Tröndlin, Lars. Entwicklung neuer P,N-Liganden und ihre Anwendungen in der Iridium-katalysierten Hydrierung von α,β-ungesättigten Carbonsäureestern. 2011, Doctoral Thesis, University of Basel, Faculty of Science.
|
PDF
9Mb |
Official URL: http://edoc.unibas.ch/diss/DissB_9788
Downloads: Statistics Overview
Abstract
Abstract Komplex Herstellung. Zwei neue Ligandenklassen wurden hergestellt und in der Iridium-katalysierten asymmetrischen Hydrierung getestet. Ausgehend von R,R- und S,S-Diphenylethylendiamin verbunden mit verschiedenen chiralen Pyridinylalkoholen wurden zwölf verschiedene Diazaphospholidin-Liganden hergestellt und zu Iridium-Komplexen umgesetzt. Diese Komplexe wurden in der Hydrierung von verschiedenen unfunktionalisierten und funktionalisierten Alkenen, besonders aber für alpha, beta-ungesättigte Carbonsäureester, getestet. Die Hydrierungen der verschiedenen Alkene waren sehr erfolgreich, sie lieferten Enantiomerenüberschüsse von bis zu 99%. Bei alpha-methylierten alpha, beta-ungesättigten Carbonsäureestern mit verschiedenen Substituenten in der beta-Position ergaben die Hydrierungen über 90% ee. Für die beta-methylierten Carbonsäureester lieferten die neuen Iridium-Komplexe bis zu 97% ee. Die Entwicklung und Herstellung von neuen P,N-Liganden, welche auf Imidazolinen basieren, wurde als nächstes untersucht. Strukturell ähnliche Oxazolin-Liganden wurden durch Imidazoline ersetzt. Durch das zusätzliche Stickstoffatom können die elektronischen und sterischen Eigenschaften der Liganden modifiziert werden. Eine erfolgreiche Syntheseroute zur Herstellung der Imidazolin-Iridium-Komplexe wurde entwickelt. Allerdings waren die Hydrierungen mit den neuen Imidazolin-Iridium-Komplexen eher unbefriedigend. Eine Verbesserung der Imidazolin-Liganden gelang, indem man den aromatischen Ring am Stickstoffatom durch eine Sulfonyl-Gruppe ersetzte. Es wurde eine neue Syntheseroute für diese Ligandenklasse entwickelt und es konnten somit vier neue Sulfonyl-Imidazolin-Iridium-Komplexe hergestellt und in der asymmetrischen Hydrierung getestet werden. Die Hydrierungen von verschiedenen unfunktionalisierten und funktionalisierten Alkenen lieferten Enantiomerenüberschüsse von über 90%. Anwendung in Naturstoff- und Wirkstoffsynthesen. Der zweite Teil dieser Arbeit war die Anwendung der Iridium-katalysierten asymmetrischen Hydrierung zur Herstellung von biologisch wichtigen Naturstoffen. Bei einer Zusammenarbeit mit Prof. J. Mulzer (Universität Wien, Österreich) wurde eine asymmetrische Synthese für Platensimycin entwickelt. Die geplante Syntheseroute beinhaltete die asymmetrische Hydrierungen von zwei Zwischenstufen, welche erfolgreich mit exzellenten Umsätzen und Enantioselektivitäten erreicht wurden. Dabei lieferte der Iridium-Komplex 67c die besten Ergebnisse. Die Zwischenstufe konnte mit einer geringen Katalysatorbeladung und im Gramm-Massstab umgesetzt werden. Das nächste Projekt war die Synthese von Aliskiren. Dabei wurden verschiedene Ester hergestellt und in der Iridium-katalysierten asymmetrischen Hydrierung getestet. Nach einer ausgiebigen Suche für einen geeigneten Katalysator lieferte der PHOX-Komplex 28a und der PHIM-Komplex 134a für den tert-Butylester vollständigen Umsatz und 99% ee.
Summary
Summary
Catalyst development. Two novel families of iridium P,N-complexes have been prepared and tested in the context of Ir-catalyzed asymmetric hydrogenation. The first class of P,N-ligands synthesized featured modification at the phosphorus unit, and allowed for the preparation of a series of twelve different pyridinyl-phosphinites Ir-catalysts, combining R,R- and S,S-diphenylethylenediamine with different chiral pyridinyl-alcohols. These complexes were evaluated as catalysts in the hydrogenation of a series of unfunctionalized and functionalized alkenes, especially alpha, beta-unsaturated esters. The hydrogenations of several unfunctionalized and functionalized alkenes were very effective, affording ee values up to 99%. A study on alpha-methylated alpha, beta-unsaturated esters with different substituents at the beta�position gave ee values above 90%. The new iridium complexes were also tested in the hydrogenations of beta-methylated carboxylic acid esters, affording ee values above 95%.
The design and synthesis of new imidazoline based P,N-ligands was next studied. Although structurally very similar to oxazoline ligands, an additional nitrogen atom provided a useful handle for tuning the electronic and conformational properties of the ligand by proper choice of the group bound to nitrogen. An efficient synthetic route was found for the preparation of the imidazoline based iridium-complexes. The conversions and ee values observed thus far with this new family of catalysts were unsatisfactory.
However, fine tuning of the electronic and steric properties of this ligand family was possible via modification of the substituents at the nitrogen atom. Specifically, we envisioned that replacement of the aromatic ring with a sulfonyl group might be effective. We were able to successfully prepare and test four new sulfonyl-imidazoline based catalysts, which enabled the hydrogenation of several unfunctionalized and functionalized alkenes with levels of asymmetric inductions above 90%.
Application in the synthesis of Platensimycin and Aliskiren. As a second part of this thesis, applications of Ir-catalyzed asymmetric hydrogenations towards the preparation of biologically important natural products and pharmaceuticals were pursued. Within the frame of a collaboration with Prof. J. Mulzer (University of Vienna, Austria), an asymmetric synthesis of Platensimycin was envisioned. The planned synthetic route included the asymmetric hydrogenation of two key intermediates which was achieved with excellent conversions and levels of asymmetric induction using catalyst 67c, developed in the first part of this doctoral thesis. Notably, this iridium-complex allowed for very low catalyst loadings and multigram scale reactions.
The next synthetic project tackled was the synthesis of Aliskiren. In this context, several different analogues of ester were prepared and tested under iridium-catalyzed asymmetric hydrogenation conditions. After extensive catalyst screening, the desired tert-butyl ester was obtained with full conversion and 99% ee using PHOX complex 28a or PHIM complex 134a.
Summary
Summary
Catalyst development. Two novel families of iridium P,N-complexes have been prepared and tested in the context of Ir-catalyzed asymmetric hydrogenation. The first class of P,N-ligands synthesized featured modification at the phosphorus unit, and allowed for the preparation of a series of twelve different pyridinyl-phosphinites Ir-catalysts, combining R,R- and S,S-diphenylethylenediamine with different chiral pyridinyl-alcohols. These complexes were evaluated as catalysts in the hydrogenation of a series of unfunctionalized and functionalized alkenes, especially alpha, beta-unsaturated esters. The hydrogenations of several unfunctionalized and functionalized alkenes were very effective, affording ee values up to 99%. A study on alpha-methylated alpha, beta-unsaturated esters with different substituents at the beta�position gave ee values above 90%. The new iridium complexes were also tested in the hydrogenations of beta-methylated carboxylic acid esters, affording ee values above 95%.
The design and synthesis of new imidazoline based P,N-ligands was next studied. Although structurally very similar to oxazoline ligands, an additional nitrogen atom provided a useful handle for tuning the electronic and conformational properties of the ligand by proper choice of the group bound to nitrogen. An efficient synthetic route was found for the preparation of the imidazoline based iridium-complexes. The conversions and ee values observed thus far with this new family of catalysts were unsatisfactory.
However, fine tuning of the electronic and steric properties of this ligand family was possible via modification of the substituents at the nitrogen atom. Specifically, we envisioned that replacement of the aromatic ring with a sulfonyl group might be effective. We were able to successfully prepare and test four new sulfonyl-imidazoline based catalysts, which enabled the hydrogenation of several unfunctionalized and functionalized alkenes with levels of asymmetric inductions above 90%.
Application in the synthesis of Platensimycin and Aliskiren. As a second part of this thesis, applications of Ir-catalyzed asymmetric hydrogenations towards the preparation of biologically important natural products and pharmaceuticals were pursued. Within the frame of a collaboration with Prof. J. Mulzer (University of Vienna, Austria), an asymmetric synthesis of Platensimycin was envisioned. The planned synthetic route included the asymmetric hydrogenation of two key intermediates which was achieved with excellent conversions and levels of asymmetric induction using catalyst 67c, developed in the first part of this doctoral thesis. Notably, this iridium-complex allowed for very low catalyst loadings and multigram scale reactions.
The next synthetic project tackled was the synthesis of Aliskiren. In this context, several different analogues of ester were prepared and tested under iridium-catalyzed asymmetric hydrogenation conditions. After extensive catalyst screening, the desired tert-butyl ester was obtained with full conversion and 99% ee using PHOX complex 28a or PHIM complex 134a.
Advisors: | Pfaltz, Andreas |
---|---|
Committee Members: | Wennemers, Helma |
Faculties and Departments: | 05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Synthetische organische Chemie (Pfaltz) |
UniBasel Contributors: | Pfaltz, Andreas and Wennemers, Helma |
Item Type: | Thesis |
Thesis Subtype: | Doctoral Thesis |
Thesis no: | 9788 |
Thesis status: | Complete |
Number of Pages: | 357 S. |
Language: | English |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 22 Jan 2018 15:51 |
Deposited On: | 13 Mar 2012 15:45 |
Repository Staff Only: item control page