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Summary

Schistosomiasis is a parasitic disease that is currently endemic in more than 70 coun-
tries with the bulk of infections concentrated in Africa. The interest in schistosomiasis
has recently grown, after many years of neglect, due to the commitment of substantial
amounts of funding to the control of the so-called neglected tropical diseases. Targeting
of interventions and allocation of financial resources should be driven by evidenced-based
information on the spatial distribution and schistosomiasis burden estimates in order to
increase cost-effectiveness and to meet local needs. Currently, decisions are mainly made
based on crude schistosomiasis risk estimates which are largely obsolete due to ongoing
control efforts, ecological transformations, demographic changes and improved hygiene,

among other reasons.

Schistosomiasis transmission depends on the distribution of intermediate host snail
species. This distribution is determined by climatic and other environmental conditions,
such as temperature, precipitation or water flow velocity. Statistical models can be used to
establish the relation between the aforementioned factors and schistosomiasis risk and to
predict the risk at unobserved locations. Empirical risk mapping requires observed preva-
lence data distributed within the area of interest, however contemporary large-scale surveys
are not available. To address this issue, the European Union (EU)-funded CONTRAST
project initiated the development of the Global Neglected Tropical Disease (GNTD) data-
base, an open-access source of survey data extracted from peer-reviewed publications,
Health Ministry reports and other unpublished literature. To-date, the GNTD database is

the most comprehensive schistosomiasis database in Africa.

Schistosomiasis prevalence data are spatially correlated, because locations in close prox-
imity share common spatial exposures, which similarly influence transmission. Standard
statistical models are not appropriate because they assume independence between loca-

tions, leading to imprecise parameter estimates and risk predictions. Geostatistical models



assume take into account potential spatial correlation by introducing location-specific ran-
dom effects. These additional factors are considered as observations of latent Gaussian
spatial processes. Geostatistical models typically contain large number of parameters.
Bayesian model formulations, implemented via Markov chain Monte Carlo (MCMC) simu-
lations methods, enable model fit overcoming the computational problems of the likelihood-
based methods.

Geostatistical model fit requires the repeated inversion of the correlation matrix of the
spatial process. The size of this matrix increases with the number of locations and, for the
very large number of locations present in the GNTD database, matrix inversion is infeasi-
ble. This is known as the ‘large N problem’. An important aspect of geostatistical model
fit is the choice of predictors driving schistosomiasis transmission. There are a number of
environmental factors which are correlated, complicating model fit. Rigorous geostatistical
variable selection has not yet been applied in spatial schistosomiasis epidemiology. Data
compilations contain heterogeneous surveys across locations in terms of age groups involved
and diagnostic methods used. The lack of prevalence data reported in standard age groups
complicates the estimation of age-adjusted schistosomiasis risk. A common assumption of
geostatistical models is that of isotropy implying that spatial correlation is a function of
distance between locations irrespective of direction or location. However in schistosomiasis
risk mapping, spatial correlation is likely to be related to the direction of river flow due
to water-dependent intermediate host snail species. This might introduce directional de-
pendency (anisotropy). Schistosomiasis tends to be present in areas with other neglected
diseases. Cost-effective interventions call for an integrated disease control, which requires
estimating of the geographical distribution of high co-endemicity. The co-endemic diseases
might be correlated, however surveys screening for multiple diseases are not available over
large geographical areas. There rather exist data from independent surveys screening for

single diseases on different sets of individuals.

The aim of this PhD thesis was (i) to develop Bayesian geostatistical models for the
analysis of schistosomiasis survey data taking into account inherent data characteristics;
and (ii) to validate and implement these models in order to produce spatially-explicit
schistosomiasis risk estimates and number of infected individuals on regional scale in Africa.

In Chapter 3 the construction and development of the open-access GNTD database is
described. As of January 2011, the database contained more than 12,000 geo-referenced
schistosomiasis survey locations in more than 30 African countries. It consists of historical

and recent data from various sources, including unpublished data. Therefore, the GNTD
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database became a unique tool for schistosomiasis mapping purposes and analyses over

time.

In Chapter 4 Bayesian geostatistical models were developed to estimate the spatial
distribution of Schistoma haematobium and S. mansoni at high spatial scales in West
Africa. The ‘large N problem’ was addressed by estimating the spatial process from a
subset of locations. Country-specific estimates on the number of infected individuals < 20
years were derived resulting in more than 50 million infections. The analysis revealed that

previous burden estimates were likely to be outdated for some countries.

In Chapter 5 models were developed to take into account age-heterogeneity across
surveys and to produce age-adjusted S. haematobium and S. mansoni risk estimates. The
models related surveys on individuals aged < 20 years with those on individuals aged >20
years and entire communities. This methodology was applied on survey data distributed
over 11 eastern African countries extracted from the GNTD database. Model validation
showed that regional age-alignment factor models were superior those assuming country-

specific factors.

Chapter 6 employed the alignment factors models obtained from Chapter 5 for spatial
risk prediction of schistosomiasis in eastern Africa. In addition, Bayesian geostatistical
variable selection and Gaussian spatial process approximations were applied to reduce
complexity of the model and to enable model fit, respectively. Our results indicated that
schistosomiasis accounts for more than 120 million infections in eastern Africa, which is

considerably higher than the previously reported (58 million).

In Chapter 7 Bayesian geostatistical models were developed that incorporate anisotropic
effects using simulated and real data obtained from a national school survey on urinary
schistosomiasis in Senegal. Models assumed a global direction of anisotropy and locally-
dependent directions fixed at environmental features. The results showed that anisotropic
models improve model-based predictions and parameter estimation, even if anisotropy was
not very prominent in the real dataset. Locally-dependent directional effects had not

improved model predictive performance.

In Chapter 8 geostatistical shared component models were proposed to model the ge-
ographical distribution and burden of co-infection risk from independent single disease
surveys using simulated and real data. The data of the application were obtained from a
survey screening for Schistosoma mansoni-hookworm co-infections in the region of Man,
Cote d’Ivoire, however they were treated as if they were collected from independent sur-

veys. The ability of the models to capture co-infection risk was assessed and compared

vii



to multinomial models which can directly incorporate co-infection data. Model validation
revealed that, for correlated diseases, joint risk modelling estimates obtained via shared
component models have better predictive ability than commonly-used independent mode-

ling approaches.

The main contributions of this thesis were (i) the development of Bayesian isotropic
and anisotropic geostatistical models for high spatial resolution schistosomiasis risk map-
ping and prediction based on age-heterogeneous historical survey data collected over very
large number of locations; (ii) the development of statistical methodology for assessing the
geographical distribution of co-infection risk from independent single-disease surveys when
diseases are correlated; and (iii) the estimation of location-specific schistosomiasis risk and
number of infected people in 29 countries across West and eastern Africa. Hence, for first
time, empirical model-based evidence of schistosomiasis risk and burden in those regions
is provided. These estimates are of considerable importance for schistosomiasis control
programmes, as they indicate high-risk areas requiring interventions, allow calculations of
the number of praziquantel tablets required based on WHO guidelines at the appropriate
administrative level, and provide baseline maps to assess effectiveness of interventions on

the roadmap towards schistosomiasis elimination.
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Zusammenfassung

Schistosomiasis ist eine parasitdre Erkrankung, welche zur Zeit in mehr als 70 Landern
vorkommt, mit einem Grofiteil der Infektionen in Afrika. Das Interesse an dieser Erkran-
kung ist nach vielen Jahren der Vernachlidssigung endlich gewachsen, aufgrund erheblicher
finanzieller Unterstiitzung zur Kontrolle der vernachléssigten tropischen Krankheiten. Das
Planen von Interventionen und die Zuweisung von finanziellen Mitteln sollten durch wis-
senschaftliche Belege zur geographischen Verteilung und zuverlassigen Schétzungen der Be-
lastung gesteuert werden, um die Kosteneflizienz zu steigern und die lokalen Bediirfnisse zu
berticksichtigen. Bisherige Entscheidungen wurden hauptsichlich auf Grundlage von grob
iiberschlagenen Werten ermittelt und sind weitestgehend veraltet, durch Mafinahmen zur
Eindammung der Schistosomiasis, Verdnderungen der Umwelt, demografischem Wandel

und verbesserter Hygiene.

Die Verbreitung der Schistosomiasis hidngt stark von der rdumlichen Verteilung des
Zwischenwirtes (diverse Schneckenarten) ab. Dessen Verteilung ist wiederum durch be-
stimmte Umweltbedingungen und klimatische Faktoren, wie Temperatur, Niederschlag
oder Stromungs-geschwindigkeit von Fliissen, bestimmt. Statistische Modelle kénnen ver-
wendet werden, um die Beziehung zwischen den zuvor genannten Faktoren und dem Schi-
stosomiasis Risiko zu untersuchen und um das Risiko an unbekannten Standorten vorherzu-
sagen. Empirische Kartierungen erfordern Feldstudien iiber die Haufigkeit der Erkrankung
in dem zu erschlieBenden Gebiet, jedoch existieren keine aktuellen Einzelstudien iiber grofie
Gebiete. Um dieses Problem zu beheben initiierte das von der Européischen Union finan-
zierte CONTRAST Projekt die Entwicklung der globalen Datenbank zu vernachléssigten
tropischen Erkrankungen (GNTD). Diese Datenbank besteht aus unzahligen Schistosomi-
asis Daten aus wissenschaftlichen Publikation, Berichten von Gesundheitsministerien und
unveroffentlichtem Material, und ist die bisher umfangreichste frei verfiighare Sammlung

von Studien in Afrika.

Daten zur Verbreitung von Schistosomiasis sind rdumlich korreliert, da Standorte in
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unmittelbarer Ndhe durch dhnliche rdumlichen Faktoren beeinflusst werden. Die géngigen
statistischen Modelle gehen allerdings von Unabhéngigkeit zwischen Studienorten aus,
was zu ungenauen Parameterabschitzungen und Risikovorhersagen fiihrt, und sind da-
her nicht zur Analyse geeignet. Geostatistische Modelle beriicksichtigen dagegen mogliche
raumliche Korrelationen durch die Einfithrung von ortsabhéngigen Effektparametern. Diese
zusétzlichen Parameter werden als Beobachtungen von verborgenen Normalverteilten Pro-
zessen angesehen. Geostatistische Modelle haben in der Regel eine grofie Anzahl von Para-
metern. Modelformulierungen nach Bayes, die durch Markov Chain Monte Carlo (MCMC)
Simulationen durchgefiihrt werden, ermoglichen die Modellanpassung und tiberwinden die

rechnerischen Probleme von Maximum-Likelihood-basierten Methoden.

Geostatistische Modellanpassungen erfordern die wiederholte Invertierung der Kovari-
anzmatrix des rdumlichen Prozesses. Die Groie dieser Matrix wird durch die Anzahl der
Studienorte bestimmt und Matrixinvertierung wird mit einer grofen Anzahl von Ortschaf-
ten, wie sie in der GNTD Datenbank auftreten, unméglich. Dieses Problem ist als ” Grosses
N Problem”bekannt. Bestimmt Umfaltfaktoren sind miteinander korreliert, was die Mo-
dellanpassung erschwert. Die geostatistische Auswahl von Einflussfaktoren zur rdumlichen
Ausbreitung der Schistosomiasis wurde bisher noch nicht angewandt. Das Zusammentragen
von verschiedenen Studien fiihrt zu einer Vielzahl von Daten aus verschiedenen Altersgrup-
pen. Der Mangel an Studien mit den selben Altersgruppen erschwert die Abschitzung des

altersabhéngigen Risikos and Schistosomiasis zu erkranken.

Eine haufige Annahme geostatistischer Modelle ist Isotropie, welche impliziert dass
die rdumliche Korrelation zwischen zwei Ortschaften auf deren Entfernung beruht und
unabhéngig von der Richtung und des Standortes ist. Allerdings, scheint es plausibler,
dass die rdumliche Korrelation im Falle der Schistosomiasis durch die Fliessrichtung von
Fliissen bestimmt wird, da der Zwischenwirt (einige Schneckenarten) in Gewéssern lebt.
Dies fiihrt unter Umstanden zu einer Richtungsabhéngigkeit (Anisotropie). Schistosomiasis
tritt hdufig in Gebieten mit anderen vernachlassigten Krankheiten auf. Moglichst Kosten
sparende Interventionen sollten gleichzeitig mit anderen Krankheitsinterventionen durch-
gefithrt werden. Dies erfordert die Bestimmung von Gebieten mit besonders hohem gleich-
zeitigem Auftreten im Bestimmungsgebiet. Manche Krankheiten treten abhéngig vonein-
ander auf, allerdings gibt es keine einzelnen Studien iiber grofie Bestimmungsgebiete, die
sich mit dem Auftreten mehreren Erkrankungen gleichzeitig beschéftigen. Was es dagegen

gibt, sind Daten von unabhéngigen Studien die einzelne Krankheiten untersuchen.



Das Ziel dieser Dissertation war es, (i) Bayes’sche geostatistische Modelle fiir die Ana-
lyse von Schistosomiasis-Daten zu entwickeln und dabei die zu Grunde liegenden Beson-
derheiten der Daten zu beriicksichtigen, und (ii) die entwickelten Methoden anzuwenden
und zu iiberpriifen, um rdumliche Risikobewertungen zu erstellen und die Anzahl der mit

Schistosomiasis infizierten Personen in Afrika abzuschétzen.

In Kapitel 3 wird die Konstruktion und Entwicklung der frei verfiigharen GNTD Da-
tenbank beschrieben. Diese Datenbank enthielt im Januar 2011 bereits mehr als 12.000
georeferenzierte Studienorte zur Schistosomiasis verteilt in {iber mehr als 30 afrikanischen
Landern. Sie besteht aus historischen und aktuellen Daten aus verschiedenen Quellen,
darunter auch bisher unveroffentlichte Studien. Dadurch stellt die GNTD Datenbank ein
einzigartiges Werkzeug fiir die raumliche Kartierung der Schistosomiasis dar und erlaubt

zudem eine zeitliche Analyse der Daten.

In Kapitel 4 wurden Bayes’sche geostatistische Modelle entwickelt um die geographische
Verteilung von Schistosoma haematobium und S. mansoni in Afrika, mit hoher raumlicher
Auflésung, zu ermitteln. Dabei wurde der rdumlichen Prozess mittels einer Zufallsauswahl
von Ortschaften abgeschétzt, um das ,,Grole N Problem* zu bewéltigen. Linderspezifische
Schitzungen iiber die Zahl der Infizierten, die unter 20 Jahre alt waren, resultierten in
mehr als 50 Millionen Infektionen. Die Analyse ergab auflerdem, dass die bestehenden

Schéatzungen fiir bestimmte Lander sehr wahrscheinlich veraltet waren.

In Kapitel 5 wurden Modelle, die die Altersheterogenitit zwischen Studien beriicksich-
tigen, entwickelt und altersspezifische S. haematobium und S. mansoni Risikobewertun-
gen erstellt. Die Modelle basierten auf den folgenden Altersgruppen: Personen jiinger als
20 Jahre, Personen iiber 20 Jahre und die Gesamtbevolkerung. Die Methode wurde auf
Erhebungsdaten der GNTD Datenbank aus 11 ostafrikanischen Landern angewendet. Mo-
deliiberpriifungen zeigten, dass Modelle mit regionalen Faktoren zur Altersangleichung

anderen Modellen mit landerspezifische Faktoren tiberlegen waren.

Kapitel 6 verwendet die Altersangleichungsfaktoren aus Kapitel 4 fiir die rdumliche
Risikovorhersage von Schistosomiasis in Ostafrika. Dabei wurden das Variablenauswahl-
verfahren nach Gibbs und die Abschitzung des rdumlichen Prozesses genutzt, um die
Komplexitdt des Modells zu reduzieren und die Modellanpassung zu ermoglichen. Unse-
re Ergebnisse zeigten, dass das Infektionsrisiko in Ostafrika mit mehr als 120 Millionen

Infizierten erheblich hoher ist als zuvor angenommen (58 Millionen).

In Kapitel 7 wurden Bayes’sche geostatistische Modelle entwickelt, die anisotrope Effek-

te berticksichtigen. Die Analyse beruhte hierbei auf simulierten Daten und einer nationalen
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Erhebung zur Schistosomiasis an Schulen in Senegal. Die Modelle basierten dabei auf ei-
ner globale Richtung des anisotropen Effektes und ortsabhéngigen Richtungen, welche an
Umweltfaktoren gekoppelt waren. Unsere Ergebnisse zeigten, dass anisotrope Modelle die
Risikovorhersagen und die Abschitzung der Modellparameter verbessern, sogar wenn die
direktionalen Effekte in den zu Grunde liegenden Daten nicht sehr ausgeprigt sind. Aller-

dings war die Fixierung dieser Effekte nachteilig fiir die Vorhersagekraft der Modelle.

In Kapitel 8 wurden geostatistische Modelle mit gemeinsamen Komponenten genutzt,
um die rdumliche Verteilung und Belastung von Co-Infektionen mit Hilfe unabhéngiger Stu-
dien zu modellieren. Dabei wurden simulierte und reale Daten verwendet. Die realen Daten
wurden einer Studien iiber S. mansoni-Hakenwurm-Co-Infektionen in der Region um Man
an der Elfenbeinkiiste entnommen, allerdings wurden die Daten so betrachtet als stam-
men sie von unabhéngigen Studien. Die Fahigkeit von Modellen das Co-Infektionsrisiko
zu ermitteln, wurde im Vergleich zu multinomialverteilten Modellen gepriift, die das Co-
Infektionsrisiko direkt erfassen kénnen. Die Uberpriifung ergab, dass das Krankheitsrisikos,
wenn die Krankheiten raumlich korreliert waren, mittels der hdufig angewendeten getrenn-

ten Analysen weniger genau modelliert werden konnte, als mit gemeinsamen Komponenten.

Die wichtigsten Beitrége dieser Dissertation waren (i) die Entwicklung von Bayes’schen
isotropen und anisotropen geostatistischen Modellen zur genauen Kartierung des Schisto-
somiasis-Risikos und der Vorhersage an unbekannten Orten basierend auf einer grofien
Anzahl von historischen Daten mit heterogen Altersgruppen; (ii) die Entwicklung von sta-
tistischen Methoden zur Bewertung der geographischen Verteilung des Co-Infektionsrisikos
mittels unabhéngigen Studien bei korrelierten Erkrankungen; und (iii) die Abschétzung des
ortsspezifischen Schistosomiasis-Risikos und die Anzahl infizierter Personen in 29 Landern
in West- und Ostafrika. Zum ersten Mal wurden dabei empirische Daten zum Erkrankungs-
risiko und der Belastung in diesen Regionen, die auf wissenschaftlichen Methoden beru-
hen, gewonnen. Diese Abschitzungen sind von erheblicher Bedeutung fiir Schistosomiasis-
Kontrollprogramme, da sie besonders gefahrdete Gebieten aufzeigen, welche Interventio-
nen bendtigen, die Berechnung von den erforderlichen Praziquantel-Tabletten auf den
WHO-Richtlinien erlauben, und die Wirksamkeit von Interventionen auf dem Weg zur

Schistosomiasis-Elimination beurteilen konnen.
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2 Chapter 1. Introduction

1.1 Schistosomiasis

Schistosomiasis is one of the most prevalent parasitic diseases in tropical and subtropical
countries. After many years of general neglect, there are growing interest and financial
resources to control schistosomiasis. Yet, despite successful control programmes in different
countries, schistosomiasis still affects over 200 million individuals with an estimated global
burden that might exceed 4.5 million disability-adjusted life years (DALYs) lost annually
(Utzinger et al., 2009).

1.1.1 Biology and life cycle

Schistosomiasis is a parasitic disease caused by trematode blood flukes of the genus Schisto-
soma. There are five species parasitizing humans, namely S. haematobium, S. intercalatum,
S. japonicum, S. mansoni and S. mekongi. The life cycle of the schistosomes (depicted in
Figure 1.1) includes different snail species that act as intermediate hosts. The intermedi-
ate hosts for S. mansoni are aquatic snails of genus Biomphalaria, while S. haematobium

and S. intercalatum are transmitted by aquatic snails of the genus Bulinus. The am-
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Figure 1.1: Life cycle of schistosomiasis (source: CDC).
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phibian Oncomelania and aquatic Tricula aperta snails act as intermediate hosts for S.
japonicum and S. mekongi, respectively. All intermediate host species have the ability
to aestivate, enabling the parasite to survive during dry seasons. Infected snails release
cercariae in suitable freshwater reservoirs like streams, ponds, lakes or man-made reser-
voirs and marshlands. The released cercariae actively targets the definitive human host
(or animal reservoir hosts in the case of S. japonicum), penetrates the exposed skin on
contact and becomes a schistosomula. Via the blood stream, the parasites reach the liver
where they mate and mature. Adult worm pairs further migrate to their final peri-vesical
(S. haematobium) or peri-intestinal (the other species) destination. There, they constantly
produce eggs for an average of 3 to 5 years. Roughly half of the eggs are trapped in the tis-
sues, while the remaining eggs are released with excreta via the urinary (S. haematobium)
or intestinal tract (other species). On contact with water, the eggs hatch into miracidia
and infect appropriate snail intermediate host species where they mature and multiply
asexually into cercarial larvae. Re-infection of individuals only results from contact with
infested water because schistosomes do not replicate in the human body (Gryseels et al.,
2006; Hotez et al., 2006a; Davis, 2009).

1.1.2 Clinical conditions

Most schistosome infections are rather asymptomatic. An acute stage associated with fever
and lymphadenopathy, known as Katayama syndrome, is triggered by an acute hypersensi-
tivity reaction against migrating schistosomula (Ross et al., 2007). Chronic conditions are
mainly resulting from blood vessel perforation and schistosome eggs trapped in the tissues.
The eggs provoke granuloma formations and inflammations due to various proteolytic en-
zymes. S. haematobium eggs in the peri-vesical tissue can cause bladder wall pathologies
and local ulcerations related with haematuria and dysuria. Severe conditions of the so-
called urinary schistosomiasis are bladder calcification, genital tract lesions, renal failure
and hydronephrosis (Hatz, 2001; van der Werf et al., 2003; Davis, 2009). The disease is
also associated with an increased risk of bladder cancer. Intestinal schistosomiasis caused
by eggs in the peri-intestinal tissues is characterized by intestinal bleeding and bloody
diarrhoea. It leads to portal hypertension, splenomegaly, hepatosplenomegaly, periportal
fibrosis and ascites, and can result in extensive liver pathology and life-threatening bleed-
ing from gastro-oesophageal varices (Hotez et al., 2006a; Davis, 2009). Schistosmiasis in
general also causes chronic growth faltering and contributes to anaemia (Gryseels et al.,
2006; Hotez et al., 2006a; Davis, 2009).
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1.1.3 Diagnosis and treatment

Techniques for the diagnosis of schistosomiasis can be divided into two categories based
on direct and indirect detection of the parasite. Direct methods aim to detect either
the parasite or their eggs, while indirect methods mainly rely on the detection of human
antibodies or parasite antigens in response of an infection. In endemic settings, schistosome
egg detection in urine or stool specimens via light microscopy is most common, because
these methods are relatively rapid and inexpensive. Faecal samples are most frequently
analysed by the Kato-Katz technique (Katz et al., 1972), but direct smears and formalin-
based techniques are also common (Katz and Miura, 1954; Marti and Escher, 1990). Urine
sedimentation, filtration and centrifugation are used to detect S. haematobium eggs. An
indirect method screening for traces of blood and proteins in urine, a common condition
of urinary schistosomiasis, are reagent strips. It has been shown that the number of
eggs is correlated with the amount of blood and proteins found in urine (Wilkins et al.,
1979). Simple questionnaires have been developed and self-reported blood in urine was
shown to be a useful indicator for rapid identification of high-risk communities of urinary

schistosomiasis (Lengeler et al., 2002).

Praziquantel is the current drug of choice for morbidity control and treatment of schis-
tosomiasis (WHO, 2002), because it is generally well tolerated, easy to administer and
relatively cheap (Utzinger and Keiser, 2004; Doenhoff et al., 2008). Furthermore, praz-
iquantel is effective against the whole spectrum of human schistosome species, but not
against the young developing stages of the parasite (e.g. schistosomula). The latter might
be the underlying cause for treatment failures in some areas (Cioli and Pica-Mattoccia,
2003). Nevertheless, there is considerable concern of arising or already existing resistance
to praziquantel (Cioli et al., 2004; Davis, 2009; Melman et al., 2009). The drugs that have
been widely used against schistosomiasis are oxamniquine and metrifonate, the former be-
ing active against S. mansoni only, and the latter against S. haematobium. Oxamniquine
has shown emerging resistance in Brazil (Conceio et al., 2000). Both drugs have been re-
placed in favour of praziquantel (Utzinger et al., 2011). Further drugs are currently being
developed as alternatives to praziquantel in case of developing clinical relevant resistance
(Utzinger et al., 2011).

1.1.4 Global schistosomiasis distribution and disease burden

Schistosomiasis occurs in Africa, Asia and the Americas and is currently endemic in 76

countries. S. haematobium and S. mansoni are mainly found in Africa and the Arabian
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Figure 1.2: Global schistosomiasis prevalence map (source: Utzinger et al. (2011)).

Peninsula with S. mansoni being also present in South America and the Caribbean. S.
japonicum is restricted to China, the Philippines and Indonesia. S. mekong: and S. in-
tercalatum are only of regional importance in Cambodia and Lao People’s Democratic
Republic (S. mekongi) and Central Africa (S. intercalatum) (Gryseels et al., 2006; Hotez
et al., 2006a; Davis, 2009).

Globally, almost 800 million people are believed to be at risk of schistosomiasis with
more than 200 million infections. This relates to approximately 120 million individuals
estimated to suffer from clinical manifestations and about 20 million severe morbidity
cases (Chitsulo et al., 2000; Steinmann et al., 2006). Persons of particular risk are school-
aged children (WHO, 2002). The global schistosomiasis burden has been estimated at
1.7-4.5 million DALYs lost (WHO, 2002; Utzinger and Keiser, 2004) but might actually
be several times higher than the upper estimate due to discrepancies in schistosomiasis
disability weight assignments (King et al., 2005; Hotez, 2009). The main disease burden
is concentrated in Africa with approximately 97% of infections and 200,000 deaths per
vear (van der Werf et al., 2003; Steinmann et al., 2006). Country-specific schistosomiasis
prevalence estimates and previously eliminated areas as of mid-2003 are shown in Figure
1.2. However, these statistics are largely based on population-adjusted data originally
published by Utroska and colleagues in 1989 (Utroska et al., 1989). These estimates are
likely to be outdated due to ecological transformations, socio-economic development and
control interventions. Recent national wide schistosomiasis surveys are sparse and only
exist for Ghana (Biritwum et al., unpublished data) and Sierra Leone (Koroma et al.,

2010), while Mali, Burkina Faso and Niger are covered by a sub-national survey (Clements
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et al., 2009b). Therefore, accurate estimates of the number of infected individuals and
high-risk areas are essential tools for planning, coordination and evaluation of control

activities.

1.1.5 Determinants of transmission

The geographical distribution of schistosomiasis is focal and results from a complex in-
teraction between various factors acting on the human definitive and the snail interme-
diate host. Transmission depends upon the presence of freshwater sources and host snail
species. Key determinants of snail species distribution are environmental factors, such as
climate (precipitation, temperature), vegetation and geographical conditions (water flow
velocity, soil-related parameters) which are often interrelated. Human exposure to con-
taminated water is mainly influenced by sanitary facilities, behavioural factors, land use,
irrigation methods, population movement (urbanization, migration), socio-economic and
health system-related factors. Additionally, ecological transformations due to human al-
teration (e.g. construction of dams and water management activities) have been shown to
be important determinants of the distribution of the major intermediate host snail species

and disease transmission (Steinmann et al., 2006; Stensgaard et al., 2011).

Infection intensity depends on the frequency and duration of body surface exposure
during water-based activities like farming, washing or swimming (Davis, 2009). Highest
prevalence and intensities of infection are observed in school-aged children because of fre-
quent exposure (WHO, 2002). Behavioural differences in the population result in a skewed
distribution of infection intensity. Few infected individuals excrete a large proportion of
schistosome eggs, while the majority of individuals is only responsible for small amounts
of eggs (Bradley, 1972; Polderman, 1979; Anderson and May, 1985). However, the amount
of detected schistosome eggs is subject to individual day-to-day and intra-stool variation
(Engels et al., 1997; Utzinger et al., 2001; Booth et al., 2003).

1.1.6 Prevention and control

Schistosomiasis prevention and control activities are aiming to achieve one or more of
the following goals: reduction of (i) the amount of schistosome eggs reaching freshwater
sources harboring intermediate host snail species; (ii) miracidia-snail contacts, (iii) reduc-
tion of cercariae densities; (iv) cercariae-human contacts; and (v) worm burden (Davis,
2009). The recommended and most common strategy is large-scale preventive chemother-

apy with praziquantel. This approach seeks to reduce morbidity by lowering the worm
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burden, and hence reducing the amount of excreted eggs, but re-infection is common.
In high transmission settings, indicated by prevalence levels of at least 50%, preventive
chemotherapy is recommended to be administered once a year to school-aged children. At
median prevalence levels (at least 10%) and at low prevalence levels (below 10%) bi-annual

treatment and treatment on primary school entry and leave, respectively, is recommended
(WHO, 2002).

Before preventive chemotherapy became the key component in schistosomiasis con-
trol, transmission control with molluscicides was common. Importance decreased because
large-scale application was expensive and of limited success due to rapid re-population of
habitats. However, molluscicides are still a control tool but restricted to specific epidemi-
ological settings (Davis, 2009).

Construction of adequate sanitary facilities and health education aim to increase popu-
lation awareness of schistosomiasis transmission and health consequences in order to avoid
contamination of freshwater sources. Provision of safe water supply systems and environ-
mental transformations can also lead to significant long-term improvements but require

large amounts of resources (Davis, 2009).

None of the presented tools alone will achieve sustainable control, because schistoso-
miasis transmission is a dynamic process dependent on various factors, such as the social-
ecological context and the epidemiological situation. For cost-effective planning of control
activities, it is essential to have reliable maps of the geographical distribution of areas with

high morbidity and estimates of the number of infected individuals.

1.2 Mapping schistosomiasis transmission

Although lots of resources and efforts have been allocated to schistosomiasis control pro-
grammes, reliable burden estimates are rare and restricted to rather small areas. However,
accurate spatially explicit maps of at-risk areas are valuable tools for various stakeholders
and disease control managers to support decision-making on interventions and to assess
the amount of treatment needed. In addition, disease risk maps are needed to monitor
and evaluate effectiveness of control programmes. Schistosomiasis is an environmentally-
driven disease because transmission is linked to the presence of freshwater sources and
intermediate host snail species, which are sensitive to environmental conditions. Hence,
schistosomiasis risk mapping is based on the availability of environmental and survey data

as well as appropriate statistical methods.



8 Chapter 1. Introduction

1.2.1 Existing mapping efforts

Early schistosomiasis mapping efforts were not reliable because they were mainly based
on climatic suitability thresholds lacking disease data (Bavia et al., 2001; Malone et al.,
2001). Most empirical mapping efforts cover small geographical areas, e.g. single villages
(Pinot de Moira et al., 2007) or health districts (Raso et al., 2005), or countries (Brooker
et al., 2001; Clements et al., 2006a, 2009a). Empirical large-scale mapping efforts covering
multiply countries currently do not exist besides few exceptions (Clements et al., 2006b,
2008, 2010). The lack of large-scale maps on the distribution of schistosomiasis is mainly
due to a paucity of contemporary large-scale survey data. Therefore, existing survey data
have to be compiled within a database and analysed together in order to cover large-scale

areas for disease mapping.

1.2.2 Databases on schistosomiasis surveys

The first attempt to create a comprehensive compilation of historical schistosomiasis pre-
valence surveys at a global scale was carried out in the mid-1980s by (Doumenge et al.,
1987). Recently, Brooker and colleagues (2010) collected data on soil-transmitted helminths
and schistosomiasis within the global atlas of helminth infections (GAHI; http://wuw.
thiswormyworld.org) project, but data access is limited. An up-to-date, open-access
database of historical and contemporary schistosomiasis prevalence surveys was initiated
as part of the European Union (EU)-funded CONTRAST project. A key objective of CON-
TRAST project was to assess the distribution of schistosomiasis risk and burden at high
geographical scale for the spatial refinement of control interventions and the cost-effective
allocation of scarce resources in sub-Saharan Africa. To fulfil this objective, the global
database on neglected tropical diseases (GNTD database in short; http://www.gntd.org)

was developed (Hiirlimann et al., 2011).

1.2.3 Description of the GNTD database

The GNTD database is based on a systematic literature review employing various databases
without restriction in time or language. Multiple sources of unpublished data, such as re-
ports, doctoral theses, African university libraries, health research institutions or personal
contacts were screened to maximise survey coverage. It assembles all available information

on schistosomiasis prevalence studies, such as (i) publication-specific information about
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the type/source of publication, authors and publication year; (ii) study-specific informa-
tion about survey population, survey period, Schistosoma species and diagnostic test em-
ployed; and (iii) survey location-specific information about the number of infected indi-
viduals among those examined (stratified by age and sex if available). Post-intervention
studies and studies on displaced populations (such as nomads, travelers, military person-
nel, expatriates) or non-representative population samples (such as HIV positives, hospital
patients) were excluded, but in case baseline prevalence data for post-intervention studies

were reported these data were included.

As of mid-January 2011, the GNTD database contained more than 12,000 ge-referenced
survey locations for schistosomiasis in over 35 African countries. Countries with large
amounts of survey locations (>500) were Mali, Cameroon, Niger, Senegal, Tanzania,
Ethiopia and Nigeria (sorted in descending order). The majority of the data are sur-
veys on S. haematobium (54.6%) and S. mansoni (41.8%). Further observed species were
S. intercalatum (3.5%) and animal schistosomiasis species (S. bovis, S. matthei and S.

margrebowiei) (Hurlimann et al., 2011).

Compilation of surveys increases the number of locations within the area of interest,
but certain constraints need to be considered. The major drawback of data compilations
is the lack of homogeneity and comparability between surveys. The broader the inclusion
criteria the more diverse the studies in terms of survey population (variation in prevalence
risk), survey period (variation in time), or diagnostic test (variation in diagnostic sensitivity
and specificity). For instance, the GNTD database contains community and school-based
surveys involving overlapping age-groups, and hence different risk groups. Simple joining
of all these data, ignoring heterogeneity, introduces additional bias in the analyses and is

likely to result in incorrect disease risk estimates.

1.2.4 Mapping tools

Schistosomiasis transmission is strongly linked to ecological factors, such as temperature,
precipitation or soil-related parameters. Therefore, disease risk mapping requires knowl-
edge on environment-outcome relations and the geographical distribution of environmental
factors. Remote sensing (RS) is a technology for sampling (electromagnetic) radiation
emitted or reflected from distant objects to extract information on the surface or atmo-
sphere. Radiation is often detected by means of artificial satellites. RS is often used to
determine spatially rich information on environmental predictors of schistosomiasis trans-

mission. Even though various RS data types have already been implemented to study
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disease transmission, further research is needed to validate and improve the proxies on

environmental conditions based on ground data.

Geographical information systems (GIS) are computerized database management sys-
tems capable for the collection, storage, handling, analysis and display of all forms of
geo-referenced data and are often employed to process RS data. Development and appli-
cation of GIS in public health and disease risk mapping has made considerable progress
over the past two decades. GIS arrange spatially defined information about a region as
a set of maps (called layers) with each layer possessing information on a characteristic of
the region. The global positioning system (GPS) is often used to geo-locate survey data
in order to be linked with GIS.

In the mid-1980s, RS data were applied for the first time to map the occurrence of
schistosomiasis in the Philippines and the Caribbean (Cross and Bailey, 1984; Cross et al.,
1984). First GIS-based predictions on schistosomiasis transmission employing remotely-
sensed temperature estimates were published by Malone et al. (1994) for the Nile delta
in Egypt. The interest on the application of GIS and RS in the spatial epidemiology of
schistosomiasis has been growing considerably (Brooker, 2002; Yang et al., 2005b; Simoonga
et al., 2009) and several reviews have highlighted the potential of such techniques for
disease control especially in combination with spatial statistics (Malone, 2005; Yang et al.,
2005b; Brooker, 2007). Some GIS software have integrated statistical technologies that
are well suited for explanatory analyses of disease epidemiology. However, these methods
are inadequate to model the relationship between disease risk and its predictors, and to

perform model-based predictions.

1.2.5 Statistical modeling

Statistical models identify the significant predictors of schistosomiasis transmission, give a
mathematical description of the outcome-predictor relationship and provide estimates of
disease risk at unsampled locations based on this relation. Locations in close proximity are
characterised by similar infection risks due to shared spatial exposures. Unobserved spa-
tially distributed exposures introduce spatial correlation to the data. Standard statistical
modelling approaches are not appropriate for analysing spatially clustered data because
they assume independence between locations. Ignoring potential spatial correlation in

neighbouring areas could result in incorrect model estimates (Ver Hoef et al., 2001).

The type of the geographical information is influencing the choice of the spatial statis-

tical method used to analyse data correlated in space. Three kinds of spatial data exist,



1.2 Mapping schistosomiasis transmission 11

namely (i) point-level (or geostatistical) data; (ii) areal (or lattice) data; and (iii) point
patterns. Spatial models introduce additional random effect parameters at each observed
location or region which takes into account potential spatial correlation. Areal data are
individual-level or aggregated data usually consisting of counts or rates with geographi-
cal information available over a set of regions with common boarders. Spatial correlation
between areas is implemented based on a neighbouring structure. Analysis of areal data
aims to identify trends and spatial patterns and to assess large-scale associations between
schistosomiasis risk and environmental predictors. Point pattern data are sets of locations
in a study region where a particular event occurred. Hence, the locations are not fixed but
random quantities. The analysis focus on the detection of clusters in the spatial occurrence
of events and associated risk factors. Geostatistical data represent observations obtained at
specific locations over a continuous study area. Spatial proximity is defined by a function
of distance between pairs of locations. Analysis of this type of data aims to identify the
effect of covariates that determine schistosomiasis risk and to predict the outcome at new
locations of the study area (referred to as kriging) (Banerjee et al., 2003).

Geostatistical models were implemented by Diggle et al. (1998) at the end of the twenti-
eth century. These models introduce location-specific random effect parameters which take
into account the underlying spatial process. The random effect parameters are assumed to
be multivariate normally distributed with the covariance matrix defined as function of dis-
tance between locations. Such models typically contain large numbers of parameters and
cannot be estimated by the commonly used maximum likelihood approaches (Kleinschmidt
et al., 2000). Bayesian model formulation fitted via Markov chain Monte Carlo (MCMC)
simulations methods is able to simultaneously estimate outcome-predictor relations as well
as spatial correlation and avoid the computational problems of likelihood-based methods
(Gosoniu et al., 2006). The most common MCMC methods are Metropolis-Hastings al-
gorithm (Metropolis et al., 1953; Hastings, 1970), Gibbs sampler algorithm (Gelfand and
Smith, 1990) and reversible Jump MCMC (Green, 1995). These methods derive empirical

approximations of the posterior distributions of the model parameters.

Bayesian geostatistical models have been applied in schistosomiasis risk mapping in
various setting, for example by Raso et al. (2005), Beck-Worner et al. (2007) and Vounatsou
et al. (2009) in the region of Man, western Cote d’Ivoire; Clements et al. (2006a) in
Tanzania; Clements et al. (2008) in Mali, Niger, and Burkina Faso; Clements et al. (2010)
for Burundi, Uganda and parts of Kenya and Tanzania; Wang et al. (2008) in Dangtu
county (Peoples Republic of China); or Yang et al. (2005a) in Jiangsu province, China).
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1.2.6 Methodological issues

Various methodological problems are related to schistosomiasis risk mapping. Some of
the main issues are: (i) analysis of non-stationarity and anisotropy; (ii) modelling large
geostatistical data; (iii) variable selection; (iv) analysis of age-heterogeneous data; and (v)

modelling of dependent diseases.

In disease risk mapping, the majority of geostatistical models are based on the assump-
tion that spatial correlation is solely a function of distance between locations and stable
throughout the study area, that is the spatial process is isotropic and stationary. This as-
sumption might be inappropriate in the field of schistosomiasis because dry regions or other
local characteristics might be less suitable for schistosomiasis transmission. Therefore, the
amount of spatial correlation potentially varies between areas of the study region, referred
to as non-stationarity. Some possibilities to model non-stationarity were developed by Kim
et al. (2005) who partitioned the study area into random tiles assuming independent tile-
specific stationary spatial processes, or by Gosoniu and Vounatsou (2011b) who assumed
correlated tiles. Furthermore, the intermediate host snails of schistosomiasis are water-
dependent species and spread along rivers, ponds and lake shores. Therefore, it is likely
that spatial correlation is related to the direction of river flow and shores. Anisotropy is
arising when association depends not only on distance but also on direction between pairs
of locations. Geometric anisotropy is a special case of anisotropy defined by spatial decay
parameters varying with direction between locations (Zimmerman, 1993). Geostatistical
models can be easily expanded to incorporate additional model parameters accounting for
the angle, range and ratio of anisotropy via a positive-definite correlation matrix (Baner-
jee et al., 2003). While isotropy stationary processes are well studied, non-stationary and

anisotropic processes have been so far neglected in schistosomiasis risk mapping.

Very large number of survey locations (N) are often observed when dealing with data
compilations. The spatial analysis of such data is computationally challenging because
geostatistical model fit requires the repeated inversion of the covariance matrix (of size
NxN). A number of approaches on handling large spatial dataset exist (Rue and Tjelme-
land, 2002; Gemperli and Vounatsou, 2006; Paciorek, 2007). Recently, an approximation
of the spatial process was proposed by Banerjee et al. (2008) based on a subset of survey
locations (M, M<<N). This has the advantage that the large size of the covariance matrix
is reduced to much smaller dimensions. This approach was further developed by Gosoniu
et al. (2011a) and (Rumisha et al., 2011).

Schistosomiasis transmission is based on a complex relationship between numerous
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(inter-related) factors. Geostatistical modelling including all relevant covariates might re-
sult in convergence problems due to the correlation between factors and large amount of
modelling parameters. Expert opinions and evidence from previous publications could be
used to reduce the set of parameters. However, the resulting set of covariates might not
lead to the best possible results and miss some locally important factors. Widely used vari-
able selection approaches in epidemiological applications are fitting of stepwise non-spatial
regressions or univariate non-spatial models and selection of covariates based on thresholds
of significance (Gosoniu et al., 2006; Kazembe et al., 2006; Raso et al., 2006a; Schur et al.,
2011b). An alternative to reduce the complexity of the model are geostatistical variable
selection approaches, for instance using Gibbs variable selection (George and McCulloch,
1993). The best fitting set of covariates is determined based on the posterior predictive
probability of indicator variables linked to the regression coefficients that indicate presence
or absence of the corresponding covariate. To our knowledge, variable selection taking
into account spatial correlation has only been employed in geostatistical risk modeling by
Giardina et al. (2011) and Gosoniu and Vounatsou (2011a).

A drawback of data compilations is the lack of homogeneity and comparability between
surveys. Age-heterogeneity of compiled survey data complicates geostatistical disease risk
estimation, because unadjusted joining of age-heterogeneous studies is likely to result in
imprecise risk estimates. Studies for malaria addressed this issue by dropping surveys on
the most heterogeneous age-groups (Kleinschmidt et al., 2000; Gosoniu et al., 2009). This
contributes to smaller numbers of survey locations included in the analyses, and hence
lower model accuracy, especially in regions with sparse data. Gemperli et al. (2006b)
used mathematical transmission models to convert age-heterogeneous prevalence data to
a common age-independent malaria transmission measure. This approach was further
developed by Gosoniu et al. (2008) and Hay et al. (2009). In schistosomiasis risk mapping,
the age-heterogeneity problem has not yet been addressed and incompatible surveys were

often excluded from the analysis.

A host of communicable diseases show spatially overlapping distributions, which is
called co-endemicity, leading to individuals being simultaneously infected with more than
one disease (co-infection). A priori knowledge of areas with high risk of co-infections will
enhance cost-effectiveness of integrated control programmes (Bundy et al., 1991; Brady
et al., 2006). The reasons for co-infections vary depending on the diseases investigated.

While some simultaneous occurring infections simply arise by chance, others are due to
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shared risk factors (e.g. behavioural, environmental, demographic and socio-economic con-
ditions), genetic predispositions or a combination of factors. Indeed, diseases are rarely
independent and estimating co-endemicity by separately modeling each disease (Brooker
et al., 2006) fails to account for inter-relations and might give imprecise estimates of the
geographical distribution of risk. Raso et al. (2006b) and Brooker and Clements (2009)
have implemented multinomial spatial models for predicting the risk of co-infection. Multi-
nomial models depend on observed co-infection data on individuals, but these data rarely
exist because most surveys screen for single infections. Joint risk analyses via shared
component models have been proposed by Knorr-Held and Best (2001) and others (Tzala
and Best, 2008; Kazembe et al., 2009) to detect shared and divergent patterns in the risk
surface of multiple diseases, while separating the random effects into disease-specific and
shared components. So far, joint risk analyses on combined survey data have not yet been

implemented in schistosomiasis co-infection risk mapping.
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2.1 Goal

The overarching goals of the thesis are: (i) to develop Bayesian geostatistical models for the
analysis of schistosomiasis survey data taking into account inherent data characteristics;
and (ii) to validate and implement these models in the field of schistosomiasis to produce
spatially-explicit risk estimates and number of infected individuals on regional scale in
Africa.

2.2 Specific objectives
There are four specific objectives linked to these goals:

(i) development of geostatistical models for Binomial data which allow application
to large data sets and estimation of the number of infected individuals in the field of
schistosomiasis (Chapters 4 and 6);

(ii) development and validation of geostatistical models taking into account age-heterogeneity
by incorporating alignment factors for large-scale schistosomiasis mapping (Chapters 5 and
6);

(iii) development and validation of methods for anisotropic prevalence data for mapping
schistosomiasis transmission (Chapter 7); and

(iv) development and validation of shared component models to improve co-infection
risk predictions from single disease surveys (Chapter 8).

The above mentioned models were applied on data extracted from the GNTD database
and national survey data from Senegal:

(i) to produce smooth large-scale schistosomiasis risk maps and to estimate the number
of infected individuals in West and eastern Africa;

(ii) to identify environmental predictors and to assess the affect of soil-related factors
on schistosomiasis transmission in Senegal and eastern Africa;

(iii) to obtain spatially explicit schistosomiasis risk estimates in Senegal taking into
account directional effects; and

(iv) to evaluate the shared and disease-specific spatial effects on S. mansoni-hookworm

co-infection in the region of Man, Cote d’Ivoire.
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Abstract

Background: After many years of general neglect, interest has grown and efforts came
under way for the mapping, control, surveillance, and eventual elimination of neglected
tropical diseases (NTDs). Disease risk estimates are a key feature to target control in-
terventions, and serve as a benchmark for monitoring and evaluation. What is currently
missing is a georeferenced global database for NTDs providing open-access to the available
survey data that is constantly updated and can be utilized by researchers and disease con-
trol managers to support other relevant stakeholders. We describe the steps taken toward
the development of such a database that can be employed for spatial disease risk modeling
and control of NTDs.

Methodology: With an emphasis on schistosomiasis in Africa, we systematically searched
the literature (peer-reviewed journals and ‘grey literature’), contacted Ministries of Health
and research institutions in schistosomiasis-endemic countries for location-specific preva-
lence data and survey details (e.g., study population, year of survey and diagnostic tech-
niques). The data were extracted, georeferenced, and stored in a MySQL database with a

web interface allowing free database access and data management.

Principal Findings: At the beginning of 2011, our database contained more than 12,000
georeferenced schistosomiasis survey locations from 35 African countries available under
http://www.gntd.org. Currently, the database is expanded to a global repository, includ-

ing a host of other NTDs, e.g. soil-transmitted helminthiasis and leishmaniasis.

Conclusions: An open-access, spatially explicit NTD database offers unique opportu-
nities for disease risk modeling, targeting control interventions, disease monitoring, and
surveillance. Moreover, it allows for detailed geostatistical analyses of disease distribution
in space and time. With an initial focus on schistosomiasis in Africa, we demonstrate the
proof-of-concept that the establishment and running of a global NTD database is feasible
and should be expanded without delay.
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3.1 Introduction

More than half of the world’s population is at risk of neglected tropical diseases (NTDs),
and over 1 billion people are currently infected with one or several NTDs concurrently, with
helminth infections showing the highest prevalence rates (Hotez et al., 2006b; Hotez, 2008).
Despite the life-long disabilities the NTDs might cause, they are less visible and receive
lower priorities compared to, for example, the ‘big three’, that is malaria, tuberculosis, and
HIV/AIDS (WHO, 2006a; Utzinger et al., 2010), because NTDs mainly affect the poorest
and marginalized populations in the developing world (Hotez, 2008; King, 2010; Utzinger
et al., 2010). Efforts are under way to control or even eliminate some of the NTDs of which
the regular administration of anthelmintic drugs to at-risk populations - a strategy phrased
‘preventive chemotherapy’ - is a central feature (Fenwick, 2006; Hotez, 2009; Lammie et al.,
2006; Molyneux, 2006; Smits, 2009).

There is a paucity of empirical estimates regarding the distribution of infection risk
and burden of NTDs at the national, district, or sub-district level in most parts of the
developing world (Brooker et al., 2000, 2009a,b; Brooker, 2010; Simoonga et al., 2009). Such
information, however, is vital to plan and implement cost-effective and sustainable control
interventions where no or only sketchy knowledge on the geographical disease distribution
is available. There is a risk of missing high endemicity areas and distributing drugs to
places which are not at highest priority, hence wasting human and financial resources.
Consequently, integrated control efforts should be tailored to a given epidemiological setting
(Brooker et al., 2009a).

The establishment of georeferenced databases is important to identify areas with no
information on disease burden, to foster geographical modeling over time and space, and
to control and monitor NTDs. In 1987 the bilingual (English and French) ‘Atlas of the
Global Distribution of Schistosomiasis’ was published, which entailed country-specific maps
of schistosomiasis distribution based on historical records, published reports, hospital-
based data, and unpublished Ministry of Health (MoH) data (Doumenge et al., 1987).
While recent projects like the Global Atlas of Helminth Infections (GAHI; http://www.
thiswormyworld.org) (Brooker et al., 2010) and the Global Atlas of Trachoma (http://
trachomaatlas.org) (Smith et al., 2011) offer maps on the estimated spatial distribution
of soil-transmitted helminthiasis, schistosomiasis, and trachoma prevalence, they do not
provide the underlying data for further in-depth analyses conducted by different research
groups. An open-access global parasitological database for NTDs, which provides the

actual data, is not available.
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The Swiss Tropical and Public Health Institute (Swiss TPH) in Basel, Switzerland,
together with partners from the University of Copenhagen, Denmark, and the University
of Zambia (UNZA) in Lusaka, Zambia, were working together in a multidisciplinary project
to enhance our understanding of schistosomiasis transmission (the CONTRAST project)
(Stothard et al., 2009; Kristensen, 2008). One of the CONTRAST goals was to create
a data repository on location-specific schistosomiasis prevalence surveys in sub-Saharan
Africa. In this manuscript, we describe the steps taken toward the development of such
an open-access schistosomiasis database which is currently expanded to a global scale and
to include other NTDs (e.g., soil-transmitted helminthiasis and leishmaniasis) and that
can be constantly updated based on new publications and reports, as well as field data

provided by contributors.

3.2 Materials and Methods

3.2.1 Guiding framework

We selected schistosomiasis as the first disease to establish a proof-of-concept and populate
our global NTD database. Indeed, schistosomiasis affects over 200 million people world-
wide, with more than 95% concentrated in Africa. Both urinary schistosomiasis (caused by
the blood fluke Schistosoma haematobium) and intestinal schistosomiasis (causative agents:
S. mansoni and S. intercalatum) are endemic in Africa (Gryseels et al., 2006; Steinmann
et al., 2006).

In order to obtain a large number of geographical locations to which prevalence data
can be attached to our database, we conducted a systematic review. The specific steps of
the process from identification of relevant surveys to data entry in the database, including
various data sources, search criteria, data extraction and entry procedures, and quality
control measures, are visualized in Figure 3.1, and will be described in more detail in the

following sections.

3.2.2 Data sources

We systematically searched the following electronic databases with no restriction to date
and language of publication: PubMed (http://www.pubmed.gov), ISI - Web of Knowl-
edge (http://www.isiwebofknowledge.com), and African Journal Online (AJOL; http:
//www.ajol.info/). Using specific search terms, we retrieved relevant peer-reviewed pub-

lications with an emphasis on schistosomiasis prevalence data in Africa.
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Figure 3.1: Flow-chart showing the steps used to assemble the GNTD database.

1. PubMed (http://www.pubmed.gov), ISI Web of Knowledge (http://www.
isiwebofknowledge.com), African Journal Online (AJOL; http://www.ajol.info/), Insti-
tut de Recherche pour le Dveloppement (IRD)-resources documentaries (http://horizon.
documentation.ird.fr), WHO library archive (http://www.who.int/publications/en/),
Doumenge et al. (1987);

2. Dissertations and theses in local universities or public health departments, ministry of
health reports, other reports and personal communication.

3. Proforma and MySQL database include: (i) data source (authors); (ii) document type; (iii)
location of the survey; (iv) area information (rural or urban); (v) coordinates (lat-long in dec-
imal degrees); (vi) method of the sample recruitment and diagnostic technique; (vii) descrip-
tion of survey (community-, school- or hospital-based); (viii) date of survey (month/year);
and (ix) prevalence information (number of subjects examined and positive by age group and
parasite species).
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The keywords applied for our literature search on schistosomiasis in the electronic
databases, as well as the terms for the future search strategy on other NTDs, usually
consists of species names and disease expressions often abbreviated and supplied with an
asterisk in order not to miss out any results due to the variety of different spellings. The
search strategy can be generalized as follows: country name OR continent AND disease
(alternative spellings were included). These keywords were combined with names of African
countries, whereas also alternative or former country names were considered to have our
search strategy as broad as possible. This approach enabled us to save literature search

results on a country-by-country basis.

Along with articles from peer-reviewed journals, reports from health institutions (e.g.,
World Health Organization (WHO) and the Office de la Recherche Scientifique et Tech-
nique d’Outre-Mer (ORSTOM)/Organisation de Coordination et de Coopration pour la
Lutte contre les Grandes Endmies (OCCGE)) and doctoral theses (so-called ‘grey liter-
ature’) compose an important literature source for schistosomiasis data. Grey literature
is often restricted to internal use or is not available in an electronic format. Publication
databases available from WHO (http://www.who.int/publications/en/) and the Insti-
tute de la Recherche pour le Dveloppement (IRD, former ORSTOM; http://horizon.
documentation.ird.fr) offer at least partial access to such documents. Additional grey
literature included was obtained directly via site visits by team members to African uni-
versities and health research and development institutions. Another important source for
survey data is the direct communication with local contacts, i.e., collaborators and part-
ners from different African countries, individual researchers, and staff from ministries of
health. The majority of entries that can be retrieved in the database were extracted from
peer-reviewed journals (46%), however 30.5% of the data was obtained from personal com-
munication with authors and 23.5% from grey literature. The latter was usually more
extensive in terms of survey locations than the former sources. Since the key terms we
used for our systematic review were mainly species and abbreviated disease names (e.g.,
‘schisto™ and ‘bilharz*’) that are not language specific, we also extracted and included
reports written in languages other than English, including French (especially for West
African countries), Portuguese, Italian, Dutch, Scandinavian and few in Russian and Chi-
nese. Sources from literature and from personal communication were stored, labeled and

managed with Reference Manager 11 (Thomson ISI Research Soft).

Often, geographical information of the survey location was not given in the retrieved

publications and reports (94%). Hence, we retrospectively georeferenced the locations. The
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majority of the coordinates was retrieved using the GEOnet Names Server (55%) (GNS;
http://earth-info.nga.mil/gns/html/index.html), topographic or sketch maps (23%),
and GoogleMaps (14%) (http://maps.google.com). Personal communication with au-
thors and local collaborators contributed another 5% of the retrospective geolocations,
and only 3% were derived from other gazetteers and sources. Irrespective of the source
of retrospective geolocation, we always mapped the coordinates in Google Maps to en-
sure that they are located in the study area and pointing to a human settlement. In
general, we tried to adhere to the guidelines for georeferencing put forward by the Ma-
NIS/HerpNEt/Ornis network to approach georeferecing in standardized manner (http:
//manisnet.org/GeorefGuide.html).

3.2.3 Data extraction

All data sources obtained (literature, data from personal communication, and field visits)
were screened for relevance by applying defined inclusion and exclusion criteria. Studies
were included if they comprised prevalence data of schistosomiasis, identified either by
school-based or community-based surveys. We accepted different study designs (cluster
sampling, random sampling, stratified sampling, systematic sampling, etc.) as long as the
reported findings could be considered as representative for the population or a specific
sub-group of the population (e.g., school children, women, fishermen) in a given area.
Along with schistosome prevalence data, a minimal set of information was collected, such
as survey location (school, village, and administrative unit), date of survey, and number
of individuals examined and found schistosome-positive (irrespective of sample size). In
case additional survey-specific data were available, such as infection status according to
age and sex, or intermediate host snail species (i.e., Bulinus spp. for S. haematobium
and Biomphalaria spp. for S. mansoni), such information was tagged, as it might be of

relevance for subsequent data extraction.

Hospital-based investigations, case-control studies, drug efficacy studies, and clinical
trials, as well as reports on disease infection among travelers, military personnel, expa-
triates, nomads, and other displaced or migrating populations were excluded from the
database in order to avoid non-representative samples (e.g., individuals with symptoms or
disease-related morbidity) were excluded. Thus, the data in the database reflect the actual
spatial distribution of the disease at a given time point. In case baseline prevalence data
were reported in the aforementioned study types, or if former migrant populations settled

down and the given survey location was clearly defined, data were included. Although
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having taken these precautionary steps, the database might still include prevalence data
influenced by migration, since mobility and migration patterns of the rural population in
sub-Saharan Africa are quite common (Shears and Lusty, 1987; Watts, 1987). Based on
our exclusion criteria, we rejected more than 70% of the articles retrieved from the litera-
ture search. The rejection rate varied from country to country with a minimum rejection

of 52% in Niger and a maximum of 95% in Guinea.

Once a source was identified as relevant, the data were extracted following a standard
protocol with emphasize on to (i) the source of disease data such as authorship, journal,
publication date, etc.; (ii) description of the parasitological survey specifying the country,
the survey date (year, month, season), and the type of survey (community- or school-
based); (iii) survey location reported at the highest spatial resolution available; and (iv)
parasitological survey data. If relevant source included malacological data, details on snail
survey methods used, snail species collected, and infection rate of the Planorbidae were

also extracted.

The Kato-Katz technique for S. mansoni and urine filtration for S. haematobium di-
agnosis are often considered as ‘gold’ standard methods (WHO, 2002). If prevalence data
were reported by different diagnostic methods, we only recorded in the database the re-
sults of the test with highest sensitivity and specificity. We applied the following ranking
of diagnostic methods: (i) ‘gold’ standard; (ii) direct methods such as detection of eggs in

urine/stool; and (iii) any other method such as antigen detection.

3.2.4 Database system

The data are stored and managed in a MySQL (MySQL, 1995) relational database with
a web-interface built in hypertext preprocessor (PHP) (Arntzen et al., 2001). The process

from prevalence data extraction to database entry is schematically depicted in Figure 3.1.

The database consists of six tables corresponding to the sections of data extraction.
The system architecture supports two types of users: the administrators and the end-users
(Widenius and Axmark, 2002). Registered administrators can enter new data, edit or
delete existing entries under their username and password. In addition, administrators
can temporarily mask confidential data as requested by authors contributing specific data.
Then a summary measure is presented instead with the contact details of the data owner
to enable direct communication between researchers. Users can search all records using
different selection criteria, e.g., country, document category, disease, and journal. The user

part was designed to fulfill the most common queries, e.g., all recorded data for a specific
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parasite species in a given country or region within a specified period. The user will be
able to download all information stored in the database matching different search criteria

in an Excel file through an export function.

3.2.5 Data quality

To guarantee and improve data quality, the following measures have been taken. A first
quality check is performed after data entry in the electronic database. For example, data
extracted by assistants are always double-checked against the original source of information
before becoming open-access, while data entries of senior staff are checked randomly. Data
sent by contributors are inspected for completeness (e.g., in terms of study year and diag-
nostic technique), precise calculations (e.g., prevalence) and for correctness of coordinate
information if provided. Additionally, we routinely screen the database for specific errors,
i.e., by mapping survey locations and counterchecking whether the points are plotted in
the expected area, by summarizing prevalence data per location and survey date to check

for duplicate records, by testing for entry completeness.

Together with correctness of data extracted and entered, we also aim at the integrity of
survey data. To further improve completeness of our database (e.g., date of surveys, disag-
gregated data) corresponding authors are contacted by e-mail asking for missing informa-
tion. Approximately half of all reports had missing information, and so far we were able to
get in touch with more than a third of the authors. Finally, missing coordinates for specific
survey locations were obtained by re-checking additional maps and gazetteer sources, by
communication with authors, and by employing global positioning system (GPS) databases

created by collaborators during field visits for specific countries (i.e., Uganda, Zambia).

3.3 Results

On 10 January 2011, our database contained 12,388 survey locations for schistosomiasis
that are georeferenced from 35 African countries and 568 data points on intermediate
host snails for 20 African countries, giving information on 25 different mollusk species.
The database is constantly updated and subjected to quality control as the project moves
along. Surveys are dated as early as 1900 and the historical references that are part of the
Doumenge et al. (1987) global schistosomiasis atlas are included by extracting data from
the original source files. Since our main focus was on sub-Saharan Africa, the data cur-

rently included in the database covers all Western, Eastern, Middle and Southern African
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countries, according to UN Population Division classification. Data extraction for North-
ern African countries is currently in progress. Survey coverage between countries shows
considerable variation. Typically, larger numbers of survey locations were found in higher
populated countries, but the amount of surveys also depends on existing national control
or monitoring programs. In addition, temporal and spatial gaps in the survey distribution
(as observed in Liberia, Rwanda, and Sierra Leone) might have occurred due to political
instability and financial problems. The most widely used method for the diagnosis of in-
testinal schistosomiasis in the surveys that were fed into our repository is the Kato-Katz
technique (76.7%, as single method or in combination). Stool concentration techniques
accounted for a total of 13.3% (e.g., Ritchie/modified Ritchie technique (6.0%), concen-
tration in ether solution (5.0%), merthiolate-iodine-formaline (MIF') concentration method
(2.3%)) (Bergquist et al., 2009). With regard to S. haematobium diagnosis, microscopic
examination of urine after concentration (82.0%) such as urine filtration, urine centrifuga-
tion and urine sedimentation, as well as reagent strip testing (12.8%) for the detection of
blood in urine (i.e., microhematuria) or a combination of both approaches (2.3%) are most

commonly employed.

Most of the surveys currently included in our database focus on school-aged children
(70.1%), whereas less than a third (29.9%) of the surveys include all age groups. Further-
more, among the prevalence data of schistosomiasis collected, S. haematobium (54.4%)
and S. mansoni (40.8%) were the most prevalent species. The third schistosome species
parasitizing humans in Africa, S. intercalatum (4.8%), was only reported in surveys carried
out in Cameroon and Nigeria, confirming that this species is restricted to some parts of
West and Central Africa (Figure 3.2). Additionally, two zoonotic Schistosoma species were
reported, namely S. bovis (0.02%) and S. matthei (0.01%), in the first cattle being the
reservoir, while the latter is naturally affecting different antelope species (Table 3.1). Co-
occurrence of multiple species was reported in 20.4% of the surveys, the majority of which
(97.6%) was S. mansoni-S. haematobium co-occurrence. Currently, two schistosomiasis
datasets in the GNTD database are confidential and about 100 datasets still await quality

control. Hence, these data were masked and cannot yet be accessed by the database users.

The distributions of S. mansoni and S. haematobium are shown in Figure 3.3 and
Figure 3.4, respectively. The applied prevalence cut-offs of 10% and 50% were chosen
based on WHO recommendations to distinguish between low (<10%), moderate (between
10 and 50%) and high (>50%) endemicity communities (WHO, 2002). The compiled



3.3 Results 27

Schistosoma species

m  S. matthei
¢ S. margrebowiei
. bovis

. haematobium

. intercalatum

>
o 0w nu nu nm

) . mansoni

N S KM
0 500 1,000 2,000

Figure 3.2: African map of schistosomiasis survey locations based on current progress of
the GNTD database. Survey locations are represented by pink squares for S. matthei, blue
diamonds for S. margrebowiei, yellow stars for S. intercalatum, green crosses for S. bowvis,
brown dots for S. mansoni and red triangles for S. haematobium. Surveys where subjects
were screened for co-occurrence of multiple species are indicated with overlapping symbols.
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Table 3.1: Number of Schistosoma spp. survey locations in the GNTD database in Africa
stratified by country. Number of survey locations of S. mansoni (A), S. haematobium (B),
S. intercalatum (C), S. bovis (D), S. matthei (E) and S. margrebowiei (F) as of 10 January

2011.
Countries A B C D E F Total
Angola 1 1 0 0 0 0 2
Benin 15 11 0 0 0 0 26
Botswana, 34 26 0 0 0 0 60
Burkina Faso 55 257 0 0 0 0 312
Burundi 87 0 0 0 0 0 87
Cameroon 467 528 415 0 0 0 1410
Congo 2 86 0 0 0 0 88
Congo DRC 129 117 1 0 0 0 247
Cote d’Ivoire 229 225 0 0 0 0 454
Djibouti 1 0 0 0 0 0 1
Eritrea 10 8 0 0 0 0 18
Ethiopia 671 107 0 0 0 0 778
Gambia 5 56 0 0 0 0 61
Ghana 22 112 0 0 0 0 134
Guinea 37 38 0 0 0 0 75
Guinea-Bissau 0 38 0 0 0 0 38
Kenya 208 193 0 0 0 0 401
Liberia 93 120 0 0 0 0 213
Malawi 23 87 0 0 0 0 110
Mali 935 1007 0 0 0 0 1942
Mauritania 51 95 0 0 0 0 146
Mozambique 96 105 0 0 0 0 201
Namibia, 32 32 0 0 0 4 68
Niger 237 858 0 1 0 0 1096
Nigeria 111 406 17 0 0 0 534
Rwanda 4 0 0 0 0 0 4
Senegal 238 699 0 1 0 0 938
Sierra Leone 37 64 0 0 0 0 101
Somalia, 10 69 0 0 0 0 79
Sudan 202 179 0 1 0 0 382
Tanzania, 292 576 0 0 0 0 868
Togo 80 77 0 0 0 0 157
Uganda 414 57 3 0 0 0 474
Zambia, 183 311 0 0 1 0 495
Zimbabwe 169 219 0 0 0 0 388
Total 5180 6764 436 3 1 4 12388
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Figure 3.3: Observed prevalence of S. mansoni based on current progress of the GNTD
database in Africa. The data included 4604 georeferenced survey locations. Prevalence equal
to 0% in yellow dots, low infection rates (0.1-9.9%) in orange dots, moderate infection rates
(10.0-49.9%) in light brown dots and high infection rates (>50%) in brown dots. Cut-offs
follow WHO recommendations.
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Figure 3.4: Observed prevalence of S. haematobium based on current progress of the GNTD
database in Africa. The data included 5807 georeferenced survey locations. Prevalence
equal to 0%, low infection rates (0.1- 9.9%), moderate infection rates (10.0-49.9%) and high
infection rates (>50%) indicated by a red scale from light red to dark red. Cut-offs follow
WHO recommendations.
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survey data in the database suggest that S. mansoni predominates in East Africa, whereas

S. haematobium prevalence is higher than S. mansoni in many African countries.

3.4 Discussion

Data repositories are important tools for the development and validation of data-driven
models to estimate the distribution and burden of NTDs, such as for malaria (Le Sueur
et al., 1997; Hay et al., 2009). Model-based predictions based on the compiled survey data
will facilitate mapping of disease endemicity in areas without data and spatially explicit tar-
geting of control interventions and long-term surveillance. With regard to NTDs, progress
has been made for helminthic diseases (Brooker et al., 2010) and trachoma (Smith et al.,
2011). The information included in a database helps to identify where current information
is missing, request feedback from endemic countries, and initiate the collection of new data
at those areas. Here, we described our efforts toward the establishment of an open-access
database for NTDs. The database (http://www.gntd.org) allows for subsequent mapping
of the observed survey data in order to identify high risk areas and to produce smooth risk

maps, as exemplified by Schur et al. (2011b).

3.4.1 Open-access

The work presented here and the issue of open-access in relation to data, information
sharing, and services, is not a new one. Indeed, we are following the successful imple-
mentations in different fields, e.g., open-access publishing (e.g., Public Library of Sci-
ences (PLoS) and BioMed Central (BMC) journals), PubMed, genomic data (Emmert
et al., 1994; Lawson et al., 2009; Ramana and Gupta, 2009), biodiversity (GBIF; http:
//data.gbif.org/welcome.htm), drug trial results (Lee et al., 2008; Pan et al., 2009),

and entertainment technologies (Cohen, 2008).

With regard to epidemiological research, mapping disability, mortality, and disease
burden due to infectious diseases, two recent open-access georeferenced epidemiological
databases include include the Mapping Malaria Risk in Africa (MARA), which is reporting
malaria survey data in Africa dating back to 1900 (Le Sueur et al., 1997), and the Malaria
Atlas Project (MAP) (Hay et al., 2009), which provides maps of raw and model-based
estimates of malaria risk at a global scale and country level. Other examples are the
WorldWide Antimalarial Resistance Network (WWARN; http://www.wwarn.org) (Sibley
et al., 2007), the MosquitoMap, a geospatially referenced clearinghouse for mosquito species

collection records and distribution models (http://wrbu.si.edu/mosqMap/index.htm),
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and the Disease Vectors Database (Moffett et al., 2009), which is a georeferenced database
on the presence of vector species of Chagas disease, dengue, leishmaniasis, and malaria.
The GAHI project created a database of schistosomiasis and soil-transmitted helminthiasis
survey data (Brooker et al., 2009b, 2010), similar to our GNTD database, with the goal to
provide open-access information on the global disease distribution and to highlight areas
requiring mass drug administration. While the GAHI project focuses on mapping country-
specific disease risk estimates, the GNTD database provides open-access to the mainly
location-specific survey data. Free access to the data enables the users to conduct analyses
for their own purposes. The existence of both databases offers the opportunity to join
forces and to move forward in a unified way. As a first step it would be interesting to
validate the two existing databases, align and harmonize them into a single comprehensive
data repository, and discuss ways of harnessing synergies. Involvement of partners at WHO

and other organizations will be essential.

3.4.2 Limitations

Despite the benefits of free and public data repositories, data sharing is a challenge. Data
owners may hesitate to provide their data, especially when they have not yet been pub-
lished. However, confidential data can be masked through a special database feature as
explained in the Methods section. As more and more data are included into the GNTD
database, the current lack in the geographical extent of location-specific survey data across
countries and regions will become less critical. Undoubtedly, a host of valuable informa-
tion exists within countries, in the form of unpublished local archived sources. Efforts are
ongoing to access this information with the help of our in-country scientific partners in min-
istries of health and research institutions by visiting the countries of interest to strengthen
and further expand our global network of collaborators. Nevertheless, it is likely that there
will remain significant areas with scarce data because no surveys have been conducted or
data are not readily accessible or have been lost in the face of civil war, political unrest, or
inappropriate archiving procedures. Such geographical lacks of survey data might be only

known to local experts while the international community might not be aware.

Data from systematic literature searches or unpublished reports may contain different
levels of reliability. For instance, snail identification is complex and without the guidance
of experienced morphologists incorrect results may be reported. The quality of diagnostic

methods must also be improved, for example through repeated stool and urine sampling



3.5 Summary and outlook 33

over several consecutive days, since schistosome egg-output varies from one day to an-
other. Unfortunately, only few surveys adopted such adopted such rigorous diagnosis due
to generally limited financial and human resources (Utzinger et al., 2001; WHO, 2008).
Furthermore, historical surveys differ in study design and are heterogeneous in terms of
the age groups considered, the diagnostic methods applied, and the survey dates. Hetero-
geneity is also present in the way data are reported. For example in the past, numerous
studies often aggregated their results at province or district level (Ouma and Waithaka,
1978; Wenlock, 1977), while currently information are frequently provided or shared at vil-
lage or even individual level (Rudge et al., 2008; Yapi et al., 2005). All these points form
important limitations of database compilations of epidemiological data. However, data are
as limited as the sources from which they were derived. Developing standard NTD survey

protocols, will enhance data comparability in the future (Gray et al., 2009).

Georeferencing historical surveys are not a straightforward undertaking. We have used
a number of different sources to geolocate surveyed locations, the most common ones were
described in the Data sources section. However, several villages may have the same name
within a single country. In such cases, information regarding the administrative boundaries
of the village or its distance from nearby rivers, lakes, or towns is essential. A further
complication is that administrative boundaries as well as region and district names may
change over time. For instance, in Uganda, 23 new districts have been created in 2005 and
2006 (Green, 2008).

In order to maintain high quality of the database, the entries are checked continually
using systematic screening approaches as described in more detail in the Methods section.
Additionally, we aim to further complement gaps (on date of survey, geographical coordi-
nates, age group, number of people examined, etc.) and to obtain disaggregated survey
data by contacting authors or collaborators, and by cross-checking new sources (maps,

databases, and grey literature).

3.5 Summary and outlook

Our database is a global, freely-available, public, online resource, which hosts informa-
tion pertaining to the distribution of NTDs. At present, the database contains more than
12,000 survey locations with emphasis on schistosomiasis prevalence data across Africa.
It is currently expanded with information on soil-transmitted helminthiasis from Latin

American and Southeast Asian countries. Our short-term goal is to extend the database
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from schistosomiasis to include other NTDs (i.e., ascariasis, hookworm disease, trichuri-
asis, lymphatic filariasis, onchocerciasis, and trachoma). Future versions of the database
will supplement prevalence information from other NTDs (Buruli ulcer, Chagas disease,
cysticercosis, dracunculiasis, leishmaniasis, leprosy, and human African trypanosomiasis).
The approach for inclusion of further NTDs, as well as the search strategy that is going
to be applied, will be the same as described in this article. We are aware that data on
soil-transmitted helminthiasis is often given alongside intestinal schistosomiasis data and
could have been extracted simultaneously. However, the database evolved from the CON-
TRAST project that focused on schistosomiasis. While screening for schistosomiasis, we
labeled relevant references on other NTDs in our reference database, which will speed up

future work steps, such as literature review and data extraction of relevant sources.

The structure of the database allows entering not only parasitological data, but also
other attributes, like geospatially referenced data on the disease vectors. At present, our
database has limited malacological survey information, and it does not include historical
collections, however, we plan to add the georeferenced historical collection compiled by the
Mandahl-Barth Centre for Biodiversity and Health in Copenhagen, Denmark, which holds

information on about 7,000 georeferenced snail samples.

Our hope is to provide to scientists and policy makers, a user-friendly and useful plat-
form which is continuously updated in order to facilitate data sharing, and retrieval of
disease surveillance and epidemiological data. We welcome contributions from other re-
searchers in possession of prevalence data from various NTDs. Users may contribute by
download the template offered after registration and providing the required information.
An administrator checks the data for quality and sends a confirmation e-mail before in-
cluding the data in the database. Researchers who may not wish to share their data may
only provide limited information about the data they possess (survey location, year, and
amount of data) so that the database becomes a library of potential data sources. Fur-
thermore, we plan to add an option for the GNTD database users to contact and interact

with the contributors by providing a ‘send e-mail to contributor’ function.

Another immediate goal is to develop a web-based interface, which will combine raw
disease data and spatial model-based estimates of disease burden at different geographical
levels with country boundaries and geophysical information. The results will be accessed
in geo-referenced kml format, which is displayed automatically on a Google Earth interface
on the website (Stensgaard et al., 2009). This will allow users to obtain estimates of disease

burden at different spatial resolutions (village, district, region, country, etc.) and to display
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model predictions including prediction uncertainties and raw data on the map.

A more distant option is to allow end-users to upload their own data, for instance
regional and community-based health practitioners could directly upload disease prevalence
to the MySQL database using hand-held smart phones with GPS functionality (Aanensen
et al., 2009). Success of the project will depend on active collaboration and contribution of
researchers and disease control managers from around the world. We hope that our efforts

will be recognized as a helpful tool contributing to the control and eventual elimination of
NTDs.
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Abstract

Background: Schistosomiasis is a water-based disease that is believed to affect over 200
million people with an estimated 97% of the infections concentrated in Africa. However,
these statistics are largely based on population re-adjusted data originally published by
Utroska and colleagues more than 20 years ago. Hence, these estimates are outdated due
to large-scale preventive chemotherapy programs, improved sanitation, water resources
development and management, among other reasons. For planning, coordination, and
evaluation of control activities, it is essential to possess reliable schistosomiasis prevalence

maps.

Methodology: We analyzed survey data compiled on a newly established open-access
global neglected tropical diseases database (i) to create smooth empirical prevalence maps
for Schistosoma mansoni and S. haematobium for individuals aged <20 years in West
Africa, including Cameroon, and (ii) to derive country-specific prevalence estimates. We
used Bayesian geostatistical models based on environmental predictors to take into ac-
count potential clustering due to common spatially structured exposures. Prediction at

unobserved locations was facilitated by joint kriging.

Principal Findings: Our models revealed that 50.8 million individuals aged <20 years
in West Africa are infected with either S. mansoni, or S. haematobium, or both species
concurrently. The country prevalence estimates ranged between 0.5% (The Gambia) and
37.1% (Liberia) for S. mansoni, and between 17.6% (The Gambia) and 51.6% (Sierra
Leone) for S. haematobium. We observed that the combined prevalence for both schis-
tosome species is two-fold lower in Gambia than previously reported, while we found an
almost two-fold higher estimate for Liberia (58.3%) than reported before (30.0%). Our
predictions are likely to overestimate overall country prevalence, since modeling was based

on children and adolescents up to the age of 20 years who are at highest risk of infection.

Conclusion/Significance: We present the first empirical estimates for S. mansoni and
S. haematobium prevalence at high spatial resolution throughout West Africa. Our pre-
diction maps allow prioritizing of interventions in a spatially explicit manner, and will be

useful for monitoring and evaluation of schistosomiasis control programs.
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4.1 Introduction

Schistosomiasis is a water-based disease caused by trematodes of the genus Schistosoma.
The five schistosome species that are known to infect humans are Schistosoma mansoni,
S. haematobium, S. intercalatum, S. mekongi, and S. japonicum. School-aged children are

at highest risk of infection and are the main target group for interventions (WHO, 2002).

Despite successful efforts to control schistosomiasis in different parts of the world, more
than 200 million individuals are still estimated to be infected and the annual global burden
due to schistosomiasis might exceed 4.5 million disability-adjusted life years (DALYSs) lost
(WHO, 2002; Steinmann et al., 2006; King et al., 2005). A substantial amount of this
burden is concentrated in West Africa, including Cameroon. Indeed, 72 million infections
are thought to occur in this part of the world (Chitsulo et al., 2000). However, the current
statistics, as presented by Chitsulo et al. (2000), Steinmann et al. (2006), and Utzinger et al.
(2009), are largely based on population re-adjusted data originally published by Utroska
and colleagues in the late 1980s (Utroska et al., 1989). Hence, the estimates are likely to
be outdated due to, among other reasons, large-scale preventive chemotherapy campaigns,
improved sanitation, water resources development and management, and socio-economic

development.

Recently, donors have provided new funds to control the so-called neglected tropical
diseases (NTDs), including schistosomiasis. For cost-effective planning and evaluation of
control activities, it is essential to have reliable baseline maps of the geographical distri-
bution of at-risk population and disease burden. Early schistosomiasis mapping efforts
have been based on climatic suitability thresholds (Malone et al., 2001; Bavia et al., 2001).
These maps are not reliable because they are not based on disease data. Apart from a few
studies (Clements et al., 2009b,a; Brooker et al., 2000, 2001), empirical maps of disease
distribution over large areas are not available since there is a paucity of contemporary

large-scale survey data.

The first comprehensive compilation of historical schistosomiasis prevalence surveys at
a global scale was carried out by Doumenge et al. in the mid-1980s (Doumenge et al.,
1987). More recent collections are available by Brooker et al. (2010) for soil-transmitted
helminthiasis and schistosomiasis, but data access is limited. The European Union (EU)-
funded CONTRAST project initiated the development of an open-access global NTD data-
base, which is updated in real time (GNTD database; http://www.gntd.org) (Hiirlimann
et al., 2011). A key objective of CONTRAST is to employ this database for large-scale

schistosomiasis prevalence mapping and prediction in sub-Saharan Africa for the spatial
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refinement of control interventions and the cost-effective allocation of resources.

Geographical locations in close proximity share common exposures which influence the
disease outcome similarly. The geographical information of the survey locations in the
GNTD database allows taking into account the potential spatial correlation and therefore
creation of more realistic models. Standard statistical modeling approaches assume inde-
pendence between locations (Diggle et al., 1998). Ignoring potential spatial correlation
in neighboring areas due to common exposures could result in incorrect model estimates
(Gosoniu et al., 2006). Geostatistical models take into account spatial clustering by intro-
ducing location-specific random effect parameters in the covariance matrix by a function
of distance between locations (Diggle et al., 1998). Such models typically contain large
numbers of parameters and cannot be estimated by the commonly used maximum likeli-
hood approaches (Kleinschmidt et al., 2000). Bayesian model formulations enable model
fit via Markov chain Monte Carlo (MCMC) simulations (Diggle et al., 1998).

Bayesian geostatistical models have been applied in mapping schistosomiasis at differ-
ent spatial scales, for example by Raso et al. (2005) in the region of Man, western Cote
d’Ivoire, and Clements et al. (2008) in Mali, Niger, and Burkina Faso. Brooker et al. (2010)
developed a global predictive map highlighting those areas where preventive chemotherapy
against schistosomiasis and soil-transmitted helminthiasis are warrant. However, to our
knowledge, there is neither a model-based S. haematobium nor a S. mansoni large-scale

prevalence map and spatially explicit burden estimates for the whole West African region.

In this paper, we developed Bayesian geostatistical models based on environmental and
climatic risk factors to obtain reliable empirical schistosomiasis prevalence maps for individ-
uals aged <20 years by analyzing the GNTD data for West Africa, including Cameroon.
Prediction was based on joint kriging in order to summarize the results as population-
adjusted country prevalence estimates. Emphasis was placed on the distribution of S.
haematobium and S. mansoni. We neglected S. intercalatum due to low infection risks,

especially outside Cameroon.

4.2 Methods
4.2.1 Disease data

The GNTD database was used to obtain prevalence data on schistosomiasis. This data-

base assembles general information about the type of publication, authors, and publication
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year, as well as study-specific information about survey population, survey period, Schis-
tosoma species, diagnostic test employed, and the number of infected individuals among
those examined, stratified by age and sex (if available). Hospital studies, data on specific
susceptible groups (such as HIV positives), and post-intervention studies were not included
in the database (Hiirlimann et al., 2011). For this study, we analyzed all point-level data on
settled populations in West Africa on either S. haematobium or S. mansoni: 4550 and 2611
survey locations, respectively. We excluded (i) surveys with missing geographical coordi-
nates; (ii) missing numbers of individuals screened; (iii) surveys carried out before 1980;
(iv) individuals aged >20 years; and (v) entries based on certain diagnostic techniques.
With regard to the latter exclusion criteria, we rejected all non-direct diagnostic exami-
nation techniques, such as immunofluorescence tests, antigen detections or questionnaire
data, and direct fecal smears that have very low diagnostic sensitivities (overall, 4% of the
data for S. mansoni and 0.1% for S. haematobium were excluded). Hence, the surveys
included were mainly based on the Kato-Katz thick smear method (.S. mansoni) and urine
filtration or sedimentation (S. haematobium). Sensitivity and specificity of the diagnostic
techniques were not incorporated in the model due to usually unknown sampling effort
(e.g., number of stool samples, number of slides examined under a microscope, etc.), which

affect diagnostic accuracy.

We assumed that the proportion of rejected diagnostic techniques among the data with
missing information on the technique (.S. mansoni: 33.5% missing, S. haematobium: 20.6%
missing) is similar. Therefore, we considered the bias that would arise from ignoring the
missing data as larger than the bias from potentially rejected diagnostic techniques among
the missing data. A separate model validation on the reduced datasets confirmed that by
including data with incomplete records the predictive ability increased compared to the

model excluding this information (results not presented).

4.2.2 Climatic, environmental, and population data

Climatic, environmental, and population data were obtained from different freely acces-
sible remote sensing data sources, as summarized in Table 4.1. Data on day and night
temperature were extracted from land surface temperature (LST) data. The normalized
difference vegetation index (NDVI) was used as a proxy for vegetation. Digitized maps on
freshwater body sources (e.g., rivers, lakes, and wetlands) in West Africa were acquired

with the characteristic of being either perennial or temporary.

Processing of the MODIS/Terra data was carried out using the ‘MODIS Reprojection
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Table 4.1: Remote sensing data sources.

Data type Source Date Temporal resolution Spatial resolution
LST MODIS/Terra!  2000-2008 8-days 1 km
NDVI MODIS/Terra!  2000-2008 16-days 1 km

Land cover MODIS/Terra!  2001-2004 Yearly 1 km
Rainfall ADDS? 2000-2008 10-days 8 km
Altitude DEM?3 - - 1 km
Freshwater bodies HealthMapper? - - Not known
Population counts LandScan® 2008 - 1 km

! Moderate Resolution Imaging Spectroradiometer (MODIS). Available at: https://lpdaac.usgs.gov/
lpdaac/products/modis_products_table (accessed: 5 January 2009)

2 African Data Dissemination Service (ADDS). Available at: http://earlywarning.usgs.gov/adds/
(accessed: 5 January 2009)

3 Digital elevation model (DEM). Available at: http://eros.usgs.gov/ (accessed: 4 January 2009)

4 HealthMapper database. Available at: http://www.who.int/health_mapping/tools/healthmapper/
en/index.html (accessed: 4 March 2009)

5 LandScan™ Global Population Database. Available at: http://www.ornl.gov/landscan/ (accessed:
20 January 2011)

Tool’ (U.S. Geological Survey, USGS, http://lpdaac.usgs.gov) and code implemented in
Fortran 90 (DIGITAL Equipment Corporation, http://www.fortran.com) to summarize
the temporal changes by an overall yearly average based either on the mean (NDVI, day and
night LST) or the mode (land cover). Furthermore, the land cover categories, as defined by
the International Geosphere-Biosphere Programme, were re-grouped into six categories as
follows: (i) sparsely vegetated; (ii) deciduous forest and savanna,; (iii) evergreen forest; (iv)
cropland; (v) urban; and (vi) wet areas. Rainfall estimates were processed via the software
IDIRST 32 (Clarks Labs, Worcester, MA, USA). Yearly averaged rainfall was calculated as
summary measure. Distance calculations to the nearest freshwater body source were done
in ArcMap version 9.2 of the Environmental Systems Research Institute (ESRI; Redlands,
CA, USA).

A classification scheme of West Africa into ecological zones was obtained using a demo
version of the Earth Resources Data Analysis System Imagine 9.3 software (ERDAS; ER-
DAS Inc., Atlanta, USA). The datasets were subjected to an unsupervised classification,
via the ’'Tterative Self-Organizing Data Analysis Technique’ (ISODATA), to map areas
of environmental clustering which were further summarized into five main classes based
on between-class similarities. The resulting map matched existing classifications (Global
Agro-Ecological Zones, Food and Agriculture Organization) and the classes can be in-

terpreted as (i) desert/semi-desert; (ii) sahelian zone; (iii) savannah; (iv) forest; and (v)



4.2 Methods 43

tropical rainforest.

Population count data obtained from LandScan for 2008 were converted to 5 x 5 km spa-
tial resolution and adjusted to 2010 using country-specific average annual rates of change
for 2005-2010 provided by the United Nations (UN) (United Nations, 2007). Estimates
for the percentage of individuals aged <20 years among the total population per country
were extracted from the U.S. Census Bureau International Database (IDB; U.S. Census
Bureau, http://www.census.gov) for the year 2010. Population counts were linked to the
percentage of children. The estimated number of infected individuals <20 years was cal-
culated by combining a sample of the joint predictive posterior distribution of the disease
prevalence predicted at pixel level with the population size of that age group within the
pixel. The predictive posterior distribution of the number of infected individuals per coun-
try was estimated by summing up the pixel-samples and calculating summary statistics.
The combined schistosomiasis prevalence (infection with S. mansoni or S. haematobium
or both) was calculated on the assumption that the two infections are independent from
each other, as Schistosoma spp. = S. mansoni + S. haematobium - (S. mansoni * S.

haematobium).

Extraction of the remotely sensed data at the survey locations and at the prediction
locations for the two databases was performed via a self written Fortran 90 code. The
prediction surface for West Africa was built in ArcMap with a spatial resolution of 0.05
x 0.05 (approximately 5 x 5 km) resulting in approximately 220,000 pixels covering the
study region. The data were displayed in ArcMap.

4.2.3 Statistical analysis

For each Schistosoma species, bivariate logistic regressions were performed in STATA/IC
10.1 (StataCorp LP, http://www.stata.com) in order to assess potential covariates in
relation to the outcome (the number of infected individuals over the number of individuals
screened per location). Continuous covariates were categorized into four groups based on
quartiles to account for potential non-linearity in the outcome-predictor relationship on
the logit. The Bayesian information criterion (BIC) was employed to detect whether linear
or categorized covariates on the logits have smaller BIC and therefore predict the outcome
more accurately. We used the following covariates in both linear and categorical scales:
altitude, day LST, night LST, rainfall, NDVI, and distance to the nearest freshwater body.
The type of freshwater body, ecological zone, and land cover were measured in categorical

dimensions.
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The study year was also included as linear and categorical covariate in order to account
for possible temporal trends. The categories were defined on decades as follows: 1980-1989,
1990-1999, and from 2000 onwards. For S. mansoni, half of the data were from the 1980s
(49.7%), 24.1% from the 1990s, whereas 26.2% were obtained in the new millennium. For
S. haematobium, 37.8% of the data stem from the 1980s, 35.7% from the 1990s, and 26.5%

from 2000 onwards.

Relevance of continuous or categorized covariates to predict the outcome was assessed
based on p-values resulting from likelihood ratio tests (LRTs) at significance levels of 0.15.

All significant covariates were included in the Bayesian analysis.

Bayesian geostatistical logistic regression models were fitted with location-specific ran-
dom effects. Spatial correlation was modeled assuming that the random effects follow a
multivariate normal distribution with variance-covariance matrix related to an exponential
correlation function between any pair of locations. Model fit requires the inversion of this
matrix. Due to the large number of survey locations in our datasets, parameter estima-
tion becomes unfeasible. An approximation of the spatial process by a subset of m survey
locations (m < n) proposed by Banerjee et al. (2008) and further developed by Gosoniu
et al. (2011a) and Rumisha et al. (2011) was implemented instead. We employed MCMC
simulation to estimate the model parameters. Prevalence of infection at 220,000 locations
was predicted for the most recent decade (from the year 2000 onwards) via Bayesian kriging
using joint predictive posterior distributions (Diggle et al., 1998). Due to computational is-
sues, we modeled the multivariate Gaussian spatial process separately for each country. The
performance of the models was assessed using model validation via different approaches:
mean predictive errors (ME), mean absolute predictive errors (MAE), discriminatory per-
formance on a 50% prevalence cut-off, and Bayesian credible interval (BCI) comparisons
(Gosoniu et al., 2006). Further details pertaining to the Bayesian geostatistical model,

sub-sampling, and model validation approaches are given in the Appendix.

4.3 Results

4.3.1 Final datasets and preliminary statistics

A schematic overview of the study profile on obtaining prevalence data on schistosomiasis
from the GNTD is given in Figure 4.1. The final datasets consisted of 1993 and 1179
survey locations for S. haematobium and S. mansoni, respectively, out of which 1722 and

1094 locations were unique. Observed prevalence of the survey locations ranged from 0% to
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Figure 4.2: Observed prevalence of S. haematobium among individuals aged <20 years
across West Africa, including Cameroon.
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Figure 4.3: Observed prevalence of S. mansoni among individuals aged <20 years across
West Africa, including Cameroon.
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Table 4.2: Overview on the survey data included in the analysis stratified by country.

Locations Survey year Diagnostic ~ Survey Preva-
technique* type lence
Total Unique 1980s 1990s 2000+ UT RS School Mean
S. haematobium

Benin 5 5 0 5 0 5 0 5 18.2
Burkina Faso 123 119 92 8 23 35 88 117 46.4
Cameroon 349 342 335 4 10 18 0 342 22.2
Cote d’Ivoire 183 108 1 178 4 63 120 137 19.5
The Gambia 1 1 1 0 0 0 0 0 100
Ghana 47 47 22 8 17 47 0 36 38.5
Guinea 24 20 0 24 0 23 0 21 10.6
Guinea-Bissau 0 0 0 0 0 0 0 0 -
Liberia 3 2 3 0 0 3 0 0 51.3
Mali 139 130 83 23 33 137 0 33 454
Mauritania, 27 25 8 11 8 27 0 19 34.8
Niger 544 442 104 304 136 473 0 455 32.7
Nigeria 86 71 36 21 29 80 1 48 38.3
Senegal 423 374 29 125 269 205 218 263 25.1
Sierra Leone 0 0 0 0 0 0 0 0 -
Togo 39 37 39 0 0 39 0 8 25.3
TOTAL 1993 1723 753 711 529 1155 427 1484 31

S. mansoni KK Other
Benin 0 0 0 0 0 0 0 0 -
Burkina Faso 28 24 0 5 23 23 5 28 11.7
Cameroon 416 412 403 1 12 13 0 415 9.7
Cote d’Ivoire 201 157 12 118 71 200 0 141 33.3
The Gambia 0 0 0 0 0 0 0 0 -
Ghana 8 8 7 0 1 1 7 7 8.8
Guinea 22 20 0 22 0 22 0 20 12.7
Guinea-Bissau 0 0 0 0 0 0 0 0 -
Liberia 2 1 2 0 0 1 1 0 72.8
Mali 132 124 80 22 30 131 0 32 19.9
Mauritania 19 17 0 11 8 19 0 19 9.4
Niger 170 159 36 0 134 130 40 155 2.2
Nigeria 7 7 5 1 1 4 3 3 5.5
Senegal 133 126 0 104 29 132 0 27 18.2
Sierra Leone 0 0 0 0 0 0 0 0 -
Togo 41 39 41 0 0 38 3 8 4.4
TOTAL 1179 1094 586 284 309 714 59 855 17.7

Details given on the number of surveys per survey year, diagnostic technique, survey type, and observed
mean prevalence given per country and Schistosoma species.
* UT = urine test, RS = reagent strip, KK = Kato Katz thick smear
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100% for each Schistosoma species with mean prevalence of 31.0% (median 15.0%, standard
deviation (SD) 29.0%) for S. haematobium, and 17.7% (median 0.0%, SD 24.4%) for S.
mansoni. The distribution and the prevalence level of the survey locations are shown in
Figure 4.2 and Figure 4.3 for S. haematobium and S. mansoni, respectively. An overview of
the number of surveys with details given regarding sampling period, diagnostic technique,

survey type, and mean prevalence, stratified by country, is given in Table 4.2.

Spatial distributions of potential covariates influencing the distribution of schistosomi-
asis are presented in Figure 4.4. Bivariate logistic regressions of the continuous factors in
relation to the disease outcomes showed that categorical variables predicted better based on
BIC values than linear variables for both Schistosoma species (results not presented). Each
potential covariate considered for the analyses had a p-value of <0.001 based on LRT's and
was therefore included in the multivariate analyses. Backwards logistic regressions demon-
strated the importance of the whole set of covariates for each species. The resulting odds
ratios (ORs) of bivariate and multivariate non-spatial logistic regressions are summarized
in Table 4.3 for S. haematobium, and Table 4.4 for S. mansoni. The only non-significant
outcome-predictor relations in a multivariate framework for the former species were yearly
averaged precipitation between 300 mm and 399 mm, and NDVI levels between 0.33 and
0.52. For the latter species, only altitude levels of at least 500 m above sea level and night
LSTs between 20.0 C and 20.7 C were non-significant.

4.3.2 Spatial modeling outcomes

Model parameter estimates for S. haematobium and S. manson:i are presented in Table
4.3 and Table 4.4, respectively. Introduction of spatial correlation led to changes in the
significance of covariates and the direction of outcome-predictor relations compared to the
corresponding non-spatial multivariate logistic regression models. For example, the influ-
ence of rainfall for S. mansoni became more important while the effect of the survey period
and non-perennial freshwater bodies was reduced. The spatial range was estimated to be
398 km (95% BCI: 384-412 km) and 387 km (95% BCI: 375-402 km) for S. haematobium
and S. mansoni, respectively. These estimates suggest strong spatial correlation for both
species. The spatial variation was similar for the two species (4.02 for S. haematobium vs.

4.05 for S. mansoni).
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Figure 4.4: Spatial distribution of remotely sensed covariates for West Africa, including
Cameroon. Climatic covariates were summarized via yearly averages.
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Table 4.3: Logistic regression parameter estimates for S. haematobium.

Bivariate
non-spatial
OR (95% CI)

Multivariate
non-spatial
OR (95% CI)

Multivariate
spatial
OR (95% BCI)

Decade
1980-1989
1990-1999
2000 onwards

Ecological zone
Tropical rainforest
Forest
Savannah
Sahelian
Desert /semi-desert

Altitude (m)
<55
56-224
225-408
>408

Day LST (C)
<28.3
28.4-34.8
34.9-36.4
>36.4

Night LST (C)
<19.2
19.3-20.4
20.5-21.1
>21.1

Rainfall (mm)
0-249
250-299
300-399
>400

NDVI
<0.22
0.23-0.32
0.33-0.52
>0.52

Land cover
Sparsely vegetated

Deciduous forest/savanna

1
1.09 (1.07, 1.12)*
1.16 (1.13, 1.19)*

1
1.61 (1.56, 1.67)*
2.05 (1.99, 2.12)*
1.97 (1.91, 2.03)*
1.09 (0.99, 1.19)

1
1.83 (1.78, 1.88)*
1.28 (1.25, 1.32)*
0.81 (0.78, 0.83)*

1
1.43 (1.39, 1.47)*
1.49 (1.45, 1.54)*
1.19 (1.15, 1.22)*

1
2.15 (2.08, 2.23)*
2.84 (2.75, 2.94)*
3.30 (3.20, 3.42)*

1
1.45 (1.41, 1.49)*
1.12 (1.08, 1.15)*
0.81 (0.78, 0.83)*

1
0.97 (0.94, 1.00)
0.93 (0.91, 0.96)*
0.67 (0.65, 0.69)*

1
0.72 (0.70, 0.74)*

1
1.22 (1.18, 1.25)*
1.26 (1.22, 1.29)*

1
1.40, 1.51)*
2.21, 2.46)*
1.92, 2.19)*
1.20, 1.52)*

1.45
2.33
2.05
1.35

N N N N

1
1.59 (1.55, 1.65)*
1.11 (1.07, 1.14)*
1.32 (1.27, 1.37)*

1
0.78 (0.75, 0.82)*
0.76 (0.71, 0.81)*
0.63 (0.59, 0.67)*

1
1.86 (1.79, 1.93)*
2.52 (2.43, 2.62)*
3.11 (2.99, 3.23)*

1
1.13 (1.09, 1.18)*
0.95 (0.91, 1.00)
0.94 (0.89, 0.99)*

1
1.05 (1.02, 1.09)*
1.05 (1.00, 1.10)
0.91 (0.85, 0.97)*

1
0.72 (0.69, 0.75)*

1
1.26 (1.22, 1.30)*
1.14 (1.09, 1.20)*

1
1.70 (1.63, 1.77)*
1.28 (1.21, 1.36)*
1.01 (0.90, 1.14)
0.57 (0.51, 0.65)*

1
1.51 (1.45, 1.57)*
0.91 (0.86, 0.96)*
0.93 (0.86, 1.00)

1
0.72 (0.68, 0.77)*
0.57 (0.53, 0.61)*
0.49 (0.45, 0.53)*

1
1.70 (1.62, 1.79)*
1.99 (1.92, 2.05)*
2.18 (2.12, 2.25)*

1
1.16 (1.13, 1.21)*
0.96 (0.92, 0.99)*
0.56 (0.51, 0.61)*

1
0.96 (0.93, 0.99)*
1.16 (1.13, 1.21)*
1.20 (1.15, 1.25)*

1
0.78 (0.76, 0.80)*

Continued on next page
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Bivariate
non-spatial

OR (95% CI)

Multivariate
non-spatial

OR (95% CI)

Multivariate
spatial
OR (95% BCI

Evergreen forest
Cropland

Urban

Wet areas

Distance to closest freshwater

body (km)

Type of closest water body

Perennial
Non-perennial

0.75 (0.72, 0.77)*
1.07 (1.04, 1.11)*
0.66 (0.64, 0.69)*
1.27 (1.18, 1.37)*
0.95 (0.95, 0.95)*

1
0.85 (0.83, 0.87)*

1.13 (1.07, 1.20)*
1.14 (1.10, 1.19)*
0.47 (0.45, 0.49)*
0.84 (0.77, 0.91)*
0.98 (0.98, 0.99)*

1
0.72 (0.70, 0.73)*

)

1.36 (1.28, 1.42)*
0.78 (0.75, 0.81)*
0.49 (0.46, 0.51)*
0.82 (0.75, 0.89)*
0.98 (0.97, 0.98)*

1

0.81 (0.78, 0.84)*

Logistic regression parameter estimates for S. haematobium summarized by odds ratios (OR), 95% confi-
dence intervals (CI), and 95% Bayesian credible intervals (BCI).
*: Significant correlation based on 95% CI/BCI

Table 4.4: Logistic regression parameter estimates for S. mansoni.

Bivariate
non-spatial
OR (95% CI)

Multivariate
non-spatial
OR (95% CI)

Multivariate
spatial
OR (95% BCI)

Decade
1980-1989
1990-1999
2000 onwards
Ecological zone
Tropical rainforest
Forest
Savannah
Sahelian
Desert /semi-desert
Altitude (m)
<185
186-326
327-499
>499
Day LST (C)
<25.0
25.1-31.2
31.3-35.6
>35.6

1
3.17 (3.03, 3.31)*
1.82 (1.73, 1.91)*

1
0.42, 0.49)*
0.39, 0.42)*
0.78, 0.85)*
0.01, 0.02)*

0.45
0.40
0.82
0.01

N N N N

1
2.70 (2.57, 2.83)*
1.59 (1.52, 1.68)*
0.98 (0.92, 1.04)

1
0.83 (0.79, 0.87)*
0.78 (0.75, 0.82)*
0.21 (0.19, 0.22)*

1
2.70 (2.55, 2.86)*
1.36 (1.28, 1.44)*

1
0.61, 0.77)*
0.68, 0.89)*
2.73, 3.80)*
0.01, 0.20)*

0.69
0.78
3.22
0.05

N N N N

1
4.25 (3.98, 4.53)*
2.45 (2.29, 2.63)*
1.06 (0.97, 1.16)

1
1.45 (1.34, 1.56)*
1.90 (1.68, 2.15)*
0.66 (0.57, 0.76)*

1
1.60 (1.46, 1.73)*
1.14 (1.02, 1.28)*

1
1.16 (1.01, 1.34)*
0.20 (0.18, 0.23)*
0.07 (0.06, 0.08)*
0.01 (0.01, 0.01)*

1
2.51 (2.32, 2.69)*
1.95 (1.70, 2.25)*
1.80 (1.58, 2.05)*

1
1.34 (1.23, 1.45)*
2.05 (1.92, 2.18)*
2.10 (1.88, 2.32)*

Continued on next page
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Bivariate
non-spatial

OR (95% CI)

Multivariate
non-spatial

OR (95% CI)

Multivariate
spatial
OR (95% BCI)

Night LST (C)

<18.9 1 1 1
19.0-19.9 4.56 (4.30, 4.84)* 2.08 (1.94, 2.23)* 2.36 (2.18, 2.59)*
20.0-20.7 1.87 (1.76, 2.00)*  1.03 (0.95, 1.12) 0.97 (0.91, 1.03)
>20.7 0.92 (0.86, 0.99)* 0.47 (0.43, 0.51)* 0.46 (0.43, 0.50)*
Rainfall (mm)
0-269 1 1 1
270-339 0.75 (0.71, 0.79)* 1.12 (1.03, 1.21)* 3.32 (2.89, 3.82)*
340-469 1.77 (1.69, 1.85)* 1.96 (1.77, 2.17)* 4.44 (3.97, 4.95)*
>470 1.11 (1.05, 1.17)* 1.52 (1.36, 1.70)*  3.53 (3.16, 3.90)*
NDVI
<0.26 1 1 1
0.27-0.43 1.40 (1.33, 1.47)* 1.52 (1.39, 1.66)* 1.82 (1.62, 2.03)*
0.44-0.59 1.11 (1.05, 1.17)* 0.83 (0.73, 0.94)* 1.84 (1.52, 2.25)*
>0.59 2.97 (2.83, 3.12)* 1.45 (1.25, 1.67)*  0.94 (0.77, 1.15)
Land cover

Sparsely vegetated
Deciduous forest /savanna
Evergreen forest

1
1.20 (1.14, 1.26)*
2.36 (2.26, 2.47)*

1
1.39 (1.28, 1.51)*
1.56 (1.40, 1.73)*

1
1.25 (1.17, 1.34)*
1.55 (1.45, 1.67)*

( ) ( ) ( )
( ) ( ) ( )
Cropland 1.46 (1.38,1.55)* 1.51 (1.38, 1.66)* 0.82 (0.71, 0.94)*
Urban 1.41 (1.32, 1.50)* 1.27 (1.15, 1.41)* 1.72 (1.58, 1.88)*
Wet arcas 0.47 (0.39, 0.57)* 0.62 (0.51, 0.76)* 0.60 (0.47, 0.77)*
Distance to closest water body 0.92 (0.91, 0.92)* 0.91 (0.91, 0.92)* 0.94 (0.93, 0.94)*
(km)
Type of closest water body
Perennial 1 1 1

Non-perennial

0.33 (0.32, 0.35)*

0.32 (0.31, 0.34)*

0.70 (0.64, 0.76)*

Logistic regression parameter estimates for S. mansoni summarized by odds ratios (OR), 95% confidence
intervals (CI), and 95% Bayesian credible intervals (BCI).
*: Significant correlation based on 95% CI/BCI

4.3.3 Schistosomiasis prevalence maps

Figure 4.5A presents the prevalence map for S. haematobium based on the median of the
predictions. Low-prevalence areas (predicted infection prevalence <10%) were primarily
observed in the Sahara, Cameroon, north-west Cote d’Ivoire, and Senegal. Prevalence
>50% are mainly spread along the Niger River, in Sierra Leone, east/central Senegal,
and south Nigeria. The map of the SD of model predictions for this species (Figure 4.5B)
demonstrates that small prediction errors were primarily found around the survey locations

used for sub-sampling.
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The median spatial S. mansoni prevalence map is shown in Figure 4.6A with the
corresponding error presented in Figure 4.6B. High-prevalence areas (predicted preva-
lence >50%) were mainly found in north-east Liberia, east Cote d’Ivoire, west Ghana,
north/central Benin, west Nigeria, north Cameroon, and central Mali in close proximity
to Niger River. Very low prevalence areas (predicted prevalence <10%) were predominant
in Senegal, The Gambia, Guinea-Bissau, Mauritania, and Niger. Furthermore, low pre-
valence areas were predicted for north Mali, south Togo, and parts of Cameroon. Areas
of high prediction accuracy were found around the sub-sampled survey locations and in

desert/semi-desert ecological zones.

4.3.4 At-risk population estimates

Table 4.5 shows population-adjusted country prevalence estimates. For S. haematobium,
prevalence estimates range between 17.6% (The Gambia) and 51.6% (Sierra Leone), whereas
for S. mansoni they range between 0.5% (The Gambia) and 37.1% (Liberia). S. haemato-
bium was found to be the predominant species throughout West Africa with a difference
compared to S. mansoni of up to 30% in Burkina Faso and a minimum difference of about
4% in Liberia. Combined Schistosoma prevalence estimates, assuming independence of the
occurrence of the two species, varied from 18.1% (The Gambia) to 58.3% (Liberia) with
high numbers of infected individuals aged <20 years (more than 5 million) in Ghana and
Nigeria. Lower numbers (<1 million) of infected individuals aged <20 years were found
in The Gambia, Guinea-Bissau, Liberia, and Mauritania. The overall number of infected

individuals aged <20 years in West Africa is 50.8 million.

4.3.5 Model validation results

Model validation based on 80% of the survey locations resulted in MEs of -1.7 for S.
haematobium and 0.0 for S. mansoni, and respective MAEs of 19.5 and 7.3. The percentage
of test locations correctly predicted by 95% BCIs was 72.9% for S. haematobium, and
72.5% for S. mansoni. ME and MAE comparisons between spatial and exchangeable
random effect models showed that spatial models result in better predictive ability (.S.
haematobium: ME=3.8, MAE=27.7; S. mansoni: ME=-0.8, MAE=14.9).

Discriminatory performance based on a 50% prevalence cut-off showed that the models
correctly predicted 93.2% and 76.9% of the validation locations for S. manson: and S.
haematobium, respectively. False-high predictions were obtained for 5.5% (.S. mansoni)
and 18.8% (S. haematobium) of the test locations.
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Figure 4.5: (A) Predicted median of prevalence for S. haematobium among individuals
aged <20 years during the period of 2000-2009 based on Bayesian kriging, and (B) standard
deviation (SD) of the prediction error with sub-sampled survey locations.
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Figure 4.6: (A) Predicted median of prevalence for S. mansoni among individuals aged <20
years during the period of 2000-2009 based on Bayesian kriging, and (B) standard deviation

(SD) of the prediction error with sub-sampled survey locations.



Table 4.5: Median prevalence and estimated number of infected individuals (aged <20 years) per country (predicted for the
period 2000-2009) based on 2010 population estimates with 95% Bayesian credible interval (BCI).

Country Population S. haematobium S. mansont Schistosoma spp. Preva- Infec-
Children Prevalence Infected Prevalence Infected Prevalence Infected lence  ted
(x109) (%) (x106) (%) (x106) (%) (x106) (%)*  (x10°)@
95% BCI 95% BCI 95% BCI 95% BCI 95% BCI 95% BCI
Benin 4.62 38.8 1.792 20.3 0.94 46 2.124 35.5 1.95
(18.0, 63.1) (0.830, 2.914) (5.9, 36.5) (0.271, 1.687) (22.1, 71.1) (1.020, 3.282)
Burkina Faso 9.434 45.4 4.282 15.3 1.446 50.2 4.738 60 6.24
(32.3,59.4) (3.043, 5.606) (4.5, 38.2) (0.427, 3.604) (34.7, 67.8) (3.274, 6.400)
Cameroon 10.3 20.4 2.099 9.2 0.952 25.9 2.668 26.5 3.02
(13.5,29.0) (1.389, 2.986) (6.9, 12.5) (0.715, 1.289) (18.8, 34.7) (1.934, 3.573)
Cote d’Ivoire 11 31.5 3.229 22.1 2.262 41.8 4.286 40 5.6
(16.4, 50.9) (1.677, 5.213) (12.6, 35.5) (1.293, 3.642) (25.4, 60.8) (2.605, 6.235)
Gambia 4.872 17.6 0.168 0.5 0.005 18.1 0.173 37.5 0.33
(9.3, 36.9) (0.088, 0.352) (0.0, 5.5) (0.000, 0.053) (9.3, 38.7)  (0.089, 0.369)
Ghana 0.822 46.1 5.077 24.2 2.659 53.7 5.912 72.5 12.4
(26.5, 67.2) (2.918, 7.396) (9.8, 49.5) (1.081, 5.452) (31.0, 76.0) (3.408, 8.365)
Guinea 10.3 37.4 1.824 20.5 0.999 46.4 2.259 25.8 1.7
(18.8, 57.0) (0.914, 2.776) (9.3, 35.9) (0.455, 1.749) (25.8, 66.0) (1.255, 3.214)
Guinea- 0.953 24.7 0.203 2.9 0.024 26.5 0.218 30 0.33
Bissau
(6.7, 59.6) (0.055, 0.490) (0.2, 21.3) (0.002, 0.175) (7.0, 63.0)  (0.057, 0.518)
Liberia 1.585 41.5 0.658 37.1 0.588 58.3 0.924 30 0.648
(14.7,69.5) (0.233, 1.102) (14.1, 66.3) (0.223, 1.051) (24.6, 84.4) (0.390, 1.338)
Mali 4.43 45.1 1.997 19.1 0.845 51.7 2.291 60 5.88
(27.9, 63.2) (1.237,2.801) (13.0,27.2) (0.573, 1.204) (35.5, 67.7) (1.572, 3.000)
Mauritania 0.944 31.7 0.299 5.8 0.055 35.2 0.333 27.4 0.63
(19.0, 46.6) (0.180, 0.44) (2.7, 10.8) (0.026, 0.101) (22.0, 51.1) (0.208, 0.483)

Continued on next page
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Country Population S. haematobium S. mansoni Schistosoma spp. Preva- Infec-
Children Prevalence Infected Prevalence Infected Prevalence Infected lence  ted
(x109) (%) (x10%) (%) (x109) (%) (x109) (%)*  (x10°)@
95% BCI 95% BCI 95% BCI 95% BCI 95% BCI 95% BCI
Niger 5.16 25.6 1.321 3.5 0.179 27.1 1.397 26.7 2.4
(19.4, 33.2) (1.001, 1.712) (0.6, 12.1) (0.031, 0.625) (19.9, 35.7) (1.028, 1.841)
Nigeria 39.9 39.4 15.741 23.2 9.257 47 18.754 252  25.83
(24.7, 55.7) (9.866, 2.253) (11.8, 38.0) (4.717, 5.175) (30.0, 63.9) (11.976, 25.505)
Senegal 6.358 21 1.338 2.9 0.183 23 1.464 15.3 1.3
(16.7, 24.9) (1.062, 1.581) (1.5,5.9) (0.094, 0.372) (18.1, 27.6) (1.151, 1.755)
Sierra Leone 3.476 51.6 1.792 24.5 0.853 57.5 1.999 67.6 2.5
(15.4, 84.7) (0.535, 2.944) (4.4, 59.8) (0.153, 2.080) (17.6, 89.6) (0.612, 3.113)
Togo 2.985 36.9 1.102 14 0.419 41.9 1.251 25.1 1.03

(18.1, 58.5) (0.540, 1.745) (3.6, 31.4) (0.107, 0.938) (21.0, 62.6) (0.628, 1.869)

@ Estimated country prevalence and number of infected individuals with schistosomiasis over all age groups in 1995 as presented by Chitsulo

et al. (2000) for West Africa.
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4.4 Discussion

To our knowledge, we provide the first model-based prevalence maps for both S. haemato-
bium and S. mansoni for individuals aged <20 years in West Africa, including Cameroon.
We used a readily available open-access database consisting of a large number of historical
and contemporary geolocated and standardized survey data (Hiirlimann et al., 2011), cou-
pled with Bayesian-based geostatistical tools. Standard geostatistical methods are not able
to handle large numbers of survey locations due to computational problems. Therefore,
for the first time, an approximation of the spatial process was implemented in Schistosoma

prevalence modeling.

In comparison to existing prevalence estimates, major shortcomings of previous studies
have been addressed, and hence our prevalence maps show a higher spatial resolution and
we believe that they are more accurate than heretofore. This claim is justified as follows.
First, our estimates are based on the GNTD database that has gone live in July 2010,
developed as part of the EU-funded CONTRAST project. As of February 2010, the GNTD
contained more than 4500 and 2600 unique entries in West Africa for S. haematobium
and S. mansoni, respectively. Second, data-tailored statistical methods based on Bayesian
geostatistical modeling were used in order to incorporate spatial correlation between survey
locations and to obtain more accurate estimates of the uncertainty of the predictions.
Third, climatic and environmental covariates were employed in the models to evaluate the
effect on the disease outcomes. The climatic and environmental factors were obtained at
high spatial resolution to be able to predict small hotspots of risk, which could arise due to
the focal distribution of schistosomiasis, which is an important epidemiological feature of
the disease (Lengeler et al., 2002). An existing S. haematobium prevalence map for three
West African countries (i.e., Burkina Faso, Mali, and Niger) using Bayesian geostatistical
modeling was previously presented by Clements et al. (2008) based on data from 2004-
2006. However, this map does not show the actual level of schistosomiasis prevalence but
rather probabilities that the predicted prevalence is above a pre-defined cut-off, arbitrarily
set at 50%. This cut-off has been proposed by the World Health Organization (WHO)
(WHO, 2002) to distinguish between low and high risk areas, and hence such maps are
useful to detect areas where preventive chemotherapy might be warranted on an annual
basis. However, the maps do not provide detailed information for lower risk areas or the
number of infected individuals and they cannot be used for monitoring and evaluation
purposes following interventions. A more recent publication by Clements et al. (2009b)

presented a S. haematobium prevalence map for the same three West African countries.
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This map shows similar patterns to our map with the exception of north Burkina Faso.
In this area, Clements and colleagues predicted prevalence levels of 10-20% for high and
low egg-intensities, while our estimates suggest much higher prevalence (;50%). These
discrepancies are most likely due to differences in the underlying survey data. The Clements
et al. data were only partially included in the GNTD database as we could not access them
fully.

The estimated spatial correlation for both Schistosoma species was very strong with
spatial ranges of approximately 400 km. Previously reported spatial ranges in parts of
West Africa vary between 7.5 km (Raso et al., 2005) and approximately 180 km (Clements
et al., 2008). However, these estimates were based on recent surveys, and hence influenced
by recently established control programs. Interventions are likely to reduce the predictive
power of environmental and climatic factors on the distribution of schistosomiasis and,
thus, reduce spatial correlation. Similar effects were found for malaria, where historic data
showed stronger spatial correlation (Gemperli et al., 2006a) than recent surveys (Gosoniu
et al., 2009; Riedel et al., 2010).

We overlaid population data adjusted to 2010 on the predicted prevalence surfaces for
the two Schistosoma species in order to obtain country-specific estimates of the number
of infected individuals aged <20 years. Previous country estimates, for instance those
presented by Chitsulo et al. (2000), Steinmann et al. (2006), or Utzinger et al. (2009), are
interpolations of limited observations for a whole country, and hence lack empirical mode-
ling. Chitsulo and colleagues reported a higher number of infected people for West Africa
(71.8 million) compared to our estimate (50.8 million). Of note, the Chitsulo et al. esti-
mates are based on the whole population, while our new estimates concern the age group
<20 years. Moreover, the Chitsulo et al. estimates pertain to mid-1990s population esti-
mates, compared to our adjusted estimates for the year 2010. In countries like Cameroon,
The Gambia, Ghana, and Liberia, characterized by high rural-to-urban migration in the
last decade, the Chitsulo et al. prevalence estimates should be treated with care due to
rapid urbanization. Our study revealed that the combined prevalence of S. haematobium
and S. mansoni in The Gambia, for example, is two-fold lower than previously reported
by Chitsulo et al. (18.1% vs. 37.5%). However, in Benin, Guinea, Liberia, Nigeria, and
Togo, we found prevalence estimates that are more than 10 percentage points higher than
the previous estimates. On the one hand, differences might be related to sparse data, for
example, in Benin, The Gambia, Guinea, Guinea-Bissau, Liberia, Mauritania, Nigeria, and

Sierra Leone. Previous estimates failed to take into account model-based predictions on
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the basis of climate, environment and disease data. Since we modeled disease prevalence
on individuals aged <20 years (highest risk groups), the prevalence estimates correspond
to the former risk group. Therefore they are likely to overestimate the prevalence in the

whole population.

We estimated the country-specific overall schistosomiasis prevalence by assuming in-
dependence between the occurrence of S. haematobium and S. mansoni in each area.
However, it is conceivable that simultaneous infections with both species is more frequent
than expected by chance in areas where the species co-exist as infection pathways are sim-
ilar and highly behavioral related. Hence, the combined prevalence estimates potentially
underestimate the true schistosomiasis situation in West Africa. A modeling approach
via joint spatial random effects (Schur et al., 2011a) could assess the effect of potential
dependence between the species, but would increase the number of spatial parameters and

is therefore computationally challenging.

We might also underestimate schistosomiasis prevalence in Cameroon, Mali, and Nigeria
because of the presence of S. intercalatum (Chitsulo et al., 2000). We did not include this
species in the analysis since the GNTD database currently only contains 17 survey locations
outside Cameroon. However, it is assumed that S. intercalatum has a low prevalence
(Chitsulo et al., 2000) and there are signs that this species is further declining in importance
(Tchuem Tchuenté et al., 2003).

Model validation has shown that the S. haematobium predictions seem to overestimate
the actual prevalence, while the S. mansoni model revealed no tendency to over- or under-
estimate the overall prevalence. The MAE for the S. haematobium model is nearly three
times larger than the one for S. mansoni. This is expected because the mean prevalence for
S. haematobium was about double than that for S. mansoni. Our models correctly predict
about 72% of the survey locations when considering 95% BCIs. We are encouraged by
these results, since perfect predictions are rather unlikely in reality due to the complexity

of disease transmission.

However, our models are based on assumptions, which could influence model perfor-
mance. We assumed that the diagnostic techniques employed have similar ability to detect
an infection, but different diagnostic techniques show differences in sensitivity and speci-
ficity, which also depends on the overall prevalence and infection intensity (Bergquist et al.,
2009). This might have led to an underestimation of prevalence due to the imperfect sensi-
tivity of direct diagnostic techniques (Bergquist et al., 2009). Additional model parameters

accounting for the performance of the different diagnostic techniques could be incorporated
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in the models. However in the absence of detailed information regarding sampling effort,
assumptions would be required which may be debatable and introduce additional biases.
We are currently examining the effect of different approaches on addressing this issue on

the model-based predictions.

We did not adjust the outcome according to age and sex even though the age groups dif-
fer and especially school surveys are likely to include more boys than girls due to prevailing
cultural issues in many parts of West Africa. Therefore, our results are likely to be biased
and potentially overestimate schistosome prevalence. However, many publications do not
present stratified results by these subgroups. Age-adjustment models are feasible but diffi-
cult to implement because age-prevalence curves have to be fitted for different transmission
settings (Gemperli et al., 2006b). Furthermore, disease data are often reported at wide age
ranges (i.e., school-aged children) and individuals might not be well distributed within the

range introducing bias even though an age-prevalence model is taken into account.

Surveys are typically conducted in endemic areas leading to high observed prevalence
levels. This could result in an overestimation of prevalence in the present analysis. How-
ever, in the data we analyzed, 45% of the locations for S. haematobium and 73% for S.
mansont had an observed prevalence levels below 10%. We therefore assume that a loca-
tion selection bias is unlikely. Another concern is the large amount of zero outcomes (i.e.,
none of the study participants found to be infected) especially for S. mansoni (S. mansoni:
54.1%; S. haematobium: 20.1%). To overcome this issue, zero-inflated models need to be
incorporated, which modify the likelihood function and add an additional model parameter

capturing the over-dispersion arising by the zeros (Vounatsou et al., 2009).

The models presented in this manuscript did only include spatial random errors, and
hence we ignored potential measurement errors. Inclusion of location-specific non-spatial
error terms might have improved model predictions. However, location-specific non-spatial
error terms would have doubled the number of error terms leading to highly parameterized

models.

We further assumed isotropic stationary models. Non-stationary models imply that the
spatial random effect is varying from one region to another and is not stable throughout the
study area (Gosoniu et al., 2009). This assumption has been confirmed by semi-variogram
comparisons showing that the estimated spatial range parameters for S. mansoni differ
between eco-zones. However, semi-variogram analyses did not indicate non-stationarity in
the spatial distribution of S. haematobium. Isotropic models assume that the spatial cor-

relation is the same within the same distance irrespective of direction (Ecker and Gelfand,
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2003). This assumption might not be valid since intermediate host snails spread along

rivers and lakeshores and, therefore, introduce correlation attributed to directions.

The choice and size of sub-sampled locations required to adequately approximate the
spatial Gaussian process is a research area on its own in spatial statistics. Many different
approaches are available to optimize selection. We implemented a method based on semi-
variogram comparisons. This selection is aiming to preserve the spatial surface of the
original dataset. However, it might fail to identify a sub-sample, which minimizes the
prediction error. The spatially averaged predictive variance (SAPV) method proposed
by Finley is trying to optimize the variance in the predictions, but implementation is

computationally highly demanding (Gosoniu et al., 2011b).

Time-dependent covariates, such as the climatic factors, might have changed between
the 1980s and the 2000s. However, our geographical covariates were solely based on recent
remote sensing data (from 2000 onwards), because historical remote sensing data are, to
our knowledge, not freely available at high spatial and temporal resolution. The long run
averages of the recent data enable us to maintain high spatial resolution although they
cannot capture variation in the observed outcome due to unusual climatic conditions or

climate change that might have occurred since the 1980s and 1990s.

Preliminary residual analyses suggest that there is only weak temporal correlation in
the data. We therefore only modeled a spatial rather than a spatio-temporal process. This
led to a more parsimonious model and facilitated model fit. Nevertheless, we incorporated
temporal trends in the prevalence estimation by including the survey year as covariate.
Both Schistosoma species showed that the predicted prevalence was highest during the
1990s. This increase might be explained by water resources development and management
activities (e.g., the construction of dams and irrigation systems), political unrests and
civil restructuring. Water resources development and management projects might have
improved the suitability of the environment for snail intermediate hosts that might have
spread into previously snail-free zones together with the parasites. Since the beginning
of the new millennium, a number of large-scale preventive chemotherapy programs are
underway in parts of West Africa and it will be important to monitor how the prevalence of
schistosomiasis changes in space and over time. The effectiveness of control interventions
may vary across areas but, to our knowledge, a comprehensive database compiling this

information with high spatio-temporal resolution has yet to be established.

Concluding, our country-specific Schistosoma prevalence estimates and numbers of in-

dividuals aged <20 years infected with either S. mansoni, or S. haematobium, or both
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species concurrently presented here are useful tools for disease control managers and other
stakeholders to support decision-making on interventions. Our maps can also serve as a
benchmark to monitor the impact of control interventions and for long-term evaluation
on transmission dynamics. Model-based estimates in areas with scarce data and high
uncertainty could be improved by additional surveys to enhance our knowledge on the
distribution of schistosomiasis and disease burden. We plan to further expand this work
to other regions and address the issues of non-stationarity, diagnostic sensitivity, and age-
heterogeneity across surveys. Finally, we will test the assumption of independence between

the Schistosoma species to improve accuracy of the joint prevalence estimates.

Acknowledgements

Many thanks are addressed to Dr. Anna-Sofie Stensgaard for her work related to the
GNTD database. Special thanks go to Mr. Dominic Gosoniu and Ms. Susan Rumisha for
further development and implementation of the spatial process approximation to handle
large datasets. We are also grateful to all our collaborators from Benin, Burkina Faso,
Cameroon, Cote d’'Ivoire, The Gambia, Ghana, Guinea, Liberia, Mali, Mauritania, Niger,
Nigeria, Senegal, and Togo who contributed geolocated schistosomiasis survey data for the
GNTD database.



64 Chapter 4. Geostatistical schistosomiasis risk estimates in West Africa

4.5 Appendix
4.5.1 Geostatistical modelling

Let Y; and N; be the number of infected and screened individuals at location i (i = 1,...,n)
and p; the probability of infection. We assume that Y; arises from a Binomial distribution,
i.e., Y; ~ Bin(p;, N;). The influence of covariates X, and location-specific spatial random
effects w; are modelled on the logit, as logit(p;) = X ng + w;, where (3 is the vector of
regression coefficients. Unobserved spatial variation is introduced on w; by assuming that
w = (wi,...,wy)T follows a latent stationary Gaussian process over the study region,
w~ MVN(0,Y). ¥ is a matrix with elements ¥;; accounting for the covariance between
any pair of locations ¢ and j. Assuming an isotropic exponential correlation function,
the matrix elements are defined by ¥;; = o2exp(—pd;;) with spatial variance o2, rate of
correlation decay p and the distance between locations d;;. The data are spread over large
areas and Euclidean distances are not appropriate any longer, since they are unable to
account for the curvature of the surface of the Earth. Therefore, the great-circle distance
was used (Vincenty, 1975). The minimum distance for which the spatial correlation is less
than 5% is referred to as range and can be calculated by 3/p in the exponential correlation

function setting.

A Bayesian model formulation requires the specification of prior distributions of all
model parameters. For the regression coefficients 3, we assumed Normal prior distributions
with mean 0 and large variance. For the spatial parameters ¢? and p, we chose non-

informative inverse Gamma and Gamma distributions, respectively.

The model was fitted using Markov chain Monte Carlo (MCMC) simulation imple-
mented in Fortran 90 code written by the investigators using the standard numerical
libraries (Numerical Algorithms Group Ltd, NAG). The code was run with two chains
and a burn-in of 5000 iterations. Starting values for the chains were based on non-spatial
model estimates from STATA/IC 10.1 and semi-variogram estimates for the spatial model
parameters. Convergence was assessed by inspection of ergodic averages of selected model
parameters during the sampling period of 50,000 iterations. The models converged after
approximately 30,000 iterations. Samples of 500 iterations per chain were saved for each

model.
Predictive posterior distributions at the 220,000 prediction locations were estimated
via Bayesian kriging (Diggle et al., 1998) implemented in Fortran 90 using the standard

numerical libraries. Our predictions are based on the period from 2000 onwards.
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4.5.2 Spatial process approximation

Depending on the number of survey location, parameter estimation can be very slow or
infeasible (computational costs are in the order of n?), because the variance-covariance
matrix of the spatial process >, «,, needs to be inverted at every iteration during the fitting
and kriging process. Each of the processed datasets for S. mansoni and S. haematobium
in West Africa includes more than 1000 unique survey locations, therefore it is not possible
to include the full matrix to estimate spatial correlation between locations. We overcame
the computational burden by an approximation of the spatial process via a subset of m

survey locations (m < n) (Banerjee et al., 2008).

The subset was selected via balanced sampling (Deville and Tillé, 2004) with a mod-
ified inclusion probability based on the variability of the outcome (Gosoniu et al., 2011a;
Rumisha et al., 2011). A grid of 15 equally sized tiles (A;, i = 1,...,15) was created
over the study area and each survey location was allocated to the tile surrounding it. The
within-tile variability o2 and total variability 0% were assessed and the inclusion probabil-
ity of a location within a specific tile a was calculated by ¢2/0%. Sampling of the locations
based on the inclusion probability and upon the selected covariates was performed in R

2.10.0 via the ‘samplecube’ function of the ‘sampling’ library.

A semi-variogram analysis was performed to identify the minimum size of the sub-
sample still preserving the spatial correlation surface of the original datasets of the two
Schistosoma species. The location subset of choice was used in model fit as a proxy of the
original locations to estimate the spatial variance and correlation decay. The model was

implemented in Fortran 90 code developed by the authors.

Semi-variogram comparisons for this study suggested that samples of 150 locations
preserve the original spatial correlation surface sufficiently, while smaller samples were
unable to capture spatial range and variance simultaneously. We sampled different sets of
locations between 50 and 300 locations before the selection of the final sub-sample. The
semi-variogram of each sample was compared with the semi-variogram of the complete
dataset fitted via exponential correlation functions in R 2.10.0. The results indicated that
samples of at least 150 locations sufficiently preserve the original correlation structure while
samples with 50 or 100 locations fail. The semi-variogram based on the sub-sample of the
150 selected locations compared to the original set for each Schistosoma species is shown
in the Figure 4.7.
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Figure 4.7: Semi-variogram comparision between sub-sampled and original S. haematobium
and S. mansoni survey locations in West Africa.

4.5.3 Model validation

The performance of the models was assessed using model validation. A sample of 80% of
the survey locations was employed as training set for model fit while the remaining 20% of
the locations (test locations) were kept for model validation. The predicted outcomes at the
test locations are compared to the observed outcomes via three different approaches: ME,
MAE, and BCI comparisons (Gosoniu et al., 2006). The ME shows the overall tendency of
a model to over- or underestimate prevalence and it is calculated by M E = 1/k Zle Di—Dis
where p; is the observed outcome and p; the median of the predictions at test location .
The MAE provides information about the accuracy of a model based on the absolute dis-
tances between predictions and observations, MAFE = 1/k Zle |p; — pi|. The proportion
of test locations being correctly predicted within the ¢g-th BCI of the posterior predictive
distribution (restricted by the lower centiles ¢! and upper centiles c?) is the outcome of the

BCI approach, i.e., BCI, = %Zle min (1(ct < p;), I(c* > p;)).
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Abstract

Background: Reliable maps of the geographical distribution, number of infected indi-
viduals and burden estimates of schistosomiasis are essential tools to plan, monitor and
evaluate control programmes. Large-scale disease mapping and prediction efforts rely on
compiled historical survey data obtained from the peer-reviewed literature and unpublished
reports. Schistosomiasis surveys usually focus on school-aged children, whereas some sur-
veys include entire communities. However, data are often reported for non-standard age
groups or entire study populations. Existing geostatistical models ignore either the age-

dependence of the disease risk or omit surveys considered too heterogeneous.

Methodology: We developed Bayesian geostatistical models and analysed existing schis-
tosomiasis prevalence data by estimating alignment factors to relate surveys on individuals
aged <20 years with surveys on individuals aged >20 years and entire communities. Schis-
tosomiasis prevalence data for 11 countries in the eastern African region were extracted
from an open-access global database pertaining to neglected tropical diseases. We assumed

that alignment factors were constant for the whole region or a specific country.

Results: Regional alignment factors indicated that the risk of a Schistosoma haemato-
bium infection in individuals aged >20 years and in entire communities is smaller than in
individuals <20 years, 0.83 and 0.91, respectively. Country-specific alignment factors var-
ied from 0.79 (Ethiopia) to 1.06 (Zambia) for community-based surveys. For S. mansoni,
the regional alignment factor for entire communities was 0.96 with country-specific factors
ranging from 0.84 (Burundi) to 1.13 (Uganda).

Conclusions: The proposed approach could be used to align inherent age-heterogeneity
between school-based and community-based schistosomiasis surveys to render compiled

data for risk mapping and prediction more accurate.
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5.1 Background

An estimated 200 million individuals are infected with Schistosoma spp. in Africa, and yet
schistosomiasis is often neglected (Utzinger et al., 2009). The global strategy to control
schistosomiasis and several other neglected tropical diseases (NTDs) is the repeated large-
scale administration of anthelminthic drugs to at-risk populations, an approach phrased
‘preventive chemotherapy’(WHO, 2006b, 2010). The design, implementation, monitoring
and evaluation of schistosomiasis control activities require knowledge of the geographical

distribution, number of infected people and disease burden at high spatial resolution.

In the absence of contemporary surveys, large-scale empirical risk mapping heavily relies
on analyses of historical survey data. For example, Brooker et al. (2010) compiled survey
data and presented schistosomiasis (and soil-transmitted helminthiasis) risk maps within
the global atlas of helminth infections (GAHI) project (http://www.thiswormyworld.
org/). The GAHI database, however, is not fully open-access, and country-specific pre-
dictive risk maps only show probabilities of infection prevalence below and above pre-set
thresholds where preventive chemotherapy is warranted (e.g. >50% of school-aged chil-
dren infected, which demand annual deworming of all school-aged children and adults
considered to be at risk) (WHO, 2006b). Starting in late 2006, the European Union (EU)-
funded CONTRAST project developed a global database pertaining to NTDs, the GNTD
database (http://www.gntd.org) (Hiirlimann et al., 2011). This open-access database
compiled raw survey data from published (i.e. peer-reviewed literature) and unpublished
sources (e.g. Ministry of Health reports). It is continuously updated and data can be down-
loaded as soon as they are entered in the database. In early 2011, the GNTD database
consisted of more than 12,000 survey locations for schistosomiasis in Africa (Hirlimann
et al., 2011). The database has already been utilised for high-spatial resolution schistoso-
miasis risk mapping and prediction in West Africa (Schur et al., 2011b) and East/southern
Africa.

An important drawback of data compilation is the lack of homogeneity and compara-
bility between surveys, such as target population (different age groups), time of survey,
diagnostic method employed, among other issues. The GNTD database is populated with
schistosomiasis prevalence surveys conducted in schools, as well as in entire communities,
involving different, sometimes overlapping age-groups (Hiirlimann et al., 2011). However,
each population sub-group carries a different risk of infection, with school-aged children
and adolescence known to carry the highest risk of infection (Woolhouse, 1998; Jordan and

Webbe, 1982). Simple pooling of this type of studies is likely to result in incorrect disease
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risk estimates.

Schistosomiasis survey data are correlated in space because the disease transmission is
driven by environmental factors (Raso et al., 2005; Clements et al., 2009b; Brooker et al.,
2001). However, standard statistical modelling approaches assume independence between
locations, which could result in inaccurate model estimates (Gosoniu et al., 2006). Geosta-
tistical models take into account potential spatial clustering by introducing location-specific
random effects and are estimated using Markov chain Monte Carlo (MCMC) simulations
(Diggle et al., 1998). Geostatistical models have been applied on compiled survey data for
disease risk prediction, for example in malaria (Gemperli et al., 2006a; Gosoniu et al., 2006;
Hay et al., 2009) and helminth infections, including schistosomiasis (Schur et al., 2011b;
Pullan et al., 2011).

Age-heterogeneity of survey data has been addressed in geostatistical modelling by
omitting those surveys which consist of particularly heterogeneous age-groups (Schur et al.,
2011b; Gosoniu et al., 2009). As a result, the number of survey locations included in the
analysis is reduced, and hence model accuracy is lowered, especially in regions with sparse
data. Gemperli et al. (2006b) used mathematical transmission models to convert age-
heterogeneous malaria prevalence data to a common age-independent malaria transmission
measure. This approach has been further developed by Gosoniu (2008) and Hay et al.
(2009). To our knowledge, the age-heterogeneity problem has yet to be investigated in

schistosomiasis.

In this paper, we developed Bayesian geostatistical models, which take into account
age-heterogeneity by incorporating alignment factors to relate schistosomiasis prevalence
data from surveys on individuals aged <20 years with surveys on individuals >20 years and
entire communities. Different models were implemented assuming regional and country-
specific alignment factors. The predictive performance of the models was assessed using a
suite of model validation approaches. Our analysis is stratified for Schistosoma haemato-

bium and S. mansoni with a geographical focus on eastern Africa.

5.2 Methods
5.2.1 Disease data

Prevalence data of S. haematobium and S. mansoni from 11 countries in eastern Africa
were extracted from the GNTD database. We excluded non-direct diagnostic examination

techniques, such as immunofluorescence tests, antigen detections or questionnaire data.
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Table 5.1: Remote sensing data sources.®

Data type Source Date Temporal resolution Spatial resolution
LST MODIS/Terra!  2000-2009 8-days 1 km
NDVI MODIS/Terra!  2000-2009 16-days 1 km

Land cover MODIS/Terra!  2001-2004 Yearly 1 km
Rainfall ADDS? 2000-2009 10-days 8 km
Altitude DEM? - - 1 km
Water bodies HealthMapper? - - Unknown

@ All data accessed on 3 February 2011

! Moderate Resolution Imaging Spectroradiometer (MODIS). Available at: https://lpdaac.usgs.gov/
lpdaac/products/modis_products_table

2 African Data Dissemination Service (ADDS). Available at: http://earlywarning.usgs.gov/adds/

3 Digital elevation model (DEM). Available at: http://eros.usgs.gov/

4 HealthMapper database. Available at: http://www.who.int/health_mapping/tools/healthmapper/
en/index.html

5 LandScan™™ Global Population Database. Available at: http://www.ornl.gov/landscan/

Hospital-based studies and data on non-representative groups, such as HIV positives, are
not part of the GNTD database (Hiirlimann et al., 2011).

The remaining data were split into three groups and stratified for the two Schistosoma
species according to study type. The three groups correspond to surveys on (i) individuals
aged <20 years, (ii) individuals >20 years and (iii) entire community surveys. In case a
survey contained prevalence data on multiple age groups, we separated the data according
to groups (i) and (ii).

Preliminary analyses suggested only weak temporal correlation in the data for either
Schistosoma species. Hence, spatial models instead of spatio-temporal models were fitted
in the subsequent analyses employing the study year only as a covariate. We grouped the
study years as follows: surveys conducted (i) before 1980; (ii) between 1980 and 1989; (iii)
between 1990 and 1999; and (iv) from 2000 onwards.

5.2.2 Environmental data

Freely accessible remote sensing data on climatic and other environmental factors were
obtained from different sources, as shown in Table 5.1. Data with temporal variation were
obtained from launch until the end of 2009 and summarised as overall averages for the
available period. Estimates for day and night temperature were extracted from land surface
temperature (LST) data. The normalized difference vegetation index (NDVI) was used as

a proxy for vegetation. Land cover categories were restructured into six categories: (i)
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shrublands and savannah; (ii) forested areas; (iii) grasslands; (iv) croplands; (v) urbanized
areas; and (vi) wet areas. Digitized maps of rivers and lakes were combined as a single
freshwater map covering the study area. Characteristics on perennial and seasonal water
bodies at each survey location were obtained using the spatial join function of ArcMap
version 9.2. In addition, the minimum distance between the locations and the closest

freshwater source was calculated with the same function.

All data were used as covariates for modelling. Continuous covariates were categorized
based on quartiles in order to account for potential non-linear outcome-predictor relations.
Processing and extraction of the climatic and environmental data at the survey locations

was performed in ArcMap version 9.2, IDRISI 32 and the Modis Reprojection Tool.

5.2.3 Geostatistical model formulation and age-alignment

Let Y; be the number of infected individuals and N; the number of individuals screened
at location ¢ (i = 1,...,n). We assumed that Y; arises from a Binomial distribution, i.e.
Y; ~ Bin(p;, N;), with probability of infection p;. We introduced covariates X; on the logit
scale, such as logit(p;) = X ;3, where 3 is the vector of regression coefficients. Unobserved
spatial variation can be modelled via additional location-specific random effects, ;. We
assumed that ¢ = (¢1, ..., ©n)T arises from a latent stationary Gaussian spatial process,
p~ MV N(Q, o?R) with correlation matrix R modelling geographical dependence between
any pairs of locations ¢ and j via an isotropic exponential correlation function, defined
by R;; = exp(—pd;j), where d;; is the distance between i and j, p a correlation decay
parameter and o2 the spatial variance. A measurement error can also be introduced via
location-specific non-spatial random effects, ¢;, such as ¢; ~ N(0,7?), with non-spatial

variance 72.

We aligned the risk measured by the different types of studies by incorporating a factor
as such that Y; s ~ Bin(asqs, Nis), with ¢; s = asp; and s = 1 (surveys with individuals
aged <20 years); s = 2 (surveys with individuals aged >20 years); and s = 3 (entire
community surveys). School-aged children carry the highest risk of Schistosoma infection,
and hence many studies focus on this age group. We set oy = 1 in order to use the
probability of infection for individuals aged <20 years as baseline and to align the other

groups to this designated baseline.
To complete Bayesian model formulation, we assumed non-informative priors for all
parameters. Normal prior distributions with mean 0 and large variance were used for

the regression coefficients, 5. Non-informative Gamma distributions with mean 1 were
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2

assumed for the variance parameters, o2, 72 and the alignment factors o, while a uniform

distribution was implemented for the spatial decay parameter p.

Models were developed in OpenBUGS version 3.0.2 (OpenBUGS Foundation; London,
UK) and run with two chains and a burn-in of 5000 iterations. Convergence was assessed
by inspection of ergodic averages of selected model parameters and history plots. After
convergence, samples of 500 iterations per chain with a thinning of 10 were extracted for

each model resulting in a final sample of 1000 estimates per parameter.

5.2.4 Model types

We implemented four different models, separately for S. haematobium and S. mansoni.
The models varied based on different features. The first feature was the underlying data.
Model A only consisted of schistosomiasis prevalence data on individuals aged <20 years
(s = 1), while models B-D included data on all three kinds of study types (s = 1,2, 3).
The second feature was the introduction of alignment factors for disease risk modelling.
Model C assumed common alignment factors across the entire study region, while model

D assumed country-specific alignment factors.

5.2.5 Model validation

Validation for each model was carried out to identify the model with the highest predictive
ability for either Schistosoma species and to compare models with and without alignment
factors. All models were fitted on a subset of the data (training set) and validated by
comparing the posterior median of the predicted risk p; with the observed risk p; for the
remaining set of the data (test set, j = 1,...,m, m < n). The test set consisted of 20% of
the locations from the dataset on individuals aged <20 years and was congruent over all

models.

Comparisons of predicted vs. observed risk were based on three different validation ap-
proaches. Mean absolute errors (MAE) calculate the absolute difference between observed
and predicted schistosomiasis risk by MAE = 1/m > 7",
quantify divergences in the predictions to the observed data is the y? measure, defined as
X2 =1/m > (b; b " The best predicting model based on these two methods is the

Pj
model with smallest MAE and y? estimates and therefore with predictions closest to the

P —Dpj ‘ An alternative way to

observed values.

The proportion of the test data being correctly predicted within the ¢-th Bayesian
credible interval (BClq) of the posterior predictive distribution is calculated by BCI, =
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%Z;n:l min (I(cié(q) < pj),I(ci;.‘(q) > pj)>, with ¢ = 50%, 70%,90% and 95%. For this
approach, the best performing model contains most test locations within BCIs of smallest

width.

5.3 Results

5.3.1 Schistosomiasis prevalence data

Figure 5.1 shows the distribution of the observed schistosomiasis prevalence data over the
study region, stratified by study type. An overview of the amount of observed data and
mean prevalence levels per country for either Schistsoma species, stratified by survey period
and diagnostic methods, is given in Table 5.2. Some countries (e.g. Kenya and Tanzania),
contain large numbers of survey locations, while other countries, such as Burundi, Eritrea,
Rwanda, Somalia and Sudan, are not well covered. Burundi and Rwanda do not include
any locations for S. haematobium, and Rwanda contains only four surveys on individuals
aged >20 years for S. mansoni. As expected, there were more surveys carried out with indi-

viduals aged <20 years than surveys focussing on adult populations or entire communities.

} Observed S. mansoni

prevalence (%) prevalence (%)
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Figure 5.1: Compiled prevalence data of Schistosoma haematobium (A) and S. mansoni
(B) across eastern Africa. Prevalence data are stratified by three different age groups.



Table 5.2: Overall and country-specific mean observed prevalence data (expressed in %) are given, along with number of
survey locations (in brackets) for both S. haematobium and S. mansoni stratified by survey year, diagnostic method and age
group.

Age* Survey year Diagnostic** TOTAL
<1980 1980- 1990- 2000-
1989 1999 2009
S. haematobium ucC RS
Burundi 1 - - - - - - -
) - - - - - - -
3 _ _ _ - - - -
Eritrea 1 0.0 (4) - - - 0.0 (4) - 0.0 (4)
2 0.0 (1) - - - 0.0 (1) - 0.0 (1)
3 0.0 (2) - - 0.0 (2) 0.0 (2)
Ethiopia 1 17.0 (7) 30.5 (6) 25.2 (18) - 22.7 (10) 22.2 (17) 24.4 (31)
2 150(6) 27.6(5) 164 (12) - 20.7 (11)  17.9 (6)  18.5 (23)
3 35.0 (3) 29.5 (4) 74.1 (1) - 38.4 (5) - 37.1 (8)
Kenya 1 21.0 (65) 52.8 (15)  54.0 (30) 40.6 (2) 34.4 (109) 37.5(3) 34.5(112)
2 22.7 (6) 49.6 (7) 30.3 (3) - 34.9 (15) 50.7 (1) 35.9 (16)
3 24.8 (7) 14.0 (25) 64.9 (2) 45.8 (6) 23.2 (40) - 23.3 (40)
Malawi 1 226 (2) - 55.5 (40) - 215 (6)  59.3(36) 53.9 (42)
2 48.2 (7) 34.3 (8) 75.0 (1) 31.6 (5) 36.4 (17) 31.5 (1) 40.2 (21)
3 314(1) - - - 31.4 (1) - 31.4 (1)
Rwanda 1 - - - - - - -
) - - - - - - -
3 - _ _ - - - -
Somalia 1 39.4 (11) - - - 39.4 (11) - 39.4 (11)
2 555(22) 87.1(1) - - 56.9 (23) - 56.9 (23)
3 53.1 (21) - - - 53.1 (21) - 53.1 (21)
Sudan 1 52 (1) 453 (3) - - 31.2 (2) - 35.2 (4)
2 - 1.8 (7) - 53.0 (3) 10.7 (8) - 17.2 (10)

Continued on next page
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Age* Survey year Diagnostic** TOTAL
1980- 1990-
1989 1999
3 20.6 (2) ; 20.6 (2) _ 11.2 (4)
Tanzania 1 30.9 (173)  30.2 (12) 30.6 (173) 59.8 (73)  34.5 (317)
2 202 (9)  20.0 (8) 30.1 (47) ; 38.5 (60)
3 30.3 (3) ; 42.2 (20) _ 42.3 (22)
Uganda 1 - - 2.8 (38) - 2.8 (38)
2 - _ 8.7 (16) - 8.2 (17)
3 ; ; 18.1 (4) : 18.1 (4)
Zambia 1 305 (11)  29.6 (32) 31.0 (38)  20.8 (31)  30.5 (69)
2 35.1(6) 229 (5) 17.9 (42) . 17.9 (42)
3 624 (3) 355 (1) 37.1 (10) ; 37.1 (10)
TOTAL 1 40.1 (208) 42.4 (132) 98.6 (391) 49.4 (160) 32.8 (628)
2 31.0 (43)  22.0 (29) 30.5 (180)  26.7 (8)  30.6 (213)
3 21.3 (37)  59.8 (4) 34.2 (105) ; 33.8 (112)
S. mansoni KK SC
Burundi 1 16.4 (12)  38.3 (3) 20.8 (15) ; 20.8 (15)
2 20.8 (19)  44.1 (2) 23.0 (21) ; 23.0 (21)
3 19.8 (8)  50.5 (2) 95.9 (10) ; 25.9 (10)
Eritrea 1 (4) - - - 12.5 12.5 (4)
2 (1) . _ ; 10.0 10.0 (1)
3 (2) : _ ; A17(2) 417 (2)
Ethiopia 1 27)  25.0 (23)  28.0 (51) 30.1 (69) 6.9 (36)  22.2 (105)
2 (15) 18.6 (93)  18.4 (36) 18.8 (100) 23.2 (50) 20.3 (151)
3 (9)  16.0(8)  21.1 (62) 26.4 (28)  16.0 (55)  19.5 (83)
Kenya 1 (48)  72.8(9)  74.3 (18) 68.4 (43) 8.7 (3 41.0 (90)
2 (7)  75.2(7)  36.0 (5) 65.4 (14)  28.1 ( 54.2 (20)
3 15)  71.7(9)  23.6 (2) 60.8 (12) 22,5 (14)  44.3 (26)
Malawi 1 (1)  375(2) 203 (6) 308 (7) 0.4 (2 24.0 (9)

Continued on next page
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Age* Survey year Diagnostic** TOTAL
<1980 1980- 1990- 2000-
1989 1999 2009
2 17.9(6) 3658 (6) ; - 35.3 (8) - 27.3 (12)
3 - - - - - - 25.9 (21)
Rwanda 1 - - - - - - -
2 - 4.6 (4) - - - - 4.6 (4)
3 - . - - - -
Somalia 1 0.0 (3) - - - - 0.0 (3) (3)
2 0.0 (2) - - - - 0.0 (2) 0 (2)
3 0.0 (3) 0.0 (2) ; - - 0.0 (5) 0 (5)
Sudan 1 61.7 (4) 61.5 (4) - - 61.9 (6) - 61 6 (8)
2 623(4) 649 (8)  47.0 (1) 56.3 (3) 658 (15) 0.3 (1) 617 (16)
3 41.0 (2) 52.3 (4) 50.5 (5) - 48.5 (6)
Tanzania 1 203(27) 253(4) 308 (7) ( 7)) 39.6 (17) 21.7 (21) 13.5 (115)
2 22.2 (26) 12.0 (1) 25.6 (3) 38 6 (5) 46.4 (6) 26.3 (18)  24.8 (35)
3 27.3 (14) 11.6 (1) 44.1 (3) 44.4 (3) 49.8 (5) 27.3 (14)  31.4 (21)
Uganda 1 48.0(5)  48.7(3) 145 (6) 22.1(263) 222 (272) 48.0 (5)  22.7 (277)
2 24.2 (17) 56.3 (3) 66.7 (5) 40.8 (12)  49.6 (20) 209 (12)  37.9 (37)
3 417 (7) 478 (4) 450 (5) 558 (12) 505 (21)  47.0 (6)  48.3 (28)
Zambia 1 2.9 (16) 5.7 (7) 71.0 (1) 332 (1) 36.1 (4) 4.3 (10) 7.7 (25)
2 8.4 (30) 0.0 (1) 41.7 (1) 41.7 (1) 8.1 (31) 9.2 (32)
3 5.0 (2) 95(1)  60.1 (1) 335 (1) 344 (3)  50(2) 226 (5)
TOTAL 1 16.6 (135) 31.8 (64) 36.7 (92) 20.7 (360) 29.5 (433) 11.5(120) 23.2 (651)
2 217 (108) 25.3 (142) 26.8 (52) 42.0 (29) 31.7 (185) 19.1 (121) 25.8 (331)
3 25.0 (54) 28.6 (243) 249 (75) 49.1 (20) 41.7(84) 199 (98) 29.7 (186)

*: 1, individuals aged <20 years; 2, individuals aged >20 years; 3, entire communities.

**: UC, urine concentration by sedimentation, filtration or centrifugation; RS, reagent strips; KK, Kato-Katz thick smear method; SC, stool

concentration methods. Results for surveys with missing diagnostic methods were omitted.
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The mean prevalence per country for surveys on individuals aged <20 years varies
between 0% (Eritrea) and 53.9% (Malawi) for S. haematobium and between 0% (Somalia)
and 61.6% (Sudan) for S. mansoni. We found an overall mean prevalence of S. haematobium
and S. mansoni of 32.8% and 23.2%, respectively. Community surveys usually showed
higher mean prevalence levels. However, the survey locations might not be the same
among the different types of studies and therefore the observed prevalence levels are not

directly comparable.

Two-third of the S. haematobium survey data were obtained before the 1990s (66.5%),
while few surveys were compiled from 2000 onwards (16.2%). On the other hand, S.
mansoni surveys were mainly conducted in the 1980s (32.7%) and from 2000 onwards
(29.8%), whereas only 15.9% of the surveys were carried out in the 1990s. The distribution
of surveys within the different time periods varies from country to country and between
the two Schistsoma species. While some countries (e.g. Eritrea and Somalia) only have
surveys for one or two periods, other countries (e.g. Kenya, Tanzania and Zambia) are
well covered over time. The data also vary in the diagnostic methods. For example, even
though 67.4% of the S. mansoni surveys with known diagnostic methods employed the
Kato-Katz thick smear method, in Somalia and Eritrea only stool concentration methods

(e.g. Ritchie technique or ether-concentration technique) were used.

5.3.2 Model validation

For S. haematobium, model validation based on the MAE measure (Table 5.3) showed no
difference between disease risk modelling on individuals aged <20 years (model A) and un-
aligned modelling of all three survey types (model B), while the y? measure led to improved
predictions. The introduction of regional alignment factors in spatial modelling based on
all survey types (model C) further enhanced model predictive ability based on the MAE
and y? measures. Model D, including country-specific alighment factors, showed similar
predictive performance as model B. Validation based on different BCIs demonstrated that
the proportion of correctly predicted test locations was similar among all models. Model
A predicted most test locations correctly within the 95% BCI, while model C was superior
for 50% BCIs and model D for 70% BCIs. Regardless of the model used, average BCI
widths were comparable.

For S. mansoni, model predictive performance in terms of MAE and y? measures was

best for model C, followed by models B and D. The differences among the models for the

BCI method were small and not consistent between the examined BCls. For example,
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Table 5.3: Model validation results based on MAE, x? measure and BCIs.

Model A Model B Model C Model D
Age groups <20 years All All All
Alignment - - Regional Country
S. haematobium
MAE 16.4 16.7 15.5 16.5
X2 126.4 95.7 72.6 96.6
50% BCI (width of BCI) 39.7 (24.8) 41.1 (24.3) 42.1 (25.2) 38.1 (24.5)
70% BCI (width of BCI) 57.1 (36.9) 57.1 (36.3) 61.1 (37.7) 61.9 (36.5)
90% BCI (width of BCI) 75.4 (54.1) 75.4 (53.5) 75.4 (54.7) 75.4 (53.9)
95% BCI (width of BCI) 84.9 (61.0) 81.0 (60.4) 79.4 (61.2) 80.2 (60.6)
S. mansoni
MAE 11.5 11.3 11 11.5
X2 48.3 46.8 39.7 43.1
50% BCI (width of BCT) 41.5 (18.5) 34.6 (16.1) 36.9 (15.2) 40.0 (16.4)
70% BCI (width of BCI) 57.7 (29.0) 60.8 (25.4) 60.8 (24.7) 60.8 (26.0)
90% BCI (width of BCI) 80.0 (47.6) 79.2 (41.3) 80.0 (41.6) 81.5 (44.0)
95% BCI (width of BCI) 88.5 (56.5) 84.6 (49.6) 83.8 (50.2) 83.8 (52.7)

BCI, Bayesian credible interval; MAE, mean absolute error.

at 70% BCI, model A included least of the test locations, while at 95% BCI, this model
correctly predicted most of the test locations but the averaged width of the BCI was widest.

5.3.3 Alignment factors

Regional and country-specific schistosomiasis risk alignment factors for S. haematobium
and S. mansoni are presented in Table 5.4. Some countries had insufficient data, and hence
country-wide alignment factors could not be estimated. A mean regional alignment factor
of 0.83 (95% BCI: 0.81-0.85) confirmed that the risk of S. haematobium in individuals aged
<20 years is greater than in individuals >20 years. S. haematobium risk estimation from
entire community survey was related to the risk of individuals aged <20 years with 0.91
(95% BCI: 0.90-0.93). Mean country-specific alignment factors varied from 0.62 (Ethiopia)
to 1.26 (Zambia) among individuals >20 years and from 0.79 (Ethiopia) to 1.06 (Zambia)
in entire communities. In Ethiopia and Sudan, the country-specific alignment factors were
significantly smaller than the overall alignment factor, whereas in Somalia and Zambia,

country-specific factors were significantly larger.

For S. mansoni, the mean regional alignment factor among individuals aged >20 years
was 0.94 (95% BCI: 0.92-0.96), while country-specific estimates varied from 0.64 (Zambia)



80 Chapter 5. Modelling age-heterogeneous schistosomiasis survey data

Table 5.4: Overall and country-specific number of survey locations (N), mean observed
prevalence (p) and alignment factor results (with 95% BCI given in brackets) per age group
and Schistosoma species.

S. haematobium S. mansoni
Age* N p  Alignment factor N p  Alignment factor

Burundi 1 0 1 15 20.8 1
2 0 - - 21 23 0.78 (0.71, 0.87)
3 0 - - 10 259 0.84 (0.76, 0.93)

Eritrea 1 4 0 1 4 12.5 1

2 1 0 - 1 10 -

3 2 0 - 2 41.7 -

Ethiopia 1 31 244 1 105 22.2 1
2 23 185 0.62 (0.55,0.68) 151 20.3 0.71 (0.70, 0.73)
3 8 371 0.79 (0.72,0.87) 83 19.5 0.85(0.83, 0.88)

Kenya 1 112 34.5 1 90 41 1
2 16 359 0.84 (0.79,0.89) 20 54.2 1.09 (1.05,1.13)
3 40 23.2 0.86 (0.83,0.89) 26 44.3 1.02(0.99, 1.05)

Malawi 1 42 53.9 1 9 24 1

2 21 40.2 0.86(0.82,0.92) 12 273 -

3 1 314 - 0 - -

Rwanda 1 0 - 1 0 - 1

2 0 - - 4 4.6 -

3 0 - - 0 - -

Somalia 1 11 394 1 3 0 1

2 23 56.9 1.05(0.95, 1.18) 2 0 -

3 21  53.1 1.02 (0.94, 1.12) 5 0 -

Sudan 1 4 35.2 1 8 61.6 1
2 10 172 0.69 (0.64, 0.74) 16 61.7 1.02 (0.94, 1.10)
3 4 11.2 - 6 485 1.00 (0.95, 1.06)

Tanzania, 1 317 345 1 115 13.5 1
2 60 38.5 0.84(0.82,0.86) 35 24.8 1.18(1.12,1.24)
3 22 423 094 (0.91,096) 21 314 1.13(1.08,1.17)

Uganda 1 38 2.8 1 277 22.7 1
2 17 82 0.89(0.77,1.03) 37 379 1.06(1.01,1.11)
3 4 18.1 - 28 48.3 1.01 (0.96, 1.04)

Zambia 1 69 305 1 25 7.7 1
2 42 179 1.26 (1.08,1.43) 32 9.2 0.64 (0.49, 0.89)

3 10 37.1 1.06 (0.99, 1.13) 5 22.6 -

TOTAL 1 628 32.8 1 651 23.2 1
2 213 30.6 0.83 (0.81,0.85) 331 25.8 0.94 (0.92, 0.96)
3 112 33.8 0.91 (0.90,0.93) 186 29.7 0.96 (0.95, 0.98)

*. 1, individuals aged <20 years; 2, individuals aged >20 years; 3, entire communities.
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to 1.18 (Tanzania). In community surveys, the regional alignment factor was 0.96 (95%
BCI: 0.95-0.98) with country-specific alignment factors between 0.84 (Burundi) and 1.13
(Uganda). Significantly smaller country-specific alignment factors compared to the overall
alignment factor were found in Burundi, Ethiopia and Zambia, while significantly larger

factors were obtained for Kenya, Tanzania and Uganda.

The regional alignment factor estimates for S. haematobium compared to S. mansoni
are much lower, e.g. 17% risk reduction for individuals aged >20 years vs. 6% risk

reduction. This relation is also found in country-specific estimates, except for Zambia.

5.4 Discussion

In this study, we derived factors to align schistosomiasis prevalence estimates from age-
heterogeneous surveys across an ensemble of 11 countries in eastern Africa. We found
correction factors that are significantly different from 1. As a result, geostatistical model-
based predictions from school-based and community-based surveys are further enhanced.
The estimates of the regional alignment factors confirm that individuals aged <20 years
are at a higher risk of a Schistosoma infection than adults (Woolhouse, 1998; Jordan and
Webbe, 1982; Anderson and May, 1985). Interestingly, the alignment factor estimates for
S. haematobium were slightly lower than those for S. mansoni. This finding might be
explained by differences in the age-prevalence curves between the two species. S. haema-
tobium prevalence usually peaks in the age group 10-15 years (Woolhouse et al., 1991),
while the peak of S. mansoni prevalence occurs somewhat later, up to the age of 20 years
(Fulford et al., 1992). Consequently, there is a larger difference in infection risk between
children and adults for S. haematobium compared to S. mansoni. Additionally, the peak
of S. mansoni prevalence might be further shifted towards older age groups due to the
so-called peak shift. Indeed, it has been shown that the peak of infection prevalence is
more flat and reaches its maximum in older age groups if transmission is low-to-moderate,
while prevalence peaks are higher and they are observed at a younger mean age if trans-
mission is high (Woolhouse, 1998). Several African countries have implemented large-scale
preventive chemotherapy programmes against schistosomiasis (WHO, 2010; Fenwick et al.,
2009). These programmes reduced schistosomiasis-related morbidity (Koukounari et al.,
2007) and might have had some impact on transmission (King et al., 2006; French et al.,
2010). Tt is therefore conceivable that the peak of Schistosoma infection might slightly shift
to older age groups. It should also be noted that, disparities in the spatial risk distribution

of the two Schistosoma species and in the implementation of control strategies in these
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areas could have led to differences in the alignment factors.

Considerable differences between country-specific alignment factors and prevalence ra-
tios based on the raw data were found for Ethiopia, Tanzania, Uganda and Zambia in S.
haematobium, and for Burundi and Zambia in S. mansoni. These differences are mainly
due to the spatial distribution of the survey locations, which vary between age groups.
For example, surveys focussing on individuals aged <20 years are located in central and
eastern Zambia, while surveys on individuals >20 years in Zambia are mainly located in
the north of the country. The north is characterised by lower schistosomiasis transmission
risk. Therefore, the crude prevalence ratio between the two groups is artificially small,
while the alignment factor, which is based on the predicted prevalence risk in this area, is

much higher.

Model validation showed that regional alignment factors improved predictive perfor-
mance of the models for both Schistosoma species, however, country-specific alignment
factors did not further improve the models. The predictive performance of the model with
regional factors was good, as 79.4% and 83.8% of the test locations were correctly predicted
within 95% BCls for S. haematobium and S. mansoni, respectively. All models estimated
relatively wide BCls, indicating large variation in the data that could not be explained
by the model covariates. Socioeconomic and health system factors might play a role in
the spatial distribution of schistosomiasis, however these data do not exist at high spatial
distribution for the entire study area, and hence could not be used for model fit and pre-
diction. Part of the variation might have arisen by the model assumptions of stationarity

and isotropy and the heterogeneity in the diagnostic methods.

The proposed alignment factor approach is scaling the predicted prevalence of schis-
tosomiasis and leads to an easy interpretation of the parameters. In addition, it allows
defining meaningful prior distributions, and hence resulting in better model convergence.
An alternative way to include age in the models is to introduce age as a covariate. This
approach is scaling the odds instead of the prevalence. Preliminary analyses preformed
by the authors, on the same data using age as covariate, resulted in serious model con-
vergence problems, leading to the implementation of age alignment factors as proposed in

this manuscript.

A limitation of our work is the assumption of constant disease risk within each age
group. This is not true especially for school-aged children for whom the schistosomia-
sis risk reaches a maximum at around 11-14 years. A more rigorous model formulation

should take into account the age-prevalence curve and standardise the surveys using a
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mathematical description of this curve. Raso et al. (2007a) derived a Bayesian formu-
lation of the immigration-death model to obtain age-specific prevalence of S. mansoni
from age-prevalence curves. We are currently exploring geostatistical models, coupled
with mathematical immigration-death models, to fully consider the age-dependence of the

schistosomiasis risk.

5.5 Conclusions

We have shown that age-alignment factors should be included to improve prevalence esti-
mates of population-based risk of schistosomiasis, especially for large-scale modelling and
prediction efforts. Indeed, large-scale modelling cannot be achieved without compilation
of primarily historical survey data assembled over large study areas using different study
designs and age groups. The proposed alignment factor approach can be used to relate the
most frequent survey types, i.e. studies focussing on individuals aged <20 years (mainly
school surveys) with studies on individuals aged >20 years and entire communities. Un-
aligned survey compilation leads to imprecise disease risk estimates and potentially wrong
recommendations to decision makers for the implementation of control activities and sub-

sequent monitoring and evaluation.
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Abstract

Background: Schistosomiasis remains one of the most prevalent parasitic diseases in the
tropics and subtropics, but current statistics are outdated due to demographic and ecolog-
ical transformations and ongoing control efforts. Reliable risk estimates are important to

plan and evaluate interventions in a spatially explicit and cost-effective manner.

Methodology: We analysed a large ensemble of georeferenced survey data derived from
an open-access neglected tropical diseases database to create smooth empirical prevalence
maps for Schistosoma mansoni and S. haematobium for a total of 13 countries of eastern
Africa. Bayesian geostatistical models based on climatic and other environmental data were
used to account for potential spatial clustering in spatially structured exposures. Geosta-
tistical variable selection was employed to reduce the set of covariates. Alignment factors
were implemented to combine surveys on different age-groups and to acquire separate es-
timates for individuals aged <20 years and entire communities. Prevalence estimates were
combined with population statistics to obtain country-specific numbers of Schistosoma

infections.

Principal Findings: We estimate that 122 million individuals in eastern Africa are
currently infected with either S. mansoni, or S. haematobium, or both species concur-
rently. Country-specific population-adjusted prevalence estimates range between 12.9%
(Uganda) and 34.5% (Mozambique) for S. mansoni and between 11.9% (Djibouti) and
40.9% (Mozambique) for S. haematobium. Our models revealed that infection risk in Bu-
rundi, Eritrea, Ethiopia, Kenya, Rwanda, Somalia and Sudan might be considerably higher
than previously reported, while in Mozambique and Tanzania, the risk might be lower than

current estimates suggest.

Conclusion/Significance: Our empirical, large-scale, high-resolution infection risk es-
timates for S. mansoni and S. haematobium in eastern Africa can guide future control
interventions and provide a benchmark for subsequent monitoring and evaluation activi-

ties.
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6.1 Introduction

Schistosomiasis remains one of the most prevalent parasitic diseases in tropical and sub-
tropical areas, particularly in sub-Saharan Africa (Steinmann et al., 2006; Utzinger et al.,
2009). After many years of neglect, there is growing interest in the control of schistosomia-
sis and other neglected tropical diseases (Hotez et al., 2007; Fenwick et al., 2009; Utzinger
et al., 2009). Reliable baseline maps of the geographical distribution of at-risk areas and
estimates of the number of infected individuals are important tools to plan and evaluate

control interventions in a cost-effective manner.

Most empirical mapping efforts for schistosomiasis only cover small geographical areas,
e.g. a single village (Pinot de Moira et al., 2007), a district (Raso et al., 2005) or an entire
country (Clements et al., 2006a). Indeed, besides a few exceptions (Clements et al., 2008,
2010; Schur et al., 2011b), there is a paucity of large-scale mapping efforts. As part of the
European Union (EU)-funded CONTRAST project, an up-to-date, open-access database
of historical and contemporary prevalence surveys on schistosomiasis in Africa was de-
veloped (http://www.gntd.org) (Hiirlimann et al., 2011; Schur et al., 2011d; Stensgaard
et al., 2011). Recently, we presented the first empirical schistosomiasis prevalence estimates
for West Africa, based on the aforementioned database and a Bayesian-based geostatisti-
cal modelling approach using climatic and other environmental predictors (Schur et al.,
2011b). We also presented population-adjusted risk estimates at country level and noted
considerable differences from the widely cited statistics put forth by Chitsulo and colleagues
for the mid-1990s (Chitsulo et al., 2000) and extrapolated estimates for mid-2003 (Stein-
mann et al., 2006). These previous estimates were based on population-adjusted statistics
originally published by Utroska et al. (1989) and lack empirical modelling. Moreover, the
estimates are likely outdated due to demographic and ecological transformations (e.g. wa-
ter resources development and management), socio-economic development (e.g. improved
access to clean water and sanitation) and implementation of large-scale control interven-
tions, most notably regular deworming of school-aged children (Fenwick, 2006; Steinmann
et al., 2006; Fenwick et al., 2009; Utzinger et al., 2009; WHO, 2010).

Bayesian geostatistical models fitted by Markov chain Monte Carlo (MCMC) simulation
methods are increasingly utilised in disease risk mapping and prediction (Diggle et al., 1998;
Banerjee et al., 2003). Such models have been employed for schistosomiasis risk profiling,
i.e. mapping the distribution of Schistosoma mansoni in Burundi, Uganda and parts of
Kenya and Tanzania (Clements et al., 2010). However, to our knowledge, large-scale model-

based high-resolution S. haematobium and S. mansoni infection risk maps, including the
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number of infected individuals for the entire eastern African region, do not exist.

To fill this gap, we developed Bayesian geostatistical models based on climatic and
other environmental risk factors, including different soil characteristics, to obtain empirical
schistosomiasis risk maps and population-adjusted country prevalence estimates for an
ensemble of 13 countries in eastern Africa. We analysed readily available survey data and
implemented alignment factor models to account for the age-heterogeneity in the compiled
survey data (Schur et al., 2011d). Geostatistical variable selection was applied to reduce
the set of covariates to the most important predictors (George and McCulloch, 1993).
Here, we report prevalence maps at 5 x 5 km spatial resolution for S. haematobium and S.

mansoni and estimated numbers of infected individuals at country level.

6.2 Data and methods
6.2.1 Disease data

Prevalence data on schistosomiasis for eastern Africa were extracted from the ‘Global Ne-
glected Tropical Disease’ (GNTD) database (version: 5 October 2010) for all available
survey years. The database assembles general information from the included publications,
as well as study-specific information on survey population, time of the study, Schistosoma
species, diagnostic test employed, and the number of infected individuals among those ex-
amined, stratified by age and sex (if available) (Hiirlimann et al., 2011). Data currently
lacking geographical reference information were excluded. We also excluded entries based
on non-direct diagnostic tests (e.g. immunofluorescence tests, antigen detections or ques-
tionnaire data) due to lower diagnostic sensitivities compared to direct diagnostic tests
(e.g. schistosome egg detection in urine or stool). The proportion of rejected diagnostic
techniques was low: 2.5% for S. mansoni and 0.6% for S. haematobium. Entries with miss-
ing information on the diagnostic technique (S. mansoni: 4.6% missing, S. haematobium:
8.4% missing) were assumed to be also largely based on direct examination techniques. We
considered the bias that would arise from ignoring the missing data, as larger than the bias
from potentially rejected diagnostic techniques among the data with missing information

on the examination technique.

6.2.2 Climatic, demographic and environmental data

Climatic, demographic and environmental data were obtained from different freely acces-

sible remote sensing data sources, as summarised in Table 6.1. Land surface temperature
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(LST) data were used as a proxy for day and night temperature, the normalized differ-
ence vegetation index (NDVT) as a proxy for moisture (Huete et al., 2002) and the human
influence index (HII) for changes in the environment due to anthropometric activities
(Sanderson et al., 2002). The land cover categories were re-grouped into six categories, as
follows: (i) savannah and shrublands; (ii) forests; (iii) grasslands and sparsely vegetated
areas; (iv) croplands; (v) urban areas; and (vi) wet areas. The soil parameters used were
the following: bulk density (in kg/dm3), available water capacity (in cm/m), pH and tex-

ture class (fine, medium and coarse). Furthermore, digitised maps on water body sources

Table 6.1: Data sources and properties of the climatic and other environmental covariates
used to model schistosomiasis prevalence in eastern Africa.®

Source Data type Data Temporal Spatial
period resolution resolution
Moderate Resolution Imag- Land surface tem- 2000-2009 8 days 1 km
ing Spectroradiometer perature (LST) for
(MODIS) /Terral day and night
Normalized dif- 2000-2009 16 days 1 km

ference  vegetation
index (NDVI)

Land cover 2001-2004 Yearly 1 km
African Data Dissemination Rainfall 2000-2009 10 days 8 km
Service (ADDS)?
Earth Resources Observation Altitude, slope and - - 1 km
(EROS) Center® aspect
International Soil Reference Soil parameters - - 8 km
and  Information  Centre
(ISRIC)*
HealthMapper database® Water bodies - - Unknown
Socioeconomic Data and Ap- Human influence in- - - 1 km
plications Center (SEDAC)®  dex (HII)
LandScanTM Global Popula- Population counts 2008 - 1 km

tion Database”

@ All data accessed on 03. February 2011

1 Available at: https://lpdaac.usgs.gov/lpdaac/products/modis_products_table

2 Available at: http://earlywarning.usgs.gov/fews/africa/index.php

3 Available at: http://edc.usgs.gov/\#/Find_Data/Products_and_Data_Available/gtopo30/hydro/
4 Available at: http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc
-minutes-global-grid-version-11

> Available at: http://gis.emro.who.int/PublicHealthMappingGIS/HealthMapper .aspx

6 Available at: http://sedac.ciesin.columbia.edu/wildareas/

7 Available at: http://www.ornl.gov/landscan/
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(rivers and lakes) in eastern Africa were combined and distance to the nearest water body
source was calculated. LST, NDVI and rainfall data were summarised as overall averages
over the period of 2000-2009 based on the mean. Land cover data from 2001-2004 were
combined based on the most frequent category. Estimates for the percentage of individuals
aged <20 years among the total population, stratified by country, were extracted from the

U.S. Census Bureau International Database for the year 2010.

The MODIS/Terra data were processed using the ‘MODIS Reprojection Tool” (Land
Processes DAAC, USGS EROS). Rainfall estimates were converted in IDRIST 32 (Worces-
ter, Clark University). Processing of the remaining data, distance calculations, and dis-
playing of data and results were performed in ArcMap version 9.2 (ESRI). Further data
processing was performed in Fortran 90 codes written by the authors. Remote sensing data
were aligned to a common resolution of 5 x 5 km. In particular, for data with high initial
resolution (1 x 1 km), the ‘Aggregate’ function of ArcMap was used to calculate the mean
of all valid input cells that encompass the output cells (5 x 5 km resolution). For data
with low initial resolution (8 x 8 km), the value of the input cell with the centroid closest

to the centroid of the output cell was taken.

6.2.3 Statistical analysis

Bivariate logistic regressions were carried out to determine the relationship between the
risk of Schistosoma infection and the potential covariates for each Schistosoma species sep-

arately. Covariates with non-linear outcome-predictor relations were treated as categorical.

Bayesian geostatistical logistic regression models with location-specific random effects
and age-alignment factors (for details, see Appendix) were fitted to identify the most
significant predictors and to obtain spatially explicit schistosomiasis risk estimates. The
random effects were considered as latent observations of a Gaussian process with variance-
covariance matrix related to an exponential correlation function between any pair of lo-
cations. The variance-covariance is a matrix of n x n, where n is the number of survey
locations. Model fit requires the inversion of this matrix. The datasets used for this study
contain large numbers of survey locations and parameter estimation becomes unfeasible.
Therefore, an approximation of the spatial process was used in the current application (see
Appendix).

The best set of covariates was determined using Gibbs variable selection (George and
McCulloch, 1993). Indicator variables were linked to the regression coefficients to specify

presence or absence of the corresponding covariate. In this study, variable selection was
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based on the estimation of the posterior inclusion probability with prior probability of 0.25.
All covariates with a posterior inclusion probability larger than 0.5 were employed in the

final model.

We employed MCMC simulation to estimate model parameters. Infection risk at un-
observed locations was predicted via joint Bayesian kriging. A grid of prediction locations
with a spatial resolution of 0.05° x 0.05° (approximately 5 x 5 km) was used, resulting
in approximately 260,000 pixels. Population count estimates were linked to the grid to
calculate the number of individuals aged <20 years and above per pixel. The number of
individuals was merged with the model-based schistosomiasis risk predictions at the same
locations to estimate the averaged number of infected individuals. A combined estimate for
schistosomiasis risk of S. mansoni and S. haematobium was calculated on the assumption
of independence between the two species, i.e. prevalence of Schistosoma spp. = prevalence
of S. mansoni + prevalence of S. haematobium - (prevalence of S. mansoni * prevalence

of S. haematobium,).

6.2.4 Model validation

The performance of the models was assessed using a suite of model validations. In a first
step, a sample of 80% of the survey locations was employed as training set for model fit,
while the remaining 20% of the locations (test locations) were kept for model validation.
Second, the predicted outcomes at the k test locations were compared to the observed
outcomes via three different approaches: mean errors (ME), mean absolute errors (MAE)
and Bayesian credible interval (BCI) comparisons (Gosoniu et al., 2006). The ME shows the
overall tendency of a model to over- or underestimate the risk, and it is calculated by M E =
1/k Zle p; — Di, where p; is the observed outcome and p; the median of the predictions at
test location 7. The MAE provides information on the accuracy of a model based on the
absolute distances between predictions and observations, MAE = 1/k Zle |p; — pi|]. The

proportion of test locations being correctly predicted within the g-th BCI of the posterior
!

i

predictive distribution (restricted by the lower centiles ¢
outcome of the BCI approach, i.e. BCI, = %Zle mian (I(ct < p;), I(c? > pi)).

and upper centiles ¢}') is the

6.3 Results

6.3.1 Final datasets and preliminary statistics

The final datasets consisted of 1406 and 1851 survey locations for S. haematobium and S.

mansoni, respectively. Among these, there were 1208 and 1558 unique locations, respec-
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Table 6.2: Overview of schistosomiasis data, stratified by survey year and age group given
by country.

Total Survey year Age group
(unique locations) <1980 1980- 1990- 2000- <20 >20 All
1989 1999 2009 years  years

S. haematobium

Burundi 0 (0) 0 0 0 0 0 0 0
Djibouti 0 (0) 0 0 0 0 0 0 0
Eritrea 7 (7) 7 0 0 0 4 1 2
Ethiopia 82 (56) 27 24 31 0 59 13 10
Kenya 172 (136) 76 50 33 13 123 18 31
Malawi 67 (62) 9 8 43 7 58 9 0
Mozambique 105 (103) 93 0 4 8 103 2 0
Rwanda 0 (0) 0 0 0 0 0 0 0
Somalia 73 (60) 48 25 0 0 40 18 15
Sudan 152 (135) 7 142 0 3 124 27 1
Tanzania 421 (351) 93 185 29 114 375 39
Uganda 57 (50) 16 2 0 39 50 7 0
Zambia 270 (248) 56 25 45 144 187 78 5
Total 1406 (1208) 432 461 185 328 1123 212 71
S. mansoni

Burundi 85 (35) 0 67 18 0 47 38 0
Djibouti 0 (0) 0 0 0 0 0 0 0
Eritrea 11 (10) 8 3 0 0 7 1 3
Ethiopia 528 (438) 94 249 137 48 373 132 23
Kenya 142 (109) 68 31 22 21 119 15 8
Malawi 21 (21) 7 8 6 0 14 7 0
Mozambique 101 (96) 93 0 6 2 96 5 0
Rwanda 4 (4) 0 4 0 0 0 4 0
Somalia 10 (9) 8 2 0 0 4 1 5
Sudan 183 (156 47 128 3 5 149 30 4
Tanzania 151 (129 52 5 12 82 125 23 3

Zambia 183 47 15 9 112 118 63 2

(156)

(129)

Uganda 432 (383) 28 21 21 362 381 38 13
(168)

Total 1851 (1558) 452 533 234 632 1433 357 6l
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Figure 6.1: Observed prevalence of S. haematobium (left) and S. mansoni (right) across
eastern Africa obtained from the GNTD database, including data until October 2010.

tively. The number of surveys per country, year and age group are listed in Table 6.2.
Prevalence in individuals aged <20 years ranged from 0% to 100% for both Schistosoma
species with mean prevalence of 34.0% (median 26.7%, standard deviation (SD) 34.0%) for
S. haematobium and 21.5% (median 8.6%, SD 27.4%) for S. mansoni. The distribution

and the observed prevalence of the survey locations are shown in Figure 6.1.

Data on the spatial distribution of the potential covariates influencing the distribution of
schistosomiasis are presented in the Appendix. All considered covariates were significant in
the bivariate logistic regressions. Typically, categorised covariates showed better predictive
ability based on BIC than linear covariates, except for day temperature and altitude for S.
haematobium and HII for S. mansoni. The implementation of the geostatistical variable
selection approach led to a reduction in the final set of covariates. Distance to the closest
freshwater body was excluded from the S. haematobium model, while NDVI was removed

in the final S. mansoni model.
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6.3.2 Spatial modelling results

Parameter estimates of the geostatistical model for S. haematobium are shown in Table
6.3. The results indicate that there was a significant decrease in S. haematobium infection
risk from the beginning of the 1990s onwards. Latitude and longitude effects suggested
an elevated risk around Lake Victoria and the countries south of Tanzania. Higher day
LST averages and yearly rainfall estimates above 216 mm were associated with low risk
of infection. There was a non-linear relation between S. haematobium with night LST
and NDVI indicating a positive relation and a decrease in risk at the lowest and the
highest values of those two covariates. Areas covered with croplands showed a higher
schistosomiasis risk than those with savannahs and shrublands. Altitude showed a negative
relation, while topological parameters showed high and low risk in East and West direction,
respectively. Most of our locations were in low flow velocity flat areas, and therefore the
observed positive effect of high slope regions is rather misleading. Soil-related parameters
showed that schistosomiasis is more common in areas where the soils have a pH that is
neutral to acid, high water capacity and coarse texture. The influence of anthropometric
activities to the environment appeared to be positively associated with schistosomiasis at

intermediate levels of the covariate.

Table 6.3: Logistic regression parameter estimates for S. haematobium summarised by odds
ratios (OR), 95% confidence intervals (CI) and 95% Bayesian credible intervals (BCI).

Bivariate non-spatial Multivariate non-spatial Multivariate spatial

OR (95% CI) OR (95% CI) OR (95% BCI)

Survey year

<1980 1 1 1

1980-1989 0.58 (0.57, 0.59)* 1.07 (1.04, 1.10)* 1.02 (0.99, 1.08)

1990-1999 0.81 (0.79, 0.84)* 0.94 (0.90, 0.97)* 0.70 (0.67, 0.74)*

2000-2009 0.52 (0.51, 0.54)* 0.59 (0.57, 0.61)* 0.47 (0.45, 0.50)*
Latitude (in °)

<-11.1 1 1 1

-5.6 0.97 (0.94, 0.99)* 0.37 (0.35, 0.39)* 0.74 (0.64, 0.83)*

7.3 1.49 (1.45, 1.53)* 0.39 (0.37, 0.41)* 1.37 (1.22, 1.57)*

>1.7 0.60 (0.59, 0.62)* 0.34 (0.31, 0.35)* 0.61 (0.57, 0.65)*
Longitude (in °)

<32.7 1 1 1

32.7-35.5 1.18 (1.14, 1.21)* 0.90 (0.86, 0.94)* 0.59 (0.54, 0.63)*

35.6-39.1 1.69 (1.64, 1.75)* 1.26 (1.18, 1.34)* 1.00 (0.96, 1.05)

>39.1 2.56 (2.49, 2.63)* 1.57 (1.47, 1.68)* 0.67 (0.63, 0.72)*

Continued on next page




6.3 Results

95

Bivariate non-spatial

OR. (95% CI)

Multivariate non-spatial

OR. (95% CI)

Multivariate spatial

OR (95% BCI)

Altitude (m)
<200
200-559
560-1102
>1102
Day LST (°C)
Night LST (°C)
<17.7
17.7-19.8
19.9 - 21.7
>21.7
Rainfall (mm)
<216
216-276
>276
NDVI
<0.40
0.40-0.49
0.50-0.59
>0.59
Land cover
Savannah/ shrub-
lands
Forests
Grasslands/
sparsely vegetated
Croplands
Urban
Wet areas
Slope (in °)
<0.16
0.16-0.43
0.44-1.15
>1.15
Aspect (in °)
<48.8
48.8-105.0
105.1-202.4
>202.4
Human
index

influence

1
0.27 (0.26, 0.28)*
0.49 (0.47, 0.50)*
0.54 (0.52, 0.55)*
0.92 (0.92, 0.92)*

1

2.34 (2.27, 2.41)*
1.53 (1.49, 1.58)*
2.09 (2.03, 2.15)*

1
1.71 (1.68, 1.75)*
0.85 (0.83, 0.87)*

1
2.74 (2.67, 2.80)*
2.08 (2.03, 2.14)*
2.32 (2.26, 2.38)*

1

0.98 (0.96, 1.01)
0.79 (0.77, 0.81)*

1.25 (1.22, 1.28)*
0.86 (0.83, 0.88)*
0.87 (0.83, 0.92)*

1
0.62 (0.60, 0.64)*
0.52 (0.51, 0.54)*
0.74 (0.72, 0.76)*

1
1.40 (1.36, 1.43)*
1.05 (1.03, 1.08)*
0.60 (0.58, 0.61)*

1
0.48 (0.46, 0.51)*
0.66 (0.62, 0.70)*
0.57 (0.53, 0.61)*
0.97 (0.97, 0.98)*

1
2.27 (2.16, 2.38)*
1.91 (1.81, 2.03)*
1.84 (1.73, 1.97)*

1
1.49 (1.44, 1.54)*
1.12 (1.08, 1.17)*

1
1.23 (1.19, 1.28)*
1.15 (1.10, 1.20)*
0.89 (0.85, 0.94)*

1

0.94 (0.90, 0.97)*
0.81 (0.78, 0.84)*

1.24 (1.20, 1.28)*
0.63 (0.60, 0.66)*
0.65 (0.60, 0.70)*

1
0.74 (0.71, 0.76)*
0.78 (0.75, 0.81)*
1.08 (1.04, 1.12)*

1
1.40 (1.35, 1.45)*
1.04 (1.01, 1.07)*
0.95 (0.92, 0.99)*

1
1.00 (0.96, 1.05)
0.57 (0.54, 0.60)*
0.50 (0.47, 0.53)*
0.92 (0.92, 0.92)*

1
2.20 (2.09, 2.34)*
2.26 (2.09, 2.43)*
1.85 (1.70, 2.00)*

1
0.63 (0.60, 0.67)*
0.77 (0.72, 0.83)*

1
1.67 (1.61, 1.76)*
1.53 (1.45, 1.64)*
1.23 (1.15, 1.33)*

1

1.00 (0.99, 1.03)
0.67 (0.64, 0.70)*

1.07 (1.01, 1.12)*
1.00 (0.97, 1.02)
0.72 (0.66, 0.78)*

1
0.87 (0.83, 0.90)*
0.71 (0.67, 0.75)*
1.17 (1.12, 1.23)*

1
1.43 (1.39, 1.48)*
1.00 (0.99, 1.02)
0.93 (0.89, 0.97)*

Continued on next page
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Bivariate non-spatial Multivariate non-spatial ~Multivariate spatial

OR (95% CI) OR (95% CI) OR (95% BCI)
<17 1 1 1
17-19 1.19 (1.15, 1.23)* 1.15 (1.10, 1.19)* 1.00 (0.97, 1.04)
20-24 1.48 (1.43, 1.52)* 1.40 (1.35, 1.45)* 1.07 (1.01, 1.13)*
>24 1.20 (1.17, 1.24)* 1.31 (1.26, 1.36)* 0.93 (0.89, 0.98)*
Bulk density (in
kg/dm3)
<1.32 1 1 1
1.32-1.34 1.25 (1.21, 1.29)* 0.65 (0.62, 0.68)* 0.81 (0.75, 0.91)*
1.35-1.50 1.35 (1.31, 1.39)* 0.49 (0.47, 0.52)* 0.55 (0.50, 0.61)*
>1.50 1.98 (1.93, 2.03)* 1.43 (1.35, 1.51)* 1.02 (0.99, 1.04)
Available water ca-
pacity (in cm/m)
<8 1 1 1
8-9 0.78 (0.76, 0.80)* 2.43 (2.25, 2.63)* 1.69 (1.55, 1.84)*
10-11 0.31 (0.30, 0.32)* 0.95 (0.88, 1.02) 2.06 (1.90, 2.22)*
>12 0.56 (0.55, 0.57)* 1.04 (0.95, 1.12) 1.43 (1.33, 1.52)*
pH in water
<5.9 1 1 1
5.9-6.8 1.11 (1.09, 1.13)* 0.85 (0.82, 0.89)* 0.76 (0.72, 0.81)*
>6.8 0.67 (0.66, 0.69)* 1.08 (1.01, 1.15)* 1.17 (1.07, 1.26)*
Texture class
Medium 1 1 1
Coarse 1.76 (1.72, 1.80)* 0.49 (0.44, 0.53)* 1.30 (1.10, 1.49)*
Fine 0.79 (0.77, 0.80)* 0.43 (0.41, 0.45)* 0.90 (0.80, 1.00)
Mean (95% BCI)
Sigma? - - 3.83 (3.15, 4.49)
Range (km) - - 355.3 (341.0, 372.0)

*: Significant correlation based on 95% CI or 95% BC

The estimated odds ratios (ORs) of the predictors for S. mansoni infection risk are
given in Table 6.4. The risk increased during the 1980s and 1990s, but decreased slightly
from 2000 onwards. A South-to-North and West-to-East trend of increasing prevalence is
indicated by latitude and longitude. Low risk of infection is associated with high average
day LST and low night LST values and rainfall showed a significant positive relation.
Forested areas were found to be related to highest risk, while low risk estimates were
found in built up environments, such as urbanised settings. An elevated risk was suggested
at very low and very high levels of altitude in flat regions and areas pointing towards
West, as indicated by the aspect parameter. Locations with distances of more than 1.6

km to the nearest freshwater body did not appear to be different from locations in close
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proximity (within 0.6 km) to freshwater bodies. However, intermediate distances showed
a positive relation to S. mansoni infections. Higher risks were associated with soils of
medium texture, high basicity, low bulk density and low water capacity. The HII showed

no relation with S. mansons.

Table 6.4: Logistic regression parameter estimates for S. mansoni summarised by odds
ratios (OR), 95% confidence intervals (CI) and 95% Bayesian credible intervals (BCI).

Bivariate non-spatial Multivariate non-spatial Multivariate spatial

OR (95% CI)

OR (95% CI)

OR (95% BCI)

Study year
<1980
1980-1989
1990-1999
2000-2009

Latitude (in °)
<-2.8
-3.8
1.1-9.8
>9.8

Longitude (in °)
<329
32.9-37.2
>37.2

Altitude (m)
<801
801-1154
1155-1513
>1513

Day LST (°C)
<278
27.8-30.1
30.2-33.1
>33.1

Night LST (°C)
<15.7
15.7-18.0
18.1-20.1
>20.1

Rainfall (mm)
<216
216-312
>312

1
1.30 (1.26, 1.33)*
1.84 (1.79, 1.89)*
1.11 (1.08, 1.14)*

1
2.21 (2.15, 2.27)*
2.42 (2.34, 2.49)*
2.22 (2.16, 2.29)*

1
1.30 (1.28, 1.33)*
1.45 (1.42, 1.48)*

1
0.80 (0.78, 0.82)*
0.88 (0.86, 0.90)*
0.59 (0.58, 0.60)*

1
1.16 (1.13, 1.19)*
0.88 (0.86, 0.90)*
1.18 (1.15, 1.20)*

1
2.68 (2.60, 2.76)*
2.35 (2.28, 2.42)*
2.57 (2.50, 2.64)*

1
0.49 (0.48, 0.50)*
0.80 (0.79, 0.82)*

1
1.21 (1.17, 1.25)*
1.98 (1.92, 2.05)*
1.13 (1.09, 1.17)*

1
3.67 (3.53, 3.81)*
4.21 (4.04, 4.38)*
5.39 (5.12, 5.66)*

1
1.00 (0.97, 1.03)
1.63 (1.55, 1.70)*

1
0.57 (0.54, 0.60)*
0.59 (0.56, 0.63)*
0.59 (0.55, 0.63)*

1
0.96 (0.93, 1.00)
0.75 (0.72, 0.78)*
0.40 (0.38, 0.42)*

1
3.82 (3.67, 3.98)*
5.10 (4.85, 5.37)*
4.01 (3.74, 4.30)*

1
0.77 (0.74, 0.80)*
0.91 (0.87, 0.95)*

1
1.86 (1.79, 1.91)*
1.99 (1.89, 2.08)*
1.48 (1.41, 1.55)*

1
1.80 (1.57, 2.08)*
1.41 (1.29, 1.55)*
2.44 (2.28, 2.61)*

1
2.21 (2.03, 2.39)*
2.82 (2.62, 2.97)*

1
0.53 (0.50, 0.57)*
0.50 (0.46, 0.55)*
1.04 (0.99, 1.18)

1
1.23 (1.19, 1.27)*
1.00 (0.99, 1.02)
0.75 (0.72, 0.79)*

1
1.67 (1.59, 1.75)*
2.27 (2.09, 2.46)*
1.61 (1.50, 1.80)*

1
1.56 (1.48, 1.66)*
3.19 (3.02, 3.46)*

Continued on next page




98 Chapter 6. Spatially explicit Schistosoma infection risk in eastern Africa

Bivariate non-spatial

OR. (95% CI)

Multivariate non-spatial

OR. (95% CI)

Multivariate spatial

OR (95% BCI)

Land cover

Savannah/ shrub-
lands

Forests

Grasslands/
sparsely vegetated

Croplands

Urban

Wet areas
Slope (in °)

<0.28

0.28-0.92

>0.92
Aspect (in °)

<73.1

73.1-182.2

>182.2
Human
index
Distance to closest
water body (km)

<0.59

0.59-1.56

1.57-3.70

>3.70
Bulk density (in
kg/dm3)

<1.30

1.30-1.31

1.32-1.40

>1.40
Available water ca-
pacity (in cm/m)

<8

8-9

10-12

>12
pH in water

<5.2

5.2-6.7

>6.7

influence

0.87 (0.84, 0.89)*
1.15 (1.12, 1.18)*

0.82 (0.80, 0.84)*
0.39 (0.38, 0.40)*
1.13 (1.09, 1.17)*

1
1.35 (1.32, 1.38)*
1.10 (1.08, 0.13)*

1
1.06 (1.03, 1.08)*
1.27 (1.24, 1.29)*
0.96 (0.96, 0.96)*

1
1.23 (1.20, 1.26)*
1.04 (1.02, 1.07)*
0.72 (0.71, 0.74)*

1
1.49 (1.45, 1.53)*
0.73 (0.71, 0.75)*
0.57 (0.56, 0.59)*

1
0.72 (0.70, 0.75)*
1.00 (0.96, 1.04)
1.05 (1.02, 1.09)*

1
0.79 (0.77, 0.81)*
1.28 (1.25, 1.31)*

0.78 (0.75, 0.81)*
1.03 (1.00, 1.07)

0.94 (0.91, 0.97)*
0.74 (0.71, 0.78)*
0.79 (0.75, 0.84)*

1
1.29 (1.26, 1.33)*
1.03 (1.01, 1.06)*

1
1.28 (1.24, 1.31)*
1.34 (1.30, 1.38)*
0.96 (0.96, 0.97)*

1
1.14 (1.11, 1.18)*
0.85 (0.83, 0.88)*
0.72 (0.70, 0.75)*

1
1.69 (1.61, 1.78)*
0.57 (0.54, 0.59)*
0.39 (0.37, 0.41)*

1
0.47 (0.44, 0.50)*
0.35 (0.33, 0.38)*
0.23 (0.21, 0.25)*

1
1.16 (1.10, 1.21)*
1.36 (1.29, 1.43)*

1.15 (1.10, 1.19)*
1.00 (0.99, 1.02)

1.00 (0.97, 1.02)
0.58 (0.54, 0.61)*
0.97 (0.90, 1.00)

1
1.01 (0.99, 1.05)
0.96 (0.92, 0.99)*

1
1.03 (1.00, 1.08)
1.13 (1.09, 1.18)*
1.00 (0.99, 1.00)

1
1.16 (1.11, 1.21)*
0.99 (0.96, 1.01)
0.99 (0.96, 1.05)

1
1.31 (1.21, 1.39)*
0.59 (0.56, 0.62)*
0.84 (0.80, 0.88)*

1
0.32 (0.28, 0.36)*
0.59 (0.54, 0.65)*
0.65 (0.60, 0.72)*

1
0.77 (0.72, 0.85)*
0.47 (0.4, 0.49)*

Continued on next page
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Bivariate non-spatial Multivariate non-spatial ~Multivariate spatial

OR (95% CI) OR (95% CI) OR (95% BCI)
Texture class
Medium 1 1 1
Coarse 0.56 (0.53, 0.59)* 0.36 (0.33, 0.39)* 0.48 (0.44, 0.54)*
Fine 0.92 (0.91, 0.94)* 0.58 (0.56, 0.60)* 0.69 (0.67, 0.72)*
Mean (95% BCI)
Sigma2 - - 3.79 (3.16, 4.50)
Range (km) - - 356.9 (336.9, 379.0)

*: Significant correlation based on 95% CI or 95% BC

The estimated spatial parameters were similar for both Schistosoma species. Spatial
ranges of 355 km (95% BCI: 341-372 km) and 357 km (95% BCI: 337-379 km) were observed
for S. haematobium and S. mansoni, respectively, and respective spatial variation of 3.83
(95% BCI: 3.15-4.49) and 3.79 (95% BCI: 3.16-4.50).

6.3.3 Schistosoma infection risk maps

The spatial distribution of S. haematobium risk throughout eastern Africa is shown in Fig-
ure 6.2A. Large areas of high infection risk (>50%) were predicted for central Mozambique,
the south of Lake Victoria and around the Sudanese and Eritrean border. Low risk areas
with predicted infection risks <10% were mainly located in mid/northern Zambia, around
Mount Kilimanjaro, in the north of Lake Victoria, northern Sudan and in Ethiopia. The
map of the SD of the prediction error for S. haematobium (Figure 6.2B) demonstrates that
areas of relatively high uncertainty (above 30%) are mainly found in areas of high infection
risk and far away from sampled survey locations. We found a mean SD of about 23%,
varying from 0% to 32.5%, with areas of low uncertainty typically in close proximity to

sub-sampled locations.

Figure 6.3A displays the S. mansoni infection risk map, and Figure 6.3B shows the
corresponding map of the SD of the prediction error. Low risk areas (predicted infection risk
<10%) occur in large parts of Zambia, central Tanzania, around the Ugandan and Kenyan
border and the Ethiopian highlands. High risk areas (predicted infection risk >50%) are
located in northern Mozambique, southern Tanzania, around Lake Victoria, south-eastern
Kenya and small areas in Ethiopia and Sudan. Main areas of high uncertainty are found
in Mozambique, south-western Sudan, northern Eritrea, and parts of Somalia and Kenya,
while areas of low uncertainty are located around the sampled survey locations and low-risk
settings. We calculated a mean SD of 23.5%, varying from 0% to 32.5%.
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Figure 6.2: Predicted median of infection risk for individuals aged <20 years for S. haema-
tobium during the period of 2000-2009 based on joint Bayesian kriging (A) and standard
deviation (SD) of the prediction error with sub-sampled survey locations (B).

6.3.4 Country prevalence estimates and numbers of infected in-

dividuals

Population-adjusted country prevalence estimates are summarised in Table 6.5 for individ-
uals aged <20 years and the total population. For S. haematobium, prevalence estimates
for the total population vary from 11.9% (Djibouti) to 40.9% (Mozambique), whereas
for S. mansoni they vary between 12.9% (Uganda) and 34.5% (Mozambique). In Bu-
rundi, Malawi, Mozambique, Rwanda and Zambia, S. haematobium was the predominant
species, while in Djibouti, Eritrea, Kenya, Somalia and Sudan, S. mansoni was the primary
Schistosoma species. Both species were estimated to have similar country prevalence in
Ethiopia, Tanzania and Uganda. Combined schistosomiasis prevalence estimates, assum-

ing independence in the occurrence of the two species, ranged between 25.3% (Uganda)
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Figure 6.3: Predicted median of infection risk for individuals aged <20 years for S. mansoni
during the period of 2000-2009 based on joint Bayesian kriging (A) and standard deviation
(SD) of the prediction error with sub-sampled survey locations (B).

and 55.6% (Mozambique) for the total population.

The number of infected individuals per country, stratified by individuals aged <20 years
and the total population, is given in Table 6.6. High numbers of infected individuals among
the total population (>5 million) were predicted for Ethiopia, Malawi, Mozambique, Sudan,
Tanzania and Uganda for S. haematobium, and in Ethiopia, Kenya, Mozambique, Sudan
and Tanzania for S. mansoni. Low numbers (<1 million) were only observed in Djibouti
for S. haematobium and S. mansoni. The combined number of infected individuals vary
from 147,000 (Djibouti) to 29.1 million (Ethiopia) with a total of approximately 122 million

infections in the 13 countries considered here in eastern Africa.



Table 6.5: Population-adjusted prevalence of S. haematobium and S. mansoni in individuals (<20 years) and in the total
population, stratified by country in eastern Africa (predicted for the period 2000-2009) based on 2010 population estimates
with 95% Bayesian credible interval (BCI).

Country  S. haematobium prevalence (%) S. mansoni prevalence (%) Schistosomiasis prevalence (%)
<20 years Entire pop. <20 years Entire pop. <20 years® Entire pop.® Entire pop.?
95% BCI 95% BCI 95% BCI 95% BCI 95% BCI 95% BCI

Burundi 32.2 29.9 21.0 20.2 42.3 40.3 13.3
(5.1, 76.9) (4.7, 71.2) (6.3, 49.5) (6.1,47.7)  (11.7,83.9)  (11.1, 80.7)

Djibouti 12.8 11.9 21.6 20.8 30.0 28.8 -
(0.9, 69.0) (0.8, 63.9) (2.0, 77.6) (1.9, 74.9) (2.7, 87.8) (2.6, 86.0)

FEritrea 24.0 22.2 324 31.2 44.1 42.5 7.2
(6.6, 64.3) (6.1,59.6)  (11.3,61.6)  (10.9,59.3)  (16.1,79.4)  (15.4, 77.6)

Ethiopia 19.5 18.1 22.9 22.1 33.8 32.5 7.1
(9.8, 31.0) (9.1,28.7)  (15.9,30.9)  (15.4,20.8)  (22.4,45.0)  (21.6, 43.4)

Kenya 16.6 154 35.6 34.3 42.9 41.4 30.0
(10.1,25.5)  (9.4,23.7)  (21.6,51.6)  (20.8,49.8)  (27.8,58.6)  (26.7, 56.8)

Malawi 37.8 35.0 27.1 26.1 50.0 47.7 42.9
(27.0,50.5)  (25.1,46.8) (9.3, 56.6) (9.0,54.6)  (32.5,72.2)  (30.8, 70.1)

Mozambique 44.2 40.9 35.8 34.5 57.7 55.6 69.8
(32.4,55.2)  (30.0,51.2)  (21.4,49.4)  (20.6, 47.6)  (42.7,69.7)  (40.9, 67.5)

Rwanda 31.3 29.0 15.8 15.3 38.6 36.6 5.9
(5.8, 75.0) (5.3, 69.6) (3.8, 41.6) (3.6, 40.1) (9.2, 81.4) (8.8, 78.1)

Somalia 26.3 24.4 32.3 31.2 44.0 42.5 18.0
(17.5,37.2)  (16.3,345)  (18.6,50.1)  (17.9,48.3)  (29.4,59.2)  (28.2, 57.8)

Sudan 23.4 21.7 29.5 28.4 40.5 39.0 18.2
(16.2,33.8)  (15.1,31.3)  (21.8,39.0)  (21.1,37.6)  (30.7,52.2)  (29.5, 50.5)

Tanzania 24.8 23.0 20.0 19.3 38.2 36.4 51.5
(19.2,32.0)  (17.8,20.7)  (13.9,28.7)  (13.4,27.6)  (30.6,48.0)  (29.1, 45.8)

Uganda 17.5 16.2 134 12.9 26.6 25.3 32.0
(7.7, 33.5) (7.1,31.1)  (10.0,18.0)  (9.6,17.3)  (16.8,42.2)  (16.1, 39.9)

Zambia 26.1 24.2 16.2 15.6 34.4 32.8 26.6
(17.9,34.3)  (16.6,31.8) (8.0, 28.0) (7.7,27.0)  (23.4,46.1)  (22.1, 44.2)

@ Both S. haematobium and S. mansoni combined, assuming independence between the two species.

b Estimated country prevalence of infected individuals with schistosomiasis over all age groups in 1995, as presented by Chitsulo et al. (2000).
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Table 6.6: Estimated number of infected in individuals (<20 years) and in the total population, stratified by country in
eastern Africa (predicted for the period 2000-2009) based on 2010 population estimates with 95% Bayesian credible interval

(BCI).

Country Total S. haematobium infected (mill)  S. mansoni infected (mill) Schistosomiasis infected (mill)
<20 Entire <20 years Entire pop. <20 years Entire pop. <20 years?® Entire pop.* Entire
years pop. pOP-b
(mill) (mill) 95% BCI 95% BCI 95% BCI 95% BCI 95% BCI 95% BCI

Burundi 5.528 9.445 1.78 2.820 1.159 1.908 2.340 3.806 0.84

(0.281, 4.248)  (0.445, 6.728)  (0.347, 2.736)  (0.571, 4.506)  (0.645, 4.640)  (1.046, 7.620)

Djibouti 0.251 0.512 0.032 0.061 0.054 0.107 0.076 0.147 -

(0.002, 0.173)  (0.004, 0.327) (0.005, 0.195) (0.010, 0.383)  (0.007, 0.221)  (0.013, 0.440)
Eritrea 3.006 5.477 0.721 1.218 0.974 1.710 1.324 2.329 0.260
(0.197, 1.932) (0.333, 3.262) (0.340, 1.850) (0.597, 3.249)  (0.484, 2.387)  (0.843, 4.252)
Ethiopia 52.200  89.500 10.165 16.157 11.946 19.746 17.656 29.095 4.0
(5.096, 16.180) (8.100, 25.718) (8.313, 16.132) (13.740, 26.665) (11.712, 23.500) (19.320, 38.803)
Kenya 21.900  40.300 3.647 6.209 7.813 13.833 9.420 16.693 6.14
(2.217, 5.606)  (3.774, 9.543) (4.730, 11.326) (8.373, 20.051) (6.105, 12.867) (10.775, 22.899)
Malawi 8.390 14.400 3.168 5.047 2.272 3.764 4.194 6.883 4.2
(2.267, 4.233) (3.612, 6.745) (0.782, 4.753) (1.295, 7.875)  (2.726, 6.055) (4.435, 10.114)
Mozambique 11.900  20.200 5.273 8.263 4.271 6.96 6.895 11.224 11.3
(3.867, 6.594) (6.060, 10.334) (2.556, 5.809) (4.166, 9.613)  (5.100, 8.317) (8.253, 13.624)
Rwanda 5.868 10.700 1.834 3.113 0.928 1.639 2.263 3.930 0.38
(0.337, 4.403) (0.573, 7.473) (0.221, 2.439) (0.390, 4.306)  (0.541, 4.776)  (0.943, 8.387)
Somalia 5.149 9.150 1.354 2.23 1.664 2.851 2.266 3.890 1.71
(0.902, 1.917) (1.486, 3.158) (0.957, 2.578) (1.639, 4.415) (1513, 3.047)  (2.575, 5.289)
Sudan 23.400  42.100 5.482 9.148 6.902 11.976 9.465 16.416 4.85
(3.801, 7.900) (6.343, 13.183) (5.110, 9.119) (8.867, 15.825) (7.180, 12.218) (12.421, 21.260)
Tanzania 23.600  42.100 5.84 9.666 4.717 8.119 8.998 15.304 15.24
(4.537, 7.544) (7.510, 12.487) (3.282, 6.759) (5.650, 11.634) (7.219, 11.309) (12.229, 19.273)
Uganda 21.300  33.600 3.73 5.45 2.858 4.343 5.674 8.511 6.14
(1.634, 7.150) (2.388, 10.447) (2.131, 3.831) (3.238, 5.821)  (3.580, 8.996) (5.402, 13.434)
Zambia 6.473 10.900 1.688 2.635 1.051 1.706 2.229 3.578 2.39
(1.160, 2.221) (1.810, 3.467) (0.518, 1.809) (0.841,2.938) (1.513,2.983) (2.408, 4.815)
TOTAL 188.965 328.384 44.714 72.017 46.609 78.662 72.800 121.806 57.45

% Both S. haematobium and S. mansoni combined, assuming independence between the two species.

b Estimated country prevalence of infected individuals with schistosomiasis over all age groups in 1995, as presented by Chitsulo et al. (2000).
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6.3.5 Model validation results

Model validation based on 80% of the survey locations resulted in MEs of 0.6 for S. haema-
tobium and -1.7 for S. mansoni, and MAEs of 15.3 and 14.2, respectively. The percentage
of test locations correctly predicted by 95% BCIs is 78.3% for S. haematobium and 71.1%

for S. mansoni.

6.4 Discussion

To our knowledge, we present the first smooth empirical schistosomiasis prevalence maps
at a spatial resolution of 5 x 5 km for an ensemble of 13 countries in eastern Africa. The
maps are stratified by the two main Schistosoma species, S. haematobium and S. mansoni.
Bayesian geostatistical models with an approximation of the spatial process were employed
to handle the large amount of unique survey locations extracted from a readily available
open-access GNTD database (Hiirlimann et al., 2011; Schur et al., 2011b,d; Stensgaard
et al., 2011). Our prevalence maps are accompanied by contemporary population-adjusted
prevalence estimates and number of infected individuals on a country-by-country basis.
An attempt was made to employ factors to align surveys arising from different risk groups,
namely individuals aged <20 years and entire communities. This enabled us to obtain age-
adjusted risk estimates for individuals aged <20 years, who are known to carry the highest
schistosomiasis risk (WHO, 2002), as well as entire populations. The spatial resolution of 5
x 5 km is a compromise between computational burden and estimation accuracy. A map of
1 x 1 km resolution would result in a total of more than 6 million pixels in the study area,
as compared to 260,000 pixels when a 5 x 5 km resolution is chosen (a 25-fold difference).
In addition, schistosomiasis risk is influenced by local factors (e.g. people’s movements,
behaviour, socio-economic factors), which are unknown and therefore prediction at very

high spatial resolution may not be rational.

The GNTD database represents an important output of the EU-funded CONTRAST
project. As of early October 2010, the database contained over 4000 survey locations
across eastern Africa that have been obtained through a systematic search of published
and unpublished sources. Importantly, various remotely sensed parameters were incorpo-
rated into our models to evaluate the effect of climate and other environmental factors on
Schistosoma infection risk. For the first time in large-scale schistosomiasis risk profiling,
different soil characteristics were also included, such as pH and available water capacity,
which might have an effect on the intermediate host snails, and hence potentially influence

disease risk. Another initiative on mapping helminthic infections has been taken by the
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Global Atlas of Helminth Infections (GAHI; http://www.thiswormyworld.org) project
(Brooker et al., 2010). It would be interesting to compare our estimates with the ones

from the GAHI project once they become available for schistosomiasis.

Clements et al. (2010) previously presented a S. mansoni risk map using Bayesian
geostatistical modelling for Burundi, Uganda and parts of Kenya and Tanzania based on
geo-referenced school surveys carried out between 1998 and 2007. Their map shows similar
schistosomiasis risk patterns than the one presented here, yet discrepancies are evident in
the area north of Lake Albert and areas in proximity to the Kyoga, Edward and George
lakes. Importantly though, the prevalence estimates in both maps are similar. One decade
ago, another risk map using non-spatial logistic regression was published for Tanzania,
focussing on S. haematobium (Brooker et al., 2001). However, this map does not show the
actual level of schistosomiasis risk, but rather probabilities that the predicted risk is above
a certain cut-off fixed at 50%. This cut-off has been proposed by the World Health Or-
ganization (WHO); areas where >50% of school-aged children are infected warrant yearly
preventive chemotherapy to entire communities (WHO, 2002, 2006b). However, such maps
do not provide detailed information for lower risk areas or the number of infected individu-
als, which is important for operational and programmatic reasons. Additionally, such maps
cannot be used for monitoring and evaluation of interventions. A smaller Bayesian geosta-
tistical risk map covering areas of north-western Tanzania for S. haematobium (Clements
et al., 2006a) revealed similar patterns of risk as predicted in our map. Nonetheless, differ-
ences, especially in the estimated prevalence level, can be found in areas further away from
Lake Victoria where we predicted higher risk of infections than Clements and colleagues.
In the 1950s and 1970s, higher prevalence of S. haematobium compared to S. manson:i
was found in the Lango region of Central Northern Uganda (Schwetz, 1951; Bradley et al.,
1967), while recent investigations in the same area only detect few S. haematobium cases.
The underlying reasons for this decline remain to be determined (Adriko et al., 2011).
Therefore, we are likely to overestimate the current S. haematobium and schistosomiasis
risk in this region.

We obtained estimates of the number of infected individuals aged <20 years, and for
all age groups, on a country basis by overlaying population data adjusted for 2010 on the
predicted risk surfaces for the two Schistosoma species. These estimates are empirical
model-based, while previous country estimates presented by Chitsulo et al. (2000), Stein-
mann et al. (2006) and Utzinger et al. (2009), are interpolations of limited survey data for a

whole country. Chitsulo and colleagues reported 57.5 million infected individuals in eastern
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Africa, which is less than half of our combined schistosomiasis prevalence estimate (122
million). We observed at least three-fold more infected individuals in Burundi, Eritrea,

Ethiopia, Rwanda and Sudan and similar numbers in Mozambique and Tanzania.

How can these differences be explained? First and foremost, populations have grown.
The Chitsulo et al. estimates are calculated for the mid-1990s (estimated population in the
13 countries: 219.4 million) compared to our estimates for the year 2010 (328.4 million).
Second, individuals might have moved into areas in close proximity to freshwater bodies or
newly established irrigation systems. These areas are likely to be linked to higher Schisto-
soma infection risks (Steinmann et al., 2006), even though no significant effect for the dis-
tance to the nearest freshwater body was observed for S. haematobium. Third, large-scale
preventive chemotherapy programmes (Fenwick et al., 2009; WHO, 2010), improved sanita-
tion (WHO and UNICEF, 2010), water resources development and management (Fenwick,
2006; Steinmann et al., 2006), urban-rural movements and socio-economic development
are important underlying determinants of changing schistosomiasis risk patterns. Fourth,
discrepancies might be related to interpolations of few data points over large areas without
taking into account model-based predictions on the basis of climate, environment and dis-
ease data. Fifth, we might also underestimate country-specific schistosomiasis prevalence
due to the assumption of independence between the occurrence of S. haematobium and
S. mansoni. Simultaneous infections with both species in areas where the species co-exist
might be more frequent (e.g. due to similar and highly behavioural infection pathways) or

less frequent (e.g. due to protective factors) than expected by chance.

Model validation at 20% of the original survey locations included in our models showed
that we are able to correctly predict more than 70% of the locations when considering
95% BClIs. In general, our predictions are approximately 14-15% away from the observed
prevalence with a small tendency for S. mansoni to overestimate the risk. We are en-
couraged by these results due to the complexity of schistosomiasis disease transmission
in reality (Stensgaard et al., 2011). Nevertheless, certain modelling assumptions might
have influenced model performance. For example, overall prevalence and infection inten-
sity depend on the sensitivity and specificity of the diagnostic technique (Bergquist et al.,
2009). However, we assumed that the different diagnostic techniques in our dataset have
similar ability to detect a Schistosoma infection, which might bias the results. Spatial
models accounting for sensitivity and specificity could be incorporated in the models, as
demonstrated by Wang et al. (2008). However, due to a large number of missing or incom-

plete information in our underlying data, assumptions on the diagnostic techniques and
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the sampling effort would be required, which may introduce considerable bias. Another
concern is the amount of zero outcomes (i.e. none of the study participants found to be
infected), especially for S. mansoni (S. mansoni: 30.0%; S. haematobium: 14.3%). Zero-
inflated models could be implemented instead. Such models modify the likelihood function
and add an additional model parameter capturing the over-dispersion arising by the zeros
(Vounatsou et al., 2009). Furthermore, our models are assumed to be isotropic stationary,
which implies that the spatial random effect is stable throughout the study area (Gosoniu
et al., 2009) and that the spatial correlation is the same within the same distance irrespec-
tive of direction (Ecker and Gelfand, 2003). This is a potentially inappropriate assumption
because dry regions might be less suitable for the disease to spread than humid region and
therefore the spatial range could be smaller. Additionally, intermediate host snails spread

along rivers and lakeshores, and hence correlation is likely to be attributed to directions.

School-aged children are known to carry the highest risk of Schistosoma infection,
and hence are the key target group for preventive chemotherapy (WHO, 2002, 2006b).
However, large amounts of surveys included in the database are either community-based
or involved adults only. It follows that these surveys are related to lower risks of infection.
Hence, unadjusted combination of all surveys in one model, irrespective of age-group, would
result in inaccurate community risk estimates. We incorporated age-alignment factors to
merge studies based on the three main age groups (individuals aged <20 years, individuals
aged >20 years, entire communities) present in our data. These factors are expected to
increase model performance compared to models considering only one age group or models
without any alignment between the different age groups (Schur et al., 2011d). However,
age adjustment could be refined and adopted to different disease transmission settings in

order to further enhance model performance.

Temporal trends included in the risk estimation highlighted the differences in schisto-
somiasis prevalence levels between the 1980s, 1990s and the 2000s. The risk of infection
for S. haematobium has been lowered during the past two decades, while S. mansoni risk
increased during the 1980s and 1990s and dropped slightly during the present decade.
Major water resources development and management activities might explain the observed
increase in S. manson: risk over the past decades. Human-altered habitats has been shown
to be an important determinant of the distribution of the major intermediate host snail
species at the African continent (Stensgaard et al., 2011). Indeed, there is evidence that uri-
nary schistosomiasis is replaced by intestinal schistosomiasis in face of irrigation schemes
and large dams (Abdel-Wahab et al., 1979; Steinmann et al., 2006). This phenomenon
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is also referred to as ‘Nile shift’, as it has been documented first in the Nile delta of
Egypt after the completion of the Aswan dam. On the one hand, several African countries
have (re-)established national schistosomiasis control programmes emphasizing preventive
chemotherapy to school-aged children (Fenwick et al., 2009; WHO, 2010), which reduced

the community prevalence of both S. haematobium and S. mansoni.

In comparison to a similar analysis done for West Africa, including Cameroon (Schur
et al., 2011b), we implemented further potential covariates in our models such as latitude,
longitude, slope, aspect and soil parameters. To our knowledge, we have now implemented
soil parameters for the first time in large-scale geostatistical schistosomiasis risk mapping.
Importantly, soil parameters were indeed related to the risk of schistosomiasis transmission,
and hence improved outcome predictions. While, pH was a predictor for both schistosome
species, available water capacity was associated with S. haematobium, whereas bulk den-
sity, and texture class showed an association with S. mansoni. These soil factors directly
influence snail habitats and larval survival in the environment (Madsen, 1985b,a; Bavia

et al., 1999), and hence are important predictors of schistosomiasis.

6.5 Conclusions and outlook

Our country-specific estimates on the number of schistosome-infected individuals in eastern
Africa revealed considerable differences to previous and widely cited statistics. Our new
estimates, together with the Schistosoma infection prevalence maps, are useful decision
tools for disease control managers to efficiently guide interventions to high-risk areas, to
plan the frequency of deworming campaigns, to estimate the required drug supplies at the
operational unit of drug deployment (e.g. district) in order to reduce the burden of schis-
tosomiasis, and to monitor progress of interventions to ultimately interrupt transmission.
Regions of high model uncertainty need to be studied in greater detail to further validate
our results and to deepen our knowledge on the spatial distribution of Schistosoma infec-
tion. In the future, we plan to further expand this work to obtain Africa-wide prevalence
estimates and to study temporal trends. In addition, we will include the geographical distri-
bution of key intermediate host snail species in our spatial models to improve model-based
predictions and to study the importance of climatic and other environmental covariates on
schistosomiasis risk, while accounting for the presence and absence of intermediate hosts.
Finally, we will probe the assumption of independence between S. haematobium and S.

mansoni by jointly modelling both species to enhance our combined risk estimates.
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6.6 Appendix
6.6.1 Geostatistical modelling

Let Y; and N; be the number of Schistosoma-infected and screened individuals at location
i (i =1,...,n) and p; the probability of infection. We assume that Y; arises from a
Binomial distribution, i.e. Y; ~ Bin(p;, N;). The influence of covariates X, and location-
specific spatial random effects w; are modelled on the logit, as logit(p;) = X?é + wi,
where 3 is the vector of regression coefficients. Unobserved spatial variation is introduced
on w; by assuming that w = (wy,...,w,)T follows a latent stationary Gaussian process
over the study region, w ~ MV N(0,X). ¥ is a matrix with elements X;; accounting for
the covariance between any pair of locations i and j. The datasets used for this study
contain large numbers of survey locations render parameter estimation infeasible. Hence,
an approximation of the spatial process was implemented using a subset of m survey
locations (m < n). This approach was proposed by Banerjee et al. (2008) and further
developed by Gosoniu et al. (2011a) and Rumisha et al. (2011).

Assuming an isotropic exponential correlation function, the matrix elements X;; are
defined by X;; = o%exp(—pd;;) with spatial variance o2, rate of correlation decay p and
the distance between locations d;;. The data are spread over large areas and Euclidean
distances are not appropriate any longer, since they are unable to account for the curvature
of the surface of the Earth. Therefore, the great-circle distance was used (Vincenty, 1975).
The minimum distance for which the spatial correlation is less than 5% is referred to as

range and can be calculated by 3/p in the exponential correlation function setting.

A Bayesian model formulation requires the specification of prior distributions of all
model parameters. For the regression coefficients 3, we assumed Normal prior distributions

2

with mean 0 and large variance. For the spatial parameters ¢° and p, we chose non-

informative inverse Gamma and Gamma distributions, respectively.

The model was fitted using MCMC simulation implemented in Fortran 90 code written
by the investigators using the standard numerical libraries. Predictive posterior distribu-
tions at the prediction locations were estimated via joint Bayesian kriging (Diggle et al.,
1998) implemented in Fortran 90 using the standard numerical libraries. Our predictions
are based on the period from 2000-2009.
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Abstract

Background: A common assumption of geostatistical models is isotropy, that is spatial
correlation is a function of distance between locations, irrespective of direction. Anisotropy,
in contrast, is characterized by direction-dependent spatial ranges, the most common form
of which is geometric range anisotropy with directions defined by an ellipse. For some
diseases, geometric range anisotropy might be present due to the transmission process. For
instance, freshwater snails act as intermediate hosts in the transmission of schistosomiasis,

and hence direction of river flow might be important.

Methodology: We developed Bayesian geostatistical models that explicitly incorporate
anisotropic effects based on simulated and real data obtained from a national survey on
urinary schistosomiasis in Senegal. Two anisotropic models were developed assuming a
global direction of anisotropy and locally dependent directions fixed at the geographical
aspect. Model outcomes were compared to those produced by isotropic models and an

empirical risk map was obtained from the model with the best predictive ability.

Principal Findings: Model validation results showed that an anisotropic model with
a global direction of anisotropy predicted urinary schistosomiasis risk in Senegal more
accurately than other isotropic or locally-dependent anisotropic models. Directional effects
were pointing toward the main direction of river flow with maximum spatial range of 65

km and a ratio of anisotropy of 4:3.

Conclusion/Significance: Relaxing the isotropic assumption toward geometric range
anisotropy leads to improved model-based schistosomiasis risk mapping and more precise

parameter estimates.
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7.1 Introduction

Urinary schistosomiasis is caused by a chronic infection with the blood fluke Schistosoma
haematobium. Aquatic snails of the genus Bulinus act as intermediate host (Gryseels
et al., 2006). The disease affects the urinary track and can cause severe bladder wall
pathology and major hydronephrosis (Hatz, 2001; van der Werf et al., 2003). A common
condition is blood in urine (hematuria) which is useful indicator for identification of high-
risk communities of S. haematobium (Lengeler et al., 2002; Robinson et al., 2009). An
important epidemiological feature of schistosomiasis is its focal distribution (Utzinger et al.,
2010). Recently, there is high interest in controlling the disease and therefore in obtaining
high-resolution estimates of the disease burden (Hotez et al., 2007; Utzinger et al., 2009;
Magalhaes et al., 2011).

Empirical maps of disease distribution can be obtained via regression-based approaches
using environmental predictors. Standard regression approaches assume independence be-
tween locations. However, unobserved spatially distributed exposures similarly affect loca-
tions in close proximity, which in turn introduce spatial correlation to the data. Geostatis-
tical methods take into account the underlying spatial process via location-specific random
effect parameters following a zero-mean Gaussian process with a covariance matrix based
on a function of distance between locations (Diggle et al., 1998). Such models typically
contain large numbers of parameters and cannot be estimated by the commonly used maxi-
mum likelihood approaches (Kleinschmidt et al., 2000). Bayesian model formulations fitted
via Markov chain Monte Carlo (MCMC) simulations methods are able to simultaneously
estimate model parameters and remedy the computational problems of likelihood-based
methods (Diggle et al., 1998). Geostatistical models are well established in disease risk
mapping, such as for malaria (Gemperli et al., 2006a; Gosoniu et al., 2006; Hay et al.,
2009; Gosoniu et al., 2010; Riedel et al., 2010), schistosomiasis (Magalhaes et al., 2011;
Raso et al., 2005; Clements et al., 2006b, 2008, 2009a; Beck-Woérner et al., 2007; Schur
et al., 2011b) and other helminthiases (Raso et al., 2006a; Brooker and Clements, 2009;
Clements et al., 2010).

A common assumption of geostatistical models is that of isotropy, that is spatial corre-
lation acts as a function of distance between locations, irrespective of direction (see Glos-
sary). However, the intermediate host snails of schistosomiasis are freshwater-dependent
species and spread along rivers, ponds and lake shores. This biological feature is likely to
introduce spatial correlation in the data related to the direction of river flow and currents.

Association upon distance and direction is referred to as anisotropy (see Glossary). Three
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types of anisotropy can be defined; namely (i) sill, (ii) nugget and (iii) range anisotropy
(Zimmerman, 1993) (see Glossary). In practice, range anisotropy is the most common
type, characterized by direction-dependent spatial ranges. In case the spatial range is de-
fined by directions related to an ellipse, then the spatial process is said to be geometrically
anisotropic (see Glossary). In order to describe geometric range anisotropy, the maximum
and minimum spatial range given by the major and minor axes of the associated ellipse
and the angle of the direction related to the maximum spatial range need to be defined
(see Glossary). The ratio of maximum to minimum spatial range is the magnitude of

anisotropy.

Geometric range anisotropy has been described in the statistical literature (Banerjee
et al., 2003; Diggle and Ribeiro, 2007). Applications to model scallop catches (Ecker and
Gelfand, 1999) and fish abundance (Schmidt and Rodriguez, 2010) have been described.
With regard to disease risk mapping, to our knowledge, the only application of anisotropic
spatial models pertains to predicting malaria risk at global scale (Hay et al., 2009). How-
ever, the authors did neither provide estimates on the magnitude and direction of the
association, nor compare model outcomes of malaria risk with isotropic model specifica-
tions.

Glossary: Definition of selected terms used in this article
Isotropy: spatial process that is depending only on the distance between loca-

tions irrespective of direction.

Anisotropy: spatial process that is depending on the distance and direction be-
tween locations.

Sill: total amount of variation within a dataset, or the finite limiting value of the
semi-variogram.

Nugget: measurement error and/or microscale effect within the data, or the in-
tercept of the semi-variogram.

Range: distance at which locations are effectively uncorrelated (given a specific
direction), or the distance at which spatial correlations falls below 5%.
Geometric anisotropy: property of the spatial process assuming that the di-
rection of spatial correlation is determined by an ellipse.

Angle of anisotropy: angle of the associated ellipse that is pointing towards
the direction of maximum spatial range.

Aspect: the geographical aspect refers to the horizontal direction of steepest

decrease within a given terrain.
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A common way of addressing geometric range anisotropy is to expand the covariance
structure of isotropic geostatistical models via an additional positive-definite matrix that
accounts for the angle, maximum range and ratio of anisotropy (Ecker and Gelfand, 2003).
Ecker and Gelfand (2003) implemented the Wishart prior distribution for this matrix to
ensure positive-definiteness during model fit. This approach has the limitation that none
of the anisotropy parameters can be updated separately or fixed at a certain value defined
by environmental features. Following an idea proposed by Johnson (2005), the matrix
can be decomposed into three positive-definite matrices, allowing prior distributions to be
specified on the parameters of anisotropy. This might be advantageous when modeling
urinary schistosomiasis because the direction of anisotropy is potentially linked to the
geographical aspect (i.e. the direction of the greatest decrease of the terrain, see Glossary),
which is directly related to the direction of river flow. Instead of estimating a global
direction of anisotropy, the direction might be fixed locally at the geographical aspect.
This might improve model performance and predictive ability, especially in areas with
various directions of river flow, which cannot be precisely estimated assuming an anisotropic

process based on a global direction.

In this study, we critically determined the assumption of isotropy and developed val-
idated modeling approaches for schistosomiasis risk mapping by explicitly incorporating
anisotropy based on simulated and real data from a national survey carried out among
schoolchildren in Senegal. For the applied data, we implemented two different anisotropic
models assuming (i) global direction of anisotropy estimated by the model; and (ii) locally
dependent directions, fixed at the geographical aspect of the survey locations, respectively.
Model predictive ability for each model was assessed via several validation methods and
compared to isotropic spatial and non-spatial models. The best fitting model was used to

obtain a smooth empirical risk map throughout the study area.

7.2 Data

7.2.1 Schistosomiasis survey data

A national survey pertaining to S. haematobium infection in Senegal was carried out during
May and June 2003 by the national schistosomiasis control program (Ndir, 2003). Overall,
229 schools were selected in all regions of Senegal with the exception of Dakar and Thiés
regions. In each school, 50 children aged 6-14 were randomly chosen from grades 4 and

5 (CE2 and CM1) and invited to provide a single urine sample. In case fewer than 50
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children were present, additional children from other grades were randomly selected in
order to achieve the desired sample size of 50 children per school. Reagent strips were
used to detect microhematuria, a proxy for S. haematobium infection, in 187 schools. In
the remaining 42 schools, eggs of S. haematobium were determined under a microscope,
using a urine filtration method. Although results from urine filtration and reagent strip
testing correlate well at the population level (Lengeler et al., 2002) the diagnostic accuracy
of those two methods for determining S. haematobium vary, especially in settings outside
East Africa (Lengeler et al., 1993; Brooker et al., 2009a). Hence, urine filtration surveys
were excluded to remain with a homogeneous data set in terms of diagnostic approach.
Schools that could not be retrospectively geo-located were also excluded from subsequent

analysis. Overall, our sample consisted of 143 unique locations.

7.2.2 Environmental data

The environmental data included as covariates in the geostatistical models were obtained
from freely accessible data sources, as summarized in Table 7.1. In brief, land surface tem-
perature (LST) data were used as a proxy for day and night temperature, the normalized
difference vegetation index (NDVI) as proxy for vegetation, rainfall estimate (RFE) for
precipitation, and the human influence index (HII) for changes in the environment due to
anthropometric activities. NDVI, RFE, day and night LST were summarized as averages

1 year prior to the survey with a lag of 1 month.

Topographical conditions of the area were described by altitude, aspect, and slope.
Digitized maps on water body sources (rivers and lakes) in Senegal were acquired and the
distance between surveyed schools and the nearest freshwater source estimated. Addition-
ally, the following soil parameters were employed: amount of coarse fragments >2 mm
(expressed in %), available water capacity (in cm/m), gypsum content (in g/kg), organic
carbon content (in g/kg), pH and soil drainage class (extremely well, well, moderately,
poorly drained). Land cover characteristics were re-grouped into four categories, as fol-
lows: (i) savannah and shrublands; (ii) forests; (iii) grasslands and sparsely vegetated areas;

and (iv) croplands.

The MODIS/Terra data were processed using the ‘MODIS Reprojection Tool” (Land
Processes DAAC, USGS EROS). RFE were converted in IDRISI 32 (Worcester, Clark
University). Processing of the remaining data, distance calculations and displaying of
data and results were performed in ArcMap version 9.2 (ESRI). Further data processing

was performed, using in-house developed Fortran 90 codes. All environmental data were
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Table 7.1: Data sources and properties of the climatic and other environmental covariates
used to model schistosomiasis prevalence in eastern Africa.®

Source Data type Data Temporal  Spatial
period period resolution
Moderate Resolution Imag- Land surface tem- Apr-2002 - 8 days 1 km
ing Spectroradiometer perature (LST) for Mar-2003
(MODIS)/Terral day and night
Normalized dif- Apr-2002 - 16 days 1 km
ference  vegetation Mar-2003
index (NDVI)
Land cover 2003 Yearly 1 km
African Data Dissemination Rainfall Apr-2002 - 10 days 8 km
Service (ADDS)? Mar-2003
Earth Resources Observation Altitude, slope and - - 1 km
(EROS) Center® aspect
International Soil Reference Soil parameters - - 8 km
and  Information  Centre
(ISRIC)*
HealthMapper database® Water bodies - - Unknown
Socioeconomic Data and Ap- Human influence in- - - 1 km

plications Center (SEDAC)®  dex (HII)

@ All data accessed on 03. February 2011

1 Available at: https://lpdaac.usgs.gov/lpdaac/products/modis_products_table

2 Available at: http://earlywarning.usgs.gov/fews/africa/index.php

3 Available at: http://edc.usgs.gov/\#/Find_Data/Products_and_Data_Available/gtopo30/hydro/
4 Available at: http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc
-minutes-global-grid-version-11

5 Available at: http://gis.emro.who.int/PublicHealthMappingGIS/HealthMapper .aspx

6 Available at: http://sedac.ciesin.columbia.edu/wildareas/

7 Available at: http://www.ornl.gov/landscan/

extracted at the survey locations and for the grid of prediction locations with a spatial
resolution of 0.01° x 0.01° (approximately 1 x 1 km) resulting in approximately 165,000

pixels covering Senegal.

7.3 Methods
7.3.1

Let N; and Y; be the number of children examined and those with microhematuria, re-

Isotropic model specifications

spectively, at location s; (i = 1,...,n) of the study region A C R? with coordinates x;
and y;. We assumed that Y; are binomially distributed, that is Y; ~ Bin(N;, p;), with p;
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measuring microhematuria risk. We modeled the association between a set of m covariates
X; = (1, X4, ..., Xim)T and microhematuria via logistic regression logit(p;) = X3, where
B = (Bo, B1,---,Bm)T is the vector of regression coefficients.

The aforementioned model is based on the assumption of independence between sur-
vey locations, ignoring potential correlation between neighboring sites. However, different
factors such as climate, topology or cultural practices are expected to be more similar in
neighboring locations introducing spatial variation to the data. We accounted for unob-
served spatial correlation in the model via location-specific random effect parameters w;
implemented on the logit, logit(p;) = XTB + w; + ¢;, assuming that w = (wy,...,wy)T
follows a latent stationary Gaussian process with MV N(0,3X) and that ¢; are exchange-

able random effect parameters with ¢; ~ N(0,72), where 72

is the nugget. The elements
¥;; of the variance-covariance matrix 3 are related to an exponential correlation func-
tion defined by ¥;; = o’exp(—,/d Bd;;) with spatial variance ¢ and distance vector
dij = (vi — x;,y; — y;)T between any pair of locations s; and s;. B = {bij}i,j:m is a
symmetric and positive definite matrix in R2. In the case of isotropy, B is reduced to a
diagonal matrix with positive elements by; = by = b, where b? is a spatial decay parameter

(Banerjee et al., 2003).

7.3.2 Geometric range anisotropy

Anisotropy arises when spatial dependence is not only a function of distance but also
depends on the direction between pairs of locations. Geometric range anisotropy is a special
case of anisotropy with an elliptical form of the spatial correlation and direction-dependent
spatial decay parameter (Zimmerman, 1993). The three parameters describing anisotropy
are the angle of anisotropy indicating the direction associated with the maximum spatial
range of the related ellipse, the spatial range that is the distance at which spatial correlation
becomes less than 5%, and the magnitude of anisotropy which is defined by the ratio of
maximum to minimum spatial range. The angle of anisotropy « can be calculated by
cot(2a) = (b1y — ba2)/(2012). The spatial range r in any direction ¢ is given by ry =
—In(0.05)/, /thh¢> with hl = (cos¢, sing). The magnitude of anisotropy \ is calculated
by A = ra/Tatosr for a given ¢ = a.

Geometric range anisotropy can also be interpreted as an isotropic spatial process on
a transformed coordinate system based on stretching and rotation of the axes, such as
(') = (x,y) (C?SO[ —Smoz> <1 0 > (Diggle and Ribeiro, 2007). Hence, the above

sina  cosa 0 X!

model could be formulated assuming an isotropic form of B and dy; = (] — 2, y; — yg)T
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Figure 7.1: Illustration of the associated ellipse of geometric range anisotropy with related
parameters.

7.3.3 Prior distributions

A Bayesian model formulation requires the specification of prior distributions of all model
parameters. We adopted non-informative uniform prior distributions for the regression
coeflicients 3 with bounds —oco and oo and a gamma distribution with mean 1 and large
variance for the spatial variance o2. To ensure that B remains positive definite, the Wishart
prior distribution has been proposed (Banerjee et al., 2003; Ecker and Gelfand, 1999, 2003).
This specification is rather inflexible because it does not allow prior distributions directly
on the anisotropy parameters. In this study, we re-parameterized B such as B = AWA,

where A is a diagonal matrix with positive elements a; and as. The 2 x 2 matrix ¥ is
1
parameterized as ¥ = s f) with 1 defined between —1 and +1 to ensure positive

definiteness of the matrix. Given a;, ay and 1, the parameters 7., Tqr057, @ and the
ratio of anisotropy A can be calculated (see Appendix). A uniform prior distribution with
bounds 0° and 180° was employed for the angle of anisotropy . Uniform prior distributions
with bounds at the minimum and maximum distance between locations were adopted for
the spatial range parameters r, and r,,95,. Figure 7.1 depicts the associated ellipse of

anisotropy together with the most relevant parameters.
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7.4 Implementation details and model validation

7.4.1 Variable selection

Gibbs variable selection was employed to determine a parsimonious set of covariates that
show the best fit with the observed data of the application (George and McCulloch, 1993).
Inclusion or exclusion of covariates was specified using indicator variables linked to the
regression coefficients. In this study, variable selection was based on the estimation of the
posterior inclusion probability with prior probability of 0.80. The final model consists of

all covariates with a posterior inclusion probability larger than 0.5.

7.4.2 Directional semi-variogram plots

Directional semi-variogram plots were employed to detect evidence of anisotropy in the
urinary schistosomiasis survey data from Senegal. The plots were created in R 2.10.0,
using the variog and variofit command of the geoR library for angles every 30 with a

tolerance of 15°.

7.4.3 Model fit and convergence
The model was fitted using MCMC simulation implemented in Fortran 90 code written by

the investigators using standard numerical libraries. Predictive posterior distributions at

the prediction locations were estimated via Bayesian kriging (Diggle et al., 1998).

Models were run for two chains with a thinning of 10 and a burn-in of 1000 iterations.
Convergence was assessed every 10,000 iterations by inspection of ergodic averages of se-
lected model parameters. After convergence, samples of 500 iterations per chain using a
thinning of 10 iterations were extracted for each model resulting in a final sample of 1000

estimates per parameter.

7.4.4 Model validation

Model validation was performed on four different models to obtain the best fitting model
for risk mapping of urinary schistosomiasis risk in Senegal. Model A is a non-spatial
model, model B is an isotropic spatial model, model C is an anisotropic spatial model
with a global angle of anisotropy estimated by the model itself and, finally, model D is an
anisotropic spatial model with local angles of anisotropy fixed at the geographical aspect

of the locations.

Model performance was assessed by using a training set of 80% of the survey loca-

tions for model fit. The remaining 20% (test locations) were kept for model validation.
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The predicted outcomes at the test locations were compared to the observed outcomes
employing mean absolute errors (MAEs) and y? divergence measures. MAEs provide
estimates on the accuracy of a model based on absolute distances between observed out-

comes p; and the median of the predictions p; at the ith (i = 1,... k) test location, as

MAE =1/kS¥ | |pi — Bi|. The x? measure is calculated by x2 = 2% (p; — 5:)?/B:.

Table 7.2: Implemented simulation parameters (bold) and results of model fit using an
anisotropic model formulation with global angle of anisotropy. Model parameter estimates
are based on the median and 95% ClIs given in brackets.

Simulation Coefficient Spatial Angle Maximum Minimum Ratio
(Bo) variance (o?) () range (r,) range (Ta+0.57) (\)
1 0.1 1 - 0.5 0.5 1
0.11 1.12 125.9* 0.7 0.52 1.28
(-0.20, 0.21) (0.85,1.69) (5.9, 175.0)* (0.41, 1.28)  (0.35, 0.88)  (1.00, 2.55)
2 0.1 0.2 - 1 1 1
0.09 0.27 63.3* 1.47 1.14 1.26
(-0.19, 0.23) (0.18, 0.46) (3.0, 173.6)* (0.74, 3.04)  (0.60, 2.17)  (1.00, 2.14)
3 0.1 0.5 - 2 2 1
0.29 0.53 75.5% 2.19 1.78 1.19
(0.15,0.50) (0.36,0.84) (4.3, 176.1)* (1.22,3.99) (1.04, 3.14) (1.0, 1.75)
4 0.1 1 0° 1 0.5 2
0 1.22 -6.7 1.23 0.72 1.7
(-0.23, 0.18) (0.88,1.90) (-49.6, 35.1) (0.60, 2.13)  (0.45, 1.21)  (1.04, 2.89)
5 0.1 1 0° 1 0.25 4
0.04 1.17 -0.3 1.3 0.36 3.6
(-0.24, 0.30) (0.85,1.78)  (-12.1,9.9) (0.72,2.32) (0.21, 0.63) (2.04, 6.76)
6 0.1 1 7.5° 1.2 0.25 4.8
0.06 1.12 5.9 1.48 0.33 4.56
(-0.07, 0.20) (0.83,1.63) (-1.5,13.9) (0.90, 2.65) (0.20, 0.53)  (2.54, 8.29)
7 0.1 0.5 10° 4 0.5 8
0.03 0.52 9.6 3.95 0.61 6.18
(-0.07, 0.15) (0.39, 0.75) (4.5, 14.5) (2.45,4.92) (0.40, 0.96) (3.72, 9.57)
8 0.1 1 25 2.5 0.5 5
0.03 1.21 26.1 3.46 0.67 4.99
(-0.32,0.38) (0.85, 1.84) (18.4,33.2) (1.92,4.86) (0.41, 1.11) (2.92, 8.26)
9 0.1 0.5 45° 3 1 3
0.38 0.63 36.5 3.83 1.29 2.85
(0.05, 0.52) (0.42,0.95) (25.7,51.8) (2.25,4.93) (0.72,2.24) (1.59, 5.05)
10 0.1 1 172.5° 1.2 0.25 4.8
-0.09 1.24 171.1 1.51 0.37 3.96
(-0.29, 0.38) (0.91, 2.00) (158.4, 180.2) (0.80, 2.98) (0.22, 0.71)  (2.27, 7.32)
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7.5 Results
7.5.1 Simulation study

Three and seven different data sets under the assumption of isotropy and anisotropy,
respectively, at the exact same set of the study locations of our application in Senegal. The
data were simulated from binomial distributions, assuming 100 individuals examined for S.
haematobium using reagent strips per location. Anisotropic data had different magnitudes
and angles of anisotropy and zero nugget. Parameter specifications are detailed in Table
7.2.

The results showed that for isotropic data (data sets 1, 2 and 3), the magnitude of
anisotropy was estimated close to 1, while the angle could not be estimated correctly, as
indicated by the uniform histogram plots of the posterior distribution and the very wide

credible intervals (CIs) (see Table 7.2 and Figure 7.2). For anisotropic data (data sets
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Figure 7.2: Predicted angles of anisotropy for different simulated datasets and model C
(anisotropic model with global angle of anisotropy) based on a national school survey on
urinary schistosomiasis carried out 2003 in Senegal using reagent strips.
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Figure 7.3: Observed prevalence of microhematuria across Senegal obtained from a national
schistosomiasis school survey carried out in 2003 using reagent strips.

100

4-10), the 95% CI for the angle is more narrow and the histogram plot peaks at a value
close to the simulated parameter, especially for large ratios of anisotropy. The remaining
model parameters are always included in their corresponding 95% CIs highlighting good

model performance.

7.5.2 Schistosomiasis data

The final data set from our application consisted of 143 georeferenced locations across
Senegal, as shown in Figure 7.3. The prevalence of microhematuria at the unit of the
school ranged between 0% and 100% with a mean prevalence of 39.3%. Directional semi-
variogram analyses implied evidence of anisotropy at an angle of approximately 0° with
maximum and minimum spatial range at approximately 200 km and 50 km, respectively
(results depicted in Figure 7.4 and Table 7.3).

Exploratory analyses were carried out to assess linearity of covariates. Bivariate lo-
gistic regressions on the potential environmental predictors suggested categorizing of the

following covariates: altitude, day temperature, NDVI, RFE, aspect, pH and content of
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Figure 7.4: Directional semi-variograms performed in R 2.10.0, using the variog and variofit

command of the geoR library, based on a national school survey on urinary schistosomiasis
carried out 2003 in Senegal using reagent strips.

Table 7.3: Results of the directional semi-variogram analysis performed in R 2.10.0, using
the variog and variofit command of the geoR library, based on national school survey data
on urinary schistosomiasis in Senegal carried out in 2003.

Direction Spatial variance Spatial range (in km)

90° 1.64 49.7
60° 1.65 53.4
30° 2.05 94.5
0° 1.26 196.4
-30° 0.71 140.9
-60° 1.98 168.3

-90° 1.64 49.7




7.5 Results 125

organic carbon. All considered environmental predictors were highly significant in bivari-
ate logistic regressions. However, geostatistical variable selection identified a reduced set
of covariates consisting of night temperature, slope, amount of coarse fragments >2 mm,
gypsum content and available water capacity to best predict microhematuria risk. The

spatial distribution of these covariates is shown in Figure 7.5.
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Figure 7.5: Spatial distribution of the environmental predictors of the final set of covariates
used for model fit and prediction.
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7.5.3 Model validation results

Model validation based on MAE and y? measures showed that the anisotropic model with
global angle of anisotropy (model C) was best predicting haematuria in Senegal (see Table
7.4). The isotropic spatial model (B) and the anisotropic one with local angles (D) were
ranked second and third, respectively. Therefore, we considered the anisotropic model with
a global angle estimated by the model as the best predicting model used for kriging.

Table 7.4: Model validation results based on mean absolute errors (MAE) and x? measures
of the 4 implemented models. Model A, non-spatial; model B, isotropic spatial; model C,
anisotropic spatial with a global angle of anisotropy; and model D, anisotropic spatial with
local angles of anisotropy fixed at the geographical aspect of the locations.

Model MAE X2 measure
A 21.26 (15.93,27.31) 32.60 (15.05, 106.25)
B 20.19 (15.20, 25.44)  30.39 (14.50, 77.40)
C  19.69 (14.55, 25.48) 28.33 (13.30, 79.14)
D 2098 (15.54, 27.71) 31.93 (14.86, 101.45)

7.5.4 Model parameter results

Model parameter estimates of all four models implemented on the applied data set are
summarized in Table 7.5. The introduction of spatial random effects resulted in a reduced
influence of slope and pH on microhematuria risk and a loss of significance of this associa-
tion compared to model A, while the effect of night temperature on the outcome remained
relatively stable and significant throughout the models. Models accounting for directional
effects led to significant associations of the organic carbon content and to opposite (but
non-significant) effects of the gypsum content to microhematuria risk. Associations with
the amount of coarse fragments remained at the same level, but were significant in model

C, while the effect of the slope on the outcome was almost negligible.

In the anisotropic model with a global angle (best predicting model based on our model
validation approaches), night temperature and the amount of coarse fragments >2 mm were
significantly positively associated with the risk of microhematuria at the school level, while
organic carbon content of at least 10 g/kg was significantly negatively correlated. Slope,
gypsum content and pH showed no significant association with the risk of microhematuria,
whereas acid soils (pH above 7) had a slightly higher risk of microhematuria among sur-
veyed children. The amount of total variation within the data was estimated to be around

1.1 with 85% of the variation associated to spatial effects. Directional effects were pointing
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Table 7.5: Model parameter estimates of the 4 implemented models based on a national
school survey on urinary schistosomiasis carried out 2003 in Senegal using reagent strips.
Model A, non-spatial; model B, isotropic spatial; model C, anisotropic spatial with global
angle of anisotropy; and model D, anisotropic spatial with local angles of anisotropy fixed at
the geographical aspect of the locations.

Parameter Model A Model B Model C Model D
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Night temperature  1.53 (1.50, 1.55)* 1.42 (1.32, 1.52)* 1.40 (1.27, 1.53)* 1.47 (1.43, 1.56)*
Slope 0.39 (0.25, 0.60)* 0.85 (0.50, 1.07) 1.02 (0.42, 1.34)  0.80 (0.54, 1.10)
Amount of coarse 1.02 (1.00, 1.06) 1.03 (0.98, 1.06) 1.03 (1.01, 1.06)* 1.04 (1.00, 1.08)
fragments >2mm

Gypsum content
(g/kg)
<0.1 1 1 1 1
>0.1 1.09 (0.89, 1.96) 1.04 (0.80, 2.48) 0.93 (0.66, 1.25) 0.97 (0.84, 1.28)
pH
<6.1 1 1 1 1
6.1-7.0 2.60 (1.53, 3.97)* 1.15 (0.78,3.01) 1.02 (0.79, 2.83) 1.15 (0.88, 1.59)
>7.1 1.50 (0.96, 2.99) 1.08 (0.77, 2.09) 1.17 (0.98, 2.56) 1.09 (0.80, 2.04)

Organic carbon con-
tent (g/kg)

<3.1 1 1 1 1
3.1-7.0 0.97 (0.7, 1.38)  0.95 (0.72, 1.16)  1.00 (0.80, 1.19)  1.02 (0.78, 1.31)
7.1-10.0 0.97 (0.81, 1.22) 1.29 (0.86, 1.94) 1.02 (0.83, 1.81) 1.24 (1.03, 2.76)
>10.1 0.97 (0.63, 1.26) 0.98 (0.74, 1.39) 0.45 (0.24, 0.89)* 0.50 (0.32, 0.92)*
Median (95% CI) Median (95% CI) Median (95% CI) Median (95% CI)
72 1.02 (0.77, 1.31)  0.20 (0.12, 0.32) 0.24 (0.15, 0.34)  0.15 (0.10, 0.31)
o? ; 1.00 (0.70, 1.51)  0.93 (0.65, 1.34) 0.91 (0.64, 1.32)
Rhomax (km) ; 65 (42, 105) 65 (28, 149) 39 (19, 60)
Rhomin (km) ; 65 (42, 105) 43 (22, 77) 33 (16, 50)
Ratio - 1 1.33 (1.00, 3.37)  1.13 (1.00, 1.66)
Angle ] ] 6.7° (-67.2°,69.7°) ]

CI = Credible interval; OR = Odds ratio.
* Significant based on 95% CI
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towards 7° (see Figure 7.2) and the ratio of anisotropy was 4:3, including isotropy in a 95%

CI. Maximum and minimum ranges were estimated at 65 km and 43 km, respectively.

7.5.5 Risk map of microhematuria for Senegal

Figure 7.6 depicts the predicted microhematuria risk throughout Senegal based on the me-
dian of the predictive posterior distribution. Low-risk areas (predicted risk of microhema-
turia <10%) are found within approximately 100 km proximity to the seashore. Extremely
high risks of microhematuria (>70%) were predicted for the eastern part of Senegal and
some hotspots in the central part of the country. The standard deviation (SD) of the
posterior predictive distribution is also shown in Figure 7.6. Areas of comparably high
uncertainty (SD >0.225) were found in the north-eastern part of the country and at large
distances to the survey locations. Figure 7.7 shows the distribution of the posterior pre-
dictive distribution of the spatial and non-spatial random effect parameters. Large areas
of negative and positive random errors were associated with locations of observed micro-

hematuria <30% and >60%, respectively.

7.6 Discussion

For the first time, we have shown that relaxing the isotropic assumption toward geometric
range anisotropy leads to improved model-based risk predictions of urinary schistosomiasis.
Interestingly, anisotropy was not highly prominent in the data, and hence it is conceivable
that schistosomiasis risk predictions in other settings might be further enhanced. Bayesian
geostatistical models were employed to account for potential directional effects of micro-
hematuria risk across Senegal. Microhematuria prevalence data at the unit of the schools
were obtained from a national survey carried out in 2003 (Ndir, 2003). Environmental
factors (e.g. climatic, topographic and soil parameters) were obtained at high spatial res-
olution and incorporated in our models to determine outcome-predictor relations and to
predict the outcome at a spatial resolution of approximately 1x1 km in order to enhance
risk prediction of this highly focal disease. Predictive accuracy of anisotropic models was

compared to spatial and non-spatial models with a suite of model validation methods.

Our findings are important for schistosomiasis risk mapping and control, particularly
for Africa where more than 95% of the estimated cases of schistosomiasis are concentrated
(Utzinger et al., 2009; Steinmann et al., 2006). To enable applied statisticians to employ
the geometric range anisotropy models presented within the manuscript, an example Open-
BUGS code (OpenBUGS Foundation, London, UK) is provided in the Appendix. Although
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Figure 7.6: Predicted microhematuria risk and standard deviation (SD) of the prediction of
the anisotropic spatial model with global angle of anisotropy (model C) based on a national
school survey on urinary schistosomiasis with 143 survey locations carried out 2003 in Senegal

using reagent strips.



130 Chapter 7. Bayesian modeling of anisotropic geostatistical data

Predicted random effect
B :-050

I -0.49--0.25
[ 024--010

[ ] -009-010

[ ]011-025

[ 0.26-050

I :051

O

locations

0 25 50 100 150 200

Figure 7.7: Predicted random effect of the microhematuria risk prediction using the
anisotropic spatial model with global angle of anisotropy (model C) based on a national
school survey on urinary schistosomiasis with 143 survey locations carried out 2003 in Sene-
gal using reagent strips.

model compilation of this code might take several hours or even few days, depending on
the number of survey locations and machine power, implementation in Fortran reduced

the running time by about half.

Our model validation approach showed that the anisotropic model with global angle
of anisotropy (model C) performed most accurately. Furthermore, it correctly predicted
93.0% of all test locations within a 95% CI and discriminatory performance based on 50%

and 10% cut-offs resulted in 72.4% and 86.2% correct predictions, respectively.

The final prediction map shows that high-risk areas of urinary schistosomiasis (preva-
lence of microhematuria >50%) were present in central/eastern Senegal and low-risk areas
(<10%) are located within 100 km from the seashore. The risk patterns on the final pre-
diction map are similar to the patterns of our earlier work pertaining to S. haematobium
risk mapping across West Africa (Schur et al., 2011b). Discrepancies in the maps can
be observed relatively small microhematuria hotspots in northern and southern Senegal.
However, in our previous work, we used isotropic spatial models employing a large ensem-

ble of historical survey data pertaining to S. haematobium infections. These surveys used
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different diagnostic approaches, age ranges of study participants were heterogeneous and
different covariates were included. In our previous modelling focussing on West Africa, we
estimated a spatial range for S. haematobium of approximately 400 km. In the current
application focusing on a single West African country, we estimated ranges of spatial corre-
lation between 43 and 65 km, depending on the direction between locations. Introduction
of directional effects might reduce spatial range due to an enhanced ability of identifying
the spatial surface of underlying data. This claim is supported by the results of the cor-
responding isotropic spatial model rating spatial range around the maximum range of the
anisotropic model (i.e. 65 km). In addition, the estimates presented here are based on a
single and quite recent national survey with the key outcome measure (i.e. prevalence of
microhematuria at the unit of the school) influenced by schistosomiasis control interven-
tions that might have reduced the effect of environmental predictors and decreased spatial
correlation. Discrepancies in the predicted maps, especially in the magnitude of risk, may
not only reflect the effect of the relaxation of the isotropic assumptions, but also differences
in the data. The earlier work on S. haematobium risk in West Africa was based on his-
torical data using different diagnostic techniques (e.g. urine filtration and centrifugation),
while the current map is based on a national survey on haematuria (using reagent strips)

and might overestimate S. haematobium risk.

The angle of anisotropy was estimated around 0° which relates to east-west directional
effects. This result is in line with our expectations that schistosomiasis transmission is
highly linked to the main direction of river flow (Beck-Wérner et al., 2007). We further
assumed that the angle could be fixed at the aspect of the locations representing direction
of slope correlated with river flow. However, anisotropic models with fixed angle did
not improve microhematuria risk estimates. This observation might be valid for other
settings also characterized by a main direction of river flow. In areas of various directions,
anisotropic models with global angle of anisotropy might fail to capture directional effects
and anisotropic models with local angles fixed at the geographical aspect might be superior
in terms of model predictive ability. Furthermore, the study area could be partitioned into
sub-regions with similar directions of river flow based on catchments and models could be
developed to allow sub-region-specific anisotropic spatial processes (Beck-Wérner et al.,
2007). Such an association upon distance and location is known as non-stationarity. The
stationary spatial processes in each sub-regions could be either assumed to be independent

(Kim et al., 2005), or spatially correlated (Gosoniu and Vounatsou, 2011b).

In conclusion, geometric range anisotropy takes into account spatial correlation related
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to distance and direction between locations, and hence might play an important role in risk
mapping of diseases that are governed by vectors and intermediate hosts upon which the
environment introduces directional effects (e.g. direction of river flow or predominant wind
directions). Ignoring anisotropic effects is likely to influence the strength of association
and significance of model coefficients and the estimates of the spatial range parameter.
These effects might reduce model predictive ability, particularly in the presence of strong

anisotropy.
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7.7 Appendix

7.7.1 Formulas

The positive definite matrix B = {bij}i,j:m can be rewritten by B = AWA, such as
biy = a?, by = a3 and by = by = ajay. Given that cot(2a) = (byy — baz)/(2b12), the
parameter 1 can be calculated by ¢ = tan(2a(a? — a3)/(2a1az)). Furthermore, it can be
shown that:

22— to(cos’a+ z) — t,(sin*a — 2)

(cos?a + 2)?(sina — z)?

and 9/ .
5  t,—aj(sin‘a— z)

2= (cos?a+ z)
with ¢, = (—In(0.05)/r,)%, t, = (=In(0.05)/r2 o 5. and z = tan(2a)sin(a)cos(a) by using
re = —In(0.05)/1/hiBhy, for ¢ = a and ¢ = a + 0.5, and the above formula for ¢).

2

7.7.2 Code

The following code can be implemented in an OpenBUGS environment, a software that is
available free of charge by the OpenBUGS Foundation (http://www.openbugs.info/w/).
This code sets prior distributions on the anisotropy parameters and can be used to assess
the effect of anisotropy in any dataset. Of note, the compilation can take several hours
or even a few days, depending on the amount of data locations and machine power. We

implemented our models in Fortran because computation was faster.

model{
# N = number of survey locations
for (i in 1:N) {
# p = estimated disease prevalence
positives[i] ~ dbin(p[i],examined[i])
# v = spatial random effect, w = exchangable random effect
logit(pli]) <- qli] +v[i] +wl[il
qli] <- b[1] +b[2]*covariate.1[i] +b[3]*covariate.2[i] +...
}
for (j in 1:n) { b[j]l dnorm(0,0.01) }

# Omega = inverse covariance matrix, H = covariance matrix
v[1:N] ~ dmnorm(mul],Omegal,])
Omega[1:N,1:N] <- inverse(H[1:N,1:N])
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# calculating the covariance matrix
for (i in 1:N) {
for (j in 1:N) {
x[1,j] <- longitude[i]l-longitude[j]
y[i,j] <- latitude[il-latitudel[j]
dli,jl <- x[i,jI*x[i,jI*b11 +y[i,jl*y[i,jI*b22+2*x[i,jl*y[i,j]*b12
H[i,j] <- sigma.v*exp(-sqrt(d[i,j]))
1}

for (i in 1:N) {
mul[i] <- 0.0

w[li] ~ dnorm(O,tau.w) 7}

tau.w ~ dgamma(2.01,1.01)
sigma.w <- 1./tau.w
tau.v ~ dgamma(2.01,1.01)
sigma.v <- 1./tau.v

# anisotropy parameters

alpha ~ dunif(0,1.570796)
range.max ~ dunif (min,max)
range.min ~ dunif (min,range.max)

ratio <- range.max/range.min

# B matrix elements
b1l <- alxal

b22 <- a2*a2

bl2 <- psi*al*a2

# auxiliary variables

psi <- (pow(al,2)-pow(a2,2))*tan(2*alpha)/(2*al*a2)

al <- sqrt((ta*x(pow(cos(alpha),2)+z)-tox(pow(sin(alpha),2)-z))/
(pow(pow(cos(alpha),2)+z,2)-pow(pow(sin(alpha),2)-z,2)))
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a2 <- sqrt((to-pow(al,2)*(pow(sin(alpha),2)-z))/
(pow(cos(alpha),2)+z))

ta <- pow(-log(0.05)/range.max,2)

to <- pow(-log(0.05)/range.min,?2)

z <- tan(2*alpha)*sin(alpha)*cos(alpha)
}
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Abstract

Background: The need to deliver interventions targeting multiple diseases in a cost-
effective manner calls for integrated disease control efforts. Consequently maps are re-
quired that show where the risk of co-infection is particularly high. Co-infection risk is
preferably estimated via Bayesian geostatistical multinomial modelling, using data from
surveys screening for multiple infections simultaneously. However, only few surveys have

collected this type of data.

Methodology: Bayesian geostatistical shared component models (allowing for covari-
ates, disease-specific and shared spatial and non-spatial random effects) are proposed to
model the geographical distribution and burden of co-infection risk from single disease
surveys. The ability of the models to capture co-infection risk is assessed on simulated
datasets based on multinomial distributions assuming light- and heavily-dependent dis-
eases, and a real dataset of Schistosoma mansoni-hookworm co-infection in the region of
Man, Cote d’Ivoire. The data were restructured as if obtained from single disease surveys.
Estimated results of co-infection risk, together with independent and multinomial model

results, were compared via different validation techniques.

Principal Findings: The results showed that shared component models result in more
accurate estimates of co-infection risk than models assuming independence in settings of
heavily-dependent diseases. The shared spatial random effects are similar to the spatial

co-infection random effects of the multinomial model for heavily-dependent data.

Conclusion/Significance: In the absence of true co-infection data geostatistical shared
component models are able to estimate the spatial patterns and burden of co-infection risk

from single disease survey data, especially in settings of heavily-dependent diseases.
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8.1 Introduction

Communicable disease control programmes, especially in poorly-resourced settings such as
sub-Saharan Africa, require the estimation of the geographical distribution of the underly-
ing disease risk profile in order to identify areas of high burden, so that interventions can be
targeted in a cost-effective manner. Risk mapping based on Bayesian geostatistical spatial
modelling with remotely-sensed environmental covariates has become the state-of-the-art
(Diggle et al., 1998; Raso et al., 2005; Gosoniu et al., 2006; Kazembe et al., 2006; Clements
et al., 2008). A host of communicable diseases show spatially overlapping distributions
which is called co-endemicity, leading to individuals being simultaneously infected with
more than one disease (co-infection/multiple infection) (for definitions, see Glossary). In
terms of clinical presentation, multiple infections can go far beyond the combination of the
single-disease symptoms. They can lead to a significantly aggravated morbidity and even
mortality, as for example in the case of tuberculosis and HIV. However, surprisingly few
studies have addressed the issues of co-endemicity (e.g. Brooker et al. (2006) and Raso
et al. (2007b)) and co-infection (e.g. Raso et al. (2006b), Kazembe and Namangale (2007)
and Brooker and Clements (2009)). A priori knowledge of areas with high risk of multiple
infections might enhance cost-effectiveness of interventions and disease control programmes
if integrated /combined approaches are feasible (Bundy et al., 1991; Brady et al., 2006) and

will improve the understanding of the underlying causes.

The reasons for co-infections vary depending on the diseases investigated. While some
simultaneous occurring infections simply arise by chance, others are due to shared risk
factors (e.g. behavioural, climatic, environmental, ecological, demographic and socio-
economic conditions), genetic predispositions or a combination of factors. Besides being
already infected with one contagious agent might have an effect on the chances of becoming
infected with another one. As a result of the latter, true co-infection risks are likely to be
different from co-infection risks due to chance. Indeed, diseases are rarely independent and

Glossary: Definition of selected terms used in this article
Co-endemicity: An area where the investigated diseases are simultaneously endemic

Co-infection: Also known as multiple infection. This applies to individuals harbour-
ing infections simultaneously.

Mono-infection: Individuals harbour only one infection with regard to other inves-
tigated endemic infections.

Single infection: When individuals harbour an infection and other infections that

might be present are not considered.
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estimating co-endemicity while modelling each disease separate (Brooker et al., 2006) fails
to account for these relations and might give imprecise estimates of the geographical dis-
tribution of risk. Raso et al. (2006b) and Brooker and Clements (2009) have implemented
multinomial spatial models for predicting the risk of co-infection with multiple parasitic
worms (helminths). Such models depend on observed co-infection data arising from a
single survey on the same individuals. However, there is lack of this type of data since
most surveys consider single infections. Therefore, we need validated approaches in order
to estimate co-infection risk by combining data from multiple surveys screening for single

infections.

In case of independent diseases, separate model-based risk predictions based on inde-
pendent models can be multiplied/overlaid with each other in order to obtain estimates of
co-infection risk. Diseases may not be independent because they share common risk fac-
tors. To account for between-disease correlations a joint analysis needs to be carried out,
which simultaneously models disease risks. Such an approach holds promise to enhance
our understanding of the epidemiology of multiple diseases, since it identifies common risk
factors and geographical pattern. Shared component models (SCM) have been proposed
by Knorr-Held and Best (2001) and others (Tzala and Best, 2008; Kazembe et al., 2009) in
order to detect shared and divergent patterns in the risk surface, while separating the ran-
dom effects into disease-specific and shared (common) components. Common factors are
assumed “to be responsible for inter-correlations between the observed variables” (Tzala
and Best, 2008). An alternative approach proposed by Zellner (1962) is known as seemingly
unrelated regressions (SUR). SUR models consist of a set of multiple regression equations
with random effects to capture between-location correlations. The models allow across-
regression correlations in case outcomes are correlated. In contrast to SCM, SUR models
do not estimate a common random effect across the regression equations which, in the case

of co-infection would model an underlying common spatial pattern.

The aim of this paper is to assess the performance of SCM’s to estimate the geograph-
ical patterns and the amount of co-infection based on disease data obtained from two
independent disease surveys each carried out at the same locations and screening for single
infections. For this purpose, we analyse simulated as well as real data arising from a single-
disease survey screening for Schistosoma mansoni and hookworm infections simultaneously
among more than 3500 individuals in Cote d’Ivoire. However, we treat these data as if
they were obtained from separate single disease surveys in order to compare the results to

those from multinomial models (MNM) as well as models assuming disease independence.
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The MNM is considered as ‘gold standard’, since it makes use of the true co-infection data.
Model validation was carried out to identify the model with the best predictive ability.
Models were fitted on a subset of the observed locations (training locations) and validated
by comparing their predictions with data observed at the remaining locations (test loca-
tions). Comparison between observed and model based predictions was based on different
model validation approaches. The model with the best predictive ability was used for final

predictions.

The paper is organized as follows. Section 8.2 describes the datasets underlying our
models and contains the methodology of the models used and the validation approaches.
In section 8.3, results for the different simulated datasets are given, while section 8.4 details

the application with real data. Section 8.5 summarizes and discusses the main findings.

8.2 Data and Methods

8.2.1 Real data
The data which motivated this work have been collected in 2001 and 2002 in the region

of Man, western Cote d’'Ivoire. In the frame of a cross-sectional epidemiological survey,
schoolchildren’s infection status with S. mansoni and hookworm were assessed. Overall
3578 schoolchildren aged 6-16 years of 56 schools within an area of around 40x60 km were
included. Demographic data were available from education registries while information
pertaining to socio-economic status were extracted from questionnaires via an asset-based
approach (Filmer and Pritchett, 2001). The infection status was assessed by a single stool
sample of each child and processed with two diagnostic approaches (single Kato-Katz (Katz
et al., 1972) and ether-concentration method (Allen and Ridley, 1970)). More details about
the study have been described by Raso et al. (2005).

The geographic coordinates for all schools were obtained by using a hand-held global
positioning system. In the Man region, land-cover and altitude have been identified by
Raso et al. (2006b) as the key environmental covariates for the joint analysis of the two
helminth infections of interest in the current application. The data on land-cover were
downloaded from the U.S. Geological Survey (USGS) Earth Resources Observation System
(EROS) Data Center at 1x1 km spatial resolution for the period September 2001 to August
2002. Land-cover was categorized into the following 5 categories: woody savannah (used
as baseline category), tropical forest, deforested savannah/crops and tropical rainforest.

Data on altitude were obtained from an interpolated digital elevation model (DEM) from
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the USGS EROS Data Center and split into altitude levels below or above 400m.

The data are based on a single survey screening for multiple infections where co-infection
as well as mono-infection risks are measured simultaneously. Out of the total number of
schoolchildren screened for S. mansoni and hookworm infections, 680 were co-infected
(co-infection risk among the schools ranged between 0 and 60%), 862 S. mansoni mono-
infected, 869 hookworm mono-infected, whereas the remaining 1167 children showed no
infection with either parasite. For this kind of data joint disease modeling via MNM is
feasible. However, for the purpose of this study we restructured the data as if they arose
from single disease surveys screening for S. mansoni and hookworm infections carried out

at the same locations.

8.2.2 Multinomial model (MNM) formulation
(m)

Let Y ) be the binary infection outcome of individual j at location i (i = 1,...,n) and p! n
the correspondlng probability of infection for this model. The infection status k& indicates
either disease 1 mono-infection (k = 1), disease 2 mono-infection (k = 2), co-infection of
the two considered disease (k = 3), or neither of these infections (k = 4). We assume that

Y;y,?) arises from a multinomial distribution, i.e.

(Vi Y v Yoy ~ MN(L Uy, o) it i),

and we model the influence of covariates X;, location-specific random effects gbgzn) and egzn)

on the log(piﬂ /pij4 ) with = 1,2, 3 that is
MNM :log (s /o5y ) = XTB™ + e + 0",

where ﬁl(m) is the vector of regression coefficients for multinomial category [ and pg.?) / pgz)
is the risk ratio (RR) of the infection status with regard to no infection. We introduce

spatial correlation on the qzﬁgn)’s by assuming that ?z(m) = (gbg’ln), o gzﬁflT))T follow a latent
stationary Gaussian process, Ql(m) ~ MV N(0, El(m)), with variance-covariance matrix Zl(m)

(Diggle et al., 1998). An isotropic exponential correlation function is used to model geo-

Erl) = Uz2 (m)exp(_/)l(m)dir), where d;,

is the Euclidean distance between locations ¢ and r, a? ()

as partial sill, and pl(m)

graphical correlation as a function of distance, i.e. X
is the spatial variability known
is a smoothing parameter controlling the rate of correlation decay.
The geographic dependency (referred to as range) is defined as the minimum distance at

which spatial correlation between locations is less than 5% for each multinomial category
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and is calculated by 3/ pl(m). Non-spatial correlation is captured by the eglm)’s assuming

2(m)

normal distributions with fixed variance 7; (known as nugget), as eg”) ~ N(0, Tlg (m)).

8.2.3 Independent model (IND) formulation

Suppose Y;j; and p;;, are the single-infection status and probability of infection & (k =
1,2), respectively. In comparison to MNM, we assume that Y;;, arises from a Bernoulli
distribution, Y;;x ~ Be(pijx), and we model covariates X y and random effects on the logit

scale, as

IND1: logit (pix) = Xz;ék + €k
IND2: logit (pix) = Xz;ﬁk + €k + Dik-

Spatial and non-spatial correlation are introduced as in subsection 8.2.2, however IND
1 only includes non-spatial random effects €, €;x ~ N(0,72), while IND 2 additionally

includes disease-specific spatial random errors ¢, with partial sill o7 and decay parameter

Pk-

8.2.4 Shared component model (SCM) formulation
The basis of the SCM is the independent model. We introduce additional location-specific

shared components to the logit scale to incorporate possible dependencies between the

diseases at locations 7, such as

Al : logit (pij 5 + € + 0L
A2 2 logit (pijx 5 + €k + Gir + Or L
5 + Cik + )\kq)

5 + €ix + i + APy
6 + €k + 5;€E + )\k(I)
+ €k 1+ ¢zk + (5kE + )\kCI)

_1,]

(

(
B1: logit (pijk

(
C1: logit (pijk

(

) =
) =
) =
B2 : logit (piji) =
) =
) =

C2: logit (pijk

where the F;’s and ®,’s are the common non-spatial and spatial random effects, respec-
tively. Similar to the MNM we suppose that ® = (®;,...,®,)T follows a latent stationary
Gaussian process, i.e. @ ~ MV N(0,Y), with the shared variance-covariance matrix defined
as X; = o2exp(—pd;), and with F; ~ N(0,72).

The coefficients 0, and A, are referred to as factor loadings and can be interpreted as
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disease-specific weighting factors for the shared processes since the diseases might have
unobserved common non-spatial and spatial effects but at different levels. Models of type
A include shared exchangeable random effects, of type B shared spatial random effects and
of type C both forms. Models Al and A2 (B1 and B2, C1 and C2, respectively) vary in

the presence of non-common spatial random effects.

8.2.5 Model fit

Model fit was implemented within a Bayesian framework of inference. Vague normal prior
distributions were assigned to the regression coeflicients, ﬁz(m)’ ék ~ N(0,100), inverse

gamma distributions to the partial sills, al(m), o, ~ IG(1,100), and uniform priors to the

spatial decay parameters pl(m), Pk, p- The factor loadings were considered to have vague
normal distributions with mean 0 and variance of 100. In order to remove model non-
identifiability and to guarantee unique solutions for SCM’s, one factor loading of 9, and
A, had to be restricted to be positive to avoid the problem of ‘flipping states’ (another
possible solution with all factor loading changing their signs). Additionally, the common

variances 7 and o needed to be constrained to be equal to 1 (Tzala and Best, 2008).

Markov chain Monte Carlo (MCMC) simulations were used to estimate the model
parameters. We ran all models with two chain-samplers and a burn-in of 5000 iterations.
We assessed convergence by the inspection of ergodic averages of selected model parameters.
After convergence, a sample of 500 estimates of each model parameter was used for model

validation and to generate smooth risk maps of co-infection risk via Bayesian kriging.

The analyses were performed in WinBUGS v1.4.3 (Imperial College and Medical Re-
search Council, UK) and kriging was carried out in Fortran 95 (Compaq Visual Fortran
Professional 6.6.0) using standard numerical libraries (NAG, The Numerical Algorithms
Group Ltd.).

8.2.6 Validation methods

In total we fitted 9 models per dataset (one multinomial model, two independent models
and six shared component models). For each model and dataset, a sample of 80% of
the survey locations was used as training set for model fit, while the remaining 20% of
the locations (test locations) were used for validation. The goodness-of-fit of each model
was assessed using the deviance information criterion (DIC) (Spiegelhalter et al., 2002).
This measure considers the fit of the data and penalizes models that are very complex.

Accuracy and bias of the predictions were determined by comparing observed and predicted
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co-infection risk, p; and p} respectively, at the test locations i (i = 1,...,m, m < n) using
different approaches such as mean absolute errors (MAE), x? measures, Kullback-Leibler
divergences (KL) and credible intervals (CI) plots. Under the IND’s and SCM’s p} was

calculated as a product of the single-disease risk estimates.

The MAE is a measure of model accuracy calculated by
MAFE = L zm: Ip: |
- - m p pz Dif -

A x? measure is an alternative way of comparing model accuracy weighting differences

between observed and predicted values with large weights for small observed values, i.e.

1 (p; —1pi)°
2 1 K3
==y
m <= i

The KL is a weighted measure of model bias giving higher weights to large observed values

1 & Di
KL=— pilog <—*> .

For the above measures p; was replaced by the posterior median instead of the whole

as

posterior predictive distribution because it gave more coherent model validation measures.

The measures are equal to 0 if predictions are perfect.

The outcome of the CI approach is the proportion of test locations being correctly
predicted within the ¢th credible interval (restricted by the lower and upper quantiles cz’ﬁ( 2

and ci;‘( 9 respectively) of the posterior predictive distribution, i.e.

1~ _ .u
Cl, = . me([(czﬁ(q) < pi), I(cijiy > pi)))-
i=1
The best model is the one including most test locations within the smallest CI. If two
models include same proportions of test locations in the same CI, the model with the

smallest width of the interval, defined by Clitg) — cz'f:( ) is considered to be superior.
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8.3 Simulation

8.3.1 Data simulation

We simulated six different datasets for modelling co-infection risk in Fortran 95 using
standard numerical libraries (NAG, The Numerical Algorithm Group Ltd.). Simulations
were done for 200 locations equally distributed within a rectangular grid of [0,0.1]x[0,0.2]
distance units. The data have been generated from multinomial distributions with 4 cat-
egories (}QET),E/@%),K%”),KET)) ~ MN(1, pgﬁ), p%), pgg), pgﬁ)) assuming 100 individuals
screened at each location (i = 1,...,200), resulting in a sample size of 20,000 individuals.
The total sample size of 20,000 individuals is unnecessary high and was only chosen to
reduce sampling variation. The infection risks were estimated from the respective log’s
assuming only location-specific spatial and non-spatial random effects without covariates

and considering non-infected as baseline (as in subsection 8.2.2).

The model parameters used to simulate the datasets (summarized in Table 8.1) vary
to obtain six sets with either heavy (datasets 1,3,5) or light (datasets 2,4,6) dependency
between the infections. The comparison between the two types of dependency was based

on the difference between the simulated co-infection risks and co-infection risks arising by

Table 8.1: Simulation parameters used to create heavy and light dependent datasets for
two infections

“heavy dependent” “light dependent”
Parameter co-inf monol mono2 co-inf monol mono2

Dataset 1 Dataset 2

gm 1.0 -0.5 -0.5 0.0 -0.1 0.2

p™ 30 150 300 300 60 60

g2(m 010  0.01 0.01 0.05 0.01 0.01

r2m) 010  0.01 0.0l  0.05  0.01 0.01
Dataset 3 Dataset 4

gm 2.0 0.1 0.5 0.1 0.0 0.0

p™ 50 400 200 50 400 200

a2(m 005  0.05 0.05 0.05  0.05 0.05

2m) 0.05  0.05 0.05 0.05  0.05 0.05
Dataset 5 Dataset 6

gm 2.0 0.1 0.5 0.1 -0.1 0.3

p™ 400 50 200 400 50 200

o2(m 005  0.05 0.05 0.01  0.01 0.01

r2(m) 005  0.05 0.05 0.01  0.01 0.01
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Figure 8.1: Differences in co-infection due to chance and observed co-infection risk for each
dataset summarized as boxplots.

chance, that is pg”) — pis for each location i. The latter risk is computed by the product of
the single infection risks (calculated by the sum of mono-infection and co-infection risks)
per location, as pis = (07 + pi) x (7" + pli). The differences for cach dataset are
summarized in the boxplots of Figure 8.1. Dataset 1 shows a median difference in the
co-infection risks of around -9.3%, dataset 3 of 4.3% and dataset 5 of 4.5%. The 95%
quantiles for these datasets do not include 0 which indicates strong dependence between
the infections. In comparison, dataset 2 has a median difference of -2.0%, dataset 4 of 1.0%
and dataset 6 of 0.3% (including 0 within the 95% quantiles), therefore the infections are
considered to be light dependent.

The inspection of ergodic averages of selected model parameters of the IND’s and
SCM’s for the simulated datasets showed convergence after 30,000 iterations at most.
Convergence of MNM'’s was observed after about 50,000 iterations. After convergence, we
collected a sample of 500 from the posterior distribution with a thinning of 50 iterations.
Autocorrelation between samples was generally low with exception the constant term of

some models.
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Table 8.2: Model validation results for heavy dependent (1,3,5), light dependent (2,4,6)
and real datasets (7) and significance of factor loadings indicated by + (significant) or -
(non-significant)

Model DIC MAE X2 KL 6 X DIC MAE x> KL 6 X

Dataset 1 Dataset 2
MNM 3972 710 1.39 0.80 4168  4.34 1.09 0.25
IND1 2916 12.53 3.36 12.27 2054  4.38 1.07 2.17
IND2 2913 11.14 253 11.24 2953  4.43 1.06 2.08
SCM A1 2891 12.39 3.31 11.67 + 2952  4.46 1.10 224 -
SCM A2 2905 12.26 258 11.24 + 2042  4.47 1.08 214 +
SCM B1 2842 10.77 2.53 10.95 + 2940 4.51 1.09 2.11 -
SCM B2 2412 1093 2.58 11.21 - 2939 449 1.08 2.10 -
SCM C1 2825 10.79 244 1089 + + 2944 439 1.07r 213 - +
SCM C2 2751 11.21 256 1131 4+ 4+ 2959 442 1.08 214 - +
Dataset 3 Dataset 4
MNM 3939 520 0.67 0.59 4216 4.85 1.31 1.37
IND1 2833 771 121 5.53 2973  6.21 2.01 249
IND2 2832 6.46 0.87 5.20 2974 510 1.40 1.76
SCM A1 2828 7.72 122 543 + 2954  6.26 2.03 2.48 -
SCM A2 2819 6.54 089 540 - 2961 5.13 1.45 182 -
SCM B1 2825 641 0.89 5.15 + 2959 6.00 1.83 2.33 -
SCM B2 2824 644 090 5.21 + 2963 5.08 1.45 1.80 -
SCM C1 2642 6.33 085 5.06 - + 2928 586 1.73 221 - -
SCM C2 2723 6.31 08 511 - + 2947 508 140 194 - -
Dataset 5 Dataset 6
MNM 3943 557 0.75 0.33 4175  2.74 0.45 0.17
IND1 2837 6.89 0.98 498 2941 2.59 0.44 -0.35
IND2 2837 6.77 097 4.96 2952  2.74 0.48 -0.40
SCM A1 2830 6.79 099 4.83 + 2938 2,56 044 -0.35 -
SCM A2 2828 6.90 1.00 5.10 - 2952  2.82 0.51 -0.37 -
SCM B1 2801 6.71 098 4.79 + 2937 2,55 044 -0.34 -
SCM B2 2818 6.88 0.99 4.90 + 2952 2.80 0.50 -0.40 -
SCM C1 2746 6.80 096 4.7% - + 2935 254 044 -038 - -
SCM C2 2575 6.60 093 4.70 + - 2951 2.71 0.48 -0.30 - -

Raso et al. dataset
MNM 743 10.33 741 5.64
IND 1 550 11.01 6.61 11.87
IND 2 552 14.22 12.46 7.73
SCM A1 540 11.57 7.40 12.65 -
SCM A2 544 1244 875 8.62 -
SCM Bl 549 1385 10.91 9.59 -
SCM B2 543 14.12 11.83 8.89 -
SCM C1 528 1391 11.71 861 - -
SCM C2 523 13.28 1039 9.12 - -
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8.3.2 Model comparison and validation

Heavy disease dependency: The MNM’s of all heavily-dependent datasets (datasets
1,3,5) had the best predictive ability based on all validation methods except for DIC (Table
8.2 and Figure 8.2, left handed plots) while models including shared components typically
outperformed the independent models. However, independent surveys screening for single
infections do not generate multinomial data and therefore multinomial modelling is not

applicable.
For dataset 1, the introduction of shared spatial random effects (SCM’s B and C)

enhanced the predictive ability of the models, while the results with an additional shared
exchangeable random effect (SCM’s C) did not much improve the predictive ability. Among
SCM’s B and C, the models without disease-specific spatial random effects (SCM B1 and
C1) showed better validation results but were nearly indistinguishable from each other.
However, SCM B1 is the preferred model because it contains fewer parameters. The DIC
goodness of fit measure suggested that SCM B2 fitted better than the other models followed
by SCM C2. Since we were mainly interested in the predictive ability of a model rather
than its goodness of fit, we presented the results on DIC to indicate that the best fitting
models do not necessarily predict well. For dataset 3, the validation methods showed
that the best models included spatial and non-spatial shared components. However, SCM
C1 model contains the fewest parameters and therefore was chosen as the best predictive
model. Results of the simulated dataset 5 suggest that the SCM C2 was the model with
the best predictive ability.

The MNM was able to correctly estimate the parameter values used to simulate all
datesets (Table 8.1, left). The parameters estimated from models assuming single disease
surveys are not comparable to those of the MNM’s, since the latter fit multiple survey data
based on mono-infections and co-infections instead of single infections. However, we found
that the single disease estimates of 3’s and p’s are closer to the ones of the co-infection
category of MNM which might underline the importance of co-infection for these specific

datasets.

The factor loadings A and ¢ show positive contributions to the shared random effects.
Nearly all factor loadings are significantly different from zero indicating the need to include
shared components in the joint analysis of infection risk under heavy disease dependency.
The only non-significant factor loadings were d, of dataset 3 based on SCM C1 and )\, of
dataset 5 based on SCM C2. Dataset 5 was simulated to have very weak spatial correlation

in the co-infection category while dataset 1 and 3 were simulated to have strong spatial
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Figure 8.2: Validation results of the CI approach.
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correlation. Therefore, shared spatial components for dataset 5 are of less importance than
for the other datasets, while shared non-spatial components are important. This seems to

be reflected in the estimates for the factor loadings.

Light disease dependency: Table 8.2 and Figure 8.2 (right handed plots) indicate that
the MNM is the model with best predictive ability among all validation methods although
it does not fit the data best as shown by the DIC measure. The MNM’s did not fit the
light disease dependency dataset as well as the heavy dependent datasets (compare Table
8.3 and Table 8.1), specially dataset 4 and 6.

The remaining models are less distinguishable than in the case of heavily-dependent
data because the differences among all model validation methods are marginal. It follows
that the simplest models containing the fewest parameters (IND 1 or 2) are the best models
if multinomial modelling is not possible. IND 1 model predicts best for datasets 2 and 6,
while IND 2 model is considered the best predictive model for dataset 4. The factor

loadings of the corresponding shared component models are nearly always non-significant.

8.3.3 Model prediction comparison

The MNM and the best predicting model out of the remaining ones (SCM B1, IND, SCM
C1, IND 2, SCM C2 and IND1 for datasets 1-6 respectively) were used to produce co-
infection risk maps via Bayesian kriging (Figure 8.3). For the heavily dependent datasets,
the risk maps showed that the pattern of co-infection risk is quite similar. However, the
amount of co-infection risk is underestimated by the SCM’s if we consider the MNM’s as
‘gold standard’. Due to the absence of covariates and any spatial effects, the risk surface
maps for the IND’s show virtually no variation. The corresponding maps of the spatial
random effects ?:())m) of MNM and @ estimated from SCM’s (Figure 8.4) highlight the

similarity between the two sets of random effects while modeling co-infection risk.



Table 8.3: Model parameter estimates with 95% CI’s based on SCM B1 for dataset 1/3, IND 1 for dataset 2/6/7, IND 2 for

dataset 4, SCM C2 for dataset 5 (shared parameters centered between single infection estimates of column 6 and 7).

Data- Para- MNM Best model
set  meter co-infection mono-infection 1* mono-infection 2f  single infection 1*  single infection 27
1 Bo 1.11 (0.89, 1.34) -0.51 (-0.55, -0.48)  -0.52 (-0.56, -0.49) 0.87 (0.74, 0.98) 0.87 (0.74, 0.98)
p 38.9 (22.7, 73.3)  285.2 (130.3, 443.0) 327.2 (144.7, 444.8) 106.4 (69.8, 156.3)
o? 0.10 (0.04, 0.21) 0.01 (0.00, 0.03) 0.01 (0.00, 0.03) - -
T2 0.10 (0.06, 0.15) 0.01 (0.00, 0.02) 0.02 (0.00, 0.03) 0.00 (0.00, 0.01) 0.01 (0.00, 0.01)
A - - - 0.39 (0.34, 0.44) 0.37 (0.33, 0.43)
2 Bo 0.02 (-0.03, 0.07) -0.13 (-0.16, -0.09)  -0.20 (-0.24, -0.17) 0.05 (0.02, 0.08)  -0.01 (-0.04, 0.01)
0 263.6 (114.0, 442.1) 174.4 (61.3, 417.3)  221.3 (85.3, 431.6) - -
o? 0.03 (0.01, 0.07) 0.01 (0.00, 0.02) 0.01 (0.00, 0.03) - -
72 0.03 (0.01, 0.07) 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 0.03 (0.03, 0.04) 0.03 (0.02, 0.03)
3 5o 2.04 (1.86, 2.18) 0.06 (-0.02, 0.12) 0.48 (0.42, 0.54) 1.20 (1.07, 1.33) 1.51 (1.41, 1.60)
p 72.7 (25.5, 165.8)  274.9 (63.0, 442.6)  291.0 (43.2, 441.5) 75.4 (26.7, 163.7)
o? 0.07 (0.03, 0.14) 0.05 (0.01, 0.13) 0.04 (0.01, 0.12) - -
72 0.04 (0.01, 0.08) 0.07 (0.01, 0.12) 0.08 (0.01, 0.13) 0.04 (0.01, 0.09) 0.05 (0.01, 0.08)
A - - - 0.30 (0.20,0.41)  0.19 (0.10, 0.27)
0 - - - 0.10 (0.01, 0.30) 0.08 (-0.12, 0.27)
4 Bo  0.00(-0.13,0.09)  -0.03 (-0.14, 0.05)  -0.01 (-0.23,0.10)  0.11 (-0.26, 0.45)  0.13 (-0.10, 0.32)
0 25.9 (21.7, 49.8) 82.4 (22.4, 418.4) 35.8 (22.1, 402.9) 25.4 (21.6, 59.3) 28.9 (21.7, 370.7)
o2 0.11 (0.07, 0.19) 0.09 (0.06, 0.16) 0.10 (0.06, 0.17) 0.11 (0.07, 0.18) 0.09 (0.05, 0.14)
72 0.08 (0.06, 0.11) 0.09 (0.06, 0.12) 0.10 (0.07, 0.13) 0.07 (0.05, 0.10) 0.07 (0.05, 0.10)
5 Bo 2.02 (1.96, 2.08) 0.03 (-0.09, 0.14) 0.49 (0.41, 0.55) 1.18 (1.10, 1.27) 1.51 (1.45, 1.56)
o) 290.2 (96.1, 443.3) 92.7 (26.8, 216.1) 290.6 (54.3, 440.8) 116.7 (29.2, 425.4) 261.7 (41.9, 437.4)
269.0 (49.8, 443.9)
o? 0.05 (0.01, 0.12) 0.07 (0.02, 0.13) 0.04 (0.00, 0.13)  0.03 (0.00, 0.06)  0.02 (0.00, 0.06)
T2 0.06 (0.01, 0.12) 0.04 (0.01, 0.09) 0.09 (0.01, 0.14) 0.03 (0.00, 0.08) 0.03 (0.00, 0.06)
A - - - 0.17 (0.01, 0.32) 0.08 (-0.13, 0.28)

Continued on next page
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Data- Para- MNM Best model
set  meter co-infection mono-infection 1* mono-infection 2f  single infection 1*  single infection 21
0 - - - 0.24 (0.09, 0.35) 0.20 (0.05, 0.30)
6 Bo 0.14 (0.00, 0.23)  -0.08 (-0.18, 0.00)  0.36 (0.29, 0.48)  -0.16 (-0.19, -0.13)  0.28 (0.25, 0.31)
P 23.5 (21.5, 33.8) 23.3 (21.6, 32.1) 23.1 (22.6, 32.7) - -
o? 0.06 (0.04, 0.09) 0.06 (0.04, 0.10) 0.06 (0.04, 0.09) - .
72 0.04 (0.03, 0.05) 0.04 (0.03, 0.05) 0.04 (0.03, 0.05) 0.04 (0.03, 0.05) 0.03 (0.02, 0.04)
Raso 5o -0.04 (-1.29, 1.66) 0.14 (-1.12, 3.61) -0.98 (-1.49, -0.46)  0.41 (-0.35, 1.07)  -0.63 (-0.97, -0.28)
By -048 (-1.85,1.34)  -0.88 (-2.45,1.04)  0.46 (-0.09,0.98)  -1.93 (-2.74,-1.17)  0.34 (-0.09, 0.72)
B 0.61 (-0.18, 1.43) 0.57 (-0.24, 1.43) 0.65 (0.05, 1.29) 0.43 (-0.54, 1.33) 0.55 (0.10, 1.03)
By -0.44 (-1.41,0.67)  -0.61 (-1.74,0.55)  0.28 (-0.49, 1.11)  -0.75 (-1.88, 0.51)  0.24 (-0.37, 0.87)
B4 0.22 (-0.89, 1.30) 0.32 (-1.06, 1.80) 0.35 (-0.65, 1.34) 0.36 (-0.96, 1.97) 0.25 (-0.48, 0.98)
p 10.1 (1.01, 248.) 17.8 (2.83, 245.) 1.28 (0.53, 10.0) - -
o? 1.57 (0.10, 11.0) 1.89 (0.05, 14.8) 0.26 (0.04, 0.70) - -
72 0.43 (0.06, 1.47) 0.47 (0.07, 1.81) 0.30 (0.05, 0.81) 1.82 (1.14, 2.99) 0.39 (0.25, 0.66)

Bo constant, £ altitude levels > 400m, (5 tropical forest, 83 deforested savannah/crops, (4 tropical rainforest
*: Corresponds to S.mansoni infection in dataset 7.
t: Corresponds to hookworm infection in dataset 7.
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Figure 8.3: Co-infection risk surface for MNM and best fitting model for simulated datasets.
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Figure 8.4: Spatial random effect surface for MNM and heavy—dependent simulated
datasets.

8.4 Application

Convergence of the applied data was achieved at about 50,000 iterations for the IND’s and
SCM’s and at 80,000 for the MNM. After convergence occurred, every 50th iterations of
each chain was stored to collect an uncorrelated sample of 500 iterations from the posterior
distributions. Model validation results based on these samples showed that the MNM is
the best predicting model based on MAE, KL and CI plot, while it is outperformed by
IND 1 for x? (see Table 8.2 and Figure 8.2, lower figure). Irrespective of MNM, IND 1
shows an overall good performance not only in the y? method but also for MAE and CI
plot. Therefore, we consider IND 1 as the overall best model to predict co-infection risk
from surveys screening for single infections for this dataset. Additionally, this model has
the fewest parameters. The resulting co-infection risk plots of the MNM and IND 1 are
presented in Figure 8.5 showing similar patters of risk but slightly underestimated by IND
1 compared to MNM.
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Dataset Raso et al. - MNM Dataset Raso et al. - IND 1

Predicted co-infection
prevalence

<10.1%

10.1-15.0%

15.1 - 20.0%
W 20.1-25.0%
W >250%

0 5 10 20 30  40km

Figure 8.5: Co-infection risk surface for MNM and best fitting model for applied dataset.

Parameter estimates for MNM and IND 1 are given in Table 8.3 (dataset 7). The spatial
ranges are estimated to be 0.30 km (0.01 km, 2.97 km) for co-infections, 0.17 km (0.01 km,
1.06 km) for mono-infections with S.mansoni and 2.34 km (0.30 km, 5.66 km) for mono-
infections with hookworm. These estimates are close to the minimum distance between
locations (0.81 km) and the spatial resolution of the prediction map (1 km) suggesting weak
spatial correlation. These findings go hand in hand with the previous analysis by Raso
et al. (2006b) who used a similar MNM model to estimate co-infection risks in the region
of Man. The weak spatial correlation can be explained by the the weak spatial patterns
in hookworm (Raso et al., 2006a) and S.mansoni (Raso et al., 2005) single infections
(spatial range of about 1.8 km and 7.5 km, respectively). In addition, these results explain
the good performance of the independent non-spatial model in model validation. IND
1 estimates are usually closer to the corresponding estimates of mono-infection than co-
infection. The factor loadings d, and Ay of SCM C1 for S.mansoni and hookworm single
infections are including zero within their 95% CI of which further supports the assumption

of independence between the two diseases.

8.5 Conclusion

In this study, we assessed the performance of SCM’s to estimate the geographical distribu-
tion of co-infection risk from independent surveys screening individuals for single infections.

Our results suggest that the MNM'’s always perform best and can be considered as ‘gold
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standard’. However, in real situations we rarely have surveys screening simultaneously
for multiple infections. Therefore, MNM’s are not applicable. Studies often ignore the
presence of disease dependence and treat data as truely independent. Our simulation
studies suggest that this approach performs well for light-dependent diseases. However,
for heavily-dependent ones, SCM’s are able to capture disease correlation and give rise to
models with better predective ability than independent models. This is important when we
are interested in identifying geographical patterns of co-infection risk. In real applications,
we are not able to assess whether diseases are heavily- or light-dependent. Therefore, we
recommend to fit the SCM as well as IND models on a subset of the data (e.g. 80%) and
to assess the predictive ability of the models on the remaining test locations. If there are
virtually no differences between the models, the diseases are likely to be independent from
each other in the given setting and therefore the independent model is appropriate. Based
on our simulations results we also expect that for heavily-dependent data factor loadings

tend to be significant while for light-dependent data they are indistinguishable from O.

The different model validation methods were coherent in the choice of the most ap-
propriate model in case the models were distinguishable. However, the DIC measures
frequently disagreed because DIC is a goodness of fit measure and can not be used to

compare the predictive ability of the models.

The geographical pattern of the spatial co-infection random effect of the MNM'’s was
similar to those obtained from the shared spatial random effect of SCM’s for heavily-
dependent diseases. Therefore the latent factor of the shared model can be interpreted as
error introduced by co-infection. Concluding, SCM’s with shared spatial random effects
perform better than independent models in heavily disease-dependent settings. On the
other hand, IND’s and SCM’s are not distinguishable for slightly disease dependent data.

In this study, we assumed that the diseases have all survey locations in common. This
assumption might not be true in real applications where locations are not aligned across
surveys. In such a case multinomial modelling is not possible but the SCM approach based
on single infections can be readily adjusted to this problem in the Bayesian framework.
The unknown prevalence has to be predicted and the introduced uncertainty can be incor-
porated in an error term which will finally result in higher uncertainty of co-infection risk.
This work is currently in progress. Furthermore, we restricted our work for this paper to
only two diseases due to simplicity. As presented by Held et al. (2005), considering three

or even more diseases in shared component models is feasible and straight forward.
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8.6 Appendix

In this section, we provide an example BUGS code for the most complex model used in
this manuscript (SCM C2). Implementation of the other models is straight forward by

removing the unnecessary parameters.

modelq{
for (4 in 1:N){
# N is the number of survey locations
# Z1/2 the number of positives for disease 1/2
# x1/2 the estimated proportion of positives for disease 1/2
Z1[i] ~ dbin(x1[i],100)
z2[i] ~ dbin(x2[i],100)
logit(x1[i]) <- b[1,1] +v.a[l]l*v.s[i] +v.n[1,i] +w.all]l*w.s[i] +w.n[1,i]
logit(x2[i]) <- b[1,2] +v.al[2]*v.s[i] +v.n[2,i] +w.a[2]*w.s[i] +w.n[2,i]

for (j in 1:2){ b[1,j] ~ dnorm(0,0.01) }

for (i in 1:M){

# w.n is the non-spatial non-shared random error
mul[i] <- 0.0
w.nl[1,i] ~ dnorm(0,tau.wn[1])
w.n[2,i] ~ dnorm(0,tau.wn[2])

# w.s is the non-spatial shared random error
w.s[i] ~ dnorm(0,1.0)}

v.n is the spatial non-shared random error
.n[1,1:N] ~ spatial.exp(mul], x[], y[], tau.vn[1], rho.vn[1],1)
.n[2,1:N] ~ spatial.exp(mull, x[], y[l, tau.vn[2], rho.vn[2],1)

v.s is the spatial shared random error
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v.s[1:N] ~ spatial.exp(mul], x[], y[], 1.0, rho.vs,1)

# rho is the spatial decay parameter
rho.vs ~ dunif(21.5,450)

rho.vn[1] ~ dunif(21.5,450)
rho.vn[2] ~ dunif(21.5,450)

# tau is the spatial precision and sigma the spatial variance

tau.vn[1] ~ dgamma(2.01,1.01)
tau.vn[2] ~ dgamma(2.01,1.01)
tau.wn[1] ~ dgamma(2.01,1.01)
tau.wn[2] ~ dgamma(2.01,1.01)

sigma.vn[1] <- 1/tau.vn[1]
sigma.vn[2] <- 1/tau.vn[2]
sigma.wn[1] <- 1/tau.wn[1]
sigma.wn[2] <- 1/tau.wn[2]

# w.a is the non-spatial factor loading
w.al[1l] ~ dnorm(0,0.01)I(0,)

w.al[2] ~ dnorm(0,0.01)

# v.a is the spatial factor loading
.al[1] ~ dnorm(0,0.01)I(0,)

.a[2] ~ dnorm(0,0.01)

“+ < <
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This PhD thesis contributes to the field of schistosomiasis epidemiology with (i) Bayesian
isotropic and anisotropic geostatistical models for high spatial resolution schistosomiasis
risk mapping and prediction based on age-heterogeneous historical survey data collected
over very large number of locations; (ii) statistical methodology for assessing the geograph-
ical distribution of co-infection from independent single-disease surveys when diseases are
correlated; and (iii) spatially explicit estimation of schistosomiasis risk and number of
infected people in 29 countries across West and eastern Africa. Hence, for first time, em-
pirical model-based evidence of schistosomiasis risk and burden in those regions is provided.
These estimates are of considerable importance for schistosomiasis control programmes, as
they indicate high-risk areas requiring interventions, allow calculations of the number of
praziquantel tablets required based on WHO guidelines at the appropriate administrative
level, and provide baseline maps to assess effectiveness of interventions on the roadmap

towards schistosomiasis elimination.

The methodology and results of our research are described in six manuscripts included
as chapters in this thesis. Three manuscripts are published, in PLoS Neglected Tropical
Diseases (Schur et al., 2011b), in Parasites & Vectors (Schur et al., 2011d) and in Statistics
in Medicine (Schur et al., 2011a), one manuscript is in press, in Acta Tropica (Schur et al.,
2011c), and one manuscript has been submitted to Statistics in Medicine. In each chapter,
a detailed discussion on the findings is provided. In the following sections, a summary of
the main outcomes and important limitations of the respective analyses is presented, which
will allow to put forward a set of recommendations for future research and as well as some

implications to schistosomiasis control.

9.1 Significance of work and implications for control interven-

tions

After a long period of general neglect, there is growing interest in the control of schistosomi-
asis and other neglected tropical diseases (Hotez et al., 2007; Fenwick et al., 2009; Utzinger
et al., 2009). However, despite successful control efforts in different parts of the world,
schistosomiasis remains highly prevalent, particularly in sub-Saharan Africa (Steinmann
et al., 2006; Utzinger et al., 2009). Common control strategies are based on large-scale ad-
ministration of anthelminthic drugs, delivered through the public school system, improved
sanitation and hygiene, and vector control campaigns (Davis, 2009). Financial resource al-
location and implementation of such control strategies should be driven by evidence-based

information on the geographical distribution and disease burden in order to meet the needs
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of the local populations and to optimally target control interventions. Currently, decisions
are only based on rough estimates due to a lack of accurate and up-to-date disease risk

estimates.

High resolution spatially explicit model-based risk maps are essential tools for all phases
of control and monitoring activities - starting from the planning, over to the implementa-
tion and coordination phase, and even evaluation of interventions - especially in resource-
constrained settings. In the planning phase, the maps can guide control interventions in
a cost-effective manner by highlighting areas of high risk and areas with imprecise risk
estimates that need additional surveys. The maps may also guide the efficient allocation
of sparse resources avoiding stock-out problems for equipment and drugs by providing es-
timates on the number of infected people and treatment needs. Additionally, subsequent
mapping efforts could monitor the effect of control activities and assess their impact. Fur-
thermore, maps on the spatial distribution of different diseases in the same region could
identify areas of high co-endemicity guiding integrated intervention approaches to improve

cost-effectiveness.

In this thesis, the first model-based S. haematobium and S. mansoni prevalence maps at
high spatial resolution are presented for the eastern and western African region. Bayesian
geostatistical models were employed, approximating the spatial process from a subset of
locations to overcome modelling of geostatistical data collected over large numbers of lo-
cations (Banerjee et al., 2008; Gosoniu et al., 2011a; Rumisha et al., 2011). The survey
data were obtained from the readily available open-access GNTD database (Hiirlimann
et al., 2011). Different sets of climatic and other environmental data were implemented
in the models to evaluate the effect on schistosomiasis prevalence and to predict the out-
come at high spatial resolution in order to detect potential hotspots of schistosomiasis
transmission. Small transmission hotspots could arise due to the focality of the schistoso-
miasis distribution, which is an important epidemiological feature of the disease (Lengeler
et al., 2002). In separate analyses, the effect of anisotropy was assessed, shared component
geostatistical models were developed, assessing co-endemicity from single disease survey
data, and finally age-alignment factors were estimated to obtain age-adjusted disease risk
maps. Furthermore, several model validation procedures were used to assess accuracy of
the model-based predictions and to compare different models. Gridded population count
data for the year 2008 were obtained from LandScan, projected to 2010 by applying aver-
aged national growth rates for the period from 2006 to 2010 and adjusted age groups of

interest. Finally, these population count data were combined with the schistosomiasis risk
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estimates underlying the prediction maps and to obtain country-specific and population-
adjusted prevalence estimates and number of infected individuals for an ensemble of 29

castern and West African countries.

Prior to our work, existing and widely cited statistics on the number of individuals in-
fected with schistosomiasis as published by Chitsulo et al. (2000), Steinmann et al. (2006)
and Utzinger et al. (2009) were mainly based on interpolated disease risk estimates pub-
lished by Utroska et al. (1989). These estimates are unreliable because they are lacking
empirical modelling to account for the disease-environment relation. In addition, envi-
ronmental transformations, population movement, mass drug administration and other
control interventions are likely to have modified the distribution of schistosomiasis (Stein-
mann et al., 2006; Fenwick, 2006; Fenwick et al., 2009; Utzinger et al., 2009; WHO, 2010;
WHO and UNICEF, 2010) outdating estimates based on the ones published by Utroska
et al. (1989).

Table 1 compares the burden estimates obtained from our work and the ones from
Chitsulo et al. (2000) over all countries in continental Africa (detailed results are provided
in Chapters 4 and 6). In total, Chitsulo and colleagues estimated 174 million Schistosoma
spp. infections in continental Africa, with 129 million alone in West and eastern Africa.
Our estimates for West (50.8 million) and eastern (121.8 million) Africa sum up to a total of
almost 173 million Schistosoma infections, which is 34% higher than the Chitsulo estimates
for those regions. However, our eastern Africa estimates are based on age-aligned models
and thus correspond to the entire population, while our West Africa estimates refer to
individuals <20 years. Model validation had shown that regional alignment factors resulted
in more accurate predictions than country-specific ones. Employing the same alignment
factors for West Africa, we obtain approximately 140 million infected individuals of the
entire population in the region. This leads to a total of about 262 million infections in
both, West and eastern Africa, which would exceed the Chitsulo estimate by more than
100%.

The Chitsulo et al. estimates for the remaining countries in South, Central and North
Africa sum up to 45 million additional infections. This estimate does not take into account
the large population changes in some highly endemic countries, such as Chad, Democratic
Republic of the Congo, Egypt and South Africa (United Nations, 2007). Based on our
West and East Africa analysis, we might assume that the number of infected in the re-
maining African countries could be as high as 90 million (100% more than the Chitsulo

estimate). Therefore, the total number of infected with schistosomiasis in continental
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Africa might even be higher than 350 million. However, this estimate does not take into
account the progress made with national control programmes, for example in Egypt (Bank,
2008). However, the above estimates consider neither the low sensitivity of the diagnostics
methods, especially in low infection intensity areas and if repeated samples are not taken
(de Vlas and Gryseels, 1992; Marti and Koella, 1993; Engels et al., 1996; Yu et al., 1998;
Utzinger et al., 2001), nor the additional small burden due to S. intercalatum, which is
however declining (Tchuem Tchuenté et al., 2003).

Table 9.1: Country-specific estimates of the total population and number of infected indi-

viduals with schistosomiasis for continental Africa in 1995 and 2010. Disease risk estimates

for 2010 are based on the median of model-based predictions adjusted for the total population,
while 1995 estimates are survey interpolations presented by Chitsulo et al. (2000).

Country Total Schistosoma spp. S. haematobium- S. mansoni-
population infected infected infected
1995 2010 1995 2010 2010 2010
Algeria 28.0 33.931 2.10 - - -
Angola 10.8 13.226 4.80 - - -
Benin 5.5 8.030 1.95 2124 ¢ 1.792 @ 0.940 ¢
Botswana 1.5 1.889 0.15 - - -
Burkina Faso 10.4 16.100 6.24 4.738 @ 4.282 ¢ 1.446 @
Burundi 6.3 9.445 0.84 3.806 2.820 1.908
Cameroon  13.3 19.300 3.02 2.668 ¢ 2.099 ¢ 0.952 ¢
Central 3.3 4.623 0.33 - - -
African
Republic
Chad 6.4 10.568 2.78 - - -
Congo 2.6 4.576 0.89 - - -
Congo, DRC 49.0 70.691 13.84 - - -
Cte d’Ivoire 14.0 19.200 5.6  4.286 ¢ 3.229 ¢ 2.262 ¢
Djibouti - 0.512 - 0.147 0.061 0.107
Egypt 57.8 82.376 10.06 - - -
Equatorial 0.4 0.647 0.008 - - -
Guinea
Eritrea 3.6 5.477 0.26 2.329 1.218 1.710
Ethiopia 56.4 89.500 4.00  29.095 16.157 19.746
Gabon 1.1 1.378 0.50 - - -
Gambia 1.1 1.770 0.33 0.173 ¢ 0.168 ¢ 0.005 ¢
Ghana 17.1 22.100 12.40 5912 ¢ 5.077 ¢ 2.659 ¢
Guinea 6.6 8.885 1.70  2.259 ¢ 1.824 @ 0.999 ¢
Guinea- 1.1 1.545 0.33 0.218 @ 0.203 ¢ 0.024 ¢
Bissau
Kenya 26.7 40.300 6.14  16.693 6.209 13.833
Lesotho - 2.126 - - - -
Liberia 2.7 2.900 0.648 0.924 ¢ 0.658 ¢ 0.588 ¢

Continued on next page
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Country Total Schistosoma spp. S. haematobium- S. mansoni-
population infected infected infected
1995 2010 1995 2010 2010 2010
Libya 5.4 6.126 0.27 - - -
Malawi 9.8 14.400 4.20 6.883 5.047 3.764
Mali 9.8 13.080 5.88 2.291 ¢ 1.997 @ 0.845 @
Mauritania 2.3 3.503 0.63 0.333 ¢ 0.299 @ 0.055 @
Morocco 26.6 34.396 0.06 - - -
Mozambique 16.2 20.200 11.3 11.224 8.263 6.960
Namibia 1.5 2.078 0.009 - - -
Niger 9.0 14.242 2.40 1.397 ¢ 1.321 @ 0.179 @
Nigeria 111.3 152.566  25.83 18.754 ¢ 15.741 @ 9.257 @
Rwanda 6.4 10.700 0.38 3.93 3.113 1.639
Senegal 8.5 11.200 1.30 1.464 ¢ 1.338 @ 0.183 ¢
Sierra Leone 4.2 6.455 2.50 1.999 @ 1.792 @ 0.853 ¢
Somalia 9.5 9.150 1.71 3.890 2.230 2.851
South Africa 41.5 48.766 4.50 - - -
Sudan 26.7 42.100 4.85 16.416 9.148 11.976
Swaziland 0.9 1.146 0.23 - - -
Tanzania 29.6 42.100 15.24 15.304 9.666 8.119
Togo 4.1 5.548 1.03 1.251¢ 1.102 @ 0.419 @
Tunisia 9.0 10.398 0.0002 - - -
Uganda 19.2 33.600 6.14 8.511 5.450 4.343
Western Sa- - 0.404 - - - -
hara
Zambia 9.0 10.900 2.39 3.578 2.635 1.706
Zimbabwe 11.0 11.553 4.40 - - -
TOTAL 697.2 975.706 174.165 172.597 114.939 100.328

@ Estimates based on individuals <20years only.

The global schistosomiasis burden is currently believed to be 4.5 million disability-
adjusted life years (DALYs) lost (WHO, 2002), but discussions on the appropriate assign-
ments of disability weights are still ongoing (King et al., 2005; Hotez, 2009). During the
2010 annual meeting of the American Society of Tropical Medicine and Hygiene, Prof.
Charles King elaborated in his talk “Revising global burden disease estimates for schis-
tosomiasis” that the term schistosomiasis should not just relate to individuals currently
excreting eggs, but also to all individuals who are still suffering from the adverse effects
of previous infections, such as stunning or aenemia. Applying this definition, he estimated
more than 440 million schistosomiasis cases worldwide and a global burden between 8.9-
16.1 million standard DALY lost annually. Even though this definition and the resulting
estimates might be provocative, they highlight that schistosomiasis is causing morbid se-
quelae that affect quality of life even if the disease is cured. Our new schistosomiasis risk

estimates for various countries in Africa can assist in revising and refining the existing
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burden estimate on an evidenced-based foundation. Due to the general trend of increasing
numbers of infected individuals in the presented countries, the total burden estimates may

be even higher.

WHO recommends annual treatment of school-aged children in areas with a schistoso-
miasis prevalence equal or larger than 50%, biannual treatment in areas with risk 10-49%
and treatment at the start and end of schooling in endemic areas with risk <10% (WHO,
2002). Disease risk estimates combined with the above recommendations can be used to
estimate the number of treatment needed (Utzinger et al., 2009). Therefore, our work is
very important in disease control since it can be used to estimate the number of treat-
ment required at any administrative level varying from country to community. It also
helps in optimizing the distribution of drugs which currently are not sufficient to cover the

treatment needs of the infected populations.

The launch of the open-access GNTD database is a big step forward in the epidemi-
ological research related to neglected tropical diseases. The database is a rich source of
schistosomiasis prevalence data, especially in Africa, and covers several decades of surveys
for historical and contemporary mapping purposes (Hiirlimann et al., 2011). It makes the
data available for research of other groups to further refine the tools we have in estimating

disease burden at high spatial scales.

9.2 Limitations

Prevalence data are not reported in literature by standard age groups. In addition, some
researchers do not report their data at the geographical unit they were collected, but rather
as regional averages, or do not properly state the survey population, diagnostic method or
survey date. Efforts were made to contact the authors in order to obtain the original data
as accurate as possible, but response rate was generally low. This led to the exclusion of a
number of survey locations and a reduction of the final dataset lowering model accuracy.
This is of particular importance for regions with already sparse data. Even though we
tried to access as much grey literature as possible for the GNTD database, there remained
significant areas of sparse data because of a lack of surveys, data inaccessibility or data
loss due to inappropriate archiving procedures, civil war or political unrests.

Many locations included in the GNTD database had to be retrospectively geo-referenced

due to missing coordinate information (Hiirlimann et al., 2011). Frequent methods of geo-
locating included the use of the GEOnet Names Server (GNS) database, Google Maps,
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and the estimation of the village location based on maps of the study region and addi-
tional contextual information on the location provided in the corresponding publication.
The reliability of the identified coordinates based on these approaches is difficult to as-
sess (Stanislawski et al., 1996; Bonner et al., 2003) and will influence the uncertainty of
model parameters, especially the spatial range parameter, and model-based predictions.
Furthermore, we assigned the prevalence estimates to specific localities, although surveys
cover areas rather than single points on the map. For instance, school prevalence data
refer to the area around the school where the children are living and not only the school
locality. The size of these areas varies from survey to survey and can hardly be defined.
These effects might be addressed by the point-radius method which assigns an area of un-
certainty around the geo-located position (Wieczorek et al., 2004). However, we consider
the benefits of this method for the present thesis as marginal given the scales of prediction

and the large spatial range estimates.

Standard geostatistical models assume that the origin of the survey locations is stochas-
tically independent from the underlying spatial process (Diggle et al., 1998) and all loca-
tions in the prediction area are equally likely to be sampled. However, survey locations are
typically chosen according to prior expectations on the observed prevalence and are likely
to be concentrated in sub-regions above the average prevalence. This issue is referred to as
preferential sampling in the statistical literature. Ignoring preferential sampling could lead
to overestimation of the model-based predictions due to oversampling of high prevalence
values (Diggle et al., 2010). Survey data obtained from the GNTD database contain many
surveys with low observed prevalence levels, for example in West Africa 45% and 73%
of the survey locations were below 10% for S. haematobium for S. mansoni, respectively,
while in 20% (S. haematobium) and 50% (S. mansoni) of the locations no infection was
found. We believe that many surveys in the GNTD database only reported Schistosoma
infections as side outcomes, due to the same stool examination methods that allow for the
concurrent diagnosis of S. mansoni while actually screening for soil-transmitted helminth
infections. Therefore, the error due to preferential sampling might be less prominent in

the compiled schistosomiasis survey data than for other survey data.

Schistosomiasis is a highly environmentally driven disease due to the intermediate host-
parasite relationship (Rollinson et al., 2001; Malone, 2005). Environmental covariates can
be used in geostatistical models to describe the transmission processes and to predict schis-
tosomiasis risk at unsampled locations. Some environmental covariates are extracted from

satellite data, however, the relation between satellite signals and actual ground conditions
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is not constant across large regions and it remains unclear how well satellite information
approximates the ground conditions. Research in this area is ongoing to obtain better
proxies on ground conditions for epidemiological purposes (Hay et al., 2006; Scharlemann
et al., 2008). The relationship between outcome and predictors is often non-linear. A com-
mon approach to account for non-linearity, which is often used and we also employed in
this thesis, is to categorise covariates. Categorisation might be based for example on prior
knowledge of the form of the relationship (which may result in undersampled categories),
on quantiles of the data (which might lead to inappropriate cut-offs), or on a combina-
tion of these methods. While the choice of such abrupt cut points is unreasonable, the
interpretation of the results is straight forward. Non-parametric regressions using spline
approaches are an alternative (Gosoniu et al., 2009; Magalhaes et al., 2011). For instance,
Crainiceanu et al. (2004) proposed a Bayesian approach to penalized splines which was
further implemented by Gosoniu et al. (2009) in malaria risk mapping. Climatic environ-
mental data obtained from satellites are available at high temporal resolution. They are
summarised over an interval prior to the survey date in order to be linked to the disease
data. In malaria risk mapping, lag time analyses have been performed to assess the appro-
priate period, between certain environmental conditions and infection, during which each
environmental covariates with temporal variation should be averaged (Riedel et al., 2010).
However in contrast to malaria, schistosomiasis is a chronic disease and the exact date of
infection is usually unknown, and hence lag time analysis is not meaningful. Yearly or long-
term averages can be used instead to assess general effects on schistosomiasis transmission,
but abnormal conditions that might have altered the disease distribution can not be as-
sessed. The choice of the most vital environmental predictors to model schistosomiasis risk
is important. So far, analyses were mainly conducted on a set of environmental covariates
based on expert opinions and bivariate logistic regression results. Variable choice based
on expert opinions might lead to the wrong selection of model parameters by either miss-
ing factors of local importance, or including redundant covariates introducing unnecessary
uncertainty in the model. Covariate selection via bivariate regressions might also lead to
redundant covariates in a multivariate framework and may result in model convergence
problems due to correlation between parameters. For the analysis of schistosomiasis in
eastern Africa and for the implementation of anisotropy in this thesis, we determined the
best set of covariates using Gibbs variable selection (George and McCulloch, 1993). This
approach allows to estimate the posterior predictive probability of the models and chooses

a parsimonious, however best fitting, set of covariates. In future, large-scale interventions



170 Chapter 9. Discussion

may confound the environmental effects, as it has been observed in malaria risk mapping
(Gosoniu et al., 2010; Riedel et al., 2010).

Schistosomiasis risk varies with age and between gender (Jordan and Webbe, 1982;
Hotez et al., 2006a; Davis, 2009). Large-scale schistosomiasis risk modelling based on
complied age-heterogeneous survey data should take into account this variation, but strat-
ified results by age and gender are often not published. Inclusion of all data without
accounting for age-dependency would result in imprecise schistosomiasis risk estimates,
while exclusion of the most heterogeneous surveys in age would result in lower model
accuracy due to the reduced number of survey locations, especially in areas with sparse
data. For the first time in geostatistical risk mapping of schistosomiasis, we took into
account age-heterogeneity between surveys via the estimation of alignment factors relating
disease risk between school-aged children, adults and entire communities. This approach
improved model-based predictions. However, we assumed constant risk within each of the
aforementioned groups. In this respect, we ignored important differences in risk espe-
cially among childhood and adolescence. In order to transform the observed prevalence
for a given age group into a prevalence of standardised age, mathematical descriptions of
schistosomiasis age-prevalence curves could be coupled with geostatistical models to align
age-heterogeneous surveys. For instance, Gemperli et al. (2006b) and Gosoniu (2008)
obtained age-adjusted malaria risk maps from heterogeneous surveys using mathematical
malaria transmission models. Holford and Hardy (1976) developed an immigration-death
model to describe the schistosomiasis age-prevalence curves from cross-sectional survey
data. Raso et al. (2007a) further extended the aforementioned model to take into account
diagnostic sensitivity and formulated it using Bayesian geostatistical models. Furthermore,
age-prevalence curves would need to be fitted and implemented for different transmission
settings in order to capture the so-called peak shift, that relates to the shifting of transmis-

sion peaks to later ages of childhood and adolescence in low transmission areas (Woolhouse,
1998).

Compiled schistosomiasis survey data are not only heterogeneous in age but also in
the methods used to diagnose schistosomiasis. Each diagnostic method has a different
sensitivity and specificity depending on infection intensity (Bergquist et al., 2009). Mul-
tiple samples per individual are analysed to reduce diagnostic error, however the number
of sampling efforts is not standardised and depends on available resources. Hence, pool-

ing of prevalence data obtained via different diagnostic methods and sampling efforts is
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likely to result in incorrect disease risk estimates. In this thesis, we addressed diagnostic-
incomparability by omitting surveys based on non-direct diagnostic techniques, because
this techniques have very different sensitivity and specificity as compared to direct tech-
niques. The geostatistical models could be improved by incorporating diagnostic sensitivity
and specificity parameters (Wang et al., 2008). However, many surveys have incomplete
information on the diagnostic methods, which either results to an exclusion of such surveys,
or which requires assumptions on the diagnostic methods and hence introducing further

bias.

Another important modelling assumption limiting the power of the models used for
large-scale risk mapping was that of stationary spatial processes. Stationary models imply
that the spatial correlation is only a function of distance and independent of location and
direction (Gosoniu et al., 2009). In malaria, it has been shown by Gosoniu et al. (2009)
and Gosoniu and Vounatsou (2011b) that in regions with large differences in environmental
conditions, such as ecological zones the relation between environmental and other factors
with the disease risk is not constant over the whole area and non-stationary models pro-
vide more accurate results than their stationary counterparts. In schistosomiasis, regions
with diverse climatic conditions differently influence vector transmission (Stensgaard et al.,
2011). For example, ecological zones characterised by dry climatic conditions might be less
suitable for the development of the intermediate host snails than moistures zones resulting
in smaller estimates of the spatial range parameter; or regions with different main direc-
tions of river flow might demand for spatial processes with different angles of anisotropy.
In addition, unobserved factors, such as health system performance, vary over the study

regions introducing further non-stationary effects.

Schistosomiasis risk is changing with time due to environmental transformations, con-
trol interventions, social-economic improvements, population movement and urbanisation,
among other reasons. The data included in the GNTD database were collected over sev-
eral decades and hence, will be influenced by temporal trends. Our models for eastern
and West Africa include time as an ordinal covariate allowing for fixed temporal effects in
the data, however neglecting potential temporal correlation between survey dates. This
assumption leads to an equal contribution of surveys (assuming the same amount of indi-
viduals screened) to risk prediction, irrespective of survey date, and treats older surveys
as important for contemporary risk mapping as recent surveys. Spatio-temporal models
could be implemented instead. However, preliminary residual analyses suggested only weak

temporal correlation in the West Africa data.
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9.3 Extension of the work

Our work cannot only be improved by overcoming the aforementioned limitations, but also
by a number of potential extensions. An immediate extension will focus on the spatial dis-
tribution of schistosomiasis in South and Central Africa and the estimation of the number
of infected individuals in these countries. Preferably, this analysis should be performed
accounting for diagnostic sensitivity and age-heterogeneity. The resulting risk estimates
could be further used to calculated annual treatment needs based on either country-specific,
district-specific or pixel-level cut-offs according to the WHO schistosomiasis control rec-
ommendations (WHO, 2002). In addition, the (population-adjusted) prevalence maps and
model-based estimates on the number of infected individuals and treatment needs could
be made available via the web with an interface which will allow the users to specify their
own geographical area of interest and download the raw prevalence data extracted from the
GNTD database together with the area-specific prediction maps and the estimated number
of infected individuals and treatment needs. These estimates can support local practition-
ers to implement control intervention programs and to define the location of future surveys

in previous neglected areas.

Model-based predictions could be further validated with the conduction of new surveys
in order to probe the predictive ability of the models, especially in areas where uncertainty
of the predictions was found to be high and areas lacking contemporary surveys. Geo-
statistical models should assist in identifying the survey locations based on the estimated
spatial process, model uncertainty and population estimates. The additional surveys could
then be included in future iterations of the work to improve model-based predictions and
to obtain new contemporary maps. Comparisons between the updated schistosomiasis
risk maps and the baseline maps would allow evaluation of temporal changes of disease

transmission and assessment of the effectiveness of control interventions.

Our spatially explicit large-scale schistosomiasis estimates are based on separate mode-
ling of the two predominant species in Africa, namely S. haematobium and S. mansoni. The
two Schistosoma species showed overlapping distribution, known as co-endemicity, leading
to simultaneously infected individuals and potentially aggravated morbidity. Despite few
studies on endemicity (Raso et al., 2007b) and co-infection (Raso et al., 2006b; Brooker
and Clements, 2009) of schistosomiasis with hookworm, co-infection between Schistosoma
species has not yet been studied and it remains unclear whether simultaneous infections
occur randomly or show spatial dependency. In Chapter 8 we have shown the advantages

of joint modeling approaches via shared component analyses in studying the geographical
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distribution of co-infection under the presence of disease dependency. This approach should
be applied in S. haematobium and S. mansoni risk estimation to assess the level of depen-
dency and to improve model-based estimates on combined schistosomiasis risk omitting
the assumption of independence. This analysis will improve our understanding of schis-
tosomiasis transmission and enhance cost-effectiveness of integrated control intervention

programmes (Brady et al., 2006).

The spatial distribution of the intermediate host species is, to a large extent, influenc-
ing the spatial distribution of schistosomiasis risk. However, our models are only indirectly
taking into account snail distribution based on the relation with environmental factors. Re-
cently, Stensgaard et al. (2011) have created continental maps on Biomphalaria presence
in Africa that could be linked with S. mansoni survey locations. Incorporating the snail
distribution as a predictor in our models is likely to improve model predictive ability. Sta-
tistical models could be developed to obtain spatially-explicit estimates of the probability

of snail presence from data lacking information on snail absence (Elith et al., 2006).

Another extension of the work presented here is the estimation of the future distribution
of schistosomiasis risk in Africa using different climate change scenarios to support control
and elimination programmes in areas of future disease presence and absence. It has been
shown that climate change will affect the intermediate snail species distribution in Africa
leading to expanding and contracting areas of Biomphalaria (Stensgaard et al., 2011),
which is likely to change schistosomiasis distribution. In addition, Yang et al. (2010) have
already presented how the spatial S. japonicum distribution in P.R. China might change
due to different global warming assumptions. Estimating the spatial distribution of disease
burden under climate change scenarios will assist in health system preparedness and guide

disease elimination programmes.
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Compiled survey data are essential to obtain large-scale estimates on the spatial distri-
bution of diseases despite the above mentioned limitations. The newly established GNTD
database initiated by the EU-funded CONTRAST project (http://www.eu-contrast.
eu/) is currently the only comprehensive collection of historical and contemporary schis-
tosomiasis survey data on global scale that is publicly available. This database will be
constantly expanded and updated to serve as indispensable tool for large-scale mapping of
neglected tropical diseases. Current efforts to expand the database include the extraction
of schistosomiasis and soil-transmitted helminth data in Latin America and China. In
addition, a web-based interface is created to enhance data accessibility for external groups
via various search functions, enable data contribution from other researchers and improve
data entry. However, the work in this thesis has shown that the collection of data has to
be accompanied by the development of appropriate statistical models taking into account

the data characteristics to obtain accurate risk maps.

Data-driven Bayesian geostatistical models enabled us to obtain empirical, high-resolution
infection risk estimates for S. haematobium and S. mansoni in western and eastern Africa.
These are important tools for evidenced-based decision-making on the spatial implemen-
tation of future control interventions and to define treatment needs in order to reduce
disease burden. The impact of interventions and transmission dynamics can be monitored
and evaluated via subsequent updates of the maps. We plan to further improve geostatisti-
cal methodology, as outlined in the above sections, to increase accuracy of the model-based
predictions and to provide revised maps using improved models and newly collected data.
We hope that these efforts will contribute to successful disease control and bring us closer

to disease elimination.
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