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Abstract

Editing faces in movies is of interest in the special effects industry. We aim at

producing effects such as the addition of accessories interacting correctly with

the face or replacing the face of a stuntman with the face of the main actor.

The system introduced in this thesis is based on a 3D generative face model.

Using a 3D model makes it possible to edit the face in the semantic space of pose,

expression, and identity instead of pixel space, and due to its 3D nature allows

a modelling of the light interaction. In our system we first reconstruct the 3D

face, which is deforming because of expressions and speech, the lighting, and

the camera in all frames of a monocular input video. The face is then edited by

substituting expressions or identities with those of another video sequence or by

adding virtual objects into the scene. The manipulated 3D scene is rendered back

into the original video, correctly simulating the interaction of the light with the

deformed face and virtual objects.

We describe all steps necessary to build and apply the system. This includes

registration of training faces to learn a generative face model, semi-automatic

annotation of the input video, fitting of the face model to the input video, editing

of the fit, and rendering of the resulting scene.

While describing the application we introduce a host of new methods, each

of which is of interest on its own. We start with a new method to register 3D

face scans to use as training data for the face model. For video preprocessing a

new interest point tracking and 2D Active Appearance Model fitting technique

is proposed. For robust fitting we introduce background modelling, model-based

stereo techniques, and a more accurate light model.





— Chapter 1 — 1Introduction

Editing faces in movies is of interest to the special effects industry, where one

might want to replace the face of a stuntman with that of the main actor, or when

doing lipsyncing, where it is necessary to manipulate the actor’s face such that

she seems to speak a different sentence. Performing such editing tasks directly

in the image by 2D editing methods is a daunting task.

In this thesis a method to perform such manipulations in videos is presented.

This method requires only a small amount of manual interaction and results in

high quality output. Faces are edited by reconstructing the 3D shape, texture

and lighting situation of all the frames of a video. The scene is described in

terms of a generative face model. The face can then be manipulated in this low

parametric model space consisting of a few thousand parameters, instead of in

the high dimensional space of video pixels, consisting of millions of parameters.

The model is constructed such that the parameters for lighting and camera, the

pose of the face, the albedo of the face, the part of the shape which describes the

identity, and the shape deformations describing the expressions are all separated.

Each of these parameter sets can therefore be edited independently, such that

we can keep pose and lighting and change only the expressions or the identity.

The face generated by the edited parameters can then be seamlessly combined

with the original sequence, because lighting and camera have been estimated.

A 3D Morphable Model (3DMM) as described by Blanz and Vetter (1999) is

used for face reconstruction and editing. We follow the approach to video editing

introduced in Blanz et al. (2003) which consists of fitting the video, changing the

model parameters and rendering the resulting 3D scene back into the video, but

derive novel methods on the way which are also useful in other contexts. This

includes new techniques for model learning, interest point tracking and model

fitting.

The problem can be broken down into three parts, which are reflected in the

structure of this thesis. First, we describe the generative model and how it is

learned from examples. This happens in part one, where 3D Morphable Models

are introduced. They are a generative description of faces and are learned from
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INTRODUCTION

3D shape and texture data. The novelty in this part is the registration algorithm,

a nonrigid ICP method with a new deformation energy.

The second part of the problem is that of reconstructing the generating model

parameters given a video sequence. It is addressed in part II, where we describe

how to find the most likely model parameters given a video sequence. This part

draws from the work of Blanz and Vetter (1999); Blanz et al. (2003); Romdhani.

and Vetter (2005); and Knothe (2009). The number of parameters which need to

be estimated for a video is immense, even though the 3D Morphable Model is a

very compact representation of face images. And it is a very difficult problem,

as the posterior which we maximize is non-convex, and defined in a high dimen-

sional space. We approach this problem by guiding a local optimization with

semi automatically annotated landmarks and automatically detected contours of

the eyes, the nose, and the lips.

To this end, we introduce a fast and accurate interest point tracking method,

which finds the position of landmark points that were manually marked in some

frames in the full video. Setting the landmarks is the only manual work involved

in our pipeline. This interaction can be performed conveniently, as the interest-

point tracking method runs at interactive rates. Here, we extended the method

of Buchanan and Fitzgibbon (2006) with a background model to give more reli-

able tracking results and introduce a more efficient search for the globally optimal

track.

Extracting the contours of eyes, nose and lips is done fully automatically

based on the landmarks and 2D appearance models of the respective parts of

faces. The appearance models were trained from the same data used to learn the

3D model. The novelty here is an appearance model fitter which is nearly as fast

as the fastest previously available method while not using the approximations

which made previous fast methods brittle.

We are fitting the whole video simultaneously, while previous systems treated

the frames independently. This allows us to perform what we would like to call

‘temporal, model based stereo’. We are observing a deforming face under dif-

ferent views. We reconstruct the shape of the face by modelling the probability

of the deformation throughout the video and finding deformations which make

the appearance of the same point in the face similar in all frames. This makes it

possible to reconstruct the shape even without a texture model.

3D Morphable Model (3DMM) and Active Appearance Model (AAM) fitters

have a tendency to shrink. That is, that the contour of the best fit is smaller

than the true contour. We propose to model the whole video by simultaneously

segmenting the video into foreground and background while fitting the face to

improve the fitting results.

The third part of the problem is that of using the reconstructed scene to gen-

erate new videos. Part three describes how the model parameters are edited, and

how the resulting 3D scene is merged back into the original video such that the
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resulting sequence looks natural. We show examples of adding virtual objects

to the scene, and of pasting the expression, identity or complete face from one

scene into another scene.

Related Work

In this introduction we mention only the literature which is related to the overall

system. Throughout the thesis we will describe how each of the methods solving

a partial problem is related to more specific prior work.

The system proposed here is most closely related to Blanz et al. (2003). Our

system is marker-less. For situations where markers are feasible, Vlasic et al.

(2005) proposed a system to transfer expressions between individuals using a

bilinear representation of the space of identities and expressions. Wang et al.

(2008, 2004) and Huang et al. (2004) used data from a high resolution, high

frame rate 3D scanner to accurately track a deforming face, this type of input data

could also be incorporated in our system to track the expressions of a secondary

actor driving the expressions in the edited video. Byun (2007) also drives the

expressions of one video with another without using markers, but uses only the

contours of lips, eyes, eyebrows, and nostrils, to get the overall deformations.

This system cannot account correctly for the light interaction.

Wang et al. (2004) considered the temporal dynamics of speech and expres-

sions, which is not necessary in our context but will be of interest when extending

the system to be used with a text to speech generator. We try to directly map the

expressions from one face to another, Stoiber et al. (2010) proposed a differ-

ent parametrization of expression space to make a virtual actor perform actions

which are not similar deformations, but have a similar semantics to the actions of

the driving actor.





1— Part I —

The Generative

Face Model

— What are 3D Morphable Models — Constructing the Face Space

from Registered Examples — Establishing Correspondence Between 3D

Face Scans, the Algorithm and the Necessary Tweaks —





— Chapter 2 — 2Introducing 3D Morphable Models

A 3D Morphable Models (3DMM) as introduced in Blanz and Vetter (1999) is

a generative face model consisting of linear models of shape S(α) and texture

T (β), with a Gaussian prior over the parameters. A face is described with a

3DMM as a three dimensional tessellated surface with an associated texture. It is

represented as a reference shape and texture plus a linear combination of shape

and texture offsets.

S(α) = s+ Sα T (β) = t+ Tβ (2.1)

where s ∈ R
3Nv are the stacked vertices of the sample mean of the training

faces and S ∈ R
3Nv×Ns are the Ns orthogonal directions of maximal varia-

tion of the offsets from the sample mean, which were observed in the training

data. The albedo of the face is described in the same way by the stacked RGB

color channels t ∈ R3Nv of the mean face and the Nt orthogonal directions of

maximal variation in face albedo T ∈ R3Nv×Nt . S and T are scaled such that

the prior distribution over the shape and texture parameters is given by a normal

distribution with unit covariance

p(α,β) = N (α | 0, I)N (β | 0, I) ∝ exp{−‖α‖2 − ‖β‖2} , (2.2)

under the assumptions that (1) the input data was already normally distributed

and (2) shape and texture are independent.

1 Camera Model

These linear 3D models are extended to nonlinear 2D models of face images I
by combining them with a deterministic camera and lighting function R into

I(ρ, ι,α,β) = R(ρ, ι,S(α), T (β)) . (2.3)
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INTRODUCING 3D MORPHABLE MODELS

R projects the 3D face described by (S(α), T (β)) according to the camera pa-

rameters ρ and illuminates it according to the lighting parameters ι.

The problem of model fitting is then to find for a given image or video the

parameters which generated the image. This is defined more formally in chap-

ter 4. Now we will describe how to construct a morphable model from training

examples.

2 Training Morphable Models

3D Morphable Models are learned from data. The training data consists of regis-

tered examples of the 3D shape and texture of faces. The faces are parametrized

as triangulated meshes. In this context, registered means that every face is in the

same parametrization, i.e. shares the same triangulation, and that semantically

corresponding points such as the corners of the eye are at the same position in

this parametrization, they have the same vertex number. In chapter 3 we describe

how to obtain such data. Registered face scans have been shown to have the

property that convex combinations of the example scans yield new valid faces,

such that the registered examples span a linear object class. The description of

the registration method used in this work occupies most of this chapter, but let

us start by explaining the calculation of a 3D Morphable Model from registered

examples.

From the training data the mean, offset vectors, and variances of the shape and

texture model introduced in equation 2.1 have to be determined. Once the exam-

ple shapes and textures are in a common parametrization this is done by applying

Prinicipal Component Analysis (PCA) (Hotelling, 1933). PCA decomposes the

covariance of the training data into a generative basis and the variances associ-

ated to the basis vectors under the assumption of normally distributed training

data. For a very readable introduction please refer to Bishop (2007). A detailed

description of the application of PCA to linear 3D Morphable Model building is

given in Blanz and Vetter (1999).

For data with expressions, a model with separate coefficients for the identity

and expression have been proposed in Blanz et al. (2003) and Amberg et al.

(2008a). Such a separated model consists of an identity model, which is built

from the registered neutral expression scans in the usual way, yielding a mean

shape s and an identity basis SI as before. The offset between the expression

scans and the corresponding neutral scans is then used to determine an additional

basis SE , such that the overall model has separate coefficients for identity and

– 8 –



TRAINING MORPHABLE MODELS

a) Target b) Fit c) Normalized

a) Target b) Fit c) Normalized

Figure 2.1: A morphable model with distinct parameters for shape and

expressions can be used to separate shape from expression in unseen data.

The figure shows the seperation of 3D scans into a shape and an expres-

sion component. By performing recognition on the expression normal-

ized data it is possible to achieve high recognition rates. The figure is

reproduced from Amberg et al. (2008a). Here (a) is the scanned surface

which is explained by the fitted model (b). Holes and scanning artifacts

are removed by using a robust fitting. The pose and expression normal-

ized faces (c) are used for face recognition.
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INTRODUCING 3D MORPHABLE MODELS

expression

S(αI ,αE) = s+ SIαI + SEαE (2.4)

= s+
[
SI SE

]
[
αI

αE

]

.

Blanz et al. (2003) noted that the two bases are not orthogonal, and accordingly

the same shape can be described by more than one parameter vector. In Amberg

et al. (2008a) it was demonstrated that the resulting model can nonetheless be

used in a recognition setting, where it is necessary to distinguish the contribution

from identity and expression when doing expression invariant identity recogni-

tion. Amberg et al. (2008a) used a maximum a posteriori approach (instead of an

intractable marginalization) to determine the most likely identity and expression

coefficients given an example 3D scan. The maximum of the posterior is com-

putable, even though the bases are not orthogonal, as the prior over the shape and

expression coefficients results in a well defined posterior, for which the maximum

can be found with standard nonlinear optimization. Separating the identity and

expression coefficients has advantages not only for expression invariant recog-

nition, but also for model fitting to videos as described in chapter 4 and video

editing as described in chapter 8.

The next chapter explains the registration method used in this work to bring

the example scans into a common parametrization.
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— Chapter 3 — 3Establishing Correspondence:
Registration

Registration is the task of parametrizing one shape in a terms of an-

other shape, such that semantically corresponding points are mapped

onto each other. This reparametrization can also be seen as a defor-

mation of the reference shape into the target shape.

Registration is usually achieved by simultaneously minimizing a mea-

sure of the irregularity of the deformation of the template and of the

distance between the deformed template and the target. The measure

of deformation irregularity encodes the prior assumptions about the

expected deformation between the shapes while the difference measure

is usually a relatively simple distance such as the average L2 distance,

but a other distance can also be employed to achieve robustness against

missing data in either the template or the target.

In this chapter we make the connection between mesh-editing and reg-

istration, propose a new deformation measure, and compare it to the

measures used in the mesh-editing community. We then demonstrate

how to apply this measure to the problem of registering faces.

1 Introduction

To build a 3D Morphable Model one requires registered training examples. That

is, the training examples need to be in a common parametrization, which is con-

structed such that semantically equal points, such as the corners of the eye, are

at the same position in the parametrization. One can view such a parametrization

as a deformation of the reference, or template, into the target shape. While the

correspondence at salient features such as the corners of the mouth can be de-

termined easily, it is more difficult to define the correspondences on in-between
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ESTABLISHING CORRESPONDENCE: REGISTRATION

points. A registration algorithm therefore typically chooses a smooth deforma-

tion of the template which matches the surfaces and the feature points.

Smooth deformations are also of interest for mesh editing, which led us to

investigate the use of the methods from that field for registration. In mesh editing

one searches for a deformation of a mesh given a constraint on the position of

some vertices. The deformation should be fair and intuitive, such that an artist

can create new shapes by moving some vertices of an existing shape and have the

surrounding vertices follow. It is quite difficult to define what a fair and intuitive

deformation is in mesh editing. For some registration problems it is much easier

to define what a good deformation is. When one shape is produced by another

shape by physically deforming the first one, as is the case for a face with two

different expressions, then the physical constraints such as the preservation of

matter should be satisfied.

When registering different instances of the same class but not of the same

object, e.g. the faces of two different persons, then no physically realisable de-

formation exists, so we need different constraints. We are in this second case,

because we want to register a large database of faces from different individals.

We therefore propose the use of a novel energy, which nicely solves the mesh

editing problem, for registration. The energy we developed is useful for our task,

because it fullfills the following two properties. (1) it is not volume or area pre-

serving, but rather as smooth as possible and (2) it is fast to optimize such that

it can be applied to high resolution meshes. We propose not only the energy but

also an efficient optimization method, and show how it can be incorporated into

the nonrigid ICP framework described in Amberg et al. (2007b).

The properties of the novel deformation method are demonstrated on mesh-

editing tasks, where we compare it to a range of existing methods. Also regis-

tration results on a large dataset are shown. The registration method introduced

here is especially well suited for datasets with a large percentage of missing data

but unchanging topology, such as the face dataset.

2 A Deformation Energy, Useful for Mesh Editing

In the first part of this chapter we develop the deformation energy and optimiza-

tion strategy with a view on mesh editing, because that makes it easy to demon-

strate its properties. The results from the first part are then used in the second

part to derive the registration method used in our system.

2.1 Method

We propose a novel deformation energy for meshes and an efficient method to de-

termine the minimum deformation configuration of a mesh given constraints on
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A DEFORMATION ENERGY, USEFUL FOR MESH EDITING

vertex positions. The deformation energy has desirable properties for mesh edit-

ing and for use in a nonrigid registration algorithm. Already, a large number of

deformation energies have been proposed. Physically based methods discretize

the object into finite elements, (e.g. Wicke et al., 2007) and minimize nonlinear

measures of shear, bending and scaling, such that the surface areas or volumes

are preserved and the deformations are smooth. Other methods based on Poisson

editing of feature vectors extracted from the meshes can be very efficient and

generate pleasing deformations. They manipulate an extracted feature vector,

e.g. the surface normals and solve for the mesh which best fits the manipulated

vector. For an overview over these methods refer to the survey of Botsch and

Sorkine (2008). As these methods typically fail to transform local details cor-

rectly they have been enhanced by decomposing the mesh into a high frequency

and a low frequency part which are deformed independently and integrated af-

terwards (Botsch et al., 2006b). The disadvantage of this separation is, that the

separation into high and low frequency components of the shape is ad hoc and

fails when the scale of the high frequency components changes, or more than

two levels of details are present. An example is the fine shape of the eye-brows

whose orientation depends on the curvedness of the front which itself depends

on the shape of the face.

Our energy and optimization method occupies its own place within the exist-

ing methods, as it does not aim to preserve volume or length, but rather finds a C1

smooth deformation while allowing for local scaling. This is necessary for mesh

editing, when the task is not to pose, i.e. deform in such a way as a real object

would deform, an existing mesh, but rather to create new shapes by extruding,

locally scaling or locally rotating the mesh. And it is necessary when registering

different individuals of the same class, e.g. faces, for which no physically based

deformation exists that transforms one individual into another.

For mesh editing and to a lesser extent for registration it is necessary to have

an energy which can be optimized efficiently, in mesh editing one needs interac-

tive responses. In a registration algorithm there is no need for interactive rates,

but to process huge datasets we still need an efficient algorithm, because the de-

formation energy has to be minimized repeatedly. A special case of our deforma-

tion measure results in a quadratic cost which can be minimized non-iteratively.

This results in very fast mesh-editing performance, while overcoming many of

the problems of linear methods identified in Botsch and Sorkine (2008). The

general nonlinear case results in even smoother and more intuitive deformations,

while still being fast to evaluate.

The deformation energy which we consider penalizes the squared magnitude

of second derivatives of the transformation function

T (x) : R3 → R
3 (3.1)
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ESTABLISHING CORRESPONDENCE: REGISTRATION

Figure 3.1: We assume that the given triangle mesh is a discrete approx-

imation of an underlying surface which touches the mesh at the triangle

barycenters and is tangential at these points.

deforming the template into a deformed target, over the surface S

Edef(T ) =

∫

S
‖∇2T (x)‖2 dx (3.2)

but also incorporates the constraint that the deformation of the infinitesimal vol-

ume around the surface deforms the normals of the original surface such that they

are still normal to the deformed surface. Minimization of the summed square

of the second derivative yields a smooth, at least C1 continuous surface. We

observed, that adding the constraint that the space perpendicular to the surface

should not shear or scale leads to a correct deformation of local details, but makes

the resulting optimization nonlinear. We formalize this in the next paragraphs and

propose an efficient solution to this nonlinear optimization problem. The result-

ing deformations are ‘fair’ and intuitive to handle.

We work with triangle meshes, which are interpreted as approximations of

an underlying smooth surface, which touches the mesh at the barycenters of the

triangles and is tangential to the mesh at these points. We do not give a con-

structive description of the underlying surface, it is only used conceptually, to

define the bending energy. For such an underlying surface to exist, it is neces-

sary that no edge of the mesh is shared by more than two triangles, such that

the underlying surface is manifold, it resembles a two dimensional plane at each

point, apart from its boundaries. This makes it possible to approximately evaluate

the integral from Equation 3.2 even though the only deformations that a triangle

mesh can undergo are piecewise linear. See figure 3.1 for a visualization of this

concept.

We use the following notation. A triangle ⊲ijk with vertices (vi,vj ,vk) has
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A DEFORMATION ENERGY, USEFUL FOR MESH EDITING

the edges eij = vj − vi and the normal nijk = (eij × eik)/‖eij × eik‖. We

will denote the triangles, vertices, edges and normals in the rest state of the mesh

by ⊲̃, ṽ, ẽ and ñ. The deformation between a triangle ⊲ijk in its rest state and its

deformed state is given by a linear transformation

T (x) = Aijkx+ tijk, (3.3)

with a 3 × 3 affine part Aijk and a translation part tijk. This deformation is

constant over the triangle, but the deformation which we are reasoning over will

be continously changing over the hypothetical underlying surface. The deforma-

tion for a triangle is not uniquely determined by the configurations of the triangle

in its rest and deformed state, as the direction normal to the triangle can be de-

formed arbitrarily. We enforce deformations which keep the normal orthogonal

to the triangle and do not scale it. The 3×3 matrix Aijk(v) describing the affine

part of the deformation is determined by the following system of linear equations,

from the deformed vertices v = {v1, . . . , }:

Aijk(v)
[
ẽij ẽik ñijk

]
=
[
eij(v) eik(v) nijk(v)

]
, (3.4)

in terms of the edges ẽ and normals ñ of the rest state and the edges e and

normals n computed from the deformed vertices v. As the rest state of the mesh

is constant it follows that the matrix Aijk(v) is a linear function of the edges and

normals of the deformed mesh.

Aijk(v) =
[
eij(v) eik(v) nijk(v)

] [
ẽij ẽik ñijk

]−1

︸ ︷︷ ︸

Constant

(3.5)

The edges are again a linear function of the vertex positions v, but the normals

are a nonlinear function of the deformed vertex positions.

Now regard two adjacent triangles ⊲ijk and ⊲ijl. We assume that the triangles

are tangential to the true surface S and touch the surface at the triangle barycen-

ters xijk and xijl. Note that these points are defined in the rest state surface S ,

so they are constant throughout the algorithm.

We know the first derivative of the deformation of the underlying surface S at

the triangle barycenters, it is just the affine part of the deformation acting on the

triangles. We do not determine the second derivative in Equation 3.2 exactly, but

use a finite differences approximation of the directional derivative between xijk

and xijl to approximate Equation 3.2 by

Edef(T ) ≈ Es(v) =
∑

(i,j,k,l)∈N

aijkl

∥
∥
∥
∥

Aijk(v)−Aijl(v)

‖xijk − xijl‖

∥
∥
∥
∥

2

F

(3.6)

where N are neighbouring triangles and aijkl is the area of the discretization ele-

ment as shown in figure 3.2. Here ‖·‖2F denotes the squared Frobenius norm. This
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⊲ijk

⊲ijl

aijkl

i

j

k

l

Figure 3.2: The weighting area used in the discretization of the derivative.

Shown are two triangles with the triangle barycenters used for the finite

differences discretization and in red the area by which this derivative is

weighted. Compare Equation 3.6 for details.

is different from the continuous expression in 3.2, because the second derivative

is taken only in the tangent space of the surface, not in the embedding space,

but because we will be enforcing that the deformations do not scale or shear the

space normal to the surface this is sufficient to generate well behaved deforma-

tions. As noted above Aijk(v) is a linear function in the vertices and normals of

the deformed mesh, which enables us to rewrite Equation 3.6 as

Es(v) =

∥
∥
∥
∥
S

[
v

n(v)

]∥
∥
∥
∥

2

, (3.7)

with a suitably defined matrix S.

Given the deformation energy we can now proceed to use it for mesh de-

formation. To this end, we introduce soft correspondences, also often called

forces in the mesh editing community, that determine vertex positions. It is eas-

ily possible to generalize this to hard constraints on the positions of some ver-

tices, which we do in section 2.2. We express the constraints between surface

points and landmarks by a matrix C, which contains in every row the barycen-

tric coordinates of a surface point at the columns corresponding to the enclosing

triangles vertices. The corresponding landmarks are stacked in a Nl × 3 matrix

c =
[
c1 . . . cNl

]T
. We choose the energy as a linear combination of the

stiffness energy Es and the correspondence energy Ec.

E(v) = Es(v) + λEc(v) (3.8)

Ec(v) = ‖Cv − c‖2

Es(v) =

∥
∥
∥
∥
S

[
v

n(v)

]∥
∥
∥
∥

2

,

where v =
[
v1 . . . vNv

]T
is a Nv×3 matrix of vertex positions, and n(v) =

[
n1 . . . nNt

]T
are the normals of the Nt triangles, as a nonlinear function of

the vertex positions.
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Efficient Optimization

We derive our optimization method from the Gauss-Newton descent method,

which calculates the update step as

∆v = −(JTJ)−1JTr (3.9)

where J is the Jacobian of the sum of squares cost function, and r is the residual

vector. Equation 3.8 is expensive to optimize, as it is a nonlinear function for

which the Jacobian and gradient need to be calculated in each iteration of the

optimizer. We propose a very efficient optimization scheme by decoupling the

stiffness term and the normal estimation.

We approximate 3.8 with another function in terms of the vertices and a new

set of variables n̄ for the ‘normals’ and introduce a new normal coupling cost

Ēn which makes n̄ and the true normals n(v) as similar as possible

E(v) ≈ Ē(v, n̄) = Ēs(v, n̄) + λ2Ec(v) + κ2Ēn(v, n̄) (3.10)

Ēs(v, n̄) =

∥
∥
∥
∥
S

[
v

n̄

]∥
∥
∥
∥

2

Ēc(v, n̄) = ‖Cv − c‖2

Ēn(v, n̄) = ‖n̄− n(v)‖2 (3.11)

This introduces some slack on the constraint that the normal should be kept. Next

we approximate the normal coupling cost iteratively by ignoring the dependency

of the normal direction on the changing vertex position. We substitute n(v) by

the fixed normals from the previous shape estimate and approximate

Ēn(v, n̄) ≈
∥
∥n̄− n(vt−1)

∥
∥
2

(3.12)

where vt−1 denotes the current estimate of the vertex positions, and v is the

newly calculated position.

These approximations result in a quadratic problem to be solved in each

step, which was constructed such that only the right hand side of the problem

changes in each iteration. We could therefore describe the method as an alterna-

tion scheme, but I find it easier to follow through with the Gauss-Newton termi-

nology, because this makes the approximations more explicit.

The Jacobian matrices of the three partial costs are constant

Js = S Jc =
[
C 0

]
Jn =

[
0 I

]
(3.13)

and the complete Jacobian includes the weights λ and κ,

J =





Js

λJc

κJn



 . (3.14)
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As the Jacobian is constant, so is the approximate Hessian H = JTJ . The

update step is then

∆

[
v

n̄

]

= −(JTJ)−1JT



J

[
v

n̄

]

−





0

λc
κn(v)







 (3.15)

= −

[
v

n̄

]

+ (JTJ)−1JT





0

λc
κn(v)





= −

[
v

n̄

]

+ λH−1JT
c c+ κH−1JT

nn(v)

The second term is constant for given correspondences, so we substitute it with

k = λH−1JT
c c. We are not interested in the update to n̄, as the correct normals

are estimated from the vertex positions so we get rid of the corresponding rows

and simplify to

∆v = k − v + κH−1JT
nn(v) (3.16)

In this way we have arrived at an update rule which is linear in the vertex positions

and the current normals. Even though H−1JT
n is constant it is dense, therefore

we do not precalculate it but instead compute a sparse Cholesky decomposition

of H .

The partial Jacobian matrices Js and Jn can be precomputed when the mesh

is loaded, as they depend only on the rest state of the mesh. The Hessian on

the other hand has to be newly decomposed whenever the choice of points to

manipulate changes. When only the position of the landmarks changes, as is

most often the case during mesh editing, then it suffices to recompute k, which

is very cheap. Also, to speed up the Cholesky decomposition necessary when the

landmark vertices are chosen, we compute the reordering for the Hessian matrix

using the structure of JT
s Js + I during load time.

To further speed up the calculation we implemented a multigrid approach Wes-

seling (1992) with a hierarchy of reduced meshes, which is also precomputed on

mesh loading. We perform two coarsening and refining iterations through the

multigrid hierarchy, the first with only 10 iterations per hierarchy level, the sec-

ond with up to 100 iterations per level. We terminate the optimization when the

position of the mesh vertices is stationary, as measured by a threshold on the

difference of vertex positions in adjacent iterations.

2.2 Absolute Constraints

In the previous section we developed the optimization with soft constraints, i.e.

minimizing λ2 ‖Cv − c‖. For mesh editing it is often desirable to have hard
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constraints. That is, one fixes a subset of the vertices at a certain position and

calculates the position of the remaining vertices.

This can be achieved by partioning the matrices from equation 3.8 into the

columns pertaining to the moving vertices, and those relating to the fixed vertices.

The part corresponding to the fixed vertices is constant and can be removed from

the minimization.

Denote the indices of the moving vertices by m and the indices of the fixed

vertices by {, also denote the sub-matrices one gets by selecting the appropriate

columns of the Jacobian and Hessian matrices with the subscripts { and m, then

we get

Ē =

∥
∥
∥
∥
∥
∥

Jm

[
vm

n̄m

]

+ J{

[
v{

n(v{)

]

−





0

λc
κn(v)





∥
∥
∥
∥
∥
∥

2

(3.17)

∆

[
vm

n̄m

]

= −H−1
m JT

m



Jm

[
vm

n̄m

]

+ J{

[
v{

n(v{)

]

−





0

λc
κn(v)







 (3.18)

= −

[
vm

n̄m

]

−H−1
m



JT
mJ{

[
v{

n(v{)

]

− JT
m





0

λc
κn(v)









= −

[
vm

n̄m

]

+ km + κH−1
m Jn

T
mn(v)

km = H−1
m

(

λJc
T
mc− JT

mJ{

[
v{

n(v{)

])

(3.19)

One has to be careful to also select all columns with fixed normals, where a

triangle has a fixed normal when all its vertices are fixed. Absolute constraints

are useful in some tasks where part of the mesh is required to stay fixed, and they

have the advantage that the problem size is reduced to the number of vertices

which are actually moving. In a typical mesh editing task this is only a fraction

of all vertices. This makes it possible to perform real time editing on even larger

meshes.

2.3 Normal Slackness

By changing the slackness parameter κ one changes how strongly the deforma-

tion is normal preserving. An interesting special case occurs for κ = 0. The

problem in this case is still fully constrained for non-planar surfaces, but the en-

ergy reduces to a quadratic function, which can be solved in closed form. The

resulting deformation is still smooth, though the normal-preserving deformations

are more intuitive. We demonstrate the effect of varying κ in figure 3.3, where
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Unbent κ = 0 κ = 1 κ = 100

(Linear)

Figure 3.3: Without the normal constraint the cost reduces to a quadratic

form, which can be solved exactly. Without the normal constraint the

problem can become unconstrained, when the deformation consists of

only a translation. We solve this by fixing not only the vertices but also

the normals of triangles which have all vertices fixed. While the result-

ing surface deformation is smooth, it is not as intuitive as the result with

increasing κ. Observe the thinning of the stem of the cactus and the defor-

mation of the protruding arms, which are more natural with the normal

constraint. The effect of increasing κ saturates, which implies that the

normal constraint is solved nearly exactly for κ = 100.

the same deformation is applied to a cactus for varying values of κ. A larger κ
leads to a fair and natural deformation of the cactus, and also the protruding arms

of the cactus behave in the expected way. This result is shown in more detail in

the movie in the additional material.

2.4 Comparison to Other Methods

A number of different deformation energies and minimization methods have been

proposed. This section compares the advantages and disadvantages of the most

prominent of these methods. We use the “difficult examples” from the survey

paper Botsch and Sorkine (2008) for comparison. This includes results for a

number of so called linear methods, like our method for κ = 0, which solve a

quadratic cost and the nonlinear method PriMo (Botsch et al., 2006a). The results

from Botsch and Sorkine (2008) are compared in figure 3.4 and figure 3.5 to our

method, which we call Normsurf, and the linearized version of Normsurf with

κ = 0. Only the non-linear methods can solve all the problematic cases used in

this survey, and result in intuitive deformations. We should point out that PriMo

and Normsurf address two different problems. While PriMo tries to keep the area

of the surface constant and simultaneously minimizing bending and stretching,

we are not trying to preserve the volume or surface area. Therefore, our method
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Figure 3.4: A comparison of the linear version of our method (Norm-

surf, κ = 0) with four linear methods demonstrates the use cases for our

energy and optimization method. Our energy results in intuitive defor-

mations for all four difficult cases from the survey of Botsch and Sorkine

(2008), where each linear method fails on at least one of these cases. The

next figure shows that the nonlinear version gives even more intuitive re-

sults which are still different from that of the nonlinear method proposed

in the survey.
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Figure 3.5: A comparison with the nonlinear method PriMo suggested

in Botsch and Sorkine (2008). Our method addresses a different problem

than the PriMo method, because area preservation is not the aim of this

deformation. This makes the resulting deformation smoother and our

energy very suited for mesh-editing and registration, but not for mesh-

posing or inverse kinematics. Observe the first order discontinuity in the

primo results between fixed and moving vertices.
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(a) (a.1) (b.1) (b)

Figure 3.6: The bending depends on the shape of the mesh. A profiled

shape is harder to bend than an non-profiled shape, compare also the

bunnies’ ears in figure 3.7. This behaviour is intuitive and therefore useful

for mesh editing. To the left is a cylinder (a) which is bent by moving the

vertices marked in red and green into the shape (a.1). To the right is

the same cylinder which was on its lower half deformed to have a U-

shaped profile. When bending as before, the profiled part stays more

rigid, resulting in the shape (b.1).

can reach smoother deformations, which is useful for registration and for mesh

editing, but not for mesh posing or inverse kinematics. One can also observe on

this dataset that the deformation which PriMo generates is not smooth between

fixed and moving vertices, as opposed to that generated by our method.

2.5 Mesh Editing Results

Some mesh editing results are shown in figures 3.7, 3.6, and 3.8. Here we marked

the fixed areas by red and green, where green areas are moved from their original

positions. The gray vertices are unconstrained. Figure 3.7 shows a sequence of

deformations applied to the scan of the stanford bunny (Turk and Levoy, 1994).

Already in this figure one can observe, that a profiled shape is stiffer than an

unprofiled shape, this is shown more isolated in figure 3.6. Figure 3.8 shows

the results of editing the more complicated and higher resolution armadillo scan

from Krishnamurthy and Levoy (1996).
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(a) (b)

(c) (d)

Figure 3.7: Mesh editing with the proposed energy and optimization leads

to intuitive behaviour. Red and green areas are the constrained regions,

while the position of the vertices in the gray area is calculated. (a) shows

the rest state of the mesh, in (b) we fixed the position of the body and of

two vertices at the tips of the ears of the bunny, bending the ear. Note how

the V-shaped ridge of the bunny ears leads to high stiffness, as evidenced

by the bend at the base of the ears. This behaviour is consistent with

the behaviour of a thin stretching shell, like stiff rubber. (c) extrudes the

bunny’s tail by moving a larger fixed region, and (d) makes the nose of

the bunny longer. Notice the continuous deformation at the boundary

between fixed and moving vertices.
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Figure 3.8: Using our deformation energy to pose a more complicated

high resolution mesh. The proposed measure is shell based, and does not

try to preserve volumes. The resulting deformations are intuitive when

regarding the object as made from a thin shell, but not if the object is re-

garded as solid. Observe how the details are correctly transformed even

under strong deformations. The deformations are adequate for mesh edit-

ing but for mesh posing a volume-preserving measure is better suited.
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3 Registration

In this section we describe how our novel mesh deformation cost can be used

to solve the registration problem between instances of 3D faces. Registration is

the process of parametrizing one surface in terms of another surface. The goal is

to find a mapping from the source to the target, which maps semantically corre-

sponding points onto each other. When registering for example two faces, then

the vertex on the tip of the nose of the source face should be mapped to the tip of

the nose of the target face. While correspondences for salient points like the tip

of the nose or the edges of the mouth could be determined by locally detecting

features in both images, it is more difficult to establish a global dense correspon-

dence between every point in the source mesh and the target surface. This can be

accomplished by regularising the mapping between source and target, such that

the overall deformation is in some sense smooth.

Registration is essential wherever statistical models are constructed (Blanz

and Vetter, 1999; Allen et al., 2003) to serve as a prior in recognition or recon-

struction tasks, or where comparisons between surfaces are needed.

The source surface S and the target surface T are two dimensional surfaces

embedded in three dimensional space. Starting from a parametrization of S we

are searching for a parametrization of T such that semantically corresponding

points have the same parametrization. We describe the parametrization with a

transformation T : S → T , and search for the T which minimizes the deforma-

tion energy Edef(T ) associated with the transformation (and maybe incorporates

additional constraints such as landmark constraints between salient points). This

can be formulated as an optimization problem over transformations T : S → R
3

with the constraint that T (S) = T .

While using a general optimizer is possible, as shown by Fitzgibbon (2001),

we chose to use a nonrigid ICP method to minimize the bending energy. To

derive the ICP method we first relax the constraint that T (S) = T into a dis-

tance energy between the deformed source T (S) and the target T , and solve a

sequence of optimization problems with a more and more strongly weighted dis-

tance energy. This successively pulls the deformed surface T (S) onto the target

T , which makes it possible for the optimization to find a better minimum than

that which can be found with direct optimization of the unrelaxed problem. Also,

using ICP allows the simple incorporation of a distance measure which changes

with the currently deformed surface, e.g. the distance between similar regions,

instead of the distance between the two surfaces. Additionally it is straightfor-

ward to incorporate a robust distance measure by using an iterative re-weighting

scheme and by discarding detected outliers in each iteration. A robust distance

measure results in a method which fills in the missing regions by relying only on

the deformation energy in the missing parts, and adds robustness against spurious

measurements.
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Caricature Registered Mean Registered Caricature

Figure 3.9: Caricatures help to judge the registration quality by exag-

gerating flaws and artifacts. The left- and right-most images images are

caricatures created by moving the registered and hole filled scans to twice

their distance from the mean.

Template Scan Registered

Figure 3.10: The head template used, a typical (cleaned) mesh acquired

by our scanning process, and the registration result.

For convex deformation measures, it is possible to find the l2 optimal defor-

mation between the source and a fixed set of landmarks, because the l2 distance

is also convex. This is the case for classical rigid or affine ICP as introduced by

Besl and McKay (1992), and for the deformation measure proposed for nonrigid

ICP in Amberg et al. (2007b).

A typical input scan acquired with a coded light scanner, the source template

we use and the registration result are shown in figure 3.10. To evaluate the qual-

ity of the registration we also show a caricature of the result, by increasing the

difference between the average face and the registered examples.

3.1 Prior Work

As registration is a basic tool for many computer vision and medical imaging

applications there exist a large literature on registration. We focus here on reg-
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istration of surfaces embedded in 3D space, and especially on nonrigid ICP. An

overview of more related methods can be found in Amberg et al. (2007b).

The ICP method for rigid deformations was introduced by Besl and McKay

(1992) and subsequently extended to nonrigid deformations by Feldmar and Ay-

ache (1996); Allen et al. (2003); Amberg et al. (2007b). In Amberg et al. (2007b)

it was shown that for the deformation measure in Allen et al. (2003) and a re-

lated measure based on the first derivative of the deformations along the sur-

face a closed form solution for the update step can be derived. The deformation

was parametrized in Allen et al. (2003) and Amberg et al. (2007b) by attach-

ing a deformation, either an affine deformation or a translation, to each vertex

of the source mesh, and minimizing the Frobenius norm of the difference be-

tween transformations attached to neighbouring vertices. As translations and

affine transformations are linear operations, this measure is convex. In Amberg

et al. (2007b) it was also shown that the resulting system of linear equations is

fully constrained, when a sufficient number of correspondences are used, even

though the position of each vertex is encoded by 12 parameters. Measuring the

difference between affine deformations has the advantage that a global affine de-

formation does not introduce a cost and locally affine deformations are cheap,

while a regularization based on translations does not allow the recovery of global

affine deformation or locally bending structures. The disadvantage of the pro-

posed measure is that it is dependent on the position of the origin and the units

of the coordinate system, as the Frobenius norm of the difference between two

affine transformations does weight the translational, rotational and scaling contri-

butions differently. We overcome this problem by exchanging the cost from Am-

berg et al. (2007b) with the deformation energy proposed in this thesis. This also

solves the problem that the previously used energy was based on a first deriva-

tive, resulting in a deformation which is not smooth when the correspondences

are sparse. On the other hand we have already demonstrated that our new energy

results in smooth deformations.

3.2 Additional Constraints

In practice, the minimum deformation between two faces does not always corre-

spond to the actual semantic correspondences. We address this by adding further

landmarks to guide the registration. The landmarks are included as additional

correspondences in the distance term. Our data comes from a structured light

scanner which also acquires three calibrated photographs of the target shape,

which are used to texture the shape and to mark curves in these photographs

which are extruded into 3D space to generate “surface landmarks” for further

correspondences. We mark the outline of the lips and the eyebrows, as these

are only visible in the texture, not in the shape, the outline of the ears, as those

are cut off in the scanning process, and the outline of the eye as this region is
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Boundaries in Camera 1 Boundaries in Camera 2 Extruded Boundaries

Figure 3.11: Additional Constraints are given by landmarks and 2D con-

tours. The 2D contours are extruded into 3D space, and the correspond-

ing face vertices are pulled towards the closest points on the extruded

contours. This allows 2D landmarks also at positions which do not have

a corresponding 3D measurement.

also not measured accurately due to the reflection properties of the eyes and the

eyelashes. For the “surface landmarks” we minimize the distance between the

landmarked vertices on the template and the extruded curves. This allows us to

define landmarks in the photographs even for regions where no data is available

in the 3D scan. We do not use the texture directly to register face scans, as the

texture differs significanty between subjects and is difficult to match reliably. We

opted in this case for some manual work, because the additional manually set

constraints significantly improve the resulting model. On the other hand texture

is reliable when registering expressions of the same face against the registered

neutral scan of the same person. In this case we do incorporate texture into the

registration as described in section 3.5.

To make the 3D scans align at the neck, we add an additional plane at a given

distance below the chin, and oriented according to the orientation of the head,

onto which the vertices at the boundary of the neck are drawn. See figure 3.12

for details.

3.3 Robustness

A larger capture range is achieved by searching not indiscriminately for the clos-

est point on the target, but instead taking into account only those points which

have a normal similar to that of the current guess. This simple feature already re-

moves wrong correspondences, which might be closer but are not locally similar.

More advanced features such as curvature would also be of interest. Also, the

correspondences are weighted by their inverse distance, such that the optimiza-

tion becomes more robust against outliers. Additionally, to detect missing data

we discard vertices whose closest point lies on a border of the target scan.
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Scan Registered

Figure 3.12: The mesh boundary at the neck is pulled onto a plane which

was placed at a constant position relative to the position of some vertices

of the face. This requires a second registration run, as the first run defines

the position of the neck surface.

3.4 Bootstrapping: Including a Shape Prior

To further improve registration results we incorporate a shape prior into the regis-

tration. We have access to the surfaces extracted from 30 volumetric MR-Images

of heads, which we registered with the method described above. These MRI

scans have a lower resolution, but they include the back of the head, which is

missing in the coded light scans. From the MRI surfaces a 3D shape model was

built, which includes statistically correct deformations of the back of the head

and some information about possible face shapes. We use this shape model as

the template during registration of the 3D surface scans by doing a coordinate

descent on the template parameters and the deformation parameters. The backs

of the heads filled in by the registration when using a shape prior are much more

realistic than those resulting from registration with a fixed head model. While

the bootstrapping could also be iterated by using the model from all registrations

in a second registration round, this proved impractical because the process is di-

vergent as the structured light scans do not constrain the back of the head. To

fit the morphable model efficiently we use the method proposed in Amberg et al.

(2008a).

3.5 Expression Deformations

To get an accurate model of the deformations of a face showing an expression we

marked faces with a random coloured pattern and acquired the neutral and ex-

pressed face gestures. Additionally a neutral face without markup was recorded.

We then applied the optical flow method of Liu (2009) between the extracted tex-

ture of the neutral marked up face and the deformed faces, and used the resulting

– 30 –



REGISTRATION

Figure 3.13: We marked up four persons with additional texture such that

accurate correspondences between the expressive and neutral faces could

be calculated. Shown are some registration results from one person, the

first two scans contain the neutral pose without and with markup, then

follow a few expression scans showing different visemes.

correspondences in a second registration run to improve the correspondence in

ambiguous areas such as the cheeks. This process was iterated twice. The texture

of the marked up scans is unusable, but we can replace it with the neutral texture

under the assumption that the skin does not change its albedo when compressed

or stretched. The markup on one example face is shown in figure 3.13. We are

using the registered neutral scan of a person as the template when registering an

expression scan. In the areas of the face where the shape does not change under

expressions (top of the head, and the ears, see 3.14), we increased the stiffness

by multiplying the area weighting factor with 50. This was necessary, because

within the stiff regions there are no correspondences, so we have to impose this

knowledge a priori. The stiffer areas are shown in figure 3.14.

3.6 Registration Results on Real World Data

In addition to the synthetic datasets we used our method to register over 1200

face surface scans acquired with a structured light system and more than 30 full

head surfaces measured with an MRI system. From the data we constructed a

3D Morphable Model of the full head, including the back of the head. These two

datasets have different characteristics, the MRI data is complete, but quite noisy,

while the surface scans are incomplete, the hair region and the eyes are missing,

but less noisy. Some of the registered datasets are shown in figure 3.15.

In figure 3.16 we show the first shape and texture principal components of

the resulting model.
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Figure 3.14: When registering an expression scan we are using the cor-

responding neutral scan as the template, and increase the stiffness in the

area marked blue in this figure.

4 Conclusion

We have introduced a novel deformation measure to be used within (1) the non-

rigid ICP framework and (2) for mesh editing. It was shown that this energy

results in more plausible deformations than previous linear and nonlinear mea-

sures, while being computationally cheap.

In addition, we detailed the registration method and presented a bootstrapping

method which was used to fuse data with different characteristics. This made

it possible to predict convincing back-heads for structured light scanned facial

surfaces based on a few MRI-Scans.

The presented algorithm is easy to implement, robust and easy to tune, and

can be used to build a high quality 3D morphable model.



CONCLUSION

Figure 3.15: Registration results for some of the neutral scans used to

build the 3D Morphable Model.
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The shape mean and the 6 first principal identity components at ±2.5σ

The shape mean and the 6 first principal expression components at ±2.5σ

The color mean and the 6 first principal color components at ±2.5σ

Figure 3.16: A 3D Morphable Model was constructed from over 1200

scans. Shown are the first 10 shape principal components of the model

for the identity and expression model together with the first 10 principal

components of the color model.

– 34 –







2— Part II —

Fitting a 3D

Morphable Model

to a Video

Sequence

— Morphable Model Fitting — Efficient Feature Point Tracking —

Simultaneous Segmentation and Fitting — Model Based Temporal

Stereo Reconstruction — AAM Based Detection of Eye and Mouth

Outlines —





— Chapter 4 — 43D Morphable Model Fitting
We want to apply the morphable model described in Part I to the task of

transferring face expressions in videos. This requires us to fit the model

to two input videos, resulting in a simplified description of the video in

terms of the model parameters which best explain the video. Using

this description it is then relatively simple to transfer expressions. But

extracting the description is nontrivial. This chapter describes our ap-

proach of fitting the model to a video.

Fitting a 3D Morphable Model is the process of estimating the model param-

eters which have generated the image. More accurately, we want to determine

the probability distribution over the model parameters θ which results from ob-

serving an image V , under the assumption that the image was generated by the

model.

By exchanging the camera model it is possible to fit the same 3D Morphable

Model to data from different modalities, e.g. single images (Blanz and Vetter,

1999), stereo pairs (Amberg et al., 2007a), range data (Amberg et al., 2008b,a),

volume data (Lüthi et al., 2008), or, as in this text, videos. We therefore call any

measurement derived from the 3D object an image, not just the classical pinhole

camera image.

1 Problem Formulation

As the 3D-MM does not model the world and camera with perfect accuracy it

has to be extended with an error term. Let us denote the image generated by the

model under parameters θ as G(θ), and the error image as E . We assume that the

observed image V is generated as

V = G(θ) + E (4.1)

and we know the prior probabilities p(θ) and p(E) of the model parameters and

the error distribution. We are interested in the probability of the parameters given
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the observed image p(θ | V) which, by Bayes’ rule, is

p(θ | V) =
p(V | θ)p(θ)

p(V)
, (4.2)

In practice, we are searching for the MAP estimate of the model parameters, as

keeping track of the full probability would be computationally too expensive. As

the maximum does not depend on the image probability we can instead maximize

the unnormalized quantity

p(θ | V) ∝ p(V | θ)p(θ) . (4.3)

If the image would depend deterministically on the model, then p(V | θ)
would be a Dirac distribution – or a mixture of Dirac distributions if the mapping

would not be one to one – but as the model includes an error term we have a true

likelihood. For a specific modality we need to specify the likelihood and the prior

from equation 4.3. Once the probabilities are defined, a gradient-based nonlinear

optimizer is used to find the maximum of the posterior p(θ | V). One could stop

the explanation at this point, but the details of a successful optimization algorithm

for this posterior are important, as the model involves many parameters and non-

convex likelihoods. We therefore devote the rest of this part to the details of the

fitting algorithm.

2 Fitting Strategy

The fitting uses a sequence of increasingly complex and less smooth approxi-

mations to the true probability of the model under the image, in the hope that

this improves our likelihood of finding the global maximum. We specify the

complete likelihood as factorizing into multiple terms, which depend on differ-

ent features extracted from the video. By leaving out some of these factors we

generate smoother approximations of the likelihood. These factors are ordered

by their smoothness, and in the first optimization stages the complete likelihood

is approximated by leaving out the more complex terms. Obviously, one can con-

struct theoretical cases where this apporach leads the optimization from a perfect

initialization to a local minimum, but as we never can hope to initialize at the

optimium, this approach is helpful in all practical cases.

The terms which we are using for the fitting are in order of increasing com-

plexity

1. The face prior, describing which shapes are likely faces and the camera

prior which restricts the focal length to a sensible value.

2. The movement model, describing how a face is expected to move through

a video.
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3. The landmark likelihood, measuring how well a set of landmarks can be

explained by the model.

4. The silhouette likelihood, which segments the video into foreground and

background.

5. The inner edge features, i.e. the contours of the eyes, eyebrows, and lips.

6. The stereo likelihood measuring how well the optical flow induced by the

model matches the video.

7. The shape from shading likelihood measuring how well a rendered model

matches the image.

We will describe these terms in the following sections, but first need to introduce

the imaging model used for the video fitting.

3 The Imaging Model

We model the video as a sequence of images taken by a pinhole camera with

intrinsic parameters which stay constant throughout the sequence, and extrinsic

parameters which change during the sequence. The extrinsic parameters define a

rigid transform, which maps a vertex vm in model space into a vertex ve in eye

space. The mapping is

ve = Rρr
vm + ρt , (4.4)

where Rρr
= RryRrzRrx is the orthonormal matrix associated with the three

Euler angles ρr = (rx, ry, rz), and ρt are the translation parameters.

The intrinsic parameters are the focal length ρs in pixels, and the principal

point ρp = [ρpx
,ρpy

]T also measured in pixels. The perspective projection

function which maps a vertex ve in eye coordinates onto the image is

πρ(v
e) = ρs

[
vex
vey

]

/vez + ρp . (4.5)

We will denote the function describing the image position of a model vertex i
under the camera and shape parameters as

Πi(α,ρ) = πρ(Rρ(si + Siα) + ρt) (4.6)

We assume that the texture is constant throughout the video, and all changes

in appearance are explained by surface deformations.
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4 Modelling the Posterior

To determine the MAP parameters of our model given the image, we need to

specify the likelihood of the observed video under the model and the model pri-

ors. We start with the priors.

4.1 Priors

We factor the prior p(θ) into a term which states for each frame f i the likelihood

of the camera parameters ρi, shape parameter αi and for the whole video a single

set of texture parameters β, plus a motion model which describes the expected

movement of the face through the scene:

p(θ) = p(β)pmotion(ρ,α)

F∏

i=1

p(ρi)

F∏

i=1

p(αi) . (4.7)

Single Frame Shape and Texture For each frame we have an independent

contribution to the model prior from the its shape and texture parameters. The

prior estimated when training the morphable model is a Gaussian, but we ob-

served that the fitting results are better when using

p(αi) ∝ exp{−
∥
∥max(0, |αi| − 1)

∥
∥
2
} (4.8)

p(β) ∝ exp{−‖max(0, |β| − 1)‖2} , (4.9)

instead. This distribution, which is depicted for two dimensions in Figure 4.1

assigns equal probability to all faces whose coefficients have an absolute value

smaller than 1 and outside of the [−1, 1]N -cube drops of like a Gaussian. With a

Gaussian prior it is often difficult to find the correct regularization weight, while

the prior from equation 4.9 makes the fitting more robust to different choices of

the regularization. This seems to imply that equation 4.9 is a better description

of the actual distribution of faces, all linear combinations of faces with small

coefficients are equally probable, but it might also be just an artefact of using a

maximum a posteriori estimation.

Dynamic Priors The extrinsic parameters of the camera, lighting and face

model change smoothly throughout the video. This is captured by the motion

model pmotion. One could factor this into a prior for every model parameter, which

assigns a higher probability to smooth trajectories in model space. But that would

introduce a large number of weights to balance the smoothness of the different

model parameters. And as the rotation, translation, and shape parameters do not
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Figure 4.1: Two dimensional slice of the (unnormalized) prior used for

texture and shape. The prior assigns a uniform probability density prob-

ability to all faces whose paramters do not exceed the [-1,1] range.
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Figure 4.2: Determining the focal length in pixels from prior information.

have the same scale, it would be necessary to adjust these weights on a per-video

basis.

Instead, a smoothness prior which assigns a high probability to model space

trajectories which result in smooth eye space trajectories of the face vertices is

used. This couples the extrinsic camera and the shape parameters between all

frames. The second order model used here is

pmotion(ρ,α) ∝
2∏

q=1

F∏

i=1

exp

{

−λmotionq

∑

v

∥
∥∇q

t (Rρi(sv + Svα
i) + ρi

t)
∥
∥
2

}

,

(4.10)

where ∇q
t is the q-th temporal derivative of the vertex position. We evaluate this

derivative with finite differences between the frames.

Intrinsic Camera Priors We constrain the camera parameters to sensible val-

ues wherever possible. Even though our fitter can optimize over all parame-

ters jointly (bundle adjustement), and determine the intrinsic camera parameters

we can reach a higher accuracy when prior information about the calibration is

available. This is done by including a prior over the camera parameters, where

the nominal parameters were read of the cameras. As there is no obvious better

choice we assume that the true camera parameters deviate from the nominal pa-

rameters according to a normal distribution, and we also assume that the error in

the determination of the focal length and principal point are independent

p(ρi) = N (ρsi | ρsprior, λ
−1
ρs

)N (ρpi
| ρpprior

, λ−1
ρp

I2) . (4.11)

If no camera parameters are available we constrain the principal point to lie close

to the center of the image and penalize focal lengths smaller than 5, because these
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result in strong wide-angle lens effects, which we do not expect to encounter in

our scenes.

4.2 Likelihood

The image likelihood p(V | θ) is factored into independent terms,

p(V | θ) = pL(L | θ)pS(S | θ)pE(E | θ)pflow(V | θ)psfs(V | θ) (4.12)

for landmarks, silhouette, inner edges, stereo and shape from shading, which we

will describe now, starting with the smoothest factors and adding more and more

complexity.

Landmark Points A landmark is a correspondence between a model vertex

and an image position. Landmarks are the feature resulting in the smoothest like-

lihood, and are also the most informative feature. In a video, if we had the corre-

spondence between enough landmarks and image positions for multiple frames

under different poses, then this would be sufficient to exactly identify the gen-

erating parameters. The problem is that they are also most difficult to find. We

extract the landmarks from the video in a semi-automatic process, where the user

marks a landmark in one or more frames, and the position in the remaining frames

is found automatically. This is described in detail in chapter 5.

The problem with landmarks is, that there are only few facial landmarks

whose image position can be uniquely determined without first fully reconstruct-

ing the scene. These points are corners of face features, e.g. the corners of the

mouth and eyes, or the ridge of the lips.

If we have a set of landmarks L, where each landmark l is described by a

vertex index il in the morphable model and an image position xl in frame fl of

the video, then the landmark likelihood pL measures the difference between the

projected landmarks and the 3D positions as

pL(L | θ) ∝
∏

l

exp
{

−λL

∥
∥Πil(αfl ,ρfl

)− xl

∥
∥
2
}

. (4.13)

Πil(α,ρ) was defined in equation 4.6 and is the projection function mapping the

model vertex il to its image position. This assumes as usual that the deviation be-

tween the clicked landmark and what can be explained by the model is normally

distributed and independent.

Silhouette The visible silhouette of an object gives an important constraint on

the shape of the object, and is relatively easy to detect in controlled scenes with

a suitable background. It can also be arbitrarily difficult to detect in the presence
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of cluttered backgrounds, when the background contains itself faces, when the

person has long hair of a color similar to the skin, or in a number of other cases.

Many shape reconstruction methods make use of the visible silhouette (De-

lamarre, 2001; Romdhani. and Vetter, 2005; Ilić et al., 2006; Vogiatzis et al.,

2006; Keller et al., 2007; Amberg et al., 2007a). Plaenkers and Fua (2002) inter-

locked the estimation of the shape and silhouette, a topic which we expand upon

in chapter 6.

Given an extracted silhouette, the corresponding likelihood is the same as in

(Amberg et al., 2007a), we integrate the distance of the visible silhouette in the

model towards the closest silhouette position found in the image.

pS(S | θ) ∝
∏

i ∈ Vertices on the silhouette

exp
{

−λSDistanceS(Πlvi
(α

l
f
i
,ρ

l
f
i
))2
}

(4.14)

We extend prior work in two ways: First, we motivate the extraction of silhouettes

as a way of explaining the full video, not only the face region; and second, we

give an iterative algorithm which simultaneously estimates the silhouette and the

model. The details are given in chapter 6.

Inner Face Edges Similar to the silhouette term is the inner face edges term.

We extract the outline of the lips and eyes using part specific Active Appearance

Models (AAM) which are fitted with the CODE technique introduced in Amberg

et al. (2009a). This optimization technique proved to have a larger convergence

range than directly fitting the 3D model, and allows us to extract the outlines of

the eyes and lips without explicitly modelling the light. The probability is defined

equally to the silhouette term, but now we integrate over the fixed set of vertices

corresponding to the line features

pE(E | θ) ∝
∏

i ∈ Feature Vertices

exp
{

−λEDistanceE(Πlvi
(α

l
f
i
,ρ

l
f
i
))2
}

(4.15)

Stereo Term Classic stereo reconstruction assumes that multiple views of the

same object from different viewpoints are available, and that these views are

either taken at the same instant, or that the shape of the object did not change.

They essentially find a surface which minimizes the reprojection error, that is the

difference of the appearance at image positions in two frames which correspond

to the same 3D point under the reconstructed shape. For a survey of 2-view

algorithms refer to Scharstein and Szeliski (2002) and for the use of more than

two frames Seitz et al. (2006) is the definitive reference. In our case the object

is observed by a single camera and deforms between the frames. These kinds

of problems are typically called nonrigid structure from motion (Bregler et al.,

2000; Brand, 2001; Torresani et al., 2003). In nonrigid structure from motion the
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deforming shape and the camera parameters are simultaneously inferred from

feature tracks, typically learning a linear shape basis simultaneously with the

reconstruction. The output is the 3D position of the points corresponding to the

tracked landmarks. In our case we are somewhere in between these paradigms.

We infer the structure from the motion of a nonrigid object, by explaining the

appearance of the video given a generative shape model. What we call the stereo

term is the reprojection error of stereo methods, but the position where a point is

reprojected is determined not only by the change in perspective but also by the

deformation of the object.

The nonrgid reprojection error is calculated by taking for every vertex which

is visible in a pair of frames the difference of the appearance at the position that

the vertex is projected to in each of the frames

pflow(V | θ) ∝

N−1∏

i=1

∏

v ∈ Vertices visible
in frame i and i + 1

exp
{
−λflow

∥
∥f i(Πv(αi,ρi))− f i+1(Πv(αi+1,ρi+1))

∥
∥
}

(4.16)

To make this more robust and also increase the capture range we measure the ap-

pearance difference using the first eight elements of the feature vector described

in chapter 5, which captures the appearance within a 19x19 patch.

Shape From Shading The shape from shading term is equivalent to the orig-

inal 3D MM fitting term introduced in Blanz and Vetter (1999). It measures the

difference between the lighted model and the corresponding image positions. We

deviate from Blanz and Vetter (1999) in how the light is modelled and estimated.

Our lighting model approximates the true lighting situation with a relatively large

number of directional lights, equally spaced around the head. Each light has its

own color and intensity. We use a nonstandard light model, which is very similar

to the Phong (1975) model, actually the Phong model is a special case of our

light model, but the fitting of our light model is simpler. The light model we are

using consists of the standard diffuse term plus a linear combination of Phong

terms for varying exponents. We do not use an ambient component, as there are

enough lights to illuminate the whole object. That is for a vertex j of colour cj ,

with a normal nj , light incidient from the directions di with light colour li and a

viewing direction of v we calculate the light emitted at the vertex in the viewing

direction as

∑

i

visj(di)

(

li ◦ (c
j〈nj ,di〉) + li

10∑

n=1

pn〈2〈di,n〉n− di,v〉
n

)

. (4.17)
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Here visj(di) is an indicator function which is one if the light source is visible

from vertex j and zero otherwise. pn are nonnegative weights determining the

slope of the specular reflections. The specular basis slopes are shown in fig-

ure 4.3, together with a few linear combinations of these basis slopes to show

that building linear combinations of phong bases results in plausible specular

highlights. The albedo of every vertex c is described by the linear combination

c = a+Aβ of the appearance basis.

We update the light and the shape estimate in a coordinate descent, updating

the light and albedo between the stages of our algorithm, and afterwards keeping

them fixed while refining the shape.

Given a shape it is easy to optimize the above equation with respect to the

(nonnegative) light colors cli, the phong weights pn and the appearance coeffi-

cients β. We do this using the box constrained BFGS method from Zhu et al.

(1997) initializing with all light intensities set to 1/Nlights and the mean appear-

ance.

5 Optimization Method

The huge number of variables (100 identity coefficients per video + 100 expres-

sion coefficients per frame + 1 camera parameter per video + 6 camera parame-

ters per frame), makes it slow to simultaneously optimize all frames of a reason-

able long video. We therefore perform a coordinate descend, optimizing over

30 frames of the video at a time, with an overlap of 10 frames between the

optimizations. That is in each stage of the optimization we first optimize the

parameters for frames 1..30, then 20..50, then 40..70 and so on. For the opti-

mization we are using the L-BFGS-B method of Zhu et al. (1997), which is a

memory limited Quasi-Newton method, using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) update to the approximate Hessian matrix.

6 Alternatives

Here, the whole sequence is explained simultaneously. A different approach is to

track a model through a video sequence as addressed in Muñoz et al. (2009) and

Hiwada et al. (2003). While tracking is typically faster because less parameters

need to be estimated simultaneously, we are achieving a higher quality by making

use of all the available information.
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Phong Bases for Exponents 1 to 10

Linear Combinations of Phong Bases

Figure 4.3: The 10 phong bases used in our algorithm and a few linear

combinations, showing that linearly combining phong bases is a sensible

thing to do. Each row shows at the top the phong slope and below it a

green sphere rendered under blue light with ambient + diffuse + specular

lighting. The red line in the phong slope is the incident light direction,

the yellow line is the mirror direction and the black line is the normal.
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When doing video post-production it is often necessary to track interest

points in the video, this is called off-line tracking, because the complete

video is available to the algorithm. Off-line tracking should be accu-

rate and, if used interactively, needs to be fast, preferably faster than

real-time. We describe a 50 to 100 frames per second off-line track-

ing algorithm, which globally maximizes the probability of the track

given the complete video. The algorithm is more reliable than previ-

ous methods because it explains the complete frames, not only the part

of the video which is under the track, making as much use of the data

as possible. It achieves efficiency by using a greedy search strategy

with deferred cost evaluation, which focuses the computational effort

on the most promising track candidates while finding the globally opti-

mal track.

1 Introduction

To successfully fit the 3D model to a video we require a few landmarks at ev-

ery frame to initialize and guide the optimization. While preparing a video for

expression editing, we want to minimize the amount of time a user has to spend

annotating the video. We decided on a semi-automatic system, because fully au-

tomatic systems either work or fail, while semiautomatic systems always work,

they only require different amounts of manual interaction depending on the dif-

ficulty of the data. Therefore, we decided to concentrate on an interactive first

phase where the user accurately marks landmarks in a convenient tool. The land-

marks are marked in some frames, and tracked automatically to all remaining

frames. The tracking had to be fast enough to allow interactive use, while being

as accurate as possible. The type of tracking we are interested in is interactive

offline tracking, see for example the work of Agarwala et al. (2004); Buchanan

and Fitzgibbon (2006); Sun et al. (2005); Wei et al. (2007). We decided to build
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on the work of Buchanan and Fitzgibbon (2006), who presented a faster than re-

altime offline tracker, which uses the full video at once to determine the track.

We will denote their algorithm as DP-TRACK, and our descendent of their al-

gorithm as GRAPH-TRACK. Using the full video is a systematic way to counter

drift, as described by Matthews et al. (2004), which occurs when tracking only

from frame to frame.

DP-TRACK achieves its high speed by preprocessing the video in a compute-

intensive step without user interaction, and using the search structure from this

preprocessing step for fast lookup of candidate matches. It then find a path

through these candidates which simultaneously (1) passes through the landmarks,

(2) minimizes the difference in appearance between the marked and detected

patches and (3) minimizes the length of the track.

When the user sees that the track is lost in a frame, she can mark the missed

patch, and the algorithm recalculates the optimal track over the whole video.

This is the behavior which we need for our user interface, but it turned out that

when the appearance of the patches changes too strongly throughout the video,

the tracking becomes unstable. Correcting a bad frame can lead to losing track

in regions of the video which were tracked correctly before adding the additional

input.

The reason for this behaviour is that the appearance model becomes too

broad, i.e. the uncertainty in the patch appearance increases. We correct this

behaviour and increase the tracking stability by explaining not only the track, but

instead the full video. This makes it necessary to introduce a background appear-

ance model in addition to the foreground appearance model used in DP-TRACK.

The effect is that marking an interest point in a frame does not only tell us ‘this is

how the interest point looks like’, but also for every patch which was not clicked

upon ‘this is how the interest point does not look like’.

2 Method

The algorithm finds the most probable track through the video given interest

points marked in some frames. Denote the video by V = (f1, . . . ,fF ), where V
is a tuple of frames f i, and a track as T = (x1, . . . , xF ), where each xi is the po-

sition of the interest point in frame i. In L ≪ F frames we have marked interest

points, which we denote by L. We use Bayes’ theorem to model the probability

of a track given the video and the landmarks as

p(T | V,L) ∝ p(V,L | T )p(T ) . (5.1)
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The video determines the position of the landmarks, but given a track these two

are independent. We write this as

p(T | V,L) ∝ p(V | T )p(L | T )p(T ) . (5.2)

We assume that the user has clicked correctly, such that p(L | T ) is a Dirac dis-

tribution. This might seem like a strong requirement, but actual user input turned

out to be sufficiently accurate. The extensions necessary to make the algorithm

more robust to incorrectly or noisily marked landmarks are straightforward, but

result in a longer runtime. Assuming correctly clicked landmarks allows us to

unclutter the equations by omitting the L and reasoning only over tracks which

pass exactly through the selected interestpoints. We will now describe how we

model the prior and the video likelihood.

2.1 Track Prior

The prior over tracks is modelled as a Markov chain looking back a single frame,

such that the position of a landmark in frame i depends only on the position of

the landmark in frame i− 1

p(T ) = p(x1)

F∏

i=2

p(xi | xi−1) . (5.3)

Using only the previous frame, we are restricted to a first order motion model, as-

suming that the new position is most probably close to the old position. We there-

fore model the new position as an isotropic Gaussian centered on the position in

the previous frame. For the first frame we are using a uniform distribution.1

p(x0) ∝ 1 (5.4)

p(xi | xi−1) ∝ exp{−λd‖xi − xi−1‖
2} .

2.2 Video Likelihood given the Track

We assume that the likelihood factorizes into a term for each frame and pairs of

adjacent frames

p(V | T ) =
∏

i

p1(f i, | xi)
F−1∏

i=1

p2(f i,f i+1 | xi, xi+1) . (5.5)

1This is a proper distribution, because we are considering only a discrete set of positions.
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The frames where interest points are marked are used to determine the per-frame

factor p1 from positive example patches P = (p1, . . . ,pL) and negative example

patches N = (n1, . . . ,nN ) extracted from these frames. The resulting appear-

ance model is

p(f i(x) | interestpoint) ∝ exp{−λf min
j

‖f i(x)− pj‖
2} (5.6)

p(f i(x) | background) ∝ exp{−λb min{δb,min
j

‖f i(x)− nj}‖
2} (5.7)

where f i(x) is the patch at position x in frame f i, and δb is a parameter giving

the maximum possible distance from the background. δb is used to model the

fact that new samples which are very far from both the known foreground and

the known background samples are more probably background than foreground.

The norm used here is the Euclidean distance between feature vectors extracted

at each patch. The details are given in section 7, but are not necessary to follow

the algorithm. Assuming independence beween the patches in a frame allows us

to factor the per-frame term given the track as

p1(f i | xi) (5.8)

= p(f i(xi) | interestpoint)
∏

x 6=xi

p(f i(x) | background)

=
p(f i(xi) | interestpoint)

p(f i(xi) | background)

∏

x

p(f i(x) | background) .

This assumption is obviously wrong, as an image with independent pixels would

be very boring, but is necessary to arrive at an efficient algorithm. Equation 5.8

can be further simplified to

p1(f i | xi) ∝
p(f i(xi) | interestpoint)

p(f i(xi) | background)
, (5.9)

as the product in equation 5.8 does not depend on the choice of xi.

In the pairwise appearance term we encode the assumption that the appear-

ance of the tracked patch changes only gradually between frames, such that

p2(f i,f i+1 | xi, xi+1) ∝ exp{−λs‖f i(xi)− f i+1(xi+1)‖
2} . (5.10)

As opposed to the per-frame factor p1 which explains the complete frame, our

definition of p2 explains only the appearance change of the patches under the

tracked patch, and ignores the remaining area of the frames. This is necessary to

keep the algorithm efficient, but might be an interesting starting point for further

research.
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3 Efficient Optimization

We minimize the negative log of the posterior of the track probabilities, which

has the form

− logp(T | V,L) = constant

+

F∑

i=1

(λf min
j

‖f i(xi)− pj‖
2 − λb min{δb,min

j
‖f i(xi)− nj‖

2})

+ λs

F−1∑

i=1

‖f i(xi)− f i+1(xi+1)‖
2

+ λd

F−1∑

i=1

‖xi − xi−1‖
2 . (5.11)

DP-TRACK uses a dynamic programming approach to minimize this cost. This

dynamic programming method fails to find the global optimum when handling

occlusions, as is demonstrated in the appendix. For our method we observe that

the cost function can be encoded as a graph and minimized efficiently and glob-

ally optimal with a shortest path search. We use a version of Dijkstra’s (1959)

shortest path search which speeds up the search and allows us to efficiently in-

corporate our background model.

We now describe how to map the cost to a graph. We can interpret the cost as

a directed acyclic graph. This graph has one layer for every frame, and in each

layer a node ni,x for every patch. Each node has a weight corresponding to the

single frame match

w(ni,x) = − log p1(f | x) . (5.12)

The nodes of one frame are connected to the nodes of the next frame by edges

(ni,xi
, ni+1,xi+1

) with a weight consisting of the movement prior and the pair-

wise appearance term

w(ni,xi
, ni+1,xi+1

) = λs‖f i(xi)− f i+1(xi+1)‖
2 + λd‖xi − xi−1‖

2 (5.13)

The frames where the interest points were marked contain only a single node at

the interest point. This ensures that all paths run exactly through the selected

points. The graph has two additional special nodes, the source, which is con-

nected to all patches of the first frame, and the sink, which is the target of all

patches of the last frame. See figure 5.1 for a small example. Every path from

source to sink passes through exactly one node of every layer, as each node is

only connected to the directly following layer. The possible paths map therefore

one-to-one onto the possible tracks, and the sum of the costs of all edges and
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2

Frames

3 4 5

Source Sink

1 2

Frames

3 4 5

Source Sink

1

Without occlusion handling With occlusion handling

Figure 5.1: The cost function can be interpreted as a directed acyclic

graph with weights on the nodes and edges. The optimal track is the

path from source to sink which has the minimal weight. On the left is a

graph for the cost function without occlusion handling, and on the right

the same graph with occlusion handling. Each frame has 4 candidate

patches, and frame 1 and 4 have a marked interest point.

nodes of a paths is exactly equal to the cost assigned to the corresponding track.

When finding the shortest path from source to sink we have therefore also found

the global minimum of the cost function.

We search for the shortest paths using a variant of Dijkstra’s (1959) shortest

path using a Fibonacci heap (Fredman and Tarjan, 1987). Dijkstra’s algorithm

partitions the nodes into an ‘active’ and a ‘solved’ set. The minimal distance

towards the nodes in the solved set is known, and for the nodes in the active

set an upper bound on the distance is kept. An invariant of the algorithm is

that each node in the active set has a distance which is larger than the maximal

distance to any node in the solved set. This invariant is maintained, by greedily

choosing the node from the active set which has the minimal distance, moving it

to the solved set and updating the distance bound towards the descendants of the

expanded node with the distance of the path through the expanded node. To do

this efficiently we need a priority queue with a O(1) decrease key operation. The

full algorithm is:

1. The source is put into a priority queue, with an associated track length of

zero.

2. The remaining nodes are inserted into the priority queue with an associated

track length of ∞.

3. Iterate, until the sink is expanded:

A. Select the node xi from the queue, which has the minimal track

length.
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B. Expand xi: For every descendent xj of xi:

a. Calculate the length of the shortest path to xj passing through

xi, this is the distance towards xi plus the edge cost w(xi, xj)
plus the per-frame cost w(xj).

b. If this length is smaller than the length associated with xj , de-

crease the length of xj to the new length, set a parent pointer

from trackj to tracki and update the priority queue.

4. Follow the parent pointers from the sink to the source to recover the short-

est path

While this optimization is efficient, it is still slow to calculate the weights for

all edges and nodes. Especially evaluating equation 5.8 for each node is expen-

sive, because this involves a search over a large number of negative examples,

and the graph has a huge number of edges, as every frame is densely connected

to the following frame. We can overcome this by observing that, for realistic

settings of the parameter weights, we only have to expand a small fraction of the

nodes. The cost of the shortest path towards most nodes is larger than the cost

of the minimal path towards the sink. This is especially true when the track prior

favours small movements, i.e. λd is relatively large. We can therefore remove

the cost of evaluating the edge weights by calculating them lazily in step 3.B.a

of the algorithm. The number of distance and similarity evaluations is reduced

from N2
Candidates/FrameNFrames to NCandidates/FrameNExpanded Nodes.

Note that while we are, for a strong motion prior, effectively calculating costs

only for a few nodes around the currently best track, this is different from meth-

ods which restrict the search to a small region around the current tracked position,

as we are still searching over the full frame whenever the optimal track requires

this. The search is merely arranged in the most efficient order.

To be able to lazily evaluate the appearance cost we modified Dijkstra’s al-

gorithm by using a lower bound on the track length instead of the actual track

length. This lower bound is calculated by replacing the per-frame cost w(xj) in

step 3.B.a with a lower bound of the frame cost if xj has not been expanded be-

fore. The actual cost of xj is then calculated when it is expanded. Updating the

lower bound of the frame cost can lead to it being no longer the overall smallest

node. In that case, instead of further expanding it, we just add it back into the

priority queue. This guarantees that the globally optimal path is found while per-

forming only the absolutely necessary amount of computation. As every lower

bound is updated only once, we can guarantee that the number of times a node is

taken from the priority queue is maximally doubled.

The approximate frame cost is calculated by using a restricted set of back-

ground examples. We include for each positive example the one negative exam-
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ple which is closest to it.

The true per-frame cost is the distance towards the closest positive example

minus the clamped distance towards the closest negative example plus the un-

known constant from from equation 5.8. But the constant was left out, as it does

not change the position of the minimum. This can result in a negative distance,

which is not solveable with Dijkstra’s algorithm. To overcome this we add to

all nodes an upper bound on the distance to the background. The upper bound

is found by taking the distance between each candidate patch and the recduced

background model. This does not change the minimal path, because every path

has to go through the same number of nodes, and the offset is added to all nodes.

While the algorithm as presented minimizes the number of nodes which ac-

tually need to be expanded, it is still too slow to be used with all pixels in all

frames. Instead, we select in a first step a number of candidate patches from

each frame (typically 150-250 patches) which are the input for all stages of the

algorithm. The efficient selection of candidates is explained in section 5.

4 Occlusions

So far, our algorithm cannot handle occlusions. The occlusion handling method

introduced in Buchanan and Fitzgibbon (2006) does not result in a globally opti-

mal solution (as demonstrated in the section ), but we present a relatively efficient

globally optimal occlusion handling method here.

Occlusions are modelled by introducing a new binary random tuple, O =
(o1, . . . , oF ) stating for each frame whether an occlusion is happening or not.

We now want to find the MAP estimate of

p(T ,O | V ,L) ∝ p(V,L | T ,O)p(T )p(O) , (5.14)

where we have assumed that occlusion and track movement are independent. We

model the occlusion prior again as a Markov chain

p(O) = p(o0)

F∏

i=1

p(oi | oi−1) . (5.15)

The resulting cost could be directly encoded in the graph by adding for every

pixel in every frame a node corresponding to the state of being occluded at this

position. That is not feasible, as the number of nodes would be too large. An

efficient method can be found by noting that the track position during a run of

occluded frames depends only on the motion model, and with our first order mo-

tion model is completely determined by the endpoints of the occluded run. We

can therefore combine all possible occluded subpaths between two frames into a

single edge, whose weight is the minimum of all these paths. This removes all
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Figure 5.2: Tracking results on a talking head sequence and on a video

of a giraffe. Between one and three user clicks were needed to achieve

accurate tracking for the head sequence. Note the correct handling of the

occluded ear, which was achieved with a single click. The eye of the

running giraffe needed eight clicks, of which three marked occlusions.

Please refer to the accompanying video for more details.

occluded nodes, and instead introduces on the order of N 2
framesNCandidates Per Frame

edges. The resulting path search is still relatively efficient, because the weights

on all these edges are only calculated lazily for the expanded nodes. For long

sequences with more than 100 frames, the cost of updating all nodes in the sub-

sequent frames becomes substantial. In this case we propose to limit the number

of edges by adding only edges from a node to the 10 directly following frames,

then to every second frame in the range 11-20, every third in the range 21-30 etc.

This assumes that the expected length of occlusions is relatively short, or that

the object of interest is visible in large parts of the video. For long occlusion we

might find a track which stays occluded longer than necessary. This can be reme-

died by the user, by marking the track position in the first non-occluded frame.

Also, we speed up the update of the children by checking if the current cost plus

the occlusion cost is already larger than the current minimal cost of a child. In

that case we can skip the relatively more expensive calculation of the similarity

cost.

Instead of specifying the four probability values of p(oi | oi−1) we are using

two costs, an occlusion start cost and a cost between occluded frames, such that
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the cost associated with an occlusion edge from xi to xj is

λo + (j − i− 1)λr
︸ ︷︷ ︸

occlusion

+
λs‖f i(xi)− f j(xj)‖2

j − i− 1
︸ ︷︷ ︸

similarity

+
λd‖xi − xj‖2

j − i− 1
︸ ︷︷ ︸

distance

, (5.16)

where we assumed that the appearance and position change linearly during the

occlusion.

5 Candidate Selection

To make the algorithm faster than real time it is necessary to restrict the num-

ber of candidate positions taken into consideration in each frame. This section

explains, how we efficiently extract candidate positions from the video. The

GRAPH-TRACK search algorithm is able to handle a few hundred candidates per

frame efficiently, as opposed to the four to eight candidates per frame used by

DP-TRACK.

Finding the candidates is essentially a template matching problem, and could

be addressed by methods such as Anderson and Schweitzer (2009); Schweitzer

et al. (2006); Kawanishi et al. (2004); Di Stefano and Mattoccia (2003), but for

offline tracking it is allowable to invest some time into the preprocessing, if this

leads to immediate feedback during the user interaction. Following Buchanan

and Fitzgibbon (2006) we therefore preprocess the image such that each patch

is represented by a feature vector. The details of the feature extraction are given

in section 7, for now it suffices to say that we extract 16 one-byte features at

each pixel position in a one-off preprocessing phase. The rest of the algorithm

then works with this 16 byte representations of the image patches, allowing

much faster calculations than those obtainable with a generic template match-

ing method.

To efficiently select candidates, Buchanan and Fitzgibbon (2006) stored the

patch features into a KD-Tree structure using 24 bytes per patch. While the

KD-Trees are quite efficient we found that an exhaustive search can be as fast,

but requires only 2/3 the amount of memory allowing the handling of 1.5 times

longer sequences. Another advantage is that with the efficient feature extraction

described in section 7 and without the need to construct the KD-Trees the prepro-

cessing time dropped from hours (Buchanan and Fitzgibbon, personal communi-

cation) to minutes. The candidates are chosen to be the Ncandidates patches which

are closest to the positive examples and are locally minimal. To make the search

efficient we are not calculating the sum of squared differences while deciding on

the candidates, but instead use the sum of absolute differences as a proxy func-

tion. The sum of squared differences cost is then calculated only for the examples
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Figure 5.3: The candidate points which were taken into account for a

single frame of a video sequence. We show the matches for the ridge

of the lip, the right eye corner and the flank of a giraffe. The size of

the dots corresponds to p(f
i
| tracki), where the left column is using

the background model and the right column is not using the background

model. We picked three examples where the correct track (shown as a

microscopically small green line) is found only when including the back-

ground model. In all sequences the landmark was marked in the first

frame.
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selected based on the proxy function. The SSE instruction set of modern CPUs

contains a command to calculate the sum of absolute differences between two

pairs of unsigned eight byte vectors in a single instruction (Intel, 2010). By or-

ganizing the data accordingly we can efficiently calculate the differences. While

computing the differences we are performing a non minimum suppression. This

requires access to the costs of the current image row and the last row. This fits

into the processor cache, resulting in a fast algorithm. Already during the run we

are choosing the top Ncandidates positions with a heap data structure.

We additionally require that all candidates have a feature space distance of

less than 72 from the positive examples, where the threshold of 72 was selected

manually once on some test sequences, and proved to work well for all other

videos.

6 Accuracy

As in DP-TRACK we follow the path search with a refinement step, where the

best SSD match of the 15 × 15 image patches within 8 pixels of the track to the

image patches of the positive examples is found.

7 Feature Extraction

The algorithm consists of an offline phase and an online phase. In the offline

phase we calculate a 16 byte feature vector for every patch in the input video.

The features are independent from the track, such that the offline calculations

have to be done only once per video. We use the features proposed in Buchanan

and Fitzgibbon (2006), where a linear filter jet (Schmid and Mohr, 1997), is used,

which is adapted to the video under consideration. The features are a projection

of the patches pi into a PCA basis of all patches of the video:

f(xi) = UT (pi − p̄) . (5.17)

Here pi − p̄ are the patches centered by the mean of all patches in the video. We

use the 16 basis vectors of the PCA which have the largest associated eigenvalues

and explain most of the variability observed in the video. The PCA basis is

trained on the video, by sampling 1/8th of the patches of every frame.

The feature extraction runs at about 20 frames/minute on a commodity PC

for a VGA-sized video, when exploiting the following observations. The aver-

age over all the patches of all the frames is a patch with a constant color corre-

sponding to the mean color of the video. The reason is, that when extracting all

patches every pixel of the video occurs exactly once at every patch pixel position.

Therefore instead of calculating the average patch, it is sufficient to calculate the
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average color, and subtract it from the input video. The patches of the resulting

video are then already mean-centered. This turns the projection into the PCA

basis into a convolution of the mean-centered frames with the basis vectors. This

is implemented efficiently using FFT, by using the well known fact that a con-

volution can be expressed as A ∗B = F−1(F(A) ◦ F(B)), where ◦ denotes the

elementwise product. As we need to convolve all images Ai with all kernels

Bj , we can calculate the forward transform of all kernels and images, and then

get the outputs by elementwise multiplication and a backward transform of all

combinations (Ai, Bj).

The filter jet extracted from two different videos is shown in figure 5.4, show-

ing that the basis adapts to the video, such that it captures as much information

as possible. The features are then scaled to the range of [0, 255] and quantized to

eight bits.

8 User Interface

While Buchanan and Fitzgibbon (2006) proposed to let the user modify the values

of the parameters, we found that when working with similar scenes it is faster to

supply a few additional interest points and use a preset of parameters for the scene

type. Now that we have included a background model we found that the result

of adding a landmark is more predictable than that of changing the priors, and

it is easier to teach new users the meaning of selecting landmarks than the exact

meaning of the priors. We found that for talking heads the default parameters

λf = λb = 1, λs = 10, and λd = 10, λo = 5000, λr = 1.5λo, δb = 4096
gave good results over most sequences. Nonetheless different priors are needed

for scenes of differing character, e.g. the giraffe sequence shown in figure 5.2 has

faster motion and more occlusion, and therefore needed a smaller occlusion and

motion weight.

9 Experiments

9.1 Accuracy

In figure 5.2 we show example tracks for a talking head sequence with rapid

movements and pose changes, and a video of running giraffe with severe occlu-

sions. See also the accompanying videos to get a feeling for the user interaction

required to mark up these videos. As the process is interactive, and we are using

a background model, we are able to track anything in any video, given enough

user input.
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Figure 5.4: The filter jets corresponding to two different videos. A frame

of each of the videos is shown next to a depiction of the filter jet, offset

such that it can be visualized in RGB space. The bottom row contains the

response of the features on the example frame. While the spatial structure

of the jets is similar for both videos, they do differ a lot in the color

distribution. Filtering the video with a specially tuned basis decorrelates

the patches, and thereby removes some of the redundancy in the colour

channels, without losing the available information as a transformation to

grayscale would.
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Figure 5.5: Tracking speed as a function of the algorithms parameters.

The tracking time of GRAPH-TRACK is increasing approximately lin-

early with the number of landmarks, the number of candidate patches

and the maximum occlusion length, where the largest influence is due to

the number of candidate patches.

9.2 Speed

To get a feeling for the speed of the algorithm we evaluated the calculation time

for varying numbers of landmarked frames (which increase the size of the fore-

ground model, but also simplify the search graph), and for varying numbers of

candidates. We did this by marking a 107 frame sequence with more landmarks

than absolutely necessary and then chose all possible subsets of the marked land-

marks. The experiments were done for search graphs with different maximum

occlusion lengths. The results are shown in figure 5.5. For some combination of

landmarks we do not find the correct tracks. In this specific example we do need

four landmarks to accurately track the eye corner during all blinking events and

head pose changes. The failed tracks are included in the timing and are still in-

teresting, as it is important that the user gets immediate feedback while marking
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up the video, such that she knows which frames require further attention.

As opposed to the 4 candidate patches per frame and marked interest point

which were used in DP-TRACK, we are extracting between 100 and 300 can-

didates per frame, which makes the algorithm much more reliable on difficult

frames. Our algorithm seems to scale approximately linearly in the number of

frames, linearly with a small coefficient in the number of landmarks and linearly

in the maximum number of occluded frames which we consider. The sweet spot

seems to be at 150 to 200 candidates per frame, and with a value for the maximal

occlusion length which closely matches the actual occlusion length in the video.

10 Conclusion

We presented an enhancement of the tracking algorithm of Buchanan and Fitzgib-

bon (2006), which is more reliable on difficult videos, and more stable when the

user adds additional patches. This is achieved by modelling the full frame appear-

ance, instead of only the patch appearance. Even though that seems to imply a lot

more computational work, we proposed a better search algorithm which enables

us to lazily perform the expensive computations, resulting in approximately the

same speed at an increased reliability. The beauty of our search approach is that

it adapts automatically to a stronger smoothness or occlusion prior, only perform-

ing as much computation as necessary, without absolutely restricting the search.

If the appearance model gives enough evidence, arbitrarily large jumps in space

and time are possible, while still being efficient.

Appendix: Why the occlusion reasoning of DP-TRACK

misses the global optimum

Here we give an example where DP-TRACK fails to find the globally optimal

solution for a video when occlusion handling is used. But we start with a word of

warning: Buchanan and Fitzgibbon (2006) are very terse on the topic of occlusion

handling, so my understanding might misrepresent the authors ideas. DP-TRACK

does not fully exploit the graph structure of the problem, only the fact that the

corresponding graph is layered, but there is a graph equivalent to the construction

in DP-TRACK. This equivalent graph handles occlusions with a single additional

node per frame, corresponding to the ‘occluded’ state. The cost of entering this

node is fixed, the cost of going from an occluded state to the occluded state of

the next frame is another constant, and the cost of leaving the occluded state and

entering a non occluded state xj in the following frame depends on the distance

between the node xi which is found by following the parent pointers along the

current occlusion state and xj . This greedy choice can lead to suboptimal results.
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To demonstrate the problem consider the graph shown in figure 5.6 and assume

additionally that the between frame similarity and appearance cost are zero ev-

erywhere. The cost of going into an invisible state is set to 1 and the cost of

staying in an invisible state is 2.

The optimal path through the graph is a, c, i2, i3, f , with a total cost of four,

while the path found with DP-TRACK is a, b, d, i3, f , with a total cost of 6. The

full result of applying DP-TRACK is given in table 5.1.
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Figure 5.6: The computationally less intensive occlusion handling of DP-

TRACK does not find the global minimum. This figure shows the graph

of a counterexample. Shown is a graph with visible nodes a, . . . , f in five

frames plus the invisible states i1, . . . , i3 of the not landmarked frames,

sink and source were ommited. The dashed lines are not edges, they an-

notate the distance cost which would be incurred between the connected

nodes. The weight of the orange lines leading out of the invisible states

corresponds to this distance cost for the node which is currently con-

nected via parent pointers along the invisible nodes. The optimal track

is marked with green, while the track found by DP-TRACK is marked in

red.

Frame: 1 2 3 4 5

a = 0/source b = 2/a d = 2/b e = 7/d f = 6/i3
c = 1/a i2 = 2/c i3 = 3/d
i1 = 1/a

Table 5.1: The DP-TRACK dynamic program corresponding to the graph

in figure 5.6. Each entry contains the name of the node, the total cost up

to this node and the pointer to the parent node.
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— Chapter 6 — 6Modelling the background for
accurate shape extraction

Morphable model fitting algorithms which do not include a silhouette term have

a tendency to shrink, that is to create a reconstruction whose silhouette is inside

the face to be fitted, leaving a small gap towards the true silhouette. This was the

motivation in Romdhani. and Vetter (2005); Amberg et al. (2007a) and Knothe

(2009) to include a silhouette term. Here, we describe a novel way of extracting

the silhouette feature, and a new view on the reason for using a silhouette term.

1 Why should one use a silhouette term?

We claimed that the factors in equation 4.12 describe the probability of the image

given the model parameters. Without the silhouette term this is not correct, the

remaining factors are only modelling the part of the image which is covered by

the face, which we can write as

p(V|face area(θ) | θ) . (6.1)

This is not a proper likelihood, as the observation changes with the parameters.

We therefore should include a term describing the probability of the background.

The problem with the background is that it can include anything, even faces.

The only thing which we assume about the background is that it is possible to

distinguish the face from the background. We should therefore include a term

measuring the likelihood of the segmentation of the image into the face of inter-

est and the rest of the image under a set of parameters θ, and this is what we

accomplish with our silhouette term.

– 69 –



MODELLING THE BACKGROUND FOR ACCURATE SHAPE EXTRACTION

2 How to detect the silhouette

The fact that we do not have a priori assumptions about the background makes

it very difficult to detect the silhouettes in an image. In Romdhani. and Vet-

ter (2005); Amberg et al. (2007a) and Knothe (2009) silhouette candidates were

found by detecting edges in the image and minimizing the distance between the

model silhouette and the closest edge candidate. The problem with all these

approaches, is that the strength of an edge is no indicator of the probability of

that edge being a silhouette edge. Often there is a stronger edge of exactly the

right shape resulting from the cast shadow, the background is noisy resulting in a

dense edge response, or the person has a beard resulting in edges inside the face.

Romdhani. and Vetter (2005) used the distance to the closest candidate with an

orientation similar to that of the current guess instead of measuring the distance

towards the closest edge. This resulted in a more robust fitting. We take the idea

of determining the correct silhouette based on our current guess and propose a

more efficient way to remove wrong silhouette candidates. Our method takes not

only properties of the edge into account, but also properties of the image on both

sides of the edge. As in Romdhani. and Vetter (2005) this requires an integration

of silhouette detection and model fitting.

Our silhouette detection algorithm consists of the following steps. The output

of each step is shown in figure 6.1.

(a) Calculate the area of the image which is under the head and under the face

area of the head using the current model estimate θ.

(b) From this mask we determine the area in which we search for the silhou-

ette, and a prior probability on the foreground/background segmentation.

(c) Using the background and foreground prior we learn a color model for the

background and foreground, and use this model plus the foreground prior

to assign a foreground probability to the image. .

(d) We calculate an over-segmentation using the method of Comaniciu and

Meer (2002).

(e) Within each segment of the over-segmentation we average the foreground

probability.

(f) Edges between segments with a large difference in average foreground

probability are chosen as silhouette candidates.

(g) We measure how well the edges are (1) close to a (potentially weak) image

edge, (2) align with the current face estimate, (3) are close to the current

guess, and (4) are edges between face/background in outwards direction.
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(a) (b) (c)

Current Segmentation Active Areas Foreground Probability

(d) (e) (f)

Over-segmentation Average Foreground Probability Candidate Edges

(g) (h) (i+j)

Candidate Probability Thresholded Candidates Silhouette Cost and Vertices

Figure 6.1: The steps of our silhouette detection algorithm. (a) shows

the segmentation proposed by the model, the head is drawn in red, and

the face area marked on the model is drawn in turquoise. In (b) the red

outlines mark the search area, where we expect the silhouette, the area

tinted blue is used to learn the background color model, while the green

area is used for the face color model. (c) shows the foreground probabil-

ity derived from the color models and the current estimate. (Blue is high

probability, while red is low probability.) (d) is the over-segmentation

after merging the segments which are ‘definitely’ inside or outside ac-

cording to the current estimate. (e) is the foreground probability averaged

over the segments. (f) are the edges with a large foreground probability

difference, (g) is for each edge the probability of that edge being the true

edge, according to the factors detailed in section 2.3, and (h) is the result

of thresholding this probability. (i+j) shows the resulting cost surface and

the vertices for which the cost is evaluated.
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(h) The edge pixels are thresholded, keeping only those edges that have a high

probability.

(i) The silhouette cost surface is determined based on the distance transform

of the edge candidates.

(j) Find silhouette vertices on the model. We choose those vertices which are

on the visible silhouette, project inside the active search region and are

close to a detected silhouette.

2.1 The area mask

The masks are set such that we search only in the stripe adjacent to the silhouette

of the face, not of the back of the head. The face is marked in the 3D model,

and the silhouette area is then determined from the projected mask. We ignore

the region of the face which most often contains either the front or hair, as hair

should be included in the background model. but we do include a stripe above the

head where we expect hair to be. Everything below the chin is also ignored, as

this area might as often contain skin as it contains clothing, and clothing would

typically be background while skin should be classified as foreground.

2.2 Producing an accurate face classification

A foreground and background color model p(color | foreground) and p(color |
background) is learned from the masked areas by converting the image to the

LAB Color space and taking a histogram of size 1283. The histogram is smoothed

with a binomial kernel of radius 15, such that the resulting probability is a smooth

kernel density estimate. The foreground probability is calculated as

p(foreground | color) =
p(color | foreground)p(foreground)

p(color)
, (6.2)

using a foreground prior of p(foreground) = 0.5.

Next the classification threshold is determined such that the resulting clas-

sification agrees as well as possible with the current segmentation. This can be

done efficiently by considering the histograms of foreground probability for the

background and foreground areas. The foreground probability is then turned into

a soft classification in the range [0, 1], such that the decision threshold is at 0.5.

A spatial prior is added by scaling with a sigmoid function based on the distance

to the current boundary, such that outside of the active range the map takes on

values of zero or one respectively.

The resulting classification is often good, but is not well defined in the most

interesting areas close to the boundary, where the lighting effects are strongest.
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(a) (b) (c)

Candidate Edges Weighted by alignment and by step direction

(d) (e) (f)

and by image edges and by distance Thresholded Edges

Figure 6.2: Details of the edge filtering steps. The figure shows how more

and more wrong edges are removed by the four filtering steps. Refer to

the section 2.3 for details.

This is overcome by calculating an over-segmentation of the image using the

mean-shift procedure from Comaniciu and Meer (2002). The resulting over-

segmentation is simplified by merging all segments which touch the area deter-

mined to be surely foreground/surely background by the current segmentation.

This area is marked white in figure 6.1(b). The foreground probabilities are then

averaged over all pixels inside a segment, yielding a sharp classification.

2.3 Extracting the edges

We extract candidate edges from the foreground classification by taking all the

edges that are between areas with more than 0.2 difference in foreground proba-

bility.

These candidate edges are then filtered to remove the remaining spurious

responses. The filtering takes into account (1) how well the edge is aligned with

the current estimate, (2) if the foreground classification is higher on the side

closer to the face than away from it, (3) how close the edge is towards an image

edge, and (4) how close the edge is towards the current estimate.
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Edge Alignment: We check how well the edge is aligned by extracting the

patch of candidate edges around each edge pixel and comparing it with the best

matching current silhouette patch within a search radius. The match distance

between a patch of candidate edges and a patch of the current silhouette is calcu-

lated by moving the two patches on top of each other and calculating for every

edge pixel of the current silhouette the distance towards the closest candidate

edge in the candidate patch. The average distance is then taken as measure of the

equality of both matches.

Step direction We also test for each edge if the gradient of the foreground

probability is aligned with the edge direction. This is done by smoothing the

signed distance transform of the current silhouette and the averaged foreground

classification maps, and taking the dot product of their gradient directions. If

this dot product is smaller than 0.3 (approximately 70◦) then the edge pixel is

discarded.

Step size Additionally each edge-pixel is weighted by the magnitude of the

difference in foreground probability.

Image edges The segments of the over-segmentation do not always concur with

image edges. Especially for smooth gradients the resulting boundaries are just

equally spaced. We remove these edges by requiring all result edges to be within

1 pixel distance of an image edge.

Distance to current estimate And lastly we weight the edges by the distance

to the current estimate, assuming that edges closer to the current guess are more

likely to be correct.

We threshold this per pixel silhouette probability to arrive at the final estimate

of the silhouette, which typically contains only very few false classifications.

2.4 Determining the silhouette cost

Inside the active area, the cost map is the distance transform of the found sil-

houette, and outside of the active area is set to the maximal distance. Using the

distance instead of the squared distance makes the silhouette term more robust

against outliers.
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3 Results

To test the robustness of the silhouette extraction we performed a large test on

images uploaded to our web service (faces.cs.unibas.ch) and marked up

by unknown users. The landmark positions are not perfectly consistent, because

the users were not trained to use the system. Nonetheless, we extracted the sil-

houette from all 167 images using the same set of parameters. We then performed

six iterations of fitting to the silhouette and the landmarks using up to 20 iden-

tity principal components of the model. The fitting result was then assessed by

counting the the number of times that the extracted silhouette was correct after

the sixth fit. The counting was performed manually, as it is difficult to devise an

objective measure of the accuracy and completeness.

Out of the 167 images the silhouette extracted after six iterations was wrong

for 17 examples. To put this into perspective we show in figure 6.3 and 6.4 a

few successful and all the unsuccessful cases. The problematic cases either are

lighted from behind resulting in a glow around the edges, have a background

color which equals the face color, or have hair completely occluding the ears

Please note that this evaluation is flawed, because we tuned the parameters on

the test set. At least the training set is very difficult and varied, and exactly

representative of the data we expect.

4 Conclusion

We propose to interlock image segmentation and fitting to correctly model the

image background. Here we presented an algorithm which was tuned to work

on data typical for our setting. While the problem seems easy, it turned out that

an algorithm which works reliably on many images is relatively complex and

contains a number of manually tuned heuristics. The algorithm presented here

learns the segmentation hints from the image to be segmented and the current

guess. It will also be interesting to compare this to a method which learns the

segmentation from a fixed set of training images, hopefully resulting in a simpler

method.
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Figure 6.3: Failed silhouette extractions. The problematic cases either

are lighted from behind resulting in a glow around the edges, have a

background color which equals the face color, or have hair completely

occluding the ears. The figure shows for each failed example the model

fit after landmark fitting, the first extracted silhouette, the model fit after

the sixth fit to the silhouettes, and the final extracted silhouettes.
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Figure 6.4: Some successful silhouette extractions. In most cases sil-

houette extraction returns few false positives, and allows the fitting to

converge on the correct silhouette. We picked a few examples which

were difficult because either the initialization was relatively far from the

solution, the background color and foreground color were similar or the

background has strong edges. All failures to converge are shown in fig-

ure 6.3
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— Chapter 7 — 7Feature Contour Detection with
Active Appearance Models

2D Active Appearance Models (AAM) describe deformation and ap-

perance change of two dimensional objects with a linear model plus

a similarity transform. Parts of the face such as the mouth or the eye

when seen from the same angle can be well approximated with this

model, even under varying illumination. We use part and viewpoint

specific AAMs to extract the contours of eyes, nose, and lips during the

fitting.

In this chapter we describe an efficient and effective method to fit 2D

Active Appearance Models. Previous efficient 2D AAM fitting methods

have a relatively small convergence range because of a number of ap-

proximations made to speed up the fitting. Our method is constructed

to be efficient without needing as many approximations, resulting in a

more robust fitting method with a larger convergence range.

Active Appearance Models (AAM) as proposed by Cootes et al. (2001) and

Matthews and Baker (2004) are generative 2D models, which describe linearly

the variation of shape and appearance of a set of textured objects. Shape is ex-

pressed by warps of a reference shape (the “model warp”), possibly accompanied

by a shape prior. Texture is expressed as a linear model in the reference frame.

Due to their simpler model they are less constrained than 3D Morphable Models,

but they can be fitted more efficiently. While an AAM can not model whole 3D

faces accurately under rotations, it is a good approximation for parts of the face

such as the eyes under a limited range of out-of-plane rotations. We therefore use

AAMs of face parts to robustly and efficiently extract the contours of the eyes

and lips. This helps the fitting of the 3D model, because the shape from shading

likelihood has too many local minima to successfully find the global optimum,

and the likelihood based on the eye and lip contours is much simpler to fit. It

might not be obvious that it is easier to find only the eye contours than all the

contours at once, because when searching for only the contours of one eye we
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are not exploiting information about the other eye or the overall shape of the

face. Nonetheless, we observe that fitting a part AAM is more robust than fitting

the whole face with a 3D model. The part and viewpoint specific AAM has a

larger convergence range, and can be fitted much more efficiently. Effectively,

we use AAMs as specialized edge detectors to preprocess the image.

AAMs are very popular because of the availability of efficient fitting algo-

rithms. The challenge in developing fitting algorithms is to find a good tradeoff

between runtime and performance, where performance may be characterised in

terms of “capture range” — the range of starting points, relative to the optimal

fit, from which the algorithm converges.

Fitting algorithms for AAMs are of two kinds: analysis-by-synthesis and

regression-based. In analysis-by-synthesis, a generative model is fitted to data

by iteratively minimizing the residual between the synthesized and the observed

image (Baker and Matthews, 2004; Matthews and Baker, 2004; Blanz and Vet-

ter, 1999). Regression-based methods use a learned mapping from the residual

to parameter updates. The regression may be linear, as in the seminal work of

Cootes et al. (2001), or nonlinear as in Saragih and Goecke (2007); Liu (2007);

Wu et al. (2008); Wimmer et al. (2008).

In this chapter, we revisit the so-called Compositional approach to analysis-

by-synthesis. Compositional image alignment, which originates from the thesis

of Diehl (1988), seeks to reduce the residual by successively applying (compos-

ing) incremental warps. The use of incremental warps lends itself well to efficient

approximations of the gradient and Hessian of the objective function. In some

cases the Hessian is approximated as constant Diehl (1988); Burkhardt and Diehl

(1986); Vemuri et al. (1998), so that it can be precomputed, which in turn leads

to particularly efficient fitting algorithms. The state of the art is often considered

to be the Inverse Compositional Image Alignment (ICIA) method of Baker and

Matthews (2001; 2004; 2004).

In Amberg et al. (2009a) we proposed a unified framework for compositional

fitting algorithms, and classified them in terms of four factors: the choice of

optimization algorithm; the representation of incremental warp; the approxima-

tion of the gradient; and the approximation of the Hessian where required by the

algorithm. For example, we showed that ICIA can be expressed as a Gauss-

Newton algorithm in which the space of incremental warps is the same as the

model warp space, the gradient is approximated in each iteration, and the Hes-

sian is approximated by a constant. The performance of such an algorithm has

limits, imposed by the validity of the approximations of the gradient and Hes-

sian. We showed that for ICIA, the approximations are valid only when the

model matches the data closely. That limits the attainable capture range. This is

especially the case when test data is not closely matched by training data as, for

instance, in multi-person face fitting. In this chapter we describe the two most

sucessfull new algorithms from Amberg et al. (2009a), CODE (Compositional
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Descent) and LINCODE (Linearised Compositional descent). To make the meth-

ods easier to follow we focus on explaining these algorithms instead of setting

the focus on how they are related to other less efficient algorithms.

CODE and LINCODE are both 1st order algorithms — i.e. gradient descent

algorithms. It might appear surprising at first sight that gradient descent algo-

rithms should outperform Gauss-Newton methods. There are several reasons for

this. First, Gauss-Newton is powerful, in principle, because of the availability

of additional information in the Hessian, but in practice only a severely approxi-

mated Hessian can be computed. Secondly, In ICIA only an approximate gradi-

ent is used, whereas in CODE, the exact gradient is computed. Lastly, the choice

of the incremental warp space for CODE and LINCODE is crucial. We express

the incremental warps in an orthonormal basis which makes for well-conditioned

optimization and removes the need for 2nd order methods.

The performance of the new algorithms, relative to ICIA as our benchmark,

is tested thoroughly over a substantial multi-person face database, with further

testing of tracked facial motion on over 5000 frames of movie data. The results on

these challenging datasets confirms the predictions suggested by our alignment

framework. Indeed, ICIA has a very limited capture range. This is alleviated

if ICIA is altered to use orthonormal incremental warps, and more so if regu-

larisation of warps in model space is also applied. The new algorithms, CODE

and LINCODE, used with regularisation, provide the best runtime-performance

tradeoff, with CODE able to sustain continued tracking for around 100 seconds

of a movie with low resolution and demanding head-motions, and 5000 frames

for a higher quality dataset.

1 Active Appearance Models

AAMs are generative models consisting of separate shape and appearance mod-

els. They are fitted to images

I(r′) ∈ R, r′ ∈ I ⊂ R2 , (7.1)

treated as continuous functions of the image domain I. In this thesis we use only

linear appearance models

Λ(r;β) := a(r) +Arβ, r ∈ D ⊂ R2 (7.2)

parametrized by the coefficient vector β and defined over the texture domain D.

It is warped into the image by a model-warp

W (r; q) = r′ , (7.3)
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which is parametrized by the shape parameter vector q. The model warp used

in this chapter is a linear shape model r +Mrα concatenated with a similarity

transform. The warp parameters are q = (ρ, τ ,α), with a global rotation ρ, a

translation τ and local deformation coefficients α.

W (r; q) := Rρ(r +M(r)α) + τ (7.4)

Mr ∈ R2×NShape Parameter

Rρ :=

[
1 + ρ1 ρ2

−ρ2 1 + ρ1

]

The AAM is fit to an image by minimizing the sum of squared differences

between the image warped back into the texture domain D and the estimated

appearance, the cost is

F (q,β) := ‖f(q,β)‖2D , (7.5)

with f(q,β) := Λ(β)− I ◦W (q)

Where ‖f(q,β)‖2D =
∫

r∈D f(q,β)2r denotes the integral over the squared resid-

ual in D and [I ◦W (q)](r) = I(W (r; q)) is the function composition operator.

We call f the residual function.

The appearance variation parametrized by β is handled by always choos-

ing the appearance parameters which minimize the overall cost. That is, we are

working with a cost function

F (q) := min
β

F (q,β) (7.6)

instead of the cost function from equation 7.5.

In the remainder of this chapter we will therefore leave out the dependency on

β, and choose β such that it minimzes the cost given the current q. This method

has been called the project out norm by Matthews and Baker (2004).

2 Fitting an Active Appearance Model

One can optimize equation 7.5 directly with a quasi-Newton method. Such a

method constructs a local approximation of the cost function as a parabola, de-

termines from this parabola a search direction and performs a line search in this

direction. Constructing the parabola means estimating the function’s Hessian

matrix, which is quite expensive in high dimensional search spaces. We instead

take the special structure of the cost function in equation 7.5 into account to find

a good search direction in a cheaper manner.

Instead of approximating the original cost function with a parabola, we are

approximating it with another function which is derived by prefixing the warp
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W (q) from the texture domain to the image domain with another incremental

warp V (p) inside the texture domain. This results in an approximate cost

F̃ (q0,p) :=
∥
∥
∥f̃(q0,p)

∥
∥
∥

2

D
(7.7)

with f̃(q0,p) := Λ(β)− I ◦W (q0) ◦ V (p) ,

which is now parametrized in terms of a new set of variables p instead of q.

2.1 Finding the update direction

The derivative of this approximate cost with respect to the incremental warp pa-

rameters p can be calculated cheaply, if we are only interested in the derivative

at the identity warp p = 0. The derivative at the identity warp is interesting,

because this is where we approximated the original cost with the compositional

cost. Using the chain rule we calculate the derivative as

∇p F̃ (q0,p)
∣
∣
∣
p=0

=

− 2

∫

r∈D

[

f̃(q0,p)
∣
∣
∣
p=0

]

r

∇r [I ◦W (q0)]r ∇p [V (p)]r|p=0
, (7.8)

where [·]r denotes evaluation of the functor · at r. Now we notice that at the

identity warp f̃(q0,0) = f(q0) and that the last term is constant because it is

evaluated always at p = 0 such that the above simplifies to

∇p F̃ (q0,p)
∣
∣
∣
p=0

= −2

∫

r∈D
[f(q0)]r ∇r [I ◦W (q0)]r Gr , (7.9)

where Gr is an appropriately defined constant. We discretize equation 7.9, which

allows us to evaluate the spatial derivative of the image warped back into texture

space ∇r [I ◦W (q0)]r with finite differences. With this discretization we can

calculate the gradient in a number of operations proportional to the number of

pixels times the number of incremental warp components. Additionally, to deter-

mine the optimal β we need to project the currently backwarped image into the

texture model, which requires as many operations as the number of pixels times

the number of appearance parameters. That is, this part of the algorithm scales

linearly with the number of pixels, the dimension of the incremental warp basis,

and the dimension of the apperance basis. This is the the minimal cost we can

expect to achieve without using approximations.

2.2 Line Search

The derivative gives us a search direction in the space of the incremental warp,

but that was only an approximation of the underlying cost. We map from a current
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estimate q0 plus an incremental warp p to a new model estimate by projecting

the composed warps back into the model warp. This is expressed as

q0 ◦̆ p = argmin
q∗

‖W (q∗)−W (q0) ◦ V (p)‖2D . (7.10)

In each step we have to perform a line search over

min
α

F (q0 ◦̆ α∆p) = min
α

F (argmin
q∗

‖W (q∗)−W (q0) ◦ V (α∆p)‖2D)

(7.11)

where ∆p is the derivative of the approximate cost and α is the length of the

search step. We are using for the incremental warp a purely linear warp

Vr(p) = r + V rp . (7.12)

with a basis V , and can therefore pull the step length out of the warp, such that

the line search becomes

min
α

F (q0 ◦̆ α∆p) = min
α

F (argmin
q∗

‖W (q∗)−W (q0) ◦ αV (∆p)‖2D) .

(7.13)

This is useful, because we can now scale the step size to a sensible value in pixel

in texture space. That is we are searching for a step size of

min
α

F (q0 ◦̆ α∆p) = min
α

F (argmin
q∗

∥
∥W (q∗)−W (q0) ◦ αβ

−1V (∆p)
∥
∥
2

D
) ,

(7.14)

where β is chosen such that the average displacement in β−1V (∆p) is one. We

start with a step size of α = two pixel, and reduce the step size until an improve-

ment has been found. Whenever an improvement has been found in the first try

of an iteration the initial step size for the next iteration is increased. Once the

step size falls below a minimum distance of 1/20th of a pixel in texture space we

stop the search.

3 Efficient Composition

So far we have described how to efficiently find a search direction and how to per-

form the line search with meaningful step sizes. Until now it remained unclear,

what the computational cost of the warp composition is. While the composi-

tion actually makes up a large part of the overall cost of the algorithm, it is still

possible to calculate the composition efficiently.
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Let us write out equation 7.10 for the warps involved here. For simplicity we

consider the discretization of the warp composition equation, where the integral

of squares is evaluated at every pixel in the texture domain. It is also possible

to derive this in the continuous case and only discretize at the end, but that is

slightly more involved and leads to the same result. We denote W (q0) ◦ V (p)
with u, and get

q0 ◦̆ p = argmin
q∗

‖Rρ(r +Mrα) + τ − ur‖
2
D . (7.15)

The rotation matrix Rρ is orthogonal, which implies that we can multiply the

interior of the norm with the (also orthogonal) inverse of Rρ without changing

the position of the minimum. This results in

q0 ◦̆ p = argmin
q∗

∥
∥r +Mrα+R−1

ρ τ −R−1
ρ ur

∥
∥
2

D
. (7.16)

We now change variables to get

q0 ◦̆ p = argmin
q∗

∥
∥
∥
∥
r +Mrα+ τ̃ −

[
a b
−b a

]

ur

∥
∥
∥
∥

2

D

. (7.17)

2D similarity transform matrices are linear functions of two parameters, which

allows us to rewrite this in the standard form for a quadratic function

q0 ◦̆ p = argmin
q∗

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥





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
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−




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...

−rN






︸ ︷︷ ︸

=b

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

.

(7.18)

We denote now the first two columns of the matrix above as U and the rest as D

and note that D is constant while U depends on the current warp. Also, we will

write b for the vector of r’s and x for the parameters.

The solution of equation 7.18 is given by the normal equations as

x =
([

U D
]T [

U D
])−1 [

U D
]T

b (7.19)

=

[
UTU UTD

DTU DTD

]−1
[
U D

]T
b (7.20)

The matrix to be inverted here has only size Nshape coefficients + 4 and is nearly

constant. Only the top two rows and columns are dependent on the current warp.
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Inverting the matrix is cheap, as it is small, but calculating DTD is expensive,

because these matrices are of size Npixel×Nshape coefficients. Luckily, D is constant,

and the multiplication can be done offline. From x we can easily reconstruct ρ

and τ with the recovered inverse rotation matrix

Rρ =

[
a b
−b a

]−1

τ = Rρτ̃ . (7.21)

4 The Incremental Warp

The remaining question is how to choose the incremental warp V . Possible

choices range from a completely unconstrained warp to warps depending on the

current estimate. While this is a very interesting topic for further research, we

followed the choice of Baker and Matthews (2004) who used V = W . Recall

that W is the model warp from the face domain onto the image. We used the

linearization of W at the identity parameters, which was then orthogonalized and

normalized. Orthogonalizing the warp leads to a much larger capture range, be-

cause the parameters of the incremental warp are now well scaled, such that the

simple ‘gradient descent’ described in the previous section works well. Without

orthogonalization and normalization it becomes necessary to include an approx-

imation of the Hessian matrix as was done in Baker and Matthews (2004). But

calculating the true Hessian results in an algorithm which is slow, and using a

Hessian which is approximated as being constant as in ICIA results in a brit-

tle algorithm. This can be seen in figure 7.3, where the the exact compositional

first order methods CODE described here is compared to the approximate com-

positional second order method ICIA and to a direct quasi-Newton optimization

of equation 7.5. For completeness we also included the remaining variants de-

scribed in more detail in Amberg et al. (2009a). From the figure we see that

CODE lives at the sweet spot of best in class success rate and high efficency, we

therefore chose CODE for the video editing system presented in this thesis.

5 Experiments

We described in Amberg et al. (2009a) five compositional image alignment al-

gorithms, of which ICIA is a special case. Here, we presented only CODE in

detail, as that is the algorithm used in this thesis. Nonetheless, we would like to

replicate the experiments from Amberg et al. (2009a) here, to justify our decision

to choose CODE over the other algorithms. The fitting methods are evaluated on

a relatively large multi-person AAM, on images of unseen identities. This is the

most difficult but also the most typical situation for face analysis.
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ICIA with orthogonalized warp

LINCODE

CODE

Frame 10 Frame 50 Frame 450 Frame 2000 Frame 5000

ICIA with orthogonalized warp + Regularisation

LINCODE + Regularisation

CODE + Regularisation

Frame 10 Frame 50 Frame 450 Frame 2000 Frame 5000

Figure 7.1: Our algorithm makes fast and robust tracking possible. We

compare face tracking under natural motion, using ICIA, LINCODE and

CODE. The original ICIA fails immediately with this large model and

unseen face data. Substituting the orthonormal incremental warp for the

original ICIA warp, the algorithm still loses track very early, whereas

LINCODE and CODE can track much further. Finally, adding regulari-

sation to all algorithms, ICIA still loses track completely after approx-

imately 500 frames and does not recover the local deformations accu-

rately. In contrast CODE now tracks the full 5000 frame sequence with-

out reinitialization, and LINCODE tracks for 2500 frames.
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ICIA with orthogonalized warp

LINCODE

CODE

Frame 10 Frame 100 Frame 200 Frame 300 Frame 400

Figure 7.2: Tracking a low resolution video with large head motions

succeeds with CODE, where ICIA fails. All methods used the or-

thonormal incremental warp, and relatively strong regularisation. ICIA

starts to drift in the early frames, while CODE tracks the full sequence.

The approximate gradient method LINCODE also suceeds, but looses

track of the details for about 100 frames.
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Figure 7.3: The Best speed–performance tradeoffs come from the two

new algorithms CODE and LINCODE. Left: Without regularisation.

Right: with regularisation and orthogonalized warp. Note that ICIA is

practically useless on this difficult multi-person dataset with a success

rate near zero (left). It can be improved (right) by using the orthonormal

incremental warp and regularisation. The CODE algorithm with regular-

isation (right) is as accurate as the slow, approximation-free, composi-

tional Gauss-Newton CONE method but is seven times more efficient.
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We will show now, that the proposed CODE algorithm has the largest capture

range achieveable by any of the iterative optimisation methods described in Am-

berg et al. (2009a), while being only eight times slower than the fastest contender,

ICIA. The differences in capture range are most pronounced when fitting a test

face outside the training set. Then ICIA fails to converge for most starting po-

sitions, while CODE converges much more reliably. Of the other methods only

CONE (Amberg et al., 2009a) can compete in success rate to CODE, but is sig-

nificantly slower.

Model We trained AAMs1 from publicly available images with manually se-

lected landmarks. The models are learned from 456 images from the datasets

XM2VTS by Messer et al. (1999) and IMM by Nordstrøm et al. (2004), which

where marked up with 120 landmarks. The data contains 62 identities, multiple

expressions, light variation and up to 30 degree out of plane rotation. We used

31 identities with 248 images from the XM2VTS dataset, and 39 identities with

208 images from the IMM dataset. To increase the variability of the model, we

added the mirrored version of each image to the training set. The correspondence

between the models was established with thin plate splines from the manually

selected landmarks. The model was calculated at a resolution of approximately

20000 color pixels. We kept 60 shape and 60 appearance basis vectors. The large

variability in the training set facilitates good generalization to novel images.

Multi-Identity Fitting We trained models from subsets of all marked images

in a cross-validation framework, using all images not from a chosen identity to

build an AAM which was tested on the images of that identity. Fitting was started

from randomly chosen offsets in the image plane. All fits were initialized with

zero shape and rotation parameters, and the approximate size of the face in the

image as the scaling factor. All variants of the algorithm were started from the

same starting positions. We report the success rate, defined as the ratio of runs

that converge within a distance of 5% IED (inter eye distance), averaged over the

feature points, and the runtime relative to ICIA. The starting positions had up to

20% IED misalignment. The speed-performance tradeoff is summarized in fig-

ure 7.3 On the left we show the main competing algorithms. We use ICIA with

the original incremental warp, LINCODE and CODE with orthonormal warp and

CONE and COLINE applied, for the first time, to AAM fitting with orthonormal

incremental warp. For comparison, we also added direct optimisation of the ob-

jective function 7.5 with a quasi-Newton method, and the expensive full Gauss-

Newton optimisation CONE of the compositional cost. ICIA fails to converge

reliably on this difficult but realistic dataset. The success rate of CODE is higher

1The AAM containing the complete training set is available on our website: www.cs.unibas.

ch/personen/amberg_brian/aam/
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than that achievable with direct optimisation using a quasi-Newton method (L-

BFGS), while being dramatically faster. LINCODE is as fast as ICIA but con-

verges 8 times as often, though not quite as often as CODE. Using the Hessian

approximation and the correct gradient (COLINE) performs no better than ap-

proximate gradient descent (LINCODE) but at seven times greater cost. On the

right in figure 7.3, we show that adding regularisation considerably improves the

capture range for all methods but CODE and LINCODE continue to give the best

speed-performance tradeoffs.

Tracking We applied the algorithms to tracking video sequences. A 5000

frame sequence (Figure 7.1) of a talking face Cootes (2008) with a subject which

was not in the training set and captured with a different camera and lighting was

tracked with the compositional alignment algorithms. All tracks were initial-

ized from a perfect fit to the first frame, and used the orthonormal incremental

warp. ICIA immediately loses track, even though the inter-frame displacements

are rather small, and this is so even when the original ICIA incremental warp is

replaced with the new orthonormal warp scheme. However CODE, admittedly

running 8 times slower than ICIA, and LINCODE, which runs in a time similar

to ICIA, fail only after approximately 500 frames. When regularisation is added

it is possible to track 2500 frames, accurately, with LINCODE and CODE even

stays stable for the full 5000 frames sequence, whereas ICIA now fails after 500

frames and, even while tracking, delivers clearly inaccurate warps. Full results

are in the online material.

To test the behaviour on a more difficult video we used a speech with large

head motions and expressive gesture, acquired under uncontrolled lighting and

with relatively low resolution of approximately 18 pixels IED. Again CODE

tracks the full sequence (figure 7.2), while ICIA fails, never to recover; LIN-

CODE temporarily loses track during a large out of plane rotation, and is on this

more difficult dataset, not as accurate as CODE, showing that the fast approxi-

mation of the gradient does not come without a cost. Full tracked sequences are

shown in the supplementary material.

6 Conclusion

We presented in Amberg et al. (2009a) a systematic overview of compositional

image alignment methods, which gave rise to two new methods, CODE and LIN-

CODE. The evaluation of these methods suggested, that CODE is best suited for

our purpose of extracting the contours of eyes, lips and noses. In this chapter

we therefore thorougly explained CODE and replicated the experimental results

from the overview paper. ICIA, the fastest 2D fitting method known so far, is not

usable for the fitting of unseen data. Our experiments demonstrate that CODE,
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AAMs suitable to be used for face analysis.
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— Chapter 8 — 8Video Manipulation

Many editing tasks can be done once the video is described in terms of the gener-

ative face model. Here, we present two examples. The first task is to add virtual

objects to the image that interact with the face, and the second task is animating

a face with the expressions from another video.

1 Adding Virtual Objects to the Scene

As an example we added glasses to the original face in a video sequence. The

position of the glasses is adapted by rigidly aligning them with four points at the

ears and nose which are typical contact points of the glasses. As our reconstruc-

tion not only describes the shape, lighting and camera but also the correspon-

dence between the model domain (mean mesh) and the reconstructed surface, we

can simply mark these points in the model domain and know their position in

all frames of all fitted videos. With this correspondence the addition of glasses

to a video becomes fully automatic. As we now know the 3D shape of the face

and glasses we can calculate the correct occlusions and – to make the result even

more realistic – also model the light interaction between the face and the virtual

object, such that it casts shadows on the face, and is itself shadowed by the face.

This requires a relighting of a scene. For relighting we first remove the lighting

from the scene and then rerender with new light parameters.

The light model was already described in the fitting chapter. We are using a

few hundred directional light sources spaced around the face, which obey shad-

owing and have a multiplicative diffuse component and an additive specular com-

ponent. The shadow boundaries are smoothed in image space, such that the re-

sulting shadow boundaries are soft. Using soft shadows, we can get away with

less light-sources and still get realistic renderings. At each pixel we add up the

contribution from all light sources, which results in a diffuse contribution d and

specular contribution s for each color channel. The model describes the resulting

intensity c when lighting an object of albedo a for each color channel indepen-
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Figure 8.1: Relighting a scene by calculating the light contributions for

the fitted and manipulated scene. The original image (a) is light nor-

malized using the diffuse (c) and specular (b) components of the recon-

structed scene, resulting in the albedo map (d). Then, the albedo map

is manipulated (e) and the changed lighting (f,g) is added again to the

light normalized scene, resulting in an image (h) which contains the new

object and correctly handles occlusion and shadowing.

dently as

c = ad+ s . (8.1)

We calculate the diffuse and specular contributions for every pixel in the original

image using the fitted light and shape. This allows us to recover the albedo, that

is the unlighted image as a = (c − s)/d. Next, we calculate the lighting for the

manipulated scene now containing the new object. The albedo map is changed

to the virtual objects color wherever it is in front of the reconstructed scene, and

the albedo image is lit according to the diffuse and specular contributions of the

manipulated scene. This is shown in figure 8.1 for a single frame example. In this

example the recovered albedo is not perfect, as the fit was inaccurate in the fine

details such as the nasiolabial folds. Nonetheless, after relighting the shadows

and occlusions are convicing, because in the difficult areas the source and target

illumnation are the same.

Nevertheless, it is still possible to distinguish the virtual and real objects.

One strong cue is that the boundary of the rendered object is too crisp. This

happens because in a real camera a pixel is formed by integrating the incoming

photons within a small space angle, such that a boundary pixel never contains

the reflection of only a single object. In the rendered image this integration is

replaced by sampling a ray at the pixel center. We overcome this problem by
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(a) (b)

Figure 8.2: The combined image looks unnatural at the boundary be-

tween virtual and real objects because in the real scene a pixel is actually

the integral over the incoming light within an area, while the computer

generated image samples only a ray at the pixel center. The effect is that

natural boundaries appear smoother than the computer generated bound-

aries. This is remedied by averaging the pixel colour of boundary pixels

with the colour of surrounding non-rendered pixels. The figure shows a

closeup of (a) the boundary before and (b) after selective smoothing.

averaging every boundary pixel just inside the rendered object with the neigh-

bouring non-rendered pixels. A closeup view of the result is shown in figure 8.2.

The remaining differences could be removed by choosing appropriate material

properties and textures for the rendered object.

Handling the light by rendering up to 800 lights is quite expensive but results

in a convincing lighting. Figure 8.3 shows a closeup of a frame where there is still

a smooth shadowing visible where the glasses are close to the skin, even though

the lighting is ambient, that is coming from nearly the full hemisphere. This

is the expected effect as in this area a large fraction of the visible hemisphere is

occluded by the glasses. These result could not have been simulated with a single

light source. Some frames from a longer video sequence are shown in figure 8.4,

the full video is included in the complementary material.

2 Face Exchange

Instead of just adding synthetic objects into the scene, we can also manipulate

the face itself. The most straightforward application is to exchange the face of

the person in the target video with that of the person in the source video. We

do this by exchanging the identity and expression coefficients of the target video

with those recovered from the source video. The lighting in the source video is

then inverted, the albedo is transferred into the target video and relighted with

the new light situation. This approach agrees with that proposed by Pierrard

(2008), where it was suggested for the manipulation of single images, and allows
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(a) (b)

Figure 8.3: Rendering the frames with 800 light sources results in a

correct handling of ambient occlusion. Even though the lighting in the

closeup shown in (a) is nearly ambient, that is coming from the full hemi-

sphere, we model a shadowing in the area below the glasses (b), where the

visible part of the hemisphere is smaller due to occlusion by the glasses.

This could not have been achieved with a single light source.

Frame 1 25 50 75 100

Figure 8.4: A few frames from a video showing the insertion of glasses

into a 100 frame sequence. Observe the correct light interaction between

face and glasses.
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us to exchange faces across different pose, camera and light configurations. The

main difference is that we average the albedo over multiple frames to get a more

consistent result and to fill in those parts of the face which are invisible in the

current source frame but become visible after face editing.

A face exchange is much more complicated than the task of adding a new

object into the scene. Adding a new object only added shadows on the face,

while we now have to guess and fill in the appearance of parts of the scene which

were invisible in the original video and now become visible. This happens in two

places. First, parts of the background might no longer be occluded by the face

when its shape changes. In Blanz et al. (2003) this was handled by mirroring

the originally visible image into the newly visible part. We are adopting a differ-

ent approach and slightly deform the original image such that the outline of the

face in the deformed image is equal to the newly rendered outline. This has the

advantage that slight imperfections in the model fit are less visible. The second

situation where invisible parts of the scene have to be filled in is when due to pose

changes parts of the face become visible which were invisible in the original im-

age. We fill these in with the model texture, which itself was adjusted to the full

video, and therefore is correct even for parts of the face which are only visible in

other frames of the source video. An example of a face exchange between videos

is shown in figure 8.5 and in the accompanying movies.

3 Expression Transfer

A face editing task which can be only achieved with a generative face model, is

the transfer of expressions between videos. Recall that in chapter 2 we separated

expression and identity components of the model, by additively combining an

identity model with an expression model. Having separate model parameters for

expressions and identity we can now generate new expressions by exchanging the

expression parameters in a fitted sequence with the expression parameters from

another sequence. This is independent from the pose and identity of the steering

sequence, allowing us to drive the expressions of one actor with the expressions

of another actor. This application is useful for speech editing, especially for

lip-syncing. An example of this application is shown in figure 8.6 and in the

accompanying video material.

4 Identity Transfer

By selectively transferring the identity component we can keep the original ex-

pressions but exchange the identity, which allows special effects in movies where

the identity changes smoothly between two individuals. An example of this effect
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Frame 1 20 40 60 80

Figure 8.5: Face exchange by copying the identity and expression com-

ponents as well as the albedo from one face onto another, and relighting

the resulting scene. The first row shows the input face, the second row

shows the target video, and in the third row the newly rendered video

with transferred identity and expression is shown. For more details refer

to the complementary material.

is shown in figure 8.8 and in the accompanying movie material.
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Frame 1 20 40 60 80

Figure 8.6: Expression transfer by copying the expression components

from one video onto another and relighting the resulting scene. The first

row shows the input expression, the second row contains the input video

and in the third row the newly rendered video with transferred expres-

sion is shown. In the fourth row the roles of the input videos have been

switched. For more details refer to the complementary material.
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(a) Input (b) Input (c) Input Lighting (d) Input Lighting (e) Warped

Expression Frame (diffuse) (specular) Input Frame

(f) Output Lighting (g) Output Lighting (h) Lighted (i) Lighted

(diffuse) (specular) Model Extracted Texture

(j) Texture Mask (k) Model Mask (i) Output Frame

Figure 8.7: The intermediate steps of an expression transfer. The masks

are defined in model space and the images are linearly blended.

Frame 1 20 40 60 80

Figure 8.8: Identity transfer by copying the identity components and

albedo from one video onto another and relighting the resulting scene.

The first row shows the input expression, the second row contains the in-

put video and in the third row the newly rendered video with transferred

identity and maintained expression is shown. For more details refer to

the complementary material.
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We have presented a complete system for video editing, and demonstrated its

efficacy on a number of example sequences. We explained each step necessary,

and kept the parts as separate as possible, such that the different innovations can

be reused in other contexts or improved independently in future work. Let us

now recall the novelties introduced in this thesis.

We started with the registration of 3D face scans, which are used to build the

generative face model. For registration, we proposed a new deformation cost,

which was compared to other deformation energies from the mesh editing com-

munity and evaluated on over 1200 face scans.

Next, we described a fitting algorithm, which takes the video as a whole into

account, instead of fitting each frame separately.

Fitting a morphable model needs some initial landmarks. To efficiently find

these in the video we introduced a semi-automatic interest point tracking method

that is used to initialize the fitter.

Even with this initialization, it is still necessary to guide the fitting towards

the right minimum within the complex energy landscape. This was achieved by

detecting the outlines of eyes, lips, and, nose with the help of part and viewpoint

specific Active Appearance Models. To reliably fit these AAMs it was necessary

to develop a new AAM fitter, which is much more robust than previous methods

while still being efficient.

To further improve the fitting, we proposed to explain the complete data, that

is all of the video, and not only the part which is estimated to be the face as was

done previously. To this end we introduced an algorithm for the simultaneous

segmentation and fitting of images.

Finally, we gave some examples of face editing applications made possible

by the model fits. This includes the insertion of virtual objects which interact

with the face, and the transfer of expression and/or identity from one video onto

another.

Possible extensions to this work lie in two areas. The first area is that of

extending the model. There are three levels of detail in faces. The level described

– 103 –



CONCLUSION AND FUTURE WORK

nicely by a 200 dimensional linear shape model is that of the overall shape of

faces. With 200 parameters we are able to reproduce most faces well enough to

make them recognizable and to explain most of the apperance. At the next level

lies the accurate shape of the face, which includes the exact position and shape of

wrinkles such as the crows feet, nasiolabil folds or glabellar wrinkles. This part

of the shape can not be described by linear combinations of tesselated meshes,

as the structures differ in topology. The number number of crow feets and minor

nasiolabial folds, for example, is different for each person.

It will therefore be necessary to either introduce a different parametrization to

build a generative model of wrinkles at this level, as proposed by Paysan (2010),

or to apply shape from shading to refine the shape estimated with the 3D-MM.

The third level of detail is that of pores and skin cell boundaries. While

the face shape and wrinkles can still be described well with a high resolution

tesselated mesh, it becomes infeasible to describe the face at this level with such

a parametrization. Here it will be necessary to develop a model describing the

structure of the skin, i.e. the kind of pores and the density of the pores but not the

exact position of every pore and skin cell.

Such a multi-layer model with many parameters will open up new questions

because for example the transfer of details between faces will not be straightfor-

ward, and fitting such a model is a difficult task.

While the previous extensions to the model concerned the spatial accuracy, it

will also be of interest to develop a model of the temporal dynamics of speech

and expressions, which can be used to further constrain the fitting, and to generate

completely new speech and expressions without a driving actor.

The second area where extensions are possible is that of the applications. The

inclusion of a teeth, eye and hair model will improve the animations on the graph-

ics side. Also, the handling of the background is not solved to our satisfaction in

this pipeline. From a user interface perspective it would be interesting to extend

the attribute editing method presented in Amberg et al. (2009b) to videos such

that the animator can change attributes such as ‘sadness’ or ‘lack of sleep’ in a

video.

So we believe that if the face editing pipeline presented in this thesis would be

implemented in a commercial environment, where more resources could be spend

on the artistic refinement, then it will be directly applicable to commercial video

postproduction. The research community on the other hand will benefit from the

face model, and the dynamics data which we can extract with our model, and

also from the registration method, appearance model fitter, interest point tracking

method and video fitter presented in this work.
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Allen, B., Curless, B., and Popović, Z. (2003). The space of human body shapes:

reconstruction and parameterization from range scans. In SIGGRAPH ’03:

ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003), pages

587–594. ACM. [26, 28]

Amberg, B., Blake, A., Fitzgibbon, A., Romdhani, S., and Vetter, T. (2007a).

Reconstructing high quality face-surfaces using model based stereo. In ICCV

’07: International Conference on Computer Vision. [39, 46, 69, 70]

Amberg, B., Blake, A., and Vetter, T. (2009a). On compositional image align-

ment, with an application to active appearance models. In CVPR ’09: Com-

puter Vision and Pattern Recognition, volume 0, pages 1714–1721. IEEE

Computer Society. [46, 80, 86, 89, 90]

Amberg, B., Knothe, R., and Vetter, T. (2008a). Expression invariant 3D face

recognition with a morphable model. In FG ’08: 8th Automatic Face & Ges-

ture Recognition, pages 1–6. IEEE. [8, 9, 10, 30, 39]

Amberg, B., Knothe, R., and Vetter, T. (2008b). SHREC’08 entry: Shape based

face recognition with a morphable model. In SMI ’08: Shape Modeling and

Applications, pages 253–254. [39]

Amberg, B., Paysan, P., and Vetter, T. (2009b). Weight, sex, and facial expres-

sions: On the manipulation of attributes in generative 3D face models. In

– 105 –



BIBLIOGRAPHY

Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-

X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M. L.,

Silva, C. T., and Coming, D., editors, ISVC ’09: 5th International Symposium

on Visual Computing, Advances in Visual Computing, volume 5875 of Lecture

Notes in Computer Science, pages 875–885. Springer. [104]

Amberg, B., Romdhani, S., and Vetter, T. (2007b). Optimal step nonrigid ICP

algorithms for surface registration. In CVPR ’07: Computer Vision and Pattern

Recognition. IEEE Computer Society. [12, 27, 28]

Anderson, R. and Schweitzer, H. (2009). Fixed time template matching. In SMC

2009, Systems, Man and Cybernetics, pages 1359 –1364. [60]

Baker, S. and Matthews, I. (2001). Equivalence and efficiency of image align-

ment algorithms. In CVPR ’01: Computer Vision and Pattern Recognition,

volume 1, pages I–1090–I–1097. IEEE Computer Society. [80]

Baker, S. and Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying

framework. IJCV: International Journal of Computer Vision, 56(3):221–255.

[80, 86]

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes.

PAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence,

14(2):239–256. [27, 28]

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer. [8]

Blanz, V., Basso, C., Vetter, T., and Poggio, T. (2003). Reanimating faces in

images and video. In Brunet, P. and Fellner, D. W., editors, EUROGRAPHICS

2003: European Association for Computer Graphics, volume 22, issue 3 of

Computer Graphics Forum, pages 641–650. The Eurographics Association,

Blackwell. [1, 2, 3, 8, 10, 99]

Blanz, V. and Vetter, T. (1999). A morphable model for the synthesis

of 3D faces. In SIGGRAPH ’99: Computer Graphics and Interactive

Techniques, pages 187–194. ACM Press/Addison-Wesley Publishing Co.

[1, 2, 7, 8, 26, 39, 47, 80]

Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. (2006a). Primo: coupled

prisms for intuitive surface modeling. In SGP ’06: Eurographics symposium

on Geometry processing, pages 11–20. Eurographics Association. [20]

Botsch, M. and Sorkine, O. (2008). On linear variational surface deformation

methods. VCG: IEEE Transactions on Visualization and Computer Graphics,

14(1):213–230. [13, 20, 21, 22]

– 106 –



BIBLIOGRAPHY

Botsch, M., Sumner, R., Pauly, M., and Gross, M. (2006b). Deformation trans-

fer for detail-preserving surface editing. In VMV ’06: Vision, Modeling &

Visualization, pages 357–364. [13]

Brand, M. (2001). Morphable 3d models from video. In CVPR ’01: Computer

Vision and Pattern Recognition, volume 2, pages 456+. IEEE Computer Soci-

ety. [46]

Bregler, C., Hertzmann, A., and Biermann, H. (2000). Recovering Non-Rigid

3D Shape from Image Streams. In CVPR ’00: Computer Vision and Pattern

Recognition, volume 2, pages 2690–696 vol.2. IEEE Computer Society. [46]

Buchanan, A. and Fitzgibbon, A. (2006). Interactive Feature Tracking us-

ing K-D Trees and Dynamic Programming. In CVPR ’06: Computer

Vision and Pattern Recognition, pages 626–633. IEEE Computer Society.

[2, 51, 52, 58, 60, 62, 63, 66]

Burkhardt, H. and Diehl, N. (1986). Simultaneous Estimation of Rotation and

Translation in Image Sequences. In EUSIPCO-86: European Signal Process-

ing Conference. [80]

Byun, H. W. (2007). Realistic facial modeling and animation based on high reso-

lution capture. In ACIVS’07: Proceedings of the 9th international conference

on Advanced concepts for intelligent vision systems, pages 417–426. Springer-

Verlag. [3]

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature

space analysis. PAMI: IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24:603–619. [70, 73]

Cootes, T. F. (2008). Talking face video. http://personalpages.

manchester.ac.uk/staff/timothy.f.cootes/data/

talking_face/talking_face.html, retrieved on 20th October

2010. [90]

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Active Appearance Mod-

els. PAMI: IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(6):681–685. [79, 80]

Delamarre, Q. (2001). 3D articulated models and multiview tracking with physi-

cal forces. Computer Vision and Image Understanding, 81(3):328–357. [46]

Di Stefano, L. and Mattoccia, S. (2003). Fast template matching using bounded

partial correlation. Machine Vision and Applications, 13:213–221. [60]

– 107 –



BIBLIOGRAPHY

Diehl, N. (1988). Methoden zur allgemeinen Bewegungsschätzung in Bildfolgen.

PhD thesis, TU Hamburg-Harburg. Published as Fortschrittsbericht (Reihe 10,

Nr. 92) VDI-Zeitschriften, VDI-Verlag. [80]

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1(1):269–271. [55, 56]

Feldmar, J. and Ayache, N. (1996). Rigid, affine and locally affine registration of

free-form surfaces. IJCV: International Journal of Computer Vision, 18(2):99–

119. [28]

Fitzgibbon, A. W. (2001). Robust registration of 2d and 3d point sets. In British

Machine Vision Conference. [26]

Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses

in improved network optimization algorithms. JACM: Journal of the ACM,

34(3):596–615. [56]

Hiwada, K., Maki, A., and Nakashima, A. (2003). Mimicking video: real-time

morphable 3d model fitting. In VRST ’03: Proceedings of the ACM symposium

on Virtual reality software and technology, pages 132–139. ACM. [48]

Hotelling, H. (1933). Analysis of a complex of statistical variables with principal

components. Journal of Educational Psychology, 24:417–441. [8]

Huang, X., Zhang, S., Wang, Y., Metaxas, D., and Samaras, D. (2004). A hier-

archical framework for high resolution facial expression tracking. In CVPRW

’04: Proceedings of the 2004 CVPR Workshop, pages 22+. IEEE Computer

Society. [3]
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