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From left to right:  
Hydra sp., Dikerogammerus villosus, Athripsodes cinereus, Gyraulus albus, Corbicula 
fluminea, statoblast of Cristatella mucedo. All animals were found in Lake Neuchâtel (photos: 
Stephanie Schmidlin and Pascal Stucki). 
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Summary 

Invasive species are of great concern in conservation biology, in economy and as well as in 

human health. River and lakes are vulnerable ecosystems and are prone to human-caused 

introductions of non-indigenous species. Research on the ecology of invasive species, their 

impact on native communities and the introduction pathways is needed to manage these 

invasive species and to prevent further introductions. 

 The present thesis concentrates on aquatic invasive invertebrate species and 

documents the spread of the Asian clam Corbicula spp. into Switzerland. In particular, we 

focused on Corbicula fluminea and examined its ecological preference, population structure 

and dispersal in the river Rhine. Furthermore, we analysed the clam’s and other non-

indigenous molluscs’ possible impact on the native biodiversity in a sandy flat in Lake 

Neuchâtel.  

 A literature survey about the influence of invasive non-indigenous species on the 

biodiversity in the river Rhine documented great changes in river morphology, water quality 

and species composition during the last century. River engineering, pollution and the opening 

of canals connecting formerly separated river systems, allowed the invasion of many new 

species. Some of them reached extraordinary densities and hampered the development of 

native taxa. Many typically riverine species were replaced by large numbers of euryoecious 

and non-indigenous species. Competition for food and space, the hosting of parasites and 

intraguild predation were the main biological mechanisms underlying the alteration of the 

river community. Most studies on invasive species showed negative correlations between 

introduced invasive species and native biodiversity but experimental evidence is so far 

lacking. 

 The Asian clam C. fluminea has been introduced in the Lower Rhine with ballast water 

of cargo ships in the second half of the 1980ties and was first recorded in Basel, Switzerland, 

in 1995. There, the clam established a well structured population. It occurred initially in the 

internationally navigable section of the river Rhine and in the Canal de Huningue, which 

obtains water containing clam larvae from the river Rhine. Our field survey showed that the 

clam preferred slowly flowing, shallow water sites with fine-grained sediment, mainly sand. A 

substratum-choice experiment in the river Rhine confirmed the empirical evidence. 

 In spring 2011, there is still no evidence that the clam has colonized any tributaries of 

the Rhine in the region of Basel. However, in 2003, C. fluminea passed a weir and was found 

22 km upstream of Basel where cargo shipping is absent. In the same year, records were made 

in Lake Constance and in Lake Neuchâtel and subsequently in other Swiss lowland lakes. 



SUMMARY  
 

 12

Today, their interconnecting rivers have not yet been colonized apart from some river sections 

near lake outlets and the river Aare between Aarau and its confluence with the river Rhine.  

 We present evidence for separate introductions of an identical haplotype of C. 

fluminea into five lakes in Switzerland based on mitochondrial DNA-sequences of the COI in 

specimens sampled. This indicates passive dispersal of the clam by human activities and/or 

waterfowl. All but one of the 72 genetically analysed individuals were assigned to a single 

haplotype of C. fluminea. A second haplotype belonging to the sister species Corbicula 

fluminalis was found only in the river Rhine near Basel. Recent records of specimens which 

were not genetically analysed all showed the shell morphology of C. fluminea, confirming the 

dominance of this clam in Swiss rivers and lakes. Passive dispersal by waterfowl, recreational 

boating and other human activities may facilitate the further spread of C. fluminea in 

Switzerland. However, the clam might be less successful in colonizing rivers with rapid 

current, which might be important refuges for native species. 

 We investigated a sandy flat in Lake Neuchâtel using SCUBA diving to assess the 

abundance of macroinvertebrate species, and to analyse the impact of non-indigenous mollusc 

species (C. fluminea, Dreissena polymorpha, Potamopyrgus antipodarum and Lithoglyphus 

naticoides) on the native macroinvertebrate community. The non-indigenous molluscs 

dominated the sand flat in numbers and influenced the composition and diversity of native 

macroinvertebrates, mostly by transforming the sandy substratum into a partly hard 

substratum habitat. Differences observed in community composition between shallow (< 3.5 

m) and deep sites (≥ 5 m) resulted to a certain extent from the reduced abundance of D. 

polymorpha at shallow sites most probably due to depth-selective feeding of ducks. A shell 

decay study showed that the shells of C. fluminea and D. polymorpha persist for a longer 

period in the sediment than those of native molluscs. Therefore, shells of these non-

indigenous molluscs have a long-lasting impact through modification of sandy habitat. 

Several native taxa benefit from such ecosystem engineering, but for other taxa with more 

specific habitat requirements it might be harmful. 

 In Lake Neuchâtel, high densities of C. fluminea negatively influenced the abundance 

of sand preferring native taxa. Negative impacts of C. fluminea in industrial facilities such as 

clogging of water pipes along the river Rhine are also known. Consequently, we recommend 

classifying C. fluminea as an invasive species in Switzerland and further monitoring and 

studying this clam. 
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General Introduction 

After the loss of habitats, invasive species are recognised as the major threat for global 

biodiversity (Meffe and Carroll 1997). Particularly in freshwater habitats the load of invasive 

species is very high and among the leading threats to freshwater ecosystems and biodiversity 

(Sala 2000). At the same time only about a quarter of studies on biological invasion are 

dedicated to inland waters and most of them are situated in North America (Gherardi 2007). 

Scientific studies aim to understand invasion processes and may lead in the best case to the 

prevention of further introductions or to a sustainable management of the introduced invasive 

species. Complete eradication from a new site as in the case of the seaweed Caulerpa taxifolia 

in California was hardly ever possible in Europe (Anderson 2005, Genovesi 2005). Genovesi 

(2005) showed that in European inland waters only local eradication success was achieved 

from semiaquatic species (e. g. the nutria or Myocastor coypus in Britain; Baker 2006). 

However, so far no complete eradications of alien invertebrates and marine organisms have 

been recorded. In Genovesi’s opinion, the lack of eradication attempts in Europe is “probably 

due to the limited awareness of the public and the decision makers, the inadequacy of the legal 

framework, and the scarcity of resources” (Genovesi 2005). 

 Based on the Convention on Biological Diversity (Article 8. In-situ Conservation, 

letter h; www.cbd.int) all countries who signed the convention should “prevent the introduction 

of, control or eradicate those alien species which threaten ecosystems, habitats or species”. To work 

out a strategy on how to deal with invasive species, the commission of the European 

communities (2008) summarized the nature of the problem as follows:  

“…" Alien species" are species which are introduced outside their natural past or present distribution 

area and succeed in surviving and subsequently reproducing. "Invasive Alien Species" (IAS) are alien 

species whose introduction and/or spread threaten biological diversity. The Millennium Ecosystem 

Assessment revealed that IAS impact on all ecosystems. The problem of biological invasions is 

growing rapidly as a result of increased trade activities. Invasive species (IS) negatively affect 

biodiversity e.g. by competing with other organisms and changing habitat structure, being toxic, being 

a reservoir for parasites or a vector for pathogens, hybridising with related species or varieties, 

predating on native organisms, altering the local food web, e.g. invasive plants alter nutrient 

availability, disrupting pollination services, causing extinction of native species, being an ecosystem 

engineer by altering energy and nutrient flows, as well as physical factors in habitats and ecosystems. 

IS can cause congestion in waterways, damage to forestry, crops and buildings and damage in urban 

areas. The costs of preventing, controlling and/or eradicating IS and the environmental and economic 

damage are significant. The costs of control, although lower than the costs of continued damage by 
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the invader, are often high. These costs could be avoided or minimised by decisions to prevent and 

stop introductions at an earlier stage” (Commission of the European Communities, 2008). 

 This summary highlights the variety of severe impacts invasive species may have for 

the ecology and economy as a result of growing globalisation of trade markets. In 

Switzerland, the Federal Office for the Environment (FOEN 2008) treats invasive alien 

species within the Swiss Release Ordinance (SRO; German: Schweizerische 

Freilassungsverordung, FrSV). In Article 51 an environmental monitoring for invasive alien 

species and scientific investigations, whether a causal connection could exist between 

observed damage and the presence of the monitored organisms, are mandatory. 

 In the scientific literature the term “invasive species” is not consistently used. To 

overcome the confusion of the term, Colautti and MacIssac (2004) suggest focusing on an 

invasion framework which is process-based and includes operational terms such as “stages” 

with no proper meaning. If the term “invasive” is still required Colautti and MacIssac (2004) 

prefer to speak of individual populations instead of the entire species since a biological 

invasion is mostly a biogeographical phenomenon rather than a taxonomic one. In this 

dissertation the term “invasive” is used according to the commission of the European 

communities (2008) but references to single stages will also be made. Nentwig (2010) 

distinguished four main generalized process stages in biological invasions: 

1) Introduction: Usually only a few individuals are introduced and they are not yet a threat to 

other organisms.  

2) Establishment and adaptation: Population size is increasing and impact on native 

biodiversity is still low. This stage may last very short or take several decades, depending 

often on the life-history traits of an introduced species and habitat conditions at the new site. 

3) Invasion: In an enlarging area the population size increases strongly. This leads to new 

dispersal events in so far not yet colonised sites. This is the stage of biological invasion. 

Pressure on native species increases and may lead to considerable impacts. Economical 

damage is likely. 

4) Saturation: All suitable habitats in the new range are colonized and no further expansion is 

possible. Impact on native species is mostly serious, ecosystems may have changed and 

economical damage is costly. 

 Williamson’s “Tens Rule” (Williamson 1996) suggests that 10% of introduced species 

into a new environment can establish and another 10% of those will spread (stage 2 and 3). 

But Jeschke and Strayer (2005) could show that for vertebrates and insects the probability of 

establishing and spreading lies around 50%, and for aquatic species it is even higher (e.g. fish: 
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55% establish and 60% spread). The major invasion vectors of aquatic non-indigenous species 

into Europe are shipping, aquaculture and stocking activities (Gollasch 2006). They underline 

three main qualities of the act of dispersal of non-indigenous species: The spread occurs with 

the help of men (1), over biogeographical barriers (2) and within relative short time periods 

(3). That means that neither the introduced taxa nor the native community had time for 

evolutionary adaptation to the new situation (Nentwig 2010). 

Why is Corbicula spp. the focus of this work? 

In Europe, Corbicula spp. was first recorded in France and Portugal in 1980 (Mouthon 1981), 

and in the Lower Rhine in the Netherlands in 1985 (Bij de Vaate and Greijdanus-Klaas 1990). 

In 1995, the clam was reported for the first time in the river Rhine near Basel in Switzerland 

(Rey et al. 2004). Corbicula fluminea and Corbicula fluminalis, well-known of having 

negative impact on indigenous species in other invaded parts of the world (Leff 1990, Strayer 

1999), are perceived as potential threats to Swiss freshwater habitats and organisms. They are 

therefore under surveillance by the authorities and need monitoring and scientific research 

(Wittenberg 2005). 

 With this thesis I intend to broaden the knowledge about the invasion process of the 

genus Corbicula into Switzerland and to identify potential effects the clam might have on 

native biodiversity. My work may raise the awareness of invasive aquatic species and their 

ways of introduction and may serve to decision makers in the management of invasive aquatic 

species and conservation biology. 

 In the following part, I will present the main ecological features of the genus 

Corbicula as background information and then give details about the aims of the thesis. 

The genus Corbicula (Corbiculidae familiy) 

Occurrence 

The genus Corbicula occurs naturally in Australia, Southeast Asia, India, Middle and Near 

East and as well as in Africa. In the Pleistocene, Corbicula was spread in Europe but shrunk 

to a rest population in the Kaukasus during the last glaciation (Illies 1978, Krolopp 1987, 

Meijer and Preece 2000). The global dispersal of Corbicula started in the early 20th century 

parallel to the Chinese emigration wave to North America. The first record was made in 

British Colombia and from then on, the clam’s spread over the world (Counts 1981). Thanks 

to the international trade, it reached far destinations in the ballast water of cargo ships and 
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easily dispersed within European waterways (Gollasch 2006, Galil et al. 2007). Today, it is 

widespread in North and South America and in Europe (Lee et al. 2005; Europe: Renard et al. 

2000, Pfenninger et al. 2002, Sousa et al. 2008). 
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Figure 1 Presentation of the external view of C. fluminea (round form, 1a) and of C. 
fluminalis (saddle form, 1b) and the inner view of C. fluminea (1c) and of C. fluminalis (1d). 
Both specimens were collected in the river Rhine near Basel (photos: S. Schmidlin 2003). 
 

Morphological taxonomy and evolutionary systematic  

General uncertainties exist about the number of Corbicula species present in several Asiatic, 

American and European freshwater ecosystems, their taxonomy and their origin(s) (Renard et 

al. 2000, Siripattrawan et al. 2000, Pfenninger et al. 2002, Park and Kim 2003, Lee et al. 

2005, Sousa 2007, Hedtke et al. 2008). Based on morphometric and genetic analyses two 

morphotypes were found in French and Dutch rivers (Renard et al. 2000). One belongs to the 

species C. fluminea (few wide, concentric ridges and a round shell form) and the other to C. 

fluminalis (many narrow, concentric ridges and a saddle-shaped shell form). A third species 

5 mm 5 mm 

5 mm 5 mm 
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Corbicula spec. was found but it was not possible to name the taxon. Pfenninger et al. (2002) 

confirmed the presence of mitochondrial haplotypes of C. fluminea and Corbicula spec. as 

defined by Renard et al. (2000) in the river Rhine, but they also highlighted the repeatedly 

observed mismatches in morphological and genetic species identification and therefore 

preferred referring to the Corbicula complex. Park and Kim (2003) examined the different 

Corbicula lineages within the native Asian range and classified C. fluminalis and Corbicula 

spec. sensu Renard et al. (2000) only as freshwater Corbicula without a specific 

nomenclature.  

 In general, in my thesis I will use the morphological terms C. fluminea for the round 

form and C. fluminalis for the saddle-shaped form (Figures 1a−d). 

Ecological and life-history traits 

Corbicula usually lives in well-oxygenated lotic and lentic systems in sediments of different 

composition (Belanger et al. 1985). Compared with other freshwater bivalve species the clam 

seems to be less tolerant to environmental fluctuations such as elevated temperature, hypoxia, 

emersion, low pH and low calcium concentration (Byrne and McMahon 1994, McMahon 

1999, Johnson and McMahon 1998, Sousa et al. 2008). The clam filter- and pedal-feeds and 

allocates most of the assimilated energy to growth and reproduction (McMahon 1999, 

Hakenkamp et al. 2001).  

 In many invaded areas, studies about life-history traits exist (North-America: Aldridge 

and McMahon 1978; South-America: Cataldo and Boltovskoy 1998; Europe: Meister 1997, 

Rajagopal et al. 2000) and they all agree with the words of Füreder and Pöckel (2007): “The 

relatively short lifespan, early maturity, high fecundity, bivoltine juvenile release patterns, high 

growth rates, small juvenile size, and the capacity for downstream dispersal of C. fluminea make it 

highly invasive and adapted for life in unstable lotic habitats subject to unpredictable catastrophic 

environmental disturbances.”  

 In summary, the invasion success and subsequent dispersal of the clam relies more on 

its high fecundity and short life-span (r-strategy) and its association with human activities 

than on its physiological tolerance (McMahon 2002, Sousa et al. 2008). 

Aims of the thesis 

The aims of my thesis were to follow up the spread of the invasive clam genus Corbicula into 

Switzerland, to examine its ecological preferences and its potential effects on native 
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freshwater communities. To assess possible introduction pathways into Switzerland we 

combined first observations records with molecular data. 

 In Chapter 1, we examined the impact of invasive non-native species on the 

biodiversity in the river Rhine on behalf of a literature survey. We reviewed major changes in 

the biota of the river Rhine, focusing on mechanisms underlying changes in species 

abundance following the invasion of non-native species. Our emphasis was on benthic 

macroinvertebrates, such as Corbicula, but interactions with other animals were also 

considered. Additionally, we identified important gaps in knowledge and suggested areas for 

further research. 

 In Chapter 2, we examined the distribution of Corbicula along the bank of the river 

Rhine, in three tributaries and in the Canal de Huningue in the region of Basel (Switzerland, 

Germany and France) in 2003. Additionally, we carried out an experiment on substratum 

preferences and measured several abiotic variables and analysed them in relation to the clam’s 

occurrence and abundance. Further, we followed up the population growth of Corbicula in the 

river Altrhein to assess seasonal changes in the size structure of this river population. 

 In Chapter 3, we expanded the area of the Corbicula survey from Chapter 1 to whole 

Switzerland and analysed mitochondrial DNA-sequences of Corbicula clams sampled at 

different sites in Europe. Additionally, we discussed possible dispersal vectors and 

introduction pathways into the alpine country.  

 In Chapter 4, using SCUBA-diving we investigated the native macroinvertebrate 

community in relation to the densities of four alien mollusc species (C. fluminea, Dreissena 

polymorpha, Potamopyrgus antipodarum and Lithoglyphus naticoides) in a sandy flat of Lake 

Neuchâtel, Switzerland. A controlled shell decay study was performed to give insight in the 

persistence of native and alien mollusc shells and the possible implications for other 

macroinvertebrates. 
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Introduction 

Besides habitat degradation, the impacts of non-native invasive species are a major cause of 

extinction of native species (Groombridge 1992, Sala et al. 2000, Cox 2004). Invading species 

may interact with the native biota in a variety of ways, for example, by competition, 

predation, parasitism, disease and hybridization. Some non-native species may enter an 

ecosystem and remain at low densities for many years or disappear gradually whereas others 

might have a profound impact on the existing community by changing species abundance, 

food webs and energy fluxes. Linking invasion patterns with interspecific processes is often 

difficult but such information is crucial to predict the impacts of non-native species on the 

biodiversity of newly invaded locations (Moyle and Light 1996, Williamson 1996, 1999). 

The Convention on Biodiversity exhorts the contracting parties to "prevent the 

introduction, control or eradicate those alien species which threaten ecosystems, habitats or species" 

(Glowka et al. 1994). To implement these directives, detailed knowledge on native 

biodiversity, and on potential interactions between invading non-native species and native 

species is required. Compared to the attention paid to extinctions in terrestrial habitats, much 

less focus has been given to species loss in freshwater ecosystems, and this despite several 

studies demonstrating a growing number of extinctions in freshwater animal species (fishes, 

molluscs, crayfishes; e.g. Kaufman 1992, Strayer 1999, Ricciardi and Rasmussen 1999). 

This chapter examines the impact of invasive non-native species on the biodiversity in 

the river Rhine. The occurrence and spread of non-native species are relatively well 

documented in the Rhine (e.g. Tittizer et al. 2000, Geitler et al. 2002, Rey et al. 2004). 

Quantitative studies on changes in abundance of non-native species and on species 

composition of native communities complement these reports (e.g. Van den Brink et al. 1990,  
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Figure 1.1 Map of the river Rhine, with most of the locations mentioned in the text. 
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mechanisms underlying changes in species abundance following the invasion of non-native 

species. Our emphasis is on benthic macroinvertebrates but interactions with other animals are 

also considered. Along the way, we identify important gaps in knowledge and suggest areas 

for further research. 

The River Rhine 

With a length of 1,320 km and a catchment area of 185,000 km2, the river Rhine is one of the 

largest rivers in central Europe (Van Urk 1984, Friedrich and Müller 1984). It originates in 

the Eastern Swiss Alps, flows north to form the frontier with Liechtenstein and Austria 

(Alpenrhein), and empties into Lake Constance (Figure 1.1). The Rhine (High Rhine) then re-

emerges and flows west, mainly on the border between Switzerland and Germany. In Basel, it 

turns to the north and forms the southern part of the border between France and Germany 

(Upper Rhine) in a wide valley, before entering Germany exclusively (Middle Rhine). Here, 

the Rhine encounters some of its main tributaries (the Neckar, the Main and then the 

Moselle). Between Bingen and Bonn, the Rhine flows through the Rhine gorge, a formation 

created by erosion (this gorge is a UNESCO World Heritage Site since 2002). After passing 

the Ruhr area, the Rhine (Lower Rhine) turns west into The Netherlands. After crossing the 

border, it splits into three main distributaries, the Waal, the IJssel and the Nederrijn/Lek, 

before discharging into the North Sea. 

The flow regime can be characterized as rain-fed/snow-fed, the highest water levels 

usually being attained in March−May and the lowest in August−November. The mean annual 

river discharge of the Rhine is 1,032 m3/s in Basel and 2,260 m3/s (range 800−12,000 m3/s) at 

the Dutch border. This results in the minimum and maximum water levels differing by up to 8 

m in The Netherlands (Van Geest et al. 2005). 

 The deterioration of the Rhine started in the Middle Ages, with the deforestation of 

large areas on the floodplains (Nienhuis and Leuven 1998). By the early 18th century, almost 

all beech and oak forests had been replaced by grassland. The river morphology became 

increasingly degraded because of straightening, reduction of channel networks to a single 

channel, and disconnection from the floodplain. In the 19th century, major river regulations in 

the Upper and Lower Rhine modified the river bed. For example, in the so-called Tulla-

correction carried out between 1817 and 1874 and also in subsequent channelisations, the 

Upper Rhine north of Basel was transformed from a river system up to 6 km wide, with 

numerous branches, slow-flowing meanders, islands, and sand and gravel flats, into a 130-m-

wide, fast-flowing petrified canal (Grand Canal d'Alsace). During channelisation, flood 
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control dams were built, stone groynes were constructed to strengthen the channel, and some 

parts of the river bank were reinforced by stones. 

Since Roman times, the Rhine has been a navigable waterway, carrying travellers and 

goods deep inland. As the river became more important as transport route, it was channelled 

even more to increase its discharge and maintain its depth. In modern times, cargo shipping 

on the Rhine is possible from Rotterdam (North Sea) to Rheinfelden, 20 km upstream of 

Basel. The importance of international shipping increased further with the construction of 

river-connecting canals. The Rhine-Main-Danube Canal connects the Rhine via the Danube 

with the Black Sea which, in turn, is connected by canals and rivers to the Caspian Sea (see 

Galil et al. 2007). Another navigation route to the Black Sea and Caspian Sea is the German 

Mittelland-Elbe-Vistula-Pripyat-Bug-Dnieper canal system. 

Parallel to the channelisation, the floodplain of the Rhine has been extensively 

modified to extend agricultural and industrial areas and settlements. Nowadays, the Rhine is a 

completely man-manipulated river, more intensively used than ever before (Tittizer and Krebs 

1996). Besides its function as transportation route, it provides water for communities and 

industry, is used to generate hydroelectric power, provides cooling water and a means of 

effluent transport, and is increasingly a focus for recreation. Despite profound alterations of 

river characteristics, the river still has a large (albeit not unlimited) self-cleaning capacity, and 

natural and semi-natural banks and areas of the floodplain, with abandoned meanders, brooks, 

sand and gravel pits, and remnants of riparian forest still harbour an extraordinarily high 

diversity of plants and animals, and are therefore of high conservation value (e.g. LfU 2000, 

Baur et al. 2002). 

Native Biodiversity and Invasion History 

Faunal diversity decreased dramatically in the river Rhine between 1900 and 1970 

(Kinzelbach 1972, Van den Brink et al. 1990, Streit 1992). For example, species richness of 

selected groups of macroinvertebrates in the Dutch section of the Rhine declined from 83 

species in 1900 to 43 species in 1940 and to 41 species in 1981/1987 (Van den Brink et al. 

1990, Den Hartog et al. 1992). Omitting the non-native species arriving in the 20th century, 

however, the total number of species for 1940 would be 40, and only 27 for 1981/1987. Schöll 

(2002) presented a list of 21 typical riverine macroinvertebrate species (seven mayflies, 10 

stoneflies and four caddis flies) occurring in the German part of the Rhine in 1900 − none 

were found in the river between 1960 and 2000. Most probably, these specialized benthic 

species went extinct in the river Rhine. However, the actual causes of extinction are unknown. 
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In the Rhine near Basel, the number of stonefly species declined from 13 to four between 

1910 and 1990, and those of mayflies from 19 to 13 (Küry 1994). 

The decline of the freshwater fauna in the river Rhine is linked to extensive habitat 

deterioration caused by channelisation and flow regulation by weirs, stream fragmentation, 

organic pollution from land-use activities, toxic contaminants from municipal and industrial 

sources, and interactions with an increasing number of non-native species (Streit 1992, Baur 

and Ringeis 2002, Van der Velde et al. 2002, Nehring 2003). Since the industrial revolution 

and the construction of sewage systems, domestic and industrial pollution have led to a 

gradual deterioration in water quality, and this from the second half of the 19th century to the 

end of the 1960s. Water quality was very poor during the period 1950−1970, with low oxygen 

levels, serious eutrophication, high chemical and organic pollution loads, salination caused by 

French potassium mines and mining water from brown coal mines in Germany, and thermal 

pollution (Rhine river water temperature has risen by approximately 2 °C above its natural 

value, Admiraal et al. 1993). 

Faunal diversity in the river Rhine was lowest in the late 1960s, when levels of 

toxicants were highest and oxygen levels extremely low (Kinzelbach 1972, Streit 1992). 

During the period 1970−1986, waste water treatment plants were constructed along the river, 

resulting in improvements of water quality including an increase in oxygen levels and a 

reduction of some heavy metals and organic pesticides. Also, faunal diversity began to 

recover (Admiraal et al. 1993). Driven partly by the toxic spill following the Sandoz accident 

(see below), ministers from riparian countries decided in 1986 to establish the Rhine Action 

Programme. One of its aims is the restoration of the river ecosystem. 

Haas et al. (2002) described three successional phases in the development of benthic 

communities in the German section of the Rhine, following the extreme toxic and organic 

contamination which the river has known in earlier times. 

 1. From 1970 to 1986, the aquatic community was species-poor and still in an early 

recovery. Because of the remaining organic pollution, only sewage-resistant taxa such as the 

leech Erpobdella octoculata, the isopod Asellus aquaticus, the snail Radix ovata, sponges, 

chironomids and oligochaetes occurred. The non-native zebra mussel Dreissena polymorpha 

started to colonise hard substrates. However, the major Sandoz industrial accident near Basel 

in 1986, when runoff from water used in firefighting carried nearly 30 t of toxic chemicals 

(insecticides, fungicides and herbicides) into the Rhine, caused serious damage to the flora 

and fauna over hundreds of kilometres, resetting the recovery process. In 1987, benthic faunal 

densities were still close to zero (Den Hartog et al. 1992). Yet, D. polymorpha was able to 
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quickly recolonise the Rhine following the Sandoz spill because of the immigration of pelagic 

larvae from unaffected sites. 

 2. In 1987 and 1988, the non-native amphipod Corophium curvispinum 

(=Chelicorophium curvispinum), and the Asiatic clams Corbicula fluminea and C. fluminalis 

invaded the Rhine. Already in 1989, the population density of C. curvispinum in the Middle 

and Lower Rhine was so high that the hard substrate of the channel bottom had been 

essentially completely overgrown due to the species' engineering activity. The D. polymorpha 

population collapsed because adult shells were rapidly overgrown by C. curvispinum, and 

their muddy tubes inhibited the development of new D. polymorpha patches − the planktonic 

larvae can settle only on hard surfaces (Van der Velde et al. 1994, Tittizer and Krebs 1996, 

Haas et al. 2002). 

 3. A new phase started with the invasion of the amphipod Dikerogammarus villosus in 

1995. In 2000, maximum densities of 3,000 individuals /m2 were recorded. Since 1996, the 

population densities of C. curvispinum have decreased whereas D. polymorpha has recovered 

and again reached high densities. Subsequent to the appearance of D. villosus, two other 

amphipods, Gammarus tigrinus and Echinogammarus ischnus, have declined in the Upper 

Rhine; G. tigrinus finally disappeared in 1999. In 1997 and 1998, three new non-native 

invertebrates reached the river Rhine, originating from the Danube and the Ponto-Caspic 

region: the isopod Jaera istri, the turbellarian worm Dendrocoelum romanodanubiale and the 

polychaete Hypania invalida (Haas et al. 2002). 

There is an accelerating colonisation rate of non-native macroinvertebrate species in 

the Rhine (Figure 1.2). The shape of the cumulative colonisation curve shows that 55% of the 

total number of colonisations were recorded after 1970. Thus, more than half of all 

colonisations in the 175-year record have been reported these last 35 years. The average rate 

of colonisation has increased from 0.15 new species established per year in the period 

1831−1970 to 0.74 new species per year for the period 1971−2005. Considering exclusively 

the period 1991−2005, the current rate of colonisation averages 1.27 new species per year. 

Similarly to macroinvertebrates, fish species composition in the river Rhine has altered 

in the past century. There is ample evidence that the river engineering works have had 

deleterious effects on the species number and abundance of fish (Lelek and Köhler 1989). 

Associated river modifications have led to the disappearance of specific spawning grounds, 

feeding biotopes and nursery areas, and to the obstruction of migration routes. The 

construction of fish passes at almost every weir along the main stream section seems to have 

been  insufficient  to  prevent  the  decline  of  the  migrating  fish  populations.  Low  oxygen  
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Figure 1.2 Increasing number of non-native macroinvertebrate species colonising the river 
Rhine. Cumulative data are shown for periods of 20 years (note: the last bar includes data for 
only 15 years). The exponential model was fitted by least-squares regression (y=5.5936 x 
10−22 e0.0265t, n=9, R2=0.98, t indicates the year). Data were obtained from Tittizer et al. 
(2000), Geitler et al. (2002) and Rey et al. (2004). 
 

concentration and the massive discharge of toxic materials contributed substantially to this 

decline. Since the water quality of the Rhine began to improve in the 1970s, however, the fish 

community has been recovering (Cazemier 1988, Lelek and Köhler 1989). 

Lelek (1996) presented a list of 27 non-native fish species for the German part of the 

Rhine. Eighteen of the 27 species (67%) were intentionally introduced by fishermen, another 

seven species (26%) having been inadvertently introduced by the aquarium trade. 

Interestingly, among the phytoplankton, an ecologically important group, no non-native 

species have yet been observed in the Rhine (Nehring 2005). 

About one of two non-native aquatic species entering German rivers could spread over 

large areas, and about one of five non-native species have become invasive (Nehring 2003). 

In the Rhine delta in The Netherlands, the proportion of non-native species in the biodiversity 

of river channels and floodplain lakes ranges from 7−10% among macrophytes to 5−12% 

among macroinvertebrates and 17−19% among fish (Van den Brink et al. 1996). In the 

Middle and Upper Rhine, non-native species represent 10−15% of total species richness 

(Haas et al. 2002). Non-native species dominate in terms of total abundance and biomass, 

however, the values exceeding 80% (Tittizer et al. 2000, Haas et al. 2002). 
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Thus, species composition in the river Rhine has changed remarkably in the past four 

decades. Replacing characteristic riverine species, large numbers of euryoecious and non-

native species, in particular macroinvertebrates and fish, have invaded this river system (e.g. 

Van den Brink et al. 1988, 1990). Some of the species entered the river via ports and 

estuaries, and then moved upstream whereas others moved downstream after entering via 

canals. Several of these species have penetrated into the larger, still-water expanses but others 

seem to be restricted to flowing water (Van der Velde et al. 2002). Cargo shipping appears to 

influence the velocity of spread in invasive species. For example, the clam C. fluminea spread 

approximately 150 km per year in the navigable part of the Rhine but only 2.4 km per year 

upstream of Basel, where cargo shipping is largely reduced (Schmidlin and Baur 2007). 

Corbicula fluminea may also be displaced by waterfowl, because juvenile clams use their 

mucous secretions to stick to ducks' feet. 

Interestingly, the number of non-native species decreases significantly upstream of 

Rheinfelden where cargo shipping ends (Rey et al. 2004). However, the weir in Rheinfelden is 

not an absolute barrier for the spread of invading species. In fact, several non-native species 

have crossed the weir and are now spreading upstream (e.g. D. polymorpha, C. fluminea, and 

the annelids Branchiura sowerbyi and Caspiobdella fadejewi), some having even entered the 

tributary Aare (e.g. the gastropod Potamopyrgus antipodarum and the flatworm Dugesia 

tigrina; Rey et al. 2004). 

Species Interactions and Mechanisms of Replacement 

Amphipods 

The amphipod Corophium curvispinum, originating from the Ponto-Caspic region, was first 

observed in the Middle and Lower Rhine in 1987 (Schöll 1990). A few years later, C. 

curvispinum was found to be by far the most numerous macroinvertebrate species in the 

Lower Rhine (Van den Brink et al. 1991). Its density increased up to 200,000 specimens /m2 

on groynes (Van den Brink et al. 1993). It has been claimed that C. curvispinum had filled an 

'empty niche' because it was the first tubiculous amphipod to colonise the Rhine (Den Hartog 

et al. 1992). The animals produced extensive mats of dense silty tubes which covered all 

available hard surface. As a consequence, other epilithic invertebrates were negatively 

affected by this muddy layer. Significant declines in population densities were recorded for 

the amphipod Gammarus tigrinus, the zebra mussel Dreissena polymorpha, the gastropod 

Potamopyrgus antipodarum, the caddis fly Hydropsyche contubernalis, and several species of 
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Chironomidae (Van den Brink et al. 1993). The former three are non-native species whereas 

H. contubernalis is native. It has been suggested that these changes in abundance were at least 

partly the result of competition for food − C. curvispinum, D. polymorpha and H. 

contubernalis are all filter-feeders (Rajagopal et al. 1999). In fact, the exponential increase in 

the density of C. curvispinum during 1989−1991 coincided with a decrease in the 

concentrations of total organic carbon and total suspended matter in the Lower Rhine, which 

may be related to an increase in filtration capacity in the river. Stable isotope analysis showed 

very similar values for carbon and nitrogen sources in the stone-dwelling C. curvispinum, D. 

polymorpha and the sand-dwelling Asiatic clams Corbicula fluminea and C. fluminalis, 

indicating a common source of phytoplankton and particulate organic matter for these filter-

feeding animals (Marguillier et al. 1998). 

Besides competition for food, there might also have been competition for space among 

benthic macroinvertebrates. For example, specimens of D. polymorpha were observed to be 

completely overgrown by the tubes of C. curvispinum. Moreover, in building its muddy tubes, 

the amphipod modifies the substrate, thereby preventing the settlement of larvae of D. 

polymorpha. However, relatively little is known about the fundamental features of tube 

building activity and filtration rate in C. curvispinum. 

The impact of the population explosion of C. curvispinum on the density of other 

macroinvertebrates has also resulted in a shift in the diet of the European eel Anguilla 

anguilla. In 1989, prior to the population explosion of C. curvispinum, Gammarus tigrinus 

and Dreissena polymorpha dominated the diet of the eel (Van der Velde et al. 1998). In 1994, 

however, C. curvispinum occurred in 80% of the eels sampled whereas G. tigrinus decreased 

in percentage occurrence from 32 to 4%. Similarly, D. polymorpha was eaten to a far lesser 

extent in 1994 than in 1989 (Van der Velde et al. 1998). The perch Perca fluviatilis showed a 

similar shift in diet (Kelleher et al. 1998). 

The amphipods C. curvispinum and Dikerogammarus villosus and the isopod Jaera 

istri act as intermediate hosts for a variety of parasites of the eel. In the German part of the 

Rhine, nine metazoan species were found to infest eels (Sures et al. 1999). Among-site 

differences in eel parasite diversity was related to the presence and abundance of invading 

crustacean species (Sures and Streit 2001). 

Since 1984, there has also been a significant increase in the distribution and abundance 

of the amphipod Gammarus tigrinus, which originated from North America. In many sections 

of the Rhine, G. tigrinus has displaced Gammarus duebeni, a native and originally widespread 

species in Western Europe (Tittizer et al. 2000). In the late 1990s, however, the abundance of 
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G. tigrinus declined sharply, coincidental with the invasion of the amphipod Dikerogammarus 

villosus. This species is native to the Ponto-Caspian region and has invaded Western Europe 

via the Main-Danube canal, appearing in the river Rhine at the German-Dutch border in 

1994−1995 (Tittizer et al. 2000). D. villosus has wide environmental tolerances in terms of 

temperature and salinity, and thus is able to colonise various microhabitats. 

Stable isotope analyses have shown that D. villosus is a predatory species whereas G. 

duebeni is a detrivorous/herbivorous amphipod. It was hypothesized that the rapid expansion 

of D. villosus, and its devastating impact on G. duebeni and related species may involve 

intraguild predation, rather than interspecific competition. In laboratory experiments, survival 

of female G. duebeni was lower when male D. villosus − rather than male G. duebeni − were 

present (Dick and Platvoet 2000). Similarly, D. villosus preyed upon G. tigrinus. D. villosus 

killed and consumed recently moulted and, less frequently, intermoult victims. Thus, the 

predatory impact of D. villosus is not restricted to the short (approximately 12 h) period of 

post-moult vulnerability, facilitating rapid eliminations of all stages of reproducing females 

(Dick and Platvoet 2000). No male G. duebeni was killed during the experiment, indicating 

that the larger males are more able to fend off any predatory attack, although this may not be 

the case at moult (Dick 1996). Compared to other freshwater amphipods, the large size of D. 

villosus might partly explain its successful predatory behaviour. 

Gut content analyses showed that D. villosus preyed also on C. curvispinum in the 

wild, thereby interfering in the interspecific competition for space between the two filter-

feeders C. curvispinum and D. polymorpha. In amphipods and many other arthropods, 

intraguild predation has been increasingly recognized as an important mechanism in 

structuring communities (e.g. Polis et al. 1989). In many cases, intraguild predation may 

override interspecific competition. In the present example, intraguild predation also appears to 

be the mechanism for the exclusion of both non-native and native species. 

Molluscs 

The zebra mussel Dreissena polymorpha, originating from the Caspian and Black Sea region, 

was first recorded in the Lower Rhine near Rotterdam in 1826. In the following decades, it 

expanded upstream and reached large densities (Kinzelbach 1972). However, water pollution 

in the mid-20th century, and subsequent competitive interactions with C. curvispinum 

strongly reduced D. polymorpha populations in the Rhine. Continuous improvement in water 

quality these past decades and reduced C. curvispinum densities have allowed the D. 
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polymorpha populations to recover; nowadays, they have again attained densities of up to 

40,000 individuals /m2. 

 The zebra mussel attaches to solid surfaces using adhesive byssal fibres, and possesses 

a planktonic larval (veliger) stage which can remain in the water column for several weeks 

before settlement. Native unionid mussels have a complex life cycle in which the larvae are 

obligate parasites of fish, with survivorship dependent on the availability of appropriate fish 

hosts and accessibility to favourable habitats. Adult unionid mussels live partially buried in 

the sediments of lakes and rivers, with their posterior shell exposed to the water column, 

providing a suitable surface for colonisation by D. polymorpha. Infestation by D. polymorpha 

is considered to impair the metabolic activity (feeding, respiration, excretion) and locomotion 

of unionid mussels, thereby depleting their energy reserves and effectively starving them to 

death (Haag et al. 1993). Moreover, data from North America demonstrate that D. 

polymorpha can also harm other suspension-feeding bivalves by depleting food resources 

(phytoplankton) through massive filtration (Caraco et al. 1997). 

Dreissena polymorpha has virtually eliminated the native unionid fauna in many parts 

of the lower Great Lakes in North America (Ricciardi et al. 1998, Strayer 1999). In the Rhine, 

the decline of the highly specialized and endangered unionid mussels and other filter-feeding 

macroinvertebrates could also partly be due to competition with D. polymorpha. However, D. 

polymorpha is not harmful to all riverine species. In North America, the clam provides other 

benthic invertebrates with nourishment (in the form of faecal deposits) and shelter (interstitial 

spaces between clumped mussel shells), resulting in a local enhancement of abundance and 

diversity for these other species (Ricciardi 2005). Non-native deposit feeders may increase in 

abundance whereas native filter-feeders are out-competed by D. polymorpha. Among the 

invertebrates responding positively to zebra mussel colonisation are non-native oligochaetes, 

leeches, amphipods, gastropods, larval chironomids and aquatic weeds (Ricciardi et al. 1997, 

Karatayev et al. 2002). Thus, invading species may also have synergistic impacts which 

facilitate the establishment of other invaders. 

The clams Corbicula fluminea and C. fluminalis, originating from Southeast Asia, 

were first recorded in the Lower Rhine in The Netherlands in 1985 (Bij de Vaate and 

Greijdanus-Klaas 1990). Six years later, the clams were found near Karlsruhe in the Upper 

Rhine and, in 1995, C. fluminea was reported near Basel in Switzerland (Rey et al. 2004). C. 

fluminea is restricted to the gravely-sandy river bottom because sticking structures are 

lacking. The clam reached densities of 1,800 individuals /m2 in the Rhine (Haas et al. 2002). 

Den Hartog et al. (1992) suspected that the spill of toxic waste from the Sandoz accident in 
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1986, affecting the Rhine over hundreds of kilometres, contributed to the clams' success 

because most macroinvertebrates were killed and, as a consequence, their niches were 

unoccupied. 

Several mechanisms by which Corbicula may affect native bivalves have been 

proposed (Strayer 1999). Dense populations of Corbicula may deplete concentrations of 

phytoplankton and other edible suspended particles, thereby 'starving out' native bivalves. 

Modest to dramatic declines in phytoplankton or seston have been recorded in habitats with 

high Corbicula density in North America (Leff et al. 1990, Phelps 1994). Dense populations 

of Corbicula may ingest large numbers of unionid sperm, glochidia and newly 

metamorphosed juveniles (Strayer 1999). Because Corbicula pedal feeds on edible particles 

in the sediments, it may deplete also this food resource, affecting some sphaeriids and 

juvenile unionids which use benthic organic matter as food. Corbicula actively disturbs the 

sediments, so dense populations may reduce habitat quality and space for native bivalves. 

Several studies show that the impact of C. fluminea on native benthic species depends 

on both site and community characteristics (Leff et al. 1990, Strayer 1999). The clam severely 

affected native mollusc assemblages in some North American rivers but can coexist with 

other bivalves at other sites. Similar information on the impact of Corbicula on native 

macroinvertebrates in the river Rhine is not yet available. 

Why are There so many Non-Native Species in the Rhine? 

The number of non-native animal species colonising the river Rhine is still increasing (Figure 

1.2). Furthermore, non-native plant species constitute a significant proportion of the 

vegetation of the river bank and floodplain (Schwabe and Kratochwil 1991). A variety of 

mutually non-exclusive hypotheses have been suggested to explain the success of invaders in 

the river Rhine: (1) vacant niches, (2) disturbances preventing strong interspecific 

competition, (3) the creation of new niches by invasive species, (4) ecosystem instability 

(invasional meltdown), (5) groups of co-adapted invaders, and (6) enemy-free space. 

It has been argued that human alterations of habitat make a community vulnerable to 

invasions and that extreme natural disturbances facilitate the establishment of non-native 

species (Mack et al. 2000). Community vulnerability to invasions has been ascribed to a 

combination of several factors, such as the presence of vacant niches, habitat modification, 

and disturbance before and after invasion. Recent findings indicate that species-rich 

communities are less vulnerable to invasions (at least, in terrestrial habitats; Cox 2004). 
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Moreover, invasibility is known to increase if a community lacks certain species present 

under normal conditions (Kühn and Klotz 2007). 

The invasional meltdown model (Hufbauer and Torchin 2007) predicts that 

ecosystems subjected to a chronically high frequency of species introduction will become 

progressively unstable and easier to invade, as each introduced species has the potential to 

facilitate subsequent invaders (Simberloff and Von Holle 1999). Invasional meltdown may 

occur through one of two processes: frequent disturbance through species introductions 

progressively lowers community resistance to invasion, and increased introductions lead to a 

higher frequency of potential facilitations and synergies between invaders (Ricciardi 2005). 

Highly active invasion corridors (in the present case, canals) may introduce numerous species 

from one and the same region (e.g. the Ponto-Caspic region), and thus may reunite groups of 

co-adapted species, either in simultaneous introductions (e.g. a host arriving with its parasites) 

or in successive introductions, thereby assembling contiguous links of a non-native food web. 

If co-adaptation reduces the intensity of predation and parasitism, then positive 

interactions probably dominate invasion 'groups', and successive introductions of co-adapted 

species might result in a higher success of invaders than would introductions of unacquainted 

species (Ricciardi 2005). This could be an alternative to the enemy release hypothesis, which 

relates the success of an invader to the absence of its natural predators and parasites in the 

invaded region. Each of the examples presented above could be explained by at least one of 

these six hypotheses. However, experimental tests of these hypotheses are lacking for the 

Rhine. 

Conclusions 

The river Rhine is a good example for how a combination of different factors structure 

benthic communities. River modification deteriorated certain habitats but also created new 

habitats. Prolonged pollution changed the original communities and caused the loss of certain 

species, creating open niches for pollution-tolerant invaders. Major disturbances, such as the 

Sandoz accident in 1986, subsequently enabled the invasion of many new species which 

reached unprecedented densities. The Rhine-Main-Danube Canal, opened in 1992−1993, 

provided additional opportunities for the immigration of non-native species from the Ponto-

Caspian region, some of them being co-adapted. After reduction of the pollution in the Rhine, 

recolonisation seemed to favour invaders, rather than native species. These invaders 

suppressed the development of populations of native species. At the present day, the number 

of invaders is still increasing. 
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For the development of appropriate conservation strategies for the river Rhine, 

detailed knowledge of the ecological consequences of invasive non-native species for the 

native biota is required. The present review shows that, in most cases, negative impacts of 

invasive species on native species have been deduced from correlative evidence. Evidently, 

there is an urgent need for experimental studies on interactions between invasive and native 

species. Numerous rare native species in the Rhine are threatened with extinction by the 

combined impacts of environmental degradation and species invasions (e.g. by D. 

polymorpha). From a conservation perspective, the habitat requirements, population dynamics 

and persistence of rare native species deserve increased attention. Restoration to pristine 

conditions is not feasible in the Rhine. However, several promising ecological restoration 

projects are of vital importance to preserve those facets of the originally unique biodiversity 

of the river Rhine and its floodplain still present today. 
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Abstract 

The Asiatic clam Corbicula fluminea invaded the river Rhine in the Netherlands and Germany 

in the 1990s. It was first recorded in Switzerland (Basel) in 1995. We examined the 

distribution of the clam at 76 sites along the bank of the river Rhine, in three tributaries 

(Wiese, Birs, Ergolz) and in the Canal de Huningue in the region of Basel (Switzerland, 

Germany and France) in 2003. C. fluminea was found in the river Rhine and in the Canal de 

Huningue, which obtains water from the river Rhine. C. fluminea was recorded 22 km 

upstream of Basel, but not any further. This indicates a mean upstream spread of 2.4 km per 

year. It had not yet colonized any of the tributaries examined. The clam was most abundant on 

fine-grained substrates (sand) with slowly flowing, shallow water. This finding was confirmed 

by a substrate choice experiment in the river Rhine. Our results show that the spread of C. 

fluminea in the river Rhine does not stop where cargo shipping ends. Passive dispersal by 

waterfowl and recreational boating may facilitate further upstream spread. C. fluminea might 

be less successful in colonizing rivers with rapid current such as the mentioned tributaries. 

These are assumed to serve as refuges for native molluscs. 

 

Key words: Asiatic clam, invasive species, range expansion, substrate choice 
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Introduction 

The spread of invasive species is generally recognized as one of the major threats to 

biodiversity (Meffe and Carroll 1997). The effects of non-indigenous plants and animals on 

natural communities in rivers and lakes are well documented (Josefsson 1999, Westman and 

Savolainen 2001, Dönni and Freyhof 2002). For example, introduced mollusc species may 

reduce or even eliminate native mollusc fauna by competition (Byers 2000, Strzelec 2000, 

Cowie 2002, Maronas et al. 2003). In other cases, however, introduced molluscs coexist with 

native mollusc species (Pointier and David 2004). 

 The influence of the bivalve Corbicula fluminea (O. F. Müller, 1774) on indigenous 

species is inconsistent. It can coexist with other bivalves at some sites (Savannah River, South 

Carolina, Leff et al. 1990; Ohio River, Ohio, Miller and Payne 1998), but can also severely 

affect native mollusc assemblages at other places (C. fluminea manilensis Philippi, 1844, 

Altamaha River, Georgia, Gardner et al. 1976; sedimentation basin at a nuclear power plant, 

South Carolina, Boozer and Mirkes 1979; St. Johns River, Florida, Belanger et al. 1990). 

 C. fluminea, originating from Southeast Asia, began to expand in the 20th century. It is 

now widespread in rivers of North and South America as well as in Europe. In the river 

Rhine, C. fluminea was first recorded in the Netherlands in 1985 (Glöer and Meier-Brook 

1998). Since the clam was found in the Lower Rhine, it has spread rapidly upstream most 

probably with cargo ships. Six years later, the species was found near Karlsruhe (Germany), 

675 km upstream of Rotterdam, and in 1995 C. fluminea was first reported in Switzerland 

near Basel, 865 km from Rotterdam (Rey and Ortlepp 2002). Den Hartog et al. (1992) 

suspected that a spill of toxic waste (Sandoz accident) near Basel in 1986, affecting the whole 

river over hundreds of kilometres, contributed to the clams’ success because most of the 

invertebrates were killed and, as a consequence, their niches were unoccupied. However, 

independent of this accident, molluscan diversity of the river Rhine declined strongly in the 

past 150 years because of huge river corrections, industrial pollution, organic sewage and 

other invading species (Kinzelbach 1972). Compared to the North American diversity of 

molluscs with 300 species of native unionid bivalves, the river Rhine appears to be species-

poor with 22 bivalve and 33 gastropod species (including newly introduced species; IKRS 

2002, Panama City Fish and Wildlife Service 2004). 

 In Europe, two Corbicula species are distinguished (Corbicula fluminea and 

Corbicula fluminalis, O. F. Müller, 1774). To date, it is yet unclear whether more Corbicula 

species occur in Europe. A recent morphometric analysis showed that two distinguishable 
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morphotypes with few intermediates coexist in the river Rhine (Pfenninger et al. 2002). DNA-

analysis resulted in three highly distinctive genotypes without intermediates. Interestingly, the 

morphological traits seem to be unreliable, since both morphotypes showed all genotypes. For 

that reason, Pfenninger et al. (2002) suggested to refer to the Corbicula-complex. In our 

study, 98.7% of the clams belonged to the morphotype of C. fluminea. It is therefore likely 

that we are dealing with only one species of Corbicula. 

 It was hypothesized that the spread of C. fluminea would stop in the river Rhine where 

cargo shipping ends (i.e. in Rheinfelden, 20 km upstream of Basel). We tested this hypothesis 

by examining the current distribution of C. fluminea in the river Rhine and its tributaries in 

the region of Basel. We also assessed seasonal changes in the size structure of a C. fluminea 

population in the Rhine. To test whether the substrate preference of C. fluminea observed in 

the river Rhine results from active choice, we conducted a controlled choice experiment in 

which three different types of substrates were offered to clams. Knowledge on the rate of 

spread and the substrate preference of invasive clams could be helpful in managing river 

structures to suppress spreading of the clam. 

Material and Methods 

Field survey 

We examined the distribution of C. fluminea at 76 sites along the bank of the river Rhine 

(mean discharge: 1032 m3/s), in three tributaries (Wiese, 11.3 m3/s; Birs, 15.2 m3/s; Ergolz, 

1.9 m3/s) and in the Canal de Huningue (12.0 m3/s) in the region of Basel. Substrate of these 

tributaries was sampled qualitatively. Bottom samples were taken along the river at distances 

ranging from 200 m to 1 km in spring, summer and autumn 2003. Apart from the minimum 

distance of 200 m, sampling sites were chosen depending on accessibility. For the river Rhine, 

we focused on the bank in the city of Basel, the sections near tributary estuaries and the 

furthest upstream sites where C. fluminea was known to occur (near Rheinfelden in 2001; C. 

Oberer, pers. comm.). 

 At each sampling site ecological variables were recorded following Baur and Ringeis 

(2002): altitude (range 230−280 m a.s.l.), width of the river, water depth at the sampling site 

(mean of three measurements), and water current at the surface (classified into three groups 

and measured with the use of a table tennis ball (mean of five measurements): (0) standing 

water, (1) slow, ≤ 0.3 m/s, and (2) fast > 0.3 m/s). Additionally, the type of substrate (silt < 

0.063 mm; sand: 0.063−2.0 mm; gravel: 2.1−63.0 mm; stones 63.1−200 mm; boulders and 
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bedrock > 200 mm; DIN 4022), light exposure of the habitat (assigned to three classes: (1) 

shady, (2) lightly sun-exposed, and (3) sun-exposed), and the type of the habitat adjacent to 

the river was assessed. We also recorded the type of riverbank.  

 The presence of C. fluminea was recorded as follows: (0) absent, (1) empty shells 

present, and (2) living individuals (> 3 mm in shell length) present. Where living clams were 

found, their abundance was estimated according to Rey and Ortlepp (2002): I (1−9 

individuals/m2), II (10−20 ind./m2), III (21−50 ind./m2), IV (51−200 ind./m2), V (201−500 

ind./m2), VI (501−1000 ind./m2) and VII (> 1000 ind./m2). For abundance estimates, substrate 

including clams from an area of 1 m2 was sampled with a D-framed net. 

 We also examined the spatial distribution of C. fluminea in a cross-section through the 

river Altrhein (47° 38’ N, 7° 34’ E), a remnant of the former river Rhine (mean discharge 30 

m3/s), 4 km north of Basel. Bottom samples were taken along a transect of 150 m from the 

French to the German bank at depths ranging from 10 to 150 cm. Depth and type of substrate 

were recorded. The deepest part (37 m wide) could not be examined due to high water 

current. 

 To examine seasonal changes in the size structure of a C. fluminea population, clams 

were collected at intervals of approximately 6 weeks from spring to autumn 2003 (10 March, 

21 April, 29 May, 10 July, 21 August, 2 October) at the same site in the river Altrhein. 

Samples were obtained as described above. To obtain juveniles, samples of 1 L bottom 

substrate were dried at 80° C for 24 hours, put through sieves with mesh sizes of 6.3, 2.0, 1.0 

and 0.2 mm and later examined under a binocular microscope. Shell length and height of each 

clam were measured with a caliper to the nearest 0.1 mm. For clams < 4.0 mm, a binocular 

microscope with stage micrometre was used. Water temperature was recorded at each 

sampling occasion. Data on the water chemistry of the river Rhine were obtained from the 

station Weil am Rhein (Germany) near Basel (AUE 2003). 

Substrate choice experiment 

To examine the substrate preference of C. fluminea, we conducted a field experiment in the 

river Altrhein. The experimental design followed Belanger et al. (1985) and Olabarria et al. 

(2002). Four replicates with a total of 576 clams were run between July and October 2003. A 

replicate consisted of six plastic containers (30 cm in diameter, 15 cm deep), each of them 

subdivided with plastic walls into three sectors of equal size. Three containers were filled with 

three different types of substrate (T1−T3) for testing the clams’ preference and three 

containers were filled with the same type of substrate in all sectors to examine the distribution 
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of individuals by chance (T4−T6; Figure 2.1). The following substrates were chosen: sand (A, 

0.2−2 mm, obtained from the river Altrhein, organic matter content (OMC) = 3.7%), fine 

gravel with sand (B, 1−3 mm, from the river Rhine near Huningue, OMC = 1.6%), and gravel 

(C, 2−63 mm, from the river Rhine near Huningue, OMC = 3.8%). It was hypothesized that 

the animals will move to the sector containing the most preferred substrate. Before the 

experiment, the substrates were dried at 80° C for 24 h to remove benthic organisms. Plastic 

containers were positioned in the river Altrhein in such a way that the substrate surface was 

situated at a depth of 13−18 cm. Individuals of C. fluminea (> 12 mm in shell length) were 

collected at the experimental site immediately before the tests. For each container 24 clams 

were randomly assigned to three groups of eight individuals each. The 24 clams per container 

correspond to a density of 340 individuals /m2. The clams of each group were labelled 

individually using a water resistant paint marker. The clams were placed group-wise on the 

line separating two sectors (Figure 2.1). The sector opposed to the current was referred to 

position I, the other sectors clockwise to position II and III (the current was parallel to the 

wall separating sector II and III). The same procedure was used for the three containers with a 

single substrate. An experimental trial lasted for 2 hours. After 1 h, 70−80% of the clams were 

already buried in the substrate, confirming the findings of Belanger et al. (1985).  
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Figure 2.1 Experimental design with the treatments T1−T6 to test the substrate preference of 
Corbicula fluminea. Containers were subdivided into three sectors of equal size. Each sector 
contained a substrate: A refers to sand, B to fine gravel with sand, and C to gravel. Dots on 
the separating walls represent the clams’ starting positions. The arrow indicates the water 
current. 
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 At the end of each trial we recorded the position of each clam. Preliminary studies, in 

which clams were placed in the centre of each sector, revealed immediate vertical movements. 

Within a few minutes most clams started to investigate the environment with their feet. Once 

having moved to the preferred sector the clams began to bury. 

Statistical analyses 

Data analysis was performed using StatView (Version 5.0, Abacus Concepts, 1998). The 

frequency of occurrence of C. fluminea in relation to different substrate types and 

environmental variables was analysed using contingency tables. The effect of single 

environmental variables on the presence/absence of C. fluminea was examined using a logistic 

regression model. In the field experiment, deviations of the clams’ substrate choice from a 

uniform distribution (no choice) were analysed using contingency tables. 

Results 

Field survey 

Specimens of C. fluminea were exclusively found in the river Rhine, in the Canal de 

Huningue, and in streams connected with the Canal de Huningue (Figure 2.2). The Asiatic 

clam could not be found in any of the tributaries Wiese, Birs and Ergolz. Living specimens of 

C. fluminea were recorded at 22 of 76 investigated sites (28.9%), empty shells at a further 8 

sites (10.5%). In the river Rhine, C. fluminea has spread 22 km upstream of Basel as indicated 

by two living individuals (both measuring 15 mm in shell length) and two empty shells. At 

other potentially suitable sites further upstream, C. fluminea was not recorded in 2003. 

 In the river Rhine, the local density of C. fluminea decreased towards the current edge 

of distribution. In the river Altrhein (7 km downstream of Basel), 200−600 clams/m2 were 

recorded. In Basel, the density of C. fluminea varied from 5−200 individuals/m2 and at 

localities situated upstream of Basel from 1−20 individuals/m2. In the Canal de Huningue, 

densities of 10−50 individuals/m2 were recorded.  

 The occurrence of C. fluminea was influenced by the type of substrate (χ
2 = 19.92, df = 

4, P = 0.0005). The clam was most frequently found on fine grained substrates such as silt 

(33.3%), sand (33.3%) and fine gravel (30.0%). Hard substrates such as bedrock and boulders 

were never occupied by the clam, except for juveniles of up to 3 mm shell length, which were  
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Figure 2.2 Distribution of Corbicula fluminea in the surroundings of Basel in 2003. 
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Figure 2.3 Seasonal changes in the size distribution of Corbicula fluminea in the river 
Altrhein near Basel between 10 March and 2 October 2003. The numbers 1−5 on the top of 
the bars indicate the possible cohorts; N refers to the numbers of clams measured, which were 
grouped in size classes of 0.5 mm. 
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attached to large stones and other adult clams. Water current also affected the occurrence of 

C. fluminea (χ2 = 16.38, df = 3, P = 0.0009). Living clams were exclusively found in slowly 

running and standing waters. No effect of light exposure, vegetation of the bank, water depth 

at sampling site or river width of the site on the presence of C. fluminea was found (logistic 

regression, in each case P > 0.2). 

 The transect sampling across the river Altrhein revealed that C. fluminea was most 

abundant (up to 600 clams/m2) on sandy substrates near the banks of the river. The abundance 

decreased with increasing water current towards the middle of the channel. No C. fluminea 

was found at places where the substrate consisted of stones. 

 The size distribution of C. fluminea in the river Altrhein indicated the presence of a 

well-established population (Figure 2.3). The size distribution recorded on 10 March 2003 

showed four peaks which may refer to four cohorts (1−4). Cohort 1 with a median shell length 

of 19 mm was the oldest, followed by cohort 2 (peak at a shell length of 14 mm), cohort 3 (9 

mm) and cohort 4 (2.2 mm). In April cohort 4 was only represented by empty valves and was 

therefore not considered in the size distribution. In August, a new cohort (5) appeared with a 

peak at a shell length of 4 mm. 

 In all cohorts, the growth rate was highest between May and October (Table 2.1), most 

probably favoured by an increased water temperature (10 March: 7 °C; 21 April: 12 °C; 29 

May: 15 °C; 10 July: 22 °C; 21 August: 24 °C; 02 October: 17 °C) and food availability in 

that period. However, the abundance of plant nutrients in 2003 did not differ from the 10-year 

mean value (Table 2.2). 

Substrate choice experiment 

In the substrate choice tests, clams did not bury in equal frequencies in sectors with different 

substrates (T1−T3; χ2 = 14.68, df = 1, P = 0.0006; Table 2.3). The clams moved most 

frequently into sectors containing sand (41.7%) and less frequently into sectors containing 

fine gravel with sand (35.0%) or gravel only (23.3%). Thus, C. fluminea showed a preference 

for fine substrates. The position of the different substrate types in relation to the water current 

did not influence the preference of the clams (χ
2= 2.81, df = 1, P = 0.25). In containers with a 

single substrate (T4−T6), clams buried in equal frequencies in all sectors (χ2 = 0.53, df = 1, P 

= 0.77). Water current slightly influenced the clams’ choice of the sector in containers with a 

single substrate (T4−T6; χ2= 6.79, df = 1, P = 0.034; Table 2.3). Most clams showed a 

positive rheotaxis. However, the effect of the substrate type was much stronger than the effect 

of the water current (randomised positions of substrate types in T1−T3).
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Table 2.1 Mean shell length (SL; mm) and growth rate (∆ SL; mm/ 30 days) of each cohort in the river Altrhein in 2003. The age and the year of 
spawning were estimated (a = first spawning; b = second spawning) based on the shell length in October 2003. 
 

Date  Cohort 

  1  2  3  4  5  

10 March SL 19.0  13.75  8.5  2.25    

 ∆ SL  0.36  1.25  0.54  -   

21 April SL 19.5  15.5  9.25  -    

 ∆ SL  0.00  0.79  0.00  -   

29 May SL 19.5  16.5  9.25  -    

 ∆ SL  1.07  1.07  1.96  1.41*   

10 July SL 21.0  17.0  12.0  8.0    

 ∆ SL  0.71  1.43  2.50  2.32   

21 August SL 22.0  19.0  15.5  11.25  4.0  

 ∆ SL  0.18  0.18  0.71  1.25  1.25 

2 October SL 22.25  19.25  16.5  13.0  5.75  

            

10 March – 2 

Oct.  

absolute SL 

growth 

3.25  5.5  8.0  10.75  1.75  

 ∆ SL  0.47  0.80  1.17  1.57   

Age; year of spawning 3+; 2000  2+; 2001  1+; 2002a  1-; 2002b  1-; 2003  

* from March to July
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Table 2.2 Water chemistry data of the river Rhine at the station Weil am Rhein (Germany). 
Mean values and ranges were determined from fortnightly analyses. DOC: Dissolved Organic 
Carbon; SM: Suspended Matter (AUE 2003, IKRS 2005). 
 

Parameters 2003 1995-2004 

 Mean Range Mean Range 

Oxygen (mg/l) 10.11 7.6−13.3 10.65 7.6−13.8 

pH* 8.00 7.55−8.41 8.14 7.9−8.4 

Temperature (°C) 14.0 3.5−26.7 12.6 3.8−25.3 

Conductivity (µS/cm) 363.0 287.8−442.4 355.6 290.0−445 

Discharge (m3/s)  804.4 375−2125 1099.2 457−3216 

DOC (mg/l) 2.18 1.57−3.52 2.07 1.1−3.8 

SM (mg/l) 6.8 1.4−19.6 15.9 1−834.3 

NH4
+ (mg/l) 0.069 0.0338−0.113 0.071 0.02−0.226 

NO3
- (mg/l) 1.33 0.918−1.893 1.48 0.92−2.29 

PO4
3- (mg/l) 0.043 0.020−0.126 0.045 0.01−0.141 

*data not available from the years 1999−2002 
 

 

Table 2.3 Results of the substrate choice experiment. Figures indicate the number of 
Corbicula fluminea that chose a particular substrate type. Data of four replicates are pooled. 
Treatments are explained in Figure 2.1. 
 

 

Treatment 

Substrate 

Sand (A) Fine gravel with sand (B)  Gravel (C)  

T1 31 37 25 

T2 44 31 21 

T3 43 31 20 

    

T4 32/34/30a - - 

T5 - 35/26/34a - 

T6 - - 34/35/27a 

a Corresponds to the number of clams found in the sectors X/X’/X’’ in Figure 2.1. 



CHAPTER 2: CORBICULA FLUMINEA IN THE REGION OF BASEL 
 

 53

Discussion 

C. fluminea arrived in Basel (Switzerland) in 1995 (Rey and Ortlepp 2002). In 1997, C. 

fluminea was found near Augst, 11 km upstream of Basel, and in 2001 near Rheinfelden, 20 

km upstream of Basel (C. Oberer, unpubl. data). In our survey, C. fluminea was recorded 2 

km upstream of Rheinfelden in 2003, indicating a mean upstream spread of 2.4 km per year in 

the last 9 years. Compared with the annual dispersal distance since the clam entered the river 

Rhine in 1985, this is a low rate of spread (Glöer and Meier-Brook 1998). It is commonly 

assumed that the clam was introduced and spread by ballast water of cargo ships (Morton 

1986) and that the larvae colonize downstream habitats by the water currents independently of 

shipping. Since cargo ships in the region of Basel rarely need ballast water, the clams must 

have other means of dispersal. We found one-year old C. fluminea upstream of the barrage of 

Rheinfelden where no cargo shipping occurs. From Rheinfelden upstream to the outlet of 

Lake Constance, C. fluminea does not yet occur (personal communication from three fishery 

inspectors: T. Stucki, K. Balsiger, J. Walter 2003). However, new occurrences of C. fluminea 

were reported from Lake Constance in August 2003 (Werner and Mörtl 2004) and from Lake 

Neuchâtel in November 2003 (Rey, unpublished data), and most recently, in Lake Morat in 

July 2005 (Fasel 2005). These new occurrences may result from independent non-intentional 

introductions. 

 In a protected area of the Savannah River (South Carolina), waterfowl has been 

suggested to displace C. fluminea at least 1.2 km per year (Voelz et al. 1998). Juvenile C. 

fluminea use their mucous secretions (Prezant and Chalermwat 1984, Dubois 1995, Schmidlin 

2004) to stick to ducks’ feet and to fishes (Brancotte and Vincent 2002), and thus might be 

transported over large physical barriers such as dams of hydro-electrical power plants. Adult 

clams can also attach to macrophytes by valve closure or getting stuck between the 

filaments/threads of algae (Elodea sp., Cladophora sp.), when the plants were pulled out of 

the water (H. Durrer, pers. comm.; Schmidlin 2004). Accidental transportation of C. fluminea, 

sticking on macrophytes (e.g. by recreational boating) may further contribute to its spread. 

 C. fluminea is used as fish bait by fishermen (Cazzaniga and Perez 1999, Brancotte 

and Vincent 2002) and sold as aquarium or pond accessory in pet shops and garden centres 

(Werner and Mörtl 2004). When cleaning an aquarium, the clam might be released into 

streams or lakes, as has been done with the gastropods Physella cf. acuta and Planorbella 

spp. (Horsak et al. 2004). It is assumed that both non-intentional and deliberate introduction 

of C. fluminea are important factors increasing the spread of this species. 

 Of the ecological variables examined only substrate type and water current affected 
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the occurrence of C. fluminea. However, because substrate type (grain size) is correlated with 

water current (Dudgeon 1982), C. fluminea was most frequently found at sites with fine 

sediments and slow water current. Several hypotheses may explain the occurrence of C. 

fluminea. First, water current is an important factor in determining successful colonisation 

because it also determines food supply. The downstream increase of phytoplankton depends 

on flow duration, generation time of phytoplankton and increasing nutrient concentration 

(Yang et al. 1997). The outlet of Lake Constance and the numerous reservoirs adjacent to 

dams may provide sufficient phytoplankton for C. fluminea and other organisms living in the 

Rhine. In the turbulent tributaries examined, the productivity of seston, foremost micro-algae, 

could be limited and therefore not allow C. fluminea to reproduce, even though the clam is 

able to pedal-feed (Hakenkamp and Palmer 1999, Rajagopal et al. 2000, Mouthon 2001a,b).  

 Another hypothesis relates to the changing amount of water: Invasive clams may be 

sensitive to fluctuations in water height and current (periodic sediment turnover and 

transportation, falling dry; Rey et al. 2004). However, variation in water height and current 

are less pronounced in the river Rhine than in the tributaries examined. Furthermore, low 

water temperature has been suggested to limit the spread of C. fluminea (Schöll 2000). In the 

rivers examined in the present study, the water temperature of the tributaries Birs and Ergolz 

is not lower than that of the river Rhine. 

Size distribution 

In the population examined in the river Altrhein, we recorded slightly different size 

distributions compared with those found in the Upper Rhine near Mainz (Meister 1997). The 

Altrhein population most probably contained 2- to 3-year-old clams in October 2003, while 4- 

to 5-year-old individuals were found near Mainz. Growth conditions in the Altrhein may be 

more similar to those of the river Saone in France (Mouthon 2001a). Saone populations are 

characterised by a single annual reproduction period starting in May or June and ending in 

September or October. In our study, the spawning period most probably occurred in June and 

July because the first juveniles were recorded in August (cohort 5). 

Substrate choice experiment 

The results of our substrate choice experiment confirmed field observations and experimental 

evidence of Belanger et al. (1985), who found that C. fluminea prefers fine substrates, which 

contain more organic material (= potential food) than coarse ones (Dudgeon 1982). It could 

be expected that the clam moves to the substrate which provides the most food. In our 
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experiment gravel contained most the organic matter in the form of hard layers consisting of 

fine sediments. However, in this form organic matter is only separable at high temperatures 

(700 °C) and therefore cannot be used by C. fluminea. 

 Our choice experiment also showed that the direction of water current can influence 

clam behaviour in homogeneous substrates (containers T4−T6). A positive rheotaxic 

behaviour allows the clams to move upstream without hitchhiking. However, since the 

majority of adult clams are buried in the substrate, the effect of current direction might be 

small. Molluscan upstream movements are frequently explained by search for food or space, 

compensation of drift, avoidance of predation and by hydrodynamic and biomechanical 

effects (Huryn and Denny 1997). 

Effects on other species 

C. fluminea could become a threat to other organisms, if it uses the same resources as other 

species. The most important resources to the clam are space and food. The favoured spatial 

resource, different types of fine substrate, is also used by unionids. Four species of unionids 

are known to occur in the region of Basel (Glöer and Meier-Brook 1998). In 2000, only empty 

shells of the clams Unio pictorum (Linnaeus, 1758) and Unio tumidus (Philipsson, 1788) were 

found (Rey and Ortlepp 2002). C. fluminea may compete with filter-feeders (other bivalves) 

and also with benthic consumers of organic matter.  

 Indeed, a preliminary study indicated that the molluscan assemblage experienced 

profound changes in the river Rhine near Basel between 1994 and 2003 (Schmidlin 2004). In 

1994, C. fluminea did not yet occur at the two sites examined in Basel (Baur and Ringeis 

2002). Nine years later, however, C. fluminea was together with the gastropod Ancylus 

fluviatilis (O. F. Müller, 1774) the most abundant mollusc at both sites and gastropod 

diversity has decreased. This decrease in species richness could partly be a result of 

competition with C. fluminea for space and food (Schmidlin 2004). The recent invasion of 

other species such as the polychaet Hypania invalida (Grube, 1860) and the amphipods 

Chelicorophium curvispinum (Sars, 1895) and Dikerogammarus villosus (Sovinsky, 1874) put 

additional pressure on native communities (Rey and Ortlepp 2002). However, experimental 

studies are needed to determine the impact of C. fluminea on native molluscan assemblages. 

Conclusions 

Our data show that the current distribution of C. fluminea in the river Rhine does not stop 
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where cargo shipping ends. But the expansion of the clam is slow in comparison to the former 

spread in the river Rhine. Natural upstream movements of bivalves are hardly known. 

However, passive dispersal by waterfowl and recreational boating may facilitate further 

upstream spread of C. fluminea in the river Rhine. The substrate choice experiment showed 

that C. fluminea prefers fine grained sediments. C. fluminea seems to be less successful in 

colonizing rivers with rapid current such as the examined tributaries, in which the preferred 

substrate is less abundant. These tributaries may serve as refuges for native molluscs. Our 

study documents the initial phase of the invasion of C. fluminea in Switzerland. Most 

probably, this invasive species will further expand and colonize other rivers and lakes.  
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Abstract 

This study documents the spread of the invasive clam Corbicula spp. in Switzerland since its 

first record in the River Rhine in 1995. Clams were newly recorded in several Swiss lowland 

lakes whose interconnecting rivers have not yet been colonized. We present evidence for 

separate introductions of an identical haplotype of Corbicula fluminea into five lakes in 

Switzerland in the years 2003–2010 based on the mitochondrial DNA-sequence of the COI in 

specimens sampled. This suggests passive dispersal of the clam by human activities and/or 

waterfowl. All but one of the 72 genetically analysed individuals were assigned to a single 

haplotype FW5 and to the species name C. fluminea. Recent records of specimens, which 

were not genetically analysed, displayed all the shell morphology of C. fluminea, confirming 

the dominance of this clam in Swiss rivers and lakes. 

 

Key words: alien species, DNA sequencing, COI, invasive species, range expansion, 

Corbicula, Switzerland 

Introduction 

The basket clam Corbicula fluminea (Müller, 1774) originating from South-East Asia, was 

first recorded in Europe in the estuaries of the Dordogne (France) and the Tagus (Portugal) in 

1980 (Mouthon 1981), and in the Lower Rhine in The Netherlands in 1985 (Bij de Vaate and 

Greijdanus-Klaas 1990). In 1991, C. fluminea was found near Karlsruhe in the Upper Rhine 

and, in 1995, the clam was reported near Basel in Switzerland (Rey et al. 2004). It is assumed 

that transportation by cargo ships is responsible for the rapid spread in the River Rhine 
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(Tittizer 1997, Leuven et al. 2009). Upstream of Basel, where cargo shipping stops, the spread 

of this invasive clam has been less rapid (Schmidlin and Baur 2007). Early in 2006, C. 

fluminea was only found in the River Rhine from Basel to the confluence of the River Aare 

(Table 3.1). At that time, no individuals of C. fluminea were found in other rivers connecting 

the lowland and pre-alpine lakes. However, isolated occurrences of the clam were reported 

from sites in Swiss lakes and the Austrian part of Lake Constance, indicating independent 

introductions (P. Stucki pers. communication; Werner and Mörtl 2004).  

 The rapid spread and persistence of C. fluminea throughout Europe, North and South 

America is related to its high growth rate, early onset of maturity, high fecundity, variety of 

reproductive strategies (Komaru et al. 1998, Hedke et al. 2008) and its ability to tolerate a 

wide range of environmental conditions (Mattice and Dye 1976, McMahon, 1983, 2002, 

Müller and Baur 2011). In the River Rhine, C. fluminea reaches densities of up to 10,000 

individuals per m2 (Mürle et al. 2008). C. fluminea clogs water intake pipes, electric power 

plant cooling systems and sewage treatment plants, causing enormous damage (Pimentel et al. 

2007). In the U.S.A., costs associated with this clam are estimated to be more than US$ 1 

billion per year (OTA 1993). As a dominant species of the macrozoobenthos, C. fluminea is 

involved in sequestering a large proportion of the carbon available for benthic production and 

consequently altering the ecosystem functioning (Sousa et al. 2008). The invasive clam 

decreases the abundance of benthic flagellates, bacteria and diatoms and affects other 

organisms by bioturbation of sediments (Hakenkamp et al. 2001). Valves of dead C. fluminea, 

however, can increase the surface area and substrate diversity of sandy bottoms resulting in an 

increase of benthic invertebrates (Werner and Rothhaupt 2007, Schmidlin et al. 2011). 

 Corbicula fluminalis (Müller, 1774), another basket clam with similar shell 

morphology, was also introduced to Europe in the past decades (Alf 1992, Bachmann and 

Usseglio-Polatera 1999). According to the description of the two species, C. fluminea has a 

round shell, whereas C. fluminalis has a more saddle-shaped shell (see also Marescaux et al. 

2010). Based on morphological analyses, Renard et al. (2000) stated that the two species can 

be distinguished based on the shape of the shell. In contrast, Pfenninger et al. (2002) showed 

that the distinction of these species is problematic because an intermediate morphotype 

occurs. Moreover, examining mitochondrial and nuclear DNA, Pfenninger et al. (2002) and 

others (Lee et al. 2005, Hedke et al. 2008) found that the two species are not reciprocally 

monophyletic. These findings suggest that the so far widely used species names (C. fluminea 

and C. fluminalis) represent two distinct species with interspecific gene flow or, alternatively, 

they are a result of an incorrect systematic separation of a single species. A recent paper
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Table 3.1 A. Locations of Corbicula spp. sampling sites, and number of individuals used for the COI analysis, assigned species, forms and 
haplotypes (in format: species-form-haplotype), year of sampling and year of first record at the locality. B. Locations of new records of the species 
Corbicula fluminea in Switzerland. 
 

No 

A 
Location Country 

Latitude 
N° 

Longitude 
E° 

Year of 
sampling

Number of 
individuals 
genetically 
analysed 

Assignment Collector 
First 

record 

Reference 
of first 
record 

1 River Rhine, harbour of Basel Switzerland 47.589 7.591 2008 1 1 C. fluminea-R-FW5 D. Küry 1995 a 
2 River Rhine, harbour of 

Birsfelden  
Switzerland 47.561 7.632 2008 2 1 C. fluminea-R-FW5 

1 C. fluminalis-S-FW17 
D. Küry 1995 a 

3 River Rhine, Augst Switzerland 47.539 7.714 2006 6 6 C. fluminea-R-FW5 S. Schmidlin 2003 b 
4 Rigole, Petite Camargue 

Alsacienne, St. Louis-la-
Chaussée 

France 47.625 7.534 2006 5 5 C. fluminea-R-FW5 S. Schmidlin 1999 c 

5 Altrhein, remnant of former 
River Rhine, Märkt 

Germany 47.624 7.572 2006 6 6 C. fluminea-R-FW5 S. Schmidlin 1994 d 

6 Lake Rotsee near Luzern Switzerland 47.064 8.304 2008 6 6 C. fluminea-R-FW5 P. Steinmann 2006 e 
7 Lake Murten near Sugiez  Switzerland 46.955 7.119 2008 6 6 C. fluminea-R-FW5 S. Schmidlin 2005 f 
8 Lake Neuchâtel near Portalban Switzerland 46.924 6.952 2006 6 6 C. fluminea-R-FW5 S. Schmidlin 2003 g 
9 Lake Geneva near Morges Switzerland 46.503 6.494 2010 6 6 C. fluminea-R-FW5 B. Lods-

Crozet 
2008 h 

10 River Saône near Lyon France 45.797 4.830 2006 6 6 C. fluminea-R-FW5 J. Mouthon 1994 i 
11 Lake Constance, Rohrspitz Austria 47.500 9.683 2006 6 6 C. fluminea-R-FW5 S. Werner 2003 j 
12 River Donau, Schiffmühle Orth 

near Vienna 
Austria 48.123 16.709 2008 4 4 C. fluminea-R-FW5 A. Heusler  1999 k 

13 River Oder near Frankfurt a. d. 
Oder 

Germany 52.347 14.557 2008 6 6 C. fluminea-R-FW5 O. Müller 2007 l 

14 River Elbe near Dresden Germany 51.071 13.700 2008 6 6 C. fluminea-R-FW5 K. Schniebs 1998 m 
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Table 3.1 continued 
 
 
B 

 
 
New records in Switzerland 

Country 
Latitude 

N° 
Longitude 

E° 
  Assignment Collector 

First 
record 

Reference 
of first 
record 

15 Lake Constance near 
Münsterlingen 

Switzerland 47.634 9.246   C. fluminea-R ANEBO 2009 n 

16 River Ron, outlet of Lake 
Rotsee 

Switzerland 47.077 8.329   C. fluminea-R H. Vicentini 2006 o 

17 River Suhre, outlet of Lake 
Sempach 

Switzerland 47.162 8.121   C. fluminea-R H. Vicentini 2007 o 

18 Lake Zürich Switzerland 47.270 8.634   C. fluminea-R L. De Ventura 2010 p 
19 Lake Biel near le Londeron Switzerland 47.053 7.074   C. fluminea-R P. Stucki 2006 g 
20 River Aare, Döttingen  Switzerland 47.568 8.254   C. fluminea-R P. Steinmann 2006 e 
21 River Aare, Brugg Switzerland 47.485 8.214   C. fluminea-R P. Steinmann 2010 e 
22 Canal Aare near Aarau power 

station 
Switzerland 47.394 8.029   C. fluminea-R W. Hess 2009 q 

23 River Reuss near Hünenberg Switzerland 47.154 8.400   C. fluminea-R P. Steinmann 2010 e 
24 Lake Geneva, Bouveret Switzerland 46.389 6.859   C. fluminea-R B. Lods-

Crozet 
2008 h 

25 Spittelmattbach near Basel Switzerland 47.576 7.624   C. fluminea-R D. Küry 2008 r 
26 River Aare, Oftringen Switzerland 47.320 7.898   C. fluminea-R M. Karsai and 

A. Lanker 
2011 this study 

27 River Aare, Wynau Switzerland 47.263 7.806   C. fluminea-R A. Kirchhofer 2011 s 
28 River Rhine, near Rietheim Switzerland 47.614 8.260   C. fluminea-R B. Baur 2011 this study 
 
a: Rey et al. (1997); b: Rey et al. (2004); c: Mosimann (2000); d: Schöll (1995); e: P. Steinmann, pers. comm. f: Fasel (2005); g: P. Stucki, pers. 
comm.; h: B. Lods-Crozet, pers. comm.; i: Mouthon (1994); j: Werner and Mörtel (2004); k: Fischer and Schultz (1999) (Austria); l: Müller et al. 
(2007); m: Schöll (1998); n: ANEBO (2011);o: H. Vicentini, pers. comm.; p: L. De Ventura, pers. comm.; q: W. Hess (2009); r: D. Küry, pers. 
comm.; s: A. Kirchhofer, pers. comm. 
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suggests that the genus Corbicula could be considered as a polymorphic species complex 

(Pigneur et al. 2011). However, Pigneur et al. (2011) did not suggest any change in the 

taxonomical nomenclature (e.g. synonymi-zation).  

 According to the rules of taxonomy the actual species names (C. fluminea and C. 

fluminalis) are consequently still valid.  

 Here we present new data on the spread of Corbicula in Switzerland. We examined 

the mitochondrial DNA-sequence of the cytochrome oxidase subunit I (COI) in each 

specimen sampled in recently colonized lakes in Switzerland and several European rivers. To 

facilitate comparisons with previous and future genetic studies and to contribute to the needed 

revision of Corbicula, we present the taxonomic species name together with a form and a 

haplotype code following Pigneur et al. (2011). Thus, C. fluminea /form R/haplotype FW5 

denotes individual(s) assigned to the species C. fluminea (i.e. taxonomical description) to a 

round (R) form (possible categories are: R: round, S: saddle and Rlc: round light coloured, see 

Pigneur et al. 2011) and to a mitochondrial haplotype FW5 (see Pigneur et al. 2011). 

Methods 

First, we compiled the information on the recent range expansion of Corbicula in Switzerland 

between 1995 and 2011 using the following sources: own field observations, personal 

communications from several researchers and data from unpublished reports. 

 For the genetic analysis, Corbicula samples were obtained from five lakes (four in 

Switzerland and one from the Austrian part of Lake Constance) and six rivers in Central 

Europe between 2006 and 2010 (Figure 3.1, Table 3.1). Clams were preserved in 70% ethanol 

and kept at 5 °C until analysis. Total DNA was extracted from foot muscle tissue using the 

Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hombrechtikon, CH). A 659-bp fragment of 

the mitochondrial cytochrome oxidase subunit I (COI) was amplified for 72 specimens using 

the standard universal primers (see Folmer 1994). Samples were amplified for 40 cycles 

following the protocol of Pfenninger et al. (2002) after initial incubation at 94 °C for 3 min. 

Sequencing was outsourced to ecogenics GmbH (Zürich-Schlieren, CH; 

http://www.ecogenics.ch), which uses Applied Biosystems 3100 automated sequencer. Both 

strands (forward and reverse) were sequenced for all samples. To avoid contaminations 

between samples, PCR reactions were run at different periods and negative controls were 

added in each reaction group. Base pairs were checked manually and aligned using 

CodonCode Aligner version 3.7.1.1 (CodonCode Corporation, Dedham, US). Haplotypes 

obtained were compared with published COI sequences of Corbicula available on GenBank.
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Figure 3.1 Records of Corbicula spp. in Switzerland. Green squares refer to the haplotype FW5, the orange triangle to the haplotype FW17. In this 
study each individual with FW5 haplotype was assigned to the form R and to the species name C. fluminea and each individual with FW17 to the 
form S and to the species name C. fluminalis. Empty squares refer to individuals of C. fluminea form R which were not genetically analysed. 
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Results 

The compiled new records demonstrated the further spread of Corbicula fluminea/form R in 

Switzerland since 1995 (Table 3.1, Figure 3.1). In the River Aare, C. fluminea/form R was 

found near Wynau, Oftringen, Brugg and Aarau, in the River Reuss near Hünenberg, in the 

River Suhre near Oberkirch at the outlet of Lake Sempach, in the River Ron near the outlet of 

the Lake Rotsee, in a side brook of the River Wiese near Basel and in the River Rhine from 

Basel to Rietheim, a few kilometres upstream of the confluence with the River Aare. 

Furthermore, the clam was also detected in Lakes Constance (2003), Neuchâtel (2003), 

Murten (2005), Rotsee (2006), and Biel (2006), Lake Geneva (2008) and Lake Zürich (2010; 

Table 3.1B, Figure 3.1). However, large sections of the interconnecting rivers are not yet 

invaded by the clam. In the lakes, all records were made close to harbours or canals (Lakes 

Neuchâtel, Murten, Rotsee, Geneva and Constance). In contrast, one specimen of C. 

fluminalis/form S was exclusively found in the region of Basel in the River Rhine. 

 Seventy-one of the 72 individuals that were genetically analysed share the FW5 

haplotype (following Pigneur et al. 2011) and could be taxonomically assigned to C. fluminea 

and morphologically to the form R (Table 3.1A). Thus, 71 C. fluminea specimens sampled in 

Lakes Constance, Neuchâtel, Murten, Rotsee, Geneva and in the Rivers Rigole, Saône, Oder, 

Elbe, Danube and the Rhine (Basel, Birsfelden and Augst) belong to the group C. 

fluminea/form R/haplotype FW5. One of the two individuals collected in the River Rhine near 

Birsfelden had a saddle-shaped shell and was assigned to C. fluminalis/form S/haplotype 

FW17 (Table 3.1A, Figure 3.2). Thus, individuals with a distinct shell form and discrete 

haplotype coexist at this locality. 

Discussion 

The present study illustrates the most recent spread of Corbicula in Switzerland. Clams were 

newly recorded in several lowland lakes whose interconnecting rivers are not yet colonized. 

This suggests passive dispersal of the invasive clam by human activities or animal vectors and 

independent introductions. The transport of pleasure boats from lakes to lakes and from rivers 

to lakes is the most probable pathway for the introduction of Corbicula into the lakes 

examined. For example, Lake Rotsee is well-known for its international rowing regatta (e.g. 

the World Championship in 2001). The transport of rowing boats from regatta to regatta 

increases the probability of introducing Corbicula to other water bodies. Recreational boating 
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Figure 3.2 Distribution of Corbicula with known haplotypes in Europe (not all sites are shown). Capitals refer to the authors: R: Renard et al. 
(2000), P: Pfenninger et al. (2002), S: Sousa et al. (2007) B: sequences published by Bódis in Genbank in 2010, M: Marescaux et al. (2010) and 
combined data from GenBank. Figures (1-14) indicate the sampling sites of the present study (see also Table 1A). Coordinates of additional 
sampling sites are listed in the Appendix 1. 
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is generally assumed to contribute to the dispersal of alien species (Burgin and Hardiman 

2011).  

 Passive transport of Corbicula by waterfowl is another possible pathway for distant 

transportation of clams. Lowland lakes in Switzerland serve as resting and feeding places for 

over-wintering water birds (Keller and Burkhard 2010). During the winter season waterfowl 

frequently cross Switzerland from Northeast (Lake Constance) to Southwest (Lake Geneva), 

providing opportunities for passive transportation. A similar range expansion of Corbicula 

has been recorded in lakes in the United States (Thompson and Sparks 1977). There, the 

spread of the invasive clam was related to the migration corridors of waterfowl. Passive 

dispersal on bird feet or in feathers seems to be likely due to sticky mucous secretions of 

juvenile clams, which facilitate attachment (Voelz et al. 1998, Brancotte and Vincent 2002).  

 The lack of genetic diversity found in Corbicula spp. in Switzerland is not unexpected. 

Other studies reported similar low levels of genetic diversity. For instance, Siripattrawan et al. 

(2000) recorded a single haplotype in Corbicula samples from Michigan and North Carolina, 

which was genetically distinct from the single haplotype found in specimens collected in Utah 

and New Mexico. 

 Introduced Corbicula populations from temperate, subtropical, and tropical localities 

in North and South America were also dominated by the same haplotype, demonstrating its 

wide geographical range (Lee et al. 2005, Hedke et al. 2008). This most widespread lineage is 

the same both in Europe and America. In Europe, this haplotype occurs from the Iberian 

Peninsula to the Black Sea (Rhine: Pfenninger et al. 2002; Danube: GenBank sequences 

provided by Bódis et al. 2011; Loire: Renard et al. 2000; Minho: Sousa et al. 2007). 

Introductions from a single locality and/or post-colonisation from other introduced 

populations could partly explain the low genetic diversity found in Europe and North and 

South America. However, this haplotype is also one of the most common haplotypes in the 

clam’s native range (haplotype FW5; Park and Kim 2003). Introduced individuals of 

Corbicula may reproduce by androgenesis, a relatively rare mode of asexual reproduction 

(Komaru et al. 1998, Hedtke et al. 2008). This form of reproduction reduces the genetic 

diversity. However, asexual reproduction is a common means to become invasive despite low 

genetic diversity (Roman and Darling 2007).  

 In our study, the only site with a co-existence of two haplotypes (FW5 and FW17) was 

in the River Rhine near Birsfelden where international cargo shipping is possible. Haplotypes 

other than FW5 have been recorded at much lower frequency in Europe (Pfenninger et al. 

2002). Thus, competitive interactions among different haplotypes should be considered. 
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Darrigran (1991) suggested that clams identified as Corbicula fluminea/form R/haplotype 

FW5 have some competitive advantage over other Corbicula species with FW17 haplotype. 

In the La Plata region of South America, haplotype FW17 has been replaced almost 

completely by the dominant haplotype FW5 (Darrigran 1991, Lee et al. 2005). Considering 

the high abundance and wide distribution of haplotype FW5 in Europe and the clam’s 

tolerance to low temperatures (Müller and Baur 2011), it is not surprising to find this 

haplotype in the newly colonized lakes in Switzerland. 

 Mitochondrial haplotypes can be unambiguously identified. In our study, haplotypes 

corresponded to species and forms (C. fluminea/ form R/haplotype FW5, C. fluminalis/form 

S/haplotype FW17). However, the species status remains uncertain. Specimens collected by 

Pfenninger et al. (2002) and the sample analysed in this study in the River Rhine harbouring 

the haplotype FW17 belong to the same lineage as the haplotype IV from the river Rhône 

analysed by Renard et al. (2000). Interestingly, these individuals with haplotype IV had the 

round shell form of C. fluminea (C. fluminea/form R/haplotype FW17, see also Pigneur et al. 

2011). Several other studies showed mismatches between operational taxonomic units (OTUs) 

and operational genetic units (OGUs, Renard et al. 2000, Siripattrawan et al. 2000, Pfenninger 

et al. 2002, Glaubrecht and Korniushin 2003, Park and Kim 2003), possibly due to 

androgenesis. Based on findings in freshwater populations of Corbicula, Lee et al. (2005) 

concluded that any systematic interpretation relying exclusively on mitochondrial lineages 

could be misleading due to discrepancies between mitochondrial and nuclear markers. This 

highlights the need to analyse both morphological and genetic (mitochondrial and nuclear) 

variation in future studies.  

 There is an increasing interest in incorporating genetic analyses into biomonitoring 

programs (DeWalt 2011). Any discrepancy between OTU- and OGU-based analyses (Pilgrim 

et al. 2011) requires a detailed consideration of the correspondence between taxonomic and 

genetic units. In this case, we advocate a parallel assignment of individuals to both an OTU 

and an OGU until the taxonomic nomenclature incorporates recent evidence of genetic 

analyses. 
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Appendix 1  

Appendix 1 Locations of Corbicula spp. records in Europe. Coordinates were extracted either from the references or they were added according to 
the localities mentioned in the literature. Localities were ordered following the authors: R: Renard et al. (2000), P: Pfenninger et al. (2002), S: Sousa 
et al. (2007), M: Marescaux et al. (2010), B: Bódis et al. (2011), Q: Pigneur et al. (2011). *Indicates mismatch between species and haplotype. 
Remark: Pigneur et al. (2011) did not assign individuals to a species. 

 

Location Country Latitude N ° Longitude E ° Species Morphotype Haplotype Author 

Loire, Nantes France 47.02 -1.50 C. fluminea R I R 
Loire, Nantes France 47.02 -1.50 C. fluminea R II R 
Garonne, Golfech France 44.12 0.83 C. fluminea R I R 
Rhône, Jonage France 45.80 5.03 C. fluminea* Rlc IV R 
Moselle, Argancy France 49.20 6.20 C. fluminea R I R 
Moselle, Argancy France 49.20 6.20 C. fluminalis S V R 
Meuse, km 252 Netherlands 50.84 5.71 C. fluminalis S V R 
Rhine, Dordecht Netherlands 51.78 4.75 C. fluminalis S V R 
Rhine, Dordecht Netherlands 51.78 4.75 C. fluminea R I R 
Oise France 49.41 2.81 C. fluminea R  M 
Seine  France - - C. fluminalis S  M 
Gard France 43.86 4.61 C. fluminea 

C. fluminea - 
light coloured 

R, Rlc  M 

Danube, near Paks Hungary 46.58 18.87 C. fluminalis S ZF80 B 
Danube, near Paks Hungary 46.58 18.86 C. fluminea R Hap97 B 
Danube, near Göd Hungary 47.68 18.86 C. fluminea R Hap98 B 
Weser km 360, Bremer  
Weserwehr Canal 

Germany 53.05 8.88 C. fluminea R H2 P 

Weser km 360, Bremer 
Weserwehr Canal 

Germany 53.05 8.88 C. fluminea R H2 P 
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Appendix 1 continued        

Location Country Latitude N ° Longitude E ° Species Morphotype Haplotype Author 

Moselle km 141, Wintrich Germany 49.86 6.93 C. fluminea R H2 P 
Moselle km 21, Lehmen Germany 50.32 7.47 C. fluminea R H2 P 
Moselle km 2, Koblenz Germany 50.37 7.58 C. fluminea R H2 P 
Moselle km 166, Detzem Germany 49.80 6.85 C. fluminea R H2 P 
Rhine km 492 RHA, Ginsheim Germany 49.97 8.35 C. fluminea R H2 P 
Rhine km 492 RHA, Ginsheim Germany 49.97 8.35 C. fluminea R H2 P 
Rhine km 492 RHA, Ginsheim Germany 49.97 8.35 C. fluminea R H2 P 
Rhine km 493, Ginsheim? Germany 49.96 8.35 C. fluminea R H2 P 
Weser km 360, Bremer  
Weserwehr Canal 

Germany 53.05 8.88 C. fluminea R H24 P 

Moselle km 21, Lehmen Germany 50.32 7.47 C. fluminea R H12 P 
Moselle km 166, Detzem Germany 49.80 6.85 C. fluminea R H11 P 
Saône near Mâcon France 46.32 4.82 C. fluminea R H29 P 
Saône near Mâcon France 46.32 4.82 C. fluminea R H28 P 
Moselle km 141, Wintrich Germany 49.86 6.93 C. fluminea R H14 P 
Moselle km 141, Wintrich Germany 49.86 6.93 C. fluminea  H10 P 
Moselle km 141, Wintrich Germany 49.86 6.93 C. fluminea R H13 P 
Saône near Mâcon France 46.32 4.82 C. fluminea R H27 P 
Seine near Fontainebleau France 48.41 2.71 C. fluminea R H31 P 
Rhône near Lyon France 45.74 4.83 C. fluminea - 

light coloured 
Rlc H25 P 

Rhine km 492 RHA, Ginsheim Germany 49.97 8.35 C. fluminalis S H4 P 
Rhine km 492 RHA, Ginsheim Germany 49.97 8.35 C. fluminalis S H9 P 
Rhine km 493, Ginsheim Germany 49.96 8.35 C. fluminalis S H5 P 
Rhine km 493, Ginsheim Germany 49.96 8.35 C. fluminalis S H1 P 
Rhône near Lyon France 45.74 4.83 C. fluminea - 

light coloured 
Rlc H26 P 

Rhône near Lyon France 45.74 4.83 C. fluminea - 
light coloured 

Rlc H8 P 

Rhine km 492 RHA, Ginsheim Germany 49.97 8.35 C. fluminalis S H6 P 
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Appendix 1 continued        

Location Country Latitude N ° Longitude E ° Species Morphotype Haplotype Author 

Rhine km 493, Ginsheim Germany 49.96 8.35 C. fluminalis S H3 P 
Minho, O Carrascal Portugal 41.91 -8.82 C. fluminea R Sousa4 S 
Minho, O Carrascal Portugal 41.91 -8.82 C. fluminea R Sousa1 S 
Minho, Cerveira Portugal 41.96 -8.75 C. fluminea R Sousa4 S 
Minho, Cerveira Portugal 41.96 -8.75 C. fluminea R Sousa2 S 
Minho, Valença Portugal 42.05 -8.56 C. fluminea R Sousa4 S 
Minho, Valença Portugal 42.05 -8.56 C. fluminea R Sousa3 S 
Minho, Caldelas de Tui Portugal 42.05 -8.60 C. fluminea R Sousa4 S 
Minho, Caldelas de Tui Portugal 42.05 -8.60 C. fluminea R Sousa3 S 
Minho, Eirado Portugal 42.08 -8.52 C. fluminea R Sousa4 S 
Minho, Eirado Portugal 42.08 -8.52 C. fluminea R Sousa2 S 
Lima, Geraz Portugal 42.73 -8.68 C. fluminea R Sousa4 S 
Meuse, Revin France 49.94 4.64  R FW5 Q 
Meuse, Vireux-Molhain France 50.09 4.72  R FW5 Q 
Meuse, Chooz France 50.10 4.81  R FW5 Q 
Meuse, Heer-Agimont Belgium 50.17 4.82  R FW5 Q 
Meuse, Hastière Belgium 50.22 4.82  R FW5 Q 
Meuse, Waulsort Belgium 50.20 4.87  R FW5 Q 
Meuse, Dinant Belgium 50.26 4.91  R FW5 Q 
Meuse, Houx Belgium 50.30 4.90  R FW5 Q 
Meuse, Godinne Belgium 50.35 4.87  R FW5 Q 
Meuse, Rivière Belgium 50.36 4.87  R FW5 Q 
Meuse, Talifer Belgium 50.39 4.88  R FW5 Q 
Meuse, Beez Belgium 50.47 4.91  R FW5 Q 
Meuse, Sclayn Belgium 50.49 5.03  R FW5 Q 
Meuse, Huy Belgium 50.52 5.23  R FW5 Q 
Meuse, Tihange Belgium 50.53 5.26  R 

S 
FW5 
FW17 

Q 

Meuse, Amay Belgium 50.55 5.31  R 
S 

FW5 
FW17 

Q 
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Appendix 1 continued        

Location Country Latitude N ° Longitude E ° Species Morphotype Haplotype Author 

Meuse, Liège-Monsin Belgium 50.67 5.64  R FW5 Q 
Meuse, Hermalle-sous-
Argenteuy 

Belgium 50.71 5.68  R FW5 Q 

Meuse, Lixhe Belgium 50.76 5.68  R FW5 Q 
Meuse, Cuijk Netherland 51.73 5.88  R FW5 Q 
Meuse, Alem Netherland 51.79 5.35  R FW5 Q 
Rhine-Meuse delta, Moerdijk Netherland 51.68 4.60  R 

S 
FW5 
FW17 

Q 

Rhine-Meuse delta, “Midden” Netherland 51.76 4.21  R 
S 

FW5 
FW17 

Q 

Seine, Posés France 49.31 1.23  R 
S 

FW5 
FW17 

Q 

Rhine, Köln Germany 50.94 6.96  R 
S 

FW5 
FW17 

Q 

Rhône, Creys France 45.73 5.49  R 
Rlc 

FW5 
FW4 

Q 
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Abstract 

The spread of alien molluscs is a serious threat to native biodiversity in fresh waters. Alien 

freshwater molluscs may deplete the resources of native species and alter the physical 

structure of the habitat through their shell mass. These changes might have both positive and 

negative effects on native community members. We investigated the native macroinvertebrate 

community in relation to the densities of four alien mollusc species (Corbicula fluminea, 

Dreissena polymorpha, Potamopyrgus antipodarum and Lithoglyphus naticoides) in a sandy 

flat of Lake Neuchâtel, Switzerland. The habitat examined was dominated by these alien 

mollusc species. The abundance of the alien molluscs did not directly impact the native 

community assembly. However, C. fluminea and D. polymorpha influenced the composition 

and diversity of native macroinvertebrates by transforming the sandy substratum into a partly 

hard substratum habitat. Substantial differences in community composition between shallow 

(<3.5 m) and (≥5 m) deep sites were recorded. At shallow sites, the abundance of D. 

polymorpha was significantly reduced as a result of depth-selective feeding of ducks. A 

controlled shell decay study revealed that shells of alien molluscs (C. fluminea, D. 

polymorpha) persist for a longer period in the sediment than those of native molluscs. 

Consequently, shells of alien molluscs have a long-lasting impact by modifying the sandy 

habitat. This form of ecosystem engineering favours the occurrence of several native taxa, but 

is disadvantageous for other taxa with specific habitat requirements, and thus can be regarded 

as an indirect impact of competition. 
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Introduction 

Invasive species often reduce the local biodiversity and probably will influence the global 

biodiversity in the future (Sala et al. 2000, Nentwig 2007). Interactions between invasive and 

native species, including competition, predation and transmission of diseases and parasites 

can change natural communities (Mooney et al. 2005). Invasive species may also function as 

ecosystem engineers by altering abiotic and/or biotic factors of habitats or by creating novel 

habitats, and thereby facilitating native species (Jones et al. 1997, Gutierrez et al. 2003). 

 Freshwaters are experiencing declines in biodiversity far greater than those in the most 

affected terrestrial ecosystems (Dudgeon et al. 2006). Besides of pollution, destruction or 

degradation of habitat and flow modification, the invasion of non-native species is a major 

threat to native freshwater biodiversity (Strayer 1999). One of the most important groups of 

freshwater invaders includes molluscs that suspension-feed on phytoplankton and seston, 

graze on periphyton, or browse on vascular plants (Strayer 2010). Furthermore, invasive 

molluscs may act as ecological engineers by creating large amounts of shells (Gutierrez et al. 

2003, Sousa et al. 2009). This shell material can persist for a long time after the molluscs die, 

providing habitat for other organisms, especially in soft sediments (Strayer and Malcom 

2007), and playing an important part in cycling of CO2 and Ca2+ (e.g. Green 1980, Chauvaud 

et al. 2003). 

 In the past decades, European inland waters have been increasingly affected by the 

colonisation of non-native molluscs, causing significant changes in aquatic communities 

(Strzelec 2000, Mörtl and Rothhaupt 2003, Baur and Schmidlin 2007, Gergs and Rothhaupt 

2008, Sousa et al. 2008a). For example, the invasion of the zebra mussel, Dreissena 

polymorpha (Pallas, 1771), influenced the abundance of sediment bacteria, caused both 

benthic algal blooms and declines in native unionid mussel and fish populations as well as 

changes in physical and chemical attributes that define the habitat for all resident species 

(Higgins and Vander Zanden 2010). 

 Populations with high densities of the Asian clam Corbicula fluminea (O. F. Müller, 

1774) caused modest to dramatic declines in phytoplankton and seston (Leff et al. 1990, 

Phelps 1994). Strayer (1999) assumed that large numbers of unionid sperm, glochidia, and 

newly metamorphosed juveniles might be ingested in dense populations of C. fluminea. In 
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contrast to the zebra mussel, C. fluminea actively disturbs the sediment by pedal feeding. 

Thus, high densities of C. fluminea may reduce both habitat quality and food supply for native 

macroinvertebrates (Hakenkamp and Palmer 1999). On the other hand, a short-term field 

experiment in the Lake Constance demonstrated that valves of C. fluminea enhanced the 

density of the mayfly Caenis spp. on soft substrate and that living clams hindered juvenile C. 

fluminea with a chemical cue from settling in close proximity to reduce intraspecific 

competition (Werner and Rothhaupt 2007, 2008). Furthermore, a laboratory experiment 

showed that valves of C. fluminea increased the abundance of benthic invertebrates in poorly 

structured sediment (Werner and Rothhaupt 2008). However, there are still huge gaps in our 

understanding of how C. fluminea impacts native benthic invertebrate communities in natural 

freshwater bodies. 

 Corbicula fluminea is nowadays one of the most abundant mollusc species in many 

European lowland lakes and rivers, often co-occurring with other alien species and interacting 

with the native community (Schmidlin and Baur 2007, Sousa et al. 2008b, Werner and 

Rothhaupt 2008, Müller and Baur 2011). The clam colonized lake Neuchâtel, Switzerland, in 

2003 (P. Stucki, personal communication). In this lake three other alien molluscs occur: D. 

polymorpha (first recorded in 1976; Pedroli 1978), and the snails Potamopyrgus antipodarum 

(J. E. Gray, 1843; first recorded in 1978; Crozet et al. 1980) and Lithoglyphus naticoides (C. 

Pfeiffer, 1828; first recorded in 1998; CSCF 2010). 

 We examined the native benthic macroinvertebrate community in relation to the 

densities of these four alien molluscs in a sand flat of the littoral zone of Lake Neuchâtel with 

the assumption that alien molluscs influence native communities. We also conducted a field 

experiment to assess the decay rate of empty shells of different mollusc species. In particular, 

we addressed the following questions:  

 

 1) How frequently and in which density do the alien molluscs C. fluminea, D. 

 polymorpha, P. antipodarum and L. naticoides occur in the sandy flat in Lake 

 Neuchâtel? 

 2) Do alien species influence the community assembly of native benthic 

 macroinvertebrates? 

3) Do the four alien molluscs act as ecosystem engineers by providing shells with a 

 low decaying rate as additional hard substratum and thus facilitates other 

 macroinvertebrate taxa? 
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Material and Methods 

Study area 

Lake Neuchâtel (surface area: 217.9 km², mean depth: 64.2 m) is a pre-alpine, calcareous, 

mesotrophic lake situated at the foot of the Jura Mountains in Western Switzerland. Its 

drainage area covers approximately 2,670 km2. The littoral zone covers 26.5% of the area of 

Lake Neuchâtel and sand flats constitute a significant part of this zone (Sollberger 1974). 

Both the field survey and the shell decay assessment were conducted in a shallow sandy 

section of the littoral zone at the south-eastern shore of Lake Neuchâtel near the port of 

Portalban (46.922 N, 6.949 E). The study area measured about 600 m x 500 m and is situated 

in close proximity of a bird and wetland reserve of national importance.  

Field survey 

Using SCUBA-diving, benthic macroinvertebrates were collected from the sandy substratum 

in an area of about 0.3 km2 on five occasions. On each occasion, 10-14 sampling sites, 

arranged at distances of 30-50 m along 600-m long transect lines running perpendicular to the 

shore line, were considered. The survey was conducted on the following dates: 20 May 2007 

(2 transects, each with 12 sampling sites), 21 October 2007 (2 transects each with 10 

sampling sites), 24 May 2008 (1 transect with 14 sampling sites), 18 October 2008 (1 transect 

with 14 sampling sites), and 16 May 2009 (1 transect with 13 sampling sites). For each of the 

85 sampling sites, we measured shore distance, water depth, cover of submerged vegetation (a 

semiquantitative estimate), type of sediment and organic matter of the sediment and 

determined the geographical coordinates using GPS (Garmin Geko 201). However, because 

of the strong inter-correlation of environmental variables (shore distance and water depth) and 

of the low variation in the remaining variables we used only water depth in the data-analyses. 

The water depth ranged from 0.73 to 22.14 m (N=85). 

 At each of the 85 sites, macroinvertebrates were collected using a circular metallic 

frame (radius: 11 cm, 7 cm high). The frame was pressed by hand into the sandy substratum 

and the topmost 5 cm of the bottom material was transferred into a bag with a mesh size of 

2.0 mm using a small shovel. Three of these subsamples were collected at each sampling site. 

Macroinvertebrates were labelled, preserved in 75% ethanol and then returned to the 

laboratory for examination. 



CHAPTER 4: ALIEN MOLLUSCS AFFECT NATIVE MACROINVERTEBRATES 
 

82 

 Macroinvertebrates were later identified to the lowest taxonomic level possible using 

the keys of Schwab (1995), Grabow (2000), and Tachet et al. (2006) for various invertebrate 

groups, Glöer and Meier-Brook (1998) and Glöer (2002) for Mollusca, Neubert and 

Nesemann (1999) for Hirudinae, Lechthaler and Stockinger (2005) for Trichoptera and 

Studemann et al. (1992) for Ephemeroptera. 

Assessment of shell decay rate 

We measured the relative decay rate of shells [(initial shell weight – final shell weight) / 

initial shell weight] over 1 year in five mollusc species co-existing in Lake Neuchâtel: two 

native gastropods (Bithynia tentaculata [Linnaeus, 1758], Valvata piscinalis [O. F. Müller, 

1774]), one alien gastropod (P. antipodarum) and two alien bivalves (C. fluminea, D. 

polymorpha). We used shells from living animals sampled in the field survey near Portalban. 

The animals were killed in 75% ethanol. The soft bodies were removed from the shells and 

the shells were air-dried. We constructed water-resistant “litter” bags measuring 8 cm x 9 cm 

using window screening with a mesh size of 2.0 mm. We placed either 7 shells of B. 

tentaculata (mean shell height: 9.2 mm), 7 shells of V. piscinalis (4.1 mm), 10 shells of P. 

antipodarum (4.2 mm), 10 valves of C. fluminea (mean valve length: 18.0 mm) or 10 valves 

of D. polymorpha (15.4 mm) in single bags. The total weight of shells or valves in each bag 

was measured to the nearest 0.01 mg before the bag was sealed. For each species 20 bags 

were used (in total 100 bags). Bags were fixed with a rope and metallic sticks on the sandy 

substratum (> 30 cm apart from each other) at water depths of 1 m (20 bags), 6 m (40 bags) 

and 8 m (40 bags). We placed bags into the field on 24 May 2008 and retrieved them on 16 

May 2009. We carefully removed the shells from the bags and cleaned them. Air-dried shells 

were reweighed. In total, we recovered 89 of the 100 bags initially exposed. 

 The water of Lake Neuchâtel was supersaturated with CaCO3 in 2007-2009 (total 

hardness CaCO3: 2.78−144 mg l–1; Ca2+: 2.0−56.2 mg l–1; pH: 8.0−8.5; SCPE Neuchâtel, 

Service de la protection de l'environnement; www.les3lacs.ch 2007-2009).  

Statistical analyses 

Macroinvertebrates from the three subsamples at each sampling site were pooled resulting in 

85 samples for data analyses. Raw data (number of individuals recorded for each species) 

from each sample were used in all analyses. Altogether 23,342 individuals were assigned to a 

species or a higher taxonomic group. On all five sampling occasions molluscs were the most 
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abundant group (74.8 – 88.5% of the individuals collected, grand mean = 82.4%). We 

therefore examined seasonal differences (May versus October) in the abundance of molluscs 

and the remaining macroinvertebrate taxa. Because the proportion of molluscs and that of the 

remaining taxa did not show any significant differences between the samples collected in May 

and October (χ2 = 2.47, df = 1, P = 0.12), we pooled the samples from different sampling 

seasons for community analyses. The frequency distribution of sampling sites in relation to 

water depth was bimodal. Consequently, based on water depth, sampling sites were assigned 

to two groups: shallow sites with a depth <3.5 m [N = 71 sites (83.5%), mean depth 1.90 m, 

range 0.73 – 3.34] and deep sites with a depth ≥5 m [N = 14 sites (16.5%), mean depth 8.94 

m, range 5.00 – 22.14 m]. 

 Analysis of similarities (ANOSIM; Clarke 1993) was used to test community-based 

separation of samples collected at shallow and deep sites. ANOSIM is a non-parametric 

multivariate analysis that compares the mean of the ranked similarities within and between 

water depth groups based on R values. R ranges from -1 to +1. An R value of 1 indicates that 

the most similar sites belong to the same depth group. R=0 indicates that sites with high and 

low similarities occur in equal frequencies in both depth groups, whereas an R value of -1 

shows that the most similar sites belong to different depth groups. ANOSIM was run using 

the Bray-Curtis dissimilarity index (Podani 2000) with 999 permutations. 

 Indicator species analysis (INDVAL; Dufrene and Legendre 1997) was run to identify 

characteristic taxa of shallow and deep sites, respectively. Analysis of variance using distance 

matrices (called ADONIS in R), referred to also as "permutation MANOVA", "nonparametric 

MANOVA" (Anderson 2001, McArdle and Anderson 2001) or "multivariate regression 

analysis of distance matrices" (Zapala and Schork 2006), was used to test how alien mollusc 

taxa influence community similarity of native taxa [for further details see Zapala and Schork 

(2006) or Oksanen et al. (2009)]. For the distance matrices, we used the Bray-Curtis 

dissimilarity index with 999 permutations. 

 Generalized linear models (GLM) with Poisson distribution were used to test how the 

four most abundant alien taxa (see result: D. polymorpha, C. fluminea, P. antipodarum and L. 

naticoides) influence the numbers of native taxa, native individuals, protected taxa, protected 

individuals, taxa with sand preference, individuals with sand preference, native taxa with hard 

bottom preference and native individuals with hard bottom preference. The application of 

Poisson distribution was necessary because of the many zeros in the response variables. The 

abundances of the four alien taxa were log(x+1) transformed to decrease the impact of 

extreme values. Overdispersion was tested following Wetherill and Brown (1991). If 
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abundance data were not overdispersed then the final model was selected based on Akaike's 

Information Criterion (AIC). If data structure showed overdispersion, we fitted quasipoisson 

models and model selection was performed manually. We used each alien mollusc species as 

an independent variable in model building. To get reliable mathematical models, we ran 

GLMs for variables with data from at least 10 species occurrences. In cases with fewer 

occurrences, the impact of alien molluscs on native protected species and sand preferring taxa 

at deep sites was not tested. 

 To take into account size differences among alien mollusc species and potential effects 

of empty mollusc shells on the native community, we expressed the abundance of the four 

alien molluscs in the GLMs in four different ways: A) numbers of living individuals, B) shell 

weight of living individuals, C) shell weight of living and empty (dead) individuals, and D) 

shell weight of empty (dead) individuals.  

 To estimate the shell mass at each sampling site, we used the mean shell weight of 

each species measured in the shell decay study (see below), multiplied by the corresponding 

numbers of individuals per m2. L. naticoides was not considered in the shell decay study. We 

therefore calculated its shell weight following the protocol used in the shell decay study. 

 The relative shell decay rate was calculated based on the pre- and post-experimental 

weight of shells in each bag. To compare shell decay rates, a nested linear model was fitted to 

the data with the relative shell decay rate as response variable and with type of origin (native 

vs. alien) and taxon (B. tentaculata, V. piscinalis, C. fluminea, D. polymorpha and P. 

antipodarum, nested with the type of origin) as categorical predictors next to water depth and 

individual shell weight as continuous predictors. We started with the full model and 

simplified it based on AIC. For all analyses, we used the R statistical computing environment 

(R Development Core Team 2009). ANOSIM and analysis of variance using distance 

matrices (= ADONIS) were calculated using the vegan package (Oksanen et al. 2009), for 

testing overdispersion the qcc package (Scrucca 2004), and for INDVAL (Dufrene and 

Legendre 1997) the labdsv package was used (Roberts 2010). 

 Null models are frequently used to elucidate assembly rules or a set of mechanisms 

(e.g. competition) that lead to non-random patterns in multi-species assemblages (Gotelli and 

Graves 1996, Ulrich 2004). Null models are adequate tools for detecting biotic interactions 

based on distributional data of taxa. However, these models are based on the assumptions that 

there are no differences among habitat characteristics, no influence of the biogeographical and 

evolutionary history of the samples, and that only biotic interactions and chance variation are 

responsible for the community patterns observed (Gotelli and Graves 1996, Ulrich 2004). In 
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the present study, most of these requirements were fulfilled because sampling was restricted 

to a relatively homogenous (sandy) habitat limited in space (0.3 km2) and time (sampling 

period < 2 years). Tests of null models were originally developed for presence/absence data in 

studying species communities (Gotelli 2000). Recent advances allow an examination of null 

models for data sets with species abundances (Ulrich and Gotelli 2010). We used the 

standardised number of "abundance checkerboard" (CAST) to identify possible competitive 

interactions between native taxa. CAST represents an abundance analogy of "checkerboard" 

distributions (Diamond 1975), a distribution pattern where species pairs never co-occur 

together (Ulrich and Gotelli 2007). CAST varies between 0 (indicates no competition) and 1 

(indicates strong competition). To test whether a calculated CAST value comes from a chance 

event or reflects real competition, we compared the calculated CAST values with a null 

distribution using IT null model algorithm (Ulrich and Gotelli 2010) based on 100 random 

assemblages. The IT algorithm reassigns all individuals randomly to matrix cells with 

probabilities proportional to the totals of observed row and column abundances until total 

abundances are reached for each row and column. The IT algorithm shows a low Type I error 

rate compared to other algorithms (Ulrich and Gotelli 2010). 

 First, we run our null models for both shallow and deep sites separately. To elucidate 

the possible impact of the four alien species (C. fluminea, D. polymorpha, L. naticoides and 

P. antipodarum) within depth level, sampling sites were further divided into two groups: (1) 

sampling sites with low abundance of alien species (abundance of the alien species was less 

than the median of their total abundance at the depth level), and (2) sampling sites with high 

abundance of alien species (abundance of alien species was equal to or larger than the median 

of their total abundance). We compared the raw abundance checkerboard values and their 

relative positions compared to the generated null distributions. Null models were run using 

CoOccurrence software (Ulrich 2006). 

Results 

Taxa richness and abundance 

We found 45 taxa among the 17,929 individuals collected at shallow sites and 36 taxa among 

the 5,413 individuals at deep sites (Table 4.1). The alien bivalve C. fluminea was the only 

species occurring at all shallow (71) and deep (14) sampling sites. Further taxa with high 

frequencies of occurrence were Pisidium sp. (shallow sites: 95.8%; deep sites: 85.7%), D. 

polymorpha (93.0%; 100%), Oligochaeta (93.0%; 92.9%) and P. antipodarum (91.6%; 
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Table 4.1 Frequency of occurrence of the identified macroinvertebrate taxa (number of sites), mean density (± standard error) and maximum 
density of individuals in shallow (<3.5 m) and deep (≥5 m) littoral sites near Portalban in Lake Neuchâtel. The origin (native or alien) and 
protection status are also indicated 
 

Group Taxon Shallow sites (<3.5 m; N = 71) 
 

Deep sites (≥5 m; N = 14) 
Type 

of 
origin1 

Protec-
tion 

status2 

  
Frequency of 
occurrence 

(%)  

Mean density 
ind./m2 (± se) 

Maximum 
density 
ind./m2 

 Frequency of 
occurrence 

(%) 

Mean density 
ind./m2 (± se) 

Maximum 
density 
ind./m2 

  

PORIFERA Spongilla lacustris** 32 (45.1) na na  0 (0.0) 0.0 (0.0) 0.0 N n 

HYDROZOA Hydra viridissima 7 (9.9) 10.0 (5.5) 343.2  5 (35.7) 42.1 (15.5) 528.0 N n 

TURBELLARIA Turbellaria indet.** 1 (1.4) 0.1 (0.1) 8.8  2 (14.3) 18.2 (7.3) 246.4 N n 

 Dugesia sp. (cf. D. tigrina)** 0 (0.0) 0.0 (0.0) 0.0  2 (14.3) 3.1 (1.1) 35.2 A n 

OLIGOCHAETA Oligochaeta spp. 66 (93.0) 215.2 (25.3) 968.0  13 (92.9) 226.9 (30.5) 941.6 N n 

 Branchiura sowerbyi 11 (15.5) 1.9 (0.5) 17.6  1 (7.1) 0.6 (0.3) 8.8 A n 

HIRUDINAE Erpobdella sp.** 23 (32.4) 12.2 (2.8) 123.2  6 (42.9) 8.8 (1.6) 52.8 N n 

 Alboglossiphonia heteroclita** 7 (9.9) 3.2 (1.6) 105.6  6 (42.9) 8.2 (1.4) 35.2 N n 

 Glossiphonia complanata** 2 (2.8) 0.3 (0.2) 8.8  4 (28.6) 5.7 (1.4) 44.0 N n 

 Helobdella stagnalis 29 (40.9) 11.8 (2.6) 96.8  9 (64.3) 17.6 (2.6) 88.0 N n 

GASTROPODA Bithynia tentaculata** 37 (52.1) 25.5 (7.9) 554.4  10 (71.4) 30.2 (4.4) 149.6 N n 

 Lithoglyphus naticoides 44 (62.0) 19.0 (3.6) 184.8  7 (50.0) 13.8 (2.2) 52.8 A n 

 Potamopyrgus antipodarum 65 (91.6) 470.0 (74.5) 3264.8  11 (78.6) 257.1 (28.0) 748.0 A n 

 Valvata piscinalis 3 (4.2) 1.5 (1.0) 70.4  7 (50.0) 17.6 (2.7) 79.2 N n 

 Radix auricularia 2 (2.8) 0.3 (0.2) 8.8  0 (0.0) 0.0 (0.0) 0.0 N n 

 Radix balthica 3 (4.2) 0.6 (0.3) 17.6  3 (21.4) 1.9 (0.4) 8.8 N n 

 Lymnea stagnalis 1 (1.4) 0.1 (0.1) 8.8  0 (0.0) 0.0 (0.0) 0.0 N n 

 Gyraulus albus 4 (5.6) 3.4 (2.6) 193.6  7 (50.0) 15.7 (3.4) 114.4 N n 

 Gyraulus crista 1 (1.4) 0.1 (0.1) 8.8  3 (21.4) 3.1 (0.8) 26.4 N 3 

 Planorbis carinatus 2 (2.8) 0.5 (0.4) 26.4  0 (0.0) 0.0 (0.0) 0.0 N 3 

BIVALVIA Sphaerium corneum 0 (0.0) 0.0 (0.0) 0.0  1 (7.1) 0.6 (0.3) 8.8 N n 

 Pisidium spp. 68 ( 95.8) 232.8 (31.0) 1460.8  12 (85.7) 143.9 (18.3) 413.6 N n 

 Corbicula fluminea* 71 (100.0) 515.6 (65.9) 3599.2  14 (100.0) 404.8 (76.3) 2657.6 A n 
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na: not assessed; *High preference for sandy microhabitats (Tachet et al. 2006); **High preference for hard microhabitats (Tachet et al. 2006). 
1 Type of origin: N: native, A: alien  
2 Duelli (1994): n: not on the red list, 1 = prone to extinction (=endangered based on IUCN categorisation); 3 = endangered (=vulnerable based on IUCN 
categorisation) and 4 = potentially endangered (=rare based on IUCN categorisation)  

Table 4.1 continued          

 Dreissena polymorpha** 66 (93.0) 586.0 (99.7) 5368.0  14 (100.0) 1963.0 (192.4) 5473.6 A n 

BRYOZOA Cristatella mucedo 2 (2.8) 0.3 (0.16) 8.8  5 (35.7) 52.2 (14.0) 396.0 N n 

CRUSTACEA Dikerogammarus villosus** 16 (22.5) 2.4 (0.5) 17.6  5 (35.7) 11.9 (2.2) 61.6 A n 

 Gammarus pulex** 1 (1.4) 0.1 (0.1) 8.8  2 (14.3) 1.3 (0.4) 8.8 N n 

 Asellus aquaticus 0 (0.0) 0.0 (0.0) 0.0  6 (42.9) 34.6 (8.9) 299.2 N n 

COLEOPTERA Donacia sp. 4 (5.6) 1.2 (0.8) 61.6  0 (0.0) 0.0 (0.0) 0.0 N n 

DIPTERA Chironominae** 50 (70.4) 44.0 (7.7) 308.0  12 (85.7) 65.4 (6.4) 184.8 N n 

 Orthocladiinae** 8 (11.3) 1.0 (0.3) 8.8  0 (0.0) 0.0 (0.0) 0.0 N n 

 Tanypodinae 3 (4.2) 0.5 (0.3) 17.6  6 (42.9) 6.9 (1.5) 52.8 N n 

 Ceratopogonidae 8 (11.3) 1.5 (0.6) 35.2  2 (14.3) 2.5 (0.7) 17.6 N n 

EPHEMEROPTERA Centroptilum luteolum 2 (2.8) 0.3 (0.2) 8.8  0 (0.0) 0.0 (0.0) 0.0 N 4 

 Cloeon dipterum 1 (1.4) 0.1 (0.1) 8.8  0 (0.0) 0.0 (0.0) 0.0 N n 

 Caenis macrura 9 (12.7) 3.8 (1.9) 140.8  1 (7.1) 1.3 (0.5) 17.6 N n 

 Caenis horaria 12 (16.9) 6.8 (3.9) 290.4  3 (21.4) 2.5 (0.6) 17.6 N n 

 Caenis luctuosa 7 (9.9) 2.6 (1.3) 96.8  1 (7.1) 0.6 (0.3) 8.8 N n 

 Ephemera vulgata* 2 (2.8) 0.3 (0.2) 8.8  0 (0.0) 0.0 (0.0) 0.0 N 3 

 Ephemera lineata* 15 (21.1) 5.1 (1.7) 114.4  1 (7.1) 0.6 (0.3) 8.8 N 1 

 Ephemera danica* 13 (18.3) 4.1 (1.3) 61.6  0 (0.0) 0.0 (0.0) 0.0 N 4 

LEPIDOPTERA Acentria ephemerella 4 (5.6) 0.7 (0.4) 17.6  0 (0.0) 0.0 (0.0) 0.0 N n 

ODONATA Ischnura sp. 1 (1.4) 0.1 (0.1) 8.8  0 (0.0) 0.0 (0.0) 0.0 N n 

TRICHOPTERA Athripsodes cinereus 48 (67.6) 22.8 (3.1) 140.8  7 (50.0) 21.4 (4.1) 132.0 N n 

 Ceraclea dissimilis 0 (0.0) 0.0 (0.0) 0.0  2 (14.3) 1.3 (0.4) 8.8 N n 

 Mystacides azureus 13 (18.3) 2.6 (0.8) 52.8  3 (21.4) 10.1 (2.7) 88.0 N n 

 Oecetis lacustris 14 (19.7) 2.5 (0.6) 26.4  1 (7.1) 2.5 (1.0) 35.2 N n 

 Molanna albicans* 17 (23.9) 5.5 (1.4) 52.8  3 (21.4) 4.4 (1.3) 44.0 N n 

 Agraylea multipunctata 1 (1.4) 0.1 (0.1) 8.8  0 (0.0) 0.0 (0.0) 0.0 N n 
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Figure 4.1 Relative distribution of mollusc individuals (%) among alien and native taxonomic 
groups at shallow (<3.5 m, N= 14,969) and deep (≥ 5 m, N= 4,437) sites in Lake Neuchâtel. 
 
 

78.6%). ANOSIM analysis confirmed the separate handling of shallow and deep sites, 

because the communities at either depth were distinct (R = 0.175, P = 0.012). Analysis with 

only native taxa showed a similar separation by depth (R = 0.162, P = 0.042). 

 Indicator species analysis identified Spongilla lacustris (Linnaeus, 1758) as the single 

indicator species for shallow sites (indicator value [IV]= 0.45, P = 0.006), whereas deep sites 

were characterised by 14 indicator taxa. The alien bivalve D. polymorpha had the highest 

indicator value (IV = 0.77, P = 0.007) at deep sites, followed by V. piscinalis (IV = 0.46, P = 

0.001), Asellus aquaticus (Linnaeus, 1758; IV = 0.43, P = 0.001) and Gyraulus albus (O. F. 

Müller, 1774; IV = 0.41, P = 0.001). 
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 The abundances of mollusc individuals in relation to all individuals sampled were 

almost identical at shallow and deep sites (83.5% vs. 83.8%). However, the composition of 

gastropods and bivalves was different: gastropod individuals accounted for 28.1% of all 

molluscs at shallow sites, but only for 11.9% at deep sites (χ2 = 494.2, df = 1, P < 0.001). This 

difference was mainly a result of depth-dependent differences in the abundance of P. 

antipodarum, D. polymorpha, C. fluminea and Pisidum sp. (Figure 4.1). Among native 

gastropods, only B. tentaculata reached more than 1% of the total mollusc abundance 

(shallow sites: 1.4%, deep sites: 1.1%). The percentage of alien mollusc individuals was 

larger at deep sites (92.5%) than at the shallow sites (85.7%, χ2 = 144.6, df = 1, P <0.001). 

 The overall density of all macrobenthic taxa averaged 2,222 individuals /m2 at shallow 

sites and 3,402 individuals /m2 at deep sites. Bivalves contributed 1,334 and gastropods 521 

individuals /m2 at shallow sites. At deep sites bivalves showed an even higher abundance 

(2,512 ind./m2; gastropods: 339 ind./m2). 

 The bivalve D. polymorpha showed the highest density of individuals of the taxa 

collected. The median density of D. polymorpha was higher at deep sites than at shallow sites 

(290 ind./m2 vs. 1,835 ind./m2, two-sided two-sample Wilcoxon-test: W = 793.5, P <0.001). 

The maximum density of D. polymorpha, however, did not differ between shallow and deep 

sites (5,368 vs. 5,474 ind./m2). Similarly, the median density of C. fluminea, P. antipodarum 

and L. naticoides did not differ between shallow and deep sites (C. fluminea: 352 vs. 189 

ind./m2: W = 654, P = 0.064; P. antipodarum: 150 vs. 194 ind./m2: W = 536.5, P = 0.644; L. 

naticoides: 8.8 vs. 0.5, W = 550, P = 0.518).  

 Six species found at shallow sites are on the red list of Switzerland (Gyraulus crista 

[Linnaeus, 1758], Planorbis carinatus [O. F. Müller, 1774], Centroptilum luteolum [Müller, 

1776], Ephemera vulgata [Linnaeus, 1758], Ephemera lineata [Eaton, 1870] and Ephemera 

danica [Müller, 1764]; Duelli 1994). Only two of them were found at deep sites (G. crista, E. 

lineata; Table 4.1). 

Impact of alien molluscs on community structure 

Six of the taxa recorded at the shallow sites were alien (Branchiura sowerbyi [Beddard, 

1892], L. naticoides, P. antipodarum, C. fluminea, D. polymorpha and Dikerogammarus 

villosus [Sowinsky, 1894]). In addition to these six species a further alien species (Dugesia 

tigrina [Girard, 1850]) was found at deep sites. 
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Table 4.2 Summary of the analyses of variance using distance matrices testing the effect of alien taxa on the native community similarity 
(ADONIS). Significant results are in bold. 
 

Alien taxa Shallow sites  Deep sites 
 Df SS MS F R2 P  Df SS MS F R2 P 
Lithoglyphus naticoides 1 0.94 0.94 5.26 0.064 0.001  1 0.53 0.53 3.08 0.168 0.012 
Potamopyrgus 
antipodarum 

1 0.40 0.40 2.25 0.027 0.031  1 0.31 0.31 1.80 0.099 0.086 

Corbicula fluminea 1 0.90 0.90 4.98 0.060 0.001  1 0.11 0.11 0.62 0.034 0.724 
Dreissena polymorpha 1 0.73 0.73 4.05 0.049 0.002  1 0.66 0.66 3.80 0.208 0.006 
Residuals 66 11.85 0.18  0.800   9 1.56 0.17  0.492  
Total 70 14.82   1   13 3.18   1  
 

 

 

 

 

 

 

 

Table 4.3 Minimal adequate models showing the influence of the alien D. polymorpha, C. fluminea, P. antipodarum, and L. naticoides on the 
numbers of native taxa, native individuals, protected taxa, protected individuals, taxa with sand preference, individuals with sand preference, 
native taxa with hard bottom preference and native individuals with hard bottom preference. The abundance of alien molluscs was expressed in 
four different ways (indicated by capitals): A) number of living individuals, B) shell weight of living individuals, C) shell weight of living and 
dead individuals (empty shells) and, D) shell weight of dead individuals (empty shells). Effect size (Estimate), standard error (se) and 
significance value (P) are presented for approach A (significant effects are in bold). For the approaches B-D symbols indicate significant positive 
(+), negative (−) or non-significant (NS) effects. At deep sites GLMs were not run for protected and sand preferring taxa because these groups 
consisted of less than 10 individuals (see materials and methods). Dependent variables which did not enter the model are not listed. 



CHAPTER 4: ALIEN MOLLUSCS AFFECT NATIVE MACROINVERTEBRATES 
 

91 

Dependent variable Factor Shallow sites  Deep sites 
  A B C D  A B C D 
  Estimate se P     Estimate se P    
N. of native taxa Corbicula fluminea 0.100 0.040 0.015 + + +        
 Dreissena polymorpha 0.211 0.026 <0.001 + +   0.250 0.077 0.001 + NS NS 
 Potamopyrgus antipodarum            NS + 
 Lithoglyphus naticoides     −         
N. of native  Corbicula fluminea 0.345 0.086 <0.001 + + +        
individuals Dreissena polymorpha 0.288 0.059 <0.001 + +   0.411 0.645 0.003 + +  
N. of protected  Corbicula fluminea -0.274 0.181 0.130 NS NS   na      
taxa2 Dreissena polymorpha 0.253 0.114 0.027 NS +   na      
 Lithoglyphus naticoides    NS    na      
N. of protected  Corbicula fluminea -1.074 0.287 <0.001 − −   na      
individuals2 Dreissena polymorpha 0.277 0.138 <0.001 + +   na      
 Potamopyrgus antipodarum 0.405 0.153 0.010     na      
 Lithoglyphus naticoides    +    na      
N. of taxa with  Dreissena polymorpha 0.191 0.108 0.076 + NS   na      

sand preferrence1 
Potamopyrgus 
antipodarum      + 

 
na      

 Lithoglyphus naticoides 0.405 0.177 0.022 + +   na      
N. of individuals  Corbicula fluminea -0.632 0.130 <0.001 − −   na      
with sand  Dreissena polymorpha 0.278 0.079 <0.001 + +   na      
preferrence1 Potamopyrgus antipodarum 0.311 0.087 <0.001 +    na      
 Lithoglyphus naticoides 0.439 0.130 <0.001 + +   na      
N. of native taxa  Corbicula fluminea 0.145 0.058 0.016 + + +        
with hard bottom  Dreissena polymorpha 0.188 0.038 <0.001 + +   0.386 0.156 0.013 + +  
preference3 Potamopyrgus antipodarum             + 
N. of native ind. with  Corbicula fluminea 0.531 0.126 <0.001 + + +        
hard bottom  Dreissena polymorpha 0.474 0.081 <0.001 + +         
preference3 Potamopyrgus antipodarum     − −        
 Lithoglyphus naticoides -0.456 0.179 0.013 −          
 

1Sand preference following Tachet et al. (2006), taxa with a preference value of 5 were considered. 
2 Protected taxa following Duelli (1994). 
3 Hard bottom preference following Tachet et al. (2006), taxa with preference values of 4 and 5 were considered. 
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 Analysis of variance using distance matrices (ADONIS) revealed that the changes in 

the abundance of the four alien species explain 20.0% of the variation of the native 

community at shallow sites and 50.8% of that at deep sites. At shallow sites, C. fluminea and 

L. naticoides were the best explanatory variables, whereas at deep sites the abundance of D. 

polymorpha and L. naticoides explained most (Table 4.2). 

 GLMs identifying the effects of alien molluscs indicated that their number had a 

positive impact on most of the response variables at shallow sites (Table 4.3). Exceptions 

were a negative influence of L. naticoides on the number of native individuals with hard 

bottom preference at shallow sites, and of C. fluminea on the numbers of invertebrate 

individuals with sand preference and on the number of protected individuals. Similar results 

were obtained at shallow sites when the abundance of the few alien species was expressed by 

the weight of living animals (approach B; Table 4.3). Considering shell weight of both living 

and dead animals as independent factor, GLMs revealed similar but less pronounced effects at 

shallow sites, but L. naticoides had a negative impact on the numbers of native taxa and P. 

potamopyrgus negatively influenced the number of individuals with hard bottom preference 

(approach C, Table 4.3). Using the weight of empty shells as predictor variable (approach D), 

C. fluminea kept the positive influence on most native groups but lost the negative influence 

on the native protected and sand preferring individuals while empty shells of P. antipodarum 

enhanced the number of native taxa with sand preference. 

 Most remarkably is the positive influence of D. polymorpha on the number of native 

invertebrate individuals, and on both the numbers of native taxa and taxa with hard bottom 

preference at deep sites in the first three approaches. In the fourth model (approach D), only 

P. antipodarum had a positive impact on both the number of native individuals and the 

number of hard bottom preferring taxa (Table 4.3). 

 Considering the null model of random patterns of species assemblage, CAST values of 

0.015 were obtained for shallow sites and 0.035 for deep sites. At shallow sites, the expected 

values were 0.015 (lower and the upper limits of the 95% confidence intervals of the null 

assemblages were 0.014 and 0.017) and 0.021 (0.015 and 0.026) for deep sites. This indicates 

that the impact of competition structuring the benthic macroinvertebrate community is 

moderate and differs among depths. The comparison with the null distributions showed that 

the macroinvertebrate community at shallow sites was randomly organised, whereas the 

community at deep sites may be partly structured by competitive interactions. High 

abundance of each alien species increased only moderately the competition in the community 

as indicated by the standardised number of abundance checkerboard (Figure 4.2). 
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Figure 4.2 The impact of low (L) and high (H) abundance of four alien species (C. fluminea, 
D. polymorpha, P. antipodarum and L. naticoides) at shallow (circles) and deep (triangles) 
sites on the standardised number of abundance checkerboard (full symbols) and its 
comparison with random species assemblages (open symbols show expected mean values and 
whiskers the 95% confidence intervals). Standardised number of abundance checkerboard 
reflects the strength of competition within the community structure. 
 

Total shell mass and shell decay rates 

The total shell mass of living and dead individuals of the six most abundant mollusc species 

amounted to 700.9 g/m2 at shallow sites and 1,275.0 g/m2 at deep sites in Lake Neuchâtel 

(Table 4.4). The four alien species (C. fluminea, D. polymorpha, P. antipodarum, L. 

naticoides) contributed to 98% and 97% of the total shell mass at shallow and deep sites, 

respectively. Considering single species, C. fluminea contributed to 69% and 37% of the total 
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shell mass at shallow and deep sites. The corresponding figures for D. polymorpha were 27% 

and 59%. The shells of these two invasive clams constituted more than 95% of the organic 

hard substrate on the sandy bottom of the lake and thus changed the habitat characteristics for 

benthic organisms. 

 

Table 4.4 Total shell mass (in g/m2) of living and dead individuals of four alien and two 
native mollusc species at shallow (depth <3.5 m) and deep (depth 5.0 m – 22.4 m) sites in 
Lake Neuchâtel. 
 
Species  Shallow sites  Deep sites 
  

living empty 

living 
+ 

empty  living empty 

living 
+ 

empty 
Corbicula fluminea+ Cf 314.5 165.8 480.3  246.9 221.6 468.5 
Dreissena polymorpha+ Dp 137.1 53.9 191.0  459.3 289.2 748.5 
Potamopyrgus antipodarum+ Pa 2.2 14.2 16.4  1.2 20.0 21.2 
Bithynia tentaculata Bt 0.4 8.6 9.0  0.5 4.8 5.3 
Valvata piscinalis Vp 0.0 2.2 2.3  0.4 29.2 29.5 
Lithoglyphus naticoides+ Ln 1.3 0.6 1.9  0.9 1.1 2.0 
+ alien species 
 

Table 4.5 Summary of the minimal adequate model of the effects of origin (native vs. alien) 
and shell weight on the decay rate of mollusc shells. 
 
Factor Estimate SE t-value P 

Intercept 21.267 2.164 9.830 <0.001 

Origin (alien) -9.659 3.353 -2.881 0.005 

Weight -14.151 7.767 -1.822 0.071 

 

 Considering the shell decay study, model selection removed the factors taxon (within 

origin) and water depth, and left the factors origin (native or alien) and shell weight in the 

minimal adequate model (Table 4.5). The analysis revealed that shells of the studied alien 

species have a significantly slower relative decay rate than those of native species (mean loss 

in 1 year: C. fluminea 2.3%, D. polymorpha 10.0%, P. antipodarum 10.9%, B. tentaculata 

20.0%, and V. piscinalis 21.9%; Table 4.5, Figure 4.3) and that shell weight has a marginally 

negative effect on the relative decay rate (Table 4.5, Figure 4.4). Thus, the bigger and heavier 

alien molluscs C. fluminea and D. polymorpha lost less shell material within one year than 

smaller native molluscs (Figure 4.4). 
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Figure 4.3 Relative decay rate of shell material of three alien (C. fluminea, D. polymorpha, 
P. potamopyrgus) and two native (B. tentaculata, V. piscinalis) molluscs in Lake Neuchâtel. 
 

Discussion 

The present study shows that the benthic macroinvertebrate community in a sandy flat of the 

littoral zone of Lake Neuchâtel is dominated by a few alien mollusc species (C. fluminea, D. 

polymorpha, P. antipodarum). Our analyses suggest that the composition and diversity of 

native macroinvertebrates are influenced by the abundances of alien molluscs which 

transform sandy substratum into a partly hard substratum habitat. However, patterns strongly 

depend on the water depth at the sampling sites. Null-model analysis testing the impact of 

alien  molluscs on community  assembly suggests  that shallow sites are  randomly  organised, 
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Figure 4.4 Relative decay rate of shell material in five species of freshwater molluscs, 
averaged over all retrieved bags, as a function of mean shell weight of each species (r2= 
0.70, n= 5, P = 0.077) in Lake Neuchâtel. Bt, B. tentaculata; Cf, C. fluminea; Dp, D. 
polymorpha; Pa, P. antipodarum; Vp, V. piscinalis. Full species names are given in Table 
4.4. 
 

whereas deep sites are influenced by competitive interactions among native community 

members. Our shell study also shows that valves and shells of the studied alien species persist 

for a longer period in the sediment than those of native species, and consequently have a 

longer-lasting impact through habitat modification than those of native mollusc species. These 

findings indicate that alien mollusc species have a profound impact on native 

macroinvertebrates by changing habitat characteristics of the sandy bottom. 

 Nowadays, numerous freshwater habitats are dominated by alien taxa (Ricciardi and 

MacIsaac 2000, Tittizer et al. 2000, Wirth et al. 2010), and in many cases by alien molluscs 
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(Karatayev et al. 2003, Lewin and Smolinski 2006, Sylvestre et al. 2007, Nalepa et al. 2010). 

Similarly, Lake Neuchâtel has recently been invaded by the alien molluscs D. polymorpha, C. 

fluminea, P. antipodarum and L. naticoides. We found substantial differences in the 

composition of benthic macroinvertebrates between shallow (< 3.5 m) and deep (≥ 5 m) sites 

of a sandy flat. The depth-related difference in the density of alien species was most 

pronounced in D. polymorpha, which could be the result of the water-depth depending 

feeding behaviour of diving ducks (Werner et al. 2005, Keller and Burkhardt 2010). Diving 

ducks have to manage their feeding costs and energy budget (de Leeuw et al. 1999). 

Consequently, they prey first upon the easily reachable mussels (D. polymorpha) at shallow 

sites before they exploit deeper sites. This foraging pattern fits our observations that the 

density of D. polymorpha was lower at shallow than at deep sites and that mainly small (1 

year-old and younger) D. polymorpha individuals occurred at shallow sites, whereas at deep 

sites several years old individuals dominated. Similarly, the zebra mussel showed a decline in 

abundance of 95% at shallow sites (1 and 3 m) in Lake Constance following the feeding of 

ducks over one winter (Werner et al. 2005). Interestingly, duck do not feed on C. fluminea, 

which has thicker valves than D. polymorpha and lives buried in the upper layer of sand 

(Schmidlin and Baur 2007). 

 Several studies suggest that alien species generally have a negative impact on native 

communities (Strayer 1999, 2010, Rahel 2002, Arndt et al. 2009). However, Botts et al. 

(1996) demonstrated in a field experiment that Dreissena species can change the physical 

structure of sandy habitats which in turn may lead to increased densities of native species. 

Similarly, short-time experiments showed that several native macroinvertebrate taxa may 

benefit from the presence of C. fluminea in sandy habitats (Werner and Rothhaupt 2007, 

2008). Sousa et al. (2009) reviewed the eco-engineering effects of alien bivalves, including C. 

fluminea and D. polymorpha. Both bivalves cause a decrease in turbidity and increase light 

penetration in the water column because of filter feeding. The increase in light and visibility 

may enhance macrophyte growth. Interstices between clams and mussels provide refuge from 

predators to other invertebrates and shells can be colonized by algae, freshwater sponges, 

gastropods, amphipods and other invertebrates. Moreover, alien mussels might provide 

additional sources by biodeposition (Mitchell et al. 1996, Mörtl and Rothhaupt 2003). Our 

results are in agreement with the above mentioned studies showing that alien molluscs might 

have both positive and negative effects on native communities. We should note, however, that 

the biological explanation of the negative impact of L. naticoides (revealed by GLMs) is 

rather challenging because the species was present only in low density. 
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 The results of ADONIS support both views: alien mollusc species influence the 

structure of the native macroinvertebrate community in a sandy flat of the littoral zone of 

Lake Neuchâtel. The relationships between the abundance of the four alien mollusc species 

and native community variables suggest a positive effect on the native community structure. 

Thus, habitat transformation by increasing the amount of hard substratum in the sand flat 

might be advantageous for several native taxa, but it might be disadvantageous for other taxa 

adapted to the conditions of sandy habitat. Indeed, C. fluminea was found to have a negative 

impact on the number of individuals with sand preference and on the number of protected 

species. This negative effect of a species on other species through habitat modification (i.e. 

ecosystem engineering) can be regarded as way of indirect competition (Gonzalez et al. 

2008). The differential impact of C. fluminea and D. polymorpha can be explained by their 

different habitat use (burrowing vs. surface dwelling; e.g. Schmidlin and Baur 2007, Higgins 

and Vander Zanden 2010). Our findings support the use of trait-based analyses in invasion 

ecology (Townsend and Hildrew 1994, Statzner et al. 2008, Ordonez et al. 2010) and its 

applications in conservation issues because most sand-preferring native taxa are threatened in 

Switzerland (Table 4.1). 

 Alien species can transform a competitively structured native community into a 

randomly organised one (Sanders et al. 2002). Our null-model analysis showed that native 

benthic macroinvertebrate communities were structured randomly at shallow sites. At deeper 

sites, however, competition was important in structuring the community. At both depths, these 

patterns were not influenced by any of the alien mollusc species examined. Consequently, 

water depth per se has a stronger effect on the native community assembly than the four alien 

species. We assume that this difference between shallow and deep sites comes from the 

difference in the abundance of D. polymorpha caused by duck feeding (see above). However, 

stochastic and demographic processes might also influence the abundance of analysed taxa 

(Gotelli and McCabe 2002). 

 The relative shell decay rates (2.3% − 21.9% of the initial shell mass per year) 

recorded in the present study are similar to the values measured in other molluscs in the 

U.S.A. (Strayer and Malcolm 2007). We found that the relative shell decay rate of alien 

mollusc species is slower than that of native ones. This means that the shells of alien species 

persist for a longer period in and on the sediment, and consequently, have a long-lasting 

impact on the community structure through modification of the habitat. 

 It is important to note that some factors may restrict the generalisation of our 

conclusions. First, our samples deal with the topmost 5 cm of the sediment only. 
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Consequently, the patterns observed might be different by applying other sampling techniques 

paying more attention to animals living deeper in the sediment (Waringer 1987). Second, we 

used bags with a mesh size of 2 mm for handling samples. In other studies sampling devices 

with a mesh size of 1.2 mm or even smaller have been applied (Carter and Resh 2001). 

Consequently, the size distribution of macroinvertebrates sampled in our study might be 

biased slightly towards taxa with larger bodies. 

Conclusions 

In summary, our study showed that a sandy flat of the littoral zone of the Lake Neuchâtel is 

seriously invaded by alien mollusc species. The observed patterns suggest that the existence 

of these mollusc species (D. polymorpha, C. fluminea, P. antipodarum and L. naticoides) and 

their empty shells transform the sandy habitat into a more structured habitat with some hard 

substratum. This effect favours the occurrence and abundance of several native taxa, but it is 

disadvantageous for a limited number of taxa with specific habitat requirements. The present 

study is to our knowledge one of the first which demonstrates depth-dependent impacts of 

alien species on the native community of a freshwater lake. These findings call the attention 

to the careful examination of the impact of alien ecosystem engineers to native communities, 

because negatively impacted taxa might have a high conservation value. 
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General Discussion 

Freshwater ecosystems are very vulnerable to invasive species. Once an introduced species 

got established in a lake or river it is hardly possible to remove it again from the new 

environment (Genovesi 2005). Therefore, knowledge about the invasive organism and its 

introduction pathway(s) is important to prevent further introductions and to manage existing 

invasions. This thesis provides information about the spread of the invasive clam Corbicula in 

Switzerland, its preferred ecological niche, and on potential effects on native communities in 

a river and in a lake. Basic knowledge on the genetic composition (haplotypes) of Corbicula 

individuals and on their assumed introduction pathways is also presented.  

 Chapter 1 shows on how a combination of different factors structures the benthic 

community of the river Rhine. River modifications and prolonged pollution changed the 

original communities and caused the loss of certain species, creating open niches for 

pollution-tolerant non-indigenous species. Major disturbances enabled the invasion of many 

new species which reached unprecedented densities. Through the Rhine-Main-Danube Canal, 

opened in 1992−1993, many non-indigenous species from the Ponto-Caspian region entered 

the river Rhine system. Some of them were co-adapted and lead to facilitated establishment of 

other introduced species (Simberloff and Von Holle 1999, Sures et al. 1999). After reduction 

of the pollution in the Rhine, invaders re-colonised faster and more numerously empty niches 

than native species. These invaders suppressed the development of populations of native 

species. Replacing characteristic riverine species by large numbers of euryoecious and non-

indigenous species, in particular macroinvertebrates and fish, has remarkably changed the 

species composition in the river Rhine (e.g. Van den Brink et al. 1988, 1990). The main 

biological mechanisms favouring these changes are competition for food and space (e.g. 

Corbicula), hosting of parasites (amphipods and isopods) and intraguild predation 

(Dikerogammerus villosus). At the present day, the number of invaders is still increasing. 

 The first chapter also shows that in most cases negative impacts of invasive species on 

native species have been deduced from correlative evidence. Evidently, there is an urgent 

need for experimental studies on interactions between invasive and native species. From a 

conservation perspective, ecological studies on rare native species should be intensified. 

Ecological restoration projects are crucial to preserve those facets of the originally unique 

biodiversity of the river Rhine and its floodplain which is still present today. 

 Chapter 2 documents the initial phase of the invasion of C. fluminea in Switzerland. 

The distribution of C. fluminea in the Swiss part of the river Rhine in 2003 was restricted to 
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the first 22 km upstream of Basel and to a canal and streams fed with water from the river 

Rhine. This indicated a low mean upstream spread of 2.4 km per year since the clam reached 

Switzerland in 1995. It had not yet colonized any of the tributaries examined. Densities varied 

from 1 to 600 individuals per m2 and decreased towards the edge of the upstream occurrence. 

The size distribution of C. fluminea in the river Altrhein indicated the presence of a well-

established population with 2- to 3-year-old clams. In all cohorts, the growth rate was highest 

between May and October favoured by the increased water temperature and the availability of 

phytoplankton in that period. The clam was most abundant on fine-grained substrates (sand) 

with slowly flowing, shallow water. We confirmed this finding by a substrate choice 

experiment in the river Rhine. Although most clams showed a positive rheotaxis (movement 

against the current) in this experiment, we assume that active upstream dispersal is less 

important for the clam’s spread. Additionally, our results showed that C. fluminea reached 

sites in the river Rhine where cargo shipping does not occur. To pass obstacles such as weirs, 

passive dispersal by waterfowl and recreational boating are more likely and may facilitate 

further upstream spread. C. fluminea might be less successful in colonizing rivers with rapid 

current. These are assumed to serve as refuges for native molluscs and need therefore to be 

preserved in a dynamic state. 

 The results of Chapter 3 support the assumptions made in Chapter 2: Individuals of 

C. fluminea were most recently recorded in several lowland lakes whose interconnecting 

rivers have not yet been colonized. This makes passive dispersal of the invasive clam by 

human activities or animal vectors highly probable. Specially, recreational boating stays in the 

focus of introduction vectors as most of the new clam occurrences were found near harbours 

with many boats (Burgin and Hardiman 2011). The closely related species C. fluminalis was 

only observed in the region of Basel in the river Rhine, where it co-occurrs with C. fluminea.  

 Mitochondrial DNA-sequences from Corbicula samples collected in Swiss and other 

European rivers and lakes revealed that all but one of 72 examined individuals harboured a 

single haplotype of C. fluminea. Therefore an assignment to the original population in Europe 

was not feasible and other molecular techniques are required (e.g. microsatellites) to detect 

the source population of the introduced individuals. Nevertheless, due to the geographical 

proximity, the river Rhine near Basel served most probably as source for all subsequent 

introductions of C. fluminea into Swiss rivers and lakes. The detected main haplotype 

dominates both the native range in Asia and introduced populations in North- and South- 

America (Park and Kim 2003, Lee et al. 2005). In the river Rhine in Germany and in French 

rivers, other haplotypes occur which could have been separately introduced as well (Renard et 
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al. 2000, Pfenninger et al. 2002, Marescaux et al. 2010). Either these haplotypes have not 

been introduced into Switzerland because of their low abundance and consequently low 

probability to be passively transported, or alternatively, if they have been introduced they 

could not sufficiently establish and vanished again. C. fluminalis has a lower reproductive 

output and a narrower physiological niche (e.g. salt concentration; Meister 1997) than C. 

fluminea what could explain the absence of its sister species in the rest of Switzerland. 

However, in lake Garda in northern Italy, both species co-exist (Ciutti and Cappelletti 2009). 

Recent records of clam individuals in Switzerland showed all the shell morphology of C. 

fluminea, confirming the dominance of this clam species in Swiss rivers and lakes.  

 Chapter 4 deals with the ecological impact of non-indigenous molluscs on the native 

benthic invertebrate community in Lake Neuchâtel. We found that our study site, a sandy flat, 

was dominated by three of the four co-existing non-indigenous mollusc species (C. fluminea, 

D. polymorpha and P. antipodarum). They influenced the composition and diversity of native 

macroinvertebrates by transforming the sandy substratum into a partly hard substratum 

habitat. We recorded substantial differences in community composition between shallow (< 

3.5 m) and deep sites (≥ 5 m). We assume that these differences are, at least partly, a result of 

the reduced abundance of D. polymorpha at shallow sites due to depth-selective feeding of 

ducks. Null-model analysis testing the impact of alien molluscs on community assembly 

suggests that shallow sites are randomly organised, whereas deep sites are influenced by 

competitive interactions. However, the results of the GLMs showed that the non-indigenous 

mollusc have an overall positive effect on the numbers of native taxa, native individuals, 

protected individuals, taxa with sand preference, individuals with sand preference, native taxa 

with hard bottom preference and native individuals with hard bottom preference, both at 

shallow and deep sites. This was correct for all applied model approaches, when non-

indigenous species abundance was expressed as the abundance of living non-indigenous 

mollusc individuals (1), as shell weight of living individuals (2), as shell weight of living and 

empty shells or (3), as shell weight of empty shells only (4). Thus, the observed statistical 

influences point rather to structural (shell) effects than to biotic interactions between the 

molluscs and other organisms. An exception to the rule is the clam C. fluminea which showed 

significant negative impacts on numbers of protected and sand preferring individuals in upper 

water depths. Members to both groups, among others, are the sand-burrowing mayflies 

Ephemera spp. In this particular case, interspecific interaction with C. fluminea and biotic 

impacts, such as bioturbation, biodeposition, and nutrient reallocation, seem to play a more 

important role than the structuring effect by shells. In the context of conservation biology, this 
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outcome is alarming. On the other hand, taxa with a hard bottom preference were enhanced by 

C. fluminea in all approaches at shallow sites, what shows the significance of dead clams that 

lie on the sediment surface providing physical habitats and interstitial refuges (Werner and 

Rothhaupt 2007).  

 Our shell decay study showed that valves and shells of non-indigenous species persist 

for a longer period in the sediment than those of native species. As a result, they have a 

longer-lasting impact through habitat modification than those of native mollusc species. This 

form of ecosystem engineering favours the occurrence of several native taxa which seek for 

hiding places and colonisation space but might also be disadvantageous for other taxa with 

specific habitat requirements. Our findings call attention to a careful examination of the 

impact of non-indigenous species to native communities, because negatively affected taxa 

might have high conservation value.  

The spread of Corbicula spp. from a process-based point of view 

The process-based view of the spread of Corbicula spp. in Switzerland (Colautti and 

MacIssac 2004, Nentwig 2011, see general introduction) allows in the following section an 

evaluation of the invasiveness of the two Corbicula species. Spreading up to the border of 

Switzerland until 1995, Corbicula spp. certainly fulfilled the first two criteria of the dispersal 

of non-indigenous species: They colonized new freshwater habitats with the help of men, 

crossing biogeographical barriers (by cargo shipping, man-made waterways, recreational 

boating, aquarium trade and fishery), but once in the novel geographical region, the spread of 

Corbicula spp. depended also on natural transport mechanisms such as transfer by waterfowl 

and larval drift. The third criterion, spreading in relative short time scale, is true as well. As in 

Chapter 1 and 2 described, Corbicula spp. colonised the navigable trade routes of the river 

Rhine quickly: C. fluminea and C. fluminalis were first recorded in the Lower Rhine in The 

Netherlands in 1985 (Bij de Vaate and Greijdanus-Klaas 1990). Both species reached soon 

high abundance of 1,800 individuals per m2 (Haas et. al. 2002) and ten years later in 1995 and 

865 km far from the first observation sites, both clams were reported near Basel in 

Switzerland (Rey et al. 2004). The upstream colonisation up to the confluence of the High 

Rhine and the river Aare (about 54 km from Basel) needed another ten years (see Chapter 3) 

and was only achieved by C. fluminea. The river High Rhine served most probably as primary 

source of origin for all following introductions into Switzerland because all genetically 

examined animals from Swiss population showed the same haplotype (H2) as the main 

haplotype present in the river Rhine (Pfenninger et al. 2002; Chapter 3).  
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 Introduced lake populations reached in Lake Constance maximum densities of 3,520 

individuals > 5 mm per m2 within four to six years (Werner and Rothhaupt 2007) and in the 

same time and in a comparable habitat (sandy littoral) similar figures were recorded in lake 

Neuchâtel (3,599 individuals per m2; Chapter 4). In Lake Neuchâtel, three years after the 

first observation of the clam, the distribution of C. fluminea was patchy and density was low. 

But already one year later in 2007, i.e. four years after the first record, the clam was wide 

spread on the sandy flat and reached high density and frequency. The invasive clam had a 

negative impact on the numbers of protected and sand preferring native taxa. Thus, stage 3 of 

the invasion process (invasion), took place in a few years only and adaptive behavioural or 

even evolutionary reactions to the clam were hardly possible for most of the biota in the lake. 

Furthermore, since in both lake sites similar maximal densities were observed, stage 4 

(saturation) may have already occurred locally (Werner and Rothhaupt 2007, Nentwig 2010, 

Chapter 4). 

 The two C. fluminea populations detected in Lake Geneva in 2008 (Morges and 

Bouveret) show so far low densities, but they are expected to increase (B. Lods-Crozet, pers. 

comm.).  

 The sister species C. fluminalis reached locally a well established state (state 2, 

Nentwig 2010) with more than 200 individuals per m2 (Schweizerhalle near Basel, Mürle et 

al. 2008) but shows low abundance in the rest of the so far introduced section. Any 

observations or evidence of having negative impact on native organisms are lacking, what 

does, however, not exclude minor impacts. Nevertheless, by the time being (2011) C. 

fluminalis in Switzerland cannot be considered as invasive, in contrast to C. fluminea.  

Outlook 

This thesis documented the spread of the Asian clam Corbicula spp. into Switzerland in the 

absence of highly interconnected waterways as they are common in other neighbouring 

European countries (e.g. France and Germany). The clam’s ecological preferences, its 

population structure and its impact on the native freshwater community were studied. 

Furthermore, the present thesis illustrates the occurrence and abundance of aquatic invasive 

macrozoobenthic species in the river Rhine and in the lake Neuchâtel, focusing in particular 

on non-indigenous molluscs.  

 Following the Article 51 in the Swiss Release Ordinance, we monitored C. fluminea, 

known to be invasive in other regions (Strayer 1999), and studied possible connections 

existing between observed damage and the presence of the monitored organisms (Chapter 2, 
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4). We demonstrated the harm to the rare and endangered mayflies Ephemera spp. population 

caused by high densities of C. fluminea. However, the underlining mechanisms in this species 

interaction are not known and because of the low number of mayflies an experimental 

approach is less likely accomplished. Doing research with native mollusc appears more 

realistic. Though, the absence of living unionid mussels at the study sites in the river Rhine 

(Chapter 2) and in Lake Neuchâtel (Chapter 4) is alarming. Fortunately, in other parts of the 

sandy littoral in lake Neuchâtel, where C. fluminea was not observed yet or is only present in 

low densities, unionid mussels are still abundant (B. Lods-Crozet, pers. comm.) and could 

maybe be used for experimental research in the future (as asked for in Chapter 1) and 

repopulate the former sites in Lake Neuchâtel.  

 Even if the damaging effect of C. fluminea on native organism has a causal proof in 

Switzerland, eradication of the species without harming the native freshwater community will 

not be possible and there would be no guarantee for future re-introductions (Chapter 3, 

Genovesi 2005). Therefore, prevention of man-made introductions and preservation of 

dynamic river structures are the most realistic measurements we can take to protect the 

biodiversity of Swiss river and lakes.  

 What kind of ecological, economical and health consequences can we expect when C. 

fluminea is further spreading in all principle low land water bodies of Switzerland? Ecological 

consequences include the change in composition and abundance of freshwater invertebrate 

taxa and the modification of habitat structures (as already discussed). C. fluminea will 

contribute to a biological homogenisation of Swiss waterbodies (Rahel 2007). In which extent 

this changes affect higher and/or lower trophic levels (e.g. fish, birds, zooplankton, 

phytoplankton) or ecosystem services (water quality) may serve as future research questions. 

Apart from the direct effects of C. fluminea on benthic macroinvertebrates, there is only 

anecdotic evidence of water birds (S. Werner, pers. comm.), crayfish and muskrats (own 

observation) consuming the clam occasionally. 

 Due to its tolerance to low water temperatures (Müller and Baur 2011) the clam will 

surely continue to spread in Switzerland in lowland regions and with continued global 

warming the effect of moderate winter will further promote the invasion success of C. 

fluminea (Weitere et al. 2009). This development will be unintentionally enhanced in even 

higher situated river regions by the increasing number of hydro-electrical power plants 

(BAFU 2011), providing suitable habitat in their reservoirs. 

 Economically, C. fluminea has caused so far “affordable” damage for affected 

industries. The employees of the water quality observation station adjacent to the river Rhine 
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in Basel, spend a few working days a year with the cleaning of small water pipes clogged with 

the clam (R. Dolf, pers. comm.). Another industrial facility in Switzerland, depending on 

cooling water from the river Rhine, had the same problem but at a larger scale. With the 

gained knowledge about the population structure in the river Rhine (Chapter 2) yearly 

maintenance cost could be set a limit to about CHF 50,000 (Schmidlin 2007). In the United 

States, an often quoted value of over US$ 120 billion is spent annually on control and 

prevention measures of invasive species (Pimentel et al. 2000). For instance, the Watershed 

Management Plan for Otsego Lake, a central New York glacial lake, provides for prevention 

of non-indigenous invasive species a stringent boat inspection and washing program. These 

measurement expenses average US$ 30,000 per year, much of which has been covered by 

collecting a launch fee. After implementation of the inspections, only one boat was refused 

access, and less than 1% required washing before allowed access. However, zebra mussels 

(Dreissena polymorpha) and water chestnut (Trapa natans) have since been found in the lake. 

The program continues to be supported because other non-indigenous invasive species may 

have been prevented or may be prevented in the future (Horvath 2008). A similar approach in 

Switzerland seems not feasible. However, information campaigns among certain groups, like 

boat owners or managers of pet shops were taken into consideration by some cantonal 

authorities working on water protection issues (e.g. canton Basel-City, canton Vaud) after 

being informed about the results of this thesis. 

 Usually, C. fluminea is not associated to health issues in Switzerland as this is the case 

in other non-indigenous species (e.g. the plant Ambrosia artemisiifolia; Ambrosia 2011). 

Nevertheless, there is evidence for health concerns caused by the clam in Europe. In northeast 

Portugal human consumption of freshwater clams and mussels is common. Melo et al. (2006) 

showed that over a third of C. fluminea specimens examined were carrying oocysts of 

Cryptosporidium (a protozoan parasite which affects the intestines of mammals and leads 

typically to an acute short-term infection). Consumption of the clam might therefore cause a 

human cryptosporidiosis outbreak. In addition, man could become accidental host when clams 

carry parasites (e.g. Aspidogaster conchicola, a holarctic trematode; Lucius and Loos-Frank 

2008). Filter-feeding clams accumulate as well non-biological substances such as metals and 

compounds of certain pesticides (Basack et al. 1997). However, it is not a recent Swiss 

tradition to consume clams and therefore no health hazard should be expected. Independent 

from the presence of the clam, all mentioned sources of human disease (but the internal 

parasites) may be found in open water and thus threaten the drinking water supply. Melo et al. 

(2006) recommended C. fluminea therefore as a bioindicator for those substances and to 
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integrate the clam in a water quality alert system. The results of another study (Faust et al. 

2009) indicated that C. fluminea (and other filter-feeding molluscs) can remove and reduce 

the infectivity of avian influenza (AI) viruses in water. As many of the lakes in Switzerland 

invaded by C. fluminea are feeding and resting places of migratory birds that might carry the 

AI virus, the role of the clam in fighting the disease might become important. 

 To sum up, in Switzerland, the expected economical and so far not existent health 

consequences of C. fluminea are of minor concern, but although the proven ecological 

impacts are restricted to few organisms, cascading effects are not to be ruled out and the clam 

needs to stay under further surveillance. 
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