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Summary 

The World Health Organization (WHO) states cancer to be a leading cause of death worldwide 

accounting for 7.6 million deaths (around 13% of all deaths) and is projected rising to over 11 

million in 2030. This is an alarming call to researchers for putting more effort into the analysis of 

the underlying patho-mechanisms. In a very simplified manner, cancer represents the destruction 

of healthy tissues and organs by uncontrolled cell proliferation and subsequent formation of a 

tumor. One key feature of solid tumors that marks the mostly deadly feature of the disease is the 

acquisition of the potential to invade into the surrounding tissue and form secondary tumors at 

distant sites, a process called ‘metastasis’. To gain migratory and invasive properties, cancer 

cells undergo epithelial to mesenchymal transition (EMT) where epithelial cells lose epithelial 

properties, e.g. their polarized organization and cell-cell junctions, and thus undergo changes in 

cytoskeleton organization and cell shape and acquire mesenchymal characteristics. Importantly, 

besides the formation of metastatic lesions, EMT is also involved during development as well as 

wound healing.  

To gain insights into the complex process of EMT and to identify new potential markers for 

ongoing metastasis, we established different in vitro EMT model systems. Global expression 

profiling during TGF-β-induced EMT revealed genome-wide transcriptome reprogramming 

during EMT and identified Krupple-like factor 4 (Klf4) and the SRY-Related HMG-Box Gene4 

(Sox4) as one of the key transcription factors that were modulated and may possibly contribute 

to transcriptional changes during EMT.  

We investigated the role of Klf4 and Sox4 during EMT by employing two different in vitro 

systems of EMT, using normal murine mammary gland (NMuMG) and Polyoma middle T- 

breast cancer (Py2T) cells, which undergo a progressive EMT upon transforming growth factor 

(TGF-β) treatment. We further validated the role of Sox4 in breast cancer carcinogenesis in vivo 

by orthotropic injection of Sox4-depleted cells into the mammary fat pad of nude mice. In 

addition, we also investigated whether such TGF-β-induced EMT accompanies epigenetic 

reprogramming and revealed how Polycomb group (PcG) complex-mediated H3K27me3 

modification modulates transcription of key genes underlying this process, thereby regulating 

EMT. 
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Klf4 is a zinc-finger protein, known to be abnormally expressed in various cancers. It can act as 

a tumor suppressor or as an oncogene in context dependent manner in different carcinomas. Klf4 

is downregulated during TGF-β-induced EMT. Our data reveal a tumor suppressor role for Klf4 

in breast carcinogenesis. Klf4 is essential for the maintenance of an epithelial phenotype during 

EMT, and forced expression of Klf4 leads to blockage of epithelial differentiation. Furthermore, 

Klf4 is inhibitory to EMT-driven cell migration and also behaves as a survival factor during 

TGF-β-induced EMT. Genome-wide location analysis by next generation ChIP-seq analysis 

revealed that Klf4 directly occupies the promoter of many key EMT genes such as N-cadherin, 

Vimentin, β-catenin and Mapk8. Moreover, one of these Klf4 targets, Mapk8, encoding Jnk1, is 

upregulated during EMT and a double-knockdown of Klf4 and Jnk1 is able to overcome Klf4 

knockdown-induced EMT, migration and apoptosis. These observations underscore a role of 

Klf4 during EMT by targeting and regulating crucial EMT genes. 

Sox4 is also known to be deregulated in many cancers. Sox4 is upregulated during TGF-β- 

induced EMT. We show that Sox4 is required for maintaining mesenchymal identity and 

depletion of Sox4 prevents TGF-β-induced EMT. Sox4 reduction further impairs the migratory 

capacity of cells. Moreover, Sox4 provides a survival advantage to cells during breast 

carcinogenesis. In addition, Sox4 contributes towards TGF-β-induced tumorigenicity and 

metastatic spread. Gene expression profiling after Sox4 depletion in complementation with 

Chromatin immunoprecipitation analysis revealed many key EMT genes such as Spred1, Edn1, 

Palld, Cyr61, Ereg, Areg and Yap1 which are directly targeted by Sox4 for transcriptional 

regulation. Furthermore, Sox4 also controls many genes which are shown to regulate various 

other features of EMT as well as cancer development such as angiogenesis, adhesion, migration, 

morphogenesis, cell cycle and cytoskeleton re-modeling. Ezh2, a catalytic subunit of the 

Polycomb Repressive Complex 2 (PRC2), has been also found to be transcriptionally regulated 

by Sox4. To delineate the role of Ezh2 during EMT, a loss of function approach has been used to 

demonstrate that Ezh2 is required for proper acquisition of EMT and EMT-driven processes such 

as migration and apoptosis. Taken together, our data provides a role of Sox4 during EMT via 

transcriptional regulation of key genes, including the Polycomb component, Ezh2. 

We also studied the role of two prominent epigenetic modifications- DNA methylation and 

histone 3 lysine 27 tri-methylation (H3K27me3) during TGF-β-induced EMT in a mammary 

epithelial cell line. Our data revealed no evidence of a reprogramming of DNA methylation 
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during this process. To assess the role of H3K27me3 during EMT, we performed chromatin 

immunoprecipitation using H3K27me3-specific antibodies followed by next-generation 

sequencing (ChIP-seq) on 6 different stages of EMT progression. This analysis revealed that 

many key EMT genes are regulated by H3K27me3 mark including Mcam, Pdgfrb and Itga5 

which are repressed by this mark in epithelial cells and loose it during EMT as they get activated 

conversely, Cdh1, Ocln and Cdx2 gain this mark during EMT and get repressed in mesenchymal 

cells. We further illustrated that the coordinated activities of Ezh1 and Ezh2 are required for 

H3K27me3-mediated repression of the gene expression and their co-depletion de-represses target 

genes and blocks EMT. This study provides novel insights into the important regulatory role of 

the Polycomb machinery during EMT. 

In summary, our findings demonstrate how transcription factors, such as Klf4 and Sox4 and the 

epigenetic machinery, such as PcG proteins, regulate EMT by directly contributing to the 

transcriptional reprogramming underlying this process.  
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1.0 Introduction 

1.1 Mechanism of carcinogenesis and acquired capabilities of cancer 

Cancer was first described by Greek Hippocrates (ca. 460 BC – ca. 370 BC) who used the Greek 

word carcinos (crab or crayfish) to describe it due to its crab-like tenacity. Cancer broadly refers 

to any one of a large number of diseases that are characterized by the development of abnormal 

cells that divide uncontrollably and have the ability to infiltrate and destroy normal body tissue. 

Cancer is the one of leading cause of death worldwide. However, thanks to basic research- due to 

improvements in screening and treatment, the survival rates are improving. The major challenge 

in cancer therapy is the metastatic spread of malignant cells and existence of cancer stem cells 

that survive any therpay and later leads to recurrence of the disease (Figure 1).                                                                       

In 2000, Hanahan and Weinberg 

(Hanahan and Weinberg, 2000) 

described the following six 

essential physiological alterations 

which instruct malignant tumor 

growth: 

1. Sustaining proliferative 

signaling: Growth factors are 

required for the proper 

propagation of normal cells and 

are usually provided exogenously. 

However, this dependency is 

greatly reduced in tumor cells 

which produce their own growth 

factors/ligands to which they 

respond via the expression of 

xxxxx  
 

 
Figure 1: Systemic representation of cancer cell invasion. Normal cells become metastatic and spread to 

distant organs through blood stream and lymph-vessels. 
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cognate receptors. Alternatively, cancer cells may send signals to stimulate normal cells 

within the supporting tumor-associated stroma, which reciprocate by supplying the 

cancer cells with various growth factors by over-expressing them (Bhowmick et al., 

2004; Cheng et al., 2008). This liberation makes them free to grow in an uncontrolled 

manner. 

2. Evading growth suppressors: Within a normal tissue, multiple anti-proliferative signals 

operate to maintain cellular quiescence and tissue homeostasis. In tumors, this signaling 

is mainly blocked by attacking the anti-proliferative signaling cascades which are 

commonly regulated by E2F transcription factors. These are essential for the expression 

of banks of genes required for cell cycle progression and p53, tumor suppressor (Burkhart 

and Sage, 2008; Deshpande et al., 2005; Sherr and McCormick, 2002). Furthermore, Myc 

oncogene expression is also induced to override growth inhibition by these anti-growth 

molecules (Partanen et al., 2009). Recently, it has been shown that the Myc oncogene is 

regulated by another tumor suppressor, LKB1, whose expression is required for epithelial 

integrity (Shaw, 2009). The Myc oncogene only becomes active after suppression of 

LKB1 (Hezel and Bardeesy, 2008; Partanen et al., 2009). Another tumor suppressor 

protein Merlin, sequesters growth factor receptors and limits their ability to efficiently 

emit mitogenic signals and, thus, Merlin has to be repressed to provide a proliferative 

signal (Curto et al., 2007; Okada et al., 2005). 

3. Resisting cell death: Several intrinsic factors (e.g. genomic instability) as well as 

extrinsic factors (e.g. hypoxia) induce apoptosis of untransformed cells. Tumor cells 

evolve a variety of strategies to limit or circumvent apoptosis. Most common is the loss 

of p53 tumor suppressor function, which eliminates this critical damage sensor from the 

apoptosis-inducing circuitry. Alternatively, tumors may achieve similar ends by 

increasing expression of anti-apoptotic regulators (Bcl-2, Bcl-xL) or of survival signals 

(Igf1/2), by downregulating proapoptotic factors (Bax, Bim, Puma), or by short-circuiting 

the extrinsic ligand-induced death pathway (Adams and Cory, 2007; Junttila and Evan, 

2009; Willis and Adams, 2005).  

4. Enabling replicative immortality: Untransformed cells are limited in their replicative 

potential by the length of their telomeres. Telomere maintenance is evident in virtually all 

types of malignant cells (Blasco, 2005; Shay and Wright, 2000). 85%–90% of them 
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succeed in doing so by upregulating expression of the telomerase enzyme or by the 

mechanism called ALT where telomere is maintained by recombination-based 

interchromosomal exchanges of sequence information (Bryan et al., 1995). 

5. Sustained angiogenesis: The oxygen and nutrients supplied by the vasculature are 

crucial for cell function and survival. Tumors appear to activate the angiogenic switch by 

changing the balance of angiogenesis inducers such as VEGFs and FGFs (Baeriswyl and 

Christofori, 2009; Bergers and Benjamin, 2003) and countervailing inhibitors such as 

thrombospondin-1 or β-interferon (Singh et al., 1995).  

6. Tissue invasion and metastasis: Normal cells are usually tethered with each other by 

adherens and tight junction proteins. Tumor cells act on these proteins and subject them 

to degradation. Consequently, cell-cell contact is lost and they can migrate and 

metastasize to the distant organs. In addition, many proteases also become active which 

pave a way for these cells to migrate by degrading extracellular matrix (Berx and van 

Roy, 2009; Cavallaro and Christofori, 2004; Fidler, 2003; Talmadge and Fidler, 2010). 

In their recent review, they added two more hallmarks which are required for maintaining 

the malignancy (Hanahan and Weinberg, 2011). 

1. Reprogramming energy metabolism: Even in the presence of ample oxygen, cancer 

cells prefer to metabolize glucose by glycolysis, which is a less efficient pathway for 

producing ATP. This effect was first observed by Otto Warburg (Hsu and Sabatini, 

2008) and named after him as “Warburg effect”. To do so they upregulate GLUT1 

transporters, which substantially increases glucose import into the cytoplasm; 

glycolytic enzymes and inhibitors of mitochondrial metabolism. One compelling idea 

to explain the Warburg effect is that the altered metabolism of cancer cells confers a 

selective advantage for survival and proliferation in the unique tumor 

microenvironment such as hypoxia (Semenza, 2010). Moreover, glycolysis allows the 

diversion of glycolytic intermediates into various biosynthetic pathways, which are 

required for assembly of new cells (Vander Heiden et al., 2009). In addition, in some 

tumors, two sub-populations of cancer cells are present which differ in their energy 

generating pathway. One population consists of glucose dependent cells that secrete 

lactate and other population basically used the lactate produced by their neighboring 

cells as an energy source (Feron, 2009; Kennedy and Dewhirst, 2010; Semenza, 
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2008). In addition, increased glucose consumption, decreased oxidative 

phosphorylation, and accompanying lactate production are also distinguishing 

features of oncogene activation such as RAS and Myc (DeBerardinis et al., 2008) . 

2. Evading immune destructions: In general, cells and tissues are constantly 

monitored by an ever-alert immune system, and that such immune surveillance is 

responsible for recognizing and eliminating the vast majority of cancer cells. To 

propagate happily, tumor cells have to omit themselves from the immune 

surveillance. It has been shown that tumors grow/arise rapidly in immunodeficient 

mice in comparison to immunocompetent mice (Kim et al., 2007; Teng et al., 2008). 

In addition, transplantation experiments have shown that cancer cells that originally 

arise in immunodeficient mice are not capable of inducing secondary tumors in 

immunocompetent hosts while the tumors cells from immunocompetent mice can do 

so (Kim et al., 2007; Teng et al., 2008). Cancer cells may paralyze infiltrating 

cytotoxic CD8+ T-cells and NK cells by secreting TGF-β or other 

immunosuppressive factors (Shields et al., 2010; Yang et al., 2010a). Furthermore, 

they can recruit cells that are actively immunosuppressive, including regulatory T 

cells (Tregs) and myeloid-derived suppressor cells (Mougiakakos et al., 2010; 

Ostrand-Rosenberg and Sinha, 2009). TGF-β has been shown to inhibit the anti-

tumoral activity of cytotoxic CD8+ T cells, by inhibiting their ability to produce 

cytolytic factors such as pore-forming protein perforin, the caspase activating 

secreted factors granzyme A and B, and the pro-apoptotic cytokine Fas-ligand. In 

human glioma patients, TGF-β decreases the expression of the activating 

immunoreceptor NKG2D on CD8+ T cells and natural killer (NK) cells, which leads 

to reduced CD8+ T cell, mediated cancer-directed cytotoxic response. Knockdown of 

TGF-β synthesis in a glioma cell lines prevents NKG2D repression and enhanced 

glioma killing by cytotoxic T cells and NK cells (Thomas and Massague, 2005). 

1.2 Epithelial to mesenchymal transition (EMT) 

Epithelial-to-mesenchymal transition (EMT) is a basic cellular process in which epithelial 

cells lose epithelial properties, e.g. their polarized organization and cell-cell junctions, 

undergo changes in cytoskeleton and cell shape, acquire mesenchymal characteristics and 
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become migratory and invasive. EMT was first recognized as a distinct cell differentiation 

process in the late 70’s, and has received increasing attention, as it not only occurs in normal 

development but is also an integral component of various pathological conditions (Hay,et.al, 

1968). On the basis of its function, EMT can be classified into three different subtypes 

(Figure 2). Type 1 EMT is associated with implantation and embryonic gastrulation and 

gives rise to mesoderm and endoderm and to mobile neural crest cells. Type 2 EMT is 

involved in wound healing, tissue-regeneration, inflammation and fibrosis. Finally, Type 3 

EMT comprises the transformation of epithelium associated with organs into the cancer cells 

which later leads to invasion and metastasis (Kalluri and Weinberg, 2009). Although the fate 

determination of Type 1 and Type 3 EMT is different, they follow the same patho-

physiological pathway which involves the loss of epithelial marker E-cadherin and gain of 

mesenchymal marker N-cadherin.  Such EMT associated “cadherin switch” is always 

annotated as a hallmark of this process (Hazan et al., 2004a; Maeda et al., 2005a). 

 
 

Moreover, the classical cadherin switch is assisted by substitution of many more epithelial 

markers such as tight junction proteins, claudins and occludins; desomosomal proteins; α and β-

catenins localization and cytokeratins with mesenchymal markers such as vimentin; fibronectin 

and matrix metalloproteinase secretion;  integrin α V, integrin β 1 and smooth muscle actin 

Figure 2: Three different sub-

types of EMT. (A) EMT 

during embryonic development 

(Type 1). (B) EMT during 

wound healing and fibrosis 

(Type 2). (C) EMT during 

pathological conditions such as 

cancer (Type 3). Adapted from 

Kalluri and Weinberg, 2009. 
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(Yang and Weinberg, 2008). Furthermore, in case of many carcinomas, tumor-associated stroma 

produces many growth factors, mainly HGF (Savagner et al., 1997), EGF (Lo et al., 2007), 

PDGF (Yang et al., 2006), FGF2 (Strutz et al., 2002) and TGF-β (Zavadil and Bottinger, 2005), 

that result in induction of various transcription factors, notably Snail, Slug, zinc finger E-box 

binding homeobox 1 (ZEB1), Twist, Goosecoid, and FOXC2 (Jechlinger et al., 2002; Kokudo et 

al., 2008; Medici et al., 2008; Niessen et al., 2008; Shi and Massague, 2003; Thiery, 2002) which 

drive EMT. But the actual implementation is dependent on signal-transducing proteins, ERK, 

MAPK, PI3K, Akt, Smads, RhoB, β-catenin, lymphoid enhancer binding factor (LEF), Ras, and 

c-Fos as well as cell surface proteins such as β4 integrin, α5β1 integrin, and αVβ6 integrin [(Tse 

and Kalluri, 2007); Figure 3]. Recently, microRNAs were also implicated to have a role in 

EMT. Non-coding miRNA such as miR200 and miR205 modulate the function of  Zeb1 and 

Zeb2 transcription factors that are known to be repressors of E-cadherin gene expression 

(Gregory et al., 2008a; Gregory et al., 2008b; Korpal et al., 2008; Park et al., 2008; Paterson et 

al., 2008). In addition, the role of alternative splicing of transcripts in EMT is the most recent 

advancement in the field of cancer biology (see below 1.2.9).   
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1.2.1 EMT and E-cadherin 

In mammals, adhesion between epithelial cells is generally mediated by three types of junctions: 

tight junctions (TJs), adherens junctions (AJs), and desmosomes, which together constitute the 

Intercellular Junctional Complex (Perez-Moreno et al., 2003). The transmembrane core of AJs 

consists of cadherins. Cadherins were first discovered as cell surface glycoproteins responsible 

for Ca2+-dependent homophilic cell–cell adhesion during morula compaction in the 

preimplantation mouse embryo and during chick development (Gallin et al., 1983; Peyrieras et 

al., 1983; Yoshida and Takeichi, 1982). E-cadherin is the protype and well-characterized 

member of this family, is primarily expressed in epithelia and required for cell-cell adhesion 

between two cells. The highly conserved, cytoplasmic tail of classical cadherins possesses a 

binding site for either β-catenin or γ-catenin via which they are connected to actin cytoskeleton 

(Aberle et al., 1996). On the other hand, E-cadherin also binds to p120-catenin and regulates 

surface tracking, lysosomal degradation and localization of newly synthesized cadherins at the 

membrane (Ireton et al., 2002; Stehbens et al., 2006). Furthermore, p120-catenin has emerged as 

a major regulator and integrator of signaling by the Rho family of small GTPases (Anastasiadis, 

2007), and this is at least partially dependent on its interaction with the cadherin and repressing 

the activity of RhoA (Wildenberg et al., 2006). On the other hand, three closely related PDZ-

domain-containing proteins (ZO-1, ZO-2 and ZO-3) constitute the undercoat structure of TJs 

together with other peripheral membrane proteins such as cinglin, 7H6 antigen and symplekin. 

Occuldin and claudins are the main players in organization of TJs and thought to constitute the 

backbone of TJs strands (Tsukita et al., 1999). 

During EMT, cells lose their epithelial polarity and dissolve the adherent and tight junctions, 

favoring a more labile cell-cell adhesion and communicate with the extracellular matrix through 

focal adhesions. Thus, E-cadherin behaves as a tumor-suppressor, by keeping the cell-cell 

contacts intact and resisting their mobility (Egeblad and Werb, 2002; Friedl and Wolf, 2003; 

Figure 3: Overview of EMT process and its regulation. During EMT, cells lose their cell-cell junctions and re-

arrange the cytoskeleton so that they can migrate, invade the neighbouring tissues and metastasize to the distant 

organs. Many signaling molecules have been implicated in the induction of EMT such as BMP/TGF-β, Wt, HGF, 

FGF and EGF. Adapted from Derek C. Radisky, 2005. 
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Hood and Cheresh, 2002). It has been demonstrated that E-cadherin gene is silenced in many 

carcinomas and activation of E-cadherin is sufficient to reduce the aggressiveness of tumor cells 

(Vleminckx et al., 1991). Cadherins are generally regulated at both the mRNA and protein levels, 

by means of changes in subcellular distribution, translational or transcriptional events, and 

degradation. In various human carcinomas, functional loss of E-cadherin may result from the 

production of a defective protein, which could be a result of gene mutation, abnormal post-

translational modifications (phosphorylation or glycosylation) or protein degradation 

(proteolysis) (Kang and Massague, 2004; Thiery and Morgan, 2004). It can also be regulated at 

the transcriptional level by silencing through its promoter hypermethylation. Although E-

cadherin is downregulated during EMT, metastatic cells gain back E-cadherin, specifically 

during intravasation and seeding of metastatic cells (Kang and Massague, 2004; Thiery and 

Morgan, 2004). In addition to promoter hypermethylation, E-cadherin transcriptional repression 

may result from the activation of repressors, such as Snail, Slug, Zeb1, Zeb2 and Ets (Peinado et 

al., 2007).  

1.2.2 EMT and growth factors 

The oncogenic pathways involving recteptor tyrosine kinases (RTK) are shown to regulate 

adherent and tight junction proteins that are known to be involved in normal integrity of the 

epithelial cells such as E- cadherin, occludins, claudins and cytokeratins (Bos, 2005). It has been 

suggested that RTK activation participates in the EMT program by rendering the tight junction 

leaky and thus allowing access of TGF-β to its receptor, one subunit of which would otherwise 

remain segregated in the tight junction (Bos et al., 2003). Growth factors that activate RTKs 

were the first identified as potent inducers of EMT by activating Mitogen activated protein 

kinase (MAPK) signaling through Extracellular-regulated kinase (Erk). For instance, hepatocyte 

growth factor (HGF) signaling leads to induction of various matrix metalloproteinase (MMPs) 

and extracellular matrix proteins (ECMs) which alters the cell-ECM and cell-cell interaction 

through regulation of integrins and cadherin expression (Berrier et al., 2000). Constitutive 

activation of Erk is shown to be required for complete EMT in epithelial tumor metastasis 

models (Chen et al., 1997; Ingber et al., 1995; Lele et al., 2006; Parker and Ingber, 2007; Zhang 

et al., 1996). HGF also influences the EMT process by regulating the key EMT transcription 

factor, Snail (Chrzanowska-Wodnicka and Burridge, 1996). Another EMT inducer, FGF also 
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determines the fate of epithelial cells by triggering the MAPK signaling and possibly, TGF-β 

signaling (Bershadsky et al., 2006; Riveline et al., 2001). Recent studies in Xenopus showed that 

FGF signaling promotes mesodermal differentiation by enhancing embryonic TGF-β/nodal 

signaling (Bershadsky et al., 2006; Riveline et al., 2001). Binding of FGF ligand to its receptor 

elicts MAPK/FGFR signaling that induces phosphorylation of the N-terminal of p53 and further 

interaction of p53 with TGF-β-induced Smads in the nucleus.    

In addition to MAPK signaling, phosphatidylinositol 3' kinase (PI3K) signaling also plays a key 

role in inducing EMT. Cells producing a constitutively active form of Akt, a downstream 

effector of PI3K signaling, produce the transcription factor Snail, which is known to repress E-

cadherin transcription (Grille et al., 2003) and triggering EMT. Moreover, PI3K signaling can 

also be activated by integrins and small GTPases from Rho family, which controls cytoskeleton 

re-modeling, extended its necessity in EMT-driven processes (Xia et al., 2008; Zamir and 

Geiger, 2001). Furthermore, autocrine PDGFR signaling with oncogenic Ras, hyperactivates 

PI3K signaling that is required for survival during EMT (Jechlinger et al., 2002). 

Epidermal growth factor (EGF) is a potent stimulator of EMT in several cell types, and the 

EGFR has been shown to directly interact with β-catenin, leading to the tyrosine phosphorylation 

of β-catenin and disruption of cadherin-dependent junctions (Klymkowsky, 2005; Nelson and 

Nusse, 2004). Endocytosis of E-cadherin results in the release of β-catenin to act on the Wnt 

pathway, resulting in Snail gene transcription and consequently E-cadherin repression (Lu et al., 

2003).  On the other hand, engaged E-cadherin complexes in the intact adherens junction directly 

inhibit the activity of the EGFR by inhibiting transphosphorylation of Tyr845 (Perrais et al., 

2007). 

Similarly, insulin growth factor (IGF) can also induce EMT by affecting the distribution of E-

cadherin and internalization of E-cadherin in the vesicles located around the nucleus and 

degrading it. Similar to E-cadherin, IGF also redistributes β-catenin from the cell membrane to 

the nucleus, and induces the translocation of TCF3 from the cytoplasm to the nucleus (Morali et 

al., 2001). Thus, growth factors play a key role in initiating and maintaining EMT.       

1.2.3 EMT and transcription factors 
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It is well known fact that TGF-β induces many transcription factors which are essential for EMT. 

Transcription factors like Snail1/2, Slug, Zeb1/2, Twist and FoxC2 are potent repressor of genes 

which are important for keeping epithelial polarity and organization, particularly cell-cell 

interaction proteins such as E-cadherin, clauddin, occludins and ZO-family genes (Zhang et al., 

2008). Snail expression can be induced in a Smad-3 or MAPK dependent manner (Matsumoto et 

al., 2001; Xue et al., 2008). Snail1 binds to E-box element of the E-cadherin promoter and 

recruits a complex containing HDAC1, HDAC2 and mSin3A, and thus represses gene 

transcription (Batlle et al., 2000; Cano et al., 2000; Hajra et al., 2002). Snail2 also works in the 

same way as Snail1 but it recruits a different combination of co-repressors, i.e. HDAC1/3 and 

CTBP (Bolos et al., 2003; Hajra et al., 2002; Hemavathy et al., 2000). However, Snail proteins 

do not affect the PAR complex, another polarity complex (Whiteman et al., 2008). Some of the 

Snail target genes regulate tissue specific EMT processes such as HNF-1β (Boutet et al., 2006; 

Boutet et al., 2007). Similarly, Zeb1 and Zeb2 [also known as Smad-interacting protein1 and 2 

(SIP1 and 2)] also form repressive complexes with Smads and bind to the E-cadherin promoter 

to suppress it. The Zeb factors have been recently shown to be repressed by miRNA from miR-

200 family. These miRNAs are downregulated during EMT and their forced expression is 

sufficient to block TGF-β-induced EMT (Gregory et al., 2008a; Korpal et al., 2008; Park et al., 

2008). In addition, Zeb2 is subjected to post-translation regulation by Polycomb complex 2 

where sumoylation impairs its repressor activity (Long et al., 2005). Both Zeb proteins promote 

cell migration and induce invasion (Comijn et al., 2001; Spaderna et al., 2008; Vandewalle et al., 

2005). Helix-loop-Helix (HLH) proteins are a large family of transcription factors controlling a 

wide variety of developmental and biological processes. HLH family can be divided into seven 

categories on the basis of their tissue distribution, dimerization capabilities and DNA binding 

specifity (Massari and Murre, 2000).  E12 and E47 from class I, Twist1 and 2 from class II and 

Id1- 4 from class V had been elaborated in EMT. E12 and E47 are encoded by alternative 

splicing products of the E2A gene (Massari and Murre, 2000). They have been shown to repress 

E-cadherin by directly binding to its promoter. On the other hand, Ids are downregulated in 

response to TGF-β and act as antagonist for E-cadherin repression by binding to E2A protein 

(Kondo et al., 2004).  ID1 is usually suppressed during EMT by rapid activation of expression of 

the transcription repressor ATF3 by TGF-β and the subsequent binding of an 

ATF3/Smad3/Smad4 complex to the Id1 promoter (Kang et al., 2003; Kowanetz et al., 2004). 
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Loss of Id1 expression is co-relates with a decrease in E-cadherin expression, and ectopic 

expression of Id2 or Id3 dose-dependently blocks TGF-β-induced repression of E-cadherin 

expression, inhibits TGF-β-induced ZO-1 delocalization and represses TGF-β-induced smooth 

muscle actin expression (Kang et al., 2003; Kowanetz et al., 2004). Besides E-cadherin, E47 also 

represses desmoplakin expression and induces the expression of N-cadherin, Sparc and α5-

integrin (Moreno-Bueno et al., 2006). Twist1 and 2, other members of this family, are a major 

regulator of mesoderm formation (Chen and Behringer, 1995). Ectopic expression of both leads 

to EMT (Ansieau et al., 2008; Yang et al., 2004). Hmga2, a downstream molecule of Smad-3 

signaling, is also shown to be expressed in mesenchymal cells and induces the expression of 

Snail1/2, Twist, and represses Id2 expression (Thuault et al., 2006).  

1.2.4 EMT and metastasis 

Metastasis (from the Greek “change of place”) is a major cause of death among cancer patients. 

This process refers to the spread of cancer from its original site to other areas in the body. Cancer 

cells have the ability to invade the blood vessels and lymph-nodes and find their way into the 

bloodstream. Once in the blood, cancer cells can disseminate to virtually any part of the body 

and make a home for themselves. Metastasis is a multistage process. These stages have been 

defined as local invasion, intravasation into the circulation, survival and transport in the 

circulation, extravasation from the bloodstream, and growth in the metastatic site (Bogenrieder 

and Herlyn, 2003; Condeelis and Segall, 2003; Fidler and Balch, 1987; Fidler and Radinsky, 

1996; Gopalkrishnan et al., 2001; Kauffman et al., 2003). Progression through these stages 

requires changes in cellular phenotype such as cellular motility, antiapoptotic capability, 

adhesion molecule expression, expression of matrix metalloproteinases and other proteases and 

expression of angiogenic factors and other paracrine or autocrine factors. Several authors have 

emphasized that if even one requisite step of the multistep metastatic process could be blocked, it 

would result in the abrogation of clinically relevant metastasis (Fidler and Balch, 1987; Fidler 

and Radinsky, 1996; Gopalkrishnan et al., 2001; Kauffman et al., 2003). 

The tumor metastatic process has been compared to a marathon. Tumor cells have to invade the 

solid tissues around the primary tumor site. The tissue in which the tumor arose is complex, 

containing other cells such as fibroblasts, a protein filled matrix that provides a solid support and 
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immune cells and lymphatic drainage. Tumors have to invade past these barriers. To do so they 

develop the ability to move. Tumor cells do not float out of a tissue, they crawl. Basically, tumor 

cells react to factors in their environment; they put out a “finger” of the cell toward the attractant 

and ratchet the cell forward. To move, tumor cells must alter their adhesion to other cells and to 

the protein matrix in a very dynamic fashion. They may also have to create a pathway amongst 

the tissue, by degrading the protein matrix using enzymes (proteases). 

Tumor cells can spread around the body using one of two major “highways”. All tissues are 

served by blood vessels (which provide oxygen and nutrients) and also lymphatic vessels which 

drain excess fluid to nearby lymph glands. For many cancer cells, their first opportunity to 

escape is to use the lymphatic drainage system. This is why for many cancers lymph nodes are 

biopsied or removed at surgery to see if the cancer has spread and oncologists use the 

information to determine the “stage” of the cancer. Cancer cells can enter the bloodstream either 

indirectly via the lymphatics or directly from a vessel in the primary tumor. The bloodstream is a 

very harsh environment with a high velocity of flow and full of immune cells. Moreover, cancer 

cells are used to being attached to the proteinaceous matrix, many tumor cells die when detached 

from their support and have to swim (detachment mediated death is called anoikis, another Greek 

word describing the death of leaves from as they detach from trees in Fall). The majority of 

tumor cells get stuck (arrest) in the first capillary bed that they float into. To get out from the 

bloodstream, they attach to the endothelial cells lining the blood vessels and the endothelial cells 

retract, they move apart, to permit the tumor cells to enter the tissue. This may be a normal 

reaction of endothelial cells to immune cells, cells of our immune systems migrate in and out of 

the bloodstream all the time to maintain surveillance. In fact, tumor cells can disguise themselves 

as lymphocytes by expressing similar molecules on their surface that fools the endothelial cells. 

These molecules may also determine their apparent ability to “home” to specific organs 

preferentially, as they may respond to gradients of chemicals differentially expressed there. 

 

1.2.5 EMT and migration 

Migration is certainly a key step in metastasis and a universal process. Depending on the tumor 

type and the surrounding tissue, cell migration involves different cellular strategies to overcome 

the physical restrain provided by primary tissues and their epithelium. For most cells, including 
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epithelial, stromal, and neuronal cells, migration phases are confined to morphogenesis and cease 

with terminal differentiation toward intact tissue to become reactivated only for tissue 

regeneration or neoplastic processes. For other cell types, such as leukocytes, migration is 

integral to their function and maintained throughout their life span. Some cell types migrate only 

in the context of a defined substrate, such as epithelial cells moving along a basement membrane 

but not through interstitial tissues, whereas other cell types, including leukocytes, are versatile, 

as they interact with and migrate within virtually any substrate present in the body. These cell 

and tissue-type specific patterns of migration are acquired in various cancers can be subdivided 

into at least two main migration modes: single cell migration and collective cell migration 

(Figure 4). The essential molecules that control and specify these different types of migration 

include adhesion molecules of the β1 and β3 integrin families that mediate interaction with the 

extracellular matrix (ECM); matrix metalloproteinases (MMPs) and serine proteinases, such as 

uPA/uPAR, responsible for ECM degradation; cadherins and associated molecules that mediate 

stable intercellular adhesions; and signaling molecules that control the actin cytoskeleton, 

specifically the small GTPases RhoA, Rac and Cdc42 and their downstream effectors. Single cell 

migration is characterized by the presence of isolated and dispersed tumor cells in an adjacent 

tissue. This contrasts with what is observed during collective cell invasion, where the cancerous 

tissue pushes forward as a whole, thereby displacing the healthy surrounding cells (Friedl and 

Wolf, 2010; Ilina and Friedl, 2009; Matise et al., 2009; Pals et al., 2007; Yilmaz et al., 2007). 

1.2.5.1 Single cell migration 

Single cell migration can be further classified into two sub-groups: (a) Mesenchymal migration 

and (b) Amoeboid migration. Single cell mesenchymal migration has been identified in 

numerous cancers, including fibrosarcomas, glioblastomas and epithelial cancers. This kind of 

migration is also implanted in non-neoplastic neural crest cells (Jacques et al., 1998), myoblasts 

(El Fahime et al., 2000), infiltrating lobular or metaplastic breast carcinoma (Pitts et al., 1991), 

ovarian cancer (Sood et al., 2001) and melanoma of a vascular-type pattern (Seftor et al., 2002). 

However, single cell amoeboid migration is common in leukocytes and some tumor cells, such as 

in leukaemias, as well as in tumors occurring in organs lacking extensive cross-linked collagen 

network (Friedl and Wolf, 2003) .  
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(a) Mesenchymal Migration: In mesenchymal migration, which represents the archetype of 

cell migration, cells complete a migration sequence consisting of (1) cell polarization 

driven by localized actin polymerization causing formation of a leading pseudopod; (2) 

attachment of this pseudopod to ECM ligands via β1 and β3 integrin clusters called focal 

adhesions, interaction sites that recruit cytoplasmic adaptor, signaling, and cytoskeletal 

Figure 4: Diversity of tumor cell migration.  Tumor cells can migrate individually or collectively. 

Ameoboid migration involves the deattachment of individual cells for invasion into the surrounding tissue 

but here the interaction between cells and ECM matrix is weak. The mesenchymal migration also follows 

similar strategy but the cells become spindle-shaped and possess integrins for invading the ECM. During 

collective cell migration, cells form a cohort of 5-6 cells. In cluster migration, cells loss their contact with 

primary tumor while in sheet migration, contact with primary tumor remains intact. Adapted from Peter 

Friedl & Katarina Wolf, 2003. 



   Introduction 
 

 22  
 

proteins as well as cell surface proteases such as MMPs and the uPA/uPAR complex; (3) 

local proteolysis of the ECM, widening the space for forward movement of the cell; (4) 

activation of contractile proteins, such as myosin II, and consequent shortening of 

membrane-anchored actin filaments; (5) contraction of the cell, leading to retraction of its 

rear end and consequent forward movement. This 5-step migration program is typical for 

single-cell migration of fibroblasts and keratinocytes as well as for single epithelial 

(cancer) cells that have undergone epithelial to mesenchymal transition (EMT), and 

represents a relatively slow process with migration velocities of 0.1 to 2 μm/min. 

Furthermore, chain migration is also a part of mesenchymal migration where chains of 

single tumor cells aligned between stromal fibres, termed 'Indian files' and infiltrate the 

lobular or metastatic breast cancer, ovarian cancer and melanoma of vascular type-

pattern. 

 

(b) Amoeboid Migration: Interestingly, recent studies indicate that lymphocytes display a 

characteristic form of cell migration, which has been termed “amoeboid” migration, 

because it mimics that of the amoeba Dictyostelium discoideum (Friedl, 2004). In this 

migration type, integrin-mediated adhesion is partially dispensable and stable focal 

contacts are not formed, but cell movement is driven by short-lived relatively weak 

interactions with the stromal cell networks in the T- and B-cell areas of the lymphoid 

tissues (Bajenoff et al., 2006; Friedl, 2004; Mempel et al., 2006). The lack of focal 

contacts and high deformability of lymphocytes allow movement at high velocity (2-30 

μm/min) (Bajenoff et al., 2006; Friedl, 2004; Mempel et al., 2006; Miller et al., 2003; 

Miller et al., 2002). Moreover, the fast deformability of lymphocytes allows them to 

overcome matrix barriers by physical mechanisms, that is, adaptation of shape to 

preformed matrix structures (contact guidance), extension of lateral footholds (elbowing), 

and squeezing through narrow spaces (contraction rings). Thus, lymphocyte migration is 

shape-change driven and lymphocytes use protease-independent physical mechanisms 

that allow easy cell traffic toward and between structurally different tissue compartments. 

Among higher eukaryotes, this migration type is found only in lymphocytes and other 

leukocytes, hematopoietic stem cells, and certain tumor cells (Friedl, 2004). 

 



   Introduction 
 

 23  
 

1.2.5.2 Collective cell migration 

Collective movement, which relies on local proteolytic degradation of the extracellular 

matrix  can occur by two-dimensional (a) sheet migration or three-dimensional group 

(Lauffenburger and Horwitz, 1996), or (b) strand/ cohort migration (Adams, 2001). 

However, collective migration of cells is a well-described phenomenon that occurs during 

embryological development (Davidson and Keller, 1999), or during the development of 

glands and ducts of mammary tissue (termed 'branching morphogenesis') (Klinowska et 

al., 1999; Simian et al., 2001) and the sprouting of endothelial cells during the formation 

of new blood vessels (Collen et al., 2003; Hiraoka et al., 1998). 

(a) Multicellular strands/sheets migration: This kind of migration consists of cell sheets 

that extend into tissue, yet maintain contact with the primary tumor to generate local 

invasion. Cells present at the migrating front produce MMPs that generate a path for the 

cells to follow. This type of movement is observed in invasive epithelial cancer such as 

oral squamous cell carcinoma, basal cell carcinoma, melanoma, mammary carcinoma and 

colon carcinoma (Nabeshima et al., 2000). The precise molecular mechanisms underlying 

this coordinated invasion are still largely unknown, mainly due to the difficulties to 

model this complex type of migration in vitro. 

(b) Cluster/ Cohort migration: Collective cell migration, as seen during wound healing and 

during the invasion of epithelial cancer cell, uses the same integrin- and protease-

dependent migration cycle as single-cell migration, but in this migration type the cell 

junctions within the invasive collectives are stabilized by cadherins and gap-junctional 

cell-to-cell communication (Pals et al., 2007). Cellular cohorts are heterogeneous in 

nature with leading, and presumably more motile, cells serving as a guide for following 

cells (path-generating cells) which basically generates migratory traction via pseudopod 

activity and reducing apico-basal polarity. Moreover, cells at the leading edge cluster β1 

integrins in anterior protrusions towards the ECM substrate (Hegerfeldt et al., 2002; 

Klinowska et al., 1999), and show an increased expression and activity of MT1-MMP 

and MMP-2, leading to polarized ECM degradation (Nabeshima et al., 2000). The 

following cells maintain polarity and junctional proteins (Burridge and Chrzanowska-

Wodnicka, 1996). However, communication between cells in a cohort is necessary to 

induce collective rearrangement of their cytoskeletal structures, thereby facilitating 
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collective migration in response to extrinsic guidance cues. Collective cell migration is 

morphologically expressed as either a branch-like extension protruding out of the 

primary tumor mass or as a separate cohort of cells moving through the tumor stroma 

(Friedl and Brocker, 2000). Collective cell migration in vivo may be advantageous for 

cell survival, such as robust protection of the innermost cells in the cluster from 

immunological attack. Additionally, collectively moving cells probably have enhanced 

cell–cell communication in response to micro-environmental cues, due to the 

heterogeneity of leading and following cells. This is beneficial for effective movement 

and invasion beyond the primary tumor, as the less motile cells are influenced by highly 

motile cells (Burridge and Chrzanowska-Wodnicka, 1996; Friedl and Brocker, 2000). 

 

1.2.6 EMT and cancer stem cells 

The cells within a tumor display functional heterogeneity, with different morphology, 

differentiation grade, proliferation rate, and invasiveness (Heppner and Miller, 1983). Recent 

studies suggest that the ability of a tumor to proliferate and propagate relies on a small 

population of stem-like cells, called cancer stem cells (CSCs). CSCs share fundamental 

characteristics with normal adult stem cells: they divide asymmetrically producing one stem cell 

and one progenitor cell (self-renewal). In normal stem cells, this allows the continuation of the 

stem cell compartment and starts the production of cells that undergo multi-lineage 

differentiation. Similarly, CSCs have the ability to perpetually self-renew and to produce tumors 

comprised of cells with different phenotypes. Since their discovery in leukaemia (Bonnet and 

Dick, 1997), the existence of a subpopulation of CSCs has been corroborated in several solid 

tumors, including breast, brain, colon, pancreas, prostate, lung, and head and neck tumors 

(Eramo et al., 2008; Glinsky, 2007; Li et al., 2007; Prince et al., 2007). Several of the molecular 

signaling pathways associated with normal stem cell development, such as Wnt, Shh and Notch, 

are also active in cancer development. Stem cells are notable for the presence of ATP-binding 

cassette transporters, which remove drugs from the cell (Dean et al., 2005).  Cancer stem cells 

maintain this characteristic, which accounts for the ineffectiveness of chemotherapy to destroy 

these cells. Normal stem cells are under tight metabolic control and divide only under specific 

conditions. Cancer stem cells no longer have these controls. Furthermore, like cancer cells, they 

are also resistance to apoptosis. 



   Introduction 
 

 25  
 

While some studies suggest that CSC may arise from the transformation of their normal 

counterparts, recent observations rather suggest that they originate from fully differentiated cells 

through an adaptive trans-differentiation program such as EMT (Mani et al., 2008; Morel et al., 

2008; Vesuna et al., 2009). 

 
 

 

 

 

 

 

 

 

 

Cells that have undergone an EMT were thus found to form mammospheres in low adherent 

conditions and to be highly tumorigenic when orthotopically xenografted at limit dilution in nude 

mice. They additionally display a CD44high CD24low antigenic phenotype that was previously 

allotted to mammary CSCs (Al-Hajj et al., 2003). Several lines of evidence exist where it has 

been shown that these cells are resistant to chemotherapy and do not undergo apoptosis. EMT 

Figure 5: (A) The “cancer stem-cell theory” is based on the assumption that during tissue regeneration, the 

amplification of progenitor cells opens a window of time suitable for accumulating genetic alterations, leading to 

the emergence of cancer cell-stems (CSCs). CSCs would thus initiate and sustain tumour growth. (B) Alternatively, 

under stress conditions, fully differentiated cells reacquire stem-like properties, including self-renewal. This gain of 

function is influenced by cellular intrinsic properties as well as micro-environmental conditions. These cells could 

potentially be prone to transformation and give rise to CSCs. Both models are not exclusive. CSCs and cell 

dedifferentiation would thus constitute the initial and secondary tumour drivers, respectively. 
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being by definition a reversible process, these cells continuously generate CD44low CD24high 

epithelial cells that interestingly lack a tumorigenic potential (Mani et al., 2008; Morel et al., 

2008; Vesuna et al., 2009). In regards to the EMT-associated properties, the trans-differentiation 

process is thus considered as a biological process able to convert differentiated epithelial cells 

into CSCs. EMT being strongly impacted by micro environmental conditions, the balance 

between differentiated cells and CSCs was then proposed to be a highly dynamic process with 

important repercussions on therapeutic approaches, eradication of the entire primary tumor, 

including differentiated cells, being henceforth a requisite to prevent recurrence (Gupta et al., 

2009a). 

The key roles of CSCs in breast cancer biology suggest that new therapies must target these 

cells. The main objective of those therapies would be the eradication of the CSC compartment 

with no harm to other cell types. Eradication of breast CSCs may include different strategies as 

summarized in Table 1. 

 Different approaches have been used to overcome ABC transporter-mediated chemoresistance. 

The anthracycline-modified drug annamycin, which is not extruded by ABC transporters, is toxic 

to the resistant cell line MCF-7/VP (Perez-Soler et al., 1997). The plant alkaloid berberine 

decreases the expression of the ABCG2 transporter and reduces the “side population” of the 

MCF-7 cell line (Kim et al., 2008a; Kim et al., 2008b), suggesting that downregulation of ABC 

transporters may be useful for targeting breast CSCs. However, the ability to target drug 

transport in CSCs may be difficult since these cells express multiple ABC transporters (de 

Grouw et al., 2006). The use of inhibitors of ABC transporters simultaneously with anticancer 

drugs is an efficient approach to overcome resistance in vitro and in animal models (Ozben, 

2006). However, clinical trials with this kind of inhibitors have shown that they produce serious 

side effects (Ozben, 2006). High-throughput screening identified the ionophore salinomycin as 

toxic to breast CSCs (Gupta et al., 2009b). Salinomycin induces caspase-independent apoptosis 

in human cancer cells of different origins that display multiple mechanisms of drug resistance, at 

concentrations that do not affect normal cell viability (Fuchs et al., 2009). Subsequent studies 

have shown that salinomycin induces a conformational change of the ABC transporter 

MDR1/ABCB1 that reduces its activity (Riccioni et al., 2010). Therefore, salinomycin is 

particularly effective at inducing apoptosis in leukemia cells that display ABC transporter-

mediated drug-resistance (Fuchs et al., 2010). Targeting CSCs through their specific markers 
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was partially succesful in acute myeloid leukemia (AML) (Sperr et al., 2005; Tsimberidou et al., 

2006). Cytotoxic antibodies directed against CD33 (a common marker in leukemic stem cells) 

induced remission in some patients. However, the antibody produced cytopenia due to its effects 

on normal hematopoietic stem cells (Sperr et al., 2005; Tsimberidou et al., 2006). Similarly, a 

monoclonal antibody against CD44 induced terminal differentiation and apoptosis of AML cells 

in engrafted mice (Jin et al., 2006). Anti-CD44 antibodies conjugated with cytotoxic drugs or 

radiolabels have shown to reduce disease progression in breast cancer patients and animal 

models (Platt and Szoka, 2008). Other potential targets in breast CSC therapy include molecules 

that participate in self-renewal and cell fate. Inhibition of Hedgehog signaling in xenografts 

established from pancreatic cancer cell lines reduced the number of ALDH-overexpressing cells 

(Feldmann et al., 2008). The promoters of the MDR, hTERT, and Cox-2 genes are active in 

breast CSCs. Oncolytic adenoviruses driven by these promoters were effective in killing 

CD44+/CD24-/low cells in vitro, and reducing tumor growth in vivo (Bauerschmitz et al., 2008). 

Interruption of signals generated in the CSC microenvironment using antibodies or soluble 

ligands against adhesion receptors may be useful in CSC targeting. α6-integrin inactivation with 

antibodies or siRNA abrogated mammosphere-forming ability and tumorigenicity of breast 

cancer cells (Cariati et al., 2008). The IL-8 receptor CXCR1 inhibitor repertaxin reduced the 

breast CSC population, producing apotosis in the tumor population, and reduced metastasis 

(Ginestier et al., 2010). 

Metformin is an anti-diabetic drug that has found to reduce breast cancer incidence and improve 

survival of breast cancer patients with type 2 diabetics (Vazquez-Martin et al., 2010). Recent 

studies showed that the drug metformin selectively reduces the breast CSC population. In human 

breast cancer cell lines, metformin reduced the CD44+/CD24- population and their ability to 

form mammospheres (Hirsch et al., 2009). In a xenograft mice model, concurrent treatment with 

metformin and doxorubicin reduced tumor mass much more effectively than either drug alone 

(Hirsch et al., 2009). Metformin also targeted traztasumab-resistant CSCs that overexpressed 

HER-2 (Vazquez-Martin et al., 2011). The mechanism involved in the metformin effects on 

CSCs is unclear, but seems to be associated with its activator effect on AMP-activated kinase 

(AMPK) (Vazquez-Martin et al., 2010). AMPK phosphorylates and inhibits Acetyl CoA 

carboxylase (ACACA), the limiting enzyme of the fatty acid synthesis. Thus, metformin may be 
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affecting cancer cell metabolism and functioning on lipid raft platforms (Vazquez-Martin et al., 

2010). 

 

Table 1: Strategies for the eradication of CSCs. 

 
 

 

1.2.7 EMT and MicroRNAs 

miRNAs are highly conserved, small 17–25-nucleotide non-coding RNA molecules which are 

able to control gene expression at the post-transcriptional level by specifically interacting with a 

target mRNA. It is estimated that miRNAs regulate 30% of all proteins in humans (Lewis et al., 

2005). They play a pivotal role in regulation of key processes including cell differentiation, 

proliferation, apoptosis, angiogenesis, and the cell cycle (Esquela-Kerscher and Slack, 2006; 

Johnson et al., 2007; Wang and Olson, 2009).  

Beyond their roles in physiological processes, many miRNAs have been shown to be aberrantly 

expressed in various pathologies including cancer (Calin and Croce, 2006; Cho, 2010a; Cho, 

2010b; Shenouda and Alahari, 2009) and usually present in the chromosomal regions which are 

prone to deletion, amplification, or translocation, e.g., during the development of tumors (Calin 

et al., 2004). This has led to the identification of “miRNA signatures” that are characteristic for 
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certain tumors and allow their further classification (Calin and Croce, 2006; Lu et al., 2005). 

miRNAs can act as oncogenes or tumor-suppressors and influence the tumorigenesis process 

when down or upregulated, respectively. They can also affect the sensitivity of tumor cells to 

cytostatics or radiotherapy (Trang et al., 2008; Weidhaas et al., 2007).  For many miRNAs, target 

genes have been identified which are relevant in tumorigenesis, tumor growth, tumor 

angiogenesis and metastasis such as p53 (Le et al., 2009), p63  

 

Table 2: miRNAs relevant in tumor cell invasion and metastasis (Adapted from A. Aigner, 2011) 
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(Manni et al., 2009; Papagiannakopoulos et al., 2008; Scheel et al., 2009), Hmga2, Myc and Ras 

(Bussing et al., 2008) as well many of them are regulated by upstream regulators such as EGFR 

(Wang and Olson, 2009), Myc (Chang et al., 2008; Ma et al., 2010; Sampson et al., 2007) and 

NFκb (Zhang et al., 2009) which are also shown to affect tumorigenicity (Table 2). Furthermore, 

some of these molecules are involved in processing of miRNA by regulating the major 

components of the miRNA processing machinery including Drosha-DGCR8, Dicer-TRBP2, and 

Ago proteins (Boominathan, 2010). microRNA-like miR-31 has been shown to involved in 

regulation of three different steps of metastasis, i.e., invasion, extravasation, survival, and 

colonization by targeting three different molecules, integrin-α5 (ITGA5), radixin (RDX), and 

RhoA (Valastyan et al., 2010). Moreover, in some cases, auto-regulatory feedback loops have 

been observed, like for let-7 which inhibits metastasis by downregulating Myc, with Myc in turn 

transcriptionally and post-transcriptionally inhibiting let-7. A similar double-negative feedback 

loop is also observed for the miR-200 family, with ZEB1 and ZEB2 being a target of miR-200 

which, at the same time, are transcriptional repressors of both miR-200 gene clusters (Burk et al., 

2008; Wellner et al., 2009). Since ZEB1/ZEB2 are relevant in the EMT transition, this directly 

affects the epithelial vs. mesenchymal status of tumor cells and thus their migratory potential. 

However, other studies have demonstrated a miR-200-mediated increase in metastasis of 

mammary carcinoma cell lines (Dykxhoorn et al., 2009). An approach to reconcile those 

seemingly contradicting findings focuses on the different steps during metastasis. E-cadherin, a 

key molecule in EMT, is also regulated by several other miRNAs including miR-101 via Ezh2 

(Varambally et al., 2008) or miR-9 (Ma et al., 2010). Together, these data underscore the 

importance of miRNA in EMT and carcinogenesis. 

 

1.2.8 EMT and splicing factors 

Splicing aberrations have been associated with several diseases, including cancer, where altered 

splicing can lead to production of protein isoforms with oncogenic properties (Pajares et al., 

2007). 41 breast cancer-specific markers have been identified that can discriminate between 

normal breast tissue and ductal breast tumors (Venables et al., 2008). Furthermore, luminal and 

basal B cell lines could be distinguished based solely on their splicing patterns. Therefore, it 

appears likely that alternative splicing analysis will dramatically increase the pool of potential 

biomarkers for cancer diagnostics.  
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Since EMT is considered an early event in the metastatic process, splicing changes associated 

with EMT in particular have the potential to become useful prognostic and diagnostic markers 

for breast cancer metastasis. Fibroblast growth factor-2 (FGFR2) was the first gene to be 

associated with splicing and EMT (Savagner et al., 1994). Alternative splicing of the third Ig-like 

domain determines the ligand-binding specificity of the receptor and generates the IIIb or the IIIc 

isoform of the FGFRs. The IIIb isoforms are usually expressed in epithelial cells, whereas the 

IIIc isoforms are normally expressed in mesenchymal cells. In contrast, the ligands for the IIIb 

isoforms are usually expressed in mesenchymal cells and the ligands for the mesenchymal-

restricted IIIc isoforms in epithelial cells. In this way, FGFR signaling functions in a paracrine 

manner between the epithelial and mesenchymal cells. A switch from one isoform to another can 

thus lead to autocrine signaling. Exon switching in epithelial cells from the epithelial FGFR2 IIIb 

isoform to the mesenchymal FGFR2 IIIc isoform by alternative splicing has been described in rat 

models of prostate and bladder cancer (Oltean et al., 2006; Savagner et al., 1994). After the 

discovery of FGFR2, many other genes such as ENAH1 (also known as Mena) and CTNND1 

(also known as p120) are also shown to be regulated by alternative splicing. ENAH1 belongs to 

Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family and regulates actin 

organization. Human Mena (hMena) is overexpressed in human breast tumors, and a splice 

variant termed hMena+11a was recently isolated from a breast cancer cell line with an epithelial 

phenotype (Pino et al., 2008). Similar to ENAH1, p120 can be spliced into isoform 1 and 3. 

Isoform 3 is expressed in epithelial cells while isoform 1 is expressed in mesenchymal cells 

(Keirsebilck et al., 1998).  Cell surface marker CD44 also undergoes splicing events and leads to 

the formation of CD44s and CD44v isoforms. The CD44s form is prominent in mesenchymal 

cells while CD44v in epithelial cells (Brown et al., 2011). Two recently described RNA binding 

proteins, ESRP1 and ESRP2 (epithelial splicing regulatory protein 1 and 2) have taken a central 

role in controlling splicing during EMT (Warzecha et al., 2010; Warzecha et al., 2009). In 

addition to the tight transcriptional regulatory control of EMT inducers, ESRP1 and ESRP2 exert 

an additional control to maintain epithelial homeostasis by promoting the splicing of epithelial-

specific forms of EMT-associated genes including MENA, CD44, FGFR2 and CTNND1 

(Warzecha et al., 2010; Warzecha et al., 2009). The RBFOX2 splicing factor has recently been 

demonstrated to regulate subtype-specific splicing in a panel of breast cancer cell lines (Lapuk et 

al., 2010). Shapiro and colleagues recently showed that EMT-associated splicing is likely to be 
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regulated by several splicing factors, including the ESRPs and members of the RBFOX, CELF, 

MBNL and hnRNP classes of splicing factors (Shapiro et al., 2011). These findings suggest that 

alternative splicing is an additional mechanism to control epithelial plasticity. 

 

1.3 TGF-β: its role in tissue homeostasis and cancer cell invasion 

 

1.3.1 Dual role of TGF-β 

TGF-β plays a central role in various biological processes including development, tissue 

homeostasis, immune system and cancer. In normal and premalignant cells, TGF-β enforces 

homeostasis and suppresses tumor progression directly through cell-autonomous tumor-

suppressive effects (cytostasis, differentiation, apoptosis) or indirectly through effects on the 

stroma (suppression of inflammation and stroma-derived mitogens) (Derynck et al., 2001; 

Massague, 2008; Siegel and Massague, 2003). However, when cancer cells lose TGF-β tumor-

suppressive responses, they can use TGF-β to their advantage to initiate immune evasion, growth 

factor production, differentiation into an invasive phenotype, and metastatic dissemination or to 

establish and expand metastatic colonies (Pardali and Moustakas, 2007; Thiery, 2002; Yang and 

Weinberg, 2008). 

 

1.3.2 TGF-β signaling 

The human TGF-β family can be sub-divided into two groups. Activin, nodal, lefty, myostatin 

and TGF-β belong to one group while bone morphogenetic proteins (BMPs), anti-muellerian 

hormone (AMH), and various growth factors and differentiated factors (GDFs) are belonging to 

the other. All these cytokines are well known to regulate various biological processes like cell 

proliferation, apoptosis, differentiation, angiogenesis and migration. Each ligand presents unique 

features of action, while they all share a common machinery to transmit intracellular signals, the 

TGF-β receptor complex. TGF-β can elicit its signaling either by using a canonical signaling 

pathway where it interacts with Smad proteins or via a non-canonical signaling where it interacts 

with non-smad proteins (Figure 6). These two modes of regulation result in immense complexity 

and variability of TGF-β signaling and its ability to control various cellular processes. 
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1.3.3. Canonical TGF-β signaling 

There are three variants of TGF-β: TGFβ1, TGFβ2 and TGFβ3 and all of them are synthesized as 

precursor molecules containing a propeptide region in addition to the TGF-β homodimer (Ulloa 

and Tabibzadeh, 2001). After it is synthesized, the TGF-β homodimer interacts with a Latency 

Associated Peptide (LAP) [a protein derived from the N-terminal region of the TGF-β gene 

product] forming a complex called Small Latent Complex (SLC). This complex remains in the 

cell until it is bound by another protein called Latent TGF-β-Binding Protein (LTBP), forming a 

larger complex called Large Latent Complex (LLC). It is LLC that gets secreted to the ECM 

(Laping et al., 2002). In most cases, before the LLC is secreted, the TGF-β precursor is cleaved 

from the propeptide but remains attached to it by noncovalent bonds (Blobe et al., 2001). After 

its secretion, it remains in the extracellular matrix as an inactivated complex containing both the 

Figure 6: Schematic diagram of TGF-β signaling from Cell membrane to the nucleus 
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LTBP and the LAP which needs to be further processed in order to release active TGF-β. The 

attachment of TGF-β to the LTBP is by disulfide bonds which allow it to remain inactive by 

preventing it from binding to its receptors. Because different cellular mechanisms require distinct 

levels of TGF-β signaling, the inactive complex of this cytokine gives an opportunity for a 

proper mediation of TGF-β signaling. 

Active TGF-β binds to two related receptors, namely TGFβRI and TGFβRII [(also known as 

activin receptor-like kinase 5 (ALK5)], which are serine/threonine kinases. Upon TGF-β binding, 

TGFβRI and TGFβRII form hetero-tetrameric complexes of two identical TGFβRI/TGFβRII 

receptors heterodimers. This binding causes the specific phosphorylation of serine and threonine 

residues of TGFβRI via TGFβRII, which further leads to rotation of the receptors so that their 

cytoplasmic kinase domains are arranged in a catalytically favorable orientation. Furthemore, 

TFGβRI phosphorylates effector proteins such as the receptor-associated Smad proteins 

(RSmads). Activated R-Smads subsequently interact with the common mediator Smad 4, 

translocate into the nucleus and control the transcriptional expression of various genes (Itoh et 

al., 2001). In addition, canonical TGF-β signaling is tightly regulated by specialized factors such 

as Smad6 and Smad7 which control the signaling by competing with Smad4 for binding to 

receptor-activated Smad1 or via recruiting the Smurf to TGF-β and BMP receptors for 

inactivation, respectively (Massague, 2008). 

 

1.3.3.1. Canonical TGF-β signaling mediated cell-cycle arrest 

In epithelial cells, TGF-β infers its cytostatic role via mobilization of cyclin-dependent kinase 

inhibitors (CDKI) such as p21CIP1 that targets cyclinE/A-cdk2 complexes for inhibition, or 

p15INK4B which inhibits cyclinD-cdk4/6 complexes. TGF-β may also suppress c-Myc and it is 

demonstrated that coordinated activity of Smad3/4, retinoblastoma-like 1 (p107) and the 

transcription factors E2F4/5 and C/ EBPβ may downregulate c-Myc (Chen et al., 2002; Gomis et 

al., 2006b). 

 

1.3.3.2. Canonical TGF-β signaling mediated apoptosis 

Many apoptotic genes such as GADD45β; Bim (Bcl-2 homolog domain-only factor); DAPK 

(death-associated protein kinase) and SHIP are regulated by TGF-β. All these factors, except 

SHIP are controlled by canonical mitochondrial cytochrome C release and consequent activation 
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of induction of caspase-mediated apoptosis. The lipid phosphatase SHIP promotes apoptosis by 

inhibiting PI3K activity, thereby blocking its survival promoting signaling (Pardali and 

Moustakas, 2007). 

 

1.3.4. Non-canonical TGF-β signaling 

The TGF-β receptor complex interacts with various non-Smad signaling proteins, including 

receptor tyrosine kinases (RTKs), cytoplasmic adapter proteins and G-protein-coupled receptors. 

Each of these interaction partners can be activated upon TGF-β binding to the TGF-β receptor 

complex and emit signals which can act independently or can interfere with canonical TGF-β 

signaling. Among well-known signaling pathways which are triggered by non-canonical TGF-β 

signaling are the MAPK, PI3K and Rho-like GTPase signaling pathways (Zhang, 2009). 

 

1.3.4.1. TGF-β-induced MAPK activation 

TGF-β can induce phosphorylation of tyrosine residues on both type I and type II receptors. The 

phosphorylated tyrosines are capable of recruiting the adapter proteins such as growth factor 

receptor binding protein 2 (Grb2) and Src homology domain 2 containing protein (Shc) which 

can further activate Erk through Ras, Raf and their downstream MAPK cascades. Erk activation 

is one of the non-smad pathways necessary for TGF-β mediated EMT (Davies et al., 2005; 

Zavadil et al., 2001). It is required for disassembly of cell adherens junctions, modulation of cell-

matrix interactions, increased motility and endocytosis (Zavadil et al., 2001). 

 

1.3.4.2. TGF-β-induced JNK/p38 activation 

Another interaction partner of the activated TGF-β-receptor complex is the adapter protein and 

E3 ligase TRAF6. Interaction of TRAF6 to the activated TGF-β receptors can induce the poly-

ubiquitination of TRAF6. Poly-ubiquitinated TRAF6 recruits TGF-β activated kinase 1 (TAK1) 

to activate the c-Jun N-terminal kinase (JNK) and MAPK p38 through induction of MAPKKs 

MKK4 and MKK3/6. The TRAF6-TAK1-JNK/p38 pathway is known to conjugate with 

canonical TGF-β signaling to induce TGF-β mediated apoptosis (Liao et al., 2001). 

Downregulation of TRAF6 and p38 prevent EMT and impair the EMT associated cytoskeleton 

re-modeling (Bakin et al., 2002; Yamashita et al., 2008; Yu et al., 2002). 
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1.3.4.3. Rho-like GTPases in TGF-β mediated EMT 

Par6, a scaffold protein regulating epithelial cell polarity, interacts with TGFβRI at tight 

junctions. TGF-β stimulation induces the assembly and accumulation of the TGF-β receptor 

complexes at tight junctions, where TGFβRII phosphorylates Par6. Upon phosphorylation, Par6 

recruits the E3 ubiquitin ligase Smurf1 to the activated receptor complex and mediates 

ubiquitination and turnover of RhoA, which finally enables TGF-β-dependent dissolution of tight 

junctions, a prerequisite for EMT (Ozdamar et al., 2005). TGF-β also induces the dissolution of 

tight junctions during EMT by recruiting Cdc42 to the receptor complex, and by triggering 

degradation of RhoA at cellular protrusions (Barrios-Rodiles et al., 2005; Wilkes et al., 2003). 

 

1.3.4.4. TGF-β-induced PI3K activation 

TGFβRII was found to be constitutively associated with p85, the regulatory subunit of PI3K. 

Upon TGF-β binding of the TGF-β receptor complex, PI3K becomes activated leading the 

activation of mammalian target of rapamycin (mTOR). mTOR is a key regulator of protein 

synthesis via phosphorylation of S6 kinase (S6K) and eukaryotic initiation factor 4E-binding 

protein (4E-BP1). The activation of S6K and 4E-BP1 by mTOR enhances translational capacity 

and protein synthesis, which is important for TGF-β-induced EMT (Lamouille and Derynck, 

2007). Furthermore, activation of PI3K protects cells from TGF-β-induced apoptosis and growth 

inhibition by regulating canonical TGF-β signaling or via inhibition of the transcription factor 

FoxO, which is essentially involved in TGF-β mediated cell-cycle arrest (Conery et al., 2004; 

Gomis et al., 2006a; Remy et al., 2004; Seoane et al., 2004). 

 

1.4 Epigenetic regulation of gene transcription  

Transcriptional regulation in higher eukaryotes occurs in the context of a chromatinized DNA 

template. While genetic information provides the basic information to encode cellular contents, 

the epigenetic information defines how, when and where this information has to be used. While 

histones were historically assumed to be simply a DNA packaging material, recent years have 

witnessed several molecular pathways that modify histones and DNA in a dynamic manner. 

Indeed several recent studies established that promoter sequences in eukaryotic genomes show 

characteristic patterns of histone modifications that associate with active or inactive state of the 

linked gene (Suganuma and Workman, 2011). Such modifications of DNA that are heritable, but 
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do not involve changes in the DNA sequence are referred to as ‘epigenetic’ modifications. 

Several studies conclude that one of the main functions of epigenetic modifications is to regulate 

the accessibility of DNA for regulatory factors (Suganuma and Workman, 2011). 

 

1.4.1 Epigenetic modifications of chromatin 

The fundamental building blocks of chromatin are the nucleosomes, which consist of globular 

histone protein cores around which the DNA is wrapped 1.65 times, corresponding to 147bp of 

DNA. These histone cores are composed of an octamer with two copies of each of the four 

highly conserved canonical histones H2A, H2B, H3 and H4 (Luger et al., 1997).The individual 

histones have a positively charged globular histone-fold domain which binds to the negatively 

charged DNA via electrostatic interactions. The unstructured C- and N-terminal histone tails, 

parts of which protrude outside of the nucleosomes, are subject to various post-translational 

modifications. These modifications affect the affinity of histones to DNA, the interaction with 

neighboring nucleosomes, chromatin higher order packaging and/or the recruitment of chromatin 

binding proteins. If not further compacted, the nucleosomes are arranged in a linear fashion 

along the DNA molecule, leading to a so-called “beads-on-a-string” structure with 10-60 bp of 

“free” linker DNA between the individual nucleosomes. This form of chromatin is generally 

found at active genes. Upon incorporation of histone H1 the chromatin structure can be further 

compacted. H1 binds to the linker DNA between the nucleosomes and leads to a transcriptionally 

inert higher order structure termed 30nm fiber (Robinson and Rhodes, 2006). 

Histones contain over 60 residues under post-translational modification (PTMs) such as  

acetylation, methylation, ubiquitination, phosphorylation, sumoylation and others (Kouzarides, 

2007). The N-terminal tails of histone H3 and H4 are the major substrates for such modifications 

as these protrude out of the nucleosomes cores. This further allows PTMs to be accessible to 

non-histone proteins that recognize these modifications and are recruited to chromatin. A second 

possible regulatory role of PTMs is direct interference with binding of DNA around nucleosomes 

via altering the electric charge of histones.  

Historically, chromatin modifications and the overall chromatin structure were thought to be 

stable and simply providing a structural scaffold. The discovery of the yeast transcriptional 

coactivator Gcn5 to mediate histone acetylation (Brownell et al., 1996) and of the corepressor 

Rpd3 to mediate histone deacetylation (Taunton et al., 1996) provided the one of the first 
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evidences directly linking transcriptional regulation to histone modifications. Soon, Suv39h, a 

previously identified transcriptional regulator and suppressor of variegation in Drosophila 

(Tschiersch et al., 1994), and its yeast homolog Clr4 were identified as methylases specific for 

lysine 9 at histone H3 [H3K9; (Rea et al., 2000)]. These findings led to a new era of research 

focusing on chromatin-mediated transcription regulatory mechanisms. Importantly, the recent 

years witnessed the discovery of histone demethylases, which argued for a dynamic nature of 

PTMs (Shi et al., 2004). Some of the well-studied PTMs are discussed below.  

 

1.4.1.1 Histone Acetylation: Lysines contribute largely to the overall positive charge of histone 

octamers and thus are crucial for binding the negatively charged phosphate backbone of DNA. 

The histone-DNA interactions need to be modified in order to facilitate DNA-template processes 

such as transcription, replication and DNA repair. All four core histones bear lysine residues 

which are subject to acetylation (Figure 7) and deacetylation by specific histone 

acetyltransferases (HAT) and deacetylases (HDAC)  respectively (Kouzarides, 2007). Generally, 

lysine acetylation of histones H2B, H3 and H4 are highly correlated with transcriptionally active 

state (Pokholok et al., 2005; Schubeler et al., 2004; Wang et al., 2008). It is thought that 

acetylation of lysine neutralizes the positive charge which lowers the electrostatic interactions 

with the negatively charged phosphate backbone of DNA and thus weakens the DNA-histone 

interaction. Indeed, acetylation was shown to increase DNA accessibility, destabilize 

nucleosomes and lead to an increase of non-histone protein binding to DNA in vitro (Lee et al., 

1993; Vettese-Dadey et al., 1996; Wolffe and Hayes, 1999). Thus, it is conceivable that 

acetylation of individual lysines conveys little specificity, but rather the cumulative effect of 

acetyl groups at multiple lysines would be important for regulating DNA accessibility. 

The acetylation of lysine 16 of histone H4 (H4K16) stands as an exception, since it has been 

shown to directly interfere with higher order chromatin structure formation via preventing 

interactions between neighboring nucleosomes (Robinson et al., 2008; Shogren-Knaak et al., 

2006). H4K16 acetylation has also been shown to play a specific role in Drosophila dosage 

compensation (Bell et al., 2008; Kind et al., 2008). A number of chromatin-associated proteins 

contain highly conserved Bromodomains which specifically bind to acetylated lysines, raising 

the possibility that acetylation may have much more regulatory potential than discovered so far 

(Taverna et al., 2007). 
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However, the data suggest that an “acetylation-code” (Kurdistani et al., 2004) may not exist. 

Genomewide data revealed that histone H3 and H4 lysine acetylation marks largely overlap and 

highly correlate with transcription (Wang et al., 2008). Furthermore, genetic substitution of 

individual lysines did not produce specific phenotypes in yeast (Dion et al., 2005). Together, 

these observations argue for a model where acetylation marks seems to have an additive 

function. Noteworthy, this does not hold true for certain specific functions for a few individual 

acetylated lysines such as H4K16ac in higher order chromatin compaction (Shogren-Knaak et 

al., 2006) and H3K56ac in nucleosome assembly during DNA repair (Das et al., 2009). 

 

Figure 7: A number of distinct post-translational modifications are known to occur at the N-terminus of canonical 

histones including acetylation (ac), phosphorylation (ph), methylation (me) and monoubiquitunation. Adapted from 

Bhaumik et.al 2007. 
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1.4.1.2 Histone Phosphorylation: In contrast to our knowledge about acetyltransferases and 

deacetylases, not so much is known about the enzymes involved in other histone modifications. 

Important progress has been made, however, towards understanding the role of histone 

phosphorylation in processes such as transcription, DNA repair, apoptosis and chromosome 

condensation (Cheung et al., 2000b). 

Phosphorylation of Histone 3 Serine 10 (H3S10) is a previously described hallmark of 

condensed mitotic chromosomes, which however in contrast, is also known to associate with 

relaxed chromatin and active transcription in interphase cells (Baek; Nowak and Corces, 2004; 

Prigent and Dimitrov, 2003; Thomson et al., 1999; Zhang et al., 2006). A number of other 

signaling kinases including PIM1, IKKa, MSK1/2, PKB/Akt, and Rsk2 have previously been 

reported to modify H3S10 (Anest et al., 2003; Cerutti and Casas-Mollano, 2009; Dyson et al., 

2005; Perez-Cadahia et al., 2009; Sassone-Corsi et al., 1999; Yamamoto et al., 2003; Zippo et 

al., 2007). Upon activation in response to upstream signals, these kinases were shown to 

phosphorylate H3S10 that accompanies proper gene expression responses (Anest et al., 2003; 

Cerutti and Casas-Mollano, 2009; Dyson et al., 2005; Perez-Cadahia et al., 2009; Sassone-Corsi 

et al., 1999; Yamamoto et al., 2003; Zippo et al., 2007) in a paradigm that further applies to a 

MAP kinase, JNK, that was recently shown to directly bind chromatin and phosphorylate H3S10 

for gene activation (Tiwari et al, Nature Genetics, in press). 

A number of mechanisms have been proposed by which such phosphorylation may result in 

transcriptional activation. The addition of negatively charged phosphate groups to histone tails 

was thought to neutralize their basic charge and thus reduce their affinity for DNA. Furthermore, 

several acetyltransferases have been shown to exert increased HAT activity on serine 10-

phosphorylated substrates and that mutation of serine 10 decreased activation of Gcn5-regulated 

genes (Cheung et al., 2000c; Lo et al., 2000). This suggests that phosphorylation may contribute 

to transcriptional activation through the stimulation of HAT activity on the same histone tail. 

This is supported by the observed phosphoacetylation of histone H3 on c-fos- and c-jun-

associated nucleosomes upon gene activation (Clayton et al., 2000). Importantly, high H3 Serine 

10 phosphorylation levels during M phase block binding of the heterochromatic protein 

HP1(Fischle et al., 2005), while reduced levels of the interphase histone H3S10 kinase, JIL-1, 

leads to spreading of the major heterochromatin markers H3K9me2 and HP1 to ectopic locations 
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(Zhang et al., 2006). These findings implied that H3S10 phosphorylation prevents ectopic 

recruitment or spreading of heterochromatic factors such as HP1 and thereby contributes to an 

active transcription state. 

Phosphorylation of H2A at Serine 10 has been correlated with mitotic chromosome condensation 

(Cheung et al., 2000b). For example, mutation of serine 10 in Tetrahymena histones causes 

abnormal chromosomal condensation and defective chromosome separation during anaphase. 

The Ipl1/aurora kinase in yeast and nematodes and the NIMA kinase in Aspergillus nidulans 

were shown to regulate H3 serine 10 phosphorylation and the expression of these enzymes 

correlated with mitosis (De Souza et al., 2000; Hsu et al., 2000). Disregulation of Ipl1 or NIMA 

results in disruption of chromosome condensation or segregation during mitosis. This mark was 

shown to be dephosphorylated by the protein phosphatase Glc7/PP1 after mitosis.  

The activation of DNA-damage signaling pathways was also show to result in phosphorylation 

of histone H3. A conserved motif (ASQE, in the single-letter amino-acid code) found in the 

carboxyl terminus of yeast H2A and the mammalian H2A variant H2A.X was shown to be 

rapidly phosphorylated upon exposure to DNA-damaging agents (Downs et al., 2000; Rogakou 

et al., 1999). In yeast, Mec1 phosphorylates Serine 10 in response to damage and this is required 

for efficient non-homologous end-joining repair of DNA. This suggests that phosphorylation 

mediates an alteration of chromatin structure, which in turn facilitates repair.  

1.4.1.3 Histone Methylation: Methylation of histones can either occur at lysine or arginine 

residues (Figure 7). In contrast to acetylation, mono- (me1), di- (me2) and tri-methylation (me3) 

states of the same residue are observed. These differential methylation states present another 

level of regulatory potential which indeed appears to be exploited. Several lysines display 

diverging functions and localization in the genome depending on their methylation state (Barski 

et al., 2007; Peters and Schubeler, 2005). Arginine methylation is performed by protein arginine 

methyltransferases (PRMTs) and is antagonized by PADI4 (Klose et al., 2006; Zhang and 

Reinberg, 2001). Lysine methylation is carried out by specific lysine methyltransferases (KTMs), 

which all contain a conserved SET-domain with the exception of Dot1/KTM4 (Zhang and 

Reinberg, 2001). Lysine methylation can be removed by two distinct classes of histone 

demethylases (KDMs): the LSD1 enzyme and the JmjC protein family (Klose et al., 2006). In 
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contrast to acetylation, methylation cannot neutralize the nucelosomal charge and has been 

proposed to function via recruiting chromatin modifying and regulatory proteins. Till date, three 

protein domains have been found to specifically recognize methylated lysines: tudor-domains, 

chromo-domains and PHD-finger domains. Each domain has characteristic affinities for different 

lysines and methylation states which further depend on other domains of the respective protein 

and its interaction partners (Martin and Zhang, 2005; Taverna et al., 2007). 

Genomewide location analysis experiments have revealed that active genes are enriched with 

methylation of lysine 4 of histone H3 (H3K4), H3K36 and H3K79 (Barski et al., 2007; Pokholok 

et al., 2005; Saunders et al., 2006; Schubeler et al., 2004). In yeast, Set1 and Set2 methylate 

H3K4 and H3K36 respectively which in turn directly interact with factors bound to the Pol II 

complex (Krogan et al., 2003a; Krogan et al., 2003b). Genetic evidence also predicts a 

recruitment of Dot1 (a H3K79 KMT) to chromatin via Pol II (van Leeuwen et al., 2002). 

H3K36me and H3K79me display a broader distribution within the gene body, starting just 

downstream of the H3K4me2/3 peak (Bell et al., 2007; Wirbelauer et al., 2005). Consistent with 

a role for H3K36me in transcription, data from yeast denote that H3K36me prevents cryptic 

initiation via recruiting a histone deacetylase to the body of genes, which presumably leads to a 

less accessible chromatin structure (Carrozza et al., 2005). 

H3K4 methylation is thought to function in transcriptional activation pathways since many 

chromatin remodeling and co-activator complexes contain H3K4me2/3 recognition modules. For 

example a PHD-domain in the NURF chromatin remodeling complex specifically recognizes 

H3K4me3 and might facilitate transcriptional activation via opening the chromatin structure 

around H3K4me2/3 modified promoters (Wysocka et al., 2006). 

Inactive loci display a different set of methylation marks mainly consisting of methylation of 

H3K9, H4K20, and H3K27. H3K9 and H4K20 di- and tri-methylation play essential roles in 

heterochromatin maintenance at pericentromeric repeat regions and are further present at 

repetitive, transposable and retroviral elements in mammalian genomes (Lehnertz et al., 2003; 

Mikkelsen et al., 2007; Peters et al., 2003). Very rarely, only certain regulatory regions have 

been identified to be methylated at H3K9 and/or H4K20 and are mostly CpG-poor promoters of 

large gene families such as the olfactory receptor clusters or zinc finger proteins (Mikkelsen et 

al., 2007; Vogel et al., 2006), suggesting that  this is likely resulting from the repetitive nature of 
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their genomic organization. H3K9 methylation is carried out by 5 known KMTs with distinct 

specificities: Suv39h1 and Suv39h2 largely contribute to the methylation in constitutive 

heterochromatin in pericentric and telomeric regions. G9a, GLP and Setdb1 rather localize to 

euchromatin and have roles in silencing of repetitive and retroviral elements (Kouzarides, 2007). 

H3K9me2/3 was also shown to recruit HP1 to chromatin, which is an integral component of 

heterochromatin and essential for repression (Lachner et al., 2001). Furthermore, direct 

interactions between DNMT1 and the H3K9 KMT G9a, and between DNMT3b and HP1 have 

been reported (Esteve et al., 2006; Lehnertz et al., 2003), suggesting that H3K9 methylation 

crosstalks to DNA methylation. The interaction between DNMT3b and HP1 was shown to be 

important for a correct establishment of pericentric heterochromatin (Lehnertz et al., 2003). 

According to a model by Feldman and coworkers, G9a complex methylates H3K9, which then 

recruits HP1. Subsequently, HP1 recruits DNMTs to mediate stable repression by DNA 

methylation (Cedar and Bergman, 2009; Feldman et al., 2006). Though attractive, this model 

needs further experimental validation. H3K27 di- and tri-methylation in turn is excluded from 

regions carrying H3K9 methylation and predominantly localizes to CpG-rich regions, which 

strongly implies different functions of these two repressive histone methylation marks.  

 

1.4.2 Polycomb-mediated repression 

The Polycomb Group (PcG) and trithorax Group (trxG) of proteins are involved in defining 

cellular memory and prevent changes in cell type specific transcription programs to maintain cell 

identity (Bantignies and Cavalli, 2006; Cao et al., 2005; Cao et al., 2002; Cao and Zhang, 2004a; 

Cao and Zhang, 2004b; Jacobs and van Lohuizen, 1999; Kuzmichev et al., 2004; Negishi et al., 

2007; Vire et al., 2006). The antagonistic trithorax-group (TrxG) and Polycomb-group (PcG) 

proteins were first identified as Hox gene regulators guiding embryonic patterning in Drosophila 

(Ringrose and Paro, 2007; Schuettengruber et al., 2007; Schwartz and Pirrotta, 2007; Sparmann 

and van Lohuizen, 2006a). Remarkably, PcG proteins underwent an expansion during evolution 

of vertebrates. Many paralogs arose, which has been suggested to contribute to cell type specific 

gene regulation; an essential requirement for the observed increase in organismal complexity 

(Whitcomb et al., 2007). 

Beyond their role in embryonic development, PcG proteins have been implicated in maintaining 

pluri-potency and cell identity via repression of key developmental regulators in embryos and 
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embryonic stem (ES) cells (Bernstein et al., 2006; Boyer et al., 2006; Lee et al., 2006). PcG 

proteins have further been shown to play a role in celluar differentiation, cell fate plasticity 

(Caretti et al., 2004; Ezhkova et al., 2009; Klebes et al., 2005; Lee et al., 2005) and proliferation 

(Martinez et al., 2006). In addition, their mis-regulation is show to correlate with neoplastic 

development (Sparmann and van Lohuizen, 2006a; van Leeuwen et al., 2002). Self-renewal of 

ES cell lacking Ezh2, Eed or Suz12 is unaffected in culture, arguing that Polycomb is not 

essential for their propagation. Importantly however, all of these cells show transcriptional 

upregulation of many differentiation genes that are otherwise normally repressed by Polycomb. 

Induction of differentiation of mutant ES cells results in either death or incomplete 

differentiation to term, which is in support of the early embryonic lethal phenotypes in vivo 

(Chamberlain et al., 2008; Erhardt et al., 2003; O'Carroll et al., 2001; Pasini et al., 2007). 

Biochemical purification experiments revealed that at least two separate multimeric PcG 

complexes or Polycomb repressive complexes (PRC) with distinct enzymatic activities exist 

(Schwartz and Pirrotta, 2007; Sparmann and van Lohuizen, 2006a). PRC2 contains Ezh2 which 

mediates di/tri-methylation of lysine 27 of Histone H3 [H3K27me2/3; (Czermin et al., 2002; 

Muller et al., 2002), the hallmark of Polycomb repressed genes. PRC1 on the other hand contains 

four conserved core components and mediates H2A lysine 119 mono-ubiquitination 

[H2AK119u1; (Wang et al., 2004a)]. PRC1 is thought to cooperate with PRC2 for binding at 

target genes enriched in H3K27me3, and to mediate repression by inhibiting chromatin 

remodeling, blocking transcription and/or by mediating chromatin compaction (Levine et al., 

2004; Margueron et al., 2008). It is unclear how PRC complexes regulate gene expression, but 

their overlapping genomic distributions suggest concerted actions (Boyer et al., 2006; Ku et al., 

2008). It was also shown that PcG-silenced genes may be clustered into sub-nuclear 

compartments termed PcG-bodies which may provide a means to coordinate repression of 

multiple genes (Grimaud et al., 2006; Lanzuolo et al., 2007; Terranova et al., 2008; Tiwari et al., 

2008). 

Interestingly, in mammals Polycomb-mediated repressive H3K27me3 was shown to very often 

coincide with activating H3K4me2/3 in close proximity and this was termed  as ‘bivalent 

chromatin’ (Azuara et al., 2006; Bernstein et al., 2006; Bracken et al., 2006; Mikkelsen et al., 

2007). Such bivalency was thought to “poise” genes for activation at a later time point (Bernstein 

et al., 2006; Spivakov and Fisher, 2007). However, no solid experimental evidence exists for 
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such proposal so far. In Drosophila, PcG proteins are recruited to regulatory elements called 

PREs (Polycomb Response Elements) to silence nearby genes and argues for a DNA sequence-

dependent recruitment of Polycomb (Ringrose and Paro, 2007). In mammals, despite large scale 

mapping efforts, no such DNA sequence elements for PcG recruitment could be identified so far. 

Furthermore, Drosophila PREs are very weakly conserved at the sequence level. Together this 

may reflect that many different sequence-specific transcription factors can recruit Polycomb and 

thus, PRE sequence identification in mammals will not be feasible. In support of this, the 

transcription factor Snail1 was shown to recruit Polycomb proteins to the E-cadherin promoter 

coinciding with its transcriptional silencing in cancer cells (Herranz et al., 2008). 

In addition to PcG targeting in mammals, the propagation of H3K27me3 and PcG complexes 

during replication is equally not understood. PRC2 was shown to directly bind to H3K27me3, 

thereby ensuring propagation of the mark during mitosis (Hansen et al., 2008). PRC1 was also 

show remain bound to the DNA during replication in an in vitro system (Francis et al., 2009). 

Despite these findings, the propagation of H3K27me3 and PcG complexes in vivo remains to be 

investigated in detail. A number of reports suggest interplay between the Polycomb pathway and 

DNA methylation. Ezh2 was show to recruit DNMT1 in cancer cell lines by a direct interaction 

(Vire et al., 2006), which however stays controversial due to non-reproducibility in non-

transformed cells. In addition, several recent studies suggested preferential aberrant DNA 

methylation in human cancer cell lines and primary cancers at promoters that are Polycomb 

targets in unrelated human ES cells in culture (Ohm et al., 2007; Schlesinger et al., 2007; 

Widschwendter et al., 2007). These studies suggest that a potential targeting pathway of DNMTs 

via Polycomb may exist, however no direct conclusive evidences exist so far. 

1.4.2.1 Polycomb and EMT 

The components of both Polycomb repressive complex1 and Polycomb repressive complex 2 are 

implicated in EMT. PRC1 complex comprises Bmi-1, Ring1, Hph1/2/3, and Hpc1/2/3 (Cao and 

Zhang, 2004a; Cao and Zhang, 2004b; Sparmann and van Lohuizen, 2006a) and PRC2 complex 

comprises Ezh2, Eed, Suz12, RbAp46/48 and Aebp2 (Cao and Zhang, 2004a; Cao and Zhang, 

2004b; Schuettengruber et al., 2007; Sparmann and van Lohuizen, 2006a). The PRC1 protein B 

lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) was the first reported PcG protein to 

be associated with cancer development and later on with EMT. Bmi-1 can inhibit c-Myc induced 
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apoptosis via Ink4a/Arf and regulate cell proliferation and senescence (Jacobs et al., 1999a; 

Jacobs et al., 1999b). Bmi-1 directly binds to Ink4a-Arf locus and represses it. Ink4a and Arf 

play a role to restrict cellular proliferation in response to aberrant mitogenic signaling. Ink4a is a 

cyclin-dependent kinase inhibitor and it can activate the Rb pathway. Arf can inhibit Mdm2 

function to induce p53. In many types of tumors, the Ink4a/Arf locus is found to be mutated, 

deleted or epigenetically silenced. Furthermore, Bmi-1 depletion leads to death of embryonic 

carcinoma stem cells as well as neuroblastoma cells (Cui et al., 2007). Recently, it has been 

demonstrated that over-expression of Bmi-1 leads to EMT, and its blockage prevents EMT 

driven-invasion. To elicit its function, Bmi-1 targets the tumor suppressor Pten and 

downregulates its expression. This all contributes toward the activation of the PI3K/Akt 

pathway, stabilization of Snail and downregulation of E-cadherin (Song et al., 2009). In addition, 

Bmi-1 is essential for Twist-1-induced EMT and both of them are cooperatively required for 

repression of E-cadherin and p16INK4a, which is a cyclin kinase inhibitor, in head and neck 

carcinoma. Thus, Twist1 and Bmi1 were needed together to promote EMT and tumor-initiating 

capabilities (Yang et al., 2010b). Another PRC1 protein, Ring1, was also shown to interact with 

Bmi-1, and overexpression of Ring1 represses Engrailed and increases expression of c-Jun and c-

Fos. Furthermore, Ring1 induces anchorage-independent growth of Rat1a and NIH3T3 cells, and 

overexpression of Ring1 can form tumors in nude mice (Ben-Saadon et al., 2006). 

Components of the PRC2 complex are extensively studied in cancer, especially Ezh2, which is a 

catalytic subunit of PRC2. Among tumors of epithelial origin, Ezh2 was first observed to be 

significantly associated with metastatic prostate cancer. It has been shown that Ezh2 is 

overexpressed with Bmi-1 in prostate metastatic precursor cells (Berezovska et al., 2006). 

Berezovska et al. demonstrated a marked enrichment of the population of circulating human 

prostate carcinoma metastasis precursor cells with dual-positive high-Bmi1/Ezh2-expressing 

cells. Importantly, depletion of Bmi1 or Ezh2 in prostate carcinoma metastasis precursor cells 

diminishes their tumorigenic, metastatic and proliferation potential when injected into mice 

(Berezovska et al., 2006). Adrb2, a target of Ezh2 and a G-protein-coupled receptor (GPCR) of 

the β-adrenergic signaling pathway, has been implicated in EMT (Yu et al., 2007). 

Overexpression of Ezh2 can repress Adrb2 at both the transcript and the protein levels and the 

recently discovered Ezh2 inhibitor, DZNep (Tan et al., 2007), can prevent Adrb2 repression by 

Ezh2. Downregulation of Adrb2 blocks EMT and prevents tumor growth in a xenograft model of 
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prostate cancer.  In addition, Ezh2 also targets E-cadherin for repression. This Ezh2-mediated 

repression could be inhibited by the HDAC inhibitor SAHA. Furthermore, co-expression of E-

cadherin can attenuate Ezh2-mediated invasion in prostate and breast epithelial cells, indicating 

that E-cadherin is an important target of Ezh2 in cancer progression (Rhodes et al., 2003). These 

results are similar to ES cell data where Ezh2 is required for ES cell pluripotency and 

differentiation by repressing E-cadherin. Moreover, Zeb2, another EMT inducer, is subjected to 

post-translation regulation by PRC2 where sumoylation impairs its repressor activity (Long et 

al., 2005). It is also shown that ZEB1 represses E-cadherin and induces EMT by recruiting the 

Swi/Snf chromatin-remodeling protein Brg1, the ATPase subunit of the Swi/Snf chromatin-

remodeling complex (Sanchez-Tillo et al., 2010). Recently, it has been reported that Snail1- 

mediated repression of E-cadherin is PRC2-dependent in ES cells and that depletion of Suz12, 

one of the components of PRC2, leads to partial de-represison of the E-cadherin promoter by 

Snail1. This study also showed that Snail1 interacts with Suz12 and Ezh2 and increases the 

binding of Suz12 at the E-cadherin promoter (Herranz et al., 2008).  

E-cadherin is not the only gene regulated by PRC2. Another EMT gene, β4 integrin has been 

shown to be controlled by Polycomb-mediated histone modifications. The expression of β4 

integrin is lost during EMT and this loss correlates with a decrease in active histone 

modifications H3K9Ac and H3K4me3 and an increase in the repressive histone modification 

H3K27me3. Furthermore, reversal of EMT leads to re-expression of β4 integrin and restoration 

of active marks. These results argue for a dynamic nature of epigenetic regulation during fate 

changes of epithelial cells (Yang et al., 2009). 

The most recent work by McDonald and colleagues studied the role of another repressive mark 

H3K9me2 and activating mark H3K4me3 during EMT. They showed a global reduction in 

heterochromatin, measured by the repressive mark H3K9me2, and increased levels of 

euchromatin, measured by the active mark H3K4me3, during EMT.  The authors further 

demonstrate that these changes are largely dependent on lysine-specific demethylase-1 (Lsd1) 

and depletion of Lsd1 prevents TGF-β-induced migration and chemoresistance.  Interestingly, all 

these chromatin changes are associated with so-called LOCKs, which is an acronym for ‘Large 

Organized Heterochromatic K9 modifications’ regions (McDonald et al., 2011a). 
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1.4.3. DNA methylation 

The best understood epigenetic modification of DNA in mammals is methylation of cytosine at 

position C5 in CpG dinucleotides. The mammalian DNA methylation machinery has two 

constituents, the DNA methyltransferases (DNMTs), which establish and maintain DNA 

methylation patterns, and the methyl-CpG binding proteins (MBDs), which ‘read’ these 

methylation marks (Goll and Bestor, 2005; Wade, 2001). 

Passive DNA demethylation has long been known to occur by a reduction in activity or absence 

of DNA methyltransferases (DNMTs). Recently, three enzyme families have been implicated in 

active DNA demethylation via DNA repair (Bhutani et al., 2011). First, 5-methylcytosine (5mC) 

can be hydroxylated by the ten-eleven translocation (TET) family of enzymes to form 5-

hydroxymethylcytosine (5hmC) or further oxidized to 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC). Second, 5mC (or 5hmC) can be deaminated by the AID/APOBEC 

family members to form 5-methyluracil (5mU) or 5-hydroxymethyluracil (5hmU). Third, 

replacement of these intermediates (i.e., 5mU, 5hmU, or 5caC) is initiated by the UDG family of 

base excision repair (BER) glycosylases like TDG or SMUG1, culminating in cytosine 

replacement and DNA demethylation. 

DNA methylation is crucially involved in regulating many cellular processes including 

embryonic development, transcription, chromatin structure, X chromosome inactivation, 

genomic imprinting and chromosome stability. In normal cells, DNA methylation occurs 

predominantly in repetitive genomic regions, including satellite DNA and parasitic elements 

(such as long interspersed transposable elements (LINES), short interspersed transposable 

elements (SINES) and endogenous retroviruses). Approximately 60-90% of all CpG sequences 

in the genome are methylated, while unmethylated CpG dinucleotides are mainly clustered in the 

CpG rich sequence termed ‘CpG islands’ which are mostly associated with promoter regions of 

active genes. CpG dinucleotides are under-represented in the mammalian genome due to the 

conversion of methylated cytosine to thymidine via spontaneous deamination, followed by 

stabilisation of the genome during replication in the germline. CpG islands, particularly those 

associated with (housekeeping mainly) promoters, are generally unmethylated, although an 

increasing number of exceptions are being identified. Specific cis-acting sequences seem to 

protect them from a global wave of de novo methylation occurring during reprogramming event 
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at the time of implantation. DNA methylation usually represses transcription directly, by 

inhibiting the binding of specific transcription factors. For example, the abnormal methylation 

that occurs on the fragile X mental retardation 1 (FMR1) promoter prevents binding of nuclear 

respiratory factor (NRF1; also known as α-PAL) and inhibits transcription of this gene, causing 

fragile X syndrome (Bardoni and Mandel, 2002). It could also cause transcriptional suppression 

indirectly, by recruiting methyl-CpG-binding proteins and their associated repressive chromatin 

remodeling activities such as histone deacetylases (HDACs) and histone methyl transferase 

(HMTs) that alters the local chromatin environment (Eden et al., 1998). Methylation can also 

affect nucleosomal positioning (Razin and Cedar, 1977). It could also lead to a general decrease 

in DNase I sensitivity and alteration in higher order structure (Eshet et.al, 1986) that makes these 

regions less accessible to the transcription machinery. Recently, it was shown that proximal 

sequence elements are both necessary and sufficient for regulating DNA methylation (Lienert et 

al., 2011). However, general principles of how DNMTs are targeted to specific regions are still 

not known; even though there are some observations suggesting that this may involve 

interactions between DNMTs and one or more chromatin-associated proteins. DNA methylation 

patterns are established by de novo DNMTs active on unmethylated DNA (de novo methylation) 

and then this pattern is maintained through replication by a semiconservative mechanism for 

copying the methylation residues from parental strands onto the newly synthesized nascent DNA 

by maintenance DNMTs specific for the hemi-methylated DNA resulting from replication 

(maintenance methylation). The phenotypes of some selected mouse mutants of epigenetic 

regulatory factors are listed below in Table 3. 

There are several indications that DNA methylation and histone methylation are intimately 

linked and may control each other, but it stays unclear which one comes first due to reports from 

both ways (Cedar and Bergman, 2009; Vaissiere et al., 2008). Aberrations in DNA methylation 

patterns such as promoter CpG island hypermethylation of tumor suppressor genes, which results 

in their silencing, are accepted as being a common feature of human cancer (Berdasco and 

Esteller, 2010). Such CpG island promoter hypermethylation affects genes from a wide range of 

cellular pathways, such as cell cycle, DNA repair, toxic catabolism, cell adherence (including 

Cdh1), apoptosis, and angiogenesis, among others (Esteller, 2008a), and may occur at various 

stages in the development of cancer. During the last few decades, an increasing number of drugs 
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Table 3. Key epigenetic regulatory proteins, their function and mutant phenotype [Adapted from 

Jaenisch R and Bird A 2003 (Jaenisch and Bird, 2003)]. 

Protein Function Mutant Phenotype 

Methyltransferases   

Dnmt1 Maintenance of methylation Embryonic lethal, loss of 

imprinting and X-linked gene 

expression, ES cells viable 

Dnmt1o Oocyte-specific isoform Loss of material imprint 

Dnmt2 Non-CpG methylation in 

Drosophila 

No phenotype 

Dnmt3a, Dnmt3b De novo methyltransferases, 

establishment of methylation 

Embryonic lethal, ICF 

syndrome 

Dnmt3L No catalytic activity, 

colocalizes with Dnmt3a and 

Dnmt3b 

Abnormal maternal imprinting 

Methyl binding proteins   

MeCP2 Methyl binding proteins, 

recruit HDACs 

RTT 

MBD1 Methyl binding proteins, 

recruit HDACs 

 

MBD2 Methyl binding proteins, 

recruit HDACs 

Behaviour abnormalities 

MBD3 Methyl binding proteins, 

recruit HDACs 

Lethal 

MBD4 Repair enzyme Increased mutation frequency 

Histone-modifying proteins   

HDAC1 Histone deacetylase Embryonic lethal 

Suvar39 Lys9 methylation in histone H3 Embryonic lethal, 

chromosomal instability, 

increased tumor risk 
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targeting DNA methylation have been developed for epigenetic therapy and a few are in clinical 

trials (Yang et al., 2010c). One example of this success is the earliest and the most successful 

epigenetic drug to date, 5-Azacytidine, which is currently, recommended as the first-line 

treatment of high-risk myelodysplastic syndromes (MDS). 

1.4.3.1 DNA methylation and EMT 

In recent years, it has become evident that genomic regulation is not the only mechanism that 

governs anomalous gene expression during tumor progression. Epigenetic modification, 

especially DNA methylation, seems to play a widespread role during carcinogenesis. Anomalous 

hypermethylation of promoter CpG islands is an important means of repressing tumor suppressor 

genes.  Initially, E-cadherin promoter methylation was observed in primary prostate cancers and 

breast cancer lesions where E-cadherin silencing can be de-repressed by treatment with the 

demethylating agent 5’-aza-2’-deoxycytidine (5’-aza) (Graff et al., 1995; Yoshiura et al., 1995). 

Following those primary studies, E-cadherin repression and DNA hypermethylation was 

observed in many different kinds of carcinomas. 

To define the mechanism underlying E-cadherin promoter methylation, two models were 

proposed. According to the first model, Snail expression is co-related with the silencing of E-

cadherin and the hypermethylation of its promoter, suggesting a role for Snail in the coordination 

of both processes (Cheng et al., 2001). On the other hand, the second model proposed that the 

silencing of E-cadherin is not always correlated with promoter hypermethylation, indicating the 

involvement of additional genetic and epigenetic modifications are required for E-cadherin 

downregulation. In addition, DNA methylation and histone deacetylation are correlated with 

transcriptional repression. Several co-repressor complexes have recently been described that can 

be recruited to the E-cadherin promoter by different repressors such as Snail-mediated 

recruitment of a mSin3a/Hdac1/2 complex (Peinado et al., 2004) or of δEf1/Sip1 (Shi et al., 

2003) with ctbp complex, containing several Hdacs and Dnmts. In addition, hypermethylation of 

8 tumor suppressor genes (APC, BIN1, BRCA1, CST6, GSTP1, P16, P21 and TIMP3) was 

observed in plasma of the breast cancer patients which allowed the development of blood based 

tests as a predictive and prognostic biomarkers for breast cancer (Radpour et al., 2011). 

 

1.5 MARA 
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MARA stands for “Motif Activity Response Analysis”. MARA models gene expression profiles 

across a set of samples in terms of the predicted transcription factor binding site (TFBS) and 

infers which transcription factors (TFs) are the key regulators that drive gene expression changes 

across the samples, how each regulator changes its activity across the samples, and what are the 

genome-wide targets of each regulator. It benefits from two key resources. First, MARA uses 

‘promoteromes’, i.e. genome-wide promoter annotations, in human and mouse constructed from 

genome-wide transcription start site data that was obtained using next-generation sequencing  

(Balwierz et al., 2009). Second, it uses Bayesian probabilistic methods for predicting functional 

TFBSs by integrating rigorous models of TFBS evolution with comparative genomic sequence 

analysis. The MotEvo algorithm (van Nimwegen, 2007) is used to predict functional TFBSs for 

all regulatory motifs across all promoters in human and mouse. The result of this analysis was, 

for both human and mouse, a large matrix N, where Npm is the predicted total number of 

functional binding sites in promoter p for motif m. 

1.5.1 Model 

The model follows the approach of Bussemaker et al. (Gao et al., 2004) of assuming that the 

expression at each promoter p can be modeled as a linear function of the binding sites Npm . 

Specifically, if we denote by Eps the log-expression of promoter p in sample s, we assume the 

following model where cp is a term reflecting the basal activity of promoter p, cs reflects the total 

expression in sample s, and Ams is the (unknown) activity of motif m in sample s. That is, using 

the predicted site-counts Npm and the measured expression levels Eps we use this approximation 

to infer the activities Ams of all motifs across all samples. 

1.5.2 MARA Outputs 

The results include an ordered list of regulatory motifs and corresponding TFs, sorted by a z-

value that quantifies the importance of the motif in explaining observed expression changes. For 

each motif, MARA also provides an activity-profile across all input samples which quantify how 

much the corresponding TFs are driving the expression of their targets in each sample. In 

addition, MARA predicts a list of target promoters for each motif, as well as the binding sites in 
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the promoters through which the corresponding the binding TFs are predicted to act. Finally, to 

functionally characterize the role of each regulatory motif, MARA reports the functional gene 

ontology categories that are enriched among the targets, and provides links to the String data-

base network representations of the predicted targets of each regulator.
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2.0 Aims of the study 

Epithelial-mesenchymal transition (EMT) is a critical process underlying the onset of cancer cell 

invasion and has been identified at the invasive front of murine and human tumors. Hence, the 

identification of reliable prognostic markers and the intervention with EMT driven invasion is of 

major interest in cancer diagnostics and therapy. To achieve these goals, we need to gain new 

and detailed insights into the molecular processes regulating EMT. For this purpose, we induced 

EMT in different in vitro model systems and followed changes in gene expression profile to 

investigate: 

• Master regulatory genes underlying EMT 

• Cell biological processes controlled by these master regulators 

• Requirement of these master genes in tumor progression and metastasis formation in vivo 

• Possibility of these master regulators to act as potential markers for invasion and 

metastasis in human tumors 

• If these master regulators are under control of epigenetic mechanisms 

Here, we studied two transcription factors, namely Klf4 and Sox4 for their role in EMT by 

investigating the cell biological functions they control and their contribution to tumor 

progression and metastasis formation in vivo. In the last part of the thesis, using genomewide 

approaches, we studied the contribution of the Polycomb machinery and DNA methylation to the 

transcriptional reprogramming that accompanies EMT.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
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3.0 Results 

 

3.1 Klf4 directly regulates transcription of genes crucial for Epithelial to Mesenchymal 

transition 

Neha Tiwari, Phil Arnold, Erik Van Nimwegen and Gerhard Christofori 

Manuscript in preparation 

 

3.1.1 Abstract 

Krupple-like factor 4 (Klf4) is a zinc-finger transcription factor that is abnormally expressed in 

diseased state including cancer. However, its regulatory role during carcinogenesis remains 

unclear. Using a genome-wide expression profiling approach, we uncovered Klf4 among the 

transcription factors that were significantly downregulated during TGF-β-induced Epithelial to 

Mesenchymal Transition (EMT) in NMuMG cells. Although Klf4 expression is diminished 

during EMT, its activity, as predicted by MARA analysis, goes up arguing for the regulatory role 

of Klf4. Gain of function experiments demonstrate that Klf4 is not only inhibitory to EMT and 

migration but also acts as a survival factor during this process. To reveal how its DNA binding 

activity may be related to the phenotype, we performed chromatin immunoprecipitation followed 

by deep-sequencing (ChIP-seq) to identify promoters genomewide that are occupied by Klf4. 

Interestingly, this analysis revealed Klf4 binding to the promoter of key EMT genes, including 

N-cadherin, Vimentin, β-catenin and Mapk8 (encoding Jnk1). In line with these observations, the 

depletion of endogenous KLF4 deregulated a number of Klf4 target genes, suggesting a direct 

transcriptional control by Klf4. One such target gene, Jnk1, is transcriptionally upregulated upon 

Klf4 depletion as well as during TGF-β-induced EMT that also accompanies substantial decrease 

in Klf4 levels. Knockdown of Jnk1 not only counteracted TGF-β-induced EMT but also Klf4 

depletion-induced apoptosis and cell migration. These observations reveal a critical role of Klf4 

as a tumor suppressor by direct targeting key EMT gene promoters for transcriptional regulation.  

3.1.2 Introduction 

Solid tumors are epithelial in origin. A loss of epithelial-cell markers and gain of mesenchymal-

cell markers has been observed in patient tumor samples, particularly at the leading edge or 
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invasive front of solid tumors such as non-small cell (NSCLC), pancreatic, colorectal, and 

hepatocellular cancers and this process defined as ‘Epithelial to Mesenchymal Transition’ (EMT) 

constitutes a key step during carcinogenesis. Such changes in phenotypic epithelial-like and 

mesenchymal-like cellular markers have been associated with the degree of tumor progression 

(Brabletz et al., 2005; Christofori, 2006; Grunert et al., 2003; Huber et al., 2005; Thiery and 

Sleeman, 2006). The mechanism underlying EMT and contribution of critical transcription 

factors to this process remains elusive. 

Krupple-like factor 4 (Klf4) is a zinc-finger transcription factor which is usually expressed in 

growth arrested cells, colon, small intestine, testis and lung (Shields et al., 1996). Klf4 -/- mice 

die shortly after birth due to loss of skin barrier function, as measured by penetration of external 

dyes and rapid loss of body fluids (Segre et al., 1999). The defect was not corrected by grafting 

of Klf4 -/- skin onto nude mice (Segre et al., 1999).  This protein has been implicated to be an 

activator as well as repressor at the promoter of various genes in a context-dependent manner 

(Rowland et al., 2005). Various previous studies as well as Oncomine and Nextbio databases 

report Klf4 to be downregulated in cancers of different types (Dang et al., 2000; Katz et al., 

2005; Ohnishi et al., 2003; Shie et al., 2000; Ton-That et al., 1997; Wei et al., 2005; Zhao et al., 

2004). On the contrary, it is also been shown to be upregulated in a large fraction of mammary 

carcinoma and squamous-cell carcinomas of the oropharynx (Foster et al., 2000). Klf4 is 

proposed to execute its oncogenic activity by directly binding to and repressing the p53 

promoter. In contrast, it can also act as a tumor suppressor by binding to p21 promoter for its 

activation (Rowland et al., 2005). Klf4 is further implicated to play a role in EMT (Yori et al., 

2010), however the underlying mechanisms remain largely unclear. Interestingly, a number of 

recent studies have identified Klf4 as one of the crucial factors, in addition to Oct4, Sox2 and c-

Myc, for the derivation of induced pluripotent cells (Takahashi and Yamanaka, 2006). It was 

further shown that the transcription factors Oct4, Sox2, c-Myc, and Klf4 can induce epigenetic 

reprogramming of a somatic genome to an embryonic pluripotent state (Wernig et al., 2007).  

The mitogen-activated protein kinases (Mapks) are a family of serine-threonine protein kinases 

that participate in various signaling pathways and are crucial for cellular responses to 

extracellular stimuli. One such MAP kinase, Jnk, is activated primarily by cytokines and stress 



                                                                                 Klf4 directly regulates transcription of genes crucial for  

                                                                                                                  Epithelial to Mesenchymal transition 

 

 58  
 

such as UV. Exposure to UV light leads to Jnk1 phosphorylation at serine-63 and serine-73 

residues (Derijard et al., 1994). Such activation of Jnk is required for UV-induced apoptosis in 

primary murine embryonic fibroblasts and the absence of Jnk caused a defect in the 

mitochondrial death signaling pathway, including the failure to release cytochrome c (Tournier et 

al., 2000). NFκB-mediated signaling cascade can downregulate Jnk1 via Gadd45b and regulates 

TNFR-induced apoptosis (De Smaele et al., 2001). Not only this, Jnk1 has also been previously 

implicated in EMT (Alcorn et al., 2008; Santibanez, 2006a; van der Velden et al., 2010). In line 

with these observations, Jnk1 can phosphorylates paxillin , a focal adhesion adaptor, required for 

maintaining the labile adhesions required for rapid cell migration (Huang et al., 2003). Jnk1-null 

mice exhibited progressive loss of microtubules within axons and dendrites due to 

hypophosphorylation of Map2, which reduced the ability of Map2 to bind microtubules and 

promote tubulin polymerization (Chang et al., 2003). 

Using a genomewide transcription profiling approach, we identified a comprehensive list of 

genes at six consecutive morphological states (1 day, 4 days, 7 days, 10 days and 20 days) during 

TGF-β-induced EMT in normal mammary epithelial cells [NMuMG; (Lehembre et al., 2008)]. 

The resulting datasets were computationally analysed to identify differentially regulated genes at 

each stage. We next searched for motifs for various transcription factors at the promoter of 

regulated genes (http://test.swissregulon.unibas.ch/cgi-bin/mara) and predicted a number of 

transcription factors that may possibly regulate a subset of genes in the early, intermediate and 

later stages (data not shown). Klf4 was discovered as one of such factor that might contribute to 

transcriptional regulation of certain genes during TGF-β-induced EMT in NMuMG cells.  This 

was especially interesting given the previous suggestions for an involvement of Klf4 in cellular 

transformation and motivated us to investigate the role of this transcription factor in EMT.  

Here we show that Klf4 not only blocks epithelial differentiation but also provides a survival 

advantage to the cells. Moreover, Klf4 functions inhibitory to cell migration. A combinatorial 

approach of genomewide transcription profiling after Klf4 depletion in the presence or absence 

of TGF-β, and identification of genomewide target promoters of Klf4 occupancy using ChIP-seq 

analysis, revealed many key EMT genes that are under direct transcriptional control by Klf4, 

such as N-cadherin, Vimentin and β-Catenin. Furthermore, we also show how through one of 
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such targets, Jnk1, Klf4 regulates EMT. Along with this, we also found Klf4 to be regulated by 

canonical TGF-β signaling via Smad4.  

3.1.3 Results 

3.1.3.1 Identification of Klf4 as a repressor during EMT 

To decipher gene regulatory mechanisms underlying epithelial to mesenchymal transition during 

the early, intermediate and later stages of breast carcinogenesis, we employed an established 

model of EMT in the untransformed normal murine mammary gland cell line NMuMG 

(Lehembre et al., 2008; Miettinen et al., 1994), which undergoes progressive EMT upon TGF-β 

treatment and acquires a complete mesenchymal morphology by the end point, usually involving 

10 days for this full morphological transition (Figure 1)  (Lehembre et al., 2008; Piek et al., 

1999b). We performed a genome wide expression analysis of non-treated cells as well as those 

treated with TGF-β for 1, 4, 7, 10 and 20 days to identify differentially expressed genes at the 

respective stages. We then employed the MARA tool (http://test.swissregulon.unibas.ch/cgi-

bin/mara) on the resulting gene list to search for transcription factor motifs for various 

regulatory factors at the promoters of modulated genes. This analysis revealed a set of 

transcription factors that possibly regulate the transcription of a subset of genes in the early, 

intermediate and later stages by a direct control of their promoter activity (data not shown). Klf4 

was identified as one of such factors whose motif was found enriched at a number of genes that 

were modulated in transcription during TGF-β-induced EMT. MARA analysis predicted an 

increase in Klf4 activity during EMT (Figure 1a). Since quantitative RT-PCR revealed that Klf4 

itself is downregulated during EMT (Figure 1b), we speculated for a repressive function of Klf4 

during this transition. Western blot analysis further confirmed RNA level analysis that Klf4 

levels are severely downregulated during EMT (Supplemental Figure S1). We further validated  

these observations in a murine breast cancer line, Py2T cell line, which is also responsive to 

TGF-β and undergoes EMT similar to NMuMG cells (Waldmeier et. al, unpublished) and in a 

human breast cancer line, MCF7, which undergoes EMT upon stable depletion of E-Cadherin 

[(Lehembre et al., 2008); Figure 1c and 1d]. Together these findings suggested a suppressive role 

of Klf4 during EMT. 
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3.1.3.2 KLF4 blocks epithelial differentiation  

To directly assess the role of Klf4 in EMT, we first performed loss of function studies. We 

knocked down Klf4 efficiently both in the absence and presence of TGF-β using a pool of two 

Klf4 siRNAs (Figure 2a). Depletion of Klf4 in the absence of TGF-β did not lead to any 

noticeable changes in cell morphology other than a slight increase in cell size accompanied with 

 

Figure 1: Klf4 acts as repressor during TGF-β-induced EMT. (a) MARA analysis predicts Klf4 activity during 

EMT in NMuMG cells. (b) RT-qPCR analysis for quantification of Klf4 expression levels in NMuMG cells during 

TGF-β mediated EMT. (c) RT-qPCR for quantification of Klf4 levels upon EMT induction in Py2T cells. (d) 

- 

- 
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Expression levels of Klf4 as quantified by RT-qPCR in control and E-cadherin-specific shRNA treated MCF7 cells. 

Statistical values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 

0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

minor flattening (Figure 2a). Although no major morphological changes were apparent after Klf4 

knockdown in the absence of TGF-β, immunoflourescence analysis revealed an increase in the 

expression of mesenchymal markers like N-cadherin and Vimentin (Figure 2b). In addition, focal 

adhesion formation was greatly increased with the induction in stress fibers formation. On the 

other hand, epithelial markers such as adherent junction protein E-cadherin were slightly 

downregulated and distorted from the membrane. Interestingly, Klf4 knockdown in the presence 

of TGF-β, sped up the EMT process and the cells became more elongated, spindle-shaped and 

fibroblast-like even after 2 days of TGF-β treatment and gave morphological appearance similar 

to wild type NMuMG cells treated with TGF-β for 10 days (Figure 2a). This accompanied 

appropriate changes in key EMT markers such as increase in vimentin  and N-cadherin 

expression and complete loss of E-cadherin from the membrane within 2 days of TGF-β 

treatment in Klf4 knockdown cells, in line with the classical cadherin switch observed during 

EMT (Hazan et al., 2004; Maeda et al., 2005). Furthermore, phalloidin staining revealed an 

increased stress fiber formation upon Klf4 knockdown (Figure 2b). Notably, Klf4 depletion in 

NMuMG cells treated with TGF-β for 15 days had similar effect and led to acceleration of EMT 

process, demonstrating that Klf4 is not only inhibitory to initiation but also for the maintenance 

of EMT (Figure 2a). All of these results were further confirmed in a different breast cancer 

model of Py2T cells (Supplemental Figure S2a, Supplemental Figure S2b). Together, these 

results argue for a role of KLF4 in maintaining epithelial morphology and an inhibitory action in 

EMT. 

3.1.3.3 Klf4 prevents cell migration and provides survival advantage to the cells during 

EMT  

Tumor cells dissolve their cell-cell contacts and undergo EMT so as to leave the primary tumor 

and invade into the surrounding tissue. This process furthers facilitate the migration of tumor  
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Figure 2: Depletion of KLF4 induces epithelial differentiation. (a) qRT-PCR was performed after siRNA 

mediated knockdown of Klf4 in the absence and presence of TGF-β to assess the knockdown efficiency. Cells were 
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treated with TGF-β for 2 days and 15 days. Morphology of NMuMG cells transfected with either control or Klf4-

specific siRNA in the absence as well as presence of TGF-β, as evaluated by phase contrast microscope. Original 

magnification was 10X. (b) Immunoflorescence stainings for adherent junction protein, E-cadherin and N-cadherin, 

tight junction protein ZO-1, intermediate filamentous protein vimentin, focal adhesion protein paxillin and actin 

cytoskeleton protein phalloidin were performed after Klf4 knockdown in the absence and presence of TGF-β. 

Original magnification was 40X. Cells were treated with TGF-β for 2 days. Statistical values were calculated by 

using an unpaired, two-tailed t-test.  p-value ≤ 0.001 indicated with (***). 

 

 

cells to neighboring blood vasculature and the distant organs to form metastasis (Brabletz et al., 

2005; Christofori, 2006; Grunert et al., 2003; Huber et al., 2005; Thiery and Sleeman, 2006; 

Yilmaz and Christofori, 2010).  Since migration constitutes such a key step in forming metastasis 

via EMT, we assessed the migratory capacity of Klf4 knockdown cells. Wound healing assay 

revealed that Klf4-depleted NMuMG cells migrated significantly faster than control counterpart 

even in the absence of TGF-β (Figure 3a). We further validated these results by performing a 

scratch wound healing assay in cells stably knocked down for Klf4 and found similar results 

(Figure 3b). Moreover, transwell migration assays with these cells revealed a significantly higher 

chemo-tactic migration of Klf4 knockdown cells compared to control cells both in the absence 

and presence of TGF-β (Figure 3c and 3d). These studies were repeated in Py2T cells which 

further confirmed and validated the above findings (data not shown). 

Klf4 has been shown to inhibit proliferation and promote differentiation of skin and colonic 

epithelium (Segre et al., 1999; Shie et al., 2000).  Thus, we next investigated whether Klf4 

depletion can affect the proliferation and survival during EMT in NMuMG cells. It was 

surprising that the loss of Klf4 led to a decrease in growth of NMuMG cells after treatment with 

TGF-β. On the other hand, we didn’t observe any changes after Klf4 knockdown in the absence 

of TGF-β. To determine whether this effect was due to alterations in proliferation, or changes in 

apoptosis profile, we performed a proliferation assay using propidium iodide staining as well as 

an apoptosis assay using Annexin V staining. In comparison to control siRNA treated cells, a 

significant G0/G1 blockade was observed upon Klf4 depletion in the presence of TGF-β for 

2days and 4 days (Figure 3e). We observed a similar effect in proliferation assay (Figure 3f). In 

addition, there was increased apoptosis upon Klf4 depletion after treatment with TGF-β for 2  
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Figure 3: KLF4 inhibits migration and provides a survival advantage during TGF-β-induced EMT. (a) 

Following siRNA-mediated ablation of Klf4 in the absence of TGF-β, wound healing assays were performed after 

19 hours of wound creation. (b) Wound healing assay was performed in stably transfected Klf4-ablated cells. 

Pictures were taken at 0 hour and 19 hours after wound creation. (c) shRNA-mediated Klf4 depleted cells were 

subjected to Boyden chamber migration assays for 20 hours using 20% FBS as a chemoattractant in the absence of 

TGF-β. (d) Boyden chamber migration assays were carried out in stably transfected Klf4 depleted cells in the 

presence of TGF-β. 20% FBS was used as a chemoattractant. (e) Cell cycle analysis was done after transient 

knockdown of Klf4 during EMT for 0, 1 and 4 days by FACS. Propidium Iodide (PI) was used for the staining. (f)  

Proliferation assays were performed after siRNA-mediated knockdown of Klf4 during a TGF-β time-course. Cells 

were counted by using a Neubauer counting chamber. (g) Annexin V staining was performed by FACS to quantify 

cell death in Klf4 knockdown cells during TGF-β-induced EMT for 0, 2 and 15 days. Statistical values were 

calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated with 

(**), p-value ≤ 0.001 indicated with (***). 

 

days or 15 days (Figure 3g). Thus, the TGF-β sensitive growth of Klf4 knockdown cells depends 

on both decreased proliferation and increased apoptosis during EMT. We further extended our 

studies to Py2T cells and found that unlike NMuMG cells, these cells do not undergo apoptosis 

during TGF-β treatment suggesting that the apoptotic phenotype is biased toward untransformed 

cells. We did observe a significant increase in apoptosis after Klf4 knockdown in Py2T cells, 

however, the fractions were not as substantial as NMuMG cells (Supplemental figure S3a). 

Furthermore, we could not notice any significant difference in cell cycle profiling after Klf4 

depletion during TGF-β time-course (Supplemental figure S3b). 

Together, these results reveal an inhibitory role for Klf4 in migration as well as supporting role 

for Klf4 in proliferation and G1/S phase progression of non-transformed mammary epithelial 

cells and in cell survival during TGF-β-induced EMT. 

3.1.3.4 Klf4 over-expression prevents EMT 

Given the above findings, we next asked whether the forced expression of Klf4 could have an 

inhibitory effect on EMT.  We generated NMuMG cells expressing a Klf4-ER fusion protein 

(Foster et al., 2005) where the Klf4-ER fusion protein translocates to the nucleus upon treatment  
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Figure 4: Over-expression of KLF4 prevents EMT and migration and supports cell survival during EMT. (a) 

Immunoflorescence staining by using a myc antibody to visualize the localization of Klf4 after 4-OHT treatment in 

the absence as well as presence of TGF-β (2 days) in NMuMG cells stably transfected with a myc-Klf4-ER 

construct. Cells were treated with 1uM OHT for 2 days and compared with non-treated cells. (b) Morphological 

changes are observed in non-treated and 1uM 4-OHT treated myc-Klf4-ER transfected cells during TGF-β time-

course for 0, 1, 4 and 7 days. Original magnification was 10X. (c) Immunoblot to assess the expression of adherent 

junction proteins E-cadherin and N-cadherin and tight junction protein ZO-1 during TGF-β-induced EMT in 

NMuMG and Klf4-ER transfected cells in the presence and absence of 4-OHT. Actin is used as loading control. (d) 

Wound healing assay to assess the migratory capacity after Klf4 over-expression. Cells were either treated with 1uM 

4-OHT or not. Experiment was done for 19 hours. (e) Trans-well migration assay was carried out in the absence and 

presence of 1uM 4-OHT by using 20% FBS as a chemoattractant for 20 hours. (f) Annexin-V staining was 

performed by FACS to determine the percentage of dead cells during TGF-β-induced EMT in Klf4-ER transfected 

cells in the presence and absence of 1uM 4-OHT. (g) Proliferation assays were performed during TGF-β time-course 

to assess the growth rate in Klf4-ER transfected cells in the absence and presence of TGF-β. Cells were counted by 

using a Neubauer counting chamber. Statistical values were calculated by using an unpaired, two-tailed t-test. p-

value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

with the Tamoxifen derivative, 4- hydoxy tamoxifen (4-OHT) (Figure 4a). We induced Klf4 

over-expression and followed morphological changes in the presence and absence of TGF-β. 

Interestingly, despite the presence of TGF-β, Klf4 overexpressing cells retained their epithelial 

phenotype (Figure 4b) which further accompanied gain in the epithelial markers like E-cadherin 

and ZO-1 and loss of mesenchymal markers such as N-cadherin as shown by immunoblot 

analysis (Figure 4c). Scratch wound healing assay and transwell migration assay in Klf4 

overexpressing cells suggested that Klf4 functions inhibited cell migration (Figure 4d and 4e). In 

addition, Klf4 over-expression also blocked TGF-β-induced apoptosis (Figure 4f) and cells grew 

better than control counterpart as shown by the proliferation assay (Figure 4g). These findings 

were further validated in Py2T cells and the results were compatible with the above findings 

(Supplemental figure S4a and S4b). These results suggested that, being a transcription factor, 

Klf4 probably elicited a transcriptional program that helped maintain epithelial phenotype and 

acted inhibitory to EMT.  

3.1.3.5 KLF4 regulates the expression of crucial EMT genes by directly binding to their 

promoters  
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Our observations and the previous established role of Klf4 as a transcriptional regulator led us to 

attempt identifying genes that are regulated by Klf4 through which it acts in maintaining 

epithelial phenotype and in repressing EMT. Towards this, we carried out siRNA mediated 

knockdown of Klf4 in NMuMG cells in the absence and presence of TGF-β (2 days) and 

performed a global transcription profiling. This led to the identification of a number of genes that 

were significantly up and downregulated in Klf4-deficient cells (Figure 5a and Supplemental 

figure S5a-d). However, we speculated that this list may also contain genes which are indirect 

target. In order to reveal the transcriptional changes that are directly linked to Klf4 occupancy at 

their promoters we attempted to identify the genome-wide targets of Klf4. This was achieved by 

Chromatin Immunoprecipitation (ChIP) using a Klf4-specific antibody followed by next 

generation sequencing (ChIP-seq) in NMuMG cells. Computational analysis led to the 

identification of gene promoters directly bound by Klf4 in these cells. We next compared this list 

with the transcription profile for all the stages from the EMT time-course generated earlier 

(Figure 5a and 5b & Supplemental figure S5a-d). Interestingly, among the direct targets of Klf4 

that are regulated during EMT, we identified N-cadherin .Quantitative real time RT-PCR showed 

that N-cadherin is significantly upregulated upon Klf4 depletion (data not shown). ChIP-qPCR 

using N-cadherin (Cdh2) promoter-specific primers confirmed its promoter to be bound by Klf4 

(Figure 5c). In addition, Klf4 occupies promoters of many other crucial EMT genes like vimentin 

(Vim), β-catenin (Ctnnb1), Inhibitor of differentiation 1(Id1), Inhibitor of differentiation 2 (Id2), 

Vascular endothelial growth factor A (VEGFA) and Endothelin1 (Edn1) (Figure 5c and 5d). 

These results strongly suggest that Klf4 regulates transcription of key EMT genes by directly 

binding to their promoters. ChIP-qPCR data is further validated in Py2T cells, where also Klf4 

binds at the promoter of key EMT genes such as N-cadherin, vimentin and β-catenin 

(Supplemental figure S5e). 

 



                                                                                 Klf4 directly regulates transcription of genes crucial for  

                                                                                                                  Epithelial to Mesenchymal transition 

 

 69  
 

 



                                                                                 Klf4 directly regulates transcription of genes crucial for  

                                                                                                                  Epithelial to Mesenchymal transition 

 

 70  
 

Figure 5: Klf4 directly targets promoters of crucial EMT genes for transcriptional regulation. (a) Venn-

diagram showing the commonly regulated genes in Klf4 ChIP-Seq data, EMT time-course affymetrix array 

expression profile and Klf4 knockdown expression array. Left panel is for genes upregulated during EMT and right 

panel is for genes downregulated during EMT. All the analysis were done in NMuMG cells. (b) List of commonly 

regulated genes as mentioned above. (c) ChIP-PCR to see the occupancy of Klf4 at N-cadherin (Cdh2), vimentin 

(Vim) and β-catenin (Ctnnb1) promoters.  ChIP-PCR was followed by Klf4 chromatin immunoprecipitation by 

using a Klf4 specific antibody in NMuMG cells. Data is normalized to an intergenic region, which supposed to be 

transcription factors free. (d) Wiggle-tracks to show the binding of Klf4 at N-cadherin (Cdh2), Vimentin (Vim), β-

Catenin (Ctnnb1), Jnk1 (Mapk8), Inhibitor of differentiation 1 (Id1), Inhibitor of differentiation 2 (Id2), Vascular 

growth factor A (VEGFA) and endothelin1 (Edn1) promoters. These files were collected after Klf4 ChIP-Seq on 

Klf4 ChIP material. Statistical values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 

indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

3.1.3.6 Klf4 is regulated by canonical TGF-β signaling but regulates non-canonical TGF-β 

signaling during EMT 

It has been shown before that Klf4 directly binds to p53 promoter, and Klf4 depletion in breast 

cancer cells restores p53 levels and causes p53-dependent apoptosis (Rowland et al., 2005). 

Recently, p53 was also shown to be involved in EMT and modulate stem cell properties via miR-

200 (Chang et al., 2011). Jnk, a group of mitogen-activated protein kinases that are activated by 

cytokines or environmental stress, participate in various signaling pathways, including apoptotic 

pathways. Activated Jnk1 can modify p53 post-translationally by phosphorylation and can 

activate it (Hu et al., 1997). We found Jnk1 to be transcriptionally significantly upregulated in 

Klf4-depleted NMuMG and Py2T cells (Figure 6a and Supplemental Figure S6a) and 

downregulated in Klf4 over-expressing NMuMG and Py2T cells (Supplemental Figure S6b and 

S6c). Given the central role of Jnk1 in p53-dependent apoptosis, we next investigated whether 

this could be involved in EMT.  To assess whether Jnk1 is a direct target of Klf4, Chromatin 

Immunoprecipitation (ChIP) assay was performed using a Klf4-specific antibodies followed by 

ChIP-qPCR revealed Jnk1 promoter to be directly bound by Klf4 (Figure 6b and Supplemental 

figure S6d) in both cell lines. Transient knockdown of Jnk1 using a pool of two siRNA led to a 

significant reduction in Jnk1 levels (Supplemental Figure S6e). Interestingly, similar to Klf4 

over-expressing cells, Jnk1 depletion blocked epithelial differentiation and leads to retention of x 
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Figure 6: KLF4 directly binds Jnk1 promoter for its transcriptional regulation and depletion of Jnk1 

phenocopies the over-expression of KLF4 during TGF-β-induced EMT. (a) RT-qPCR for measurement of Jnk1 

expression levels upon Klf4 knockdown. The cells were treated with TGF-β for 2 days. (b) Following Chromatin 

Immunoprecipitation (ChIP) assay using Klf4-specific antibodies in NMuMG cells. Realtime PCR was performed 

using Jnk1 promoter-specific primers to test Klf4 occupancy at this region. (c) Phase contrast microscopy was 

performed for studying morphology of NMuMG cells transfected with siControl and siJnk1 is monitored before and 

after TGF-β treatment. Cells were treated with TGF-β for 2 days. (d) Expression levels of the epithelial markers, E-

cadherin and ZO-1 and the mesenchymal marker N-cadherin were measured by immunoblot analysis in cells treated 

with either control of Jnk1-specific siRNA during a TGF-β time-course. Actin was used as a loading control. Jnk1 

siRNA knockdown efficiency was checked by using Jnk1 antibody. (e) The localization and expression levels of 

indicated EMT markers after 7 days of TGF-β treatment in siControl and siJnk1 transfected cells was assessed by 

immunofluorescence. (f) Wound healing assays were performed to check the migratory capacity after single 

knockdown of Klf4 and Jnk1 and double-knockdown of Klf4 and Jnk1. Assays were done for 19 hours. (g) 

Apoptosis was measured by Annexin V staining in combination with FACS analysis in control (siControl) and Klf4-

depleted (siKlf4), Jnk1-depleted (siJnk1) and siKlf4 with siJnk1 in NMuMG cells treated with TGF-β for days for 2 

days. Statistical values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-

value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

epithelial morphology even in the presence of TGF-β in NMuMG cells (Figure 6c). These 

morphological changes also accompanied corresponding changes in the expression of epithelial 

markers such as E-cadherin and ZO-1 and loss of mesenchymal markers like N-cadherin during 

TGF-β-induced EMT (Figure 6d). These data were further validated by immunofluorescence 

analysis after TGF-β treatment for 7 days for various EMT markers and showing that Jnk1 

depletion led to a retention of the adherence junction and tight junction proteins E-cadherin and 

ZO-1, respectively at the membrane. This was also accompanied by a reduction in the 

mesenchymal marker N-cadherin. We did not observe any differences in the intermediate 

filamentous mesenchymal marker vimentin, although, TGF-β mediated cytoskeleton re-modeling 

is highly prevented as shown by reduced phalloidin staining for stress fibers visualization (Figure 

6e). Furthermore, double-knockdown of Klf4 and Jnk1 revealed that Klf4 knockdown-induced 

EMT could be rescued by Jnk1 depletion and all markers reverted back to normal levels (data not 

shown). Furthermore, the double-knockdown of Klf4 and Jnk1 not only prevented Klf4 

knockdown-induced migration (Figure 6f) but also Klf4 knockdown-induced apoptosis (Figure 

6g). These experiments strongly argue for a role of Klf4 in regulating EMT by a direct 
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transcriptional control of Jnk1. 

To gain insight whether Klf4 is regulated by canonical or non-canonical TGF-β signaling, we 

analyzed the expression of Klf4 in NMuMG cells stably knocked-down for Smad4 and found 

Klf4 to be significantly upregulated in Smad4 depleted cells upon TGF-β treatment. This 

implicated that Klf4 is a target of canonical TGF-β-signaling, while Klf4 is a downstream target 

of Smad4 (Supplemental figure S6f).  

In summary, these results strongly argue that Klf4 regulates non-canonical TGF-β signaling by 

targeting Jnk1 but itself is regulated by canonical TGF-β signaling.  

 

3.1.4 Discussion 

EMT is an orchestrated series of events in which cell-cell and cell-extracellular matrix (ECM) 

interactions are altered to release epithelial cells from the surrounding tissue, the cytoskeleton is 

reorganized to confer the ability to move through a three-dimensional ECM, and a new 

transcriptional program is induced to maintain the mesenchymal phenotype. Essential for 

embryonic development, EMT is nevertheless potentially destructive if deregulated, and it is 

becoming increasingly clear that inappropriate utilization of EMT mechanisms is an integral 

component of the progression of many tumors of epithelial tissues. 

In this study, using genome-wide expression profiling during ongoing EMT process, we were 

able to predict transcription factors which may regulate EMT by modulating the expression of 

their target genes. Klf4 was identified as one of such factors whose targets were over-represented 

among genes that were transcriptionally modulated during the EMT process in our system. Our 

data revealed an inhibitory role of Klf4 during EMT as the absence of Klf4 in breast cancer cell 

lines lead to an acceleration of EMT and higher migration potential. In addition, in contrast to a 

study in colon cancer where Klf4 inhibits proliferation by blocking G1/S progression of cell 

cycle (Chen et al., 2001), we found that a part of the phenotypic effect of Klf4 could also be 

attributed to its property to infer a survival advantage to cells undergoing EMT. It is also 

possible that the decrease in proliferation observed after Klf4 depletion result from E-cadherin 

silencing. E-cadherin also has both growth inhibitory (Perrais et al., 2007; St Croix et al., 1998) 

and growth promoting roles similar to Klf4 (Fournier et al., 2008; Liu et al., 2006b) and this 
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function is suggested to mainly depend on E-cadherin expression levels. Blocking E-cadherin 

engagement abrogated the elevated proliferation levels at intermediate seeding densities, but no 

inhibition of proliferation was observed when cells were confluent, which again points to the fact 

that similar to E-cadherin, low expression of Klf4 in mesenchymal state is required for 

maintaining the basal level of proliferation. Moreover, genome-wide ChIP-seq analysis also 

demonstrated that Klf4 directly occupies the promoters of crucial EMT genes, including N-

cadherin, vimentin, β-catenin, Jnk1, Id1, Id2, Edn1 and VEGFA, a number of which are 

deregulated upon Klf4 depletion.  Since, Klf4 directly binds to the β-catenin promoter and 

ablation of Klf4 leads to a decrease in its expression levels (data not shown), it is possible that 

increased migration observed after Klf4 depletion is due to a decrease in the expression of β-

catenin which further contributes to low levels of E-cadherin and liberates cells for the 

migration. In addition, the mesenchymal-specific isoform of p120 is also increased after Klf4 

knockdown during EMT (data not shown), resulting in increased migratory capacity of these 

cells. Increased expression of the mesenchymal-specific isoform of p120 is has been shown to be 

responsible for increased migration (Mo and Reynolds, 1996; Yanagisawa et al., 2008). We 

further show that one of the Klf4 genomic targets, Jnk1, can not only counteract Klf4 

knockdown-induced EMT but also migration and apoptosis.  

Klf4 is known for its dual role as a transcriptional activator and repressor. Our study emphasizes 

that Klf4 acts as a repressor in breast carcinogenesis. High Klf4 expression is correlated with 

metastasis free survival in the Uppsala breast cancer database (Bergh et al., 1995) and 

TRANSBIG database [(Desmedt et al., 2007); data not shown]. Certain studies have suggested 

an involvement of Klf4 (Yori et al., 2010) and Jnk1 (Alcorn et al., 2008; Santibanez, 2006b; 

Velden et al., 2011) in EMT, however, the underlying mechanisms and the relationship between 

these two remained unknown. In contrast to a previous report (Yori et al., 2010), our unbiased 

genomewide binding assay as well as single gene analysis did not reveal any Klf4 binding at the 

E-cadherin promoter. Importantly however, our genome-wide ChIP-Seq data analysis identified 

the promoters of N-cadherin as well as many other key EMT genes such as vimentin and β-

catenin to be a direct target of Klf4 for transcriptional regulation. Moreover, Klf4 also regulates 
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many genes required for angiogenesis, including VEGFA and Edn1, further implicating it in the 

angiogenic switch during tumor formation and metastasis.  

Together, these data reveal fundamental principles of how transcription factors like Klf4 regulate 

cell-fate changes such as during EMT by directly modulating transcription of underlying genes. 

These findings have potential to provide fundamental knowledge that has relevance for a broad 

range of research disciplines encompassing basic to translational research and will possibly pave 

the way for the development of therapeutic approaches involving such factors as targets in the 

long-term. 

3.1.5 Supplemental figures 

 
 

Figure S1: Klf4 is downregulated 

during EMT. Immunoblot for Klf4 during 

TGF-β-induced EMT in NMuMG cells. 
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Figure S2: Klf4 depletion accelerates EMT in Py2T cells. (a) Western blot analysis for the epithelial protein E-

cadherin and the mesenchymal proteins N-cadherin and fibronectin during TGF-β-mediated EMT in Py2T cells after 

Klf4 reduction. Actin is used as a loading control. (b) Morphological changes were monitored after Klf4 ablation 

during a TGF-β time-course in Py2T cells. Original magnification was 10X. 
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Figure S3: Klf4 provides survival advantage to the cells during EMT in Py2T cells: (a) Annexin V staining was 

performed to assess the percentage of dead cell during TGF-β conducted EMT after Klf4 ablation. Cells were treated 

with TGF-β for 0, 1, 4 and 7 days. (b) Propidium iodide staining was carried out to assess the changes in cell cycle 

phases during TGF-β time-course in Py2T cells after Klf4 reduction. Statistical values were calculated by using an 

unpaired, two-tailed t-test. p-value ≤ 0.001 indicated with (***). 
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Figure S4: Klf4 over-expression prevents epithelial differentiation in Py2T cells: (a) Morphological changes 

were observed after Klf4 induction by using 1uM 4-OHT during TGF-β-induced EMT in Py2T cells. Original 

magnification was 10X. (b) Expression levels of various EMT markers were assessed by doing an immunoblotting 

analysis after Klf4 induction with 1uM 4-OHT. Cells were treated with TGF-β for 0, 1, 4 and 7 days. The epithelial 

marker E-cadherin and the mesenchymal markers N-cadherin and fibronectin were analyzed for their expression 

levels. 
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Figure S5: Klf4 directly binds at the promoters of key EMT genes: (a-d) Detailed comparison between ChIP-seq 

data after performing Klf4 ChIP,  affymetrix array data after conducting chip in Klf4 knockdown cells  in the 

absence and presence of TGF-β (2days) and affymetrix array data after carrying  out chip  during TGF-β mediated 

EMT (Day 0, 1, 4, 7 and 10). Lists generated after Klf4 knockdown array analysis, both in the presence and absence 

of TGF-β, were merged together for upregulated and downregulated genes. Panel (a) and (b) comprise the genes 

which were upregulated during EMT as well as upregulated in Klf4 knockdown array. Panel (c) and (d) comprise 

the genes which were downregualted during EMT as well as downregulated in Klf4 knockdown array.All 

experiments were carried out in NMuMG cells (e) Klf4 ChIP was performed in Py2T cells, followed by 

quantitative-PCR to test the occupancy of Klf4 at Cdh2 (N-Cadherin), Vim (Vimentin) and Ctnnb1 (β-Catenin) 

promoters. Statistical values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with 

(*). 
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Figure S6: Klf4 regulates non-canonical TGF-β signaling via Jnk1 but itself is regulated by canonical TGF-β 

signaling: (a) Immunoblot analysis of the expression of Jnk1 during TGF-β-induced EMT in Py2T cells after Klf4 

depletion. (b-c) Immunoblot was performed to check the Jnk1 expression after Klf4 induction with 1uM 4-OHT in 

NMuMG (b) and Py2T (c) cells after treating them with TGF-β for 0, 1, 4 and 7 days. (d) Quantitative-RT-PCR was 

carried out after Klf4 chromatin immunoprecipitation in Py2T cells to check the occupancy of Klf4 at Mapk8 

promoter which encode for Jnk1. (e) Quantitative-RT-PCR was performed to assess the knockdown efficiency of 

Jnk1 siRNAs pool in the absence and presence of TGF-β in NMuMG cells. Cells were treated with TGF-β for 2 

days. (f) Q-PCR was conducted after stable knockdown of Smad4 to monitor the expression level of Klf4 during 

TGF-β mediated EMT in NMuMG cells. Statistical values were calculated by using an unpaired, two-tailed t-test. p-

value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

3.1.6 Methods and Materials 

Reagents and antibodies 

Reagents: TGF-β (240-B, R&D systems). DMEM (D5671, Sigma-Aldrich), PBS (D8537, 

Sigma-Aldrich), trypsin (T4174, Sigma-Aldrich), Opti-MEM (11058, Gibco), FBS (F7524, 

Sigma-Aldrich), Glutamine (G7513, Sigma-Aldrich), Pencillin/streptomycin (P4333, Sigma-

Aldrich), Lipofectamine RNAiMax (11668-019, Invitrogen), Alexa Fluor-488, 568, 633 

(Invitrogen),  Polybrene (AL-118, Sigma-Aldrich), Puromycin (P7255, Sigma-Aldrich), Fugene 

HD ( 12998300, Roche), Trizol (T9424, Sigma-Aldrich), M-MLV reverse transcriptase (M314C 

28692233, Promega),  SYBR-green PCR MasterMix (Eurogentec) and  Bradford reagent (500-

0006, Biorad), Protease inhibitor cocktail (P2714, Sigma-Aldrich). Antibodies: Western Blot: 

E-Cadherin (610182, Transduction Laboratories), N-Cadherin (M142, Takara), ZO-1 (617300, 

Zymed), Fibronectin (F-3648, Sigma-Aldrich), Actin (SC-1616, Sanata Cruz Biotechnology). 

Immunofluorescence: E-Cadherin (13-1900, Zymed), N-Cadherin (610921, Transduction 

Laboratories), ZO-1 (617300, Zymed), Phalloidin (A12380, Invitrogen), Paxillin (13520, 

Transduction Laboratories), Vimentin (V2258, Sigma). Apoptosis and Cell cycle: Annexin-V 

(559934, BD Biosciences) and PI (P4170, Sigma-Aldrich), Small interfering RNAs:  siControl 

(Stealth RNAi™ siRNA Negative Controls, 12935-100, Invitrogen), siKlf4 

(SASI_Mm01_00114972 and SASI_Mm01_00114974, Sigma-Aldrich) and siJnk1 

(SASI_Mm01_00061987 & SASI_Mm01_00061988, Sigma-Aldrich). Small hairpin RNA: 

http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla:en-US:official&sa=X&ei=cCdrTrGEJ4XLswaJ6ogZ&ved=0CBMQBSgA&q=C2206+sigma+immunofluorescence&spell=1
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shControl (Mission Non-target shRNA control vector, SHC002) and shKlf4 (SHCLNG-

NM_010637 Mouse, TRCN0000095370; TRCN0000095371 and TRCN0000095372).  

Cell lines and cell culture 

A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG) expressing E-cadherin has been 

previously described (Maeda et al., 2005). MCF7 shControl and MCF7-shEcad have been 

described before (Lehembre et al., 2008). Py2T cells were derived from Polyoma middle T 

breast cancer tumor model (unpublished data, Waldameir et.al). NMuMG, MCF7shControl, 

MCF7-shEcad, Py2T, 293T and PLAT-E cells were cultured in DMEM supplemented with 10% 

FBS, 2mM glutamine, 100U penicillin and 0.2mg/ml streptomycin. All the cells were cultured at 

370c with 5% CO2 in humid incubator. For TGF-β time-course experiments, cells were treated 

with 2ng/ml TGF-β for indicated time point and it was replaced every 2 days. For siRNA 

transfections, Lipofectamine RNAiMax was used according to the manufacturer's instructions.  

Quantitative RT-PCR 

Total RNA was prepared by using a Tri Reagent according to the manufacturer’s instructions. 

RNA was further reverse transcribed with ImProm-II Reverse Transcriptase, and transcripts were 

quantified by PCR using SYBR-green PCR Mastermix in a real time PCR system (Step One 

Plus, Applied Biosystems). Human or mouse ribosomal L19 primers were used for 

normalization. PCR assays were performed in duplicates, and fold induction was calculated 

against control-treated cell lines using the comparative Ct method (ΔΔ Ct). Following primers 

were used:  

Primer name Sequences 

mRpl19 Forward primer ctcgttgccggaaaaaca 

mRpl19 Reverse primer tcatccaggtcaccttctca 

mKlf4 Forward primer cctcgctctcctcgtcct 

mKlf4 Reverse primer tcgtcttcgaactcgtcgt 

hRpl19 Forward primer gatgccggaaaaacaccttg 

hRpl19 Reverse primer tggctgtacccttccgctt 
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hKlf4 Forward primer ccaaatcttttggggactttt 

hKlf4 Reverse primer ctggcccctcaactcctc 

mE-cadherin Forward primer cgaccctgcctctgaatcc 

mE-cadherin Reverse primer tacacgctgggaaacatgagc 

mN-Cadherin Forward primer caatgacgtccaccctgttct 

mN-Cadherin Reverse primer ctgccatgactttctacggaga 

mFibronectin1 Forward primer cccagacttatggtggcaatt 

mFibronectin1 Reverse primer atattccgactcgagtctga 

mJnk1 Forward primer aactgttccccgatgtgct 

mJnk1 Reverse primer tctcttgcctgactggcttt 

 

Immunoblot 

Cells were lysed for 1 hour on ice in RIPA-Plus buffer (50mM Tris-HCl, pH8.0), 150mM NaCl, 

10% glycerol, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 2mM 

CaCl2, 1mM dithiothreitol, 1mM sodium fluoride, 0.2mM sodium orthovanadate, 1x protease 

inhibitor cocktail and further quantified by using Bradford reagent. 50 μg of cleared protein 

lysates were separated by SDS-PAGE and electroblotted on PDVF membranes, and proteins 

were visualized with the appropriate primary and secondary antibodies and ECL on superRX 

films. Depending on the species origin of antibodies, immunoblots were either probed 

sequentially or on multiple membranes. Adobe Photoshop has been used to excise the relevant 

portion of the immunoblots from the original scans of X-ray films exposed to 

chemoluminescence visualization of specific proteins. 

Immunofluorescence 

siControl, siKlf4 and siJnk1 cells were plated on coverslips and treated with TGF-β for 

mentioned time. The cells were fixed with 4% paraformaldehyde in HBSS and further 

permeablized with 0.2% Triton for 5 minutes at room temperature. These cells were blocked by 

using 3.5% goat serum for 15 minutes and incubated with primary antibodies against E-cadherin, 

N-cadherin, Fibronectin, ZO-1, vimentin, Paxillin and Phalloidin for 1 hour and then incubated 
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with flurochrome-labeled secondary antibody for 1 hour at room temperature. The coverslips 

were counterstained with DAPI and imaged with a confocal laser-scanning microscope. Data 

were processed with Adobe Photoshop 7.0 software. 

Production of lentivirus for knockdown studies  

Murine Klf4 shRNAs and control shRNA were purchased from Sigma-Aldrich as described 

above. For lenti-virus production, 293T cells were transfected with the shRNA expressing lenti-

viral vector in combination with the packaging vectors including envelope protein; HDM-

pVSV/G,  codon-optimized HIV gag-pol; HDM-Hpgm2, transactivator of transcription; HDM-

Tat1b and  pRC-CMV-RaII by Fugene HD. After 48 hours of transfection, viral supernatant was 

harvested, filtered (0.46 µm), supplemented with polybrene (8ng/ml) and used to infect target 

cells. Infections were performed once a day for two consecutive days. Infected cells were 

positively selected using Puromycin (5ug/ml). 

Production of retrovirus for over-expression studies  

Klf4-ER (kindly provided by Prof. J.M. Ruppert) cloned into the retroviral expression vector 

pbabe. Retroviral particles were produced by transfecting PLAT-E cells with the retroviral 

expression vectors using Fugene HD. After two days of virus production, retroviral-containing 

supernatants were harvested, filtered (0.45 µm) and added to target cells in presence of 

polybrene (8 ng/ml). Infections were performed once a day for two days, and later on selection 

was performed by using puromycin. Single clones were picked for the experiments. 

Wound healing assay 

In vitro wound healing assays were done on confluent siControl, siKlf4, siJnk1 and siKlf4 + 

siJnk1 cells. The media on the confluent cells was replaced with DMEM with 2% fetal bovine 

serum media, and an area of cells was scraped off using a 200ul pipette tips. Light microscopic 

images were taken at time 0 and at 20 hours. The data was further analyzed by using an ImageJ 

program. 

Migration assay 
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Cell migration was assessed in shControl and shKlf4 cells in a transwell migration assay (pore 

size: 8 μm; Falcon BD). 104 cells were seeded in 2% FBS/DMEM (Sigma) in the upper chamber 

and the lower chamber was filled with 20% FBS/DMEM. After 20 hours of incubation at 37°C, 

cells in the upper chamber were carefully removed with a cotton swap, and the cells that had 

traversed the membrane were fixed in 4% paraformaldehyde/PBS, stained with DAPI. Pictures 

of the membrane were taken at a 10x magnification using a fluorescent microscope (Nikon 

Diaphot 300). Quantification was done using the software ImageJ. 

Apoptosis assay (Annexin assay) 

Cells were washed twice with cold PBS and resuspended in 1X Annexin V binding buffer at a 

concentration of 1 x 106 cells/ml. 5 µl of Cy5 Annexin V was added to the 100 µl of cells (1 x 

105) and incubated for 15 min on ice in the dark. Stained cells were filtered through 40µm mesh 

and analyzed on a FACSCanto II using DIVA software. 

Cell growth curve 

1x104 cells were seeded in each well of 24-well plate, and cell numbers were assessed for 

mentioned days by using a Neubauer counting chamber. 

PI Staining 

Cells were trypsinized and fixed in 70% ice-cold Ethanol for overnight.  Washed twice with PBS 

and resuspended in sodium citrate buffer with 5μg/ml PI for overnight. Stained cells were 

analyzed by FACSCanto II using DIVA software. 

Microarray processing and data analysis 

RNA was isolated from NMuMG cells transfected with control siRNA or Klf4 siRNA and 

treated with TGF-β for 0 and 2 days using Tri Reagent (Sigma-Aldrich). RNA quality and 

quantity was evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies). The 

manufacturer’s protocols for the GeneChip platform by Affimetrix were followed. Methods 

included synthesis of the first- and second-strand cDNA followed by synthesis of cRNA by in 

vitro transcription, subsequent synthesis of single-stranded cDNA, biotin labeling and 
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fragmentation of cDNA and hybridization with the microarray slide (GeneChip® Mouse Gene 

1.0 ST array), posthybridization washings and detection of the hybridized cDNAs using a 

streptavidin-coupled fluorescent dye. Hybridized Affimetrix GeneChips were scanned using an 

Affimetrix GeneChip 3000 scanner. Image generation and feature extraction were performed 

using Affimetrix GCOS Software and quality control was performed using Affimetrix 

Expression Console Software. Raw microarray data were normalized with Robust Multi-Array 

(RMA) and analyzed using Partek® Genomics Suite Software (Partek Inc.). One-way analysis of 

variance (ANOVA) and asymptotic analysis were used to identify significantly differentially 

expressed genes. The gene ontology (GO) tool from Partek® Genomics Suite Software as well as 

the David gene ontology software were used for further analysis. 

Chromatin Immunoprecipitation 

ChIP experiments were performed as previously described (Weber et al, 2007). In brief, 

crosslinked chromatin was sonicated to achieve an average fragment size of 500 bp. Starting 

with 100 μg of chromatin and 5 μg of anti-HA antibody, 1 μl of ChIP material and 1 μl of input 

material were used for quantitative real-time PCR using specific primers covering the motif of 

Klf4 in the promoter of target genes. Primers covering an intergenic region are used as a control. 

The efficiencies of PCR amplification were normalized for between the primer pairs. Following 

primers were used for ChIP –PCR.  

Name Sequences 

Cdh2 FP ggtttgctggtagccatgtt 

Cdh2 RP cattcccttttcctgctttg 

p53 FP ggtcaagtggagaagggtga 

p53 RP gcacctcgagagaaggacac 

Junb FP tttccttccttgctaactcctg 

Junb RP agatcaccctacttttccacca 

Vim FP gttttgcattgagttccatttg 

Vim RP gtcacgaacagcagagagaaga 

Ctnnb1 FP agtctcaaagtgttgggaccat 
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Ctnnb1 RP ttatgctgacctttccacactg 

Interg FP attctcctgcaaaggaaacaaa 

Interg RP ggggctcagagtaggttatgtg 

 

Statistical analysis 

Statistical analysis and graphs were generated using the GraphPad Prism software (GraphPad 

Software Inc, San Diego, CA). All statistical analysis was done by unpaired, two-sided t-test. 

Normality testing was performed using the Kolmogorov-Smirnov test with Dallal-Wilkinso- 

Lillie for p-values.
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3.2.1 Abstract 

Epithelial-to-mesenchymal transition (EMT) is a key process during organismal development 

and in the progression of solid epithelial tumors to invasive and metastatic cancers. It involves 

loss of various epithelial markers, which are required for normal integrity of cells and at the 

same time gain of various mesenchymal markers which make the cells more migratory and 

invasive. Using a genome-wide expression profiling approach, we uncovered Sox4 among the 

transcription factors that were significantly upregulated during TGF-β-induced EMT in NMuMG 

cells. Sox4 depletion during TGF-β-induced EMT leads to a retention of epithelial morphology 

and decrease in cell migration properties. In addition, Sox4 provides a survival advantage to cells 

during EMT. Importantly, Sox4 is also required for breast cancer metastasis and tumorigenesis in 

vivo. Interestingly, Chromatin Immunoprecipitation experiments reveal that Sox4 directly binds 

to the promoter and regulates expression of Ezh2, a Polycomb Group (PcG) Complex gene that 

encodes for the enzyme that trimethylates H3K27 for gene repression. This results in the 

activation of EMT, ultimately leading to enhanced invasiveness of epithelial cells. Taken 

together, our results provide a novel mechanism of EMT regulation by transcription factor Sox4, 

where in addition to controlling the expression of crucial EMT genes including Spred1, Edn1, 

Palld, Cyr61, Ereg, Areg and Yap1, it also contributes to EMT by regulating transcription of the 

epigenetic machinery component Ezh2. 

3.2.2 Introduction 

Epithelial–mesenchymal transition (EMT) is a cellular mechanism long known to constitute the 

core of normal embryonic development. Several critical development events, including 

gastrulation, neural crest formation and heart morphogenesis, rely on the plastic transition 

between epithelium and mesenchyme (Hanahan and Weinberg, 2011; Kalluri, 2009; Kalluri and 
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Weinberg, 2009; Nieto, 2010; Polyak and Weinberg, 2009; Thiery and Sleeman, 2006). In the 

last few years it has been uncovered that similar but physio-pathological transitions occur during 

the progression of epithelial tumors, endowing cancer cells with increased motility and 

invasiveness (Hanahan and Weinberg, 2011; Nieto, 2010; Polyak and Weinberg, 2009; Thiery 

and Sleeman, 2006). Multiple oncogenic pathways mediated by peptide growth factors, TGF-β, 

Src, Ras, Ets, integrin, Wnt/β-catenin and Notch signaling, are implicated in induction of EMT 

(Hanahan and Weinberg, 2011; Kalluri, 2009; Kalluri and Weinberg, 2009; Nieto, 2010; Polyak 

and Weinberg, 2009; Thiery and Sleeman, 2006) .  

Sox4 ( SRY-Related HMG-Box Gene 4) is a member of the Sox (SRY-related HMG-box) family 

of transcription factors and it has been shown to have a role in embryonic development and in 

cell-fate determination during organogenesis including heart (Restivo et al., 2006; Schilham et 

al., 1996), pancreas (Lioubinski et al., 2003; Wilson et al., 2005) and brain (Cheung et al., 2000a; 

Hong and Saint-Jeannet, 2005). Sox4 has been shown to be a lymphocyte specific-transcriptional 

activator (van de Wetering et al., 1993) and facilitates B and T cell differentiation (Cheung et al., 

2000a; Hong and Saint-Jeannet, 2005; Lioubinski et al., 2003; Schilham et al., 1997; Schilham et 

al., 1996; van de Wetering et al., 1993; Wilson et al., 2005). Moreover, Sox4 gene expression is 

up-regulated in many tumor types, with experimental evidence suggesting that this contributes to 

cellular transformation (Liu et al., 2006a; Shin et al., 2004), control of apoptosis (Aaboe et al., 

2006; Ahn et al., 2002; Liu et al., 2006a; Pramoonjago et al., 2006) and/or a metastatic 

phenotype (Liao et al., 2008; Tavazoie et al., 2008). Restoration of miR335 expression in 

malignant cells suppressed lung and bone metastasis in human cancer cells through targeting the 

progenitor cell transcription factor Sox4 and extracellular matrix component tenascin C 

(Tavazoie et al., 2008).  Sox4 has also been shown to directly regulate key cellular regulators 

like EGFR, TNC, HSP70, FZD5, DLL1, PTCH1, various transcription factors like MLL, 

FOXA1, ZNF281 and NKX3-1 and components of the RNAi machinery including Dicer, 

Argonaute 1, and RNA Helicase A in prostate cancer (Scharer et al., 2009). Moreover, Sox4 has 

been shown to regulate Wnt signaling by directly binding to β-catenin and interacting with 

various Tcf family members (Sinner et al., 2007). Recently, organogenesis has been suggested to 

rely on SoxC transcription factors, which comprise Sox4, Sox11 and Sox12, for the survival of 
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neural and mesenchymal progenitors and in part by activating Tead2, which is a mediator of 

Hippo signaling (Bhattaram et al., 2010). 

Ezh2 (Enhancer of Zeste, Drosophila, Homolog 2) is a histone methyltransferase that belongs to 

the polycomb group (PcG) complex 2 and is known to be involved in epigenetic regulation of 

genes involved in cell fate decisions. It specifically trimethylates nucleosomal histone H3 at 

lysine 27 (H3K27me3), an epigenetic mark associated with gene silencing (Cao et al., 2002; 

Ernst et al., 2010).  Ezh2 has also been shown to be phosphorylated by Akt which further 

suppress its methyltransferase activity and de-represses the silenced genes (Cha et al., 2005). 

Ezh2 also has been shown to be upregulated in various cancers (Varambally et al., 2002). 

Furthermore, the expression and function of Ezh2 in cancer cell lines are inhibited by microRNA 

101(Varambally et al., 2008). It has been proposed that the genomic loss of MIRN101 in cancer 

leads to the overexpression of Ezh2 and concomitant deregulation of epigenetic pathways, 

resulting in prostate cancer progression (Varambally et al., 2008). Furthermore, Ezh2 can induce 

EMT by downregulation of DAB2IP, which is a Ras GTPase activating protein that acts as a 

tumor suppressor, and increases the metastatic potential of prostate cancer (Chen et al., 2005; 

Min et al., 2010). Ezh2 knockout mice suffer from early embryonic death (O'Carroll et al., 2001). 

Interestingly, a conditional knockout of Ezh2 in basal keratinocytes resulted in thickened stratum 

corneum and granular layer and precocious acquisition of epidermal barrier function in the 

embryo (Ezhkova et al., 2009) while a conditional knockout of Ezh2 in B-cells led to improper 

IGH re-arrangement in B-cell (Su et al., 2003), suggesting a  possible role for Ezh2 in the 

determination of cell-type identity.  

Using global gene expression profiling, we identified a comprehensive list of genes at six 

consecutive different morphological states (1 day, 4 days, 7 days, 10 days and 20 days) during 

TGF-β-induced EMT in normal mammary epithelial cells, NMuMG (Lehembre et al., 2008). 

This data was further subjected to computational analysis and based on motif search for various 

transcription factors at the promoter of regulated genes (http://test.swissregulon.unibas.ch/cgi-

bin/mara), we predicted a number of transcription factors that might regulate transcription of a 

subset of genes in the early, intermediate and later stages of EMT (data not shown).  

Interestingly, Sox4 was discovered as one of such factor that might possibly regulate expression 
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of certain crucial genes during TGF-β-induced EMT in NMuMG cells. Given the findings for 

Sox4 in cell-fate decision during development as well as its implicated role in cellular 

transformation during carcinogenesis (Liu et al., 2006a; Shin et al., 2004), the above findings 

motivated us to investigate the role of this transcription factor during Epithelial to Mesenchymal 

transition.  

Our data reveal that not only Sox4 induces EMT, but also acts as a survival factor during this 

process. Sox4 knockdown inhibits cell migration.  We also show that loss of Sox4 function in 

Py2T cells, derived from the MMTV-mouse PyMT model of breast cancer, significantly impairs 

their ability to form primary tumors and metastatic lesions in the lungs, lymph-nodes and liver of 

transplanted nude mice. Furthermore, Sox4 loss in B16-F10 metastatic model also leads to a 

decrease in metastasis. Expression profiling analysis upon Sox4 depletion in the absence and 

presence of TGF-β revealed many Sox4 target genes, including Ezh2.  Interestingly, Sox4 

directly binds to the Ezh2 promoter controlling its transcriptional regulation. Along these lines, 

we show that Ezh2 induces EMT and act as a survival factor, thus revealing Ezh2 as one of the 

Sox4-target gene, critical for EMT. 

3.2.3 Results 

3.2.3.1 Identification of Sox4 as a transcription factor upregulated in EMT  

To identify the crucial genes underlying EMT during early, intermediate and later stages, we 

used the established untransformed normal murine mammary gland cell line NMuMG 

(Lehembre et al., 2008; Miettinen et al., 1994). We treated NMuMG cells with TGF-β for 1, 4, 7, 

10 and 20 days and consequently these cells underwent progressive EMT and acquired a 

complete mesenchymal morphology by the end point, as shown previously (Lehembre et al., 

2008). These morphological changes were accompanied by a “cadherin switch”, a hallmark of 

EMT, as well as with the gain of other mesenchymal markers and loss of epithelial markers 

(Hazan et al., 2004; Maeda et al., 2005). We next performed a genome-wide expression profiling 

of the above stages and identified genes that were differentially expressed at early, intermediate 

and later stages of the EMT process. We then employed MARA (Motif Activity Response 

Analysis) to identify crucial transcription factors whose targets are transcriptionally modulated 



                                                                       Sox4 regulates Epithelial to Mesencymal transition by directly 

                                                                                             controlling transcription of underlying master genes 

 

 92  
 

during EMT based on their motif occurrence at target promoters. This analysis revealed a 

number of interesting transcription factors that may possibly regulate EMT via transcriptional 

regulation of underlying genes (data not shown), and Sox4 was identified as one of the top  

 

Figure 1: Sox4 expression and activity is upregulated during TGF-β-induced EMT. (A) MARA analysis 

predicts Sox4 activity during EMT in NMuMG cells. (B) RT-qPCR analysis for quantification of Sox4 expression 

levels in NMuMG cells during TGF-β mediated EMT.  (C) Expression levels of Sox4 as quantified by RT-qPCR in 
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control and E-cadherin-specific shRNA treated MCF7 cells. (D) RT-qPCR for quantification of Sox4 levels upon 

EMT induction in Py2T cells. Statistical values were calculated by using a paired, two-tailed t-test. p-value ≤ 0.05 

indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

scoring factor in this analysis. Sox4 has AACAA/TG/A binding motif (Figure 1A) and according 

to MARA analysis, its activity is increased during EMT (Figure 1A). Very interestingly, 

quantitative RT-PCR experiments revealed that not only the activity, but also Sox4 expression is 

up-regulated during such TGF-β-induced EMT in NMuMG cells (Figure 1B). We further 

confirmed Sox4 upregulation in a human breast cancer cell line that undergoes EMT upon E-

cadherin knockdown (MCF7) (Lehembre et al., 2008) (Figure 1C). In addition, this was also seen 

in another cell line from PyMT model system of breast cancer that also undergoes EMT in 

response to TGF-β treatment (Waldameier et.al. unpublished data) (Figure 1D). These results 

suggested a potential oncogenic role for Sox4 during EMT.  

3.2.3.2 Sox4 depletion prevents EMT 

To directly assess the role of Sox4 in EMT, we used two different siRNAs and pooled them 

together to knockdown Sox4 in the absence and presence of TGF-β in NMuMG cells. This 

siRNA pool efficiently downregulated Sox4 levels (Figure 2A). Sox4-ablated NMuMG cells 

were not able to undergo EMT and retained an epithelial phenotype during TGF-β treatment 

(Figure 2B). Immunoflorescence studies revealed that Sox4 depletion in the absence of TGF-β 

led to a retention of all tested epithelial markers similar to control cells while mesenchymal 

markers like N-cadherin and paxillin were decreased (Figure 2C). On the other hand, in the 

presence of TGF-β, cells were able to maintained E-cadherin and ZO-1 at the membrane while 

the mesenchymal marker N-cadherin was decreased. Along with these observations, TGF-β- 

mediated cytoskeleton re-modeling was also prevented and stress fibers were reduced. 

Fibronectin and paxillin staining revealed a significant failure to form focal adhesion after Sox4 

reduction (Figure 2C). These observations were further confirmed by immunoblot analysis 

(Figure 2D). Notably, Sox4 depletion in NMuMG cells treated with TGF-β for 15 days (LT) 

exhibited epithelial cell morphology, demonstrating that Sox4 is not only required for the 

initiation but also for the maintenance of EMT in NMuMG cells (Figure 2E). We further  
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Figure 2: Depletion of Sox4 blocks epithelial differentiation. (A) qRT-PCR was performed after siRNA-mediated 

knockdown of Sox4 in the absence and presence of TGF-β. Cells were treated with TGF-β for 2 days. (B) 

Morphology of NMuMG cells transfected with either control or Sox4-specific siRNA during TGF-β mediated EMT, 

as evaluated by phase contrast microscopy. Original magnification was 10X. (C) Immunoflorescence stainings for 

adherent junction protein, E-cadherin and N-cadherin, tight junction protein ZO-1, the actin cytoskeleton by 

phalloidin and focal adhesion protein paxillin were performed after Sox4 knockdown in the absence and presence of 

TGF-β. Cells were treated with TGF-β for 2 days. Original magnification was 40X. (D) Expression of the epithelial 

proteins E-cadherin, ZO-1 and β-catenin and the mesenchymal proteins N-cadherin, fibronectin and p120 as 

detected by immunoblot analysis after siRNA mediated knockdown of Sox4 during the TGF-β time-course. Actin 

was used as a loading control.  (E) Morphology of long term TGF- β treated NMuMG cells transfected with either 

control or Sox4-specific siRNA, as evaluated by phase contrast microscopy. Original magnification was 10X. 

Statistical values were calculated by using a paired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 

0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

extended these studies to the Py2T murine breast cancer model. Similar to NMuMG cells, upon a 

lentiviral mediated stable knockdown of Sox4 Py2T cells failed to undergo EMT at later stages 

and recovered the epithelial marker E-cadherin (Supplemental figure S1 A) while the 

mesenchymal marker fibronectin was decreased (Supplemental figure S1 B). We did not observe 

any change in N-Cadherin expression as well as in morphology after TGF-β treatment in Sox4- 

depleted cells (data not shown). Together, these results strongly argue that Sox4 is required for 

TGF-β induced EMT.  

 

3.2.3.3 Sox4 provides a survival advantage during TGF-β-induced EMT and supports 

migration 

Sox4 has been implicated in cell survival in various cancers (Hur et al., 2010; Pramoonjago et 

al., 2006; Shen et al., 2010). Thus, we next investigated whether Sox4 has a similar function 

during TGF-β-induced EMT in NMuMG cells. Sox4-depleted NMuMG cells showed a 

significant reduction in cell growth in comparison to control cells and displayed high sensitivity 

towards TGF-β-mediated growth inhibition (Figure 3A). To determine whether this effect was 

due to alterations in proliferation ability or changes in apoptosis levels, we used propidium 

iodide staining to perform FACS-based analysis of the cell cycle and further performed Annexin 

V staining to quantify apoptosis. In comparison to control siRNA-treated cells, a statistically  
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Figure 3: Sox4 supports migration and provides survival advantage to the cells during TGF-β-induced EMT. 

(A) Proliferation assays were performed after siRNA-mediated knockdown of Sox4 during a TGF-β time-course. 

Cells were counted using a Neubauer counting chamber.  (B) Cell cycle analysis was done after transient 

knockdown of Sox4 during EMT for 0, 1 and 4 days. Propidium Iodide (PI) was used for the staining. (C) Annexin 

V staining was performed to quantify cell death in Sox4 knockdown cells during TGF-β-induced EMT for 0, 1, 4 

and 7 days. (D) Following siRNA-mediated ablation of Sox4 in the absence of TGF-β, a wound healing assay was 

performed after 19 hours of wound creation. (E) Sox4 depleted cells were subjected to a Boyden chamber migration 

assay for 20 hours using 20% FBS as a chemoattractant. Statistical values were calculated by using an 

unpaired/paired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 

0.001 indicated with (***). 

 

significant G0/G1 block was observed after Sox4 depletion (Figure 3B). In addition, increased 

apoptosis occurred in Sox4 knockdown cells in the presence of TGF-β (Figure 3C). Thus, TGF-

β-sensitive growth of Sox4-depleted NMuMG cells relies on both increased proliferation and 

decreased apoptosis during TGF-β-induced EMT. These observation led us conclude that Sox4 is 

required for cell survival and proliferation during TGF-β-induced EMT. 

We next extended our study in Py2T cells carrying a stable knockdown of Sox4 and performed a 

similar series of experiments as described above. Unlike NMuMG cells, these cells did not show 

any apoptotic phenotype (data not shown), although they exhibited a slower growth rate 

(Supplemental figure S2 A) and G0/G1 arrest (Supplemental figure S2 B). These results suggest 

that the apoptotic phenotype is most likely prominent in untransformed cells. 

Since an increased migration potential is a characteristic feature of the EMT process (Brabletz et 

al., 2005; Christofori, 2006; Grunert et al., 2003; Huber et al., 2005; Thiery and Sleeman, 2006), 

we measured the migratory capacity of Sox4-depleted NMuMG cells. Wound healing assays 

revealed a significant reduction in migration of cells depleted of Sox4 compared to control cells 

(Figure 3D). Similar results were obtained in trans-well migration assays (Figure 3E) and in 

Sox4 depleted Py2T cells treated with TGF-β for 15 days (Supplemental figure S2 C). 

3.2.3.4 Sox4 is required for TGF-β-induced tumorigenesis and metastatic spread 
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We next asked whether increased expression of Sox4 correlate with the ability of tumors to 

grow, progress and metastasize. Analysis of the Schmidt breast cancer database (Schmidt et al., 

2008) revealed a correlation between Sox4 expression and metastasis free survival (Figure 4A). 

This database contains 200 lymph node-negative breast cancer patients that were either treated 

with modified radical mastectomy or breast-conserving surgeries followed by irradiation and 

were not exposed to any systemic therapy after surgery. This led us to further investigate whether 

depletion of Sox4 in Py2T cells could impair the ability of these cells to form tumors and to seed 

metastasis. In order to address this question, we performed orthotropic mammary fat-pad 

injections of Sox4-depleted Py2T cells that were also tagged by luciferase expression into nude 

mice and quantified tumor growth and metastasis in lymph nodes, lungs and liver. To quantitate 

the knockdown efficiency of these cells before injection, Q-PCR was performed, showing a 

significant reduction in Sox4 levels (Figure 4B). Immunostaining experiments in tumor sections 

revealed that an efficient depletion of Sox4 was achieved in the tumors as well (Figure 4C). As 

shown in Figure 4D, the knockdown of Sox4 in Py2T cells led to a significant reduction in tumor 

growth, suggesting a crucial role for Sox4 expression in primary tumor growth. H&E staining of 

tumor sections did not show any morphological differences compared to the control counterpart 

(Figure 4E). We also performed luciferase assays in the organs known to be target of breast 

cancer metastasis and found that luciferase levels were decreased in axillary and inguinal lymph 

nodes as well as in lung and liver upon Sox4 depletion (Supplemental Figure S3). These results 

argue in favor of the hypothesis that Sox4 is required for breast cancer metastasis. It has recently 

been shown that tumor size can be correlated with metastasis (Minn et al., 2007). Therefore, we 

calculated the metastatic index by dividing the average luciferase levels in each organ with 

average tumor weight (metastatic index), and the results further supported our findings that Sox4 

depletion is associated with a decreased metastatic potential (Figure 4F). We further validated 

our data by performing sub-cutaneous injections of Sox4-depleted Py2T cells and found a similar 

reduction in tumor growth (Figure 4G).  

We next investigated whether knockdown of Sox4 expression in B16-F10 melanomas cells 

impairs their ability to metastasize. An initial analysis of Sox4 expression upon TGF-β treatment 

for 1, 4, 7 and 10 days in B16-F10 melanoma cells upregulated Sox4 mRNA levels similar to 
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Figure 4: Sox4 is necessary for breast cancer tumorigenesis and metastasis. (A) Correlation of Sox4 expression 

in human breast cancer array data set. Kaplan-Meier survival curve for the patient samples classified for having high 

Sox4 expression and low Sox4 expression to assess the metastasis free survival. (B) RT-qPCR quantification of 

Sox4 knockdown efficiency in Py2T cells stably transfected with control (shControl) and Sox4-specfic (ShSox4) 

shRNA. (C) Immunohistochemistry for Sox4 was performed on tumor sections to validate the Sox4 knockdown 

efficiency. (D) Tumor growth was measured following fat-pad injection of shControl and shSox4 cells into 7 weeks 

old female nude mice. Tumor weight was assessed after sacrificing the nude mice 23 days post-injection. (E) H&E 

staining on tumor sections derived from mice injected with shControl and shSox4 cells. (F) Metastatic spread was 

quantified by measuring the relative luciferase levels in lymph nodes, lung and liver of nude mice injected with 

shControl and shSox4 cells and further by dividing the relative luciferase levels with tumor weight in various 

organs. (G) Tumor growth was measured following sub-cutaneous injection of shControl and shSox4 cells into the 7 

weeks old female nude mice. Tumor weight was assessed after sacrificing the nude mice 27 days of post-injection. 

Statistical values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 

0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 
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Figure 5: Sox4 is required for metastasis in B16-F10 melanoma cells.  (A) qRT-PCR to determine the expression 

of Sox4 during TGF-β-induced EMT in B16-F10 melanoma cell line. (B) RT-qPCR to assess the knockdown 

efficiency after stable transfection of shSox4 in B16-F10 melanoma cells. (C) Lung metastasis was measured after 

the intravenous injection of shControl and shSox4 melanoma cells into the tail-vein of C57 black 6 mice. Mice were 

sacrificed after 18 days of post-injection. (D) Pictures of lungs after sacrificing mice injected intravenously with 

shControl and shSox4 melanoma cells. Statistical values were calculated by using an unpaired/paired, two-tailed t-

test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

NMuMG cells (Figure 5A). We then performed intravenous injection of stable Sox4 knockdown 

B16-F10 melanoma cells (shSox4-B16-F10) into the tail-veins of C57BL/6 mice and quantified 

metastasis to the lung. The results show that Sox4 depleted B16-F10 melanomas cells were 

significantly impaired in colonizing the lungs (5B, 5C and 5D). Taken together, these 

observations led us to conclude that Sox4 was an important player in the metastatic process. 

3.2.3.5 Ezh2 is a transcriptionally regulated by Sox4  

Given the established role for Sox4 as a transcriptional regulator, we next attempted to identify 

genes that are possibly regulated by Sox4 and through which it may contribute to EMT. We 

performed a global transcription profiling in control and Sox4 siRNA-treated NMuMG in the 

absence and presence of TGF-β for 2 days in order to reveal the direct targets of Sox4. The 

differentially expressed genes were analyzed for Sox4 binding motif within 1 Kb of their 

transcription start site. The resulting gene list of 198 genes was further compared with the EMT 

time-course expression analysis we performed earlier to reveal that 99 EMT relevant genes were 

in common. This list was further subjected to gene ontology analysis and we could identify 35 

targets that have been implicated in angiogenesis, cell morphogenesis, apoptosis, migration, 

adhesion, MAPK signaling, cell cycle, cytoskeleton remodeling, EGFR signaling and EMT. In 

order to strengthen our observation, we assess the direct occupancy of Sox4 at the promoters of 

these genes. Chromatin Immunoprecipitation (ChIP) assay in NMuMG cells transiently 

transfected with HA-Sox4 construct using HA-specific antibodies revealed that out of these 35 

genes, the promoters of 23 genes are directly bound by Sox4 (including key EMT genes such as 

Spred1, Edn1, Palld, Cyr61, Ereg, Areg and Yap1) (Supplemental Figure S4 A-I). These Chips 

experiments further helped us to better define the Sox4 binding motif as A A C A A G/A for the 
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target promoters analyzed. It has been shown previously that Sox4 directly regulates Mll, a 

DNA-binding protein that methylates histone H3 lys4 (H3K4) and positively regulates 

expression of target genes, in prostate cancer (Scharer et al., 2009). Given emerging evidences of 

Polycomb group (PcG) proteins, especially the H3K27 methyltransferase Ezh2, in 

carcinogenesis, we investigated whether Sox4 may have possible regulatory influence on the  
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Figure 6: Sox4 directly binds the Ezh2 promoter. (A-B) RT-qPCR for measurement of Ezh2 expression levels 

upon Sox4 knockdown in NMuMG (A) and Py2T (B). Immunoblot for the repressive mark H3K27me3 after 

siRNA- mediated Sox4 ablation in NMuMG (A) and Py2T (B) cells. The cells were treated with TGF-β for 2 days. 

(C-D) Following Chromatin Immunoprecipitation (ChIP) using HA-specific antibody in NMuMG (C) and Py2T (D) 

cells transiently transfected with HA-Sox4 construct, realtime PCR was performed using Ezh2-promoter specific 

primers to determine the  Sox4 occupancy at this region. Statistical values were calculated by using an 

unpaired/paired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 

0.001 indicated with (***). 

 

 

transcriptional regulation of Ezh2. Interestingly, expression array results and further validation 

by quantitative RT-PCR showed that Ezh2 is significantly dowregulated upon Sox4 depletion in 

presence of TGF-β in NMuMG (Fig 6A) and Py2T (Figure 6B). Sox4 knockdown also led to a 

global reduction in H3K27me3 levels in NMuMG and Py2T cells (Figure 6A and 6B). 

Interestingly, Chromatin Immunoprecipitation assays revealed that Sox4 directly bound the Ezh2 

promoter in NMuMG (Figure 6C) and Py2T cells (Figure 6D). These data suggest that Sox4 

directly binds to promoters of key EMT genes, including Ezh2, for their transcriptional 

activation during TGF-β induced EMT. 
 

3.2.3.6 Ezh2 knockdown phenocopies Sox4 depletion 

We next speculated whether some aspect of EMT regulation by Sox4 are mediated via its 

regulation of Ezh2 and assessed whether knockdown of Ezh2 phenocopies Sox4 depletion. 

Interestingly, siRNA-mediated depletion of Ezh2 in NMuMG cells led to a retention of an 

epithelial phenotype even in the presence of TGF-β (Figure 7A). Furthermore, these 

morphological changes were also accompanied with retention of the epithelial markers like E-

cadherin and ZO-1 as well as the loss of the mesenchymal marker N-cadherin (Figure 7B). These 

results were further supported by immunoflorescence staining for epithelial and mesenchymal 

markers in Ezh2-depleted NMuMG cells (Figure 7C).  

We next investigated whether Ezh2 also exerted a survival effect during EMT similar to that 

observed for Sox4. Annexin V staining in Ezh2 depleted NMuMG cells during TGF-β treatment 

revealed that apoptosis was significantly increased upon Ezh2 depletion during EMT (Figure  
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Figure 7: Depletion of Ezh2 phenocopies the absence of Sox4 during TGF-β-induced EMT. (A) Phase contrast 

microscopy was performed to study the morphology of NMuMG cells transfected with siControl and siEzh2 is 

monitored after TGF-β treatment for the indicated period. (B) Expression levels of the epithelial markers, E-cadherin 

and ZO-1 and mesenchymal marker, N-cadherin were measured by immunoblot analysis in cells treated with either 

control or Ezh2-specific siRNA during a TGF-β time-course. Actin was used as a loading control. (C) Confocal 

microscopy analysis of NMuMG cells to assess the localization and expression levels of EMT markers after 7 days 

of TGF-β treatment. (D) Apoptosis was measured by Annexin V staining in combination with FACS analysis in 

control (siControl) and Ezh2-depleted (siEzh2) NMuMG cells treated with TGF-β for the days indicated. (E) 

Propidium iodide staining to quantitate the cell cycle phases after Ezh2 knockdown during TGF-β-induced EMT for 

0, 1 and 4 days. (F) NMuMG cells transfected with siControl and siEzh2 were treated with TGF-β for the days 

indicated and counted using a Neubauer chamber to assess the proliferation rate during TGF-β EMT. (G) Ezh2 

depleted cells were subjected to Boyden chamber migration assays using 20% FBS as a chemoattractant. Statistical 

values were calculated by using an unpaired/paired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 

0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

7D). In addition, similar to Sox4 knockdown cells, Ezh2-depleted NMuMG cells were also 

blocked in the G0/G1 phase of the cell cycle and were not able to proliferate (Figure 7E and 7F). 

These results suggest that, in line with Sox4 depletion phenotype, decreased and TGF-β sensitive 

growth of Ezh2 depleted NMuMG cells relies on both increased proliferation and decreased 

apoptosis during TGF-β-induced EMT. We also tested whether Ezh2 had an impact on the 

migration capacity of cell during EMT by performing a trans-well migration assay in Ezh2- 

depleted NMuMG cells in the absence of TGF-β. As expected, these cells were not able to 

migrate more than the control counterpart (Figure 7G). Together, these observations have led us 

to conclude that Ezh2 is an downstream effector of Sox4 regulatory network and functions to 

regulate TGF-β-induced EMT in a fashion similar to Sox4. 

 

3.2.4 Discussion 

Most solid tumors are epithelial in nature and increasing evidences suggest that tumor 

progression accompanies EMT to enable tumor cells to acquire the capacity to be motile and 

infiltrate surrounding tissues, thus licensing them to metastasize to distant sites. 
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Transcription factors play a range of crucial regulatory roles in diverse aspects of cellular 

function such as cell proliferation, differentiation and survival by regulating transcription of 

genes underlying the process. Such regulation has to be tightly regulated and is crucial for proper 

execution of the gene-expression program that defines cellular identity. Misregulation in the 

expression and function of transcription factors involved in cellular pathways has been linked to 

various diseases including cancer. 

Sox4 is a one of such key transcription factors that has been linked to certain cancers. However, 

no detailed investigation has been performed to assess its direct relation with EMT. Our study 

revealed that Sox4 is an inducer of EMT and the absence of Sox4 in breast cancer cells leads to 

suppression of EMT. Moreover, Sox4 is required for EMT-driven cell migration and provides a 

survival advantage to cells undergoing EMT by attenuating TGF-β-induced apoptosis. More 

importantly, we also demonstrated that Sox4 is not only required for EMT but also for metastatic 

spread during breast carcinogenesis. Orthotropic fat-pad injection of Sox4 depleted Py2T cells 

into nude mice has revealed that metastasis lesions are decreased in different breast cancer 

metastasis sites including lymph-nodes (axillary and inguinal), lungs and liver. In addition, after 

surveying the gene expression profiles of human cancer biopsies using the NextBio.com 

database, we found a significant positive correlation between increased Sox4 expression and 

metastatic potential of melanoma cancer. Moreover, a positive and significant correlation of 

increased Sox4 expression with tumorigenicity and advances in tumor stage was also observed. 

Interestingly, in melanomas it is well known that the resistance towards TGF-β-mediated growth 

inhibition and EMT plays an essential role for their metastatic spread, supporting our findings 

that Sox4 depletion has a protective function during tumor-progression and metastasis (Poser et 

al., 2001; Silye et al., 1998; Teicher, 2001). Intravenous injection of Sox4-depleted B16-F10 

melanoma cells into the tail-veins of C57/Bl6 mice revealed that Sox4 also plays a key role in 

metastasis formation in a melanoma cell model.  

To identify genes that are possibly under direct transcriptional control of Sox4, genomewide 

expression profiling was performed after Sox4 depletion in the absence and presence of TGF-β 

which identified a number of genes that were deregulated in Sox4 knockdown cells. To reveal 

the possible direct targets of Sox4, we screened for genes that had a Sox4 binding motif within 

1Kb of their transcription start site. In addition, the resulting list was further compared with the 



                                                                       Sox4 regulates Epithelial to Mesencymal transition by directly 

                                                                                             controlling transcription of underlying master genes 

 

 107  
 

genome-wide expression data of a EMT time-course to identify the EMT relevant genes. This 

analysis has revealed that Sox4 regulates many key EMT genes, such as Spred1, Edn1, Palld, 

Cyr61, Ereg, Areg and Yap1 by directly acting on their promoters. In addition, Sox4 also 

targeted many genes involved in other EMT relevant processes such as angiogenesis, adhesion, 

migration, morphogenesis, cell cycle regulation and cytoskeleton re-modeling. We further 

identified the Ezh2 promoter to be bound by Sox4 for transcriptional modulation. Ezh2 is a 

histone H3K27 methytransferase that has been shown to repress E-cadherin (Cao et al., 2008) 

and is therefore implicated in EMT. In line with being a downstream effector of Sox4, Ezh2 

contributes to TGF-β-induced EMT in a fashion similar to Sox4 with respect to being required 

for transition from epithelial to mesenchymal identity and cell migration and cell survival events 

that accompany this process.  

Taken together, our findings reveal mechanistic insight into how Sox4 regulates EMT by 

targeting and controlling the expression of crucial EMT genes, thereby directly contributing to 

the transcriptional reprogramming underlying this process. Keeping the versatile function of this 

factor in view, our data are certainly of key importance in the EMT field and will possibly pave 

the way for a therapeutic value in the long-term. 
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3.2.5 Supplemental figures

 

Figure S1: Sox4 ablation delays EMT in Py2T cells. (A-B) RT-qPCR quantification of the epithelial marker E-

cadherin (A) and themesenchymal marker fibronectin (B) in Py2T cells stably transfected with control (shControl) 

and Sox4-specfic (ShSox4) shRNA. (C) RT-qPCR to assess the knockdown efficiency after stable transfection of 
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shSox4 in Py2T cells. Statistical values were calculated by using an unpaired/paired, two-tailed t-test. p-value ≤ 0.05 

indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

Figure S2: Sox4 is required for cell proliferation and migration in Py2T cells. (A) Py2T cells transfected with 

shControl and shSox4 were treated with TGF-β for 2, 4, 7 and 10 days and counted using a Neubauer chamber to 

assess the proliferation rate during TGF-β-induced EMT. (B)  Cell cycle analysis was performed by using FACS 

Diva software after Propidium Iodide staining. (C) Boyden chamber migration assays were performed in Sox4-

depleted cells after 15 days of TGF-β treatment. 20% FBS was used as chemoattractant and assays were performed 

for 20 hours. Statistical values were calculated by using an unpaired/paired, two-tailed t-test. p-value ≤ 0.05 

indicated with (*), p-value ≤ 0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 
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Figure S3: Absence of Sox4 impairs breast cancer metastasis. (A) Metastatic spread was quantified by measuring 

relative luciferase levels in lymph nodes, lung and liver of nude mice injected with shControl and shSox4. Statistical 

values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 

indicated with (**), p-value ≤ 0.001 indicated with (***). 
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Figure S4: Sox4 directly binds to promoters of crucial EMT genes (a-i) Chromatin Immunoprecipitation (ChIP) 

assay is performed using HA-specific antibodies in NMuMG cells transiently transfected with HA-Sox4 construct. 

Following this, qPCRs were performed to test the occupancy by Sox4 at the promoters of various genes implicated 

in angiogenesis and development (A), adhesion (B), migration (C), morphogenesis (D), cell cycle (E), cytoskeleton 

(F), EGF-related (G), Mitogen activated protein kinases related (H) and some other genes (I). 

3.2.6 Methods and Materials 

Reagents and antibodies 

Reagents: TGF-β (240-B, R&D systems). DMEM (D5671, Sigma-Aldrich), RPMI-1640 

(R0883, Sigma-Aldrich), PBS (D8537, Sigma-Aldrich), trypsin (T4174, Sigma-Aldrich), Opti-

MEM (11058, Gibco), FBS (F7524, Sigma-Aldrich), Glutamine (G7513, Sigma-Aldrich), 

Pencillin/streptomycin (P4333, Sigma-Aldrich), Lipofectamine RNAiMax (11668-019, 

Invitrogen), Alexa Fluor-488, 568, 633 (Invitrogen),  Polybrene (AL-118, Sigma-Aldrich), 

Puromycin (P7255, Sigma-Aldrich), Fugene HD ( 12998300, Roche), Trizol (T9424, Sigma-

Aldrich), M-MLV reverse transcriptase (M314C 28692233, Promega),  SYBR-green PCR 

MasterMix (Eurogentec) and  Bradford reagent (500-0006, Biorad), Protease inhibitor cocktail 

(P2714, Sigma-Aldrich). Antibodies: Western Blot: E-Cadherin (610182, Transduction 

Laboratories), N-Cadherin (M142, Takara), ZO-1 (617300, Zymed), Fibronectin (F-3648, 

Sigma-Aldrich), β-Catenin (C 2206, Sigma-Aldrich), p120 (P1870, Sigma-Aldrich), Actin (SC-

1616, Sanata Cruz Biotechnology). Immunofluorescence: E-Cadherin (13-1900, Zymed), N-

Cadherin (610921, Transduction Laboratories), ZO-1 (617300, Zymed), Fibronectin (F-3648, 

Sigma-Aldrich), Phalloidin (A12380, Invitrogen), Paxillin (13520, Transduction Laboratories), 

Vimentin (V2258, Sigma). IHC: Sox4 (ab52043, Abcam), ChIP: HA (ab9110, Abcam). 

Apoptosis and Cell cycle: Annexin-V (559934, BD Biosciences) and PI (P4170, Sigma-Aldrich), 

Small interfering RNAs:  siControl (Stealth RNAi™ siRNA Negative Controls, 12935-100, 

Invitrogen), siSox4 (SASI_Mm01_00114972 and SASI_Mm01_00114974, Sigma-Aldrich) and 

siEzh2 (SASI_Mm01_00061985, SASI_Mm01_00061987 & SASI_Mm01_00061988, Sigma-

Aldrich). Small hairpin RNA: shControl (Mission Non-target shRNA control vector, SHC002) 

and shSox4 (SHCLNG-NM_009238 Mouse, TRCN0000012081).  

Cell lines and cell culture 

http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla:en-US:official&sa=X&ei=cCdrTrGEJ4XLswaJ6ogZ&ved=0CBMQBSgA&q=C2206+sigma+immunofluorescence&spell=1
http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/SHCLNG-NM_009238
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A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG) expressing E-cadherin has been 

previously described (Maeda et al., 2005). MCF7 shControl and MCF7-shEcad have been 

described before (Lehembre et al., 2008). Py2T cells were derived from Polyoma middle T 

breast cancer tumor model (unpublished data, Waldmeires et.al). B16-F10 melanoma cells also 

have been described earlier (Briles and Kornfeld, 1978; Fidler, 1975; Fidler and Bucana, 1977; 

Fidler et al., 1976; Fidler and Kripke, 1977). NMuMG, MCF7shControl, MCF7-shEcad, Py2T, 

293T and PLAT-E cells were cultured in DMEM supplemented with 10% FBS, 2mM glutamine, 

100U penicillin and 0.2mg/ml streptomycin. B16-F10 cells were cultured in RPMI-1640 

supplemented with 10% FBS, 2mM glutamine, 100U penicillin and 0.2mg/ml streptomycin. All 

the cells were cultured at 370c with 5% CO2 in humid incubator. For TGF-β time-course 

experiments, cells were treated with 2ng/ml TGF-β for indicated time point and it was replaced 

every 2 days. For siRNA transfections, Lipofectamine RNAiMax was used according to the 

manufacturer's instructions.  

Quantitative RT-PCR 

Total RNA was prepared by using a Tri Reagent according to the manufacturer’s instructions. 

RNA was further reverse transcribed with ImProm-II Reverse Transcriptase, and transcripts were 

quantified by PCR using SYBR-green PCR Mastermix in a real time PCR system (Step One 

Plus, Applied Biosystems). Human or mouse ribosomal L19 primers were used for 

normalization. PCR assays were performed in duplicates, and fold induction was calculated 

against control-treated cell lines using the comparative Ct method (ΔΔ Ct). Following primers 

were used:  

Primer name Sequences 

mRpl19 Forward primer ctcgttgccggaaaaaca 

mRpl19 Reverse primer tcatccaggtcaccttctca 

mSox4 Forward primer cctcgctctcctcgtcct 

mSox4 Reverse primer tcgtcttcgaactcgtcgt 

hRpl19 Forward primer gatgccggaaaaacaccttg 

hRpl19 Reverse primer cagggcagtgatctccttctg 
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hSox4 Forward primer ccaaatcttttggggactttt 

hSox4 Reverse primer ctggcccctcaactcctc 

mE-cadherin Forward primer cgaccctgcctctgaatcc 

mE-cadherin Reverse primer tacacgctgggaaacatgagc 

mN-Cadherin Forward primer caatgacgtccaccctgttct 

mN-Cadherin Reverse primer ctgccatgactttctacggaga 

mFibronectin1 Forward primer cccagacttatggtggcaatt 

mFibronectin1 Reverse primer atattccgactcgagtctga 

mEzh2 Forward primer caggctggggcatctttatc 

mEzh2 Reverse primer acgaattttgttgccctttc 

 

Immunoblot 

Cells were lysed for 1 hour on ice in RIPA-Plus buffer (50mM Tris-HCl, pH8.0), 150mM NaCl, 

10% glycerol, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 2mM 

CaCl2, 1mM dithiothreitol, 1mM sodium fluoride, 0.2mM sodium orthovanadate, 1x protease 

inhibitor cocktail and further quantified by using Bradford reagent. 50 μg of cleared protein 

lysates were separated by SDS-PAGE and electroblotted on PDVF membranes, and proteins 

were visualized with the appropriate primary and secondary antibodies and ECL on superRX 

films. Depending on the species origin of antibodies, immunoblots were either probed 

sequentially or on multiple membranes. Adobe Photoshop has been used to excise the relevant 

portion of the immunoblots from the original scans of X-ray films exposed to 

chemoluminescence visualization of specific proteins. 

Immunofluorescence 

siControl, siSox4 and siEzh2 cells were plated on coverslips and treated with TGF-β for 

mentioned time. The cells were fixed with 4% paraformaldehyde in HBSS and further 

permeablized with 0.2% Triton for 5 minutes at room temperature. These cells were blocked by 

using 3.5% goat serum for 15 minutes and incubated with primary antibodies against E-cadherin, 

N-cadherin, fibronectin, Zo-1, β-catenin, p120 and Ezh2 for 1 hour and then incubated with 
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flurochrome-labeled secondary antibody for 1 hour at room temperature. The coverslips were 

counterstained with DAPI and imaged with a confocal laser-scanning microscope. Data were 

processed with Adobe Photoshop 7.0 software. 

Production of lentivirus for in-vivo and in-vito knockdown studies  

Murine Sox4 shRNAs and control shRNA were purchased from Sigma-Aldrich as described 

above. For lenti-virus production, 293T cells were transfected with the shRNA expressing lenti-

viral vector in combination with the packaging vectors including envelope protein; HDM-

pVSV/G,  codon-optimized HIV gag-pol; HDM-Hpgm2, transactivator of transcription; HDM-

Tat1b and  pRC-CMV-RaII by Fugene HD. After 48 hours of transfection, viral supernatant was 

harvested, filtered (0.46 µm), supplemented with polybrene (8ng/ml) and used to infect target 

cells. Infections were performed once a day for two consecutive days. Infected cells were 

positively selected using Puromycin (5ug/ml). 

Production of retrovirus for over-expression studies  

HA-Sox4 (kindly provided by Prof. Dr.A-P Tsou) cloned into the retroviral expression vector 

pBabe. Retroviral particles were produced by transfecting PLAT-E cells with the retroviral 

expression vectors using Fugene HD. After two days of virus production, retroviral-containing 

supernatants were harvested, filtered (0.45 µm) and added to target cells in presence of 

polybrene (8 ng/ml). Infections were performed once a day for two days and later on selection 

was performed by using puromycin. Single clones were picked for the experiments. 

Wound healing assay 

In vitro wound healing assays were done on confluent siControl and siSox4 cells. The media on 

the confluent cells was replaced with DMEM with 2% fetal bovine serum media and an area of 

cells was scraped off using a 200ul pipette tips. Light microscopic images were taken at time 0 

and at 20 hours. The data was further analyzed by using a ImageJ software. 

Migration assay 
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Cell migration was assessed in siControl and siSox4 cells in a transwell migration assay (pore 

size: 8 μm; Falcon BD). 104 cells were seeded in 2% FBS/DMEM (Sigma) in the upper chamber 

and the lower chamber was filled with 20% FBS/DMEM. After 20 hours of incubation at 37°C, 

cells in the upper chamber were carefully removed with a cotton swap and the cells that had 

traversed the membrane were fixed in 4% paraformaldehyde/PBS, stained with DAPI. Pictures 

of the membrane were taken at a 10x magnification using a fluorescent microscope (Nikon 

Diaphot 300). Quantification was done using the software ImageJ. 

Apoptosis assay (Annexin assay) 

Following supernatant collection to get the floating cells for the assay, cells were trypsinized and 

mixed with supernatant. Furtheron, cells were washed twice with cold PBS and resuspended in 

1X Annexin V binding buffer (10mM Hepes (pH 7.4), 0.14 M NaCl, 0. 25 mM CaCl2) at a 

concentration of 1 x 106 cells/ml. 5 µl of Cy5 Annexin V was added to the 100 µl of cells (1 x 

105) and incubated for 15 min on ice in the dark. Stained cells were filtered with a 40um mesh 

and analyzed on a FACSCanto II using DIVA software. 

Cell growth curve 

1x104 cells were seeded in each well of 24-well plate and cell numbers were assessed for 

mentioned days by using a Neubauer counting chamber. 

PI Staining 

siControl, siSox4 and siEzh2 cells were trypsinized  and fixed in 70% ice-cold Ethanol for 

overnight.  Washed twice with PBS and resuspended in sodium citrate buffer with 5μg/ml PI for 

overnight. Stained cells were analyzed by FACSCanto II using DIVA software. 

Fat-pad injection, Subcutaneous injection and Intravenous injection 

7 weeks old female nude mice were injected orthotopically into the fat-pad with 1x106 shControl 

and shSox4 Py2T cells in 100ul of PBS. After 23 days of treatment, mice were sacrificed and 

tumor, lymph-nodes, lungs and liver were isolated, weighted and prepared as described in 

histological analysis. 
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shControl and shSox4 B16-F10 melanoma cells were harvested by trypsinization and 

resuspended in PBS to a final concentration of 1x105 cells/200μl. 8 weeks old C57/Bl6 mice 

were injected intravenously through tail-vein with 200 μl of each cell line, and waited for 18 

days before sacrificing the mice. After sacrifying the mice, lung metastasis were counted. 

shControl and shSox4 cells were harvested by trypsinization and resuspended in PBS to a final 

concentration of 1x106 cells/100μl. 8 weeks old C57/Bl6 mice were injected into the right flank 

with each cell line, and tumors were allowed to form for 27 days. Mice were sacrificed when the 

tumors reached a diameter of 1.5 cm and lymph-nodes, lungs and liver were isolated and 

processed for histological analysis. 

Histological analysis  

The preparation of immunohistochemical analysis was performed as described previously (Perl 

et al., 1998). Briefly, for the paraffin section preparation, tumors, lungs and livers from above 

mouse experiment were removed and fixed in HBS-Ca2+ (HEPES-buffered saline, 1 mM 

CaCl2) containing 4% paraformaldehyde for overnight and processed further for H&E staining.  

For OCT frozen sections, organs were removed and fixed in HBS-Ca2+ (HEPES-buffered saline, 

1 mM CaCl2) containing 4% paraformaldehyde for 2 h at 4 °C. Tissues were incubated 

overnight at 4 °C in HBS-Ca2+/20% sucrose, embedded in O.C.T. compound (Tissue Tek), and 

frozen in liquid nitrogen. H & E Staining was performed as described before (Perl et al., 1998) 

and evaluated on an AxioVert microscope. 

Immunohistochemistry 

shControl and shSox4 Py2T tumor sections deparaffined in xylene and rehydrated. Sox4 

antigenic recovery was carried out with a pressure cooker for 15 min in 10mM sodium citrate 

buffer with 0.05% Tween 20, pH 6.0. Slides were washed with TBS with 0.025% Triton X-100 

and blocked with 10% goat serum with 1% BSA in TBS for 1 hour at room temperature. After 

blocking, the sections were incubated with Sox4 antibody in TBS with 1% BSA for overnight. 

Sections were washed again in TBS with 0.025% Triton X-100 and incubated with 0.3 %H2O2 

to block the endogenous peroxidase. Sections were washed again with TBS and bound antibodies 
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were detected using the ABC vector-horseradish peroxidase kit according to the manufacturer's 

instructions. 

Microarray processing and data analysis 

RNA was isolated from NMuMG cells transfected with control siRNA or Sox4 siRNA and 

treated with TGF-β for 0 and 2 days using Tri Reagent (Sigma-Aldrich). RNA quality and 

quantity was evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies). The 

manufacturer’s protocols for the GeneChip platform by Affimetrix were followed. Methods 

included synthesis of the first- and second-strand cDNA followed by synthesis of cRNA by in 

vitro transcription, subsequent synthesis of single-stranded cDNA, biotin labeling and 

fragmentation of cDNA and hybridization with the microarray slide (GeneChip® Mouse Gene 

1.0 ST array), posthybridization washings and detection of the hybridized cDNAs using a 

streptavidin-coupled fluorescent dye. Hybridized Affimetrix GeneChips were scanned using an 

Affimetrix GeneChip 3000 scanner. Image generation and feature extraction were performed 

using Affimetrix GCOS Software and quality control was performed using Affimetrix 

Expression Console Software. Raw microarray data were normalized with Robust Multi-Array 

(RMA) and analyzed using Partek® Genomics Suite Software (Partek Inc.). One-way analysis of 

variance (ANOVA) and asymptotic analysis were used to identify significantly differentially 

expressed genes. The gene ontology (GO) tool from Partek® Genomics Suite Software as well as 

the David gene ontology software were used for further analysis. 

Chromatin Immunoprecipitation 

ChIP experiments were performed as previously described (Weber et al, 2007). In brief, 

crosslinked chromatin was sonicated to achieve an average fragment size of 500 bp. Starting 

with 100 μg of chromatin and 5 μg of anti-HA antibody, 1 μl of ChIP material and 1 μl of input 

material were used for quantitative real-time PCR using specific primers covering the motif of 

Sox4 in the promoter of target genes. Primers covering an intergenic region are used as a control. 

The efficiencies of PCR amplification were normalized for between the primer pairs. Following 

primers were used for ChIP –PCR.  
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Name Sequences 

Aldh1a1 FP ggtttgctggtagccatgtt 

Aldh1a1 RP cattcccttttcctgctttg 

Cyr61 FP ggtcaagtggagaagggtga 

Cyr61 RP gcacctcgagagaaggacac 

Edn_1 FP tttccttccttgctaactcctg 

Edn1_1 RP agatcaccctacttttccacca 

Edn_2 FP gttttgcattgagttccatttg 

Edn_2 RP gtcacgaacagcagagagaaga 

Sema3c FP agtctcaaagtgttgggaccat 

Sema3c RP ttatgctgacctttccacactg 

Serpina1b FP attctcctgcaaaggaaacaaa 

Serpina1b RP ggggctcagagtaggttatgtg 

Vcam1 FP tctgcatcaacgtcctttca 

Vcam 1 RP cccattatcatgagtcactctttt 

Vnn1 FP gttcaagtgacagctgagtgct 

Vnn1 RP ccctggggttttctttaaattc 

Fgd4 FP cttcagaatgagcctgtttcaa 

Fgd4 RP tgcatgcatgaaaactacacac 

Ptgs1 FP aaaacaactcccctcaccttt 

Ptgs1 Rp gggcagtgagtgggatgtaa 

Cfb FP tccttggacggagatacagg 

Cfb RP ggaagagacaacagggtgga 

Dusp1 FP cagcttctgttcagtggagatg 

Dusp1 RP ttgctgtgtagctctggctagt 

Ereg FP gcatttgagacaggcacaga 

Ereg RP ccctcagcttccaatgtgat 

Csrp1_1 FP gttcaaggccattctggtctac 

Csrp1_1 RP gctatgggtgggagtgttagag 
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Csrp1_2 FP tgacttctctttgcaccctatg 

Csrp1_2 RP ctcacagttaggtctccgcttt 

Palld FP gaagaactgaccacatggctaa 

Palld RP aattacctcccagccttttctc 

Areg FP cattatgcagctgctttgga 

Areg RP tttcgcttatggtggaaacc 

Mep1a1 FP gagtcaccacgagacaagca 

Mep1a1 RP ggggctttgttacacaggaa 

Spred1 FP actcatgccagttccattcttt 

Spred1 RP acgctcaagtccccgttact 

Ccl20 FP gttgagactggtgttttccaca 

Ccl20 RP ccagtcctagaggggaaagatt 

Ctnnbp2nl FP aattaagccaccacaaggtgtt 

Ctnnbp2nl RP gaggaagtaccctcctctggtc 

Gss FP taggttgccagaggatgagg 

Gss RP tgtgagatggggacactcaa 

Yap1 FP agcttcaaaaaccccgttct 

Yap1 RP ggctaaagcagcacaggaac 

Ypel1 FP gctgggctacgggtccaaaaca 

Ypel RP gcgcccatccggcccaggct 

Ezh2 FP gtcacacgccttcctttcagt 

Ezh2 RP gcctgagccaagtttgaaatagt 

 

Statistical analysis 

Statistical analysis and graphs were generated using the GraphPad Prism software (GraphPad 

Software Inc, San Diego, CA). All statistical analysis was done by unpaired, two-sided t-test. 

Normality testing was performed using the Kolmogorov-Smirnov test with Dallal-Wilkinson-

Lillie for p-values. 
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3.3.1 Abstract 

Epithelial-to-mesenchymal transition (EMT) represents a key example of cell plasticity that 

underlies crucial steps during development, would healing and carcinogenesis. Despite emerging 

evidences that genes involved in EMT are altered in tumors via both genetic and epigenetic 

changes, the later remains largely unknown. In the current study, we comprehensively 

investigated the role of two prominent epigenetic modifications – Histone 3 Lysine 27 tri-

methylation (H3K27me3) and DNA methylation during TGF-β-induced EMT of mammary 

epithelial cells. A genome-wide ChIP-seq analysis for the H3K27me3 mark during six 

consecutive stages of EMT progression uncovered a number of key EMT genes that are 

transcriptionally regulated by the Polycomb-mediated H3K27me3 during this process. Genes 

such as Mcam, Pdgfrb and Itga5 are enriched with H3K27me3 and repressed in epithelial cells 

and treatment with TGF-β leads to a progressive loss of this mark that accompanies their 

transcriptional activation and acquisition of EMT. Another set of genes such as Cdh1, Ocln and 

Cdx2, gain this mark and become repressed during TGF-β-induced EMT. We further show that 

the coordinated activities of both Ezh1 and Ezh2 are responsible for H3K27me3-mediated 

repression in these cells as co-depletion of these two enzymes not only removes the H3K27me3 

mark from the target promoters and de-represses them but also prevents EMT. A genomewide 

analysis of promoter methylation using Methylated DNA Immunoprecipitation (MeDIP) in 

combination with tiling arrays revealed no major changes during EMT. Taken together, our data 

provides evidence that Polycomb machinery-mediated epigenetic reprogramming underlies 

transcriptional changes driving EMT.  

3.3.2 Introduction 
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TGF-β belongs to most potent inducers of the epithelial-mesenchymal transition (EMT). Cancer 

cells which undergo EMT are able to detach from the primary tumor by breaking their cell-cell 

contact and follow the chemoattractive path through extracellular matrix to invade into the 

surrounding tissue and form metastatic lesions at distant sites (Grunert et al., 2003; Polyak and 

Weinberg, 2009; Thiery and Sleeman, 2006). Interestingly, besides promoting invasiveness, 

TGF-β-induced EMT was shown to induce the transition of transformed and immortalized 

human mammary epithelial cells into mesenchymal cancer cells with stem cell traits, thus linking 

EMT to tumor cell plasticity (Cao et al., 2008; Shipitsin et al., 2007). It is established that such 

TGF-β-mediated cellular transformation involves activation of downstream signaling cascades 

and subsequent transcriptional reprogramming. In addition to the remarkable variety of 

transcription factors and co-regulators, the role of chromatin-mediated transcription control in 

transcriptional regulation has been increasingly appreciated. However, there is no solid evidence 

that EMT involves epigenetic reprogramming events to initiate transcriptional changes. 

The Polycomb Group (PcG) and trithorax Group (trxG) of proteins are involved in defining 

cellular memory and prevent changes in cell type-specific transcription programs to maintain cell 

identity (Bantignies and Cavalli, 2006; Cao et al., 2005; Cao et al., 2002; Cao and Zhang, 2004a; 

Cao and Zhang, 2004b; Jacobs and van Lohuizen, 1999; Kuzmichev et al., 2004; Negishi et al., 

2007; Vire et al., 2006). Among Polycomb complexes, Polycomb repressive complex 2 (PRC), 

comprised of EZH2, EED, SUZ12, RbAp46/48 and AEBP2 (E(z), Esc, Su(z)12, and RbAp48 in 

Drosophila) of which EZH2 bears the enzymatic activity that trimethyates Histone H3 at Lys 27  

(H3K27me3) (Cao and Zhang, 2004a; Cao and Zhang, 2004b; Satijn et al., 2001; Sparmann and 

van Lohuizen, 2006a). Such PRC2 activity is known to associate with transcriptional repression 

by several mechanisms. PRC2 has been shown to recruit DNA methytransferases (DNMT) to the 

chromatin for repression (Vire et al., 2006). PRC2 binding has also been reported to attract 

Histone deacetylases (HDAC) to deacetylate the histone tails for gene repression (Wang et al., 

2004b). Furthermore, it has also been proposed that Polycomb complexes lead to condensed 

chromatin structure and thus physically hinder the transcription machinery (Wang et al., 2004b) 

PRC2 is also known to facilitate binding of another Polycomb complex, PRC1, which then 

contributes to the maintenance of gene repression (Cao et al., 2005; Wang et al., 2004a; Wang et 
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al., 2004b). Thus, PRC2 is thought to be involved in the initiation and PRC1 in the maintenance 

of gene repression.  

Ezh1, unlike Ezh2, is a part of a non-canaonical PRC2 and mediates methylation of H3K27 

similar to Ezh2 and functions in the maintenance of embryonic stem cell pluripotency and 

plasticity (Shen et al., 2008). Ezh1 was shown to colocalize with the H3K27 trimethylation mark 

in Ezh2 -/- cells and to preferentially preserve this mark at development-related genes. Co-

depletion of both Ezh1 and Ezh2 abolished residual methylation on H3K27 and derepressed 

H2K27-trimethylated target genes (Shen et al., 2008). Compared to Ezh2, Ezh1 has very weak 

methyltransferase activity but efficiently represses transcription and compacts chromatin 

(Margueron et al., 2008).  It is also been demonstrated that Ezh1 is expressed in non-proliferative 

cells while Ezh2 is expressed in proliferative cells which again argues for their evolution for 

different roles. 

In the current study, we investigated whether the Polycomb machinery is involved in 

transcriptional reprogramming during EMT. Since it has been shown earlier that  E-cadherin can 

be repressed by Ezh2 in the prostate cancer (Cao et al., 2008) and that low Ezh2 expression 

levels are correlated with metastasis-free survival in breast cancer (Kleer et al., 2003), we 

investigated whether Ezh2-catalyzed H3K27me3 is involved in the transcriptional modulation 

during TGF-β-induced EMT in breast carcinogenesis. Towards this, we used the normal 

mammary epithelial cells, NMuMG, which undergo progressive EMT upon TGF-β treatment 

(Supplemental figure 1a). We performed Chromatin Immunoprecipitation using H3K27me3-

specific antibody at six different morphological stages during TGF-β-induced EMT followed by 

next generation sequencing (ChIP-seq). A comparison of identified H2K27me3 enriched genes 

with global transcription profiling of the corresponding stages revealed a number of key EMT 

genes that may possibly be transcriptionally regulated by the PRC2 machinery. By carrying out 

loss of function studies, we demonstrate that double-knockdown of Ezh1 and Ezh2 not only 

prevents TGF-β-induced EMT but also blocks EMT-driven cell migration. Such depletion further 

suppresses TGF-β-induced apoptosis, arguing for a H3K27me3-mediated regulation of survival- 

associated genes. Gene ontology studies on gene regulated by Ezh1 and Ezh2 further supported 

our data for a Polycomb-mediated mechanisms regulating transcription of genes underlying 

EMT-related migration, adhesion and survival. Moreover, comprehensive MeDIP-chip analysis 
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at three different stages of TGF-β-induced EMT revealed no significant changes in DNA 

methylation. In summary, our data reveals new insights into the epigenetic reprogramming of 

key EMT genes by Polycomb-mediated mechanisms. 

 

3.3.3 Results 

 

3.3.3.1 Genome-wide analysis of H3K27me3 mark reveals widespread epigenetic 

reprogramming during TGF-β-induced EMT  

To assess the role of Polycomb group of proteins during EMT, we employed NMuMG cells 

which are untransformed normal murine mammary gland cell line and undergo progressive EMT 

in response to TGF-β (Lehembre et al., 2008; Miettinen et al., 1994; Piek et al., 1999a), 

acquiring the complete mesenchymal transition by the end of 10 days (Supplemental figure S1a). 

To illustrate the dynamics of the PRC2-mediated repressive histone modification H3K27me3 

during EMT, we performed Chromatin immunoprecipitation (ChIP) using a H3K27me3-specific 

antibody upon TGF-β treatment in NMuMG cells for 1, 4 ,7, 10 and 20 days and subjected the 

precipitated DNA to next generation sequencing (ChIP-seq). This high resolution profiling 

showed that H3K27me3 is enriched in broad domains for the Hox locus that mostly remains 

unchanged during EMT (Figure 1a). We next attempted to reveal H3K27me3 peaks associated 

with genes using a sliding window approach (see experimental Procedures). This analysis 

identified a total of 2034 genes (Figure 1b). To correlate H3K27me3 enrichment with 

transcription levels of associated genes, we compared this list with the genome wide expression 

analysis performed in the non-treated NMuMG cells as well as those treated with TGF-β for 1, 4, 

7, 10 and 20 days. Using this comparison, we sorted out 90 genes which are transcriptionally 

upregulated during EMT and lose the H3K27me3 mark and 181 genes which are 

transcriptionally downregulated during EMT and gain the H3K27me3 mark (Supplemental 

figure 1b, 1c, 1d and 1e and table 1). We further validated the ChIP-Seq data using single gene 

controls (Figure 1c). To further strengthen our data, we used the Py2T cells (Waldameier et.al, 

unpublished data) which are derived for MMTV-PyMT transgenic mice tumors and undergo 

EMT upon TGF-β treatment in a similar fashion to NMuMG cells. All tested promoters were 
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similarly enriched for H3K27me3 in Py2T cells (Figure 1d). In summary, genomewide location 

analysis identifies targets of the PRC2-associated mark H3K27me3 during EMT.  
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Figure 1: Genome-wide reprogramming of the Polycomb-associated mark H3K27me3 during TGF-β-induced EMT. 

(a) Following ChIP using H3K27me3-specific antibody in non-treated as well as TGF-β treated (1, 4, 7, 10 and 20 

days) NMuMG cells, next-generation sequencing was carried out. Genome browser view of H3K27me3 ChIP 

enrichment at the HoxD cluster for several stages of TGF-β-induced EMT. (b) Dynamics of H3K27me3 upon TGF-

β treatment for 1, 4, 7, 10 and 20 days in NMuMG cells. The numbers of genes have been counted at each stage in 

comparison with untreated NMuMG cells and having a Z-Score above 3.5. (c) & (d) ChIP-qPCR validation of 

H3K27me3 enrichment at various identified targets in NMuMG (c) and Py2T (d) cells. Statistical values were 

calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated with 

(**), p-value ≤ 0.001 indicated with (***). 

 

 3.3.3.2 Polycomb targets are key EMT genes  

To gain insight into the categories of genes represented within the promoter class, we performed 

a gene ontology analysis revealing that many of the H3K27me3 targets genes have already been 

implicated in various cancers and in EMT. The EMT relevant genes include E-cadherin  (Cdh1) 

(Cavallaro, 2004; Wheelock et al., 2008), melanoma cell adhesion molecule (Mcam) (Zabouo et 

al., 2009), platelet-derived growth factor receptor beta (Pdgfrb) (van Zijl et al., 2009), Snail2 

(Snai2) (Herranz et al., 2008; Peinado et al., 2007), Integrin alpha 5 (Itga5) (Kim et al., 2010), 

Occludin (Ocln) (Ikenouchi et al., 2003), Fibroblast growth factor receptor 2 (FGFR2) (Katoh 

and Katoh, 2009) and Inhibitor of differentiation 1 (Id1) (Tobin et al., 2011). In addition, genes 

related to extracellular matrix, cell adhesion, cytoskeleton re-modeling, apoptosis, cell-cycle, cell 

signaling pathways and DNA replication were also over-represented (Table 2, Table 3 and 

Supplemental Figure S2). 

 

3.3.3.3 Ezh1 and Ezh2 both contribute to the H3K27me3-mediated repression 

It is long known that Ezh2, a catalytic subunit of the PcG complex, is a main player in setting the 

H3K27me3 mark at the promoters. There is emerging evidence that Ezh1, a member of the non-

canonical PcG complex also mediates transcriptional repression via H3K27me3 (Ezhkova et al., 

2011; Margueron et al., 2008; Shen et al., 2008; Stojic et al., 2011).  To dissect the contribution 

of the two enzymes of the PRC complex in our system, we depleted Ezh1 and Ezh2 expression 

individually as well as together by using pools of two or three siRNAs, respectively.  RT-qPCRs  
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Table 1: Genes that are transcriptionally downregulated and gain the H3K27me3 mark during EMT (a) and vice 

versa (b). 
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Table 2: Gene-Ontology analysis revealed crucial EMT relevant pathways under regulation by Polycomb. GeneGo 

software was used to categorize the genes into functional groups. Gene ontology on the genes that lose the 

H3K27me3 mark and are transcriptionally up-regulated (a) during EMT and vice-versa (b). 
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Table 3:  Function analysis of regulated genes. David software was used to group genes into functional categories. 

(a) Genes that lose the H3K27me3 during EMT have a role in extra-cellular matrix organization, cell adhesion, 

cytoskeleton organization, neuronal differentiation, angiogenesis, cell projection formation, cell proliferation, 

apoptosis/survival and cancers. (b) GenesA  that gain the H3K27me3 mark are necessary for cytoskeleton 
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organization, angiogenesis, apoptosis/survival and cancer. Furthermore, they are also required for cell-cycle, 

replication, and morphogenesis of organs and cell-cell integrity.  

confirmed efficient depletion of Ezh1 and Ezh2 expression (Figure 2a-d). Immunoblot analysis 

suggested that Ezh2, to the large extent, contributed to the overall H3K27me3 levels in NMuMG 

cells (Figure 2e). To assess whether reduction of Ezh1 and Ezh2 (Ezh1/2) provide an additive 

effect, we tested transfected cells with pooled Ezh1 and Ezh2-specific siRNAs. Immunoblot 

analysis revealed that double-knockdown provides a more efficient reduction in global 

H3K27me3 levels (Figure 2e). We further determined the H3K27me3 levels in Py2T cells upon 

depletion of Ezh1, Ezh2 as well as double-knockdown of Ezh1and Ezh2. This experiment 

revealed a reduction in global H3K27me3 levels even after Ezh1 knockdown and the depletion 

efficiency is higher after double knockdown of Ezh1 and Ezh2 (Figure 2f). Together, these 

results suggest that Ezh1 and Ezh2 together contribute to the H3K27me3 levels in NMuMG and 

Py2T cells. 

3.3.3.4 Co-depletion of Ezh1 and Ezh2 blocks epithelial differentiation 

We next employed loss of function studies for studying the impact of Ezh1/2 on EMT. 

Interestingly, Ezh1/2-ablated cells retained their epithelial phenotype and were not able to 

undergo EMT upon TGF-β treatment (Figure 3a). This further accompanied the retention of the 

epithelial marker E-cadherin at the same time decrease in the levels of mesenchymal markers 

such as N-cadherin and fibronectin (Figure 3b; Supplemental figure S3a-c). Immunofluorescence 

studies showed that Ezh1/2 knockdown cells were able to maintain the adherent junction protein 

E-cadherin and tight junction protein ZO-1 at their membranes, while the mesenchymal marker 

N-cadherin remained unchanged to the control cells after 7 days of TGF-β treatment (Figure 3c). 

Moreover, TGF-β-mediated cytoskeleton re-modeling was also prevented and stress fibers were 

reduced in cells depleted of Ezh1/2 compared to control cells. Fibronectin and paxillin staining 

showed almost no focal adhesions after Ezh1/2 reduction (Figure 3c). Similar to NMuMG cells, 

a lentiviral-mediated stable knockdown of Ezh1/2 in Py2T cells resulted in failure to undergo 

EMT and also retained epithelial markers such as E-cadherin and showed a decrease in 

mesenchymal markers such as N-cadherin and fibronectin (Supplemental figure S3d-f). 

Together, these results strongly argue that Ezh1/2 is required for EMT. 
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Figure 2: Ezh1 and Ezh2 together contribute to the overall levels of H3K27me3 in NMuMG cells. (a-d) Realtime 

RT-PCR was carried out to test the knockdown efficiency following siRNA-mediated single knockdowns of Ezh1 

(a) or Ezh2 (b) in NMuMG cells during TGF-β-mediated EMT. Ezh1(c) and Ezh2 (d) transcript levels were further 
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measured upon depletion of Ezh1 and Ezh2 together. Cells were treated with TGF-β for 0, 1, 4, 7 and 10 days. (e-f) 

Total histones were isolated from Ezh1 and Ezh2 depleted or Ezh1/Ezh2 co-depleted NMuMG (e) and Py2T (f) 

cells. Total H3K27me3 levels were detected using specific antibodies by immunoblotting. Depletion of both Ezh1 

and Ezh2 leads to a highly efficient reduction in H3K27me3. Total H3 was used as loading control. Statistical values 

were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated 

with (**), p-value ≤ 0.001 indicated with (***). 

 

3.3.3.5 Ezh1 and Ezh2 ablation together prevent cell migration but does not provides a 

survival advantage to the cells during EMT  

Cell migration and invasion are critical parameters in the metastatic dissemination of cancer cells 

and the formation of metastasis, the major cause of death in cancer patients (Brabletz et al., 

2005; Christofori, 2006; Grunert et al., 2003; Huber et al., 2005; Thiery and Sleeman, 2006; 

Yilmaz and Christofori, 2010). Since migration has an important role in forming metastasis via 

EMT, we assessed the migratory capacity of Ezh1/2 knockdown cells. Transwell migration 

assays revealed a significantly lower chemo-tactic migration of Ezh1/2 knockdown cells 

compared to control cells in the absence of TGF-β (Figure 4a). These findings were further 

confirmed in Py2T cells (Supplemental Figure S3a). 

Ezh1 was shown to be expressed in non-proliferative cells while Ezh2 is known to be expressed 

in proliferative cells. Ezh2 depletion was shown to result in slower proliferation of prostate 

cancer (Varambally et al., 2002). Thus, we next investigated whether Ezh1/2 depletion can affect 

the proliferation and survival during TGF-β-induced EMT in NMuMG cells. Surprisingly, loss 

of Ezh1/2 led to an increase in proliferation of NMuMG cells upon TGF-β treatment (Figure 4b). 

No obvious changes were detectable upon Ezh1/2 knockdown in the absence of TGF-β. To 

determine whether this effect was due to alterations in proliferation or changes in apoptosis rates, 

we analyzed cell-cycle as well as the rates of apoptosis. Compared to control siRNA-treated 

cells, no difference was observed in cell-cycle profile upon Ezh1/2 depletion in the absence as 

well as in the presence of TGF-β for 2 and 4 days (Figure 4c). On the other hand, Annexin V 

staining showed a clear reduction in the fraction of apoptotic cells, arguing for a pro-survival  
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Figure 3: Ezh1/2 depletion prevents epithelial differentiation. (a) Cells were treated with TGF-β for 0, 1, 4, 7 and 10 

days and evaluated by phase contrast microscopy.  Cells retained epithelial morphology upon Ezh1/2 depletion, 

while control cells progressed to EMT during TGF-β treatment. Original magnification was 10x. (b) Immunoblot 

analysis for the epithelial marker E-cadherin and the mesenchymal markers N-cadherin and fibronectin during TGF-

β-induced EMT in NMuMG cells after depletion of Ezh1/2. Actin was used as a loading control. Cells were treated 

with TGF-β for the indicated time-periods. (c) Immunofluorescence studies showing localization and expression 

levels of the adherent junction proteins E-cadherin and N-cadherin and the tight junction protein ZO-1 after 7 days 

of TGF-β treatment in NMuMG cells depleted of Ezh1/2. Focal adhesions were visualized by fibronectin and 

paxillin staining and cytoskeleton-remodeling by phalloidin staining. Original magnification was 40x. 

 

effect due to attenuation of TGF-β-induced apoptosis (Figure 4d). We further extended our 

studies in Py2T cells and found that unlike NMuMG cells, these cells do not undergo apoptosis 

during TGF-β treatment suggesting that apoptotic phenotype is biased toward untransformed 

cells. However, we did observe a significant increase in proliferation after Ezh1/2 knockdown in 

Py2T cells (Supplemental Figure S4b). Furthermore, we could not notice any significant 

differences in the cell cycle profiles upon Ezh1/2 depletion during the TGF-β time-course 

(Supplemental Figure S4c). 

3.3.3.6 Dual role of Ezh1/2 during Polycomb-mediated regulation of EMT 

Our ChIP-seq analysis suggested a Polycomb-mediated regulation of many key EMT genes. We 

next attempted to assay whether the transcription of these genes was affected upon Ezh1/2 

depletion. The promoters of Mcam and Pdgfrβ are highly enriched with H3K27me3 mark in 

untreated NMuMG cells while Cdx2 and Ocln gain this mark during TGF-β-induced EMT. 

Ezh1/2 depletion led to the loss of H3K27me3 at the promoter of Mcam and Pdgfrb (Fig 5a and 

5b) with a concomitant increase in their expression (Figure 5a-b). Along with this function, once 

the mark is removed from the genes which are already methylated, Ezh1/2 starts blocking the 

EMT process and leads to reduction in their expression levels. A similar loss of H3K27me3 mark 

was observed at the promoters of Cdx2 and Ocln (Fig 5e) that resulted in their de-repression 

upon depletion of Ezh1/2 in TGF-β-treated cells. (Figure 5c-d). In addition, Ezh1/2 reduction 
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Figure 4: Ezh1/2 depletion prevents TGF-β-induced apoptosis and migration. (a) Ezh1/2 depleted NMuMG cells 

were subjected to a Boyden chamber migration assay for 20 hours. 20% FBS was used as a chemoattractant. (b) 

Proliferation assays were performed after siRNA-mediated knockdown of Ezh1/2 during TGF-β time-course. Cells 

were counted using a Neubauer counting chamber. (c) Cell cycle analysis was done after transient knockdown of 

Ezh1/2 during EMT for 0, 1 and 4 days. Propidium Iodide (PI) was used for the staining. (d) Annexin V staining 

was performed to quantify cell death in Ezh1/2 knockdown NMuMG cells during TGF-β-induced EMT for 0, 1, 4, 7 

and 10 days. Statistical values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.001 indicated with 

(***). 
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Figure 5: Depletion of Ezh1/2 results in transcriptional deregulation of H3K27me3-target genes (a-d) Realtime RT-

PCR was performed to assess the expression levels of Mcam (a) and Pdgfrb (b), which are already enriched with 
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H3K27me3 in untreated NMuMG cells and Cdx2 (c) and Ocln (d), which gain this mark upon TGF-β treatment for 

1, 4, 7 and 10 days. (e-f) Following chromatin immunoprecipitation using H3K27me3-specific antibody, in 

NMuMG (e) and Py2T (f) cells after Ezh1/2 depletion, qPCRs was performed using promoter-specific primers. 

Depletion of Ezh1/2 leads to a significant reduction in H3K27me3 enrichment at target gene promoters. Statistical 

values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 

indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

removed H3K27me3 marks from the targeted promoters in NMuMG and Py2T cells and 

activated the genes (Fig. 5e and 5f).  

3.3.3.7 MeDIP analysis shows no significant difference in methylation pattern 

Since, it has been shown before that premalignant cells can acquire de novo DNA methylation at 

biologically relevant sites early in the carcinogenic process in a deterministic manner (Dumont et 

al., 2008; Ruike et al., 2010), we investigated whether similar modes also operated in our model 

system of TGF-β-induced EMT in NMuMG cells.  

We profiled DNA methylation using the MeDIP technique (Weber et al., 2005) in NMuMG cells 

untreated as well as treated with TGF-β for 10 and 20 days followed by detection using custom 

tiling arrays that cover 10% of the mouse genome including all well annotated promoters, several 

large multi-gene loci and the complete chromosome 19 (Nimblegen HD 2.1 arrays). Comparison 

of promoter methylation levels revealed no promoters with significant differences at day 10 and 

day 20 of TGF-β treated cells compared to control cells (Supplemental Figure S5a-c). However, 

given previous evidences of silencing of Cdh1 by DNA methylation, we performed bisulfite 

sequencing of DNA derived from control cells as well as those treated with TGF-β for 10 and 20 

days. Analysis of the Cdh1 promoter also indicated only a very marginal increase in promoter 

CpG methylation in day 20 samples (data not shown). Overall, these data suggest that TGF-β-

induced EMT does not involve any reprogramming of promoter DNA methylation. 

 

3.3.4 Discussion 
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Epithelial-to-mesenchymal transition (EMT) underlies crucial steps in many developmental and 

disease events including cancer.  Both genetic and epigenetic pathways have been implicated in 

EMT gene regulation. Polycomb Group of proteins have been implicated in cancers of various 

subtypes (Mills, 2010; Sauvageau and Sauvageau, 2010; Sparmann and van Lohuizen, 2006b), 

but no comprehensive studies have been performed in models of EMT to reveal their role in 

transcriptional regulation of EMT genes. In the current study, by performing ChIP-seq analysis 

for H3K27me3 for several stages of EMT progression, we reveal targets of epigenetic 

reprogramming during this process. These genes include a number of key EMT genes normally 

repressed in epithelial cells, such as Mcam, Pdgfrb and Itga5. These cells lose this mark and get 

activated upon treatment with TGF-β that follows EMT.  On the other hand, another set of genes 

that define epithelial identity, such as Cdh1, Ocln and Cdx2, gain this mark and become 

repressed during TGF-β-induced EMT. We functionally show that both Ezh1 and Ezh2 

contribute to the H3K27me3 levels in these cells as upon knockdown of these enzymes, both 

global as well as promoter-specific H3K27me3 levels drop significantly, which further 

accompanies transcriptional activation of associated genes. These changes further result in the 

blockage of EMT. Our date argue for a model where, in normal epithelial cells, the Polycomb 

machinery is involved in repressing transcription of genes, the activation of which would 

otherwise result in loss of epithelial identity. Upon induction of EMT with TGF-β leading to 

EMT, genomewide remodeling in H3K27me3 levels occurs and the function of Polycomb 

switches to repressing epithelial cell-type-specific genes and mesenchymal genes get de-

repressed. These data provide convincing evidence that Polycomb-mediated transcriptional 

regulatory mechanisms underlie phenotypic changes during EMT. 

Ezh2 was shown to directly repress the transcription of KLF2 in cancer cells (Taniguchi et al., 

2011). Expression of a non-coding RNA, HOTAIR, was implicated in reprogramming of PRC2 

function in metastatic progression including in breast cancer (Kogo et al., 2011). Another study 

showed that Ezh2 may further regulate cancer cell growth and invasiveness by regulating 

miRNAs (Cao et al., 2011). An important marker of epithelial cell identity, Cdh1, was shown to 

be silenced by the Polycomb machinery by a Snail-dependent recruitment of Ezh2 to the Cdh1 

promoter during EMT (Cao et al., 2008)  In line with these observations, our data identified 

Cdh1 among the targets that gain H3K27me3 mark during TGF-β-induced EMT. Cdh1 was also 
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shown to be silenced by DNA methylation in a variety of human cancers (Esteller, 2007; 

Esteller, 2008b; Graff et al., 1995; Yoshiura et al., 1995). Genomewide analysis of DNA 

methylation did not reveal any promoters that exhibit reprogramming of DNA methylation 

during EMT. However, bisulfite sequencing discovered a mild, but detectable, increase in 

promoter CpG methylation at Cdh1 promoters at day 20 of TGF-β-induced EMT. 

These observations demarcate the dynamics of the Polycomb-associated mark and its role in an 

experimental model of EMT.  Such reprogramming seems crucial for proper EMT progression, 

as knockdown of this mark had substantial effects on cell migration and proliferation. It has been 

recently shown that  EMT accompanies a global reduction in the heterochromatin mark H3 Lys9 

dimethylation (H3K9Me2), an increase in the euchromatin mark H3 Lys4 trimethylation 

(H3K4Me3) and an increase in the transcriptional mark H3 Lys36 trimethylation (H3K36Me3) 

(McDonald et al., 2011b). Thus it is very likely that other chromatin modifications not examined 

so far are also reprogrammed during EMT. However, given a number of previous studies that 

linked Polycomb-mediated mechanisms with carcinogenesis (Mills, 2010; Sauvageau and 

Sauvageau, 2010; Sparmann and van Lohuizen, 2006b), our study is of utmost relevance to the 

field where we outline genomewide targets of the Polycomb machinery for transcriptional 

modulation during several stages of EMT. Our findings may reflect a general mechanism for 

cell-fate transitions including other cases of EMT such as development. It will be further 

interesting to explore epigenetic events in the reverse process, mesenchymal-to-epithelial 

transition (MET), such as those involved in normal development or disease as well as in vitro 

induced pluripotent stem cells (iPSCs) generation.  It is important to note that the epigenetic 

reprogramming of the Polycomb-associated H3K27me3 mark during TGF-β-induced EMT very 

closely resembles stem cell differentiation (Mohn et al 2008). However, in contrast to stem cell 

differentiation, DNA methylation patterns remain unchanged during EMT. Taken together, our 

data reveal strong evidence that Polycomb machinery-mediated epigenetic mechanisms underlie 

transcriptional changes that are crucial for epithelial to mesenchymal transition. It will be further 

exciting to investigate whether similar epigenetic reprogramming occurs in other cases of EMT 

and in experimental systems where in cell-fate transitions are observed. 

3.3.5 Supplemental data 
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Figure S1: Dynamics of PcG mark H3K27me3 during EMT in NMuMG cells. (a) Morphological changes are 

observed after TGF-β treatment of NMuMG cells for 0, 1, 4, 7, 10 and 20 days by using a phase-contrast 

microscopy, reflecting epithelial to mesenchymal transition. Original magnification was 10x. (b-c) Venn-Diagram 

showing the overlap between genes that lose the H3K27me3 mark during TGF-β-induced EMT and those that are 

transcriptionally induced upon TGF-β treatment (b) and vice-versa (c). (d-e) Systemic comparison of genes gaining 
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(c) or losing (d) H3K27me3 mark during EMT with genes that are transcriptionally downregulated or upregulated 

during TGF-β-induced EMT. 
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Figure S2: H3K27me3 is enriched at the promoters of key EMT genes. Genome browser view of H3K27me3 ChIP 

enrichment at the Mcam, Pdgfrb, Snai1, Sgsh1, Cdh1 and Ocln gene loci during TGF-β-induced EMT in NMuMG 

cells. Promoter regions are marked by the rectangular boxes. 

5 
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Figure S3: Ezh1/2 depletion prevents EMT. (a-f) Realtime RT-PCR was carried out to quantify the expression 

levels of EMT markers E-cadherin (a and d), N-cadherin (b and e) and fibronectin (c and f) in NMuMG (a, b and c) 

and Py2T cells (d, e and f) during TGF-β mediated EMT.  NMuMG cells were treated with TGF-β for 0, 1, 4, 7 and 

10 days while Py2T cells were treated for 0, 1, 4 and 7days. Py2T cells were stably transfected with Ezh1/2 shRNA. 

Statistical values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 

0.01 indicated with (**), p-value ≤ 0.001 indicated with (***). 
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Figure S4: Ezh1/2 are required for cell migration but not for survival. (a) Boyden-chamber migration assays were 

performed to assess the migratory capacity of stably transfected Ezh1/2 depleted Py2T cells treated with TGF-β for 

15 days. The assays were carried out for 20 hours and 20% FBS was used as a chemo-attractant. (b) Proliferation 

assays were done to assess the proliferation rate after Ezh1/2 ablation in Py2T cells. Neubauer counting chambers 

were used for the counting. (c) Cell cycle analysis was done in the absence as well as in the presence of TGF-β (2 

and 4 days) after Ezh1/2 reduction in Py2T cells. PI staining was used to distinguish the cell cycle phases. Statistical 

values were calculated by using an unpaired, two-tailed t-test. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 

indicated with (**), p-value ≤ 0.001 indicated with (***). 

 

 

 

 

Figure S5: DNA methylation pattern remain unchanged during TGF-β-mediated EMT in NMuMG cells. (a-b) 

Scatter plot comparing averaged DNA methylation values from replicate microarrays for all mouse promoters from 

nontreated NMuMG cells versus NMuMG cells treated with TGF-β for 10 days (a) and 20 days (b). 

 

4.1.6 Methods and Materials 

Reagents and antibodies 

Reagents: TGF-β (240-B, R&D systems). DMEM (D5671, Sigma-Aldrich), PBS (D8537, 

Sigma-Aldrich), trypsin (T4174, Sigma-Aldrich), Opti-MEM (11058, Gibco), FBS (F7524, 
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Sigma-Aldrich), Glutamine (G7513, Sigma-Aldrich), Pencillin/streptomycin (P4333, Sigma-

Aldrich), Lipofectamine RNAiMax (11668-019, Invitrogen), Alexa Fluor-488, 568, 633 

(Invitrogen),  Polybrene (AL-118, Sigma-Aldrich), Puromycin (P7255, Sigma-Aldrich), Fugene 

HD ( 12998300, Roche), Trizol (T9424, Sigma-Aldrich), M-MLV reverse transcriptase (M314C 

28692233, Promega),  SYBR-green PCR MasterMix (Eurogentec) and  Bradford reagent (500-

0006, Biorad), Protease inhibitor cocktail (P2714, Sigma-Aldrich). Antibodies: Western Blot: 

E-Cadherin (610182, Transduction Laboratories), N-Cadherin (M142, Takara), ZO-1 (617300, 

Zymed), Fibronectin (F-3648, Sigma-Aldrich), Actin (SC-1616, Sanata Cruz Biotechnology). 

Immunofluorescence: E-Cadherin (13-1900, Zymed), N-Cadherin (610921, Transduction 

Laboratories), ZO-1 (617300, Zymed), Phalloidin (A12380, Invitrogen) and Paxillin (13520, 

Transduction Laboratories. Chromatin Immunoprecipitation: H3K27me3 (abcam) Apoptosis 

and Cell cycle: Annexin-V (559934, BD Biosciences) and PI (P4170, Sigma-Aldrich). Small 

interfering RNAs:  siControl (Stealth RNAi™ siRNA Negative Controls, 12935-100, 

Invitrogen), siEzh1 (SASI_Mm01_00114972 and SASI_Mm01_00114974, Sigma-Aldrich) and 

siEzh2 (SASI_Mm01_00061987 & SASI_Mm01_00061988, Sigma-Aldrich). Small hairpin 

RNA: shControl (Mission Non-target shRNA control vector, SHC002) and shEzh1/2 

(SHCLNG-NM_007971 Mouse, TRCN0000039041).  

Cell lines and cell culture 

A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG) expressing E-cadherin has been 

previously described (Jechlinger et al., 2002). MCF7 shControl and MCF7-shEcad have been 

described before (Lehembre et al., 2008). Py2T cells were derived from Polyoma middle T 

breast cancer tumor model (unpublished data, Waldmeier et.al). NMuMG, MCF7shControl, 

MCF7-shEcad, Py2T, 293T and PLAT-E cells were cultured in DMEM supplemented with 10% 

FBS, 2mM glutamine, 100U penicillin and 0.2mg/ml streptomycin. All the cells were cultured at 

370c with 5% CO2 in humid incubator. For TGF-β time-course experiments, cells were treated 

with 2ng/ml TGF-β for indicated time point and it was replaced every 2 days. For siRNA 

transfections, Lipofectamine RNAiMax was used according to the manufacturer's instructions.  

Microarray processing and data analysis 

http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/SHCLNG-NM_007971
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RNA was isolated from NMuMG cells transfected with NMuMG cells treated with TGF-β for 0, 

1, 4, 7 and 10 days by RNAeasy Mini kit (Sigma-Aldrich). Non-treated cells are used as a 

control. RNA quality and quantity was evaluated using an Agilent 2100 Bioanalyzer (Agilent 

Technologies). The manufacturer’s protocols for the GeneChip platform by Affimetrix were 

followed. Methods included synthesis of the first- and second-strand cDNA followed by 

synthesis of cRNA by in vitro transcription, subsequent synthesis of single-stranded cDNA, 

biotin labeling and fragmentation of cDNA and hybridization with the microarray slide 

(GeneChip® Mouse Gene 430 2.0 array), post-hybridization washings and detection of the 

hybridized cDNAs using a streptavidin-coupled fluorescent dye. Hybridized Affimetrix 

GeneChips were scanned using an Affimetrix GeneChip 3000 scanner. Image generation and 

feature extraction were performed using Affimetrix GCOS Software and quality control was 

performed using Affimetrix Expression Console Software. Raw microarray data were 

normalized with Robust Multi-Array (RMA) and analyzed using Partek® Genomics Suite 

Software (Partek Inc.). One-way analysis of variance (ANOVA) and asymptotic analysis were 

used to identify significantly differentially expressed genes. The gene ontology (GO) tools from 

Metacore Software as well as the David gene ontology software were used for further analysis 

 

Chromatin Immunoprecipitation 

ChIP experiments were performed as previously described (Weber et al, 2007). In brief, 

crosslinked chromatin was sonicated to achieve an average fragment size of 500 bp. Starting 

with 100 μg of chromatin and 5 μg of anti-H3K27me3 antibody, 1 μl of ChIP material and 1 μl 

of input material were used for quantitative real-time PCR using specific primers covering the 

1000 bp promoter region form the transcription start site. Primers covering an intergenic region 

are used as a control. The efficiencies of PCR amplification were normalized for between the 

primer pairs. Following primers were used for ChIP –PCR. Relative positions from the 

transcription start site are also mentioned. 
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Name Sequences 

Mcam FP ggtccccgctagtagtggacaaa 

Mcam RP ggttgaaggagcaatgacaggtg 

Pdgfrb FP gaaaacagacacacgcgtccac 

Pdgfrb RP caccacacactttgggggaaag 

Itga5 FP cccagaggtgattcctttcctca 

Itga5 RP cctccccctcctttccagatgta 

Col1a1 FP tggactcctttcccttcctttcc 

Col1a1 RP atcttgatggagagctgggagga 

St3gal5 FP ccacctacttctcggctggagtt 

St3gal5 RP cgtcacgaggataagggagacca 

Stmn4 FP tcatctttcactccccagccttc 

Stmn4 RP gcttggcaattggacagtctcct 

Gapdh FP ctctgctcctccctgttcc 

Gapdh RP tccctagacccgtacagtgc 

 

Next Generation Sequencing and Analysis  

The ChIP libraries were prepared with the Illumina ChIP-Seq DNA Sample Prep Kit (Cat# IP-

102-1001) according to Illumina’s instructions and sequenced on the Genome Analyzer 2 

following the manufacturer’s protocols. 

Genomic coordinates 

The July 2007 M. musculus genome assembly (NCBI37/mm9) provided by NCBI 

(http://www.ncbi.nlm.nih.gov/genome/guide/mouse/) and the Mouse Genome Sequencing 

Consortium (http://www.sanger.ac.uk/Projects/M_musculus/) was used as a basis for all 

analyses. Annotation of known RefSeq transcripts was obtained from UCSC 

(http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/refGene.txt.gz from Oct 18, 2009).  

Read filtering, alignment and weighting 

Low-complexity reads were filtered out based on their dinucleotide entropy (removing <1% of 

the reads). Alignments to the mouse genome were performed by the software bowtie (version 
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0.9.9.1) (Niessen et al., 2008) with parameters -v 2 -a -m 100, tracking up to 100 best alignment 

positions per query and allowing at most two mismatches. To track genomically untemplated hits 

(e.g., exon-exon junctions or missing parts in the current assembly), the reads were also mapped 

to an annotation database containing known mouse sequences (miRNA from 

ftp://ftp.sanger.ac.uk/pub/mirbase/sequences/13.0, rRNA,snRNA, snoRNA and RefSeq mRNA 

from GenBank http://www.ncbi.nlm.nih.gov/sites/entrez, downloaded on July 16, 2009, tRNA 

from http://lowelab.ucsc.edu/GtRNAdb/ and piRNA from NCBI (accessions DQ539889 to 

DQ569912). In that case, all best hits with at most two mismatches were tracked. Each alignment 

was weighted by the inverse of the number of hits. In the cases where a read had more hits to an 

individual sequence from the annotation database than to the whole genome, the former number 

of hits was selected to ensure that the total weight of a read did not exceed one. All 

quantifications were based on weighted alignments. 

Peak finding 

Genomic regions of increased ChIP-seq read alignment densities were identified using macs 

(version 1.3.7.1) (Shi and Massague, 2003), using a pool of read alignments from all biological 

replicates and cellular stages (weights rounded to integers) as input, parameters --mfold=8 --

gsize=2700000000 --tsize=36 and default values for all other parameters. IP enrichments (see 

below) of resulting peak candidates were calculated and peak candidates with enrichments lower 

than 2-fold above background (combining biological replicates) were removed. 

Calculation of peak enrichments in genomic regions 

Enrichment of peaks in genomic regions (see above for definition) were calculated as the ratio of 

observed over expected number of peaks in a region, where the observed number is the count of 

all peaks overlapping a region by more than half of their length, and the expected number is the 

fraction of genomic bases in that region type, multiplied with the total number of peaks. 

Calculation of IP enrichments 

IP enrichments of a genomic region (TSS windows or peak region) were calculated as e = log2( 

(n_fg /N_fg *min(N_fg,N_bg) + p) / (n_bg /N_bg *min(N_fg,N_bg) + p) ), where n_fg and n_bg 

are the summed weights of overlapping foreground and background (input chromatin) read 

alignments, respectively. N_fg and N_bg are the total number of aligned reads in foreground and 
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background samples, and p is a pseudocount constant (p=16) used to regularize enrichments 

based on low counts that would otherwise be dominated by sampling noise. 

MeDIP-chip data analysis 

Nimblegen array intensity files were read and log2 enrichments (log2 bound/input ratios) for 

each individual probe were calculated using the R package Ringo. Probe-level as well as 

promoter level log2 enrichments showed good reproducibility between the two replicates.  

Quantitative RT-PCR 

Total RNA was prepared by using a Tri Reagent according to the manufacturer’s instructions. 

RNA was further reverse transcribed with ImProm-II Reverse Transcriptase, and transcripts were 

quantified by PCR using SYBR-green PCR Mastermix in a real time PCR system (Step One 

Plus, Applied Biosystems). Human or mouse ribosomal L19 primers were used for 

normalization. PCR assays were performed in duplicates, and fold induction was calculated 

against control-treated cell lines using the comparative Ct method (ΔΔ Ct). Following primers 

were used:  

Primer name Sequences 

mRpl19 Forward primer ctcgttgccggaaaaaca 

mRpl19 Reverse primer tcatccaggtcaccttctca 

mEzh2 Forward primer caggctggggcatctttatc 

mEzh2 Reverse primer acgaattttgttgccctttc 

mE-cadherin Forward primer cgaccctgcctctgaatcc 

mE-cadherin Reverse primer tacacgctgggaaacatgagc 

mN-Cadherin Forward primer caatgacgtccaccctgttct 

mN-Cadherin Reverse primer ctgccatgactttctacggaga 

mFibronectin1 Forward primer cccagacttatggtggcaatt 

mFibronectin1 Reverse primer atattccgactcgagtctga 

mMcam Forward primer actggtgtgcgtcttcttgttcg 

mMcam Reverse primer gcttttcctctcctggcacacc 
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mPdgfrb Forward primer acctgcagagacctcaaaaggtg 

mPdgfrb Reverse primer ctgatcttcctcccagaaagtcaca 

mCdx2 Forward primer catcaccatcaggaggaaaagtga 

 

Immunoblot 

Cells were lysed for 1 hour on ice in RIPA-Plus buffer (50mM Tris-HCl, pH8.0), 150mM NaCl, 

10% glycerol, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 2mM 

CaCl2, 1mM dithiothreitol, 1mM sodium fluoride, 0.2mM sodium orthovanadate, 1x protease 

inhibitor cocktail and further quantified by using Bradford reagent. 50 μg of cleared protein 

lysates were separated by SDS-PAGE and electroblotted on PDVF membranes, and proteins 

were visualized with the appropriate primary and secondary antibodies and ECL on superRX 

films. Depending on the species origin of antibodies, immunoblots were either probed 

sequentially or on multiple membranes. Adobe Photoshop has been used to excise the relevant 

portion of the immunoblots from the original scans of X-ray films exposed to 

chemoluminescence visualization of specific proteins. 

Immunofluorescence 

siControl and siEzh1/2 cells were plated on coverslips and treated with TGF-β for mentioned 

time. The cells were fixed with 4% paraformaldehyde in HBSS and further permeablized with 

0.2% Triton for 5 minutes at room temperature. These cells were blocked by using 3.5% goat 

serum for 15 minutes and incubated with primary antibodies against E-cadherin, N-cadherin, 

fibronectin, ZO-1, vimentin, paxillin and phalloidin for 1 hour and then incubated with 

flurochrome-labeled secondary antibody for 1 hour at room temperature. The coverslips were 

counterstained with DAPI and imaged with a confocal laser-scanning microscope. Data were 

processed with Adobe Photoshop 7.0 software. 

Production of lentivirus for in-vivo and in-vito knockdown studies  

Murine Ezh1/2 shRNAs and control shRNA were purchased from Sigma-Aldrich as described 

above. For lenti-virus production, 293T cells were transfected with the shRNA expressing lenti-
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viral vector in combination with the packaging vectors including envelope protein; HDM-

pVSV/G,  codon-optimized HIV gag-pol; HDM-Hpgm2, transactivator of transcription; HDM-

Tat1b and  pRC-CMV-RaII by Fugene HD. After 48 hours of transfection, viral supernatant was 

harvested, filtered (0.46 µm), supplemented with polybrene (8ng/ml) and used to infect target 

cells. Infections were performed once a day for two consecutive days. Infected cells were 

positively selected using Puromycin (5ug/ml). 

Migration assay 

Cell migration was assessed by transwell migration assay (pore size: 8 μm; Falcon BD). 104 cells 

were seeded in 2% FBS/DMEM (Sigma) in the upper chamber and the lower chamber was filled 

with 20% FBS/DMEM. After 20 hours of incubation at 37°C, cells in the upper chamber were 

carefully removed with a cotton swap and the cells that had traversed the membrane were fixed 

in 4% paraformaldehyde/PBS, stained with DAPI. Pictures of the membrane were taken at a 10x 

magnification using a fluorescent microscope (Nikon Diaphot 300). Quantification was done 

using the software ImageJ. 

Apoptosis assay (Annexin assay) 

Cells were washed twice with cold PBS and resuspended in 1X Annexin V binding buffer at a 

concentration of 1 x 106 cells/ml. 5 µl of Cy5 Annexin V was added to the 100 µl of cells (1 x 

105) and incubated for 15 min on ice in the dark. Stained cells were filtered with a 40um mesh 

and analyzed on a FACSCanto II using DIVA software. 

Cell growth curve 

1x104 cells were seeded in each well of 24-well plate and cell numbers were assessed for 

mentioned days by using a Neubauer counting chamber. 

PI Staining 

Cells were trypsinized and fixed in 70% ice-cold Ethanol for overnight.  Washed twice with PBS 

and resuspended in sodium citrate buffer with 5μg/ml PI for overnight. Stained cells were 

analyzed by FACSCanto II using DIVA software. 
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Statistical analysis 

Statistical analysis and graphs were generated using the GraphPad Prism software (GraphPad 

Software Inc, San Diego, CA). All statistical analysis was done by unpaired, two-sided t-test. 

Normality testing was performed using the Kolmogorov-Smirnov test with Dallal-Wilkinson-

Lillie for p-values. All the data are shown as mean ± SD and are representative of at least three 

independent experiments. p-value ≤ 0.05 indicated with (*), p-value ≤ 0.01 indicated with (**), 

p-value ≤ 0.001 indicated with (***) in whole paper. 
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