capsule Manipulation

Instruction Semantics Stack state / Remarks

send over
radio send

∗ , ME/PACK/CAP/#ID , addr/ALL/ANY/GROUP/UP/
DOWN ⇒ ∗ ; see Section 3.2.6

send over
radio
using des-
tination

sendd
∗ , ME/PACK/CAP/#ID , addr/ALL/ANY/GROUP/UP/
DOWN , addr ⇒ ∗

Table C.6: ChameleonVM’s Basic Instruction Set: Communication

Instruction Semantics Stack state / Remarks

move data between stack and
memory mov ∗ , where , what ⇒ ∗
read from the memory read ∗ , addr ⇒ ∗ , x ; see Section
write to the memory write ∗ , addr , x ⇒ ∗ ; see Section
append to the buffer append ∗ , BUFC/BUFS/SHMEM ⇒ ∗

Table C.7: ChameleonVM’s Basic Instruction Set: Memory Access
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Instruction Semantics Stack state / Remarks

set the system
variable set ∗ , NID , x ⇒ ∗
get the system
variable get ∗ ⇒ ∗ , NID/GROUP/NUMN/CHIL/CHILS/PAR

explicitly switch
dictionaries dict ∗ , #ID ⇒ ∗ ; see Section

switch LED on/off led ∗ , how ⇒ ∗
sets up the timer timer

or delay
∗ , type , when ⇒ ∗ ; timer assumes absolute value
whereas delay is relative (offset from NOW)

sense the value sense ∗ , what ⇒ ∗ , x
print debug info print print debug into out through the local interface
reset the state of the
VM reset

all stack and heap pointers, error register, etc. are reset
to their default values

Table C.8: ChameleonVM’s Basic Instruction Set: Miscellaneous

Instruction Semantics Stack state / Remarks

sort the buffer in
ascending/descending order sort ∗ , BUFC/BUFS/SHMEM , ASC/DESC ⇒ ∗
generate a random number rand ∗ ⇒ ∗ , x

Table C.9: ChameleonVM’s Basic Instruction Set: Aliases

System Variable Meaning

NOW System clock (32-bit)
ME This capsule
PACK The packet being processed
CAP The capsule being processed
∗.ID Capsule/packet’s ID
∗.TO Next hop
∗.FROM Previous hop
∗.SRC Source address
∗.DST Destination address
BUFC In-capsule data buffer
BUFS On-node data buffer with exclusive access
SHMEM On-node data buffer with shared access
ERREG System error register
CONDREG Condition register
NULL Null packet

Table C.10: ChameleonVM’s Basic Instruction Set: System Variables
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Appendix D

FragletVM’s Reduced
Instruction Set

Below we present the limited subset of Fraglets instructions for embed-
ded applications.

Instruction Immediate version Stack version

instr
[instr $T $1 . . . $n @TAIL] −→
[$T op($1,. . .,$n)]

[sinstr @TAIL $n . . . $1] −→
[@TAIL op($1,. . .,$n)]

Table D.1: FragletVM’s Reduced Instruction Set: General Format

Instruction Immediate version Stack version

push — [spush $1 @TAIL] −→ [@TAIL $1]

pop — [spop $T @TAIL $1] −→ [$T $1 @TAIL]

Table D.2: FragletVM’s Reduced Instruction Set: Data Stack Operations
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Instruction Immediate version Stack version

nop [nop @TAIL] −→ [@TAIL] —

nul [nul @TAIL] −→ [] —

Table D.3: FragletVM’s Reduced Instruction Set: Null Operations

Instruction Immediate version Stack version

sum
[sum $T $1 $2 @TAIL] −→ [$T
($1+$2) @TAIL]

[ssum @TAIL $2 $1] −→ [@TAIL
($2+$1)]

diff
[diff $T $1 $2 @TAIL] −→ [$T
($1-$2) @TAIL]

[sdiff @TAIL $2 $1] −→ [@TAIL
($2-$1)]

mult
[mult $T $1 $2 @TAIL] −→ [$T
($1*$2) @TAIL]

[smult @TAIL $2 $1] −→ [@TAIL
($2*$1)]

div
[div $T $1 $2 @TAIL] −→ [$T
($1/$2) @TAIL]

[sdiv @TAIL $2 $1] −→ [@TAIL
($2/$1)]

mod
[mod $T $1 $2 @TAIL] −→ [$T
($1%$2) @TAIL]

[smod @TAIL $2 $1] −→ [@TAIL
($2%$1)]

pow
[pow $T $1 $2 @TAIL] −→ [$T
($1ˆ$2) @TAIL]

[spow @TAIL $2 $1] −→ [@TAIL
($2ˆ$1)]

Table D.4: FragletVM’s Reduced Instruction Set: Arithmetic Operations

Instruction Immediate version Stack version

eq
[eq $1 $2 $3 $4 @TAIL] −→
($3==$4?[$1 $3 $4 @TAIL]:[$2 $3
$4 @TAIL])

[seq @TAIL $2 $1] −→ [@TAIL
($2==$1?1:0)]

lt
[lt $1 $2 $3 $4 @TAIL] −→
($3<$4?[$1 $3 $04 @TAIL]:[$2 $3
$4 @TAIL])

[slt @TAIL $2 $1] −→ [@TAIL
($2<$1?1:0)]

gt
[gt $1 $2 $3 $4 @TAIL] −→
($3>$4?[$1 $3 $4 @TAIL]:[$2 $3
$4 @TAIL])

[sgt @TAIL $2 $1] −→ [@TAIL
($2>$1?1:0)]

if — [sif $3 $2 @TAIL $1] −→
($1!=0?[$3 @TAIL]:[$2 @TAIL])

Table D.5: FragletVM’s Reduced Instruction Set: Conditional Operations
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Instruction Immediate version Stack version

exch
[exch $T $1 $2 @TAIL] −→ [$T $2
$1 @TAIL]

[sexch @TAIL $2 $1] −→ [@TAIL
$1 $2]

dup
[dup $T $X $1 @TAIL] −→ [$T $1
$1 @TAIL]

[sdup $X @TAIL $1] −→ [@TAIL $1
$1]

del [del $T $X @TAIL] −→ [$T @TAIL] [sdel @TAIL $X] −→ [@TAIL]

Table D.6: FragletVM’s Reduced Instruction Set: Single Symbol Manipu-
lations

Instruction Immediate version Stack version

fork
[fork $T1 $T2 @TAIL] −→ [$T1
@TAIL] + [$T2 @TAIL]

[sfork @TAIL $2 $1] −→ [$1
@TAIL] + [$2 @TAIL]

split
[split @T1 * @T2] −→ [@T1] +
[@T2]

—

match
[match $1 @T1] + [$1 @T2] −→
[@T1 @T2]

[smatch @R $1] + [$1 @T2] −→
[@T1 @T2]

matchp
[matchp $1 @T1] + [$1 @T2] −→
[matchp $1 @T1] + [@T1 @T2]

—

matchs
[matchs $1 @T1] + [$1 @T2] −→
[@T1 @T2] + [$1 @T2]

—

matchps
[matchps $1 @T1] + [$1 @T2] −→
[matchps $1 @T1] + [$1 @T2] +
[@T1 @T2]

—

Table D.7: FragletVM’s Reduced Instruction Set: Split/Merge Operations

Instruction Immediate version Stack version

send
$N1[send $N2 @TAIL] −→
$N2[@TAIL]

$N1[ssend @TAIL $N2] −→
$N2[@TAIL]

Table D.8: FragletVM’s Reduced Instruction Set: Communication
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Instruction Immediate version Stack version

nodeid
$N[nodeid $T $X @TAIL] −→ $N[$T
$N @TAIL]

$N[snodeid $X @TAIL] −→
$N[@TAIL $N]

length
[length $T $X @TAIL] −→ [$T
L(@TAIL) @TAIL]

[slength $X @TAIL] −→ [@TAIL
L(@TAIL)]

rnd
[rnd $T $X @TAIL] −→ [$T rnd()
@TAIL]

[srnd $X @TAIL] −→ [@TAIL
rnd()]

sense
[sense $T $P @TAIL] −→ [$T $SP
@TAIL]

[ssense $P @TAIL] −→ [@TAIL
$SP]

print
print out debug info via serial
interface —

erreg
[erreg $T $X @TAIL] −→ [$T $E
@TAIL]

[serreg $X @TAIL] −→ [@TAIL $E]

Table D.9: FragletVM’s Reduced Instruction Set: Inspection

Instruction Immediate version Stack version

delay
[delay $T $D @TAIL]
—...$D...−→ [$T @TAIL]

[sdelay @TAIL $D] —...$D...−→
[@TAIL]

newinstr
[newinstr $T $1 $2 @TAIL] −→
[$T $1$2 @TAIL]

[snewinstr @TAIL $2 $1] −→
[@TAIL $2$1]

blink
blink a LED
[blink $L @TAIL] −→ [@TAIL]

—

Table D.10: FragletVM’s Reduced Instruction Set: Extras
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