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i. SUMMARY 

 
Protein kinase B (PKB/Akt) is a serine/threonine protein kinase that mediates 

signaling crucial for normal cellular metabolism, proliferation, survival, and 

differentiation. PKB/Akt mediates these functions by virtue of its role as the 

major effector kinase upon which phosphatidylinositol 3,4,5-triphosphate kinase 

(PI3K) signaling converges. The PI3K signaling pathway transduces 

extracellular signals from cellular receptors, like the insulin receptor (InsR), the 

insulin-like growth factor receptor (IGF1R) and the epidermal growth factor 

(EGF/ErbB) receptors, to co-ordinate cellular responses.  

In mammals, PKB/Akt exists as three isoforms, PKB/Akt1, PKB/Akt2, and 

PKB/Akt3. these isofoms share the same domain structure and over 85% 

sequence similarity, suggesting these isoforms mediate similar and overlapping 

functions. However, these three isoforms are encoded by genes on distinct 

chromosomes and have differential tissue expression, supporting a concept 

that these isofoms have evolved to mediate specific and unique biological 

signals. Indeed, numerous studies have clearly demonstrated that distinct, 

isoform specific functions do exist which are often context and cell-specific. To 

elucidate these functions in a physiological setting, KO mouse models of all 

PKB/Akt isoforms have been generated confirming that these isoforms do have 

both redundant and non-redundant, isoform-specific functions. PKB/Akt1 KO 

mice are viable but exhibit ~30% perinatal lethality, growth retardation and 

increased spontaneous apoptosis, strongly implicating PKB/Akt1 as the major 

isoform in growth and survival. PKB/Akt2 KO mice are viable and of normal 

size, however they progressively develop a diabetes-like syndrome 

characterized by insulin resistance and hyperglycemia, illustrating a crucial role 

for this isoform in transducing signals regulating organism metabolism. 

PKB/Akt3 is viable and normal except for decreased brain and testis size that 

are the major expression sites of PKB/Akt3. This indicates this isoform may 

have more specialized or subtle functions. This is also supported by compound 

knockouts that lack PKB/Akt3. PKB/Akt1-PKB/Akt3 double knockout mice 

die at embryonic day12 (E12) with severe growth retardation and 

developmental defects, whereas PKB/Akt2-PKB/Akt3 mice are viable but with 
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a reduction in animal size and an enhancement of the single isoform knockout 

phenotypes. Together this suggests the PKB/Akt3 isoform does contribute to 

normal function of both PKB/Akt1 and PKB/Akt2. Similarly, loss of 

PKB/Akt2 on the background of PKB/Akt1 deletion enhances the phenotype 

of PKB/Akt1, resulting in 100% perinatal lethality and additionally leading to 

defects in bone and skin development. These mouse models highlight that all 

three PKB/Akt isoforms contribute, albeit to different degrees, to control cellular 

metabolism, growth, proliferation and survival in tissues throughout the 

organism. Furthermore, they illustrate that in regulating these functions the 

PKB/Akt isoforms also maintain whole organism metabolism and growth, with 

deletion of various isoforms in the whole organism or in specific-organs leading 

to defects in organism metabolism and growth. These observations in mouse 

models correlate well with human metabolic syndromes and diseases, 

particularly in insulin resistance/diabetes and cancer that invariably display 

aberrant PKB/Akt activation. This makes these mouse models excellent tools to 

explore the contribution of the PKB/ Akt isoforms to such human pathologies 

and identify isoform specific actions and downstream substrates that could 

provide targets for therapeutic intervention.  

Accordingly, this work utilized PKB/Akt2 null mice to explore defects in 

metabolism in the context of insulin resistance, as well as exploring its 

contribution to tumour development driven by hyperactivation of the PI3K 

pathway. We observed that aged PKB/Akt2 KO mice, but not wild-type or 

PKB/Akt1 KO mice, develop severe ovarian cysts with thecosis and 

consequent increases in testosterone production. We show that this may reflect 

an unknown role for PKB/Akt2 in regulating testosterone production in the 

ovary with a potential contribution to the human metabolic disorder Polycystic 

Ovarian Syndrome (PCOS). PCOS affects 5-10% of women of reproductive 

age and is the leading cause of infertility. It is characterized by hyperactive 

leutinizing hormone signaling in ovary, resulting in increased testosterone 

production and subsequently development of numerous follicular cysts within 

the ovary. Using a mouse model of PCOS driven by tonic administration of 

leutinizing hormone, mice lacking PKB/Akt2 developed cysts with a threefold 

increase in size compared to wild-type mice. Furthermore, the contribution of 
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PKB/Akt2 to neoplasia was analyzed by utilizing the Pten heterozygous 

mouse model. Pten acts as the major negative regulator of PI3K signaling and 

reduction of Pten in mice results in the development of neoplasia in a broad 

range of organs due to hyperactivation of PKB/Akt signaling. By deletion of 

PKB/Akt2 on this background, its effect on neoplasia formation in multiple 

organs was assessed. We observed a variety of effects on neoplasia 

development in various organs, with the most striking being an almost complete 

inhibition of adrenal medulla pheochomocytomas formation. 

Pheochromocytoma formation upon Pten loss in mice activates cellular 

proliferation and transcriptional changes to drive tumour development and 

progression. This includes increased proliferative signaling via mTORC1 and 

stimulation of adrenomedullin expression. Pten+/- mice also reflect the clinical 

setting with increases in catecholamine production and secretion that is 

observed in 90% of human pheochromocytoma patients. Analysis of adrenals, 

illustrated that PKB/Akt2 is required for early development of neoplasia and 

severely hinders growth and progression through attenuating mTORC1 

activation and subsequent cellular proliferation. Cellular signaling required for 

catecholamine production and secretion was also suppressed ands reflected in 

decreased expression of the rate-limiting enzyme required for catecholamine 

generation: dopamine β-hydroxylase. Adrenomedullin that can trigger 

increased cAMP production and growth in various tumour settings, displayed 

increased expression in Pten+/- adrenals but decreased almost to wild-type 

levels upon additional deletion of PKB/Akt2. These findings indicate that 

PKB/Akt2 exerts an isoform specific role in promoting pheochromocytomas 

exhibiting hyperactivated PKB/Akt.     

The findings from these studies illustrate novel contributions by PKB/Akt2 

isoform specific signaling to metabolic dysfunction and tumour formation, 

thereby highlighting the potential of identifying the signaling pathways and 

targets involved in these actions. Accordingly, these results provide both the 

basis and a starting point for further studies to elucidate these signaling 

pathways and PKB/Akt2 specific substrates that may represent novel targets 

for therapeutic intervention.     
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ii. ABBREVIATIONS 

 

AGC cAMP-dependent kinase, cGMP-dependent kinase and protein 

kinase C family of kinases 

cAMP  3'-5'-cyclic adenosine monophosphate  

CREB  cAMP response element-binding protein 

CYP11A P450 cholesterol side-chain cleavage enzyme 

CYP17A 17 α-hydroxylase/17,20-lyase/ cytochrome P450 17A 

DHT  double heterozygous mice (PKBβ/Akt2+/-Pten+/-) 

DKO  double knockout mice (PKBβ/Akt2-/-Pten+/-) 

EGFR/ErbB epidermal growth factor receptor family    

ERK  mitogen-activated protein kinase/ 

extracellular-signal-regulated kinase 1/2 

Gαs  stimulatory G-protein alpha subunit 

GnRHAnt gonadotrophin-releasing hormone antagonist 

GSK3α/β glycogen synthase kinase 3alpha/beta 

HT  heterozygous 

HPO axis hypothalamic-pituitary-ovarian axis 

IGF1 insulin-like growth factor 1 

InsR  insulin receptor  

IR  insulin resistance 

IRS insulin receptor substrate 

KO  knockout 

LDLR  low-density lipoprotein receptor 

LH  leutinizing hormone 

LHR  leutinizing hormone receptor   

mTOR mammalian target of rapamycin 

PCOS  polycystic ovarian syndrome 

PDK1 3-phosphoinositide-dependent protein kinase 1 

PH pleckstrin homology 

PI3K phosphoinositide-3-kinase 

PIP2 phosphatidylinositol-4,5-biphosphate (also PI(3,4,5)P2) 

PIP3 phosphatidylinositol-3,4,5-triphosphate (also PI(3,4,5)P3) 
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PKA  protein kinase A 

PKBα/Akt1  protein kinase B alpha/ v-Akt murine thymoma viral oncogene 1 

PKBβ/Akt2  protein kinase B beta/v-Akt murine thymoma viral oncogene 2 

PKBγ/Akt3  protein kinase B gamma/v-Akt murine thymoma viral oncogene 3 

PKC  protein kinase C  

Pten phosphatase and tensin homolog 

Raptor regulatory-associated protein of mTOR 

RTK receptor tyrosine kinase 

Rictor rapamycin-insensitive companion of mTOR 

SH2 Src homology 2 

SKO  Single knockout mice (Pten+/-) 

StAR  steroid acute regulatory protein  

S6K1/2 p70 ribosomal protein S6 kinase 1/2 

TSC tuberous sclerosis complex 

WT  wild-type 

4EBP1 eIF4E binding protein 1 

 

Amino acid residues are described in text using standard three-letter 

nomenclature and single-letter nomenclature in figures. 

 

Less frequently used abbreviations are defined upon their first use in the text. 
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I. INTRODUCTION 

 

1. Protein Kinases As Master Regulators Of Cellular Signaling And 
Function 
 

Protein kinases comprise of a family of approximately 500 different proteins 

that constitutes the largest family of enzymes in the human genome. Protein 

kinases mediate their action through protein phosphorylation, a mechanism by 

which a single phosphate moiety is added to a protein amine group. The 

consequences of this modification on the target protein include control of its 

activity, interactions and localization. Kinases exert these actions on one-third 

of all intracellular proteins, impacting on aspects of cell biology from 

metabolism to transcription, growth, proliferation, migration, survival and 

differentiation, thereby making kinases master regulators of signaling and 

function. To ensure correct cellular signaling and function, kinases themselves 

are tightly regulated temporally, spatially and quantitively to ensure their 

appropriate activation and downstream signaling.  

Stringent control of kinase activation is apparent in the AGC family of protein 

kinases of which PKB/Akt is a member. The AGC family of protein kinases, was 

originally named after three early identified members the cAMP-dependent 

kinase, cGMP-dependent kinase and protein kinase C. The protein kinases of 

the AGC family share defining structural and regulatory aspects. AGC kinases 

display structural determinants that control protein localization and a flexible 

peptide loop, commonly referred to as the activation loop, which is found near 

the catalytic pocket and upon phosphorylation stimulates kinase activation. 

Additional structural domains control the amplitude of kinase activation.  
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2. PKB/Akt Isoforms, Structure and Activation  
  

PKB/Akt is the cellular homologue of the transforming v-Akt oncogene found in 

a retrovirus termed Akt8. It is conserved with increasing complexity from lower 

organisms up to mammals, where it exists as three isofoms (Figure 1).  

 

Figure 1. Phylogenetic Tree Of The PKB/Akt Proteins. PKB/Akt is conserved from lower 
organisms to mammals where all three isoforms are observed. Lower organisms show 
differential presence of PKB/Akt isoforms suggesting the evolutionary development of multiple 
PKB/Akt isoforms was a requirement for the regulation of more complex signaling found in 
higher organisms (Adapted from Riehle et al., 2003). 

 

These three isoforms of PKB/Akt, termed PKB/Akt1, PKBAkt2, and 

PKBAkt3 are found on distinct genes but exhibit greater than 85% sequence 

identity and share the same structural organization crucial for regulation of 

activity (Figure 2). 
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Figure 2. Domain Structures Of The PKB/Akt Isoforms And Roles In PKB/Akt Activation. 
PKB isoforms display 85% similarity with three highly conserved domains. All isoforms contain 
a pleckstrin homology (PH) domain responsible for tethering PKB/Akt at the plasma membrane 
via binding to the phospholipid, PIP3, a catalytic domain containing the activation loop and 
PDK-1 threonine phosphorylation site and a C-terminal regulatory domain containing the 
hydrophobic motif and mTORC2/DNA-PK phosphorylation site required for full activation of 
PKB/Akt. PH, pleckstrin homology, PIP3, phosphatidylinositol 3,4,5-triphosphate, Chr, 
chromosome; aa, amino acid; T, threonine; S, serine. Other amino acids illustrated surrounding 
the phosphorylation sites are represented by capital letters consistent with standard 
nomenclature. 

 

The PKB/Akt isoforms possess an amino-terminal pleckstrin homology (PH) 

domain for binding to membrane 3-phosphoinositides, a central catalytic 

domain and a carboxy-terminal regulatory domain. The central catalytic domain 

contains the activation loop with a threonine phosphorylation site that activates 

the kinase, whilst the regulatory domain contains the hydrophobic motif with the 

serine phosphorylation site (FPQFSPY). Phosphorylation of the hydrophobic 

serine stabilizes the active conformation of PKB/Akt and stimulates a ten-fold 

increase in activity and full activation of the kinase (Figure 3). Activated 

PKB/Akt isoforms phosphorylate serine/threonine residues on target substrates 

with the consensus phosphorylation sequence Arg-X-Arg-X-X-Ser/Thr-Hyd, 

where X is any amino acid and Hyd is a bulky hydrophobic residue. 
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Figure 3. Structure Of Activated PKB/Akt. Activated PKBβ/Akt2 ternary complex with the 
GSK3-peptide (red) bound in the substrate-binding site and a hydrolysis-resistant ATP 
analogue (AMP-PNP) in the ATP-binding site. Note the hydrophobic motif of PKB/Akt has been 
replaced by that of the AGC kinase, PRK2 to allow stable crystal formation. Thr309 in the 
activation segment is shown in blue. Adapted from (Yang et al., 2002). 
 

 
3. The PI3K-Pten-PKB/Akt Signaling Pathway, Downstream 
Substrates And Functions 
 
The PI3K-PTEN-PKB/Akt signaling pathway transduces signals from 

membrane receptors to its major effector molecule, PKB/Akt (Figure 4). 

 

Figure 4. The PI3K Pathway And PKB/Akt Activation. RTK: Receptor Tyrosine Kinases; 
IRS: Insulin Receptor Substrate; PI3K: class I Phosphoinositide-3-Kinase (p85 subunit, p110 
subunit); PIP: Phosphatidylinositol Lipids (PIP2: phosphatidylinositol-4,5-biphosphate, PIP3: 
phosphatidylinositol-3,4,5-triphosphate); PTEN: Phosphatase and Tensin Homolog; PDK1: 3-
Phosphoinositide-Dependent Protein Kinase-1; mTORC2: mammalian target of rapamycin 
complex 2 (mTOR kinase, rictor, PRR5, mLST8, SIN1); DNA-PK: DNA-Dependant Protein 
Kinase; PHLPP: PH-domain leucine-rich repeat-containing protein phosphatases; PKB/Akt: 
Protein Kinase B/v-Akt Murine Thyoma Viral Oncogene; R: Arganine; x: Any Amino Acid; S: 
Serine; T:Threonine: Φ: Hydrophibic Amino Acid. Adapted from Fayard et al., JCS 2005 
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This pathway is conserved in lower organisms and is ubiquitous in mammalian 

cells, where it promotes cell growth, proliferation and survival, as well as 

mediating hormone metabolism, immune responses and angiogenesis (for a 

review, see Alessi, 2001; Brazil and Hemmings, 2001; Altomare and Testa, 

2005; Manning and Cantley, 2007; Bozulic and Hemmings, 2009). Receptor 

tyrosine kinase stimulation activates PKB/Akt via a tightly controlled multi-step 

process (Fig. 1). Activated receptors stimulate class 1A PI3K directly or via 

adapter molecules such as the insulin receptor substrate (IRS) proteins. Class 

1A PI3Ks bind via one of their five regulatory subunits (p85α, p85β, p55α, p55γ 

or p50α), which in turn binds to one of three catalytic subunits [p110α, p110β or 

p110δ (in leukocytes)], allowing conversion of phosphatidylinositol (3,4)-

bisphosphate [PtdIns(3,4)P2] lipids to phosphatidylinositol (3,4,5)-trisphosphate 

[PtdIns(3,4,5)P3] at the plasma membrane. PKB/Akt binds to PtdIns(3,4,5)P3 at 

the plasma membrane, where 3-phosphoinositide-dependent protein kinase 1 

(PDK1) can then access the ‘activation loop’ of PKB/Akt to phosphorylate 

threonine 308 (Thr308), leading to partial PKB/Akt activation (Alessi et al., 

1997). This PKB/Akt modification is sufficient to activate mTORC1 by directly 

phosphorylating and inactivating proline-rich Akt substrate of 40 kDa (PRAS40) 

and tuberous sclerosis protein 2 (TSC2). These phosphorylation events release 

the kinase mammalian target of rapamycin (mTOR) that is bound to PRAS40, 

prevent TSC2 GTPase activity and allow active, GTP-bound Rheb to activate 

mTORC1. mTORC1 substrates include the eukaryotic translation initiation 

factor, 4E, binding protein 1 (4EBP1) and the ribosomal protein S6 kinase, 70 

kDa, polypeptide 1 (S6K1), which phosphorylates the ribosomal protein S6 (S6; 

also known as RPS6), to promote protein synthesis and cellular proliferation.  

Phosphorylation of PKB/Akt at Ser473 in the C-terminal hydrophobic motif, 

either by mTOR associated with the mTOR complex 2 (mTORC2) (Sarbassov 

et al., 2005) or by the DNA-dependent protein kinase (DNA-PK) (Feng et al., 

2004) stimulates full PKB/Akt activity. Full activation of PKB/Akt leads to 

additional substrate-specific phosphorylation events in both the cytoplasm and 

nucleus, including inhibitory phosphorylation of the pro-apoptotic FOXO 

proteins. Dephosphorylation of Ser473 by the PH-domain leucine-rich repeat-

containing protein phosphatases PHLPP1 and PHLPP2, and the conversion of 

PtdIns(3,4,5)P3 to PtdIns(3,4)P2 by PTEN, antagonizes PKB/Akt signaling.  
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PKB/Akt signals to a plethora of substrate to mediate numerous cellular 

functions including angiogenesis, metabolism, cell growth, proliferation, protein 

synthesis, transcription and apoptosis (relevant functions are discussed in 

further detail in later sections) as illustrated in figure 5 

 

 
Figure 5. Regulation Of Physiological Functions By Activated PKB/Akt Through 
Inhibitory And Stimulatory Phosphorylation Of Downstream Target Substrates. Activated 
PKB/Akt mediated regulation of cellular functions including angiogenesis, metabolism, growth, 
protein synthesis, transcription and apoptosis via phosphorylation of downstream substrates to 
inhibit or activate these proteins. Substrates are grouped according to their function and the 
effect of PKB/Akt phosphorylation is indicated by (+) activation or (-) inhibition. BAD, Bcl-2 
antagonist of cell death; BRF1, Butyrate response factor1; eNOS, endothelial cell nitric oxide 
synthase; FOXO1/3a/4, Forkhead Box O1/3a/4 (FOXO1/FKHR, FOXO3a/FKHRL1, and 
FOXO4/AFX); GSK3, glycogen synthase kinase; IKK, inhibitor kappa B kinase; Mdm2, mouse 
double minute 2; Myt1, membrane associated and tyrosine/threonine specific 1; NF-κB, nuclear 
factor-kappa B; PHLPP, PH domain and leucine rich repeat protein phosphatase; p53, tumour 
protein p53, 6-PF2K, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; Plk1, Polo like 
kinase1; PP2A, protein phosphatase 2 subunit A; RAF, v-raf-1 murine leukemia viral oncogene 
homolog 1; TSC2; tuberous sclerosis complex  protein 2; WNK1, WNK lysine deficient protein 
kinase 1. (Adapted from Fayard et al., 2005) 
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4. Genetically-modified PKB/Akt Mice: Providing Insights And 
Models For Probing PKB/Akt Isoform Specific Functions In Disease 
And Cancer 
 
The generation of Isoform-specific knockout PKB/Akt mice has illustrated that 

these isoforms display both redundant and isoform specific functions (Table 1).  

 

 
 Table 1. PKB/Akt Knockout Mouse Models And Phenotypes. (Chen et al., 2001; Cho et al., 
2001; Garofalo et al., 2003; Peng et al., 2003; Yang et al., 2003; Easton et al., 2005; Tschopp 
et al., 2005; Yang et al., 2005; Baudry et al., 2006; Dummler et al., 2006)  
 
All PKB/Akt isoforms knockout mice are viable illustrating that no single isoform 

is essential for viability. PKB/Akt1 mice, whilst viable, do display ~30% 

perinatal lethality, in addition to growth retardation and increased spontaneous 

apoptosis, strongly implicating PKB/Akt1 as the major isoform in growth and 

survival. This is supported by the generation of tissue-specific mice with 

increased PKB/Akt1 activity that exhibit increased cell number and cell size 

(Bernal-Mizrachi et al., 2001; Chen et al., 2001; Cho et al., 2001; Malstrom et 

al., 2001; Tuttle et al., 2001; Condorelli et al., 2002; Matsui et al., 2002; Shioi et 

al., 2002; Yang et al., 2003). PKB/Akt2 mice are viable and of normal size, 

however they progressively develop a diabetes-like syndrome characterized by 

insulin resistance and hyperglycemia. This illustrates a crucial role of the 
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PKB/Akt2 isoform in transducing signals regulating organism metabolism. 

PKB/Akt3 KO mice are viable and normal except for decreased size of the 

brain and testis that are the major sites of PKB/Akt3 expression. This indicates 

this isoform may have more specialized or subtle functions in normal 

development and physiology. This is also supported by compound knockouts 

that lack PKB/Akt3. PKB/Akt1-PKB/Akt3 double knockout mice die at 

embryonic day 12 (E12) with severe growth retardation and developmental 

defects, whilst PKB/Akt2-PKB/Akt3 mice are viable but with a reduction in 

size and an enhancement of the single isoform knockout phenotypes. Together 

this suggests the PKB/Akt3 isoform does contribute to normal functions 

primarily mediated by both PKB/Akt1 and PKB/Akt2. Similarly, loss of 

PKB/Akt2 on the background of PKB/Akt1 deletion enhances the phenotype 

of PKB/Akt1, resulting in 100% perinatal lethality and additionally leading to 

developmental defects in bone and skin. These mouse models highlight that all 

three PKB/Akt isoforms contribute, albeit to different degrees, to control cellular 

metabolism, growth, proliferation and survival in tissues throughout the 

organism. Furthermore, they illustrate that in regulating these functions the 

PKB/Akt isoforms also maintain whole organism metabolism and growth, with 

knockout of various isoforms in the whole organism or in specific-organs 

leading to defects in organism metabolism and growth. 

Aberrant PKB/Akt activation is frequently observed in human disease, 

particularly in metabolic syndromes displaying insulin resistance, like diabetes, 

as well as in cancer. In diabetes, decreased insulin receptor phosphorylation 

and tyrosine kinase activity, reduced levels of active intermediates in the insulin 

signaling pathway, and impairment of GLUT4 translocation have all been 

illustrated that are consistent with the observed development of insulin 

resistance and a diabetes-like phenotype in the PKBβ/Akt2 mice (Caro et al., 

1987; Olefsky and Nolan, 1995; Petersen and Shulman, 2006). Familial tumour 

syndromes, like those caused by mutation of PTEN or TSC1/2 directly disrupt 

PKB/Akt activation or downstream signaling. The presentation of the 

corresponding human syndrome also has numerous similarities in the mouse 

phenotypes (Table 2), indicating the suitability of these mice as models to gain 

insights into these diseases. 
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Table 2. Mouse Phenotypes Of Common Human Familial Tumour Syndromes. All data 

taken from: Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute of 

Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for 

Biotechnology Information, National Library of Medicine (Bethesda, MD), 2009. World Wide 

Web URL: http://www.ncbi.nlm.nih.gov/omim/ and http://www.informatics.jax.org/ (Restuccia 

and Hemmings, 2010) 

In addition to the familial syndromes, spontaneous tumours from various 

tissues displaying hyperactivated PKB/Akt signaling is well documented, 

particularly as a consequence of loss of PKB/Akt regulation via mutation of 

Pten and suggests that specific isoforms of PKB/Akt can contribute to tumour 

formation dependant upon tumour type (Table 3).  

 
Table 3. Incidence Of PKB/Akt Hyperactivation In Human Tumours, The Major Reported 
PKB/Akt Isoform Involved And Pten Abnormalities. [aAltomare et al. (2005); bRobertson 
(2005); Bellacosa et al. (2005), cChang et al  (2006), Hyun et al (2006); 1Futreal et al (2004); 
2van Nederveen et al (2006); 3Fassnacht et al (2005). Adapted from Altomare & Testa (2005) 
and Vivanco & Sawyers (2002)] 
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These observations from the clinic indicate that loss of Pten in mice would 

provide an excellent model to study both the contribution of PKB/Akt 

hyperactivation and isoform-specific roles of PKB/Akt in tumour development 

and progression. Based upon this premise, a number of mouse models have 

been generated that are heterozygous for Pten (Table 4).  

 

 
Table 4. Pten Heterozygous Mouse Models And Phenotypes. Adapted from (Freeman, Dan 
et al., 2006) 
 

These mice develop a broad spectrum of tumours, albeit with varying severity 

based upon differences in genetic background. Importantly, these tumours 

show similar signaling and pathology to tumours from the clinic, indicating they 

do recapitulate crucial elements of hyperactivation of PKB/Akt in the human 

setting. This indicates these models provide a valuable tool for understanding 

the contribution of hyperactivated PKB/Akt signaling and the contribution of the 

PKB/Akt isoforms to this process. 
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7. Scope of this thesis  
 

The general aim of this thesis was to identify PKBβ/Akt2 isoform specific 

contributions to pathological settings by the utilization and analysis of 

genetically-modified mouse models.  

 

This thesis sought to examine this by focusing on two main areas: 

(1) metabolic dysfunction and  

(2) tumourigenesis. 

 

(1) As loss of PKBβ/Akt2 functions results in insulin resistance through its 

effects on classical insulin-responsive tissues involved in glucose 

homeostasis, a particular goal was to determine if PKBβ/Akt2 

contributed to other metabolic dysfunction through effects on non-

classical insulin responsive tissues.  

(2) Whilst PKBβ/Akt2 is deregulated in various human cancers, mouse 

models leading to hyperactivation of PKB/Akt indicate that in most 

tissues tumour formation is dependant upon the presence of 

PKBα/Akt1. Therefore, this section of the thesis aimed to clarify two 

poorly understood aspects of PKB/Akt tumourigensis. Firstly, if 

PKBβ/Akt2 is responsible for driving tumourigenesis in organs of mouse 

tumour models that are not significantly affected by PKBα/Akt1 loss. 

Secondly, if PKBβ/Akt2 contributes or is redundant to the tumour 

development and progression in organs where PKBα/Akt1 is know to 

drive tumour formation. 

By identifying contributions of PKBβ/Akt2 to metabolic disorders and 

tumourigenesis, this thesis aims to provide both a basis and also stimulation for 

future studies to identifying downstream PKBβ/Akt2 specific targets that can be 

targeted without potential adverse consequences, like insulin resistance, that 

currently confounds efforts to target PKBβ/Akt2 dysfunction in human 

pathologies.  
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II. RESULTS: Part I 

 

 

 

 

 

 

 

 

 

Loss of Protein Kinase B beta (PKBβ/Akt2) 

Predisposes Mice To Ovarian Cyst Formation And 

Increases The Severity Of Polycystic Ovary Formation 

in vivo 
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Introduction 

1.1. Endocrine Function Controlling Reproduction Via The 
Hypothalamic-Pituitary-Gonadotrophin Axis  
 

Endocrine functions in the human regulate whole body homeostasis by 

mediating communication between organs at distant sites in the body, including 

insulin signaling to regulate glucose homeostasis and gonadotrophin signaling 

to control reproductive function. Gonadotrophin signalling is controlled by 

endocrine signaling between the hypothalamus, the pituitary and the ovary in 

what is referred to as the hypothalamic-pituitary-ovarian (HPO) axis, as 

illustrated in Figure 1.1. 

 
Figure 1.1. The Gonadotrophin-Pituitary-Ovarian Axis In Regulation of Reproductive 
Function. 
 

Gonadotrophin signaling is triggered by the release of gonadotrophin releasing 

hormone (GnRH) from the hypothalamus in the brain. GnRH acts upon its 
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receptor in the pituitary to trigger release of leutinizing hormone (LH) and 

follicle-stimulating hormone (FSH). LH and FSH then act upon the ovary to 

stimulate ovarian steroidogenesis, resulting in the production of progesterone 

and estrogens that act on reproductive targets tissues. These actions support 

the implantation of successfully fertilized ovum into the uterus and its 

development into a fetus, or in the case of unsuccessful fertilization the 

degeneration of the uterine lining and reinitiation of the reproductive cycle. In 

either scenario, these hormones also signal back to the hypothalamus and 

pituitary, providing negative and positive cues to maintain appropriate release 

of GnRH, LH and FSH.    

 

1.2. Ovarian Steroidogenesis  
 

The ovary is the central organ for production of female sex steroids. The ovary 

is a complex organ that consists of a number of functionally distinct structures, 

including the follicle, the interstitium and the corpus luteum. Whilst functionally 

distinct, they must nevertheless communicate with each other to ensure their 

normal function and that of the ovary. This is regulated by the presence of 

multiple cell types, of which the granulosa cells and thecal cells are the most 

crucial to normal ovarian function. Figure 1.2 highlights the ovum (labeled Ov), 

granulosa cells (stained brown in i and labeled GC) and surrounding thecal 

cells (bounded by dashed lines and labeled TC).  

 
Figure 1.2. Ovarian Follicle Structure. The ovum, Ov (i,ii), is supported by the granulosa 
cells, GC (ii, i and stained brown in i), which are in turn supported by the surrounding thecal 
cells, TC (i,ii). Figure ii taken from http://www.bu.edu/histology/p/14805loa.htm 
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Steroidogenesis within the ovary is mediated by the thecal and granulosa cells 

and directly affects ovum survival, menstruation and fertility, as illustrated in 

Figure 1.3. 

 

Figure 1.3. Role Of LH And FSH On Thecal And Granulosa Cell Function And Control Of 
Normal Menstruation And Fertility. 
 

Thecal and granulosa cells are activated respectively by pituitary-released LH 

and follicle-stimulating hormone (FSH) to allow conversion of cholesterol to the 

hormones progesterone, testosterone and estrogen. LH stimulation of thecal 

LH receptors (LHRs) triggers conversion of cholesterol to progesterone, which 

can be further converted to testosterone. Testosterone then diffuses to 

neighboring granulosa cells where it is converted to estrogen by FSH-

stimulated granulosa cells. In addition to their effects on distal target tissues, 

these ovarian hormones, along with other factors released by the thecal and 

follicular cells, provide positive and negative feedback to the pituitary to control 

the pro-steroidogenic stimuli mediated by pituitary LH and FSH. This tightly 

regulated HPO axis ensures appropriate temporal and quantitative release of 

LH and FSH that in turn dictates production of progesterone, testosterone and 

estrogen to maintain normal menstrual cycling.  

 

1.3. Thecal Cell Signaling In Androgen Production 
 

Stimulation of the thecal G-protein coupled LHR activates the canonical 

steroidogenic pathway via stimulatory G-protein alpha subunit (Gαs) - adenylyl- 

3',5'-cyclic adenosine monophosphate cyclase (cAMP) - protein kinase A 

(PKA). This pathway triggers both a rapid, acute steroidogenesis response, by 
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indirectly stimulating mitogen-activated protein kinase/extracellular-signal-

regulated kinase 1/2 (ERK) activation to phosphorylate and activate the steroid 

acute regulatory protein (StAR) (Arakane et al., 1997), and a chronic 

steroidogenesis response by direct activation of the cAMP response element-

binding protein (CREB) transcription factor that initiates expression of 

steroidogenic proteins to facilitate de novo protein synthesis required for 

sustained steroid production (Johnson and Sen, 1989; Tremblay et al., 2002; 

Towns et al., 2005; Towns and Menon, 2005). The transcription of proteins 

involved in steroidogenesis initiated in the chronic response is crucial, as 

steroids are not stored within the cell and without de novo protein synthesis the 

cell would rapidly exhaust the substrates required for steroid production. 

Transcription of proteins regulating the chronic response includes proteins 

involved in uptake of cholesterol into the cell, like the low-density lipoprotein 

receptor (LDLR), the crucial rate-limiting StAR protein that mediates transport 

of the cholesterol into the mitochondria (Tremblay et al., 2002), and 

hydroxylase/reductase enzymes like P450 cholesterol side-chain cleavage 

enzyme (CYP11A) within the mitochondria or 17α-hydroxylase/17,20-lyase 

cytochrome P450 A (CYP17A) in the endoplasmic reticulum, both involved in 

processing cholesterol to bioactive hormone products like testosterone. In 

addition, but less understood, is the role of the non-classical cAMP-

independent signaling downstream of LHR, which involves amongst others, 

protein kinase C (PKC) and PI3K-PKB/Akt signaling (Figure 1.4). 
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Figure 1.4. Thecal Cell Signaling Pathways In The Production Of Ovarian Androgens. 
 
1.4. Deregulation Of The Hypothalamic-Pituitary-Ovarian Axis And 
Ovarian Hormone Production In Ovarian Cyst Development And 
PCOS 
 

Disruption of the HPO system can lead to ovarian and uterine abnormalities 

including formation of fibroids, tumours and cysts. Ovarian cysts affect women 

of all ages and are the most common female reproductive abnormality, 

ensuring ovarian cysts contribute a significant social and economic burden in 

their management [for review see (Goodarzi et al., 2011)]. Cysts can be divided 

into large simple cysts and polycystic ovarian syndrome (PCOS). Simple cysts 

have been poorly studied as they often result in only minor discomfort, can 

resolve without treatment and are generally slow growing and benign. Large 

simple cysts are most commonly detected in an older population and as these 

women are often no longer concerned with maintaining fertility, uni- or bi-lateral 

oophorectomy surgery (removal of the ovary) is regularly performed.  

Conversely, PCOS, which is characterized by the formation of multiple small 

cysts in the ovary is observed from puberty, can result in infertility and affects 

5-10% of women of reproductive age. PCOS can be resolved in some cases by 

lifestyle changes and weight loss, although in other cases treatments range 

from insulin-sensitizing drugs to hormone supplementation, whilst in particularly 
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refractory cases as well as when the affected individual is attempting to get 

pregnant, ovarian wedge resection or in vitro fertilization can be required. 

PCOS is due to deregulation of LH signaling which can occur at various levels 

of the HPO axis to stimulate hyperproduction of androgens. Two major means 

of deregulation are hyperstimulation of the pituitary by the hypothalamus 

leading to increased LH release and by far the most common form, 

hypersensitivity of the ovarian thecal cells to LH. In both cases the common 

feature is abnormal LHR signaling within the LH-responsive ovarian thecal 

cells, resulting in an increased steroidogenic response and androgen 

production. As a consequence, granulosa cell and ovum survival is 

compromised, leading to anovulation, initiation of anovulatory cycling and 

subsequent infertility, as illustrated in Figure 1.5.  

 

 
Figure 1.5. Disruption Of The HPO Axis In PCOS And Infertility. 

 
1.5. PKB/Akt In Steroidogenic Signaling  
 
Deregulation of the canonical thecal steroidogenic pathways is central to cyst 

development, with genetic manipulation of LHR signaling in mice resulting in 

ovarian cyst development and the hallmark of increased testosterone 

production. These aspects are observed both in PCOS mice models and 

patients whom display abnormalities at various steps in thecal steroidogenesis. 

However, a contribution of the non-classical cAMP-independent signaling in 

PCOS is unquestionable, as defects in these signaling pathways are highly 

prevalent in PCOS patients. This is particularly relevant for insulin receptor 

(InsR) signaling that normally activates PI3K-PKB/Akt signaling, as this is 

defective in the 50-70% of PCOS patients whom display insulin resistance (IR). 
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Additionally, up to 60% of PCOS patients are obese, which is the most 

common factor leading to IR and can result in decreased InsR expression and 

post-receptor dysfunction in downstream kinase activation. Furthermore, 

defects in InsR phosphorylation (Dunaif et al., 1995) and genetic lesions in this 

pathway, including InsR, PKBβ/Akt2 and the PKB/Akt substrate glycogen 

synthase kinase beta (GSK3β) are associated with PCOS patients (George et 

al., 2004; Tan et al., 2007; Goodarzi et al., 2008; Mukherjee et al., 2009). This 

indicates that PKB/Akt and particularly, PKBβ/Akt2, may contribute to 

development of PCOS and PKBβ/Akt2 KO mice could therefore provide a 

means to explore this question in a physiological setting. 
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Results 

2.1. Ablation Of The PKBβ/Akt2 Isoform Specifically Leads To 
Development Of Severe Ovarian Cyst In Aged Mice  
 

We observed aged female mice presenting with distended abdomens and upon 

examination noted mice lacking PKBβ/Akt2 but not wild type (WT) mice 

developed severe ovarian cysts (Figure1.6a, b).  

 

Figure 1.6. Specific Loss Of PKBβ/Akt2 In Aged Mice Results In Development Of Severe 
Ovarian Cysts.  (A) WT (i) and PKBβ/Akt2 KO (ii) mice present with distended abdomens 
between 91 and 120 weeks of age. (B) Cystic ovaries isolated from WT (i) and PKBα/Akt1 KO 
(iii) mice fail to show atresia or small ovarian cyst formation, whilst PKBβ/Akt2 KO mice show 
severe ovarian cyst formation.  
 

Further examination of PKBβ/Akt2 KO mice revealed cysts development in 

almost 80% of mice, which generally contained serous fluid with a 

predominantly right-side involvement, although bi-lateral presentation was also 

common (Table 1.1).  
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Table 1.1. Overview Of Ovarian Cyst Incidence And Characteristics From Aged Female 
PKBβ/Akt2 KO And PKBα/Akt1 KO Mice. Analysis of ovarian cyst development in WT, 
PKBβ/Akt2 KO and PKBα/Akt1 KO mice aged between 90 and 120+ weeks from PKBβ/Akt2 
KO and PKBα/Akt1 KO mouse colonies.   
 

Cysts were either absent in WT mice or generally restricted to a small follicular 

cysts with a uni-lateral involvement (Figure 1.6b). Larger cyst size was also 

observed in PKBβ/Akt2 KO mice at older ages, suggesting an increase in size 

with age. To determine if this was due to a reduction of total PKB/Akt levels, 

aged mice lacking the other major PKB/Akt isoform found in the ovary, 

PKBα/Akt1, were examined. Ovaries from PKBα/Akt1 mice were similar to WT 

mice with a small size and predominantly uni-lateral presentation (Figure1.6b 

and table 1.1), indicating that the severe cyst development was due to specific 

loss of the PKBβ/Akt2 isoform. 

 

2.2. Ovarian Cysts In Aged Mice Are Characterized By Thecal-
Interstitial Hyperplasia  
 

To understand what abnormalities within the ovaries may be driving cyst 

development, haematoxylin and eosin (H&E) and immunohisotochemistry (IHC) 

staining was performed on cysts isolated from PKBβ/Akt2 KO mice. H&E 

staining illustrated that ovaries lacked corpus luteum structures and granulosa 

cells, indicating cessation of estrous cycling, whilst hyperplasia of spindle-like 

stromal cells were observed that increased with ovarian cyst size (Figure 1.7a 

and Supplemental Figure 1.1a,b). Positive staining for vimentin of cysts from 
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PKBβ/Akt2 KO mice indicated that the hyperplasic cells represented the thecal-

interstitial cell population (Figure 1.7c). Granulosa cell staining against anti-

mullerian inhibiting substance produced in granulosa cells (Supplemental 

Figure 1.1a, b) was negative, consistent with H&E staining, suggesting follicular 

exhaustion in these cysts.      

 

Figure 1.7. Ovarian Cysts In PKBβ/Akt2 KO Aged Mice Show An Increase In the Thecal-
Intersitial Cell Populations.  (A) Early 91wk old (i,iii) and late 120wk old (ii, iv) aged 
PKBβ/Akt2 KO mice show increasing stromal cells by heamatoxylin and eosin staining (i, ii) 
reflecting of increased thecal-interstitial hyperplasia, indicated by positive vimentin staining by 
immunohistochemistry (iii, iv). 40x magnification.  

 
2.3. Ovarian Cysts In Aged Mice Show Increased Steroidogenic 
Capacity  
 

The observation that cystic ovaries showed hyperplasia of LH-responsive 

thecal-interstitial cells responsible for ovarian steroidogenesis, coupled with an 

absence of follicular cells that are important in maintaining LH levels via 

negative feedback signaling on the pituitary, indicated the potential of active 

steroidogenic signaling by the thecal-interstitial cells in cystic ovaries. Crucial to 

steroidogenesis mediated by LHR activation is the phosphorylation of Ser133 

of the CREB transcription factor and Thr202 and Tyr204 of the ERK kinase, 

that together mediate the transcription of enzymes and intracellular signaling 
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required for the cellular uptake of C-21 cholesterol and its enzymatic 

conversion to C-19 androgens. Cystic ovaries from PKBβ/Akt2 KO mice 

displayed activating phosphorylation of CREB and ERK, with strong ERK 

activation commonly observed in the cells adjacent to the cystic lumen (Figure 

1.8a, ii, iii, v, vi).  

 

Figure 1.8. Aged PKBβ/Akt2 KO Ovarian Cysts Show Active Steroidogenic Signaling And 
Lipid Accumulation With Increased Circulating Testosterone Levels Compared To Wild-
type Mice. (A) PKBβ/Akt2 KO ovarian cysts display both active CREB (i-iii) and ERK (iv-vi) 
signaling required for steroidogenesis. ERK is located at the cystic lumen (arrows) and 
increases with severity of cysts and age of mice (ii,iii & v,vi) but is absent in WT mice (i, iv). 
Magnification 100x. (B) PKBβ/Akt2 KO ovarian cysts (ii, iv) display increased lipid accumulation 
adjacent to the cystic lumen, required for conversion to steroids, which is absent in WT mice (i, 
iii). Magnification 40x and 100x.  
 

 34



 

In contrast, WT ovaries, whilst displaying CREB activation, were devoid of ERK 

activation that is essential for activation of the steroidogenic acute regulatory 

protein (StAR) that mediates transport of cholesterol to the mitochondria for 

enzymatic processing (Figure 1.8a, i, iii). 

Consistent with the activation of ERK in PKBβ/Akt2 KO cysts, lipid staining was 

observed in cells surrounding the cystic lumen of PKBβ/Akt2 KO mice, but was 

absent in WT mice, indicating functional uptake of cholesterol for 

steroidogenesis in PKBβ/Akt2 KO mice (Figure 1.8b).  

To determine if this was enzymatically processed to bioactive androgens, 

serum testosterone levels were measured in WT and PKBβ/Akt2 KO mice. 

Serum from WT mice showed generally low to negligible testosterone levels, 

however, aged PKBβ/Akt2 KO mice consistently showed increased 

testosterone levels with on average an approximate two-fold increase in serum 

testosterone levels (Figure 1.8c), indicating the hyperplastic thecal-interstitial 

cell population observed in ovarian cysts from PKBβ/Akt2 KO mice are 

steroidogenically active and producing testosterone.   

 

 

Figure 1.8. Aged PKBβ/Akt2 KO Ovarian Cysts Show Active Steroidogenic Signaling And 
Lipid Accumulation With Increased Circulating Testosterone Levels Compared To Wild-
type Mice. (C) Consistent with increased active steroidogenesis, PKBβ/Akt2 KO mice show 
increased serum testosterone levels compared to wild type mice. 
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2.4. Young PKBβ/Akt2 Ablated Mice Display Normal Steroidogenic 
And Reproductive Function  
 

As cysts from aged PKBβ/Akt2 KO mice displayed abnormal steroidogenesis, 

young PKBβ/Akt2 KO mice were examined to determine if steroidogenic or 

reproductive functions might be compromised by loss of PKBβ/Akt2 in these 

animals. Activation of steroidogenic signaling illustrated by phosphorylation of 

CREB and ERK showed no differences between WT and PKBβ/Akt2 KO 

ovaries (Figure 1.9A), with the thecal-interstitial population showing low to 

moderate activation of both proteins in contrast to that seen in aged cystic 

ovaries.  

 

A 

 

Figure 1.9. Analysis Of Young WT And PKBβ/Akt2 KO Mice Show Loss Of PKBβ/Akt2 
Has No Significant Impact On Normal Ovarian Steroiodogenic Signaling Or Reproductive 
Function. (A) Steroidogenic signaling through CREB (i, ii) and ERK (iii, iv) is normal in ovaries 
of both WT (i, iii) and PKBβ/Akt2 KO (iii, iv) mice. (B) Circulating serum hormone levels of 
testosterone (i) and estradiol (ii) are similar in both WT and PKBβ/Akt2 KO animals, indicating 
steroidogenic production is unaffected by PKBβ/Akt2 loss under normal conditions.  
 
Consistent with this, testosterone and estradiol serum levels were equivalent in 

both WT and PKBβ/Akt2 knockout animals (Figure 1.9B).  

 36



 

 

B 

Figure 1.9. Analysis Of Young WT And PKBβ/Akt2 KO Mice Show Loss Of PKBβ/Akt2 
Has No Significant Impact On Normal Ovarian Steroiodogenic Signaling Or Reproductive 
Function. (B) Circulating serum hormone levels of testosterone (i) and estradiol (ii) are similar 
in both WT and PKBβ/Akt2 KO animals, indicating steroidogenic production is unaffected by 
PKBβ/Akt2 loss under normal conditions.  
 

Finally, reproductive function was assessed by analysis of litter sizes between 

WT and PKBβ/Akt2 KO animals and whilst a trend was seen toward a decrease 

in matings between PKBβ/Akt2 KO animals compared to WT, this was not 

statistically significant (Figure 1.9C).  

 

C 

Figure 1.9. Analysis Of Young WT And PKBβ/Akt2 KO Mice Show Loss Of PKBβ/Akt2 
Has No Significant Impact On Normal Ovarian Steroiodogenic Signaling Or Reproductive 
Function. (C) PKBβ/Akt2 KO mice are fertile and show similar litter sizes compared to matings 
from WT animals. 
 

These findings indicate that compensatory mechanisms in the HPO axis in 

young PKBβ/Akt2 KO mice are sufficient to maintain normal ovarian function 

and suggest that co-operating dysfunction to imbalance these mechanisms 

may be required to unmask the effects of PKBβ/Akt2 loss in steroidogenesis.   

 37



 

2.5. Induction of PCOS Via Tonic LH Stimulation In PKBβ/Akt2 KO 
Mice Results In Increased Severity Of Polycystic Ovary Formation
  
As aged PKBβ/Akt2 KO ovaries showed cystic development and activation of 

androgenic steroidogenesis in thecal-interstitium, but ovaries from young mice 

failed to show any dysfunction, an experiment was designed to determine if a 

role for PKBβ/Akt2 in ovarian steroidogenesis could be revealed by inducing a 

state of hyperstimulated LH signaling. Since PCOS exhibits cystic development 

and increased testosterone synthesis, an in vivo model of PCOS induction by 

tonic stimulation with LH was chosen to determine if PKBβ/Akt2 loss could 

contribute to PCOS pathology. This model uses tonic LH stimulation which 

mimics the PCOS setting and exhibits features of PCOS pathology including 

increased steroidogenic signaling and testosterone production, resulting in cyst 

formation. Additionally, to counter possible effects of compensation by a 

potential increase in negative feedback to the pituitary, LH stimulation was also 

administered in the presence of a gonadotrophin releasing hormone antagonist 

(GnRHAnt). Consistent with previous reports, administration of LH with or 

without GnRHAnt led to development of hemorrhagic follicular cysts, whilst 

treatment with either vehicle or GnRHAnt alone did not result in cyst 

development (Figure 1.10A). On a background of PKBβ/Akt2 loss, whilst cyst 

development in ovaries was also unaffected by vehicle or GnRHAnt treatment 

alone, treatment with LH alone or with GnRHAnt led to an approximate three-

fold increase in cystic area in the ovaries (Figure 1.10A).  

 

A 

Figure 1.10. Induction Of PCOS Via Tonic LH Administration Results In An Increased 
Severity Of Ovarian Cysts In PKBβ/Akt2 KO Ovaries, With Formation Of Cysts 
Associated With ERK Activation And Lipid Accumulation In Steroidogenically Active 
Ovaries. (A) PKBβ/Akt2 KO ovaries showed an approximately three-fold increase in ovarian 
cyst area in LH treated ovaries (vi, viii) compared to WT (v, vii), independent of administration 
of a gonadotrophin releasing hormone antagonist. Treatment of WT and PKBβ/Akt2 KO mice 
with vehicle (i,ii) or gonadotrophin releasing hormone antagonist (iii,iv) alone had no effect on 
cyst formation.  
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Analysis of CREB phosphorylation showed that it was activated to support 

steroidogenesis in the ovaries of both WT and PKBβ/Akt2 KO mice (Figure 

1.10B, i-iv), whilst activated ERK was strongly expressed in the thecal cells 

adjacent to the cystic lumen (Figure 1.10B, v-viii), reminiscent of that seen in 

the cysts of aged PKBβ/Akt2 KO mice. Strong ERK activation was more 

commonly seen surrounding cysts in PKBβ/Akt2 KO ovaries and interestingly, 

unlike in WT ovaries, strong ERK activation was also seen in thecal cells 

surrounding large follicles (Figure 1.10B, vi, viii, arrows), suggesting this may 

support increased steroidogenesis, follicular degeneration and cyst 

development leading to the increase in ovarian cyst area observed in 

PKBβ/Akt2 null ovaries.  

 

Figure 1.10. Induction Of PCOS Via Tonic LH Administration Results In An Increased 
Severity Of Ovarian Cysts In PKBβ/Akt2 KO Ovaries, With Formation Of Cysts 
Associated With ERK Activation And Lipid Accumulation In Steroidogenically Active 
Ovaries. (B) Steroidogenic signaling was active and seen in both ovaries from WT (i, iii, v, vii) 
and PKBβ/Akt2 KO (ii, iv, vi, viii) treated with LH. ERK however was also observed to be 
strongly active with increased theca thickness surrounding large follicles predominantly in 
PKBβ/Akt2 KO ovaries (arrows). (C) Increased lipid accumulation in ovaries treated with LH 
was also observed in PKBβ/Akt2 KO mice (ii, iv) in areas with active androgen steroidogenesis 
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[indicated by staining for 3β-HSD activity (v-viii)] compared to WT (i, iii). All magnifications for 
IHC are 100x. 
 

Consistent with the observed CREB and ERK activation, cystic ovaries 

illustrated active steroidogenesis via 3β-HSD staining in the thecal-interstitial 

population of cystic ovaries (Figure 1.10C, v-viii) and increased lipid 

accumulation in this steroidogenic population in the PKBβ/Akt2 KO ovaries 

compared to WT animals (Figure 1.10C, i-iv), indicating PKBβ/Akt2 KO mice 

have increased cholesterol uptake that could also support androgen production 

in an environment of ERK activation. 
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Discussion 
 

The PKB/Akt kinases have roles in diverse physiological functions and have 

been shown to play important roles in the actions of various hormones. 

However, whilst stimulation of PKB/Akt activity in the thecal-interstitium has 

been shown upon LH stimulation, the contribution of PKB/Akt isoforms to 

ovarian androgen production is undefined. This study provides in vivo evidence 

for an isoform specific role for the PKBβ/Akt2 isoform in thecal steroidogenesis 

and illustrates that loss of function of PKBβ/Akt2 in the presence of active 

thecal androgen steroidogenesis can support ovarian cyst formation and could 

contribute to PCOS pathology. 

The findings of this study, show that specific loss of the PKBβ/Akt2 isoform in 

aged mice increases the incidence of cyst development and severity in both 

ovarian size and bilateral involvement. Ovarian cyst development has been 

linked in numerous studies to increased LHR signaling and subsequent 

testosterone biosynthesis in the thecal-interstitium compartment of the ovary. 

Postmenopausal women display follicular exhaustion that results in decreased 

conversion of testosterone to estrogen with increased LH and FSH as a 

consequence of loss of negative feedback upon the pituitary (Choi et al., 2007). 

Involvement of LH/FSH receptor deregulation in supporting cyst development 

has been illustrated in mouse models disrupting these sex hormones, with mice 

overexpressing LH displaying bilateral ovarian involvement, thecal hyperplasia, 

increased testosterone levels and cyst development, whilst LH or FSHR 

knockout mice also display cyst development (Danilovich and Ram Sairam, 

2006; Huhtaniemi et al., 2006). This would appear to be reflected in the aged 

mice analysed in this study, with decreased or absent granulosa cells and 

follicular cyst development observed in WT, PKBα/Akt1 KO and PKBβ/Akt2 KO 

mice. However, only specific loss of PKBβ/Akt2 in this setting allows cysts to be 

permissive to severe cyst development. Ovaries from PKBβ/Akt2 KO mice 

show bilateral ovary involvement, thecal hyperplasia, increased testosterone 

levels and cyst development, all observed in LH overexpressing mice. This 

indicates that a consequence of loss of specific PKBβ/Akt2 functions in the 

aged ovary is exacerbated androgenic signaling. The findings of this study 
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suggest this is at least in part due to loss of functions that can control ERK 

activation and lipid accumulation, allowing increased testosterone production 

observed in the PKBβ/Akt2 mice, as proposed in the model below (Figure 

1.11). This provides an important basis supporting further studies to determine 

the direct targets of PKBβ/Akt2 and how they function in ovarian 

steroidogenesis.  

 
Figure 1.11. Proposed Model For Contribution Of PKBβ/Akt2 Loss To Development Of 
Ovarian Cysts And PCOS. Loss of PKB/Akt in the ovary in the presence of deregulated LH 
signaling results in thecosis. Increased testosterone production mediated by increased 
activation of ERK and cholesterol uptake promotes death of granulosa cells and the ovum 
leaving follicular cysts which can continue to increase in size in the presence of unchecked 
testosterone production. 
 

Analysis of young PKBβ/Akt2 KO mice showed no significant effects on ovarian 

steroidogenesis or reproductive function. This indicates the role of PKBβ/Akt2 

in these functions are not essential and are only unmasked upon the co-

existence of another dysfunction. In these studies, increased LH-controlled 

androgenic signaling was the initiating factor for cyst development, whereupon 

loss of PKBβ/Akt2 functions could exacerbate the pathological consequences 

of this abnormality. Importantly, the effects of PKBβ/Akt2 loss are not confined 
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to aged mice, where other abnormalities or mutations that may be acquired in 

normal aging could co-exist with the loss of PKBβ/Akt2, but also in ovaries of 

young healthy mice stimulated with LH in the PCOS mouse model. 

Furthermore, the fact that no significant difference in ovarian cyst development 

in normal young mice exposed to the treatment of LH alone or LH with 

GnRHAnt, suggest that the dysfunction in these mice is most likely in positive 

stimulation of androgenic production rather than negative regulation of LH or 

deregulation at the level of the pituitary. This supports an intrinsic role for 

PKBβ/Akt2 within the ovary in functioning to control the amplitude of pathogenic 

androgenic responses, although in vivo deletion or specific inhibition of 

PKBβ/Akt2 in thecal cells needs to be performed to fully elucidate this. 

Insulin resistance is established as the most common and detrimental co-

morbidity in PCOS pathology. In PCOS patients, insulin resistance occurs in 

50-70% of cases and 95% of obese sufferers. The central role for PKBβ/Akt2 in 

insulin signaling ensures that the findings of this study have a number of 

important implications for understanding how insulin resistance and signaling 

may be deregulated and contribute to PCOS development. PKBβ/Akt2 mice 

display peripheral insulin resistance due to impaired activation of PKBβ/Akt2 

downstream signaling. Insulin resistance increases the severity of PCOS via 

multiple mechanisms. A number of mechanisms by which classical insulin-

responsive tissues contribute have been reported. Insulin resistance in skeletal 

muscle and adipose tissue leads to decreased glucose uptake and storage, 

resulting in compensatory increases in insulin secretion from the pancreas, 

which can then amplify gonadotrophin actions in the ovary. Insulin resistance 

can be exacerbated by decreased glucagon synthesis and increased glucose 

production and release into the bloodstream by the liver. Additionally, increased 

free fatty acids released by the liver into the blood are not absorbed by insulin 

resistant adipose tissue that is defective in lypolysis and adipogenesis, allowing 

its utilization in the ovary for steroid synthesis. Insulin resistance also increases 

circulating bioactive testosterone by reducing hepatic steroid hormone binding 

protein that normally binds to testosterone to render it unable to stimulate 

androgen receptors. The increased testosterone levels disrupt follicogenesis in 

the ovary to promote cyst development.    
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In contrast to decreased sensitivity of classical insulin-responsive tissues, 

tissues involved in maintaining normal ovarian steroidogenesis, like the 

hypothalamus, pituitary and ovary are considered to maintain normal insulin 

sensitivity and thereby contribute to PCOS via increased insulin stimulation. 

The ovary is not involved in glucose/insulin homeostasis but is responsive to 

insulin, where it is considered a “co-gonadotrophin” due to the observations 

that it synergizes with gonadotrophins to amplify the cellular functions that they 

mediate. Accordingly, the mechanism by which insulin potentiates follicular cyst 

development is suggested to be an amplification of the classical LH stimulated 

steroidogenesis pathway. Indeed, in PCOS animal models, whilst chronic 

stimulation with LH stimulates polycystic ovaries (Bogovich, 1987; Bogovich, 

2007), simultaneous administration of insulin results in an increase in both 

follicular cyst numbers and size (Poretsky et al., 1992). In androgen 

steroidogenesis, stimulation of both the InsR in the presence of LH both in vivo 

and in vitro has been shown to impact on various signaling pathways in the 

ovary, including the MAPK/ERK, PI3K/PKB and JAK/STAT signaling pathways 

(Lin et al., 1986; Duleba et al., 1999; Kwintkiewicz et al., 2006; Manna et al., 

2006). In the pituitary it was recently shown in a diet-induced obesity mouse 

model that hyperinsulemia could increase LH release and testosterone 

production and that disruption of the InsR in the pituitary desensitized mice to 

LH secretion after gonadotrophin releasing hormone stimulation, suggesting 

the pituitary remains insulin-sensitive and hyperinsulemia promotes LH 

secretion to contribute to LHR hyperstimulation in PCOS (Brothers et al., 2010).  

Hyperinsulemia due to compensation by insulin-responsive tissues is seen in 

PKBβ/Akt2 mice and a role for this in enhancing insulin signaling in the ovary to 

exacerbate the PCOS phenotype is consistent with what is observed in this 

study. However, the loss of PKBβ/Akt2 in tissues of the hypothalamic-pituitary-

ovarian axis, should impair insulin signaling in these tissues, therefore inhibiting 

the contribution of these tissues in promoting the PCOS phenotype, as 

suggested by decreased LH secretion upon gonadotrophin releasing hormone 

stimulation in hyperinsulemic pituitary-specific InsR knockout mice (Brothers et 

al., 2010)  That our findings indicate loss of PKBβ/Akt2 increases androgen 

signaling in aged mice and the severity of PCOS with LH treatment, and 

independent of the pituitary/hypothalamic contributions after GnRHAnt 
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treatment suggests loss of PKBβ/Akt2 specifically within the ovary supports 

PCOS development. This would indicate that undefined PKBβ/Akt2-specifc 

substrates or interactors in the ovary control hyperandrogenic production and 

loss of this signaling promotes PCOS. Alternatively, compensation by other 

PKB/Akt isoforms, particularly PKBα/Akt1 that is well-expressed in the ovary, 

promotes pro-androgenic signaling. Opposing functions of these PKBα/Akt1 

and PKBβ/Akt2 have been reported in various tissues, as has the existence of 

isoform specific substrates. It was observed in PKBβ/Akt2 KO ovaries that 

whilst increased activation of Akt was not apparent, no significant loss of 

expression was observed using a pan-Akt antibody (Appendix I), suggesting 

the other PKB/Akt isoforms can compensate to maintain PKB/Akt protein 

levels, although inappropriate functional compensation occurs. It should be 

noted that mice lacking both PKBβ/Akt2 and PKBγ/Akt3 developed more 

severe large hemorrhagic simple cysts (Appendix I). This could indicate that 

PKBγ/Akt3 is actively involved in compensating for PKBβ/Akt2 loss and that 

loss of its signaling or subsequent signaling solely through PKBα/Akt1 is a 

crucial component in promoting or supporting cystic pathology. To determine 

whether it is gain of PKBα/Akt1 and/or PKBγ/Akt3 specific signaling that may 

promote PCOS or if it is loss of PKBβ/Akt2 specific-signaling that may control 

PCOS and further, whether this could be also contributing to PCOS in human 

patients are crucial questions, particularly in terms of potentially targeting 

PKB/Akt signaling therapeutically in PCOS. 

A number of findings from this study provide direction for new targets to 

therapeutically control cyst development both in severe cyst development like 

that seen in the aged mice and in PCOS. The combination of findings that 

PKBβ/Akt2 is not essential for normal reproductive and androgenic signaling, 

but does increase the severity of PCOS, highlights the potential of identifying 

targets of PKBβ/Akt2 that are affected upon loss of PKBβ/Akt2 in the milieu of 

increased LH/androgenic signaling, as restoring these functions in the 

pathogenic scenario by therapeutic means could specifically affect only cystic 

ovaries and not functions of unaffected ovaries. Furthermore, the identification 

in vivo of activated ERK, both in the fact that increased activation correlated 

with more severe cyst formation in aged mice and that it was specifically highly 

expressed in thecal cells adjacent to cysts that developed in the PCOS mouse 
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model, indicates inhibitors of ERK that are currently in clinical trials could have 

applications in treating ovarian cyst development in the aging population and 

PCOS. However, this should be approached with caution, as it has been 

reported that ERK signaling is lost in thecal cells derived from ovaries of PCOS 

patients (Nelson-Degrave et al., 2005). This could reflect a difference between 

the PCOS mouse model and the complexity of PCOS in human patients, or 

alternatively, a difference between thecal cell signaling in the ovarian 

environment compared to isolated PCOS thecal cells in the cell dish. This 

remains to be determined. The questions raised by the findings of this study, 

provide a basis for further investigation into both the role of ERK and PKB in 

PCOS, particularly as any therapeutics targeting these pathways that are 

currently in development and could become available in the near future, may 

have applications in PCOS to facilitate more effective and less invasive 

therapeutic treatments. 

In conclusion, this study highlights for the first time in vivo a novel and specific 

role for loss of PKBβ/Akt2 in the development of ovarian cysts. Furthermore, 

this study identifies in vivo that thecal cell activation of ERK is strongly 

associated with cystic development. Through these findings this study identifies 

ERK and effectors downstream of PKBβ/Akt2 that display loss of function in the 

environment of increased LH androgenic in ovarian thecal cells, as potential 

targets for therapeutic intervention in the treatment and management of ovarian 

cysts and PCOS.    

 
Materials And Methods 
 

Reagents 

Human LH (Lutophin) was obtained from Provet (Lyssach, BE). The 

gonadotrophin-releasing hormone antagonist (GnRHAnt) was generously 

provided by Dr Jean Rivier (The Salk Institute, San Diego, CA).  Unless 

otherwise stated all other reagents were from Sigma (St.Louis, MO). 

Mice 

The PKBα/Akt1, PKBβ/Akt2 and PKBβγ/Akt2/3 mutant mice used in the study 

have been described previously (Yang et al., 2003; Dummler et al., 2006). Mice 

were housed in groups with 12-h dark-light cycles and with access to food and 
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water ad libitum, in accordance with the Swiss Animal Protection Laws. For 

PCOS induction experiments, age-matched WT and KO female mice were 

housed together between d21-d28 to promote synchronous estrous cycling. 

PCOS induction experiments were commenced at ~d28 (4wks). All procedures 

were conducted with the appropriate approval of the Swiss authorities. 

Tissue Preparation For Histology 

For histological analysis, anaesthetized mice were sacrificed, dissected and 

organs either immediately snap-frozen or fixed in 4% paraformaldehyde (PFA)-

phosphate buffered saline (PBS). Snap frozen tissues were placed in a plastic 

cassette and covered with OCT compound, before being frozen by placing the 

cassette into a 2-methylbutane bath in dry ice. Frozen tissues were then stored 

at -80oC until sectioned for use. Tissues placed in 4% PFA-PBS were allowed 

to fix overnight (~18hrs) at 4°C. Tissues were then subjected to a series of 

washes with PBS, 50% ethanol (EtOH)/PBS and 70%EtOH/PBS before being 

processed and embedded in paraffin using the Medite TPC15 Paraffin 

Processing Unit (Medite, Wintergarden, FL). Histological staining and 

immunohistochemistry (IHC) was performed on 12um frozen or 4um paraffin 

tissue sections, cut using a HM560H cryostat or M355S microtome (Thermo 

scientific, Fremont, CA). 

Histological Staining 

For hematoxylin and eosin (H&E) staining, sections were deparaffinized and 

stained according to the standard protocols using reagents purchased from 

Sigma (St.Louis, MO). Histochemical staining for 3β-hydroxysteroid 

dehydrogenase (3β-HSD) enzyme activity was carried out according to a 

modified protocol of Klinefelter et al. (Klinefelter et al., 1987). Briefly, 12um 

ovarian sections were cut on poly-L-lysine coated glasses slides (Menzel-

Gläser, Braunschweig, BRD) and covered with staining solution prepared by 

mixing equal volumes of solution A consisting of nitroblue tetrazolium (NBT) 

(#N6639, Sigma, St Louis, MO) and dehydroepiandosterone (DHEA) (#D1629, 

LKT Laboratories, St.Paul, MN) in PBS pH7.4 dimethylsulfoxide (DMSO) with 

solution B consisting of β-nicotinamide adenine dinucleotide (β-NAD) (#N7004, 

Sigma, St Louis, MO) in PBS pH7.4. Final concentrations were 0.25mM NBT, 

1.5mM β-NAD, 0.2mM DHEA in PBS pH7.4. Tissue slides were allowed to 

stain for 90 minutes at 37oC and fixed in 10% formalin in PBS with 5% sucrose, 
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pH 7·4 at 4oC for 5 minutes. Slides were then rinsed in distilled water and 

counterstained for 5 minutes with Nuclear Fast Red (#H-3403, Vector 

Laboratories, Burlingame, CA), rinsed again with distilled water, mounted and 

images taken under the microscope. Staining of lipids with Oil Red O was 

performed using the propolene glycol (PG) method. 12um fresh frozen sections 

were cut and air dried at RT before being fixed at 4oC in 10% formalin for 5 

minutes. Sections were then rinsed in ddH2O three times and allowed to air dry 

at RT. Sections were then placed in 100% PG for 5 minutes before staining for 

15 minutes with 0.5%(w/v) Oil Red O solution in PG pre-warmed to 60oC. Oil 

Red O solution was prepared by dissolving Oil Red O in PG at 90oC, filtering 

and allowing to stand at RT O/N. Staining was differentiated by placing slides in 

85% PG for 5 minutes and then rinsing twice with double distilled water 

(ddH2O). Slides were then counterstained with Gill’s Haematoxylin (#GHS216, 

Sigma, St Louis, MO) for 15 seconds, rinsed three times in tap water, soaked in 

ddH2O for 5 minutes and mounted.  

Immunohistochemistry 

4um sections were cut from paraformaldehyde-fixed, paraffin-embedded 

tissues and stained using the Ventana Discovery automated immunostainer 

(Ventana Medical Systems, Tucson, AZ). IHC was performed with or without 

cell conditioning using buffers CC1 or CC2, blocked with 5% normal donkey, 

goat or sheep serum for 1 hour. Primary antibodies diluted in Ventana antibody 

diluent were then applied and allowed to incubate for 1 hour to overnight at 

25C. Primary antibodies and dilutions used were vimentin (#V2009) 1:100 

(Biomedia, Foster City, CA), Muellerin inhibiting substance (MIS, sc-6886) 

1:1000 (Santa Cruz Biotechnology, Santa Cruz, CA), Ki67 (#RM-9106-S0) 

1:100 (thermo Scientific, Fremont, CA), pCREB S133 (#9198) 1:100, pERK1/2 

T202Y204 (#4370) 1:125, GSK3b 1:100 (#9332),  pGSK3α/β S21/9 1:50 

(#9331), pPKB/AKT S473 1:25 (#4060), panPKB/AKT 1:125 (#4685), pS6 

Ribosomal Protein S235/6 1:100 (#4858) pCREB S133 (#9198) 1:100, 

pERK1/2 T202Y204 (#4370) 1:125 (all Cell Signaling Technologies, Danvers, 

MA). After washing, sections were incubated with biotinylated donkey anti-

mouse (#715-067-003) or anti-rabbit (711-067-003) secondary antibodies 

(Jackson Immuno Research Inc, West Grove, PA) for 32mins at 37C, before 

detection with HRP/DAB, OmniMap or UltraMap conjugates and counterstained 
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with haematoxylin (all Ventana Medical Systems, Tucson AZ). 

Photomicrographs were taken on a Nikon Eclipse E600 microscope (Nikon, 

Milville, NY). 

Serum Hormone Measurement 

Blood samples were collected by sublingual vein puncture into Microvette 

CB300 tubes (Sarstedt, Nümbrecht, DE) and serum separated by centrifugation 

at 5000xg for 10 minutes. To account for the daily variations in hormones 

levels, for all mice a morning sample was taken and a second sample taken 6 

hours later. 50ul of each sample were then pooled and concentrated to 50ul by 

diethyl ether hormone extraction as described by (Wijayagunawardane et al., 

2003). Briefly, 5 volumes of diethyl ether were added to the serum samples and 

the samples placed under agitation using a tabletop shaker at 250rpm for 30 

minutes. Samples were then allowed to stand for 15 minutes and transferred to 

-80oC for 1 hour. The upper steroid-containing diethylether layer was decanted, 

evaporated and the residue dissolved in 50ul of steroid-free serum (DRG 

Instruments GmbH, Marburg, Germany) at 250rpm for 5 minutes in an 

eppendorf table-top shaker. Concentrated hormone samples were then used in 

commercial enzyme-linked immunosorbent assay (EIA) kits (DRG Instruments 

GmbH, Marburg, Germany) to measure serum testosterone levels according to 

the manufacturer's instructions.  

PCOS Induction And Cyst Measurement In Mice 

Mice were subjected to the standard protocol for LH-induced PCOS by injection 

of 1.5U hLH twice daily, with or without GnRHAnt for 21 day as described by 

Bogovich et al (Bogovich and Richards, 1982; Bogovich, 1987). At day 21 mice 

were sacrificed and samples collected for further analysis. Formation of 

hemorrhagic cysts, observed in mice treated with LH +/- GnRHAnt, was 

quantified by sectioning through the ovaries and measuring every 100um the 

percentage area of the total ovary occupied by the hemorrhagic cysts using the 

ImageAccess Enterprise v10 software (Imagic Bildverarbeitung, Glattbrugg, 

Switzerland). 
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II. RESULTS: Part II 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loss of Protein Kinase B beta (PKBβ/Akt2) Suppresses 

Pheochromocytoma Formation Induced By Pten 

Deficiency In Mice 
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1. Introduction 
 
1.1. Cancer As A Disease Of Deregulated Cellular Signaling  
 
Cancers arise from cells which acquire mutations that endow the cell with the 

ability for unchecked proliferation and protection from intrinsic apoptotic 

mechanisms designed to prevent cells from reaching such a state. These 

mutations result in various aberrations from overexpression, as is common with 

cell surface receptors, to loss of function, like that observed for tumour 

suppressor proteins like p53 and Pten. However, intrinsic to all tumour-

promoting aberrations is deregulation of cellular signaling that is a necessity for 

successful tumour formation. Accordingly, kinases, in their capacity to regulate 

a wide variety of cellular functions, are commonly deregulated in tumour cells to 

support both positive pro-oncogenic signaling and inhibit negative pro-apoptotic 

signaling. Activated PKB/Akt, in its capacity to both promote proliferation and 

growth, and also inhibit apoptosis and cell cycle arrest, is thereby capable of 

mediating robust pro-oncogenic signaling. Accordingly, mutations that stimulate 

hyperactivation of PKB/Akt are notoriously common and inhibiting pro-

oncogenic signaling by PKB/Akt holds great potential as a target for therapeutic 

intervention in tumours.  

 
1.2. Deregulation Of The PI3K-Pten-PKB/Akt Pathway In Cancer
  
PKB/Akt is commonly activated in human tumours, primarily due to loss of 

upstream PI3K pathway regulation. As indicated in Figure 2.1, this includes 

overexpression and constitutively active signaling by membrane receptors like 

the ErbB receptor, activating mutations in PI3K, inactivating mutations in Pten 

and even mutation of PKB/Akt itself, all of which support the hyperactivation of 

PKB/Akt and result in inappropriate signaling to support growth and 

proliferation or increased survival (see appendix for further details on 

deregulation of specific upstream PI3K members in cancer). 
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Figure 2.1. The PI3K-Pten-PKB/Akt Signaling Pathway And The Causes Of Its 
Hyperactivation In Tumourigenesis. Increased PKB/Akt activation can occur through 
overexpression of pathway components (yellow) or inhibitory mutation or complete loss of 
components (red). These events can lead to decreased activation of anti-oncogenic proteins 
(green) and increased growth, proliferation and survival signals to promote tumourigenesis. 
eIF4E, eukaryotic translation initiation factor 4E; LST8, target of rapamycin complex subunit 
LST8; PRR5, proline-rich protein 5; SIN1, SAPK-interacting protein 1; PIP2, PtdIns(3,4)P2; 
PIP3, PtdIns(3,4,5)P3 (Restuccia and Hemmings, 2010). 

 
The capacity of activated PKB/Akt signaling to support tumour formation is best 

demonstrated by examination of the vast number of upstream activating 

aberrations and high incidence with which they can occur in a wide variety of 

tumour types (Table 2.1). 
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Table 2.1: Common Upstream PKB/Akt Activating Mutations And Somatic PKB/Akt 
Mutations. Note PDK1, PKBβ/Akt2 and the PKBγ/Akt3 G171R somatic point mutants were 
detected in tumour samples and are hypothesized to promote activation due to the mutations 
occurring in kinase domains, however their activating potential has yet to be characterized 
Genes are listed in order of signal transduction along the PI3K-Pten-PKB/Akt pathway from 
receptor to PKB/Akt. Studies first reporting the indicated mutations and those with large sample 
sets were selected (Restuccia and Hemmings, 2010). 

 
These observations have ensured that studies to understand PKB/Akt 

contributions to tumours have been extensive. Many of these studies have 

utilized mouse models providing a clear indication of the contribution of 

PKB/Akt to tumours resulting from various upstream mutations. These models 
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invariably result in neoplasia formation with similar signaling to that seen in 

human patients, validating the value of these models for studying the 

pathogenesis and progression of the human disease (Table 2.2).  
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Table 2.2: Defining Mouse Models Of PKB/Akt Activation And Signaling In 
Tumourigenesis. KO whole body knockout, Ht heterozygous gene deletion, hy hypomorphic 
gene modification, cKO conditional tissue deletion, Loss protein loss, Tg transgenic, O/E 
protein over expression, MG mammary gland, Pr prostate, Lv liver, Tc T-cell, Br Brain, KI 
knock-in gene mutation, PtMt genetic point mutant GI gastrointestinal. Proteins modifications 
are listed in order of signal transduction along the PI3K-Pten-PKB/Akt pathway from receptor to 
PKB/Akt (Restuccia and Hemmings, 2010). 

 
Whilst PKBα/Akt1 is most commonly associated with PKB/Akt hyperactivation 

in tumours, a number of studies have also illustrated a contribution of both 

PKBβ/Akt2 and PKBγ/Akt3 to pro-oncogenic signaling. One such study by 

Chen and colleagues examining the effect of ablation of PKBα/Akt1 on 

neoplasia formation from heterozygous Pten mice, clearly indicated that other 

PKB/Akt isoforms may play crucial roles in at least one examined tissue type, 

the adrenals. They observed an almost complete inhibition of tumour formation 

in all tissues except for the adrenal medulla where only a partial inhibition of 

pheochromocytoma formation was observed. These findings indicated that 

activation of the PKBα/Akt1 is the isoform responsible for neoplasia formation 

upon loss of Pten function in almost all tissues except the adrenal medulla, 

which is the tissue of origin for pheochromocytomas.  

 
1.3. Pheochromocytomas And PKB/Akt  
 
Pheochromocytomas are tumours of the adrenal medulla derived from 

chromaffin cells that synthesize, store, metabolize and secrete catecholamines 

like epinephrine/adrenaline. These functions of chromaffin cells are disrupted in 

pheochromocytomas resulting in hyperstimulation of hormone synthesis and 

release, particularly the catecholamines adrenaline/epinephrine and 

noradrenaline/norepinepherine. This elevated catecholamine biosynthesis and 

release is a clinical hallmark of pheochromocytomas and a major cause for the 

co-morbidities, particularly hypertension that is associated with the disease.  

Pheochromocytomas are considered extremely rare affecting between 3-8 

people per million and are usually benign (Eisenhofer et al., 2004). However, 

~10% are malignant and these are invariably fatal, as there is currently no 

effective treatments for malignant pheochromocytoma (Eisenhofer et al., 2004; 

Strong et al., 2008). Pheochromocytomas are highly heterogeneous with only 

~10% being linked to familial inheritance due to mutations is diverse and 

functionally unrelated proteins, as indicated in Table 2.3. 
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Table 2.3 Genetic Mutations And Familial Syndromes Displaying PCC In Humans And 
Consequent Pathway Activation. AM; Adrenal Medulla, ExAM; Extra-Adrenal Medulla, RET; 
RET Oncogene; VHL; von Hippel-Lindau protein, NF1; Neurofibromin 1, SDH; Succinate 
Dehydrogenase Subunit, Amp; amplification, ReArr; rearrangement, Mut; Mutation Adapted 
from review by Dannenberg et al (2003)   

As a consequence, the molecular mechanisms driving this tumour type remain 

largely unknown. Furthermore, other than Ki67 staining demonstrating 

increased proliferation, reliable markers distinguishing malignant 

pheochromocytomas from their benign counterparts remain undefined (Strong 

et al., 2008). However, PKB/Akt activation in human pheochromocytomas has 

been reported in a number of studies, although interestingly decreases, 

mutations or loss of Pten is rarely seen, suggesting PKB/Akt activation may 

contribute to pheochromocytoma formation independent of Pten status 

(Fassnacht et al., 2005; van Nederveen et al., 2006). Therefore, mouse models 

of Pten that display significant pheochromocytoma formation with clinical 

features seen in the human disease (Freeman, D. et al., 2006; Korpershoek et 

al., 2009) may not reflect a model for Pten status in the human disease, but 

rather PKB/Akt hyperactivation and provide a clinically relevant model for 

studying the contribution of activated PKB/Akt to human pheochromocytoma 

formation. The study by Chen and colleagues could show that ablation of 

PKBα/Akt1 was insufficient to prevent pheochromocytoma formation leading to 

the conclusion that PKBβ/Akt2, which is also strongly expressed in the adrenal 

medulla, was responsible for neoplasia formation in this setting. This indicated 

that the adrenal medulla may provide an appropriate setting to probe whether 

PKBβ/Akt2 contributes to tumour formation by utilizing the same signaling as 

PKBα/Akt1 does in other tissues, or if PKBβ/Akt2 acts via alternate and/or 

tissue specific signaling to promote and sustain tumour development. 

 



 

2. Results 
 
2.1. Ablation Of The PKBβ/Akt2 Isoform In Pten+/- Mice Impairs 
Whole Animal Growth And Leads To Reduced Adrenal Weight  
 
Neoplasia development in Pten mice is well characterized, with significant 

pheochromocytoma formation observed in female mice between approximately 

5-7 months (Chen et al., 2006). Mice were monitored and weights taken from 

the first until the seventh month. At seven months a trend towards a reduction 

in average weight of both female and male Pten+/- (SKO) mice and both wild-

type (WT) and PKBβ/Akt2-/-Pten+/- (DKO) mice was observed, although this was 

not significant in either sex and was more pronounced in female mice. (Figure 

2.2, A, B, C).  

 

 

C 

Figure 2.2. Ablation Of The PKBβ/Akt2 Isoform In Pten+/- Mice Impairs Whole Animal 
Growth (A) Appearance of WT, SKO, and DKO female mice at 30 weeks of age. Note the B-
cell neck mass in the throat region of the SKO mouse. (B) SKO mice display increasing weight 
gain from 15-20 weeks until 30 weeks at which time (C) WT and DKO animals show a strong 
trend toward reduced animal weight compared to SKO animals. WT; wild-type, SKO; single 
knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-)  
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Mice were then sacrificed and organs collected and weighed to determine 

changes resulting from loss of PKBβ/Akt2. Significant differences were 

observed in adrenals and B-cell tumours in SKO animals compared to both WT 

and DKO animals (Table 2.3). 

 
Table 2.3. Effect of Ablation Of The PKBβ/Akt2 Isoform In Pten+/- Female Mice At 30 
weeks in various organs analyzed. Adrenals and B-cell tumour were significantly reduced in 
DKO mice compared to SKO mice. Other organs showed a trend to reducted weight or no 
noticeable effect. (see also Appendix II) WT; wild-type, SKO; single knockout (Pten+/-), DKO; 
double knockout (PKBβ/Akt2-/-Pten+/-) 

 
Whilst a significant difference between WT and DKO mice was observed in B-

cell tumour formation, indicating that loss of PKBβ/Akt2 could reduce tumour 

burden, this was insufficient to prevent tumour formation (Table 2.3). Other 

organs like the uterus, prostate, mesenteric lymph node, pancreas and liver 

indicated a similar but milder trend towards a reduction in neoplasia burden 

upon loss of PKBβ/Akt2, which not significant (Table 2.3). Visually thyroids 

were also noticeably smaller in DKO mice compared to SKO mice (data not 

shown). Based upon these observations, the adrenals were selected for 

detailed examination and the analysis expanded to include PKBβ/Akt2+/-Pten+/- 

(DHT) mice. As shown in Figure 2.3 A,B, a significant difference between SKO 

and all other genotypes was observed, indicating that even a reduction in 

PKBβ/Akt2 is sufficient to impair adrenal medulla hyperplasia. 
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A 

 

B 

Figure 2.3. Ablation Of The PKBβ/Akt2 Isoform In Pten+/- Mice Significantly Reduces 
Adrenal Size and Weight. (A). WT, DHT and DKO adrenals are both visually smaller (B) and 
significantly reduced in weight compared to SKO animals at 30 weeks of age in female mice. 
WT; wild-type, SKO; single knockout (Pten+/-), DHT; double heterozygous knockout (PKBβ+/-

Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-)  

 
2.2. Decreased Adrenal Weight In PKBβ/Akt2-/-Pten+/- Mice Reflects 
Suppression Of Pten+/- Induced Adrenal Medulla Neoplasia  
 
To determine what effect loss of PKBβ/Akt2-/- was having on the adrenal gland 

that resulted in the observed significant reduction in weight, adrenals were 

subjected to histological analysis and the cortical and medullary regions 

measured for changes.   

As indicated in Figure 2.4 A,B, reduction in PKBβ/Akt2-/- had little effect on the 

adrenal cortex, but significantly inhibited an increase in medullary size resulting 

from Pten reduction. A gene-dose dependant reduction in medullary area was 

observed with reduction of PKBβ/Akt2-/-, although, interestingly, loss of 

PKBβ/Akt2-/- did not restore medullary area to that of WT, suggesting that loss 

of PKBβ/Akt2-/- cannot prevent changes involved in the initiation of neoplasia 

Figure 2.4 B,C. 
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Figure 2.4. Decreased PKBβ/Akt2 In Pten+/- Mice Specifically Reduces Medullary Area In 
The Adrenals Indicating Suppression Of Pten-Driven Medullary Neoplasia. (A) Histological 
analysis of adrenals from WT, SKO, DHT and DKO mice by H&E staining illustrating the 
reduced medullary area in WT, DHT and DKO adrenals compared to SKO. (B) Quantitation of 
the area of medullary, cortical and total adrenal sizes and percentage composition of medullar  
 

Figure 2.4. Decreased PKBβ/Akt2 In Pten+/- Mice Specifically Reduces Medullary Area In 
The Adrenals Indicating Suppression Of Pten-Driven Medullary Neoplasia. (A) Histological 
analysis of adrenals from WT, SKO, DHT and DKO mice by H&E staining illustrating the 
reduced medullary area in WT, DHT and DKO adrenals compared to SKO. (B) Quantitation of 
the area of medullary, cortical and total adrenal sizes and percentage composition of medulla 
and cortex (D) in analyzed mice. WT; wild-type, SKO; single knockout (Pten+/-), DHT; double 
heterozygous knockout (PKBβ/Akt2+/-Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-) 
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Analysis of adrenals from 20week old mice showed a small but significant 

reduction in adrenal size in DKO compared to SKO and also between WT and 

DKO mice, suggesting that development but not initiation of neoplasia is 

impaired by PKBβ/Akt2-/- loss (Appendix II). To classify adrenal medullar 

enlargement as neoplastic and potentially as a pheochromocytoma, it has been 

previously reported that neoplasia can be distinguished by having a ratio 

between the medullary region and cortical region in excess of 1.0 (Szabolcs et 

al., 2009). Using this method of analysis, WT mice had a ratio of ~0.3, and 

DKO ~0.8, indicating that these adrenal were not displaying neoplastic growth. 

However, DHT mice were on the border of neoplastic growth with 1.0 and the 

SKO indicated strong neoplasia with a ratio of ~1.6.    

 
2.3. PKBβ/Akt2-/-Pten+/- Adrenals Show Impaired Proliferation  
 
The proliferative effects resulting from Pten loss in mice has been extensively 

reported. Therefore adrenals were analyzed to determine if changes in 

proliferation could underlie the reduction in medullary neoplasia upon 

PKBβ/Akt2-/- loss. As DHT mice were on the border of neoplasia, further 

analysis was focused on WT, SKO and DKO to be able to clearly distinguish 

the functional and signaling determinants responsible for the observed 

differences between SKO and DKO adrenals. Immunohistochemical analysis of 

WT, SKO and DKO adrenals for BrdU incorporation as a marker for 

proliferation was performed (Figure 2.5 A) and quantified (Figure 2.5 B,C). 

Interestingly, loss of PKBβ/Akt2-/- had little effect on suppressing Pten induced 

proliferation in the cortex, however, in the medulla it was almost ten-fold lower, 

indicating the presence of PKBβ/Akt2 acts in medullary Pten-neoplasia by 

supporting proliferation (Figure 2.5 B,C).   
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Figure 2.5. Loss of PKBβ/Akt2 In Pten+/- Mice Reduces Proliferation Specifically In The 
Adrenal Medulla Indicating Impaired Pten-Driven Proliferation. (A) Histological analysis of 
adrenals from (i) WT, (ii) SKO and (iii) DKO mice by H&E staining illustrating the medullary and 
cortical area, with increased BrdU staining observed primarily in the medulla of (v) SKO which 
is severely reduced in (vi) DKO and almost completely absent in (iv) WT medulla. Quantitation 
of total (B) BrdU positive cells in the medulla and cortex of analyzed mice, and expressed as a 
percentage of total BrdU positive cells (C). WT; wild-type, SKO; single knockout (Pten+/-), DKO; 
double knockout (PKBβ/Akt2-/-Pten+/-) 
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2.4. PKBβ/Akt2-/-Pten+/- Adrenals Display Impaired Activation Of 
PKB/Akt And Downstream Signaling Through mTORC1 
 
Proliferative signaling driven by activated PKB/Akt has been studied in detail, 

including in the Pten mouse model, with numerous studies illustrating signaling 

via mTORC1 is central to this process. To determine whether differences in 

PKB/Akt activation and downstream signaling via mTORC1 could be 

contributing to the proliferative differences observed between SKO and DKO 

adrenals, immunohistochemistry examining this pathway was performed on 

SKO and DKO adrenals (Figure 2.6).  
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Figure 2.6. PKBβ/Akt2 Loss In Pten+/- Mice Results In Strong Reduction In Activated 
PKB/Akt And Signaling Via mTORC1 And Correlates With Decreased Proliferation In 
Adrenal Medulla. Immunohistochemical analysis of serial sections from SKO adrenals 
showing adrenal medulla expression of (i) pan PKB/Akt that displays robust activation of 
PKB/Akt (iii) and activation of ribosomal protein S6 (v) downstream of mTORC1 in neoplasic 
areas and correlating with high expression of the Ki67 proliferation marker (vii). Concomitant 
loss of PKBβ/Akt2 results in decreased panPKB/Akt expression (ii), activation (iv) and 
downstream proliferative signals (viii) through mTORC1 as illustrated by loss of S6 
phosphorylation (vi) SKO; single knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-) 
  
2.5. PKBβ/Akt2-/-Pten+/- Adrenals Exhibit Impaired Signaling 
Required For Catecholamine Synthesis And Decreased 
Adrenomedullin Expression   
 
Human pheochromocytoma is characterized clinically by hypersecretion of 

catecholamines and currently analysis of catecholamines and their metabolites 

the metanephrines, remains the most reliable method for correct diagnosis of 

pheochromocytoma (Ram and Engelman, 1979; Eisenhofer et al., 2003). On a 

cellular level, the signaling pathways involved in activation of catecholamine 

secretion have been shown to involve both the ERK kinases and the 

transcription factor CREB (Hoeflich and Bielohuby, 2009; Mahata et al., 2011). 

Additionally, in both pheochromocytoma cells and in the clinic, 

pheochomocytomas have been shown to be strongly associated with increases 

in both adrenomedullin mRNA expression and circulating plasma 

concentrations (Kobayashi et al., 2004; Cotesta et al., 2005; Thouennon et al., 

2010a), which is implicated in mediating growth-stimulatory and anti-apoptotic 

effects (Thouennon et al., 2010b). Furthermore, it has been shown that 

adrenomedullin and its growth-stimulatory effects are negatively regulated by 

Pten in the PC12 pheochromocytoma cell line (Betchen et al., 2006), 

suggesting it could be involved in pheochromocytoma formation in the Pten 

mouse model used in these studies. On the basis of this published data, 

activation of ERK, CREB and expression of adrenomedullin was examined in 

the adrenals from DKO compared to SKO by immunohistochemical analysis 

and qRT-PCR respectively. As shown in Figure 2.7 A, the adrenal medulla from 

SKO mice showed robust activation of ERK (i) and CREB (iii) indicating 

activation of signaling for production of catecholamines. Both ERK (ii) and 

CREB (iii) activation was greatly diminished in the adrenal medulla of DKO 

mice suggesting that PKBβ/Akt2 has suppressive effects not only on growth but 

on adrenal dysfunction observed in pheochromocytomas in human patients.  
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As a further indication that not only signaling pathways are activated, but that 

expression of secreted factors involved in pheochromocytoma are also 

affected, qRT-PCR was performed for dopamine β-hydroxylase (Dbh), the rate 

limiting enzyme for catecholamine synthesis and adrenomedullin that is 

frequenly observed to be upregulated in human pheochromocytoma (Figure 

2.7B). In SKO adrenals, both Dbh and adrenomedullin were highly expressed 

and consistent with the other data showing DKO mice are not completely 

unaffected in medullary size, and neoplasia signaling, DKO mice showed a mild 

increase in Dbh and adrenomedullin expression compared to WT mice, but a 

dramatic reduction compared to SKO adrenals.    
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Figure 2.7. Increases In Catecholamine Signaling In Pten+/- Adrenals Is Dramatically 
Reduced Upon Concomitant Loss Of PKBβ/Akt2. Immunohistochemical analysis of serial 
sections from SKO adrenals showing robust adrenal medulla expression of activated (i) ERK 
and (iii) CREB involved in catecholamine synthesis, compared to DKO mice (ii and iv). (B) qRT-
PCR analysis of (i) dopamine β-hydroxylase and (ii) adrenomedullin reveals robust upregulated 
in Pten+/- adrenals is restored to almost baseline WT levels by additional loss of PKBβ/Akt2. 
WT; wild-type, SKO; single knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-)     
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3. Discussion 
 
 
Pheochromocytomas are a poorly understood and understudied tumour, 

primarily due to it being both often benign and classified as a rare tumour type. 

However, evidence suggests that it is under-diagnosed and as malignant 

pheochromocytoma has a poor prognosis, invariably being fatal, these factors 

highlight a crucial need for both a greater understanding of the mechanisms 

driving this tumour type and development of effective therapeutics to treat 

malignant cases (Eisenhofer et al., 2004). A role for Pten and PKB/Akt 

activation in pheochromocytomas has been highlighted both in vitro and in the 

clinic. Pheochromocytoma cell lines, particularly the model PC12 cell line, have 

been used in numerous studies to illustrate a central role for PKB/Akt in both 

proliferation and cell survival (Andjelkovic et al., 1998; De Vita et al., 2000; 

Alvarez-Tejado et al., 2001; Powers et al., 2001; Fujita et al., 2006; Adler et al., 

2009). Additionally, in human tumour samples activated PKB/Akt has been 

reported by various independent studies (Fassnacht et al., 2005; van 

Nederveen et al., 2006; Adler et al., 2009) and Pten loss also reported, albeit 

with low frequency (van Nederveen et al., 2006).  However, Pten mouse 

models have provided further support for a crucial role of PKB/Akt activation in 

pheochromocytomas, with pheochromocytoma formation observed in multiple 

heterozygous Pten models, on various mouse backgrounds (Freeman, Dan et 

al., 2006). Recently it was also published that deletion S6K1 downstream of 

PKB/Akt and mTORC1 could rescue pheochromocytoma formation in Pten 

heterozygous mice, as ability attributed to the observation that S6K2 is not 

expressed in the adrenals and is therefore unable to compensate for S6K1 

loss. The lack of expression of S6K2 was also observed in human adrenal 

samples, as was elevated S6K1 in human pheochromocytoma samples, 

illustrating the importance of this pathway downstream of PKB/Akt in 

pheochromocytoma and the use of the Pten mouse model to study 

mechanisms of pheochromocytoma formation (Nardella et al., 2011). Further, 

conditional deletion of Pten in the adrenals also results in malignant metastatic 

pheochromocytoma formation, suggesting a potential important role for 

hyperactive PKB/Akt in pheochromocytoma progression (Korpershoek et al., 
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2009). Despite these connections between PKB/Akt and pheochromocytoma 

formation, analysis of the specific roles of the PKB/Akt isoforms has been 

limited (Andjelkovic et al., 1998). The observation that loss of PKBα/Akt1 was 

insufficient to prevent adrenal medulla neoplasia in the Pten+/- mouse model, 

despite it inhibiting neoplasia in all other analyzed tissues (Chen et al., 2006), 

indicated that this tumour type and model could provide valuable insights into 

the contribution of PKBβ/Akt2 to tumourigenesis.  

To explore the contribution of PKBβ/Akt2 to Pten+/- adrenal neoplasia, we bred 

PKBβ/Akt2-/- with Pten+/-mice to generate PKBβ/Akt2-/-Pten+/- mice. Analysis of 

these mice at 30 weeks (Figure 2.2) indicated that PKBβ/Akt2 not only 

contributes to pheochromocytoma formation, but also to a neoplasia in a 

number of other tissues. In addition, to a significant reduction in neoplasia 

burden in B-cell tumours, a trend to reduced neoplasia was observed in 

prostate, uterus, liver and pancreas (Table 2.3). It was also noted at necropsy 

that even in male mice up to 11months of age, DKO failed to exhibit neoplasic 

infiltrates in the liver, whilst β-cell mass appeared to be increased on the 

surface of DKO pancreas’ and DKO thyroids/parathyroid glands often appeared 

to be reduced in size compared to SKO littermates, suggesting PKBβ/Akt2 may 

well have subtle contributions to tumourigenesis and function in the context of 

Pten loss in these tissues. This was supported by preliminary analysis of 

prostate, uterus and thyroid tissues that indicated that PKBβ/Akt2 does 

contribute with various degrees to Pten-induced neoplasia in these tissues (see 

Appendix II and general discussion).  

The most striking phenotype observed was the DKO adrenals, which both in 

appearance and size resembled that of WT animals (Figure 2.3 A,B). 

Histological examination of DKO adrenals revealed that they were not 

completely unaffected, although tumourigenesis was severely suppressed 

specifically in the adrenal medulla which showed little to no neoplasia (Figure 

2.4 A-D). Interestingly, analysis of 20 week old mice indicated that mild 

changes in DKO tissue were already apparent, suggesting that PKBα/Akt1, 

which Chen and colleagues had shown was able to partially suppress adrenal 

tumourigenesis, can support initiation of adrenal tumourigenesis but PKBβ/Akt2 

may be required for at least efficient neoplasia development, if not for 

progression itself (Appendix II). Furthermore, as loss of a single allele of 
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PKBβ/Akt2 was sufficient to severely retard neoplasia development (Fig 2.3 

and 2.4), this suggest that if PKBβ/Akt2 specific substrates involved in 

pheochromocytomas could be identified and targeted, even mild reductions in 

their activities could provide valid and effective therapeutic benefits. However, it 

should be noted that decreased proliferation and signaling via mTORC1, which 

was identified to be decreased in DKO compared to SKO animals (Figures 2.5 

and 2.6), can be utilized by all PKB/Akt isoforms. Consistent with a concept that 

PKBβ/Akt2 isoform-specific targets may provide the most effect treatment, it 

was recently shown that treatment of pheochromocytoma patients with the 

mTORC1 inhibitor RAD001 resulted in only a weak response (Druce et al., 

2009). This supports the idea that mTORC1 is not the primary determinant 

driving malignant pheochromocytoma and hence not the most suitable target. 

However, the identification of strongly activated functional hormonal signaling 

via ERK and CREB in SKO that could be dramatically reduced in DKO adrenals 

(Figure 2.7A) is interesting for at least two reasons. Firstly, this provides 

another target that if used in combination therapy with an inhibitor like RAD001, 

could result in a more effective therapeutic response. Secondly, inhibition of 

ERK, in the context of inhibiting catecholamine synthesis, could result in a 

decrease in serious side-effects like hypertension, thereby providing a better 

quality of life for pheochromocytoma patients.  

The ability for PKBβ/Akt2 ablation to almost completely restore the increase in 

Dbh and adrenomedullin expression in Pten+/- adrenals to that of wild-type 

animals suggests a possible specific role for PKBβ/Akt2 in regulating Dbh 

and/or adrenomedullin expression. Understanding the signaling by which 

PKBβ/Akt2 attains this could have particular promise therapeutically. 

Adrenomedullin is already strongly linked to pheochromocytoma proliferation 

and survival (Kobayashi et al., 2004; Cotesta et al., 2005; Zeng et al., 2006; 

Thouennon et al., 2010b). However, adrenomedullin is a potent vasodilator and 

can robustly induce angiogenesis and is linked to tumour angiogenesis 

(Nakamura et al., 2006; Kaafarani et al., 2009) as well as invasion (Keleg et al., 

2007; Ramachandran et al., 2007) in a wide variety of tumour types (Zudaire et 

al., 2003; Nantermet et al., 2004; Betchen et al., 2006), resulting in it 

increasingly being examined as a possible drug target in cancer (Garcia et al., 
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2006). Accordingly, inhibition of adrenomedullin expression supported by 

PKBβ/Akt2 could hold therapeutic benefits in multiple tumour settings. 

This study provides strong evidence that PKBβ/Akt2 can mediate 

tumourigenesis in the setting of reduced Pten levels and that it is the major 

isoform involved in adrenal medulla pheochromocytoma formation. This 

involves increases in cell proliferation and functional activation of signaling 

known to promote catecholamine synthesis and release. Accordingly, this study 

indicates that therapeutic targeting of PKBβ/Akt2 signaling could have strong 

therapeutic potential in pheochromocytoma treatment. 

 

Materials And Methods 
 

Mice 

The PKBβ/Akt2 and Pten mutant mice used in the study have been described 

previously (Di Cristofano et al., 1998; Trotman et al., 2003; Yang et al., 2003; 

Dummler et al., 2006). Mice were housed in groups with 12-h dark-light cycles 

and with access to food and water ad libitum, in accordance with the Swiss 

Animal Protection Laws. Mice were monitored by taking weekly weight 

measurements from 4 weeks of age until 30 weeks of age. All procedures were 

conducted with the appropriate approval of the Swiss authorities. 

Tissue Preparation For Histology 

For histological analysis, anaesthetized mice were sacrificed, dissected and 

organs either immediately snap-frozen or fixed in 4% paraformaldehyde (PFA)-

phosphate buffered saline (PBS). Snap frozen tissues were placed in a plastic 

cassette and covered with OCT compound, before being frozen by placing the 

cassette into a 2-methylbutane bath in dry ice. Frozen tissues were then stored 

at -80oC until sectioned for use. Tissues placed in 4% PFA-PBS were allowed 

to fix overnight (~18hrs) at 4°C. Tissues were then subjected to a series of 

washes with PBS, 50% ethanol (EtOH)/PBS and 70%EtOH/PBS before being 

processed and embedded in paraffin using the Medite TPC15 Paraffin 

Processing Unit (Medite, Wintergarden, FL). Histological staining and 

immunohistochemistry (IHC) was performed on 12um frozen or 4um paraffin 

tissue sections, cut using a HM560H cryostat or M355S microtome (Thermo 

scientific, Fremont, CA). 
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Hematoxylin and Eosin Staining And Adrenal Measurements 

For hematoxylin and eosin (H&E) staining, sections were deparaffinized and 

stained according to the standard protocols using reagents purchased from 

Sigma (St.Louis, MO). Sections were quantified by sectioning through the 

adrenals to reveal the adrenal medulla. Three sections per animal were taken 

at least 100um apart and stained. Area of adrenal medulla and cortex were 

calculated by measuring the length and width of the total adrenal and medulla 

region using the ImageAccess Enterprise v10 software (Imagic 

Bildverarbeitung, Glattbrugg, Switzerland). 

Immunohistochemistry 

4um sections were cut from paraformaldehyde-fixed, paraffin-embedded 

tissues and stained using the Ventana Discovery automated immunostainer 

(Ventana Medical Systems, Tucson, AZ). IHC was performed with or without 

cell conditioning using buffers CC1 or CC2, blocked with 5% normal donkey, 

goat or sheep serum for 1 hour. Primary antibodies diluted in Ventana antibody 

diluent were then applied and allowed to incubate for 1 hour to overnight at 

25C. Primary antibodies and dilutions used were anti-BrdU (#11 170 376 001) 

1:1000 (Roche Applied Sciences, Rotkreuz, CH), Ki67 (#RM-9106-S0) 1:100 

(Thermo Scientific, Fremont, CA), pPKB/AKT S473 1:25 (#4060), panPKB/AKT 

1:125 (#4685), pS6 Ribosomal Protein S235/6 1:100 (#4858) pCREB S133 

(#9198) 1:100, pERK1/2 T202Y204 (#4370) 1:125 (all Cell Signaling 

Technologies, Danvers, MA). After washing, sections were incubated with 

biotinylated donkey anti-mouse (#715-067-003) or anti-rabbit (711-067-003) 

secondary antibodies (Jackson Immuno Research Inc, West Grove, PA) for 

32mins at 37C, before detection with HRP/DAB, OmniMap or UltraMap 

conjugates and counterstained with haematoxylin (all Ventana Medical 

Systems, Tucson AZ). Photomicrographs were taken on a Nikon Eclipse E600 

microscope (Nikon, Milville, NY). 

BrdU Analysis And Quantification 

Animals were injected with 50mg/gm BrdU i.p. 24hrs prior to necropsy. Organs 

collection, processing and IHC was performed by standard procedures and 

using reagents stated in the preceding sections ‘Tissue Preparation For 

Histology’ and ‘Immunohistochemistry. Sections were quantified by sectioning 

through the adrenals to reveal the adrenal medulla. Three sections per animal 
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were taken at least 100um apart and stained and positive cells counted under 

the microscope. Area of adrenal medulla and cortex were calculated by 

measuring the length and width of the total adrenal and medulla region using 

the ImageAccess Enterprise v10 software (Imagic Bildverarbeitung, Glattbrugg, 

Switzerland). 

RNA isolation, Amplification and qRT-PCR 

Snap-frozen adrenals were placed in TRIZOL (Invitrogen, Basel, CH), 

homogenized and total RNA purified according to the manufacturer’s 

instructions. Total RNA was then subjected to additional purification using the 

RNeasy mini columns (Qiagen, Germantown, MD) according to the 

manufacturer’s instructions, eluted in 25ul of nuclease-free water and 

concentration and purify measured on a Nanodrop spectrometer (Thermo 

Scientific, Fremont, CA). cDNA amplification was performed on 1-2ug of RNA 

with 10ul of 2.5mM dNTPs (Roche Applied Sciences, Rotkreuz, CH), 1ug of 

oligo dT (Microsynth, Balgach, CH), 1ul of RNase inhibitor (#M0307), 1ul of 

Avian Myeloblastosis Virus reverse transcriptase (#M0277) (both from NEB, 

Ipswich, MA) in a final reaction volume of 20ul. PCR amplification was 

performed at 42°C for 60min followed by 95°C for 5min. Amplified cDNA was 

diluted to a concentration of 12.5ng/ul of original total RNA using nuclease-free 

water and stored at -20C for qRT-PCR. qRT-PCR was performed after primer 

validation and optimization of cDNA and primer concentrations. qRT-PCR was 

performed in a final reaction volume of 25ul using SYBR green PCR master 

mix from Applied Biosystems (Foster City, CA) and run on an ABI Prism 7000 

qRT-PCR thermal cycler (Applied Biosystems, Foster City, CA).  Primer 

sequences used for qRT-PCR were from PrimerBank 

[http://pga.mgh.harvard.edu/primerbank; (Spandidos et al., 2010)]. Sequences 

were: Adrenomedullin (f) GGAATAAGTGGGCGCTAAGTC and (r) 

CAAGAGTCTGGGTAGGAACTGT (PrimerBank ID: 6752988a2) and dopamine 

beta hydroxylase (f) GAGGCGGCTTCCATGTACG and (r) 

TCCAGGGGGATGTGGTAGG (PrimerBank ID: 20336728a1). 
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III. GENERAL DISCUSSION 
 
As the primary interest in studying the PI3K-PTEN-PKB/Akt signaling pathway 

is arguably the potential of therapeutically targeting its members and 

downstream signaling in cancer and other diseases, this general discussion will 

focus on the implications from the studies described in this thesis, in this 

broader context. Specific discussion of both the implications of targeting 

PKBβ/Akt2-/- and the PI3K-PTEN-PKB/Akt signaling pathway in ovarian 

dysfunction and pheochromocytoma can be found in the discussions in the 

respective sections of this thesis. 

 

Therapeutic inhibition of the PI3K-PTEN-PKB/Akt pathway and downstream 

signaling is currently a major focus of drug development programs worldwide. 

This has been facilitated by extensive research to characterize the regulatory 

mechanisms of this signaling and define the transduction of signals from 

membrane to functional response. Whilst cell-based studies have been crucial 

in identifying mechanisms and signaling pathways, the relevance and potential 

of targeting these pathways is demonstrated through the use of mouse models 

that provide the physiological complexity of cross-talk between different cell 

and organs and reveals secondary effects on non-targeted tissues. Analysis of 

PI3K-PTEN-PKB/Akt pathway mouse tumour models has shown that they 

faithfully recapitulate many of the molecular changes seen in the human 

cancers they have been designed to represent and in doing so, they have 

highlighted a number of challenges in targeting this pathway and its signaling 

[for review see (Restuccia and Hemmings, 2010)]. Targeting upstream of Pten 

whilst effective in many cases and a current therapeutic option, as observed 

with ErbB2 overexpression, is undermined in the common scenario of loss or 

reduced Pten levels. Similarly, solely targeting the mTORC1 arm of 

downstream PKB/Akt signaling, is in most settings at best cytostatic or 

temporarily efficacious. Therefore, PKB/Akt as the point of convergence of the 

PI3K pathway and also divergence: as the effector kinase for the plethora of 

downstream signaling, is a prime candidate for effective therapeutic inhibition. 

However, as PKB/Akt has three isoforms and mediates, via its downstream 

signaling, a wide variety of crucial functions in the body, its inhibition poses 
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considerable challenges regarding isoform compensation and efficient inhibition 

to attain a feasible therapeutic window whereby therapeutic response 

outweighs off-targets effects. Indeed, this has been a particular challenge in the 

case of PKBβ/Akt2 due to the spectre of inducing insulin resistance or diabetes 

by its inhibition. This has resulted in efforts focusing on developing specific 

PKBα/Akt1 or pan PKB/Akt inhibitors. The potential of developing and using 

PKBα/Akt1 inhibitors is based upon its strong association with proliferation and 

anti-apoptosis coupled with its high occurrence of activation in a wide variety of 

tumour types (see general introduction Table 3 and Part 2 Table 2.3). Selective 

ablation of PKBα/Akt1 in mouse tumour models has provided proof-of-principle 

for the importance and effectiveness of PKBα/Akt1 inhibition (part 2 Table 2.2) 

and highlighted that even a reduction in PKBα/Akt1 can have considerable 

effects on tumour development (Chen et al., 2006). However, these inhibitors 

are potentially limited in their use against tumours displaying high PKBβ/Akt2 or 

PKBγ/Akt3 (see general introduction Table 3 and Part 2 Table 2.3). As 

selective inhibition of PKBβ/Akt2 could induce insulin resistance an alternative 

is the use of pan PKB/Akt inhibitors. Apart from potentially broad spectrum 

application, these inhibitors could prove to be effective in obtaining a 

therapeutic response, without insulin resistance, by administration of a 

concentration that sufficiently reduces activation of PKBβ/Akt2 in the tumour, 

whilst preventing compensation from other PKB/Akt isoforms and deleterious 

effects on PKBβ/Akt2 in insulin-sensitive tissues. Such compounds hold 

promise and support for this concept has been reported using mouse 

xenograph models (Rhodes et al., 2008).  In relation to these therapeutic 

contexts, the studies performed in this thesis have a number of important 

implications and this is the focus of the following discussion.  

Complete inhibition of PKBβ/Akt2 is deleterious due to its potential for 

development of insulin resistance and diabetics. The findings from work in this 

thesis suggest that this could also have an additional adverse metabolic 

reaction in promoting PCOS. Importantly, these studies suggest that reduction 

of PKBβ/Akt2 would not have such an effect, as heterozygous PKBβ/Akt2 mice 

do not appear to have an increased tendency to develop cysts (Appendix I) and 

show no apparent reproductive or steroidogenic dysfunction (Figure 1.9). 

Accordingly, in terms of potential off-target effects, this supports the concept for 
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partial inhibition of PKBβ/Akt2 as a viable therapeutic option. Conversely, in 

terms of the therapeutic potential of reducing activation of PKBβ/Akt2, this 

study demonstrates that adrenal medulla neoplasia is significantly reduced in 

heterozygous PKBβ/Akt2 mice (Figures 2.1, 2.2, 2.3) and therefore inhibitors 

that would elicit such an effect could be therapeutically beneficial as an anti-

cancer treatment. Furthermore, the data from B-cell tumours suggests that this 

may be effective not only in pheochromocytomas, as heterozygous PKBβ/Akt2 

mice also shows considerable reduction in tumour burden (P=0.031; Appendix 

II). However, in the formation of neoplasia in other tissues, reduction of 

PKBβ/Akt2 does not appear to have such a strong effect, suggesting 

application of such inhibitors would have to be specific to certain tissues.  

Positive effects from partial inhibition of activated PKBβ/Akt2 in tissues outside 

of the adrenal and B-cell tumours may however still exist and contribute to the 

effectiveness of pan PKB/Akt inhibitors. Indeed, visually and based on weights 

of affected organs, a number of organs showed a trend toward a reduced 

tumour burden, particularly the uterus, prostate, mesenteric lymph nodes and 

thyroid, all of which are known to express at least moderate levels of 

PKBβ/Akt2. To explore this possibility, preliminary studies analyzing both the 

uterus and prostate were performed and showed noticeable differences on both 

a histopathological and molecular level (Appendix II). Uteri from PKBβ/Akt2-/-

Pten+/- animals showed a striking difference with Pten+/- animals with 

proliferating cells in PKBβ/Akt2-/-Pten+/- animals localized almost exclusively to 

the endometrial epithelium, whilst Pten+/- animals showed proliferation almost 

exclusively in the stromal myometrial compartment. It is well know that these 

two compartments communicate with each other, so interpreting whether this is 

cell autonomous or a response to effects from loss of PKBβ/Akt2 signaling in 

the adjacent tissue will require tissue specific ablation to confidently draw 

conclusions. A potential interpretation based on the current data, is that the 

loss of proliferation in the stromal compartment of PKBβ/Akt2-/-Pten+/- uteri 

represents tumourigenic signaling driven by Pten reduction is exclusively 

mediated by PKBβ/Akt2 in this compartment and that in the endometrial 

compartment PKBβ/Akt2 has a inhibitory effect on Pten-induced neoplasia in 

the epithelial cells. A precedent for similar activity by the PKB/Akt isoforms has 

been reported and interestingly also in epithelial cells, when either PKBα/Akt1 
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or PKBβ/Akt2 were ablated in either the ErbB2 or Polyoma Middle-T breast 

tumour models (Maroulakou et al., 2007). Placing these findings in terms of pan 

PKB/Akt inhibitors, these findings suggest that such inhibition would be far 

more effective due to reduction of isoform specific functions of both PKBα/Akt1 

and PKBβ/Akt2. This is further supported by the observation that the uteri from 

PKBβ/Akt2+/-Pten+/- mice were smaller than uteri from either Pten+/- or 

PKBβ/Akt2-/-Pten+/- mice, suggesting a partial inhibition of neoplasia in both 

compartments. Coupling inhibition of activated PKBβ/Akt2 with inhibition of 

activated PKBα/Akt1 that is presumably contributing to residual neoplasia 

signaling, based upon the fact that complete or partial ablation of PKBα/Akt1 in 

Pten+/- mice significantly suppressed endometrial neoplasia (Chen et al., 2006), 

suggests that pan PKB/Akt inhibitors could be more effective and have less 

adverse effects than single isoform inhibitors for tumours from either 

compartment.  

Preliminary analysis of prostates from PKBβ/Akt2-/-Pten+/- also indicated that 

PKBβ/Akt2 contributes to prostate neoplasia and inhibition of its functions could 

be beneficial in the therapeutic effects of pan PKB/Akt inhibitors. As was 

previously reported, complete or partial ablation of PKBα/Akt1 in the setting of 

Pten heterozygous prostates leads to considerable neoplasia suppression 

(Chen et al., 2006). Therefore, additional inhibition of potential PKBβ/Akt2 

contributions would further support the anti-tumour activities of pan PKB/Akt 

inhibitors. The preliminary studies in the PKBβ/Akt2-/-Pten+/- prostates showed 

an average ~15-20% reduction in weight at 30 weeks of age. However, no 

noticeable difference was noted in prostates of 20 week old mice. Analysis of 

the pathology of the adrenal glands and immunohistochemistry for downstream 

signaling showed little to no differences (Appendix I). However, analysis at 30 

weeks of age showed noticeable differences pathologically in the number and 

pathology of affected glands, as well as in signaling involving mTORC1, p27 

and ERK known to be activated in neoplastic signaling in these mice (Appendix 

II). This data suggests that PKBβ/Akt2 could contribute not to the initiation of 

prostatic neoplasia in the context of reduced Pten, but more importantly to the 

progression of the tumour. This suggests that inhibiting these contributions 

mediated by PKBβ/Akt2 by the use of pan PKB/Akt inhibitors would be far 

superior to isoform specific inhibitors and at least in this setting suggest that 
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they could also be effective in inhibiting progression and later stages of 

tumours, which is often the status of prostatic tumours affecting patients at the 

time of presentation. As this is often accompanied by additional reduction in 

Pten levels or even complete loss, it will be of considerable interest to 

determine what are the effects of reducing not only activation of PKBα/Akt1 but 

also PKBβ/Akt2 in this more aggressive and malignant tumour scenario. 

 

IV. CONCLUSIONS  
 

Collectively, the data contained in this thesis suggests that PKBβ/Akt2 does 

contribute to various aspects of tumourigensis in a tissue specific manner. 

Combining these finding with the published results on ablation of PKBα/Akt1 in 

Pten+/- mice advocates the use of pan PKB/Akt inhibitors and suggests that the 

PKB/Akt isoforms act not in the common concept of mutations and cellular 

aberrations in cancer being either drivers or passengers. Rather more 

appropriate may be a ‘bad driver and nagging passenger’ concept, whereby 

activation of one of the PKB/Akt isoforms, primarily PKBα/Akt1, may act like a 

bad driver of the tumour, but additional contributions by other activated 

PKB/Akt isoforms, primarily PKBβ/Akt2, act like a nagging passenger to 

exacerbate the negative effects or tumour progression mediated by the driving 

PKB/Akt isoform. Such a concept would explain the reported suppression of 

Pten-induced tumourigensis in prostate upon loss of the driving PKBα/Akt1 

isoform in mice and also the observed unaffected initiation but decreased 

progression upon loss of PKBβ/Akt2 observed in this study. Similarly, this 

would be consistent with adrenals observations from this study where initial 

changes are observed on a molecular level in PKBβ/Akt2-/-Pten+/- adrenals but 

these fail to progress to neoplasia, although restoration of a single isoform of 

PKBβ/Akt2 does allow mild, although still significantly suppressed neoplasia 

development. Importantly, it should be noted that the relationship of 

development to progression does not appear to be relative to the tissue 

expression levels of the PKB/Akt isoforms and hence total levels of PKB/Akt. 

Chen and colleagues in their analysis of the effects of loss of PKBα/Akt1 to 

Pten-induced tumourigensis analyzed expression levels between PKBα/Akt1 

and PKBβ/Akt2. They could show that, for a poignant example, adrenal 

 84



 

expression of PKBβ/Akt2 was similar but still less than PKBα/Akt1 and the 

adrenal phenotype they observe is significantly less pronounced than that 

observed in this study. Conversely, when PKBβ/Akt2 was the major, potentially 

driving isoform, as seen in the thyroid where they reported PKBβ/Akt2 

expression was two-fold greater than PKBα/Akt1 and significant PKBγ/Akt3 

expression was noted, progression to tumours was still inhibited upon 

PKBα/Akt1 loss by 50% compared to Pten+/- mice. This is a simplified 

conceptual view compared and it remains to be seen whether the differences 

observed in these studies, using an essentially genetically homogenous and 

relatively mild tumour model, are relevant clinically in the context of tumours 

with multiple, highly heterogeneous aberrations and often more severe Pten 

loss. However, the comparative analysis of the data from the Chen study and 

this study raises sufficient questions to warrant further exploration of these 

questions and the relationships between PKBα/Akt1 and PKBβ/Akt2 in the 

contexts of tumour initiation and progression.  
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VI. APPENDIX 

 

Part I: Loss of Protein Kinase B beta (PKBβ/Akt2) Predisposes 
Mice To Ovarian Cyst Formation And Increases The Severity Of 
Polycystic Ovary Formation in vivo 
 

Additional Data And Controls Related To Ovarian Phenotypes Observed 

In PKBβ/Akt2 Mice  

 

 
Figure A1.1 Aged PKBβ/Akt2 KO Ovaries Show An Absence Of Granulosa Cells 
Indicating Follicular Exhaustion. (A) Staining with anti-mullerian inhibiting substance to 
illustrate granulosa cells in aged PKBβ/Akt2 KO ovaries were completely negative, illustrating 
an absence of granulosa cells. magnification 40x (i, ii) and 200x (iii, iv).  
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Figure A1.2 Aged PKBβ/Akt2 KO Ovaries Show An Absence Of Granulosa Cells 
Indicating Follicular Exhaustion. (B) Immunohistochemistry for anti-mullerian inhibiting 
substance showing specificity and positive reactivity of the antibody specifically to granulosa 
cells. No background was observed in the conditions used when the antibody neither was not 
applied (i-iv), nor was non-specific reactivity observed using testis negative control tissue. In 
contrast robust and specific staining was observed in the ovary solely in granulosa cells. 
Magnifications 40x (i, iii, v, vii) and 200x (ii, iv, vi, viii). 
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Figure A1.3 Aged PKBβ/Akt2 KO Ovaries Show No Significant Changes In PKB/Akt 
Activation And Downstream Signalling Compared To WT.  Immunohistochemical analysis 
of PKBβ/Akt2 KO ovarian cysts illustrated no significant differences in downstream PKB/Akt 
signaling compared to aged WT ovaries. Magnification 100x.  
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Figure A1.4 Young PKBβ/Akt2 KO Ovaries Show No Significant Changes In PKB/Akt 
Activation And Downstream Signaling Compared To WT.  Immunohistochemical analysis of 
young WT or PKBβ/Akt2 KO ovaries illustrated no significant differences in downstream 
PKB/Akt signaling. Magnification 100x.  
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Figure A1.5 Aging PKBβ/Akt2 KO Mice Show Progessive Loss Of Weight Compared To 
WT Mice In Weeks Preceeding First Observed Cyst Development. PKBβ/Akt2 KO exhibited 
loss of weight reflected by very low levels of white adipose tissue at necropsy. As white adipose 
tissue is the most abundant extra-ovarian source of aromatase responsible for conversion of 
testosterone to estrogen, loss of white adipose and aromatase activity may reflect another 
mechanism contributing to increased testosterone levels in aged PKBβ/Akt2 KO mice. 

 

A 

B 

Figure A1.6 Treatment Of Mice In PCOS Induction Experiments Show No Significant 
Differences In PKB/Akt Activation And Downstream Signaling.  Activation of PKB/Akt and 
downstream signaling was active in control (A) vehicle or GnRH antagonist treated and 
experimentally treated (B) LH or LH + GnRH antagonist ovaries from WT (i, iii, v, vii) and 
PKBβ/Akt2 KO (ii, iv, vi, viii) mice, however, no significant differences were observed between 
animals. All magnifications for IHC are 100x. 
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Figure A1.7 Controls Showing Oil Red O Staining And 3β-HSD Activity In Vehicle And 
GnRH Antagonist Treated Mice. No significant differnces in lipid accumulation in control 
ovaries treated with vehicle or GnRH antagonist were observed in PKBβ/Akt2 KO mice (ii, iv) in 
areas with active androgen steroidogenesis [indicated by staining for 3β-HSD activity (v-viii)] 
compared to WT (i, iii). All magnifications for IHC are 100x. 

 
Figure A1.8 Ovarian Phenotypes Of Mouse Models Disrupting Gonadotrophin Signaling. 
Ovarian and steroidogenic phenotypes of mice with genetic modification of the gonadotrophin 
receptors, compared to that observed in aged PKBβ/Akt2 KO mice. -; no change/ not 
applicable, +; positive, √; observed, x; not observed, ↑; increased, ↓; decreased, ?; not 
reported/determined. 
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Additional Data And Controls Related To Ovarian Phenotypes Observed 

In PKBβ/γ-Akt2/3 Mice  

 
Figure A1.9 Observed Cyst Formation In PKBβ/γ-Akt2/3 DKO Mice Compared To WT, 
PKBα/Akt1 and PKBβ/Akt2 Mice. Additional ablation of PKBγ/Akt3 on a PKBβAkt2 
background leads to 100% penetrance, increased size and earlier presentation of cysts.  WT; 
wild-type, HT; heterozygous, KO; knockout, DKO; double knockout. 

 
Figure A1.10 Presentation Of Cyst From PKBβ/γ-Akt2/3 DKO Mice Compared To WT, 
PKBα/Akt1 and PKBβ/Akt2 Mice. Cystic ovaries isolated from WT (i) and PKBα/Akt1 KO (ii) 
mice fail to show atresia or small ovarian cyst formation, whilst PKBβ/Akt2 KO (iii) and PKBβ/γ-
Akt2/3 DKO (iv) mice show severe ovarian cyst formation, with Akt2/3 DKO showing increased 
hemorrhagic and bilateral cyst involvement.  

 
Figure A1.11 Histology Of Cyst From PKBβ/γ-Akt2/3 DKO Mice Compared To PKBβ/Akt2 
Mice Illustrating Thecosis. Cysts from PKBβ/γ-Akt2/3 DKO (iii, vi) mice show increased 
poorly differentiated stromal cell content (iii) by heamatoxylin and eosin staining and vimentin 
(vi) staining reflecting of thecal-interstitial hyperplasia compared to early 91wk old (i,iv) and late 
120wk old (ii,v) aged PKBβ/Akt2 KO mice. 
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Figure A1.12 Litter Sizes From PKBβ/γ-Akt2/3 DKO Matings Compared To WT. Matings 
from PKBβ/γ-Akt2/3 DKO mice show a strong trend towards lower litter sizes suggesting 
reproductive fertility is compromised in female PKBβ/γ-Akt2/3 DKO mice. 
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Part II: Loss of Protein Kinase B beta (PKBβ/Akt2) Suppresses 

Pheochromocytoma Formation Induced By Pten Deficiency In 

Mice 

Additional Data On Adrenal Phenotypes Observed In PKBβ/Akt2Pten Mice 

 
 
Figure A2.1 Comparison Of The Effects In DHT Mice On Whole Body (A) And Organs 
Weights (B) With WT, SKO and DKO Mice. Reduction in PKBβ/Akt2 levels on the background 
of Pten heterozygosity in adrenals and B-cell neoplasia strongly reverses the Pten neoplasia 
phenotype, although exhibits generally only weaker effects on weight gain in other organs. WT; 
wild-type, SKO; single knockout (Pten+/-), DHT; double heterozygous (PKBβ/Akt2+/-Pten+/-), 
DKO; double knockout (PKBβ/Akt2-/-Pten+/-)  
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Figure A2.2 Comparison Of The Effects On Adrenal Weights Between WT, SKO and DKO 
Mice at 20 and 30 weeks. Loss of PKBβ/Akt2 on the background of Pten heterozygosity in 
adrenals is efficient in preventing increases in tumour burden in early (20 week old mice) and 
effectively halts tumour progression with similar tumour weights seen in 20 week and 30 week 
old mice. WT; wild-type, SKO; single knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-

Pten+/-)  
 

 
Figure A2.3 Effect Of Loss Of A Single Isoform Of PKBβ On Adrenomedullin mRNA 
Expresion Compared To WT, SKO and DKO Mice In 30 Week Old Mice. Reduction or loss 
of PKBβ/Akt2 on the background of Pten heterozygosity in adrenals is strongly suppresses 
increases in adrenomedullin expression known to have growth promoting effects and 
associated with pheochromocytomas. WT; wild-type, SKO; single knockout (Pten+/-), DHT; 
double heterozygous (PKBβ/Akt2+/-Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-)  
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Additional Data On Prostate Phenotypes Observed In PKBβ/Akt2Pten 

Mice 
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Figure A2.4 Effects Of Ablation Of The PKBβ/Akt2 Isoform In Pten+/- Mice On Prostate 
Presentation And Weight In 20 and 30 Week Old Mice. (A). Presentation of WT, SKO and 
DKO prostates from 30 week old mice shows a mice decrease in prostate size in DKO animals 
(B) Prostate weights at 20wks and 30wks from WT, SKO and DKO mice. WT; wild-type, SKO; 
single knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-). 
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Figure A2.5 PKB/Akt Activation And Associated Events During Tumour Development In 
The Prostate. Initiation of tumourigenesis and hyperplasia occur through altered protein 
expression, which promotes AKT activation, mTORC1 activation and PIN development. p27-
induced senescence prevents progression to CaP, which is overcome by AKT signaling 
combined with changes in the expression and/or activity of other proteins and genes. CaP 
displays high AKT activation, supporting proliferation, survival and acquisition of mutations with 
increasing genetic instability, leading to the gross chromosomal losses and gains that are 
characteristic of advanced malignant CaP (Restuccia and Hemmings, 2010). 
 

 
Figure A2.6. Effects On Downstream Signaling In Prostates From 20 Week Old 
PKBβ/Akt2Pten Mouse By Immunohistochemistry. Downstream signaling in prostates from 
SKO and DKO mice show no difference in neoplasia and downstream signaling, indicating 
PKBβ/Akt2 is dispensible for early prostate neoplasia resulting from Pten deficiency. WT; wild-
type, SKO; single knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-). 
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Figure A2.7. Effects On Downstream Signaling In Prostates From PKBβ/Akt2Pten In 30 
Week Old Mouse By Immunohistochemistry. DKO prostates show mild decreases in 
PKB/Akt activation, signaling through mTORC1 and proliferation compared to SKO prostates, 
indicating PKBβ/Akt2 may contribute progression of prostate neoplasia resulting from Pten 
deficiency. SKO; single knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-). 
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Figure A2.8 Effects On Signaling Related To Prostate Neoplasia Progression From 
PKBβ/Akt2Pten In 30 Week Old Mouse By Immunohistochemistry. Consistent with a role 
for PKBβ/Akt2 in contributing to progression of prostate neoplasia resulting from Pten 
deficiency, DKO prostates show stronger nuclear p27, representing the known p27-mediated 
senescence induced by Pten deficiency and significantly decreased ERK activation, than SKO 
prostates. SKO; single knockout (Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-). 
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Additional Data On Uterine Phenotypes Observed In PKBβ/Akt2Pten Mice 

 
Figure A2.9 Effects Of Ablation Of The PKBβ/Akt2 Isoform In Pten+/- Mice On Uteri 
Weight at 20wks and 30wks. Loss of PKBβ/Akt2 on the background of Pten heterozygosity in 
uteri is shows a trend but no significant difference compared to SKO mice at 20 weeks of age, 
which is even less pronounced 30 weeks of age. WT; wild-type, SKO; single knockout (Pten+/-), 
DKO; double knockout (PKBβ/Akt2-/-Pten+/-)  
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Figure A2.10 Quantification Of BrdU Positive Cells In Myometrium And Endometrial 
Compartments Of 30 week Old PKBβ/Akt2Pten Mice. Loss of PKBβ/Akt2 on the background 
of Pten heterozygosity in uteri is shows a striking difference between proliferation in SKO 
myometrial and epithelia compartments, with almost ~80% of proliferating cells observed in the 
epithelial compartment of DKO mice whilest 80% of proliferating cells are localized to the 
myometrial compartment of SKO mice. WT; wild-type, SKO; single knockout (Pten+/-), DKO; 
double knockout (PKBβ/Akt2-/-Pten+/-)  
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Figure A3. Effects On Downstream Signaling In Uteri From PKBβ/Akt2Pten In 30 Week 
Old Mouse By Immunohistochemistry. Immunohistochemistry on uteri shows that BrdU 
staining in DKO mice is almost exclusively endometrial and correlates with strong mTORC1 
activation, indicated by phosphorylated S6. Interestingly, in comparison to DKO uteri, uteri from 
SKO mice show BrdU staining primarily in the stromal but not epithelial compartment, despite 
strong epithelial activation of PKB/Akt and mTORC1. WT; wild-type, SKO; single knockout 
(Pten+/-), DKO; double knockout (PKBβ/Akt2-/-Pten+/-)  
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Part III: General Data 

 

The Epidermal Growth Factor Receptors (ErbB)  

 

The ErbB tyrosine kinase family consists of four members; ErbB1/EGF, 

ErbB2/Neu/Her2, ErbB3 and ErbB4. These receptors dimerise with each other 

to mediate extracellular signals upon ligand stimulation. ErbB2 signaling is 

found in many cancer types and activates multiple signaling pathways, 

particularly the MAPK pathway, although dimerisation with ErbB3 leads to 

binding of the p85 subunit of the PI3 Kinase and activation of this pathway. 

ErbB2 is of particular importance in breast cancer where amplification or 

overexpression of ErbB2 is seen in ~20% of cases and results in dimerisation 

with the ErbB3 receptor and constitutive PI3K pathway activation and PKB 

hyperphosphorylation. Blocking this interaction with Gefitinib, a humanized 

ErbB2 antibody, results in decreased PKB phosphorylation and tumour 

remission in ErbB2 overexpressing patients. However, more recently resistance 

to Gefitinib has been shown as a result of various downstream mutations 

including in Ras, Src and importantly, loss of PTEN. These observations 

correlate well with recent studies in mice. In these studies promotion of breast 

cancer via estradiol required ErbB2 and signaled via the PI3K/Akt1 pathway 

(Lehnes et al., 2007). Further, Gefitinib prevented cancer progression in mice 

overexpressing activated ErbB2 (Piechocki et al., 2008), with an even greater 

effect seen with combination therapy blocking Raf-1 (Hausherr et al., 2006). 

Conversely, activation of downstream PKB signaling by loss of PTEN 

accelerated tumour progression (Dourdin et al., 2008). Activated PKBα/Akt1 in 

the mammary glands of mice overexpressing mammary ErbB2, showed a 

similar acceleration without activation of ErbB3 (Young et al., 2008). Consistent 

with the importance of PKB hyperactivation, Rapamycin that acts on the mTOR 

complex 1 downstream of PKB has also been show to inhibit tumour 

progression (Mosley et al., 2007). This is further emphasized by the 

observation that ablation of Akt1 in mice inhibits breast tumour formation 

(Maroulakou et al., 2007), indicating that multiple downstream substrates of 

PKB are involved in the tumour progression and development. As mentioned, 
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whilst resistance can involve other pathways, the activation of the PI3 kinase 

signaling arm seems crucial to achieving resistance and illustrates the 

usefulness of therapeutics targeting this pathway.   

 

Insulin Receptor Substrates (IRS) 

 

IRS molecules bind to the insulin and IGF-1 receptors and mediate 

downstream signaling through MAPK and PKB. The two major forms of the IRS 

molecules are IRS1 and IRS2 and both have been linked to poor prognosis in 

patients. Both isoforms have been shown to positively regulate extracellular 

signals from the IR/IGF1R via PKB and loss of either molecule in mice results 

in diabetic and growth retardation phenotypes (Tamemoto et al., 1994; Withers 

et al., 1998) Overexpression of IRS1 or 2 in mice in the mammary gland leads 

to tumourigenesis and metastasis (Dearth et al., 2006) and loss of IRS2 leads 

to decreases in tumour development (Nagle et al., 2004), an effect also seen in 

tumour development in Pten +/- prostates (Szabolcs et al., 2009). 

Unexpectedly, IRS-1 loss leads to mammary tumour metastasis (Chen et al., 

2006) and increased anti-apoptosis (Nagle et al., 2004). This apparent 

contradiction is due to a negative feedback loop downstream of PKB which 

results in IRS1 phosphorylation at ser307 and prevents signaling to PI3K 

(Aguirre et al., 2002; Carlson et al., 2004). Thus, when IRS2 alone can 

transduce signaling, an increased activation of the PI3K pathway occurs and 

concomitant increases in PKB activation and signaling. These findings indicate 

the IRS molecules are important in tumourigenesis and mediate this, at least in 

part, through modulating PI3K activation. 

 

Phosphoinositol-3-Kinase (PI3K)  

[For Review See Wu, Yan And Backer, 2007] 

 

The phosphoinositol-3-kinase family exists as 3 classes; Class I, Class II and 

Class III. PKB activation requires conversion of PIP2 to PIP3 which is mediated 

by Class IA PI3K. Class 1A PI3K is composed of one of five regulatory subunits 

(p50α, p55α, p55γ, p85α and p85β) that bind to RTKs and one of three catalytic 

subunits (p110α, p110β and p110δ) that bind to the regulatory subunit. When 
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complexed, they execute the attachment of a phosphate group onto the PIP2 

molecule to generate PIP3. All components are ubiquitously expressed except 

for the p110δ (only expressed in leukocytes). Mutation of the p110α subunit 

has been found in ~9-30% of tumours of the breast, prostate, cervix and 

endometrium (Catalog of Somatic Mutations in Cancer, 

www.sanger.ac.uk/genetics/CGP/cosmic; (Miyake et al., 2008)). These mutants 

include E542K, E545K which result in a ras-dependant gain of function and 

H1047R that is proposed to lead to ras-independent gain of function. In all 

cases hyperphosphorylation of PKB occurs. Truncation mutants of H1047R 

(Kwon et al., 2008) that fail to stimulate PKB are non-oncogenic and 

overexpression of PTEN that reverses the conversion of PIP2 to PIP3 mediated 

by PI3K prevents tumour formation, together suggesting that the oncogenic 

potential of PI3K activation is mediated exclusively via PKB. Recent studies in 

mice have shown that PI3Kα is the primary isoform mediating insulin and 

growth signaling to PKB/Akt (Jia et al., 2008). It can also contribute to more 

diverse cancers including thyroid (Furuya et al., 2007), pituitary (Lu et al., 

2008), ovary (Wu et al., 2007) and lung (Yang et al., 2008) and importantly is 

required for ras driven tumourigenesis (Gupta et al., 2007). More recently a 

contribution by PI3Kβ to tumour promotion has also been reported and mouse 

models have illustrated a crucial role for this subunit in prostate cancer, where 

ablation of the PI3Kβ subunit prevented tumour formation in a PTEN null 

prostate cancer model, with concomitant loss of ser473 staining of PKB 

observed (Jia et al., 2008). Further support for a crucial role in prostate cancer 

was shown in a recent paper that showed PI3Kβ mediated androgen receptor 

transactivation and overexpression resulted in androgen independent 

transactivation that required its lipid kinase activity (Zhu et al., 2008). 

Consistent with the finding that PI3Kβ is required for prostate cancer in a PTEN 

null setting, loss of PI3Kβ in prostate cancer cell lines by RNA silencing 

prevented tumour formation upon injection into nude mice (Wee et al., 2008; 

Zhu et al., 2008). These findings indicate whilst PI3Kα is the most commonly 

involved subunit in tumourigenesis, the other isoforms may play a more 

important roles in a tissue specific manner. 
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Phosphatase And Tensin Homolog (PTEN) 

 

The phosphatase and tensin homolog is a phosphatase that is distinguished by 

its preference for phosphoinosityl substrates. In this capacity PTEN acts as the 

phosphatase of the PI3K pathway, reversing the kinase actions of PI3K by 

dephosphorylating PIP3 to PIP2. In doing so, PTEN acts as the major negative 

regulator of the PI3K pathway and PKB activation. Hereditary genetic mutations 

of PTEN give rise to Cowden’s syndrome, which predisposes affected 

individuals to tumour development. Even more striking are the somatic 

mutations, gene deletion, inactivation and silencing of PTEN leading to both 

protein reduction or loss, which are found in a diverse range of cancers, and 

make PTEN one of the most commonly mutated proteins in cancer. These 

PTEN mutations drive tumour development by hyperphosphorylated PKB, 

which inhibits apoptosis and promotes survival, proliferation and growth. PTEN 

deletion in mouse models is embryonically lethal (Stambolic et al., 2000), 

however, loss of a single allele leads to hyperplastic and dysplastic tissues in 

multiple organs and further reduction of PTEN (Trotman et al., 2003) leads to 

complete, often aggressive and invasive, tumour formation. 

In response to PTEN mutations and loss being found in a broad spectrum of 

tumour types, more recent studies have utilized conditional PTEN loss to 

explore its ability to cause tumours in specific organs, including skin (Inoue-

Narita et al., 2008), uteri (Hernando et al., 2007; Daikoku et al., 2008), lung 

(Yanagi et al., 2007; Dave et al., 2008), thyroid (Yeager et al., 2007), intestines 

(He et al., 2007), ovary (Fan et al., 2008; Reddy et al., 2008), bone (Ford-

Hutchinson et al., 2007), prostate (Di Cristofano et al., 2001; Trotman et al., 

2003; Wang et al., 2003; Ratnacaram et al., 2008) and liver (Stiles et al., 2004; 

Horie et al., 2006; Sato et al., 2006). Mouse models of PTEN loss or reduction 

have been combined with overexpression or loss of components of the PI3K 

pathway to determine the importance of PTEN loss and subsequent PKB 

activation, as well as to probe for PKB independent roles of the PI3K pathway 

in tumour development. These models have included ErbB2 upstream of the 

PI3K pathway (Dourdin et al., 2008), p110δ (Janas et al., 2008), p110β (Wee et 

al., 2008; Zhu et al., 2008) or p85 (Luo et al., 2005) subunits of PI3K, 

PKBα/Akt1 (Chen et al., 2006) itself and mTORC2 via rictor ablation (Guertin et 
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al., 2009) or via mTOR kinase ablation (Nardella et al., 2009). In addition, the 

role of other pathways and their potential contribution to PI3K pathway driven 

tumourigenesis by co-operation with PTEN have been probed by mutations of 

proteins with both a putative and established roles in tumour development. In 

these cases PTEN loss has been combined with activation of the FBJ murine 

osteosarcoma viral oncogene homolog (Fos) (Yao et al., 2008), overexpression 

of the Ras homology enriched in brain (Rheb) (Nardella et al., 2008) or loss of 

the tuberous sclerosis protein 2 (TSC2) (Ma et al., 2005), the adenomatosis 

polyposis coli protein (APC) (Shao et al., 2007), the Von Hippel-Lindau protein 

(VHL) (Frew et al., 2008), the Rac activator T cell invasion and metastasis gene 

1 protein (TIAM1) (Strumane et al., 2008) and the LKB1 tumour suppressor 

(Huang et al., 2008), the cell cycle inhibitors p18 (Bai et al., 2006), p27 (Di 

Cristofano et al., 2001) and the tumour suppressor p53 (Chen et al., 2005). In 

addition, recent interest in the regulation of PTEN localization, particularly in the 

nucleus, and PIP3 phosphatase independent activities of PTEN have gained 

much interest and been addressed in various experimental designs. The former 

area has been addressed with studies into import and export of PTEN including 

interesting studies into the role of Nedd4 (Trotman et al., 2007; Wang et al., 

2007; Fouladkou et al., 2008), oxidative stress (Chang et al., 2008) and the 

TSC2/mTOR/S6K pathway (Liu et al., 2007). Studies addressing PTEN effects 

independent of its phosphatase activity on PIP3 have examined the roles of 

PTEN in the FBXW7 and PTEN regulation of mTOR (Mao et al., 2008), PTEN 

regulation of p300-dependent hypoxia inducible factor 1 (Emerling et al., 2008), 

PTEN regulation of Src family kinases (Dey et al., 2008) and JNK signaling 

(Vivanco et al., 2007).  

The prevalence and variety of PTEN deregulation in tumour development, 

underscored by both clinical data and experimental models, highlights the 

selective advantage that activation of PKB signaling can confer upon a tumour 

in both development and progression. 
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3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1) 

 

The 3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1) is part of the AGC 

protein kinase family and is crucial in the PI3K pathway through its ability to 

phosphorylate PKB at the Thr308 site in the T-loop of the catalytic domain 

performing the initial step in PKB activation. In addition however, PDK1 can 

phosphorylate at least 22 other protein kinases, including the p90 ribosomal S6 

kinases (RSK), protein kinase C isoforms (PKC), the serum and glucocorticoid-

induced protein kinase (SGK) and the p70 ribosomal protein kinase (S6K1) 

downstream of mTORC1. Knockout mice of PDK1 are embryonically lethal and 

in order to determine the contribution of PDK1 signaling via PKB and its other 

kinase substrates in vivo both hypomorphic and knock-in mouse models were 

developed by the Alessi laboratory. The hypomorphic model can facilitate 

generation of mice with 80-90% loss of PDK1 (Bayascas et al., 2005), whilst 

more selective analysis of the downstream signaling can be ascertained via the 

two knock-in models. The first knock-in model; a PDK1 Leu155Glu mutant, 

prevents PDK1 from interacting with and phosphorylating its substrates 

(McManus et al., 2004), whilst the second; the PDK1 K465E mutant is unable 

to bind phosphoinositides via the PDK1 PH domain, resulting in the selective 

loss of signaling through PKB (Bayascas et al., 2008).  The PDK1 hypomorphic 

mice are small but otherwise normal, a phenotype observed in the K465E 

mutant in addition to insulin resistance. These phenotypes are similar to those 

seen with knockout of PKBα/Akt1 or PKBβ/Akt2 respectively. PDK1 loss also 

provides a similar protective effect to that seen with PKBα/Akt1 loss in PTEN+/- 

mice. PDK1 hypomorphic protein loss on a PTEN+/- background resulted in 

longer tumour latency, decreased number of tumours and longer survival times. 

Furthermore, the tumours that did develop showed Ki67, phospho-S6 and 

cytoplasmic FoxO1 similar to that seen in the PTEN+/- only mice. This suggests 

the driving mechanism of the tumours that develop from PDK1fx/-PTEN+/- mice 

is similar to PTEN+/- driven tumours and signals via PKB. This provides even 

more evidence that PKB is the crucial signaling node in PI3K mediated tumour 

development. It will be interesting to see if selective loss of PKB activation via 

the K465E mutant on the background of PTEN reduction or loss can abrogate 

tumour development. 
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The topic of this edition of Current Opinion in Cell Biology originated some

22 years ago in Basel, when Novartis gave approval for an ambitious project

to isolate protein kinase inhibitors. The first fruit of this research was the

development of Glivec, an inhibitor of the Abl tyrosine kinase. While

originally registered for treatment of Philadelphia chromosome-positive

chronic myeloid leukemia (CML), the identification of several other tyro-

sine kinases that it effectively inhibits has seen its application extended to

other malignancies, including the often inoperable and metastatic GIST

type of gastrointestinal cancer. In 2006, the 20th anniversary of that Novartis

decision, another ambitious project brought the leading experts in protein

kinase inhibitor research to Basel for a meeting to celebrate this odyssey.

Over 600 scientists from 30 different countries heard 36 presentations on all

aspects of kinase biology (see details on the meeting report by Bozulic et al.
[1]). Against this background, this issue revisits many of the areas discussed

at the 2006 meeting. Overall, 23 articles written by former speakers on the

2006 program are presented, highlighting significant advances in the de-

velopment of additional Kinome-targeted therapies.

Eddy Fischer and Ed Krebs won their 1992 Nobel Prize for work in the mid

1950s describing reversible protein phosphorylation, but it took a further 25

years for kinase deregulation to be linked to disease. In 1978 it was shown

that transformation by the Rous Sarcoma Virus is mediated by a protein

kinase, v-Src. One year later, Tony Hunter and co-workers, working on v-Src

and Polyomavirus middle T kinase activities, identified a new type of

protein modification, tyrosine phosphorylation. The response was a keen

interest that led rapidly to the identification of novel tyrosine kinases (TK),

including Abl and EGFR in 1980 and v-Erb and BCR-Abl five years later. In

2001, the first small-molecule TK inhibitor directed against the Bcr-Abl

protein, later known as Glivec, was approved for CML. In the first paper,

Tony Hunter presents a comprehensive account of the past 30 years of TK

research, reviewing the developments that have led to current understand-

ing of TK function, signaling mechanisms, deregulation in disease, and the

development of targeted TK therapies. Further, he discusses the current

challenges of resistance, the development of second-generation inhibitors,

combinational therapy regimes, and the potential of tailored tumor therapy.

Specific kinases signal by phosphorylation of a defined substrate motif.

These motifs are often common, yet kinases phosphorylate only a discrete

set of substrates, suggesting additional levels of kinase regulation. The

review by Pawson and Kofler addresses this question by examining the role

of intramolecular, allosteric, and protein–protein interactions. Using data on

various TKs, they illustrate how linkage of additional SH2, SH3, or other

domains commonly found in TKs ensures substrate specificity, despite the

conserved SH2 and catalytic domains. They examine how additional
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domains can localize the kinase in proximity to their

substrates, while unselective substrate association is pre-

vented by inhibitory intramolecular bonds. This can be

extended to non-TK, as shown by the activation of PKA,

which is kept inactive by binding of regulatory subunits to

the catalytic subunit. Attachment of both substrates and

the PKA regulatory domains to the scaffold protein AKAP

ensures, when activation occurs by increases in local

cAMP, that kinase activities are restricted to those sub-

strates attached to the AKAP scaffold. Such domains

involved in localization and inhibition thus provide

important targets for inhibition of selected kinases.

VEGFs and their TK receptors are involved in both

angiogenesis and lymphangiogenesis, where signaling

through VEGF-A/VEGFR-2 and VEGF-C/VEGF-D/

VEGFR-3 are the major pathways, respectively. Further

members of the VEGF and VEGFR families are involved

primarily in modifying the angiogenic process after

initiation. While abnormalities in knockout mouse

models emphasize the crucial nature of angiogenesis

and lymphangiogenesis in development, their importance

in pathogenic settings, especially cancer, has instigated

numerous attempts to exploit the therapeutic potential of

their inhibition. Lohela et al. review this work and the

understanding it has fostered of this system in pathologi-

cal settings. Evidence indicates that anti-VEGF mAbs

can inhibit tumor growth by preventing neoangiogenesis

and also increase vessel stability, which supports per-

fusion and access of chemotherapeutic agents to the

tumor. Preclinical models targeting VEGF-C/VEGF-D/

VEGFR-3 block lymphangiogenesis that allows tumor

access to the lymphatic network and thus acts to suppress

metastatic spread. Interesting results also indicate that

the targeting of individual components involved in angio-

genesis and lymphangiogenesis or combined therapy

against novel modulators like neurophilin nerve growth

factors may also bring additional therapeutic benefit to

pathologies such as rheumatoid arthritis, human lympho-

dema and cancer.

TGF-b family cytokines signal by binding to and activat-

ing hetero-dimeric serine–threonine protein kinase

receptors. Phosphorylation of receptor activated Smads

(R-Smads) results in complex formation with SMAD4,

translocation to the nucleus, and in conjunction with

other transcription factors, the regulation of genes

involved in growth arrest, apoptosis and epithelial-to-

mesenchymal transition (EMT). Specificity of signaling

is attained via diverse mechanisms, including receptor–
ligand binding affinities, both receptor and Smad post-

translational modifications, negative feedback by inhibi-

tory Smads, and the nuclear export of Smads. In tumor

pathogenesis, TGF-b members initially inhibit growth

and promote apoptosis. However, the tumor overcomes

TGF-b growth arrest at later stages, while utilizing the

TGF-b ability to promote EMT, thereby increasing
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invasion and metastasis. Recent data on the mechanisms

underlying tumor inhibitory and EMT promoting effects

are addressed by Heldin et al. Escape from the growth

inhibitory effects of TGF-b has been linked to loss of

plasminogen activator inhibitor-1 by as yet unknown

mechanisms resulting in sustained activation of the

growth-promoting kinase Akt. Akt itself and the down-

stream regulated target mTOR have been shown to

interfere with Smad signaling. Decrease in TGF-b-

induced apoptosis has been shown also to involve

increases in pro-survival signaling mediated by Akt as

well as survivin. Loss of pro-apoptotic effectors Bim and

p53, the latter being co-regulated by Smad and p38

proteins, has also been observed. Interestingly, it has

been found that p38 can be activated by specific TGF-

b receptor complexes through a novel TRAF6-mediated

apoptosis pathway. An interesting mechanism for EMT

induction in tumors has also been reported. Tumors

increase TGF-b release, which acts on the surrounding

stroma to induce stromal cytokine production. These

cytokines act on the tumor to enhance EMT, invasive-

ness, and metastasis through complex pathways that

involve Notch, JNK1, and FAK signaling. Transcriptional

induction of Snail and Twist also induces EMT, and this

can be initiated by TGF-b-promoted SMAD3 signaling

but inhibited by SMAD2 signaling. These findings

promote novel signaling components indirectly associ-

ated with Smad signaling, as well as components within

Smad signaling, as therapeutic targets to prevent the shift

from tumor inhibition to EMT promotion.

ErbB receptor tyrosine kinases (RTKs) form heterodi-

mers upon ligand binding and transducer signals via

multiple intracellular cascades. Mutation and overexpres-

sion lead to activation, growth promotion, and tumorigen-

esis. The often observed PI3K mutations or low PTEN

also imply that signaling via the PI3K/PTEN/AKT path-

way is crucial for tumor progression. Indeed, therapeutic

monoclonal antibodies (mAbs) and TK inhibitors of ErbB

RTKs, ErbB2 and EGFR, are used clinically and their

therapeutic benefit is correlated with phospho-AKT

levels.

Resistance to these therapies is seen, however, and the

interplay between ErbB, PI3K signaling, and resistance

common to ErbB2+ breast and non-small cell lung cancer

is the focus of the paper by Hynes and MacDonald. A

commonly observed mechanism promoting resistance is

the acquisition of mutations downstream of ErbB2 in

p110a and PTEN that restore AKT signaling. Compen-

satory mechanisms increasing insulin-like growth factor 1

receptor signaling, MET receptor levels, and protease

cleavage of the mAb inhibited ErbB2 (that allows it to

bind the ErbB3), all reactivate AKT signaling (illustrated

on the cover of this issue of Current Opinion in Cell

Biology). These findings suggest that combined targeting

of both the receptor and downstream AKT activation is
Cell Biol (2009), doi:10.1016/j.ceb.2009.03.001
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needed. This is the focus of the review by Klein and

Levitzki, who deliver a thorough overview of current

therapies in clinical trials targeting ErbB receptor,

PI3K, AKT, and mTOR. They discuss the different

classes of classical drugs and the potential advantages

of these newer drugs. Insights into strategies to improve

therapeutic efficacy by combinational treatment and by

novel more potent ErbB receptor therapies are also pre-

sented.

The potential of targeting PI3K/AKT/mTOR goes

beyond ErbB2-driven tumors. This pathway is the most

commonly mutated and hyperactivated pathway in

human cancers and offers targets for therapeutics across

a diverse range of cancer types. Brachmann et al. review

clinical data from approved and new-generation inhibi-

tors in trials in this context. They also highlight the

benefits of both selective and combined inhibition of

components of this pathway. Recent data show that the

PI3K isoforms have different functions and contri-

butions depending on the cancer setting. Accordingly,

the review by Jia et al. focuses on the potential benefits

of selective PI3K isoform inhibition. Recent advances

in the biological regulation and actions of the down-

stream mTOR protein are reviewed by Polak and Hall.

They illustrate how newly identified components in

mTOR signaling could provide novel therapeutic tar-

gets that are more selective in cancer and metabolic

therapies. This is made especially relevant by recent

data showing that mTOR has crucial roles in both tissue

and whole organism metabolism, given the beneficial

and adverse metabolic effects seen in mouse models.

Patients have shown good tolerance of the selective

inhibition of mTORC1, although responses are often

varied. Recent data pertaining to possible mechanisms

underlying these observations, particularly feedback

and compensatory effects, are reviewed in the paper

by Lane and Breuleux. In this context, they discuss the

importance of optimizing mTORC1 inhibition by com-

binational therapies and patient profiling. The appli-

cation of mTORC1 inhibition in an expanded

therapeutic spectrum beyond malignant tumors is the

topic reviewed by Plas and Thomas. This includes data

on immunosuppression and cardiovascular disease, as

well as encouraging findings on the treatment of benign

tumor syndromes.

Genome integrity is maintained through checkpoints that

recognize DNA-damage and coordinate repair. The

mammalian PI3 kinase-related kinases, ATR, ATM

and DNA-PK, are central to the checkpoint signal and

maintenance of their function is essential to prevent

mutation acquisition during S-phase. Friedel et al. review

recent findings important for the maintenance of genome

integrity by checkpoint initiation. They discuss mechan-

isms of cell-cycle arrest, activation of repair, and the

restart of S-phase after the DNA-damage response that
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are initiated by the phosphorylation of canonical ATM/

ATR downstream kinases, Chk1 and Chk2. Reinhardt

and Yaffe focus on these effector kinases and the identi-

fication of an interesting new effector kinase complex of

p38 Mitogen- Activated Protein Kinase (MAPK) and

Mitogen-Activated Protein Kinase-Activated Protein

Kinase 2 (MK2). They document the contributions of

these effector kinase complexes to the induction of

growth arrest through the activation of diverse kinase

signaling cascades. Bozulic and Hemmings review the

novel role of AKT in the DNA-damage response, with

recent data showing that DNA-PK phosphorylates and

activates AKT1 on the important serine-473 residue after

DNA damage induced by g-irradiation. Interestingly,

DNA-PK and AKT are both in the cytoplasm and the

nucleus, and their coordinated activation affects AKT

substrates GSK3, FOXO4 and MDM2. These proteins

are involved in p53 regulation, and in fact, p21 induction

by p53 is impaired in AKT1 knockout cells. AKT1

activation is enhanced after DNA-damaging cancer thera-

pies and radiotoxicity is increased with simultaneous

targeting of AKT1. Collectively, these reviews illustrate

novel signaling in the DNA-damage response that may be

targeted to minimize off-target genotoxic stress and

improve cancer radiotherapy.

Protein Kinase C (PKC) is a family of nine isoforms in

three classes that are particularly important in T cell

activation and adhesion. This promotes PKC as a thera-

peutic target in T-cell-dependent immune responses.

Baier and Wagner review progress in PKC isoform sig-

naling in this setting, with a brief discussion of the

implications of preclinical studies. The review by Roffey

et al. documents the current status of PKC isoform knock-

out mouse models illustrating the role of PKC beyond T

cells and its potential as a target in neurological disorders,

metabolism, and cancer. They address the major chal-

lenges in the design of isoform-specific inhibitors and

some of the approaches taken and present an overview of

PKC inhibitors in clinical trials.

The crucial structural element of a kinase is the ATP-

binding pocket, which is exploited by small-molecule

inhibitors like Glivec and erlotinib to provide effective

therapies. However, the selectivity of inhibition by

kinases relies on other flexible elements, such as the

highly conserved DRG element, which can enhance

binding or sterically interfere with small-molecule

inhibitors. Different conformational changes upon acti-

vation alter exposed and hidden residues that may

stabilize inhibitors. Structural biology has generated

insights into these interaction sites between different

but often highly conserved kinases and provided a ration-

ale for selective drug design. Cowan-Jacob et al. review

these topics and report on mechanisms of selectivity.

Particularly interesting is how the energy of different

conformational states can have an impact on the binding
Cell Biol (2009), doi:10.1016/j.ceb.2009.03.001
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affinity of an inhibitor. The conformational states of

target kinases are affected by mutations that can lead

to resistance. Structural biology allows the design of

molecules that can overcome this. Novel approaches

are also being applied in the pursuit of inhibitors that

bind primarily to the protein surface or associated

domains, instead of the ATP-binding pocket. These

processes of rationalized drug design were initiated after

the development of Glivec and the study of subsequent

resistant-kinase forms. Eck and Manly document the

lessons learnt from the Glivec/BCR-ABL interaction.

They also discuss the development of assays, ideally

in a cellular setting, that rapidly, reliably, and effectively

evaluate kinase inhibition, thus gauging the potency of

targeted inhibitors.

With the current principles of targeted drug design, the

selection of targets driving tumorigenesis is crucial for

effective cancer therapies. While much effort has been

directed toward ErbB and PI3K pathway inhibition,

recent data have revealed that certain tumors can be

predominantly driven by other kinases. Two of these

kinases, oncogenic BRAF and MAPK, are the focus of

the paper by Knauf and Fagin. There is compelling

evidence that common oncogenic BRAF mutations

activate MAPK pathways and promote the escape from

senescence through multiple pathways. Inhibition of

this process via downstream MEK has had variable

success. There are indications that signaling via other

pathways may be initiated or be more susceptible to

initiation by oncogenic BRAF. This suggests that

further inhibition of these pathways, for example

PI3K, may be required for effective treatment. The

concept of combinational therapy of cancer is taken

up in the review by Stuart and Sellers. They illustrate

that while therapies targeted to the driving somatic

mutation commonly found in the tumors are initially

effective, resistance often arises through the acquisition

of mutations in the target, alternate proteins, and feed-

back activation. Deeper understanding of these

responses will be the key to designing truly synergistic

therapies that can target multiple nodes of a pathway

and multiple activated pathways. Such therapies may

allow for more effective cytotoxicity and better toler-

ance. These principles are perhaps most applicable in

the case of glioblastoma (GBM) and this is addressed in

the review by Lino and Merlo. They discuss the chal-

lenges presented by GBMs, the high mutational load

within the tumor, low drug uptake due to the blood-

brain barrier, and the outgrowth of more malignant

GBM cells after intense chemotherapy regimes. They

stress the need for studies into locally applied thera-

peutics after GBM resection and comment on the con-

tribution of epigenetic abnormalities.

While kinases are commonly associated with cancers,

they are also clearly involved in microbial pathogenesis.
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The pathogens themselves, the resultant inflammatory

response, and the residual chronic autoimmune dis-

eases they may initiate, all require kinases to be sus-

tained. As such they present novel, druggable targets.

Previous unsuccessful preclinical trials targeting

chronic inflammatory and autoimmune disorders inhib-

ited p38aMAPK. Recent data suggest that the adverse

effects observed were due not to a lack of inhibition of

pro-inflammatory effects like TNFa release but rather

to the simultaneous ablation of regulatory anti-inflam-

matory signaling required for resolution. Accordingly,

Cohen reviews data on more selective drug design that

targets specific p38aMAPK substrates, supports anti-

inflammatory kinases like Tpl2 that are induced by

inflammation, or inhibits kinases downstream of Toll-

like receptors that initiate innate immune system sig-

naling and may yet bring success. Such pathogenic

insults can be minimized by swift and effective anti-

microbial treatment. However, with the common use of

antimicrobials, pathogens are developing increasing

resistance to current drugs and little progress has been

made in the development of new classes of drugs.

Therefore, the attempts to overcome this by targeting

bacterial histidine kinases, described by Schreiber et al.,
are particularly exciting. They discuss studies of a

variety of pathogens including Mycobacteria tuberculosis,
the causative agent for increasing incidence tubercu-

losis, and strains of Staphylococcus responsible for noso-

comially acquired chronic infections and deadly Golden

Staph. The results show potential, with the major

hurdle being low compound solubility. Although this

area of research may be still in its infancy, encouraging

progress has been made in combating the challenge of

multi-drug resistant bacteria.

In conclusion, from humble beginnings there has

emerged a powerful new class of drugs that are slowly

but surely taming the most heterogeneous of human

diseases, cancer. From a single molecule directed suc-

cessfully at a single cancer came the challenge to expand

the therapeutic spectrum. There now exist numerous

therapies targeting a diverse range of cancers. The initial

success was also qualified by the challenge of resistance,

and there are now numerous new molecules targeting

resistant kinase forms. These efforts from around the

globe signify a research attitude in kinase-targeted

therapy that no challenge is too big, no hurdle too great.

As can be gleaned from the articles in this issue of Current

Opinion in Cell Biology, this research approach has only

grown stronger in the past two years. There still remains

the challenge of expanding the therapeutic spectrum, and

today we are looking beyond cancer to inflammation and

antibacterial therapies. There still remains also the chal-

lenge of resistance through acquisition of mutation and

alternate pathway activation, and today our research looks

beyond new targets in these pathways to new approaches

of combinational therapy and tailoring therapeutic
Cell Biol (2009), doi:10.1016/j.ceb.2009.03.001
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regimes to cancer types. Thus, finally, given such an

approach coupled with the 20–30% of drug discovery

programs in the pharmaceutical industry that currently

involve protein kinase targets, there are great expec-

tations that the future will bring more potent, effective

kinase-targeted therapies, in cancer, in the more diverse
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settings of inflammation and antibacterials, and perhaps

beyond.
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Aberrations in cellular signaling path-
ways that involve the enzyme Akt 
(also called protein kinase B) are 

implicated in diverse diseases, including can-
cer, diabetes, and neurodegenerative disorders 
(1, 2). Thus, proteins involved in Akt activation 
and signaling are potential targets for therapeu-
tic intervention. In fact, drugs directed against 
some of these targets are now in clinical tri-
als for treating cancers, and the inhibition of 
Akt activation and signaling remains a major 
goal of drug discovery (3, 4). On page xxx of 
this issue, Yang et al. (5) identify a chemical 
modification of Akt that controls its activation, 
identifying another potential means to inhibit 
this kinase in human cancers.

An important step in Akt activation is its 
translocation from the cytosol to the plasma 
membrane, where it becomes activated in 
response to the stimulation of growth fac-
tor receptors at the cell surface. However, 
the mechanisms that control this membrane 
localization are not clear. Akt possesses a PH 
domain, which binds to the molecule phos-
phatidylinositol (3,4,5)-trisphosphate (PIP

3
) 

in the plasma membrane. Similarly, the 
enzyme phosphoinositide-dependent protein 
kinase 1 (PDK-1), which phosphorylates and 
thereby activates Akt, localizes to the plasma 
membrane by binding to PIP

3
. The membrane 

localization of PDK-1 triggers the recruit-
ment of Akt to the membrane (6), though it is 
unclear precisely how. Now, Yang et al. show 
that this process is even more complicated 
(see the figure).

The authors identify Akt as a target of 
TRAF6, an E3 ubiquitin ligase. Ubiquitin 
ligases attach a small protein called ubiquitin 
to target proteins, which induces their deg-
radation or promotes interactions with other 
proteins to transduce signals. These effects 
are distinguished by the attachment of sin-
gle ubiquitin moieties to a protein substrate 
(monoubiquitination) or chains of ubiquitin 
proteins (polyubiquitination), as well as 
by the specific lysine residue that is modi-
fied. By ubiquinating Akt, TRAF6 promotes 
Akt translocation to the plasma membrane, 
where it becomes phosphorylated. In cells 
lacking TRAF6, ubiquitination, membrane 
localization, activation, and signaling of Akt 

were impaired in response to treatment with 
growth factors.

The amino acids modified by TRAF6 are 
lysine residues at positions 8 (K8) and 14 
(K14), both of which are monoubiquitinated 
and lie in the PH domain. Mutation of either 
lysine residue to arginine impaired Akt acti-
vation. The K14R mutation specifically dis-
rupts Akt interaction with PIP

3
 (7). How-

ever, Yang et al. found that the K8R mutation 
did not affect binding to PIP

3
. Nevertheless, 

membrane localization of this mutant was 
impaired in response to growth factors. Thus, 
by ubiquitinating Akt on two specific residues, 
TRAF6 promotes localization of the kinase 
to the plasma membrane for subsequent acti-
vation. Ubiquitination may cause a confor-
mational change that enables Akt to interact 
with a protein that transports the kinase to the 
membrane. Ubiquitination of the protein neu-
rotrophin receptor interacting factor (NRIF) 
by TRAF6 allows NRIF to associate with the 
protein p62. The resulting complex is then 
able to translocate to the nucleus (8).

To determine whether TRAF6 is an effec-
tive target for inhibiting oncogenic Akt 
hyperactivation, Yang et al. examined an acti-
vated, mutant form of Akt identified in tumor 
samples of patients with breast, colorectal, or 
ovarian cancer (9). In this mutant, glutamic 
acid at position 17 is replaced with lysine 
(E17K), which increases interaction of its 

PH domain through a conformational change 
with PIP

3
. Enhanced membrane association 

of the mutant form of Akt increases its acti-
vation, even in the absence of growth factors. 
The E17K mutant also displayed greater over-
all ubiquitination—lysine residues at posi-
tions 8, 14, and 17 become modified–and its 
ubiquitination was further potentiated when 
TRAF6 was overexpressed in cells. Mutating 
the K8 residue in this mutant decreased Akt 
activation and downstream signaling. Thus, 
the Akt mutant uses ubiquitination to attain 
its hyperactive state.

The authors extended this concept by 
depleting TRAF6 (by RNA interference) 
from a human tumor cell line that expresses 
the hyperactive, mutant form of Akt, and then 
injecting these cells into “nude” mice (ani-
mals that do not mount an immune response to 
foreign cells). Tumor formation by these cells 
was severely impaired compared to tumor 
cells expressing TRAF6 that were injected 
into animals, consistent with the potential of 
TRAF6 inhibition to stop tumor growth.

Could inhibiting TRAF6 be an effective 
clinical therapy for human cancer? Although 
no inhibitors of TRAF6 are currently avail-
able, blocking the function of E3 ligases has 
shown effective anti-tumor properties in pre-
clinical studies, and such inhibitors are mov-
ing toward clinical trials (10). Studies of the 
E3 ligase Mdm2, which targets the tumor sup-
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Moving to the membrane. The enzyme TRAF6 adds ubiq-
uitin (Ub) to Akt, a modification that enhances localization 
to the membrane, where Akt is phosphorylated and acti-
vated. Blocking TRAF6 in tumor cells could increase the 
effect of mTORC1 inhibitors and cause cell death in tumors.



28 AUGUST 2009    VOL 325    SCIENCE    www.sciencemag.org 1084

Perspectives

pressor protein p53 for degredation, show that 
Mdm2 inhibition can be attained by blocking 
interaction with its substrate. Yang et al. show 
that a stable complex forms between TRAF6 
and Akt, suggesting that this approach may 
be a good way to block TRAF6-mediated Akt 
activation. The potential effectiveness of this 
approach for tumor therapy is highlighted by the 
point in the signaling cascade at which TRAF6 
contributes to Akt activation—downstream of 
common mutations observed in the clinic that 
affect phosphatidylinositol 3-kinase (PI3K) or 
the phosphatase PTEN, either of which cause 
hyperactivation of Akt. In support of this, the 
tumor cell line depleted of TRAF6 that was 
injected into mice by Yang et al. did not express 
PTEN and displayed strong Akt activation.

TRAF6 could be used to augment the 
effectiveness of rapamycin analogs (rapalogs), 
drugs that inhibit the mammalian target of 
rapamycin complex 1 (mTORC1). Rapalogs 
are approved for limited anti-tumor therapy 
because they may temporarily stabilize tumors 
in clinical trials but rarely elicit a full response 
in terms of tumor ablation. Preclinical studies 
indicate that rapalogs have a cytostatic effect 
on tumors, due at least in part to increased Akt 
activation, because a negative feedback loop 
that normally prevents PI3K signaling is lost. 
As Yang et al. show, cells lacking TRAF6 dis-
played increased spontaneous apoptosis (pro-
grammed cell death). Thus, TRAF6 inhibition 
in conjuction with rapalogs could shift the 
response of tumors to rapalogs from cytostatic 

to cytotoxic, increasing the efficacy of these 
drugs in cancer therapy.
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Coupling Strongly, Discretely
physics

James Hone1, Vikram V. Deshpande2

Mechanical systems acting as electronic 
quantum dots can be tuned at the level  
of single electrons.

The fields of electronics and mechanics 
have made impressive progress toward 
true quantum mechanical devices. 

Through improvements in device perfor-
mance and measurement techniques, nano-
electromechanical systems (NEMS) have 
enabled high-sensitivity detection of charge, 
mass, and spin, and have steadily approached 
the quantum limit of mechanical motion (1). 
Similarly, the ability to manipulate individual 
electrons in quantum dots has led to devel-
opments in solid-state quantum computing 
(2). On pages XXX and YYY of this issue, 
Lassagne et al. (3) and Steele et al. (4) bring 
together these two fields to study the influ-

ence of charge transport on nanomechanical 
motion in high-performance carbon nanotube 
mechanical resonators that simultaneously 
act as quantum dots. They find that the reso-
nant frequency and dissipation in the nano-
tubes are both highly sensitive to the charge 
state at the level of single electrons.

Carbon nanotubes are a model system for 
nanoelectronics. Adding even a single elec-
tron to this small system carries a large ener-
getic cost; thus, at low enough temperatures, 
electrical transport in carbon nanotubes can 
take place through tunneling of electrons one 
at a time. This manifests itself in peaks in the 
current as a function of the voltage on a nearby 
gate (which modulates the chemical potential 
of the nanotube), a phenomenon known as 
Coulomb blockade. Advances in the growth 
and fabrication of nanotubes (5) have enabled 
the development of clean, freely suspended 

devices that have been used to observe elec-
tronic phenomena such as correlated electron 
states (6, 7) and spin-orbit coupling (8).

Because of their small size, high stiffness, 
and low density, nanotubes are also excellent 
materials for NEMS. But, they may also have 
an additional advantage. They circumvent 
the surface dissipation mechanism known, in 
bulk-etched NEMS, to decrease the quality 
factor Q (which quantifies the sharpness of 
the resonance peak) with decreasing device 
size. However, nanotubes have until recently 
shown Q values of only 100 to 1000 (9–12), 
in keeping with the trend for etched devices. 
Steele et al. now show that clean nanotubes 
do in fact beat the trend, achieving a Q of 
100,000 at ultralow temperatures.

The two reports take advantage of these 
parallel improvements in device perfor-
mance to examine in detail the coupling 
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PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42

inhibits p53 activity in response to DNA damage

A Vichalkovski, E Gresko, D Hess, DF Restuccia and BA Hemmings

Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland

Protein kinase B (PKB/Akt) is ubiquitously expressed in
cells. Phosphorylation of its multiple targets in response
to various stimuli, including growth factors or cytokines,
promotes cell survival and inhibits apoptosis. PKB is
upregulated in many different cancers and a significant
amount of the enzyme is present in its activated form.
Here we show that PKB phosphorylates one of the
anti-apoptotic proteins—transcription factor Twist-1 at
Ser42. Cells expressing Twist-1 displayed inefficient
p53 upregulation in response to DNA damage induced
by c-irradiation or the genotoxic drug adriamycin. This
influenced the activation of p53 target genes such as
p21Waf1 and Bax and led to aberrant cell-cycle regulation
and the inhibition of apoptosis. The impaired induction
of these p53 effector molecules is likely to be mediated
by PKB-dependent phosphorylation of Twist-1 because,
unlike the wild-type mutant, the Twist-1 S42A mutant did
not confer cell resistance to DNA damage. Moreover,
phosphorylation of Twist-1 at Ser42 was shown in vivo in
various human cancer tissues, suggesting that this post-
translational modification ensures functional activation of
Twist-1 after promotion of survival during carcinogenesis.
Oncogene advance online publication, 19 April 2010;
doi:10.1038/onc.2010.115

Keywords: PKB/Akt; Twist-1 transcription factor;
DNA damage; cancer

Introduction

Twist-1 is a highly conserved member of a family of
regulatory basic helix-loop-helix (bHLH) transcription
factors (Thisse et al., 1987). bHLH proteins form active
dimers with E-box proteins and bind to a core sequence
(CANNTG, referred to as E-box) in the regulatory
elements of many lineage-specific genes in muscle,
cartilage and osteogenic cells. Germ-line mutations of
the Twist-1 gene that result in haploinsufficiency lead to
the development of one of the most commonly inherited
craniosynostosis conditions, the Saethre–Chotzen syn-

drome, which is characterized by premature fusion
of cranial sutures and limb abnormalities (Gripp et al.,
2000; Ghouzzi et al., 2001; Yang et al., 2004; Cai and
Jabs, 2005). Expression of Twist-1 has also been
implicated in the inhibition of differentiation of various
cell lineages including osteoblasts and myoblasts (Spicer
et al., 1996; Bialek et al., 2004; Hayashi et al., 2007).

There are many reports that Twist-1 is involved in
oncogenesis in a wide variety of human cancers by
inhibiting apoptosis and promoting cell survival after
DNA damage or oncogene activation. For example,
Twist-1 participates in malignant transformation in
neuroblastoma, where it cooperates with the amplified
N-Myc oncogene to inhibit p53-mediated apoptosis
(Valsesia-Wittmann et al., 2004); reviewed by Puisieux
et al. (2006). Twist-1 can induce an epithelial mesench-
ymal-like transition, proposed to be an important step
in tumorigenesis and metastasis (Yang et al., 2004, 2006;
Smit et al., 2009). A recent study also suggests Twist-1
involvement in tumor progression through direct
activation of its transcriptional target YB-1 (Shiota
et al., 2008). Twist-1 expression can be regulated by
hypoxia-induced HIF-1 through direct binding to the
hypoxia-response element in the TWIST proximal
promoter. This signaling pathway is thought to promote
metastasis in response to intratumoral hypoxia (Yang
et al., 2008).

Elevated Twist-1 expression is correlated with a poor
prognosis and high risk of metastasis in breast, prostate,
ovarian, cervical and many others human cancers (Elias
et al., 2005; Kwok et al., 2005; Mironchik et al., 2005;
Kyo et al., 2006; Puisieux et al., 2006; Hosono et al.,
2007; Shibata et al., 2008). Recent reports suggest that
high levels of Twist-1 confer cancer cells resistance to
various chemotherapeutic drugs (Pham et al., 2007;
Zhang et al., 2007; Shiota et al., 2008).

PKB/Akt protein kinase has a pivotal role in cell
signaling in response to a variety of extracellular stimuli,
such as growth factors and cytokines, as well as
g-irradiation (Bozulic et al., 2008). An intact protein
kinase B (PKB) signaling is essential for cell growth and
proliferation, whereas loss or gain of the function of this
kinase is associated with complex diseases such as type
II diabetes and cancer (for review see Fayard et al.
(2005) and Yoeli-Lerner and Toker (2006)). A somatic
mutation (E17K) in the lipid-binding pocket of PKBa
was identified recently in human breast, colorectal and
ovarian cancers. This mutation resulted in pathological
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localization of the kinase to the plasma membrane,
increasing activation and downstream signaling, that
can induce oncogenic transformation of mouse lympho-
cytes (Carpten et al., 2007; Restuccia and Hemmings,
2009). Many PKB substrates have been identified in the
nucleus. PKB phosphorylation of forkhead transcrip-
tion factors inhibits their transcriptional activity by
promoting their association with 14-3-3 regulatory
proteins, retention in the cytoplasm and subsequent
ubiquitination (Biggs et al., 1999; Kops et al., 1999).
Phosphorylation of the CDK inhibitor p27 impairs its
nuclear import and opposes cell-cycle arrest (Liang
et al., 2002), whereas phosphorylation of p21 prevents
its nuclear localization and interaction with CDK2
(Zhou et al., 2001). So far, PKB and Twist-1 have not
been identified as members of the same signaling
cascade, but several reports have suggested their mutual
regulation. Twist-1 transactivates the PKBb promoter
and a positive association between elevated levels of
Twist-1 and PKBb has been found in late-stage breast
cancer samples (Cheng et al., 2007). PKB in turn might
behave as a functional mediator of Twist-1 and is
involved in Twist-mediated chemotherapeutic drug
resistance (Cheng et al., 2007; Zhang et al., 2007).
Interestingly, Saethre–Chotzen syndrome resulting from
Twist-1 haploinsufficiency displays decreased expression
of Cbl ubiquitin ligase, resulting in the accumulation of
phosphatidylinositol-3-kinase (PI3K) and increased
PI3K/PKB signaling (Guenou et al., 2006).

Here we show that PKB kinase becomes activated and
phosphorylates transcription factor Twist-1 at Ser42 in
MCF-7 cells after g-irradiation and DNA damage
induced by adriamycin. This post-translational modifi-
cation of Twist-1 is necessary for the subsequent
decrease in total p53 level and the inhibition of cell-
cycle arrest and apoptosis by impaired activation of p53
target genes. Moreover, Twist-1 Ser42 phosphorylation
occurs in particular human cancers, especially colorectal
and breast, and to a lesser extent lung and prostate. The
results presented provide evidence that Twist-1 is a
novel PKB nuclear substrate and establish a link
between PKB activation and the downregulation of
the p53 tumor suppressor.

Results

PKB phosphorylates Twist-1 in vitro at Ser42 and Ser123
PKB signaling pathway is one of the most frequently
altered in human cancer (Yoeli-Lerner and Toker, 2006;
Franke, 2008), and yet there are few data directly
implicating downstream targets of PKB in an oncogenic
switch and cancer progression. As transcription factor
Twist-1 was proposed recently to be a potent inducer of
malignant transformation, we examined whether this
protein is a PKB substrate. Four sites in human Twist-1
(Ser42, Ser45, Thr121 and Ser123) are predicted to be
phosphorylated by PKB (Figure 1a). Three of them
(S42, T121 and S123) display the canonical PKB
substrate consensus motive: K/RXK/RXXS/T (Supple-
mentary Figure S1A). Two N-terminal sites are situated

in the low-complexity region of the molecule, whereas
Thr121 and Ser123 lie within the bHLH domain,
responsible for dimerization and DNA binding activity
of Twist-1. We tested the ability of recombinant PKBb
to induce phosphorylation of synthetic peptides com-
prising PKB recognition motifs and corresponding
phosphosites, as well as their mutated analogs Ser42A,
Ser45A, Thr121A and Ser125A. Only substitution of
serine to alanine at positions 42 and 123 resulted in
almost complete loss of phosphorylation of the corre-
sponding peptide by PKB (Figure 1b). Next, we tested
the ability of PKB to phosphorylate the full-length
Twist-1 protein. To control the specificity of the in vitro
kinase reaction, we used an inactive PKBb (Figure 1c).
To further investigate which of the potential sites are
preferentially phosphorylated in the full-length Twist-1,
we performed a series of in vitro kinase assays followed
by mass spectrometry (MS) analysis. Protein identifi-
cation was done with MASCOT (Perkins et al., 1999)
and relative quantification by multiple reaction mon-
itoring (MRM) was performed as described by Hess
et al. (2008). This identified two phosphopeptides
corresponding to Twist-1 amino-acid sequences contain-
ing S42 (Figure 1d) and S123 (Figure 1e) phosphosites.
A more detailed MS analysis using inactive PKBb and
recombinant Twist-1 mutants (summarized in Figure 1f)
confirmed that PKB phosphorylates Twist-1 in vitro on
two residues S42 and S123. An example of a liquid
chromatography (LC)-MS comparison of the LysC
digests of GST-Twist-1 WT and GST-Twist-1 S42A
mutants phosphorylated in vitro by recombinant PKBb
is presented in Supplementary Figure S1.

PKB phosphorylates Twist-1 at Ser42 in vivo
As our results indicated that PKB phosphorylates
Twist-1 in vitro, we examined whether this is also the
case in cell culture. Immunoprecipitated Twist-1 was
detected with the pan-PKB phosphosubstrate antibody
in serum-stimulated cells but not in starved HEK293
cells (Supplementary Figure S2A). Moreover, pretreat-
ment of the cells with an inhibitor of the PI3K/PKB
pathway (LY 294002) resulted in a strong reduction in
the phospho-signal, suggesting a specific phosphoryla-
tion by PKB (Figure 2a and Supplementary Figure
S2B). Treatment of cells with l-phosphatase almost
completely abolished Twist-1 phosphorylation, confirming
that Twist-1 exists as a phosphoprotein in cells. Impor-
tantly, because phosphorylation of the Twist-1 S42A
mutant was not detected but the S123A mutant was
phosphorylated as efficiently as the wild-type Twist-1, the
results suggested preferential phosphorylation of S42 in vivo
(Figure 2a and Supplementary Figure S2A). Nevertheless,
the pan-PKB phosphosubstrate antibody recognized Twist-
1 phosphorylated on S42 or Ser123 in vitro equally well
(Supplementary Figure S2C), indicating that the antibody
is capable of detecting both phosphosites.

To study the function of PKB-mediated Twist-1
phosphorylation in cells, we generated antibodies
against the two phosphosites S42 and S123. Thorough
characterization (Supplementary Figure S3A) confirmed
the phosphospecificity of the antibodies in the in vitro
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kinase assay using wild-type or mutant Twist-1 proteins
as substrates (Figure 2b). To verify that Twist-1 can be
phosphorylated under physiological conditions, we
stimulated starved HEK293 cells with serum to induce
PKB activity. Importantly, in these conditions phos-
phospecific antibodies detected Twist-1 only when
phosphorylated at S42 but not at S123 (Figure 2c).
Previously, it was shown that S123 can be phosphory-
lated by protein kinase A (Firulli and Conway, 2008).
Indeed, stimulation of cells with forskolin resulted in

phosphorylation of Twist-1 at S123, which was also
detected by our aTwist-P-Ser123 antibody, thus con-
firming its specificity (Supplementary Figure S2D).
Altogether, these data indicate that PKB preferentially
phosphorylates Twist-1 at S42 in cells. To further show
specific role for PKB in the regulation of Twist-1
phosphorylation, we decreased the level of endogenous
PKB kinase using shRNA. Twist-1 S42 phosphorylation
was not induced after serum stimulation of cells with a
low PKB content (Figure 2d).
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Figure 1 Human Twist-1 is phosphorylated by PKB at Ser42 and Ser123 in vitro. (a) Schematic representation of the potential
phosphosites in human Twist-1 predicted by Phosphoscan software (Blom et al., 2004). (b) Twist-1 wild-type and mutant peptides were
synthesized and named as follows: RKRRSSRRSAGG, S42/S45; RKRRSARRSAGG, S42A; RKRRSSRRAAGG, S45A;
RERQRTQSLNEA, T121/S123; RERQRAQSLNEA, T121A; RERQRTQALNEA, S123A. The peptides were used in in vitro
kinase assays with recombinant PKBb. The results shown come from duplicate assays in three independent experiments. The data are
mean±standard deviation. The P-values were as follows: S42A, 0.0083 **; T121A, 0.093 (not significant); T123A, 0.0059 **. (c) GST-
Twist-1 was in vitro phosphorylated in the presence of g-32P-ATP by recombinant PKBb. Kinase reactions were resolved by SDS–
PAGE. (d-f) GST-Twist-1 WT and GST-Twist-1 S42A proteins were phosphorylated in vitro by recombinant PKBb and subjected to
capillary liquid chromatography–tandem mass spectrometry (LC-MSMS) for identification of phosphopeptides. (d) Enhanced product
ion spectra of the LysC phosphopeptide of Twist-1. The y- and b-fragments detected are indicated in the sequence. Fragments showing
an H3PO4 loss are marked with an asterisk. The b3 and b7 fragments allow assignment of the phosphorylation to either serine 4 or 7 in
the peptide (Ser42 or Ser45). (e) Enhanced product ion spectra of the tryptic phosphopeptide of Twist-1. The y- and b-fragments
detected are indicated in the sequence. Fragments showing an H3PO4 loss are marked with an asterisk. The y10, y10*and b2 fragments
allow assignment of the phosphorylation to the serine in position 3 of the peptide (Ser123). (f) Summary of the LC-MSMS analysis of
the two phosphopeptides:þpeptide phosphorylated, �peptide non-phosphorylated. S in bold shows phospho-Ser mutated to Ala.
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PKB phosphorylation of Twist-1 at Ser42 regulates
Twist-1-mediated inhibition of the p53 response on
DNA damage
Taking into account the role of PKB as a pro-survival
factor and our recent finding that PKB can be activated
in the nucleus in response to DNA double-strand breaks
(Bozulic et al., 2008), we hypothesized that phosphor-

ylation of Twist-1 at S42 has a role in promoting cell
survival after DNA damage-induced stress. To test this
hypothesis, we knocked down endogenous PKB in
MCF-7 cells (human breast cancer cell line, with a
functional p53) expressing Twist-1 and then treated
them with g-irradiation. This resulted in PKB-depen-
dent phosphorylation of Twist-1 at S42 (Figure 3a).
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Figure 3 Phosphorylation of Twist-1 at Ser42 by PKB regulates Twist-1-mediated inhibition of p53 on DNA damage. (a) MCF-7 cells
expressing either control shRNA or shRNA against PKB were g-irradiated (10Gy). Cells 2 h after irradiation were harvested and
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Stable MCF-7-Twist-1 cell lines were then generated
expressing Twist-1 and its variants at protein levels
similar to endogenous (set1 in Supplementary Figure
S5A). Notably, the expression of wild-type Twist-1 but
not the S42A mutant led to a considerable decline in p53
induction on DNA damage (Figure 3b). The effect of
the expression of the S42E mutant did not differ from
the wild type. Transient expression of Twist-1 and its
mutants in MCF-7 cells had a similar effect (data not
shown). After the suppressed p53 response, p21Waf1

induction at both transcriptional (Figure 3c) and protein
levels (Figure 3b) was decreased in the presence of wild-
type Twist-1 but not of S42A Twist-1 mutant, suggest-
ing a potential role of S42 phosphorylation in cell-cycle
regulation. Indeed, both wild-type and S42E Twist-1-
expressing cells escaped G1 cell-cycle arrest, whereas
control cells and cells expressing phospho-deficient
S42A Twist-1 accumulated in G1 in response to DNA
damage (Figure 3d, top). Quantitative cell-cycle analysis
showed a significant rescue effect of Twist-1 S42
phosphorylation on G1 phase arrest after g-irradiation,
indicating that S42 phosphorylation confers the ability
to progress through the cell cycle even under genotoxic
stress (Figure 3d, bottom).

PKB-dependent phosphorylation of Twist-1 at Ser42
is essential for Twist-1-mediated survival after DNA
damage-induced stress
Given that activation of PKB and Twist-1 phosphoryla-
tion occurred in response to DNA damage and led to
impaired induction of p53, we were prompted to
investigate the functional relevance of this phosphoryla-
tion in the apoptotic process. For this, we used
adriamycin to induce DNA double-strand breaks in
MCF-7 cells. Cells expressing wild-type or S42E Twist-1
were less prone to develop morphological signs of
apoptosis such as membrane blebbing and cellular
shrinkage than control cells or cells expressing the
S42A Twist-1 mutant (Figure 4a). Similarly, in the same
experimental conditions, wild-type or S42E Twist-1
expression significantly reduced cleavage of PARP
(Figure 4b, bottom) and protection of cells from
apoptosis was further confirmed by assessing the
mitochondrial membrane potential (DCm) (Figure 4b).
This protection from apoptosis was not observed in the
S42A mutant expressing cells. Conversely, shRNA-
mediated reduction of the wild-type Twist but not
S42A mutant in MCF-7-Twist-1 cell lines resulted in
increased sensitivity toward DNA damage (Figure 4c).
As expected, S42A Twist-1 was also less potent in

downregulating the pro-apoptotic p53 transcriptional
target Bax (Figure 4d). Taken together, these data
confirm that phosphorylation of S42 is an important
part of Twist-1-mediated anti-apoptotic effects.

Cancer in various organs is associated with Twist-1
Ser42 phosphorylation
Previous results showed that Twist-1 phosphorylation at
Ser42 has a significant role in the overall pro-survival
effect of Twist-1. It is also well established that an
abnormal cell cycle and resistance to apoptosis are
typical hallmarks of cancer. This, together with our
finding that S42 phosphorylation of Twist-1 promoted
cell survival on genotoxic stress, prompted us to
examine S42 phosphorylation in various tumors.

As it has been shown that Twist-1 is transcriptionally
active in developing mouse embryos, we tested our
aTwist-P-Ser42 antibody on paraffin-embedded sections
of mouse embryos (Supplementary Figure S3B). Strong
expression was observed in areas known to have active
Twist-1 (Gitelman, 1997). We then applied the aTwist-
P-Ser42 antibody to stain for phosphorylated Twist-1 on
an array of paraffin-embedded primary cancer speci-
mens. Remarkably, prominent S42 phosphorylation of
Twist-1 was detected in 50% of 30 colon and 71% of 20
rectal cancers, but not in normal human colorectal
tissue. Furthermore, 70% of 39 human breast cancer
samples tested positive (Figure 5a), whereas a smaller
but still significant number of samples were positive in
prostate (24%) and lung (35%) cancers (Figure 5a,
bottom). In contrast, Ser42 phosphorylation was not
detected in either normal or malignant tissues of human
esophagus, stomach, liver or kidney (data not shown).
However, it would be of interest to test a larger sample
size of this group of negatively stained tumors to
determine if Twist-1 S42 phosphorylation is indeed
found only in select tissues. The same human tumors
were then stained with phospho-PKB (Ser473) antibody
to show the status of PKB activation. The analysis of
staining for activated PKB displayed a high correlation
with phosphorylated Twist-1. Particularly, cancers from
rectum (78%) and breast (73%) stained positive for
both phosphorylated Ser42 of Twist-1 and Ser473 of
PKB. Consistent with this, we observed a strong
phospho-Twist signal associated with elevated active
PKB levels in neoplastic breast lesions of PTENþ /�
mice (Figure 5b).

Collectively, our data identify Twist-1 as a novel PKB
substrate that becomes phosphorylated by PKB on
Ser42 in the N-terminal part of the protein on serum

Figure 4 Phosphorylation at Ser42 is essential for the anti-apoptotic function of Twist-1. (a) Images of MCF-7 cells transfected with
empty vector (pB) or stably expressing WT or mutant Twist-1 proteins after 16 h stimulation with DMSO (control) or with adriamycin
(ADR, 10 mM). (b) Cells treated as in a were analyzed for depolarization of mitochondrial membrane potential by flow cytometry (top).
A quantification summary of three independent experiments is shown at the bottom. Data are mean±standard deviation; asterisk
Po0.005. The appearance of cleaved PARP and expression levels of Twist-1 constructs were monitored in parallel by western blotting.
(c) MCF-7 cells stably expressing Twist-1 or its mutants were transfected with either control shRNA or shRNA against Twist-1,
treated with adriamycin and analyzed as in b. A quantification summary of two independent experiments performed in duplicates is
shown. Data are mean±standard deviation; asterisk Po0.005. (d) MCF-7 cells were transfected with a combination of different
plasmids as indicated below. At 24 h after transfection, cells were treated as in a and then assayed for luciferase activity. The results are
from duplicate assays in three independent experiments; the data are mean±standard deviation; asterisk Po0.005.
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stimulation and genotoxic stress. This phosphorylation
appears to have a significant role in the ability of Twist-1
to downregulate the DNA damage-induced p53 re-
sponse, thus promoting cell survival, which in turn may
result in uncontrolled cell overgrowth and cancer
(summarized schematically in Figure 5c).

Discussion

The PKB substrate consensus sequence surrounding
Ser42 in Twist-1 is evolutionary conserved in vertebrate
genomes. In contrast, the Ser42 residue is not conserved
in Hand proteins, the closest relatives of Twist-1 in the
HLH family, suggesting that this site is phosphorylated
in various species exclusively in Twist-1 and not other
HLH transcription factors (Supplementary Figure S1A).
Moreover, this phosphorylation may have a function
distinct from those of other known Twist-1 phospho-
sites. Protein kinase A phosphorylates two conserved
residues within the HLH domain of both Twist-1 and
Hand2 (T125/S127 and T112/S114, respectively, in mice
and T121/S123 and T112/S114 in human) bringing
about their dimerization, which is necessary for the
regulation of target genes during limb development.
A group of Twist-1 mutations identified in patients with
Saethre–Chotzen syndrome was reported to disrupt
protein kinase A-mediated phosphorylation, emphasiz-
ing the importance of Twist-1 in development (Firulli
et al., 2005). In contrast to the S42A mutation, most
mutations within the bHLH domain of Twist-1 nega-
tively affect its transcriptional repressor function (Sosic
et al., 2003). Despite Ser42 being located adjacent to a
putative NLS of Twist-1 (mutation of Arg39 to Gly
present in a patient with mild Saethre–Chotzen syn-
drome, results in nuclear exclusion of Twist-1 (Funato
et al., 2005; Singh and Gramolini, 2009), phosphoryla-
tion of Twist-1 by PKB did not influence protein
localization (Supplementary Figure S4).

Even though the relevance of Twist-1 in cancer
development has been studied intensively, there are
few reports describing its molecular regulation. We
report here that Twist-1 is phosphorylated at Ser42 by
PKB (1) in response to serum stimulation of HEK293
cells, (2) in MCF-7 breast cancer cells after g-irradiation
and adriamycin treatment and (3) in human cancer
tissues of different origins thereby suggesting that Ser42
phosphorylation is involved in the regulation of cell
growth and cell survival on DNA damage.

Focusing on the molecular events triggered by
phosphorylation of Twist-1 by PKB in response to
DNA damage, one of our key observations is that Ser42
phosphorylation is involved in the downregulation of
the p53 tumor suppressor. p53 has a pivotal role in
directing cell responses to various stress stimuli, and
p53-controlled transactivation of target genes is an
essential feature of each stress-response pathway,
although some effects of p53 may be independent of
transcription (Kruse and Gu, 2009). In our experiments,
decrease in p53 stabilization after DNA damage was

paralleled by impaired induction of p21Waf1, but only in
cells with upregulated wild-type Twist-1 and not the
S42A Twist-1 mutant. The significant reduction in G0/
G1 arrest observed in cells expressing wild-type Twist-1
or the S42E Twist-1 mutant but not in S42A Twist-1
cells provides a functional read out of the inhibitory
effect of Twist-1 phosphorylation on the key cell-cycle
effector p21Waf1. Indeed, Twist-1 was shown to override
premature senescence through inhibition of p16INK4A and
p21Waf1 promoter activation induced by H-RasV12 and
p53 in E1A-immortalized MEFs; however, the molecu-
lar mechanisms involved in this effect are still under
investigation (Ansieau et al., 2008).

Further, our experiments revealed that Ser42 phos-
phorylation of Twist-1 desensitizes cells to DNA
damage induced by adriamycin, with survival markedly
decreased in S42A but not wild-type Twist-1-expressing
cells (Figure 4 and Supplementary Figure S5B). Thus,
it appears that phosphorylation of the Twist-1 trans-
cription factor by PKB in response to DNA damage
contributes to an anti-apoptotic mechanism. This is in
line with the strong pro-survival signaling mediated by
PKB kinase. PKB itself is known to increase p53
degradation by physically associating with MDM2 and
phosphorylating it at Ser166 and Ser186. This enhances
its stability (Feng et al., 2004), as well as its nuclear
localization and interaction with p300, and inhibits its
association with p19ARF (Zhou et al., 2001). Interest-
ingly, expression of the wild-type Twist-1 but not of
S42A Twist-1 mutant promoted an increase in MDM2
protein levels (Figure 3b). Therefore, it remains to be
addressed whether the effect of Twist-1 Ser42 phosphor-
ylation on p53 and the induction of its target genes are
direct or mediated through other molecules. It was
described previously that Twist-1 can inhibit a potent
p53 transactivator homeobox protein HOXA5, com-
promising the p53 response to g-irradiation through
suppressed induction of p21Waf1 and inhibition of Ser20
phosphorylation (Stasinopoulos et al., 2005). Expression
of Twist-1 decreases the level of the p53 upstream
activator p14ARF, presumably by affecting production of
its mRNA (Kwok et al., 2007). Twist-1 binds to and
inactivates histone acetyltransferase CBP/p300, which is
required to relieve the suppressive effects of chromatin
on p53 target genes (Hamamori et al., 1999). Altogether,
Twist-1 seems to act through several independent
mechanisms that focus on inhibition of the p53 tumor
suppressor pathway.

Our hypothesis that Twist-1 Ser42 phosphorylation
might be a part of oncogenic signaling during cancer
development was further supported by compelling data
showing the presence of this post-translational modifi-
cation in neoplastic tissue displaying high levels of
activated PKB in both human and mice. The PKB
pathway is often upregulated in human cancers either by
overexpression or by activating mutations, which result
in increased activity of the kinase.

The continuing identification of PKB substrates adds
to the diverse cellular roles of the kinase, including cell
growth, proliferation and survival. As phosphorylation
of Twist-1 at Ser42 enhances the ability of transformed
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cells to circumvent cell-cycle arrest or apoptosis, induced
by genotoxic stimuli, it might represent one of the
mechanisms used by cancer cells for uncontrolled
growth and survival.

Materials and methods

Cell culture, transfection and stimulation
Human HEK293, MCF-7 and H1299 cells were grown in
Dulbecco’s modified Eagle’s medium supplemented with 10%
(v/v) fetal calf serum, 2mM L-glutamine and 1% (v/v)
penicillin/streptomycin. All cells were grown in a humidified
incubator at 371C and 5% CO2. Cells were plated 24 h before
transfection and transiently transfected using jetPEI (Polyplus
Transfection, Illkirch, France) or Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) according to the manufac-
turer’s instructions. DNA amounts were standardized by
addition of empty expression vector. HEK293 cells were
starved in Dulbecco’s modified Eagle’s medium containing no
serum for 24 h before stimulation with 20% fetal calf serum for
1 h; LY 294002 inhibitor was added 30min before stimulation
as indicated. MCF-7 cells were g-irradiated with the indicated
doses 24–36 h after transfection (TORREX 120D; Astrophy-
sics Research Corp., Long Beach, CA, USA).

Antisera, plasmids and reagents
Flag-hTwist-1, Myc-hTwist-1 (both cloned by BamH1/Xho1 in
pcDNA3) and GST-hTwist-1 (by EcoR1 in pGex4T.3) were
cloned using standard PCR procedures with the full-length
cDNA of the IRAUp969H1277D clone (RZPD, Berlin,
Germany) as a template. Point mutations were introduced
by PCR using the QuikChange site mutagenesis protocol
(Stratagene, Cedar Creek, TX, USA): all primers sequences are
available on request. shRNA constructs were cloned into the
pTER vector. Targeting sequence used for generating shRNA
against human Twist-1 was as follows: 50-GCTGAGCAA
GATTCAGACC-30. Targeting sequences used for generating
shRNA against human PKB and firefly luciferase were as
described previously (Bozulic et al., 2008; Vichalkovski et al.,
2008). The reporter plasmids p21Waf1-Luc (el-Deiry et al., 1993)
and Bax-Luc (Fogal et al., 2000) were as published,
E-cadherin-Luc construct was a kind gift of A. DiFeo (The
Mount Sinai School of Medicine). Antibodies recognizing
total PKB, phospho-PKB (Ser473), p21Waf1 and the phospho-
(Ser/Thr) PKB substrate antibody were purchased from Cell
Signaling Technology (Beverly, MA, USA); anti-p53 (DO-1)
and anti-actin antibodies were from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). A rat monoclonal anti-tubulin (YL1/2)
and mouse anti-Myc-9E10 were used as hybridoma super-
natants; the antibody against Flag (M2) was from Sigma
(St Louis, MO, USA). Anti-Mdm2 antibody was described
previously (Feng et al., 2004). Anti-Twist-P-Ser42 and anti-
Twist-P-Ser123 rabbit polyclonal antibodies were raised
against synthetic peptides conjugated to keyhole limpet
hemocyanin: CGGRKRRSS(PO3H2)RRSAGG peptide for
the Ser42 phosphorylation site and CNVRERQRTQS
(PO3H2)LNEA peptide for the Ser123 phosphorylation site.
Peptide synthesis, rabbit injection and bleed collection were
carried out by NeoMPS (Strasbourg, France). The antibodies
were then purified on the corresponding antigenic peptides
coupled to cyanogen bromide-activated Sepharose (Amersham
Biosciences, Piscataway, NJ, USA). Antibodies were eluted
with 0.2 M glycine, pH 2.2. Antibody specificity was confirmed
by standard peptide competition. Briefly, an aliquot of the

purified antibody was incubated with the phosphopeptide (at
0.5mg/ml final concentration) in TBS buffer for 2 h on ice with
agitation before western blotting. Polyclonal antibody recog-
nizing total Twist-1 was raised in rabbits against full-length
GST-fusion Twist-1 (Eurogentec, Liege, Belgium). Antisera
were affinity-purified using immobilized antigen and exten-
sively characterized.

In vitro kinase assays on peptides and GST-fusion proteins
The peptides for in vitro kinase assay were synthesized by
NeoMPS and further purified (Franz Fischer, FMI, Basel,
Switzerland). For a kinase reaction, we added 2 ml (100 ng) of
the activated or inactivated recombinant PKBb (Yang et al.,
2002) to a reaction mix containing 70 mM of the corresponding
peptide (RKRRSSRRSAGG, S42/S45; RKRRSARRSAGG,
S42A; RKRRSSRRAAGG, S45A; RERQRTQSLNEA,
T121/S123; RERQRAQSLNEA, T121A; RERQRTQALNEA,
S123A), 2ml (2 mCi) of g-32P-ATP and 20mM ATP in 20 ml of
kinase reaction buffer (30mM HEPES/KOH (pH 7.4), 25mM

b-glycerophosphate, 2mM DTT, 20mM MgCl2, 0.1mM sodium
vanadate). After incubation for 30min at 30 1C, kinase
reactions were stopped with 50mM EDTA, transferred to
phosphocellulose P11 paper (Whatman, Bottmingen, Switzer-
land), fixed and washed four times in 1% phosphoric acid and
once with acetone, dried and assayed by scintillation counting.
GST-Twist-1 or its point mutants (S42A, S123A and

SS42, 123/AA) were purified from bacterial strain BL-21
according to a standard protocol. For in vitro kinase assays,
we incubated 5–10mg of GST fusion protein with 100 ng of
the recombinant PKBb in the presence of 20 mM ATP in
25 ml of kinase reaction buffer for 30min at 30 1C. The reaction
was stopped by adding SDS sample buffer and protein
phosphorylation was analyzed by SDS–polyacrylamide gel
(PAGE) and western blotting with the phospho-(Ser/Thr)
PKB substrate, anti-Twist-P-Ser42 and anti-Twist-P-Ser123
antibodies or by capillary liquid chromatography–tandem
mass spectrometry (LC-MSMS, see Supplemental Materials
and methods).

Mice
The PTENþ /� mutant mice used in this study were supplied
by Dr P Pandolfi (Beth Isreal Deconess Mediacl Centre,
Harvard) and have been described previously (Di Cristofano
et al., 1998). Mice were housed in groups with 12-h dark/light
cycles and with access to food and water ad libitum, in
accordance with the Swiss Animal Protection Laws. All
procedures were conducted with the appropriate approval of
the Swiss authorities. For histological analysis, we dissected
organs from 6-month-old wild-type and heterozygous mice,
placed them in 4% paraformaldehyde/phosphate-buffered
saline (PBS) and allowed to fix overnight (18 h) at 41C. Tissues
were then subjected to a series of washes with PBS, 50%
EtOH/PBS and 70% EtOH/PBS before being processed and
embedded in paraffin using the Medite Paraffin Processing
Unit (Burgdorf, Germany).

Immunohistochemistry
Paraffin-embedded slides of whole mouse embryos (E14.5) and
sections of paraffin-embedded tissue microarray slides
(MC2081, MCN601) (US Biomax Inc., Rockville, IN, USA)
were deparaffinized, blocked by 20% normal goat serum for
1 h and then stained with aTwist-P-Ser42 antibody and
phosphor-Ser473 PKB (No. 4060; Cell Signaling Technology)
and counterstained with hematoxylin-eosin using standard
protocol for the Discovery XT Staining Module (Ventana
Medical Systems, Oro Valley, AZ, USA). Images were
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processed with a Nikon E600 microscope system (Nikon,
Melville, NY, USA).

Luciferase reporter gene assays
Harvested cells were lysed in reporter lysis buffer (25mM

Tris-phosphate, 2mM DTT, 2mM CDTA, 10% (v/v) glycerol,
1% (v/v) Triton X-100). Luciferase activity was determined
in a luminometer (Duo Lumat LB 9507; Berthold, Bad
Wildbad, Germany) by injecting 20ml of assay buffer (40mM

Tricine, 2.14mM (MgCO3)4Mg(OH)2� 5 H2O, 5.34mM

MgSO4, 0.2mM EDTA, 66.6mM DTT, 540M CoA, 940mM
luciferin, 1.06mM ATP) and measuring light emission for 10 s.

Cell-cycle analysis and apoptosis measurement
For FACS analysis of DNA content, we trypsinized cells, fixed
them in 70% ice-cold ethanol, then treated them with RNase A
(10mg) in propidium iodide solution (sodium citrate (pH 7.5),
69mM propidium iodide) for 30min at 37 1C and analyzed
them using a FACSCalibur flow cytometer (Becton Dickinson,
Bedford, MA, USA). Cells undergoing apoptosis were harves-
ted, washed with PBS and subdivided into two fractions. One
fraction was stained with JC-1 (5,50,6,60-tetrachloro-1,10,3,30-
tetraethylbenzimidazolylcarbocyanine iodide) according to the

manufacturer’s instructions (Molecular Probes, Eugene, OR,
USA) and subjected to flow cytometry for detection of
mitochondrial depolarization (DCm). Red fluorescence (FL-2
channel) of JC-1 (J-aggregates) indicated intact mitochondria,
whereas green fluorescence (FL-1 channel) showed monomeric
JC-1 produced by breakdown of DCm during apoptosis. The
remaining cells were analyzed by western blotting.
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Introduction
The AKT [also known as protein kinase B (PKB)] signaling pathway
is dysregulated in diverse disease processes, ranging from
neurodegenerative disorders to diabetes and cancer. AKT is a
protein kinase with three isoforms [AKT1, AKT2 and AKT3 (also
known as PKB, PKB and PKB, respectively)], which influence
cell survival, growth, proliferation and insulin signaling.
Hyperactive AKT signaling, in many cases via alterations in
phosphoinositol-3 kinase (PI3K) and phosphatase and tensin
homolog (PTEN), is common in many pathologies, particularly
cancer.

Inhibiting hyperactivated AKT might help to treat cancer, in
which the PI3K-PTEN-AKT pathway is one of the most commonly
mutated signaling pathways. Therefore, upstream regulators or
downstream effectors of AKT are desirable therapeutic targets. For
example, humanized monoclonal antibodies specific for the
upstream epidermal growth factor receptor family, or inhibitors of
the downstream mammalian target of rapamycin complex 1
(mTORC1), are FDA approved, including for the treatment of some
cancer types. This suggests the potential for further manipulation
of AKT signaling for anti-oncogenic treatments and has promoted
extensive research into AKT activation and signaling, as is evident
from the growing number of related clinical trials (LoPiccolo et al.,
2008; Klein and Levitzki, 2009).

There are several mouse models of cancer that provide a
malleable in vivo environment in which to study the role of the
AKT pathway in tumorigenesis, and to predict the efficacy,
selectivity and side effects that novel therapies will have in patients.
In this Perspective article, we review new developments in this field
that have enabled important insights into the role of AKT in cancer
and, by focusing on AKT mouse models of prostate carcinoma
(CaP), explore how these advances should facilitate more effective,
tailored cancer treatments for patients in the future.

PI3K-PTEN-AKT pathway signaling and its activation in
human tumors
The PI3K-PTEN-AKT signaling pathway transduces signals from
membrane receptors to its major effector molecule, AKT (Fig. 1).
This pathway is conserved in lower organisms and is ubiquitous
in mammalian cells, in which it promotes cell growth, proliferation
and survival, as well as mediates hormone metabolism, immune
responses and angiogenesis (for a review, see Alessi, 2001; Brazil
and Hemmings, 2001; Altomare and Testa, 2005; Manning and
Cantley, 2007; Bozulic and Hemmings, 2009). Receptor tyrosine
kinase stimulation activates AKT via a tightly controlled multi-step
process (Fig. 1). Activated receptors stimulate class 1A PI3K
directly or via adapter molecules such as the insulin receptor
substrate (IRS) proteins. Class 1A PI3Ks bind via one of their five
regulatory subunits (p85, p85, p55, p55 or p50), which in
turn binds to one of three catalytic subunits [p110, p110 or p110
(in leukocytes)], allowing conversion of phosphatidylinositol (3,4)-
bisphosphate [PtdIns(3,4)P2] lipids to phosphatidylinositol (3,4,5)-
trisphosphate [PtdIns(3,4,5)P3] at the plasma membrane. AKT
binds to PtdIns(3,4,5)P3 at the plasma membrane, where 3-
phosphoinositide-dependent protein kinase 1 (PDK1) can then
access the ‘activation loop’ of AKT to phosphorylate threonine 308
(Thr308), leading to partial AKT activation (Alessi et al., 1997).
This AKT modification is sufficient to activate mTORC1 by directly
phosphorylating and inactivating proline-rich AKT substrate of
40 kDa (PRAS40) and tuberous sclerosis protein 2 (TSC2). These
phosphorylation events release the kinase mammalian target of
rapamycin (mTOR) that is bound to PRAS40, prevent TSC2
GTPase activity and allow active, GTP-bound Rheb to activate
mTORC1. mTORC1 substrates include the eukaryotic translation
initiation factor, 4E, binding protein 1 (4EBP1) and ribosomal
protein S6 kinase, 70 kDa, polypeptide 1 (S6K1), which in turn
phosphorylates the ribosomal protein S6 (S6; also known as RPS6),
promoting protein synthesis and cellular proliferation.

Phosphorylation of AKT at Ser473 in the C-terminal hydrophobic
motif, either by mTOR associated with mTOR complex 2 (mTORC2)
(Sarbassov et al., 2005) or by DNA-dependent protein kinase (DNA-
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AKT hyperactivation is a common event in human cancers, and inhibition of oncogenic AKT activation is a major goal
of drug discovery programs. Mouse tumor models that replicate AKT activation typical of human cancers provide a
powerful means by which to investigate mechanisms of oncogenic signaling, identify potential therapeutic targets and
determine treatment regimes with maximal therapeutic efficacy. This Perspective highlights recent advances using in
vivo studies that reveal how AKT signaling supports tumor formation, cooperates with other mutations to promote
tumor progression and facilitates tumor-cell dissemination, focusing on well-characterized prostate carcinoma mouse
models that are highly sensitive to AKT activation. The implications of these findings on the therapeutic targeting of
AKT and potential new drug targets are also explored.
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PK) (Feng et al., 2004) stimulates full AKT activity. Full activation of
AKT leads to additional substrate-specific phosphorylation events,
including inhibitory phosphorylation of the proapoptotic FOXO
proteins. Dephosphorylation of Ser473 by the PH-domain leucine-
rich repeat-containing protein phosphatases PHLPP1 and PHLPP2,
and the conversion of PtdIns(3,4,5)P3 to PtdIns(3,4)P2 by PTEN,
inhibits AKT signaling.

Human tumors commonly display amplification or
overexpression of cell-surface receptors or signaling molecules that
activate the PI3K-PTEN-AKT pathway, activating mutations of
PI3K, loss of expression of the negative regulator PTEN and/or
mutation of AKT (Fig. 1). These mutations account for findings
that the AKT pathway is activated in a high proportion of tumors,
in a wide variety of tissues; a selection of these findings are
summarized in Table 1.

From man to mouse: elucidating oncogenic AKT
signaling in mice
Mouse models are invaluable tools for understanding how
mutations in PI3K-PTEN-AKT signaling contribute to
tumorigenesis in human cancer. In humans, mild mutations in
PTEN, TSC1 or TSC2 result in familial tumor-susceptibility
syndromes, and a similar neoplasia is seen when the mild mutations

are modeled in mice. By contrast, human biopsies of spontaneous
tumors that display PTEN, TSC1 or TSC2 loss have increased AKT
signaling compared with biopsies of tumors from patients with
familial syndromes. This increased AKT signaling and the
corresponding more severe tumor development are reflected in
mouse models that have heterozygous and homozygous loss of
PTEN, TSC1 or TSC2. These studies highlight the contribution
that mouse models of AKT activation can make in elucidating
oncogenic AKT signaling in familial and spontaneous neoplasia.

Human tumor-susceptibility syndromes and neoplasia
phenotypes in mice
In humans, mutations in PTEN (which is upstream of AKT), or in
TSC1 or TSC2 (which are downstream of AKT), result in complex
disease syndromes such as Cowden disease or tuberous sclerosis
(Table 2). These diseases display a variety of symptoms (for reviews,
see Eng, 2003; Zhou et al., 2003; Crino et al., 2006), because various
point mutations or partial deletions in these genes cause diverse
effects on the levels of functional protein, thereby affecting AKT-
related signaling (Zhou et al., 2003; Trotman et al., 2007).
Interestingly, PTEN+/–, TSC1+/– or TSC2+/– mice do not show the
same spectrum of symptoms as patients with these syndromes,
which might reflect the fact that mutated forms of these proteins
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Fig. 1. The PI3K-PTEN-AKT signaling pathway and the causes of its hyperactivation in tumorigenesis. Increased AKT activation can occur through
overexpression of pathway components (yellow) or inhibitory mutation or complete loss of components (red). These events can lead to decreased activation of
anti-oncogenic proteins (green) and increased growth, proliferation and survival signals to promote tumorigenesis. eIF4E, eukaryotic translation initiation factor
4E; LST8, target of rapamycin complex subunit LST8; PRR5, proline-rich protein 5; SIN1, SAPK-interacting protein 1; PIP2, PtdIns(3,4)P2; PIP3, PtdIns(3,4,5)P3.
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in the human syndrome can affect regulation of the AKT pathway
even without the large decreases in protein levels that are present
in the heterozygous mouse models. However, increased neoplasia
formation in multiple organs is a feature common to both the
human syndromes and mice with the corresponding gene
disruptions (Table 2). This suggests that a conserved mechanism
underlying the neoplasia phenotype is increased AKT signaling.

Increases in AKT signaling correlate with both the severity of
neoplasia and PTEN, TSC1 or TSC2 dysregulation both in
neoplasms derived from the human familial syndromes and in the
corresponding mouse models, as well as in spontaneous tumor
formation. Cowden disease patients with mutations that decrease
PTEN levels have a corresponding increase in AKT activity and
exhibit increased formation of gastrointestinal polyps (Trotman et
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Table 1. Common upstream AKT-activating mutations and somatic AKT mutations found in tumors

Gene Mutation tissue

IncidenceAffected

(%) (samples) References
ErbB2 Point insertions Breast

Lung
Stomach

Colorectal

4 (4/94)
4 (5/120)
5 (9/180)
3 (3/104)

Stephens et al., 2004; Lee et al., 2006; Forbes
et al., 2010

ErbB2 Amplification Breast
Ovary

Stomach
Oesophogeal

18-40 (19/103, 110/245, 34/86)
26 (31/120)
16 (27/166)

5-15 (7/145, 16/110)

Slamon et al., 1987; Slamon et al., 1989;
Reichelt et al., 2007; Marx et al., 2009

IRS2 Amplification Colon
Brain

2 (3/146)
2 (2/103)

Knobbe and Reifenberger, 2003; Parsons et
al., 2005

p85
(PI3K)

Deletions Ovary
Colon
Brain

4 (3/80)
2 (1/60)

3-10 (1/30, 9/91)

Philp et al., 2001; Mizoguchi et al., 2004;
Parsons et al., 2008

p110
(PI3K)

Various (especially point
mutants E542K, E545K

and H1047R)

Colon
Brain

Stomach
Breast
Liver
Lung
Ovary
Uterus

19-32 (6/32, 74/199)
7-27 (5/70, 10/105, 11/73, 4/15)

4-25 (4/94, 12/185, 3/12)
18-40 (13/53, 13/72, 19/92, 25/93, 28/70)

36 (26/73)
4 (1/24)

6-12 (11/167, 24/198)
36 (24/66)

Bachman et al., 2004; Campbell et al., 2004;
Samuels et al., 2004; Hartmann et al., 2005;
Lee et al., 2005; Levine et al., 2005; Oda et
al., 2005; Buttitta et al., 2006; Gallia et al.,
2006; Velasco et al., 2006; Parsons et al.,
2008

p110
(PI3K)

Amplification Lung
Ovary
Breast

33 (46/139)
25-58 (83/341, 7/12)

9 (9/92)

Shayesteh et al., 1999; Campbell et al., 2004;
Wu et al., 2005; Yamamoto et al., 2008

K-Ras Point mutant (especially
G12D)

Pancreas
Colon
Lung

75-95 (5/6, 12/16, 28/30, 21/22)
30-60 (10/29, 14/40, 37/61)

15-25 (22/129, 43/181)

Almoguera et al., 1988; Smit et al., 1988;
Suzuki et al., 1990; Burmer et al., 1991;
Boughdady et al., 1992; Lemoine et al.,
1992; Rodenhuis and Slebos, 1992

PTEN Promoter methylation Brain
Breast
Uterus

35-37 (22/60, 27/77)
34-48 (15/44, 43/90)

19 (26/138)

Salvesen et al., 2001; Baeza et al., 2003;
Garcia et al., 2004; Khan et al., 2004;
Wiencke et al., 2007

PTEN Deletions, point
mutants, LOH

Most tissues:
Brain

Prostate
Uterus
Colon

16-31 (14/91, 13/42)
49 (25/51)
50 (16/32)
25 (14/57)

Rasheed et al., 1997; Tashiro et al., 1997;
Feilotter et al., 1998; Zhou et al., 1999;
Kondo et al., 2001; Forbes et al., 2010

PDK1 D527E
T354M

Colon
Colon

<1 (1/204)
1 (2/204)

Parsons et al., 2005

AKT1 E17K Breast
Colorectal

Ovary
Endometrium

Skin
Lung

4-8 (4/93, 5/61)
6 (3/51)
2 (1/50)
2 (2/89)

<1 (1/137)
6 (2/36)

Carpten et al., 2007; Davies et al., 2008; Kim
et al., 2008; Malanga et al., 2008; Shoji et
al., 2009

AKT1 Amplification Stomach
Brain

20 (1/5)
1 (1/103)

Staal, 1987; Knobbe and Reifenberger, 2003

AKT2 S302G
R371H
A377V

Colon
Colon
Lung

<1 (1/204)
<1 (1/204)

1 (1/79)

Parsons et al., 2005; Soung et al., 2006

AKT2 Amplification Colon
Breast
Ovary

Head and neck
Pancreas

1 (2/146)
3 (3/106)

12-18 (16/132, 12/66)
30 (12/40)
20 (7/35)

Cheng et al., 1992; Bellacosa et al., 1995;
Ruggeri et al., 1998; Snijders et al., 2003;
Parsons et al., 2005; Pedrero et al., 2005;
Nakayama et al., 2006; Nakayama et al.,
2007; Yu et al., 2009

AKT3 E17K Skin 2 (2/137) Davies et al., 2008

AKT3 G171R Brain 11 (1/9) Hunter et al., 2006

AKT3 Amplification Brain
Liver

4-14 (4/230, 29/206)
30 (6/19)

Hashimoto et al., 2004; CGARN, 2008;
Ichimura et al., 2008

PDK1, AKT2 and the AKT3 G171R somatic point mutants were detected in tumor samples and are hypothesized to promote activation due to the mutations occurring in kinase

domains; however, their activating potential has yet to be characterized. Genes are listed in the order that their encoded proteins act in the PI3K-PTEN-AKT signaling pathway (from

receptor activation to AKT activity). Studies first reporting the indicated mutations, and those with large datasets, are referenced. LOH, loss of heterozygosity.
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al., 2007). In mice, mutations that affect the regulation of PTEN
or TSC2 display abnormal activation of AKT signaling and develop
a neoplasia phenotype that is reminiscent of the human syndromes
(Pollizzi et al., 2009; Alimonti et al., 2010b; Wang et al., 2010), which
is milder than that observed in PTEN+/– or TSC1/2+/– mice. In the
case of spontaneous tumor formation, it is homozygous loss of
PTEN or the TSC proteins that is seen in tumor progression. These
observations suggest that mouse models in which AKT signaling
is activated are relevant to both familial and spontaneous neoplasia
formation in humans.

Modeling human tumors with activating PI3K-PTEN-AKT
pathway mutations
Mutations in components of the PI3K-PTEN-AKT pathway in
human tumors (Table 1) lead to the development of tumors that
have activated AKT and increased downstream oncogenic
signaling. Accordingly, several mouse models have shown that AKT
activation is crucial for tumorigenesis. These models demonstrate
that, in various tissues, tumor phenotypes are induced by AKT
activation and can be reversed by preventing AKT activation
through its simultaneous deletion (Table 3).

These models have assisted in elucidating the contribution of
AKT signaling in specific tumor tissue settings, as was the case in
mammary-specific ErbB2-overexpressing mouse models that
represent the common ErbB2 amplification found in human breast
tumors. However, owing to the selective activation of AKT, three
mouse models of AKT activation – conditional PTEN-null,
PTEN+/– and transgenic mice conditionally expressing a
myristoylated form of AKT (myr-AKT) – are the models of choice
for studying the contribution of specific AKT signaling to
tumorigenesis. myr-AKT expression results in the translocation of
constitutively active AKT to the plasma membrane, inducing
neoplasia (Staal, 1987). Importantly, although myr-AKT models
drive neoplasia development via a non-physiological, modified form
of AKT, neoplasia development in these mice mimics the phenotype
and AKT activation pattern seen in mice with heterozygous PTEN
loss, an event that is common in many human tumors (Majumder
et al., 2008; Gray et al., 1995). Conditional ablation of PTEN results
in a more aggressive phenotype, consistent with the observation
that homozygous PTEN loss is a late event in many human cancers
and therefore making it an attractive model for testing therapies
for the most refractory tumors (Trotman et al., 2003; Wang et al.,
2003; Komiya et al., 1996). PTEN loss promotes activation of PDK1,
thereby potentially activating multiple signaling pathways via the
phosphorylation of over 20 protein kinases, including AKT (Mora
et al., 2004). However, AKT1 ablation on a PTEN+/– background
inhibits neoplasia formation, indicating that AKT1 and not

alternative PDK1 signaling is responsible for neoplasia (Chen et
al., 2006). Furthermore, PTEN+/– mice with hypomorphic PDK1
alleles that cause 80-90% reduction in PDK1 expression show
reduced tumor formation that is proportional to the loss of PDK1-
mediated phosphorylation, which is required for AKT activation
(Bayascas et al., 2005). Therefore, neoplasia development correlates
with the upregulation of AKT activity in PTEN and myr-AKT
models, making them particularly useful for determining how
alterations in AKT signaling can affect neoplasia development.

Prostate cancer: an example of the involvement of AKT
in tumorigenesis
In humans, premalignant proliferation of the epithelium in the
prostate gland is commonly referred to as prostatic intraepithelial
neoplasia (PIN) and is considered a precursor lesion to CaP. PIN
displays decreasing PTEN expression with progression to CaP, and
PTEN expression is completely lost in late-stage advanced CaP
(McMenamin et al., 1999; Schmitz et al., 2007). PTEN loss correlates
with AKT activation and tumor grade, indicating that PTEN
contributes to prostate tumorigenesis via loss of its function as a
negative regulator of AKT activation (Malik et al., 2002). In mouse
models, PTEN loss or AKT activation in the prostate induces PIN
and progression to CaP, and increases in the level of
phosphorylation of AKT Ser473 parallel the reduction in PTEN
levels and correspond with increased incidence, onset and
progression to CaP (Di Cristofano et al., 2001; Kwabi-Addo et al.,
2001; Trotman et al., 2003; Wang et al., 2003). Mice lacking PTEN
expression in the prostate display features that resemble advanced
CaP in humans, including local invasion, metastasis and androgen
independence. Therefore, in humans and mice, similar molecular
pathology seems to underpin CaP development.

The similar pathological features of CaP development in mice
and humans, and the importance of AKT in the process, make this
an excellent setting in which to dissect how AKT signaling supports
tumorigenesis and to determine how it could be therapeutically
inhibited to treat cancer. Accordingly, the following sections focus
on recent advances in mouse models of CaP that have defined
fundamental concepts on how AKT signaling contributes to
neoplasia, progression and acquisition of malignancy in CaP
(summarized in Fig. 2).

Neoplasia is initiated by AKT signaling to mTORC1
One of the earliest events in human CaP is loss of expression of
NK3 transcription factor related, locus 1 (Nkx3.1), which leads to
aberrant gene expression (Bethel et al., 2006). This is seen from early
PIN, when increased cellular proliferation and moderate activation
of AKT is observed (Renner et al., 2007). A connection between
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Table 2. Phenotypes of mouse models representing common human familial tumor syndromes

Mutated

protein Human syndrome Human presentation of syndrome Mouse phenotype upon deletion of associated gene
PTEN Cowden disease, Bannayan-Riley-

Ruvalcaba syndrome, Proteus
syndrome, Proteus-like syndrome

Breast, thyroid and uterine neoplasia,
lipomas, macrocephaly, hamartomatous
polyps of the gastrointestinal tract,
mucocutaneous lesions

Homozygous lethal; conditional deletion in tissues generally
results in tumors; heterozygotes develop a range of neoplasms
(adrenal, thyroid, uterine, breast, prostate, gastrointestinal
tract)

TSC1 or TSC2 Tuberous sclerosis Hamartomata and cysts in multiple organ
systems, polycystic renal disease, renal
carcinoma

Homozygous lethal; heterozygotes develop renal cystadenomas,
liver hemangiomas, lung adenomas

All data taken from Online Mendelian Inheritance in Man (OMIM), McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center

for Biotechnology Information, National Library of Medicine (Bethesda, MD), 2009 (http://www.ncbi.nlm.nih.gov/omim/ and http://www.informatics.jax.org/).
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Nkx3.1 and AKT is illustrated by the fact that mice lacking Nkx3.1
expression display cellular proliferation and low-grade PIN, together
with increased PI3K signaling to AKT (Abdulkadir et al., 2002; Gary
et al., 2004; Song et al., 2009). The onset of PIN also correlates with
phosphorylation of the mTORC1 target 4EBP1 (Kremer et al., 2006),
indicating that AKT-mediated activation of mTORC1 is involved in
this process. In addition, increased AKT activation in myr-AKT or
PTEN+/– mice leads to the development of high-grade PIN (Di

Cristofano et al., 1998; Majumder et al., 2003; Wang et al., 2003;
Ratnacaram et al., 2008). Knocking out AKT1 in PTEN+/– mice
prevents PIN development, illustrating that this process depends
on AKT1 signaling (Chen et al., 2006). Furthermore, AKT signaling
to mTORC1 is crucial for PIN development, because inhibition of
mTORC1 signaling with a specific inhibitor, RAD001, in myr-AKT1
mice abolished mTOR signaling and cellular proliferation, and
restored normal prostatic gland architecture (Majumder et al., 2004).
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Table 3. Defining mouse models of AKT activation and signaling in tumorigenesis

Gene

Primary

mutation

Secondary

mutation

Type of

mutation Effect Phenotype References
ErbB2 –

PTEN
Myr-AKT1

AKT1
AKT2
AKT3

Tg-MG
cKO-MG
Tg-MG

KO
KO
KO

O/E
Loss
O/E
Loss
Loss
Loss

Mammary tumors
Acceleration of tumors
Acceleration of tumors

Inhibition of tumors and of metastasis
Acceleration of tumors

No observable effect on tumorigenesis

Muller et al., 1988
Dourdin et al., 2008
Young et al., 2008
Ju et al., 2007; Maroulakou et al., 2007
Maroulakou et al., 2007
Maroulakou et al., 2007

PolyMidT –
IRS1
IRS2

AKT1
AKT2
AKT3

Tg-MG
KO
KO
KO
KO
KO

O/E
Loss
Loss
Loss
Loss
Loss

Mammary tumors
Mammary tumors and metastasis

Decreased number of mammary tumors
Inhibition of tumors

Acceleration of tumors
No observable effect on tumorigenesis

Guy et al., 1992
Ma et al., 2006
Nagle et al., 2004
Maroulakou et al., 2007
Maroulakou et al., 2007
Maroulakou et al., 2007

IRS1

IRS2

–
–
–
–

KO
Tg-MG

KO
Tg-MG

Loss
O/E
Loss
O/E

Insulin resistance, reduced growth
Mammary tumors and metastasis

Diabetes
Mammary tumors and metastasis

Araki et al., 1994; Tamemoto et al., 1994
Dearth et al., 2006
Withers et al., 1998
Dearth et al., 2006

K-rasG12D –
p85 T208D/K227A

KI-PtMt
KI-PtMt

G12D
T208D and

K227A

Lung tumors
Resistant to Ras binding and Ras-induced lung tumorigenesis

Johnson et al., 2001
Gupta et al., 2007

Myr-p110
p85
p85

–
–
–

Tg-Pr
cKO-Pr
cKO-Pr

O/E
Loss
Loss

Hyperplasia
No observable tumor phenotype
No observable tumor phenotype

Renner et al., 2007
Jia et al., 2008
Jia et al., 2008

PTEN –
–
–

IRS2
p85 +/–

p85 –/–

p85 +/– –/–

PDK1
AKT1

–
B-RafV600E

–
P110 –/–

P110 –/–

mTOR
rictor

Tg-Hy
Tg-Hy

KO

KO
KO
KO
KO
KO
KO

cKO-Sk
Tg-Sk

cKO-Pr
cKO-Pr
cKO-Pr
cKO-Pr
cKO-Pr

Hy/+
Hy/–

Ht

Loss
Ht

Loss
Ht/Loss

Hy/–
Loss
Loss
O/E
Loss
Loss
Loss
Loss
Loss

Neoplasia after long latency
Increased neoplasia, decreased latency

MG, adrenal, thyroid, colon, B-cell, uterine, prostate neoplasia

Decreased number of tumors in multiple tissues
Increased number of GI polyps, PIN unaffected

Decreased PIN
Increased number of GI polyps, PIN unaffected

Inhibition of PTEN-driven tumors
Inhibition of PTEN-driven tumors

Susceptibility to carcinogens
Metastatic melanoma

Metastatic prostate tumors
No effect on PTEN tumorigenesis

Loss of PTEN tumorigenesis
Inhibition of tumors
Inhibition of tumors

Alimonti et al., 2010b
Trotman et al., 2003
Di Cristofano et al., 1998; Suzuki et al., 1998;

Podsypanina et al., 1999
Szabolcs et al., 2009
Luo et al., 2005
Luo et al., 2005
Luo et al., 2005
Bayascas et al., 2005
Chen et al., 2006
Inoue-Narita et al., 2008
Dankort et al., 2009
Trotman et al., 2003; Wang et al., 2003
Jia et al., 2008
Jia et al., 2008
Nardella et al., 2009
Guertin et al., 2009

AKT1
Myr-AKT1

Myr-AKT 11-60

AKT1E40K

–
–

p27
–

S6K1
–
–
–
–

K-RasG12D

B-RafV600E

–

KO
Tg-Pr
cKO

Tg-Lv
KO

Tg-Sk
Tg-Tc

Tg-MG
Tg-Br

PtMt-Br
PtMt-Br
Tg-Tc

Loss
O/E
Loss
O/E
Loss
O/E
O/E
O/E
O/E
O/E
O/E

E40K

Small, partial lethality
High-grade PIN; 100% penetrance

Progression to cancer
Insulinomas

Inhibition of insulinomas
Skin carcinomas, DMBA sensitive

Thymic lymphoma with short latency
With DMBA: ER+ mammary tumors

No tumor phenotype
Glioblastoma

Gliomas
Peripheral lymphoma with long latency

Chen et al., 2001; Cho et al., 2001a
Majumder et al., 2003
Majumder et al., 2008
Alliouachene et al., 2008
Segrelles et al., 2007
Malstrom et al., 2001
Rathmell et al., 2003
Blanco-Aparicio et al., 2007
Holland et al., 2000
Holland et al., 2000
Robinson et al., 2010
Malstrom et al., 2001

AKT2
Myr-AKT2

–
–

KO
Tg-Tc

Loss
O/E

Diabetes
Thymic lymphoma after long latency

Cho et al., 2001b
Mende et al., 2001

AKT3 – KO Loss Small brain Easton et al., 2005; Tschopp et al., 2005
DNAPKcs –

AKT1
KO
KO

Loss
Loss

Thymic lymphomas
Inhibition of DNAPKcs-driven thymic lymphomas

Jhappan et al., 1997
Surucu et al., 2008

Br, brain; cKO, conditional tissue deletion; DMBA, 7,12-dimethylbenz[a]anthracene; DNAPKcs, DNA-dependent protein kinase catalytic subunit; ER+, estrogen receptor positive; GI,

gastrointestinal; Ht, heterozygous loss of protein; Hy, hypomorphic gene modification; Hy/–, hypomorphic and deleted allele; Hy/+, hypomorphic and wild-type allele; KI, knock-in gene

mutation; KO, whole body knockout; Loss, complete protein loss; Lv, liver; MG, mammary gland; O/E, protein overexpression; PolyMidT, polyoma middle T oncoprotein; Pr, prostate;

PtMt, genetic point mutant; Sk, skin; Tc, T-cell; Tg, transgenic. Proteins are listed in the order that they act in the PI3K-PTEN-AKT signaling pathway (from receptor activation to AKT

activity).
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The role of mTORC1 in proliferation and PIN development is further
highlighted by mouse models in which TSC2 (Ma et al., 2005) and
Rheb (Nardella et al., 2008) expression is manipulated. Mouse
prostates overexpressing Rheb promote activation of mTORC1 and
S6K1, and the consequent phosphorylation of their respective
targets, 4EBP1 and S6. Prostates in these mice display mild increases
in proliferation and low-grade PIN, albeit with long latency (~10
months) and low penetrance (20-30%). Conversely, in TSC2+/–

mouse prostates, mTOR phosphorylation is insufficient to trigger
downstream signaling and phosphorylation of S6. In this case,
neither increased proliferation nor PIN development is observed.
These studies complement the RAD001 findings, indicating that the
activation of mTORC1 and downstream signaling is necessary and
sufficient to induce cellular proliferation and initiate PIN.
Importantly, PIN develops in the Rheb-overexpressing prostates in
the presence of low AKT activation and signaling, owing to a
negative feedback loop inhibiting PI3K via S6K1 and IRS1 (Nardella
et al., 2008). Thus, independent of other AKT-mediated signaling,
activation of mTORC1 signaling seems to be the essential
component of PIN development in prostates exhibiting activated
AKT.

Senescence responses prevent progression from PIN
to CaP
Prostates expressing myr-AKT1 or Rheb express the senescence
markers senescence-associated -galactosidase (SA-gal)
(Majumder et al., 2008; Nardella et al., 2008) and heterochromatin
protein 1 (HP1) (Majumder et al., 2008), and exhibit increasing
nuclear localization of the cell-cycle inhibitor p27, during PIN
development. Cellular growth arrest and reduced incorporation of
BrdU (a reagent used to track proliferating cells), indicate a
functional and effective senescence checkpoint in affected PIN
epithelium (Majumder et al., 2008). Importantly, SA-gal (Chen et
al., 2005; Majumder et al., 2008), HP1 (Majumder et al., 2008) and
p27 nuclear accumulation (Di Cristofano et al., 2001; Majumder et
al., 2008) are also found in human PIN samples. p27 accumulation
is also observed during PIN in PTEN+/– mice and in an unrelated
mouse model of CaP in which the Myc oncogene is expressed in
the prostate, suggesting that senescence is a specific response to
PIN induction and not to AKT activation or signaling (Majumder
et al., 2008).

The relationships between senescence induction, PIN
development and mTORC1 activation are illustrated by inhibition
of mTORC1 with RAD001 in myr-AKT1 mice. RAD001 does not
affect the levels of AKT Ser473 phosphorylation, but does decrease
the phosphorylation of the downstream mTORC1 target S6 within
2 days of treatment. However, reduction of p27 nuclear
accumulation and expression of HP1 was not observed until after
14 days of treatment, when normal prostatic gland architecture was
restored (Majumder et al., 2004). Therefore, senescence is a
response to loss of normal prostatic gland architecture rather than
to increased mTORC1 signaling, which favors proliferation.

Prostatic glands displaying PIN and senescence have disrupted
basement membrane (BM) attachments. E-cadherin mediates
crucial attachment to the BM and is reduced in human CaP (Umbas
et al., 1992). Knockdown of E-cadherin expression, or culturing
isolated myr-AKT mouse prostate epithelial cells or myr-AKT-
transfected human prostate epithelial cells in low adherence
conditions, compromises BM contacts and induces p27 nuclear
accumulation (Majumder et al., 2008). Thus, the loss of BM
attachment observed in PIN morphology induces p27-mediated
senescence that prevents progression from PIN to CaP in PTEN+/–

and myr-AKT models.

Overcoming p27-mediated cell-cycle arrest
Loss of p27 expression and cell-cycle dysregulation might be
mechanisms by which activated AKT signaling overcomes p27-
mediated senescence in the prostate and induce CaP. In human
CaP, increasing loss of p27 (Cordon-Cardo et al., 1998; Fernandez
et al., 1999; Di Cristofano et al., 2001; Majumder et al., 2008) or
activation of the protein that degrades p27, Skp2, is often observed
(Yang et al., 2002). In myr-AKT1 or PTEN+/– mouse prostates, a
gene-dose effect on development of CaP is seen with p27 loss, with
CaP cells exhibiting decreased senescence markers and reactivation
of cell cycling (Di Cristofano et al., 2001; Majumder et al., 2008).
Reduction of p27 levels is seen when Skp2 is overexpressed in
mouse prostate, with low-grade PIN to low-grade CaP lesions
developing relative to the levels of Skp2 expressed (Shim et al.,
2003). Conversely, loss of Skp2 on a PTEN-null background triggers
senescence with increased expression of p27 and the other cell-
cycle inhibitors p21 and p19Arf (Lin et al., 2010). p27 can inhibit
cell cycling by binding to cyclin D, a function also executed by the
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Proteins with anti-oncogenic function

Proteins with pro-oncogenic function

AKT activation Hyperactive AKT

Normal prostate
gland

Hyperplasia PIN CaP Advanced CaP

Altered protein 
expression

Growth
proliferation

Survival
signaling

Genetic instability

Senescence

Cell cycle re-entry

Cyclin D

Mutation acquisition
Nkx3.1 decreases

mTORC1 activation

Progression

Nuclear FOXO
Unchecked proliferation

PIN-induced p27 arrest

TMPRSS2-ERG fusion

Myc gain

Initiation Development

PTEN decreases PTEN loss

p27 decreases p27, p53, Rb loss

Chromosome loss/gain

Fig. 2. AKT activation and associated events during tumor development in the prostate. Initiation of tumorigenesis and hyperplasia occur through altered
protein expression, which promotes AKT activation, mTORC1 activation and PIN development. p27-induced senescence prevents progression to CaP, which is
overcome by AKT signaling combined with changes in the expression and/or activity of other proteins and genes. CaP displays high AKT activation, supporting
proliferation, survival and acquisition of mutations with increasing genetic instability, leading to the gross chromosomal losses and gains that are characteristic
of advanced malignant CaP.
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cell-cycle inhibitor p18. Similarly to p27, decreased p18 in
conjunction with PTEN heterozygosity accelerates the progression
to high-grade PIN, whereas complete loss of p18 expression leads
to invasive carcinoma that exhibits increased AKT phosphorylation
(Bai et al., 2006). Thus, activated AKT can overcome p27-mediated
senescence when combined with cellular changes that affect either
p27 expression levels or cell-cycle activation.

Alternative signaling inputs can overcome p27-mediated
senescence by affecting the interplay between AKT activation, p27
levels, glandular architecture and cell-cycle control. TSC2 inhibits
mTORC1 and Wnt signaling via Rheb and -catenin, respectively.
Promoting mTORC1 signaling alone by crossing PTEN+/– with
Rheb-overexpressing mice results in high-grade PIN with 100%
penetrance (Nardella et al., 2008). However, if PTEN+/– mice lose
a single allele of TSC2, PIN develops, similar to when Rheb is
overexpressed in PTEN+/– mice, but in 75% of mice it progresses
to CaP (Ma et al., 2005). This indicates that CaP development can
occur via dysregulation of TSC2-mediated control of Wnt signaling.
In mice and humans, TSC2 loss stabilizes -catenin and increases
transcription of the cyclin D gene to promote cell-cycle progression
(Mak et al., 2005). However, TSC2 loss can also affect -catenin–E-
cadherin complexes to impair BM–E-cadherin signaling; this
signaling is crucial for prostatic p27-mediated senescence. Indeed,
nuclear -catenin accumulation and decreased E-cadherin is
observed in human CaP (Jaggi et al., 2005), and expression of
dominant-stabilized nuclear -catenin in the prostate results in CaP
via increased Wnt signaling and disruption of cell contacts (Pearson
et al., 2009). Therefore, signaling pathways such as Wnt might
promote cell cycling or disrupt senescence signaling to p27 to enable
neoplastic cells with activated AKT to progress to human CaP.

AKT antiapoptotic and survival signaling in the
progression to CaP
Full activation of AKT occurs via mTORC2-mediated
phosphorylation of Ser473, which promotes cell survival by
inhibiting the activity of proapoptotic proteins such as the FOXO
proteins. Mouse embryonic fibroblasts lacking components of
mTORC2 lack AKT Ser473 phosphorylation but exhibit
phosphorylation of Thr308 (Guertin et al., 2006; Jacinto et al., 2006;
Shiota et al., 2006). mTORC1 activity is unaffected by mTORC2
disruption, but phosphorylation of FOXO1 and FOXO3a are
reduced, increasing apoptosis in conditions of stress. Apoptosis is
reversed by reconstitution of mTORC2 (Shiota et al., 2006). The
nuclear proapoptotic activity of FOXO proteins is inhibited by
AKT-mediated phosphorylation, which sequesters them in the
cytoplasm. In mice displaying ~60% loss of PTEN expression,
cytoplasmic localization of FOXO proteins is observed.
Approximately 20% of these animals form CaP lesions with
increased Ser473 signaling and decreased p27, but surprisingly with
no significant increase in mTORC1 activation compared with
PTEN+/– PIN lesions (Trotman et al., 2003). Further increases in
Ser473 AKT phosphorylation resulting from a complete loss of
PTEN expression correlate with additional decreases in p27
expression and nuclear FOXO1 levels without affecting the
activation of mTORC1, indicating that these actions on p27 and
FOXO1 occur independently of mTORC1 activation (Trotman et
al., 2003). Consistent with this, knockout of the mTORC2
component rictor does not affect mTORC1 signaling but does

abolish Ser473 phosphorylation, maintaining a strong nuclear
accumulation of FOXO1 and preventing the progression to CaP,
even in PTEN-null prostates (Guertin et al., 2009). This indicates
that increased signaling to AKT substrates downstream of Ser473
phosphorylation promotes antiapoptosis and survival to overcome
senescence and facilitate the progression of tumors.

Unchecked cell cycling and genetic instability promotes
CaP malignancy
Unchecked cell cycling and increased survival signaling in tumor
cells promotes the acquisition of mutations that cause genetic
instability (GI) and gross genetic aberrations, such as
rearrangements and chromosomal loss or gain. GI is detected in
~60% of prostate biopsies from patients with CaP (Thuret et al.,
2005), whereas fusions of genes encoding transmembrane protease,
serine 2 (TMPRSS2) and ETS-related gene (ERG) transcription
factor (TMPRSS2-ERG) are seen in up to 65% of cases of human
prostate neoplasia (Perner et al., 2006; King et al., 2009). In vitro
and in vivo evidence supports the idea that TMPRSS2-ERG fusion
is an event that occurs in early CaP that promotes malignancy by
contributing to migration, invasion and metastasis (Tomlins et al.,
2008; Carver et al., 2009; Yu et al., 2010). In mice, TMPRSS2-ERG
or ERG overexpression promotes PIN, and the progression from
PIN to CaP in both of these cases specifically involves AKT
(Furusato et al., 2008; Klezovitch et al., 2008; Carver et al., 2009;
King et al., 2009; Zong et al., 2009). In human samples, TMPRSS2-
ERG is found in regions of copy-number loss (including of PTEN)
(Taylor et al., 2010). Recent data from studies in mice suggest that
progression to CaP when ERG is overexpressed and AKT is
hyperactivated is supported by increased androgen receptor (AR)
signaling (Goldstein et al., 2010). Interestingly, another study,
which involved genomic profiling of 218 human prostate tumors,
illustrated that, although AR abnormalities were exclusive to
metastatic samples, increased signaling via the AR pathway was
found in 56% of non-metastatic samples (Taylor et al., 2010).

PTEN heterozygosity is common in human CaP, with complete
loss (via deletion of a region of chromosome 10q) occurring only in
30-60% of advanced CaP cases (Gray et al., 1995; Komiya et al., 1996).
This suggests that progression to CaP via alternative mechanisms
that cooperate with PTEN heterozygosity might be selected for by
neoplastic cells. Analysis of PTEN-null prostates demonstrated that
they exhibit a strong cellular senescence response mediated by p53,
with an increase in the expression of cell-cycle inhibitors p19 and
p21 (Chen et al., 2005). Maintaining p53 levels in PTEN-null
prostates by administration of Nutlin-3, the small-molecule inhibitor
of p53 degradation by the E3 ubiquitin-protein ligase Mdm2
(Mdm2), results in >50% reduction in tumor volume, with glands
showing significantly increased senescence (Alimonti et al., 2010a).
Hence, in human tumors in which the loss of a PTEN allele occurs
in two distinct steps, overcoming a p27- and then p53-mediated
senescence might impair tumor survival, suggesting that PTEN loss
is observed only in advanced CaP, when additional mutations prevent
an effective p53-mediated senescence response.

In advanced CaP, chromosomal regions are frequently lost [such
as Ch17q (which encodes p53) and Ch13q (which encodes the
tumor suppressor protein Rb)] (Carter et al., 1990; von Knobloch
et al., 2004) or amplified [such as Ch8q (which encodes Myc)]
(Jenkins et al., 1997; Qian et al., 2002). Similarly to PTEN loss, p53
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deletion occurs late in human CaP, promoting malignancy (Qian
et al., 2002). In mice, loss of p53 has little effect on the prostate,
although PTEN-null prostates that mimic the loss of PTEN in late
human CaP display invasion and metastasis, which are features of
advanced CaP. However, when p53 is knocked out in PTEN–/–

prostates, aggressive and lethal CaP develops (Chen et al., 2005).
Thus, complete loss of PTEN and p53 is consistent with the concept
that, at late stages of CaP, malignancy is promoted by gross
chromosomal abnormalities that arise from genetic instability.

From mice to man: targeting AKT in anticancer
therapies
The mouse models discussed in the earlier sections illustrate that
the alterations in PI3K-PTEN-AKT signaling that are associated
with CaP progression in mice are similar to those seen in human
biopsies. These studies highlight which members of the pathway
might be valid therapeutic targets, and at which stage of the disease
current or developing therapies would be most effective (see Table
4). In addition, the studies demonstrate that a crucial aspect of AKT-
mediated tumor progression in CaP is the involvement of
cooperating mutations (see Table 5), which should direct the
development of new combinational therapeutic regimes.
Importantly, AKT activation in the prostate affects conserved pro-
and anti-oncogenic signaling, which is often disrupted in tumors
of other tissues, suggesting that the findings in the prostate are
applicable to tissues outside the prostate. The following section
explores the potential of current and future strategies by which to
control AKT signaling in tumors, including monotherapies and
combination therapies.

Inhibiting AKT activation and signaling
PI3K inhibitors
The potential benefits of PI3K inhibition in treating cancer are
supported by the finding that PI3K-activating mutations in p110
are common in human tumors, and that the inhibitors LY294002
and wortmannin, which primarily target PI3K, potently inhibit AKT
activation in cancer cell lines. Toxicity of these early PI3K inhibitors

prompted the development of new, more specific PI3K inhibitors
(for reviews, see Brachmann et al., 2009; Maira et al., 2009),
including isoform-specific inhibitors that were developed to prevent
induction of insulin resistance while retaining anti-tumor efficacy.
These might be particularly effective in tumors in non-insulin-
sensitive tissues, because deletion of certain isoforms of the p85
or p110 subunits of PI3K has shown that these subunits operate
in tumors in a tissue-specific manner (Luo et al., 2005; Jia et al.,
2008). Indeed, in the prostate, p110 selectively mediates
tumorigenic signaling (Jia et al., 2008). However, pan-PI3K
inhibitors and dual PI3K and mTOR inhibitors block tumor growth
in mouse models without overt effects on glucose levels (Folkes et
al., 2008; Maira et al., 2008; Serra et al., 2008; Liu, T. J. et al., 2009).
Interestingly, helical-domain mutations of p110 require Ras
binding for AKT activation (Zhao and Vogt, 2010), and Ras binding
to p110 is also required for Ras-mediated tumorigenesis (Gupta
et al., 2007). Although Ras binding and signaling is unaffected by
current ATP-competitive PI3K inhibitors, combination therapy
with MEK inhibitors in mice shows strong synergy in inhibiting
tumors (Engelman et al., 2008). Thus, PI3K inhibitors might yet
prove effective in either single or combinational therapeutic
regimes.

AKT inhibitors
Pan and isoform-specific inhibition of AKT isoforms are potential
anti-tumor therapies, particularly in tumors that have lost PTEN
expression. AKT1 is necessary for tumor progression in PTEN+/–

mice in multiple organs, including the prostate (Chen et al., 2006),
and the loss of AKT1 was found to reduce neoplasia without
compensatory AKT2 or AKT3 upregulation. AKT1 is also a
promising target because PTEN+/– neoplasia development in mice
is significantly reduced when AKT1 levels are decreased by 50%
(e.g. in heterozygous AKT1 deletions), a decrease in activity that
is therapeutically more achievable than complete inhibition.
Specific inhibitors of AKT2 or AKT3 could also be effective in the
treatment of tumors such as melanomas (AKT3) (Stahl et al., 2004)
or ovarian carcinomas (AKT2) (Cheng et al., 1992), in which these
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Table 4. Patterns of PI3K-PTEN-AKT signaling in human and mouse CaP, and current therapies

Stage of prostate neoplasia progressionProtein

modification Species BH PIN CaP Metastasis

Drug

target References
PI3K activation M

H X
X
X

X X CT Renner et al., 2007; Zhu et al., 2008; Brachmann et al.,
2009; Maira et al., 2009

PTEN loss M (+/–)
H (+/–)
M (–/–)
H (–/–)

X

X

X/

X

X X
X/

* Di Cristofano et al., 2001; Kwabi-Addo et al., 2001;
Trotman et al., 2003; Wang et al., 2003; Kremer et al.,
2006; Ratnacaram et al., 2008

AKT activation M
H  /X

X X CT
In dev

Malik et al., 2002; Majumder et al., 2003; Li et al., 2007;
Renner et al., 2007

TSC2 loss M
H nd nd

X
nd

X
nd

* Ma et al., 2005

Rheb activation M
H nd nd

X
nd

X
nd

* Nardella et al., 2008

mTOR loss M
H

X
X

X
X

X
X

X
X

mTOR activation M
H

nd
/X

nd nd nd

Availa

CT
In dev

Kremer et al., 2006; Apsel et al., 2008; Maira et al., 2008;
Guertin et al., 2009; Nardella et al., 2009; Thoreen et al.,
2009

4EBP1 activation M
H

nd
X

nd nd nd * Kremer et al., 2006; Hsieh et al., 2010

a
mTORC1 inhibitors (rapalogs). , observed; X, not observed; *, not currently in development; Avail, approved for use; BH, benign hyperplasia; CT, in clinical trials; H, human samples;

In dev, currently under development; M, mouse model; ND, not determined. Proteins are listed in the order that they act in the PI3K-PTEN-AKT signaling pathway (from receptor

activation to AKT activity).
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isoforms are specifically increased. However, as with PI3K
inhibitors, inhibition of AKT2 activity could promote insulin
resistance. In such a case, pan-AKT inhibitors could circumvent
off-target effects of AKT2 inhibition. In tumors with
supraphysiological levels of AKT activation and a dependency on
AKT for tumorigenesis, pan-AKT inhibitors could significantly
reduce the levels of activated AKT within the tumor while
minimizing adverse drug reactions, such as insulin resistance, in
response to complete inhibition of a single AKT isoform in normal
tissues. The pan-AKT inhibitor GSK690693 was shown to act in
this manner in a mouse xenograph model and is now in clinical
trials (Rhodes et al., 2008). These inhibitors could also enable broad-
spectrum inhibition and allow targeting of tumors irrespective of
the predominant AKT isoform involved.

mTOR inhibitors
The mTORC1 complex was first successfully inhibited by
rapamycin, and related ‘rapalogs’ such as RAD001 that have more
favorable pharmacokinetics and tolerance are used in various
clinical settings. The ability of RAD001 to reverse PIN in the mouse
prostate indicates that rapalogs can effectively target this process,
although detection of such early abnormalities in patients is
difficult. However, it is worth noting that cellular proliferation
mediated by mTORC1 contributes to the development of pre-
neoplastic lesions in over 60% of endometrial hyperplasia cases
(Milam et al., 2008) and precancerous intestinal polyps from
Peutz-Jeghers Syndrome patients (Shackelford et al., 2009). In
mouse models of these pathologies, progression can be inhibited
with mTORC1 inhibitors (Milam et al., 2007; Shackelford et al.,
2009).

In advanced cancers, the rapalog RAD001 is approved as a single
agent for renal cell carcinomas that depend on mTORC1-mediated

translation of hypoxia-inducible factor 1 (HIF1). Tumor progression
after resection has also been shown to be reduced in some gliomas
treated with rapamycin in a phase 1 trial (Cloughesy et al., 2008).
However, clinical studies suggest that the effectiveness of mTORC1
inhibition is exceptional: in most tumor settings, the anti-tumorigenic
effects of mTORC1 inhibition are outweighed by increased AKT-
Ser473-mediated pro-survival and antiapoptotic signaling that occurs
because of loss of the negative feedback regulation of the PI3K
pathway by S6K1 (Shi et al., 2005; O’Reilly et al., 2006; Cloughesy et
al., 2008). Indeed, in Rheb-overexpressing mouse prostates, treatment
with RAD001 showed loss of phosphorylated S6 (downstream of
mTORC1) but increased AKT Ser473 phosphorylation. This suggests
that therapeutic efficacy requires rapalogs used in combination with
therapies that disrupt the feedback regulation of AKT Ser473
phosphorylation, such as PI3K or mTORC2 inhibitors.

mTORC2 inhibitors should prevent pro-survival and
antiapoptotic functions. Indeed, loss of the mTORC2 component
rictor prevents CaP in PTEN-deficient mouse prostates (Guertin
et al., 2009). Inhibiting mTORC2 activity would be an effective way
to target the wide variety of tumors that have high phosphorylation
of Ser473, via PI3K activation or reduced activity of PHLPP1 or
PHLPP2 (PHLPP1/2; the phosphatases responsible for
dephosphorylation of AKT Ser473). In human colon cancer,
expression of PHLPP1/2 is lost or reduced in ~75% of tumor
samples (Liu, J. et al., 2009). In addition, a significant decrease in
the levels of mRNA encoding FKBP51 (the protein that enables
docking of PHLPP1/2 to AKT) was reported in pancreatic tumor
tissue, and a decrease or loss of FKBP51 protein expression was
found in pancreatic and breast cancer cell lines (Pei et al., 2009).

Dual mTORC1 and mTORC2 inhibitors that target the mTOR
kinase (Apsel et al., 2008; Maira et al., 2008; Thoreen et al., 2009)
are currently in clinical trials for their potential to inhibit tumor
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Table 5. Oncogenic events in human CaP that have been shown to cooperate with AKT activation in mice and are potential drug targets

Gene

Stage of prostate neoplasia progressionPrimary

mutation

Secondary

mutation Species BH PIN CaP Metastasis

Drug

target References
Nkx3.1 loss –

PTEN+/–

–

M
M
H

X X
X

– Abdulkadir et al., 2002; Kim et al., 2002; Gary et al.,
2004; Bethel et al., 2006; Zong et al., 2009

ERG gain –
PTEN+/–

–

M
M
H

X X
X

– Petrovics et al., 2005; Rostad et al., 2007; Klezovitch et
al., 2008; Carver et al., 2009

PAR4 loss –
PTEN+/–

–

M
M
H X

X

X

X X
X

(X)

– Fernandez-Marcos et al., 2009

FGF8b gain –
PTEN+/–

–

M
M
H X X

X X – Gnanapragasam et al., 2003; Zhong et al., 2006

TRMSS2-ERG
fusion

–
PTEN+/–

–

M
M
H X

X

/X

X X
X

– Tomlins et al., 2008; Carver et al., 2009; King et al.,
2009

p27 loss –
PTEN+/–

–

M
M
H X

X

X

X X
X

CT
In dev*

Cordon-Cardo et al., 1998; Di Cristofano et al., 2001;
Majumder et al., 2008; Dickson and Schwartz, 2009

p18 loss –
PTEN+/–

–

M
M
H X

X

X

X X
X

CT
In dev*

Bai et al., 2006; Dickson and Schwartz, 2009

ErbB2 gain –
PTEN+/–

–

M
M
H X X

X X
X

Avail Kuhn et al., 1993; Morote et al., 1999; Casimiro et al.,
2007; Rodriguez et al., 2009

*Cyclin dependant kinase inhibitors; CT, in clinical trials; H, human; M, mouse; (X), Not examined. See Table 4 footnote for abbreviations. Protein modifications are listed in order of

reported occurrence in patient biopsies during the development from benign hyperplasia to advanced CaP.
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proliferation and survival signals (www.clinicaltrial.gov/). In
support of these agents as effective therapies, conditional ablation
of mTOR in the PTEN-null mouse prostate blocks cellular
proliferation and the development of PIN and CaP (Nardella et al.,
2009). Use of mTOR inhibitors or specific mTORC2 inhibitors could
prove particularly useful in settings of advanced cancer, such as
CaP, in which PTEN expression has been lost, making AKT
refractory to treatment by upstream receptor and PI3K inhibitors.

Combining inhibition of AKT signaling with additional
therapeutics
ErbB2 inhibition
Effective inhibition of AKT signaling by ErbB2-specific monoclonal
antibodies is the primary strategy in treating ErbB2-expressing
breast tumors. Although such treatment can lead to tumor
remission (Vogel et al., 2002), resistance occurs in ~50% of patients
as a result of downstream mutations in genes encoding oncogenic
proteins such as Ras and Src, or via loss of PTEN, leading to AKT
activation (Berns et al., 2007). Loss of PTEN or an increase in
activated AKT in ErbB2-overexpressing mouse mammary glands
accelerates tumor formation in mice, whereas ablation of AKT1 or
rapamycin-mediated inhibition of mTORC1 inhibits tumor
progression (Mosley et al., 2007). In the prostate, ErbB2 can also
cooperate with AKT activation in promoting CaP development
(Rodriguez et al., 2009). This supports the use of ErbB2-specific
antibodies together with rapalogs or AKT inhibitors to treat ErbB2-
expressing tumors, including advanced CaP, in which ErbB2 is
associated with androgen independence (Signoretti et al., 2000),
increased tumor grade (Ross et al., 1993), anueploidy (Ross et al.,
1993) and metastasis (Morote et al., 1999).

Raf, MEK and ERK inhibitors
Activation of the Ras-Raf-MEK-ERK signaling cascade by mutation
or overexpression of extracellular receptors such as ErbB2 is
common in many cancers. In advanced human CaP, mutations in
Ras (7%) or Raf (10%) have been reported (Cho et al., 2006). In
mouse models, ERK activation is associated with androgen
independence, and simultaneous inhibition of ERK and AKT
signaling has shown enhanced tumor inhibition (Gao et al., 2006;
Kinkade et al., 2008). A relationship between mTORC1 inhibition
and ERK activation has also been observed in the clinic when
mTORC1 activity is inhibited with RAD001. In these cases, ERK
activation occurs when mTORC1 is blocked (Carracedo et al., 2008),
suggesting that blocking AKT signaling might result in
compensatory rewiring of proliferation and survival signals through
ERK. Positive outcomes after simultaneous ERK and PI3K signaling
inhibition were observed in studies of mouse models of
hepatocellular carcinoma (HCC) and ErbB2-overexpressing breast
tumors; the use of MEK and mTORC1 inhibitors in HCC (Huynh,
2010), or a Raf inhibitor and blocking of PI3K signaling through
neutralizing antibodies to ErbB2 in ErbB2-overexpressing breast
tumors (Hausherr et al., 2006), improved the extent of tumor
inhibition in both cases.

MEK-ERK activation also occurs as a result of the V600E B-Raf
mutation in over 60% of pre-malignant melanocytic nevi, leading
to increased ERK phosphorylation. Downstream signaling cascades
inhibit TSC2 and increase cyclin D levels (Zheng et al., 2009),
although melanoma progression is prevented by activation of an

oncogene-induced senescence program. This senescence is relieved
by increased AKT3 levels and signaling that cooperates with ERK
to increase proliferative and survival signaling (Stahl et al., 2004;
Cheung et al., 2008). Promotion to malignant melanoma occurs in
up to 60% of cases, owing to loss of a portion of chromosome 10
that contains PTEN (Herbst et al., 1994; Robertson et al., 1998; Stahl
et al., 2003). Highlighting the importance of AKT activation in
melanoma, V600E B-Raf expression in PTEN-null mice leads to
malignant melanoma formation (Dankort et al., 2009). Together,
these findings suggest that simultaneous targeting of the ERK and
AKT signaling pathways could be an effective way to treat tumors
that commonly have Ras and Raf mutations.

Biguanides
Biguanides (AMPK activators) inhibit the activity of mitochondrial
respiratory chain complex I, thereby reducing ATP levels and
activating AMPK signaling. AMPK negatively regulates the cell
cycle and prevents pro-oncogenic signaling by both Wnt and
mTORC1 by activating TSC2 (Inoki et al., 2003) and inhibiting the
Rag family of GTPases that are required for mTORC1 activation
(Kalender et al., 2010). Decreased AMPK activity is observed in
human breast cancer samples (Hadad et al., 2009). The AMPK
activator metformin is well tolerated as an insulin-sensitizing
agent and has also been shown to increase latency and reduce
tumors in a mouse ErbB2 mammary model (Anisimov et al., 2005),
possibly by inhibiting S6K1 activity and decreasing ErbB2
expression (Vazquez-Martin et al., 2009). Metformin also impairs
the ability of p53-negative tumor cells to form tumors in mice
(Buzzai et al., 2007) and, combined with doxorubicin, selectively
kills cancer stem cells (Hirsch et al., 2009). However, in a mouse
estrogen-receptor-negative mammary model of cancer, metformin
promoted angiogenesis and supported tumors (Phoenix et al.,
2009), suggesting that the drug might be effective only in
conjunction with other chemotherapeutic agents. Studies of CaP
support this: metformin significantly inhibits tumor growth, but
does not induce apoptosis of prostate cancer cells when injected
into mice, despite the fact that tumors from treated mice showed
a cell cycle block with decreased cyclin D, activation of Rb and
increased p27 levels (Ben Sahra et al., 2008). These features of
metformin treatment could prove beneficial in conjunction with
AKT inhibitors, because increased cyclin D levels (Rodriguez et
al., 2009), inactivated Rb or decreasing p27 all cooperate with AKT
activation in the mouse prostate to allow PIN progression to CaP.
Thus, if metformin can hinder these cooperating alterations, it
might prove effective in inhibiting tumor progression and induce
apoptosis when used in conjunction with agents that inhibit AKT
survival signaling.

Conclusions and future directions
The broad incidence of activating AKT mutations in tumors from
diverse tissues indicates a crucial role for AKT signaling in tumor
development and progression. In this Perspective, we have
discussed recent work on mouse models that has helped to define
how AKT signaling contributes to tumorigenesis at different stages,
and through different downstream signaling pathways, to facilitate
the proliferation, survival and progression of tumors. The findings
from mouse models are consistent with analyses of patient tumors,
providing validation that mouse experiments are relevant to the
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human disease. Although we focused here on CaP, it is clear that
the disruption of the PI3K-PTEN-AKT pathway, or of the mTOR
complexes, is also associated with tumors in other tissues (Table
3). This suggests that at least the core members of this pathway
contribute to oncogenic signaling – and particularly to proliferation
– in the prostate, as well as in tumors of other tissues. This is
promising from a therapeutic perspective because several of these
pathway components are targets of anti-oncogenic therapies that
have already been approved for the clinic. Therefore, these therapies
might by broadly applicable for treating several different types of
cancer.

An interesting finding in studies of CaP is that tumor progression
generally requires cooperation of secondary mutations with
activated AKT (Table 5). Many mutations that cooperate with AKT
hyperactivation in the prostate – such as increased ErbB2 (and ERK
activation), loss of p27 or loss of p18 – promote cell cycle
progression and are also associated with tumors of a wide variety
of tissues. This has important implications for treating tumors of
tissues in which mutations in ErbB2 or cell cycle proteins are
common because it suggests that the presence of even moderate
AKT activation could have significant effects on progression.
Inhibition of AKT-mediated survival and antiapoptotic signaling
both alone and in conjunction with cell cycle inhibition might be
a powerful regime for treating CaP and other tumors with
cooperating mutations. Notably, some of these secondary mutations
are the target of existing therapies. For example, tumor cells
treated with the common anti-diabetic treatment metformin show
inhibited cyclin D levels. The cell cycle is also controlled with cyclin-
dependent kinase inhibitors that are in clinical trials, raising the
possibility that their use together with inhibitors of AKT signaling
could provide a well-tolerated therapeutic regime effective for
treating a broad spectrum of tumor types. Alternatively, supporting
the induction of senescence responses could also prove effective.
Proof of this concept was recently shown by the finding that Skp2
inhibition promoted p27-, p21- and p19Arf-mediated senescence
in a preclinical study (Lin et al., 2010).

A number of areas still remain to be defined with respect to their
contribution to AKT signaling in tumors. These include identifying
mechanisms of PTEN regulation (Poliseno et al., 2010) and activities
independent of its effects on AKT1 (Mounir et al., 2009) that could
be compromised during tumorigenesis and therefore be valid
therapeutic targets. Similarly, an understanding of how Ser473-
specific PHLPP phosphatases are regulated is still to be fully
explored. Investigation into both of these areas has the potential
to identify novel targets involved in tumor progression.

Finally, with the ongoing progress on strategies to therapeutically
inhibit AKT, the compensatory rewiring by tumors will become
increasingly relevant in terms of resistance to future AKT signaling
inhibitors. As discussed earlier, rewiring to activate ERK signaling
is observed upon inhibition of mTORC1 (Carracedo et al., 2008).
Similarly, ‘PI3K-addicted’ cells have been shown to be able to survive
AKT inhibition by signaling through PDK1 (Vasudevan et al., 2009).
Interestingly, CaP in ErbB2;PTEN+/– mice, and PIN in LKB1+/–

mice, showed signaling downstream of mTORC1 without mTORC1
activation, suggesting alternative activation pathways (Pearson et
al., 2008; Rodriguez et al., 2009). Interestingly, in both cases,
activated PDK1 was observed and proposed to be mediating this
signaling. Understanding whether PDK1 or other proteins can

sustain tumors that have inhibited AKT activity, and via which
downstream substrates and signaling pathways this can occur, are
among the many issues that will be addressed in the next generation
of PI3K-PTEN-AKT mouse tumor models.
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