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Abstract 

 

The clinical application of tissue engineered products requires to be tightly connected 

with the possibility to control the process, assess graft quality and define suitable release 

criteria for implantation. The aim of this work is to establish techniques to standardize and 

control the in vitro engineering of cartilage grafts. The work is organized in three sub-

projects: first a method to predict cell proliferation capacity was studied, then an in line 

technique to monitor the draft during in vitro culture was developed and, finally, a culture 

system for the reproducible production of engineered cartilage was designed and validated.   

Real-time measurements of human chondrocyte heat production during in vitro proliferation  

Isothermal microcalorimetry (IMC) is an on-line, non-destructive and high resolution 

technique. In this project we aimed to verify the possibility to apply IMC to monitor the 

metabolic activity of primary human articular chondrocytes (HAC) during their in vitro 

proliferation. Indeed, currently, many clinically available cell therapy products for the repair 

of cartilage lesions involve a process of in vitro cell expansion. Establishing a model system 

able to predict the efficiency of this lengthy, labor-intensive, and challenging to standardize 

step could have a great potential impact on the manufacturing process. In this study an 

optimized experimental set up was first established, to reproducible acquire heat flow data; 

then it was demonstrated that the HAC proliferation within the IMC-based model was similar 

to proliferation under standard culture conditions, verifying its relevance for simulating the 

typical cell culture application. Finally, based on the results from 12 independent donors, the 

possible predictive potential of this technique was assessed.  

Online monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D 

tissue constructs. 

This project aimed at assessing a technique to monitor graft quality during production 

and/or at release. A quantitative method to monitor the cells number in a 3D construct, based 

on the on-line measurement of the oxygen consumption in a perfusion based bioreactor 

system was developed. Oxygen levels dissolved in the medium were monitored on line, by 

two chemo-optic flow-through micro-oxygen sensors connected at the inlet and the outlet of 

the bioreactor scaffold chamber. A destructive DNA assay served to quantify the number of 

cells at the end of the culture. Thus the oxygen consumption per cell could be calculated as 

the oxygen drop across the perfused constructs at the end of the culture period and the number 
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of cells quantified by DNA. The method developed would allow to non-invasively monitoring 

in real time the number of chondrocytes on the scaffold. 

Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing 

The aim of this project was to upscale the size of engineered human cartilage grafts. The 

main aim of this project consisted in the design and prototyping of a direct perfusion 

bioreactor system, based on fluidodynamic models (realized in collaboration with the Institute 

for Bioengineering of Catalonia, Spain), able to guarantee homogeneous seeding and culture 

conditions trough the entire scaffold surface. The system was then validated and the capability 

to reproducibly support the process of tissue development was tested by histological, 

biochemical and biomechanical assays. Within the same project the automation of the 

designed scaled up bioreactor system, thought as a stand alone system, was proposed. A 

prototype was realized in collaboration with Applikon Biotechnology BV, The Netherlands.  

The developed system allows to achieve within a closed environment both cell seeding and 

culture, controlling some important environmental parameters (e.g. temperature, CO2 and O2 

tension), coordinating the medium flow and tracking culture development. The system 

represents a relevant step toward process automation in tissue engineering and, as previously 

discussed, enhancing the automation level is an important requirement in order to move 

towards standardized protocols of graft generation for the clinical practice.  

Conclusions and final remarks 

These techniques will be critical towards a controlled and standardized procedure for 

clinical implementation of tissue engineering products and will provide the basis for 

controlled in vitro studies on cartilage development. Indeed the resulting methods have 

already been integrated in a streamlined, controlled, bioreactor based protocol for the in vitro 

production of up scaled engineered cartilage drafts. Moreover the techniques described will 

serve as the foundation for a recently approved Collaborative Project funded by the European 

Union, having the goal to produce cartilage tissue grafts. In order to reach this goal the 

research based technologies and processes described in this dissertation will be adapted for 

GMP compliance and conformance to regulatory guidelines for the production of engineered 

tissues for clinical use, which will be tested in a clinical trial.   
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General introduction 

 

Cartilage: structure and properties  

Cartilage is a connective tissue of mesoderm origin, found in many areas in the human 

body; there are three types of cartilage: elastic cartilage, fibrocartilage and hyaline cartilage. 

The elastic cartilage is the constituent of the epiglottis and the eustachian tube and it is 

characterized by high content of elastin, providing high flexibility to this tissue. The 

fibrocartilage often exists temporarily at bones fracture sites, but it is also permanently 

present in the intervertebral disks of the spine, as a covering of the mandibular condyle in the 

temporo-mandibular joint, and in the meniscus of the knee; compared with elastic cartilage it 

contains less elastin, but more collagen. The third type of cartilage, hyaline cartilage during 

childhood forms the growth plate by which long bones grow, and in adults is found in 

diarthroidal joints covering long bones. The presence of healthy hyaline cartilage on the joints 

surface is fundamental for the tribology, by providing lubrication, homogenizing the loads 

applied on the joint surfaces and absorbing the shock generated by impulsive loads. 

 

 
Figure 1 Cartilage components can be divided in relation with the observation scale. Looking at the 

microstructure (100μm-100nm) it is possible to observe the chondrocytes, the collagen matrix and the high 

molecular weight proteoglycans (PG) (such as aggrecans and hialuronans). At the ultrastructure (1μm-10nm ) 

there are the biochemical constituents of the tissue (single fiber of collagen and of PG). At all the different 

levels, the molecules of collagen and PG, which constitute the solid component of ECM, actively electro-

statically interact with water and other electrolytes. This balanced interaction between the solid and the liquid 

phase is crucial to the good mechanical response of cartilage to the load in vivo. (Mow and Ratcliffe, 1997) 
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Articular cartilage is a well-characterized tissue. It has the lowest volumetric cellular 

density of any tissue in the human body: chondrocytes are the exclusive cell type and in 

humans they contribute only about 1% of the tissue volume, and the remaining 99% is made 

up of a complex ECM (Buckwalter and Mankin, 1998; Heath and Magari, 1996; Stockwell, 

1979). The chondrocytes are situated in small cavities (lacunae) within the cartilage tissue. 

The spherical cells are found as single, isolated cells, or in a chondron, an aggregate of several 

chondrocytes. The cells sense the structure and composition of the ECM and carry out their 

primary function that is to maintain it. The chondrocytes themselves synthesize all necessary 

ECM components (Buckwalter and Mankin, 1998; Cohen et al., 1998). The unique 

viscoelastic properties of articular cartilage are a consequence of the molecular 

nanoarchitecture and zone-specific organization of the matrix components in this tissue, 

which are synthesized by the chondrocytes (Figure 1). The ECM of articular cartilage consists 

(as wet mass) of about 60–85% water and dissolved electrolytes. The complex solid 

framework is composed of collagens (mainly type II) (10–30%), proteoglygans (3–10%) and 

non collagenous proteins and glycoproteins (Buckwalter and Mankin, 1998; Hardingham and 

Muir, 1973; Mankin and Thrasher, 1975). The tensile behavior of cartilage is believed to be 

mainly due to the collagen fibers, while proteoglycans affects swelling pressure as well as 

fluid motion under compression. Moreover about 30% of the total water exists within the 

intrafibrillar space of collagen. The collagen fibril diameter and the amount of water within 

the collagen are determined by the swelling pressure due to the strong negative electric 

charges of the proteogylcans. The proteoglycans are constrained within the collagen matrix. 

Because the proteogylcans are bound closely, the closeness of the negative charges creates a 

repulsion force that must be neutralized by positive ions in the surrounding fluid. The higher 

concentration of ions in the tissue compared to outside the tissue leads to swelling pressures. 

The exclusion of water raises the density of fixed charge, which in turn raises the swelling 

pressure and charge-charge repulsion. The amount of water present in cartilage depends on 

the concentration of proteoglycans, the organization of the collagen network, and the stiffness 

and strength of the collagen network. The collagen network resists the swelling and if the 

collagen network is degraded, the amount of water in the cartilage increases, because more 

negative ions are exposed to draw in fluid, changing the mechanical response of the tissue to 

the load. In addition, with a pressure gradient or compression, fluid is squeezed out of the 

cartilage. When the fluid is being squeezed out, there are drag forces between the fluid and 

the solid matrix that increase with increasing compression and make it more difficult to exude 

water. This behavior increases the stiffness of the cartilage as the rate of loading is increased.  
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In conclusion, articular cartilage functionality is tightly related with the balance between 

the different components of its ECM.  

 

Cartilage lesions treatments.  

Progressive reduction of extracellular matrix in articular cartilage, due to traumatic lesions 

or degenerative diseases like osteoarthritis (OA), inducing loss of joint function and excessive 

morbidity is an open clinical challenge; in particular damages of the knee joint are quite 

common. The appearance of lesions is frequently associated with pain, disturbed function and 

disability, and, if not successfully treated, often results in total replacement of the joint. The 

replacement of the entire joint or of part of it with metallic prosthesis is a high invasive 

technique and due to the limited durability of the devices, the procedure is especially critical 

in case of young patients. Due to the absence in cartilage of blood vessels and nerves 

pharmaceutical treatments are ineffective and the normal mechanisms of tissue repair, 

involving the recruitment of cells to the site of damage, do not occur. Some of the most 

popular treatment options, referred to as marrow-stimulating techniques (e.g., microfracture 

or subchondral drilling of the bone) are based on the principle of inducing invasion of 

mesenchymal progenitor cells from the underlying subchondral bone to the lesion site, in 

order to initiate cartilage repair (Mitchell and Shepard, 1976). In the absence of a material 

which appropriately “instructs” the mesenchymal progenitors to differentiate into articular 

chondrocytes in stable fashion, the outcome of these procedures is highly variable and often 

results in repair tissue composed of fibrocartilage, with limitations in quality and duration as 

compared to native hyaline tissue (Kreuz et al., 2006).  

A breakthrough in the field, for localised injuries, was the introduction of cell-based repair 

techniques, such as autologous chondrocyte implantation (ACI) (Brittberg, 2008). In this 

procedure, in vitro expanded autologous articular chondrocytes are introduced into the defect 

site as a cell suspension or in association with a supportive matrix (matrix-assisted ACI, 

MACI) (Marlovits et al., 2005), where they are expected to synthesize new cartilaginous 

matrix. The clinical outcome of these chondrocyte-based techniques is generally good, as they 

lead to lessening of symptoms for the patient (Bentley et al., 2003; Peterson et al., 2000), but 

in many cases results in the formation of fibrous repair tissue with inferior mechanical 

properties and limited durability (Brittberg, 2008; Grigolo et al., 2005; Roberts et al., 2003). 

A recent study proposed a correlation between the symptomatology of patients treated with 

ACI and the quality of the repair tissue, suggesting that the persistence of symptoms after 

surgery reflected the presence of non-hyaline cartilage repair tissue (Brun et al., 2008). These 
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observations underline the importance of improving the quality of the generated repair tissue 

following treatment of cartilage defects. A way to reach this goal is the implant of a more 

mechanically functional graft; in fact it has been demonstrated that in vivo, in ectopic mouse 

models, the implant of more developed construct leads to the generation of a more hyline like 

tissue (Demarteau et al., 2003; Moretti et al., 2005). This is the aim of “functional cartilage 

tissue engineering”.   

 

Cartilage Tissue Engineering. 

Tissue engineering has been defined as the application of principles and methods of 

engineering and life sciences for the development of biological substitutes, to restore, 

maintain or improve tissue function.  

The challenge for cartilage tissue engineering is to produce cartilage tissue with suitable 

structure and properties ex vivo, which can be implanted into joints to provide a natural repair 

that, with time, will become integrated with the patient’s tissues. Regeneration of a hyaline-

like tissue could be facilitated by the implantation of a pre-engineered, functional cartilage 

tissue, as opposed to the delivery of a chondrocyte suspension, as described before. In the 

most typical approach  (Figure 2) the ex vivo generation of a functional graft starts with the 

isolation of human cells and their monolayer expansion on plastic; when a sufficient number 

of cells is reached the cells are seeded on a 3D structure (scaffold) which provides an initial 

frame for the development of the final functional graft. Biochemical and biomechanical 

stimulus can be needed in order to induce the cell differentiation and organization (Demarteau 

et al., 2003; Jakob et al., 2001), thus generating a graft approaching the properties of native 

cartilage. Indeed, the presence of extracellular matrix (ECM) around cells was reported to 

enhance donor cell retention at the repair site (Ball et al., 2004) and possibly protect the cells 

from environmental factors such as inflammatory molecules (Francioli et al., 2011). 

Furthermore, precultivation under conditions inducing cell differentiation was shown to 

support enhanced in vivo development of engineered cartilage at ectopic sites in mice (Moretti 

et al., 2005) and improved cellular response to a compressive deformation conditioning 

resembling a mild rehabilitation regime (Demarteau et al., 2003). Importantly, from the 

clinical point of view the improved mechanical stability of the more mature and stable 

engineered graft would also allow easier surgical handling, application specially in critically 

sized defects (Farhadi et al., 2006) and possibly earlier postoperative loading. 
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Figure 2 In the most typical approach, tissue engineering is a cycle, starting with the harvesting of a cell biopsy. 

The cells are, then, isolated and expanded in vitro, aiming to reach a number of cell sufficient to perform a high 

density seeding of a 3D scaffold. The hybrid cell-scaffold construct in further cultured in vitro, where is exposed 

to biochemical and biomechanical stimuli, until the level of maturation required for the in vivo implant is 

reached.  

 

 

 

Some products, such as Carticel® and Hyalograft-C®, have been well established in the 

clinic for the treatment of traumatic focal cartilage defects, and follow up show good results 

(Manfredini et al., 2007). However no tissue engineered product is currently available to treat 

large defects associated with wide traumatic lesions or advanced diseases such as 

osteoarthritis. Beyond the biological challenges that must be addressed to treat chronic joint 

disorders, it remains a significant engineering challenge to generate cartilage grafts with 

dimensions sufficient for the repair of large, advanced, and deep (4 mm) defects. Indeed the 

homogeneity of the final graft, is directly dependent upon the homogeneity of the culture 

condition overall the graft volume. Moreover one non unimportant obstacle in delivering 

cartilage tissue engineering products to routine clinical use are the costly, labour-intensive and 

time-consuming manual processes which are difficult to control and standardise. To be 

attractive for clinical applications, engineered cartilage will need to demonstrate cost-

effectiveness and cost-benefits over existing therapies, absolute safety for patients, 

manufacturers and environment, and compliance with the evolving regulatory framework in 

terms of quality control and good manufacturing practice (GMP). To meet these targets and 

translate research-scale production into clinically compatible manufacture, quality control 
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methods, automation and streamlining of the process and up-scaling of the constructs are 

required.  

 
 

Proliferation capacity as a marker of cell quality. 

As autologous chondrocytes can only be harvested from a small biopsy (280 mg, 

(Brittberg, 2008)) of articular cartilage in relatively low numbers, currently, many clinically 

available cell therapy products for the repair of cartilage lesions involve a process of in vitro 

cell expansion (Marcacci et al., 2007). This step, consisting in an extensive proliferation on 

plastic dishes, is lengthy, labor-intensive, and challenging to standardize. Indeed the capacity 

of isolated chondrocytes to proliferate and to regenerate a tissue is not only dependent on the 

health state of the joint (Tallheden et al., 2005) and on the age of the donor (Loeser et al., 

2000), but is also extremely variable between individuals in the same age range and with no 

history of joint disease (Barbero et al., 2004). Therefore establishing physics-based model 

systems aimed at better understanding and predicting chondrocyte function during 

proliferation could help in the development of protocols to reduce the time of expansion and 

improve its reproducibility, ultimately having a great potential impact on the manufacturing 

process. The evaluation of the metabolic rate of freshly isolated chondrocytes could be used to 

estimate their response to the in vitro environment and their proliferation capacity. Being cell 

metabolism tightly related with heat generation, this could be an eligible parameter to be 

monitored.  

 

Isothermal microcalorimetry (IMC) 

Isothermal microcalorimetry is a technique by which the heat flow generated by an arbitrary 

chemical, physical or biological process is continuously monitored while the sample is kept at 

constant temperature. Isothermal microcalorimeters (Figure 3) are defined as instruments 

measuring heat flow in the microwatt range (μW) and operating at nearly constant 

temperature (Wadsö, 2002). In this type of calorimeter the heat produced or consumed in the 

calorimetric ampoule is allowed to flow between the ampoule and a heat sink (usually an 

aluminum block) thus keeping the calorimetric ampoule and its contents within a few 

millidegrees of the temperature at which the heat sink is maintained by the thermostatic 

system in which the calorimeter operates. The real sensing elements are the thermoelectric 

modules (i.e., Seebeck or Peltier modules) placed between the sample and the heat-sink. 

These thermoelectric modules allow any slight temperature difference to be converted into an 

electrical signal, which can be easily recorded.  
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The use of a label-free, passive, dynamic measurement opens a wide range of potential use 

in biomedical sciences. In terms of biomedical and clinical applications it allows investigating 

the metabolism and growth of human cell cultures and also potentially infectious, 

contaminated or genetically modified organisms in an environment of choice. Of equal 

importance, the measurements can be run in closed ampoules, under safe and controlled 

conditions. In addition, many processes relevant to biomaterial degradation or material 

stability can be studied using IMC. Beyond the more traditional thermodynamic applications 

within the physical sciences, a sufficiently sensitive calorimeter can be used in the study of 

living systems, for instance to quantify cell metabolic activities. Calorimetry-based techniques 

have been employed in a broad range of biological applications including fermentation 

(Wadsö and Gmez Galindo, 2009), pharmaceuticals (Buckton, 1995), and environmental 

studies (Rong et al., 2007). The use of IMC as a fast and inexpensive alternative to traditional 

diagnostic and prognostic tools has also been investigated for clinical applications (Monti, 

1990), for example in the rapid detection of bacterial infections (von Ah et al., 2009; Xi et al., 

2002; Yang et al., 2008) and to monitor the metabolic activity of tumor cells (Bäckman, 

1990). Finally, calorimetry has the potential to represent an innovative tool to define and 

optimize specific cell culture parameters, as well as to provide non-invasive and non-

destructive methods in quality control assessments (Kemp and Guan, 2000). 

 

 
Figure 3 Panel (a) shows the internal structure of an isothermal microcalorimeter: the core is the measuring unit, 

which measures the heat flow between the sample, placed in a sealed ampoule (b), and a reference. Modern 

machines, as the one shown in panel (c) (TAM48), can monitor several samples with high sensitivity (e.g. 5E-2 

mW × L−1 in this model) 
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Bioreactors for cartilage tissue engineering: towards process automation and quality 

control. 

The term bioreactor refers to a system in which conditions are closely controlled to permit 

or induce certain processes in living cells or tissues. The concept of bioreactor is not restricted 

to tissue engineering; indeed bioreactors are classically used in industrial fermentation 

processing, wastewater treatment, food processing and production of pharmaceuticals and 

recombinant proteins. Bioreactor technologies intended for tissue engineering can be used to 

grow functional cells and tissues for transplantation, and for controlled in vitro studies on the 

regulation effect of biochemical and biomechanical factors on cell and tissue development. In 

essence, the aim of a bioreactor is to provide the appropriate physical stimulation to cells, 

continuous supply of nutrients (e.g. glucose, amino acids), chemical species, biochemical 

factors and oxygen to the construct interior, as well as continuous removal of products of 

cellular metabolism (e.g. lactic acid), aiming to reliably and reproducibly form, store, and 

deliver functional tissues. Moreover, a bioreactor has to be able to operate over long periods 

of time under aseptic conditions (S.A.Korossis et al., 2005).   

 

Seeding 

One of the applications of a bioreactor system is the support at the seeding phase. Cell 

seeding of scaffolds is the first step in establishing a 3D culture, and might play a crucial role 

in determining the progression of tissue formation (Vunjak-Novakovic et al., 1998). 

Engineering autologous grafts for clinical applications limiting the biopsy size and/or the 

extent of cell expansion requires the cells to be seeded with the highest possible efficiency. 

Furthermore, the initial distribution of cells within the scaffold after seeding has been related 

to the distribution of tissue subsequently formed within engineered constructs (Freed et al., 

1998; Holy et al., 2000; Kim et al., 1998), suggesting that uniform cell-seeding could 

establish the basis for uniform tissue generation. However it can be a significant challenge to 

distribute cells efficiently and uniformly throughout the scaffold volume. Although static 

loading of cells onto a scaffold is by far the most commonly used seeding method, several 

studies reported low seeding efficiencies and non-uniform cell distributions within scaffolds 

(Kim et al., 1998; Xiao et al., 1999; Li et al., 2001), owing, in part, to the manual- and 

operator-dependent nature of the process. Significantly higher efficiencies and uniformities 

can be obtained by forcing the flow of a cell suspension directly through the pores of 3D 

scaffolds using a multi-pass filtration seeding technique(Wendt et al., 2003; Li et al., 2001), 

performed in a bioreactor, under controlled and reproducible flow conditions.  
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Mass transport 

It has long been known that the supply of oxygen and soluble nutrients becomes critically 

limiting for the in vitro culture of 3D tissues. The consequence of such a limitation is 

exemplified by early studies showing that cellular spheroids larger than 1 mm in diameter 

generally contain a hypoxic, necrotic center, surrounded by a rim of viable cells (Sutherland 

et al., 1986). Similar observations were reported for different cell types cultured on 3D 

scaffolds under static conditions. Because cartilage engineered constructs should be at least 2-

4 mm thickness in size to serve as grafts for tissue replacement, mass-transfer limitations 

represent one of the greatest challenges to be addressed. Aiming to optimize the mass transfer, 

during the last years, several culture systems have been tested, like stirred flask or rotating 

vessels. Indeed these models can enhance external mass transfer, but the resulting grafts still 

show the effects of a limited mass transfer in the more internal zone. Trying to overcome this 

limitation, bioreactors were designed based on the perfusion of the culture medium directly 

through the pores of the cell-seeded 3D scaffold (Figure 4). These bioreactors provided the 

advantage of reducing the mass transfer limitations both at the construct periphery and within 

its internal pores, enhancing cell survival, growth and function, as GAG synthesis and 

accumulation (Davisson et al., 2002b; Pazzano et al., 2000). Being the effect of direct 

perfusion so relevant for the effective result of the culture, prove a homogeneous distribution 

of the flow is important. For this reason a bioreactor system should be designed on careful 

estimation of the flow patterns, based on computational fluid dynamic models in conjunction 

with further experimental validation. 

Additionally, perfusion seeding can be readily integrated into a perfusion bioreactor system 

capable of forming both seeding of the scaffold and subsequent culturing of the construct 

(Davisson et al., 2002b). These systems not only streamline the engineering process but also 

reduce the safety risks associated with the handling and transferring of constructs between 

separate bioreactors. 
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Figure 4.  The image on the left shows the exploded view of a representative direct perfusion bioreactor. The 

chamber is composed by two sub-unites, that create a place for the scaffold. The detail in the assembled view on 

the right underlines how critical is the design in ensuring the absence of lateral flows around the scaffold. Black 

arrows underline the flow distribution. 

 

 

 

Physical stimuli 

Another role of bioreactor systems is to provide physical stimulus to the culture. Increasing 

evidence suggests that mechanical forces, which are known to be important modulators of cell 

physiology, might increase the biosynthetic activity of cells in bioartificial matrices and, thus, 

possibly improve or accelerate tissue regeneration in vitro (Butler et al., 2000). Regarding 

cartilage, dynamic deformational loading and shear of chondrocytes embedded in a 3D 

environment stimulated GAG synthesis (Davisson et al., 2002a; Mauck et al., 2000; Waldman 

et al., 2003) and increased the mechanical properties of the resulting tissues (Mauck et al., 

2000; Waldman et al., 2003); a role in the matrix development is played also by dynamic 

tension (Eschenhagen et al., 1997; Matthews et al., 2001; Vandenburgh, 1992; Young et al., 

1998), compression (Buschmann et al., 1995) or hydrodynamic pressure (Carver and Heath, 

1999). Nowadays still little is known about the specific mechanical forces or regimes of 

application (i.e. magnitude, frequency, continuous or intermittent, duty cycle) that are 

stimulatory for a particular tissue, specially if it is taken into account that different stages of 

development might require different regimes of mechanical conditioning owing to the 

increasing accumulation of extracellular matrix and developing structural organization. In this 
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context, bioreactors can have an important role, providing controller environments for 

reproducible and accurate application of specific regimes of mechanical forces to 3D 

constructs (Demarteau et al., 2003). 

 

Control 

One of the major challenges to translate research products into clinically applicable 

manufacturing is to establish a production process allowing obtaining products that are 

reproducible, clinically effective and economically acceptable, while complying with Good 

Manufacturing Practice (GMP) requirements (Ratcliffe and Niklason, 2002). Advanced 

bioreactor controlled closed systems would facilitate streamlining and automation of the 

numerous labor-intensive steps involved in the in vitro engineering of 3D tissues. Typical 

environmental factors (e.g. temperature, pH and oxygen) will have to be maintained at 

defined levels to ensure reproducibility and standardization, as is routinely achieved in 

classical bioreactors for the production of recombinant proteins. Moreover, because the 

development of engineered tissues might progress at varying rates for different cell batches, 

additional parameters to be monitored would be cell number, phenotype and metabolism, or 

specific tissue mechanical properties. Development of the tissue could be further monitored 

through the incorporation of advanced technical tools for online micro or macroscopic 

observation of the structural properties of the tissue (e.g. video microscopy, magnetic 

resonance imaging and microcomputerized tomography). All collected inputs could be 

analyzed by a microprocessor unit and fed back to the bioreactor system to optimize the 

control of culture parameters at pre-defined levels (Figure 5).  

An advantage in the area would be the development and employment of computational or 

experimentally validated models which could test the quality of the tissue non-invasively and 

on-line. This would allow for a higher efficiency in the tissue engineering process, as well as 

a high degree of certainty in harvesting tissues within the pre-determined manufacturing 

specifications. At the state of the art, both metabolites (e.g. oxygen, glucose) and catabolites 

(e.g. CO2, lactate) dissolved in the medium culture were proposed as parameters eligible to 

describe the state of the culture. Of the various sensors traditionally used to monitor milieu 

parameters, oxygen sensors have been successfully adapted to the tissue engineering field. 

Indeed, despite the technological success of producing small, sterile and high sensitive probes, 

the application of oxygen measurements to monitor and control the bioreactor based culture 

has not been achieved yet. In fact the most relevant studies in the field use oxygen 
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measurements either to provide local data for the boundary conditions of computational 

models (Malda et al., 2004) or describe qualitative relations (Janssen et al., 2006). 

 

 

 
 

Figure 5. Vision for a closed-system bioreactor for the automated production of tissue-engineered grafts. Within 

the same bioreactor system the cells would be isolated from the biopsy, seeded, expanded and cultured.  

Environmental culture parameters and tissue development would be monitored and inputs fed into a 

microprocessor unit for analysis. In conjunction with data derived from clinical records of the patient, the inputs 

would be used to control culture parameters at pre-defined optimum levels automatically and provide the 

surgical team with data on the development of the tissue, enabling timely planning of the implantation. 

Reproduced from (Martin et al., 2004). 
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Thesis Outline 

 

General Aim 

The clinical application of tissue engineered products is tightly connected with the 

possibility to control the process, assess graft quality and define suitable release criteria for 

implantation. The aim of this work is to establish techniques to standardize and control the in 

vitro engineering of cartilage grafts. Attention will focus first on development of non 

destructive techniques for the estimation of the proliferation capacity of cells isolated from the 

biopsy. Moreover a method for the on-line quantification of the cell proliferation in the cell-

scaffold construct will be validated. Finally a controlled bioreactor for the engineering of 

clinically relevant sized constructs will be designed and validated. These techniques will be 

critical towards a controlled and standardized procedure for clinical implementation, and will 

provide the basis for controlled in vitro studies on cartilage development.  

 

Chapter 1 Real-time measurements of human chondrocyte heat production during in vitro 

proliferation  

Isothermal microcalorimetry (IMC) is an on-line, non-destructive and high resolution 

technique. In this project we aimed to verify the possibility to apply IMC to monitor the 

metabolic activity of human articular chondrocytes (HAC) during their in vitro proliferation. 

Indeed, currently, many clinically available cell therapy products for the repair of cartilage 

lesions involve a process of in vitro cell expansion. Establishing a model system able to 

predict the efficiency of this lengthy, labor-intensive, and challenging to standardize step 

could have a great potential impact on the manufacturing process. In this study an optimized 

experimental set up was first established, to reproducible acquire heat flow data; then it was 

demonstrated that the HAC proliferation within the IMC-based model was similar to 

proliferation under standard culture conditions, verifying its relevance for simulating the 

typical cell culture application. Finally, based on the results from 12 independent donors, the 

possible predictive potential of this technique was assessed.  
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Chapter 2 Online monitoring of oxygen as a non-destructive method to quantify cells in 

engineered 3D tissue constructs. 

This project aimed at assessing a technique to monitor graft quality during production 

and/or at release. A quantitative method to monitor the cells number in a 3D construct, based 

on the on-line measurement of the oxygen consumption in a perfusion based bioreactor 

system was developed. Oxygen levels dissolved in the medium were monitored on line, by 

two chemo-optic flow-through micro-oxygen sensors connected at the inlet and the outlet of 

the bioreactor scaffold chamber. A destructive DNA assay served to quantify the number of 

cells at the end of the culture. Thus the oxygen consumption per cell could be calculated as 

the oxygen drop across the perfused constructs at the end of the culture period and the number 

of cells quantified by DNA. The method developed would allow to non-invasively monitor 

the number of chondrocytes on the scaffold.  

 

Chapter 3 Bioreactor based engineering of large-scale human cartilage grafts for joint 

resurfacing 

The aim of this project was to upscale the size of engineered human cartilage grafts. The 

main aim of this project consisted in the design and prototyping of a direct perfusion 

bioreactor system, based on fluidodynamic models (realized in collaboration with the Institute 

for Bioengineering of Catalonia, Spain), able to guarantee homogeneous seeding and culture 

conditions trough the entire scaffold surface. The system was then validated and the capability 

to reproducibly support the process of tissue development was tested by histological, 

biochemical and biomechanical assays. Within the same project the automation of the 

designed scaled up bioreactor system, thought as a stand alone system, was proposed. A 

prototype was realized in collaboration with Applikon Biotechnology BV, The Netherlands.  

The developed system allows to achieve within a closed environment both cell seeding and 

culture, controlling some important environmental parameters (e.g. temperature, CO2 and O2 

tension), coordinating the medium flow and tracking culture development. The system 

represents a relevant step toward process automation in tissue engineering and, as previously 

discussed, enhancing the automation level is an important requirement in order to move 

towards standardized protocols of graft generation for the clinical practice. 
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ABSTRACT: Isothermal microcalorimeters (IMC) are highly
sensitive instruments that allow the measurement of heat
flow in the microwatt range. Due to their detection of
minute thermal heat, IMC techniques have been used in
numerous biological applications, including the study of
fermentation processes, pharmaceutical development, and
cell metabolism. In this work, with the ultimate goal of
establishing a rapid and real-time method to predict the
proliferative capacity of human articular chondrocytes
(HAC), we explored to use of IMC to characterize one of
the crucial steps within the process of cartilage tissue engi-
neering, namely the in vitro expansion of HAC. We first
established an IMC-based model for the real-time monitor-
ing of heat flow generated by HAC during proliferation.
Profiles of the heat and heat flow curves obtained were
consistent with those previously shown for other cell types.
The average heat flow per HAC was determined to be
22.0� 5.3 pW. We next demonstrated that HAC prolifera-
tion within the IMC-based model was similar to prolifera-
tion under standard culture conditions, verifying its
relevance for simulating the typical cell culture application.
HAC growth and HAC heat over time appeared correlated
for cells derived from particular donors. However, based on
the results from 12 independent donors, no predictive
correlation could be established between the growth rate
and the heat increase rate of HAC. This was likely due to
variability in the biological function of HAC derived from
different donors, combined with the complexity of tightly
couple metabolic processes beyond proliferation. In conclu-
sion, IMC appears to be a promising technique to charac-
terize cell proliferation. However, studies with more
reproducible cell sources (e.g., cell lines) could be used
before adding the complexity associated with primary hu-
man cells.
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Introduction

Isothermal microcalorimeters (IMC), which have the
capacity to measure heat flow in the range of microwatts,
have long been used as analytical tools for thermodynamic
and kinetic studies (Wadsö, 1996, 2002). In addition to the
high thermal sensitivity, the power of IMC techniques is also
related to the ability to perform rapid, passive, non-invasive,
and real-time measurements (Braissant et al., 2010; Lewis
and Daniels, 2003). Moreover, during heat flow data
acquisition, samples can be kept in sealed ampoules, intact
for further investigations, thus allowing IMC to be used as a
non-destructive technique.

Beyond the more traditional thermodynamic applications
within the physical sciences, a sufficiently sensitive
calorimeter can be used in the study of living systems, for
instance to quantify cell metabolic activities. Calorimetry-
based techniques have been employed in a broad range of
biological applications including fermentation (Wadsö and
Gomez Galindo, 2009), pharmaceuticals (Buckton, 1995;
Tan and Lu, 1999), and environmental studies (Rong et al.,
2007). The use of IMC as a fast and inexpensive alternative
to traditional diagnostic and prognostic tools has also been
investigated for clinical applications (Monti, 1990), for
example, in the rapid detection of bacterial infections (von
Ah et al., 2009; Xi et al., 2002; Yang et al., 2008) and to
monitor the metabolic activity of tumor cells (Bäckman,
1990).

Despite the power and sensitivity of calorimetric
techniques for biological applications, such methods haveCorrespondence to: I. Martin
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yet to be implemented within the rapidly growing field of
cellular therapy and tissue engineering. The generation of
cellular tissue grafts in vitro provides an attractive
alternative to traditional treatments aimed at repairing or
replacing damaged tissues to establish normal function.
Calorimetry has the potential to represent an innovative tool
to define and optimize specific cell culture parameters, as
well as to provide non-invasive and non-destructive
methods in quality control assessments (Kemp and Guan,
2000).

Currently, many clinically available cell therapy products
for the repair of cartilage lesions involve a process of in vitro
cell expansion. In this process, a limited number of
chondrocytes, which can be obtained from the digestion
of a small cartilage biopsy (only 100–250mg of tissue), must
be extensively proliferated on plastic dishes in order to
obtain a sufficiently high number of cells to be re-implanted
back into the patient. This step of the manufacturing process
is lengthy, labor-intensive, and challenging to standardize.
Establishing physics-based model systems aimed at better
understanding and predicting chondrocyte function during
proliferation could help in the development of protocols to
reduce the time of expansion and improve its reproducibili-
ty, ultimately having a great potential impact on the
manufacturing process.

Therefore, in this study, we aimed to first establish an
experimental setup for the real-time monitoring of heat flow
generated by human articular chondrocytes (HAC) during
their in vitro proliferation. We next aimed to assess whether
HAC proliferation within the IMC-based model system was
similar to proliferation under well-established conventional
culture conditions, verifying its relevance for predicting
results of traditional cell and tissue culture applications.
Finally, with the goal of establishing a rapid and real-time
calorimetric method to predict the proliferative capacity of
HAC under defined in vitro culture conditions, we assessed
whether there was a correlation between the growth rate
of HAC during the exponential phase of proliferation
and the heat increase rate determined by the IMC-based
method.

Materials and Methods

Cell Isolation and Expansion

Human articular chondrocytes were isolated from
cartilage biopsies obtained post-mortem from 12 individu-
als (ages 65� 13 years) after informed consent and in
accordance with the local Ethical Commission. As previ-
ously described (Jakob et al., 2001), HACwere isolated using
0.15% type II collagenase (10mL solution/g tissue) for 22 h
and resuspended in high glucose Dulbecco’s modified
Eagle’s medium (DMEM; Invitrogen #10938-025, Basel,
Switzerland) supplemented with 10% fetal bovine serum,
1mM sodium pyruvate, 100mM HEPES buffer, 100U/mL
penicillin, 100mg/mL streptomycin, and 0.29mg/mL

L-glutamine (complete medium). The isolated chondrocytes
were expanded for 1 passage (4–5 doublings) in culture
medium supplemented with 1 ng/mL of transforming
growth factor-b1 (TGF b1), 5 ng/mL of fibroblast growth
factor-2 (FGF2) and 10 ng/mL of platelet derived
growth factor-BB (PDGF-BB), a cocktail of factors
previously shown to increase human chondrocyte prolifer-
ation (Jakob et al., 2001). Twelve hours prior to calorimetry
experiments, HAC were synchronized with Aphidicolin
(1mg) (Saris et al., 1999); this compound does not affect
cell viability or ‘‘S’’ phase duration, does not interfere with
the synthesis of dNTPs or DNA polymerases, thus
permitting to obtain a population of cells ready to start
the replication when the block is removed. Synchronized
HAC were then trypsinized, and either replated and cultured
under conventional cell expansion conditions (i.e., in 6 wells
plates, 10,000 cells/well with 2mL medium, within a 378C
5% CO2 incubator), or seeded in calorimetry ampoules
(100,000 cells/ampoule in 3mL medium). Culture medium
in the wells was exchanged twice weekly, whereas the
microcalorimetry ampules were sealed, and thus no culture
medium or gas exchange could be performed throughout
the culture period.

Heat Flow Measurement

A multi-channel IMC (TAM III, TA Instruments, New
Castle, DE) equipped with 48 measuring channels was used
to monitor the heat production by HAC. The IMC
instrument was thermostated to 378C, 2 days before the
start of experiments to achieve maximum stability. The heat
flow signal was acquired continuously and resampled to
obtain an effective sampling rate of one data point every
300 s, for up to 6 days. Glass ampoules having a total volume
of 4mL, loaded with 3mL of cell suspension, were
introduced into the TAM III channels, using a two step
temperature equilibration procedure: the samples were first
lowered into an equilibration position, and only after 15min
they were further lowered into the measuring position (von
Ah et al., 2009). Data acquisition started 45min after
samples were lowered in the measurement position.
Ampoules containing only cell-free culture medium were
placed in three channels as controls, in order to assess
background heat production resulting from the potential
degradation of medium components. All samples were
assayed in duplicate or triplicate.

Cell Quantification

The cell numbers were assessed every 24 h (in the first
experiment every 12 h) in the calorimetry ampoules and
every 48 h in the 6-well plates. Both microcalorimetry
ampoules and wells were rinsed with PBS (Gibco, Grand
Island, NY), frozen (�208C) and then washed in 300mL of
1% SDS to collect the DNA. Aliquots of this solution were
analyzed using the CyQUANT Cell Proliferation Assay Kit
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(Molecular Probes, Eugene, OR) according to the manu-
facturer’s instructions. Moreover, at the time of each
seeding, three aliquots of the seeded HAC cell suspension
were collected. Cells were centrifuged to obtain pellets,
which, after freezing, were digested with 1% SDS. Since
these samples contained a known number of cells they
served as a reference to correlate the DNA content with the
cell number.

Cell Growth Rate Determination

The growth of HAC, in a defined time window, can be
described by means of an exponential law (Barbero et al.,
2005)

NðtÞ ¼ N0e
mGt (1)

where N(t) is the number of cells at time t and mG is the
growth rate of HAC (cell doublings per day). We
hypothesized that the growth rate is the same for HAC
cultured in the ampoules and in the wells. As a consequence,
the experimental data was fit by the use of a model
described by three independent parameters: N0W—the
initial number of cells in the wells, N0A—the initial number
of cells in the ampoules, and mG. The Levenberg–Marquardt
algorithm from the proFit code 6.2.0 (Quantum Soft,
Uetikon am See, Switzerland) served for combined fitting
of the two sets of experimental data and for deriving the
related error of the three independent parameters. In
order to obtain a reasonable estimate of the errors of
the measures to be included into the fit, the following
procedure was carried out. For both tubes and wells,
three specimens were harvested every 24� 1 h to determine
the cell number via DNA quantification. For each
individual experiment the average of the cell number
including standard deviation was examined. Subsequently,
the coefficient of variation CV, defined as ratio between
standard deviation and average value, was calculated. The
mean CVs averaged through all days and donors for both
data sets were used to estimate the error in cell number
quantification.

Heat Increase Rate Quantification

The heat generated over time, Q(t), by a number of various
cell types has previously been shown to fit an exponential
equation (Kimura and Takahashi, 1985)

QðtÞ ¼ Q0e
mQt (2)

where mQ will here within be defined as the ‘‘heat increase
rate.’’ Given that Q is the integration of the heat flow F
[Watts], which is measured directly by the microcalorime-

ter, then Equation (2) becomes

FðtÞ ¼ dQðtÞ
dt

¼ Q0mQe
mQt (3)

This model was applied for tequil< t< tmax where tequil was
the time needed for the full equilibration (10 h), and tmax

was the time at which the maximum heat flow was reached.
The error of F(t) was 0.2mW, according to the manufac-
turer of the microcalorimeter and the error of the
measurement time was 2 s. Again, the Levenberg–
Marquardt algorithm from the proFit code 6.2.0 was
applied to fit the experimental data in order to determine
mQ.

Results and Discussion

First, we developed an experimental setup to assess the
feasibility to apply IMC for real-time monitoring of the heat
flow of HAC. As controls, ampoules filled only with culture
medium (cell-free) were assessed in the IMC in order to
quantify the potential heat flow resulting from degradation
of medium components. Measurements of the control
samples remained constant at background levels throughout
the culture period, indicating that the culture medium per se
would have a negligible contribution to the overall heat flow
in cell-based experiments. Since no data are currently
available on the typical heat flow per cell of HAC in culture,
we next aimed to optimize the number of cells in relation to
the IMC heat flow measurement sensitivity. When 5Eþ 04
HAC per ampoule were assessed, a significant lag time was
observed before growth related heat flow was sufficient such
that measurements could be acquired above instrument
background levels. When 5Eþ 05 HAC were assessed, the
heat flow curve reached a plateau rapidly, that is, in several
hours, therefore not allowing for the calculation of dynamic
parameters. Alternatively, when 1Eþ 05 HAC were seeded
per ampoule, the heat flow quickly rose above the
instrument detection limit (baseline), then steadily in-
creased within the first day, reached a maximum between 3
and 4 days, and then gradually decreased. Heat flow curves,
shown in Figure 1a, were consistent in shape to those
typically reported in the literature for other cell types
(Karnebogen et al., 1993; Ma et al., 2007; Murigande et al.,
2009; Nedergaard et al., 1977). Integrating the heat flow data
over time, sigmoidal heat curves were generated (Fig. 1b),
which were also consistent with those previously reported
for other cell types (reviewed in Braissant et al., 2010).
Therefore, in all subsequent experiments, 1Eþ 05 HACwere
seeded into the ampoules.

Quantifying the number of adherent cells within the
ampoules at different time points of culture, we observed
that cells reached confluence at day 3, with the number of
HAC plateauing at 4.1Eþ 05� 8Eþ 04. Interestingly, the
maximum peak in the heat flow curve (8.9� 2.3mW) also
corresponded to the time point of 3 days. Therefore, at
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confluence, the heat flow per HAC was calculated to be
22.0� 5.3 pW. This value is in the range of those previously
reported for fibroblasts (17 pW per mouse fibroblast, 40 pW
per human fibroblast) (Kemp, 1991), which have a size and
phenotype resembling in vitro expanded (i.e., dedifferen-
tiated) HAC. Next, given that the heat curve has been
directly related to biomass production for several cell types
(Barros et al., 2003; Karnebogen et al., 1993; Sharma and
Jain, 1990), we compared HAC growth up to confluence
with the heat curve up to the inflection point (correspond-
ing to the maximum point of the heat flow curve). Figure 2
shows that HAC heat production andHAC growth appeared
to be related, and within this time frame seemed to follow
exponential trends.

Based on the relation shown in Figure 2, we next aimed to
determine whether there was a quantitative correlation
between the heat increase rate and the growth rate during

the exponential phase of HAC proliferation. This would
allow establishing a rapid and real-time method to predict
the proliferative capacity of HAC under defined in vitro
culture conditions. However, for the IMC-based method to
be relevant for cell and tissue culture applications, HAC
proliferation within the ampoule/IMC-based model system
must reflect proliferation under well-established conven-
tional culture conditions. This needed to be validated given
the different substrate materials (plastic vs. glass) and
considering the sealed ampoules do not allow the same gas
exchange as well plates. Figure 3 shows that the number of
cells quantified in ampoules and in standard multi-well
culture plates grow exponentially over time. Although both

Figure 1. a: Real-time monitoring of the heat flow of HAC during in vitro proliferation when an initial cell density of 100,000 cells/ampoule was used. b: Heat curves generated

by integrating the heat flow data over time. The peak in the heat flow curve, corresponding to the inflection point of the sigmoidal heat curve, occurred in the same time period as

when HAC reached confluence in the IMC ampoules.

Figure 2. Relationship between heat and cell growth. Triangles in the graph

represent the number of cells quantified in ampoules every 12 h, and the solid line

represents the heat curve. For this donor, the growth of HAC and the heat both appear

exponential and to be strongly related.

Figure 3. HAC growth within the ampoule/IMC-based model system and under

conventional culture conditions in standard multi-well plates. Due to different surface

areas available for the adherent cells the initial and final numbers of cells were

different in the ampoules and in the well plates, as well as the time to reach

confluence. However, the growth rates (i.e., slope of logarithmic plot) appeared

similar between the two model systems. (Error bars for cell number are smaller than

data points.)
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the initial and final number of cells are different in the
ampoules and in the well plates, due to the different surface
areas available for the adherent cells, Figure 3 shows that
the growth rates (i.e., slope in logarithmic plot) of HACwere
similar within the two systems. Growth rates of HAC
derived from different donors were variable, in the range of
0.2–0.9 doublings/day, consistent with rates previously
found for HAC (Jakob et al., 2001). Therefore, sealed
IMC ampoules provide a relevant environment and offer the
potential to use resultant heat flow data for fast, online, and
high-throughput monitoring of chondrocyte growth.

The growth rates (mG) of HAC derived from 12 different
donors were plotted against the corresponding heat increase
rates (mQ) in Figure 4. Regression analysis indicated a
very weak linear correlation between the two parameters
(r2¼ 0.15, P¼ 0.00063). As can be seen in Figure 4, the
values of mQ were larger than the corresponding values of
mG, highlighting that the rate of heat generated is function of
not only the metabolic activities associated with cell
proliferation, but of other ongoing biological processes as
well.

In its native milieu, HAC have a very slow growth rate
since the primary function of HAC in vivo is the gradual
degradation and production of extracellular matrix proteins
that comprise the cartilage tissue. For tissue engineering
applications, the limited number of HAC that can obtained
from a small cartilage biopsy must be induced to extensively
proliferate in vitro in order to obtain a sufficiently high
number of cells, which can then be implanted back into the
patient. However, in addition to simply replicating,
proliferating HAC may also synthesize ECM macromole-
cules such as collagen type I and versican (Jakob et al., 2001),
which would contribute to overall metabolic heat produc-
tion by the cells. Interestingly, the specific types of ECM

proteins that are produced by HAC are known to be
modulated by the stage of differentiation of the cell (Benya
and Shaffer, 1982). While established cell lines and cells of
animal origin tend to behave highly reproducibly in vitro,
articular chondrocytes derived from adult humans have
high donor to donor variability in their proliferation rate
(Barbero et al., 2004), the amount of ECM produced
(Barbero et al., 2004), and gene expression profiles (Grogan
et al., 2007). Taken together, it may be that the inter-donor
variation in types of ECM proteins synthesized, produced in
varying amounts, also tend to confound the relation
between cell counts and heat flow data. Although age-
related changes have been reported to contribute to HAC
variability (Barbero et al., 2004), no trends could be
established between the donor age and the relation between
mQ and mG.

In vivo, HAC are embedded within a dense extracellular
matrix and have highly restricted motility. In contrast,
during in vitro culture, HAC are highly motile (mean speed
of�10mm/h) andmigrate randomly or in direct response to
chemotactic signals (Maniwa et al., 2001), at rates also
shown to have age-related variation (Hidaka et al., 2006).
While microcalorimetry has been used to assess the heat
output associated with the motility of sperm (Antonelli
et al., 1991) and parasitic worms (Manneck et al., 2011), no
studies to date have attempted to uncouple migration-
associated heat flow from other cellular energetic pathways
for adherent cell types such as chondrocytes. Considering
that IMC simply provides a net signal of heat flow,
encompassing all chemical and physical processes, it
remains a significant challenge to carefully design hypothesis
driven experiments allowing to uncouple the different
metabolic processes.

In this study, we established a method for the real-time
monitoring of heat production by human chondrocytes
during in vitro expansion. For HAC derived from particular
donors, thermograms appeared to be related to the growth
of the cells. However, likely due to high donor-to-donor
variability among other metabolic processes occurring in
parallel with proliferation, it was not yet possible to establish
a predictive correlation between the heat increase rate and
the growth rate, such as those readily shown for organisms
with highly reproducible growth patterns (e.g., bacteria).
Reproducible chondrocyte cell lines, which mitigate inter-
donor variability, could be used within a more limited but
more controlled model system to better understand the
metabolic heat production associated with specific cell
functions before adding the complexity associated with
primary human chondrocytes.
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Wadsö I, Gomez Galindo F. 2009. Isothermal calorimetry for biological

applications in food science and technology. Food Control 20:956–961.

Xi L, Yi L, Jun W, Huigang L, Songsheng Q. 2002. Microcalorimetric study

of Staphylococcus aureus growth affected by selenium compounds.

Thermochim Acta 387:57–61.

Yang L, Xu F, Sun L, Zhao Z, Song C. 2008. Microcalorimetric studies on

the antimicrobial actions of different cephalosporins. J Therm Anal

Calorim 93:417–421.

6 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2011

______________________________________________________________________________Chapter 1

25



On-line monitoring of oxygen as a non-destructive
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Abstract

Regulatory guidelines have established the importance of introducing quantitative quality controls during
the production and/or at the time of release of cellular grafts for clinical applications. In this study we aimed
to determine whether on-line measurements of oxygen can be used as a non-destructive method to estimate
the number of chondrocytes within an engineered cartilage graft. Human chondrocytes were seeded and
cultured in a perfusion bioreactor, and oxygen levels in the culture medium were continuously monitored
at the inlet and outlet of the bioreactor chamber throughout the culture period. We found that the drop
in oxygen across the perfused construct was linearly correlated with the number of cells per construct
(R2=0.82, p< 0.0001). The method was valid for a wide range of cell numbers, including cell densities
currently used in the manufacture of cartilage grafts for clinical applications. Given that few or no non-
destructive assays that quantitatively characterize an engineered construct currently exist, this non-invasive
method could represent a relevant instrument in regulatory compliant manufacturing of engineered grafts
meeting specific quality criteria. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Regulatory bodies have recently outlined stringent quality
control guidelines for the production of engineered tissue
products for clinical applications (European Medicines
Agency, 2008; FDA, 2008). In particular, these guidelines
specify that an engineered product must be thoroughly
characterized during the production and/or at the time
of release, including quantitative measurements of the
tissue’s most relevant biological attributes (e.g. cell num-
ber, cell phenotype, amount of specific extracelluar matrix
components). Considering that essentially all methods
that are routinely employed for the characterization of
engineered tissues are currently based upon destructive
techniques, the new regulations pose significant hurdles
for the translation of cell-based tissue products into the

clinic, necessitating the development of novel non-
destructive methods to quantify key biological parameters.

Monitoring of oxygen in culture media may seem to be
an obvious approach to characterize cell/tissue cultures,
given its common practice in bioreactors used in other
fields of biotechnology (e.g. stirred-tank bioreactor for
fermentation). It is quite surprising, then, that on-line
monitoring of oxygen is rarely performed during the
cultivation of engineered tissues. One tissue-engineering
study, which included the acquisition of oxygen measure-
ments, proposed the method as a potential means of
estimating the total number of cells within an engineered
graft (Janssen et al., 2006). However, oxygen measure-
ments were simply related to a theoretical model of expo-
nential cell growth, but no correlations were established
with experimentally derived data of the actual number
of cells within engineered constructs.

We previously developed a bioreactor system to perfuse
culture media directly through the pores of three-
dimensional (3D) scaffolds, thereby reducing diffusion
controlled oxygen transport, minimizing oxygen gradients

*Correspondence to: I. Martin, Institute for Surgical Research and
Hospital Management, University Hospital Basel, Hebelstrasse 20,
4031 Basel, Switzerland. E-mail: imartin@uhbs.ch

Copyright © 2011 John Wiley & Sons, Ltd.

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE RESEARCH ARTICLE
J Tissue Eng Regen Med (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/term.473

___________________________________________________________________________Chapter 2

26



within the construct, and facilitating control over the
oxygen levels applied to the cells (Wendt et al., 2006).
On-line micro-oxygen sensors were integrated into the
system to continuously monitor the range of oxygen in
the culture medium perfused through the 3D constructs
throughout the culture period. Using this bioreactor
system, we demonstrated that when chondrocytes where
supplied with a normoxic range of oxygen (i.e. 15–19%), a
graft of clinically relevant size could be generated, which
contained a uniform distribution of viable cells and
extracellular matrix. Using our established bioreactor-
based model system, we now demonstrate that on-line
measurements of oxygen can be used to estimate the
number of cells within a 3D construct during culture, thus
providing a non-invasive and quantitative method to assess
a key quality parameter of engineered tissue grafts.

2. Methods

2.1. Chondrocyte isolation and expansion

Full-thickness human articular cartilage samples were col-
lected post mortem from the femoral lateral condyle of
nine individuals, aged 26–70 (51�13) years, with no
known clinical history of joint disease, after informed
consent of the relatives and approval by the local ethical
committee. Chondrocytes were isolated by collagenase
digestion and expanded for up to two passages, as
previously described (Barbero et al., 2004).

2.2. Cell seeding and culture in the perfusion
bioreactor

The bioreactor system was designed to first perfuse a cell
suspension directly through the pores of a 3D scaffold, to
seed cells uniformly throughout the entire scaffold, and
subsequently to perfuse culture medium to maintain
cell viability within the seeded constructs throughout
culture. The bioreactor was placed in a humidified incuba-
tor with 5% CO2, therefore providing an environment
with an oxygen concentration of 19% O2 (as opposed to
21% O2 in ambient air). In nine independent experiments,
1.0E+05 human articular chondrocytes (HACs) were
perfusion-seeded into fibronectin-coated Hyaff-11 non-
woven meshes (6mm diameter� 2mm thick; Fidia
Advanced Biopolymers, Italy) at a superficial velocity of
1mm/s for 16 h, as previously described (Wendt et al.,
2003). The cell-seeded meshes remained within the
bioreactor and were then further cultured under perfu-
sion at a superficial velocity of 10mm/s for time points
ranging from 3days up to 2weeks (Wendt et al., 2006).
Perfused constructs were cultured in 20ml Dulbecco’s
modified Eagle’s medium (DMEM; 10% fetal bovine
serum, 1mM sodium pyruvate, 100mM HEPES buffer,
100 U/ml penicillin, 100 mg/ml streptomycin and
0.29mg/ml L-glutamine) supplemented with 1 ng/ml

transforming growth factor-b1 and 5 ng/ml fibroblast
growth factor-2, factors previously shown to enhance
HAC proliferation (Barbero et al., 2003), and the medium
changed twice per week. The culture medium, which was
recirculated through the system, was re-oxygenated prior
to reinfusion at the inlet of the construct by flowing
through one meter of gas-permeable platinum-cured
silicon tubing (1/32 in i.d., 1/16 in o.d.; Cole Parmer).

2.3. Oxygen sensing

Tomonitor dissolved oxygen concentrations at the inlet and
at the outlet of perfused constructs, disposable chemo-optic
flow-through micro-oxygen sensors (FTC-PSt-3; PreSens
GmbH, Germany) were connected to the top and bottom
of the bioreactor scaffold chambers (Figure 1). The on-line
sensors, which are based on the quenching of luminescence
by oxygen molecules, do not consume oxygen, are indepen-
dent of flow rate and maintain long-term calibration
stability. Disposable sensors were supplied sterile and pre-
calibrated, with the 0% oxygen calibration value determined
in nitrogen and the 100% air saturation value determined
in ambient air (i.e. 21% O2). Oxygen measurements were
acquired every 10min throughout the culture period.

In the direct perfusion bioreactor, the mass balance on
oxygen can be described by:

F� CO; in � CO; out
� � ¼ N tð Þ�qo (1)

where F is the volumetric flow rate of the culture medium,
C0,in and C0,out are, respectively, the oxygen concentration
at the inlet and at the outlet of the scaffold, N(t) is the
number of cells at time t, and qo is the oxygen consump-
tion rate/cell. To calculate the oxygen consumption rate/
cell, this can be represented as:

qo ¼ ΔO2

N tð Þ �F (2)

where ΔO2 is the drop in oxygen concentration across the
perfused construct (i.e. ΔO2=CO, in – CO, out).

2.4. Cell quantification

Oxygen measurements were compared to the number of
cells within the 3D tissue constructs, which were deter-
mined by an established but destructive method. At the
end of the culture period, constructs were harvested from
the bioreactor and digested in 500 ml proteinase K solution
(1mg/ml protease K in 50mM Tris with 1mM EDTA, 1mM

iodoacetamide and 10 mg/ml pepstatin-A) for 15 h at
56 �C, as previously described (Hollander et al., 1994).
The amount of DNA in the digested constructs was
quantified using a CyQUANTW Cell Proliferation Assay
Kit (Molecular Probes, Eugene, OR, USA) according to
the manufacturer’s instructions. To relate the quantity of
DNA to cell number, at the time of each seeding, aliquots
of the seeding cell suspension, which contained a known
number of cells, were collected, centrifuged to obtain
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pellets, digested with proteinase K solution, and assessed
using the CyQUANT kit as for the cultured constructs.

2.5. Statistical analysis

Linear regression analysis was performed using Statistica
software (StatSoft, Inc., USA).

3. Results and discussion

Representative on-line oxygen measurements during a
2week culture period are shown in Figure 2. Measure-
ments at the inlet remained quite constant at 90% of
ambient air saturation throughout the culture period,
confirming that the recirculated culture medium was
fully re-oxygenated to incubator saturation levels (i.e.
19% O2) prior to re-infusion at the inlet of the construct.
Therefore, following the first experiment, acquisitions of
the inlet sensors were reduced to a continuous 30min
sampling period once per day, but maintaining the 10min
sampling rate at the outlet. Oxygen levels measured at the
outlet tended to decrease rather slowly during the initial
2–4days, then more rapidly until days 10–12, when they
reached a plateau.

Growth rates of HACs within the 3D scaffolds were
found to vary with cell donor. This is consistent with the
donor-to-donor variability that has been reported in the
proliferation rates of HACs when expanded in conven-
tional two-dimensional (2D) monolayer culture (Barbero
et al., 2003). Nevertheless, on average, cell numbers in
the 3D scaffolds tended to increase slowly during the

initial 3–4 days, then increase more rapidly until approxi-
mately days 10–12, at which time the cell number did not
increase appreciably. Figure 3 shows that the oxygen drop
(ΔO2; calculated as the difference between the inlet
and outlet oxygen measurements) and the cell number
over time have similar-shaped sigmoidal distributions,
suggesting that cell growth within the 3D tissues could

Figure 1. Bioreactor-based model system. The bioreactor system was designed to first perfuse a cell suspension directly through the
pores of a 3D scaffold, to seed cells uniformly throughout the entire scaffold, and subsequently to perfuse culture medium to maintain
cell viability within the seeded constructs throughout culture. To monitor the oxygen concentrations in the culture medium that was
perfused through the construct, disposable chemo-optic flow-through micro-oxygen sensors were connected to the inlet and outlet of
the bioreactor scaffold chambers. Measurements were acquired at defined intervals and monitored on a PC throughout the culture
period

Figure 2. On-line oxygen measurements acquired at the inlet
and the outlet of the perfused bioreactor chamber every 10min
during a 2week culture period in the first experiment. Measure-
ments at the inlet remained constant throughout the 2week
culture period and indicated that the culture medium was
fully re-oxygenated within the perfusion loop to incubator
saturation levels (approx. 90% saturation in ambient air) prior
to re-infusion at the inlet of the construct. Artifacts (small peaks)
in the inlet and outlet oxygen measurements could be observed
as a result of temporary fluctuations in temperature and gas
composition when opening the incubator door. The ΔO2 across
each perfused 3D construct was calculated from the difference
between the inlet and outlet measurements at the end of the
culture period (e.g. day 14 in this figure)
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be monitored over the time of culture via the oxygen
measurements.

The number of cells in each 3D tissue construct was
then plotted vs ΔO2 for the corresponding construct at
the end of the specific culture period (Figure 4). Linear
regression analysis showed that a significant linear relation-
ship could be established between ΔO2 and the cell number,
with R2=0.82 and p< 0.0001. Therefore, the oxygen
measurements can be used as a tool to non-invasively and
quantitatively estimate the number of cells within the 3D
tissue constructs throughout a prolonged culture period.

While numerous studies have previously measured
oxygen gradients and/or oxygen consumption of 3D
tissues, this study establishes a quantitative relationship
between cell number and oxygen measurements, based
on a non-invasive method that is directly applicable
during the engineering of 3D tissues and that can be
readily adapted for clinically related applications.
Although fluorescence-based sensors integrated into the
bottom of multi-well plates (Guarino et al., 2004) can be
a valuable high-throughput research tool, particularly for
suspension cultures, little information can be obtained

regarding the oxygen concentrations within 3D tissues.
2D maps of oxygen levels over the external surfaces of
tissues have been obtained by placing a fluorescence-
based sensor in direct contact with the tissue; however,
this method also provides little information regarding
oxygen levels within the internal region of a 3D tissue
(Kellner et al., 2002). A microelectrode in combination
with a micromanipulator has been used to physically
penetrate engineered cartilage constructs in order to mea-
sure local oxygen levels with high spatial resolution
(Malda et al., 2004a). Although based on an invasive
method, and without establishing a direct correlation
between cell number and oxygen consumption, this study
demonstrated the presence of steep oxygen gradients
within statically cultured constructs (20% O2 at the
periphery to 2% O2 within the interior), reflecting the
non-homogeneous distribution of cells. Considering that
the phenotype (Murphy and Polak, 2004) and metabolism
(Bibby et al., 2005; Das et al., 2010) of cells can be
affected by the level of oxygen supplied, this highlights
the limited reliability of assessing oxygen consumption
in uncontrolled 3D models suffering from diffusional
limitations, such as static culture systems. Instead, when
cultured under perfusion, cells throughout a 3D construct
can be supplied with more homogeneous and controlled
levels of oxygen. Although we cannot confirm that cells
within specific local regions of the porous scaffold were
subjected to lower oxygen levels than those measured at
the outlet, computational models have predicted this to
be a negligible phenomenon at high flow rates and to
occur in only a relatively minor volume fraction of the
scaffold at low flow rates (Cioffi et al., 2008).

The average specific oxygen consumption rate
calculated among all constructs was 86�15 fM/h/cell,
which is consistent with rates found for chondrocytes
isolated from the growth plate (Haselgrove et al., 1993),
chondrocytes cultured on ceramic granules (Nehring
et al., 1999) and chondrocytes expanded on microcarriers
(Malda et al., 2004b). This rate is one order of magnitude
higher than that measured for native cartilage (Stockwell,
1979), although this is not surprising, given the low

Figure 3. (a) Representative plot of the average cell number (n=3 independent chambers/time point) in constructs that were har-
vested at different time points (1, 3, 7, 10 and 14days). (b) Representative plot of the oxygen drop across a construct during a 2week
culture period, in the same experiment corresponding to panel (a). Plots of ΔO2 and cell numbers over time had similar-shaped
sigmoidal distributions, suggesting that cell growth within the engineered 3D tissues could be monitored throughout the culture time
via oxygen measurements

Figure 4. The number of cells in each 3D tissue construct vs the
oxygen drop (ΔO2) for the corresponding construct at the end of
the culture period for all nine experiments. Linear regression
analysis showed a significant linear relationship between ΔO2

and the cell number. Cell no. = (5.1E+04)∙(ΔO2); R2=0.82
and p<0.0001
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proliferation rate and limited metabolic activity of
chondrocytes within their native milieu. Our calculated
rate is also 10-fold higher than that previously estimated
for 3D engineered cartilage constructs (Obradovic et al.,
2000). However, in the latter study, culture medium was
mixed around the specimens and not directly through
the 3D tissues, oxygen measurements were obtained
during periodic partial media exchanges, and cells were
not cultured under proliferative culture conditions.

While we have established a linear relationship
between oxygen measurements and the number of HACs
under a set of defined culture conditions, the model could
readily be applied to other cell types and various other
culture conditions. However, the methodology may need
to be adapted to each particular application, including
the consideration of more complex oxygen metabolism
(e.g. greater dependence on oxygen levels; larger oxygen
gradients throughout the construct). Moreover, oxygen
measurements may need to be combined with the
monitoring of a second metabolic parameter (e.g. glucose,
pH) (Zhou et al., 2008) or used in conjunction with other
non-invasive techniques, such as ultrasound (Oe et al.,
2010), to characterize the engineered graft. In the current
model system, we have specifically assessed the expansion
of HACs in 3D scaffolds, applying a normoxic range of
oxygen (i.e. 19% at inlet and >10% at outlet). Ongoing
efforts are aimed at adapting the method to account for
HACs’ more complex oxygen consumption under hypoxic
conditions, and assessing whether oxygen measurements
can be used to predict cell numbers when constructs are
cultured at high density and under low oxygen (1–5%
oxygen tension). This would ultimately be key in the

process control of automated bioreactor systems by
monitoring the progression of cell growth during culture,
and possibly providing feedback to adjust the bioreactor
culture parameters or to initiate a subsequent phase of
culture when a threshold number of cells is reached
(Wendt et al., 2011). In this context, bioreactor-based
production systems that monitor process parameters and
specific properties of the developing/final graft will
ultimately provide a higher level of traceability of key
manufacturing data related to the quality of the
engineered implant (Martin et al., 2009).

4. Conclusions

In this study we have established a quantitative relation
between on-line oxygen measurements and the number
of cells within a 3D engineered tissue during perfusion
bioreactor culture. Given that few to no non-destructive
quantitative assays currently exist that clearly define the
quality of an engineered construct, this non-invasive
method could represent a significant element in regula-
tory compliant manufacturing of engineered grafts meet-
ing specific quality criteria.
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a b s t r a c t

Apart from partial or total joint replacement, no surgical procedure is currently available to treat large

and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we

developed a perfusion bioreactor system to engineer human cartilage grafts in a size with clinical

relevance for unicompartmental resurfacing of human knee joints (50 mm diameter ! 3 mm thick).

Computational fluid dynamics models were developed to optimize the flow profile when designing the

perfusion chamber. Using the developed system, human chondrocytes could be seeded throughout large

50 mm diameter scaffolds with a uniform distribution. Following twoweeks culture, tissues grown in the

bioreactor were viable and homogeneously cartilaginous, with biomechanical properties approaching

those of native cartilage. In contrast, tissues generated by conventional manual production procedures

were highly inhomogeneous and contained large necrotic regions. The unprecedented engineering of

human cartilage tissues in this large-scale opens the practical perspective of grafting functional biological

substitutes for the clinical treatment for extensive cartilage defects, possibly in combinationwith surgical

or pharmacological therapies to support durability of the implant. Ongoing efforts are aimed at inte-

grating the up-scaled bioreactor based processes within a fully automated and closed manufacturing

system for safe, standardized, and GMP compliant production of large-scale cartilage grafts.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

While Carticel" and Hyalograft-C" have been well established in

the clinic for the treatment of traumatic focal cartilage defects [1e3],

no tissue engineered product is currently available to treat large

defects or those associated with advanced diseases such as osteoar-

thritis. Beyond the biological challenges that must be addressed to

treat such joint disorders, it remains a significant engineering chal-

lenge to generate up-scaled cartilage grafts with dimensions that

wouldbe sufficient for the repairof large, advanced, anddeepdefects.

We previously developed a perfusion bioreactor for seeding and

culturing cell-scaffold constructs with a clinically relevant thick-

ness (z4 mm) and demonstrated that highly viable and homoge-

neous tissues could be generated [4]. However, the diameter of the

engineered tissues, representative of constructs typically described

in the literature for research purposes (i.e., z8 mm diameter),

would not be applicable for the treatment of large defects unless

multiple plugs were generated and implanted in a surgical proce-

dure resembling mosaicplasty. Therefore, in this work, we scaled-

up our perfusion bioreactor system to engineer large-sized human

cartilage grafts, in dimensions that would be sufficient for uni-

compartmental resurfacing of a human knee joint (50 mm diam-

eter ! 3 mm thick). Computational fluid dynamics (CFD) models

were developed to assist in the design of a bioreactor that could

generate a uniform velocity profile over the surface of the large-

diameter scaffold. Experimental validations demonstrated that the

developed bioreactor system seeded cells uniformly throughout

the large-scale scaffold, and following prolonged culture, supported

the generation of viable, homogeneous, and cartilaginous tissue

constructs with biomechanical properties approaching those of

native cartilage. In contrast, constructs generated by conventional

manual production procedures were highly inhomogeneous con-

taining a significant non-viable and void region, highlighting the

necessity of a perfusion bioreactor based approach for engineering

large-scale cartilage grafts.
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2. Methods

2.1. Perfusion bioreactor system

The bioreactor system was designed to first perfuse a cell suspension directly

through the pores of a 3D scaffold, to seed cells uniformly throughout the entire

scaffold [5], and subsequently perfuse culture media, to maintain cell viability

within the seeded constructs throughout culture [4]. The bioreactor chamber

(Applikon Biotechnology BV, The Netherlands) was fabricated from electropolished

AISI 316L stainless steel and included four inlet and four outlet ports (Fig.1a) in order

to disperse the cell suspension and the culture media uniformly over the large

scaffold surface area. Mesh scaffolds were clamped around the outer 1 mm

periphery by a 3 mm thick Teflon ring (Fig. 1b) to prevent culture media from

flowing around the scaffold, ensuring flow through the scaffold pores. To provide

mechanical support to the delicate mesh and prevent deformation against flow

induced drag forces, scaffolds were sandwiched between two stainless steel wire

grids (Bopp AG, Switzerland). The chamber was integrated within the bioreactor

system shown in Fig. 1c, which included a fluid flow pathway for the phase of cell

seeding and one pathway for prolonged culture.

2.2. Computational fluid dynamics (CFD) simulations

Computational models of fluid flow within two proposed bioreactor designs

were developed and analyzed using Ansys Fluent 12.1. The first designwas based on

coaxial single inlet and outlet ports, and second design with four inlet and outlet

ports. The scaffold (50 mm diameter ! 3 mm thick) was simulated as a highly

viscous fluid, calculated by setting Darcy’s Law and the Poisseuille equation equiv-

alent. The value of the apparent viscosity (hs) depended on the geometry dimension

(scaffold surface area A, properties of fluid (density r) and morphology character-

istics (porosity 4, permeability k).

hS ¼
pr4rg

8Afk
(1)

The properties of the scaffold, a Hyaff-11 non-woven mesh (Fidia Advanced

Biopolymers; Italy), were obtained experimentally through mercury porosymetric

analysis (average pore size ¼ 68 mm, 4 ¼ 91%, k ¼ 2.13 ! 10$11m2). The continuous

phase (culturemedia),withdensity approximated as r¼1000 kgm$3 andviscosity of

h ¼ 0.001 Pa s, was assumed under steady state conditions inside the bioreactor

chamber. No slip boundary conditions were applied at the bioreactors walls. Flow

rates were 30 ml/min (corresponding to 18 mm/s at the inlet) for cell seeding simu-

lations and 12 ml/min (corresponding to 7 mm/s at the inlet) for culturing simula-

tions. The inlet velocity applied to each of the four inlet ports was divided by four in

themultiple-port design as compared to the single inlet port design. Nil pressurewas

applied at the outlet. An axisymmetric model was developed for the single coaxial

port bioreactor whereas a 3D model was developed for the four-port bioreactor.

2.3. Cell seeding & construct culture

Human Articular Chondrocytes (HAC) were isolated from cartilage biopsies

obtained from three individuals (age: 26e60 years) after informed consent and in

accordance with the local Ethical Commission. HAC were expanded for 2 passages

(8e10 doublings) in basic culture medium (DMEM, 10% fetal bovine serum, 1 mM

sodium pyruvate, 100 mM HEPES buffer, 100U/ml penicillin, 100 mg/ml streptomycin,

and 0.29 mg/ml L-glutamine) further supplemented with transforming growth

factor-b1 (TGF-b1, 1 ng/mL) and fibroblast growth factor-2 (FGF-2, 5 ng/mL), factors

previously shown to increase the proliferation rate and post-expansion rediffer-

entiation capacity of human chondrocytes [6]. A clinically relevant cell seeding

density was determined based on the number of chondrocytes that can be obtained

from an average cartilage biopsy size obtained for autologous chondrocyte

implantation (ACI) procedures (z280 mg) [1], the average chondrocyte yield from

a human cartilage digest (2.5Eþ06 cells/g tissue) [7], and the number of cell

doublings during expansion with two passages (z8 doublings). Based on these

calculations, 2.0E þ 08 HAC were resuspended in basic culture media (90 ml) and

perfusion seeded into a Hyaff-11 non-woven mesh (50 mm diameter ! 3 mm thick)

at a flow rate of 30ml/min for 16 hwithin two independent bioreactor systems. Cell-

seeded meshes were then either harvested and stained with MTT to assess the

distribution of cells seeded throughout the scaffold or were further perfusion

cultured in the bioreactor (flow rate of 12 ml/min) for two weeks to generate

a cartilaginous graft. Constructs were cultured in 300 ml chondrogenic media (basic

culture media supplemented with 10 mg/mL Insulin, 0.1 mM ascorbic acid 2-phos-

phate, and 10 ng/mL Transforming Growth Factor-b3 [8]) under hypoxic oxygen

levels (5%O2). In parallel, small diameter constructs (n¼ 2 per experiment) were also

engineered in our previously described “research-scale” bioreactor system [4]

(2.0Eþ06 chondrocytes seeded and cultured on 6 mm diameter ! 3 mm thick

Hyaff-11) to serve as controls for the scaled-up bioreactor system. In one experi-

ment, large-scale engineered constructs were also generated by static cell seeding

and static culturing methods to compare the bioreactor based approach to

conventional manual manufacturing techniques. Engineered constructs were

assessed biochemically, histologically, and biomechanically.

2.4. Histological analyses

Following the seeding phase, cell-seeded meshes (n ¼ 2) were cut into four

sections, rinsed in phosphate buffered saline (PBS), and incubated at 37 %C for 2 h

with 0.12 mM MTT (3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;

Sigma, St. Louis, MO) to assess the distribution of cells throughout the scaffold.

Following two weeks of culture, sections of engineered constructs were rinsed in

PBS, fixed in 4% formalin, embedded in paraffin, cross-sectioned (10 mm thick) and

stained with Safranin-O for glycosaminoglycans (GAG).

2.5. Biochemical quantification

Engineered constructs were digested with protease K solution (1 mg/ml

protease K in 50 mM Tris with 1 mM EDTA, 1 mM iodoacetamide, and 10 mg/ml

pepstatin-A for 15 h at 56 %C) as previously described [9]. DNA was quantified with

the CyQUANT" Cell Proliferation Assay Kit (Molecular Probes, Eugene, OR), with calf

thymus DNA as a standard. GAG was quantified with the dimethylmethylene blue

colorimetric assay, with chondroitin sulfate as a standard [10].

Fig. 1. (a) Scaled-up perfusion bioreactor for engineering human cartilage grafts in a size with clinical relevance for unicompartmental resurfacing a human knee joint. (b) Hyaff-11

non-woven mesh scaffolds (50 mm diameter ! 3 mm thick) were clamped at the periphery to ensure flow through the scaffold pores. Stainless steel grids provided mechanical

support to cell-scaffold constructs during seeding and perfusion culture. (c) The bioreactor system was designed to first perfuse a cell suspension directly through the pores of a 3D

scaffold, to seed cells uniformly throughout the entire scaffold [5], and subsequently perfuse culture media, to maintain cell viability within the seeded constructs throughout

culture [4].
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2.6. Suture pull-out test

Since the large-scale grafts would likely require fixation with sutures to the

surrounding tissue when implanted, pull-out tests were performed to measure the

maximal force that could be applied on a suture in the axial direction before pulling

out from the construct, as previously described [11]. Sections of the engineered

constructs (z20 mm length ! 10 mm wide) were secured at their lower end with

a suture (POLYSORB 5-0, coated, braided lactomer 9-1, synthetic absorbable suture

with a P-13 needle; Covidien, Mansfield, MA) inserted 1mme2mm above the end of

the specimen and fixed with a flying triple knot to a holding hook affixed to the base

plate of the mechanical testing instrument (MTS Synergie 100, MTS Systems

Corporation, Eden Prairie, MN). The knot from the suture was additionally held by

a needle holder to reduce the internal sliding from the knot. The upper end of the

specimenwas grippedwith another suture hung from a rigid metal hook attached to

the load cell of the test instrument. The actuator was programmed to apply elon-

gation at a rate of 1 mm/s until the suture pulled out of the specimen. The maximal

applied force was normalized to the specimen thickness, measured prior to per-

forming the tests, and is reported as N/mm.

2.7. Indentation tests

Biomechanical properties of the engineered constructs were assessed by both

dynamic and impact indentation tests [12]. Three specimens were punched out of

each construct and assessed with five repetitions for each test. Dynamic loading was

performed with a MTS Synergie 100 using an indenter tip of radius 1.585 mm.

Repeated single sinusoidal cycles at 0.1Hz were applied under displacement control

to a depth of z0.1 mm, separated by 50s pauses, shown to be sufficient to allow

dimensional recovery. Impact loading was performed with a single impact micro-

indentation (SIMI) device, mounted in a rigid load frame. The SIMI indenter

pendulum (radius ¼ 500 mm) falls freely, with impact force determined by mass

(1.7g) and gravity, which provides indentation depths of z0.1 mme0.2 mm in

healthy cartilage [12]. The motion of the indenter during indentation and rebound is

captured by an electromagnetic coil at a sampling rate of 125 kHz. The aggregate

moduli (E*) were calculated using equation (2):

E* ¼
3

4

!

1$ y2
"

"

Pa max

R1=2a
3=2
max

#

(2)

where, y is Poisson’s ratio (with y ¼ 0.44 [13]), amax is the maximum displacement,

Pamax is the force at maximum displacement, and R is the indenter radius.

3. Results

3.1. CFD simulations

With the goal of obtaining a uniform cell seeding distribution

and homogeneous tissue development, we aimed to design

a perfusion bioreactor chamber that could generate a uniform

velocity profile over the surface of a 50 mm diameter scaffold.

Initial concepts for the chamber were based on a simple scaling of

a “research-sized” bioreactor, previously designed to house a scaf-

fold 6e8 mm in diameter [4]. CFD simulations predicted this initial

design, which was based on coaxial single inlet and outlet ports, to

induce significantly higher fluid velocities at the center of the

scaffold than towards the periphery, for the range of flow rates

applied experimentally in this study (Figs. 2 and 3). Alternatively,

simulations based on the four-port chamber showed the flow to

quickly disperse within the main body of the chamber, resulting in

a uniform velocity profile over the surface of the 50 mm diameter

mesh (Figs. 2 and 3). The effect of the bioreactor design on the

velocity profile at the scaffold surface was quite prominent at the

high flow rate applied during the cell seeding phase. As shown by

the velocity distributions plotted in Fig. 2, for the single-port

bioreactor, the fluid reaches a high peak velocity of over 6 mm/s

near the center of the scaffold and steadily decreases along the

radius. In contrast, in the four-port bioreactor, velocity profiles

along two different radii (one passing directly under one port and

the other passing mid-way between two ports) were similar and

quite constant (approximately 1 mm/s), indicating a uniform flow

profile over the entire scaffold surface.

3.2. Cell seeding distribution

Consistent with the CFD simulations, which predicted a uniform

velocity profile at the surface of the scaffold, MTT staining of the

cell-seeded 50 mm meshes showed a homogeneous distribution of

cells throughout the scaffold volume (Fig. 4), similar to previous

results of perfusion cell-seeded small-scale scaffolds [5]. The

absence of staining at the periphery of the scaffold verified that

clamping of the mesh was effective in ensuring fluid flow (i.e., the

cell suspension) through the scaffold pores and preventing flow

around the edges of the scaffold.

3.3. Graft handling properties

Following two weeks of culture, macroscopically, large-scale

perfused constructs had a similar appearance as the small-scale

perfused constructs, despite the 70-fold scale-up in size (Fig. 5ab).

Large-scale constructs were quite stiff such that they could easily be

handled with forceps and did not bend under their own weight

(Fig. 5c). On the other hand, these constructs were flexible enough

to readily be bent when applying force with the forceps (Fig. 5d),

suggesting their potential to bemolded to the contours of a condyle

during surgical implantation.

3.4. Graft composition and structure

Statically-seeded/statically-cultured constructs had an average

of 0.24 & 0.07% GAG per wet weight tissue, but histologically were

highly heterogeneous. As shown in Fig. 6, statically-cultured

constructs were encapsulated by a dense layer of cells and were

intensely stained for Safranin-O along the outer 0.5e1.0 mm

periphery, but contained a necrotic internal region that was essen-

tially void of viable cells and extracellular matrix. Due to the highly

inhomogeneous structure of these constructs, additional analyses

were not performed. Constructs seeded and cultured in the large-

scale perfusion bioreactors contained similar fractions of GAG as

those cultured in the small-scale systems (50 mm: 0.15 & 0.03%;

6 mm: 0.43 & 0.05% GAG per wet weight) and were histologically

highly homogeneous (Fig. 6b and c). Cells were uniformly distrib-

uted throughout the entire volume of the scaffolds and embedded

within extracellular matrix positively stained for Safranin-O. To

quantitatively assess the uniformity of extracellular matrix deposi-

tion within a large 50 mm construct, samples (5 mm in diameter)

were punched from eight different locations across the diameter of

the scaffold and biochemically assessed for GAG content. Samples

across the diameter were found to have similar GAG fractions, with

a coefficient of variation of only 27.5% among the specimens.

3.5. Graft biomechanical properties

Following two weeks of culture, the average suture pull-out

force for 50 mm perfused constructs was 0.83 & 0.10N/mm, which

was 20% of the force previously found for native cartilage (4.5N/

mm) [11]. Suture retention test were not performed on 6 mm

constructs due their small size, which physically precluded their

testing. The aggregatemoduli under impact testing were similar for

50 mm and 6 mm constructs (50 mm: 1.70 & 0.19 MPa; 6 mm:

1.88 & 0.49 MPa), and were approximately 10% of the modulus of

native cartilage [12]. The aggregate modulus of 50 mm constructs

under dynamic testing was 30% that of 6 mm constructs (50 mm:

0.32& 0.13 MPa; 6 mm: 1.12& 0.56 MPa) and 5% of the modulus for

native cartilage [12]. Cell-free Hyaff-11 meshes were also assessed

and found to have a negligible suture pull-out force and negligible

aggregate moduli (under both dynamic and impact modes), with

values below the sensitivities of the instruments.
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4. Discussion

In this work, we have developed a perfusion bioreactor system

to scale-up engineered human cartilage grafts to a size with clinical

relevance for unicompartmental resurfacing of a human condyle.

CFD modeling was employed during bioreactor development as

part of a rational design strategy, leading to a bioreactor chamber

that facilitated uniform cell seeding throughout the large scaffold

volume and the generation of a homogeneous cartilaginous tissue

construct. To our knowledge, this is the first report of engineered

human cartilage constructs generated in this large-scale.

While one seemingly intuitive design to generate uniform flow

over the scaffold would be the inclusion of a flow distributor (e.g.,

perforated plate) within the chamber, it is likely that a significant

fraction of the perfused cells would attach/settle on such a device

during the cell seeding phase [5], thereby dramatically reducing the

efficiency of cell utilization. As opposed to scaling-up the bioreactor

chamber through a trial and error approach, CFD modeling allowed

for the efficient assessment and refinement of various chamber

geometries during the initial conceptual design stage. Therefore,

the bioreactor could be optimized, in term of flow profile, prior to

Fig. 2. CFD simulations of fluid flow within the bioreactors under the cell seeding flow rate of 30 ml/min (Top left) In the bioreactor with single coaxial inlet and outlet ports,

significantly higher fluid velocities were predicted at the center of the scaffold than towards the periphery. (Top middle) Simulations based on the four-port chamber showed the

flow to quickly disperse within the main body of the chamber after exiting each of the four ports, (top right) resulting in a highly uniform velocity profile over the surface of the

50 mm diameter scaffold. (Bottom) Velocity distributions at the scaffold surface along the scaffold radii in the two bioreactor designs. The range of fluid velocities in the single-port

bioreactor was quite broad, reaching a peak at over 6 mm/s near the center of the scaffold and steadily decreasing along the radius. The velocity distribution in the four-port

bioreactor was assessed along two different radii, one passing directly under one of the four inlet ports (r1), and the other mid-way between two inlet ports (r2). The velocity

distributions were quite similar along r1 and r2 and were quite constant along the radius. (, velocity in single-port bioreactor, D velocity in four-port bioreactor along radius r1, B

velocity in four-port bioreactor along radius r2).

Fig. 3. CFD simulationsoffluidflowwithin thebioreactorsunder the culturingflow rate of

12ml/min. Fluid flowwithin both bioreactors wasmore uniform at the culturing flow rate

than at the cell seeding flow rate, however, the velocities within the single-port bioreactor

were clearly still significantly higher at the center of the scaffold than at the periphery.
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manufacturing costly prototypes and performing time-consuming

experimental tests, saving time and resources.

Hyalograft-C, a 2 cm ! 2 cm ! 0.15 cm thick Hyaff-11 based

cartilage graft, has been shown to provide a clinical improvement

to young patients with focal cartilage defects [2,3,14]. While the

current manufacturing process, based on conventional manual

static cell/tissue culture techniques [15], may be sufficient to

produce Hyalograft-C in its current size, we speculated that

a perfusion bioreactor based approach could improve the quality

of larger sized grafts. Indeed, the data we have presented here are

consistent with our previous study [4] showing that the viability,

homogeneity, and quality of engineered tissue constructs that are

several millimeters in thickness can be dramatically improved

when cultured under perfusion vs conventional static culture

methods. Moreover, we have also shown that we could generate

50 mm diameter constructs in the scaled-up bioreactor with

similar quality to those generated in our small research-scale

bioreactor system, despite the 70-fold up-scaling (5.9 cm3 vs.

0.085 cm3).

One of the central questions in cartilage tissue engineering that

remains to be answered is “How good is good enough?”. In other

words, what degree of in vitro maturation is required for a cartilage

graft to support or induce a successful repair? Based on ectopic in vivo

model systems, Hyaff-11 based constructs thatwere pre-cultivated in

vitro to generate a cartilaginous extracellularmatrix had an enhanced

capacity to further develop in vivo as compared to those constructs

that contained only cells attached to the Hyaff-11 meshes [11,8].

Using a bioreactor based in vitromodel system to simulate aspects of

joint loading, Demarteau found that mechanical deformation could

increase the synthesis and accumulation of GAG in engineered

cartilage constructs, but only if the tissues were sufficiently devel-

oped prior to the time of loading [16], suggesting that engineered

cartilage tissues may need to possess sufficient mechanical integrity

and biological responsiveness prior to implantation.

Fig. 4. Two sections of the MTT stained meshes following perfusion cell seeding. Cells

were homogeneous distributed throughout the large-diameter scaffolds. The

unstained periphery of the scaffold reflects the outer 1 mm region that was clamped in

the bioreactor.

Fig. 5. Macroscopic views of (a) small-scale perfused cartilage constructs (6 mm diameter) compared to (b) large-scale constructs generated in the bioreactor (50 mm diameter)

after 2 weeks of culture. (c) Large-scale grafts generated in the bioreactor were quite stiff, could be easily handled with forceps, and did not bend under their own weight. (d)

However, the grafts were flexible enough to be bent with forceps and could potentially be molded to the contours of a human knee joint.
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At the time of its implantation, the Hyalograft-C graft contains

chondrocytes attached to the Hyaff-11 mesh fibers, but little to no

extracellular matrix, and thus, maturation of the implanted

construct (biochemically and mechanically) occurs within the

repair site [17], typically taking more than 18 months [18]. While

a graft with negligible mechanical properties may be sufficient for

filling focal defects, in which the surrounding healthy native

cartilage may be sufficient to support joint loading, a graft for

resurfacing the lateral or medial condyle would likely need to be at

a more advanced stage of maturation to provide a higher degree of

functionality. Interestingly, recent mid-term follow-up studies have

shown poorer clinical outcomes, in terms of defect filling and

repair, of larger vs smaller defects treated with Hyalograft-C [14,3].

Based on a short culture period of only two weeks, the 50 mm

constructs engineered in our scaled-up bioreactor had 20% of the

suture retention and 5e10% of the aggregate moduli of native

cartilage tissue. If deemed necessary, the culture time could simply

be prolonged or culture conditions further optimized (e.g., culture

media supplements, flow rate, oxygen tension) to further increase

construct maturity. However, a more developed tissue with higher

mechanical properties could potentially be challenging to mold to

the contours of a knee andmay therefore require the engineering of

a graft of pre-defined shape. In that case, the design strategy out-

lined in this work could serve as a foundation to design a bioreactor

for seeding and culturing constructs of anatomically shaped grafts.

We have previously reported on the engineering of thin

small-scale Hyaff-11 based cartilage constructs, generated by

conventional labor-intensive and manual static cell/tissue culture

techniques [19]. In the current study, we have generated cartilagi-

nous constructs with comparable GAG staining and GAG contents,

which were 140-fold larger in size and which were produced by

bioreactor basedmethods that are amenable to process automation

and control. In this context, ongoing efforts are aimed at integrating

the up-scaled bioreactor within a fully automated and closed

manufacturing system (Fig. 7) with the ultimate goal of safe,

standardized, cost-effective and GMP compliant production of

large-scale cartilage grafts. In conjunction with surgical or phar-

macological therapies, which may aid in the durability of the

implanted graft, the engineering of human cartilage tissues in this

large-scale paves the way for grafting functional biological substi-

tutes for the clinical treatment of extensive cartilage defects.
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Appendix

Figures with essential color discrimination. Figs. 1e7 in this

article are difficult to interpret in black and white. The full color

Fig. 6. Safranin-O staining for GAG following 2 weeks of culture. (Left) Large-scale constructs generated by conventional production methods (static seeding and static culture) had

a dense layer of cells and GAG along the outer periphery but contained a necrotic internal region void of cells and matrix. (Middle) Small-scale constructs (6 mm diameter ! 3 mm

thick) generated in our previously described “research-scale” perfusion bioreactor [4] contained cells and Safranin-O stained matrix that were uniformly distributed throughout the

scaffold. (Right) Large-scale constructs generated in the up-scaled perfusion bioreactor were histologically similar to small-scale perfused constructs, with cells and GAG homo-

geneously distributed throughout the cross-sections.

Fig. 7. Ongoing efforts are aimed to integrate the perfusion bioreactor within

a prototype (Applikon Biotechnology BV, The Netherlands) of an automated and closed

bioreactor system, with the ultimate goal of safe, standardized, cost-effective and GMP

compliant production of large-scale cartilage grafts [20].
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images can be found in the on-line version, at doi:10.1016/j.

biomaterials.2010.08.009.
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Conclusions and future perspectives 

 

Tissue engineering products promise to be a viable and competitive alternative to 

upcoming off-the-shelf innovations in regenerative medicine if they are manufactured with 

reproducible properties, using processes compatible with regulatory and commercialization 

requirements. Implementation of automation, monitoring and control of the manufacture 

process are thus critical steps towards a broad clinical translation.  

In this work a method was first studied to predict chondrocyte proliferation rate. Then a 

technique for on line monitoring of 3D growth was validated and finally, a controlled model 

system was developed to reproducibly generate clinically relevant size cartilaginous grafts. 

Figure 1 shows a possible application, in which all the techniques developed during this thesis 

work could be integrated, synergistically leading towards a more controlled and automated 

engineering of the final graft. Indeed, Figure1-A represents the traditional tissue engineering 

approach for the generation of a graft, in which all the manufacture processes are manual. In 

this process, after isolation, chondrocytes are plated and expanded on plastic dishes, then 

trypsinized and reseeded manually on the 3D scaffold; the construct maturation is performed 

under static culture. A valuable alternative is the streamlined bioreactor based approach 

described in Figure 1B: cells isolated from the tissue biopsy are expanded directly within the 

porous 3D scaffold and cultured in the same environment until the graft is sufficiently mature 

for implantation. The use of a bioreactor system combined with a streamlined approach 

would, indeed, benefit in minimizing the process and product variability. By bypassing the 

operator/handling-dependent procedures, through monitoring and controlling the culture 

parameters, the bioprocesses and resulting engineered graft could be standardized, thus 

ensuring compatibility with regulatory and commercialization requirements (Martin et al., 

2009). 
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Figure 1. Production of cartilage tissues by conventional methods or the simplified bioreactor-based streamlined 

process. In the streamlined process, primary chondrocytes are seeded, expanded, & differentiated directly in a 

3D scaffold to generate a cartilaginous tissue within a single closed & monitored bioreactor system. 

 

 

 

The interaction between the techniques developed during this PhD program in a 

streamlined, upscaled and controlled bioreactor based culture, is illustrated in Figure 2. The 

upscaled bioreactor system described in Chapter 2 would be functional to a homogeneous 

seeding of freshly isolated human chondrocytes on the scaffold. As already discussed, in a 

clinically relevant scenario, due to the limited size of the available cartilage biopsy (only 100-

250 mg of tissue, 2.5E+06 cells/gram of cartilage (Brittberg, 2008), the number of cells 

obtained from the digestion would be insufficient to start in vitro chondrogenesis without an 

initial in vitro expansion phase. Therefore, following seeding, constructs would remain in the 

bioreactor system, perfused with “proliferating” culture medium (DMEM supplemented with 

10% FBS, 1ng/ml TGFß1, and 5ng/ml FGF-2) to expand the primary cells directly within the 

scaffold. Due to the donor variability of the proliferation rate, it is critical to monitor the 

number of cells present in the scaffold, to define when the optimal cell density on the scaffold 

is reached. Therefore, the in-line micro-oxygen sensors described in Chapter 3 could be 

integrated in the upscaled bioreactor system and the quantitative correlation between the 

oxygen measurements and the number of cells previously developed could provide a non 

invasive, online, real time monitoring of cell proliferation. The number of cells in the scaffold 
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would become the trigger to proceed to the next culture phase, in which the constructs, still 

within the same bioreactor, will be perfused with differentiation medium (DMEM, FBS10%, 

TGFβ3 10ng/ml, Ascorbic acid 0.1mM, Insulin 1UI/ml) in 5% O2 tension. This graft 

maturation could be maintained for some weeks, and the oxygen in line sensor measurements 

would be used to better monitor the experimental conditions. In order to judge the maturation 

level of the graft at release, nowadays the standard techniques, such as biochemical, 

biomechanical and histological analyses have the evident disadvantage of being destructive 

and/or not in line. Indeed, without a quantitative, in line, established technique to evaluate this 

parameter during perfusion culture, adapting the culture time to the effective developmental 

stage of the construct is next to impossible. A possible future perspective to overcome this 

limitation could be to monitor physical or chemical biomarkers in the medium (i.e. GAG 

concentration), or to directly evaluate the biomechanical properties of the construct within the 

bioreactor (Buschmann et al., 1995; Davisson et al., 2002). Also testing and adapting the 

oxygen consumption based technique, described in Chapter 2, to the differentiation culture 

conditions, could provide an interesting feedback on the cell vitality at graft release. Finally, 

the feasibility of reaching the target of a clinically usable graft is challenged by the intrinsic 

variability in the behavior of human cells from different batches or donors (Barbero et al., 

2004). The microcalorimetry based technique described in Chapter 1, if further studied and 

developed, could provide a predictive tool to discriminate between donors eligible to be 

treated with TE techniques, to better schedule the graft production, and, potentially, to 

optimally target the culture conditions, based on the reactivity of the specific donor, thus 

optimizing process cost vs. benefit.   

In conclusion, all the technologies proposed in this study aimed to provide tools and methods 

to standardize the generation of more reproducible cartilaginous grafts. The integration of the 

upscaling technique with the oxygen consumption based control has already successfully been 

tested, and a paper describing the results obtained is in preparation. Moreover, the tools and 

technologies that have been developed within this PhD program will serve as the foundation 

for a recently approved Collaborative Project funded by the European Union, coordinated by 

Professor Martin. The goal of this project will be to produce cartilage tissue grafts, engineered 

to possess functional properties, with the aim of establishing a tissue therapy to reduce initial 

rehabilitation time and support a durable repair in the long-term. In order to reach this goal the 

research based technologies and processes described in this dissertation will be adapted for 

GMP compliance and conformance to regulatory guidelines for the production of engineered 

tissues for clinical use, which will be tested in a clinical trial.  The project will exemplify the 
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roadmap for a bioreactor-based translation of tissue engineering strategies into clinical 

products, in which the proof-of-principle in the context of cartilage repair will have an impact 

on the broad utilization and commercialization of cell-based grafts as therapeutic solutions for 

a variety of other indications (e.g., bone repair, epithelia reconstruction, etc.). 

  

 

 

 

Figure 2. Possible future integration of the techniques developed in this work to a streamlined bioreactor based 

production of cartilaginous grafts. Microcalorietry (Chapter 1) provides a tool for the quality screening of the 

isolated cells; if the donor is judged eligible for the treatment from the ICM based test, the cells are seeded and 

cultured within the scaled up bioreactor system described in Chapter 3. Finally, by modifying the culture 

conditions based on the in line oxygen measurements (Chapter 2) a feedback controlled automation system can 

be set.  
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