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Abbreviations 

agr   accessory gene regulator 

AIP   autoinducing peptide 

ATCC   American Type Culture Collection 

ATP   adenosine triphosphate 

Ca2+   calcium ions 

CaCl2   calcium chloride 

CA-MRSA  community-associated methicillin-resistant Staphylococcus aureus 

CAMP   cationic antimicrobial peptide 

ClfA   clumping factor A 

CLSI   Clinical and Laboratory Standard Institute 

Cmax   peak concentration 

Cmin   concentration after 24 hours 

CO2   carbon dioxide  

CoNS   coagulase-negative Staphylococcus species 

cSSSI   complicated skin and skin-structure infection  

D-Ala   D-alanine 

DAP   daptomycin  

DNA   desoxyribonucleic acid 

ECM   extracellular matrix 

eDNA   extracellular genomic desoxyribonucleic acid 

EDTA   ethylenediaminetetraacetic acid 
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EUCAST  European Committee on Antimicrobial Susceptibility Testing 

Fc   fragment, crystallizable 

FDA   Food and Drug Administration 

FnBPA  fibronectin-binding protein A 

FnBPB   fibronectin-binding protein B 

g   gravity 

GISA   glycopeptide-intermediate Staphylococcus aureus 

H2O2   hydrogen peroxide 

HA-MRSA  healthcare-associated methicillin-resistant Staphylococcus aureus 

IM   intramuscular 

IP   intraperitoneal 

K+   potassium ions 

Lys   L-lysine 

LTA   lipoteichoic acid 

MBC   minimal bactericidal concentration 

MBClog  minimal bactericidal concentration under logarithmic growth phase  

condition 

MBCstat  minimal bactericidal concentration under stationary growth phase  

condition 

MIC   minimal inhibitory concentration 

MID   minimal infective dose 

MprF   multiple peptide resistance factor 

MRSA   methicillin-resistant Staphylococcus aureus 
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MSCRAMMs  microbial surface components recognizing adhesive matrix  

molecules 

MSSA   methicillin-sensitive Staphylococcus aureus 

NaCl   sodium chloride 

NCCLS  National Committee on Clinical Laboratory Standards 

O2   oxygen 

O2
-   superoxide 

P   pressure 

PBP   penicillin-binding protein 

PBP2’   additional penicillin-binding protein 

PBS   phosphate buffered saline 

PG   phosphatidylglycerol 

PIA   polysaccharide intercellular adhesin 

PJI   prosthetic joint infection 

PMN   polymorphonuclear leukocyte 

PSM   phenol-soluble modulin 

PVL   Panton-Valentine leukocidin 

RNA   ribonucleic acid 

rRNA   ribosomal ribonucleic acid 

RT   room temperature 

SA   Staphylococcus aureus 

SCC   staphylococcal cassette chromosome 

SD   standard derivation 
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SE   Staphylococcus epidermidis 

SCV   small colony variant 

TDF   tissue cage fluid 

TSB   trypticase soy broth 

Units    CFU, colony forming unit  

   °C, degree Celsius 

g, gram 

   h, hour  

kg, kilogram  

L, liter  

M, molar 

mg, milligram 

min, minute  

mm, millimetre 

mM, milimolar 

mL, millilitre 

   µg, microgram 

   nm, nanometre 

   %, percentage 

VRE   vancomycin-resistant enterococci  

wt   wild type 
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Summary 

The use of medical devices carries the risk of infection. Due to the development of multi-

resistant bacteria, missing microcirculation, and biofilm embedded bacteria these 

implant-associated infections are difficult to treat. For their successful treatment, drugs 

should act independently of the bacterial physiological state, penetrate the biofilm, and 

prevent further bacterial adherence to surfaces and formation of bacterial biofilm. 

Daptomycin (DAP) exhibits concentration-dependent bactericidal activity against Gram-

positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Its 

target is the bacterial membrane in which it forms pores resulting in membrane 

depolarization and subsequent cell death. Calcium ions (Ca2+) are indispensable for its 

activity. DAP does not need cell division or active metabolism for bactericidal activity 

and is able to penetrate biofilms. Therefore, in this thesis we followed the question 

whether DAP is efficient in eradicating planktonic and adherent MRSA in an implant-

associated infection.  

In the first part, DAP was bactericidal against stationary grown planktonic MRSA in 

vitro. Because the physiology of biofilm embedded bacteria is similar to stationary grown 

planktonic bacteria, DAP alone or in combination with rifampin was applied to treat 

MRSA in a foreign-body infection model in guinea pigs. DAP in combination with 

rifampin showed the highest efficacy against planktonic and adherent MRSA compared 

to rifampin-containing combinations with vancomycin, linezolid and levofloxacin. 

Additionally, in this combination DAP prevented the emergence of rifampin resistance. 
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However, DAP alone was inefficient against attached and biofilm embedded MRSA in 

implant-associated infections. 

Therefore, in the second part of this thesis various factors, which could explain treatment 

failure, were investigated by evaluating the effect of cell wall components, biofilm, 

adherence and Ca2+ in vitro and in vivo upon DAP activity. We found that the 

physiological state of the bacteria had an impact on the efficacy of DAP because DAP 

was only effective as prophylaxis, i.e. before bacterial adherence. Furthermore, DAP was 

not able to kill adherent staphylococci in vitro, independently of biofilm, nucleases, 

adhesins, autolysins, and alanyl-lipoteichoic acids. Resistance of adherent staphylococci 

was not due to mutations of adherent bacteria, since staphylococci became DAP-

susceptible after detachment. Increasing DAP or Ca2+ concentrations partially enhanced 

killing of adherent staphylococci in vitro and in a murine tissue cage infection model. 

In summary, DAP alone is not active in an implant-associated infection. This might be 

due to bacterial adhesion, which is associated with a change of their physiological state. 

We demonstrated in an implant-associated infection that DAP treatment is improved with 

Ca2+ and only successful with 2 repeated doses of DAP before and after infection or in 

combination with rifampin.  
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1 General Introduction 

1.1 Bacterial infection 

Bacteria are highly diverse and colonize nearly all habitats including mammals. It is 

estimated that more bacterial cells are in the gut (1014 bacteria) than human cells (in total 

1013 cells) in the body (7). In the human body they occur as commensals or pathogens. 

They build up the normal human flora at the inner and outer surface of the body such as 

skin and mucosa of the intestinal tract. Usually, this is a symbiotic relationship, which 

often protects against invasion of opportunistic parasites, but sometimes these well-

tolerated bacteria cause diseases (62).  

The first step in the interaction between a bacterium and the host is bacterial adherence to 

epithelium. This colonization step involves binding to proteins or polysaccharides that are 

expressed at the surface of the host skin and mucosa. Due to virulence factors bacteria are 

able to overcome the host immune defence and enter the host tissue. The infection site 

and the mechanism that lead to a disease as well as the course of disease are extremely 

variable (62).  

Depending on the host factors, such as genetic and immunological determinants, and the 

virulence, entry site and infection dosage of the bacteria, diseases can occur that require 

antimicrobial treatment to eradicate (62). 
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1.2 Staphylococci 

Staphylococci are a genus of Gram-positive bacteria, which are arranged in short chains 

or in grape-like clusters. Species of this genus can be distinguished by their ability to 

produce coagulase, an enzyme that causes blood clot formation. Staphylococcus aureus 

(S. aureus) belongs to the coagulase-positive staphylococcus species, while 

Staphylococcus epidermidis (S. epidermidis) is a coagulase-negative staphylococcus. 

Staphylococci are colonizer of the skin and mucosa (62). However, in case of a 

weakening of the mucoid-epithelial barrier or a skin lesion staphylococci are able to 

cause a wide range of diseases in human and other animals. Due to the presence of 

different virulence factors they penetrate through the skin in the body and produce toxins 

(62). In comparison to S. epidermidis, S. aureus has more virulence factors (31).  

 

1.2.1 Staphylococcus epidermidis 

Besides being a commensal, S. epidermidis is also seen as an important opportunistic 

pathogen causing nosocomial infections related to indwelling devices. These include 

endocarditis due to pacemakers and catheters, cardiovascular infections, infections of 

implants in joints, in the eye and ear (74). Infections with S. epidermidis are usually sub-

acute or even chronic without signs of inflammation (62). 

In general, S. epidermidis is not an enterotoxin producer. Its toxin production is mostly 

limited to phenol-soluble modulins (PSMs), which are short, amphipathic, and α-helical 

peptides with pro-inflammatory and sometimes cytolytic functions (74).  
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Due to its reduced repertoire of virulence factors, the success as pathogen has to be 

attributed to its ability to adhere to surfaces. It uses similar “microbial surface 

components recognizing adhesive matrix molecules” (MSCRAMMs) as S. aureus in 

particular the fibrinogen-binding protein serine-aspartate repeat protein G (SdrG) (65, 

86). To survive in a host, S. epidermidis forms a very thick, multilayered biofilm on the 

surface of catheters, prosthetic valves, and orthopaedic devices (74, 104).  

 

1.2.2 Staphylococcus aureus 

S. aureus colonizes mainly the nose. In the human population three pattern of nasal 

carriage can be distinguished: about 20% of humans are persistent carriers, ±60% harbour 

S. aureus intermittently, and a minor part of the population (±20%) almost never carry 

the pathogen (49). Due to similar nasal elimination kinetics and anti-staphylococcal 

antibody profiles of intermittent carriers and non-carriers the known pattern has to be 

reclassificated in persistent carrier and others (101). The permanent carriage of S. aureus 

in the nose is an important risk factor for infections, in particular for infections with 

methicillin-resistant S. aureus (MRSA) (49) and in patients with implant-associated 

infections (117). 

S. aureus is able to break through epithelial and mucosal surfaces of the host and causes 

tissue inflammation and destruction. As opportunistic pathogen it is therefore extremely 

successful in causing infections including skin infections, abscesses, and life-threatening 

diseases such as endocarditis and bacteraemia (61). 
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1.2.3 The cell wall of Staphylococcus aureus 

The cell wall of S. aureus (Figure 1.1) is composed of peptidoglycan, proteins, 

lipoproteins, and glycolipids. The strength and rigidity of the bacterial cell wall is due to 

a glycopeptide called peptidoglycan, which consists of glycan chains crosslinked by 

peptides. The glycan consists of alternating residues of N-acetylglucosamine and N-

acetylmuramic acid attached to each other via β-1,4 linkages. Attached to N-

acetylmuramic acid is a tetrapeptide (L-alanine, D-glutamine, L-lysine, and D-alanine) 

that crosslinks the glycan chains via peptide bonds. Neighbouring tetrapeptides are linked 

by pentaglycine bridge peptides. Hence, the peptidoglycan forms a three-dimensional 

network surrounding the cell membrane (108).  

 

Figure 1.1: Schema of the cell wall envelope of S. aureus. The peptidoglycan consisting of alternating 

β-1,4 linked N-acetylglucosamine and N-acetylmuramic acid residues surrounds the cell membrane. 

Attached to N-acetylmuramic acid residues is a tetrapeptide that crosslinks the glycan chains via 

pentaglycine bridges. Modifications include addition of teichoic acids, proteins, and lipoproteins. 
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The negatively charged teichoic acids carry divalent cations or provide a biophysical 

barrier for the diffusion of substances (111). While teichoic acid is covalently linked to 

peptidoglycan and binds to mannose-binding lectin (75), lipoteichoic acid (LTA) is 

membrane-anchored with a lipid that is bound to a linear polymer of phosphodiester-

linked glycerol phosphate. This linear polymer extends into the cell wall. LTA is 

important for S. aureus survival under low-osmolarity conditions and due to its charge it 

governs the susceptibility of S. aureus to cationic antimicrobial peptides (CAMPs) (108, 

111). 

 

1.2.4 Virulence factors of Staphylococcus aureus 

The ability to cause different diseases depends on the array of virulence factors (Figure 

1.2). They play role in colonization of the host and are expressed according to the special 

growth conditions at the infection site (34). An important aspect in the pathogenesis of 

staphylococci is that one virulence factor may have several functions and several factors 

may have similar function (33). 

Staphylococcal “microbial surface components recognizing adhesive matrix molecules” 

(MSCRAMMs) are major virulence factors (27). They bind collagen, fibronectin, and 

fibrinogen and mediate adherence to host tissue (33). Most of them are covalently bound 

to the cell wall peptidoglycan, the linking is mediated by a membrane-bound enzyme 

called sortase. The most important one is sortase A. This enzyme recognizes a conserved 

amino acid motif (LPXTG) at the C-terminus of the surface protein sequence and 

mediates binding of the carboxyl group of threonine to the carboxyl group of glycine in 

the pentapeptide of peptidoglycan (27, 73). Relevant surface proteins are clumping factor 
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A (ClfA), fibrinogen-binding protein, and fibronectin-binding protein A and B (FnBPA 

and FnBPB) (76). They are important for the attachment to the extracellular matrix 

(ECM) of host or of foreign body implants (27). Due to an EF-hand motif ClfA contains 

a divalent cation-binding site (69). At calcium concentrations between 1 to 10 mM the 

interaction between ClfA and calcium is progressively inhibited. The calcium 

concentration in blood plasma is 1.3 mM and is strictly regulated at the threshold of the 

inhibitory range, i.e. around 1 mM (11, 27). Interestingly, ClfA is the dominant 

fibrinogen-binding protein present on the surface of stationary-phase S. aureus (26). 

 

Figure 1. 2: Schema of staphylococcal virulence factors (adapted from (61, 67)). The mechanisms by 

which staphylococci subvert host innate immune defence are divers: Protein A decreases the 

effectiveness of IgG-opsonins. Clumping factor A (ClfA), fibrinogen-binding protein, and the 

fibronectin-binding proteins (FnBPA and FnBPB) are important for the attachment to ECM and 

implants. Toxins target the leukocyte membrane. Resistance to CAMPs is given by positive charge 

modifications of the cell wall. Capsules avoid the phagocytic uptake. 
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Expression of MSCRAMMs is strong during the logarithmic growth phase. During the 

stationary growth phase, S. aureus is able to secrete toxins that cause damage of the host 

membrane (alpha-hemolysin, Panton-Valentine leukocidine (PVL)) or that kill 

polymorphonuclear leukocytes (PMNs) (26). 

Once attached, S. aureus has several mechanisms to resist uptake and killing by 

phagocytes. To avoid engulfment by neutrophils, S. aureus produces the cell wall-

anchored protein A that binds the Fc (Fragment, crystallizable) proportion of antibodies 

and thereby decreases the effectiveness of IgG-opsonins. Additionally, capsules are 

expressed by many clinical S. aureus isolates and avoid the phagocytic uptake. 

Furthermore, S. aureus has the ability to inactivate special complement factors that are 

bound to the surface of opsonized bacterial cells resulting in reduction of phagocytic 

possibilities for neutrophils (26).  

After engulfment by neutrophils S. aureus is well equipped with surface modifications 

for survival within the phagosome including modifications of the cell wall or membrane 

by positively charged components due to dlt or mprF genes. The dlt operon consists of 

dltA, dltB, dltC, and dltD. DltA activates D-alanine (D-Ala) in the cytoplasm via ATP 

hydrolysis. Activated D-Ala is coupled to the D-Ala carrier protein DltC. DltB transfers 

the D-Ala across the cytoplasmic membrane, where DltD catalyzes the introduction of 

the positive charged D-Ala in the otherwise negatively charged teichoic acids (78). The 

bifunctional integral membrane protein MprF (multiple peptide resistance factor) is able 

to catalyze the binding of L-lysine (Lys) to the negatively charged phosphatidylglycerol 

(PG) and to transfer the Lys-PG from the inner to the outer leaflet of the membrane (24). 

These modifications of negatively charged surface molecules reduce the affinity of 
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CAMPs that are secreted into the phagosome (16, 55). Additionally, to avoid the lethal 

effects of oxygen free radicals S. aureus expresses two superoxide dismutase enzymes 

that remove O2
- formed during the respiratory burst (26).  

Furthermore, non-phagocytic cells might take up S. aureus. Within these cells the 

bacterium can persist over a long time (26).  

In conclusion, the described and many other mechanisms permit S. aureus to escape host 

defences, to adhere to cells and the tissue matrix, to spread within the host and to degrade 

cells and tissue.  

 

1.2.5 Regulation of virulence factors 

The expression of virulence factors is tightly regulated in response to cell density, energy 

availability, and environmental signals (68). Many Gram-positive bacteria, such as S. 

aureus, use peptide quorum sensing systems to control gene expression. The regulatory 

network recognizes environmental stimuli, which elicit the release of small autoinducing 

peptides (AIPs). They bind to a receptor, which by phosphorylating a response regulator 

leads to changes in gene expression of virulence factors. By the production of these AIPs 

bacteria are able to communicate with each other. The three major regulatory systems of 

biofilm are the two-component regulators system agr (accessory gene regulator), luxS 

(51), and the alternative transcription factor sigma B (58).  

agr, as an essential global regulator of staphylococcal virulence, enhances the expression 

of many extracellular secreted proteins, such as toxins, and reduces surface associated 

virulence factors. It down-regulates biofilm (51, 68, 105). The two-component system 

encoded by luxS is required for AIPs synthesis, which negatively affects biofilm via 
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repression of ica gene transcription (112). Sigma B enhances biofilm by suppressing 

RNAIII, thus extracellular proteases and murein hydrolases, which are the target enzymes 

of proteases (58). 

 

1.2.6 Staphylococcal biofilm 

A biofilm is a sessile microbial community covered by a thin matrix (35, 93). The 

formation of a biofilm involves two steps (Figure 1.3): the attachment and the maturation 

phase. Non-specific factors, such as electrostatic and hydrophobic interactions, and 

specific factors, such as protein coated foreign bodies, play a role for the attachment step. 

S. aureus expresses MSCRAMMs on their surface that bind to human matrix (73). In 

addition, the autolysin family is able to facilitate attachment to plastic surfaces and has 

binding sites for human matrix proteins like fibronectin (37). Staphylococci have a strong 

ability to stick to plastic surfaces, a fact that has been used in the basic in vitro assays. 

However, during colonization of medical devices the additional interaction of 

MSCRAMMs and host proteins cause most likely a stronger attachment (73, 86).  

The second phase, the maturation, includes the intercellular adhesion in an extracellular 

polysaccharide matrix. In staphylococci, the polysaccharide intercellular adhesin (PIA) is 

the main molecule responsible for intercellular adhesion. PIA is a linear β-1,6-linked N-

acetylglucosaminoglycan (1). The biosynthesis of PIA is encoded by the ica-operon, 

which has an important role in the pathogenesis of implant-related S. epidermidis 

infections (70, 73). It is composed of regulator (icaR) and biosynthetic (icaADBC) genes, 

which consist of N-acetylglucosamine transferases (icaA and icaD), a PIA deacetylase 

(icaB), and a putative PIA exporter (icaC) (73, 103). 
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Figure 1.3: Phases of biofilm development in staphylococci (modified by (73)). The formation of 

biofilm includes different steps. It starts with attachment to the surface, followed by multilayered 

cellular proliferation and intracellular adhesion in an extracellular polysaccharide matrix 

(maturation). To colonize other sites, cell detachment is necessary. 

 

The repressor icaR, which activity is influenced by environmental conditions, impairs 

expression of the ica genes and biofilm formation (73). Using PIA 

immunocytochemistry, Kristian et al. showed that planktonic- and stationary grown S. 

aureus 113 wild type (wt) were able to build up PIA, while the ica-mutant of this strain 

did not produce PIA (56). Bacteria lacking the ica-operon were unable to form a biofilm 

on titanium surfaces in vitro, but showed the ability for weak adherence (39). However, 

the course of an experimental implant infection model was similar with S. epidermidis wt 

and its isogenic ica-mutant (39, 56). This indicated that there are PIA-independent 

biofilm components. For example, the protein Aap causes a biofilm formation in 27% of 

biofilm-forming strains isolated from prosthetic joint infections (73, 80). Additionally, 

the cell wall bound surface protein Bap (biofilm associated protein) derived from bovine 
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mastitis isolates was shown to be involved as well in the adherence to polystyrene 

surfaces, intercellular adhesion, and biofilm formation of S. aureus isolates from animals 

(19, 73). S. aureus and S. epidermidis contain teichoic acids and LTAs, which increase 

via positive charge primary adhesion and via binding to fibronectin adhesion to matrix 

(41). 

Furthermore, the biofilm matrix contains extracellular genomic DNA (eDNA) whose 

structural importance was first demonstrated in Pseudomonas aeruginosa (107). In S. 

aureus the cidA gene encoding a hydrolase was shown to promote cell lysis and the 

release of eDNA during biofilm formation. Accordingly, in the cidA mutant the biofilm 

was less adherent, contained more dead cells, and less genomic DNA (79). DNA is 

negatively charged and has within the biofilm matrix the ability to connect other 

molecules together similar to teichoic acids (73). On the other hand, a nuc mutant, which 

is inactivated in its thermonucleases, demonstrated higher levels of eDNA and thicker 

biofilms compared with the parental strain. The authors suggested that due to effective 

eDNA degradation by thermonuclease the lysis-mediated release of eDNA was balanced 

(63). 

Due to concentration gradients of nutrients, signal compounds and bacterial waste within 

the biofilm it exhibits considerable structural, chemical and biological heterogeneity. 

Therefore, bacteria embedded in the biofilm are not only physiologically distinct from 

their planktonic counterpart, but also vary from each other (93). Bacteria within a biofilm 

are physiologically more similar to stationary than to exponential grown bacteria (29). 

The biofilm provides a structural and protective barrier and is a physiological niche in 

which the cells are more resistant against antimicrobial agents and against host defence. 
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Donlan demonstrated that biofilm embedded bacteria are 100 to 1,000 times less 

susceptible to antibiotics than their planktonic counterparts (21). Within a biofilm a small 

sub-population of cells still remains alive independent of the antibiotic concentration. 

These cells are non-dividing, dormant cells known as persister cells. When the antibiotic 

concentration is reduced, persisters are able to re-populate the biofilm (59). 

Kristian and co-authors demonstrated that the biofilm formation of S. epidermidis leads 

to complement activation. The biofilm prevents complement deposition on bacteria and 

thereby biofilm embedded bacteria are protected from PMN-dependent killing (54).  

To colonize other sites, cell detachment from the biofilm is necessary. Different factors 

are responsible for this process: these include mechanical forces and enzymes that 

destroy parts of the biofilm matrix, or lack of binding substrates for the biofilm. Biofilm 

dispersion is well controlled by the quorum-sensing system agr (73). 

 

1.2.7 Regulation of biofilm 

Quorum sensing allows the bacteria inside a biofilm structure to communicate with each 

other and to react to environmental conditions such as oxygen and iron limitation. 

MSCRAMMs are down-regulated by agr (51, 73, 76). Autolysins, e.g. murein hydrolase, 

are controlled by sigma B (58).  

The regulation of PIA is well studied. PIA biosynthesis is up-regulated by low oxygen 

and enhanced by sub-inhibitory concentrations of antibiotics. By repressing icaR 

transcription the global stress response regulator sigmaB enhances the ica function in S. 

epidermidis (70). Furthermore, by reducing ica transcription, luxS has an influence on the 

biofilm formation. A mutant of luxS leads to a thicker and more compact biofilm than the 
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parental wt strain (51). In contrast, agr does not affect PIA-expression. However, agr 

regulates biofilm detachment by up-regulating of PSMs. As a consequence of this effect, 

agr mutants naturally have thicker biofilm (73, 74). 

 

1.2.8 Antibiotic resistance in staphylococci - Methicillin-resistant Staphylococcus 

aureus 

With increasing use of antibiotics resistance emerged fast. In the 1940s, the intense use of 

penicillin led to the formation of beta-lactamase-producing S. aureus isolates, which were 

resistant to penicillin. Methicillin was synthesized in the late 1950s and expresses 

methoxy instead of the phenol groups in the benzylpenicillin. These exchanged groups 

reduced the affinity for staphylococcal beta-lactamases. Unfortunately, soon after 

introduction of this new antibiotic, S. aureus strains resistant to methicillin appeared in 

the clinics (90). MRSA expresses an additional penicillin-binding protein (PBP2´) 

probably acquired from another strain. PBP2´ encoded by mecA is a peptidoglycan 

transpeptidase that is able to cross-link peptidoglycan even in the presence of beta-

lactams, because it shows a low affinity for this antibiotic (60). mecA is part of a mobile 

genetic element named “staphylococcal cassette chromosome (SCC) mec”. SSCmec is 

flanked by recombinase genes that permit intra-species transmission. MRSA evolved 

from 5 different regulated genotypes that spread world wide (33). It is still unknown why 

MRSA are so transmissible beyond resistance to multiple antibiotics. They may express 

specific virulence factors, which so far could not be identified (48). 

MRSA infections have been classified based on where the patient acquires the bacteria. 

Healthcare-associated MRSA (HA-MRSA) are distinguished from community-associated 
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MRSA (CA-MRSA). They differ in their antibiotic resistant pattern and their virulence 

factors (33, 83). 

 

1.3 Prosthetic joint-associated infections 

In modern medicine indwelling devices are increasingly used to replace a damaged 

biological function or missing anatomical structure. Especially, orthopaedic implants 

represent the major procedure for patient with pain and compromised mobility or for 

fracture fixation. The risk of infection is increased by the presence of foreign material. 

However, less than 10% of these patients display implant-associated complications 

during their lifetime (61).  

The most commonly cultured pathogens isolated from prosthetic joint-associated 

infections (PJIs) are S. epidermidis (30 to 43%) and S. aureus (12 to 23%), followed by 

mixed bacterial flora (10 to 11%), streptococci (9 to 10%), Gram-negative bacilli (3 to 

6%), enterococci (3 to 7%), and anaerobes (2 to 4%) (117).  

 Recently, S. aureus small colony variants (SCVs), which have a slower metabolism, do 

not produce toxins, and are more resistant to antibiotics, have been denoted in PJIs. They 

represent a risk factor for treatment failure, persistence and relapse of infection (87). 

PJIs occur by bacterial contamination of the surgical site during surgery or immediately 

thereafter, or they result from haematogenous seeding originating from distinct infections 

in the nose or on skin. According to their appearance PJIs are divided into three types: 

manifestation of an infection within 3 month after surgery (early), developing of an 

infection between 3 and 24 month after surgery (delayed), or those that develop after 2 

years after surgery (late). Early PJIs occur perioperatively and are commonly caused by 
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virulent microorganisms, such as S. aureus and Gram-negative bacilli. Symptoms are 

persisting local pain, erythema and warmth at the implant site, and fever. Microorganisms 

of low virulence (coagulase-negative staphylococci, Propionibacterium acnes) are 

commonly responsible for delayed infections. The characteristics are persisting or 

increasing joint pain and early loosening, but clinical signs may be missing. Therefore, 

these kinds of infections are difficult to distinguish from aseptic failures. Both early and 

delayed PJIs are usually acquired during implantation, whereas late infections 

predominantly result from a distant haematogenously spread infection site (116). 

Haematogenous seeding originating from skin, respiratory, dental, and urinary tract 

infections may appear during the whole life, although the risk of infections is highest in 

the first years after implantation (96-98, 117).  

 

1.3.1 Pathogenesis 

All used foreign bodies are inert. Therefore, the host immune system responds with a 

localized inflammation. This leads first to the formation of a capsule-like membrane of 

fibrinogen, fibronectin and collagen on the surface (20). The extracellular proteins 

fibronectin and fibrinogen mediate bacterial adhesion to medical devices and host tissue. 

In the presence of serum it was shown that the level of S. aureus adherence to explanted 

coverslips was much higher compared to non-implanted coverslips (102). The localized 

inflammation causes secondly a phenomenon known as “frustrated phagocytosis”, which 

results from the granulocyte contact with the foreign body and causes a functional 

granulocyte defect with reduced oxygen burst and chemotaxis in the neighbourhood of 

foreign bodies. This may be partly responsible for the high susceptibility of implants to 
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infections (115). Indeed, Zimmerli and colleagues showed that in the presence of an 

implant the number of staphylococci required for a persistent infection is 1000-fold lower 

(≈100 to 1000 CFU) than in an absence (118). The pathogenesis of PJIs involves the 

above described interaction between the bacteria (biofilm formation), the implant 

(surface characteristics) and the host (inflammatory response). The initial phase involves 

the adherence of microorganisms to the surface by nonspecific factors (hydrophobicity 

and electrostatic forces) and by specific adhesins. It is followed by an accumulative phase 

that includes intercellular adherence and formation of biofilm mediated by PIA (96).  

The surface of an implant has been found to trigger complement activation resulting in 

attraction of neutrophils and monocytes and in enhancing phagocytosis (42, 95). This 

inflammatory response may cause the aseptic loosening of a medical device (4) and its 

replacement becomes necessary. To avoid another surgical intervention a treatment 

algorithm and antimicrobial guidelines were developed (117). 

 

1.3.2 Treatment algorithm 

The goal of a PJI therapy is a long-term pain-free, functional joint and is achieved by 

elimination of the infection. But, PJIs are difficult to treat because foreign bodies remain 

devoid of a microcirculation, which is crucial for host defence and for the delivery of 

antibiotics (97). Five treatment approaches with a combination of both an appropriate 

surgical treatment and antimicrobial therapy are available. (I) Long-term antimicrobial 

therapy alone does not eradicate the infection. Additionally, clinical symptoms re-appear 

during or after antimicrobial breaks. Therefore, this treatment option is suitable only 

when surgery is contraindicated, when a functional prosthesis is not needed, or when the 
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patient refuses surgical procedure. (II) Debridement with retention of the prosthesis 

means removal of tissue around a stable implant for patients with an early postoperative 

or acute haematogenous infection (<3 weeks). Furthermore, an agent with activity against 

biofilm bacteria should be available. (III) and (IV) One- or two-stage revision includes 

removal of all devices, debridement, and replacement of a new prosthesis during the 

same procedure or after a period of time, respectively. (V) Finally, resection is defined as 

the permanent removal and debridement without replacement (97, 98, 117).  

 

1.3.3 Antimicrobial guidelines 

The choice of antibiotic is dependent on the isolated microorganisms and their 

susceptibility-resistance pattern. Antibiotics (Figure 1.4) can be distinguished based on 

the primary target they affect and additional whether they induce cell death (bactericidal 

drugs) or inhibit cell growth (bacteriostatic drugs) (50).  

Quinolone/fluoroquinolone. The quinolone/fluoroquinolone class interferes with 

topoisomerase II (DNA gyrase) and topoisomerase IV resulting in the inhibition of DNA 

replication and therefore leading to the formation of double-stranded DNA breaks and 

cell death. Ciprofloxacin and levofloxacin belong to this bacteriostatic acting class (50). 

The emergence of resistance includes chromosomal mutations resulting in alteration of 

the target enzyme (gyrA), changes in cell-membrane porin channels, or drug efflux (110). 

Rifamycin. Rifampin shows bactericidal activity against Gram-positive bacteria and 

belongs to the rifamycin group. It binds to the beta-subunit (encoded by rpoB) of the 

bacterial DNA-dependent RNA-polymerase. This leads to blocking of DNA transcription 
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into messenger RNA, and of the following protein synthesis (50). Resistance is associated 

with the complete loss of activity due to a point mutation in the rpoB gene (99).  

Beta-Lactams. Beta-lactams are bactericidal and inhibit transpeptidation by binding to 

penicillin-binding proteins (PBPs) on maturing peptidoglycan strands. The beta-lactam is 

an analogue of the terminal D-alanyl-D-alanyl dipeptide of peptidoglycan and acts as 

substrate for the PBPs. The impaired peptidoglycan synthesis together with the action of 

autolysins that breaks down bonds within peptidoglycan leads to cell death with lysis. 

This antibiotic group includes penicillins and cephalosporins (50). Bacteria are often able 

to produce a resistance by synthesizing beta-lactamase, an enzyme that attacks the beta-

lactam ring (109) or they acquired the mecA gene, which encodes a low affinity PBP 

(60). 

 

Figure 1.4: Structures of different antibiotics 
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Glycopeptides. The time-dependent bacteriostatic agents vancomycin and teicoplanin 

belong into this group. By binding the terminal D-alanyl-D-alanyl dipeptide and by 

blocking transglycosylase and PBP activity they inhibit the peptidoglycan synthesis. The 

development of glycopeptide resistance needed a long time. After 20 years of 

vancomycin use, a resistance mechanism, which was expressed in enterococci and 

includes 5 genes, was transferred into staphylococci. These genes encode a 

reprogramming of the peptidoglycan termini from high to low affinity by changing the D-

alanyl-D-alanyl dipeptide to a D-alanyl-D-lactate (47).  

Oxazolidinone. As member of the oxazolidinone class, linezolid is a dose-dependent 

bacteriostatic or bactericidal antibiotic against Gram-positive bacteria that binds to the 

50S subunit of the bacterial ribosome via 23S ribosomal (r) RNA interaction. This 

binding causes the blocking of the protein synthesis. Resistances in S. aureus are 

typically associated with mutations in the 23 S rRNA gene (8). 

Lipopeptides. The primary target for lipopetides is the cell membrane resulting in cell 

death without lysis (50). The first member of this antibiotic class is daptomycin, which is 

discussed below. 

 

In view of the pathogenesis of PJIs the antimicrobial substance of choice should have 

bactericidal activity against surface-adhering, slow-growing, and biofilm-producing 

bacteria. Rifampin has been tested in vitro, in animal models, and in clinical studies and 

demonstrated good bactericidal activity against adherent and stationary-phase 

staphylococci. But due to the rapid emergence of resistance it should never be 

administrated as mono-therapy. However, the use of rifampin in a combination with other 
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antibiotics is well tolerated and cure infections without removal of the implant. For the 

treatment of methicillin-sensitive S. aureus (MSSA) a combination with beta-lactam, 

followed by rifampin with fluoroquinolone is recommended. In case of MRSA rifampin 

with glycopeptides, followed by fluoroquinolone is suggested (117, 119). Quinolones are 

excellent drugs because they have a good bioavailability and activity. In combination 

with rifampin new-generations of quinolones, such as levofloxacin, display better in vitro 

activity against staphylococci than ciprofloxacin, but levofloxacin alone was not able to 

eradicate adherent staphylococci in vitro as well as in vivo (85). In addition, MRSA are 

often resistant to quinolones (100, 117). As an alternative, glycopeptides could be used. 

Vancomycin showed lower antibacterial activity against Gram-positive bacteria than 

beta-lactams and should only be used for patients demonstrating hypersensitivity to beta-

lactams. They are considered to be “the last resort” against MRSA, however diminished 

susceptibility emerged during the last decades (vancomycin-intermediate S. aureus and 

vancomycin-resistant S. aureus) reducing the efficacy of this drug (9). The potential of 

alternative antibiotic treatments, including linezolid and daptomycin, is under intensive 

supervision.  

 

1.3.4 Perioperative antimicrobial prophylaxis 

Besides the use of sterile conditions during surgery an antimicrobial prophylaxis remains 

one of the most effective method of reducing the prevalence of infection after joint 

replacement and should be directed against the most species commonly isolated from 

healthcare-acquired infections and taken into account their susceptibility-resistance 

pattern. For optimal efficacy an antimicrobial concentration that is able to inhibit 
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bacterial growth must be reached in tissue during the entire surgical procedure. In 

general, first- or second-generation cephalosporins are the first-choice antibiotics, when a 

patient is not allergic or when the risk of MRSA is minor. Otherwise vancomycin and 

teicoplanin can be used. For MRSA colonized patients with implants the decolonization 

of nose and skin is also possible to reduce the risk of secondary infection (97). 

 

1.3.5 Experimental models for PJI 

Over the last years, in vivo models that mimic the pathogenesis of PJIs have been 

developed, i.e. the catheter abscess model, knee arthroplasty, and the tissue cage model. 

With the murine model of peritonitis or catheter infection an abscess can be simulated by 

using a catheter intraperitoneally (113) or subcutaneously (81, 82), respectively. A knee 

arthroplasty involves the partial or total knee replacement in rabbits, which is 

reproducible and close to the human situation (5).  

The tissue cage model of foreign-body infections best reproduces the clinical situation of 

patients with implanted prosthesis and helps to investigate the standard guidelines for an 

antimicrobial management. In this model, Teflon cylinder tubes (tissue cages) with an 

internal and external diameter of 8 mm and 10 mm, respectively, and a length of 32 mm 

perforated with 130 holes are implanted in the subcutaneous tissue of mice, rats, guinea 

pigs, rabbits, dogs, and calves. Guinea pigs are the most commonly used species because 

the tissue cage infection is very similar to the human device-associated infection. In 

addition, the minimal infective dose is low and spontaneous cure never occurs with S. 

aureus and coagulase-negative staphylococci. However, guinea pigs only tolerate short-

term antimicrobial therapies because they die from diarrhoea and weight loss. They also 



General Introduction 

 32 

do not tolerate beta-lactams. Therefore, other animal species such as mice are preferred 

for prolonged studies or beta-lactam therapies (113). 

During the healing period after surgery, the tissue cage becomes surrounded by 

fibroblasts and ECM with collagen and fibronectin (39) and interstitial fluid accumulates 

inside. The interstitial fluid differs significant in several values from serum, especially in 

a lower pH and higher PO2 and PCO2. Furthermore, the fluid shows nearly half of the 

serum protein (g/L) concentration (113).  

Usually, after complete healing and accumulation of non-hemorrhagic interstitial fluid 

the cages are infected by percutaneous injection (113). Only S. epidermidis infection is 

applied perioperatively because it is not persistent if bacteria are applied postoperatively 

(39). Zimmerli et al. and Kristian et al. demonstrated in guinea pigs and mice, 

respectively, that a persistent infection is inducible with a very low inoculum (≈100 to 

1000 CFU). Before an infection the median granulocyte content in the cage fluid is about 

8 x 105 PMNs/mL. After infection the number of PMNs is increasing proportional to the 

number of bacteria (55, 118).  

 

1.4 Daptomycin 

Daptomycin (DAP) was discovered in the early 1980s and first used as an intravenous 

antibiotic agent for serious Gram-positive infections. Early clinical trails in which DAP at 

2 mg/kg/day or at 3 mg/kg/12h was given were stopped due to unexpected treatment 

failures. Later clinical studies with increasing dosages (4 mg/kg/12h) to improve the 

clinical efficacy were suspended due to musculoskeletal toxicity (36). Further studies 

with DAP were ceased. But, due to the strong increase of bacterial resistance among 
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Gram-positive microorganisms in the 1990s, new efforts to study and develop DAP were 

favoured (84). In 2000 it turned out that toxicity to skeletal muscle in dogs was lower if 

DAP was given only once per day compared with a twice-daily administration (71). 

Subsequently, clinical studies showed rare skeletal muscle toxicity with a once daily 

regimen of DAP (36). Finally, successful outcomes in studies of patients with 

complicated skin and skin-structure infection (cSSSI) associated with susceptible strains 

of Gram-positive microorganisms led to the approval of DAP at 4 mg/kg/day in the US 

by the Food and Drug Administration (FDA) in 2003 (23). Today 4 mg/kg/day is 

approved for the treatment of cSSSI in Europe and 6 mg/kg/day for the treatment of S. 

aureus bacteraemia and right-sided infective endocarditis in the US and in Europe (18). 

  

1.4.1 In vitro potency of daptomycin 

The European Committee on Antimicrobial Susceptibility Testing (EUCAST) defines the 

breakpoint of susceptibility as a minimal inhibitory concentration (MIC) of ≤1 µg/ml 

(25). 

DAP shows potential bactericidal activity against a wide range of aerobic and anaerobic 

Gram-positive bacteria including multiple antibiotic-susceptible and -resistant strains. 

The spectrum ranges from MSSA and MRSA to glycopeptide-intermediate S. aureus 

(GISA), methicillin-resistant coagulase-negative S. ssp. (CoNS), and vancomycin-

resistant enterococci (VRE). Furthermore, it is active against linezolid-resistant S. aureus, 

E. faecium, and a variety of streptococcal groups such as S. pyrogenes, S. agalatiae. 

Among the anaerobic bacteria DAP is efficient against Clostridium perfringes, C. 

difficile, and P. acnes (91).  
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Probably due to the presence of an outer membrane DAP is ineffective against Gram-

negative organisms (89). 

 

1.4.2 Pharmacokinetics 

Today, the FDA-approved dose of DAP is 4 to 6 mg/kg/day. However, for some serious 

infections clinicians use up to 8 or 10 mg/kg/day (3, 30, 52). Due to the emergence of 

side effects a once daily administration is recommended. Benvenuto and colleagues 

showed that DAP pharmacokinetics remain linear at doses up to 12 mg/kg (6).  

The half-life of 8-9 h is relatively long. The distribution volume is very low and mostly 

limited to serum and the interstitial fluid. Tissue penetration in human blister fluid is 68% 

of that in the plasma (23). DAP is eliminated primarily by the kidneys (18). 

DAP is 90 to 93% bound to serum proteins, primarily albumin. This binding is weak and 

reversible in contrast to its binding to the bacterial membrane. The addition of serum 

proteins to DAP in vitro leads to an increase in MIC because of altered free calcium 

concentration. However, within the human body physiological mechanisms highly 

regulate free extracellular calcium concentrations (range of 1.15 to 1,31 mM) (23).  

The post-antibiotic effect, i.e. the suppression of bacterial growth that persists after 

exposure of microorganisms to antibiotic, is long for DAP (23). 

 

1.4.3 Structure 

DAP is a fermentation product from Streptomyces roseosporus. It belongs to the 

lipopeptide class that is characterized by a peptide chain and an attached fatty acid side 
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chain. The lipopeptides classified into linear and cyclic lipopeptides. According to their 

biological activities the cyclic lipopeptides are divided into four groups: active against 

Gram-negative and Gram-positive bacteria, against fungi and mycobacteria (12).  

DAP, formerly Ly-146032, belongs to the cyclic lipopeptides with high bactericidal 

activity against Gram-positive bacteria (12). It is composed of a 13-member amino acid 

water-soluble (hydrophilic) core and a lipid soluble (lipophilic) 10-carbon tail (Figure 

1.5). An ester bond links the ten-membered ring. One site of the molecule includes 

hydrophobic moieties, while neutral polar and anionic residues are localized at the other 

site, resulting into amphipathicity of the molecule. This amphiphilic character is 

important for its unique mechanism of action in which the large hydrophobic part 

interacts with the acyl-chain region of the bacterial membrane (23). 

 

Figure 1.5: Chemical structure of daptomycin (from (18)) 

 

1.4.4 Mechanism of action 

DAP is able to penetrate the staphylococcal biofilm (92) and, in contrast to most 

antibiotics, it does not require cell division or active metabolism for its bactericidal 
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activity (64). It seems that the bactericidal activity of DAP is similar to that of CAMPs, 

which mainly act on bacterial membranes (94).  

Based on their action the following multistep model was developed (Figure 1.6). First, 

DAP and calcium ions (Ca2+) at a molar ratio of 1:1 aggregate to a micelle of between 14 

and 16 monomers (38). This is accompanied by a change in conformation that locks DAP 

into the active version. Jung and colleagues demonstrated that in the absence of Ca2+ the 

minimal inhibitory concentration (MIC) of DAP is greater than 64 µg/mL while with 

increasing Ca2+ concentrations the MIC is gradually decreasing.  

 

Figure 1.6: Daptomycin mechanism of action (modified by (94)). Daptomycin binds to the 

cytoplasmic membrane of Gram-positive bacteria in a calcium (Ca2+)-dependent manner. This leads 

to membrane depolarization, release of intracellular potassium (K+) and subsequent cell death 

without lysis. 
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The interaction with Ca2+ is absolutely necessary because they neutralize the anionic 

charges. Therefore, the binding with Ca2+ increases the amphiphilic property and the 

solvent-exposed hydrophobic surface of DAP and promotes its association with the 

membrane head groups (45). Once DAP comes into close proximity with the membrane 

of Gram-positive bacteria, the micelle formation dissociates and DAP inserts into the 

bilayer. This step is accompanied by a second structural transition that needs both the 

presence of Ca2+ and lipids with negatively charged head groups. Within the membrane, 

oligomerization may occur, followed by disruption of the functional integrity of the 

bacterial membrane with formation of pores. This triggers the release of intracellular 

potassium ions, which leads to membrane depolarization and therefore rapid cell death 

(84, 89, 94). Using transmission electron microscopy and fluorometric methods it was 

shown that the rapid cell death does not involve cell lysis (17).  

It is still unclear whether DAP arrests DNA, RNA and protein synthesis. In addition, a 

dual mechanism of action for DAP involving cell wall and cell membrane targets was 

suggested after transcriptome analysis of S. aureus (66). 

 

1.4.5 Mechanism of resistance 

It is often documented that due to the unique mechanism of action the risk of bactericidal 

resistance against DAP is low. However, during the last years clinical S. aureus strains 

with an increase in the MIC were reported in association with DAP therapy (28, 44). 

These resistances arise at low frequencies and result in small MIC changes. In vitro, 

resistant mutants can be generated after more than 20 passages in presence of DAP 

indicating a low adaptation rate to DAP (46, 88). However, individual mutations resulting 
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in increased resistance were associated with alterations in mprF, rpoB and rpoC, and 

yycG (2). 

The MprF protein is a large bifunctional integral membrane protein catalyzing first the 

binding of Lys to the negatively charged lipid PG at the inner leaflet of the membrane 

and second the translocation of Lys-PG to the outer leaflet of the membrane. This results 

in neutralization of the membrane surface and provides CAMP resistance (24). A 

mutational insertion into this gene leads to more susceptibility to CAMP (77). DAP 

resistant strains with a mutation in this gene have membranes with higher Lys-PG to PG 

ratios and bind less DAP than the wt (28, 44). 

It is still unknown how mutations in the genes rpoB and rpoC influence the susceptibility 

to DAP, but it is believed that due to interactions between RNA polymerase and one or 

more sigma factors transcription of one or more key genes is altered (mprF or yycG) (2).  

YycG is a membrane spanning sensor/histidine kinase of the two-component system 

YycFG. In S. aureus an enhanced expression of YycFG leads to increased peptidoglycan 

biosynthesis and biofilm formation, while the depletion causes cell death without lysis 

(22). It is proposed that DAP blocks signal transduction by binding to YycG resulting in 

histidine kinases with altered DAP affinities (2). 

 

1.4.6 Safety and tolerability 

Usually, DAP is well tolerated. However, some patients develop side effects in skeletal 

muscles. Former studies with a twice-daily administration lead to skeletal myopathy 

resulting in the stop of clinical trails. However, muscle degenerations were found to be 

reversible and related more to the interval between doses than to the given concentration 
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(71). Over long time, no data exist which clarified the exact mechanism responsible for 

these side effects. Previously, histochemical and immunohistochemical analysis of 

skeletal muscle of rats demonstrated that a twice-daily dose of DAP leads to infiltration 

of multiple muscle fibers with macrophages. In contrast, a one-day dose showed no effect 

on skeletal muscles. The authors suggested that the loss of sarcolemmal integrity might 

be the trigger for the effect of DAP on skeletal muscles. The breaching of plasma 

membrane integrity causes a Ca2+ leakage from the extracellular compartment into the 

myofibers resulting in cell death (53). 
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2 Aim of the thesis 

With the increasing number of joint replacements in the growing older population, 

prevention and treatment of implant-associated infections has become priority. But these 

infections are difficult to treat because implants remain devoid of a microcirculation, 

which is crucial for host defence and for the delivery of antibiotics. Microorganisms 

growing in biofilms typically cause implant infections. The biofilm confesses protection 

to bacteria against antimicrobial agents and host defence. Therefore, an antimicrobial 

active against implant infections should have bactericidal activity against surface-

adhering, slow-growing, and biofilm-producing bacteria. Rifampin fulfils all 

requirements for staphylococci, but is not useful as mono-therapy. Consequently, other 

drugs or combinations of different drugs are needed. Therefore, the question arose 

whether the lipopeptide daptomycin, whose target is the bacterial membrane of Gram-

positive bacteria, is a promising candidate for the treatment of implant-associated MRSA 

infections.  

The first aim of this thesis was to assess the efficacy of daptomycin against MRSA in 

vitro and in vivo. Because rifampin-containing antimicrobial regimes were able to 

eradicate staphylococcal biofilms in vitro and in vivo, the activity of daptomycin in 

combination with rifampin in a tissue cage-associated infection model was evaluated and 

compared to the efficacy of daptomycin alone and to three other antibiotics commonly 

used against MRSA. 

Because in vitro data of daptomycin did not predict in vivo success of the mono-therapy 

in the implant-associated infection model, in the second part we intended to understand 
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the mechanism of daptomycin resistance in staphylococci in vitro and in vivo. The 

question arose whether the in vivo daptomycin efficacy is influenced by time and 

inoculum of infection. Therefore, we evaluated whether a shorter infection time and a 

lower inoculum of MRSA lead to the eradication of bacteria. A special interest was to 

investigate the in vitro efficacy of daptomycin against adherent staphylococci. In 

addition, the necessity of calcium ions for the eradication of adherent staphylococci was 

examined.  
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3 Results 

3.1 Part 1: Efficacy of daptomycin in implant-associated infection due to 

methicillin-resistant Staphylococcus aureus: importance of combination with 

rifampin 
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Limited treatment options are available for implant-associated infections caused by methicillin (meticillin)-
resistant Staphylococcus aureus (MRSA). We compared the activity of daptomycin (alone and with rifampin
[rifampicin]) with the activities of other antimicrobial regimens against MRSA ATCC 43300 in the guinea pig
foreign-body infection model. The daptomycin MIC and the minimum bactericidal concentration in logarith-
mic phase and stationary growth phase of MRSA were 0.625, 0.625, and 20 !g/ml, respectively. In time-kill
studies, daptomycin showed rapid and concentration-dependent killing of MRSA in stationary growth phase.
At concentrations above 20 !g/ml, daptomycin reduced the counts by >3 log10 CFU/ml in 2 to 4 h. In sterile
cage fluid, daptomycin peak concentrations of 23.1, 46.3, and 53.7 !g/ml were reached 4 to 6 h after the
administration of single intraperitoneal doses of 20, 30, and 40 mg/kg of body weight, respectively. In treatment
studies, daptomycin alone reduced the planktonic MRSA counts by 0.3 log10 CFU/ml, whereas in combination
with rifampin, a reduction in the counts of >6 log10 CFU/ml was observed. Vancomycin and daptomycin (at
both doses) were unable to cure any cage-associated infection when they were given as monotherapy, whereas
rifampin alone cured the infections in 33% of the cages. In combination with rifampin, daptomycin showed cure
rates of 25% (at 20 mg/kg) and 67% (at 30 mg/kg), vancomycin showed a cure rate of 8%, linezolid showed a
cure rate of 0%, and levofloxacin showed a cure rate of 58%. In addition, daptomycin at a high dose (30 mg/kg)
completely prevented the emergence of rifampin resistance in planktonic and adherent MRSA cells. Dapto-
mycin at a high dose, corresponding to 6 mg/kg in humans, in combination with rifampin showed the highest
activity against planktonic and adherent MRSA. Daptomycin plus rifampin is a promising treatment option for
implant-associated MRSA infections.

Implants are increasingly used in modern medicine to re-
place a compromised biological function or missing anatomical
structure. Periprosthetic infections represent a devastating
complication, causing high rates of morbidity and consuming
considerable health care resources. Implant-associated infec-
tions are caused by microorganisms growing adherent to the
device surface and embedded in an extracellular polymeric
matrix, a complex three-dimensional structure called a micro-
bial biofilm (8). Bacterial communities in biofilms cause per-
sistent infection due to increased resistance to antibiotics and
the immune system and the difficulty with eradicating them
from the implant (6).

Staphylococcus aureus is one of the leading pathogens caus-
ing implant-associated infections. Successful treatment re-
quires the use of bactericidal drugs acting on surface-adhering
microorganisms, which predominantly exist in the stationary
growth phase. Previous in vitro, experimental, and clinical

studies demonstrated that rifampin (rifampicin)-containing an-
timicrobial regimens were able to eradicate staphylococcal bio-
films and cure implant-associated infections (23, 25). Quino-
lones are often used in combination with rifampin in order to
prevent the emergence of rifampin resistance (4, 19, 21). How-
ever, methicillin (meticillin)-resistant S. aureus (MRSA)
strains are often resistant to quinolones. In addition, MRSA
strains were recently shown to have decreased susceptibility to
vancomycin, reducing the efficacy of this drug. Therefore, al-
ternative drugs for use in combination with rifampin against
implant-associated infections are needed (12, 20).

Daptomycin is a negatively charged cyclic lipopeptide with
bactericidal activity against gram-positive organisms, including
MRSA (17). The drug inserts into the bacterial cytoplasmic
membrane in a calcium-dependent fashion, leading to rapid
cell death without lysis, and causing only minimal inflamma-
tion (15). Daptomycin has been well tolerated in healthy vol-
unteers dosed with up to 12 mg/kg of body weight intrave-
nously for 14 days (2). Only limited data on the use of
daptomycin in combination with rifampin against staphylococ-
cal implant-associated infections are available.

In this study, we investigated the activity of daptomycin
against MRSA ATCC 43300 in vitro. In addition, we evaluated
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andrej.trampuz@chuv.ch.

! Published ahead of print on 13 April 2009.

2719



Results 

 45 

 

 

the activity of daptomycin in combination with rifampin in a
cage-associated infection model in guinea pigs and compared
the efficacy of the treatment with the efficacies of three other
antibiotics commonly used against MRSA, vancomycin, lin-
ezolid, and levofloxacin (alone and in combination with ri-
fampin).

(Part of the results of the present study were presented at
the 48th Interscience Conference on Antimicrobial Agents and
Chemotherapy, Washington, DC, 24 to 29 October 2008 [abstr.
B-1000].)

MATERIALS AND METHODS

Study microorganisms. S. aureus strain ATCC 43300, which is resistant to
methicillin and which is susceptible to rifampin, vancomycin, linezolid, and levo-
floxacin, was studied. For the testing of rifampin resistance, rifampin-resistant
clinical S. aureus strain T4050 and rifampin-susceptible laboratory S. aureus
strain ATCC 29213 were used. The strains were stored at !70°C by using the
cryovial bead preservation system (Microbank; Pro-Lab Diagnostics, Richmond
Hill, Ontario, Canada). For preparation of the inoculum, single beads were
transferred to 1 ml of sterile trypticase soy broth (TSB; Becton Dickinson and
Company, Le Pont de Claix, France) and incubated for 7 h at 37°C. This
preculture was then diluted 1:100 in fresh TSB and incubated overnight at 37°C
without shaking. The bacteria were washed twice and resuspended in sterile and
pyrogen-free 0.9% saline to the desired concentration. Bacterial concentrations
were determined by plating of aliquots from appropriate dilutions on agar,
followed by colony counting after 24 h of incubation at 37°C.

Antimicrobial agents. Daptomycin for injection was supplied by Novartis
Pharma Schweiz AG (Bern, Switzerland). A stock solution of 50 mg/ml was
prepared in sterile and pyrogen-free 0.9% saline. All other solutions were pre-
pared in sterile water. Rifampin (Sandoz AG, Steinhausen, Switzerland) was
prepared as a 60-mg/ml stock solution. Levofloxacin hemihydrate injectable
solution (5 mg/ml) was purchased from Aventis Pharma AG (Zurich, Switzer-
land). Vancomycin was supplied by Teva Pharma AG (Aesch, Switzerland), and
a stock solution of 50 mg/ml was prepared. Linezolid was provided as a purified
powder from the manufacturer (Pfizer AG, Zurich, Switzerland), and a stock
solution of 2.5 mg/ml was prepared.

In vitro antimicrobial susceptibility. A standard inoculum of 1 " 105 to 5 "
105 CFU/ml of MRSA strain ATCC 43300 was used. The MIC and the minimal
bactericidal concentration (MBC) in the logarithmic growth phase (MBClog)
were determined by using twofold dilutions of antimicrobial agents in Mueller-
Hinton broth supplemented with 50 mg/liter calcium ions (CaCl2), according to
the CLSI (formerly the NCCLS) guidelines (3). This concentration of calcium is
necessary for the antimicrobial activity of daptomycin to be exhibited (1). The
MIC was the lowest drug concentration that inhibited visible bacterial growth.
The MBClog was defined as the lowest antimicrobial concentration which killed
!99.9% of the initial bacterial count (i.e., !3 log10 CFU/ml) in 24 h (10). In
addition, the MBC was determined also in the stationary (nongrowing) growth
phase (MBCstat), reflecting the characteristics of microorganisms causing im-
plant-associated infections. MBCstat was determined by using overnight cultures
of S. aureus in nutrient-limited medium (0.01 M phosphate buffered saline [PBS],
pH 7.4) containing 0.1% glucose and 50 mg/liter calcium ions. In this medium,
the bacterial counts remained stable for up to 48 h. MBCstat was defined as the
lowest concentration which reduced the inoculum by !99.9% in 24 h. The
experiments were performed in triplicate.

Time-kill study in stationary growth phase. Glass tubes containing 10 ml PBS
supplemented with 50 mg/liter calcium ions and 0.1% glucose were incubated
with daptomycin at concentrations representing 4", 8", 16", 32", 64", and
128" the MIC of the test strain at 37°C without shaking. Bacterial survival in the
antimicrobial-free culture served as a control. To determine whether the inoc-
ulum size affects the killing activity of daptomycin, a low initial inoculum (3 " 105

CFU/ml) and a high initial inoculum (5 " 106 CFU/ml) were tested. For the
high-inoculum assays, PBS with 50 mg/liter calcium ions was supplemented with
0.001% TSB to keep the bacterial counts in the antimicrobial-free culture stable
for at least 24 h. Colony counts were determined immediately before addition of
daptomycin (0 h) and after 2, 4, 6, 8, and 24 h of incubation with daptomycin at
the appropriate concentrations. Before sampling of the probes, the tubes were
gently vortexed and colony counts were determined by plating aliquots of ap-
propriate dilutions on Mueller-Hinton agar. A bactericidal effect was defined as
a !3-log10 (!99.9%) reduction of the initial bacterial count (11). The experi-
ments were performed in triplicate.

Animal model. We used a guinea pig model of foreign-body infection which
was established by Zimmerli et al. (24). Guinea pigs (Charles River, Sulzfeld,
Germany) were kept in the Animal House of the Department of Biomedicine,
University Hospital Basel. The animal experiments were performed according to
the regulations of Swiss veterinary law. In brief, four sterile polytetrafluoroeth-
ylene (Teflon) tubes (10 by 30 mm) perforated with 130 holes (Angst # Pfister
AG, Zurich, Switzerland) were aseptically implanted into the flanks of male
guinea pigs weighing at least 500 g. The animals were anesthetized with an
intramuscular injection of ketamine (20 mg/kg; Parke-Davis, Zurich, Switzer-
land) and xylazine (4 mg/kg; Gräub, Bern, Switzerland). The experiments were
started after complete wound healing (i.e., approximately 2 weeks after surgery).
Before each experiment, the cages were checked for sterility by culturing the
aspirated cage fluid. The guinea pigs were weighed daily to monitor their well-
being during the experiment and to adjust the antibiotic doses.

Pharmacokinetic study. Pharmacokinetic studies were performed with sterile
tissue cages. A single dose of 20, 30, and 40 mg/kg daptomycin was injected
intraperitoneally (three animals and 12 cages per dose group). Cage fluid was
aspirated by percutaneous cage puncture at 1, 2, 4, 6, 8, 10, 12, and 24 h after
drug administration. For each drug dose, fluid from six cages per time point (two
cages per time point and animal) was collected. Aliquots of 150 $l of cage fluid
were transferred to tubes containing 15 $l of filter-sterilized 5% polyanetholsul-
fonic acid sodium salt (Sigma-Aldrich, Buchs, Switzerland), mixed by hand, and
centrifuged at 2,100 " g for 7 min. The supernatant was stored at !20°C until
further analysis.

(i) High-performance liquid chromatography assay, followed by mass spec-
trometry. Daptomycin standards were prepared in cage fluid by spiking cage fluid
from untreated animals with daptomycin solution in water-methanol (1/1) to give
concentrations in the range of 0.2 to 150 $g/ml. Two hundred microliters of
precipitation solution (methanol, acetonitrile, 1 mM zinc sulfate) containing 2 $g
of CB183253 (internal standard) was added to 50 $l of each of the standards,
samples, and controls. After vortexing of the samples and centrifugation, 100 $l
of the supernatant was diluted with water-methanol (1/1) and 10 $l was injected
into the liquid chromatography-mass spectrometry apparatus (TSQ; Thermo
Fisher Scientific). Separation of the components was performed on a C18 column
(Uptisphere; particle size, 5 $m; 125 by 2 mm) by using acetonitrile and 0.1%
formic acid as the mobile phase. Daptomycin was quantified by analyzingm/z 8113
341, and the internal standard was quantified by analyzing m/z 837 3 393. The
daptomycin concentrations were calculated by linear regression of the peak
ratios between daptomycin and the internal standard.

(ii) Pharmacokinetic parameters. Individual concentration-time data were
analyzed by using the WinNonlin software package (Pharsight Corp., Mountain
View, CA). For each time point, the mean fluid concentration of the six cages
was used. Mean % standard deviation (SD) values of the peak (maximum)
concentration (Cmax), the time required to reach Cmax (Tmax), the trough (min-
imum) concentration at 24 h after dosing (Cmin), the half-life (t1/2), and the area
under the concentration-time curve (AUC) from time zero to 24 h (AUC0–24)
were calculated.

Antimicrobial treatment study. Cages were infected with the MRSA test strain
by percutaneous injection of 200 $l bacterial suspension containing 4 " 106 CFU
(day 0). The establishment of an infection was confirmed by quantitative culture
of cage fluid 3 days later, immediately before the start of treatment. Three
animals were randomized into each of the following 10 treatment groups: saline
(control), rifampin at 12.5 mg/kg alone, linezolid at 50 mg/kg plus rifampin at
12.5 mg/kg, levofloxacin at 10 mg/kg plus rifampin at 12.5 mg/kg, vancomycin at
15 mg/kg alone and in combination with rifampin at 12.5 mg/kg, and daptomycin
at 20 mg/kg and 30 mg/kg alone and in combination with rifampin at 12.5 mg/kg.
The antimicrobial agents were given intraperitoneally for 4 days. The dosing
interval was 12 h for all drugs except daptomycin, which was given every 24 h.

(i) Efficacy of treatment against planktonic bacteria. Bacterial counts (median
and interquartile range) were determined before the start of treatment (i.e., day
3), during treatment (i.e., day 5), and 5 days after the completion of treatment
(i.e., day 12). The efficacy of each treatment against planktonic bacteria in cage
fluid was expressed as the difference in the bacterial counts (&log10 CFU/ml)
before and 5 days after the completion of treatment and the clearance rate (in
percent), defined as the number of cage fluid samples without growth of MRSA
divided by the total number of cages in the individual treatment group.

(ii) Efficacy of treatment against adherent bacteria. Five days after the end of
treatment (i.e., day 12), the animals were sacrificed and the tissue cages were
removed under aseptic conditions and incubated at 37°C in 5 ml TSB. After 48 h
of incubation, 100 $l of the cage culture was spread on Columbia sheep blood
agar plates (Becton Dickinson) and analyzed for bacterial growth. A positive
culture of MRSA was defined as a treatment failure. The efficacy of treatment
against adherent bacteria was expressed as the cure rate (in percent), defined as
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the number of cages without growth divided by the total number of cages in the
individual treatment group.

Emergence of antimicrobial resistance in vivo. Positive cultures of samples
from explanted cages were screened for the in vivo emergence of resistance to
rifampin, vancomycin, and daptomycin. In addition, all positive cultures of sam-
ples from cage fluid were screened for rifampin resistance. Colonies were col-
lected from subcultures on agar; suspended in saline to the turbidity of a Mc-

Farland 0.5 standard; and spread on Mueller-Hinton agar plates containing 2
!g/ml of daptomycin, 1 !g/ml of rifampin, or 16 !g/ml of vancomycin. The plates
were incubated at 37°C and screened for growth after 24 h.

Evaluation of antimicrobial toxicity. To evaluate the potential toxicity of
daptomycin (20 mg/kg) administered with or without rifampin (three animals per
group), histopathologic analysis of liver, kidney, and skeletal muscle tissues was
performed. The corresponding organs of the saline-treated animals served as
controls. The organs were fixed overnight in 4% buffered formalin, rinsed with
PBS, and embedded into paraffin immediately after the animals were killed.
Sections of 3 to 4 !m were mounted on slides and dried overnight at 37°C. The
specimen sections were stained with hematoxylin-eosin and inspected by light
microscopy.

Statistical calculations. Comparisons were performed by the Mann-Whitney
U test for continuous variables and the two-sided "2 test or Fisher’s exact test for
categorical variables, as appropriate. For all tests, differences were considered
significant when P values were #0.05. The graphs in the figures were plotted with
Prism (version 5.0a) software (GraphPad Software, La Jolla, CA).

RESULTS

In vitro antimicrobial susceptibility. Table 1 summarizes the
in vitro susceptibility of MRSA ATCC 43300. Of the antibiot-
ics tested, rifampin showed the lowest MBCstat (2.5 !g/ml),
followed by daptomycin (20 !g/ml) and vancomycin (32 !g/
ml), whereas linezolid and levofloxacin did not kill MRSA in
the stationary growth phase. The MBCstat was at least 16-fold
higher than the MBClog for all agents (except linezolid, which
had only a bacteriostatic effect).

In vitro time-kill study in stationary growth phase. In the
low-inoculum and the high-inoculum studies, the bacterial
counts remained within $5% of the initial inoculum in the
antimicrobial-free culture for 24 h. The time-kill curves in Fig.
1 demonstrate that daptomycin had rapid and concentration-
dependent bactericidal activity against stationary-phase
MRSA with a low inoculum (Fig. 1A) as well as a high inoc-
ulum (Fig. 1B). At 20 !g/ml (32% MIC), which corresponded
to the MBCstat, daptomycin reduced the counts by !3 log10

FIG. 1. Time-kill curve of a low inoculum (3 % 105 CFU/ml)
(A) and a high inoculum (5 % 106 CFU/ml) (B) of MRSA in stationary
growth phase exposed to increasing daptomycin concentrations (2.5
!g/ml to 80 !g/ml) corresponding to 4% to 128% MIC. Values are
means $ SDs. The experiments were performed in triplicate. The
horizontal dotted lines indicates a 3-log10 reduction of the numbers of
CFU/ml from the initial inoculum.

FIG. 2. Pharmacokinetics of daptomycin in sterile cage fluids after
administration of single intraperitoneal doses of daptomycin at 20
mg/kg (circles), 30 mg/kg (squares), and 40 mg/kg (diamonds). Values
are means $ SDs. The horizontal dotted line indicates the MBCstat of
MRSA for daptomycin.

TABLE 1. In vitro susceptibility of MRSA ATCC 43300

Antibiotica MIC
(!g/ml)

MBClog
(!g/ml)

MBCstat
(!g/ml)

MBCstat/MBClog
ratio

DAP 0.625 0.625 20 32
RIF 0.01 0.08 2.5 31
VAN 1 2 32 16
LZD 2.5 &20 &20 NAb

LVX 0.16 0.63 &20 &32
a DAP, daptomycin; RIF, rifampin; VAN, vancomycin; LZD, linezolid; LVX,

levofloxacin.
b NA, not applicable.
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CFU after 4 to 6 h. At concentrations above 20 !g/ml, dapto-
mycin reduced the counts by "3 log10 CFU/ml in 2 to 4 h.

Pharmacokinetic study. Figure 2 shows the concentration-
time curves in sterile cage fluid after the administration of a
single intraperitoneal dose of 20, 30, or 40 mg/kg daptomycin.
Table 2 summarizes the values of the pharmacokinetic para-
meters calculated. For all three doses administered, the peak
Cmaxs were above the MBCstats, whereas the concentrations of
daptomycin after 24 h (Cmin) remained above the MIC and
MBClog but not above the MBCstat. The AUC0–24 increased
with the dose from 247 to 662 !g · h/ml. The ratio of the AUC "
MBCstat to AUC0–24 increased in a dose-dependent manner
from 5% (at 20 mg/kg) to 26% (at 30 mg/kg) and 39% (at 40
mg/kg).

Antimicrobial treatment study. Three days after inoculation,
the bacterial counts surpassed the initial inoculum two- to
threefold in all infected animals (data not shown). The plank-
tonic bacterial counts (median # interquartile range) in the
cage fluid of the control group (treated with saline) increased
by 1.4 # 0.1 log10 CFU/ml (Fig. 3); no bacterial clearance (Fig.
4A) or spontaneous cure (Fig. 4B) was observed in the un-
treated group.

(i) Efficacy of treatment against planktonic bacteria. Figure
3 shows the killing of planktonic bacteria in cage fluid 5 days
after the completion of therapy (compared to the bacterial
counts before treatment start). By the use of monotherapy, the
planktonic bacterial counts increased by $1 log10 CFU/ml with
vancomycin or daptomycin at 20 mg/kg and decreased by 0.3
log10 CFU/ml with daptomycin at 30 mg/kg. In combination

FIG. 3. Killing of planktonic MRSA in cage fluid 5 days after the
completion of therapy. Positive values on the y axis denote the net
growth and negative values denote the net killing. Values are medi-
ans # interquartile ranges. The numbers in parentheses indicate the
dose (in mg/kg) administered twice daily for all drugs except dapto-
mycin, which was administered once daily. DAP, daptomycin; RIF,
rifampin; VAN, vancomycin; LZD, linezolid; LVX, levofloxacin; !,
P $ 0.05; !!, P $ 0.01; !!!, P $ 0.001.

FIG. 4. Clearance rate of planktonic MRSA (A) and cure rate of
adherent MRSA in explanted cages (B). The numbers in parentheses
indicate the dose (in mg/kg) administered twice daily for all drugs
except daptomycin, which was administered once daily. DAP, dapto-
mycin; RIF, rifampin; VAN, vancomycin; LZD, linezolid; LVX, levo-
floxacin; *, P $ 0.05; **, P $ 0.01.

TABLE 2. Pharmacokinetic parameters of daptomycin in cage fluid after a single intraperitoneal dose and linked to the in vitro susceptibility
parameters of the MRSA strain testeda

Dose
(mg/kg)

Cmax
(!g/ml)

Cmin
(!g/ml) Tmax (h) t1/2 (h) AUC0–24

(!g · h/ml) Cmax/MIC Cmax/MBClog Cmax/MBCstat

AUC "
MBCstat/
AUC0–24

20 23.1 # 7.0 1.5 # 1.1 6.0 # 2.0 4.8 # 1.7 247 # 52 36.9 # 11.2 36.9 # 11.2 1.2 # 0.3 0.05 # 0.04
30 46.3 # 8.8 9.8 # 2.9 4.7 # 1.2 8.7 # 0.5 548 # 65 74.0 # 14.1 74.0 # 14.1 2.3 # 0.4 0.26 # 0.04
40 53.7 # 1.3 4.1 # 2.3 6.0 # 0.0 4.5 # 1.2 662 # 10 85.8 # 2.1 85.8 # 2.1 2.7 # 0.1 0.39 # 0.01
a Values represent means # SDs.
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with rifampin, levofloxacin and daptomycin at 20 and 30 mg/kg
killed planktonic MRSA more efficiently (7.4 log10, 6.6 log10,
and 6.5 log10 CFU/ml, respectively) than linezolid or vanco-
mycin (3.3 log10 and 2.8 log10 CFU/ml, respectively) (P ! 0.01
for all groups). In comparison to monotherapy, vancomycin
plus rifampin was significantly more active against planktonic
bacteria (P " 0.019). Similarly, daptomycin performed signif-
icantly better in combination with rifampin (P ! 0.0001) in a
manner that was independent of the dose administered.

Figure 4A shows the rate of clearance of planktonic bacteria
in cage fluid. Vancomycin and daptomycin monotherapy were
unable to clear planktonic MRSA. In combination with ri-
fampin, levofloxacin and daptomycin showed higher clearance
rates (all 75%) than linezolid (17%), vancomycin (33%), and
rifampin (50%) alone.

(ii) Efficacy of treatment against adherent bacteria. Figure
4B shows the efficacy of treatment against adherent bacteria.
Vancomycin and daptomycin (at both doses) were unable to
cure any cage-associated infection when they were given as
monotherapy, whereas rifampin alone cured the infections in
33% of the cages. In combination with rifampin, levofloxacin
(58%) and daptomycin at 30 mg/kg (67%) cured significantly
more infected cages than vancomycin (8%) and linezolid (0%).

Emergence of antimicrobial resistance in vivo. Table 3
shows the rates of emergence of rifampin resistance in plank-
tonic MRSA during and after rifampin monotherapy (both
17%) as well as in adherent MRSA after treatment (25%).
Rifampin resistance emerged more often during therapy with
vancomycin plus rifampin (58%) than during therapy with lin-
ezolid plus rifampin (8%) or daptomycin at 20 mg/kg plus
rifampin (17%). Levofloxacin plus rifampin and daptomycin at
30 mg/kg plus rifampin completely prevented the emergence of
rifampin resistance in planktonic as well as adherent bacteria.
No MRSA strain in cage fluid cultures from animals treated
with daptomycin or vancomycin alone or in combination with
rifampin developed resistance to daptomycin or vancomycin
(data not shown).

Evaluation of antimicrobial toxicity. In animals treated with
daptomycin (20 mg/kg), no acute lesions in the kidneys, liver,
or skeletal muscles, such as acute muscle fiber necrosis (rhab-

domyolysis), were observed. In animals treated with daptomy-
cin and rifampin, liver histology showed mild inflammation.

DISCUSSION

Daptomycin was highly bactericidal in the logarithmic
growth phase as well as in the stationary growth phase of
MRSA ATCC 43300. These in vitro studies suggested that
daptomycin may be efficacious in eradicating MRSA implant-
associated infections. We used the cage-associated infection
model in guinea pigs, which has been validated for use for the
evaluation of drug activity against implant-associated infec-
tions (7, 9, 25). In contrast to the cage model in mice and rats
(14), no spontaneous cure of infected cages occurs in guinea
pigs, which resembles the situation in humans. Assuming an
approximately 50% penetration into cage fluid, daptomycin
doses of 20, 30, and 40 mg/kg in guinea pig correspond to
human doses of 4, 6, and 8 mg/kg, respectively (2, 5, 22).
Therefore, daptomycin was used at 20 and 30 mg/kg in subse-
quent treatment studies with guinea pigs.

In the treatment studies, none of the monotherapy regimens
tested (except rifampin monotherapy) cleared planktonic
MRSA or eradicated adherent MRSA from the cages. It might
be possible that the concentrations of daptomycin adminis-
tered were not sufficiently high to eradicate biofilm-associated
MRSA. In a recent study, daptomycin at a concentration of 64
#g/ml had improved activity against staphylococci embedded
in a biofilm (16). Therefore, a higher concentration of dapto-
mycin corresponding to human doses above 6 mg/kg should be
examined in future studies with animals.

In contrast, when levofloxacin or daptomycin at a high dose
(30 mg/kg) were combined with rifampin, they showed high
degrees of efficacy against the adherent bacteria. These data
suggest that addition of rifampin to quinolones or lipopetides
is important for the eradication of staphylococcal implant-
associated infections. Interestingly, in combination with ri-
fampin, vancomycin and linezolid, both first-line drugs used
against MRSA, had lower cure rates. Furthermore, a higher
daptomycin dose (30 mg/kg versus 20 mg/kg) in combination
with rifampin was associated with a higher cure rate. The
importance of rifampin-containing regimens was also demon-
strated in vitro, when rifampin in combination with daptomycin
was significantly more effective in eliminating MRSA from the
biofilm than daptomycin alone (13).

In a previous study (18), levofloxacin alone was unable to
eradicate methicillin-susceptible S. aureus, even though quin-
olone monotherapy cured about half of the staphylococcal
implant-associated infections in the clinical setting (25). This
reflects the stringent experimental conditions which were ap-
plied in the present experiments, in which a high infecting
inoculum, a lack of debridement of the infected cages, and a
short duration of antibiotic treatment (4 days) were used.
These conditions were chosen in order to better discriminate
the differences in efficacies of the antibiotics tested and to
determine the risk of emergence of rifampin resistance. Anti-
microbial regimens effective in the present animal model will
probably also be effective in the clinical setting.

Rifampin resistance emerged in adherent MRSA from cage
cultures with rifampin monotherapy; the rate of resistance was
higher with addition of vancomycin and lower with addition of

TABLE 3. Rates of emergence of rifampin resistance in cage fluid
during and after treatment (planktonic bacteria) and in

culture from explanted cages (adherent bacteria)

Treatment (dose)a

Planktonic bacteriab Adherent
bacteriac

after
treatment
(day 12)

During
treatment

(day 6)

After
treatment
(day 12)

RIF (12.5) 2/12 (17) 2/12 (17) 3/12 (25)
VAN (15) $ RIF (12.5) 4/12 (33) 5/12 (42) 7/12 (58)
LZD (50) $ RIF (12.5) 0/12 (0) 0/12 (0) 1/12 (8)
LVX (10) $ RIF (12.5) 0/12 (0) 0/12 (0) 0/12 (0)
DAP (20) $ RIF (12.5) 0/12 (0) 0/12 (0) 2/12 (17)
DAP (30) $ RIF (12.5) 0/12 (0) 0/12 (0) 0/12 (0)

a The doses are in mg/kg and were administered every 12 h for all drugs except
daptomycin, which was administered every 24 h. RIF, rifampin; VAN, vancomy-
cin; LZD, linezolid; LVX, levofloxacin; DAP, daptomycin.

b The data represent the number of cage fluid specimens with rifampin-resis-
tant colonies/total number of all cage fluids (percent).

c The data represent the number of cage cultures with rifampin-resistant
colonies/total number of cage cultures (percent).
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daptomycin at 20 mg/kg or linezolid. Addition of levofloxacin
and daptomycin at a high dose completely prevented the emer-
gence of rifampin resistance. These data show the importance
of combining rifampin with an effective antibiofilm drug ad-
ministered at a sufficient dose.

In conclusion, daptomycin at a high once-daily dose, corre-
sponding to 6 mg/kg in humans, in combination with rifampin
showed the highest activity against planktonic and adherent
MRSA and prevented the emergence of rifampin resistance.
The cure rate achieved with this combination was comparable
to that achieved with levofloxacin plus rifampin but higher than
the one with vancomycin plus rifampin, which could not pre-
vent emergence of rifampin resistance. This raises concern
about vancomycin combination therapy. Since health care-as-
sociated MRSA strains are increasingly resistant to quino-
lones, daptomycin in combination with rifampin presents a
promising treatment option for implant-associated staphylo-
coccal infections.
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Abstract 

Daptomycin (DAP) is bactericidal against methicillin-resistant Staphylococcus aureus 

(MRSA) in vitro, but it failed to eradicate MRSA in an experimental model of implant-

associated infection. We therefore investigated various factors, which could explain 

treatment failure, by evaluating DAP activity, including the role of different cell wall 

components, adherence, biofilm, and calcium ions (Ca2+) in vitro and in vivo. 

In the tissue cage infection model, DAP was only active prophylactically and against low 

inocula. To identify the mechanisms of treatment failure against adherent 

microorganisms, the activity of DAP against S. aureus and S. epidermidis mutants 

differing in their capacity of biofilm formation and adherence, was determined. For 

planktonic staphylococci, the MIC was 0.625 µg/mL. It increased by alanylated 

lipoteichoic acid (LTA), since the ∆dltA mutant was more susceptible (p<0.05). For 

adherent staphylococci, DAP reduced biofilm at 30 µg/mL. However, it did not kill 

adherent bacteria up to 500 µg/mL, independent of biofilm biosynthesis (ica), nuclease 

(nuc1/nuc2), LPXTG-anchored adhesin (srtA), autolysin (atl) or alanyl-LTA (dltA). 

Resistance of adherent staphylococci was not due to mutations of adherent bacteria, since 

staphylococci became DAP-susceptible after detachment. Phenotypic resistance was not 

explained by inactivation of DAP or inability of initial Ca2+-DAP complex formation. 

However, addition of up to 100 mg/L (2.5 mmol/l) Ca2+ gradually improved bactericidal 

activity towards adherent staphylococci in vitro and increased the prevention rate in the 

cage-model from 40% to 60%. In summary, adherent staphylococci resist to DAP killing 

unless Ca2+ is supplemented to physiologic concentrations. 
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Introduction 

Prosthetic joints are increasingly used to maintain life quality of patients with damaged 

joints.  Hip and knee implants have good long-term results (21). However, they carry the 

risk of bacterial infection. Staphylococci (Staphylococcus (S.) epidermidis (30-43%) and 

S. aureus (12-23%)) are the most frequent causes of periprosthetic hip and knee 

infections (45). Immediately after implantation, extracellular plasma proteins cover the 

implant surface. Staphylococci adhere to these proteins through their microbial surface 

components recognizing adhesive matrix molecules (MSCRAMMs). Subsequently, 

staphylococci aggregate in an extracellular matrix, called biofilm, which consists mainly 

of polysaccharide intercellular adhesin (PIA) (12), extracellular DNA (33) and a few 

proteins (29). The biofilm matures into a three-dimensional structure and undergoes 

quorum sensing-controlled dispersion at its surface (29). The biosynthetic enzymes of 

PIA are encoded by the ica operon. This is controlled by global regulatory networks, 

which suppress virulence factor gene expression, and thereby maintain this special mode 

of growth (12, 17, 26, 29). The gene changes, which stabilize staphylococci in stationary 

phase in biofilm, may also explain the limited activity of antibiotics that target growing 

cells against bacteria in biofilm (6, 12, 29, 30). The biofilm further confers resistance 

against innate host defence by preventing bacterial complement binding and reducing 

phagocytosis (18, 42).  

For successful treatment of device-related infections, drugs with bactericidal effect on 

surface-adhering, slow-growing, and biofilm-producing microorganisms are needed. 

These antimicrobial compounds should penetrate the biofilm, act independently of the 

bacterial physiological state, and prevent further biofilm formation. So far, anti-biofilm 
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drugs such as dispersin, have been tested in vitro. However, none of the compounds 

significantly eradicated biofilms when applied alone (22, 29).  

A promising candidate might be the cyclic lipopeptide daptomycin (DAP). Despite its 

high affinity for proteins, it exhibits concentration-dependent bactericidal activity against 

Gram-positive organisms, including methicillin-resistant S. aureus (MRSA) (37). It leads 

to rapid calcium-dependent cell death due to membrane depolarization (16, 36, 39). The 

bacterial membrane is the only target for DAP. It has been previously shown that DAP 

does not require cell division or active metabolism for bactericidal activity, although it is 

more active against growing staphylococci (13, 23). However, we and others could 

previously show that DAP was not able to eradicate adherent staphylococci in an 

implant-associated infection model at clinically relevant doses (13, 28). We therefore 

investigated the mechanism of phenotypic resistance of adherent staphylococci to DAP in 

vitro and in vivo in the present study. 

Genotypic DAP resistance has been observed previously and was attributed to individual 

sequential mutations, which lead to modest increases in the MIC (2, 9). Single point 

mutations in mprF, rpoB and yycG were identified by comparative genome sequencing of 

clinical isolates and of laboratory-derived S. aureus with decreased susceptibility to DAP 

(7, 9). We found that DAP treatment failed to eliminate adherent staphylococci 

independently of biofilm formation. However, with increased Ca2+ concentration, 

efficacy of DAP increased against adherent bacterial cultures in vitro and in the implant 

model in vivo. 
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Material and Methods 

Bacterial strains and growth conditions. The following staphylococcal strains were 

used: Staphylococcus aureus (SA) ATCC 43300, a clinical isolate resistant to methicillin 

(MRSA), SA113 wild type (wt) (ATCC 35556) and its isogenic mutants ∆ica, 

∆nuc1/nuc2, ∆srtA, ∆atl, and ∆dltA (kindly provided by F. Götz and Andreas Peschel), S. 

epidermidis (SE) 1457 wt and its isogenic mutant ∆luxS::ermB (kindly provided by M. 

Otto). For the analysis of DAP concentrations in the tissue cage fluid, Kocuria rhizophila 

(ATCC 9341), formerly known as Micrococcus luteus, was used as indicator organism in 

the bioassay. 

The strains were stored at -70°C in a cryovial bead preservation system (Microbank, Pro-

Lab Diagnostics, Richmond Hill, Ontario, Canada). For preparation of the inoculum, a 

bead was incubated in 1 mL of trypticase soy broth (TSB, Becton Dickinson and 

Company, Allschwil, Switzerland) for 7 h at 37°C, diluted 1:100 in fresh TSB and 

incubated overnight at 37°C without shaking. The overnight culture was diluted 1:100 

and further incubated 5-6 h at 37°C to reach the logarithmic growth phase. Afterwards, 

bacteria were washed twice with 0.9% saline (Bichsel, Interlaken, Switzerland) and 

diluted to the needed inoculum. Bacterial numbers were determined by plating aliquots 

from appropriate dilutions on agar, followed by colony counting after 24 h of incubation 

at 37°C. 

 

Antimicrobial agents. Daptomycin was supplied by Novartis Pharma Schweiz AG 

(Bern, Switzerland). Stock solutions were prepared in pyrogen-free 0.9% saline. 
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Animal model. We used a mouse model of foreign-body infection established by 

Kristian et al. (19). The method was approved by the review board of the “Kantonale 

Veterinaeramt Basel-Stadt” (permit #1710). Experiments were conducted according to 

the regulations of the Swiss veterinary law. Nine to 11-week-old male C57BL/6 mice 

(Harlan Laboratories, Switzerland), kept in the Animal House of the Department of 

Biomedicine, University Hospital Basel, were anesthetized via intraperitoneal (IP) 

injection of 65 mg/kg ketamine (Ketalar, Warner-Lambert) and 13 mg/kg xylazium 

(Xylasol, Graeub). A sterile tissue cage (Angst + Pfister AG, Zurich, Switzerland) 

containing 8 sinter glass beads (Sikuf, Schott Schleifer, Muttenz, Switzerland) was 

implanted subcutaneously. After surgery, mice were treated with 0.05 mg/kg 

buprenorphine (Temgesic, Essex Chemie AG, Luzern) to treat postoperative pain. After 

complete wound healing (2 weeks), cages were tested for sterility by culturing the 

aspirated tissue cage fluid (TCF). 

Pharmacokinetic study. A single IP dose of 30 and 40 mg/kg DAP was injected (6 mice 

per group). The pharmacokinetic levels of DAP were investigated in TCF of uninfected 

mice at various time points (2, 4, 6, 8, and 24 h after drug administration). TCF was 

collected by cage puncture and centrifuged at 2,100×g for 7 min. The supernatant was 

stored at -20°C until further analysis. 

The concentration of DAP was evaluated by a previously described bioassay method 

(34). Briefly, 4-5 × 103 CFU/mL of a 6 h- K. rhizophila (ATCC 9341) culture were added 

to antibiotic medium 11 (Difco, Becton Dickinson and Company, Allschwil, Switzerland) 

and filled into Bioassay dishes (Fisher Scientific, Wohlen, Switzerland). Samples in 

duplicate were applied in punched holes. A standard curve was established with a range 



Results 

 57 

from 1 to 128 µg/mL DAP in phosphate buffered saline (PBS, 0.01M, pH 7.4) 

supplemented with one volume of sterile TCF. To determine the DAP concentration in 

TCF over time, the diameters of the inhibition zones of the standard probes were plotted 

against the logarithm of the concentrations. 

Minimal infective dose (MID). To evaluate the MID for MRSA, 102 to 105 CFU were 

injected into the tissue cage (3 mice per group). At different time points TCF was 

collected in 1.5% EDTA (in 0.45% NaCl, pH 7.3) and bacterial numbers were 

determined by plating. The MID was defined as CFU/tissue cage which was required to 

induce a persistent infection (15 days) in 100% of the tissue cages. 

Prophylaxis study: 40 mg/kg DAP (5 mice per group) was IP administered 6 h before 

injection of 3 × 102 CFU MRSA with or without 50 mg/L (1.25 mM) calcium ions (Ca2+) 

(CaCl2). In a second approach, an additional IP dose of 40 mg/kg DAP was administered 

6 h after injection of MRSA. Saline served as control. TCF was collected in EDTA and 

tissue cages were explanted 24 h after inoculation. TCF was used to determine the 

efficacy of DAP against planktonic bacteria by plating aliquots from appropriate dilutions 

on blood agar plates. The efficacy was expressed as the difference in bacterial counts 

(Δlog10 CFU/mL) between inoculation and 24 h later. The tissue cages were incubated in 

TSB for 48 h at 37°C to determine the prevention rate by plating the supernatant. The 

prevention rate is defined as number of cages without growth divided by the total number 

of inoculated cages. 

Treatment study (1-day infection): Mice were infected with 4 × 104 and 3 × 102 CFU 

MRSA, respectively. After 24 h, TCF was aspirated and bacterial numbers were 

determined by plating to proof an established infection. For therapy, infected mice were 
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treated with saline (control group) and 40 mg/kg DAP IP every 24 h for 4 days before 

sacrifying the animals 5 days later. On day 9, TCF was collected to quantify planktonic 

bacteria and tissue cages were explanted to determine the efficacy of DAP against 

adherent MRSA (cure rate). The efficacy of DAP against planktonic bacteria was 

quantified as the difference in bacterial counts (Δlog10 CFU/mL) before and 5 days after 

the end of treatment. The cure rate was defined as number of cages without growth 

divided by the total number of cages in the individual treatment group. 

 

Biofilm assay. MRSA at 105 CFU/mL were seeded into flat-bottom 96-well plates 

(Becton Dickinson and Company, Allschwil, Switzerland) and treated with 30 µg/mL and 

500 µg/mL. After 24 h incubation at 37°C, biofilm was stained using crystal violet as 

previously described (20). Briefly, supernatants were removed by dropping and plates 

were washed twice with PBS. The biofilm was fixed by incubating plates for 60 min at 

60°C and stained with 100 µL of a 0.5% crystal violet solution for 20 min at room 

temperature (RT). After washing under running tap water, 100 µL of 33% acetic acid was 

added, and the optical density was measured at 590 nm using a Molecular Devices 

Reader (Applied Biosystems, Rotkreuz, Switzerland).  

 

In vitro susceptibility. According to the CLSI (formerly the NCCLS) guidelines, a 

standard inoculum of 1-5 × 105 CFU/mL was used. The MIC (lowest DAP concentration 

that inhibits visible bacterial growth) and the minimal bactericidal concentration in the 

logarithmic growth phase (MBClog) (lowest DAP concentration, which kills ≥99.9% of 
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the initial bacterial count in 24 h) (24) were determined by using two-fold dilutions of 

DAP in Mueller-Hinton broth supplemented with 50 mg/L Ca2+ (25).  

 

Daptomycin effects on adherent and detached staphylococci. MRSA, SA113 wt 

and its isogenic mutants, SE1457 wt and its isogenic mutant were incubated at 105 

CFU/mL in TSB supplemented with 0.5% glucose for 18 h at 37°C in uncoated or 50% 

plasma-precoated (2 h, RT) flat-bottom 96-well plate. After washing away non-adherent 

bacteria with PBS, adherent bacteria were treated with DAP at 0 µg/mL, 30 µg/mL, and 

500 µg/mL supplemented with 50 mg/L Ca2+ for 24 h at 37°C. Then biofilm was stained 

using crystal violet as described above and adherent bacterial numbers were determined 

by plating after detachment. To avoid cell cluster, adherent bacteria were detached 

carefully by pipetting up and down.  

To investigate the efficacy of DAP against detached bacteria, adherent MRSA were 

detached by pipetting up and down after 18 h seeding. Detached MRSA were treated with 

DAP at 0 µg/mL and 30 µg/mL supplemented with 50 mg/L Ca2+ for 24 h and optical 

density was measured at 590 nm. DAP efficacy was also tested against dispersed MRSA 

ex vivo. To that aim tissue cages without sinter glass beads of the 1-day infection study 

were incubated in TSB for 48 h at 37°C. Dispersed MRSA (104 CFU/mL) were incubated 

in a 96-well plate with 0 µg/mL, 0.625 µg/mL, or 30 µg/mL DAP supplemented with 50 

mg/L Ca2+. After incubation for 24 h at 37°C, the optical density at 590 nm was 

measured. TSB without MRSA and DAP served as negative control.  



Results 

 60 

To evaluate the activity of DAP after 24 h treatment of adherent MRSA, the supernatant 

was collected, sterile filtered and added to 105 CFU/mL fresh planktonic MRSA. After 24 

h at 37°C the optical density at 590 nm was measured. 

 

Calcium-competition assay. Adherent MRSA were treated with non-pre-incubated or 

Ca2+-pre-incubated DAP (30 µg/mL with 50 mg/L Ca2+ for 2 h at RT). After 24 h 

incubation at 37°C, adherent bacterial numbers were determined after detachment.  

To confirm the effect of additional Ca2+, adherent MRSA were treated with 30 µg/mL 

DAP supplemented with either 75 mg/L (1.8 mmol/L) or 100 mg/L (2.5 mmol/l) Ca2+. 

The difference in adherent bacterial counts before and after 24 h incubation was plotted. 

 

Statistical analysis. Treatment effects were analyzed with the Mann-Whitney U test. A 

two-way ANOVA test was used for statistical analysis of the in vitro data. A p value of 

<0.05 was considered statistically significant. Statistical analysis was done with 5.0a 

Prism (GraphPad Software). 
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Results 

Daptomycin treatment in a mouse tissue cage infection model. We previously 

reported that DAP mono-therapy was not successful against implant-associated MRSA-

infection in guinea pigs (13). The aim of the present study was to elucidate this treatment 

failure by evaluating DAP in the tissue cage model in mice. This model is suitable to 

study phenotypic staphylococcal resistance against antimicrobial treatment (11, 20). We 

first performed pharmacokinetic studies in sterile tissue cage fluid (TCF) of mice after 

intraperitoneal (IP) administration of 30 and 40 mg/kg DAP. The peak concentrations 

(Cmax) for the 30 and 40 mg/kg dose were 25 and 35 µg/mL, respectively. For both doses 

Cmax was reached after 6 h and was above the MBCstat of 20 µg/mL (13) during 4 to 8 h. 

DAP concentration after 24 h (Cmin) remained above the MIC and MBClog of 0.625 

µg/mL (13) (Figure 3.1). 

 

Figure 3.1. Pharmacokinetics of daptomycin (DAP) in sterile cage fluid of mice after a single 

intraperitoneal administration of a 30 mg/kg (squares) and 40 mg/kg (circles) dose. Values are means 

± SDs. The horizontal dotted lines indicate the MIC and MBClog (below) and MBCstat (above) of 

MRSA 43300 for DAP.  
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We asked the question whether DAP efficacy was better with a lower inoculum, or when 

given prophylactically, i.e. before establishment of a biofilm. The minimal infective dose 

(MID) of MRSA for induction of a persistent infection in tissue cages of C57BL/6 mice 

was 3 × 102 CFU/cage. Therefore, all experiments were performed with at least this 

inoculum.  

First, the efficacy of a 4-day-treatment of DAP (40 mg/kg) against planktonic and 

adherent MRSA was assessed in a 1-day infection study with an inoculum of either ~104 

or ~102 CFU/cage (Figure 3.2). One day after infection, planktonic bacterial numbers 

were more than two-fold increased as compared to the initial inoculum (data not shown). 

Five days after the end of treatment, planktonic bacteria were not significantly reduced 

(0.6 log10 CFU/mL) and DAP failed to cure any tissue cages infected with the high 

inoculum (Figure 3.2A, B). In contrast, DAP killed 3 log10 CFU/mL planktonic bacteria 

and cured 33% of tissue cage associated infections in mice with the low inoculum (Figure 

3.2A, B). As expected, untreated mice showed an increase of 2.7 log10 planktonic 

CFU/mL and no spontaneous cure (Figure 3.2A, B). 

To study whether DAP prevents colonization of implants, we administered 40 mg/kg 

DAP prophylactically 6 h before infection with the MID inoculum of 3 × 102 CFU. One 

day after infection, untreated mice showed an increase of 1.3 log10 CFU/mL (Figure 

3.2A). DAP reduced the planktonic bacteria by 2.3 log10 CFU/mL to minimal CFU 

numbers, and it was able to prevent 40% tissue cage associated infections (Figure 3.2B). 
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Figure 3.2. Influence of infection time and inoculum on the efficacy of daptomycin at 40 mg/kg (open 

bars) in a 1-day infection- and a prophylaxis study against planktonic (A) and adherent (B) MRSA. 

Inocula of the 1-day infection and prophylaxis study were 4 × 104 CFU/cage and 3-4 × 102 CFU/cage, 

respectively. Saline (gray bars) served as control. In (A) positive values denote growth and negative 

values killing. In (B) efficacy against adherent MRSA was expressed as cure or prevention rate.  

 

In a second series of experiments a second 40 mg/kg DAP dose was applied 6 h after 

infection in order to achieve prolonged bactericidal drug levels in the cage. Under these 

conditions, CFU numbers were reduced by 3 log10 CFU/mL to a few counts within 24 h 

and DAP prevented infection in all tissue cages (Figure 3.2B). 

Taken together, DAP was partially efficacious in the 4-day therapy only when using a 

low inoculum. Complete prevention of cage-associated infection was only reached with 2 

consecutive doses of DAP before and after inoculation.  

 

Daptomycin susceptibility of planktonic and adherent staphylococci in vitro. Since 

DAP did not eradicate tissue cage-associated infection when treatment was started one 

day after inoculation, we asked whether the biofilm prevented killing. In addition, the 

effect of cell wall modifications on DAP susceptibility was assessed in order to link 
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phenotypic resistance of adherent staphylococci to defined molecules participating in 

adherence.  

Therefore, we compared the susceptibility of planktonic wt and mutant staphylococci to 

DAP in vitro (Table 3.1). All tested SA113 and SE1457 strains had a MIC of 0.625 

µg/mL and MBClog of 1.25 µg/mL except for the ∆dltA mutant, lacking alanylation of 

LTA, which was more sensitive. 

 

Table 3.1 In vitro susceptibility to daptomycin. 

Strain MICa 

(µg/mL) 
MBClog

b 
(µg/mL) 

SA113 wt 0.625 1.25 

SA113 ∆ica 0.625 1.25 

SA113 ∆nuc1/nuc2 1.25 1.25 

SA113 ∆srtA 0.625 1.25 

SA113 ∆atl 0.625 1.25 

SA113 ∆dltA 0.157 0.313 

SE1457 wt 0.625 1.25 

SE1457 ∆luxS 0.625 1.25 

a, minimal inhibition concentration 
b, minimal bactericidal concentration under logarithmic growth phase condition 

 

DAP was similarly efficient against planktonic staphylococci independently of biofilm 

(∆ica) or biofilm regulation (∆luxS), of undegraded extracellular DNA (∆nuc1/nuc2), of 

LPXTG-anchored cell wall molecules (∆srtA) and of autolysins (∆atl). These results 
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suggest that only the positive charge conferred by alanine to LTA affected DAP efficacy 

on planktonic staphylococci.  

In addition, the effect of DAP on adherent staphylococci was assessed. Both, the DAP 

effects on biofilm and on adherent staphylococci were quantified 24 h after incubation 

with 30 and 500 µg/mL DAP. Biofilm was moderate in untreated SA113 wt, lower in the 

∆ica, ∆atl, and ∆dltA mutants and 3-fold higher in ∆nuc1/nuc2 (Figure 3.3A). DAP 

eliminated biofilm in all S. aureus strains except in ∆nuc1/nuc2, where it remained 

unchanged with 30 µg/mL DAP (Figure 3.3A) and was only decreased after 500 µg/mL 

DAP (data not shown). 

 

 

Figure 3.3. Efficacy without (gray bars) and with 30 µg/mL daptomycin (black bars) on adherent 

staphylococci in vitro. After daptomycin exposure biofilm formation (A) using crystal violet staining 

and adherent bacterial numbers (B) using plating after detachment were determined. Values are 

means ± SD of 3 independent experiments. *, p<0.05; **, p<0.01; ***, p<0.01. 

 

Untreated SE1457 wt and its ∆luxS mutant produced very strong biofilm, which was 

reduced two-to threefold by DAP in both strains (Figure 3.3A).  
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Adherent staphylococci numbered 107 to 108 CFU per well except for ∆nuc1/nuc2, which 

showed higher numbers of 1011 CFU/well. DAP did not significantly lower CFU counts 

independently of biofilm, nucleases, adhesins, autolysins, and alanyl-LTAs (Figure 

3.3B). Pre-coating of the plates with plasma proteins did also not allow a significant 

eradication of adherent staphylococci (data not shown).  

These surprising results suggest, that despite an effect on the biomass, DAP was not 

bactericidal on adherent cells. To investigate whether DAP resistance of adherent 

staphylococci was reversible, the efficacy of 30 µg/mL DAP against detached MRSA 

was determined. DAP was found bactericidal against detached MRSA 24 h after 

incubation (Figure 3.4A).  

 

 

Figure 3.4. Efficacy of daptomycin (DAP) against detached MRSA in vitro (A) and against dispersed 

MRSA derived from untreated and treated tissue cages of the 1-day infection study, (B). Values are 

means ± SD of 3 experiments. 
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To confirm these in vitro data, dispersed MRSA from untreated (saline) or treated 

(40mg/kg DAP) tissue cages of the 1-day infection study were treated with 0.625 µg/mL 

(corresponding to MIC) and 30 µg/mL DAP ex vivo (Figure 3.4B). DAP was bactericidal 

at both concentrations DAP and the effect was independent of a previous in vivo DAP 

treatment. These data indicate that adherent bacteria were not genotypically resistant to 

DAP, but resistance was linked to the physiological status of the bacteria and therefore 

fully reversible after detachment. 

To determine whether adherent bacteria inactivated DAP, the bactericidal activity of a 

supernatant of adherent, treated MRSA was tested with fresh planktonic MRSA. DAP in 

the supernatant was able to inhibit growth of planktonic MRSA indicating that adherent 

bacteria did not inactivate DAP (Figure 3.5). 

 

 

Figure 3.5. Efficacy of daptomycin (DAP) in sterile-filtrated supernatant, derived from adherent 

DAP-treated MRSA against fresh planktonic 105 CFU/mL MRSA. Values are means ± SD of 3 

experiments. 
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Calcium-competition between daptomycin and staphylococci. Adherent staphylococci 

did not inactivate DAP, but might restrict accessible calcium ions (Ca2+) required for 

killing by DAP. Therefore, we asked whether there was a calcium competition between 

DAP and staphylococci. To answer this question, 30 µg/mL DAP was pre-incubated with 

50 mg/L Ca2+ for 2 h to lock DAP in its active conformation. This time period was 

considered sufficient for the formation of the active DAP-conformation because time kill 

studies showed bactericidal activity against stationary grown staphylococci above 20 

µg/mL of DAP within 1-2 h (13). The efficacy of Ca2+-pre-incubated DAP against 

adherent MRSA was similar to non-pre-incubated DAP since numbers of adherent 

MRSA were similar (9.8 × 106 and 1.7 × 107 CFU/mL, respectively). 

Increasing Ca2+ may enhance bactericidal activity on adherent bacteria. Therefore, the 

influence of a Ca2+-concentration above 50 mg/L on DAP efficiency against adherent 

MRSA was determined. Increasing Ca2+-concentrations added to 30 µg/mL DAP 

progressively reduced adherent bacterial numbers; 100 mg/L Ca2+ lead to a significant 

reduction of adherent MRSA by 2.5 log10 CFU/mL (Figure 3.6A). Ca2+ alone had no 

effect on bacterial survival (data not shown). To confirm these in vitro data, we 

investigated the effect of DAP treatment in a tissue cage MRSA infection with increased 

Ca2+-concentrations. One day after infection DAP with additional 50 mg/L Ca2+ reduced 

the planktonic MRSA by 2.7 log10 CFU/mL (Figure 3.6B). Furthermore, DAP was able 

to prevent 60% of the cage-associated infections (Figure 3.6C). These data indicate that 

with increasing Ca2+ the phenotypic resistance of adherent bacteria can be partially 

overcome.  
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Figure 3.6. Influence of increasing calcium concentrations on efficacy of 30 µg/mL daptomycin (A). 

The difference in adherent MRSA numbers before and after daptomycin exposure is shown. 

Negative values denote killing. Values are means ± SD of 6 experiments. **, p<0.01. Influence of 

additional calcium ions (50 mg/L) on daptomycin (DAP) efficiency (bright gray bars) against 

planktonic (B) and adherent MRSA (C) in vivo. Inocula were 6 × 102 CFU/cage. Saline (open bars) 

and DAP without additional calcium (dark gray bars) served as controls. In (B) positive values 

denote growth and negative values killing. Values are means ± SD. In (C) efficacy against adherent 

MRSA was expressed as prevention rate. 
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Discussion 

Daptomycin (DAP) has potent activity against a wide range of Gram-positive bacteria 

including beta-lactam- and vancomycin-resistant strains (37). It is approved for skin 

infections, bacteraemia and endocarditis (8). However, in experimental implant-

associated infection DAP mono-therapy failed for unknown reasons (13).  

Earlier results showed that stationary phase bacteria had a 16-fold higher MBC for DAP 

than bacteria in logarithmic growth (23). The fraction of stationary phase and adherent 

bacteria increases during the time after inoculation, resulting in a time dependent failure 

rate of DAP-treatment (13). In the present study, only the prophylactic application of 

DAP was highly efficacious against implant-associated infection. This suggests that 

treatment failure might be due to the high quantity and/or the physiological state of the 

bacteria in the tissue cage. In this model, staphylococci change from the planktonic to the 

adherent phenotype and are increasingly embedded in a biofilm. Therefore, we 

investigated the effect of adherence and of biofilm on DAP responsiveness.  

We observed the expected strong biofilm in S. epidermidis wt and even more so in the 

∆luxS mutant, which lacks the quorum system with autoinducer 2-mediated ica 

repression (43). We confirmed low biofilm formation by all S. aureus strains except for 

the ∆nuc1/nuc2 mutant, which lacks extracellular DNase and therefore accumulates more 

DNA-containing biofilm (3). Independent of the amount of biofilm in untreated cells, 

DAP strongly reduced the biofilm in concentrations above the MBClog except for the 

∆nuc1/nuc2 mutant, which was more resistant against DAP. It was shown earlier that 

DAP is able to enter a biofilm (38); it may lead to biofilm dispersion via modulation of 

the cell membrane. By reducing the membrane potential (15) it may cause an altered 
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redox status and a stress response with reactive oxygen and nitrogen species; in this 

context it is interesting to know that H2O2 as well as free iron, which arises during 

oxidative stress, and nitrite inhibit biofilm formation (10, 14, 35). Alternatively, DAP 

may favor biofilm detachment by activating proteases or detergent-like molecules - like 

phenol-soluble modulins (PSMs) - that disrupt hydrophobic interactions between cationic 

exopolysaccharides and anionic bacterial surface structures (29, 30). However, PSMs are 

under strict agr control and since SA113, which is a natural agr-deletion mutant, showed 

the same biofilm decrease in response to DAP, PSM regulation by DAP is unlikely.  

Our data show that the adherent growth mode and not the extracellular polysaccharide 

matrix formation was responsible for the DAP resistance to killing. A similar 

phenomenon was shown before for other antibiotics (32, 40). These authors described a 

high resistance against oxacillin, vancomycin, teicoplanin, ciprofloxacin and rifampicin 

of adherent biofilm-positive and biofilm-negative S. epidermidis and of S. aureus strains, 

which were sensitive to all antibiotics in their planktonic state. Based on these results, the 

resistance to DAP in our study was likely independent of the antibiotic structure and 

mechanism of action. Accordingly, we found no evidence for inactivation of DAP by 

staphylococci. Furthermore, the reversibility of the resistant phenotype upon detachment 

excluded the genetic perturbations, which had been previously associated with DAP 

resistance (2). However, it appeared that adherent staphylococci adapted to DAP and 

became tolerant resulting in treatment failure. This may be due to their metabolic status 

with a higher net positive charge, which accompanies all adherence (41). Support for this 

hypothesis is provided by two observations, namely an enhanced DAP susceptibility of 

the ∆dltA mutant, which has a lower positive charge and thus adheres less to polystyrene 
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(31), and from a DAP-resistant clinical isolate, which showed enhanced ∆dltA expression 

(44). 

Furthermore, adherence is accompanied by fermentative processes resulting from low 

oxygenation, from an active nitrosative pathway, and, importantly, from activation of 

cation ATPases, which help neutralizing the progressive acidification. Among the latter, 

the high affinity potassium (K+) transport system encoded by the kdp operon is induced 

by high extracellular K+ and low osmolarity in the cell to restore pH homeostasis and 

intracellular K+ (1). DAP most likely inactivates the Kdp and other K+ transport systems 

in planktonic cells and thereby leads to cell death (2). In S. aureus biofilms, three genes 

of the kdp operon are strongly induced (4), it is conceivable that adherence is sufficient to 

increase expression of K+ transport systems, and thus offers resistance to DAP action.  

Adherence in a polystyrene plate does not mirror biofilm formation in a medical device, 

because in the first case hydrophobicity and atl (5) play a role, while in vivo the 

interaction between MSCRAMMS and host extracellular matrix molecules initiates 

biofilm (29). We used both adherence settings with and without plasma coating and the in 

vitro assays fairly predicted the in vivo effects. Interestingly, we could overcome DAP 

resistance of adherent bacteria in vitro and in vivo by increasing Ca2+ concentrations. This 

effect was not due to early DAP-Ca2+ complex formation but it may have altered the 

ionic forces involved in adhesion. A likely explanation is that S. aureus adhesion was 

inhibited by additional Ca2+, which blocks the Ca2+-binding sites of clumping factor A 

(ClfA) involved in extracellular matrix adhesion (27).  
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In conclusion, our data revealed that DAP is inefficient in experimental implant-

associated infections, and showed that this effect is independent of biofilm but influenced 

by modulations of extracellular Ca2+. 
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3.2.1 Additional results 

Minimal infective dose (MID): 

Description of the material and methods see above in the manuscript. 

 

Figure 3.7: Determination of the minimal infective dose of MRSA 43300 in C57BL/6 mice. Mice were 

infected with 102 CFU/cage (squares), 103 CFU/cage (triangles), 104 CFU/cage (diamonds), and 105 

CFU/cage (circles), respectively. Values are means ± SD of 3 mice. 

 

For MRSA 43300 the MID was 3 × 102 CFU/cage (Figure 3.7). Within 9 days infections 

with 102 to 105 CFU/cage reached a plateau of 107-108 CFU/mL. These data confirm the 

results from Kristian et al. and Zimmerli et al. that a low staphylococcal inoculum is 

required to establish a persistent infection (55, 118). 

 

Daptomycin at sub-inhibitory concentrations: 

MRSA at 105 CFU/mL were seeded into flat-bottom 96-well plates and treated with DAP 

concentrations below the MIC of 0.625 µg/mL (13). After 24 h incubation at 37°C, 

biofilm was stained using crystal as described above (Material and Methods). 
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Figure 3.8: Influence of sub-inhibitory daptomycin concentrations on biofilm formation. The MIC 

for MRSA 43300 was 0.625 µg/mL. Biofilm formation was determined using crystal violet staining. 

Values are means ± SD of 3 experiments. 

 

DAP concentrations below the MIC did not increase biofilm formation in MRSA (Figure 

3.8). At the MIC, DAP eliminated the biofilm. These data indicate that DAP did not 

demonstrate a stress response at sub-inhibitory concentrations resulting in a 

staphylococcal biofilm formation, like furanone (57) and vancomycin (14).  

 



Perspectives 

 81 

4 Perspectives 

Over the last years more and more bacterial genera developed resistance against 

commonly used antibiotics. For S. aureus antibiotic resistance started very early after 

introduction of penicillin, it was followed by the development of MRSA strains shortly 

after introduction of beta-lactamase resistant methicillin. In the meantime, infections 

caused by MRSA strains are increasing all over the world in both healthcare and 

community settings. Nasal carriage of S. aureus is a main risk factor for invasive diseases 

and carriers are assumed to be a key source of S. aureus strains that spread among 

individuals (15). Further, in S. aureus carriers who have medical devices the prevalence 

for an infection is increased (117).  

Besides the problem of antibiotic resistance, implant-associated infections are difficult to 

treat due to missing microcirculation (97). In implants bacteria are able to adhere to the 

surface and build up a protection layer known as biofilm (73). Biofilm-embedded 

microorganisms are slow-growing and/or non-dividing (29) and less susceptible against 

antibiotics than their planktonic counterparts (21). However, most used antibiotics are 

able to inhibit or kill growing bacteria. For the treatment of adherent bacteria in implants 

antimicrobials targeting the bacterial membrane appear therefore suitable (40).  

One promising candidate is the lipopeptide daptomycin (DAP) that damages the bacterial 

membrane of Gram-positive bacteria including MRSA by pore formation resulting in 

membrane depolarization and cell death without lysis (89). However, despite our 

promising in vitro data, DAP alone failed to eradicate an implant-associated MRSA 

infection in a guinea pig tissue cage model (43). In line with our results in another study 
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using the guinea pig tissue cage DAP was unable to eliminate an S. epidermidis infection 

(72). Treatment failure was independent of biofilm (72, 106). A possible explanation 

might be that adherent bacteria with or without biofilm may differ in the composition of 

membrane lipids (114), which might confer less susceptibility to DAP. Further studies 

should address the composition of the membrane between stationary grown planktonic 

and adherent bacteria. Membrane lipids and their modification as well as the expression 

of proteins in different physical states of staphylococci during DAP treatment should be 

investigated. A helpful tool would be gene expression analysis, which will further 

elucidate the differences caused by growth and interactions of bacteria in a DAP exposed 

bacterial population with or without biofilm. 

Further, inadequate concentrations of either active DAP or Ca2+ in the tissue cage might 

have caused the treatment failure. Indeed, DAP alone was effective in higher doses in a 

tissue cage infection model in rats (30), and we could prevent MRSA infection in the 

mouse tissue cage model with increasing DAP concentrations.  

The other limiting factor in DAP activation might be the availability of Ca2+. Adequate 

Ca2+ levels are important to induce DAP activity through a conformational change (89). 

Perhaps, enhanced Ca2+ delivery has to occur at the site of implant infection. Indeed, 

increasing Ca2+ concentrations in vivo slightly enhanced the killing of adherent bacteria 

suggesting that Ca2+ is a limiting factor in our model. However, increased Ca2+ by 

application at the site of implant might have toxic side effects on the muscles (53). Ca2+ 

binding to DAP at selected amino acids has been found essential with NMR for 

bactericidal activity (38). Structural modification of the DAP might be a possibility to 
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alter Ca2+ binding and a stronger binding might increase Ca2+ levels at the implant 

infection site and enhance DAP activity.  

The clinical use of DAP alone is limited to complicated soft skin infections, bacteraemia 

and endocarditis (18). To widen the potential clinical application to implant infections, 

we tested DAP in combination with other antibiotics, which have different targets. 

Indeed, we could show that DAP in combination with rifampin (43), which targets the 

DNA-dependent RNA polymerase (50), was able to cure guinea pigs from staphylococcal 

implant-associated infections. Levofloxacin inhibiting replication (50) and vancomycin 

targeting the peptidoglycan synthesis (47) were less efficient to eradicate planktonic and 

adherent MRSA when combined with rifampin. These latter antibiotics require active 

bacterial growth, which seemed to limit their efficacy in the treatment compared to DAP.  

Furthermore, in the combination with rifampin DAP was able to prevent the emergence 

of rifampin-resistant MRSA strains, while rifampin-resistance developed with a higher 

frequency in the vancomycin-rifampin combination (43).  

The effective combination of DAP together with rifampin delays the development of 

resistant strains for a certain period. However, when multidrug resistant strains appear, 

new antimicrobial drugs are required. The research for new antimicrobials has been 

decreasing during the last years (10). Yet, the identification of new targets, which are 

unique to bacteria and help the host to overcome an infection, is needed. In that context, 

inactivation of enzymes in the metabolism may provide an attractive target for 

antimicrobials due to their role in both the growth of pathogens and in control of the host. 

Proteome analysis of pathogens ex vivo and of the corresponding host tissue will give a 
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close-up view of important aspects in the fight between host and bacteria and will further 

close some knowledge gaps in host metabolism (13).  

The introduction of implants immobilized with antimicrobial substances is another 

strategy to overcome implant infections. Substances preventing adherence of bacteria to 

an implant surface or that are released in the presence of bacteria are under investigation. 

In our group furanone and silver were investigated for the purpose of this therapeutic 

application. Despite bactericidal and biofilm-modulating activity of free furanone, 

furanone-coated implants were colonized, since furanone acts on quorum sensing and 

needs to penetrate bacteria (57). Silver is bactericidal against S. epidermidis by a 

mechanism that inactivates key enzymes of the respiratory chain leading to a rapid de-

energization. Silver, which was slowly released from polymers, was bactericidal in the 

tissue cage model (32). However, soluble furanone and silver showed also cytotoxic 

effects against mammalian cells in a dose range, which was not far from the MIC against 

staphylococci, which limits their potential clinical application (32, 57).  

Before bacteria adhere to the surface, DAP is efficient in eradication of S. aureus. 

Whether DAP can be used for coating of implants has not been addressed yet. Another 

approach would be the linkage of DAP to the surface via ligands or substrates of enzymes 

produced by bacteria such as autolysins. This may allow a well-tuned local preventive 

action of the antibiotic.  

 

In the second part of the thesis, we found that adhesion to surfaces renders MRSA 

resistant to DAP. Surprisingly, DAP treatment reduced the biofilm but bacteria remained 

viable even when production and release of PIA, nuclease, adhesins, autolysins, and 
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alanyl-LTAs were absent. Since resistance was reversible with detachment of bacteria 

and thus genetic modifications of bacteria could be excluded, the question arises why 

DAP was inactive against adherent bacteria. In future, this reduced susceptibility of 

adherent staphylococci has to be explored in depth. It will be important to understand 

whether similar effects are observed with different bacterial genera and different 

biomaterials.  

Furthermore, the improved knowledge of how and where antimicrobial peptides are 

active will open new approaches for DAP treatment. The knowledge from CAMPs is 

helpful to identify resistance mechanisms against DAP. The dlt mutant (78) or mprF (24) 

mutant are more susceptible to CAMPs and DAP indicating that one mechanism of 

resistance is the repulsion of positively charged complexes by changing the net charge of 

the cell envelope. It remains to be studied whether adherence in our model is associated 

with a higher net positive charge.  

Similar to CAMPs, eDNA, if abundant, limited the treatment efficacy of DAP as shown 

by the stronger resistance of the ∆nuc1/nuc2 mutant against DAP. For effective DAP 

treatment of implant-associated infections, the interaction between DAP and eDNA as 

part of biofilm should be identified. It could be that DAP binds to the negatively charged 

DNA, or that the required Ca2+ is sequestered by DNA, which prevents the attack of the 

membrane. Whether DAP captured by DNA is again active after cleavage of DNA by 

nucleases is another interesting experiment. This recycling of DNA by bacteria may 

allow activation of DAP and favour their killing. 
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In conclusion, DAP is most efficient applied against implant infections either in a 

combination therapy or when given as mono-therapy before bacteria are able to adhere to 

a surface. 
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University of Zurich, Switzerland 

03/2007 – 09/2007  Research assistant in the group of Dr. Ivo Buschmann 
Institute: Center for Cardiovascular Research, Berlin, 
Germany 

Congress Participation 

September 2010  Annual Meeting of the Swiss Society for Infectious 
Diseases 
Lausanne, Switzerland 
Poster Award: 2nd prize 

September 2009  Interscience Conference on Antimicrobial Agents and  
    Chemotherapy (ICCAC) 
    San Francisco, CA, USA 

Mai 2009   European Congress of Clinical Microbiology and Infectious 
Diseases (ECCMID) 
Helsinki, Finland 

October 2008   Interscience Conference on Antimicrobial Agents and  
    Chemotherapy (ICCAC) 
    Washington D.C., USA 
    Fellow Travel Grant 

August 2008   Annual Meeting of the Swiss Society for Infectious 
Diseases 
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Lausanne, Switzerland 

April 2008   European Congress of Clinical Microbiology and Infectious 
Diseases (ECCMID) 

    Barcelona, Spain 

Poster presentation 

September 2010  “Adherent staphylococci are resistant to daptomycin in 
 vitro and in vivo” 

September 2009  “Growth-phase-dependent efficacy of daptomycin (DAP) 
against Enterococcus faecalis” 
“In vitro activity of dalbavancin (DAL) versus vancomycin 
(VAN), alone or combined with gentamicin (GEN), against 
Enterococcus faecalis” 

Mai 2009   “Dalbavancin (DAL) and rifampin (RIF) against 
methicillin-resistant Staphylococcus aureus (MRSA) in an 
experimental foreign-body infection” 

October 2008   “Daptomycin alone and in combination with rifampin for 
the treatment of experimental methicillin-resistant 
Staphylococcus aureus (MRSA) implant-associated 
infection” 

 
 
 


