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Zusammenfassung

Diese Dissertation untersucht wichtige Aspekte von Daten-Grid-
Infrastrukturen aus Architektur- und Performance-Sichtweise. Das Ziel ist
eine skalierbare Infrastruktur fiir die dynamische Verwaltung replizierter
Daten, die Korrektheit und verschiedene Frischgrade der Daten anbietet.
Die Arbeit verfolgt dabei einen Ansatz, der auf einer verteilten Middleware
basiert. Die Herausforderung dabei ist, eine Infrastruktur zu entwickeln,
die sowohl Skalierbarkeit und Leistungsfihigkeit, als auch transaktionelle
Garantien in sich vereint. Generelle Zielstellung dieser Dissertation ist
es, ein neues Replikationsverfahren bereitzustellen, das sowohl dynamische
Skalierbarkeit als auch Leistungsfihigkeit und globale Korrektheit unter-
stiitzt.

Wir betrachten dazu zunéichst wichtige Aspekte der Grid-Infrastrukturen.
Zudem zeigen wir Anwendungsfille in den neu entstehenden eScience-
Gebieten auf, fiir die ein dringender Bedarf nach integrierenden Replika-
tionsverfahren besteht. Dazu stellen wir unsere Protokoll vor: Re:GRIDiT
wird vollig neue Verfahren zur Replikation in dynamischen Grids er-
moglichen, die auch den Zugriff auf konsistente Daten garantiert. Re:GRIDiT
besteht aus drei verschiedenen Protokollen, die auf drei kritische Aspekte von
Grid-Infrastrukturen abzielen.

Im Kontext komplexer Anwendungsanforderungen fokussieren wir
uns auf den komplexeren und generelleren Fall mit verteilten Update-
Transaktionen auf Replikaten. Um sowohl die Vorteile der synchronen
Replikation als auch der asynchronen Replikation zu nutzen, ist eine Kom-
bination der jeweiligen Verfahren nétig. Dazu entwickeln wir zunéchst ein
Protokoll fiir die verteilte Verwaltung von konkurrierenden Updates auf
replizierten Daten, das Zugriffe auf Replikate kontrolliert und die Konsis-
tenz der Replikate gewihrleistet. Re:SYNCIT unterstiitzt die synchrone
Datenreplikation, bei der zu jedem Zeitpunkt nur ein einziger konsistenter
Zustand eines Datenobjekts sichtbar ist. Die Replikation von Daten ist also
transparent fiir die Benutzer. Dariiber hinaus beriicksichtigt Re:SYNCIT die
speziellen Merkmale der Grid Datenstrukturen, wie zum Beispiel die Version-
skontrolle oder die Unterscheidung zwischen unverédnderlichen und verin-
derlichen Datenobjekten. Die Grundlage dazu bildet ein formales Geriist, das
auch einen Korrektheitsbeweis ermoglicht.

Als nachstes betrachten wir eine Methode zum dynamisch verteilten
Replikationsmanagement in Daten-Grid-Infrastrukturen. Wir schlagen in
Re:LOADIT effiziente Algorithmen vor, die die Replikate optimal verteilt,



um die Belastung auszugleichen. Durch den Einsatz von dynamischer Rep-
likation kann das System jederzeit auf gednderte Lastbedingungen und
unterschiedlichen parallelen Benutzerzugriff reagieren und die Anzahl der
benotigten Replikate anpassen.

In einem weiteren Schritt verfeinern wir dieses Replikationsverfahren
dahingehend, dass zudem der Frischegrad der Daten variieren kann. Die Idee
ist es, Benutzern zu erlauben, Datenfrische gegen schnellere Antwortzeiten
einzutauschen. Zu diesem Zweck fiihren wir einen Frischegrad und eine Ver-
sionsnummer als neuen Quality-of-Service Parameter fiir Anfragen ein, ohne
dabei die Konsistenz zu verlieren. Dies ermoglicht "Frische-basiertes" Rout-
ing, das die verschiedene Frischegrade der Knoten in der Baumstruktur ver-
wendet. Anfragen, die frische Daten benotigen werden an solche Knoten weit-
ergeleitet die solche Daten besitzen. Anfragen nach weniger frische Daten
werden in der Baumstruktur nach unten weitergeleitet bis Knoten mit dem
entsprechenden Frischgrad erreicht werden.

Anschliessend sind wir auch an den Leistungscharakteristiken der neu
entwickelten Verfahren interessiert. @ Dazu haben wir die vorgestellte
Re:GRIDIT Algorithmen prototypisch implementiert und in eine realistische
Grid-Infrastruktur mit 96 Knoten eingesetzt. Wir priasentieren die Resultate
einer umfangreichen Evaluierung mit simulierter Arbeitslast, die einen real-
istischen Anwendungsfall vorgespiegelt. Es zeigt sich, dass dynamische Rep-
likationsverfahren sehr effizient mit wenig Ressourcen und innerhalb eines
angemessenen Zeitraums die Anzahl der benotigten Replikate anpassen. Es
zeigt sich, dass Query Routing, das die Anfrage mittels einer Baumstruk-
tur weiterleitet, die Antwortzeiten deutlich beschleunigen kann. Weiterhin
ermoglicht Frische-basiertes Routing Benutzern, effektiv Datenfrische gegen
Anfragegeschwindigkeit einzutauschen, ohne dabei die Konsistenz zu verlet-
zen.

Zusammenfassend werden in dieser Dissertation neue Verfahren zur kor-
rekten dynamischen Synchronisierung des Updates, zur Replikationskon-
trolle und zum Frischegrad der Daten in einem Daten-Grid vorgestellt. Die
Verfahren sind sowohl auf einer formalen Grundlage aufgebaut, als auch voll-
standig in einem lauffahigen Prototypen implementiert. Mit einer umfangrei-
chen experimentellen und analytischen Evaluation wurde abschliessend die
praktische Verwendbarkeit des Verfahrens gezeigt.



Abstract

This thesis explores architectural issues and performance aspects of data
Grid infrastructures. The objective is to develop a scalable infrastructure
that is capable to dynamically manage replicated data in the Grid while at
the same time providing freshness and correctness guarantees. We propose a
decentralized middleware which can be deployed on top of any Grid (or any
distributed, heterogeneous) infrastructure. The difficulty is to ensure that
such an infrastructure can offer scalability, performance and correctness. The
overall goal of this thesis is to present a replication mechanism that combines
scalability, global correctness and quality of service guarantees in a dynamic
way.

In the beginning we introduce important aspects of Grid environments and
several scenarios from newly emerging eScience applications. These use case
scenarios urgently require new integrated approaches to dynamic replication
in a data Grid. Our main contribution is the Re:GRIDIiT protocols that dynam-
ically manage replicas in the Grid, while at the same time providing freshness
and correctness guarantees. The Re:GRIDIT family consists of three different
protocols which target the three main problematic aspects identified in cur-
rent data Grid infrastructures.

Inspired by the requirements deduced from these scenarios we first con-
centrate our efforts on the more complex and general case of distributed up-
date transactions on replicated data. We devise a protocol for the correct syn-
chronization of concurrent updates to different updateable replicas in order
to ensure their subsequent propagation to read-only replicas in a completely
distributed way. Re:SYNCIT hides the presence of replicas to the applications,
takes into account the special characteristics of data in the Grid such as ver-
sion support, distinction between mutable and immutable objects, and pro-
vides provably correct transactional execution guarantees without any global
component.

The next step is the Re:LOADIT approach to dynamic distributed replica
management in data Grid systems. We propose efficient algorithms for se-
lecting optimal locations for placing the replicas so that the load among these
replicas is balanced. Given the data usage from each user site and the max-
imum load of each replica, our algorithm efficiently manages the number of
replicas required, reducing or increasing their number.

Until now our approach dictates how update sites behave and from a user’s
point of view the clients will always access the most up-to-date data. We fur-
ther refine this approach and introduce the Re:FRESHiT protocol, which al-



lows to effectively trade freshness for performance and addresses freshness
and versioning issues, needed in many Grid application domains, without los-
ing consistency. Queries with different freshness levels are cleverly routed
along our tree strategy, by taking advantage of the tree structure.

Finally we are also interested in the performance characteristics of the
presented algorithms. We have implemented the Re:GRIDIT protocols using
state-of-the-art Web service technologies which allows an easy and seamless
deployment in any Grid environment. The evaluation has been conducted
on up to 48 update sites and 48 read-only sites. We have used simulated
workloads that mimic the behavior expected from our use case applications.
Our evaluations have shown that the proposed Re:GRIDIT protocols are effi-
cient, as replicas are created and/or deleted on demand and with a reasonable
amount of resources. Dynamic changes in the tree structure allow flexible
and efficient query routing along the tree structure. Clever routing strategies
ensure an increased performance for queries with different freshness levels.
Re:GRIDIT ensures replica consistency and is capable of providing different
degrees of consistency and update frequencies.

Summarizing, this thesis presents new approaches for the correct synchro-
nization of updates in a dynamic manner, replication management, and fresh-
ness guarantees in a data Grid. These approaches are founded on formal
theoretical background and implemented in a full-fledged prototype in a real-
istic Grid environment. These approaches have been proven to be scalable by
means of an extensive analytical and experimental evaluation.
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Introduction

Current trends in scientific research indicate a shift toward multi-scale ap-
plications, involving multi-disciplinary teams, often geographically dispersed.
Aiming to provide an infrastructure that can sustain these applications the
Grid has appeared in the mid 1990s as a proposed distributed computing in-
frastructure for advanced science and engineering. The choice of the name
"Grid" to describe this infrastructure resonates with the idea of a future in
which computing resources, compute cycles and storage, as well as expensive
scientific facilities and software, can be accessed on demand like the electric
power utilities of today. Within the context of rapid technological changes and
advances and evolving users requirements, the Grid is challenged with pro-
viding increased opportunities for scientific data resources sharing and col-
laboration, distributed computation and distributed data storage. But the
Grid goes beyond sharing and distributing data and computing resources.
For thousands of scientists around the world, the Grid offers new and more
powerful ways of working, such as distributed computing for large-scale data
analysis or collaborative work. Many of the Grid applications require large
amounts of data and as a result research into cutting edge data management
aspects will have applications in bioinformatics, engineering, and chemistry.
The term eScience has appeared as a consequence and defines global collab-
oration in key areas of science, and the next generation of infrastructure
that will enable it. Through its capabilities it will change the dynamic of
the way science is undertaken. Examples of eScience applications that can
profit in one way or the other from Grid capabilities range from Bioinformat-
ics/Functional genomics or Collaborative Engineering to Medical/Health care
informatics, Earth Observation Systems, Virtual Observatories, Robotic Tele-
scopes or Particle Physics at the LHC.



1 Introduction

1.1 Trends and Applications in Grid Computing

The dawn of a new age — The Computer Era — glows before us with the
promise of new and improved ways of thinking, living and working. The
amount of information in the world is said to be doubling every two to three
years [107]. The only way to keep up with this rapid increase in the amount
of data and information is access to computers and the ability to control them
for a particular purpose. To address this, people have already created com-
puter networks that enable computer resources to be shared with every other
computer in the network, moving from peer-to-peer networks, to supercom-
puters, or to Grids. And suddenly, there is so much hype on Grid computing.
But what exactly is the Grid? Is it really a new thing? Or is it quite simply a
clichéd "old-wine in new bottle"?

The term "the Grid" was coined in the mid 1990s to denote a proposed
distributed computing infrastructure for advanced science and engineer-
ing [112]. Considerable progress has since been made on the construction
of such an infrastructure, but the term Grid has also been conflated, at least
in popular perception, to embrace everything from advanced networking to
artificial intelligence [82]. In recent years a new tendency has been observed,
resulting in the movement of the Grid from the purely academic to the highly
popular. The Grid integrates distributed computational and data resources
to create a single virtual resource which provides potentially unlimited pro-
cessing and on-demand data storage power. In contrast to the first Grid ap-
plications which were developed for physicists, the Grid no longer exclusively
targets scientific applications working with mostly read-only data. The more
the Grid evolved, the more functionality it acquired, moving from the simple
computational Grid, whose sole purpose was to gather together computing
power (i.e., CPU) from distributed computers all around the world, to a new
form of Grid which encompasses not only data storage space, but also data
access, applications and services which can perform various types of compu-
tations or data manipulation. Grids have typically been divided into three
types, on the basis of their use [112]:

Computational Grids: These Grids provide secure access to a huge pool of
shared processing power suitable for high throughput applications and
computation intensive computing.

Data Grids: Data Grids provide an infrastructure to support data storage,
data discovery, data handling, data publication, and data manipula-
tion of large volumes of data actually stored in various heterogeneous
databases and file systems.



1.2 Trends in eScience Application Domains

Service (Utility) Grids: This is the ultimate form of the Grid, in which
not only data and computation cycles are shared but software or just
about any resource. The main services provided through utility grids are
software and special equipment. For instance, the applications can be
run on one machine and all the users can send their data to be processed
to that machine and receive the result back.

We focus our efforts on the second type of Grids, namely data Grids, whose
aim is to share and manage huge volumes of distributed data.

1.2 Trends in eScience Application Domains

The applications being developed on the Grid benefit from Grid technologies
in different ways. For some it is a matter of being able to access and control
remote resources — instruments, compute resources, visualization or data re-
sources. For others it is a matter of being able to collaborate with remotely
located colleagues or specialists. Indeed, in some cases the Grid has provided
a mechanism for new methodologies of scientific investigation — the ability
to combine real-time experimental data with simulation data and have a dis-
tributed team visualize the results; the ability to collect data by remote senses
and integrate that into simulations or analyses in, for example, agricultural
or environmental settings, or in a medical application.

Since Grid technologies have been developed for applications with large
storage and computation requirements in mind, they offer a promising tool to
deal with, for instance, current challenges in many medical domains involv-
ing complex anatomical and physiological modeling of organs from images or
large image database assembling and analysis. Digital medical images [4]
represent a tremendous amount of data. In industrialized countries, a hospi-
tal produces several Terabytes of medical image data each year, bringing the
total production of the European Union or the USA for instance to thousands
of Terabytes a year. These data need to be properly archived for both medical
and legal reasons. Beyond the outstanding issue of proper storage and long
term archiving of such an amount of data, automated analysis is increasingly
needed as manual inspection of medical images is a complex task, and may
become extremely tedious and error prone. In the new emerging field known
as eHealth, long-term, long-scale epidemiological studies, as well as the every
day needs of medical scientists are facing some major challenges, including:

e The highly distributed and heterogeneous nature of virological, immuno-
logical, clinical, and experimental data,
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e The high dimensionality and complexity of the genetic and patient data,

e The inaccessibility and lack of interoperability of advanced modeling,
simulation, and analysis tools as well as the lack of an efficient data
replication protocol to support such complex automated analyses by of-
fering:

— Access efficiency (moving data near processing),
- Load balancing (distributing access load),

— Security (data protection, moving processing near data if data con-
fidentiality is an issue),

— Availability (off-line access),

- Reliability (disaster recovery, avoiding single point of failure).

Recent advances in Grid computing tackle only some of these problems by
virtualizing the resources (data, instruments, computing nodes, tools, and
users) and making them transparently available. Nevertheless, whereas
some key issues can be solved using today’s Grid technologies, in most aspects
Grid technologies are still in their youth and often propose only very generic
services. Replication of data across the nodes of the Grid has to grow beyond
the simple mechanism of duplicating files that it is at the moment. Replica-
tion management in the Grid should to be able to deal with a potentially large
number of updateable replicas per data object and provide transparent and
consistent access to distributed data. It should be able to dynamically con-
trol the management of replicas, by taking into account resource consumption
and loads when accessing a replica. Last but not least an efficient replication
management has to be able to trade accuracy for performance when accessing
data in the Grid. Despite the considerable work done in the context of dis-
tributed transaction management and replication management, there is no
protocol which can be seamlessly applied to a data Grid environment without
impacting correctness and/or overall performance.

1.3 Contribution and Scope of the Thesis

Recent trends in the Grid evolution aim at establishing data Grids as environ-
ments that enable users to effectively manage, share and publish resources
and to provide services to support scientific research, technological innovation
or cooperative teamwork. There is an increasing need to adequately and ef-
fectively manage resources, and in this context replicated data management
still remains a challenge.

4



1.3 Contribution and Scope of the Thesis

Use case scenarios in newly emerged eScience domains identify the follow-
ing problems in current Grid infrastructures. First, current Grid replication
solutions [118, 169] lack support for multiple concurrent updates to several
replicas in a consistent manner. Second, they should take into account the
semantics of the data which are managed in the Grid: mutable data can be
subject to updates; immutable data, in turn, cannot be changed once created,
but may be subject to version control. To the best of our knowledge, none of
the existing Grid replication mechanisms makes this distinction. Third, Grid
replication solutions need to be able to support dynamic replica management
and deployment (i.e., creation and deletion of replicas) in order to increase
the performance and to scale in numbers and geographical area. Most ex-
isting solutions rely on (some) centralized components [70] or do not address
scalability and high performance issues. Fourth, new solutions for data Grid
replication need to be able to take into account user demands. Users may
have different requirements regarding how "fresh" their data should be. In
addition, since user queries are not known in advance and may not be com-
pliant with current replica placement, replication management in the Grid
needs to support heavy load for geographically distributed queries.

Driven by the need and opportunity to bring Grid capabilities to these
application domains, we envisage a Grid infrastructure that evolved from a
tool to solve computational and data-intensive problems towards a general-
purpose infrastructure with complex, heterogeneous and dynamic require-
ments. Availability, dependability and scalability are an issue in today’s Grids
and our goal is to solve these problems through a protocol that provides reli-
able and efficient access to distributed and heterogeneous data anytime, any-
where, and the capability to conduct long-term, large-scale statistical studies.

This thesis investigates architectural issues and performance aspects of
data Grid applications. The objective is to build a basic infrastructure capa-
ble of supporting these applications by means of complex algorithms for the
globally correct distributed synchronization of updates, dynamic load balanc-
ing for replica selection and deployment and freshness-aware scheduling and
routing of queries that allow a trade-off between freshness of data and query
performance.

The main contribution of this thesis is Re:GRIDiT (Replication Manage-
ment in Data GRid Infrastructures using Distributed Transactions), a scal-
able infrastructure that builds upon several new algorithms for the dynamic
synchronization replicas in a data Grid in a distributed way and seamless sup-
port for read-only requests with different freshness levels. More concretely,
Re:GRIDIT consists of three different protocols which target the three main
problematic aspects identified in current data Grid infrastructures. The three
protocols are:
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Re:SYNCIT provides new protocols for the correct synchronization of con-
current updates to different updateable replicas and a system model
able to handle the different semantics of data in a seamless way, com-
pletely transparent to the transactions and the users. The results of the
experimental evaluation of the Re:SYNCIT protocol for update transac-
tions have shown both performance and scalability when applied at Grid
scale.

Re:LOADIT is dynamic in a way that according to a combination of current
load, host proximity and freshness criteria, new replicas can be created
or removed on demand. The evaluation of the Re:LOADIT protocol has
shown how load metrics can be used to increase the throughput by dy-
namically (un)deploying replicas with a reasonable amount of time and
effort.

Re:FRESHIT provides read-only transactions the full flexibility to specify
the freshness (for mutable data) or version number (for immutable data).
The Re:FRESHIT protocol is capable of supporting read-only requests
with different freshness levels and to route queries in an efficient way,
especially when it comes to trading accuracy for performance while ac-
cessing data in the Grid.

Finally, as an integral part of this work, we present an experimental eval-
uation of the proposed algorithms using an eScience use case scenario as in-
put. We have developed a prototype system which is used to evaluate the
performance and scalability of our approach under the influence of a variety
of parameters. Our evaluations show that our optimistic concurrency control
protocol for update replicas outperforms traditional pessimistic approaches
for low to medium conflict rates. Dynamic changes in the load determines
when new replicas need to be acquired or released, with minimum amount
of resources. Furthermore, clever refresh and routing strategies show an al-
most 20% to 30% improvement in the query response time for user queries
with lower freshness levels. The proposed algorithms have been evaluated
independently in a realistic Grid environment of up to 96 sites.

1.4 Structure of the Thesis

This thesis is organized as follows. Chapter 2 presents an overview of ap-
plication areas in the eScience domain of relevance for data Grid replication
and how these use cases have influenced the main features of the Re:GRIDiT
system. This chapter presents an earth observation application scenario used

6



throughout the thesis. In Chapter 3, we discuss foundational aspects of the
theory of transaction and replication management and survey related work
in the field. At the same we explain how existing models and approaches
are unable to deal with the problems imposed by current data Grid appli-
cations. In Chapter 4, we describe the data Grid replication infrastructure
and the basic components needed for this purpose. The model we propose is
based on assumptions that are derived from the analysis of application spe-
cific requirements. In order to address the particular needs of the data Grid
applications we have identified three stages for our dynamic, freshness aware
replication management protocol. In Chapter 5 we solve the more complex
problem of synchronizing updates to several replicas in a grid in a completely
distributed way by introducing the Re:SYNCIT protocol. Chapter 6 explains
how the Re:LOADIT protocol for dynamic replication is capable to support on-
demand replica deployment and placement. In Chapter 7 we further enhance
our system with the ability to support read-only queries with different fresh-
ness levels in the Re:FRESHIT protocol. Chapter 8 describes the implementa-
tion of the Re:GRIDIT system in a data Grid infrastructure. Technical details
on the implementation of the Re:GRIDiT system of are presented. Chapter
9 empirically proves the applicability and performance of the presented in-
frastructure and the proposed protocols for dynamic replica management and
freshness aware query routing through evaluations within the infrastructure
implementation of Re:GRIDiT. Furthermore, in Chapter 10 we explained how
our protocol can be seamlessly applied to a Data Cloud environment. Finally,
Chapter 11 concludes by summarizing the impact of the presented work and
discusses open and future research issues.






Motivation

In this chapter we motivate the applicability of our approach to dynamic man-
agement of replicated data in the Grid with freshness and correctness guar-
antees to various application domains. In particular, we introduce applica-
tions in the eScience domain of relevance for data Grid replication. In order
to get a more precise view of the application, we present a motivating earth
observation application scenario in detail which will be used throughout the
remainder of the thesis for motivation and illustration purposes. We use this
example to motivate the choice of our system model for data Grid replication
presented in Chapter 4 and the building blocks of our approach, which will be
introduced in Chapters 5, 6 and 7.

2.1 Example Earth Observation Scenario

In the Earth Observation domain, earth observation data are acquired from
satellites, sensors and other data acquisition instruments, archived along
with metadata, catalogued and validated. According to [102], by the year 2010
the earth observation data archives around the world is estimated to grow to
around 9.000 Terabytes and by the year 2014 to around 14.000 Terabytes.
Beyond the outstanding issue of proper storage and long term archiving of
such an amount of data, automated analysis is increasingly needed as man-
ual inspection of images is a complex and error prone task, and becomes in-
feasible for practical applications. Furthermore, in crucial decision-making
situations, researchers need not only aggregate data and computing power to
support such decisions, but also human expertise.

Consider for example the following earth observation scenario (see Fig-
ure 2.1), where data are collected at one or more stations and maintained
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Figure 2.1: Example Earth Observation Application Scenario

at geographically distributed sites. At the same time, environmental reports
that include satellite images of the region observed, their descriptions (in the
form of XML documents) and image interpretations [40] are periodically gen-
erated and/or updated at several sites. In order to improve availability, copies
of data are maintained at different sites.

In our example, Scientist 1 is closely monitoring oil spills in the sea.
Spillage of oil in coastal waters is one of the most hazardous events to oc-
cur. The potential damage to the natural and economic health of the area at
stake requires the readiness to detect, monitor and clean-up any large spill
in a rapid manner. Satellite data acquisition and data distribution among
surveillance sites can contribute to early warning and near real-time moni-
toring. Consider for example the case of Scientist 1 who demands the most
up-to-date data, for this real-time monitoring. She will integrate information
from in situ, airborne and space-based observations and apply data assimila-
tion models in order to support early detection of outliers which correspond to
significant and critical events. This type of study is particularly important for
damage prevention but also for risk management in order to prepare existing
infrastructure inventories in high risk areas and to define and structure in-
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stitutions and resources within the region in terms of their involvement and
role in the damage reduction. The most up-to-date data for this type of ap-
plications, even in the presence of potentially many concurrent updates, are
a fundamental requirement that allows to deal effectively with risk reduction
activities and with scheduling of the human resources required to carry out
response activities, to utilize, in the most efficient manner possible, existing
facilities and resources, to avoid duplication and to optimize the use of lim-
ited resources. At the same time, other scientists at different locations will
consider additional data, not available to the first scientist, and consequently
update existing reports. Since they are working with different replicas of the
same original reports, their updates will be sent to the originating replicas
first but will need to be synchronized with all other replicas of the reports in
order to guarantee consistency. Moreover, this type of applications usually
involves a broad range of user communities, including managers and policy
makers in the targeted societal benefit areas, scientific researchers and en-
gineers, civil society, governmental and non-governmental organizations and
international bodies, working together to analyze the same data for monitor-
ing, predicting, risk assessment, early warning, mitigating, and responding to
hazards at local, national, regional, and global levels. According to [73], the
European Space Agency alone currently has several thousands of registered
data users, and their number is continuously increasing.

This scenario confirms the statement that data Grids no longer target ap-
plications that need read-only data; updates occur and they need to be prop-
erly synchronized among replicas. We address this issue in the Re:SYNCiT
protocol.

Replication techniques are able to reduce response times by moving and
distributing content closer to the end user, speeding content searches, and re-
ducing communication overhead. An efficient replication management proto-
col has to consider changes in the access patterns, i.e., it should dynamically
provide more replicas for data objects which are frequently accessed. Con-
sider the unfortunate case when an accident has occurred. The urgency of
the situation requires more reports to be generated and increasing requests
to access particular data objects, relevant to the region where the accident
has occurred. Therefore the number of updateable replicas for data objects
of importance should be dynamically increased so that the system is capable
to serve requests in a timely manner. However, increasing the number of up-
dateable replicas per data object in an unlimited way may have significant
drawbacks on the overall system performance. Therefore, the number of up-
dateable replicas for data objects which are no longer of importance to a large
group of users should be dynamically reduced, in order to reduce the overhead
of replica maintenance.

11
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Optimizing access cost of data requests and reducing the cost of replication
are two conflicting goals and finding a good balance between them is a chal-
lenging task. This task is successfully fulfilled by the Re:LOADIT protocol.

Consider another user, Scientist 2, who is performing oil slick distribu-
tion studies, in order to determine the environmental impacts of stranded oil,
and offer recommendations of cleanup procedures and methods least likely to
exacerbate the effects caused by the oil. In order to perform a thorough inves-
tigation he will require several successive data acquisitions (before and after
the oil spill), combined with wind, sea-state and other meteorological data for
complementing the information sources. He requires therefore older versions
for his studies, from multiple archives of satellite images, and previous re-
ports of other scientists. A possible course of actions can be: he acquires first
radar imagery of oil spills and decides to retrieve a complementary optical im-
agery and overlay it to the initial one. He overlays then the resulting imagery
with tracks of major tanker routes to highlight any correlation and checks
it against a map showing coastlines of maximum biodiversity or a mosaic of
chlorophyll distribution. Finally, he applies wave and wind meteorological in-
formation layers to model the behavior and impact of these spills. The results
of his analysis will be used to update existing environmental reports, and will
include new and old time series, re-generated maps together with his own
interpretations of the data. Over longer time scales, this type of damage as-
sessments provides basis for monitoring and recovery assessment programs.
Data management in the Grid needs to take into account the requirement of
both scientists: (i) to keep large volumes of data, (ii.) to update (parts) of the
data as new findings come out, (iii.) to access the most recent version of all
data items, and (iv.) to also keep outdated versions which have been updated
in the meanwhile, for read access.

For the latter, the notion of data freshness needs to be supported in order
to specify the staleness of data and to allow users to specify how old the data
they ask for may be. Re:FRESHIT efficiently uses freshness criteria to make
replica selection and query routing decisions.

2.2 Example eHealth Scenario

The availability of digital images inside hospitals and their ever growing in-
spection capabilities have established digital medical images as a key com-
ponent of many pathologies diagnosis, follow-up and treatment. To face the
growing image analysis requirements, automated medical image processing
algorithms have been developed over the two past decades. In parallel, med-
ical image databases have been established in health centers. Grid technolo-
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gies appear to be a promising tool to face the raising challenges of compu-
tational medicine. They offer wide area access to distributed databases in a
secure environment and bring the computational power needed to complete
large-scale, long-term statistical studies.

Multiple sclerosis, for instance, is a severe brain disease that affects
about 0.001% of the population in industrialized countries and for which no
complete redemption treatment exists. Currently few drugs are available
on the market that can slow down the brain impairment caused by the dis-
ease, and unfortunately their efficiency is difficult to quantitatively assess
and their real effect is rather controversial. Assessments of these therapies
have been proposed through serial Magnetic Resonance (MR) images of the
head by measuring the brain white and gray matter atrophy resulting from
the disease [58, 122]. However, this parameter extraction requires complex
image analysis algorithms since very small volume variations are significant
(the normal brain atrophy due to aging is in the order of 0.5% per year, while
the disease may lead to an accelerated atrophy in the order of 1% per year).
Therefore, only studies involving a large number of patients over a long period
of time prove to have a statistical significance. Such an epidemiological study
involves at least hundreds of patients (a group of placebo patients and sev-
eral groups of treated patients following an experimental protocol) over years
(an MR acquisition every few months is required to build time series). This
kind of clinical protocol results in the acquisition of thousands of images, 10
to 20 MB each, summing up to Terabytes of data.

At the same time, eHealth systems should focus on prevention and early
diagnosis as well as treatment; they should enable self-management of dis-
eases and care at homes by the individuals or their families. Such proactive
personal health systems have the potential to improve public health and sig-
nificantly lower the health care costs. The wireless medical sensors, digital
home technologies, cognitive assistance, advanced robotics for care support,
context aware applications and services, and intelligent proactive comput-
ing technologies are the enabling technologies of this vision, but at the same
time continuously generating huge amounts of data (in the form of monitoring
videos and continuous data streams).

While medical images are stored once and never updated, the situation for
medical records is different. Data originating from physiological sensors need
to be aggregated and medical histories of patients need to be frequently up-
dated. Similarly, medical reports which include interpretations of physiologi-
cal data and/or medical images need to be updated, for instance, by appending
new diagnoses for newly created medical images or for new data created by
physiological sensors.

13
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Moreover, different medical scientists may have different requirements re-
garding how up-to-date their data should be. Consider patient X, suffering
from stable cardiovascular disease and traveling in Europe. In case of an
emergency, medical scientist W in the visiting country needs access to his
most up-to-date medical records to ensure that he receives adequate treat-
ment. Consider now medical scientist M who would like to identify patients
that have similar pathological deviations in the X-ray of their lung as patient
Z, for whom SARS has been diagnosed. For the purpose of this epidemiolog-
ical study across a set of patients, he is satisfied with last week’s data. His
analysis reports will be published in the Grid to be made available to hun-
dreds of scientists working in the same field and sharing the same data [57].
Together with robust mechanisms and policies needed to ensure that patient
privacy and confidentiality are preserved, the delivery of such repositories of
medically rich information for the purposes of scientific research is urgently
required.

As in the previous earth observation scenario, eHealth applications in the
Grid need more flexible ways of managing resources in order to dynamically
distribute data according to the access characteristics of their users. In addi-
tion, to overcome the limitations of synchronous replication while at the same
time to better meet user requirements, data should be made available with
different levels of freshness.

2.3 Example Storm Modelling Scenario

Meteorologists and environmental modelers have been attempting to build a
Grid to enable them to accurately predict the exact location of severe storms
such as tornadoes, based on a combination of real-time wide-area weather
instrumentation and large-scale simulation coupled with data modeling [79].
This is an extremely difficult problem and so far beyond the current capabili-
ties of storm simulation.

Suppose a researcher wishes to understand why some severe thunder-
storms produce a succession of multiple tornadoes, while others do not. The
first step requires establishing a climatology of observed storm behavior for
comparison with numerical simulations. He/She would need to locate, access,
and decode all required data — including ten years of Doppler radar data,
along with upper air observations and model forecasts, hourly surface obser-
vations, weekly land surface data, 6-minute precipitable water data from GPS
satellites, and 15 minute satellite radiance data — all for the contiguous region
observed. The researcher then accesses the appropriate subset of data, which
are too voluminous to be stored locally and must be stored on a remote site.
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Using feature detection and pattern recognition techniques, the researcher
applies a data mining engine to the assimilated data sets to catalog all cyclic
versus non-cyclic storms, the existence of tornadoes, and the surrounding en-
vironmental conditions associated with each. The resulting metadata, along
with the assimilated data sets, can then be made available for use by the
broader community, even though the raw data physically reside elsewhere.

The researcher then develops numerical simulations designed to provide
an understanding of the storm cycling process. The simulations produce hun-
dreds of Terabytes of output, and mining techniques are used to correlate
cyclic storm behavior with environmental characteristics and internal storm
dynamics. The simulation output are automatically published to geographi-
cally distributed digital library catalogs. The mining tools trigger the ensem-
ble system over appropriate domains, which in turn automatically requests
Grid computing resources with sufficient priority to provide results signifi-
cantly faster than the weather unfolds (so-called better than real time pre-
dictions). This on-demand requirement for additional resources should be
handled automatically by the Grid.

In this scenario we notice again several aspects that have motivated our
Re:GRIDiIT approach, namely the highly dynamic nature of the application
and the need to support a complex data model.

2.4 Summary

The Grid started as a vision to share potentially unlimited computer power
and data storage capacity over the Internet. It made big steps towards becom-
ing highly popular by making contributions to scientific research, helping sci-
entists around the world to analyze and store massive amounts of data. But in
contrast to the first Grid applications which were developed for physicists, the
Grid no longer exclusively targets scientific applications working with mostly
read-only data. The more the Grid evolved, the more functionality it acquired,
moving from the simple computational Grid, whose sole purpose was to gather
together computing power (i.e., CPU) from distributed computers all around
the world, to a new form of Grid which encompasses not only computing power
and storage space, but also data, applications and services which can perform
various types of computations or complex data manipulations.

As a consequence new eScience domains have emerged with the purpose
of enabling the cooperation of distributed research groups who share data
and powerful computing environments. Immense data sets that are produced
by expensive equipment need to be accessed and evaluated by collaborating
research groups who are working at distant locations. An efficient data repli-
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cation protocol can guarantee the success of such large-scale collaborative
studies, by ensuring, to mention only a few of the advantages: availability
of data, efficient access to data (using dynamic load balancing mechanisms)
and reliable and consistent access to data, while at the same time answering
the day-to-day needs of scientists and researchers, which as potential data
Grid users, may have different requirements from a data Grid environment,
in particular regarding how "fresh" their data should be. Motivated by these
application scenarios and having in mind the above mentioned fundamental
requirements we have developed the Re:GRIDiT approach to dynamic repli-
cation in data Grid environments with freshness and correctness guarantees.
The Re:GRIDIT family consists of three core pillars which target the three
main problematic aspects identified in current data Grid infrastructures, and
which will be presented in details in Chapters 5, 6 and 7.



Foundations Of Transaction and
Replication Management

This chapter concentrates on the foundations of transaction and replication
management. Transaction management ensures that concurrent operations,
be they queries or updates, are correctly executed. Replication management
guarantees that changes made to data are eventually propagated to all copies
of the data. Section 3.1 presents a classification of transaction and concur-
rency control approaches relevant to this thesis. Section 3.2 presents a sur-
vey of existing replication management approaches and their characteristics.
After establishing the basis for the discussion of the correct execution of dis-
tributed, concurrent operations on replicated data, we discuss how current
approaches fail to meet our requirements and cannot be applied to Grid envi-
ronments. Consequently, in Chapters 5, 6 and 7 we present a new approach
for the dynamic management of replicated data in the Grid with freshness
and correctness guarantees, which is a careful combination and extension of
different scheduling and replication control techniques as discussed in the
following.

3.1 Transaction Management Theory

Transaction management deals with the problems of keeping the database in
a consistent state even when concurrent accesses and failures occur [133].

A transaction consists of a series of operations performed on one or sev-
eral databases. An important aspect of transaction management is that if
a database was in a consistent state prior to the initiation of a transaction,
then the database should return to a consistent state after the transaction is
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completed. This should be done irrespective of the fact that transactions were
successfully executed in a concurrent manner or there were failures during
the execution [133]. Thus, a transaction is a unit of consistency and reliabil-
ity. The properties of transactions are discussed later in this section.

A transaction either succeeds or fails as a unit. A transaction can be termi-
nated in two ways: committed or aborted (cancelled). When a transaction is
committed, all changes made within it are made durable (forced on to stable
storage). When a transaction is aborted, all changes made during the lifetime
of the transaction are undone.

Traditional transactions are typically referred to as ACID transac-
tions [99]. A transaction has four properties that lead to the consistency and
reliability of a database, called ACID properties:

Atomicity: A transaction’s state changes are atomic: they either all happen
or none happen. In other words, the transaction completes successfully
(commits), or if it fails (aborts), all of its effects are undone.

Consistency: A transaction is a correct transformation of state. The ac-
tions taken as a group do not violate any of the integrity constraints
associated with the state. Transactions produce consistent results and
preserve application-specific invariants.

Isolation: Intermediate states produced while a transaction is executing
are not visible to other transactions. Furthermore transactions appear
to execute serially, even if they are actually executed concurrently.

Durability: The effects of a committed transaction are never lost (except by
a catastrophic failure).

The most important aspects of transaction management are concurrency
control to guarantee the isolation properties of transactions, for both com-
mitted and aborted transactions and recovery to guarantee the atomicity and
durability of transactions.

Concurrency control is the activity of coordinating the actions of pro-
cesses that operate in parallel, access shared data, and therefore potentially
interfere with each other. As such, it controls the interleaving of concurrent
transactions, to give the illusion that transactions execute serially, one after
the other, with no interleaving at all. Interleaved executions whose effects are
the same as serial executions are called serializable.

Recovery is the activity of ensuring that software and hardware failures
do not corrupt persistent data. A recovery algorithm monitors and controls
the execution of programs so that the database includes only the results of
transactions that run to a normal completion. As such, it must ensure that
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the results of transactions that do execute are never lost. Moreover, if a fail-
ure occurs while a transaction is executing, and the transaction is unable to
finish executing, then the recovery algorithm must wipe out the effects of the
partially completed transaction. That is, it must ensure that the database
does not reflect the results of such transactions.

We begin by discussing essential transaction models [192]: flat transac-
tions, chained transactions and their generalization layered transactions. We
discuss techniques for centralized and distributed systems, and for single
copy, multiversion, and replicated databases. For this purpose we introduce
different types of concurrency control algorithms and recovery mechanisms
and the unified theory of concurrency control and recovery. This discussion
aims to provide an exemplification of the fundamental properties of transac-
tion models and the notion of correctness.

3.1.1 Flat Transactions

Conventional flat transactions are the simplest type of transactions and rep-
resent the basic building blocks for organizing an application into atomic ac-
tions (an all or nothing operation).

A flat transaction t is a partial order of basic operations which ends in
either a commit operation or an abort operation. In the read/write model,
the operations are of the form r(x) (read) and w(x) (write), where x € D is a
data element of the database D. Formally:

Definition 3.1 (Flat Transaction) A transaction is a tuple with T = (0, <)
consisting of a set of operations O, on which we define a (partial) order relation
&, where the following relations hold:

1. O ={op1,0p2,...,0pn}Uterm, is a finite set of operations {op1, 0pz, ..., 0Pn}
and term € {commit, abort} a terminating operation (i.e., the last opera-
tion in a transaction according to <),

2. <C (O x O) is the precedence relation.
O

The precedence relation < establishes the execution order of the opera-
tions of a transaction and can be one of the two following types:

partial <: allows parallelism to take place within a transaction

total <: allows sequential execution of the operations of a transaction:
T=(op; € op; K ... € op, <K commit).
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When transactions are executed concurrently, their operations are inter-
leaved resulting into a so-called schedule.

Definition 3.2 (Schedule) Let T = {T1, T5, ..., T.} be a (finite) set of transac-
tions. A schedule S is a triple S = (71,0, <). S contains the execution order of

all operations of the transaction in T, for which the following relations must
hold:

1. O =UO; is the set of all operations of all transactions in T

2. <,C (0 x Q) is a partial order, for which the following holds: <;C<
for all T; € 7, i.e., the scheduling order must respect the all transaction
orders in the sense that all transaction orders are contained.

O

Moreover, a schedule contains at most one commit or one abort for each
transaction.

Transaction management has to ensure the ACID properties of all trans-
actions within a schedule, even if transactions are executed interleaved. How-
ever, not all schedules lead to a correct execution of all the transactions that
belong to the schedule. In order to guarantee correctness the notion of seri-
alizability is used. The basic idea is that a schedule S is correct if it leads
to the same database state as the serial execution of the transactions in the
transaction set. In other words, serializability ensures that there is no cyclic
flow of information between transactions. A schedule S is considered correct
if it equivalent to any serial execution, called serial schedule.

Definition 3.3 (Serial Schedule) In a serial schedule the ordering of oper-
ations is total and for any i,k € {1,...,n} the following holds: all operations of
T, are executed before any operation of Ty. O

Two serial schedules that appear to be correct from a user’s perspective
can lead to different database intermediate and/or final states. The following
notion of a committed projection helps to formally ignore operations of aborted
transactions in a schedule [28]:

Definition 3.4 (Committed Projection) For a given schedule S, the com-
mitted projection C(S) of S is obtained by deleting all operations that do not
belong to transactions committed in S, i.e., it is reduced to: UT; : C; in S. O

In other words, C(S) does not contain either active or aborted transactions.
Serializability is a property of a transaction schedule (history). It relates
to the isolation property of a database transaction. Serializability of a sched-
ule means equivalence (in the outcome, the database state, data values) to a
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serial schedule (i.e., sequential with no transaction overlap in time) with the
same transactions. It is the major criterion for the correctness of concurrent
transactions’ schedule, and thus supported in all general purpose database
systems. The rationale behind serializability is the following: if each trans-
action is correct by itself, i.e., it meets certain integrity conditions, then a
schedule that comprises any serial execution of these transactions is correct
(its transactions still meet their conditions). "Serial" means that transactions
do not overlap in time and cannot interfere with each other, i.e, complete iso-
lation between each other exists. Any order of the transactions is legitimate,
if no dependencies among them exists, which is assumed. As a result, a sched-
ule that comprises any execution (not necessarily serial) that is equivalent (in
its outcome) to any serial execution of these transactions, is correct.

Three major types of serializability exist [192]: final state serializability,
view serializability, and conflict serializability. Final state serializability is
the general definition of serializability. View serializability is a restriction of
the final state serializability. Conflict serializability is a broad special case,
i.e., any schedule that is conflict-serializable is also view-serializable, but not
necessarily the opposite. Conflict serializability is widely utilized because it is
easier to determine and covers a substantial portion of the view-serializable
schedules.

Final state serializability. This is the most intuitive definition of serializ-
ability. Under this definition, two schedules are considered to be equiv-
alent if they contain the same operations and have the same final effect
on the state of a database [192].

View serializability of a schedule is defined by equivalence to a serial
schedule (no overlapping transactions) with the same transactions, such
that respective transactions in the two schedules read and write the
same data values ("view" the same data values) [192].

Conflict serializability is defined by equivalence to a serial schedule (no
overlapping transactions) with the same transactions, such that both
schedules have the same sets of respective chronologically-ordered pairs
of conflicting operations (same precedence relations of respective con-
flicting operations) [192].

Determining final state and view serializability of a schedule is an NP-
complete problem [140, 139], and therefore this notion is difficult to use in
practice. Conflict serializability can be determined in time polynomial in the
number of transactions in the schedule. In the remaining of the thesis, we
will use therefore the conflict serializability as correctness criterion.

21



3 Foundations Of Transaction and Replication Management

Conflict serializability is based on the basic observation that the invocation
order of some operations can be exchanged within a schedule without produc-
ing any changes (from the point of view of the operation and also from the
point of the data objects). This observation holds not only for the read/write
model but can also be generalized to any set of operations. Operations whose
invocation order cannot be exchanged without producing any changes are said
to be conflicting. In the read/write model, operations upon data are read or
write (wWhere a write is either insert or modify or delete).

Definition 3.5 (Conflict Relation) Two operations op;,0p; are in conflict,
if they are of different transactions, act upon the same data element, and at
least one of them is a write. Each such pair of conflicting operations has a
conflict type: It is either a read-write, or write-read, or a write-write conflict.
The transaction of the second operation in the pair is said to be in conflict
relation with the transaction of the first operation, i.e., op; CON op.. O

A more general definition of conflicting operations (also for complex op-
erations, which may consist each of several basic (primitive) read/write op-
erations) requires that they are non-commutative (changing their order also
changes their combined result). Each such operation needs to be atomic by it-
self in order to be considered an operation for a commutativity check. Section
3.1.2 will detail this case.

The dependency relation of a schedule S contains all the conflict pairs of
all transactions in S.

Definition 3.6 (Dependency and Dependency Relation) Let S be a sched-
ule. Operation oy depends on operations o; in S, shortly written as o; — oy if
and only if:

1. i #X, i.e, T, and Ty are different transactions,
2. 0; < 0y, l.e., 0; comes before oy in S,

3. 0; CON oy, i.e.,, 0; and oy are in conflict,

4. Ci,Cy €8S, i.e., both transactions have finished.

The dependency relation dep(S) is the set of all dependent pairs in S: dep(S) =
{(oi,0k) €S| 0; — okh 0

Schedule compliance with conflict serializability can be tested with the
serialization graph (precedence graph, conflict graph) for committed transac-
tions of the schedule [139]. It is the directed graph representing precedence
of transactions in the schedule, as reflected by precedence of conflicting oper-
ations in the transactions.
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Definition 3.7 (Serialization Graph) The serialization graph SG(S) of a
schedule S is a graph where transaction are nodes and the edges are the pairs
T;, Ty, for which the following holds: there exist operations o; € T, and oy € Ty
with (oi,0) € dep(S). O

In other words, in the serialization graph transactions are nodes and de-
pendency relations are directed edges. There exists an edge from a first
transaction to a second transaction, if the second transaction is in conflict
with the first, and the conflict is materialized, i.e., if the requested conflicting
operation is actually executed. In many cases a requested/issued conflict-
ing operation by a transaction is delayed and even never executed, typically
by a lock on the operation’s object, held by another transaction. As long as
a requested/issued conflicting operation is not executed, the conflict is non-
materialized. Non-materialized conflicts are not represented by an edge in
the serialization graph.

The following observation is a key characterization of conflict serializabil-
ity [74]:

Theorem 3.8 (Serializability) A schedule is conflict-serializable if and only
if its committed projection is acyclic. a

This means that a cycle consisting of committed transactions only is gener-
ated in the serialization graph, if and only if conflict-serializability is violated.
Cycles of committed transactions can be prevented by aborting an active (nei-
ther committed, nor aborted) transaction on each cycle in the serialization
graph of all the transactions, which can otherwise turn into a cycle of commit-
ted transactions. One transaction aborted per cycle is both required and suffi-
cient number to break and eliminate the cycle (more aborts are possible, and
can happen in some mechanisms, but unnecessary for serializability). Such
a situation is carefully handled, typically with a considerable overhead, since
correctness is involved. Transactions aborted due to serializability violation
prevention are restarted and executed again immediately. Serializability en-
forcing mechanisms typically do not maintain a serialization graph as a data
structure, but rather prevent or break cycles implicitly.

In practical scenarios, failures of many types can compromise the atomic-
ity and persistence of transactions, for example programming failures, power
outages, human operator failures, hardware or software failure (which might
imply the loss of permanently stored data), catastrophes. In order to still
ensure correctness in the presence of failure, several strategies have been de-
vised. Transactions that remained unfinished due to application failures need
to be rolled back. In case of hardware or software failures, for example, the
database management system needs to be restarted and crash-recovery pro-

23



3 Foundations Of Transaction and Replication Management

tocols need to performed in which unfinished transactions need to be rolled
back and finished transactions need to be restarted.

In general, when discussing concurrency control, failures are not taken
into account, the implicit assumption being that the influence of an aborted
transaction on the correctness of a schedule need not be considered. This
assumption is, however, false, since write (update) operations of an aborted
transaction could have changed the state of a database (and these changes
could have already been read by other transactions).

A major characteristic of a database transaction is atomicity, which means
that it either commits, i.e., all its operations’ results take effect in the
database, or aborts (rolled back), all its operations’ results do not have any
effect on the database ("all or nothing" semantics of a transaction). In all real
systems transactions can abort for many reasons, and serializability by itself
is not sufficient for correctness. Schedules also need to possess the recov-
erability property. Recoverability means that committed transactions have
not read data written by aborted transactions (whose effects do not exist in
the resulting database states). While serializability may be compromised on
purpose in many applications for better performance, compromising recover-
ability would violate integrity of the database, as well as that of transactions’
results. In some applications, absolute correctness is not needed. Commercial
databases provide concurrency control with a whole range of isolation lev-
els which are in fact (controlled) serializability violations in order to achieve
higher performance. Higher performance means better transaction execution
rate and shorter average transaction response time (transaction duration).
Snapshot isolation [23, 76] is an example of a widely utilized relaxed serial-
izability method. Note that the recoverability property is needed even if no
database failure occurs and no database recovery from failure is needed, as it
is needed to correctly automatically handle aborts, which may be unrelated to
database failure and recovery from failure.

A transaction T, reads data item x from Ty if T, was the transaction that had
last written into x but had not aborted at the time T; read x. More precisely,
we say that:

Definition 3.9 (Reads-From-Relation) Let r; be a read operation of trans-
action T, and wy a write operation of transaction T,. ti(x) reads-from wy(x),

1#£K, if:
1. wy(x) < 1i(x)
2. there exists no wy,(x) such that wi(x) < wp(x) < 1i(x)

3. Ty is not aborted
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The Reads-From-Relation is defined as RF = {(Ty, x, T;) | ri(x) reads-from wy(x)}
O

Definition 3.10 (Recoverability) A schedule S is recoverable, if for all
transactions T, Ty € S, the following holds: If (Ty,x,T;) € RF(S) and 1 # k
and C; € S, then the commits must be ordered as follows: C, < C;. O

A schedule avoids cascading aborts if transactions read only the changes of
committed transactions (i.e., a transaction does not read an item changed by
another transaction until that transaction has committed). Cascading aborts
avoidance is sufficient but not necessary for a schedule to be recoverable.

A schedule is called strict if every value written by a transaction T is not
read or changed by other transactions until T either aborts or commits.

Definition 3.11 (Strictness) A schedule S is strict, if for all transactions
T, T« € S, the following holds: If a write operation of T;, w;, precedes a conflict-
ing operation of T, (either read or write), w; < oy then the commit event of T;
also precedes that conflicting operation of Ty : C; < Cy. O

Strict schedules avoid cascading aborts and allow efficient recovery of
databases.

Concurrency Control Protocols

A concurrency control protocol is used to produce a serializable schedule for
multiple concurrent transactions. Concurrency control techniques are of two
major types:

Optimistic approaches aim at solving the problems after they occurred
[114, 162]. The test for serializability is performed before the commit
of a transaction. If a violation has occurred, the transaction is typically
aborted. Otherwise it is committed.

Pessimistic approaches intend to avoid problems rather than solving
them. Potential conflicts are detected in advance and a transaction
blocks data access operations of other transactions when such poten-
tial conflicts are detected. This requirement ensures that operations
that may violate serializability (and in practice also recoverability) do
not occur. Typical representatives are two-phase locking protocols [74]
or timestamp-based concurrency protocols [28, 155].

The main difference between the two types of approaches is the way con-
flicts are handled. A pessimistic method blocks a transaction operation upon
conflict, and generates a non-materialized conflict, while an optimistic method
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does not block, and generates a materialized conflict. At any method con-
flicts are generated by the way transaction operations are scheduled, in-
dependently of the method. A cycle of (materialized) conflicts in the se-
rialization graph (conflict graph) represents a serializability violation, and
should be avoided or eliminated in order to maintain serializability. A cy-
cle of (non-materialized) conflicts in the wait-for graph represents a deadlock,
that should be resolved by breaking the cycle. Both cycle types result from
conflicts, and should be broken. When conflicts do not occur frequently opti-
mistic methods have an advantage. With different transactions loads (mixes
of transaction types) one technique type (i.e., either optimistic or pessimistic)
may provide better performance than the other.

Locking-based Concurrency Control

Strict two phase locking (S2PL) is a common mechanism utilized in
database systems to enforce both conflict serializability and strictness (a spe-
cial case of recoverability which allows effective database recovery from fail-
ure) of a schedule [25, 28, 192]. In this mechanism each data item is locked
by a transaction before accessing it (any read or write operation): The item
is marked by, associated with a lock of a certain type, depending on the op-
eration (and the specific implementation). Various models with different lock
types exist. Table 3.1 presents the different lock modes in a read/write trans-
action model. Since transactions can read or write data items, two types of
locks, or lock modes are associated with every data element x: a read lock
ri(x), also known as shared lock, and a write lock wl(x), also known as exclu-
sive lock. It is common to describe the compatibility of locks in tabular form
[192]. The table is meant to be read as follows: if a transaction T, has set a
lock pli(x) and another transaction Tj,j # i, requests a lock ql;(x), then ql;(x)
will be granted (i.e., it is compatible with pl;(x)) if the corresponding table
entry shows a +. Otherwise the lock will not be granted.

In some models, locks may change type during the transaction’s life. As a
result access by another transaction may be blocked, typically upon a conflict
(the lock delays or completely prevents the conflict from being materialized
and be reflected in the serialization graph by blocking the conflicting oper-
ation), depending on lock type and the other transaction’s access operation
type. Employing an S2PL mechanism means that all locks on data on be-
half of a transaction are released only after the transaction has ended (either
committed or aborted).

Mutual blocking between transactions may result in a deadlock, where
the execution of transactions is stalled, and no transaction can proceed (and
consequently commit). Thus deadlocks need to be resolved to complete these
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Lock requested

rl.(x) wl,(x)

Lock held rl(x) + -

ij(x) - -

Figure 3.1: Lock Mode Compatibility

transactions’ execution and release related locks. A deadlock is a reflection
of a potential cycle in the precedence graph, that would occur without the
blocking when conflicts are materialized. A deadlock is resolved by aborting a
transaction involved with such potential cycle, and breaking the cycle. It is of-
ten detected using a wait-for graph (a graph of conflicts blocked by locks from
being materialized; it can be also defined as the graph of non-materialized
conflicts, since conflicts not materialized are not reflected in the serialization
graph and do not affect serializability), which indicates which transaction is
"waiting for" lock release by which transaction, and a cycle means a deadlock.
Aborting one transaction per cycle is sufficient to break the cycle. Trans-
actions aborted due to deadlock resolution are restarted and executed again
immediately.

Non-locking Concurrency Control

Not all concurrency control algorithms use locks. Other techniques are time-
stamp ordering, serialization graph testing, and commit ordering
[25, 28, 192]. Timestamp ordering assigns each transaction a timestamp and
ensures that conflicting operations execute in timestamp order. The protocol
works under the following assumptions:

e Every timestamp value is unique and accurately represents an instant
in time;

e No two timestamps can be the same;

e A higher-valued timestamp occurs later in time than a lower-valued
timestamp.

Serialization graph testing tracks conflicts and ensures that the serialization
graph is acyclic. Commit ordering ensures that conflicting operations are con-
sistent with the relative order in which their transactions commit.
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3.1.2 Semantically Rich Operations and the Unified Theory of
Concurrency Control and Recovery

The classical theory of transaction management contains two different as-
pects, namely concurrency control and recovery, which ensure serializability
and atomicity of transaction executions, respectively. Although concurrency
control and recovery are not independent of each other, the criteria for these
two aspects were developed orthogonally and as a result, in most cases they
are incompatible with each other. A unified theory of concurrency control and
recovery for databases with read and write operations has been introduced in
[12, 160] that allows reasoning about serializability and atomicity within the
same framework. The unified theory of concurrency control and recovery has
later been extended to provide a unified transaction model for databases with
an arbitrary set of semantically rich operations in [181]. This theory concen-
trates mostly on the conflict behavior of semantically rich operations, which
is more complex than those of the primitive read/write operations.

In distributed database environments a transaction is often considered as
a partial order of different local sub-transactions. Each such sub-transaction
can be in turn considered as an operation. These operations in general are
not only read/write accesses on pages, but an arbitrary finite set of possible
actions on data objects (data items, data elements), called semantically rich
operations. In order to prove the correctness of execution of transactions con-
sisting of semantically rich operations in a failure prone distributed database
environment, the unified theory treats concurrency control and recovery uni-
formly, compared to the classical theory.

This approach is further based on the assumption that with each operation
invocation an undo (or inverse) operation must be given. The purpose of the
inverse operation is to remove from the database all the "recognizable" effects
of the corresponding operation [181]. A sequence of operations « is said to
be well-formed if each undo operation op~' is preceded by its corresponding
operation op.

Definition 3.12 (Effect-free Operations) A sequence of operations o is said
to be effect-free if, for all possible sequences of operations « and 3 such that
(w0 B)and ( o B ) are well-formed, the sequence of the return values of 3 in
(oo B)isthesameasin (). O

Following this definition op~' is the undo operation for op if and only if the
sequence op op ' is effect-free.

To unify concurrency control and recovery the authors defined commuta-
tivity for the undo operations. The unified theory is based on the (semantic)
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serializability with respect to the commutativity relation for regular and undo
operations.

The classical read/write model of a database system defines a conflict be-
tween two operations if at least one operation is a write [28]. A more gen-
eral notion of a conflict, applicable to the context of transactions consisting
of semantically rich operations, is to consider two operation invocations as
compatible if their execution order is irrelevant from an application point of
view. The semantic property of the operations that we want to exploit is the
compatibility of pairs of operations.

Definition 3.13 (Commutative Operations) Let op, and op, be two opera-
tion invocations. Then, op; and op, commute if for any pair of sequences «, f3
of operation invocations the return values are the same in ( x op; opz 3 ) and
( o« op, op1 B ). Otherwise, the operation invocations are in conflict, i.e., (op,
op2) € CON with CON C {Oy,,...,Or,} X {Or,,...O1,} being the conflict relation.
]

In transaction models based on the unified theory of concurrency con-
trol and recovery, the schedulers need to know about the commutativity of
their operations. The notion of conflict is then defined based on the non-
commutativity of the operations.

A correctness criterion called (prefix-) expanded serializability is intro-
duced which allows efficient correctness testing based on serialization graph
methods. At the same time, a class of schedules (called prefix reducible),
which guarantees both serializability and atomicity in a failure prone envi-
ronment was introduced. Several protocols were developed to generate such
schedules by a database concurrency control mechanism. By representing
all recovery-related actions explicitly in an execution, they can be treated as
regular actions. The effect of recovery-related actions is then visible to the
scheduler. This approach allows more correct executions.

3.1.3 Distributed Transactions

Although the transaction models introduced so far has proven very useful in
traditional database applications (relatively short execution time, small num-
ber of concurrent transactions), they do not solve the problem of having to deal
with transactions that span over long periods of time or multiple databases.
The problem of distributed transactions (running transactions on multiple
sites and updating resources within multiple resource managers) has been
solved by allowing participants in a transaction to locally manage their re-
sources, and in addition one of them should coordinate the actions of all the
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other transaction participants. This coordination has been achieved by using
a two-phase commit protocol [95].

The Two-Phase Commit Protocol

For the distributed transactions to be ACID-compliant, all the transaction
participants must enforce ACID properties. Traditionally, this is accom-
plished by using the two-phase commit (2PC) protocol, which centralizes the
decision to commit.

During the initial (prepare) phase of the protocol, a transaction coordinator
sends out a "prepare-to-commit’™ message to all the transaction participants
that have enlisted in the transaction (subordinates), requesting that each one
of them indicate its readiness to commit or roll back the work managed in the
scope of the given transaction. The subordinates may have spawned pieces
of the transaction on other nodes, and in this case the "prepare-to-commit"
message must be propagated (the transaction is now a tree with the coor-
dinator at the root). For their part, the subordinates attempt to checkpoint
their work and obtain locks for the affected resources and, if successful, re-
spond with a "ready-to-commit" message. Otherwise, they issue a vote to roll
back the transaction (a "refuse" message). The coordinator proceeds with the
second (commit) phase only if all transaction participants have voted to com-
mit, and after logging the information in a safe place. During this phase, the
coordinator issues the appropriate command (commit or roll back) to all the
subordinates. The transaction has completed when all the subordinates have
safely committed their part and made it durable. It is important to note that
the two-phase commit protocol is a blocking protocol. Once a subordinate re-
ceives the "prepare-to-commit" message and replies with a commit vote, it is
obligated to lock the relevant records or data until the coordinator communi-
cates an outcome during the second phase.

The X/OPEN Distributed Transaction Processing (DTP) has been proposed
by the Object Management Group and a widely used open standard protocol
for two-phase commit [197]. The X/OPEN XA specification describes the in-
terface between a global transaction manager and local resource managers.
The two major interfaces specified in the DTP model are the TX and XA in-
terface. The XA Specification describes what a resource manager must do to
support transactional access. At the same time, the XA specification allows
participants to withdraw in the first phase of the two-phase commit if they do
not have to update any resources.
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The Paxos Commit Protocol

The Paxos commit [116] algorithm is based on an older Paxos consensus algo-
rithm which is a protocol that allows a distributed system to reach a consen-
sus, i.e., to agree on a value, such as a leader, despite the failure of some of
them. Instead of a single transaction manager, the Paxos commit algorithm
uses 2N+1 transaction managers. If any N of these transaction managers
fail, the remaining N+1 can agree whether to commit or abort. The details
are complex and are omitted here. However, the overhead in terms of the to-
tal delay and the total number of messages is small. Moreover, when N=0, the
Paxos commit algorithm reduces to the classical two-phase commit algorithm.

Paxos can tolerate lost messages, delayed messages, repeated messages,
and messages delivered out of order. It will reach consensus if there is a
single leader for long enough that the leader can talk to a majority of par-
ticipants twice. Paxos is an asynchronous algorithm; there are no explicit
timeouts. However, it only reaches consensus when the system is behaving in
a synchronous way, i.e. messages are delivered in a bounded period of time.

Lamport and Gray applied Paxos to the distributed transaction commit
problem [94]. Paxos was used to effectively replicate the transaction man-
agers of 2PC, and used an instance of Paxos for each participant involved in
the transaction to agree whether that participant could commit the trans-
action. Paxos Commit does not use Paxos to solve the transaction commit
problem directly, i.e. it is not used to solve uniform consensus, rather it is
used to make the system fault tolerant.

3.1.4 Chained Transactions and Sagas

Despite their wide use, the flat transactions could not deal with a series of
problems related to partial roll back of compound business transactions (only
total roll back is possible), long running transactions, and/or transactions that
spanned across companies or the Internet. As a possible solution to the above
mentioned problems, mechanisms that extend the control flow beyond the
linearity level of the flat transactions was proposed. One popular model was
based on the idea of "chaining" sequences of atomic transactions - chained
transactions or sagas [24, 84].

The simplest form of chained transactions use the concept of syncpoints
(or savepoints) to allow periodic saves of the accumulated work. This mech-
anism allows to roll back the work while still maintaining a live transaction
(which makes it different from a commit), but on the other hand a syncpoint
is volatile (in the case of a system crash all the data are lost). A chained
transaction can be defined as a back-to-back transactions (small, sequentially-
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executing sub-transactions), in which transaction context and locks can be
passed on from one transaction to the next. A committed transaction trig-
gers the next commit, until the whole chained transaction has committed. In
case of a failure, the previously committed sub-transactions will have already
made durable their changes, so roll back is only possible until the beginning
of the most recently-executed sub-transaction.

Based on the idea of chained transactions, sagas were proposed in com-
bination with a compensation mechanism to roll back. The saga transac-
tion model [84] permits a long-lived transaction to be divided into a se-
quence of sub-transactions, each of which has an associated compensating
sub-transaction that can be triggered to semantically undo the effects of its
committed associate. If a saga sub-transaction fails and cannot recover, its
partial effects are undone (backward error recovery), and a chain reaction oc-
curs in which any successor committed sub-transaction of the same saga is
(in reverse execution order) subjected to its respective compensation actions.
These compensations do not necessarily return the system state to the point
which existed when the saga began. Unlike the non-atomic chained transac-
tions, that cannot undo the committed sub-transactions in case of an abort,
the sagas use the compensating sub-transactions to return the system to a
state that is equivalent to the start state from the application’s point of view.

3.1.5 Layered Transactions

The major restriction of flat transactions is that there exists no possibility
to take into account more sophisticated operations which in turn are defined
by means of a sequence of more basic (read and write) operation, and conse-
quently either commit or abort parts of a transaction. For this reason, the
flat transaction model has been extended to introduce more dimensions of
control. Nested transactions [126, 127] are a generalization of savepoints.
Whereas savepoints allow organizing a transaction into a sequence of actions
that can be rolled back individually, nested transaction form a hierarchy of
pieces of work [95]. Nested transactions provide the ability to define trans-
actions within transactions, the initial transaction is decomposed into sub-
transactions or child transactions, depending on the functionality they pro-
vide. This decomposition introduces a very important feature, which allows
parts of a transaction to fail without the necessity to abort the entire transac-
tion. The failure of a sub-transaction can be trapped by the parent transaction
and retried using an alternative, still allowing the main transaction to com-
mit. A child transaction can only start after its parent starts and a parent
can only commit after all its children have committed. Each child is atomic,
which means it can abort independently, determining an action from the par-
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ent. The parent can, in this case, trigger another sub-transaction to execute
as an alternative. This mechanism allows nested transactions to maintain
consistency.

Based on the mechanism of nested transactions there appeared later sev-
eral other models, such as multilevel transactions (also called layered trans-
actions) [20, 21, 189, 190], and their generalization open nested transac-
tions [89, 191]. Multilevel transactions are a variant of nested transactions
where all transaction trees have their levels corresponding to the layers of the
underlying system architecture. This model introduces the pre-commit, allow-
ing sub-transactions to commit before the root transaction actually commit.
This addition to the model makes it impossible to roll back in a traditional
way; instead compensating sub-transactions are used to semantically undo
the work done before.

Based on the visibility of the sub-transactions within a nested transaction,
the following classification can be made:

Closed Nesting: In closed nesting, a transaction may execute child trans-
actions (sub-transactions). A parent does not execute while any of its
children do, but in general a transaction may have multiple concurrent
children [126, 127]. The effects of a committed sub-transaction are,
in this model, only visible to its parent top-level transaction. Siblings
or other concurrent transactions cannot see the changes made by sub-
transactions until their parent top-level transaction has committed.

Open Nesting: Open nesting is, not surprisingly, similar to closed nesting.
However, in the open nesting case the parent and child execute at dif-
ferent levels of abstraction. The restriction of the sub-transactions to
be visible only within the scope of its top-level transaction is dropped
in the open nested transaction model. This relaxation of the isolation
property of transactions increases concurrency however, recovery be-
comes increasingly complex, as (semantical) compensating transactions
are required in order to undo the effects of previously committed sub-
transactions [89, 113].

The classical read/write model of a database system defines a conflict be-
tween two operations if at least one operation is a write [28]. A more general
notion of a conflict is to consider two operation invocations as compatible if
their execution order is irrelevant from an application point of view. This
general notion of conflict has been introduced together with the more general
concept of semantically rich operations.

In multilevel transaction models, the schedulers at each level need to know
about the commutativity of their operations at the respective level. In this
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model, scheduling at each level is addressed separately. Therefore, the cor-
rectness criterion for a layered schedule is based on the one for flat transac-
tions, with the extension that orders are preserved at the next level.

3.1.6 Multiversion Concurrency Control

We have so far worked under the assumption that there exists only one ver-
sion of each database object. Consequently, each write operation on a data
object x would overwrite its value, and each read operation on x would return
the latest value of x. In such systems, transactions appear to be performed
one at a time in some order. This is achieved by ensuring a serially equiva-
lent interleaving of transaction operations. In a distributed system model, the
main correctness criterion for replicated databases is one-copy serializability
(1SR) [28]. The effect is that transactions performed on the database repli-
cas have an ordering which is equivalent to an ordering obtained when the
transactions are performed sequentially in a single centralized database.

Nevertheless, in practical applications and commercial database systems
multiple versions of data exist at the same time. Multiple versions of data are
used in database systems to support transaction and system recovery. These
multiple versions of data can also be exploited to improve the degree of concur-
rency that is achievable in the system. The higher degree of concurrency can
be achieved since tardy read requests can be serviced by reading appropriate,
older versions of data. Thus, read-only transactions, which do not have any
write operations are executed almost unhindered in most multiversion con-
currency control schemes. At the same time, the adverse effect of concurrent
update transactions on read-only transactions are minimized. The existence
of multiple versions is visible only to the scheduler implementing the proto-
col, and not to the user transactions which refer to the object as x. The higher
degree of concurrency is achieved due to the fact that there are no write/write
or read/write conflicts.

In a multiversion database, each write operation on an object x produces a
new version of x. Thus, for each object x in the database, there is an associated
list of versions. A read operation on x is performed by returning the value
of x from an appropriate version in the list. More formally, the operations of
transactions refer to database objects (data items), and not versions. It is the
responsibility of the underlying database system to map each read operations
1 (x) to a version x;, such that the write operation w;(x;) is executed before
T¢(x), in other words, to ensure that serializability is guaranteed. This is
referred to as version order or version function and has to be transparent to
the user. Version ordering offers a higher degree of freedom.
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Definition 3.14 (Multiversion Schedule) A multiversion schedule is a
schedule in which every operation is associated with a corresponding version
of a database object. O

As previously mentioned, versions should be transparent to the applica-
tions. Thus, it is important that as far as the users can tell the behavior of
a multiversion schedule is the same as a serial schedule over the same set of
transactions executed over a single version database. In this case we call the
multiversion schedule to be one-copy serializable (since one-copy serializabil-
ity is the commonly accepted correctness criterion for multiversion databases
[28]). In order to prove the correctness of a multiversion schedule a multiver-
sion serializability graph has to be constructed.

Definition 3.15 (Multiversion Serialization Graph) Let S be a multiver-
sion schedule over T and < a version order. The multiversion serialization
graph of S, MVSG (S, <) is a graph for which each transaction T € Tis an node
in the graph and the following relations hold:

1. For each wi(x;) and r(x;) in S with wi(x;) < 1i(xi), there exists T, — Ty
an edge in MVSG(S, <) (conceptually equivalent to a write/read conflict
in a normal serialization graph,).

2. Foreach wi(xi) and m¢(x;) in S, 1 # m # k and x; <xn, there exists T, — T,
an edge in MVSG(S, <), otherwise (if x, < xi) there exists T, — T, an edge
in MVSG(S, <).

O

Based on this we can define the following correctness criterion for multi-
version databases:

Theorem 3.16 (Multiversion One-Copy Serializability) A multiversion
schedule M is serializable if and only if MSVG(M, <) is acyclic. a

A proof of this theorem can be found in [28].

Several concurrency control algorithms have been developed for multiver-
sion databases [7, 25, 47, 48, 154, 188]. Multiversion timestamp ordering
was introduced in [154]. This approach has the advantage that read requests
are never rejected, and hence transactions consisting entirely of read opera-
tions are never aborted. Multiversion two-phase locking was originally pro-
posed in [47]. This protocol makes a distinction between read-only and update
transactions before transactions begin execution. Update transactions are ex-
ecuting according to the standard two-phase locking protocol, while read-only
transaction are executed immediately without delays. [188] proposed several
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protocols to implement read-only transactions and to manage multiversion
databases. In particular, several techniques to discard old versions of data
are described. In [7], a technique is proposed to decouple the version control
mechanism from the concurrency control protocol. Read-only transactions do
not have any concurrency control related overhead in this scheme.

Snapshot Isolation

The snapshot isolation protocol is an example of a protocol that considers sev-
eral versions per object - as each transaction works with its own snapshot.
The snapshot isolation protocol [23, 76] guarantees that all reads made in a
transaction will see a consistent snapshot of the database (in practice it reads
the last committed values that existed at the time it started), and the trans-
action itself will successfully commit only if no updates it has made conflict
with any concurrent updates made since that snapshot. A transaction exe-
cuting under snapshot isolation appears to operate on a personal snapshot
of the database, taken at the start of the transaction. When the transaction
concludes, it will successfully commit only if the values updated by the trans-
action have not been changed externally since the snapshot was taken. Such
a write-write conflict will cause the transaction to abort.

In contrast to serializable protocols, snapshot isolation permits write skew
anomalies. In a write skew anomaly, two transactions (T; and T,) concurrently
read an overlapping data set, concurrently make disjoint updates and finally
concurrently commit, neither having seen the update performed by the other.
Were the system serializable, such an anomaly would be impossible, as either
T, or T, would have to occur "first", and be visible to the other. In contrast,
snapshot isolation permits write skew anomalies.

3.2 Replication Management

Replication is one of the key requirements of almost every enterprise appli-
cation to meet its goals of availability, scalability and performance. Manag-
ing the data replication in a large heterogeneous environment that supports
multiple applications, such as data Grids, is a big challenge. Typically ap-
plications deal with different types of data and have different requirements
for data availability, performance and consistency; hence they need different
replication technologies to replicate their data.

Although the replication of persistent data is crucial to load sharing and
achieving high availability and scalability, it introduces the complexity of
consistency management. Replication is not a simple redundancy or backup
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mechanism. Rather, it involves a fully transparent full or partial distribution
of copies of data objects (also referred to as replicas), for sites that are dis-
persed over possibly very wide areas. In particular, it includes a wide range of
protocols for replication and failure recovery as well as policies to trade off re-
quirements of availability and consistency of replica in transaction-intensive
systems such as OLTP databases. Similar to multiversion concurrency con-
trol, the corresponding correctness criterion is one-copy serializability [26, 27].

By analogy to the expectations from any distributed information sys-
tems [45], replication management is expected to fulfill, as closely as possible,
the following requirements:

Scalability: Replication management scheme should be able to handle a
large number of replicas and simultaneous replica creation while at the
same time scaling in size with regard to the number of copies.

Performance: Replica management should be performed in a timely man-
ner and with a reasonable amount of resources. At the same time the
response times should not be affected by replica decisions. In general
many systems can achieve a good query performance. In contrast up-
dates generally do not become faster with replication.

Consistency and Correctness: The main goal of replication management
is to guarantee data consistency and the correct concurrent execution of
transaction. In practice, an environment where updates to a replica are
needed, different degrees of consistency and update frequencies should
be provided. Many existing approaches sacrifice correctness in favor of
better performance.

Reliability and Availability: Replication management should include fail-
ure handling and recovery techniques such that the failure of a node
does not affect the overall correctness or performance.

3.2.1 Classification of Replication Mechanisms

In databases, replica control mechanisms ensure data consistency between
the copies. Gray et al. [92] categorize these mechanisms according to two
parameters: the first one refers to which copies can be updated and the sec-
ond one refers to when updates are propagated. Figure 3.2 exemplifies these
strategies by contrasting propagation strategies with ownership strategies.
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Propagation/ Eager Lazy
Ownership
Primary Copy 1 transaction N transactions

1 object owner 1 object owner
Update 1 transaction N transactions
Everywhere N object owners N object owners

Figure 3.2: Replication Taxonomy

Update Location

The first parameter is update location, also called ownership [92], and defines
the permissions for updating copies. In regard to update location, a primary
approach only allows data to be updated in one primary site. This parame-
ter decides where the updates can take place and imposes no restriction on
queries. Thus, in a primary approach, if a client submits updates to a site
other than the primary site, the updates will be either refused or redirected
to the primary site for execution. Different data items might have different
primary sites. In this case, however, transactions that want to update data
items with different primary sites are disallowed. Read-only transactions are
allowed at any site. In contrast, in an update everywhere approach the up-
dates are accepted and executed at the local site to which the updates are
submitted. In general, update everywhere approaches are more flexible than
primary approaches. Since the primary copy approach requires all updates to
be performed first at one copy (the primary or master copy) and then at the
other copies, this simplifies replica control at the price of introducing a single
point of failure and a potential bottleneck. The update everywhere approach
allows any copy to be updated, therefore speeding up access at the price of
making coordination more complex.

Update Propagation

Irrespective of the update location, updates must be propagated to other sites.
The second parameter is update propagation and defines when the updates
are propagated [92]. The update (synchronization) of replicas can be done in
two ways. The first approach comes from standard database technology and it
is known as eager (synchronous) replication. Using an eager approach update
propagation must happen before the transaction commits, thus within the
transaction boundary. An eager approach provides strong consistency because
a transaction will not commit until it is certain that it will be able to commit
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in all other available sites. However, this delays transaction execution. The
other approach is known as lazy (asynchronous) replication. By contrast, a
lazy approach allows update transactions to commit before propagating the
updates to other sites. The updates are later propagated to the remaining
replicas by decoupled refresh transactions. A lazy approach provides there-
fore only weak consistency because of early commit, but transaction response
times in a lazy approach are lower than in an eager approach. Compared to
the eager approach, the lazy replication approaches require additional efforts
to guarantee serializability.

3.2.2 Eager Replication

Early research in replication addressed eager approaches since they provide
strong consistency and a high degree of fault-tolerance. As mentioned before
eager replication is the simplest way to achieve one-copy serializability: de-
spite the existence of multiple copies, the effect of transactions performed by
clients on replicated objects should be the same as if they had been performed
on a single set of objects (also called one-copy equivalence) and the execution
of concurrent transactions is coordinated so that it is equivalent to a serial
execution over the logical copy (serializability). Eager replication typically
employs distributed transactions, which use an atomic commitment protocol
(such as two-phase commit). All the changes are made visible synchronously
when the original transaction commits. Early solutions used such eager pri-
mary copy approaches [13, 172]. Later algorithms followed an update every-
where approach based on quorums, e.g. read-one-write-all (ROWA) [28] or
read-one-write-all-available (ROWAA). Efforts have been devoted to optimiz-
ing quorum sizes [5, 52]. More recently, epidemic protocols have been pro-
posed [6] in which communication mechanisms providing causality are aug-
mented to ensure serializability.

Postgres-R(SI) [196] presents a prototype that integrates replica man-
agement with database concurrency control. This solution does not require
declaring transaction properties in advance as previous attempts in the
same direction, but its replication algorithm must be implemented inside the
DBMS. Thus, this approach imposes significant obstacle to the portability and
deployment in a Grid environment, the interoperability in networks of sys-
tems based on products of different vendors, and is difficult to maintain even
for releases of new versions from the same brand. SI-Rep [119] provides a
solution similar to Postgres-R(SI) on top of PostgreSQL which needs the write
set of a transaction before its commit. Write sets can be obtained by either
extending the DBMS, thus compromising DBMS autonomy, or using triggers.
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This requires declaring additional triggers on every database table, as well as
changing triggers every time the database schema is altered.

Eager Primary Copy Replication

In an eager primary approach update transactions are only allowed to execute
at the primary site which performs traditional concurrency control to isolate
conflicting transactions. As long as other sites apply and commit updates in
the same order as at the primary site, data will be consistent. Furthermore in
this approach the changes of transactions are propagated eagerly (i.e., before
commit). The originating transaction is only then committed when the update
has been performed on all replicas, typically by means of a two-phase commit
protocol [74, 95]. Due to the fact that concurrency control takes place at the
primary copy, query transactions always see the latest version of data objects.
Systems such as distributed INGRES [172], employ such approaches.

Eager Update Everywhere Replication

Update everywhere approaches do not require update transactions to be sub-
mitted or forwarded to a primary site for execution, but still propagate the
updates within the same transaction. However, it is more difficult to keep
data consistent than in primary approaches. This is due to the fact that in a
primary approach conflicts between update transactions are detected in a sin-
gle site (i.e., the primary) while in an update everywhere approach conflicting
update transactions can run concurrently on different sites. When using dis-
tributed locking, an item can only be updated after it has been locked on all
sites. Thus, an update everywhere approach requires additional coordination
between different sites for concurrency control purposes, which is not trivial.
Gray et al. [92] claim that update everywhere approaches may lead to high
deadlock (directly proportional to n®, n being the number or replicas) and high
abort rates if many transactions run concurrently on different sites. The chal-
lenge of eager update everywhere approaches is to provide replica control in
order to guarantee global transaction isolation.

Read-One-Write-All-Available

One solution to that is used to deal with site failures is Read-One-Write-All-
Available [26, 28] and it is the most known of the quorum free protocols. The
protocol requires all available replicas to participate in the write quorum.
Read-only transaction can be served by any replica. When a failed site recon-
nects again, it is synchronized with one of the most up-to-date sites. Never-
theless, ROWAA approaches are not able to deal with network partitioning.
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Majority Consensus Voting

Other approaches to improve availability are based on quorum protocols.
Quorum protocols offer several benefits when used to maintain replicated
data [141, 175], for example, updates are required only for a subset of repli-
cas. In these approaches, write and read quorums are subsets of replicas used
to perform write and read operations, accordingly. By guaranteeing that read
and write quorums intersect, any read operation will include the most recent
version. Voting type algorithms are able to guarantee the consistency of repli-
cated data in the presence of both site failures and network partitions, as op-
posed to other types of algorithms that can only handle site failures. Quorum-
based protocols have also been many times proposed as an alternative for data
replication. But most quorum-based protocols impose a logical structure on
the nodes such as [5], which can soon become unfeasible in infrastructures
like the Grid. Moreover, [108] concluded that a ROWA approach is better for
a large range of database applications than a quorum-based approach as it
shows better scalability. The result is significant as quorums are often sug-
gested to reduce the overhead of scale replication. ROWA is a basic solution
to enforce strong replica consistency by means of eager replication [133]. This
approach (conceptually similar to our replication protocol for the update sites)
requires that whenever a transaction updates a replica, it also updates all
other replicas (using distributed transactions), thereby enforcing the mutual
consistency of the replicas. Contrary to our approach however, the atomic
commitment of the distributed transaction in the ROWA approach typically
relies on the two-phase commit protocol [133] which is known to be blocking
(i.e., it does not deal well with nodes failures) and has poor scale up.

Atomic Broadcast Replication

Atomic broadcast replication is an interesting approach to ensure fault-
tolerance in distributed replication systems and combine eager replication
with group communication primitives [110, 111, 161]. The approach consists
in providing transactions with a communication primitive that allows them
to broadcast and deliver messages in such a way that transactions agree not
only on the set of messages they deliver but also on the order of message
deliveries. A group communication ensures therefore a total order on all de-
livered messages, such that the global transaction manager can order con-
flicting operations. When a transaction is submitted at a site, the request
is broadcasted to all replicas by using atomic broadcast. A blocking protocol
that would guarantee consistency is not needed, because of the total order
provided by the atomic broadcast. Such approaches need to be directly sup-
ported by the database management system which would not be feasible when
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using off-the-shelf database components. Clustered database replication re-
quires reliable multicast with total order to ensure that each replica applies
updates in the same order. Even though various optimizations have been de-
veloped, the group communication layer is an intrinsic scalability limit for
such systems. Recent efforts have tried to extend multi-master replication
to WAN environments [120]. However, these approaches are still suffering
from network latency and unreliability of long distance links are still mak-
ing it impractical to have any reasonable production implementation of fast
reliable multicast.

3.2.3 Lazy Replication

As already seen eager replication makes it relatively easy to guarantee trans-
actional properties, such as serializability. However, when the transactions
are distributed and relatively long-lived, the approach does not scale well.
Lazy (or asynchronous) schemes, on the other hand, update replicas using
separate transactions. Lazy replication techniques asynchronously propagate
replica updates to remaining sites in the system after the original transaction
commits. Using this approach, the replicas continue to provide service regard-
less of site failures and network partitions. The mechanism used by lazy repli-
cation approaches works as follows: each time a transaction updates a replica
at some site, all the updates are propagated towards the other replicas of the
same object, and finally these replicas are updated in separate refresh trans-
action. Consequently, this scheme looses the mutual consistency property as
ensured by 2PC. The interval of time between the execution of the original up-
date transaction and the corresponding refresh transactions may be large due
to the time needed to propagate and execute the refresh transactions. There
are two strategies that can be used to schedule refresh transactions. The first
strategy begins the propagation of the refresh transactions immediately af-
ter the first update of the original transaction. In this approach updates are
propagated as soon as they occur, but always as independent transactions.
The major drawback of these approach is that updates are propagated before
the end of the original transaction and aborts can be expensive. The second
strategy defers the propagation of the updates until the commit of the original
transaction. The major advantage of this approach is that changes of multiple
transactions can be applied together as bulk refresh transactions [10, 157]. In
this case recovery also becomes simpler since it only involves local copies. As
mentioned before, in order to reduce latency, lazy replication updates all the
copies in separate transactions after the commitment of the initial transac-
tion. However, lazy replication implies that during a certain time, copies of
the same data diverge: some have already the new value introduced by the
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initial transaction, others have not. In this case the concept of freshness is
used to measure the deviation between replica copies. This divergence refers
to the notion of data freshness: the lower the divergence of a copy with respect
to the other copies already updated, the fresher is the data copy. Users may
accept to read stale data, i.e. data not perfectly fresh.

Freshness issues have been addressed in several approaches [10, 157, 138,
137], where the concept of freshness is typically used to measure the de-
viation between replica copies. The proposed protocols allow the users to
specify freshness requirements as a quality of service parameter attached to
their queries which defines what staleness of data is acceptable for the user.
Most importantly, transactions always access consistent data irrespective of
their freshness requirements. However, [157] relies on full replication of the
databases and does not allow distributed execution of queries. The protocol
proposed in [10] overcomes these drawbacks but relies on a central component
to serialize the updates.

Many replication solutions for databases already exist in the literature
that may be partially applicable to grid environments, such as [10, 14, 135].
In [10] a protocol for database replication that supports freshness and lazy
update propagation for many read-only nodes is provided. In [9], the proto-
col from [10] is adapted for data Grid environments. However, this protocol
makes a strong assumption about the existence of a central component which
is used to collect and serialize all updates at the update nodes. In fact, this is
conceptually equivalent to having only one update node in the system, which
is a potential bottleneck and a single point of failure, and therefore not practi-
cal in a Grid environment. In [14], several updateable replicas are supported
but a single, global replication graph is required which, in turn, requires a
single site where the graph is located. Consequently such a site becomes a
single point of failure.

In [119] a centralized middleware is developed that forwards each trans-
action to one of the replicas for execution. In [135] the protocol works un-
der the assumption that one replica copy is designated as the primary copy,
stored at a master node, and that update transactions are only allowed on that
replica. Thus, none of the existing replication protocols can be fully decentral-
ized which is an important requirement in infrastructures like the Grid.

Lazy Primary Copy Replication

In lazy primary copy protocols, the accesses are always managed by the same
replica, such a replica may use any local concurrency control approach for
avoiding conflicts between transactions. Primary copy solutions have been
used in some commercial database systems. In a lazy master replicated
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database, a transaction can commit after updating one replica copy (primary
copy) at some master node. After the transaction commits, the updates are
propagated towards the other replicas (secondary copies), which are updated
in separate refresh transactions. A central problem is the design of algorithms
that maintain replicas consistency while at the same time minimizing the
performance degradation due to the synchronization of refresh transactions.
Finally, lazy primary approaches pose serious problems in case of failures. In
case that the primary site crashes before propagating a change but after the
commit of a transaction, the transaction will not be applied in the secondary
sites. As [55] have shown in lazy primary copy schemes, serializability cannot
be guaranteed without restricting the placement of primary and secondary
copies in the system. Older work [32, 134] has attempted to minimize this
limitation. A major drawback of these approaches is that transactions cannot
update data items whose primary copies reside on different sites and in real
applications especially in clusters, the complexities and limitations on replica
placement are likely to be a significant liability.

Lazy Update Everywhere Replication

Lazy update everywhere replication permits clients to access any arbitrary
site and to update any local data. These updates are later on propagated to
the other replicas as independent refresh transactions. Since two or more
sites might be applying conflicting transactions at the same time, this ap-
proach makes it very difficult to guarantee correctness. Using this approach
replicas at different sites might not only be stale but also inconsistent. In
such cases, lazy update everywhere replication requires reconciliation to de-
cide which transactions are undone. Strategies for conflict detection and rec-
onciliation include pre-arranged patterns like latest update wins, node prior-
ity or largest value. In some cases, however, manual reconciliation may be
required. For this reason, some approaches have dropped the one-copy seri-
alizability criterion and have concentrated on relaxed data coherency mecha-
nisms.

3.2.4 Replication with Relaxed Data Consistency

In some cases the one-copy serializability criterion may prove to be imprac-
tical, for example for certain high performance applications. Relaxing the
mutual consistency of data leads to performance enhancement. Using this as
a starting point, two main classes of approaches to relaxed data coherency
have been developed. The first class is called implicit relaxed data coherency,
as the coherency relaxation is not expressed in quantitative terms. Example
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of such approaches are: epsilon serializability [152, 168] and epidemic repli-
cation [6, 66, 149]. The second class of relaxed data coherency approaches is
called explicit. In these approaches the specified coherency threshold has to
be met. Examples of such approaches are: identity connections [159, 166] and
quasi copies [83, 164].

3.3 Transaction and Replication Management in
Grid Infrastructures

This section presents extended transaction models, such as web service trans-
actions or grid transactions, as well as a discussion of Grid replication proto-
cols.

3.3.1 Web Service Transaction Models

Although most classical transaction systems are based on implementations
of the ACID transactions, the various properties of an ACID transaction can
be relaxed to provide what are typically referred to as extended transactions;
for example, an extended transaction model may relax atomicity to allow par-
tial sets of participants to commit or abort, or it may relax isolation to allow
concurrent users to observe partial results. Composing certain activities from
long-running ACID transactions can reduce the amount of concurrency within
an application or (in the event of failures) require work to be performed again.
For example, there are certain classes of application where it is known that
resources acquired within a transaction can be released early, rather than
having to wait until the transaction terminates; in the event of the trans-
action canceling, however, certain activities may be necessary to restore the
system to a consistent state (perhaps performing compensation or counter-
effects). Such compensation and fault-handling activities (which may perform
forward or backward recovery) will typically be application-specific, may not
be necessary at all, or may be more efficiently dealt with by the application.
Thus an extended transaction model is more appropriate for long-duration
interactions.

The division of a transaction into activities (atomic units of work), defining
alternative paths and compensation activities are among the techniques used
to circumvent some of the problems posed by distributed systems (blocking
resources for a long period of time or a lot of finished work that needs to be
rolled back in case of failure).
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All these models offer a higher level (application level) transaction sup-
port.

The Business Transaction Protocol

The latest version of the Business Transaction Protocol [38] has been released
by the OASIS consortium in 2009.

BTP defines a protocol that makes minimal assumptions about the imple-
mentation structure and the properties of the protocols that define how the
transmission of BTP messages occurs. It defines protocol exchanges to ensure
the overall application achieves a consistent result. This consistency may be
defined a priori: all the work is confirmed or none at all (an atomic business
transaction or atom); or it can be determined by application intervention in
the selection of the work to be confirmed (a cohesive business transaction or
cohesion).

The BTP protocol is considered to be an "open-top" protocol, with two dis-
tinct phases, in contrast to the traditional 2PC protocol, which is considered
"closed-top" because it only admits a couple of commands. The first phase of
the transaction protocol is called "provisional-effect" (requiring provisional or
tentative state changes). The second phase of the protocol defined the termi-
nation of the transaction either by confirmation ("final effect") or by cancella-
tion ("counter-effect"). How these phase are implemented is dependent on the
implementation of the applications.

The commands used by BTP offer richer semantics and abstract from the
background implementation. Another very important difference with respect
to the traditional 2PC protocol is that the time between the two phases is
entirely under the application’s control.

WS-Coordination and Transaction

In reaction to the BTP protocol, Microsoft, IBM and BEA released a new set
of specifications, called WS Coordination and Transaction [195] aimed at the
reliable and consistent execution of web based business transactions using
different interconnected web services.

WS-Coordination and WS-Transaction form together an extensible frame-
work for providing protocols that coordinate the actions of distributed appli-
cations, by means of a coordinator. The WS-Coordination framework enables
participants to reach consistent agreement on the outcome of distributed ac-
tivities. The coordination protocols that can be defined in this framework can
accommodate a wide variety of activities, including protocols for simple short-
lived operations and protocols for complex long-lived business activities. It is
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worth mentioning that the use of the coordination framework is not restricted
to transaction processing systems; a wide variety of protocols can be defined
for distributed applications. However, so far WS-Transaction is the only spec-
ification of a protocol based on WS-Coordination.

The protocols specified by WS-Transaction are WS-AtomicTransaction
and WS-BusinessActivity. The WS-AtomicTransaction specification is fo-
cussed on the existing transaction systems and protocols with strict ACID
requirements and implements different flavors of the 2PC protocol. The WS-
BusinessActivity specification provides flexible transaction properties and is
designed specifically for long-duration interactions, where traditional trans-
action behavior (such as holding on to resources) is impossible or impractical.

WS-Composite Application Framework

Web Services Composite Application Framework (WS-CAF) was developed by
SUN, Oracle, Arjuna, IONA and Fujitsu in 2003 [194]. It has been afterwards
adopted as a standard by OASIS. It is a layered framework consisting of the
following three parts: WS-Context (WS-CTX), WS-Coordination Framework
(WS-CF) and WS-Transaction Management (WS-TXM).

All these specifications have been intended to be used alone, nevertheless,
the coupling of these specifications can facilitate the construction of applica-
tions that combine multiple services together in composite applications.

The fundamental capability offered by the WS-Coordination Framework
specification is the ability to register a web service as a participant in some
kind of domain specific function. WS-Coordination Framework permits vari-
ous coordination protocols to be layered on it. Web Service Transaction Man-
agement defines three protocols that are plugged into WS-CF and can be used
with a coordinator to negotiate a set of actions for all participants that are to
be executed based on the outcome of a series of related Web services execu-
tions. Examples of coordinated outcomes include the classic two-phase com-
mit protocol, a three phase commit protocol, open nested transaction protocol,
asynchronous messaging protocol, or business process automation protocol.

It is important to notice that despite of the flexibility that these models
offer, all of them rely on a central coordination framework and/or atomic com-
mitment protocols such as two-phase commit, which makes them not suitable
for Grid environments.

3.3.2 Grid Transaction Models

Despite its importance, very little work has been done in the field of grid
transactions. TM-RG (GGF Transaction Management Research Group) is
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working on Grid transactions with the goal of investigating how to apply
transaction management techniques to Grid systems. This group is investi-
gating possible Grid transaction approaches, based on relaxed isolation trans-
action models, such as the ones presented in the previous section.

The architecture GridTP, developed at the Shanghai Jiang Tong Univer-
sity [147], is based on the Open Grid Services Architecture (OGSA) platform
and the X/Open DTP model, providing a consistent and effective way to make
available autonomously managed databases in the Grid. This means that
a two-phase commit protocol is used to atomically commit distributed Grid
transactions.

A decentralized serialization graph testing protocol that ensures concur-
rency control and recovery in peer-to-peer environments has been proposed
in [101, 177]. The proposed protocol ensures global correctness without re-
lying on a centralized global serialization graph. Each transactional process
is equipped with partial knowledge that allows the transactional processes to
coordinate. Globally correct execution is achieved by communication among
dependent transactional processes and the peers they have accessed. In case
of failures, a combination of partial backward and forward recovery is applied.
Although the paper is proposing a model based on known techniques, such as
serialization graph testing and partial roll backs, it combines old techniques
for a new purpose, presuming globally correct execution of concurrent transac-
tions based on the local knowledge of the transactions. A similar approach has
been recently adopted for peer-to-peer transaction management [17]. How-
ever, the proposed protocols do not handle replication and data versioning.

3.3.3 Grid Replication

Although considerable work has been done in the field of data management in
the Grid, currently available Grid solutions use a simple user-initiated repli-
cation model. In general, a central catalog exists where all replicas of a file
are registered. Single instances of centralized components could thus easily
become a single point of failure in the system. When a file is uploaded and
registered in the catalog, it is the responsibility of its owner to decide where
and in how many copies the file should be replicated.

The European DataGrid (EDG) project was charged with providing a Grid
infrastructure for the massive computational and data handling require-
ments of several large scientific experiments [70]. The design of the replica
management system is modular, with several independent services interact-
ing via the Replica Manager, a logical single point of entry to the system for
users and other external services. The Replica Manager coordinates the in-
teractions between all components of the systems and uses the underlying
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file transport services for replica creation and deletion. The replica manage-
ment follows a simple user-initiated replication model, which puts the user in
charge of replica creation and placement. Another decision taken by the user
is the number of replicas to be created. Leaving this decision at the discretion
of the user might lead to an uncontrolled increase and prove to be impractical.
Since much of the coordination logic occurs within the client, asynchronous
interaction is not possible and in the case of failures on the client side, there
is no way to automatically re-try the operations. User feedback showed that
the file catalog infrastructure was too slow both for inserts and for queries.
Missing functionality identified included lack of support for bulk operations
and transactions. It also became clear that queries were generally based on
metadata attributes and were not simple lookups of a file’s physical location.

To address these problems, the LHC Computing Grid has designed a new
data management component, the LCG File Catalog (LFC) [71]. The LFC
moves away from the Replica Location Service model used in previous LCG re-
leases, towards a hierarchical filesystem model and provides additional func-
tionality, such as cursors for large queries, allows timeouts and retries on the
client side, as well as fixing performance and scalability issues seen in the
EDG catalogs. Nevertheless, LFC is still deployed as a centralized component
which is single point of failure in the system. Moreover, the middleware does
not offer any integrated replication system. In general, replica management
is done by the user using command-line tools.

Another replica management approach is the Globus Data Replication Ser-
vice (DRS), whose function is to replicate a specified set of files onto a local
storage system and register the new files in appropriate catalogs [87]. DRS
builds on lower-level Grid data services, including the Globus Reliable File
Transfer (RFT) service and Replica Location Service (RLS). As in previous
approaches, replica management decisions are the responsibility of the user.
At the same time, it is a general tendency in Grid replication mechanisms to
ignore replica consistency and freshness of data. The same tendency can be
observed in the DRS.

The Storage Resource Broker (SRB) [169] is a data Grid middleware soft-
ware system that provides a uniform interface to heterogeneous data storage
resources over a network. SRB supports both synchronous and asynchronous
replication of files registered in the catalog. The system has much more func-
tionality than existing replication system developed for the Grid. Neverthe-
less the synchronization of replicas is still triggered by the user and may suf-
fer from consistency problems in case of multiple catalogs and while accessing
more than one replica. Furthermore, it does not provide a dynamic replica
management functionality. The dynamic selection of a replica is in general an
issue that is not properly addressed in any available Grid replication tools.
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The purpose of replication management approaches is to ensure fault-
tolerance and availability while at the same time facilitating the users’ access
to data by improving query performance. At the same time, data consistency
and correctness are important aspects which have to be guaranteed. In this
chapter we have introduced the foundations of transaction and replication
management in order to establish the basis for appropriate replication proto-
cols.

After surveying a variety of replication protocols we are still missing an
approach suitable for data Grid environments which is capable to seamlessly
combine scalability, global correctness and quality of service guarantees. Pre-
vious research in the field of transaction and replication management have
motivated our approach. In an environment where updates are infrequent, an
optimistic concurrency control is combined with eager replication protocols to
ensure consistency among update replicas. A lazy replication protocol is used
to asynchronously propagate changes to read-only sites. Such an approach
is thus a careful combination of eager and lazy replication protocols and can
reproduce the performance characteristics of asynchronous replication man-
agement while still ensuring data coherency. The corresponding protocols are
presented in the subsequent chapters.



The Re:GRIDIT Approach to
Replication Management in a Data
Grid

The overall goal of this thesis is to present a replication mechanism that com-
bines scalability, global correctness and quality of service guarantees in a dy-
namic way. Chapter 2 presented detailed use case scenarios from various
eScience domains which urgently require new integrated approaches to dy-
namic replication in a data Grid. Our Re:GRIDIT protocol dynamically man-
ages replicas in the Grid, while at the same time providing freshness and
correctness guarantees. The Re:GRIDiT family consists of three different pro-
tocols which target the three main problematic aspects identified in current
data Grid infrastructures. These protocols are:

Re:SYNCIT synchronizes updates to several replicas in the Grid in a dis-
tributed way. The need for the Re:SYNCIT protocol is manifold: user
application requirements have stressed the need for consistency: dis-
tributed concurrency control is required when user operations span sev-
eral sites, i.e., support for distributed transaction management when
data which are read or updated in a single transaction are distributed
across several sites. At the same time replication management is needed
since availability is highly important in such widely distributed environ-
ments as the data Grids. We employ a combination of both eager and
lazy replication protocols that are capable of taking into account differ-
ent levels of freshness. Our approach assumes no global coordinator: we
enforce globally serializable schedules in a completely distributed way
without relying on a central coordinator with complete global knowledge.
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This is an important feature in order to allow for the application of data
replication at Grid scale. Last but not least, we support a flexible data
model in which we distinguish between mutable and immutable data
objects. Mutable data objects can be updated. Immutable data objects,
on the other hand, cannot be modified; once created they are kept until
deleted, but several versions of the same immutable data object may ex-
ist. To the best of our knowledge this distinction between data objects
has not been made in any available protocol, yet it is a straightforward
consequence of the nature of many Grid applications.

Re:LOADIT is our approach to dynamic replica deployment and manage-
ment. We build a system where user requests can be directed and ex-
ecuted by any replica, and where parameters such as load, freshness
or network distance to the replica are used to determine a request’s
destination. We distribute data objects among several replicas to in-
crease throughput and move frequently used/heavy accessed data ob-
jects to relatively inactive replicas, where they do not compete against
each other for resources, and requests can be handled faster. Based on
a combination of local load statistics, proximity and data access pat-
terns, Re:LOADIT dynamically adds new replicas or removes existing
ones without impacting global correctness.

Re:FRESHIT allows read-only clients to state how up-to-date their data can
be. Users may demand a certain freshness level or a certain version and
this includes the special case where users always want to work with up-
to-date data. It supports the freshness-aware routing of queries in the
Grid and also takes into account the sites’ local load for replica selec-
tion without relying on any central component. In parallel, updates are
propagated from the update sites to the read-only sites along the site
hierarchy in a consistent manner.

In short, Re:GRIDiT was developed as a response to the need of a pro-
tocol that meets the challenges of replication management in a data Grid,
and that re-defines the Grid and re-discovers it (in other words, that "re:grids
it"), bringing it to a level where it can satisfy the needs of a large variety of
users from different communities. Despite previous research in the field dis-
tributed transaction and replication management new approaches that seam-
lessly provide all these functionalities do not exist yet.

In this chapter we lay the basis for the Re:GRIDiT family of protocols and
describe a system model for our data Grid replication system. The system ad-
dresses data replication in the Grid, in a completely distributed way, taking
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into account particular requirements coming from both the Grid infrastruc-
ture and the Grid applications, ensures correctness even in case of failures,
and supports the Re:GRIDiT protocols. Consequently, in Chapters 5, 6 and 7
we present new protocols that allow us to correctly synchronize distributed
updates to replicated data in the Grid (Chapter 5), dynamically manage repli-
cated data in the Grid based on user access patterns (Chapter 6), and subse-
quently propagate changes to read-only replicas with freshness and correct-
ness guarantees (Chapter 7). These protocols rely on functionality provided
by the underlying system, as discussed in the following.

4.1 Architectural Layers

Despite recent advances, data Grid technologies often propose only very
generic services for deploying large scale applications such as user autho-
rization and authentication, data replication, fast and reliable data transfer,
and transparent access to computing resources. In this context, we are fac-
ing important challenges such as the ones coming from the earth observation
application presented in Section 2. We built therefore further functionality
on top of the underlying Grid middleware, while taking into account the par-
ticular requirements coming from both the Grid infrastructure and the Grid
applications (such as dynamically distributed management of replicated data,
different levels of freshness, the absence of a central coordinator).

For this purpose, we envisage a layered architecture, consisting of three
different layers (levels). Figure 4.1 sketches our architectural system. The
bottom layer is built by computing nodes, storage nodes, fast network connec-
tions, in short any basic infrastructure which provides file management capa-
bilities and a relational database system. At the middleware layer, Grid ser-
vices provide homogeneous and transparent access to the underlying hetero-
geneous components while Re:GRIDIiT services (which build on top of any Grid
middleware) provide dynamic and distributed replication of Grid-enabled ap-
plications with data sharing and distributed computation capabilities in a
way that is transparent to the applications and the users. The application
specific layer provides high level and domain specific services taking into ac-
count the data semantics (such as collections of images), high level services
(such as earth observation imagery, sophisticated image interpretation ser-
vices), support for parallel and interactive applications, etc. The components
in each layer build on new capabilities and behaviors provided by the lower
layer. This model demonstrates flexibility and shows how Grid architectures
can be extended and evolved upon. By utilizing Grid technologies to create
a high-performing and scalable platform, we can easily build flexible and dy-
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Figure 4.1: System Architectural Levels.

namic applications for users that require resources and new functionality on
demand.

4.2 Middleware Level System Model

In the following we present a formal description of our system model, and
introduce the following concepts: A site is the basic operational entity in the
system. We assume a fail-stop model for site failures. A Grid system is a
collection of sites equipped with a Grid middleware. We assume there is an
underlying network protocol that can be used to send messages reliably from
one site to the other with known bounded delay.

4.2.1 Data Model

Throughout this thesis the term data object is used to denote a container for
an information object, or for the document to information object relation, or
for the collection set, or for various kinds of feature indexes used to support
text, image, or audio/video search support. Approaches where the indexes
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used in the transformation between user objects and physical objects are con-
sidered as physical objects as well, and are later on processed, already exist
(search engines such as FAST follow such an approach [75]).

In the following, we present the three layers in more detail, describing
the data objects and operations available at each level. This description is
meant to facilitate the understanding of how data and operations are mapped
between different levels. A more detailed description of our operations model
will follow.

At the base layer, we assume a Grid network which provides a general
distributed computing environment in which each site is able to communicate
to (all) sites in the network in a reliable manner. This layer is an abstraction
from basic Grid storage facilities and provides a basic infrastructure consist-
ing of (any) relational database and a file management system. Data objects
can be represented at the base level as files stored on the local file system,
database relations, or partitions of a relation in the local database manage-
ment system (similar to the approach presented in [40]). Our protocol relies
on the fact that local, base level operations on objects stored in the database
are executed as local database transactions, and base level operations on ob-
jects stored on the local file system can take advantage of Grid file manage-
ment functionality, such as GridFTP [97].

We envisage Re:GRIDIT at the middleware layer as being part of the
overall Grid middleware. It is present on each site and provides transpar-
ent support for replication and distributed transaction management. At this
level, the sites hold data objects, which are replicated in the network, and
operations through which the data objects can be accessed. We assume that
one physical object can reside only on one site, but could be replicated on
several sites. At this level data objects are classified into mutable and im-
mutable data objects. Immutable data objects are created only once and kept
until deleted. They cannot be modified, but may have several versions (for
example, satellite pictures, X-ray pictures of a patient’s internal organs, etc.)
Mutable data objects can be modified and therefore do not have versions (for
example, environmental reports, interpretations of X-ray or ultrasound pic-
tures of human internal organs i.e., annotations which summarize what the
pictures indicate). At the same time, a set of semantically rich operations is
available at the middleware level for each type of data objects.

At the user layer, we consider three types of data objects: collections,
documents and information objects. Each collection consists of one or more
documents, shared between collections. A document may belong to more than
one collection. Each document consists of one or more information objects.
Collections, documents and information objects are transparently mapped to
data objects at the middleware level. Similarly, the operations exposed to the

55



4 The Re:GRIDIT Approach to Replication Management in a Data Grid

4 N\
E. - User level operations Add New Image Document B
\ Collections, documents, etc \ /
\-4’/ l
R 4 \
insert_immutable (B,file,OID)
Middleware |eve| operations insert_immutable (A,database,OID)
Mutable and immutable data \ 1 /
/giobus—url—copy -vb ‘\

file:///<path>/ImageB

gsiftp://Site/<path>/ImageB
INSERT INTO Metadata

(author, date, pointer)

VALUES
(‘Tom Doe’, ‘16.10.2008’,
\ ‘Site/<path>/ImageB’) j

Figure 4.2: Example of User Transaction Mapping between Levels.

user which allow the creation, access, and manipulation of collections, docu-
ments, and information objects are automatically and transparently mapped
to operations acting on middleware data objects. This mapping determines a
unique OID for the data objects to be accessed, and these OIDs are referred
in all operations.

Our data model classification into mutable and immutable data objects
comes from the valid observation that there are typically two kinds of objects
representing scientific data: data content and metadata objects. Generally,
data content objects are immutable. Only new versions of these objects can
be added. Metadata objects, on the other hand, are generally mutable. It
is important to observe that collections and documents are always mutable,
since we always can either add/delete a document to/from a collection and
by the same token, we always can add/delete an information object to/from
a document. Following the same reasoning, indexes are also mutable and
are used to define dependencies between objects. Consequently data objects
are never treated in isolation and consistency is always maintained, since for
example adding a new object to a collection will always mean that the index is
recalculated, even for data with lower freshness levels. In short, immutable
objects at the middleware level can be only information objects. All other
types of objects are considered to be mutable.

Figure 4.2 gives an example of how the mapping between the different lay-
ers is performed. If we come back to the earth observation scenario presented
in Chapter 2, we can imagine users, at the user level working with operations
that allow them to manipulate satellite images or collections of such images.
A scientist working on the oil slick distribution problem and which requires
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a new image for his environmental report would start at the user level the
following transaction: "Add New Image Document B". This transaction will
be automatically transformed at the middleware level into "insert image B on
the file system" and "insert metadata A (associated to B) into the database".
These operations will be in turn mapped to base level operations that any
Grid infrastructure is able to handle (such as GridFTP copy or SQL insert).
The image associated to document B will be stored on the file system, while
metadata associated to the image and a pointer to the location of the file will
be stored in the database. IBM DataLinks' is another example of a successful
application that allows the storage of large files such as documents, images,
video in the file system in order to take advantage of file-system capabilities,
while at the same time coordinating the management and access to these files
and their contents with associated data stored in a relational database man-
agement system.

In a similar fashion, the creation of a collection of images at the user level
will be mapped to the following sequence of operations at the middleware

n "ne

level: "insert images on the file system", "insert metadata (associated to the
images) into the database", "insert information regarding the containment of
the images in the collection into the database". These operations will result
at the base level in the insertion of several tuples in a database relation (so
that the membership in a collection is finally mapped to a horizontal partition
of this table) and the copying of images via GridFTP to the designated sites.

Re:GRIDIT is capable of supporting arbitrary physical layouts ranging
from full replication at the granularity of complete databases to partial repli-
cation. The partial replication scheme does not require all data objects to be
replicated on each site. Smaller subsets of the entire set of data objects are
replicated on the different sites in the system. This way, two sites may contain
different partitions which may even be overlapping. Throughout the thesis,
we refer to sites in the network as update and read-only sites. The assumption
behind is always that a site can be an update site for a certain data objects
and read-only site for others. In practice, however, for performance reasons,
update sites should be considered updateable for all data objects existing on
the sites. As subsequent chapters will reveal, our replication protocol makes
no assumptions regarding the replication scheme.

4.2.2 Operations Model

With respect to the operations model, we assume an approach in which
each site s; offers a set of semantically rich operations [181] on data objects
Op% = {op1,0p2,...,0pn} (see Figure 4.3). These operations can be invoked

Thttp://www.almaden.ibm.com/resources/datalinks.pdf
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within transactions using the interface of that site. The operations at the
middleware level can be classified according to three criteria. According to
the first criterion, the operations are classified depending on the type of the
data object they refer to. Consequently, we distinguish between mutable and
immutable operations.

We assume the following middleware level operations for immutable data
objects: insert, delete, and read. As already mentioned, immutable data ob-
jects cannot be updated. In turn, one can create a new version of an im-
mutable data object. In more detail, the operations on immutable data objects
are:

e insert_immutable(object, type, OID), where the parameters represent
the following: object — the data object to be inserted, type — the type of
storage to be chosen, either a database relation, partition of a relation
or a file, and OID — the unique OID of the object. If the object does not
exist it will be created with version 0. Otherwise a new version of the
data object is created and the version number is returned.

e delete(OID), deletes an object with the specified OID.

e read(OID), reads an object with the specified OID. This operation al-
ways reads the last version of the object.

e read_version(OID,number), reads a particular version of the object
with the specified OID.

Mutable objects can be inserted, replaced, and read. We assume that a
replace operation always acts on the freshest version of a data object. The
semantics of the middleware level operations for mutable data objects are
presented below:

e insert_mutable(object, type, OID), where the parameters represent the
following: object — the data object to be inserted, type — the type of
storage to be chosen, either a database relation or partition of a relation
or a file, and OID — the unique OID of the object.

e replace(object, OID), replaces an object with the specified OID. The ex-
ecution of this operation has as consequence the removal of the previous
object from all sites where it resides, and the updated data object is
copied on all sites.

e read(OID), reads an object with the specified OID. This operation al-
ways reads the last version of the object.

58



4.2 Middleware Level System Model

[ )
¢ ;Delete an image from my collection

o

(Direct) Semantically rich operations:

(Direct) Semantically rich operations:
-Insert

(22)
b
Immutable and mutable data obiects:

|

Indirect operations: copy, remove

Figure 4.3: Data and Operations at the Middleware Level.

Our second classification criterion distinguishes between operations ac-
cording to how these operations are initiated. All the operations presented so
far on both mutable and immutable data object are the result of the transla-
tion of user operations into operations that the system has to deal with at the
middleware level. We call these operations in our model direct operations. In
addition, we assume two additional operations that are not available at the
user level, operations which are used by the system in order to support repli-
cation (indirect operations). For immutable objects, these indirect operations
are:

e copy(OID,number, destination), copies a particular version of the ob-
ject with the specified OID on a destination site. It is triggered automat-
ically whenever a new data object or a newer version of a data object has
been created (by using an insert_immutable).

e remove(OID,number, destination), removes a particular version of the
object with the specified OID from a destination site. It is executed
whenever a data object has been deleted from a site.

The indirect operations for mutable objects are:

e copy(OID, destination), copies the object with the specified OID on a
destination site.

59



4 The Re:GRIDIT Approach to Replication Management in a Data Grid

R

Direct (user initiated) operations Indirect (system initiated) operations

Mutable operations Immutable operations

Update operations Read operations

Figure 4.4: Classification of Operations at the Middleware Level.

e remove(OID, destination), removes the object with the specified OID
from a destination site.

Unlike a delete operation, which deletes the data object from every site
in the network, remove only "deletes" the data object from the site where
the operation was submitted. These operations have been introduced in or-
der to support replication, therefore they act on single replicas, whereas
insert, replace, delete act on global objects and lead, as a consequence, to
changes being made to all replicas in the system.

Consider for example again a scientist in our earth observation scenario
who is a working in a project involving oil spill distribution studies on a cer-
tain region. In order to produce new results he needs to eliminate an im-
age from his collection, as new, more accurate images become available. His
transaction at the user level (labeled with (1) in Figure 4.3) is mapped at the
middleware level to a sequence of direct operations: delete of that particular
image (labeled (2a)) and the replace of the collection index to preserve the
integrity of the collection (labeled (2b)). At the same time, our protocol will
ensure the consistency of the data at the update sites and via indirect opera-
tions apply the same changes at all the other replicas in the system (labeled
with (3)).

The third criterion for the classification of operations refers to how the op-
erations access data. We consider the following update operations (shortly
referred to as updates): insert_mutable, insert_immutable, delete and
replace. We consider the following read operations: read object (which reads
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of the freshest copy or the last version number of a specified object) and
read_version (which reads a version of the object or a copy of the object with
a particular freshness value).

The complete classification of the operations is presented in Figure 4.4.

4.2.3 Network Topology

As previously introduced, a site is the basic operational entity in the system.
A site contains data objects that are replicated in the system, and operations
by means of which the data objects can be accessed. Depending on the type of
access that they allow to their data, the sites are divided into two classes (sim-
ilar to the approaches presented in [10, 157]): we classify the sites as update
sites and read-only sites. Read-only sites only allow read access to data. Up-
dates occur on the update sites and are propagated to other update sites and
finally to the read-only sites. We assume an eager replication among update
sites and in addition we apply lazy replication mechanisms between update
and read-only sites that take into account different levels of freshness (us-
ing the definition introduced in [157]). In order to facilitate the propagation
of updates from the update sites to the read-only sites and to better support
users queries with different freshness levels, we define an I-fo-n relationship
between the two types of sites; an update site can have any number of read-
only children (to which updates are propagated). Read-only sites can further
propagate their changes to other read-only sites, thus maintaining different
versions and different levels of freshness of data in the system. As a failure
handling mechanism only, read-only sites can be shared with other update
sites. In order to ease the distinction between the different types of sites, we
introduce the following naming convention, which defines a tree structure.
Since there are many update sites per data object, the result is a forest of
trees in the system (see Figure 4.5):

e Level 1 (root) sites are all the update sites, where the data are synchro-
nized (eager update everywhere replication). More importantly, we as-
sume that there is some form of clock synchronization between these
sites, needed for the calculation of the freshness levels.

e Level 2 sites are read-only sites which are kept as up-to-date as possible.
We define an I-to-n relationship between Level 1 and Level 2 sites.

e Level 3 (optional) sites are read-only sites where copies of data are not
frequently updated. We define an I-to-n relationship between Level 2
and Level 3 sites. Level 3 sites are optional, but provide a definite ad-
vantage if the number of read-only sites in the system is considerably
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bigger than the number of update sites (as a trade-off between consis-
tency and performance). Level 3 read-only sites may themselves be hier-
archically structured, i.e., form tree structures of different depths, and
may propagate in turn updates to their own children or may re-route
request to their parents if they are not able to service request locally.

The following update operations are available through the interface of
Level 1 update sites: insert_mutable, insert_immutable, delete and replace.
We consider the following read operations which can be invoked on all sites:
read (which reads of the freshest copy or the last version number of a speci-
fied object) and read_version (which reads a version of the object or a copy of
the object with a particular freshness value).

By using the tree topology, we can ensure that the freshness level for a
particular data object is monotonically decreasing along the tree hierarchy.
This feature will allow us to make an efficient routing of the queries along the
tree structure.

4.2.4 The Initial Configuration

In this section, we show how the tree is initially constructed. In order to
create a tree, we require a minimum number of initial update replicas (at
least three) that are used to bootstrap the tree and a set of fixed IP addresses.
These initial IP addresses point to (some) sites in the system equipped with
the Re:GRIDIT middleware, which in turn are able to (transitively, following
the tree hierarchy) locate (at least) one update site.

Any new site that wishes to join the replication scheme can do so, on the
lowest level in the tree hierarchy. By using one of the IP addresses in the fixed
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set the new replica can be directed to the lowest site in the tree hierarchy. For
example, in the initial phase of a tree constructed with three update sites,
any new replica will become a Level 2 read-only site. After this, new sites
can enter the scheme by becoming read-only sites, children of an existing site
on the current lowest level in the tree hierarchy. Continuous propagation
transactions ensure that the new replica will eventually hold a copy of the
data object(s) of interest with a certain freshness level. From this point on, the
dynamic load balancing between the replicas presented in Chapter 6 and the
dynamic tree changes induced by refresh transactions presented in Chapter
7 ensure that a site can dynamically move up or down in the tree hierarchy
and be promoted to an update site or again demoted to a read-only site based
on access patterns that change over time.

4.2.5 Distributed System Repositories

Each site uses a set of tools to obtain a (typically partial and sometimes even
out-dated) information regarding the state of the system and take replication
decisions. We introduce the following components to facilitate the scheduling
of read-only transactions in the Grid and the replica management decision.
These components are not centrally materialized in the system, and contain
global information that is distributed and replicated to all the sites in the
system:

Replica catalog: used to determine the currently available replicas in the
network, as follows: Level 1 (update) replicas contain distributed repli-
cated information about the other update sites in the network and about
their corresponding tree. In order to minimize the exchange of infor-
mation and yet ensure that any update site can eventually reach any
other update site (for example, for update transactions that include two
or more data objects), update replicas need be aware of only one update
(Level 1) site for each data object in the network. For failure handling
purposes, more than one Level 1 site per data object can be managed in
the local replica repository. We take advantage of the continuous prop-
agation transactions in order to replicate this information within each
tree. Each update (Level 1) replica is aware of its own Level 2 read-only
replicas, where it propagates update changes, in order to maintain a cer-
tain level of freshness/staleness in the network. Each read-only replica
is aware of its parent site in the tree and its subordinate read-only sites
(if any).

Freshness repository: used to collect the freshness of data objects periodi-
cally or on-demand. In this thesis, the term freshness is used to empha-
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size the divergence of a replica from the up-to-date copy. Consequently
update sites will always have the highest freshness, while the freshness
of the read-only sites will measure the staleness of their data. The sites
at the leaves of the tree have the stalest data in the network. Irrespec-
tive of their level, sites are aware of the freshness levels of the sites
to which they (transitively) propagate changes. As observed from Fig-
ure 4.5 sites in the system are aware of the freshness intervals that can
be provided by their subordinates in the tree.

Propagation queues: are used to enqueue changes that need to be applied
to subordinate sites in the tree. These changes are bulked into propaga-
tion transactions and applied to the sites whenever possible. The prop-
agation transactions execute changes from the local propagation queues
in order. These queues are continuously updated as new updates arrive
at the update sites. These updates are collected together into packages
of fixed size which are later on propagated to other sites.

Load repository: used to determine an approximate load information con-
cerning the sites. This information can then be used to balance the load
while routing read-only transactions to the sites or for the replica se-
lection algorithm. Update sites periodically receive information regard-
ing the load levels of other update sites and their subordinate children.
Read-only sites are only aware of their own load levels. In order to im-
prove efficiency and not to increase the message overhead this informa-
tion is exchanged together with replica synchronization request. This in-
formation needs to be exchanged more frequently while there is a replica
synchronization process in place, while the exchange is not needed dur-
ing a site’s idle time, when the load is unlikely to vary.

4.2.6 Transaction Model

Based on the concepts introduced in Chapter 3, we define the following no-
tions that apply to our transaction model. A transaction T; is a pair (O, <7,),
where Or, is the set of operations to be invoked and <, is a partial order
defined over Or,.

The notion of a schedule is fundamental for defining a criterion for correct
concurrent executions of transactions although no central scheduler exists
and thus no complete schedule is materialized in the system. A schedule S is
a pair (Os , <) with Os being the operation invocations from all transactions
in the system and <5 the order between these invocations.

The notion of conflict is defined based on the commutativity behavior of
operation invocations (semantically rich operations). Dependencies between
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transactions in a schedule occur when there is at least a pair of service invo-
cations in conflict.

Let op; and op, be two operation invocations. Then, op; and op, com-
mute if for any pair of sequences «, 3 of operation invocations the return
values are the same in ( x op; op, ) and ( x op; op; B ). Otherwise, the
operation invocations are in conflict, i.e., (op;, opz) € CON with CON C
{O",...,0™}x{0",...0™} being the conflict relation. A transaction T; depends
on a transaction Ty in a schedule S if there exists a pair of conflicting service
invocations op; € O"t and op, € O™ such that op; occurs before opy in S, i.e.,
(opi, opx) € CON and op; <s opk.

Each transaction T owns a local serialization graph SGt which comprises
the conflicts in which T is involved. Essentially, the graph contains at least
all conflicts that cause T to be dependent from other transactions. This par-
tial knowledge is sufficient for a transaction to be able to decide whether it is
allowed to commit. Note that a transaction can only commit after all transac-
tions on which it depends have committed.

Let SGt be the local serialization graph of transaction T. The nodes that
can (transitively) be reached from the node T via a directed path represent the
(transitively) post-ordered (POST(T)) transactions of T. Analogously, the nodes
for which there is a directed path to the node are called the (transitively) pre-
ordered (PRE(T)) transactions of T.

Note that a transaction may not always succeed due to several failure rea-
sons. To satisfy the demand for an atomic execution, the transaction must
compensate the effects of all the operations invoked prior to the failure [181].
This compensation is performed by invoking semantically inverse operations
in reverse order. It results in a straightforward manner that the follow-
ing pairs of operations compensate each other: (insert_immutable, delete),
(insert_mutable, replace) and (copy, remove).

We assume that each site owns a conflict matrix that defines the conflicts
among the operations offered by this site. Using the conflict matrix, a site
is able to detect conflicts between operation invocations of different transac-
tions. The conflict matrices for update transactions are presented in Tables 1
and 2.

As it can be seen, not all operations are available to all data object types.
Depending on whether the data object is mutable or immutable a different
set of operations may be used to manipulate it. Table 1 describes the conflict
matrix for immutable data objects. Table 2 describes the conflict matrix for
mutable data objects. As we can observe from the shadowed right lower cor-
ner of both conflict matrices, this distinction between mutable and immutable
data objects strongly influences the conflict definition when it comes to opera-
tions that manipulate data: insert, replace, delete. The lower right part of both

65



4 The Re:GRIDIT Approach to Replication Management in a Data Grid

Insert Delete Read _version Read Copy Remove

Insert + - + - -
Delete - + + +
Read_version + + + +
Read + + - -
Copy - - - - 4 =
Remove - + - - - +

Table 1: Conflict Matrix for Immutable Data Objects

Insert Replace Read Copy Remove
Insert + + + + +
Replace + -
Read + + -
Copy i - 4
Remove + - - - +

Table 2: Conflict Matrix for Mutable Data Objects

tables (concerning read, copy and remove operations, shadowed in both tables)
remains unchanged, since replication is independent of data object types. It
is important to notice here that the shadowed right lower corner of the ma-
trices are in fact the conflict matrices for the read-only sites, where only read
transactions are allowed.

We define the commutativity of two operations as follows: by changing
the order in which the operations are invoked, the system cannot detect any
changes at the end of the operations invocations (a formal definition can be
found in [181]). Moreover, we assume that operations are atomic and leave
the system in an unchanged state if they fail.

With respect to transactions submitted by clients we distinguish between
read-only transactions and update transactions [10]. A read-only transaction
only consists of read operations. Read operations within a single read-only
transaction may run at several different read-only sites. An update trans-
action contains at least one update operation. Decoupled refresh transactions
propagate updates through the system, on-demand, in order to bring the read-
only replicas to the freshness level specified by the read-only transaction. A
refresh transaction aggregates one or several propagation transactions into
a single bulk transaction and is comprised of update operations. A refresh
transaction is processed when a read-only transaction requests a version that
is younger than the version stored at the read-only site. Propagation trans-
actions are performed during the idle time of a site in order to propagate
the changes present in the local propagation queues to the read-only replicas.
Therefore, propagation transactions are continuously scheduled as long as
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Figure 4.6: Propagation of Various Transaction Types along the Hierarchical
Network Structure.

there is no running read or refresh transaction. Copies at the read-only sites
are kept as up-to-date as possible such that the work of refresh transactions
(whenever needed) is reduced and the overall performances is increased. The
different transaction types are presented in Figure 4.6.

4.2.7 Failure Handling

Various kinds of failures can occur in distributed systems. In the following we
briefly present these types of failures. The failure handling mechanisms that
are implemented to prevent failures during different phases of the protocol
are discussed in more detail in subsequent chapters of this thesis.

An isolation failure is materialized by a cycle in the serialization graph.
Our protocol ensures that all local serialization graphs are acyclic at commit
time and no transaction which has active dependencies in its serialization
graph is allowed to commit, which guarantees a serializable schedule.

A communication failure is considered to have occurred when: (i.) A mes-
sage gets corrupted during communication between two sites; (ii.) A message
is lost due to malfunctioning of a network link or (iii.) Two sites cannot com-
municate due to unavailability of a network path.

A site failure may be due to system failure. We assume that a site fails
by stopping. This means that either it is operating correctly or not operating
at all, it never operates incorrectly. We assume such failures to be temporary
and that upon recovery the internal state is still available.
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4.2.8 Logging and Recovery

Logging and recovery are concepts that all commercial database management
systems must support to ensure the various ACID properties of transactions.
We use a similar approach and allow operations to be logged (or recorded)
at the physical level and these logs record what happens in the storage struc-
tures of the database or the file system. Each change to the storage structures
has its own log entry, which describes the structure being changed and what
the change was. This is done in such a way that the change can be replayed or
reversed, if necessary. Our model assumes the presence of local logs on each
site, where every operation invocation is recorded. The local logs are also used
to determine conflicts between transactions and to determine the actions to
be taken in case an operation needs to be compensated. The local logs have
been implemented in Re:GRIDIT as tables in the local databases. Each row
contains operation invocations that may have to be rolled back, and potential
conflicts that these invocations have caused, according to the conflict matrix.
When a transaction commits, its records are no longer needed for recovery
purposes, but they are kept together with records of refresh and propagation
transactions in order to ensure that updates are not lost.

4.3 Summary

In this chapter we lay the basis for the Re:GRIDiT family of protocols and
describe a system model for our data Grid replication system. We propose a
layered architecture and a middleware-based approach in which clients in-
teract through the middleware rather than directly with the individual sites.
Furthermore we formally describe the data model that can be supported by
the Re:GRIDIT protocols and the components which will be required in or-
der to seamlessly support replication. Re:GRIDiT is capable of supporting
arbitrary physical layouts ranging from full replication at the granularity of
complete databases to partial replication. Since Re:GRIDIT allows partition-
ing of data, a data object can be either a file or database relation or a partition
of a relation.

We divide the sites in the network between update and read-only sites,
serving update and read-only transactions. This clear separation between
sites with different functionality will allow us combine different replication
mechanisms and provide efficient and reliable access to data.

Last but not least, we introduce various components which are required by
our completely decentralized approach. By means of several distributed and
replication repositories, information of interest (such the local load, freshness
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levels of different data objects) is propagated through the system in order to
facilitate the routing of queries and the selection of best replicas for particular
workload situations.






Coordination of Distributed Update
Transactions on Replicated Data

In the previous chapter we have presented our system model and the com-
ponents which are required at the middleware level in order to facilitate the
building blocks for the Re:GRIDiT family of protocols. In this chapter we
concentrate on the first Re:GRIDiT protocol, namely Re:SYNCiT which co-
ordinates the distribution of updates to replicated data in a completely de-
centralized way. The Re:SYNCIT protocol is based on optimistic transaction
management techniques and relies on communication between transactions
and sites to ensure global correctness. Re:SYNCIT extends and generalizes
the DSGT protocol presented in [100, 101]; its novel features, which make it
uniquely flexible, are: transparent support for data replication at Grid scale
and seamless integration of a generic data model that satisfies the needs of
a large variety of Grid user communities. The Re:SYNCIT protocol provides
reliable support for replication management and builds upon the following ob-
servations: (i) dependencies between transactions are managed by the trans-
actions themselves, (ii) global correctness can be achieved even in the absence
of a global coordinator and with incomplete knowledge by communication be-
tween transactions and sites, (iii) replication and data versioning are handled
by the sites, completely transparent to the transactions and the users.

5.1 Problem Statement

Newly emerged eScience domains pose interesting challenges that have still
remained unanswered. Efficient solutions that are capable of solving all the
problems of use case scenarios such as the ones presented in Chapter 2 do
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not exist yet. In terms of data management, the Grid allows keeping a large
number of replicas of data objects to provide a high degree of availability, reli-
ability and performance. Replication management in the Grid needs to be able
to deal with a potentially large number of updateable replicas per data object.
As the survey presented in Chapter 3 shows, a replication management proto-
col that provides a high degree of availability, reliability and performance and
that supports concurrent updates to different replicas, while at the same time
taking into account the particular characteristics of the Grid (most impor-
tantly the absence of a global coordinator) also does not exist yet. Despite the
considerable work done in the context of distributed transaction management
and replication management, there is no protocol which can be seamlessly ap-
plied to a data Grid environment without impacting correctness and/or over-
all performance. In order to develop such management schemes one needs
to resolve data availability, data consistency, and data versioning issues for
data Grid environments. We address all these problems in the Re:SYNCiT
protocol, presented in the following.

5.2 Properties of Re:SYNCIT

The main idea of Re:SYNCIT is that global correctness can be ensured by
communication between transactions and sites, thus eliminating the need
for a global coordinator as in traditional approaches such as two-phase com-
mit (2PC). Each transaction maintains a local serialization graph which is
exchanged with other transactions in the network whenever conflicts occur.
A transaction invokes operations on data objects optimistically, without re-
questing any locks. The sites where it has invoked operations reply with a
list of local conflicts, based on the local conflict matrix. With this information,
the transaction updates its serialization graph and informs its pre-ordered
transactions. Since we assume a replicated system model, each direct op-
eration (except for read operations) on a data object at each site needs to
be propagated to all the update sites in the system that contain a replica of
that particular data object. In our protocol we delegate this task to the sites.
The sites trigger the indirect update operations within the boundaries of the
originating transaction, but completely transparent to the originating direct
update transaction. This means that each update transaction is automati-
cally extended by the corresponding indirect operations. For the originating
transaction it is not important to know immediately if one of the indirect op-
erations has caused a conflict on a remote site. It suffices that it will know
about this conflict at commit time. Before commit, the transactions are in-
formed of conflicts caused by their indirect operations, and update their seri-
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alization graphs accordingly. Since Re:SYNCIT relies on serialization graph
testing protocols and the invocation of operations is done optimistically, it
cannot prohibit cycles in the serialization graph, but it guarantees that the
committed projection remains acyclic.

We assume conflicts to be rather infrequent, but they need to be handled
properly in order to guarantee globally serializable executions. We distin-
guish between: local conflicts, as determined by the sites using their local
conflict matrices (caused by direct operation invocations), and remote con-
flicts, appeared as a result of replication propagation (caused remotely by in-
direct operation invocations).

5.3 The Re:SYNCIT Protocol

The Re:SYNCIT protocol requires communication between transactions and
sites in order to ensure global correctness and support replication. There-
fore the algorithm we propose is decoupled into two parts, one running on
each site, one for each transaction (run by the middleware which executes the
transaction).

The part of the protocol that runs for each transaction consists of three
phases (execution, validation, and commit). From a transaction’s point of
view, replication, data versioning, and data separation into mutable and im-
mutable data objects are supported in the validation phase, where the trans-
actions are made aware of the remote conflicts they may have caused (Algo-
rithm 1 and 2).

Another part of the protocol runs on the sites. At every site, the site pro-
tocol is able to detect and handle local conflicts on the spot, based on the local
conflict matrix. In addition, remote conflicts need to be detected correctly.
The site protocol performs actions as responses to messages received (Algo-
rithms 3, 4 and 5).

Re:SYNCIT is furthermore capable of supporting arbitrary physical lay-
outs ranging from full replication at the granularity of complete databases to
partial replication. The partial replication scheme does not require all data
objects to be replicated on each site. Smaller subsets of the entire set of data
objects are replicated on the different sites in the system and different sites
may contain different overlapping partitions.

5.3.1 Transaction States

Algorithms 3 to 5 define the part of the protocol that runs on each site. The
part of the protocol that runs on each transaction consists of two threads (see
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Execution Phase Validation Phase | Commit Phase
All operations executed No incomipg edges
Rollback
Forwar.d ' Backw§rd Validation
Execution Execution
Recovered Rollbac

Figure 5.1: Possible Transaction States and State Transitions.

Algorithms 1 and 2). The main execution thread is always in one of the fol-
lowing states, which correspond to the states in which a transaction can exist
during its lifetime (see Figure 5.1).

Forward Execution: The transaction invokes operations on sites accord-
ing to interface of that site.

Backward Execution: The transaction rolls back partially by invoking
compensation operations in the corresponding inverse order.

Validation: The transaction waits until the corresponding node in the
local serialization graph has no more incoming edges. Only in this case the
transaction is allowed to commit.

Inform Sites: The transaction informs all sites on which it has invoked
operations about its commit. Therefore, the transaction not only gets the
information from these sites about its post-ordered transactions, but it also
prevents that the site will return a conflict where this transaction is involved
in.

Inform Transactions: Finally, the transaction informs all its post-
ordered transactions about its commit.

The following state transitions can take place:

Forward Execution — Validation: If the transaction has executed suc-
cessfully all specified operations, it changes to the validation state.

Validation — Backward Execution: If the transaction detects that it is
involved in a cycle and that it has been chosen as victim (it will rollback), it
changes to the backward execution state.

Forward Execution — Backward Execution: This transition happens
when the transaction must roll back due to the rollback of a pre-ordered trans-
action or when the local serialization graph contains a cycle and the transac-
tion is the victim.

Backward Execution — Forward Execution: As soon as all required
operation invocations are compensated, the transaction changes to forward
execution again.
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Validation — Inform Sites: This transition occurs when the validation
yields that the local serialization graph contains an incoming edge from an
active transaction.

Inform Sites — Inform Transactions: This transition occurs as soon as
all corresponding sites have responded to the transaction.

Algorithm 2 also describes the part of the protocol that runs on the trans-
actions to detect cycles in the local serialization graph.

In the following subsection, we show the phases of the Re:SYNCIT protocol
and how Re:SYNCIT ensures global correctness.

5.3.2 Protocol Phases

The part of the protocol that runs for each transaction consists of three phases
(execution, validation, and commit), detailed in the following:

1. The execution phase: The transaction invokes its operations according to
the operation interface provided by each site. Sites execute operations in
an optimistic manner without requesting any locks. The transaction re-
ceives, upon the completion of the operation, the result of the invocation
and a list of local conflicts, if any (i.e., these are conflicts with other oper-
ations which have been previously invoked by other transactions on the
same site). The transaction uses this information to update its local seri-
alization graph, and if there are any changes the graph is propagated to
all its pre-ordered transactions (i.e., to all transactions for which a site
has reported a conflict after the invocation of an operation).

2. The validation phase: When a transaction has finished executing all its
specified operations, it enters in the validation phase. However, up to
this point a transaction only knows about the local conflicts it has gen-
erated on the sites where it executed operations (either on the basis of
the information directly returned from the site after an operation invo-
cation or by exchanging serialization graphs with other transactions).
Therefore it will contact all the sites where it executed operations to re-
quest updated information about possible remote conflicts that indirect
update operations executed by the sites on its behalf have generated on
remote sites. If new dependencies have emerged in the local serialization
graph, the transaction will propagate these changes to all its pre-ordered
transactions. The transaction can now validate if its serialization graph
is acyclic. If there are no incoming edges, i.e., if the transaction does
not depend on any active transaction, it will proceed to the next phase.
Otherwise, it will wait until the corresponding active transactions have
committed, i.e., until there are no incoming edges in the serialization
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Algorithm 1 Transaction Protocol

=
O

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37:
38:
39:
40:

© P NI

O3 := oy, ... , 0n] // sequence of direct operations to be invoked by T;
// we assume any o; belongs to the set: {insert, read, replace, delete};
S% :={}// sites on which T invoked operations;

SGt :={}//local copy of the serialization graph,;

Main Thread:
/| 1. Execution Phase:
for all o; € OF do
/invoke operations and update the serialization graph
invoke o; to an appropriate site s and add s to S7;
wait for reply from s;
// site will eventually send return values of the operation and a list of
local conflicts
// and update the graph with new conflicts
update SGt based on reply information,;
if new dependencies emerged then
//propagate changes to pre-ordered transactions
propagate SGt to PRE(T);
end if
end for
/] 2. Validation Phase:
for all s € S do
request update from s;
wait for reply from p;
/I site will eventually send a list of all remote conflicts
update SGt based on reply information,;
if new dependencies emerged then
//propagate changes to pre-ordered transactions
propagate SGt to PRE(T);
end if
end for
// this step is performed by the parallel thread Serialization Graph Up-
date Thread
wait until SG1 does not contain any incoming edges for T';
/| 3. Commit Phase:
for all s € S; do
send "Commit" to p;
update SGt based on reply information,;
end for
mark T as "committed" in SGr;
propagate updated SGt to POST(T);
terminate
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Algorithm 2 Transaction Protocol (continued)

1: Serialization Graph Update Thread:
2: while true do

3:

10:
11:
12:

4
5:
6:
7
8
9

wait for message with SGy as an update serialization graph or SGr
locally updated;
if message arrived then
update SGt
end if
if SGt changed then
send SGt to PRE(T)
if SGt is cyclic and T is victim then
abort;
end if
end if

13: end while

Algorithm 3 Site Protocol

1: Tconﬂicts = (D;
2: while true do

10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:

wait for next message m;
if m contains message: directly execute o; from transaction T then
execute oy;
schedule indirect operation invocation of o;
for all e € Log do
if e.T' # T and (e.o, 0;) € CON then
Teontticts = Teonfticts U T,
end if
end for
add (o;, T) to Log;
return Tconﬂicts;
else if m contains message: indirectly execute o; from T then
execute oy;
for all entries e € Log do
if e.T' 4T and (e.o, 0;) € CON then
Tconﬂicts = lconflicts U T,
end if
end for
add (o;, T) to Log;
return Teonfiicts;
end if

24: end while
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Algorithm 4 Site Protocol (continued)
1: while true do
2:  wait for next message m;

3: if m contains message: update conflicts for T then
4: S* :=1[sy, ..., snl// sites with replicas of data objects accessed by T;
5: while s; € S* has not replied with remote conflicts do
6: wait;
7: end while
8: for all e € Log and e.T = Tpdating do
9: for all €’ € Log with €’ # e do
10: if e'.T # Tipdating and (e.o, e¢’.0) € CON then
11: Tconﬂicts = Tconﬂicts U e-T;
12: end if
13: end for
14: end for
15:  else if m contains message: transaction T will commit then
16: Tpost = 0
17: for all €’ € Log with e’ > e do
18: if e'.T # Tcommitting and (e.o, e¢’.0) € CON then
19: POST(T) = POST(T) U €'.T;
20: end if
21: end for
22: for all e € Log do
23: ifeT = Tcommitting then
24: remove e from Log
25: end if
26: end for
27:  endif

28: end while

graph. If the transaction detects that it is involved in a cycle and the
victim selection algorithm has chosen it as victim, it will abort.

3. The commit phase: A transaction T in the commit phase has sufficient
knowledge to deduce from its own local serialization graph that it is
safe to commit. This is the case when it does not depend on any active
transaction, i.e., when there is no incoming edge to T in the serialization
graph of T. The transaction commits and informs all sites where it has
executed operations about its commit. The sites compile a list of all post-
ordered transactions which need to be informed about the commit. This
is necessary because the post-ordered transaction might already be in
the validation phase and waiting to commit themselves.
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Algorithm 5 Site Protocol (continued)

1: Schedule Indirect Operations Invocations:

2: §$*:=[sy, ..., snl// sites which contains replicas of data objects accessed by
T,
3: while true do
4: wait for next message m
5: if m contains message: schedule indirect operation invocation of o; of
transaction T then
6: for all s; € S* do
7 send message to s;: indirectly execute o;;
8: end for
9: else if reply received from s; (as a log entry e;) then
10: for all e € Log with e # e; do
11: if e.T # T, and (e.o, ¢;.0) € CON then
12: Teontticts = Teonflicts U Ti;
13: end if
14: end for
15: return Tconflicts;
16: end if

17: end while

Another part of the protocol runs on the sites. At every site, the site pro-

tocol is able to detect and handle local conflicts on the spot. In addition, it
also needs the the ability to correctly detect remote conflicts. The site protocol
performs the following:

1. Direct operation execution. In case of a direct operation invocation from

a transaction T, the site s executes the operation optimistically, without
requesting any locks. The site checks for local conflicts, if any, in the
local log. The operation result together with a list of conflicts, if any, is
returned to T. The operation invocation is then stored in the local log.

2. Indirect operation invocation. If the object which is being accessed is

replicated, site s which has received the direct operation executes the
operation remotely and in parallel on all the sites where a replica of the
same data object resides, on behalf of transaction T. These invocations
are called indirect operation invocations.

3. Indirect operation execution. In case a site s’ receives an indirect oper-

ation invocation from a remote site s, on behalf of a transaction T that
has accessed on the remote site s a replicated data object, the operation
is executed optimistically, and the local conflicts are sent back to the re-
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mote site s which has triggered the indirect operation invocation. The
operation invocation is stored in the local log of s'.

4. Management of remote conflicts. In case of a reply from a remote site
s’ as a consequence of an indirect operation invocation initiated by the
local site s, site s stores the list of conflicts, if any, in the local log.

5. Update of local and remote conflicts. In case of an update message from
a transaction T (as part of the transaction’s validation phase), site s will
provide the list of all local and remote conflicts. Each site knows ex-
actly what data object have been accessed by each transaction and how
many sites hold replicas of the same data objects in the network from
the replica catalog. The site will return the whole list to the transaction
only when all the replica sites have replied. This information is used
by the transaction to update their local serialization graph with remote
conflict information.

6. Propagation of commit information. In case of a commit message from a
transaction T, the site s will provide the list of all post-ordered transac-
tions. All of them will be informed by T of its commit, and update their
local serialization graph accordingly. At this point the information about
the committed transaction is removed from the local log.

Summing up, transactions invoke operations without determining on the
spot the correctness of the serialization graph. Nevertheless, a transaction T;
in the validation step will commit if and only if the following condition holds:
AT : T # Tcand T; € POST(Ty). In other words, a transaction will only then
commit when it does not depend on any active transactions.

Knowing when a transaction is allowed to commit is not enough, the sys-
tem must also be able to detect and resolve cyclic dependency situations, i.e.,
situations in which cyclic dependent transactions prohibit each other to com-
mit. None of the involved transactions will be able to commit and this sit-
uation will not change without intervention. Moreover, since in this kind of
situations there are usually two or more transactions executed on different
sites involved, neither a single transaction, nor a single site can detect this
situation using their partial local knowledge.

There are several approaches available known from the area of distributed
deadlock detection which could be applied to solve this problem. We assume
in our protocol the following approach, inspired by path-pushing approaches
such as the one presented in [129], which covers the following aspects:

1. If a transaction causes a new conflict, it will propagate the changes to
its pre-ordered transactions based on the updated serialization graph.
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Figure 5.2: The Re:SYNCIT Transaction Protocol - The Execution Phase (op-
eration 1).

2. If a transaction receives such changes from another transaction, it will
update its own serialization graph and propagate it to its pre-ordered
transactions.

3. If a transaction detects a cycle and the victim selection strategy has
selected itself as a victim (using an algorithm as presented in [192]),
it aborts.

We employ partial rollback techniques in order to avoid cascading aborts sim-
ilar to the approach presented in [101].

Let’s consider the following very simple example of two conflicting trans-
actions. The example is purposely chosen to produce conflicts in the transac-
tions’ serialization graphs. This example serves the purpose of showing how
our protocol handles cyclic dependency situations which might result in an in-
consistent state. We take advantage of this example and explain the various
phases of a transaction’s lifetime. In real-life use case scenarios, transactions
would consist of more operations and their rollback and recovery would be-
come more complex.

Assume the following two transactions, T; :< insert(x)delete(x) > and
T, < delete(x)insert(x) >. The concurrent execution of both transactions
on different update sites would produce different results. On one site, <
insert(x)delete(x) > would have as consequence the fact that x is no longer
present on the site, while on the other site < delete(x)insert(x) > would first
try to delete object x and then insert it, resulting as a consequence in the fact
that x exists on the site.
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Figure 5.3: The Re:SYNCIT Transaction Protocol - The Execution Phase (op-
eration 2).

Let’s see how this situation is handled in a completely distributed way
by the Re:SYNCIT protocol. In the first phase, transactions execute opera-
tions optimistically without assuming any locks. Assume that transaction T,
is directed by the middleware to update site A, which contains an up-to-date
replica of x. This invocation is recorded in the site’s local log. Assume that
transaction T; is directed by the middleware to update site B, which also con-
tains a replica of x. At the same time, the delete(x) from site B is propagated
to site A. According the site A’s conflict matrix, the two operations conflict.
They are both recorded in the site’s local log and this local conflict is returned
to transaction T;. T; accordingly updates its serialization graph. The insert(x)
from site A is also propagated to site B (and of course at the same time to all
other update sites that contain a replica of x), but since transaction T, is un-
aware of this operation invocation, its serialization graph does not reflect it
(yet). The execution of the first operations of the transactions in first phase
of the protocol is illustrated in Figure 5.2. Once the two transactions have
finished executing all their operations, we have the following situation re-
flected in the two transactions’ serialization graph: T; depending on T, and T,
depending on T;. However, this information is distributed between the two
transactions and up to this point none of them has the complete information
to make an informed decision about whether or not they can safely commit
(see Figure 5.3).

For this reason, once they have finished invoking all operations the trans-
actions enter a validation phase when they go back to all sites where they
have previously invoked operations and request a list of remote conflicts they
may have indirectly caused. As already explained before, remote conflicts are
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Figure 5.4: The Re:SYNCIT Transaction Protocol - The Validation Phase.

caused by the sites while propagating changes on behalf of a transaction, in
order to support replication. With this information the transactions properly
update their serialization graphs, and exchange relevant pieces of information
with other depending transaction in their graph. This way, the two transac-
tions T; and T, become aware of the cyclic dependency that they are involved
in (case illustrated in Figure 5.4).

Once a cycle has been detected by the cycle detection mechanism, a victim
is chosen to break the cycle. In case of failures, locking-based protocols roll
back one transaction completely. Other active transactions are not affected
by the rollback. Since optimistic protocols do not use a locking mechanism,
the rollback of a transaction (which has been involved in a cycle and has been
chosen as victim by the victim selection strategy) may lead to the rollback of
at least all the transactions involved in the cycle (the problem of cascading
aborts). In order to reduce the costs of rollback, our protocol uses partial roll-
backs, where a transaction does not rollback completely in case of isolation
failures, but only up to a point in time until the incoming and outgoing edges
in the serialization graph contributing to the cycle have disappeared. The
victim is completely compensated. Obviously this approach minimizes the
effects of cascading aborts but the choice of the proper victim selection can be-
come a parameter for further tuning. There are several victim choice strate-
gies available, such as the youngest transaction (which implies less operation
invocations to compensate), most number of incoming edges (which would re-
move as many edges as possible), least number of outgoing edges (which would
again imply less operation invocations to compensate), etc. The implications
of choosing one strategy over the other have already been discussed in the
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Figure 5.5: The Re:SYNCIT Transaction Protocol - The Commit Phase.

literature [100, 192]. In the experimental evaluation of this protocol we have
used the youngest transaction strategy.

Assume in our case that victim selection strategy has chosen T, as a victim
(case illustrated in Figure 5.5). In this case, transaction T; will roll back up to
a point in time when the cycle has disappeared, while T, will be totally com-
pensated. According to the conflict matrix, its operations will be semantically
undone. T; will resume forward execution when the cycle has disappeared and
it will hopefully commit.

5.3.3 Failure Handling

Various kinds of failures can occur in distributed systems. Briefly summa-
rized, our protocol is able to support short-term disconnects by using timeout
intervals. Long-term disconnects are detected by the expiration of the timeout
period and are treated by removing the replica from the catalog and rolling
back the transactions active on that replica site.

An isolation failure is materialized by a cycle in the serialization graph.
The Re:SYNCIT protocol ensures that all local serialization graphs are acyclic
at commit time and no transaction which has active dependencies in its serial-
ization graph is allowed to commit, which guarantees a serializable schedule.
Moreover, each transaction (eventually) detects a cycle it is involved in. A
formal proof of correctness follows.

A communication failure is considered to have occurred when: (i.) A mes-
sage gets corrupted during communication between two sites; (ii.) A message
is lost due to malfunctioning of a network link or (iii.) Two sites cannot com-
municate due to unavailability of a network path.

In the first two cases, we rely on network protocols to provide reliability.
We assume that the network protocol implementation takes measures against
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message corruption by using appropriate error correction coding techniques.
We also assume that the transport protocols and the networking infrastruc-
ture takes care of masking malfunctioning of network links by re-routing and
re-transmitting packets. The last case might occur due to network partition.
A network partition can occur if a combination of sites and network links be-
tween the sites fail. Such failures can be avoided by designing networks with
redundant communication paths. We take it for granted, for the time being,
that when such failures do occur, the necessary actions are taken by the un-
derlying messaging system infrastructure to mask against such failures.

A site failure may be due to system failure. We assume that a site fails
by stopping. This means that either it is operating correctly or not operating
at all, it never operates incorrectly. We assume such failures to be temporary
and that upon recovery the internal state is still available. As transactions
and sites talk to each other by sending messages in the system, a failure can
be detected if the sender does not receive the expected reply (an acknowledg-
ment message) within a timeout period. The failure to receive an expected
message could be either due to a communication link failure or a site fail-
ure for the receiver. We also assume that the timeout period is calculated
by taking into account events such as intermittent overloading of the com-
munication network or the load on the partner from which the message is
expected. If such a site failure is detected (failure to acknowledge the receipt
of a message), the system will not send new requests or new direct operations
to the failed sites and indirect operations belonging to transactions started
before the failure are queued until the recovery of the failed site. If the site
failed to recover within the timeout period, a consensus is reached between
the remaining sites and effects of the indirect operations propagated by the
failed site are undone. The site is removed from the replica catalog and will
be considered a new replica upon recovery.

5.3.4 Protocol Optimization

We propose the following Early Cycle Detection optimization strategies for our
protocol. This protocol optimization can increase performance by reducing
the waiting time of a transaction in the validation phase. In our protocol we
assume that remote conflicts are detected the earliest in the validation phase.
When a transaction has finished execution and is ready to commit it goes back
to all the sites where it has previously invoked operations to request updated
information about the remote conflicts that indirect updates have caused on
its behalf. We propose the following protocol optimization: whenever a site
receives a reply from a remote site with a list of conflicts that the indirect
updates has caused on the remote site, the local site contacts the direct update
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transaction and inform it about the conflicts. In this way, the waiting time
needed in the commit phase is reduced, since the transaction has to wait for
less updates from remote sites and communication overhead can be traded
for a reduction of the waiting time in the validation phase. Communication
overhead can be further more reduced is sites wait for a certain number of
conflicts before reporting them to the transaction, thus reducing the number
of times a transaction is contacted by a site.

5.4 Proof of Correctness

In traditional systems, the correctness of schedules is guaranteed by the pres-
ence of a global coordinator. Our correctness criterion is inspired by the uni-
fied theory of concurrency control and recovery [181]. The basic requirement
of the theory is the availability of inverse operations that semantically undo
the effects of the already executed operations. Therefore we have to ensure
that the serialization graph is acyclic when the effects of the compensation
operations are removed. The serialization graph is a directed graph where
the nodes are represented by the transactions, the directed edges correspond
to the conflicts between transactions and the direction of the edges indicates
the order of the conflicting operation invocations. Since our protocol relies on
serialization graph testing protocols and the invocation of operations is done
optimistically, our protocol cannot prohibit cycles in the serialization graph,
but it guarantees that the committed projection remains acyclic.

We avoid incorrect schedules by guaranteeing (i) recoverability and (ii) se-
rializability. The latter means that no cycles in the committed projection [28]
of a schedule may appear, whereas the first aspect prohibits a transaction to
commit while it depends on an uncommitted transaction. Moreover, given
the absence of a global coordinator, and in the presence of replication we can
prove that our protocol guarantees that the serialization order is the same at
all sites.

Theorem 5.1 Algorithms 1 to 5 together generate only executions for which
the following holds: all local serialization graphs are acyclic at commit time
and no transaction which has active dependencies in its serialization graph is
allowed to commit. O

Proof. Assume a local schedule S in which a transaction T. has committed
although it is dependent on at least one active transaction. Then there must
be a transaction T, such that the conflict T, — T. holds.

If T. has committed, it must have successfully passed the validation phase
in Algorithm 1, lines 23-38. In this case, the serialization graph of T, cannot
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have contained a conflict leading to the edge T, — T. at that time. There are
two possibilities when this can happen:

1. T, never knew about this conflict.
2. T. knew about the conflict, but removed (invalidated) it before.
Both cases however lead to a contradiction to our assumption.

1. Since the edge T, — T. ends at T, T, appeared as a consequence of an
operation invocation of T. (in case of a direct operation) or on behalf of
T (by an indirect operation). This site would have returned T, — T. and
T, inserted it in its graph (Algorithm 1, lines 13-17 or 25-28). Hence, T,
would have known about the conflict T, — T. in line 31. Consequently,
T. would not have proceeded and therefore not committed. This however
contradicts our assumption.

2. The removal (invalidation) of the conflict T, — T. with the active trans-
action T, can theoretically only happen in the following situations:

e T. marks T, as committed. This only appears as a consequence of T,
marking itself as committed (line 43-44) and spreading this infor-
mation. Since we assumed that T, is still active, this cannot be the
case.

Since this cannot lead to a loss of this information, T, would never be
able to validate correctly and therefore cannot commit. This contradicts
our assumption that T, commits.

Hence, our initial assumption cannot be correct which implies the correctness
of the theorem. O

Theorem 5.2 Algorithms 1 to 5 ensure that each transaction (eventually)
detects a cycle it is involved in. O

Proof. Let T;, ... T, beinvolvedinacycle T, = T, —» ...T, = Ty ...— T,
— T;. Thus, proving the theorem requires to proof that each of these trans-
actions gets the information of each T, — T,.; with n + 1 = 1. Without loss of
generality, we show that T, receives the information about each conflict T; —
T.11 . We prove this in two steps:

1. T;;; sends a message to T; when it causes the conflict T; — Ti+1 .

2. If Ty receives the first time a message containing the conflict T, — Ty,
for any j =1, then it sends this information to T;.
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We start with statement (1):

1. A service invocation of T, ; causes the conflict T; — T;,; by invoking an op-
eration on a site Sy. Thus, Sy returns this conflict to T;,;. T;;; inserts this
conflict into its graph (Algorithm 4.2.1, lines 13-17, 25-28). Afterwards,
T.41 sends this information to T; (line 20, 31). Therefore, statement (1)
holds.

2. In this case, Ti,; receives a message about the conflict T, — Tj,;. Here,
we distinguish two sub-cases:

(a) SGy,,, Tiy1 already contains T; — Ti,;, when the message arrives
(line 51). Then, T, inserts the conflict T, — T;,; into its local graph
(line 52). Afterwards, T;,; sends its updated graph to its pre-ordered
transactions (line 55). Since T; is the recipient of this message, this
information finally arrives there.

(b) SGr,,, Ti;1 does not contain the conflict T; — T;;;. When the message
arrives (line 51), T;,; inserts this conflict into its local graph (line
52). Because T; is not known to be pre-ordered with respect to T, ,
T; is not a receiver when T, ; forwards the updated graph (line 55).
However, according to our protocol, T;,; will receive the conflict T, —
T, from the corresponding site. Then, T;,; inserts this conflict into
the local graph (lines 13-17, 25-28). Now T, is a pre-ordered trans-
action from the point of view of T;,;. Therefore, the graph which
already contains T; — Tj;; is sent to T; (line 20, 31). Thus, also T;
receives the information on this conflict.

Since cases (a) and (b) are supported, statement (2) also holds such that cycles
are eventually detected by the associated transactions. O

Theorem 5.3 Algorithms 1 to 5 together generate only executions for which
the following holds: the serialization order of conflicts on both local and remote
sites is the same at commit time. O

Proof. Assume an execution in which a transaction T, is in conflict with T,.
Assume further that on site S;, the following serialization order is reported
T. — T, and at another site, S,, the serialization order derived from the local
order of conflicts is T, — T.. This situation could occur in the following two
cases:

1. S; is the site where T, has invoked a direct operation which led to the
conflict, and that S, is the site where the corresponding indirect opera-
tion has been executed on behalf of T..
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2. T. has invoked a conflict operation at S, and the corresponding indirect
operation has been executed on behalf of T, at S;.

In both cases, it is irrelevant whether the operation of T, involved in the
conflict is a direct or an indirect one at S; and S,.

Consider the commit of T.. In the validation phase (Algorithm 1, lines 23-
38), T. updates its local serialization graph by contacting the site where it has
executed the direct operation. In return, T., receives information about the
remote conflicts that have occurred.

In the first case, this returns the serialization order T, — T. which has
been reported to S; by S,. This means, that T, is dependent on T, and not
allowed to commit (Algorithm 1 line 32). Moreover, it will inform T, about
this order (Algorithm 1, line 36). At the latest when T, is about to commit, it
will also update its local serialization graph by requesting its remote conflicts
and receives the information T. — T,. Thus, T, will be able to detect a cycle
in its local serialization graph and trigger its resolution (line 56). Finally, the
cyclic conflict will be removed by aborting at least one of the two transactions
involved in the cycle.

In the second case, in order to update the local serialization graph during
the validation phase (lines 23-38), T. has to contact S; and receives in return
the serialization order T, — T, which has occurred at S;. Since it has already
received the serialization order T, — T. during the execution phase (line 51)
after the direct operation has been executed on S;, T. can immediately detect
the cycle in its local serialization graph and trigger its resolution. Finally, the
cyclic conflict will be removed by aborting at least one of the two transactions
involved in the cycle.

In both cases, this leads to a contradiction of the initial assumption of
different serialization orders at the two sites. O

Theorem 5.4 Algorithms 1 to 5 together generate only executions for which
the following holds: all global serialization graphs are acyclic at commit time
and no transaction which has active dependencies in its serialization graph is
allowed to commit. O

Proof. Assume a global schedule S in which a transaction T, has committed
although it is dependent on at least one active transaction. Then there must
be a transaction T, such that the conflict T, — T, holds.

Since according to Theorem 5.1, all local serialization graphs contain no
conflicts at commit time, we must assume that the conflict T, — T. is remote.
However, according to Theorem 5.2 all local and remote serialization orders
are the same.
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This invalidates our initial assumption of an acyclic global serialization
graph. O
Theorems 5.1 to 5.4 together prove that the Re:SYNCiT protocol ensures

global correctness by guaranteeing both recoverability and serializability in a
distributed environment and in the absence of a global coordinator.

5.5 Comparison to Existing Approaches

We are faced nowadays with the need for more and more complex computa-
tions on huge amounts of data that take place in Grid infrastructures. There
exists naturally the need to ensure a correct execution and guarantee the
success of such computations, by enforcing transactional guarantees on their
executions.

A decentralized serialization graph testing protocol that ensures concur-
rency control and recovery in peer-to-peer environments has been proposed
in [101, 177]. Although the paper is proposing a model based on known tech-
niques, such as serialization graph testing and partial roll backs, it combines
old techniques for a new purpose, presuming globally correct execution of con-
current transactions based on the local knowledge of the transactions. A sim-
ilar approach has been recently adopted for peer-to-peer transaction manage-
ment [17]. However, the proposed protocols do not handle replication and data
versioning.

As applications scale to take advantage of Grid resources, their size and
complexity will increase dramatically. Grid computing is a set of standards
and technologies that academics, researchers, and scientists around the world
are developing to help organizations take collective advantage of improve-
ments in microprocessor speeds, optical communications, raw storage capac-
ity, and the Internet. This new emerging technology has been gaining a lot of
attention from the birth. However, very little effort has been spent so far in
the area of Grid transactions.

The architecture GridTP, developed at the Shanghai Jiang Tong Univer-
sity [147], is based on the Open Grid Services Architecture (OGSA) platform
and the X/Open DTP model, providing a consistent and effective way to make
available autonomously managed databases in the Grid. This means that
a two-phase commit protocol is used to atomically commit distributed Grid
transactions.
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5.6 Summary

We have presented a new protocol for the synchronization of updates between
the update sites of a data Grid which combines an optimistic concurrency
control with eager replication mechanisms. The central idea is to enable
transactions and sites with the ability to communicate with each other in
order to guarantee global correctness in the absence of a global coordinator.
Data replication and data separation between mutable and immutable data
types are transparently handled by the sites. To the best of our knowledge
currently available protocols neither deal with replicated data in Grid envi-
ronments, nor allow such a complex model which handles data versions or
different types of data. Yet these are vital requirements for a large range of
applications.

In this chapter we proposed the first protocol that solves these problems:
Re:SYNCIT hides the presence of replicas to the applications, takes into ac-
count the special characteristics of data in the Grid such as version support,
distinction between mutable and immutable objects, and provides provably
correct transactional execution guarantees without any global component.






Load-Aware Dynamic Replication in
a Data Grid

The previous chapter has introduced the first pillar of our Re:GRIDiT ap-
proach to data Grid replication. In this chapter, we introduce our second pil-
lar, the Re:LOADIT approach to dynamic distributed replica management in
data Grid systems, which takes into account several important aspects de-
scribed below. First, replicas are placed according to an algorithm that en-
sures load balancing on replica sites and minimizes response times. Another
important issue is choosing the optimal number and location of replicas. The
denser the distribution of replicas, the shorter the distance a client site needs
to travel to access a data copy. Nevertheless, since maintaining multiple up-
dateable copies of data is expensive, the number of updateable replicas needs
to be bounded. Optimizing access cost of data requests and reducing the cost
of replication are two conflicting goals and finding a good balance between
them is a challenging task. We propose efficient algorithms for selecting op-
timal locations for placing the replicas so that the load among the replicas is
balanced. Given the data usage from each user site and the maximum load
of each replica, our algorithm efficiently minimizes the number of replicas
required, reducing the number of unnecessary replicas. This approach to dy-
namic replica management is embedded into the Re:SYNCiT replica update
protocol which guarantees consistent interactions in a data Grid and takes
into account concurrent updates in the absence of any global component.



6 Load-Aware Dynamic Replication in a Data Grid

6.1 Problem Statement

Novel data-intensive applications are increasingly popular in eScience. In
these applications, vast amounts of data are generated by specialized instru-
ments and need to be collaboratively accessed, processed and analyzed by
a large number of scientists around the world. Examples of such applica-
tions have already been introduced in Chapter 2. The size of data required
by these applications will easily grow up to Petabytes. The nearly unlimited
storage capabilities of data Grids allow these data to be replicated at different
sites in order to provide a high degree of availability. Dealing with such large
amounts of replicated data, geographically distributed across several sites,
poses many challenges, including data placement, versioning, data freshness
and data consistency. At the same time the particular constraints of a data
Grid have to be taken into account: in contrast to distributed data manage-
ment in a cluster, data Grids need to deal with the heterogeneity of sites and
the absence of any global component that would become a performance bot-
tleneck or a single point of failure. In particular when data are concurrently
updated by several clients, correctness and consistency need to be guaranteed
in a completely distributed way. The same is true for data placement when
data access patterns change over time.

6.2 Load Metrics

One of the main objectives of dynamic replica placement in distributed sys-
tems is load balancing. In order to reach this objective we need to first define
the concept of "load". In practical scenarios, load metrics may reflect multiple
components, such as CPU load, storage utilization, disk usage or bandwidth
consumption, etc. or any combination of them. In this work, we abstract from
the notion of load by defining a load function load € [0, 1], where the maxi-
mum value, in the case of CPU load, for instance, would correspond to 100 %
load.

We assume that an individual site can measure its total load. This can
be done by keeping track of resource consumption (CPU time, IO operations,
access count rate etc.). In order to ensure an accurate measurement, the
load collection is averaged over a certain time window and consequently the
decisions are made based on load trends rather than punctual values.

We define the mean load as load(s) = 2izoload(sy)

n
the total number of load calculations within the given time window. Choos-
ing the right size for the time window in practical scenarios is a question of

where n represents
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the nature of the applications, and in general some monitoring is required
in order to fine tune this parameter. Furthermore, other definitions such as
running mean (for instance) could be used here.

In the following we provide a categorization of the notion of load, based
on various load situations that can occur during the lifetime of a site s. The
rationale behind our classification is the following: earth observation applica-
tion scenarios such as the one presented in Chapter 2 have shown the need
for a dynamic replica management. Based on that use case, the occurrence of
a significantly important event (for example, a tanker accident followed by an
oil spill) implies an increase in user requests (i.e., higher load) and it should
seamlessly lead to an increase in the number of replicas for data objects of
importance (for example images and information about the region affected by
the oil spill). At the same time increasing the number of updateable repli-
cas per data object in an unlimited way may have significant drawbacks on
the overall system performance. Also, when the sites are idle, the number of
updateable replicas should be reduced to a minimum as they are no longer
needed.

Based on these observations we define four load intervals, during the life-
time of a site: an underload interval, when the sites are mostly idle, therefore
a high number of replicas is of no use in the absence of clients requests. A
lowload interval is considered to be the normal functioning load level of site,
during which the replication mechanism will maintain the status-quo. Cross-
ing that level, we would then reach a heavyload interval, during which an
increasing number of user requests for certain data objects should lead to a
dynamic increase in the number of replicas for those objects so that the sys-
tem is capable to serve requests in a timely manner. The last and highest
level of load, the overload level is the case in which a site is overcome by user
requests such that it is no longer capable of functioning efficiently. User re-
quests that are directed to an update site might be of two types: update or
read operations. Our middleware will efficiently route read-only transactions
to read-only sites, nevertheless an update transaction may contain arbitrarily
many read operations. We argue that in this context, read operations con-
tribute to a site’s local load, whereas updates contribute to the global system
load, since updates are synchronously replicated. The overload situation is
consequently a special case in which the global load (not just the local load)
needs to be taken into account. If a single site (or a minority of them) is in
an overload situation it can safely re-route read requests to less loaded sites
and thus alleviate its local load. However, if this is majority situation, more
drastic measures are required (releasing a replica might in the long run help
as it will reduce the communication overhead for replica synchronization).

These intervals are described in a more formal way as follows:
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An overload situation can occur if load(s) € (Xovertoads 1],
Where Koverload € [O> 1]

A heavyload situation can occur if load(s) € (Xneavyload, Xoverloadls
Where Xoverload € [O) ]] and (Xheavyload € [O> ]]

A lowload situation can occur if load(s) € (Xunderloady Xheavyloadls
where Xheavyload € [O» 1] and Xunderload € [O) 1].

An underload situation can occur if load(s) € [0, Xundertoad]s
Where Xunderload S [O) ]]

The parameters o naertoads Xheavyload aNd Koverloaa are application dependent
and obey the following relation:

0 S Kunderload S ‘Xheavyload S Koverload S 1.
We extend the above classification to a system-wide level (i.e., a system

Z;N:o load(s;)

overload can occur if > Xoverload, Where load(s) is the average

load on a site s and N represents the total number of sites in the system) and
define two additional situations that can be observed at a system level:

A majority overload situation can occur if a majority of sites (of at least

— + 1) is in an overload situation. The remaining sites must be at least
in a heavyload situation.

A minority overload situation can occur if a minority of sites (of at most

— — 1) is in an overload situation. The remaining sites must be at least

in a heavyload situation.

As mentioned before, the definition of the load levels in a practical scenario
is of major importance since, crossing the boundaries of a certain level will
trigger a certain action in the dynamic replication protocol.

6.3 Best Replica

The efficiency of the replication system depends on the criteria used for the se-
lection of replica sites. In our protocol, we choose the notion of host proximity
as one of the criteria for replica selection. The proper definition of this metric
impacts both the response time perceived by the user and the overhead in-
volved in measuring the distance. In order to define the "closest" replica, the
metrics may include response time, latency, ping round-trip time, network
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bandwidth, number of hops or geographic proximity. Since most of the above
metrics are dynamic, replica selection algorithms such as [182] typically rely
on estimating the current value of the metric using samples collected in the
past. We abstract from the above notions by defining a closeness function,
in which the notion of closeness can reflect any of the metrics above, and is
defined as close(s,c) € [0, 1], where 0 is the absolute minimum value for this
metric (for example, in the case of geographic proximity, 0 would correspond
to the site s that is geographically farthest away from the client c and 1 to the
site s that is geographically closest to the client c).

The second criterion for the replica selection is based on the notion of
"freshness". We use in our approach a freshness function, fresh(d,s) € [0, 1],
(as defined in [157]) that reflects how much a data object d on a site s has devi-
ated from the up-to-date version. The most recent data has a freshness of one,
while a freshness of zero intuitively represents infinitely outdated data (data
object is not present on that site). For read-only sites, the freshest replica
has the most up-to-date data (ideally as close to 1 as possible). The notion of
freshness adopted in our approach will be discussed in detail in Chapter 7.

The third criterion is related to the concept of load and defines the "least
loaded" site as the one with the smallest value of the load within a given set
and uses the above defined notion of load.

The rationale behind choosing a best replica is the following situation that
may require a replica selection: a particular heavyload situation requires the
acquisition of a new update replica from its read-only children. For each
replica s the replica selection algorithm keeps track of its load, load(s) and
the freshness of each data object d, fresh(d, s). For read-only sites, the fresh-
ness is smaller or equal to one and represents a measure of the staleness of
the data on a site. The algorithm begins by identifying for all replicas their
load level, freshness level and the closeness to the requester and then chooses
the best replica among them according to the following definition:

Definition 6.1 (Best replica function) Let S be the set of all sites in the
system and D the set of all data objects. Then, for a copy of a data object
d € D, required by a given client site c € S, the function best(c, d) is defined as
follows: best : S x D — S, such that best(c,d) = s* € S, where s* corresponds
to the greatest value of the sum: xclose(s*,c) + pBfresh(d, s*) +v(1 —load(s*)),
for given «, 3,y with « +p +vy =1,Vs* € S. a

Choosing replicas in the round-robin manner would neglect the proximity
factor. On the other hand, always choosing the closest replicas could result
in poor load distribution. Our protocol keeps track of load bounds on replicas,
freshness levels and proximity factors, which enables the replica management
algorithm to make autonomous selection decisions. We allow the decision to
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take into account the freshness level of a replica. The usage of freshness in
this protocol is a trade off of consistency for performance. Furthermore, by
using a weighted sum for the notion of best replica, we allow higher level
applications to give preference to a certain parameter over the others.

6.4 The Re:LOADIT Protocol

In the following we define the conditions and consequences of dynamic replica
acquisition or release. When a new updateable replica is created, it is updated
with the content of existing update replicas (depending on the data objects
that exist at that site). In order to ensure consistency the creation of a new
update replica takes place in two phases: (i) Phase I: sites are informed that
a new replica will join the network, they finish currently executing transac-
tions and start queueing any direct operations belonging to subsequent trans-
actions; (ii) Phase 2: the replica has joined and is up-to-date, the sites start
executing the queued direct operations taking into account the new replica
when executing indirect operations.

However, a new replica promote may not always be beneficial. The decision
whether to acquire or release a replica is made based on a combination of lo-
cal (accurate) and global (partially accurate) information, since we use a com-
pletely distributed approach. Nevertheless, in order to maintain consistency,
the update replicas are synchronously informed of any replica promote or de-
mote, which conforms to our eager replica maintenance approach for update
site. The extensions required for the Re:LOADIT Protocol are schematically
illustrated in Algorithms 6 and 7.

6.4.1 Replica Promote and Demote

In the following we explain how, when and based on which criteria replica
management decisions are taken and the consequences that these decisions
have on the state of the system. We first begin with a formal description of
the replica promote and demote processes.

The process by which a read-only site is transformed into an update site
is called replica promote (replica acquisition). The replica promote occurs
under the following circumstances (formally called Promote Precondition):
An update site s will begin the process of the acquisition of the best replica
from its own read-only children, site r, which satisfies the criteria defined
in Definition 6.1, if and only if the following statements hold: load(s) =
heavyload and there is no other promote initiated by a different site taking
place at the same time and the already existing number of update replicas in
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Algorithm 6 Site Protocol (Extension)

1: Main Execution Thread:

2: while true do

3: Proceed normal execution;

4 wait for next message m;

5. if m contains message: inform promote then
6: finish direct operations of active transactions;
7
8
9

update replica repository information;
return ACK message;
: queue all incoming direct and indirect operations;
10:  else if m contains message: end inform promote then

11: execute queued operations;

12: else if m contains message: inform demote then
13: update replica repository information;

14: end if

15: end while

the system has not reached a maximum. In real-life scenarios it is not practi-
cal to allow the number of replicas to increase in an uncontrolled manner. We
allow therefore the replication scheme to impose a maximum on the number of
update replicas for a certain data object (nevertheless, if absolutely required,
this maximum can be set to infinity). As a consequence the read-only site r
has been promoted to an update site and all the other update sites are aware
of the new replica. The information in the distributed replica repository is
updated accordingly. The promote of a site can only then occur when all the
other update sites have agreed. This constraint will ensure that multiple pro-
motes do not occur at the same time and in an uncontrolled manner.

The process by which an update site is transformed into a read-only site is
called replica demote (replica release). The replica demote occurs under the
following circumstances (formally called Promote Precondition): An up-
date site s will begin the process of self release for a data object x, if and only
if the following statements hold: load(s) = underload or load(s) = overload
and no active transactions exist at s and the data are available elsewhere at
a minimum number of replicas. Here the same observation can be made: in
real-life scenarios it is not practical to allow the number of replicas to decrease
in an uncontrolled manner. We allow therefore the replication scheme to im-
pose a minimum on the number of update replicas for a certain data object
(nevertheless, if absolutely required, this maximum can be set to zero). As a
consequence, site s no longer exists as update site and all the other update
sites are made aware of the disappearance of the replica site s. The informa-
tion in the distributed replica repository is updated accordingly. Site s would
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Algorithm 7 Site Protocol (continued)
1: Background Thread:
2: while 5(T) do
3:  collect load

4:  if Promote Precondition then
5: select best read-only replica according to Definition 6.1;
6: inform update replicas of new promote;
7: promote read-only replica;
8: update replica repository information;
9: else if Demote Precondition (in underload) then
10: inform update replicas of self demote;
11: update replica repository information,;
12: else if Demote Precondition (in overload) then
13: if majority overload then
14: inform update replicas of self demote;
15: update replica repository information;
16: else if minority overload then
17: route read requests to sites ¢ overload
18: end if
19: end if
20: if (load - previous load) > A.q then
21: O(T) -
22: propagate load changes to update replicas
23: end if

24:  if (previous load - load) > A,eq then

25: O(T) + +;

26: propagate load changes to update replicas
27: endif

28: end while

then become a read-only child of the best update replica among the update
sites which were initially holding copies of the same data objects. Since an
update site needs to be chosen as parent, the definition of best replica will re-
flect the notions of local load and the host proximity only (as all update sites
have a freshness of 1). As in the previous case, the demote of a site can only
then occur when all the other update sites have agreed. This constraint will
ensure that multiple demotes do not occur at the same time in an uncontrolled
manner.

Replica promote refers to the process according to which replicas move
from the set of read-only sites to the set of update sites while replica demote
refers to the process by which a site moves from the update sites to the read-
only sites. These decisions are based on information locally stored on each site
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Figure 6.1: The Re:LOADIT Protocol - Demote Agreement in Underload.

in local repositories, information which is distributed between the sites, and
replicated together with replica update synchronization, therefore no addi-
tional overhead is needed to replicate this information. The rationale behind
why this information is bundled together with replica synchronization is that
whenever updates are occurring there is information worth exchanging (the
load on the update sites is more likely to vary, more updates that need to be
propagated to read-only sites imply that freshness levels are also more likely
to vary), so the repositories are updated as well. If no replica update is tak-
ing place, then there is no information worth exchanging anyway and, if at
all needed, replica management decision can be taken using partly outdated
data. Sites are consequently allowed to take decisions autonomously, based
on their local information. Nevertheless the rest of the update sites need to
agree unanimously, and all the sites obey the vote outcome. One important
difference to be noted is that any site may be demoted to read-only site, but
only the best replica for a certain situation will be promoted to update sites.

As already mentioned, the local load of a site heavily influences our
Re:LOADIT protocol. The replica promote and demote decisions are taken
based on load trends that fall into a certain load interval. In the following
we give a detailed description of the load intervals and the replica decisions
made according to each load interval by using again the example introduced
in Chapter 2. As our protocol is completely decentralized, replica decisions
are made mostly based on local information.

Let’s assume a network structure as introduced in Chapter 4 with update
and read-only sites and different types of users. Update operations belong to
user update transactions and will be directed by the middleware to update
sites. Read operations may belong to either user update transactions or user
queries and may consequently be directed to either update or read-only sites.
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Figure 6.2: The Re:LOADIT Protocol - System State after Demote.
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Figure 6.3: The Re:LOADIT Protocol - System State in Lowload.

An underload situation intuitively implies that there are no updates and
no read operations at this site. This case would occur for example in case a
scientist is monitoring a region where incidents are not likely to occur. Conse-
quently, other scientists are less likely to be interested in the same region, and
user requests for these data are seldom. This case is graphically presented in
Figure 6.1. In this situation for example site 3 autonomously decides to self
demote (as long as the replication scheme allows it and the preconditions for
demote are fulfilled). It sends a demote agreement request to the other update
sites which hold copies of the same data objects (in this example site 1 and 2).
This information is available in the replicated replica catalog. Once the other
update sites have agreed on the demote, site 3 demotes itself to read-only
and will no longer be part of the replica synchronization process. This case is
illustrated in Figure 6.2.

102



6.4 The Re:LOADIT Protocol

Stributed =
Repositories = =
= vz
=

-7

-

*

~

&

Update Propagation

Read-only sites

R4 1 Update sites

Promote Agreement(

Reads &
Updates @& ¥

Figure 6.4: The Re:LOADIT Protocol - Promote Agreement in Heavyload.
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Figure 6.5: The Re:LOADIT Protocol - System State after Promote.

A lowload situation is considered to be a normal load situation. The sites

continue their normal execution. As this situation is considered to be the

normal functioning load of a site, the replication protocol will maintain the
status quo. This case is graphically illustrated in Figure 6.3.

Assume now that due to extra load site 3 is in a heavyload situation as
presented in Figure 6.4. The replication protocol will dictate that it requires
the promote of a read-only site to share its load. Site 3 will check among his
children to find the read-only replica site with the freshest replica, the clos-
est geographically or the least loaded, or a combination of the three, in other
words the best replica (for this situation). Assume that the best replica is
in this case read-only site 5. In the first phase update sites 1 and 2 are in-
formed that a new replica will join the network. If they agree, they will finish
currently executing transactions and start queuing any direct operations be-
longing to subsequent transactions in their local queues (Figure 6.4). In the
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Figure 6.7: The Re:LOADIT Protocol - Request Routing in Overload.

second phase, depicted in Figure 6.5 site 5 has joined the update sites and is
up-to-date. The sites start executing the queued direct operations taking into
account site 5 when executing indirect operations.

When the high load level is crossed the sites enter into what we call over-
load situations, in which their continuing to function under these conditions
might affect performance. An overload situation is a special case in which
the global state of the system needs to be taken into account, since a local
situation may be the result of several influencing factors that do not neces-
sarily reflect the state of the system. We distinguish two sub-cases: In case
the system is in a majority overload situation, the acquisition of a new replica
is unlikely to improve the situation (since more replicas imply more synchro-
nization). In this case, a replica demote might prove to be beneficial in the
long run, as shown in Figure 6.6. In case the system is in a minority overload
situation, the overload can be assumed to be due to read operations (which
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are not replicated). The protocol will dictate the site(s) in overload to migrate
the read request to other update sites in the system which are not in an over-
load situation, as presented in Figure 6.7. The reasons for this behavior are
the following: updates contribute to the global load, therefore in this case we
need to take into account global load levels as well. Reads on the other hand
only increase the local load on the site.

It is important to notice the following aspect of our protocol: The
Re:SYNCIT protocol produces a globally serializable schedule (although no
central scheduler exists and thus no schedule is materialized in the sys-
tem) [183, 187, 186]. By using a two-phased approach when replica pro-
mote and demote decisions are made, the serializability is guaranteed. In
Re:LOADIT (which builds further functionality on top of Re:SYNCiY) data
consistency in ensured, even in the presence of dynamic replication.

6.4.2 Failure Handling

We identify the following types of failure that could occur in dynamic data
Grid environments. We suppose the sites fail-stop and that failures are de-
tected by means of failure to acknowledge requests within a certain timeout.
This timeout mechanism ensures that failure detection prevents processes
from long delays but also, from suspecting sites too early which could incur
unnecessary communication overhead. If a site crashes during an inform de-
mote or inform promote phase, the failure is detected by means of the timeout
mechanism. The site in charge of the inform will update the replica repository
and reissue the inform request. If the site to be chosen promoted is failing to
answer, the next best replica (according to Definition 6.1) is chosen to be pro-
moted. Since the number of copies of the object varies in time the dynamic
replication and allocation algorithm is vulnerable to failures that may render
the object inaccessible. To address this problem, we impose a reliability con-
straints of the following form: “The number of copies per data object cannot
decrease below a minimum threshold". If such constraint is present, and the
local site s fails to meet it, then any of sites informed of the demote p refuses to
accept the exit of a data site, if such exit will downsize the replication scheme
below the threshold. In other words, p informs s that the request to exit from
the replication scheme is denied; subsequently, updates continue to be propa-
gated to s. Site s continues to reissue the request whenever the preconditions
for replica demote dictates to do so. The request may be granted later on, if
the replication scheme is expanded in the meantime.
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6.5 Comparison to Existing Approaches

A replicated database built for high availability must eliminate all single
points of failure. Load balancing is typically intrinsically tied to the replica-
tion middleware. Load balancing can be implemented at the connection level,
transaction level or query level. Connection-level load balancing allocates
new client connections to replicas according to a specified policy; all transac-
tions and requests on that connection go to the same replica until the connec-
tion is closed. This approach is simple, but offers poor balancing when clients
use connection pools or persistent connections. Transaction-level or query-
level load balancing perform finer grain load balancing by directing queries
on a transaction or query basis, respectively. As an example, Tashkent+ [72]
provides transaction-level load balancing and exploits knowledge of the work-
ing sets of transactions to allow in-main-memory execution at every replica.
The result is an improved throughput of more than 50% over previous tech-
niques; however, the approach uses a centralized load balancer that is not
replicated. A failure of this component could collapse the entire system.

SNOWBALL [36, 180], is an example of load balanced data management
algorithm which supports distributed storage and retrieval of keyed, record-
structured data on networks of workstations. It consists of an approach to dis-
tributed data access structures, which is completely decentralized, provides
scalable cost/performance, and copes with evolving access patterns, but so far
only considering closeness as a criterion for replica selection and placement.

Dynamic replication in distributed environments has known extensive
development over the years. Approaches such as the ones presented in
[11, 56, 88, 153] have been successfully applied to peer-to-peer networks. So-
phisticated solutions, which eliminate the need of a central coordinator, have
been proposed, but they either do not take into account data freshness [11], or
multiple data types ([153] for example, only considers images as data objects)
or neglect consistency issues [88]. In most cases results are only applicable
to a certain type of network: hierarchical namespaces or unstructured P2P
systems, or neglect consistency issues [88].

Early attempts to evaluate the scalability properties of adaptive algo-
rithms for replica placement services in dynamic, distributed systems were
reported in [42, 182, 15]. Weissman and Lee [193] proposed a replica manage-
ment system which dynamically allocates replicated resources on the basis of
user demand, where resource requests by users can be transparently rerouted
if individual replicas fail. Testbed experiments demonstrated the scalability
of this approach. The SRIRAM research system [179] for automatic replica-
tion of computing resources in Grids and other distributed environments was
designed to improve resource availability and fault tolerance. Here, comput-
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ing resources were members of networks, or meshes, which could be searched
to find nodes on which Grid processes could be replicated. The search of
large meshes was made more efficient through the organization of partici-
pant resources in a spanning tree structure and through intermediate caching
of query results for reuse. The spanning tree is automatically reconfigured
as nodes are added or removed, allowing the system to scale and respond
to dynamic conditions. Participant resources operated securely and anony-
mously, allowing the mesh to incorporate multiple administrative domains.
More recently, other replication schemes have been proposed. Through ex-
periments, most have demonstrated limited scalability and ability to operate
under conditions of resource heterogeneity and dynamism. Valcarenghi [178]
presented a replication approach in which replicas are located in proximity to
each other to form service islands in a Grid network. Different replica config-
urations were evaluated using a Mixed Integer Linear Programming model
to determine which configuration of islands exhibits higher fault tolerance.
Simulations demonstrated that the approach can enable recovery of a high
percentage of long distance inter-service connections, while minimizing the
number of replicas needed and thus simplifying replica management. These
approaches have been developed at the service level and thus do not take into
account data replication constraints or freshness and versioning issues.

In [115], a resource allocation system for a computing Grid used in a
telecommunications company was reported. In this system, dynamic process
replication was used to provide fault tolerance and enable fulfillment of terms
of service level agreements. Within the e-Demand project, [198] proposed a
replication method that detected faulty computations in Grid workflows con-
sisting of multiple tasks. Here, a workflow was simultaneously executed by
different sets of service replicas. A voting process was used to select which
replica set should return its result to the user. This approach also facili-
tated identification of faulty services that failed in more than one workflow,
allowing the service to be eliminated from future consideration. Testbed ex-
periments demonstrated that this approach improved workflow fault toler-
ance. Genaud and Rattanapoka [85] developed a mechanism for MPI-based
Grid environments that used resource replication to increase fault-tolerance
of parallel computations and demonstrated limited scalability in experiments.
Other methods for replicating computations on resources have been proposed
in [2, 39] and have been tested experimentally. The test results show that
they are not scalable for large data Grids.

Less work appears to have been done of efficient and scalable methods
for synchronization of replica states. One method, based on selective replica
placement, proposed by [178], is described above. In [199], this issue was
investigated for service replicas that exhibit non-deterministic behavior and
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use asynchronous messaging. Here, the researchers proposed an optimized
version of the Paxos algorithm [116] for synchronizing replicas in distributed
environments and demonstrated the efficiency of their approach under both
local and wide-area conditions. In earlier work [200], a more traditional
primary-backup approach was used to investigate replication of Grid services
that were implemented using Open Grid Services Infrastructure (OGSI) [176]
and the Globus Toolkit [98]. In [200], it was found that the strategy could
be readily implemented and resulted in higher service availability in local
area environments. However, the overhead costs imposed by OGSI notifi-
cation in order to synchronize states of service replicas that behaved non-
deterministically were significant. The study showed that the overhead as-
sociated with replica synchronization can be eliminated by allowing failed
tasks to be restarted on replicated resources reserved for this purpose. To
date, this work has not been repeated with successor specifications to OGSI.
Dasgupta et al. [64] proposed a framework for incorporating reservation of
redundant backup resources into service-level agreements where failure of
the primary allows switching to a backup. Simulation showed circumstances
where this approach improved efficiency of system resource allocation. Find-
ing efficient and scalable methods for replica synchronization remains a chal-
lenge that must be met before resource replication can be fully utilized as a
fault-tolerance tool in Grid environments.

6.6 Summary

The nearly unlimited storage capabilities of Data Grids allow data to be repli-
cated at different sites in order to guarantee a high degree of availability.
For updateable data objects, several replicas per object need to be maintained
in an eager way. The number of updateable replicas has to be dynamically
adapted to optimize the trade-off between synchronization overhead and the
gain which can be achieved by balancing the load of update transactions. Due
to the particular characteristics of the Grid, especially due to the absence of
a global coordinator, replication management needs to be provided in a com-
pletely distributed way. This includes the synchronization of concurrent up-
dates as well as the dynamic deployment and undeployment of replicas based
on actual access characteristics which might change over time.

In this chapter we have introduced the Re:LOADIT approach to dynamic
replica deployment and undeployment in the Grid. Based on a combination of
local load statistics, proximity and data access patterns, Re:LOADiIT dynam-
ically adds new replicas or removes existing ones without impacting global
correctness.



Freshness Requirements for Data
Grid Replication

In the previous chapters we have presented a new approach to dynamic repli-
cation in a data Grid with provably correct transactional guarantees. This
approach dictates how update site behave and from a user’s point of view the
clients will always access the most up-to-date data. This chapter will intro-
duce the Re:FRESHiIT protocol, which allows to effectively trade freshness for
performance and addresses freshness and versioning issues, needed in many
Grid application domains, without losing consistency. Re:FRESHIT is based
on the notion of freshness, which indicates how much a read-only site has
deviated compared to the up-to-date version present on the update site. We
use, as before, eager replication mechanisms to ensure replica consistency
for update sites. Updates are propagated in a lazy manner to the read-only
sites by means of decoupled refresh transactions. Propagation transactions
are continuously scheduled during a site’s idle time to reduce the work of re-
fresh transactions whenever needed. Queries with different freshness levels
are cleverly routed along our site topology, by taking advantage of its tree
structure.

7.1 Problem Statement

Novel applications in eScience previously introduced in Chapter 2 have
stressed the need to take into account particular requirements: (i) to man-
age and store large volumes of data, (ii.) to update (parts) of the data as new
findings become available, (iii.) to provide this functionality in a completely
distributed way, (iv.) to provide access to the most recent version of all data
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items, and (v.) to also keep outdated versions for read access. The first is-
sues have already been solved by the protocols detailed in Chapters 5 and 6.
For the latter, the notion of data freshness needs to be supported in order to
allow users to specify the staleness of data, i.e., how old the data they re-
quire can be. Depending on a user’s freshness requirements, for example, "at
most twenty minutes’ old data", finding the best replica does not need to suf-
fer from the replica synchronization overhead, but still can provide consistent
access to data. Coming back to the scenario introduced in Chapter 2, consider
the case of several scientists at different research institutes, performing oil
slick distribution studies, in order to determine the environmental impacts of
stranded oil, and offer recommendations of cleanup procedures and methods
least likely to exacerbate the effects caused by the oil spil. In order to per-
form a thorough investigation they require several successive data acquisi-
tions (before and after the oil spill), combined with wind, sea-state and other
meteorological data for complementing the information sources. Older ver-
sions, from multiple archives of satellite images, and previous works of other
scientists, are an acceptable solution which guarantee faster access to older,
but still consistent data. Over longer time scales, this type of damage assess-
ments provides basis for monitoring and recovery assessment programs, and
is of interest to scientists all over the world.

7.2 Freshness Metrics

Freshness measures are closely related to the notion of coherency for which
several ideas have been proposed in the literature [54, 137, 157]. We use the
notions of absolute freshness and delay freshness to characterize our freshness
function and apply it to our network structure.

Definition 7.1 (Absolute Freshness) The absolute freshness of a data object
d is defined by means of the time t(d) of the last committed update transaction
that has updated d. a

The use of absolute freshness implies that the younger the timestamp, the
fresher the data. Timestamps are values which are strongly monotonically
increasing. This implies that a data object is newer the more recently it has
been created. As time and time stamps are (strongly monotonically) increas-
ing, this means the larger t(d), the fresher (younger) the data.

In a replicated system with several replicas and a lazy replication ap-
proach, each replica might have a data object (replica) with a different abso-
lute freshness - the freshest being the one where the last update transaction
has committed.
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Definition 7.2 (Delay Freshness) A delay freshness defines how late in time
a certain read-only site is compared to an update site that holds a copy of the
same data object. We define t(d) to be the commit time of the last refresh
transaction that updates a copy of a data object d on a read-only site, and
T(dy) the commit time of the most recent update transaction on the update site
that updates d. Then the freshness function is defined as f(d) = TT((ddO)), with

f(d) € [0,1]. O

The delay function reflects how much the data has deviated from the up-
to-date version. Intuitively, a freshness of 1 means the data are up-to-date,
while an index of 0 represents "infinitely" outdated data, i.e. the data are not
present on the site.

We assume that each update (Level 1) site assigns to every committed
transactions a unique timestamp which is greater than all timestamps as-
signed to previously committed transactions. Note that since we assume some
form of clock synchronization between the update sites, clock skew can be ig-
nored. Together with load information [185], each site propagates downwards
in the tree structure the freshness timestamps (of the last propagated update
from the update site), such that at each level sites are aware of their prede-
cessors and/or successors load and freshness information.

A read-only site s is said to hold a copy of a data object d which fulfills a
freshness level required by a client c, if t4(d) < T.(d). Refresh transactions are
used to bring all sites which hold data objects required by the client transac-
tion to the same freshness level by executing a sequence of update operations.
Running a refresh transaction has the same effect as sequentially running
the remaining propagation transactions at the site as long they the follow the
tree structure.

The freshness function is monotonically decreasing in the tree, from the
root to its leaves. The further down the path in the tree structure we go, the
less accurate the freshness function becomes. This is an important observa-
tion upon which our routing strategy is based. Read-only sites at all levels
are able to determine using their own local knowledge whether the current
version of the data can be used to serve a user request of the type: “I am fine
with yesterday’s data/ data as of 12 o’clock last Monday” or if this request
needs to be routed to a predecessor or a successor in the tree hierarchy. In
other words, all read-only sites are able to autonomously decide whether they
satisfy a required freshness level and where to route the request if not.
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7.3 The Re:FRESHIT Protocol

Re:FRESHIT uses decoupled refresh transactions to propagate updates
through the system, on-demand, in order to bring the read-only replicas to the
freshness level specified by the read-only transactions [10, 157]. Propagation
transactions are performed during the idle time of a site in order to propa-
gate updates to the read-only replicas. Therefore, propagation transactions
are continuously running as long as there is no running read or refresh trans-
action. Re:FRESHIT exploits the read-only sites’ idle time by continuously
scheduling propagation transactions as update transactions at the update
sites commit. This way, copies at the read-only sites are kept as up-to-date
as possible, such that the work of refresh transactions (whenever needed) is
reduced and the overall performance is increased.

The Re:SYNCIT protocol produces a globally serializable schedule (al-
though no central scheduler exists and thus no schedule is materialized in the
system) [186]. Moreover, the update transactions’ serialization order is their
commit order. Each propagation transaction inherits the timestamp of the
committed update transaction and this timestamp is propagates to all read-
only sites. The extension required by the Re:FRESHIT protocol in order to
support freshness requirements without losing consistency are summarized
in Algorithm 8.

We use freshness locks [10, 157] in order to prevent propagation and/or re-
fresh transactions to update a data object above the freshness level required
by an on-going read-only transaction. Freshness locks are placed on the ob-
jects at the read-only sites in order to ensure that replica maintenance does
not overwrite the versions needed by a running transaction. A freshness lock
placed on a data object d at a site s with an associated absolute freshness, re-
quired by a running read-only transaction, will not allow an update operation
on the data object d at site s to bring this data object to a younger abso-
lute freshness. Similar to the approach in [10], we define freshness locks to
be compatible in the sense that different read-only transactions may acquire
freshness locks on the same data object, possibly with different freshness lev-
els, as long as the site’s data are fresh enough to serve the requests.

We make no assumption regarding the scheduling of read-only transac-
tions, that is, we allow users to directly query any read-only site in the net-
work. Furthermore, we allow users to specify freshness requirements as qual-
ity of service constraints. However, these requirements might be implicitly
changed by the middleware if none of the objects involved in the transaction
satisfies the required freshness level.

We foresee the following situations which may occur during the lifetime of
a read-only site, s:
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Algorithm 8 Site Protocol (Extension)
1: Scheduling Thread:
2: while true do
3: //receive a user request for a data object d with a certain freshness level

4: if d is not replicated locally then

5: // find a site s,,; which contains a copy of d from the replica repository
6: route request to s

7.  elseif f .(d) > faieni(d) and site s is not in overload then

8: execute read locally

9: elseif fy.(d) > faient(d) and site s is in overload then

10: /Icheck if at least a child is the best replica;
11: if child = best(c,d) then

12: route request to child not in overload
13: else if no site to route then

14: execute read locally;

15: end if

16: else if f .(d) < feient(d) then

17: //check if at least a (transitive) parent is the best replica;
18: if parent = best(c,d) then

19: route request to parent;

20: recursive check going up the path

21: else if no site to route then

22: request refresh transaction;

23: end if

24: end if

25: end while

1. Read requests that can be processed locally: A read-only transaction T;
submits a read operation rj(d) to a read-only site s that stores a copy of
d. The following rules apply:

e If f{(d) > fr;(d) and s is not in an overload situation, then the read
operation is executed. If f;(d) > fr,(d) and s is in an overload situa-
tion, then the read operation is re-routed downward in the tree un-
til the best site s, is found which fulfills the condition f (d) > fr;(d)
and s; is not in an overload situation. In our work, we use the defini-
tion of best replica previously introduced in [185], giving preference
to load and freshness metrics. Accordingly, the best site fulfills the
required freshness level and is not in an overload situation. Very
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importantly the downward propagation in the tree is possible as
each site in the tree is aware the freshness of its children.

2. Read requests that cannot be processed locally: A read-only transaction
T; submits a read operation r;(d) to a read-only site s that stores a copy
of d. The following rules apply:

o If f{(d) < fy,(d), then the read operation is re-routed upward in
the tree until the best site s,, is found among the (transitive) par-
ents of s which fulfills the condition f, (d) > fy,(d) and s,, is not
in an overload situation. If no such site is found, s requests a re-
fresh transaction until f,(d) > fy,(d). The read operation can be
processed on s after the refresh transaction has been executed on
s. We thus take advantage of the tree structure and are able to
route requests upward or downward in the tree to the best replica
able to process the request. Since the freshness is monotonically
decreasing in each tree from the root to the leaves, each site is able
to route a request appropriately, either up or down to the site that is
best able to process the request. In order to preserve the freshness
monotony, when s requests a refresh transaction it becomes a Level
2 direct child of its root update parent. The dynamic restructuring
of the tree is detailed in Subsection 7.3.1.

3. Read requests for data that are not replicated locally: A read-only trans-
action T; submits a read operation 7j(d) to a read-only site s that does
not store a copy of d. Then the read operation is re-routed to a site in the
tree that contains a copy of that data object, from the replica repository.
The replicated replica repository information is passed along through
the tree structure together with propagation transactions from the Level
1 update sites.

4. No read requests: In this case only propagation transactions can occur
at s. Propagation transactions execute changes from the local propaga-
tion queues (where updates propagated downwards from the update sits
are stored). S delays a propagation transaction P until all propagation
transactions with smaller freshness levels than P have committed at s.
A propagation transaction is dropped if the site has already seen and
processed a propagation transaction with the same or higher freshness
level or a refresh transaction.

We demonstrate the Re:FRESHIT protocol by using the following ex-
ample. We again come back to the scenario introduced in Section 2, in
which Scientist 2 requires several data acquisitions (before and after the
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Figure 7.1: Propagation and Refresh Transactions Example for the Read-only
Sites.

oil spill). This can be schematically represented as the following query:
Ty : read(d;,"yesterday") read(d,,"yesterday").

Assume that this query is made at the Level 3 read-only site 2 in Fig-
ure 7.1, which contains outdated data. Assume furthermore that site 2 is not
able to serve the request for data object d; with freshness f; (as of yesterday).
According to Algorithm 8, site 2 will check its parent site to see if the required
freshness criterion is met. If site 1 is the best replica, that is, it satisfies the
required freshness and its load level (as defined in 6.2) allows it, then the re-
quest will be routed to site 1 (see Figure 7.1 (a)). If site 2 is able to service the
request it will do so, as shown in Figure 7.1 (b). Assume that another user
would request an even staler data than stored at site 2 (case illustrated in
Figure 7.1 (¢)). Since site 2 is aware of the freshness levels of its children and
since obviously (due to the tree structure) the children sites have staler data,
site 2 will re-route the request to site 4, which can process the request locally.
If no such site exists among site 2’s children the request would be processed
locally, and the user receives fresher data than requested.

Assume a request arrives at a site with an even higher freshness level.
The request is propagated upwards until a suitable site would be found. If no
site is found, then according to the algorithm site 2 would request a refresh
transaction in order to be updated with the most up-to-date data from the root
update site (site 0). Therefore users are not guaranteed to obtain the exactly
specified freshness level (as of yesterday), but they will receive data that are
at least as old as the specified freshness level (in this case, today’s data). The
following subsection describes how this situation is handled and the changes
required in order to preserve the monotony of the freshness in the tree.
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Figure 7.2: Dynamic Change of the Tree Structure.

7.3.1 Tree Dynamics

The tree structure that we assume in our approach is not static, and can
change dynamically. Assume a query with a higher freshness level (than the
site can service using its local data) arrives at a Level 3 node. If none of the
sites in the tree path is capable of servicing this request, the Level 3 site will
request a refresh transaction from its top most Level 1 parent. It will conse-
quently become the read-only site with the freshest data in the path. Leaving
it in the current place in the tree hierarchy would no longer guarantee the
monotony of the freshness. This Level 3 site will consequently become a di-
rect (Level 2) child of its root (Level 1) update parent.

Let’s consider the following example. We come back again to the use case
scenario from the earth observation domain in Section 2, in which Scientist 2
requires several data acquisitions (before and after the oil spill). For his data
acquisition after the oil spill he requires the most up-to-date data. Assume
that this query is sent to the Level 3 read-only site 2 as illustrated in Fig-
ure 7.2, which contains outdated data. Assume, furthermore, that site 2 is
not able to serve the request for the most up-to-date data. Site 2 will check
among its predecessors in the tree hierarchy to see if there is a site capable
of serving this request. If no site is found (case described in Figure 7.2 (a)),
then site 2 would request a refresh transaction and it will be updated with
the most up-to-date data from the root update site (site 0). Consequently, it
follows in a logical manner that site 2 will become a direct child of site 0 and
itself a Level 2 site, thus rotating the tree structure in order to preserve the
monotony of the freshness in the tree (see Figure 7.2 (b)).
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7.4 Comparison to Existing Approaches

It now becomes obvious that propagation transactions always follow the
paths in the tree structure. Refresh transactions on the other hand can
change (but not necessarily) the tree topology.

7.3.2 Failure Handling

In order to prevent failure situations, we use redundant links between sites in
different levels (see Figure 4.5). Nevertheless, propagation transactions and
query re-routing always follow the tree structure.

If a new site s wants to join as read-only site for a data object d, it selects
a site in a tree for d according to rule 3 given in the Re:FRESHiIT Algorithm
described in Section 7.3. Let sy be the selected site. Then, s’s join request is
forwarded downwards in the tree, starting from s,, by always selecting the
freshest subordinate until a leaf site s; is reached. Then, s is added as child
site to s; and it is updated with s;’s copy. In a similar way, new sites are
recruited if the number of replicas needs to be increased for a certain data
object.

7.4 Comparison to Existing Approaches

According to Brewer’s CAP theorem [37], Strong Consistency, High Availabil-
ity and Partition Tolerance are three requirements that exist in a special re-
lationship when it comes to designing and deploying applications in a dis-
tributed environment as only two of the three properties can be fulfilled at
the same time. We relax therefore the notion on consistency in our approach
and allow users to read data with different freshness levels, as required in
the example application scenario presented in Section 2.

Different approaches to replication management have been studied so far.
Eager replication is a standard approach used in the database community,
which typically uses two-phase commit in combination with two-phase lock-
ing to guarantee one-copy serializability and replica coherency [28, 110]. It
has been argued that this approach provides unacceptable performance as
soon as the update rate or the number of copies increases [92]. The main
drawback of eager replication management is that all copies of a data item
are maintained within the same transaction which hinders scalability and
prevents from efficient executions. Therefore, eager replication is not a viable
approach in most of current data processing environments, especially when
being applied at a Grid-scale.

Previous work on lazy replication management decouples replica mainte-
nance from the original transaction [33, 55, 136]. In other words, transactions
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keeping replica up-to-date and consistent run as separate and independent
transactions after the original transaction has committed. Although addi-
tional efforts are necessary to guarantee serializable executions, approaches
presented in [33, 32] suggest a suite of lazy replication protocols that have
lead to significant performance improvements and guaranteeing one-copy se-
rializability. Previous work on lazy replication has concentrated on perfor-
mance and correctness only. As observed from the example application sce-
nario, today’s applications have different requirements. [157] addresses some
of these issues with the additional notion of freshness. It allows read-only
clients to define freshness requirements stating how up-to-date data items
must be when being accessed. However, the approach requires a centralized
coordination component for scheduling and bookkeeping which is a potential
bottleneck and a single point of failure. Second, it has only considered full
replication at a granularity of complete databases. Clearly, this is way too in-
flexible as it precludes more sophisticated physical data organization schemes
such as partial replication, partitioning or striping across sites. Third, previ-
ous work on lazy replication like [32, 134, 138, 170] assumed that the trans-
action executes entirely at its initiation site, which may not be the case in
practical settings.

A recent protocol for a finer grained data replication that supports fresh-
ness and lazy update propagation for many read-only nodes has been pre-
sented in [10] . In [9], an adaptation of this protocol to the Grid is presented.
However, this protocol suffers from a strict assumption on the existence of
a central component which is used to collect and serialize all updates at the
update nodes. Whenever a read-only node requires fresh data, it goes to this
central component to get what it needs. This is conceptually equal to having
only one update node in the system, which is a potential bottleneck and a sin-
gle point of failure, and therefore is not practical in a Grid environment. In
[14], several updateable replicas are supported but a single, global replication
graph is required. This graph corresponds to a global agreement of all nodes
holding replicas on the order of propagating updates in the system. Thus,
none of the existing replication protocols can be fully decentralized which, in
turn, is an important requirement in infrastructures like the Grid.

7.5 Summary

Data Grids are becoming more and more popular since, in contrast to tra-
ditional approaches, their nearly unlimited storage capacity allows tackling
the data management problems in eScience. In particular, data Grids allow
data to be replicated across different sites in order to increase availability
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and, by proper replica placement, to bring data closer to their users. How-
ever, the degree of replication is constrained by concurrent updates as syn-
chronous replication with a large number of copies does not scale. This ne-
cessitates a separation between updateable replicas (updated synchronously)
and many read-only copies which might hold stale data, characterized by a
freshness level that indicates the deviation from the most recent version. Al-
lowing users to specify freshness requirements for their queries significantly
facilitates the routing of queries to read-only sites in the data Grid. In this
chapter we have presented Re:FRESHIT, a freshness-aware replica selection
and maintenance protocol for a data Grid based on a distributed dynamic
replica management approach to updateable replicas without any global co-
ordinator. Starting with a core group of updateable copies, read only copies
with different levels of freshness are organized in a hierarchical structure.
Re:FRESHiIT supports the freshness-aware routing of queries in the Grid and
also takes into account the sites’ local load for replica selection without re-
lying on any central component. In parallel, updates are propagated from
updateable copies to read-only copies along the site hierarchy in a consistent
manner.






Prototype Implementation and
Evaluation Setup

The following two chapters present the results of the experimental evalua-
tion of the Re:GRIDIT family of protocols presented in this thesis and the
implementation details of Re:GRIDiT. The Re:GRIDiT protocols have been
implemented using state-of-the-art Web service technologies which allows an
easy and seamless deployment in any Grid environment. The evaluation has
been conducted on up to 48 update sites and 48 read-only site. We have used
simulated workloads that mimic the behavior expected from our use case ap-
plications. We begin by giving a brief introduction into the framework used
for implementing the protocols and some implementation details, justifying
the implementation choices that we made. We then provide an overview of
the evaluation setup and the performance metrics used for the evaluation.
Chapter 9 will detail the discussion of the evaluation results.

8.1 The Globus Toolkit Development Framework

The Globus Toolkit’s Java Web Services Core (Java WS Core) is a Java de-
velopment kit for building stateful Web services based on the WS-Resource
framework. It also provides a lightweight hosting environment for such ser-
vices. Java WS Core manages the life cycle of services and their resources,
provides persistence support, and offers advanced security features. It also
provides facilities for starting periodic and background tasks and has a uni-
fied way to store and retrieve service configuration data. At runtime Java
WS Core provides an internal JNDI-based registry with service-specific and
other configuration information. Web services can use this registry to look
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up configuration information, communicate with other services, or discover
container-provided facilities. The security features of Java WS Core include a
pluggable authorization engine, declarative and programmatic security, and
multiple authentication mechanisms. The programming model of Java WS
Core is flexible, letting the service developer choose small service-building
blocks and combine them to create a service with the exact functionality the
developer wants to provide. It also allows the developer to customize the
built-in functionality or substitute it with an alternative implementation.
The programming model of Java WS Core decouples the Web service (busi-
ness logic) functionality from the resource (state). The web service implemen-
tation is usually a plain, stateless Java object. A service can be composed
from several independent Web service operation implementations, called "op-
eration providers". These operation providers enable easy reuse of common
Web service operations among different services. We chose Java WS Core be-
cause it is created with standard Apache software components such as Apache
Axis 1 (SOAP processor), Apache Addressing (WS-Addressing support), and
Apache WSS4J (message security support) and is an open source project li-
censed under an open license. In order to implement stateful Web services,
the WSRF (WS-Resource Framework) standard [78] has been proposed and
adopted by the Globus Toolkit Framework. For performance, as well as book-
keeping reasons, we have implemented the state of the main web service com-
ponents using Apache Derby database tables [67]. Other logging information,
used for recovery and failure handling purposes, is also stored in the local
databases. The choice of Derby is motivated by the following advantages: it
is a lightweight, pure-Java relational database that can be embedded directly
into Java applications and/or accessed remotely by multiple users connected
to Derby’s network server. However, any other existing off-the-shelf database
can be used for this purpose.

8.2 The Globus Toolkit Java Core Services

The Globus Toolkit version 4 (GT4) Java core services offer a run-time envi-
ronment capable of hosting Grid services. The run-time environment medi-
ates between the user-defined application services and the GT4 core services,
underlying network, and transport protocol engines. GT4 also provides de-
velopment support, including programming models for exposing and access-
ing Grid service implementations. One of the compelling reasons to use GT4
is that it builds upon existing web services standards and technologies like
SOAP and WSDL. All of the Grid service interfaces are exposed in WSDL
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Figure 8.1: GT4 Java architecture

format. GT4 provides software libraries that support security, discovery, re-
source management, invocation, communication, exception handling, etc.

Figure 8.1 shows the major architectural components of the server side of
GT4. This is just a subset of the functionality that GT4 provides and that
we used in the implementation. The GT4 architecture consists of a Grid con-
tainer to manage all of the deployed web services throughout their life cycles.
The GT4 Grid container uses Apache AXIS as its web services engine to han-
dle all of the SOAP message processing, JAX-RPC handler processing, and
web services configuration. Figure 8.1 shows the architecture of one running
instance of GT4. In our setup we have using several physical machines with
multiple running instances of GT4 on each machine.

8.3 The GridFTP Protocol

As previously stated in Chapter 4, base level operations on objects stored in
the database are executed as local database transactions, and base level op-
erations on objects stored on the local file system take advantage of Grid file
management functionality, such as GridFTP [97]. In this section we briefly
introduce the GridFTP protocol. GridFTP is a high-performance, secure, reli-
able data transfer protocol optimized for high-bandwidth wide-area networks.
It is based upon the Internet FTP protocol, and it implements extensions for
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high-performance operation. GridFTP provides a fault tolerant implementa-
tion of FTP, to handle network unavailability and server problems. Transfers
can also be automatically restarted if a problem occurs.

Some of the most noteworthy features of GridFTP are:

Parallel data transfer: GridFTP supports parallel data transfer through
FTP command extensions and data channel extensions in order to im-
prove the aggregate bandwidth on WANSs.

Partial file transfer: Many applications (including our use case scenarios)
may require the transfer of portions rather than complete files, which is
particularly important for applications that require access to relatively
small subsets of massive, object-oriented database files. Standard FTP
supports the transfer of complete files or the transfer of the remainder
of a file starting at a particular offset. GridFTP introduces new FTP
commands to support transfers of subsets or regions of a file.

Support for reliable and restartable data transfers: Reliable transfer
is essential for many applications and GridFTP incorporates fault tol-
erant features to handle transient network failures, server outages, etc.
The FTP standard includes a basic feature for restarting failed trans-
fers, but which is not widely implemented. The GridFTP protocol ex-
ploits these features and extends them to cover the new data channel
protocol.

8.4 Re:GRIDIT Services

The Re:GRIDIT protocol is materialized in two distinct web services, the
Transaction Manager (TM) Service and the Site Manager (SM) Service which
build further functionality on top of the GT4 Java Core Services. They are im-
plemented in Java and communicate to each other via SOAP messages. Each
physical machine in the network contains at least one running instance of
each of the two services. The transaction execution is migrated from one node
to the other, when data needed during an operation invocation reside on a
remote site. Thus, each Transaction Manager instance interacts with several
Site Managers during its lifetime. Each Transaction Manager instance re-
ceives an automatically generated unique ID which enables the Transaction
Managers to locate each other during their life time.

Transaction Manager Service The TM Service implements the
Re:SYNCIT transaction protocol. Upon receiving a client transaction the
TM Service checks whether it is an update or a read-only transaction. The
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separation between the two types of sites is handed over to the Site Manager
Service. The TM Service executes operations on the appropriate sites, depend-
ing on the type of the operations: updates are executed optimistically on the
update sites and reads on the read-only sites. For each update transaction the
Re:SYNCIT protocol is run, consisting of of three phases (execution, valida-
tion, and commit), as described in Chapter 5. A background thread performs
the serialization graph update and graph validation for cycles whenever a
transaction is in the validation phase.

Site Manager Service The SM Service implements the Re:SYNCIT site
protocol, described in detail in Chapter 5. For update transactions it de-
tects local conflicts, which are stored in the local Derby database. Updates
are propagated synchronously to the other update sites and the remote con-
flicts are returned. The remote conflicts are again stored in the local Derby
database and given to each transaction during its validation phase. Back-
grounds threads perform load balancing, take dynamic replica management
decisions and propagate updates to read-only sites in a lazy fashion. For the
implementation of the performance evaluation we have used the local CPU
values only as load measurement. Programmatically querying for CPU usage
is impossible using pure Java as so far there exists no API for this. A sim-
ple alternative was to use Runtime.exec() to call an external, platform-specific
command like top, and parse its output. More sophisticated and reliable so-
lutions can be accomplished by stepping outside Java and writing a few C
code lines that integrate with the Java application via Java Native Interface
(JNI). Every chosen time interval 6(t), the load is recalculated and if signif-
icant changes occur (significant differences in value with respect to the load
values previously stored in the database) these changes are locally replaced
and propagated together with replica synchronization.

As described in Chapters 5, 6 and 7, the Re:SYNCiT protocol relies on
the communication between transactions and site. Its functionality is conse-
quently implemented in both the TM and SM services. On the other hand,
the Re:LOADIT and Re:FRESHIT protocols are exclusively implemented in
the SM service.

8.5 Distributed Repositories

The distributed replicated repositories that are required in order to support
replication have been implemented in a completely decentralized fashion.
These repositories are: the replica catalog, the load repository, the freshness
repository and the propagation queues. These repositories have been imple-
mented as database tables in the local Derby databases. Although we have
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stressed the system we did not notice any performance degradation by using
this approach. However, memory resident structures could also be used, if
this proves to be the case. The idea of introducing such components is not
new, similar approaches applied to peer-to-peer process management exist in
the literature [163]. These local components contain global information, al-
though depending on the nature of the site, the information may be partly
outdated and partly replicated. In the case of update sites, this information is
fully replicated together with replica synchronization. For the read-only sites
this information is exchanged together with the update propagation.

8.6 Evaluation Setup

All the experiments have been conducted on up to 96 sites. All the ma-
chines have the following configuration. The sites are equipped with a Dual
Intel® CPU 3.20 GHz processor and 5 GB RAM. As operating system we em-
ployed Ubuntu Linux 8.0.4 and Apache Derby as local database. The protocol
has been implemented as Web services running inside a Java WS-Core 4.0.3
service container. Since Re:GRIDiT has been implemented using platform
independent technologies, it has been successfully deployed on machines run-
ning various flavors of Unix, Windows and Mac OS X. As mentioned before,
any off-the-shelf database can also be used instead of Derby.

8.7 Performance Metrics

In this section, the performance criteria used for the evaluation are intro-
duced. In our setup clients issue requests, which are transactions consisting
of multiple operations to be executed by the system. The operations are either
update or read operations. Updates are synchronized among the update sites
and later propagated to read-only sites. The time between the arrival of a
request and the time that its operations start executing is called waiting time
of a transaction, denoted wt(t). The reasons why a transaction might wait to
proceed could be high workload in the case of concurrent updates that arrive
at update sites or the time requested for a refresh transaction to update a
read-only site to the requested freshness level. The duration of the actual ex-
ecution of a transaction is its execution time, denoted et(t). The execution time
of a transaction is the sum of the execution times of all its operations.
Throughout the evaluations we have used an average operation duration
of 100 seconds, which the typical average duration for the transfer of a 1GB
file using GridFTP [150]. Unless otherwise specified, we have used an average
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transaction size of five base level direct operations. This choice is not random.
A typical example of a user transaction at the user level might look like:

ReadCollection(C)UpdateCollection — AddDocument(D).

Assume the simplistic case when document D is an environmental report
which contains two information objects, a satellite image and a textual de-
scription of the methodology used to produce the data. At the same time,
metadata about the image (author, date, time, satellite and region used to
take the picture) are available and need be saved together with the image.
This transaction will be automatically transformed at the middleware level
into the following sequence of operations: "read collection", "insert image B
on the file system", "insert metadata A (associated to B) into the database",
"insert textual description C into the database", "replace recalculated index
of the collection". These operations will be in turn mapped to base level oper-
ations that any Grid infrastructure is able to handle (such as GridFTP copy
or SQL insert).

The following metrics have been used throughout the evaluations, unless
otherwise specified:

Definition 8.1 (Runtime) Let t be a client transaction. The overall runtime
of a transaction t, denoted by runt(t) is defined as: runtt(t) = wt(t) +et(t). O

The major performance metric used in the evaluation presented in Chap-
ter 9 is the throughput of a system:

Definition 8.2 (Throughput) Let T be a set of n client transactions (with
| T| = n) that have been successfully committed within a time interval t. The
throughput of the system executing the transactions is: thpsys(T,T) = Q a

We can extend this definition to include different type-specific through-
put such as query throughput which calculates the throughput of read-only
transactions and update throughput which is the throughput of update trans-
actions.






Evaluations

This chapter presents the qualitative and quantitative results of the eval-
uation of each individual pillar of the Re:GRIDiT family. The setup used
for the evaluation and the performance metrics have already been intro-
duced in Chapter 8. Section 9.1 presents the analytical evaluation of the
message complexity of Re:SYNCIT compared to other replication approaches,
as well as the experimental results of the comparison between Re:SYNCiT
and a typical eager replication scheme using 2PC in combination with S2PL.
Section 9.2 discusses performance aspects of Re:LOADiIT (implemented on
top of Re:SYNCIT) compared with Re:SYNCIT (i.e., using a static replication
scheme), for different workloads. Section 9.3 contains the evaluation of our
Re:FRESHIT protocol for read-only transactions, and our query routing strat-
egy. Finally, Section 9.4 sums up the main achievements of the evaluation.

9.1 Re:SYNCIT Evaluation

There are many concurrency control mechanisms in the literature, which can
ensure that all executions are serializable (no matter what transactions are
run). In practice, however, according to [76], the strict two-phase locking
(S2PL) mechanism in combination with two-phase commit (2PC) is the dom-
inant way to guarantee serializability for distributed transactions. Before
discussing the experimental results of our evaluation, we provide an analyt-
ical evaluation of the Re:SYNCIT protocol for update transaction compared
to some of the well-established replication mechanisms. As previously intro-
duced in Chapter 3, it is a common approach for many replication protocols to
use S2PL/2PC in order to guarantee serializability.
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9.1.1 Analytical Evaluation

Message complexity is measured as the total number of messages required to
commit or abort a transaction. Assume, for simplicity the case where a trans-
action consists of one operation only. Re:SYNCIT has a message complexity
of n 4+ 2 x PRE(T) + POST(T), where n is the number of update sites, PRE(T)
and POST(T) represent the number of pre- and post-ordered transactions of
a given transaction T. In contrast to other approaches, the coordination in
Re:SYNCIT relies on communication between transactions in order to reduce
the communication between the sites. The number of messages exchanged
between transactions that belong to the same graph is strongly influenced by
the size of the graph, which in turn, is determined by the number of conflicts
in the system. For such low conflict rates as we envision for this kind of appli-
cations, the communication between transactions is negligible compared to n.
Well-established replication mechanisms such as DBSM [145], ROWAA [108]
and S2PL/2PC exhibit a message complexity of 3n, which may decrease to n
if broadcast over IP is available. Other commit mechanisms, such as Paxos
commit [93], are in general more fault-tolerant than 2PC but imply an even
larger number of messages to be exchanged.

Most pessimistic concurrency control protocols, S2PL included, abort all
concurrent conflicting transactions. Optimistic protocols, on the hand, suffer
from the cascading aborts problem. In our approach we use partial rollback
techniques to minimize the effects of cascading aborts. By communicating
with each other, transactions involved in a cycle choose a victim which is to-
tally compensated. The rest of the transactions involved in the cycle partially
roll back until a point in time when the cycle disappears.

9.1.2 Estimating the Best Number of Replicas

We consider the availability of a data object to depend on the failure rate of
the sites in the network. If a large number of sites is often unreachable, then
a large proportion of data objects may become unavailable. The following
function estimates the number of replicas n needed for a certain availability
threshold.

Let n be the total number of replicas for a data object, p the average prob-
ability of a site to be up and «p the required amount of availability for a data
object D. Then the following holds: ap =1— (1 —p)".

Thus if we consider 80% availability of a data object as a minimal require-
ment, for a probability of 20% of sites to be up, the model recommends 7
replicas. For 10% probability of sites to be up, 15 replicas are needed; for 5%
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Figure 9.1: Throughput of S2PL vs Figure 9.2: Throughput of S2PL vs
Re:SYNCIT for different conflict rate Re:SYNCIT for different transaction
values. lengths.

probability of sites to be up, 30 replicas, and for as low as 3% probability of
sites to be up, 53 replicas.

9.1.3 Re:SYNCIT Transaction Throughput

In the following experiments, we wanted to learn if there are differences be-
tween Re:SYNCIT and 2PC/S2PL with respect to performance in terms of
average throughput. We conducted several experiments varying the follow-
ing parameters: different number of replica sites (8, 12, 16, 24, 32, 36 and 48
replicas), different conflict rates (1%, 5%, 10%, and 20%), and different trans-
action lengths (2, 5 and 10 direct operations respectively!). As calculated in
Section 9.1.2, the choice of the different numbers of replica sites is not ran-
dom, but motivated by the need for high availability of data (we have consid-
ered 80% availability as an acceptable value), while allowing very low average
probabilities that the sites are up (roughly 20%, 10%, 5% up to 3%). The num-
ber of replica sites only considers the update sites — in addition there may be
many more read-only sites in the network. We use the following transaction
update rates: 10, 50, 100 and 500 milliseconds. This parameter strongly in-
fluences the number of transactions concurrently active at a certain point in
time.

Our first experiment investigates the impact of the conflict probability on
the throughput of Re:SYNCIT and 2PC/S2PL, respectively. Figure 9.1 shows
the throughput of the protocols for various conflict rates, when the transac-
tion length is kept constant at 5 operations per transaction and for a fixed
number of replica sites. Even for a very high conflict rate of 20% Re:SYNCiT
proves to perform better, although the difference in throughput is smaller

"However, with the transparent expansion of a transaction additional indirect operations
are added.
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than for a conflict rate of 1%. Moreover, we investigated the impact of the
transaction size on the throughput. We have run experiments with transac-
tion sizes of 2, 5 and 10 operations respectively. Figure 9.2 shows the results
of these experiments. The increase in transaction size leads to a decrease in
the throughput of both S2PL and Re:SYNCIT, up to a point where the dif-
ference between the two becomes less significant. As it can be seen from
Figure 9.3, an increase in the number of replica sites leads to a decrease in
the throughput of both protocols, however, for low conflict rates (as we expect
from our application scenario) Re:SYNCiT outperforms S2PL for any number
of sites, showing that Re:SYNCIiT is able to scale with the increasing number
of replica sites. The same conclusions can be deduced from Figure 9.4 where
an increasing update rate (more concurrently active transactions) leads to a
consequent decrease in the throughput of both protocols with Re:SYNCIT still
outperforming S2PL.

As observed from the experiments performed, Re:SYNCIT outperforms
S2PL in terms of throughput. This is explained by the fact that in the
case of S2PL transactions blocked because they cannot obtain a lock might
themselves block subsequent operation invocations of other transactions.
Re:SYNCIT, in contrast, allows the transactions in the same situation to op-
timistically continue. Figure 9.5 records the percentage of aborts for both
protocols for different conflict rates, as well as the total runtime. These val-
ues represent the average values for measurements consisting of 10 runs
of 500 transactions each. As expected, the total runtime for S2PL is, even
in a conflict-free environment 33% higher than that of Re:SYNCIT, an over-
head introduced by the locking management. This difference increases with
the conflict rate, due to the blocking behavior of S2PL. In terms of number
of aborts, for low conflict rates, both protocols behave the same way, whereas
for medium conflict rates S2PL is slightly better than Re:SYNCiT. Even for
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2PC/S2PL Re:SYNCIT
Conflict runt(t) % aborts | # messages runt(t) % aborts # messages

rate

0.00 844.03 0.00 6040 566.70 0.00 5010
0.01 852.60 0.00 6150 588.61 0.00 5181
0.05 1033.53 0.02 6248 731.53 0.02 5289
0.10 1312.31 0.04 6866 804.93 0.06 5801
0.20 1929.43 0.74 7749 1127.58 0.25 6404

Figure 9.5: S2PL vs. Re:SYNCIT for different conflict rates.

high conflict rates, the partial rollback implemented for Re:SYNCiT makes
it outperform S2PL. In terms of the number of messages exchanged, we can
see that the increase in the conflict rate does not imply a linear increase in
the number of messages exchanged since additional communication from the
transactions is only required for transactions belonging to the same connected
sub-graph. As already mentioned in our application scenario, conflicts are as-
sumed to be rather infrequent in this type of applications. We can conclude
that under these assumptions, the performance and scalability of Re:SYNCiT
recommend it as a suitable protocol for this type of environment.
Serialization graph testing was used in the past only as a formal method to
explain serializability theory, due to the runtime complexity of cycle checking.
However, cycle checking is actually only then a problem when it is expensive
compared to the operation execution cost. This might be the case for short liv-
ing database transactions, but not in the context of potentially long-running
transactions encompassing Grid services in distributed networks.

9.2 Re:LOADIT Evaluation

As a next step we have evaluated Re:LOADIT with support for dynamic
replica placement and deployment against a static replication scheme. The
goal of these evaluations is to verify the potential of the protocol, in terms
of scalability and performance, compared to a protocol allowing only a semi-
static replication scheme. For simplicity, we have used the site’s CPU per-
centage as load measurement. The actual values used for the different load
situations are depicted in Figure 9.6. These values have been chosen such
that the intervals for a site promote or demote are comparable. Unless oth-
erwise stated the measurements have consisted on runs of 100 transactions
each. The conflict rate was set to 0.01 (since conflicts are assumed to be in-
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Figure 9.6: Load Thresholds in a Practical Evaluation.
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Figure 9.7: Load Variation in Time. Figure 9.8: Load Variation in Time.

Dynamic Setup (12 Initial Sites). Static Setup (6 Initial Sites).

frequent). Each transaction consists of 5 base level direct operations. The
transactions were started sequentially, one after the other, with an update
interval of milliseconds, such that as many transactions as possible are active
at the same time.

9.2.1 Re:LOADIT Load Variation in the Presence of Active
Transactions

In order to evaluate the performance of our protocol we have conducted sev-

eral experiments that evaluate the load variation in the presence of active

transactions at the sites. We have recorded the mean local load variations,
the mean system loads and the evolution of the number of replicas in time (in
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Figure 9.9: Re:LOADIT versus Re:SYNCiT Throughput Variation.

a dynamic setting). As observed from Figure 9.7 for an initial number of 12
update sites, the average number of replicas in the system tends to remain
stable at an minimum of 6. We have compared these results with the static
replication protocol for which we used 6 update sites. The average system load
shows more fluctuations in the dynamic case (due to the dynamic replica man-
agement overhead), and on average, the local site loads show a less than 5%
increase with respect to the static case. In this case, the static setting of 6
update replicas has been chosen to match the optimal minimum which is
reached by the dynamic setting; therefore an unfortunate choice of less than
optimal number of replicas in the static setting produces non-negligible load
differences with respect to the dynamic setting.

9.2.2 Re:LOADIT Transaction Throughput

Another means of evaluating the performance of the Re:SYNCiT and
Re:LOADIT protocols is by comparing their throughput, calculated as the
number of transactions committed within a time interval (in this case 20 sec-
onds). In this measurement, both protocols with an initial setup of 6 sites
and the dynamic protocol with an initial setup of 12 sites have been com-
pared. As in the previous cases, the dynamic replication protocol has stabi-
lized the number of update sites at a minimum of 6. As it can be seen from
Figure 9.9, the throughput of Re:SYNCIT with 6 replicas is initially higher
than that of Re:LOADIT with 12 initial replicas and comparable to the one
of Re:LOADIT with 6 initial replicas. However, both dynamic settings stabi-
lize at a lower number of replicas and soon outperform the static one. The
reason for this behavior is that transactions begin the commit much sooner
in time in the dynamic case than in the static one. The rationale behind it is
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Dynamic Setup (48 Initial Sites).
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Figure 9.11: Load Variation in Time.
Static Setup (48 Initial Sites).

that the Re:SYNCIT requires more time to synchronize the update to a higher
(and constant) number of update sites in the case of 6 static sites, therefore
the transaction duration is higher. It can also be observed that initially the
throughput in the dynamic setting is smaller than in the case of the static set-
ting with 6 update sites, due to the extra load imposed by the demote of the
unnecessary update sites. Nevertheless, the throughput of the dynamic set-
ting is increasing and outperforms the throughput of the static setting with 6
update sites, due to the selection of the best replica sites in the dynamic case.

9.2.3 Re:LOADIT Load Variation in the Presence of Active
Transactions and Additional Load
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Figure 9.12: Load Variation in Time.

Dynamic Setup (6 Initial Sites).
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Figure 9.13: Load Variation in Time.
Static Setup (6 Initial Sites).

As it can be seen from Figures 9.7 and 9.8, the distributed concurrency
control of active running transactions and the replica management hardly
drive the CPU load within the heavyload level and never in the overload
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level. In order to observe the system’s behavior under heavier load stress
we have tested the protocols in a setting using active transaction and artifi-
cial load variations (that mimic the behavior of additional read operations).
These load variations introduce dynamic changes in the system which lead to
promote and demote situations. In each of the cases the load has been main-
tained stable for several minutes in order to give the system enough time to
react to the changes. The results can be seen in Figures 9.10 and 9.11 where
an initial setup of 48 update sites is compared and Figures 9.12 and 9.13
where an initial setup of 6 update sites is compared. It is clear that while
both protocols are subject to the same load levels Re:LOADIT is able to better
cope with the varying load situations and consequently promote and demote
sites as needed.

9.3 Re:FRESHIT Evaluation

Our next series of evaluation shows the performance of Re:FRESHiIT in dif-
ferent network topologies and different routing strategies.
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We compared two network topologies (as presented in Figures 9.14
and 9.15) in order to evaluate the advantages of our proposed architectural
structure:

e In the first setting we propose a tree structure (as introduced in Chap-
ter 4), where sites are classified into three levels: Level 1 update sites,
Level 2 read-only sites (with higher freshness levels) and Level 3 read-
only sites (with staler copies of data). The tree structure used in the
evaluation is presented in Figure 9.14. We call this setting Re:FRESHiT-
TREE.

e In the second setting, we evaluate a two levels structure, where the
Level 3 read-only nodes are eliminated completely. The tree structure
used in the evaluation is presented in Figure 9.15. We call this setting
Re:FRESHIT-FLAT. This configuration has also been adopted in [10].

Updates that occur at update sites are continuously propagated to read-
only sites. Hence, in addition to refresh transactions, which occur on demand
(as a consequence of user queries), changes are bulked into propagation trans-
actions and applied to the sites whenever possible. For this experiment we
have used a ratio of concurrent update transactions to queries of 1:10. We con-
sidered the update rate at update sites as the unit size of bulked updates. The
update rate used in the experiments was 100 updates per second. Each up-
date and read-only transaction consists of 5 base level operations each. In the
comparison we varied the freshness degree of data requested by a query. The
tests were repeated for client requests for data with freshness levels within
the following freshness intervals: [0.5;1], [0.7;1] and [0.9;1]. Freshness func-
tions belong to a given interval and are mapped to transaction timestamps.

Our second series of experiments evaluated the advantages of query re-
routing along the tree structure. We compared two routing strategies:

e In the first setting we re-route user queries up or down the tree structure
according to freshness and load, according to Algorithm 8. We refer to
this general setting as Re:FRESHiT.

e In the second setting we modify the Re:FRESHIT protocol to force re-
quests to be processed locally. This means that requests are no longer
re-routed along the tree structure. In case a data object on a site does
not have the required freshness level, a refresh transaction is initiated
on demand. We refer to this setting as FORCE-Refresh.

Our third series of experiments evaluated the advantages of tree rotation
whenever refresh transactions occur. We compared two refresh strategies:
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Figure 9.16: Average Query Response Time for Different Network Topologies.

e In the first setting we dynamically rotate the tree whenever a query that
arrived at a site cannot be serviced at that site and therefore requires a
refresh transaction, according to Algorithm 8. We refer to this general
setting as Re:FRESHIT.

e In the second setting we modify the Re:FRESHIT protocol to refresh the
entire tree structure whenever a query that arrived at a site cannot be
serviced at that site and therefore requires a refresh transaction. In
case a data object on a site does not have the required freshness level,
and the request cannot be re-routed, the refresh transaction refreshes
all the predecessors of that site in the tree hierarchy. We refer to this
setting as Re:FRESHall.

The latter two strategies have been tested using the Re:FRESHiT-TREE
network topology.

9.3.1 Re:FRESHIT Network Structure

Our first experiments show how the network topology and the freshness re-
quirements influence the query response time. We used queries with fresh-
ness requirements within three different intervals: [0.5;1], [0.7;1] and [0.9;1].
The results are depicted in Figure 9.16. The results show the advantages of
the tree topology versus the flat topology. By reducing the number of Level 2
sites in comparison to Re:FRESHiT-FLAT, we reduce the propagation time,
which explains the increase in performance. Furthermore, since we assume
a high workload, propagation transactions are slower than refresh transac-
tions, however they are still able to keep sites fresh enough for queries with
lower freshness requirements. By taking advantage of the tree structure,
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Figure 9.17: Average Query Response Time for Different Route Strategies.

queries have better chance of finding a site that satisfies a lower degree of
freshness, which can be seen by the 15% increase in query response time for
Re:FRESHiT-TREE.

9.3.2 Re:FRESHIT Query Routing

Our second set of experiments shows how the query re-routing and the fresh-
ness requirements influence the query response time. Again we used queries
with freshness requirements within three different intervals: [0.5;1], [0.7;1]
and [0.9;1]. The results are depicted in Figure 9.17 and show the advantages
of Re:FRESHIT versus FORCE-Refresh, especially when processing queries
with a lower degree of freshness. By routing the queries within the tree struc-
ture we reduce the time required by the refresh transactions. Since the fresh-
ness is monotonically decreasing within a tree, a site is able to properly route
a query upwards in the tree if the client request has a higher timestamp than
the local one, or downward in the tree if it has a lower timestamp. The dif-
ference in performance is reduced for queries with a higher freshness levels,
as in this case the refresh transactions would still be needed. Nevertheless
Re:FRESHIT shows an almost 20% increase in the query response time for
user queries with lower freshness levels.

9.3.3 Re:FRESHIT Refresh Strategies

Our third set of experiments show how the tree dynamic structure and
the freshness requirements influence the query response time. Again we
used queries with freshness requirements within three different intervals:
[0.5;1], [0.7;1] and [0.9;1]. The results depicted in Figure 9.18 show the ad-
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Figure 9.18: Average Query Response Time for Different Refresh Strategies.

vantages of Re:FRESHIT versus Re:FRESHall, when processing queries with
all degrees of freshness. By dynamically rotating the tree structure we reduce
the time required by the refresh transactions, as in the case of Re:FRESHiT
they are applied at one site only rather than at a subset of the sites along a
certain portion of the path as in the case of Re:FRESHall. Using our rout-
ing strategy, queries are still routed by taking advantage of the monotony of
the freshness. However, by splitting a potentially long path in the tree in
several sub-trees of shorter paths we ensure that data with higher freshness
levels are also available and that the re-routing of queries takes less time.
Re:FRESHIT shows an up to 30% increase in the query response time for
user queries with all freshness levels.

9.4 Summary

One the main goals of this thesis has been the implementation and evaluation
of an integrated approach to dynamic decentralized replication management
in data Grids with freshness and correctness guarantees. In this chapter we
have presented the evaluation results of Re:GRIDiT in a realistic data Grid
setting. Each pillar of the Re:GRIDIT protocol has been tested and evaluated
separately in a realistic environment.

Our first series of experiments concentrated on the Re:SYNCIT protocol
and shows its advantages compared to S2PL. Re:SYNCIT exhibits increased
performance and scalability when compared to S2PL. For this purpose we
have used different conflict rates, different number of update sites, update
rates or number of operations per transaction.
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The second step has been to envisage and test a dynamic approach that
uses a combination of load, freshness and host proximity criteria to balance
the load between replicas. As it can be seen from Figures 9.10 and 9.12 dy-
namic changes in the load determines when new replicas need to be acquired
or released. Moreover, replica acquisition does not impose a significant over-
head. Figure 9.7 reflects the overhead in replica acquisition with respect to
the static protocol presented in Figure 9.8 which is shown to be at approxi-
mately 5%.

Our third and last step towards extending the Re:GRIDIT system to a fully
mature replication management system has been the implementation of the
Re:FRESHIT protocol. Re:FRESHIT proposes a dynamic tree topology and a
clever routing mechanism that improves the users access to data, while at the
same time allowing users to specify their own freshness requirements. The
evaluation of our replication protocol and the comparison in different settings
with different network topologies and routing strategies has shown a 20 — 30%
increase in the query response time for user queries with different freshness
levels.

All Re:GRIDIT protocols allow data to be arbitrarily partitioned across
sites and do not require any global component in the network. Summariz-
ing, the main achieved goals while evaluating the Re:GRIDIT protocols are:

e Dynamic: replicas can be created and deleted dynamically when the
need arises. Dynamic changes in the tree structure allow flexible and
efficient query routing along the tree structure.

e Efficient: replicas are created in a timely manner and with a reasonable
amount of resources. Clever refresh and routing strategies ensure an
increased performance for queries with different freshness levels.

e Flexible: replicas are able to join and leave the Grid when needed. Our
dynamic replication protocol allows replicas to join and leave the repli-
cation scheme as long as a minimum number of replicas is present in the
system. This limit is application dependent since different application
scenarios might have different needs.

¢ Replica Consistency: in an environment where updates to a replica
are needed, different degrees of consistency and update frequencies
should be provided. In all measurements the Re:SYNCIT distributed
and optimistic concurrency control protocol is enabled. At the same time
relaxing freshness requirements for read-only sites still guarantees con-
sistency.
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e Scalable: the replication system is able to handle a large number of
replicas and simultaneous replica creation. We have tested our protocol
on a setup consisting of up to 48 update sites and up to 48 read-only
sites.






10

Data Grids and Data Clouds -
Synergies and Opportunities

Cloud computing has recently received considerable attention both in indus-
try and academia [8]. There may be a vast array of reasons as to why an in-
dividual or business might use Cloud computing. Some reasons include: scal-
ability, flexibility, reliability, fast setup, affordable solution, environmentally
more efficient and the list may continue. Cloud computing increases capacity
or adds capabilities on the fly without having to purchase and maintain phys-
ical hardware as well as the space to store it reduces overhead costs, training
new personnel, or licensing new software. In this chapter we introduce Cloud
computing and make a comparison between data Grids and Cloud computing
from the point of view of data management. This allows us to evaluate the
feasibility of applying our approach to other distributed environments, and in
particular Cloud computing.

10.1 Introduction to Cloud Computing

Cloud-based computing allows customers to rent hardware and/or software
resources, thus being freed from significant investments in building up and
maintaining computing centers in-house by outsourcing their complete ICT
infrastructure. Resources are made available according to Quality-of-Service
(QoS) guarantees which are negotiated between provider and customer. De-
pending on the type of resources which are made available to customers and
the services which have been negotiated, there is a distinction between Infras-
tructure as a Service (IaaS) [3], Platform as a Service (PaaS), and Software as
a Service (SaaS). Providers of Cloud-based services usually maintain differ-
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ent distributed data centers. This allows to dynamically adapt the resources
provided for a particular customer based on their current needs (within the
QoS agreement that has been negotiated).

A core challenge in the context of Cloud computing is the management
of very large volumes of data. This is completely independent of the type of
resource which is shared in the Cloud — databases are either directly visi-
ble and accessible to customers as part of the infrastructure/platform, or are
hidden behind service interfaces. In terms of data management, QoS guaran-
tees mainly encompass a high degree of availability. For providers of Cloud
services, this means that data need to be partitioned and replicated across
different data centers. Although traditional high throughput OLTP applica-
tions are most likely not to become the predominant applications hosted in
a Cloud environment [1], replicated data management nevertheless needs to
take into account updates which are performed on replicated data (either di-
rectly or via service calls). Replicated data management in the context of con-
current updates to different replicas can be addressed either by using well-
established protocols such as strict two-phase locking (2PL) in combination
with two-phase commit (2PC) [95], or by relaxing ACID properties to increase
the overall performance and throughput of the system. The latter is applied
in several of today’s Cloud environments (e.g., PNUTS [62]).

10.2 Distributed Data Management: Cloud vs. Grid

Data Grids and Cloud Data Management share similar objectives. However,
the development of the Grid and of the Cloud have only been loosely cou-
pled for several reasons. First, they both focused on specific user communi-
ties: scientific communities (eScience) in case of the Grid vs. the outsourc-
ing of ICT services for commercial customers in case of the Cloud. Second,
both environments have different origins: the main driver for the Grid has
been the High Energy Physics community (other eScience communities have
adopted the Grid rather recently), while the proliferation of the Cloud has
been dominated by large providers of IT services that already had the neces-
sary computing resources (data centers) in place and were heading towards
a more optimal utilization of their capacities. Third, the initial requirements
which have been addressed were different. In the data Grid, first solutions
have focused on the controlled sharing of files within Virtual Organizations
(VOs). Data management at a granularity finer than files, replication man-
agement and updates have only very recently been put on the list of require-
ments due to novel eScience applications (e.g., earth observation, health care,
etc.). For Cloud-based environments, analytical data management has been

146



10.2 Distributed Data Management: Cloud vs. Grid

Cloud Data Management Existing Data Grids

Distribution Few data centers Many grid nodes (i.e., data centers)

Environment Homogeneous resources Heterogeneous Grid nodes

Data Access SQL interface, possibly also semantically Read and write files
rich operations

Replication QoS (availability) QoS (availability)

Replication Fine-grained: individual tuples Coarse-grained: files

Granularity (multi-tenancy)

Updates No traditional OLTP load, but concurrent ~ Read-only access (but novel applications
updates on replicated data also demand updates)

Global Control  Global repositories — potential bottleneck  Global repositories — potential
(scalability) bottleneck (scalability)

Global Relaxation of ACID properties — (no updates)

Correctness

Dynamic Needed in order to support horizontal Only static replication

Changes scaling

Data Freshness  Considered as a consequence of relaxed — (no updates)

ACID properties

Figure 10.1: Cloud Data Management vs. Data Grids: a Comparison

identified as the predominant application [1]. However, in the presence of
QoS constraints that need to be met by Cloud service providers, data need
to be replicated across data centers. Although the percentage of updates will
be rather low compared to traditional OLTP settings, Cloud Data Manage-
ment nevertheless needs to provide correct and consistent data management
in the presence of conflicting updates. Therefore, despite the initial separa-
tion between data Grids and Cloud Data Management, the requirements both
environments need to address more and more converge.

According to [60], the Cloud needs to meet the following requirements:

Multi-tenancy: A Cloud service must support multiple, organizationally
distant customers. Multi-tenancy is also an important requirement in the
Data Grid. However, support for VOs and thus for different users/customers
within the same distributed infrastructure is already integral part of most
Grid middleware systems.

Elasticity & Resource Sharing: Tenants should be able to negotiate and
receive resources on-demand. Spare Cloud resources should be transparently
applied when a tenant’s negotiated QoS is insufficient [142]. Similarly, the
resources made available to a VO in a Grid should be dynamically adapted to
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its current needs. Therefore, QoS-based resource negotiation and allocation
has recently become an important topic also in the Grid community.

Horizontal Scaling & Security: It should be possible to add Cloud ca-
pacity in small increments, transparent to the tenants. A Cloud service should
be secure such that tenants are not made vulnerable because of loopholes in the
Cloud. Similar requirements can also be found in the Grid.

Metering: A Cloud service must support accounting that reasonably as-
cribes operational and capital expenditures to each of the tenants of the ser-
vice. As Data Grids have their origin in scientific communities and operate
on resources which are contributed to by the member institutions of VOs on
a voluntary basis, this aspect has not yet been in the main focus of Grid envi-
ronments.

Availability: A Cloud service should be highly available. This require-
ment can also be found in the Grid. In addition, as services need the (local)
presence of the data they access, availability should be extended also to the
underlying data sources by means of replication.

Operability: A Cloud service should be easy to operate. In general, this
requirement also holds for the Grid. However, due to the heterogeneous en-
vironment in which Grids can be deployed, some current Grid middleware
solutions are rather limited in that regard. But with the proliferation of Ser-
vice Grids, this limitation more and more diminishes.

Figure 10.1 summarizes the relationship between Cloud Data Manage-
ment and Data Grids. The table shows that differences between both fields
still exist. However, Re:GRIDiT which follows a novel approach to data man-
agement in the Grid by making use of and extending protocols that have orig-
inally been devised for database clusters, can be considered a major contribu-
tion to the convergence of both areas.

10.3 Re:GRIDiT for the Cloud

In order to show the potential of Re:GRIDiT for Cloud Data Management, we
have evaluated the system in realistic Cloud settings. Since Cloud-based envi-
ronments typically contain less but more powerful resources than a Grid (e.g.,
several data centers of a Cloud service provider rather than a large machines
with free capacities within an eScience community), we have run experiments
with up to 12 sites. The evaluation results have been presented in [184] and
have shown that Re:GRIDIT, a protocol that has originally been devised for
replicated data management in the Grid, is very suitable also for Cloud Data
Management.
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Cloud Data Management Re:GRIDiT

Distribution Few data centers

Environment Homogeneous resources

Data Access SQL interface, possibly also semantically

rich operations

Replication QoS (availability)

Replication Fine-grained: individual tuples
Granularity (multi-tenancy)

Updates No traditional OLTP load, but concurrent

updates on replicated data

Global Control  Global repositories — potential bottleneck

(scalability)
Global Relaxation of ACID properties
Correctness
Dynamic Needed in order to support horizontal
Changes scaling

Data Freshness  Considered as a consequence of relaxed

ACID properties

Scales up to many nodes (Grid-scale)
Re:GRIDIT on heterogeneous nodes

operations for mutable / immutable
data; collections & documents

QoS (availability)

Several granularities possible: files,
realations, partitions, tuples

Update and read-only nodes

Completely distributed, no global
component =» scalability

Eager replication among update nodes
(=» serializability)

Dynamic replica creation (update nodes
vs. read-only nodes)

Different freshness levels (mutable data)
and versions (immutable data)

Figure 10.2: Cloud Adaptability for Re:GRIDiT

Figure 10.1 shows how Re:GRIDiT can be seamlessly applied to Cloud
Data Management. The table emphasizes how Re:GRIDIT is capable of bridg-
ing the gap between Cloud data management and data Grids.

10.4 Summary

Although having started as specialized solutions for different communities
and with different sets of requirements, Cloud Data Management and data
Grids are more and more converging. In this chapter, we have analyzed the
commonalities and differences that still exist between both areas.

The Re:GRIDiT system provides advanced data and replication manage-
ment in the Grid [186, 187] and follows a truly distributed approach to repli-
cation management in the Grid by bringing together approaches from repli-
cation management originally developed for database clusters [10, 157], and
distributed transaction management that does not rely on a global coordina-
tor [101]. A most important feature of Re:GRIDIT is that it has been designed
to be independent from any underlying Grid middleware. Thus, Re:GRIDiT



can also be seamlessly deployed in other environments like the Cloud and
performs very well in such environments.
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11

Conclusions And Outlook

The Grid integrates distributed computational and data resources to create
a single virtual resource which provides its users with potentially unlim-
ited processing and on-demand data storage power [125]. In contrast to first
Grid applications which were developed for physicists, the Grid no longer ex-
clusively targets scientific applications working with mostly read-only data.
Data Grids are providing a cutting-edge technology of which scientists and
engineers are trying to take advantage by pooling their resources in order to
solve complex problems and have known intensive developments over the past
years. Basic middlewares are available and it is now time for the developers
to turn toward specific application problems. The emergence of new applica-
tion domains such as digital libraries, earth observation or eHealth, requires
data management schemes suitable for distributed data in a very-large scale
Grid. To develop such management schemes we resolve data availability, data
consistency, and data versioning issues for the data Grid environment.

In order to succeed in our three-fold approach to dynamic replication in
data Grids with freshness and correctness guarantees, the first problem we
were faced with was the coordination of distributed update transactions with
replicated Grid data, thus solving the problem of transaction synchroniza-
tion and replica management for the more difficult and more general case
of update sites. The Re:SYNCIT protocol for the eager replication of update
sites has successfully achieved this goal. The Re:LOADIT support for dynamic
replication has ensured a fine load balancing between other replicas, using a
dynamic model which takes several parameters into account. Re:LOADIT is
based on the optimistic Re:SYNCIT protocol and avoids performance degrada-
tion due to locking schemes. At the same time, relaxed freshness and consis-
tency models can be used, when applications that can survive with lower lev-
els of freshness. Re:FRESHIT allows applications to specify a desired fresh-
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ness level as a quality of service parameter. The notion of freshness is also
used to choose the best replica for a particular situation. Furthermore up-
dates are propagated to read-only sites in a lazy manner. As an integrated
approach, Re:GRIDiT has proven to be an efficient replica maintenance. Since
synchronous replication is expensive, a combination of eager and lazy replica-
tion mechanisms with consistency and efficiency guarantees is used.

In more detail, the Re:GRIDiT family of protocols has achieved the follow-
ing goals:

Re:SYNCIT synchronizes updates to several replicas in the Grid in a dis-

tributed way. Our approach assumes no global coordinator: we enforce
globally serializable schedules in a completely distributed way without
relying on a central coordinator with complete global knowledge. Last
but not least, we support a flexible data model in which we distinguish
between mutable and immutable data objects. Mutable data objects can
be updated. Immutable data objects, on the other hand, cannot be mod-
ified; once created they are kept until deleted, but several versions of
the same immutable data object may exist. To the best of our knowledge
this distinction between data objects has not been made in any available
protocol, yet it is a straightforward consequence of the nature of many
Grid applications.

Re:LOADIT approaches replica deployment and management in a dynamic

way. In our system user requests can be directed to and executed by any
replica, and the destination of a request is determined by the follow-
ing parameters: load, freshness or network distance to the replica. We
distribute data objects among several replicas to raise throughput and
move frequently used/heavy accessed data objects to relatively inactive
replicas, where they do not compete against each other for resources,
and requests can be handled faster. Based on a combination of local load
statistics, proximity and data access patterns, Re:LOADiIT dynamically
adds new replicas or removes existing ones without impacting global
correctness.

Re:FRESHIT allows read-only clients to state how up-to-date their data
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should be. Users may demand a certain freshness level or a certain
version and this includes the special case where users always want to
work with up-to-date data. Re:FRESHIT supports the freshness-aware
routing of queries in the Grid and also takes into account the sites’ local
load for replica selection without relying on any central component. In
parallel, updates are propagated from the update sites to the read-only
sites along the proposed site hierarchy in a consistent manner.



The contribution of this thesis is the design, implementation and evalua-
tion of the Re:GRIDIT protocols for dynamic replication management in a data
Grid with freshness and correctness guarantees. Our extensive evaluations
have proven that Re:GRIDIiT is a mature replication management approach
that exhibits performance and scalability when applied at Grid scale.

While the work presented in this thesis has achieved its goal, there are
still related research problems that warrant further consideration and inves-
tigation.

Middleware scalability: We have shown how our routing techniques can
lead to significant performance improvements and that these results
provide a good scalability with environments of up to 96 sites (48 update
sites and 48 read-only sites). Our experiments support our conclusions
on the investigated Grid size. More general statements would require
the implementation of our protocol on a larger scale, using sites con-
nected via a WAN (instead of just local resources) and using larger data
sets as found in many eScience applications.

Further application areas: We have provided an introduction to Cloud
computing and presented data management issues present in these en-
vironments. So far, we have empirically evaluated the feasibility of ap-
plying Re:GRIDIT to cloud environments. Possible extensions would in-
clude exploring the challenges posed by transferring our protocol into
the Cloud and the support for more fine-grained replication or a combi-
nation of several protocols with different Quality-of-Service guarantees
in order to support multi-tenant applications.
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