STRATEGIC CHOICE HANDICAPS
WHEN FEMALES SEEK
HIGH MALE NET VIABILITY™

Georg Noldeke Larry Samuelson
Department of Economics Department of Economics
University of Bonn University of Wisconsin
Adenauerallee 24-26 1180 Observatory Drive
53113 Bonn, Germany Madison, Wisconsin 53706-1320 USA

July 17, 2001

Running Headline: Strategic Choice Handicaps
Contact author: Larry Samuelson, Department of Economics, University of Wisconsin, 1180
Observatory Drive, Madison, WI, 53717. Email: LarrySam@ssc.wisc.edu. Phone: 608-263-7791

(voice), 608-262-2033 (fax).

Summary

We examine a strategic-choice handicap model in which males send costly signals to ad-
vertise their quality to females. Females are concerned with the net viability of the male with
whom they mate, where net viability is a function of the male’s quality and signal. We identify
circumstances in which a signaling equilibrium would require high-quality males to send signals
so much larger than those of lower-quality males (to deter mimicry by the latter) as to yield
lower net viabilities for the former. This causes females to shun males who send large signals,

ensuring that there is no signaling equilibrium.
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Strategic Choice Handicaps when Females

Seek High Male Net Viability

by Georg Noldeke and Larry Samuelson

1 Introduction

Zahavi’s (1975, 1977) handicap principle was initially regarded skeptically. For instance, May-
nard Smith (1976) observed that if males use a costly handicap to advertise their genetic quality,
then females choosing high-quality males will bear offspring who inherit not only the advanta-
geous genetic quality but also the fitness-reducing handicap. Maynard Smith argued that the
deleterious effects of the handicap were likely to overwhelm the benefit of good genes, render-
ing the signal counterproductive as a means of revealing quality. This issue has been pursued
by (among others) Eshel and Feldman (1991), Iwasa and Pomiankowski (1995), Iwasa, Pomi-
ankowski and Nee (1991), Kirkpatrick (1986), Otto (1991), and Pomiankowski (1987a, 1987b)
(see Kirkpatrick (1987) for a survey of earlier work). As noted by Pomiankowski (1987b, p.
124), this analysis is complicated by the conceptual and practical difficulties in separating the
handicap principle from Fisher’s sexual selection process.

Grafen (1990a, 1990b) departs from this line of work by examining a “strategic choice”
handicap, in which high quality males confer a nonheritable advantage on females, such as
increased fecundity or parental care. His motivation in constructing such a model was to separate
the handicap principle from forces arising out of the Fisher process (Grafen, 1990b, pp. 473-474,
484-487). Grafen showed that equilibria exist in which males choose signals (i.e., handicaps)
which reveal their quality. The evolutionary stability of such a signaling equilibrium hinges on
the fact that signals are costly, so that low-quality males find it prohibitively expensive to mimic
high-quality males. Rather than posing a fatal obstacle, the cost of a strategic handicap is the
key to its success as a means of communication. Subsequent work has shown that strategic

handicaps can form the basis for costly communication in a variety of contexts (see Godfray and



Johnstone (2000) and Johnstone (1998) for surveys and see Eshel, Volovik and Sansone (2000)
for an exploration of the interplay between the Fisher process and strategic handicaps). These
include models of the advertising of quality (Grafen (1990a, 1990b), Johnstone (1995)) as well
as models of the signaling of need (Godfray (1991, 1995a, 1995b), Johnstone and Grafen (1992),
Kilner and Johnstone (1997), Maynard Smith (1991, 1994), Noldeke and Samuelson (1999)).
With the exception of Eshel, Volovik and Sansone, these investigations have followed the
bulk of Grafen’s (1990a, 1990b) analysis in assuming that higher signals impose higher fitness
costs on the (higher quality) males who send them, but impose no costs on the females who
mate with these males. Hence, the adverse-advertising effect that Maynard Smith identified as a
threat to the handicap principle has disappeared along with the Fisher effect. In this paper, we
fill a gap in Grafen’s analysis by examining an explicitly game-theoretic strategic handicap model
in which females are concerned with the net viability of the male with whom they mate, where
net viability is a function of the male’s quality and the male’s signal (Grafen, 1990a, pp. 525-
526). Maynard Smith’s adverse-advertising effect thus reappears, though in a different guise.
We derive a condition on the distribution of male qualities that is necessary and sufficient for
the existence of a signaling equilibrium. When this condition is not satisfied, signaling requires
that higher-quality males send much larger signals than males of lower quality, to deter mimicry
by low-quality males. The signals required of high-quality males are so large as to reduce their
net viability below that of lower-quality males, causing females to shun high signals and hence

ensuring that males prefer not to signal. There is then no signaling equilibrium.

2 The Model

Zahavi’s handicap principle potentially explains costly signaling in a variety of contexts. For
concreteness, we follow Grafen (1990a, 1990b) in presenting a model in which males signal their
quality to females. Section 4 discusses one of the many possible alternative applications.

We assume that each male ¢ is endowed at birth with a quality or condition 6; that is

independently drawn from the differentiable distribution F' with support [0,6] and density f.



This condition is not observed by other males or females. Males survive to adulthood with
certainty, at which point each male competes with n — 1 other males for the attention of a
female. The female observes a signal s; (which may depend on 6;) for each male ¢, and then
selects one of the males with whom to mate.

A male who is not chosen by the female has an expected reproductive success or fitness
of zero. If the female chooses a male whose condition is #; and signal is s;, then the fitness
of the chosen male is 8; — s; and the female’s fitness is given by a strictly increasing function
of 0; — s;. Hence, females prefer males with high net viability 6; — s;. Grafen (1990b, p. 476)
suggests fecundity as a nongenetic benefit that males may confer on females, with our analysis
then pertaining to a case in which fecundity is linked to the male’s net viability rather than
condition. Alternatively, the female may value the male’s ability to provide parental care, which
may be linked to net viability.

A strategy for a male is a function s; : [0,0] — R., with s;(6;) identifying the signal the
male would send if in condition #;. A collection of such strategies is an equilibrium if each male’s
strategy s;(-) maximizes the male’s expected fitness, given the strategies of the female and other
males, and if the female chooses, from any set of male signals, the signal that maximizes her
expected fitness. We restrict our attention to signaling equilibria, in which each signal is sent
by only one condition of male, so that signals reveal their senders’ conditions. (Other equilibria
are discussed at the end of the next section.) We concentrate on equilibria that are strict (i.e.,
equilibria in which there is a unique optimal signal for each male condition and amost surely
a unique optimal female choice given the signals she observes) and hence evolutionarily stable
(Selten, 1980).

A key observation is that in a signaling equilibrium, males sending larger signals must be
more likely to be selected by the female, since otherwise they would not incur the extra cost of
the higher signal. In addition, females “get what they want” in a strict signaling equilibrium:
they can identify the characteristics of the males whose signals they observe and choose their

(uniquely) preferred male, in this case the male with the highest net viability. Males sending



higher signals must then have higher net viabilities, and hence must be males in higher condition,
and females must choose the male sending the highest signal.

This link between high male condition and high signals characterizes any strict signaling
equilibrium. Attention then turns to the question of when such equilibria exist. The essential
question is whether males in higher condition send signals high enough to signal their quality
without reducing their net viability. If female fitness depends only on male condition, this
question is moot. If female fitness depends on net male viability, an affirmative answer is

necessary (and sufficient) for a signaling equilibrium.

3 Existence of Equilibrium

Given that females choose the highest-signaling male, our model is much like an auction, in which
the males bid (signal) to be chosen by the female. It follows from standard results in auction
theory that the game has a unique candidate for a strict signaling equilibrium (Fudenberg and
Tirole 1991, pp. 223-225, Maskin and Riley, 1986). All males adopt identical, differentiable
strategies, with males in higher condition sending larger signals.

To derive the males’ behavior in this candidate equilibrium, we begin with the observation
that signals must be increasing in condition. If s(6) is the (common) male strategy and a male

in condition @ sends the signal s(f) for some 6, then the male’s fitness is
(6 —s(0))F(O)" ", (1)

where (6 — s(f)) is the net viability conditional on being chosen by the female and F(6)"! is
the probability that all other males are in condition less than 6 and hence send a signal less than
s(é), causing the female to select the male in question.

To calculate the optimal signal of a male in condition 6 (given the strategy s(-)), we first

differentiate (1) with respect to 8 to obtain

(0 = 5(0))(n = DF(O) 2f(0) — ' (O)F ()" *. (2)



If s(0) is to be an equilibrium, it must optimal for a male in condition € to send signal s(#), so
that (2) must equal zero when 6 = 6. Rearranging the resulting equality gives
s(0)(n — )F(0)"72f(0) + s/ (0)F(0)" ™" = 0(n — 1)F (0)"* f(0). (3)
Integrating both sides, we have
S(O)F(0)" ! = /0  (n = DAF @) 2 (B)ab (4)

or, equivalently
L —1)0F(0)"2f(6)db

8(9) F(Q)”_l ’

()

where (4) makes use of the fact that the male in condition 0 has a zero probability of being
the highest signaler, and hence optimally sends a zero signal (Grafen, 1990a, p. 543). In any
signaling equilibrium, the signals must be given by (5). Integrating the numerator by parts
allows one to verify that equilibrium signals are increasing in male condition.

Signaling equilibria typically hinge upon the fact that males in higher condition find it
relatively less costly to send higher signals, perhaps because increased signals impose a lower
incremental mortality risk on such males. This relationship appears in our model in a different
guise: males in higher condition derive greater benefits from higher signals. In particular, a
higher signal reduces fitness conditional on being chosen by the female (given by 6; — s;), but
increases the chance of being chosen. A male in higher condition has more to gain from mating
with the female and hence finds it more advantageous to increase the chance of mating by
choosing a larger signal. Technically, this shows up in the fact that the derivative in (2) is larger
for larger values of the condition ;. Intuitively, we need only note that an increase in signal
from 0.1 to 0.2 may be beneficial for a male in condition 1.0, but is surely disastrous for a male
in condition 0.15.

As we have explained at the end of the preceding section, a signaling equilibrium exists
only if males sending higher signals have higher net viability, so that it is an equilibrium for the

female to select the male sending the highest signal. Equilibrium net viability is given by

O(n —1)6F(6)"2f(6)db

0—s) = 0



O F@)1do
B O F(<9)>n_1 , (7)

where (7) is obtained by performing integration by parts on the integral on the right side of (6).

We thus have:

Proposition A strict signaling equilibrium exists if and only if the expression in (7) is strictly

increasing in 0, or equivalently, if and only if In foe F(@)"‘lde~ is strictly concave.

A function g(0) is said to be strictly log concave if and only if In (@) is strictly concave (An
(1998), Bagnoli and Bergstrom (1989)). The existence of a strict signaling equilibrium thus
hinges upon whether the distribution of male conditions is such that f09 F(é)”’ldé is strictly log
concave.

A sufficient (but not necessary) condition for f09 F(6)"'df to be log concave is that the
distribution of male conditions have a log concave density, since the integral of the distribution
function raised to the power n — 1 (i.e., f09 F(0)" 1df) will then be log concave (because log
concavity is preserved both by being raised to any power n — 1 greater than one and by inte-
gration (An, 1998, Lemma 3)). Many common densities are log concave (An, 1998, Bagnoli and
Bergstrom, 1989). An exponential density marks the borderline between log concavity and log
convexity, with log concave densities declining faster than does the exponential.

If the distribution of male conditions has a log concave density, then a signaling equilibrium
will exist for any number n of males involved in the signaling competition. The derivative of (7)
with respect to n is negative. Hence, as the number of males competing for the female increases,
the equilibrium net viability arising out of the competition for a single female decreases for every
condition of male.

The log concavity of foe F(é)”’ldé can fail if the density concentrates its mass on males close
to the lowest and highest condition. For example, Fig. 1 shows the density for the distribution

function:
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When there are two males involved in the competition for the female (n=2) and F'() is given by
(8), the log concavity of fg F (@)’”L_ldﬁ~ fails, and hence a signaling equilibrium fails to exist, for
any o > 1. Males in relatively high condition face stiff competition from other males in similar
condition, enhancing the payoff to aggressive signaling. The top panel in Fig. 2 accordingly
shows that the signal s(f) increases sharply in the male’s condition € for large values of the
latter. In contrast, males in medium condition are unlikely to face competition from others
in similar condition, making it less likely that higher signals will be effective and leading to
relatively modest signaling. If signals are to honestly reveal condition, males in high condition
must choose signals yielding a lower net viability than males in medium condition, as shown in
the bottom panel of Fig. 2. But this ensures that there is no signaling equilibrium.

Although signaling equilibria are our primary concern, it is useful to note that there always
exists an equilibrium in which no signals are sent and females ignore any signals that they happen
to observe. There may also exist other equilibria, in which signals are partially informative or in
which males’ signals reveal their conditions but males in different condition send different signals
that lead to identical equilibrium net viabilities, with the female choosing randomly among these
net viabilities in the precise proportions required to support the equilibrium. Such equilibria are

neither strict nor evolutionarily stable, and can be disrupted by drift in the female’s strategy.

4 Discussion

Examining a strategic-choice handicap model in which females are concerned with net male
viability, we have derived a necessary and sufficient condition for the existence of a signaling
equilibrium. This condition, concerning the distribution of male qualities and ensuring that
females prefer high-signaling males, is likely to be satisfied when the accompanying density is
unimodal and likely to fail when it departs significantly from unimodality, such as in our example
of a sharply U-shaped distribution.

If a signaling equilibrium exists in our model, whether females are concerned with male

condition or with net male viability, its properties match those identified by Grafen (1990a)—



males in higher condition send higher signals and (in the latter but not necessarily former case)
have higher net viability. If females in our model do not bear the cost of male advertising,
then a signaling equilibrium exists. Our contribution is the demonstration that when females
are concerned with net viability, the existence of a signaling equilibrium in a model of strategic
handicaps cannot be taken for granted. Grafen (1990a) circumvents this issue by working with
a “model of the [strategic] model” that implicitly assumes the existence of an equilibrium in the
underlying strategic model (Grafen, 1990b, pp. 515-516).

We have attempted to isolate the issues surrounding signaling and net viability by examining
a very simple model. We could generalize the model so that a male survives to adulthood with
a nonunitary probability, depending on his condition 6;, simply by respecifying F'(6;) to be
the distribution of surviving males. We could also allow net viability to be given by a general
function V'(6;,s;) instead of 6, — s;. The net viability V'(6;, s;) might then initially increase
and subsequently decrease in the level of the signal, allowing us to capture situations in which
signals are costly exaggerations of traits that are fitness-enhancing at low levels. In this case,
the derivation of the equilibrium signal s;(6;) would proceed by the same method as before, with
the equilibrium condition that 6; — s;(6;) be increasing (cf. (6)—(7)) then being replaced with
the condition that V'(6;,s;(6;)) is increasing in 6;. Next, nothing in our analysis must change
if males can engage in multiple competitions for females, provided that the outcome of the
current competition has no effect on subsequent opportunities. Finally, it would be interesting
to allow the male’s survival probability to depend upon both his condition #; and signal s;. In
this case, the male’s fitness given by equation (1) would be multiplied by a survival probability
(depending upon the male’s condition and signal), and the distribution F'(6;) would be replaced
by an endogenously-determined distribution of surviving males’ conditions that depends upon
the distribution of males’ conditions at birth and the equilibrium signals.

Our analysis suggests that seemingly excessive signaling costs should be observed either
in cases where females care only about male condition, perhaps because males contribute only

sperm to the reproductive venture (e.g. peacocks and birds of paradise), or in cases in which



some mechanism other than the handicap principal (e.g., the Fisher process) lies behind the
signals. Our model, with its limitations on equilibrium signal costs, is more likely to apply
to those species in which males both signal their condition and make a contribution such as
fecundity or parental care to the reproductive venture.

We have followed Grafen’s lead in using males competing for females as the context in which
to interpret our analysis. Like the handicap principle, however, our result is relevant for much
more than sexual selection. For example, Zahavi has suggested that prey might signal their
condition to potential predators (see, e.g., Dawkins (1989, p. 171)). Predator-prey interactions
provide a natural setting in which the receiver’s fitness depends upon both the condition and
the signal of the sender. Predators seek prey in low condition (i.e., who will be easy to catch),
while high-condition prey distinguish themselves by sending signals that have the cost of making
escape more difficult. Depending upon the distribution of prey conditions, the signals required
to support an equilibrium may be so costly as to make high-condition prey more inviting targets
(the equivalent of reducing their net viability). This in turn will preclude an equilibrium in which
prey signal their conditions to potential predators. Notice that situations such as predator-prey
interactions, in which the signaler and receiver are of different species, are free of the genetic
correlations potentially introduced by same-sex interactions (e.g. Pen and Weissing (2000)) and

hence may be particularly appropriate targets for the application of the current model.
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Density
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Condition, 6

Figure 1: Density for the distribution function given in (8) and used in Fig. 2. The density is

given by f(0) = (a4 1)(1—0)* when 6 € [0,1] and by f(8) = 2(a+1)(6 —1)* when 6 € [1,2].
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Figure 2: Illustration of a case with no signaling equilibrium. In this example, there are two
males (n = 2) and male condition is distributed on the interval [0,6] = [0,2]. The distribution
function F' of male conditions is given by (8), where o > 0 is a parameter. In any signaling
equilibrium, the signaling function s(-) must be given by (5). The upper figure shows the
signal s(f) as a function of male condition # and «. Males in higher condition send higher
signals. The lower figure shows male net viability, given by (7), as a function of # and «. For
values of o > 1, net viability fails to be increasing in male condition, ensuring that there is
no signaling equilibrium. For example, the derivative of net viability at § = 2 is given by

(F(2)2 — [EF()dAf(2))/F(2)2 =1— f(2) =1 — i(a + 1), which is negative whenever a > 1.
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