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Abstract

Abstract

The nuclear receptor family represents a large class of transcription factors that
regulate metabolism, differentiation and development. Most of the nuclear receptor
family members are orphan receptors, so called because no ligands were known when
they were identified. Although for some receptors ligands have been identified by
now, many receptors, such as the estrogen related receptor oo (ERRa), still remain
orphan. The activity of all nuclear receptors requires the recruitment of coregulators,
which are able to enhance or repress their activity. Our work has focused on PGC-1a,
which responds to physiological signals, such as cold, fasting and exercise, and was
characterized as an important factor in the regulation of energy homeostasis and
metabolic pathways. In my thesis work, we demonstrate that PGC-1a regulates the
expression and activity of the orphan nuclear receptor ERRa. Our findings suggest
that PGC-1a may act as a protein ligand, substituting for the lack of small lipohilic
ligands for this receptor. The expression of PGC-1a and ERRa is parallel in tissues
with high energy demand, and induced in vivo when animals are exposed to cold.
Furthermore, our studies demonstrate that ERRa is important for PGC-1a signaling,
since diminished ERRa levels significantly reduce the induction of mitochondrial
biogenesis by PGC-1a. Binding sites for ERRa are observed in many genes encoding
for mitochondrial proteins, and in vitro studies suggest that ERRa activates the
transcription of at least a subset of the genes by binding to their promoters.
Furthermore, ERRa fused to the potent VP16 activation domain is sufficient to induce
mitochondrial biogenesis. We suggest that PGC-loo and ERRa regulate the
transcription of genes encoding mitochondrial proteins in response to metabolic

requirements.

Previous studies from our lab identified PGC-la as a potent regulator of
glucocorticoid receptor (GR) function in vitro. In support of our studies, other groups
have shown that PGC-1a coactivates GR on the PEPCK promoter, the key enzyme of
gluconeogenesis. Further data has shown that glucocorticoids and glucagon regulate
the expression of PGC-la. This led us to investigate the role of PGC-1a in GR
signalling in SAOS?2 cells. Our preliminary data suggest that glucocorticoids strongly

vi



Abstract

influence PGC-1a signaling, enhancing some PGC-lo pathways and suppressing
others. Finally, our data provide support to the hypothesis that PGC-la is not a
general enhancer of glucocorticoid responses, but rather provides specificity to GR
signalling. PGC-1a expression leads to the activation of a distinct set of genes by GR.

Future studies should provide more insight into this relationship.

vil



Chapter I: Introduction

Chapter I: Introduction

Overview of transcriptional regulation by nuclear receptors

All cellular processes involved in development, differentiation, cell growth and
metabolism are constantly regulated by the transcriptional activation or repression of
many different genes. The misregulation of even a single component often leads to
disease, such as obesity, diabetes or cancer (Rosmond, 2002; Smith and Kantoff,
2002; Spiegelman and Flier, 2001; Tenbaum and Baniahmad, 1997). Therefore, the
control of gene expression and the mechanisms of achieving specificity in
transcriptional pathways have attracted increasing amount of attention in the last two
decades (reviewed in Orphanides and Reinberg, 2002). The transcription of genes is
regulated in a highly organized fashion to ensure protein expression in a spatially and
temporally defined manner. Mechanisms must exist that allow cells to integrate
intracellular and extracellular signals to their differentiation state, cell cycle stage or

metabolic state, and ensure appropriate transcriptional responses.

One class of extracellular signals are steroid hormones. These are small lipophilic
molecules that are produced by endocrine glands and transported through the blood,
and that can diffuse through the plasma membrane to the cell interior. They exert their
transcriptional effects by binding and activating nuclear receptors, which are among
the most intensively studied and probably best-understood transcription factors to date
(reviewed in Aranda and Pascual, 2001; Mangelsdorf et al., 1995). Several facts have
established nuclear receptors as valuable tools for studying the mechanisms that
provide specificity in transcriptional regulation. First, nuclear receptors are important
modulators of all aspects of physiology. Second, the expression of many nuclear
receptors, for example the glucocorticoid receptor (GR), is ubiquitous (Jenkins et al.,
2001), yet the responses they elicit are cell type- or physiological state-dependent.
Third, nuclear receptors are regulated through small lipophilic ligands, which are
good experimental tools for turning on and of the activity of the receptors, as well as

have therapeutic applications.
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For several years, the regulation of transcription by nuclear receptors was imagined in
a simple way. Hormones ‘slip’ into the cells and ‘waken’ up the inactive receptor,
which then binds to DNA and activates transcription. However, things are not as
simple as they seem. First, nuclear receptors activate or repress transcription mostly,
but not always, in a ligand-dependent manner. The identification of the first steroid-
related receptors, the estrogen related receptors (ERRs), for which no ligand was
known, founded the subgroup of orphan nuclear receptors (Giguere et al., 1988).
Today, many dietary lipids and endogenous metabolites have been identified as
ligands for some of the orphan nuclear receptors. These receptors are thought of as
important metabolic sensors and targets for drug development (reviewed in Blumberg
and Evans, 1998; Giguere, 1999; Moller, 2001). Second, increasing evidence suggests
that nuclear receptors are not sufficient by themselves to interact with RNA
polymerase II and activate or repress transcription. In fact, the transcriptional activity
of nuclear receptors is modulated through several different classes of coregulators. In
the last few years, biochemical and yeast two hybrid approaches have identified many
nuclear receptor interacting proteins that act as coregulators, leading either to the
activation (coactivators) or repression (corepressors) of transcription (reviewed in

Glass and Rosenfeld, 2000; McKenna et al., 1999; Naar et al., 2001).

By definition, coactivators or corepressors do not interact directly with DNA, but are
recruited to regulatory regions of target genes via protein-protein interactions with
DNA binding transcription factors. Once recruited, they exert several different
activities that may modify chromatin, the basal transcription machinery factors and/or
RNA polymerase II (reviewed in Collingwood et al., 1999; Glass and Rosenfeld,
2000; McKenna et al., 1999). The first nuclear receptor coactivators proposed in the
1980s were the binding proteins of the basic transcription factor TFIID, namely the
TATA-binding protein (TBP) (Hahn et al., 1989; Horikoshi et al., 1989; Kao et al.,
1990) and the TBP-associated factors (TAFs) that built a bridge between DNA-
specific transcription factors and the basal transcriptional machinery (Dynlacht et al.,
1991; Pugh and Tjian, 1990). A few years later, a new class of coregulators was
defined with the identification of a 160-kDa estrogen receptor (ER)-associated protein
(ERAP-160; (Halachmi et al., 1994)), which later on turned out to be a splicing

variant of the steroid receptor coactivator-1 ((SRC-1); Kamei et al., 1996; Onate et al.,
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1995). The group of M.G. Parker, at the same time, identified the coregulators RIP80,
RIP140 and RIP160 (Cavailles et al., 1994), which interact with ER in the presence of
an agonist ligand. Shortly after, the characterization of GRIP-170, a 170 kDa GR-
interacting protein (Eggert et al., 1995), demonstrated that this class of cofactors is
essential for the transcriptional activity of the nuclear receptors, and suggested that it
may be a functionally limiting component. To date, more than 50 coactivators and
several corepressors of nuclear receptors have been identified (reviewed Collingwood
et al., 1999; Glass and Rosenfeld, 2000; McKenna et al., 1999). The different
coregulators have been proposed to regulate transcription either alone, sequentially,

combinatorially or as big multiprotein complexes.

Increasing efforts in the last few years aim in unraveling the mechanisms of
transcriptional regulation through coregulators, and elucidating their biological roles
(reviewed in Glass and Rosenfeld, 2000; McKenna et al., 1999; Naar et al., 2001).
While a few coregulators are expressed in a tissue-specific manner, most are
expressed ubiquitously, similar to what has been observed for several nuclear
receptors. Therefore, the presence of many different coactivators, corepressors and
nuclear receptors in the same tissue and at the same time seems to be a common
theme. Given that each coregulator can interact with multiple nuclear receptors and
vice versa, understanding the mechanisms that lead to specific transcription factor —
coregulator complexes, and the biological roles of these specific partnerships is

fundamental.
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Nuclear receptors

Nuclear receptor structure

The classical structural features of this family of transcription factors are, first, the
two well conserved zinc finger domains that bind to DNA (DBD), and second, a C-
terminal domain that binds ligand (ligand binding domain, LBD) and carries a
transcriptional activation function (reviewed in Aranda and Pascual, 2001). In
addition, all nuclear receptors harbor nuclear localization signal (NLS). Nuclear
receptors also have a variable N-terminal domain, which in some cases carries a
second transcriptional activation function. Accordingly, nuclear receptors can be
divided into five regions based on structural and functional similarities (see figure 1):
the variable N-terminal region (A/B) that may contain a transcriptional activation
function (AF-1); the conserved DBD, which also includes a dimerization domain (C);
variable hinge region (D); a conserved LBD with a second dimerization domain and
the conserved transcriptional activation function AF-2 (E); and a variable C-terminal
region (F). Whereas the AF-1 activity can function independently of ligand binding,
the AF-2 activity is strictly ligand-dependent. (reviewed in Warnmark et al., 2003).
The AF-2 domain is essential to determine the binding of the appropriate coactivator
or corepressor molecule to the receptor.

Nuclear receptors are all thought to be evolutionarily related and have possibly
derived from a common ancestral gene via gene duplication and/or exon shuffling
(Laudet, 1997; Sluder et al., 1999). The regions C (DBD) and E (LBD) represent the

most conserved elements (Evans, 1988; Green and Chambon, 1988).
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Figure 1. Nuclear receptor domains

Structure of a classical nuclear receptor. Typical domains and functions are indicated. AF
=activation domain, NLS = nuclear localization domain. (Adapted from Mangelsdorf et al.,
1995).

Classification of the nuclear receptor family

The family of nuclear receptors represents the biggest group of transcription factors
known. Although structurally related, they carry very different functions in the
regulation of homeostasis, metabolism, cell cycle and development, and bind
structurally diverse ligands. Moreover, for several of the orphan receptors no
physiological ligand has been identified up to now (Blumberg and Evans, 1998;
Giguere, 1999). Although the majority of nuclear receptors consist of the classical
features described in the previous section, some members contain only a subset of
them. For example, SHP (small heteromeric partner) and DAX-1, two closely related
members, are atypical receptors that have a LBD but lack a DBD. They seem to
heterodimerize with other nuclear receptors, via the LBD, and serve as repressors
(Howell et al., 1998; Seol et al., 1996; Wan et al., 2000). In addition to the
classification on the basis of sequence similarity, nuclear receptors have been
classified into three groups, based on the nature of their ligands (see figure 2;

reviewed in (Chawla et al., 2001).
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Figure 2. Nuclear receptors can be classified in three groups according to their ligands.
(Adapted from Chawla et al., 2001).

1) Classical endocine receptors with high affinity hormonal ligands

They include the steroid hormone receptor subfamily (glucocorticoid (GR),
mineralocorticoid (MR), estrogen (ER), progesterone (PR) and androgen receptors
(AR)) and represent the initial group of nuclear receptors cloned in the mid 1980s.
They harbor the classical structural features that were described before and that have
defined the family, and seem to act dependent on ligand binding (reviewed in Aranda
and Pascual, 2001; Chawla et al., 2001). This family also includes receptors with high
affinity for some dietary components, such as vitamin A and D, as well as the
receptors for thyroid hormone (retinoic acid receptor (RAR), vitamin D receptor

(VDR), thyroid hormone receptor (TR)).



Chapter I: Introduction

2) “Metabolic sensors” or “adopted” orphan receptors with low affinity for
dietary lipids or intermediary metabolites.

Nuclear receptors of this class are activated by a diverse group of nutrient components
or intermediary metabolites (e.g. fatty acids, bile acids and others), act as ‘metabolic
sensors’, and contain the ‘adopted” members of the orphan receptor family.
Interestingly, their major role is in metabolism, and in particular the regulation of
lipid and xenobiotic metabolism. For example, PPARa is expressed in tissues with
high capacity for fatty acid oxidation, like heart, liver, kidney and brown fat, and is
activated by fatty acids (Gottlicher et al., 1992). LXRs and FXR are activated by
oxysterols and bile acids, respectively, and potently regulate cholesterol and bile acid
metabolism (Repa and Mangelsdorf, 2000). Most receptors here bind DNA as
heterodimers with RXR (Yu et al., 1991), although formation of heterodimers with

RXR is not an exclusive characteristic of this class (reviewed in Giguere, 1999).

3) Orphan receptors with unknown ligands

The third class of nuclear receptors contains the still orphan receptors, which seem
to be active in the absence of any known ligand. Besides SHP and DAX-1, referred to
previously, COUP-TFs acts often as repressors of transcription. This repressor
function may be exerted by competing with other receptors for binding to DNA or for
heterodimerization with RXR, as well as by having active repression domains that
recruit corepressor complexes (reviewed in Pereira et al., 2000; Shibata et al., 1997).
Some of the receptors in this group may “bona fide” orphans. The recent elucidation
of the crystal structure of the NURR-1 LBD showed the ligand-binding pocket filled
with hydrophobic residues and thereby, unlikely to be available for binding small
ligands (Wang et al., 2003). Furthermore, NURR-1 lacks the classical coactivator
interaction domain, and is very likely regulated through signaling molecules like
receptor tyrosine kinases kinases (Wang et al., 2003). Similar observations have been
made for the steroidogenic factor SF-1 (Desclozeaux et al., 2002) and the Rev-ErbA
subfamily members (Renaud et al., 2000). Other members of this class include LRH-
1, which regulates lipid metabolism in collaboration with the described LXRs and
FXR, HNF4, which plays a role in gluconeogenesis and the ERR family members, the
first orphan receptors described (reviewed in Giguere, 1999; Repa and Mangelsdorf,
2000).
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The glucocorticoid receptor

Glucocorticoid hormones were already used in the middle of the 20" century, before
the molecular identification of the glucocorticoid receptor (GR), as anti-inflammatory
agents. The isolation of the active component and the use as efficient drug against
rheumatoid arthritis led to the Nobel prize for Tadeus Reichstein, Edward Kendall and
Philip Hench in 1950 (reviewed in Bonnelye and Aubin, 2002; Neeck, 2002). The
glucocorticoid receptor (GR), was one of the first steroid receptors to be cloned, in

1985 (Hollenberg et al., 1985; Weinberger et al., 1985).

Activation pathway of glucocorticoid receptor signaling

In the absence of hormone, GR is part of a multiprotein complex in the cytoplasm
(Nathan and Lindquist, 1995; Picard et al., 1990; Sanchez et al., 1985). This large
complex consists of the two essential heat shock proteins hsp90 and hsp70, and
several other chaperones and immunophilins. Formation of the complex depends on
the LBD of the receptor, which interacts with Hsp90 (Pratt and Toft, 2003). The
multiprotein complex keeps the receptor in a transcriptionally inactive state, while
allowing ligand binding and even facilitating the folding of the LBD into a high
affinity binding-pocket for the ligand ligand (Picard et al., 1990). Apparently, this is
not a rigid situation, and the receptor is dynamically passing in and out of the nuclei
of hormone-free cells, even though accumulating in the cytoplasm. Upon binding of
hormone to the receptor, the ligand-bound receptor dissociates from the chaperone
complex, translocates to the nucleus, and binds to specific DNA sequences, termed

glucocorticoid response elements (GRESs).

Three types of binding sites have been described for GR LBD (reviewed in Almawi
and Melemedjian, 2002). At these sites, GR can activate or repress transcription,
depending on the sequence of the GRE, the available coactivators and other non-
receptor DNA-binding transcription factors. 1) A simple GRE consists of an imperfect
palindrome with two hexamer half-sites separated by 3 base pairs. The recruitment of
specific coactivators and/or the displacement of other activating transcription factors
seems to then lead to the activation or repression of transcription (Meyer et al., 1997;

Rogatsky et al., 2002; Stromstedt et al., 1991).
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2) A composite GRE was described first for the promoter of the proliferin gene,
where GR represses transcription. GR binds directly to this composite GRE, but the
availability of AP-1 factors that bind in the vicinity, or possibly also coactivators,
determines whether GR represses or activates transcription (Diamond et al., 1990;
Rogatsky et al., 2002). 3) On tethering response elements, GR does not bind DNA
directly, but affects transcription through an interaction with other transcription
factors like NfkB or AP-1. Via this mechanism, GR is proposed to exert its
immunosuppressive effects and its ability to inhibit NficB-dependent (Caldenhoven et

al., 1995; Heck et al., 1997; Ray and Prefontaine, 1994; Scheinman et al., 1995).

The role of GR in stress responses

Glucocorticoids are known for their role in regulating important components of the
transcriptional response to stress. In the following, some of the better studied effects
of glucocorticoids in metabolism will be described. At this point, it should be noted,
that most glucocorticoid responses are exerted by GR. However, the
mineralocorticoid receptor also posseses a high affinity for glucocorticoids, and some
of the responses are likely to be mediated by this receptor. Glucocorticoid release is
controlled by the hypothalamic-pituitary axis, in a diurnal rhythm-dependent manner
and in response to stress (Jacobson and Sapolsky, 1991). After the first wave of stress
hormones (catecholamines, glucagons and growth hormone), glucocorticoids conduct,
as second ‘wave’, part of the metabolic response to stress, exerting effects on glucose,
lipid, protein and nucleotide metabolism. In addition, they influence the electrolyte
and calcium homeostasis and the immune system. From an evolutionary perspective,
stress is usually caused by predators, and the trancriptional response facilitates the
‘fight or flight’ behavior. The main role of glucocorticoids in metabolism is to raise
blood glucose levels, by mobilizing existing energy stores, and provide energy to the
brain. The metabolic actions of glucocorticoids in stress responses are complex and
have been defined into the following three types responses (Sapolsky et al., 2000).

1) Permissive actions of glucocorticoids, where the presence of the hormone prior to
the stressor influences strongly the response to the first wave of “stress hormones”
(catecholamines, glucagons and growth hormone). An example of this permissive

action is the increase of glycogenolysis, lipolysis and hepatic gluconeogenesis.



Chapter I: Introduction

2) The stimulating actions of glucocorticoids enhance the response to the first wave
of “stress hormones”. In this action, GR induces proteolysis in various muscle types,
inhibits protein synthesis, and keeps lipolysis active in fat cells, thereby providing
substrates for gluconeogenesis in liver. GR also directly stimulates gluconeogenesis in
liver. To assure the supply of glucose for the brain, glucocorticoids also inhibit

glucose uptake in the peripheral tissues.

3) The preparative function of glucocorticoids can often be suppressive and induce
opposite effects. They are important to prepare for the next stressor. One example of a
preparative function, which is contradictary to the glycogenolysis at the beginning of
the stress response, is that glucocorticoids can also induce glycogen storage in the

liver.

Glucocorticoids as therapeutic drugs

The immunosuppressive function of GR, which is thought of as important for
protecting the body from the actual stress response, has led to the use of synthetic
glucocorticoids for the treatment of many different immune diseases, like rheumatic
arthritis, asthma, collagen vascular diseases and more. GR is expressed and active in
almost all tissues, affecting many different aspects of metabolism and cell growth, by
regulating the expression of target genes in a cell-type and physiological state-
dependent manner. Thus, it is not surprising that therapeutic treatment with
glucocorticoids, particularly when long-term stress, leads to undesired effects, such as
increases in blood glucose levels (a condition predisposing to diabetes) and
osteoporosis. Pharmaceutical companies have spent a lot of effort to find synthetic
ligands that maximize the desired effects (e.g. immunosuppression) while minimizing
effects on blood glucose levels and the bone. These efforts have been partially
successful and have generated ligands with preferential effects on GR-mediated
responses. Interestingly, the underlying mechanism seems to be that these ligands
encourage the interaction of GR with a specific subset, rather than all coactivators,
suggesting that distinct coactivators may be utilised at different promoters, pathways,

or cell types (Miner, 2002).

10
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The ERR family

Estrogen-related receptor oo (ERRa) and ERR[ represent the first orphan receptors
identified, based on their sequence similarity with ER (Giguere et al., 1988). The third
member of this family, ERRy, exists as multiple tissue-specific, alternatively spliced
isoforms (Eudy et al., 1998). ERRs are highly similar at the amino acid level, with the
highest identity being between ERRP and ERRy (77%). All three family members
bind as homodimers to the extended half-site TNAAGGTCA, which is also the
binding site for the orphan receptor SF-1 (Vanacker et al., 1999a). Heterodimerization
of ERRs with ERa, and of ERRa with ERRY has also been proposed (Huppunen and
Aarnisalo, 2004; Johnston et al., 1997; Yang et al., 1996a). Furthermore, several
studies have demonstrated that the ERR family members can bind to classical
estrogen response elements (EREs) and compete with ERa for binding to these sites
(Johnston et al., 1997; Kraus et al., 2002; Vanacker et al., 1999b; Zhang and Teng,
2001). The DBDs of the three ERRs are highly identical (around 90 %) and the
receptors are likely to be co-expressed in some tissues (Bonnelye et al.,, 1997a;
Giguere et al., 1988; Heard et al., 2000; Hong et al., 1999; Pettersson et al., 1996). At
present, it remains unclear whether the three ERRs have overlapping functions, or

carry distinct biological roles.

ERRa

ERRaq, is expressed widely, but at different levels in different tissues. During mouse
embryonic development, high levels of ERRa are detected at sites of ossification
(Bonnelye et al., 1997a). Furthermore, ERRa transcripts are found in heart, muscle,
kidney, specific areas of the brain and in the digestive tract, with increasing levels
during later developmental stages. In adults, ERRa is mainly expressed in tissues
with high B-fatty acid oxidation activity like heart, kidney and brown fat, but also in
brain and muscle (Bonnelye et al., 1997b; Sladek et al., 1997).

The physiological role of ERRa is still debated, although several functions have been
suggested. In vitro studies have proposed that ERRa modulates estrogen signaling, in

more than one way: (1) by activating classical estrogen target genes, in the absence of

11



Chapter I: Introduction

estrogens; (2) by competing with ERa for EREs, and thereby antagonizing ERa
function, (3) via direct physical interaction with ERa and (4) by regulating the
expression of the aromatase gene, and hence production of estrogens (Johnston et al.,
1997; Kraus et al., 2002; Vanacker et al., 1999b; Yang et al., 1996a; Zhang and Teng,
2001).

The high levels of expression of ERRa at ossification sites in developing mouse
embryos have led to a proposed function in the regulation of bone formation. In
support of such a role, ERRa induces the expression of osteopontin by binding
directly to the promoter of this gene (Vanacker et al., 1998), and has been shown to

induce bone nodule formation in vitro (Bonnelye et al., 2001; Bonnelye et al., 1997a).

The expression pattern of ERRa in adult mice (highest in heart, kidney and brown fat)
have led to a proposed role in b-fatty acid oxidation. Importantly, ERRa binds the
promoter of the gene encoding the medium-chain acyl coenzyme A dehydrogenase
(MCAD), a key enzyme in -fatty acid oxidation, and regulates its expression (Sladek
et al., 1997; Vega and Kelly, 1997).

The recent generation of ERRa knockout mice by V. Giguere (Luo et al., 2003),
supports a role for ERRa in lipid metabolism. The disruption of the ERRa gene leads
to viable mice that have reduced adipose tissue. Although no differences in the energy
expenditure, the fasting glucose levels or the serum free fatty acid or triglyceride
levels have been observed, these mice are resistant to high-fat diet-induced obesity.
Gene expression profiling of isolated adipocytes have disclosed an altered regulation
of enzymes involved in fat metabolism. Strikingly, MCAD is upregulated, suggesting
a repressor function for ERRa at this gene (Luo et al., 2003). The reasons for the

decreased adipocity and resistance to obesity are, however, currently unclear.

12



Chapter I: Introduction

ERRp

ERRP expression is highly specific in extra-embryonic tissues during the early
embryonic development. ERR3 mRNA levels could be detected in a subset of cells in
the extra-embryonic ectoderm at day 5.5 post-coitum and more prominently after day
6.5 p.c. in ectodermally derived cells that later on form the chorion. In adults, ERRf3
expression could be detected only in low levels in the liver, stomach, skeletal muscle,
heart and kidney (Chen et al., 1999b; Giguere et al., 1988). Disruption of ERRf in
mice demonstrated clearly that ERRP is essential for normal placental formation.
ERRpB-/- mice show abnormal chorion formation, placental failure and impaired

trophoblast stem cell differentiation (Luo et al., 1997).

ERRy

ERRy transcripts are detected at high levels in both the embryo and adults. During
development, major sites of expression are the fetal brain, with lower levels in the
kidney, lung and liver. In human adults, ERRy mRNA is expressed at high levels in
the lung, bone marrow, brain and adrenal gland, lower in the thyroid gland, spinal
cord and trachea (Eudy et al., 1998). The expression pattern in adult mice looks
different, with high levels in specific areas of the brain brain (Hermans-Borgmeyer et
al., 2000; Lorke et al., 2000), kidney, testis, spleen and lower levels in lung ((Eudy et
al., 1998)). In other studies, high levels of ERRy expression are detected in the adult
mouse heart, and modest expression is seen in muscle (Hong et al., 1999; Susens et
al., 2000). The function of the third member of the ERR family of orphan receptors
remains unclear, even though some target genes, such as the SHP orphan receptor

gene, have been proposed (Sanyal et al., 2002).

Ligands for the orphan receptor family of ERRs

During the course of identifying new ligands for the family of orphan nuclear
receptors, a new concept emerged: the "reverse endocrinology". Instead of identifying
a receptor for a physiologically characterized hormone, as was the case with steroid
hormones and receptors, orphan receptors were used to search for new hormones

(Blumberg and Evans, 1998; Giguere, 1999). In the case of ERRa, initial studies
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reported that it could be activated by a component present in fetal calf serum
(Vanacker et al., 1999a), while subsequent studies suggest that the three ERRs are
constitutively active, in the absence of any ligand (Chen et al., 2001; Xie et al., 1999).
Searches for ligands for the ERRs have been successful in identifying only synthetic
antagonists. Because of the similarity of ERRs with ERs, ligands with estrogen-like
activity have been considered. The results are contradictory and differ somewhat from
group to group, but suggest that toxaphene, chlordane, diethylstilbestrol (DES) and 4-
hydroxytamoxifen (OHT) can act as antagonists of ERR[3 and ERRY, but not of ERRa
(Coward et al.,, 2001; Tremblay et al., 2001; Yang and Chen, 1999). Finally,
elucidation of the crystal structure of the ERRYy ligand-binding domain bound to a
peptide derived from the SRC-1 coactivator, shows that the ERRy LBD can adopt an
active conformation already in the absence of any ligand (Greschik et al., 2002). The
question is still open, if an agonist ligand can exists for the ERRs. A recent
publication has proposed that flavones and isoflavone phytoestrogens may enhance

the activity of ERRs (Suetsugi et al., 2003).
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Coregulators of transcription

Nuclear receptors are not able to interact directly with RNA polymerase II. Their
function therefore depends on coregulators, which serve as intermediate factors
between the nuclear receptors and the basal transcriptional machinery, and which
determine the activator or repressor function of the receptor. Coregulators can be
divided into two main classes: coactivators, which activate transcription, and
corepressors, which lead to transcriptional repression. In the context of this thesis, I

will focus on the class of coactivators.

Coactivators. Coactivators bind to nuclear receptors mostly dependent, but also
independent of ligand availability, and are able to switch the nuclear receptors from
an inactive to an active state. The interaction surface of all coactivators is very
similar. They bind to nuclear receptors via multiple nuclear-receptor interaction
domains (also called NR boxes) that contain the sequence LXXLL (L=leucine, x=any
amino acid) located in an amphiphatic a-helix. These motifs have been shown to be
necessary and sufficient to mediate binding with nuclear receptors (Heery et al., 1997;
Hu and Lazar, 1999; Nagy et al., 1999; Perissi et al., 1999; Radhakrishnan et al.,
1997; Yamamoto et al., 1998). Whereas most coactivators interact with the AF-2
domain of the nuclear receptors, some coactivators, such as SRCs and DRIP150 can
also interact with the AF-1 domain or synergistically with both the AF-1 and the AF-2
(Benecke et al., 2000; Hittelman et al., 1999). The structural basis for these

interactions is however not well understood yet.

Corepressors. The two main corepressors are N-CoR and SMRT, which bind to
nuclear receptors in the absence of ligand or the presence of antagonist ligand (Chen
and Evans, 1995; Horlein et al., 1995; Lavinsky et al., 1998; Zhang et al., 1998).
Corepressors harbor conserved NR interacting domains, referred to as CoRNR box,
with the motif LXXI/HIXXXI/L. This motif seems to represent a prolonged form of
the coactivator motif LXXLL, with an extended a-helix (Hu and Lazar, 1999; Nagy et
al., 1999; Perissi et al., 1999; Xu et al., 2002). Disruption of the N-CoR gene blocks
the development of the CNS, erythrocytes and thymocytes, suggesting that N-CoR
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repressor activity is essential for organ development (Hermanson et al., 2002).
Although the available data are contradictory, N-CoR and SMRT seem to execute
their repression function as complexes with histone deacetylases Sin3, HDACI,
HDAC?2 and other components (Guenther et al., 2000; Li et al., 2000; Underhill et al.,
2000; Wen et al.,, 2000). The isolation of additional complexes with varying
components suggest that N-CoR and SMRT act in a tissue- and promoter-specific
manner. Furthermore, N-CoR and SMRT conduct short- and long-term repression
functions not only for nuclear receptors but also many other transcription factors, like

Mad, and play a role as general repressors of transcription.

Structural data have revealed that most of the coactivators and corepressors bind to an
overlapping binding surface on the nuclear receptors (Hu and Lazar, 1999; Nagy et
al., 1999; Xu et al., 2002). This region, also known as AF-2 domain, is located in the
well-conserved LBD (see figure 3). Helix 12, which is located in the AF-2, seems to
be the major determinant for the binding of coactivators and to act as a switch. In the
absence of ligand, the pocket is ‘open’ and corepressors are able to bind (figure 3).
When an agonist ligand binds, helix 12 moves over the ligand binding pocket; this
conformational change creates a new pocket that enables coactivator binding
(Bourguet et al., 1995; Nolte et al., 1998). The actual mechanism may be more
complex, since several intermediates seem to be possible. Moreover, some
corepressors, like RIP140, are able to interact with agonist-bound receptor and repress

transcription (Lee et al., 1998).
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co-
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Figure 3. Model for corepressor and coactivator binding to the nuclear receptor LBD in the
absence and presence of agonist ligand. (Adapted from Nagy et al., 1999).

Types of coactivators

More than 50 nuclear receptor coactivators have been described. With the exception
of the nuclear receptor interacting motif LXXLL that they have in common, the
different coactivators are structurally quite diverse proteins. The large number of
coactivators and coactivator complexes suggests that they carry diverse roles, such as
integrating distinct signals, conferring tissue and promoter-specific regulation, and/or
acting via distinct mechanisms. In the following section, the different types of
coactivators, grouped according to their mechanism of action, will be described:

1) ATP-dependent chromatin remodeling complexes, 2) histone modifying
complexes, 3) bridging factors, 4) other coactivators of transcription. (reviewed in

Glass and Rosenfeld, 2000; McKenna et al., 1999; Naar et al., 2001).

1) ATP-dependent chromatin remodeling complexes

DNA is condensed in chromatin, where the small units, the nucleosomes, consist of
DNA coiled around an octamer of histone proteins. In the last two decades, it has
been shown that nucleosomes can repress transcription and be directly linked to

transcriptional activation (Akey and Luger, 2003; Khorasanizadeh, 2004). A layer at
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which regulation of transcription can be exerted has been appreciated by the
identification of a number of coactivators that seem to affect chromatin structure,
making the DNA accessible to the transcription machinery. Two related remodeling
complexes have been described in yeast: The SWI/SNF complex, also conserved in
mammalian cells, and the RSC (remodeling the structure of chromatin) complex
(Cairns et al., 1994; Peterson et al., 1994; Wang et al., 1996). One of the most
conserved elements of this complex is the SWI2/SNF2 protein (termed brg-1, or
brahma-related gene-1 in humans), which contains the ATPase activity that remodels
the nucleosomes (Khavari et al., 1993; Laurent et al., 1993). The SWI2/SNF2-family
of DEAD/H ATPases and DNA helicases contains furthermore many members that
play roles in DNA repair or recombination, chromosome segregation and cell cycle

progression (Pollard and Peterson, 1998).

2) Histone modifying coactivators

A different group of chromatin modifying coactivators includes proteins that
enzymatically modify histones. Since the early discovery of histone acetylation
(Allfrey et al., 1964), the hypothesis has been put forward that the rate of
transcriptional activity is directly linked to the grade of histone acetylation (Pazin and
Kadonaga, 1997). Yeast GCNS, the first coactivator identified to exhibit histone
acetylase (HAT) activity (Brownell et al., 1996), leads to hyperacetylation of lysine
residues in the short amino-terminal domain of free histones and inhibits the higher
order folding of nucleosomes. As a consequence, specific promoter areas of genes are
accessible for the transcription machinery. These findings have received further
support by the identification of the mammalian ortholog p/CAF (Yang et al., 1996b)
and other coactivators with HAT activity like CBP, the adenovirus E1A binding
protein p300 (Bannister and Kouzarides, 1996; Ogryzko et al., 1996) and TAF;;250
(Mizzen et al., 1996). The yeast p/CAF and GCNS5 have been shown to exist as big
multisubunit coactivator complexes named ADA or SAGA complexes (Grant et al.,
1997; Grant et al., 1998). They contain several different components like ADA
proteins but also TBPs and TAFs, and they connect nuclear receptors to the basal

transcription machinery. Whereas the mammalian counterpart also contains ADA and
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TAF proteins (Ogryzko et al., 1998), the interaction to the core machinery has not yet
been shown.

The ubiquitously expressed CBP and its functional homolog p300 serve as ligand-
dependent coactivators for several nuclear receptors (Almlof et al., 1998; Smith et al.,
1996) and other transcription factors like CREB (Nakajima et al., 1996). Studies have
shown that p300/CBP interact with other nuclear receptor coactivators like SRC-1
(Kamei et al., 1996; Yao et al., 1996) or coactivator complexes like the P/CAF
(p300/CBP associated factor) mutliprotein complex (Yang et al, 1996b).
Interestingly, p300/CBP and P/CAF do not only acetylate histones, but also the

general transcription factors and others (Imhof et al., 1997).

The p160 family of coactivators contains proteins with the molecular mass of about
160 kDa that interact with nuclear receptors in a ligand-dependent manner (Cavailles
et al.,, 1994; Halachmi et al., 1994; Kurokawa et al., 1995). Biochemical and yeast
two-hybrid assays have led to the identification of three members: SRC-1 (steroid
receptor coactivator 1), SRC-2 and SRC-3 (Anzick et al., 1997; Chen et al., 1997,
Hong et al., 1997; Kamei et al., 1996; Onate et al., 1995; Takeshita et al., 1997,
Torchia et al.,, 1997). In addition to the highly conserved basic helix-loop-helix
(bHLH) PAS domain, that can be found in all family members, SRC-1 and SRC-3
possess a weak intrinsic HAT activity. The importance of this HAT activity is not
clear, given that SRC-1 also interacts with and recruits other coactivators that posses
enzymatic activities, like the histone acetylase CBP and the methyltransferase
CARMI (Chen et al., 1999a; Kamei et al., 1996; Yao et al., 1996). The p160 family
members interact not only with the AF-2, but also the AF-1 domain of nuclear
receptors, as shown for SRC-1 and SRC-2, suggesting that they built a bridge between
both activation domains (Alen et al., 1999; Bevan et al., 1999; Ma et al., 1999; Webb
et al., 1998).
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3) Bridging coactivators- the mediator complex

One of the best characterized coactivator complexes is the mediator complex,
identified initially in yeast (Kim et al., 1994). In mammalian cell systems, several
similar mediator-type complexes have been isolated, also known as TRAP, DRIP,
ARC complex, two smaller complexes CRSP and PC2 (Malik et al., 2000; Ryu et al.,
1999), and two complexes that may mediate a form of repression, SMCC and NAT
(Boyer et al., 1999; Fondell et al., 1996; Gu et al., 1999; Naar et al., 1999; Rachez et
al., 1998). It seems possible, that all of these complexes represent only subcomplexes
of the same one mediator complex (reviewed in (Glass and Rosenfeld, 2000; Naar et
al., 2001)).

The members of the mediator complex do not exert a HAT or any other enzymatic
activity, but enhance the transcriptional activity of several nuclear receptors like TR
(Fondell et al., 1999) and VDR (Rachez et al., 1998), as well as of other factors such
as SREBP-1a and Spl (Naar et al., 1999). The ability to interact with the RNA
polymerase Il implements a role as bridging complex to the basal transcription
machinery (Rachez et al., 1999). Disruption of the common component TRAP220
leads to embryonic lethality in mice, which suggested that the ligand-dependent
interaction of the mediator complex with nuclear receptors is dependent on TRAP220

(Treuter et al., 1999; Yuan et al., 1998).

The reason for the identification of so many different complexes (i.e. ATP remodeling
complexes, HAT complexes, mediator, and others) is not yet fully understood, but
Glass and Rosenfeld (Glass and Rosenfeld, 2000) have proposed that the different
coactivator complexes may act sequentially, combinatorially or in parallel at different

promoters (see figure 4).
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Figure 4. Utilization of multiple coactivator complexes.

(A) Sequential recruitment to the same promotor sequence. In this model, one coactivator
complex could be necessary to prepare for the next. (B) Combinatorial recruitment of several
coactivator complexes could be required for physiologic levels of expression on specific
promotors. (C) Parallel utilization of coactivator complexes describes the recruitment of
different coactivator complexes in response to distinct signaling pathways or in different
tissues. (Adapted from Glass and Rosenfeld, 2000).

4) Other coactivators of transcription

Some coactivators cannot be classified in any of the described groups yet. The
essential yeast gene Rsp5 and its human homolog NEDD4 have been demonstrated to
enhance GR and PR transcription in yeast and mammalian cells in vitro (Imhof and
McDonnell, 1996). Subsequent studies have revealed that NEDD4 ubiquitinates the
largest subunit of RNA polymerase II in vitro and possibly mediates its UV-induced
proteolytic degradation by the proteosome (Beaudenon et al., 1999). Another
coactivator with ubiquitination capacity is the E6-associated protein E6-AP
(Huibregtse et al., 1991), which seems to interact with NEDD4 to regulate
transcriptional activation of steroid receptors by ubiquitin-ligase complexes

(McKenna et al., 1998).

21



Chapter I: Introduction

SRA (steroid receptor RNA activator) represents a nuclear receptor coactivator
different from all known coregulators (Lanz et al., 1999). It functions as a RNA
transcript, and interacts with the AF-1 domain of nuclear receptors in the absence of
ligands. Giguere and coworkers have also suggested a ligand dependent interaction
with the AF-2 of nuclear receptors, like classical coactivators, and the regulation by
MAPK pathways (Deblois and Giguere, 2003). Interestingly, SRA seems to be
recruited by SRC-1 and to furthermore interact with another uncommon family of
coactivators, the DEAD-box conatining RNA helicases p72 and p68 (Lanz et al.,
1999; Watanabe et al., 2001), to acts as a bridge for the AF-1 and AF-2 domain

activity of nuclear receptors.

The PGC-1 family: inducible, tissue-specific coactivators

Structural features of PGC-1a

PGC-1 or PGC-1a, as it has been renamed after the identification of its homologues,
was the founder of a new group of coactivators. It does not posses any enzymatic
activity, but shows several interesting features (see figure 5). At the N-terminus of
PGC-1la lies a potent acidic transactivation domain. PGC-1a contains three leucine-
rich LXXLL motifs, L1, L2 and L3 that reside in predicted a-helices. L1 is located in
the acidic N-terminal transcriptional activation domain and is conserved between the
PGC-1a family members (Kressler et al., 2002). Interestingly, Mutation of the L1
motif strongly influenced the transactivation function, which suggested that it is part
of a region that is important for the interaction with other factors (Kressler et al.,
2002; Puigserver et al., 1999). Leucine motifs L2 and L3 reside in two nuclear
receptor interaction domains (NIDs). Motif L2 in particular serves as the major
interaction surface for GR ER, PPARs, RXR, LXR and probably others (Delerive et
al., 2002; Knutti et al., 2001; Oberkofler et al., 2003; Tcherepanova et al., 2000; Vega
et al., 2000). Furthermore, mutations in motifs L2 and L3 have been shown to
increase PGC-1a transcriptional activity possibly by disruption of the interaction with
a repressor (Knutti, 2001, see later section). Besides the described L2 and L3 motifs,

PGC-1a harbours other interaction domains, proposed to bind PPARy, NRF-1 and the
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muscle-specific transcription factor MEF2C, which are not yet well defined ((Michael

et al., 2001; Puigserver et al., 1998; Wu et al., 1999), see figure 5).

At the C terminus, PGC-1a harbours two motifs that are atypical for coactivators: a
serine/arginine-rich (RS) domain and an RNA recognition motif ((RRM); (Knutti et
al., 2000)). Strikingly, both RRM and RS domains are characteristic features of SR
splicing factors, components and/or regulators of the spliceosome (reviewed in
Graveley, 2000; Hastings and Krainer, 2001; Reed and Magni, 2001). RRM motifs
determine substrate specificity and can interact with RNA as well as other proteins,
while the RS domains are shown to be important for protein-protein interactions.
Although the mechanism is not yet understood, PGC-1a has been suggested to be
involved in RNA processing (Monsalve et al., 2000). Three different observations,
made by Monsalve and coworkers, support this PGC-1a function: First, PGC-1a,
through its C-terminal domain, associates with several splicing factors, SRp75, SRp55
and SRp40 and the elongating form of RNA polymerase II. Second,
immunofluorescence studies suggest that PGC-1a colocalizes with splicing factors in
nuclear specles. Third, PGC-1a seems to modulate the processing of a fibronectin
minigene. The current model for the mechanism by which PGC-1a regulates gene
expression proposes therefore that PGC-la couples transcription and pre-mRNA
splicing: after the recruitment of PGC-la on a specific target gene by a nuclear
receptor, PGC-1a seems to bind to SRC-1, CBP, and possibly the mediator complex
(Puigserver et al., 1999; Surapureddi et al., 2002; Wallberg et al., 2003). Next, it is
suggested that CBP induces chromatin remodelling, whereas the mediator complex
bridges to the basic transcription machinery. The N-terminus of PGC-1a possibly also
binds to polymerase II (CTD; (Monsalve et al., 2000). Finally, PGC-1a is proposed to
interact with the elongation form of polymerase II, and to regulate mRNA splicing
(Monsalve et al., 2000). However, it has to be emphasized here, that although the
interactions between these molecules has been demonstrated, additional experiments

are still needed to confirm this model.
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Figure 5. Structure of PGC-1a

Parenthesis denote the interaction domain with different transcripton factors, the N-terminal
transactivation domain and the RNA processing domain with the RS= serin-arginin rich
streches, RRM= RNA recognition motif. L1, L2 and L3 represent the three leucine LXXLL
motifs.

Physiological role of PGC-1a

In contrast to many coactivators that are ubiquitously expressed, PGC-1a is expressed
in a tissue-specific manner and induced by specific metabolic signals. PGC-la
expression is highest in tissues with a high density of active mitochondria, like heart,
skeletal muscle, brown adipose tissue (BAT), kidney, liver and brain (Esterbauer et
al., 1999; Knutti et al., 2000; Puigserver et al., 1998). In addition, PGC-1a is induced
in physiologic states that display specific energy demands, such as exposure to cold,
fasting and physical exercise. (Goto et al., 2000; Herzig et al., 2001; Lehman et al.,
2000; Puigserver et al., 1998)

PGC-1arole in adaptive thermogenesis
Adaptive thermogenesis is a process tightly associated to the function of mitochondria
and energy expenditure. This programme is switched on in response to exposure to

cold and overfeeding, and leads to the production of heat instead of energy through
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the uncoupling of the respiratory chain (reviewed in Puigserver and Spiegelman,
2003). Interestingly, PGC-1a is strongly induced in the brown fat and muscle (i.e.
thermogenic tissues) of mice upon exposure of the animals to cold. Overexpression
studies reveal that PGC-1a is capable of upregulating molecular components of the
adaptive thermogenesis, e.g. the UCPs (uncoupling proteins), a process likely to
depend on the interaction of PGC-1a. with PPARa , PPARy, RAR and probably TR
(Puigserver et al., 1998).

PGC-1a regulates mitochondrial biogenesis in response to specific signals

Mitochondria provide cellular energy in the form of ATP. The mitochondrial content
and respiration efficiency vary greatly from cell type to cell type and reflect the
energy demand defined by the physiological status of the cell (reviewed in Moyes and
Hood, 2003). The modulation of mitochondrial functions is a complex process, which
requires the coordinate expression of mitochondrial and nuclear encoded proteins.
Studies have shown that PGC-1a levels are increased after exercise in muscle, a
situation with high energy requirements (Goto et al., 2000). Furthermore, PGC-1a
upregulation is detected in the heart of mice directly after birth, shortly before a
strong increase of mitochondrial biogenesis and oxidative metabolism (Lehman et al.,
2000). Ectopic expression of PGC-1a in adipocytes, myocytes and cardiomyocytes
induces the biosynthesis of mitochondria and increases cellular respiration (Goto et
al., 2000; Lehman et al., 2000; Puigserver et al., 1998; Wu et al., 1999). PGC-1a
seems to regulate mitochondrial biogenesis in adipocytes and myocytes through the
induction and coactivation of NRF-1, and possibly NRF-2, which enhance the
expression of key factors in mitochondrial transcription and replication, such as

mtTFA (Wu et al., 1999).

PGC-1a function in glucose metabolism

An additional situation, where PGC-1a upregulation has been observed, is in the liver
and heart of fasted animals (Lehman et al., 2000; Yoon et al., 2001). In the fasting
state, gluconeogenesis is increased in the liver so as to ensure glucose availability to
tissues like the brain. Overexpression of PGC-1a induces the expression of PEPCK

and glucose-6-phosphatase, two key enzymes of gluconeogenesis, through the

coactivation of HNF4, GR and FOXO1 (Herzig et al., 2001; Puigserver and
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Spiegelman, 2003; Yoon et al., 2001). Additional studies reveal that PGC-1a may
also control the glucose uptake in peripheral tissues, through the induction of the
insulin-sensitive glucose transporter GLUT4 in muscle (Michael et al., 2001). This
induction may be mediated through the interaction with MEF2C, a muscle and heart
specific transcription factor. The effect of PGC-1a on GLUT4 is however not yet
clear, as GLUT4 is reported to be down-regulated in the muscle of transgenic mice

overexpression PGC-1a (Miura et al., 2003).

PGC-1ais involved in diabetes

Consistent with PGC-1a increasing glucose production, PGC-la levels have been
reported to be raised in the livers of modeldiabetic mice (Yoon et al., 2001). Genetic
studies indicate further that mutations in the PGC-1a gene locus may increase the
susceptibility of patients to diabetes type II (Ek et al., 2001; Hara et al., 2002). The
contribution of PGC-1a to diabetes seem however to be complex. While increased
PGC-1a levels and activity in liver may contribute to increased glucose, decreased
PGC-1a levels and activity in muscle may also contribute to the diabetic phenotype.
Mootha and coworkers (Mootha et al., 2003) adopted recently a very elegant approach
with the help of expression profiling and new in silico-techniques, to identify the
oxidative phosphorylation genes (OXPHOS) as a coordinately downregulated gene
set in muscle biopsies of diabetes patients. Interestingly, PGC-1a expression seemed
to be also repressed in these patients, implying a role for PGC-la in the

downregulation of mitochondrial biogenesis and the decreased energy expenditure

during diabetes. (Mootha et al., 2003; Patti et al., 2003).

Regulation of PGC-1a activity

PGC-1a is upregulated in a temporally and spatially defined manner. Regulation has
to be tight, since both increased and decreased levels could be contributing to diseases
like diabetes. This leads to the question, which signalling pathways are involved in

the regulation of PGC-1a.
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Regulation during adaptive thermogenesis

Initial studies showed PGC-la to be regulated by the P-adrenergic receptor in
response to cold (Boss et al., 1999; Puigserver et al., 1998). PGC-1a levels are also
regulated by the adipocyte-derived hormone leptin, which regulates food uptake and
energy expenditure and counts as an important factor controlling adaptive
thermogenesis (Ahima and Flier, 2000). Interestingly, PGC-1a. levels are decreased in
mice that are leptin-deficient or not responsive to leptin, and upregulated in

hyperleptinemic rats (Kakuma et al., 2000).

Mechanisms regulating PGC-1 o in mitochondrial biogensis

Studies in transgenic mice have revealed a complex interplay between MEF2 and the
histone-deacetylase HDACS that lead to the regulation of PGC-la expression and
mitochondrial biogenesis in myocytes, possibly in response to CaMK IV (Czubryt et
al., 2003). In response to exercise, Ca2+ levels rise in muscle cells, inducing
calcineurin and CaMK IV. Interestingly, PGC-1a levels are induced in transgenic
mouse lines expressing constitutively active CaMK IV (Wu et al., 2002). Further
studies have led to the proposal of an autoregulatory loop, in which CREB
phosphorylated by CaMK IV and MEF2 activated by calcineurin A bind to the PGC-
la promoter, and in co-operation with PGC-1a itself, lead to an increase in PGC-1a

expression (Handschin et al., 2003).

The regulation of PGC-1« in glucose metabolism

The main regulators of the fasting state are glucagon, which is acting through the
cAMP pathway, and glucocorticoids. After cAMP levels rise, protein kinase A (PKA)
exerts increased activity and activates the cAMP-response element binding protein
(CREB). The treatment of hepatic cells with cAMP lead to an upregulation of PGC-
la, which is further potentiated by glucocorticoids (Yoon et al., 2001). The PGC-1a
promoter harbors binding sites for CREB and seems to be regulated by this factor

(Herzig et al., 2001).

Posttranslational mechanisms regulating PGC-1a
Studies from our lab and from others have demonstrated that PGC-la is also

regulated by posttranslational mechanisms (Knutti et al., 2001; Puigserver et al.,

27



Chapter I: Introduction

2001). Interestingly, the stress-responsive kinase p38 seems to phosphorylate PGC-1a
on three residues close to the nuclear receptor interaction domains harboring the L2
and L3 motif. Several findings suggest that this phosphorylation induces the release of
a molecular repressor of PGC-1a (Knutti et al., 2001): 1) mutation of the L2 and the
L3 motifs lead to icreased PGC-1a activity; 2) coexpression of a shorter version of
PGC-1a that has motifs L2 and L3 competes for repressor binding and increases
PGC-1la activity; 3) a constitutively active upstream kinase of p38 increases the
activity of wild-type, but not of an L2/3A mutant PGC-1a (Knutti et al., 2001).
Recent studies by the Spiegelman group have identified the p38-sensitive, L2/3
interacting repressor as the coregulator p160 myb (Fan et al., 2004). Moroever,
studies by Ichida et al have proposed the orphan receptor ERRa, which also interacts
with L2 and L3, to act as a repressor of PGC-1a (Ichida et al., 2002).

PGC-1 family members

PGC-1-related coactivator (PRC), the first homologue of PGC-1a, was identified due
to its homology in the N-terminus (Andersson and Scarpulla, 2001). Even though the
overall sequence similarity with PGC-1a is quite low, the domain pattern is highly
similar. Both coactivators contain the N-terminal acidic transactivation domain, the
nuclear receptor interaction (LXXLL) motif, the proline rich region, the RS domain
and the RNA binding domain. Elucidation of the expression levels showed that PRC
is ubiquitously expressed with higher levels in skeletal muscle and heart (Andersson
and Scarpulla, 2001). One common function of PGC-1a and PRC is the interaction
with NRF1 and the induction of mitochondrial biogenesis. A distinctive characteristic
is that PRC expression is not regulated by exposure to cold, but rather during the cell

cycle, suggesting a role for PRC distinct from that of PGC-1a..

Recently, a second homologue named PGC-1f (mouse) or PERC (human) was
cloned by us and others (Kressler et al., 2002; Lin et al., 2002). Sequences of PGC-
la, B and PRC display around 45 to 46 % (over 450 aa) similarity in the C-terminus;
whereas all three proteins contain a RNA recognition motif, PGC-13 does not contain

an RS domain. The N-terminus of all three proteins shows a conserved L1 motif and a
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conserved nuclear receptor interaction domain (L2). In addition, PGC-1f harbors an
additional, unique to PGC-1f3 NID. RNA expression analysis shows PGC-1f to be
similarly expressed as PGC-1a, with high levels in heart, skeletal muscle, BAT and
medium levels in liver, brain, WAT, adrenal gland and kidney (Kressler et al., 2002;
Lin et al., 2002). Strikingly, PGC-18 does not show a specific upregulation in

response to cold or fasting.

We have observed that PGC-1f3, in contrary to PGC-la, shows much higher
specificity in the interaction with nuclear receptors (Kressler et al., 2002). PGC-1p, or
PERC (PGC-1 related estrogen receptor coactivator) shows a high preference in
enhancing the activity of ERa, over that of many other nuclear receptors. Moroever,
PGC-1p converted tamoxifen from an antagonist to an agonist of ERa in osteoblast
cells in a cell-type and promoter-specific manner. Based on these findings, we have
proposed a role for PGC-1f in the regulation of estrogen signaling. In disagreement
with these findings, other labs report that PGC-1p can coactivate PPARy, TRf3, GR
and HNF4 (Lin et al., 2002; Meirhaeghe et al., 2003), and more strikingly, NRF-1
(Lin et al., 2002). Finally, we and others have seen that PGC-1[ is an effective
coactivator of the orphan receptor ERRa ((Kamei et al., 2003), Kressler unpublished).
Interestingly, ectopically expressed PGC-18 like PGC-lo can also induce
mitochondrial biogenesis in myoblasts (Meirhaeghe et al., 2003) and hepatocytes (Lin
et al., 2002). PGC-1a- and PGC-1B-induced mitochondria do however show some
functional differences, suggesting that the two coactivators have overlapping but not
identical functions (St-Pierre et al., 2003). Studies in muscle of prediabetic and
diabetic patients also showed increased levels of PGC-1p3, besides PGC-1a and the
OXPHOS genes (Patti et al., 2003).

Consistent with a role of PGC-1B in controlling OXPHOS genes, transgenic mice
overexpressing PGC-1B have a higher oxygen consumption and are resistant to

highfat diet-induced, as well as genetically determined obesity.
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Aim of my thesis

Regulation of transcription is a highly complex process that requires the orchestrated
collaboration of numerous factors operating at several different levels. Extracellular
factors like steroid hormones activate nuclear hormone receptors, which are released
by the chaperone complex, translocate to the nucleus, bind to regulatory DNA
sequences, interact with chromatin and the basic transcription machinery via
coactivators, and regulate transcription (reviewed in Aranda and Pascual, 2001). Any
of the steps in this pathway are potential targets for regulation, by different
phosphorylation cascades or other mechanisms (reviewed in Weigel, 1996). Nuclear
receptors like GR are ubiquitously expressed and posses the ability to interact with
several different coactivators, which themselves are also able to coactivate numerous
different transcription factors (reviewed in Glass and Rosenfeld, 2000; McKenna et
al., 1999; Naar et al., 2001). Increasing evidence over the last few years suggests that
coactivators may provide specificity to the physiological responses mediated by
nuclear receptors (reviewed in Knutti and Kralli, 2001; Puigserver and Spiegelman,

2003).

The basic hypothesis of my PhD thesis is that some of the target gene specificity in
GR signaling, but also in the signaling of other receptors, is determined by the
interaction with the specific coactivator PGC-la. To test this hypothesis, we
established a cell culture model system, where we could activate GR in the absence
and presence of PGC-1a, and ask if PGC-1a enhances the expression of all GR target
genes, or if the presence of PGC-1a would reroute GR to the regulation of specific
cellular programs. Briefly, PGC-1a was introduced into osteoblast progenitor SAOS2
cells that express no detectable levels of endogenous PGC-1a but have functional GR,
and responses to glucocorticoids £ PGC-la were analyzed by gene expression
profiling on the Affymetrix U133 A chips. The results could give information not only
on how PGC-1a affects GR signaling, but also on potentially new programs regulated

by PGC-1a in collaboration with other nuclear receptors expressed in these cells.
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Summary

The estrogen-related receptor alpha (ERRa) is one of the first orphan nuclear
receptors identified. Still, we know little about the mechanisms that regulate its
expression and its activity. In this study, we show that the transcriptional coactivator
PGC-1, which is implicated in the control of energy metabolism, regulates ERRa at
two levels. Firstly, PGC-1 induces the expression of ERRa. Consistent with this
induction, levels of ERRo mRNA in vivo are highest in PGC-1 expressing tissues,
such as heart, kidney, and muscle, and up-regulated in response to signals that induce
PGC-1, such as exposure to cold. Secondly, PGC-1 interacts physically with ERRa
and enables it to activate transcription. Strikingly, we find that PGC-1 converts ERRa
from a factor with little or no transcriptional activity to a potent regulator of gene
expression, suggesting that ERRa is not a constitutively active nuclear receptor but
rather one that is regulated by protein ligands, such as PGC-1. Our findings suggest
that the two proteins act in a common pathway to regulate processes relating to energy
metabolism. In support of this hypothesis, adenovirus-mediated delivery of small
interfering RNA for ERRa, or of PGC-1 mutants that interact selectively with
different types of nuclear receptors, shows that PGC-1 can induce the fatty acid

oxidation enzyme MCAD in an ERRa-dependent manner.

Introduction

The nuclear receptor ERRa was identified in 1988 as a protein that shares significant
sequence similarity to known steroid receptors, such as the estrogen receptor (Giguere
et al., 1988). ERRa and its relatives ERRB and ERRy form a small family of orphan
nuclear receptors that are evolutionarily related to the estrogen receptors ERo and
ERB, and whose in vivo function is still unclear [(Giguere et al., 1988; Hong et al.,
1999), reviewed in (Giguere, 2002)]. The three ERRs recognize and bind similar
DNA sequences, which include estrogen response elements (EREs) recognized by
ERa, as well as extended ERE half-sites that have been termed ERR response
elements (Johnston et al., 1997; Sladek et al., 1997; Vanacker et al., 1999a; Vanacker
et al., 1999b). Despite their high similarity to ligand-dependent receptors, ERRs seem
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to regulate transcription in the absence of known natural lipophilic agonist ligands.
Searches for ligands have so far identified only synthetic antagonists. 4-
Hydroxytamoxifen, which binds ERRB and ERRy but not ERRa, and
diethylstilbestrol, which binds all three ERRs, inhibit the ability of ERRs to activate
transcription (Coward et al., 2001; Tremblay et al., 2001). In support of the
pharmacological data, elucidation of the crystal structure of the ERRy LBD suggests
that the ERRs assume the conformation of ligand-activated nuclear receptors in the
absence of ligand (Greschik et al., 2002), and that agonist ligands may not be
required. These findings raise the question of how the activity of these nuclear

receptors is regulated.

One way to control orphan receptor activity is to express the receptors in a
temporally- and spatially-restricted manner. ERRa is expressed widely, however,
particularly high ERRa mRNA levels have been noted at sites of ossification during
development, and in heart, kidney, brown fat, and muscle in adults [(Bonnelye et al.,
1997b; Bonnelye et al., 1997c; Shi et al., 1997; Shigeta et al., 1997; Sladek et al.,
1997; Vanacker et al., 1998; Vega and Kelly, 1997), reviewed in (Giguere, 1999)].
Thus, differential expression of ERRa may contribute to the regulation of ERRa-
mediated transcription. The mechanisms and signals that regulate ERRa expression

are not clear.

The activity of orphan nuclear receptors may also be regulated at the protein level, via
interactions with specific cofactors. ERRa has been reported variably as an activator,
a repressor, or a DNA-binding factor with little activity, suggesting that cellular
factors determine the ability of the ERRa protein to activate transcription (Bonnelye
et al., 1997b; Johnston et al., 1997; Kraus et al., 2002; Lu et al., 2001; Sladek et al.,
1997; Vanacker et al., 1998; Vanacker et al., 1999b; Xie et al., 1999; Zhang and Teng,
2000). Possible candidates for exerting such control are coactivators that interact with
ERRa such as members of the p160 family of coactivators. Overexpression of p160
coactivators can indeed enhance ERRa mediated transcription at model reporters (Lu
et al., 2001; Xie et al., 1999; Zhang and Teng, 2000). However, ERRa shows weak
transcriptional activity in cells that express endogenous p160 coactivators (Lu et al.,

2001; Sladek et al., 1997), suggesting that additional cofactors must be important.
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PGC-1 is a transcriptional coactivator of many nuclear receptors, as well as specific
other transcription factors like the nuclear respiratory factor 1 (NRF-1) and members
of the MEF2 (myocyte enhancer factor 2) family (Knutti et al., 2000; Michael et al.,
2001; Puigserver et al., 1998; Tcherepanova et al., 2000; Vega et al., 2000; Wu et al.,
1999; Yoon et al., 2001). PGC-1 is expressed in a tissue-selective manner, with the
highest mRNA levels found in heart, kidney, brown fat and muscle (Esterbauer et al.,
1999; Knutti et al., 2000; Larrouy et al., 1999; Puigserver et al., 1998). Moreover,
PGC-1 expression is induced in a tissue-specific manner by signals that relay
metabolic needs. Exposure to cold leads to the induction of PGC-1 in brown fat and
muscle, starvation induces PGC-1 expression in heart and liver, and physical exercise
increases its expression in muscle (Goto et al., 2000; Herzig et al., 2001; Lehman et
al., 2000; Puigserver et al., 1998; Yoon et al., 2001). PGC-1 function has been
implicated in the control of energy metabolism, as PGC-1 expression stimulates
mitochondrial biogenesis and modulates mitochondrial functions and utilization of
energy [(Lehman et al., 2000; Vega et al., 2000; Wu et al., 1999), reviewed in (Knutti
and Kralli, 2001)]. The nuclear receptors PPARy, TRa, PPARa, HNF4 and GR, and
the transcription factors NRF-1, MEF2C, and MEF2D interact with, and may recruit
PGC-1 to the promoters of target genes that execute the metabolic effects of PGC-1.

Additional transcription factors are likely to contribute to PGC-1 function.

In the study presented here, we show that PGC-1 regulates, first, the expression of
ERRoa mRNA and, second, the transcriptional activity of the ERRa protein. Our
findings indicate that ERRa by itself is a poor activator of transcription, and that
PGC-1 fulfils a specific role as a cofactor required for ERRa function. The
interactions of PGC-1 and ERRa suggest that the two proteins act in a common

pathway.
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Experimental procedures

Plasmids and Adenoviral vectors. Expression plasmids for wild-type and mutant
human PGC-1, and luciferase reporters pGK1, pALUC and pA(cERE)x2-Luc
(referred in this study as pERE-Luc) have been described (Knutti et al., 2001;
Kressler et al., 2002). pSG5-mERRa for the expression of full-length mouse ERRa
was a gift of J.-M. Vanacker (Bonnelye et al., 1997b). The human ERRa ligand
binding domain (LBD) was amplified by PCR, using HeLa cDNA and primers
CGAATTCATATGGGGCCCCTGGCAGTCGCT

and GCTCTAGACTATCAGTCCATCATGGCCTC, and cloned as an Nde I - Xba I
fragment into pcDNA3/Gal4DBD (Kressler et al., 2002). The plasmid pSiERRa was
generated by cloning the annealed primers GAT CCC CGA GCA TCC CAG GCT
TCT CAT TCA AGA GAT GAG AAG CCT GGG ATG CTC TTT TTG GAA A
(ERRa907/927-s) and AGC TTT TCC AAA AAG AGC ATC CCA GGC TTC TCA
TCT CTT GAA TGA GAA GCC TGG GAT GCT CGG G (ERRa907/927-a) into
pSUPER (Brummelkamp et al., 2002).Yeast expression vectors for Gal4-PGC-1 (aa
91-408, wild type or mutants) were generated by subcloning the PGC-1 cDNA
fragments encoding aa 91 to 408 in the vector pGBKT?7 (Clontech). Plasmid pAS2-
ERRaLBD expresses the ERRaL.BD fused to the Gal4 DBD and was generated by
subcloning the Ndel - Xbal fragment encoding the ERRa LBD into pAS2-1
(Clontech). pGBKT7/hERa.280C expresses the human ERa LBD (starting at aa 280)
fused to the Gal4 DBD. Human PPARy (full-length), RXRa (starting at aa 10) and
ERRa (starting at aa 221) fused to the Gal4 activation domain (AD) were isolated in a

yeast two-hybrid screen, and were expressed from the vector pACT2 (Clontech).

Adenoviral vectors were generated by CRE-lox mediated recombination in CRES
cells (Hardy et al., 1997). Briefly, CRES cells were transfected with 3 pg of purified
W5 adenovirus DNA and 10 pg of pAdlox DNA shuttle plasmid (Hardy et al., 1997)
carrying the cDNA for human PGC-1 (wild-type or mutant) downstream of the CMV
promoter. For the expression of siRNA from adenoviruses, the CMV promoter and
SV40 polyadenylation sequences of pAdlox were replaced by a DNA fragment
harboring the expression cassette of pPSUPER (Brummelkamp et al., 2002) to generate
AdSUPER. The viral vector AdSiERRa expresses the same siRNA as pSiERRa. All
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viruses were plaque-isolated to obtain single clones, titered by serial dilution in CRE8
cultures that were grown under 0.6% Noble agar overlay, and used as freeze-thaw

lysates.

Cell lines, Infections, and Transfections. 293, CRES8 (Hardy et al., 1997), HepG2,
SAOS2-GR(+)(Rogatsky et al., 1997), and HtTA-1 [derived from HeLa; (Knutti et
al., 2001)] cells were cultured in Dulbecco’s modified Eagle’s medium supplemented
with 9% fetal calf serum. When measuring ERRa- and GR-mediated transcription,
cells were grown in medium with charcoal-stripped serum. SAOS2-GR(+) and CRES
cultures were supplemented with G418 (400 pg/ml). For infection, cells were plated
at 2x10° per well in a 6-well dish. The next day, viruses were added at a multiplicity
of infection (moi) of 40 or 100, as indicated in figure legends, for 2 h. Cells were then
washed and replenished with fresh medium. For transfections, cells were incubated
with a calcium phosphate/DNA precipitate. Transfections included 0.2 pg of p6RlacZ
for normalization of transfection efficiency, and 1 pg of the luciferase reporters
pALuc, pERE-Luc or pGK1. The amounts of expression plasmids per transfection
were: 0.5-1 ug of pcDNA3 or pcDNA3/HA-PGC-1; 1 ug of pSGS or pSG5-mERRa;
1 pg of pcDNA3/Gal4 DBD or pcDNA3/Gal4-ERRaLLBD;1 png of pSUPER or
pSiERRa for siRNA. Cell lysates were prepared 40 to 48 h after transfection and
assayed for luciferase activity as described (Knutti et al., 2000). Luciferase values

normalized to the -gal activity are referred to as luciferase units.

RNA analysis. Total RNA was isolated using the Trizol reagent, and checked for its
integrity by agarose gel electrophoresis and ethidium bromide staining. RNA was
converted to cDNA and specific transcripts were quantitated by real-time PCR using
the Light Cycler system (Roche Diagnostics) as described previously (Kressler et al.,
2002). A melting curve from 65 to 95°C (0.05°C/sec) at the end of the reaction was
used to check the purity and nature of the product. In all cases, a single PCR product
was detected. The sequences of the primers and the sizes of the PCR products were as
follows: AAGACAGCAGCCCCAGTGAA (exon 4)

and ACACCCAGCACCAGCACCT (exon 5) for human ERRa (product 254 bp);
TGTGGAGGTCTTGGACTTGGA (exon 4/5)
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and TCCTCAGTCATTCTCCCCAAA (exon 6) for MCAD (product 173 bp);
CTGTGCCAGCCCAGAACACT (exon 4) and TGACCAGCCCAAAGGAGAAG
(exon 5) for 36B4/ribosomal protein PO large (product 201 bp);
CGGGATGAGTTGGGAGGAG (exon 1)

and CGGCGTTTGGAGTGGTAGAA (exon 2) for p2l (product 212 bp);
GGAGGACGGCAGAAGTACAAA (exon 4) and GCGACACCAGAGCGTTCAC
(exon 5) for mouse ERRa (product 130 bp); primers for mouse PGC-1 and actin have
been described in (Kressler et al., 2002).

Western analysis. Cells were lysed in 100 mM Tris pH 7.5, 1% NP40, 250 mM NaCl,
1 mM EDTA buffer. Cell lysates were subjected to western analysis using antibodies
against the HA epitope (HA.11, BAbCO), ERRa (Johnston et al., 1997), or PGC-1

(sera from rabbits immunized with a PGC-1 fragment bearing aa 1-293).

Yeast two-hybrid interaction assays. Yeast carrying Gal4-responsive [3-gal reporters
(CG1945xY187, Clontech) were transformed by the lithium acetate transformation
method with expression plasmids for Gal4 DBD and Gal4-AD fusion proteins. Single
transformants were grown to stationary phase, diluted 1:20 in selective media, grown
for an additional 14 h at 30°C in 96-well plates, and assayed for B-gal activity as
described (Kressler et al., 2002)
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Results

PGC-1 induces ERRa expression. To identify genes that are induced by PGC-1 and
that could execute the cellular processes activated by PGC-1, we have compared the
RNA profiles of SAOS2-GR(+) cells infected with adenoviral vectors expressing
PGC-1, to those of cells infected with control vectors expressing [-gal or GFP.
Analysis of the RNA profiles after hybridization to high density oligonucleotide
arrays (data not shown) identified the orphan nuclear receptor ERRa as a gene that is
induced strongly by PGC-1. Expression of PGC-1 led to the induction of ERRa at the
RNA and protein level in SAOS2-GR(+) cells, as well as in HtTA-1, HepG2, and 293
cells (Fig. 1A, and data not shown). Evaluation of protein levels by immunoblotting
showed that the increase in the levels of ERRa protein followed closely the
appearance of PGC-1 protein at different times after infection, suggesting that ERRa

induction is an early event upon PGC-1 expression (Fig. 1B).

ERRa mRNA levels have been reported to be high in PGC-1 expressing tissues, such
as kidney, heart, muscle and brown adipose tissue (Esterbauer et al., 1999; Knutti et
al., 2000; Larrouy et al., 1999; Puigserver et al., 1998; Shi et al., 1997; Shigeta et al.,
1997; Sladek et al., 1997; Vanacker et al., 1998; Vega and Kelly, 1997). Analysis of
mRNA expression levels in tissues of adult mice shows that indeed ERRa levels
correlate with PGC-1 mRNA levels (Fig. 1C). PGC-1 expression in some of these
tissues is known to be induced in response to physiological signals, such as exposure
to cold (Puigserver et al., 1998). Thus, to test the ability of PGC-1 to induce ERRa in
vivo, we determined PGC-1 and ERRa mRNA levels in the brown fat and muscle of
mice that were exposed to cold for 6 hours. As seen in Fig. 1D, the increase in PGC-1
expression was accompanied by an increase in ERRa mRNA levels, suggesting that

PGC-1 can also induce ERRa expression in vivo.
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Figure 1. PGC-1 induces ERRa at the mRNA and protein level.

(A, B) Cells were infected with either GFP (control) or PGC-1 expressing adenoviruses at a
moi of 40 [SAOS2-GR(+)] or 100 (HtTA-1). (A) RNA was isolated 24 h (HtTA-1) or 48 h
[SAOS2-GR(+)] after infection. Levels of ERRoo mRNA were determined by quantitative
RT-PCR, normalized to 36B4 levels, and expressed relative to levels in control cells. Data
represent the mean + standard deviation of four experiments performed in duplicates. Cell
extracts prepared 24 h after infection were analyzed by immunoblotting with antibodies
against PGC-1 (upper panel) or ERRa (lower panel). (B) Cell extracts prepared at the
indicated times after infection of HtTA-1 cells with a PGC-1 expressing adenovirus were
analyzed by immunoblotting with antibodies against PGC-1 (upper panel) or ERRa (lower
panel). (-), extracts from uninfected HtTA-1 cells. (C, D) Levels of PGC-1 and ERRo. mRNA
in the indicated mouse tissues were determined by quantitative RT-PCR, and normalized to -
actin levels. (C) Relative mRNA levels in tissues of a ~ 6 week-old female mouse. Levels in
heart were set equal to 100 for each transcript. Data represent mRNA levels relative to
expression in heart, and are the mean + range of duplicate PCR reactions. SKM, skeletal
muscle; ADG, adrenal gland. (D) Relative mRNA levels in brown fat and soleus muscle of
four ~8-week-old male siblings, kept at 23 °C (M1, M2; control) or exposed to 4 °C for 6
hours (M3, M4; cold). Data shown are the mean + range of PGC-1 and ERRa mRNA levels
normalized to B-actin levels in each RNA sample.
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PGC-1 induces strongly ERRa-mediated transcription. The finding that PGC-1
induces the expression of ERRa suggests that PGC-1 enhances also the activity of
ERRo-regulated promoters. To test this, we transfected 293 cells with a PGC-1
expression vector and a reporter that carries the luciferase gene under the control of
the minimal ADH promoter with or without binding sites for ERRa (pERE-Luc and
pALuc, respectively). PGC-1 enhanced strongly expression from the pERE-Luc
reporter, in a manner dependent on the presence of the binding sites for ERRa (Fig.
2A). Estradiol, tamoxifen or hydroxytamoxifen did not affect the enhancement by
PGC-1 (data not shown), suggesting that it was not mediated by receptors that are
regulated by these ligands and can recognize the same DNA binding site (e.g. ERa,
ERB, ERRB or ERRy). To confirm that endogenous, PGC-1-induced ERRa was
mediating the effect of PGC-1 on the pERE-Luc reporter, we determined the effect of
inhibiting the expression of ERRa. For this, cells were transfected with a vector
expressing a small interfering (si) RNA specific for ERRo (pSiERRa)
(Brummelkamp et al., 2002). Expression of the ERRa-specific siRNA led to a
decrease in ERRa mRNA levels (Fig. 2B), and a decrease in the PGC-1 — mediated
induction of the luciferase reporter, demonstrating that endogenous ERRa was
required for the PGC-1 effect (Fig. 2C). In the absence of PGC-1, pSiERRa decreased
ERRa expression (Fig. 2B) but had no effect on the pERE-Luc reporter (Fig. 2C),

suggesting that in this context ERRa was not transcriptionally active.
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Figure 2. PGC-1 induces ERRa-mediated transcription.

(A) 293 cells were transfected with a luciferase reporter driven by either just the minimal
ADH promoter (pALuc) or 2 EREs upstream of the minimal ADH promoter (pERE-Luc), and
either the control vector pcDNA3 or a PGC-1 expression vector. Data are the mean + standard
deviation of luciferase activities from three experiments performed in duplicates. (B) 293
cells were transfected with the empty vector pSUPER (Brummelkamp et al., 2002) or the
vector expressing siRNA for ERRa (pSiERRa), and either pcDNA3 (+vector) or the PGC-1
expression vector pcDNA3/HA-PGC-1 (+PGC-1). Transfection efficiency was 40-50%. RNA
was prepared 48 h later. ERRa. mRNA levels were determined by quantitative RT-PCR and
normalized to levels of 36B4. Data are the average of two experiments performed in
duplicates. (C) 293 cells were transfected with the pERE-Luc reporter, a control or PGC-1
expression vector as indicated, and either the control pSUPER or the siRNA expressing
pSiERRa. Data represent the mean + standard deviation of luciferase activities from two
experiments performed in duplicates.
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PGC-1 activates ERRa at the protein level. PGC-1 interacts physically with many
nuclear receptors and enhances their transcriptional activity [reviewed in (Knutti and
Kralli, 2001)]. Thus, PGC-1 could also interact with ERRa. In this case, the increased
ERRa-mediated transcription could be the combined result of PGC-1 inducing ERRa
levels, and enhancing ERRa activity. To address this, we first asked if overexpression
of ERRa would lead to the same phenotype as PGC-1 expression. If the only function
of PGC-1 were to increase ERRa levels, we would expect that exogenous ERRa
expression would mimic the PGC-1 effect. Surprisingly, overexpression of ERRa had
very little effect on pERE-Luc (< 2-fold), suggesting that ERRa alone was not
sufficient for the transcriptional activation of this reporter (Fig. 3A). Coexpression of
PGC-1 with ERRa led to an increase in luciferase expression that was stronger than
that seen with just endogenous ERRa, indicating that PGC-1 activated the
exogenously introduced ERRa (Fig. 3A).

To determine the effect of PGC-1 on the activity of ERRa directly, we evaluated the
consequence of PGC-1 expression on the activity of a Gal4 DNA binding domain
(DBD) - ERRa LBD chimera, using a Gal4-responsive luciferase reporter. In this
context, endogenous ERRa does not interfere with the luciferase readout. As seen in
Fig. 3B, Gal4-ERRa LBD by itself activated transcription modestly, ~2-fold,
suggesting that the LBD of ERRa carries only a weak transcriptional activation
function. Addition of PGC-1 converted the Gal4-ERRaLBD fusion to a strong
activator of transcription, indicating that PGC-1 enables the transcriptional function of

ERRa (Fig. 3B).
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Figure 3. PGC-1 activates ERRa, which by itself is a weak activator of transcription.

(A) 293 cells were transfected with the pERE-Luc reporter, a control or PGC-1 expression
vector as indicated, and either the pSG5 vector (endogenous) or the pSG5-mERRa expression
vector (+tERRa) (Vanacker et al., 1999b). Data are the mean * standard deviation of
luciferase activities from three experiments performed in duplicates. (B) 293 cells were
transfected with the Gal4 responsive luciferase reporter pGK1, an expression vector for either
the Gal4 DBD or a fusion of the ERRa. LBD to the Gal4 DBD, and either vector alone or
PGC-1 expression vector. Data are from one representative experiment performed in

triplicates, and are expressed relative to the activity of Gal4-ERRaLBD in the absence of
PGC-1.

63



Chapter II: PGC-1a regulates ERRa expression and activity

ERRa interacts with PGC-1 via an atypical Leu-rich box. PGC-1 harbors three
Leu-rich motifs, (L1, L2, and L3), one of which, (L2), bears the consensus LxxLL
sequence present in many proteins that interact with the LBD of nuclear receptors.
The L2 motif serves as the major binding site for many nuclear receptors, and
mutations in L2 disrupt the interactions of PGC-1 with nuclear receptors tested so far
(Knutti et al., 2001; Tcherepanova et al., 2000; Vega et al., 2000). Surprisingly, PGC-
1 harboring a mutant L2 (L2A) was still capable of interacting with ERRa in a yeast
two-hybrid assay; in the same context, the L2A mutant was severely compromised for
interaction with PPARy, RXRa, and ERa (Fig. 4A,B). In previous studies, we had
noted that the L3 site can mediate a weak interaction with the glucocorticoid receptor
(Knutti et al., 2001). We thus tested the contribution of the L3 site to the PGC-
I/ERRa interaction. As seen in Fig. 4A and B, PGC-1 bearing a disruption of just L3
(L3A) was also capable of interacting with ERRa, while the double L2/3A mutation
abolished the interaction. Mutations in motif L1, alone or in combination with L2, had
no effect on the physical interaction of PGC-1 with ERRa (data not shown). Thus, we
concluded that motifs L2 and L3 can be used equivalently for physical interactions
between PGC-1 and ERRa, while L2 is the preferred site for most other receptors
(Fig. 4A & B).

Next, we determined the requirement of the physical interaction between PGC-1 and
ERRa for the activation of the ERRa LBD in mammalian cells, using the context of
the Gal4-ERRoLBD chimera. Single mutations in either L2 or L3 did not compromise
the PGC-1 effect (Fig. 4C), suggesting that interaction via either site is sufficient for
activation of ERRa by PGC-1. The double L2/3A mutation abolished the activation,
indicating that the physical interaction between the two proteins is necessary for the

effect of PGC-1 on the ERRa LBD (Fig. 4C).
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Figure 4. ERRa interacts with the L3 as well as the L2 site of PGC-1.

(A, B) Yeast two-hybrid assay. (A) Interactions between the L2/L3 containing PGC-1
fragment (aa 91-408) fused to the Gal4 DBD, and the indicated receptors fused to the Gal4
AD. Data are the mean + standard deviation of Pgal activities from four independent
transformants. (B) Interactions between the LBD of ERRa or ERqito the Gal4 DBD (Gal4-
ERRa and Gal4-ERq), and full-length PGC-1 [wild type (wt) or L2/L3 mutants] fused to the
Gal4 AD. Interaction with ERa was assayed in the presence of 10 uM 17(3-estradiol. Data are
the mean + standard deviation of Pgal activities from twelve yeast transformants. (C)
Activation of the ERRa. LBD in mammalian cells. 293 cells were transfected with the Gal4
responsive luciferase reporter pGK1, the vector expressing the Gal4-ERRo LBD fusion, and
either vector alone (—), PGC-1 wild type (wt), or the indicated PGC-1 mutants. Data are the

mean + standard deviation of luciferase activities from at least four experiments performed in
duplicates.
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PGC-1 can induce the expression of the endogenous gene MCAD in an ERRa -
dependent manner. The ability of PGC-1 to induce ERRa expression and activity
predicts that PGC-1 should also induce the expression of ERRa target genes. To test
this, we determined the effect of PGC-1 on the RNA levels of a proposed ERRa
target, the medium chain acyl-coenzyme A dehydrogenase (MCAD), an enzyme in
fatty acid oxidation (Sladek et al., 1997; Vega and Kelly, 1997). As seen in Fig. 5,
PGC-1 expression led to the induction of MCAD in HtTA-1 and SAOS2-GR(+) cells.
To address whether the induction was mediated by ERRa, we asked if suppression of
ERRa expression affected the response of MCAD to PGC-1. Infection of HtTA-1
cells with adenoviruses that express ERRa-specific siRNA led to a decrease in ERRa
mRNA levels (Fig. 5A), and a reduced induction of MCAD (Fig. 5B), consistent with
ERRa mediating the PGC-1 effect at the MCAD promoter.

The distinct utilization of the L3 site of PGC-1 for interaction with ERRa and not
other receptors like GR, suggests that mutations in the L2 and L3 sites could be used
to diagnose the type of nuclear receptors that mediate specific functions of PGC-1.
Functions that are mediated by receptors utilizing the L2 site should be abrogated by
the single PGC-1 mutation L2A, while functions that rely on ERRoa should be
disrupted only by the double L2/3A and not the single L2A mutation. To test this, we
infected SAOS2-GR(+) cells that express GR from a stably-integrated locus, with
adenoviruses expressing PGC-1, wild-type or mutant variants. As predicted, the
glucocorticoid-dependent induction of the endogenous GR target p21 (Rogatsky et al.,
1997) was enhanced by both wild-type PGC-1 and the L3A mutant, but not by the
L2A mutant (Fig. 5C). In contrast, induction of MCAD in the same cells was not
affected by the L2A mutation and was only abolished by the double L2/3A mutation
(Fig. 5D). These findings indicate that the L2 and L3 sites of PGC-1 are indeed used
selectively by different nuclear receptors to recruit PGC-1 at their respective

endogenous target genes.

66



Chapter II: PGC-1a regulates ERRa expression and activity

A B
4 5
HITA-1 O GFP HtTA-1 O GFP
3 H PGCA1 < 4 4 B PGCA
S =
[ ¥ 3
Eq E
E
g 37
[T =
1 4
04 0 -
AdSuper  AdSIERRo AdSuper AdSIERRm
c = O -H SAOQS2-GR(+)
204@ +H
s
FRER
E
= 101
[~
5 o
0

GFP  wt L2ZA  L3A  L213A
PGC-1

SADS2-GR(+)
16

MCAD mRMNA
m
1

GFP wit L2a L3A  L2/3A
PGC-1

Figure 5. PGC-1 induces the endogenous MCAD gene in an ERRa.

(A, B) HtTA-1 cells were infected with either control (AdSUPER) or siERRa expressing
(AdSiERR0) adenoviruses on day 1, and either GFP- or PGC-1-expressing adenoviruses on
day 2. RNA was harvested on day 3, and mRNA levels for ERRa and MCAD were analyzed
by quantitative RT-PCR, normalized to 36B4 levels, and expressed relative to levels in cells
infected with AASUPER/GFP viruses. Data represent the mean =+ standard deviation of three
experiments performed in duplicates. (C, D) SAOS2-GR(+) cells were infected with
adenoviruses expressing either GFP or PGC-1 [wild type (wt) or mutants L2A, L3A, or
double L2/3A]. (C) 24 h after infection cells were treated with either 50 nM corticosterone
(+H) or just vehicle ethanol (—). RNA was harvested 8 h after hormone addition, and p21
mRNA levels were determined by quantitative RT-PCR, normalized to 36B4 levels, and
expressed relative to levels in cells infected with GFP virus and treated with just ethanol. Data
represent the mean + range of duplicates of one experiment. (D) RNA was harvested 48 h
after infection, and MCAD mRNA levels were determined by quantitative RT-PCR,
normalized to 36B4 levels, and expressed relative to levels in cells infected with GFP virus.
Data represent the mean + standard deviation of two experiments performed in duplicates.
Wild-type, L2A, L3A and L2/3A mutants were expressed at similar levels, as determined by
western blot analysis.
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Discussion

Many members of the nuclear receptor superfamily are still orphan receptors, with no
known physiological ligands. The mechanisms that regulate the activity of these
receptors are not fully understood. The results presented here provide evidence that
the transcriptional coactivator PGC-1 is a key regulator of the orphan nuclear receptor
ERRa. PGC-1 acts at two levels. First, it induces ERRa expression; second, it
associates with ERRa and enables the transcriptional activation of ERRa target genes.
PGC-1 expression is known to be regulated in a tissue-selective manner by
physiological signals that relay metabolic needs (Goto et al., 2000; Herzig et al.,
2001; Lehman et al., 2000; Puigserver et al., 1998; Yoon et al., 2001). Accordingly,
PGC-1 function has been implicated in the regulation of energy metabolism [(Lehman
et al., 2000; Vega et al., 2000; Wu et al., 1999), reviewed in (Knutti and Kralli,
2001)]. Our findings suggest that ERRa functions in PGC-1 - regulated pathways,
where it may contribute to the transcriptional activation of genes important for energy

homeostasis.

The activity of several orphan nuclear receptors is restricted by expression of the
receptors in specific tissues or at particular times [reviewed in (Giguere, 1999)].The
mechanisms that control the selective expression of these receptors are often not clear.
The observation that PGC-1 induces ERRa mRNA levels, provides a molecular
explanation for the high ERRa expression in heart, kidney, muscle and brown fat, i.e.
tissues that express PGC-1. Moreover, it suggests physiological signals that are likely
to control ERRa expression, as shown here for exposure to cold in brown fat and
muscle. In support of these findings, Ichida et al. have recently shown that fasting,
which is known to induce PGC-1 expression in the liver (Herzig et al., 2001; Yoon et
al., 2001), also increases ERRa mRNA levels (Ichida et al., 2002).The spatial and
temporal correlation of PGC-1 and ERRa expression implies that ERRa induction is
an early, and possibly direct outcome of PGC-1 action. Future studies must address if
PGC-1 acts directly at the ERRa promoter. Additional regulatory mechanisms may
restrict or enhance ERRa induction by PGC-1, in a tissue- or physiological state-

dependent manner.
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Interestingly, we find that in the absence of PGC-1, ERRa is a very weak activator of
transcription. Coexpression of PGC-1 enables potent transcriptional activation by
ERRa. These findings suggest that ERRa is not a constitutively active receptor, and
that transformation into an active form is favored by binding to protein ligands, such
as PGC-1, rather than to small lipophilic ligands. Expression levels of PGC-1 may
explain why ERRa has been reported as an efficient transcriptional activator in some
cells (e.g. ROS 17.2/8) and a poor activator in others (Bonnelye et al., 1997b;
Johnston et al., 1997; Kraus et al., 2002; Lu et al., 2001; Sladek et al., 1997; Vanacker
et al., 1998; Vanacker et al., 1999b; Xie et al., 1999; Zhang and Teng, 2000). Many
established cell lines express very low, if any, levels of PGC-1. Importantly, the
ability of PGC-1 to activate ERRa at the protein level predicts that physiological
signals that induce PGC-1 are likely to activate ERRa-mediated transcription, even in

the absence of increased ERRa expression.

The activation of ERRa at the protein level requires the physical interaction of PGC-1
with ERRa. Surprisingly, this interaction differs from that of PGC-1 with other
nuclear receptors. While PGC-1 recognizes most receptors tested until now (GR,
ERa, TRa, RXRa, RARa, PPARa, PPARy, HNF4) via the canonical LxxLL motif
L2, it can interact with ERRa equally well via the L2 or the L3 site. Similar to our
findings, Huss et al. have recently shown that ERRa, as well as the related receptor
ERRy, bind the L3 site of PGC-1 (Huss et al., 2002), suggesting that the L3-mediated
interaction is characteristic of the ERR subfamily of receptors. Interestingly, the
differential utilization of the Leu-rich motifs can be used to dissect the receptors that
mediate specific PGC-1 functions, as shown by the fact that L2A mutations disrupt
GR- but not ERRa-dependent effects of PGC-1. Thus, the L2 and L3 mutants of
PGC-1 may provide useful tools for elucidating the types of receptors that recruit

PGC-1 at distinct promoters.

The in vivo functions of ERRa are not yet defined. Based on its ability to bind EREs
and modulate some estrogen-responsive genes, ERRa has been proposed to modulate
ER signaling and possibly play a role in ER-dependent tumors (Kraus et al., 2002; Lu
et al., 2001; Vanacker et al., 1999b). A function of ERRa in bone development is
supported by the high levels of ERRa at sites of ossification during embryogenesis,
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and the ability of ERRa to promote osteoblast differentiation in vitro and to activate
the promoter of the bone matrix protein osteopontin (Bonnelye et al., 2001; Bonnelye
et al., 1997b). Finally, the strong expression of ERRa in tissues with high capacity for
fatty acid oxidation, and its ability to bind the promoter of the MCAD gene, suggest a
role in the mitochondrial B-oxidation of fatty acids (Sladek et al., 1997; Vega and
Kelly, 1997). Our findings support a function of ERRa in PGC-1 — stimulated cellular
processes, such as fatty acid oxidation (Vega et al., 2000), and possibly other aspects
of energy homeostasis. Interestingly, the close relationship of PGC-1 and ERRa
activity may reflect not only an involvement of ERRa in known PGC-1-regulated
functions, but also of PGC-1 in processes where ERRa roles have been suggested,

such as bone development and homeostasis, or breast cancer.
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Results and Discussion

Mechanism of ERR a induction

In our published study, we demonstrated that the mRNA and protein levels of ERRa
were induced by PGC-1a. Since coactivators do not bind DNA directly, we wanted
also to determine which transcription factor mediates the PGC-la effect on the
expression of the ERRa gene. As described earlier, PGC-1a interacts with most
nuclear receptors via the L2 motif, but with ERRs via either the L2 or the L3 motif.
To find if a nuclear receptor with characteristic of either of ERRs or of other NRs was
required for the PGC-1a mediated induction, we tested what effect mutations in the
L2/L3 motifs of PGC-1a would have on the induction of ERRa expression. As seen
in figure 6 A, mutation of the L2 motif had no effect, while mutation of the L3 motif
caused a small drop in ERRa induction. When both motifs were mutated, the
upregulation of ERRa expression levels by PGC-lae was mostly abolished,
suggesting that it was mediated by a nuclear receptor that could recruit PGC-1a via

L2 as well as L3 (as predicted for ERRa, ERRf3, and ERRY).

To further address the hypothesis that ERRa is involved in the regulation of its own
expression, we used a dominant negative version of ERRa. Nuclear receptor activity
depends on the integrity of the AF-2 domain in the LBD (reviewed in Warnmark et
al., 2003). Deletion of the AF-2 domain of ERRa abolishes the ability of ERRa to
recruit PGC-1a, and to activate transcription (Bonnelye et al., 1997a), but does not
affect its ability to bind DNA. Consequently, this mutant is able to compete with the
endogenous ERRa for binding to DNA, and blocks ERRa signaling (Bonnelye et al.,
1997a). Therefore, we constructed adenoviral vectors expressing the dominant
negative ERRa.. As shown in figure 6 B, expression of the dominant negative ERRa

decreased the levels of ERRa in the absence of PGC-1a similar to the effect of
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specific siRNA for ERRa. Furthermore, PGC-1a induced the expression of ERRa in
the absence, but not anymore in the presence of the dominant negative ERRa..AAF2,

consistent with the idea that endogenous ERRa is required for the induction.

To further address the mechanism by which PGC-1a and ERRa regulate ERRa
expression, we analyzed the sequence of the ERRa promoter and identified three
putative ERREs (figure 6 C). These results strongly suggested us to analyze the
ERRa effect on the ERRa promoter. We therefore cloned base pairs —537 to —829 of
the ERRa upstream regulatory sequence in a luciferase reporter construct, and tested
its response to PGC-1a and ERRa in transient transfection assays. Figure 6 D shows
that expression of PGC-la led to the induction of the ERRa promoter reporter
construct activity. This induction required the expression of endogenous ERRa., since
specific siRNA for ERRa completely inhibited the effect of PGC-1a. Inhibition of
ERRa expression had no influence on the basal activity of the promoter, in the
absence of PGC-1a.. To confirm that the decrease in activity caused by the siRNA
resulted from the specific loss of ERRa, we cotransfected a plasmid expressing
ERRa to overcome the effect of the siRNA. As seen in figure 6 E, we detected a
dose-dependent increase in the ability of PGC-1a to induce the ERRa promoter, with
1-20 ng of DNA of the plasmid expressing ERRa. Interestingly, higher levels of

ERRa expression showed an inhibitory effect.
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Figure 6. ERR o induces its own expression by acting at the ERR o promoter.

(A) SAOS2 cells were infected with adenoviruses expressing GFP (control), wt PGC-1 a or
mutants L2A, L3A and L2/3A (MOI 40); RNA was isolated at 46 h after infection, and
analyzed by quantitative RT-PCR. Values for ERR o mRNA were normalized to values of
36B4 mRNA and expressed in relation to the control, which was set as 1. Values represent the
mean + SEM of two experiments with duplicates. (B) Cells were infected with adenoviruses
expressing control (pSuper), siRNA for ERR o, or the dominant negative ERR a.AAF-2
mutant. After three days, cells were re-infected with control (GFP) or PGC-1 a adenoviruses.
Cell extracts were isolated 24 hours later and analyzed with polyclonal PGC-1 o or ERRa
antibodies. (C) Promoter sequence of ERR a with three putative ERR o binding sites. (D, E)
SAOS2 cells were infected with adenoviruses expressing siRNA for ERR o on day 1. On day
4, cells were transfected with the ERR o -promoter luciferase reporter and either pcDNA3
(control vector) or the expression plasmid pcDNA3-PGC-1 a. Data are from duplicates of 1
of 2 representative experiments. In (D), increasing amounts of the ERR a expression vector
pcDNA3.ERR o (as indicated) were cotransfected with the PGC-1 a expression plasmid.
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Our results imply that the induction of ERRa by PGC-1a is executed by a positive
feedback-loop. The fact that high expression levels of ERRa have an inhibitory
effect, suggests that the role of ERRa in the regulation of its own promoter may be
more complex than a simple activation mechanism. While low levels of ERRa are
required for the induction of its expression by PGC-1a, at high levels ERRa may
represses its promoter. The physiological significance of this finding is currently not
clear. Figure 7 shows a possible model for the positive feedback loop. Physiological
signals induce the expression of PGC-1a. PGC-1a and ERRa proteins bind to the
promoter of ERRa and induce the expression of more ERRa. After the synthesis of
new ERRa protein, PGC-1a and ERRa act as a transcriptional couple to activate

other genes in response to the physiological signals.

physiological stress:
cold, exercise, fasting...

ERRa

ERRa
target promotor

Figure 7. Model of the positive feedback loop by which PGC-1a induces ERRa
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Summary

ERRa is one of the first orphan nuclear receptors to be identified, yet its physiological
functions are still unclear. We show here that ERRa is an effector of the
transcriptional coactivator PGC-1a, and that it regulates the expression of genes
involved in oxidative phosphorylation and mitochondrial biogenesis. Inhibition of
ERRa compromises the ability of PGC-1a to induce the expression of genes encoding
mitochondrial proteins, and to increase mitochondrial DNA content. A constitutively
active form of ERRa is sufficient to elicit both responses. ERRa binding sites are
present in the transcriptional control regions of ERRa/PGC-1a-induced genes, and
contribute to the transcriptional response to PGC-la. The ERRa regulated genes
described here have been reported to be expressed at reduced levels in humans that
are insulin-resistant. Thus, changes in ERRa activity could be linked to pathological

changes in metabolic disease, such as diabetes.

Introduction

Estrogen-related receptor alpha (ERRa, NR3B1) was identified on the basis of its
sequence similarity to classical, hormone-regulated steroid receptors (Giguere et al.,
1988). Based on its ability to recognize similar DNA sequences as the estrogen
receptors, ERRa has been proposed to modulate estrogen signaling (Giguere, 2002;
Johnston et al., 1997; Vanacker et al., 1999; Yang et al., 1996). ERRa may also
regulate bone formation, as it is highly expressed at ossification sites, promotes
osteoblast differentiation in vitro, and activates the promoter of the bone matrix
protein osteopontin (Bonnelye et al., 2001; Bonnelye et al., 1997). Finally, ERRa may
regulate fatty acid oxidation. Consistent with this function, ERRa is prominently
expressed in tissues with high capacity for B-oxidation of fatty acids, such as brown
fat, heart, muscle and kidney, and induces the expression of the medium chain acyl-

coenzyme A dehydrogenase gene (Sladek et al., 1997; Vega and Kelly, 1997).
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A better understanding of the transcriptional programs and cellular pathways that
depend on ERRa has been hampered by the lack of tools to regulate the activity of
this receptor. Despite the high similarity between ERRa and other ligand-dependent
nuclear receptors, it is not clear if ERRa activity is regulated by small lipophilic
ligands. Compounds that inhibit ERRa-dependent transcription, such as toxaphene,
chlordane and diethylstilbestrol, have been described (Tremblay et al., 2001; Yang
and Chen, 1999). However, these compounds are not specific enough for ERRa to
facilitate studies of its cellular function. Recently, we demonstrated that the
transcriptional coactivator PGC-1a regulates ERRa function (Schreiber et al., 2003).
PGC-la induces the expression of ERRa and interacts physically with ERRa,
enabling it to activate transcription (Huss et al., 2002; Schreiber et al., 2003). These
findings suggest that PGC-1a can be used as a protein ‘ligand’ to regulate ERRa-
dependent transcription, and study ERRa function.

PGC-1a has been identified as a tissue-specific coactivator of nuclear receptors
(Knutti and Kralli, 2001; Puigserver and Spiegelman, 2003; Puigserver et al., 1998).
Its expression is most prominent in tissues with high energy demands, similar to the
expression pattern of ERRa (Puigserver and Spiegelman, 2003; Schreiber et al.,
2003). PGC-1oo. mRNA levels are induced in response to signals that relay metabolic
needs, such as exposure to cold, fasting, and physical exercise [reviewed in (Knutti
and Kralli, 2001; Puigserver and Spiegelman, 2003)]. Strikingly, increases in PGC-1a
levels seem sufficient to induce cellular pathways important for energy metabolism,
including adaptive thermogenesis, mitochondrial biogenesis, and fatty acid oxidation
(Lehman et al., 2000; Puigserver et al., 1998; Vega et al., 2000; Wu et al., 1999). This
is accomplished via the interaction of PGC-la with transcription factors, which
recruit PGC-1a to target DNA regulatory sequences and enable the induction of genes
important in energy metabolism pathways. Transcription factors that guide PGC-1a
action to specific genes include nuclear receptors, as well as members of other
transcription factor families, such as NRF-1, which controls the expression of
mitochondrial proteins, and MEF2C/D (Knutti and Kralli, 2001; Puigserver and
Spiegelman, 2003).
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The recent identification of ERRa as a protein that is coexpressed with, as well as
induced and activated by PGC-1a, suggests that ERRa plays a role in some of the
known PGC-1la regulated pathways. Consistent with this hypothesis, we show here

that ERRa and PGC-1a cooperate to induce mitochondrial biogenesis.

Materials and Methods

Adenoviruses and plasmids. Adenoviral vectors expressing GFP, PGC-1a, siRNA
for ERRa, and control AASUPER have been described (Schreiber et al., 2003).
Adenoviruses expressing ERRa or VP16-ERRa were constructed using the insert of
pSG5-mERRa or pSG5-mAAB.ERRa respectively (Bonnelye et al., 1997). For the
reporter plasmids, human genomic DNA and gene-specific oligonucleotides
(Supplement 2) were used to amplify the sequences -385 to +90 and -686 to +55
(relative to transcription initiation site) of the ATPsynf and Cyt ¢ genes, respectively.
The PCR products were cloned upstream of the luciferase coding sequences of pGL3-
Basic (Promega). Mutations and deletions were introduced by fusion PCR (Knutti et
al., 2001). The ERREs at ATPsynp/-338 (CCAAGGACA), Cyt ¢/-596
(ACAAGGTCA), and Cyt c¢/-9 (CCAAGGACA) were changed to CCAgatctt,
ACAgatctA and CCAgatctA, respectively. The NRF-2 binding sites of ATPsynp were
deleted by removing sequences -300 to -270; the NRF-1 binding site of Cyt ¢
(CCAGCATGCGCG) was changed to CCAGgATcCaac.

Cell culture and Transfections. Cells were cultured in DMEM supplemented with
9% charcoal-stripped FCS. SAOS2 [SAOS2-GR(+) in (Schreiber et al., 2003)] cells
were infected with adenoviruses at a multiplicity of infection (moi) of 20-100. COS7
cells were transfected by calcium phosphate precipitation and analyzed as described
(Knutti et al., 2000). The amounts of plasmids per transfection were 100 ng of the
reporters pCytc/-686Luc or pATPsynp/-385Luc, 100 ng pcDNA3/HA-PGC-la
(Knutti et al., 2000), and 50 ng pcDNA3/ERRq(Coward et al., 2001).
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cRNA preparation and Array hybridization. Total RNA (10 pg) was reverse
transcribed using the SuperScript Choice system (Life Technologies). The cDNA (1
ug) was in vitro transcribed using the Enzo BioArray High Yield RNA system (Enzo
Diagnostics). The cRNA (10 pg) was fragmented and hybridized to a HG-U133A
GeneChip (Affymetrix) using standard procedure (45°C, 16 h). Washing and staining
were performed in a Fluidics Station 400 (Affymetrix) using the protocol EukGE-
WS2v4 and scanned in an Affymetrix GeneChip 2500 scanner.

Microarray analysis. Data from 3 experiments were analysed using the Affymetrix
Microarray Suite v5 and GeneSpring 5.1 (Silicon Genetics). Changes in gene
expression were assessed by looking for concordant changes between replicates using
a signed Wilcoxon rank test. The “change” p-value threshold was <0.003. Genes
whose detection p-value was >0.05 in all experimental conditions were excluded from
the analysis. Genes that reproducibly changed in the same direction were subjected to
a 1-way ANOVA test (p<0.05) using a Benjamini and Hochberg multiple testing
correction. Classification into genes encoding mitochondrial proteins was based on
annotations of the Affymetrix NetAffx Analysis Center, SOURCE and NCBI
PubMed, and the OXPHOS and human mitoDB 6 2002 lists curated at WICGR
(Mootha et al., 2003b).

DNA isolation and quantification. Total DNA was prepared according to standard
procedures and digested with 100 pg/ml RNase A for 30 min at 37°C. The relative
copy numbers of mitochondrial and nuclear DNA were determined by real-time PCR,
using primers specific to the COX II (mitochondrial) and B actin (nuclear) genes
(Supplement 2), 1 ng DNA, and the Light Cycler system (Roche Diagnostics). Serial
dilutions of DNA from uninfected cells were analyzed in parallel to establish a

standard curve. Quantification was as described (Kressler et al., 2002).
RNA analysis. Isolation of RNA, conversion to ¢cDNA and quantification of

transcripts by real-time PCR using the Light Cycler system (Roche Diagnostics) and
gene-specific primers (Supplement 2) have been described (Kressler et al., 2002).
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Western analysis. Cell lysates were subjected to western analysis using antibodies

against PGC-1a (Schreiber et al., 2003) and ERRa (Johnston et al., 1997).

Labeling of mitochondria and Flow cytometry. Cells were incubated, first, with
500 nM CM-H,XRos or 500 nM MitoFluor Red 594 (Molecular Probes) in culture
medium for 30 min, and then in fresh, dye-free medium for 30 min at 37°C. CM-
H;XRos labeled mitochondria were visualized by fluorescence microscopy.

MitoFluor Red 594 labeled cells were analyzed by flow cytometry (FACSCalibur,
Beckton Dickinson), using the software WinMDI 2.8.

In silico analysis for ERREs. 35 sequences reported to bind ERRa (Johnston et al.,
1997; Sladek et al., 1997; Vanacker et al., 1998; Vanacker et al., 1999) were aligned
using ClustalW and used to compile a position-weighted nucleotide distribution
matrix. Cross-validation of the matrix revealed a mean and median score for the 35
sequences of 0.915 and 0.946, with a maximum at 0.994 and a minimum of 0.695, the
best possible score being 1. For candidate genes, 5 kb of 5 upstream region sequence
were searched for matches to the matrix, using a variant of the NUBIScan algorithm

(Podvinec et al., 2002).

Electrophoretic mobility shift assay. 0.5 pl of in vitro translated ERRa [T7 Coupled
Reticulocyte system (Promega)] or of unprogrammed lysate was incubated in 20 pl
buffer (10 mM Hepes pH 7.5, 2.5 mM MgCL, 50 mM EDTA, 1mM DTT, 6%
glycerol) with Ing **P end-labeled oligonucleotide probe and 1 pg poly dI:dC, in the
absence or presence of 100 ng unlabeled oligonucleotide competitor (Supplement 2).

Complexes were resolved in 6% native polyacrylamide gels.
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Results

PGC-1a induces mitochondrial biogenesis in SAOS2 cells, via a pathway that
requires interaction with nuclear receptors. To identify the cellular programs that
are regulated by PGC-1a in SAOS2 cells and where ERRa could play a role, we used
high density oligonucleotide arrays and compared the RNA profiles of cells
expressing PGC-1a to those of control cells. 17 hours after infection with a PGC-1
expressing adenovirus, 151 of the upregulated transcripts were classified as nuclear
genes encoding mitochondrial proteins (Supplement 1, Lists A, B). These genes
define “mitochondrial functions” that are upregulated in the early phase of the PGC-
la-induced response (~12 hours after PGC-la protein becomes detectable), and
encode proteins with roles in many facets of mitochondrial biogenesis and function,
including mitochondrial protein synthesis (20 genes), transport across the
mitochondrial membrane (17 genes), fatty acid oxidation (8 genes), the tricarboxylic
acid (TCA) cycle (17 genes), and oxidative phosphorylation (55 genes) (Supplement
1). An additional 23 of the upregulated transcripts represent genes that do not encode
known mitochondrial proteins but have been reported as co-regulated with
“mitochondrial genes”, and proposed to carry functions relevant to mitochondrial
biology (Mootha et al., 2003a) (Supplement 1). PGC-1a also induced the expression
of the mitochondrial transcription and translation factor mtTFA. Interestingly, it did
not affect the expression of NRF-1 or NRF-2 (Supplement 1), the transcription factors
that regulate the expression of many nuclear genes encoding mitochondrial proteins,
and that are induced by PGC-1a in C2C12 cells (Wu et al., 1999). We concluded that
PGC-1a induces the gene expression program of mitochondrial biogenesis in SAOS2
cells, in a manner that differs from the NRF-1 pathway described in C2C12 cells (Wu
et al., 1999).

To determine whether the PGC-1o-mediated induction of mitochondrial proteins led
to an increase in mitochondrial content, SAOS2 cells were stained with MitoTracker,
a dye that accumulates specifically in respiring mitochondria. Mitochondria in control
cells infected with a GFP-expressing adenovirus had a characteristic tubular
appearance and were concentrated around the nuclei, similar to mitochondria in non-

infected cells (Fig. 1A and data not shown). Expression of PGC-1a led to a distinct
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mitochondrial reticulum, which filled the cytoplasm. The increased mean
fluorescence intensity in PGC-1a expressing cells (Gm 151) compared to control cells
(Gm 90) was consistent with an increase in mitochondrial content (Fig. 1B). To
measure mitochondrial DNA directly, we isolated total DNA and determined the
relative copy number of mitochondrial DNA by quantitative PCR. PGC-1a expression
led to an increase in mitochondrial DNA content per cell, by 1.7- and 2-fold, at 48 and
60 hrs, respectively (Fig. 1C).

PGC-1la interacts with nuclear receptors via two leucine rich motifs. Leucine motif 2
(L2) mediates interaction with most nuclear receptors, including ERRa, while motif 3
(L3) recognizes specifically ERRa and the related receptors ERRB and ERRy (Huss et
al., 2002; Ichida et al., 2002; Schreiber et al., 2003). Mutation of motifs L2 and L3
(L2/3A) disrupts interactions with nuclear receptors, without affecting the interaction
domains for other factors like NRF-1 and MEF2C (Knutti and Kralli, 2001;
Puigserver and Spiegelman, 2003). To determine the role of nuclear receptors in
PGC-1la induced mitochondrial biogenesis, we tested the effect of the L2/3A
mutation. As seen in Fig. 1A-C, the PGC-1a variant L2/3A showed a reduced ability
to induce mitochondria, when compared to wild type PGC-1a. The L2/3A PGC-1a
was also deficient in inducing the expression of nuclear genes encoding mitochondrial
proteins, and of ERRa (Fig. 1D,E). The single L2A mutant, which is defective for
interactions with PPARs, GR, and TR but retains interactions with ERRq, (Huss et al.,
2002; Schreiber et al., 2003; Vega et al., 2000; Wang et al., 2003; Wu et al., 2003),
was as active as wt PGC-1 in inducing the expression of target genes (Fig. 1D and
data not shown). We concluded that interactions of PGC-1a with nuclear receptors,
and potentially ERRa, are important for PGC-la to induce the program of

mitochondrial biogenesis.
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Figure 1. PGC-la induces mitochondrial biogenesis in SAOS2 cells, dependent on
interaction with nuclear receptors.

(A-E) Cells were infected with GFP- or PGC-la- [wild type (wt) or mutant L2/3A]
expressing adenoviruses at an moi of 40. (A) Mitochondria in cells labelled with CM-H,Xros
were imaged 48 h after infection. (B) Accumulation of MitoFluor Red 594 in cells was
measured by flow cytometry, 48 h after infection. Gm represents the mean fluorescence
intensity of 20,000 cells. (C) Mitochondrial (COX2) DNA levels, normalised to nuclear (8
actin) DNA levels, are expressed relative to levels in control cells expressing GFP, which
were set to 1, at 48 h and 60 h after infection. Data are the mean = SEM of three experiments
performed in duplicates. *, p <0.0001 vs. PGC-1a wt at 48 h; **, p <0.001 vs. PGC-1a. wt at
60 h, as determined by the Students t-test. (D) mRNA levels of ATPsynf, Cyt ¢ and COXIV
at 48 h after infection were determined by quantitative RT-PCR, normalised to the mRNA
levels of 36B4 and expressed relative to levels in GFP infected cells. (E) Protein levels of
PGC-1a and ERRa were determined by western analysis at 48 h after infection.
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ERRa expression is required for the PGC-la-induced mitochondrial
biogenesis.To address the involvement of ERRa specifically, we compared the ability
of PGC-la to induce genes encoding mitochondrial proteins in cells that express
endogenous ERRa, and in cells where ERRa expression was inhibited by small
interfering RNAs (siRNA). As seen in Fig. 2A, siRNA specific for ERRa abolished
the basal expression of ERRa in the absence of PGC-1a, and reduced strongly the
induction of ERRa by PGC-1a. Under these conditions, we determined the mRNA
levels of PGC-1a up-regulated genes that carry important roles in different aspects of
mitochodrial biogenesis and function: mtTFA (mitochondrial DNA replication and
transcription), Tim22 (protein import into mitochondria), isocitrate dehydrogenase
alpha (IDH3A, TCA cycle), carnitine/acylcarnitine translocase (CACT, fatty acid
oxidation), and cytochrome c, somatic and ATP synthase  (Cyt c, synf, oxidative
phosphorylation). For all six genes, PGC-la expression led to increases in their
mRNA levels when endogenous ERRa levels were not perturbed, confirming results
from the arrays. Inhibition of ERRa expression by siRNA reduced significantly the
ability of PGC-1a to induce these genes, without affecting basal levels in the absence
of PGC-la (Fig. 2B). Since the siRNA diminished but did not abolish ERRa
expression, the remaining induction by PGC-1a could still be mediated by the low
levels of ERRa (Fig. 2A), as well as by other pathways. Inhibition of ERRa did not
prevent PGC-1a from inducing GR targets such as p21 (data not shown) nor affect the
mRNA levels of the transcription factors NRF-1 and NRF-2 (Fig. 2B).

The requirement of ERRa for the induction of genes such as mtTFA and Tim22
suggests that ERRa is required for PGC-la-dependent mitochondrial biogenesis.
Indeed, inhibition of ERRa expression significantly diminished the ability of PGC-1a
to increase mitochondrial DNA content (Fig. 2C). Inhibition of ERRa had no effect
on mitochondrial DNA in the absence of PGC-1a, leading us to conclude that ERRa
contributes to the PGC-1a mediated induction, but not the basal expression of genes

important in mitochondrial biogenesis.
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Figure 2. Inhibition of ERRa expression impairs the induction of mitochondrial biogenesis
by PGC-1a.

SAOS2 cells were infected with control- (AdSUPER) or an adenovirus expressing siRNA for
ERRa (siERRa) at a moi of 100, and two days later with GFP- or PGC-1a- expressing
adenoviruses at a moi of 20 (A,B) or 40 (C). Cells were harvested 24 h (A,B) or 48 h (C)
later. (A) ERRa. mRNA levels were determined by quantitative RT-PCR and normalized to
36B4 levels. Data shown are the mean = SEM of three experiments performed in duplicates.
(B) mRNA levels for mtTFA, Tim22, IDH3A, synf, carnitine/acylcarnitine translocase
(CACT), Cyt ¢, NRF-1, and NRF-2, were determined by quantitative RT-PCR, normalised to
the mRNA levels of 36B4 and expressed relative to levels in AQSUPER/GFP infected cells.
Data are the mean + SEM of three experiments performed in duplicates. *, p < 0.02; **, p <
0.003; *** p < 0.0005 vs. PGC-la expressing cells in the absence of siERRa. (C)
Mitochondrial (COX2) DNA levels were normalised to nuclear (B actin) DNA levels, and
expressed relative to levels in control (AdSUPER and GFP) infected cells, which were set to
1. Data are the mean = SEM of two experiments performed in duplicates. *, p < 0.008 vs.
PGC-1a expressing cells in the absence of siERRa.
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A constitutive form of ERRa induces mitochondrial biogenesis in the absence of
PGC-1a. The lack of effect of ERRa on the basal expression of genes encoding
mitochondrial proteins could reflect the low levels of ERRa in the absence of PGC-
la (Fig. 2A), the low transcriptional activity of ERRa in the absence of PGC-1a,
and/or the requirement for other PGC-lo dependent pathways that enable the
induction of these genes. To address these possibilities, we determined the effect of
overexpression of ERRa or of ERRa endowed with a heterologous strong
transcriptional activation domain, in the absence of PGC-1a. ERRa fused to the VP16
activation domain (VP16-ERRa) and, as control, the VP16 activation domain alone,
were expressed in SAOS2 cells using adenoviral vectors. As seen in Fig. 3, neither
ERRa nor VP16 by itself induced the expression of mtTFA, ATPsynf, Cyt c, or
IDH3A. In contrast, VP16-ERRa induced all four genes, to ~50% of the PGC-1la -
induced levels (Fig. 3A). VP16-ERRa also led to a significant increase in the amount
of cellular mitochondrial DNA (Fig. 3B), indicating that ERRa is capable of inducing

mitochondrial biogenesis in the absence of PGC-1a, if activated by other means.
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Figure 3. A constitutively active ERRa induces mitochondrial biogenesis.

SAOS2 cells were infected with adenoviruses expressing GFP, PGC-1a, ERRa, VP16 or
VP16/ERRa (moi 40), and analyzed 24 h (A) or 60 h (B) later. (A) mRNA levels for the
indicates genes were determined by quantitative RT-PCR, as in Fig. 1D. Data are the mean +
SEM of three experiments performed in duplicates. *, p< 0.002; **, p< 0.0001; *** p<
0.0004 vs. GFP infected cells. (B) Mitochondrial DNA content was determined as in Fig. 1C.
Data are the mean = SEM of two experiments performed in triplicates. *, p< 0.0001 vs. GFP
infected cells.
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ERRo binds to regulatory sites in the promoters of ATP synthase 3 and
cytochrome c¢. We next asked whether ERRa acts directly at the promoters of genes
encoding mitochondrial proteins. ERRa binds to DNA sites with the consensus
sequence TCAAGGTCA, termed ERREs (Bonnelye et al., 1997; Johnston et al.,
1997; Sladek et al., 1997; Vanacker et al., 1999). Analysis of the promoter and
upstream regulatory sequences of 18 genes that are induced by PGC-1a indicated the
presence of putative ERREs in most of them (not shown). We focused on ATPsynf3
and Cyt ¢, whose promoters have been studied (Evans and Scarpulla, 1989; Haraguchi
et al., 1994; Villena et al., 1994) and where the putative ERREs are within 1 kb of the
characterized transcription initiation sites (Fig. 4A). First, we tested whether ERRa
binds to these sites in a gel mobility shift assay. /n vitro-translated ERRa formed a
specific complex with an oligonucleotide representing the putative ERRE at —596 bp
of the Cyt ¢ promoter (Fig. 4B). The complex was inhibited by a 100-fold excess of
an oligonucleotide bearing a known ERRE from the TRa promoter (Vanacker et al.,
1998), and oligonucleotides representing the candidate ERREs from the Cyt c¢/-9,
ATPsynf/-338, and IDH3A/-4023, but not by oligonucleotides harboring a mutated
TRa ERRE (M4), a random sequence, or another site of the IDH3A gene.
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Figure 4. ERRa recognizes sites in ATPsynf3 and Cyt ¢ regulatory sequences.

(A) Sequences of candidate ERREs identified by in silico analysis. The TRa,.ERRE has been
described previously (Vanacker et al., 1998). (B) Electrophoretic mobility shift assay. ERRa
was incubated with a **P-labeled oligonucleotide containing the ERRE of Cyt ¢/-596, in the
presence of unlabeled oligonucleotides as indicated. M4 oligonucleotide has the TRa/-443
sequence with a two bp subsitution in the core ERRE (Vanacker et al., 1998).
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To test the significance of the ERRa binding sites for the induction of ATPsynf3 and
Cyt ¢, we measured the response of these two promoters to PGC-1a/ERRa in COS7
cells. PGC-1a induced the ATPsynf and Cyt ¢ promoters driving the expression of
luciferase by 2.7 and 2.6-fold (Fig. 5). Coexpression of ERRa enhanced further the
induction, to 7.6 and 7.3-fold. Mutations in the ERREs decreased the response to
PGC-1a and to PGC-1o/ERRa by 40-50% (Fig. 4C), without affecting the basal
levels of expression in the absence of PGC-1a (not shown). The ATPsynf and Cyt ¢
promoters harbor also binding sites for NRF-2 and NRF-1, respectively (Evans and
Scarpulla, 1989; Villena et al., 1994). Deletion of the NRF-2 site in the ATPsynf
promoter caused a drop in basal expression levels (by 40%) and a small decrease in
the response to PGC-1a, but did not affect the response to ERRa.. Mutations in the
NRF-1 site of Cyt ¢ also reduced basal levels of expression by 40%, but did not
decrease the response to PGC-la or PGC-1a/ERRq. Taken together, our results
indicate that the promoters of the two genes are responsive to ERRa, and that the
identified ERREs contribute to, but are not solely responsible for, the induction by
PGC-1a and ERRa.

94



Chapter III: ERRa functions in PGC-1a induced mitochondrial biogenesis

10
ATPsynf/-385Luc

e #1
=] -
5 61 O PGC1a
E 2l Il ERRoVPGC1 o
2 5]

o L[]

wt ERREmt ~ NRF2REA

12

104 Cyt c/-686Luc
5
2
2 57
=
O 44
2 =

24

ol [ . -

wt 2xERRE mt ~ NRF1RE mt

Figure 5. The ERRE of ATPsynp and Cyt ¢ contribute to the transcriptional response to
PGC-la.

COS7 cells were transfected with reporters pATPsynf/-385Luc or pCytc/-686Luc, [wild type
(wt) and bearing mutations (mt) or deletions (A) at the ERREs and NRF-1/-2 binding sites]
and control vector (-), PGC-la-, and/or ERRa-expressing plasmids, as indicated. Data are
expressed as fold activation by PGC-1a, or PGC-1a/ERRa, with the basal activity of each
construct (white bars) set to 1, and are the mean £ SEM of at least three experiments
performed in duplicates.
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Discussion

PGC-1a has been shown previously to induce mitochondrial biogenesis and oxidative
metabolism in muscle cells, adipocytes and cardiomyocytes (Lehman et al., 2000;
Puigserver et al., 1998; Wu et al., 1999). These studies also provided evidence that the
transcription factors NRF-1 and NRF-2 mediate the effects of PGC-la on the
expression of nuclear genes encoding mitochondrial proteins (Wu et al., 1999). We
now show that PGC-la expression in SAOS2 cells, osteoblast progenitors with
adipocyte differentiation capacity (Diascro et al., 1998), also induces mitochondrial
biogenesis. Interestingly, this PGC-1a driven program depends on the induction and
activation of the orphan nuclear receptor ERRa. Moreover, in the absence of PGC-1a,
a constitutively active ERRa induces mitochondrial biogenesis and the expression of
genes essential for oxidative phosphorylation. Our findings demonstrate a role for
ERRa in the control of mitochondrial biogenesis and function, and suggest that,
depending on the cell type, ERRa activity is necessary and sufficient for
mitochondrial biogenesis. Consistent with these findings, RNA profiling studies have
recently shown a tight correlation of the expression of ERRo with that of genes

encoding mitochondrial proteins (Mootha et al., 2003a).

Mitochondrial abundance and oxidative capacity are cell type-specific and regulated
by energy demand. For example, physical exercise and chronic exposure to cold lead
to the biogenesis of mitochondria in muscle and brown fat, respectively (Harper and
Himms-Hagen, 2001; Moyes and Hood, 2003). This adaptive response requires the
coordinated induction of a large set of nuclear genes, accomplished, at least in part, by
PGC-1a and the transcription factors NRF-1 and NRF-2 (Moyes and Hood, 2003;
Scarpulla, 2002). Since not all genes encoding mitochondrial proteins have binding
sites for NRF-1 and NRF-2, additional factors must contribute to the response (Lenka
et al., 1998; Scarpulla, 2002). Possibly, the different factors contribute selectively to
mitochondrial biogenesis in different cellular contexts; e.g., the levels of NRF-1 are
induced during PGC-1o -mediated mitochondrial biogenesis in muscle but decreased
when PGC-1a and mitochondrial levels rise during brown fat development (Baar et

al., 2002; Villena et al., 2002). NRF-1, NRF-2 and ERRa may act synergistically in
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some cell types, and operate independently in others. The presence of multiple factors
may serve to integrate diverse signals into mitochondrial biogenesis. Furthermore, the
different factors may enhance differentially the expression of specific genes, thereby
enabling the newly made mitochondria to be selectively endowed with cell type- or
signal- specific functions. Interestingly, ERRa alone, i.e. in the absence of PGC-1a or
other activating signals, had no effect on “mitochondrial” genes, suggesting a function
in the tissue-specific or signal-dependent regulation, rather than basal expression of

genes encoding mitochondrial proteins.

Consistent with our findings, expression of Cyt ¢ is downregulated in mice that carry
a targeted null mutation in the ERRa gene (Luo et al., 2003). Further studies will be
necessary to define mitochondrial defects, and to determine if other factors may
partially compensate for the loss of ERRa function in these mice. One such candidate
factor is the related receptor ERRy, which is not expressed in the SAOS2 cells used in
our study (data not shown). The ERRa null mice display also altered expression of
many genes involved in lipid metabolism (Luo et al., 2003). Together with our
findings that ERRoa is important for the PGC-la-driven induction of the
carnitine/acylcarnitine translocase and MCAD genes (Schreiber et al., 2003), these
observations suggest that ERRa function contributes to other PGC-la-induced
pathways, such as fatty acid B-oxidation (Sladek et al., 1997; Vega et al., 2000; Vega
and Kelly, 1997). Finally, while our study demonstrates a role for ERRa as an
important effector of PGC-1a, it is still possible that ERRa carries additional roles in
regulating PGC-1a activity, as previously suggested (Ichida et al., 2002).

Mitochondrial dysfunction and in particular decreases in oxidative capacity have been
linked to insulin resistance and type 2 diabetes (Bjorntorp et al., 1967; Petersen et al.,
2003). Recent studies also suggest that decreases in the levels of PGC-1a and the
related coactivator PGC-1p contribute to the reduced oxidative capacity in diabetic
subjects (Mootha et al., 2003b; Patti et al.,, 2003). Supporting this notion,
polymorphisms in the PGC-1a gene have been associated to an increased risk of

diabetes (Ek et al., 2001; Hara et al., 2002), while mice overexpressing PGC-1p show
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increased levels of ERRa and resistance to high-fat induced obesity (Kamei et al.,
2003). Strategies aiming in enhancing ERRa activity may thus have therapeutic
applications in diseases associated with reduced mitochondrial function, such as

diabetes.

Acknowledgements. We thank D. Kressler, M. Meyer, P. Coward, J-M. Vanacker,
and J. Mertz for plasmids and antibodies; A. McLachlan and U. Mueller for
discussions; the Swiss National Science Foundation, the University of Basel, the Max

Cloétta Foundation, and the Roche Research Foundation for their support.

98


lars


iogenesis

ial bi

PGC-1a induced mitochondri

ions in

: ERRa functi

Chapter Ill

1°989T00 WN (quAsd1y) apndadAjod e33q ‘x|dwod T4 [eHpuoyd0lW ‘Buiodsuen +H ‘9SeYIUAS d1v| soydxo £00°0 1°6Z€ F 69€L T'0€E F SPEY ©TZZETOT 95dLv|
€TELBSIV 48D ‘T w0jos| ‘ungns eydie ‘x3|dwod T4 [eHpuoyd0)W ‘Bupiodsuen +H ‘9SeUIUAS dLv| soydxo 800°0 1°90€ F €615 T°90Z F T9vE 1©TSTgELETT TVSdLY|
TL9LTEVY 6 31ungns ‘xa|dwo3 04 [eHpuoy0lW ‘Buniodsuel) +H ‘3SBUIUAS dL1V soydxo 0£0°0 8°0v ¥ 61§ 607 F TSE 12754/807 1541y
1°589T00° WN 94 1UNgns ‘xa|dwiod 04 [RHPUOYR0W ‘Buniodsues +H ‘@seyiuAs d1v soydxo 9%0°0 v°89T F £VLT €TLT F €281 7S 52E202 [SdLv|
T'6800801V T Wl0yost ‘(6 3uNgns) 3 unqgns ‘xajdwod 04 |erpuoydoNW ‘Buniodsuel +H ‘aseyiuis d1v soydxo S00°0 T'8L F ¥SST S'0L ¥ ¥80T 1©7S7Z£680C 195d1Y)|
T'689T00 WN € Wojos| (6 31uUngns) 2 JuNngns ‘xa|dwiod 04 [eHpuoYdoY W ‘Buipiodsuel) +H ‘aseyiuAs d1v| soydxo £00°0 L'6LT F 58T 6'0TT F ZT9T 17S7£05202
1°689T00° WN € Wwiojos! (6 3UNGNS) 2 JUNGNS ‘x3|dwod 04 [BHPUOYD0YIW ‘Burliodsuesy +H ‘SBUIUAS dLv| soydxo 900°0 T°8ST F TObb 99T F 6LbT 187805£0Z £95d1V
1'09650009 T Wl0jos! ‘q 3ungns ‘xajdwod 04 |erpuoydoyw ‘bunodsuel) +H ‘oseyjuAs d1v soydxo 9000 8'¥0C F STLY €'S6T F €£€8C 1eSTGSLTTT T4SdLY|
1°68910008 (10vD) 0z Jaquiaw “(3sedojsuesy auniuiedjAde/suniuied) sz Awey JaLied 33njos|  Ov4/1odsuesy 3jndajow (jews 5000 6°1Z ¥ 09% 9°E€T F 98T 1e7859€0z|  0ZVSZO1S
LSb/88IV TT 43quiaw ‘(Jejely ‘IaLLIeD [BLPUOYI0NW) ST Allwey JaLiied 31njos Hodsue.y ajnosjow [lews S10°0 S'IZ F vt YAV 44 1e76EEE0T
1°S0LE00™ WN 2T Joquiaw ‘(Jejely “JaLLIRD [RLPUOLI0YIW) ST Alley JaLLIeD 23n|os Hodsues; ajnd3jow |lews 010°0 9°9€ F 9T 8'ST F 0ST w©TST0pEEDZ|  TTVSTITS
1°8450£04Y| TT Jaquiaw ‘(1a1used 23esen|6oX0 LIBLeD [RLIPUOYI0NW) ST AllWe) JaLLIeD 2)Nj0S Hodsues 2nd3jow jlews 120°0 085 F L 8'LE F TTH 127€0060C
1°29S€00° WN T 42quaw ‘(431ed 21eleIn|Boxo {13l [eupuoyd0iW) Sz Aliule) JaLied 21njos 1odsue.n 3jndajow |lews 1200 0°6L F 916 T'Tv ¥ 66¢ 12757880407  TTVSTI1S
1S89T6VY 9 Joquiaw (403e20|SUR.] DPROBINU BUIUDPE 1IBLIIED [RLIPUOYDOIW) ST Allle) JaLLIED 23Nnj0S odsuen ajnsjow |lews 610°0 9°L9E F LLTS 01T F £THE 18768021
$ZTTI61V 9 Jaquiaw ‘(1018J0|SURI} BPIROBPNU BUIUBPE LIBLLIED [BLIPUOYIONW) ST AllWie) JaLIIeD 2)N|0S Hodsues 3jnd3jow |lews 800°0 T'L6T F SE0S ¥'T0Z F 2LTE 1©7ST9z8ZIT 9v§ZI1S
1°ZSTT00” WN S J2quaw ‘(403e30[SuL.) IPIOINU SUIUIPE 1131 [RLIPUOYD0NW) ST Alilie) JaLLIED )Nj0S 1odsue. 3jndajow |lews z10°0 S°ZLE F 0809 $°'ZST F 0€8E 127£5900C SV§221S
T°ISTT00 WN  Joquiaw ‘(403e20|sue.] 2PIO3INU BUIUDPE 1I31IIEI [RLIPUOYD0IIW) ST Alllie) JaLLIED 2INj0S Hodsuesy ajnosjow |lews £00°0 b6y F TSTT 0Tt F v8¥ 187528207 pY52I1S
T'S€9200 WN € Jaquiaw ‘(1a11ed jeydsoyd 1uaLed [RLPUOYR0IW) SZ Ajiley Ja1L1ed 3n|os Hodsuesy ajndsjow |jews 800°0 €'92€ F 600L 6'6VE F VELY 17S70£0002 £VS2O1S
T'v51000” WN eIxele yola.patiy Hodsuex 2nd3jow jlews 7100 S'€ET F L9 9°0T ¥ 9TT 18757595507 vau4
T°€€9€0008 (3se24) v Bojowoy 0/ URIGUIAW [BLPUOYI0JIL J2IN0 JO BSEI0jSue. Hodsuely uiR3old 1100 TIZ F L9€ ST F 92¢ 1S 21510
1°028¥10° WN (35e34) v Bojowoy 0/ SUBIGUIAW [BLIPUOYD03L 19INO JO BSEI0jSUR.) odsuen ujoid 600°0 9°'ST F T8h €61 F v9T 1©761ST0T VOLWWOL
T'$TT900” WN (3se24) Bojowoy Op 2ueJqUIBW [RLPUOYI0}IL J23INO JO BSed0|sues odsuen uizjold $20°0 0'SS F T£§ £°9T F 00€ 1©7S 19720 OPWWOL
T°LEEETO WN zzun) ‘(1seak) Bojowoy 7z sueqUIaW [eLPUOYI0YIW JaUU! JO 3SEI0jsuRl odsuen uiod 900°0 S'TE ¥ 799 667 F TVE X P8I6TT TTWWLL
1°6€470008 (3se24) v Bojowoy /T BUBIqUIBW [BLIPUOLI0}IL JaUUY JO DSEI0|SURL) Modsueny uijosd 1100 0L F 906 LYE F LY 7S 128102
T'€90£Z0MY (3se2A) v Bojowoy /T dueIqUISW [2LPUOYD0)ILW J3UUI JO BSeI0|SUR: Modsue.y uijoud 010°0 0'9L ¥ 9191 L'9L F €S8 ®TSTTLISTE VLTWWIL
1455900 WN T uxelaw odsuen uizjold T50°0 TIS F 9Tv SLT F 8€T 1©T/TSE0T TXLIW
1'90610008 T uxelaw Modsueuy uijold 900°0 9°EL F ELET 895 F OvL 1e7S798€0TT TXLW
TLSTYSTIV auoJadeyd0d urRjo.d ai|-3di9 Jodsue.y upyoud 1100 €67 F 865 S'vZ F 19¢ ®TPEYTIT I9WH
T'€TTTIO WN urey04d TOLW sisayuAs uiajold 800°0 VLT F vLS 8'1Z F 20t 17X 9TL8TT
TSL6VTIY ui304d TOLW sisayjuAs uiaroud 620°0 99T F ¥ 9'6 ¥ S9T X pT0zTT TOLW
1°0€8500™ WN TES U19301d [2WOSOqH [21PUOYD0IW sisayquAs ueoud £00°0 €8T F 8T SET F 161 1©H092TZ
1°0£8500 WN TES U12104d [PLIOSOGH [LIPUOYIOW sisayuAs uizjold SE0°0 S'SE F Lby STF LT 1©7€092TT TESAUN
1°0v9910° WN 0€S u12104d [EWOSOqH [eHPUOYI0IW sisayjuAs uiroad S10°0 T'vE F €55 1°9 ¥ 0€E 12786€81C 0ESdUW
1°161020° WN 22S u1e104d [EWOSOGL [RLPUOLI0YIW sisayquAs ujoud S00°0 S'6E F €06 6°€E F TYS 1©TX7022612 2ZSdUI
1°08ZT€0 WN STS u12104d [BWIOSOqU [RLIPUOYDOIW sisayuAs uiajold 610°0 9'8E F 8Lt 0°7Z ¥ 782 w©TSTLEpTTT STSddW
1°£0TT20” WN TTS ure10.d [EWOSOqH [eLPUOYI0YIW sisayjuAs uijoad 620°0 €°50T ¥ 0£0T S6Y F 6vS 1e7STIEEVOT
LELETSVY| 2TS ure104d [EWOSOGL [RLPUOLI0YIW sisayquAs uiaroud L10°0 1°2€ ¥ LT€ 1°2T F OvT 18757800012 ZTSdUW
T'TH18T0 WN 0TS u12304d [BWIOSOGU [RLIPUOYD0IW sisayuAs uiajold 1€0°0 €ST F v9C 9'vT F (8T 1©7S790181¢ 0TSddl
T'T£65T0 WN £S uii04d [EWOSOQL [RLPUOYI0W sisayuAs uiajold 820°0 0°9TT ¥ 2641 08 F €0€T 172E6LTT LSddW
1°€91220° WN 97 U1230.d [PWIOSOqU [RLIPUOYDOIW sisayjuAs uiaroud 1100 019 ¥ £T9 L°8T F 0¥T 1S phTeTeT 91U
1°229910° WN SE7 Ur9304d [eWOoSOqH [eHpPUOYR03IL sisayquAs uejoud 900°0 $°'SS F 8p8 67€ F Tty 187X706881C SET1dUIW
1'2596¥08Y €7 ure30.d [RWOSOqU [RLPUOYDOIW sisayuAs uiajold $00°0 68y F 8L0T 9'¢y F 0TS 1©TSTZ69TTT PETdHW
T'SLTPTO WN ST7 ute104d [eWOSOqH [eLPUOYI0YIW sisayjuAs uiroad 800°0 8'SL ¥ TLOT S°8€ F 86% 1e7/2081¢ STIdUW
1°6v6200° WN 217 w2304 [PWIOSOqU [RLIPUOYDOW sisayquAs uejoad 0£0°0 SETT F 0661 0°66 F 80VT 7S 1E6E0T ZT1dUW
1°0509T0 WN 117 u12304d [PWIOSOGL [RLIPUOLIOYIW sisayuAs uiajold 810°0 9'8Z F 0€S 9'vT F T8¢ 1©7STZ916TC TTIddW
1°0565T0° WN 27 ure104d [EWOSOH [eHPUOYI0YIW sisayjuAs uiaroad 900°0 86T F 86€ 6T F 8T 1e7/8881¢ T1dUIW
1°€54200° WN 40108} UORENIUI [RUONEISUR. [RLPUOYI0YIW sisayauAs uroad £20°0 6'€S F 98 T6Y F €9 18756007 Z41LW
158120 |elpuoyR0YIL ‘BseIaLuAS YNUI-1AoN3) sisayjuAs uiyoud 800°0 €VT F €LE 6'ET F LOT ®THILYE
T'0PESTO WN [_LIPUOYD0}IW ‘BSRIRYIUAS YN3-|AIN3] sisayuAs uiajold 900°0 8'8T F LVE 8°E€T F 7ST 127910$0T [l
T°'SEPPO0 WN S 9583[2NUOPUS sisoydode/uonedidad 1700 0°LL F 795 T%Z ¥ 29T 1242807 90aN3
T'TLTE00T WN (81511919 °S) T I|-€ ‘T4eA Jo Jossaiddns|  uopdudsueny pue uoped)idad 9%0'0 19 F PES SVE F LET 1©p68TTT T1EAdNS|
basiay uondunsaq uoneoyisse|y| aduedyiubis DT-)9d+ ! uoissaidx3a| josuod / 39s 2qo.id ETEE)

*159) eAouy Aem-T ay) buisn pajejnojed sem (|92 buissaidxa-|eb-g) [043u0d 03 pasedwod S| Huissaidxe PT-DOd Ul dseaJdul ay) Jo aduedliubis syl |

SjuaWILIRdX3 23] WOJJ SANJEA JO WIS F UBBW dyj S31ed1pul UoIssaIdx3

umoys aJe s3as aqold Bunuasaidal e 1oy ejep ‘Aedse ay) uo 3as aqoid auo uey) aiow Aq pajuasaidal ate jeyy sauab io4

sjuawiIadxa 934y) [je ul PT-39d Aq pajejnb6aidn Apjuediyyiubis aiam jey) pue suiajodd |eLIPUOYD0}IW SPODUD jey) sauab Jo is17 'Y

1e 39 43q1RIYdS

T Juawajddnsg

99


lars




99

lars

lars
Chapter III: ERRa functions in PGC-1a induced mitochondrial biogenesis


iogenesis

ial bi

PGC-1a induced mitochondri

ions in

: ERRa functi

Chapter Il

1°029€0cHwod a3e4eIn|B-0X0-7 ‘X3|dwod aseuaboipAysp a1eAnlAd Jo Jusuodwod £3) aseuabolpAyap apiweodijolpAyip 3PAI YL 8000 v'SPT F L22C £°66 F TSPT 187560602 aia
T'LLPE00 WN ug304d Bulpuig-g3 !X Juauodwod buluiejuod-jAodi| ‘xa|dwod aseuabolpAyap a1eAnJAd 3942 ¥OL 9000 1'6C ¥ 929 €€ F ¥8€ 1€7£90€02 Xad
0vL66TMY (xa1dwod aseuaboipAysp a3eAntAd Jo Jusuodwod z3) aselajsueyjAjoe-S apiweodijolpAyip 32Ad ¥OL 600°0 8'ST F 9€T 10T ¥ 98 1T6PIETT
1'998€0(] (xa|dwod aseusboipAysp s1eAntAd Jo Jusuodwod g3) aselajsue.yjAlede-S apiweodijolpAyip 32A2 ¥OL 800°0 9'/S F WL G'/T F SIE 1e7S 0STTTC
2/88£649 (xa|dwod aseuabolpAyap @3eAnsAd Jo Jusuodwiod z3) asedtajsuenjAlede-s apiweodioipAyip 3242 v L| 900°0 bbb F 9€9 96T F 0V 1e7s7895ZTT 1via
T'¥82000° WN T eydje (apiweodi|) aseuaboipAyap ajeansAd 31242 YO L | £00°0 T'E8 F T2LT 8'8L ¥ 188 1757086002 TVHAd
1°6¥900008 T apndadAjod Jnyns-uoul 23Sy '3Se1NPal 3 SW0.YR03A>-[ouInbign soydxo 900°0 €°E€CT F 8THT S'S6 F LEET 12760680C 1S400N
T8ELTLAY 11 U1230.d 310 95EIPNP3I D BW0IY203Ad-journbign soydxo 900°0 8'v9 F pTel 89 F vTS 17ST009ZTT
T'99€£00 WN 11 u1230.4d 2103 95€3INPAI D BWOIYI03Ad-|ouInbign soydxo 900°0 L'69 F 666 8'7€ F 68¢€ 127£8800C Zoud0N|
1°S9EE00™ WN 1 ut2304d 2403 35€IINPAI 3 BWI0JYI0IAD-jouINbign soydxo 1500 9°66€ F £S5t 9'8YC F ¥SLT 127€06T0T 140N
1°£8€ETO WN (@1 z°£) xa|dwod 3se19NPal 3 BWOJYI0IAd-jouINbign soydxo zz0°0 897 ¥ STEE T8YT F pLTT 1e7S 061812 TS0DdSH
1'00£92W ura30.d Buipuiq 9s€39Npal O BWOIYI03Ad-[ouinbign soydxo ¥10°0 YT F 652C 8'90T ¥ 0ZvT 187X7990602
1°0£250008 104d Bulpuiq 95e1INPal 5 BW0.YR03Ad-[ouInbign soydxo 600°0 6'vT F 21T L8 F 91T 127590602
1'%62900° WN uiaj0.d Buipulq ase39NPaJ 3 BUWI0LYI01AI-[ouINbign soydxo 600°0 6°08T F 890€ € LET F Sb6T 1e7S 64850C 400N
1°200£00° WN urzi0.d Bueiquaw [e623U1 ‘g NGNS ‘x|dwod aseuabopAyap 23eudNs soydxo 900°0 T8 F 0VS €91 F €0C 18792020 aHas
1°000€£00” WN (d1) 4nyins uour ‘g 3ungns ‘xajdwod aseuabolpAyap ajeudns soydxo 600°0 0°£TT F 6£9T £09 F 1SL 1©75/920C aHas
1°89T#00” WN (d4) ursz0.doney ‘v 3ungns ‘xa|dwod aseusBboIpAyap a3eudNs soydxo 810°0 €78 F 0LET 0°€9 F 9L6 1©7X€60T0T
9008VEIV (d1) ureaoudoneyy ‘v ungns ‘xa|dwod aseuabopAyap 23eudNs soydxo 900°0 128 ¥ 9291 €°E€LF 6811 X" 1Z022T vHas
1°060%N aseuaboipAysue} 3pRo3IINU BpIWeuRodlu soydxo 2100 €6T F IST €SF U 107€8420¢
T'EPETTIO WN 9seuabo.pAysued) 3piaoaINU pIWRUROIU soydxo 110°0 TYT F 62 $°0T ¥ 61T 1©7S 18/20T NN
1°1€12604Y eQ@TS ‘T uteloidoney (suouinbign) aseuaboipAyap HQYN soydxo £€0°0 €T F T6TT 6'TL F €6L 1©7$1/80T TA4NAN
1°45650008 (asenpad B aWAzZUL02-HAYN) BAY0Z ‘£ UIRI0ld S-24 (BuouInbign) aseuabolpAyap HQVYN soydxo 810°0 £'97 F 1SS 8'6Z F S9€ WS TZsLTTe £54NaN
T'ISS¥00” WN (asenpas D awWAzua02-HAYN) BAXOE ‘€ Udl0Ld S-a4 (suouinbign) aseuaboipAyap HAVN soydxo 500°0 T'LIT F €95C S'98 ¥ 600T 1©T0PLT0T €S4NAN
T°055700  WN (asempnpad b swAzua03-HAYN) BQA6 ‘Z UBl0Id S-34 (duouinbign) aseusboipAysp HAVN soydxo ¥10°0 €76 F TvCT 605 ¥ 29L 1799610 7S4Nan
1900500 WN (aseonpad B 2wAZUL02-HAYN) QYIS ‘T UIRI0ld S-24 (BuouInbign) aseuabolpAyap HQVYN soydxo zz0'0 TT9 F u8 8T F vTS 1e7ST6£0€0T 1S4NAN
T'€00S00 WN e@ig ‘1 ‘xajdwoogns eag/eydie ‘T (suouinbign) aseuabolpAysp HAYN soydxo 600°0 0'E€9T F Z60€ 8'IST ¥ 890C 1©7£L020T 1aV4NaN
1°€6¥200° WN eQ@i.T ‘9 ‘xa1dwodgns e3aq T (auouinbign) aseuabolpAyap HQVYN soydxo z€0°0 758 F T9€T 0°0L F 8€0T 1e7STET9€0T 984naN
126200 WN e@19T ‘s ‘xa1dwodgns e3aq T (auouinbign) aseuabolpAyap HQVYN soydxo 500°0 $°98 F 8EST 9 F 9LL 1e71Z9£0Z S84nan
T'v¥S00” WN ez ‘0T ‘x3|dwodgns eydje T (suouinbign) aseuabopAysp HAYN soydxo 800°0 879 F ¥SIT L9y F €2L 17098412 0TV4Nan
T°T£90504V e@i6g ‘6 ‘xaldwodgns eydie T (suouinbign) sseusbolpAyap HAYN soydxo 2100 vOTT F TILT 6,9 F LLOT 1©769680C 6V4NAN
1°22Z¢T0 WN e@6T ‘g ‘xa|dwodgns eydie T (suouinbign) aseuabopAyap HAVN soydxo 800°0 S°€0T ¥ 8THT 0°ZS ¥ 819 127091812 8v4NAN
124420008 eipT ‘9 ‘xajdwodgns eydje T (suouinbign) aseuabolpAyap HAYN soydxo £20°0 165 F 02§ 68T F vLT 187000202
T'06¥200° WN e@ipT ‘9 ‘xajdwodgns eydje T (3uouinbign) aseuaboipAyap HAVYN soydxo 010°0 1'66 ¥ ¢SST 7'S9 F 566 1©7S7100202 9v4NaN
2°000S00” WN eq@ieT ‘s ‘xajdwodgns eydie T (suouinbign) aseusbolpAyap HAYN soydxo 800'0 9'2E ¥ €15 £0T F 86 1©7H0ET0T SV4NaN
1°68200 WN eqyi6 ‘v ‘xa|dwodgns eydie T (suouinbign) aseuaboipAysp HAVN soydxo 00 6°'S9T F YEVE £°29T F 20ST wTSTeLLLTT pY4NAN
T'¥£9£0008 eq@ig ‘z ‘xadwoagns eydje 1 (auouinbign) aseuaboipAyap HAVN soydxo L£0°0 9'9L F €46 0'0v F €0 €S HZT60T zv4nan
T'EEE500° WN (aseAl-away 2 aWo1y20342) aseyiuAs > swolyd03A0j0y soydxo 810°0 88 F CETT 0'1S F 219 1©7TST9bLE0T
£T0T08IV (aseA|-aWay 2 3W0.YP034) aseyIUAS 3 BUI0IYI0IA0[0Y soydxo 010°0 0'6Z F vL¥ 66T F 20T 1©7GH/E0T SODH
T'ESY¥00” WN aseuabolpAyap utejoidoney-buliiajsuel3-uondsd soydxo 900°0 9'S F LTT [ 4 1270£5502
2€T69S aseuaboipAyap uroidoney-buliiassuen-uoipaje soydxo 900°0 18 F 96T S'9 F LS ©TEPEE Ha413
1916100 WN 1-2 3WOJY04d soydxo zz0°0 €552 F 102h 1'922 ¥ 718 127990107 10AD
1°66250008 (2 342) 21RWOS ‘2 BWIOIL0IAD soydxo 2100 8'€TE F THES 8'6€C F 6LTE 187506807 SOAD)|
S9TTH04Y| SIIA UNGNS 3SBPIX0 D SUWI0JYI0AD soydxo 0€0°0 6'SET F TL0T S'S8 F €SST W©TXT6VLTT DLX0D
1°998T00° WN GIIA 31UNQNS 3SBPIX0 3 AUWOJYI0IAD soydxo zz0°0 S°SYT F 890C €80T F SHTT 1e701120Z LX0D
T'bLEPOO” WN 1A JUNGNS 3SEPIXO D BWOIY20AD soydxo 010°0 9°ZIT F LYYE T6YT F 06ECT 1©PSLT0T 29X0D
T'€98T00 WN GIA AUNQNS 3SEPIX0 3 BWOJYI0IAD soydxo €100 6'99T F S9€T €96 F LvbT 17 TH$10T 99X0D
T'ELEPOO” WN T apidadAjod BIA 31UNGNS 3SEPIXO I BWOIYI0IAD soydxo 820°0 L°S8E F L69S S'V6T F P69E 127526007 TV9X0D)
1'62290008 QA 31UNQNS 3SBPIXO 3 AUI0JYI0IAD soydxo S10°0 690 F TS8T 9'9TT F 6vLT 17X75Z0T1Z
CIELSSIV G AUNQNS 3SEPIX0 3 BWOJYI0IAD soydxo $10°0 LL8T F 640€ €EPT F pb8T 0TS SELETT
1°298T00° WN QA 31UNQNS 3SBPIX0 3 AWOJYI01AD soydxo z10°0 S°20T ¥ 9162 88T F ¢S/T 1XTEPETOT 45X0D
1°S52500° WN /A 1UNGNS 35ePIX0 3 AW0IY201Ad soydxo S10°0 ¥°Z0T ¥ SSST 6°L9 F 786 1e7S7€99€02 VSX0D
996+58VY T WI0JOS| AT 3IUNGNS SSEPIXO I BWOILI0IAD soydxo 810°0 6'SET F 8TIT 8°L8 F SP¥T 18757980002 TIPX0D
T'E0ET00” WN (3seaA) aseuaysuenAsauey 1y dway ‘U1R10.d A|qUIasse 3sepix0 d BW0JY2034d ‘Gojowoy 0TX0D soydxo 010°0 6'ST ¥ €25 €42 F 89C 1e7S7858£0C 0TX0D
1°006Z€£04Y| (35e94) suouINbign ‘Bojowoy 2D swAzua0d soydxo 110°0 £TT ¥ ¥8T1 T8 F €71 1©7ST9¥/602
T°LY99ETTV (1se24) suouinbign ‘Gojowoy £D dwAzua0d soydxo $00°0 €9 F 18T 09 ¥ 96 1e7X7028012 £D0D
T'TZrLT0 WN (35e24) asesgysuenjAyzaw ‘Gojowoy €D wAzU00 soydxo €00°0 0'1Z ¥ 8Sv 0'LT F ST ®TXTLTETee €002
T$19££04Y @ 3uNans TA ‘eQ@IpE [ewososA| ‘buniodsueny +H ‘asedLy| soydxo 600°0 19, F TISPT LT9 F TL0T 18786880C aTA9dLy|
1°£69T00  WN [2304d BuLLIBJUOD AJARISUSS UPAWOBII0) 31UNGNS O ‘XB|dWod T4 [eUpUOYOIW ‘Buniodsuen +H ‘BSeUIUAS d1v| soydxo 900°0 0°ZET F 80Lb S°S8T F 126T 127818007 0SdLv
2°'1€600009 T apidadAjod ewweb ‘xa|dwod T4 [eLpuoyd0w ‘Buiniodsues) +H ‘@SeyiuAs d1v/| soydxo 6000 L'€0T F vOLT 1'2L F 8201 187X 048802
€8TTTLAY T apndadAjod ewweb ‘x3jdwod T4 |eHpuUoyd0) W ‘Bunlodsues) +H ‘aseyiuds dLv| soydxo 800°0 0'66 ¥ 069T T'%9 ¥ €10T 1e7XT99€ETT
T'v£1500 WN T apndadAjod ewweb ‘xajdwod T4 [erpuoydow ‘Buiiodsuel +H ‘aseyiuhs d1v soydxo 500°0 0°€8 F £69T 1°£9 ¥ 0S0T 1e7XTT1£50T 105dLv|

100


lars




100

lars

lars
Chapter III: ERRa functions in PGC-1a induced mitochondrial biogenesis


iogenesis

ial bi

PGC-1a induced mitochondri

ions in

: ERRa functi

Chapter Ill

1°£90900° WN X0 40 Joqubiau papipaid ‘umouwiun 810°0 0'1S ¥ SEL v'8Z F TSP 1e7X7£50812C #JON
1°£165T0° WN Bojowoy €T JUNQNS dse.djsue-S duolyIeIn|6 pajpipald ‘umouxun 2100 €0 F 209 0°vZ F €8€ w©TIS4LT2|  $90TSD01
£47925V| 1onpoud ausb 9yHOVYIN papipald ‘umousiun £10°0 TYT F E€LE 67T F 0£C 1e7E89TTT
S16£009Y 12npoud 3u3b 9y YOVVIN papipaid ‘umowiun z€0°0 SLTF TIE €T F 6LT 1e71602€ 9brOVVII
T'STPSTO WN uij04d £9T8Y9SdZANA papipaid ‘umousiun £00°0 $°99 F ThbT L°8S F L£8 1S £zvZ02[91895dZ4NMa
1'29098a €€ awey buipeal uado Tz awosowo.yd papIpa.d ‘umounun 0ST°0 1'S9 ¥ £8S 0'SE ¥ 9T¢€ 1757299012
1°6¥9700° WN €€ dwedy buipeas uado Tz BWOSOWOIYD papipaid ‘umowiun ¥20°0 TOTT ¥ L2TST 6'SL F 168 /1220 €€40T2D
1°6€99T14Y ¢ @weyy buipeas uado T dUIOSOWOIYD papipaid ‘umousiun S10°0 €719T ¥ 984T 1°9vT ¥ 1961 TS ZES0TT
T'¥68+00” WN T dweuy buipeas uado T dwosowo.yd papIpa.d ‘umouxun S00°0 L'LE F 8TL L'LT F ¥SE ®6L220T 2HOPTD
2°08EST0 WN uij0.4d 16-190 Alquiasse aueiquiaw 500°0 9°95 ¥ 856 T'8€ F 95€ 12704510
1°08€ST0° WN uizj0.d 15-190 Bunuos ure104d BuRIqUIBW 500°0 8°LE F 81§ 6'ST F (ST 1e7S7 695102 15-1920
T'vL0bEN T uigj0.d Joydue (vxud) aseury v 810°0 0°'TE F 89% 0'6T F vEE 176290712
1°62£00008 T uzo.d Joydue (vxdd) aseun v $10°0 9'vS F 908 S'TE F 7SS 7S £9102 TdWY
1°€8¥T00° WN 22uanbas payiidwe ewolse|qol|b Buppiygen uiarosd 1100 0'ST ¥ ¥0T S'6 ¥ 0ZT 12757918102 Svao)
1'28£000° WN 1 apndadAjod 'y Ajiweyqns ‘bz Ajiwey ‘05pd 9W04Y20349 siseIsoawoy wnp|ed 900°0 0T ¥ S€ 8°0 F ST 1©7$0590Z TVHZdAD
1°999801 T [2uueyd uojue Juapuadap-abeljon Iauuey uoy 900°0 T°0ST F 8LEE 6'SST ¥ 20TT 1e7STZ9911 Zovan
1122410 WN T uonesayijoud |j22-L dinew 070°0 TEF 85 ST FSE 187901502 TdOLW
10LLT6WY (z-uneniow) g6 urel0.d eA0L XP0Ys JedYy S$0°0 0°6T F vIE YL F 8TC 127069002
18400009 (z-uneyiow) g6 ute04d e@30L HI0Ys 33y £20°0 8'vIT F v86T Y6 F vovl 1©7ST16900C
T'YETH00 WN (z-uneiow) g6 ur@10.d eQ0L X0YS Je3Y 2200 9°0ZT ¥ 9¥8T 0°€L F LEET 1875726900 96VdSH
1°96£900° WN (3s24) 7 ii|-£ 2Uab Allwey 3sedLY €94V sisAjoaroud z10°0 T°LE ¥ 019 6°0€ F SOE 127984207 Z1€94Y|
T'6EPT6W 6uiuleIU0d JROW-Ydd YdU-BUPN3] Buisseoo.d vNY £20°0 S'9b F 958 T'0S F T2S 1©TSTST9TTE
T'E€TTS04Y BujuleIU0d JROW-Ydd YdL-2UPN3] Buissaooud YNy 900°0 €8v F 106 €°5€ F 10§ 1©TST1L6TTT OYddy1
1°869T00° WN asejepAy v awAzuaod-|Aoua/urelo.d buipuiq YN NV uonepeubap yNywW 010°0 £°8T F S0T ¥'9 F 68 127250502 HNY
TTLEEYIY aseINW v aWAZUR0D |AUOjeWALIRW ws||oge3ed sy ¥10°0 €8 F €61 TOT F 111 187656202 1NW
8££95049 asejayjuAs pioe dlod sisaypuhs proe dlod £20°0 T'LF 09T 6'6 F 10T 1®TSH0PTT SvIl
1°889000° WN 1 aseyjuhs '-e3/ep ‘aleulnasjoule sisayjuAsolq away 600°0 0°8t ¥ 956 8'8€ F 6£S 1e7ST€€950 1SVY
Z°0TT#00 WN 35B1INPa. UIXOP3.LI3) sisauabolq piotals z10°0 122 ¥ €12 09 ¥ 56 1e7ST€18£02 uxa4
1°£9T000  WN aseupy [0432416 wsljogeaw 2)epAyog.ed 500°0 ¥'€ F 09 TEFTH 1e7ST/8€£0T 39
TLIEPTO WN asesasuenjiuaid-suen) sisayjuAsolq O awAzua0d 500°0 99T ¥ /8T 06 F /2T 1875759802 Ld1|
1°£Z€p0008 T 0uy [elpUOYIOIW ABojoydiow €200 T'SE ¥ 00§ 09 ¥ 8€€ X 1eTzee
1°0StbeolY ABojoyd.ow 800°0 6°LE F EEL 0°0€ ¥ T0S 18704459
T°0SbPTO0Y T oYy [elpUOYIO W ABojoydiow 800°0 9€T F UV 70T F 1S€ 17X 68£12T Z-0dIW
1°290210° WN I-T uiweuAp ABojoyd.ow £20°0 L'SE F SES YET F €LE 1e7S7501€0T ITWNG
1°6€8900° WN (unyoyw) |eripuoydo W ‘urelold dueIquBW Jauul ABojoyd.ow 810°0 6°90T ¥ 6GST €19 F (86 187556007 LIWWI
T'6£TTT09Y (queuiwop jewosoine) T Aydoe ondo ABojoyd.ow ST0°0 8'€T F 8Sh 8'ST F 04T 1®TXTETZLIT TvdO|
T'LY6TTONY T uisnjoyw ABojoyd.ow ST0°0 949 F 09L 0°vE F 9TE 1875750291
T'/87T0° WN T uisnjojiw ABojoyd.ow 500°0 €°/8 F 09TC T'8L F YEOT 1e7S 7551102 ZNAW
T8ELTTY] T I-z108 sisoydode vE0'0 €% F 15C 80T F 61 [EE T34 112108
1802700 WN (40308y Bupnput-sisoydode) g yieap |2 pawwe.bold sisoydode €100 8'¥Z ¥ 00t T'6T F 89T 175721550 8d0ad
1°881T00° WN 1 J3]|pi/3s1uobeIue-z108 sisoydode 900°0 S'0E F bb 99T ¥ €0T 1e78Z/£0T Diva
1°870000 WN ureyd buoj Asan ‘aseusboipAyap v awAzua0d-|Aoe (Ov4) uonepixo pie Anjey S20°0 TLT F €9% 1°8Z F ¥0€ 1270T£00C IAQYOY|
T'€8T000™ WN 1) 3sereupAy ¥ awAzua0D-|A0ua/ase|oly) ¥ SWAZUS0D-|A2R03a)-£/a5RUBB0IPAYRP V¥ SWAZUS0D-|AdRAX0IPAY (Ov4) uonepixo pie Aney ST0°0 8'£0T ¥ 0¥0T £'88 F ObST 1©7£00T0T GHAVH
T°£Z9%0N 1) 3serelpAy v SWAZU20D-1A0Ua/3SRI0I] ¥ SWAZUR0D-|A2R01) -€ /25RUBB0IPAYRP V¥ SWAZUS0D-]AIRAX0IPAY (ov4) uonepixo pioe Aney 0£0°0 £°96 F €2€T 8°LS F L06 1e7S71£9802 VHAVH
1970000 WN uteyd ybiens z1-D 03 p-O ‘aseusbolpAysp v awAzua0d-1Aoe (ov4) uonepixo pie Anes 800°0 8'89 F SOET £29 F SOL 1e720520T Wavov
1'€50680 € ueyd-6uoj ‘asebl| v swAzusod-pie-Aney (Ov4) uonepixo pioe Aney +00°0 8'Sh F L96 €'LE F 005 177799102
TLSPP00 WN € uieys-6uoj ‘asebl| v awAzua03-pre-Aney| (ov4) uonepixo pioe Aney £20°0 LVE F STH 6'ST F TvT 12757199102 €104
$1£10048 (42A11) VT BsesajsuenjAoniwied auniuied (ov4) uonepixo pie Anes 600°0 S'TTF L0V 56T F 961 1@TEE9E0T VT.LdD)|
T'0S8£00 WN UNgns e39q ‘BullWIoi-day ‘asebl| yoD-a3eurddons 3P4 YO L| 6v0°0 6'0v ¥ 285 ¥'8y F 9€C 1©7ST0£6202 Zv10Ns
1°£1610008 (jeupuoydolw) Qv ‘z aseuaboipAyap aiejew 3PAd ¥OL| €€0°0 £68 F TE9T vE6 F EPTT 187579€0602 THAW
1°080200° WN (z @sedajsuenoulwe sieliedse) [2LPUOYI0)IW ‘Z SSBUILIBSUR.] J139080|eX0-DIWelNn|6 324> ¥OL| £20°0 €°STT ¥ £90C TETT F 6SET 127804007 7109
1'50700008 aseyjuAs 23en 3242 v L| 810°0 L°79T F £98T 1'8bT ¥ 08ST 187099802 el
1552000 WN asenw v awAzua0) |AuojewjAyrew 2PAd vOL| 600°0 6°€T F T6E LT F 80T 187S709620C 1NW
$LL0TSTY (jeupuoydolw) QN ‘z 3seuabolpAyap a1ejew 34> YO 800°0 TIT F SLE v'vT F 681 1eTEEEETT THAW
1'T¥5200° WN ) @seuaboipAyap (e3esein|borax-eydie) ajesein|boxo 3Ad ¥OL| £00°0 T'ES F TP9 6°€T F SET 1728210 Haso
1'99Z€204V €199 (+QVN) € a5euaboipAyap 23e.3100s! 3P4 O L| 210°0 +'8S F T8 T°0€ ¥ S0S 17X $T00TZ
1°592£204Y 329 (+QVN) € 3seuaboipAyap 23e1320s! 3Ad YO 010°0 0°Et F 069 LT F EvY 1©7ST8THOTT geHAl
1°0€S500° WN eydie (+QvN) € aseuaboipAyap 23e13120s! 3PAd ¥OL| 500°0 T'S9 F THIT 1'bE F SST 18757020202
0909281V eydie (+QVN) € aseuabolpAyap 23e310s! 3PA> YO L| S00°0 9'vL F 0101 ¥'62 F STC 1757690202 VEHAI
T'6¥8£00 WN 3ungns eydje ‘buiwio-4as ‘asebi| yod-ajeudns 3PAd YO L| +00°0 T°L0T F 62SC 6'S6 F LLET ®L8LTT T970NS|
1°860T00° WN lelpuoyD0IW ‘Z 3seuode 3PAd YO $00°0 L°0L F LTHT Lvy F L6E 1e7S7€6£00T [denl]

101


lars




101

lars
Chapter III: ERRa functions in PGC-1a induced mitochondrial biogenesis


ial biogenesis

102

PGC-1a induced mitochondr

ions in

: ERRa functi

Chapter Ill

T'ZI8LTO WN 02Zv0Z(14 uta304d jednayl0dAy umouxun S'T9 F LSET TS F 8LL ®TTL6LTT 0zyoed
T8EY00IV| 9YONPELdZANa u1R304d |ednaYI0dAY umouun STy F 6€0T S'8€ F 8T 1877 8ZCTIZPrOPEYdZANA
T'S¥09T0 WN St awedy buipeal uado 0z BWOSOWOIYd umousjun 8'€ F LS T F 0€ 1e7STIS8.TL S¥4H002D|
0TSLEEMY "ZSOPOVIVY dUOP ‘Sl €8HEZCT4 YNQD sudides owoH umouun 8'8 F GLT L ¥F 06 1eT8SLETT -
T'0£0%00 WN ©) [uueyd apuoYd uo13a.10x3 T8 F vl 6°CF LY 1®7S /40L0T YINDTD
1006410 WN urjoud Bundelyul 3seury y-eiolne uonepesbap awoseajoid 6°€ST F ¥0CC TETT F GIST 1e7X70858T¢C dIAY|
T'9T66SW (aseulpAwobulyds pioe) |ewososA| pioe ‘T asesaisalpoydsoyd uipAwobulyds logeraw uiAwobulyds T°0Z ¥ 00% 9'vT F €8¢ 1e7ST0Tv60T TAdWS|
T'IST0Z0 WN £ Bujuiejuod ulewop 1¥v1S Buijeubis '6ET F 0S0E 9'0¥T ¥ ST6T 18757820002 LQYVY1S
S009ZN D€ 3ungns (1o3qryur) Aiojeinbau ‘1 asejeydsoyd ursiod Buijeubis 985 ¥ 199 €8T F 65¢C 1©7v8ZY0T J€YTddd
T68SL9VY| T ‘z99y3 Jo J9dnpsuen Buijeubis 81T F LST S'SF 8 ®$0£20T T90L]

1°010084 T uidy uonenRuaRyIp L'ST F 0eY 9°€T F 09¢ ® pLTTTT
1°0T008a uonenual_dYIp L'8EF €61 F 8TC weT9LZTTIT TNIdT
T'¥€9200 WN Jossaiddns Jowny €I F €8T F 0€¥ 18757659002 gHd
1060420 WN asebuoja |Ade-Aney uleys-buoj wstjogelaw pidi| 9T F €8 F 9L 1eT95ZH0T o]
1°658T00° WN T 49qwiaw ‘(sieyiodsuely 1addod) T¢ Ajiey Jatiied ynjos siseysoawoy 1addod L9T F 9'¥T F 91T 1@ TL6E0T TVIEDTS|
T'89€500° WN uiqo|6oAw Hodsue.ny usbAxo TSTF 9'L ¥ 88 1©76/T10T an
T'€£2£00 WN AiAnoe 103daa1 Uab0.1sa Jo Jossaldal 105591d3.103 [euondidsUR)| TTve F T°91C F CEbE 1€ 00970C vId
£8¥8€7 eydje 10ydada. pajejas-uabonse Jopey uopdudsuen 8'9¢€ F 9'0C F ¥1T ®/L8YT VyyS3
basjay uondunsaqg uone: se| 0T-29d+ 1043u0D / uoissaidx3y 19s aqodd auan|

*159) eAouy Aem-T ay) buisn pajejndjed sem (s||92 buissaidxa-|eb-¢) [013u0d 03 pasedwod s||22 buissaidxa PT-DDd ul dseaJdul 3Y) Jo dUeD

SjudWILIRdXD 93443 || ul PT-)Dd Aq Ajjuedyiubis paje|nbal-dn a1am jeyy pue
‘[0¥9-679 ‘STT 119D (£00Z) ‘12 3@ “)N'A ‘eyjooly] ‘suiajoud jeripuoyd03iw apodud jou op Aayz ybnoyjz uana ,sauab |e. 1w yam 1-02,, Se pay! u99q aAey jey) saudab Jo 3s11 *a

1152210 WN (v413w) [e1puoy203W ‘y 103084 uondiosuey) uonedijdal/uondudsue 500 < YT F L6T TTT F 48T 17X THS80T

0/¥2SS3g (v413w) |erpuoydoliw ‘y J01oey uondudsuesy uonedl|dai/uondudsuesy S0°0 < T F 0ET €8 F 00T 1©7ST9/TE0T
T'T0ZE00™ WN (v413w) |e1ipuoyoojw ‘y 103oey uondiosuey) uonedjda/uondudsuen 0v0'0 L'ST F T9C 9'vT F €81 3 X7/£LT€0T WY4L
basjay uondinsaq uonedi mm_o_ 2ouedyiubIs _ 0T-)9d+ / uoissaidx3 1043u0D / uoissaidx3y 19s aqodd 3uan|
*1$9) eAOUY ABM-T B3 pue Sjuswladxa ¢ ||e 10j sanjeA buisn pajendjed sem (s||@0 buissaidxa-|eb-¢) [013uod 03 pasedwod s||@2 buissaidxa PT-DDd Ul asealdul ay) Jo aduedyiubis ayl|
SjuaWIIadXa 224Y) [|e WOl SaN|eA JO WIS F URSW 3y SMOYS uolssaidxg
UId-1Y aAneljuenb Aq pajejnbas-dn se pawaiyuod sem Inq ‘syuawiadxa € ay3 Jo z Ajuo ul snjeis 1-dn 9T-)9d € /! sem (v413W) Wv4Ll "D
T'€LE8TO WN ujoud Buipuiqg g uluefoydeuis papIpaid ‘umouxun < 9'9 F LE LT F e 1879ST6TT d9ZINAS

T'CETSTX lelpuoyd0liW ‘g dseInwsip apixotadns SS343S dAIpEpIXO < €28 F €T 69T ¥ 0TT 1©TSTI¥891T
88E9PM |elpuoyd0lIW ‘z dseInwsip apixotadns SS.3S dAIpepIX0 < 9'TET F 9€ET L°€8 F 00L ©TSTETTSTT 2aos
T'0T0¥Z0 WN ase1oNpal aselajsuelliAylaw aulRlsAowoy-alejojoipAyenalAyiaw-§ < S'TT F L9C 9'T1C ¥ £8T 187S7002€02 HYLW
T°€2£00009 aseta sueijhizde auniuied < S'ST F 8€¢C LET F 8LT 1e7STZTS60T 1vdd|
T'SSOPEW e32q (apiweodi|) aseusbolpAysp a3eaniAd 31242 voL| < 08T F ¥9€ ¥'LT F 99T 1S 11680C aHad
L6L699VV| asejepAy jesewny 3PAd ¥OL < 9Ly ¥ YES S'PE F 00 ®TXT0LIYTC H4
T'Z¥SP00 WN e ‘€ ‘xadwodgns eydie T (suouinbign) aseusaboipAyap HAVN soydxo < S'GET F T8VT S§'89 F 766 1eT€958TT E€V4NAN
8098TTMV T Joyoey Alquiasse xa|dwod T4 [eLpUOYI0YIW 3SRLIUAS d1V soydxo < S'CT F CET 98 ¥ 86 18TLS0ETT 24vdly|
£1586/39 ungns eyap ‘xa|dwod T4 [eHpUOYdO)W ‘Buiiodsuel) +H ‘9SeYIuAS d1V| soydxo < 8'v6 F 6v8 0'SS ¥ £9S 1®TSTIH0ETT asdly|
1°69910008 II-T Alquiasse (2 dwodyd03Ad) asepixo soydxo < 6'9L F 1T0T v'2L F 689 ELaVAVA: 114 11VX0
T'+06000" WN ¢ 3uouinb ‘3seuabolpAysp H(d)avN soydxo < 8'S8 ¥ vE9 S°LE ¥ 68€ 7S ¥18E0T ZODN
T'96¥200° WN (9seynpal D awAzue0d-HAYN) eAAET ‘8 UIRI0Ld S-94 (Suouinbign) aseusbolpAyap HAYN soydxo < LSS F 1TL L'SE F 85§ 1©7061£0C 8S4NAN
T'€42020 WN (35e24) Bojowoy ZZ dueJqUBW [eHPUOYD0IL JS3IN0 JO dSEI0|Sue wodsuen uiiosd < 0'68 ¥ 108 86V F 20§ 175709641 ZZTWWOL

T°1SE900 WN (13523A) BOjOWOY pi DUBIQUISW [ELIPUOYI0)IW JBUU JO BSEIO0|SUBL) odsuen uyoud < 1'82 F ¥9C £2T F 281 107S €60£0T
1°0€£09204Y (3seaA) Bojowoy p dueiqUIdW [RLPUOYI0IIW JaUUl JO dSBD0|suel) Modsueuy urejosd < 0'6C F 192 €11 F 641 187Z60£02 PYIWWIL
T'0¥8LT0 WN 977 u1210.d |RWOSOGL RIPUOYD0}IW sisayjuAs urejosd < LLT F 20p €92 F ¥9C 1e7ST08641C 9TIddW
T'9S6ST0 WN 1 u19104d [eWosoqu! [elpuUOYd0IW sisayjus uyoud < 8'68 ¥ 060T L'S9 F S0L 1©7STS0181C P1ddW
T'TCEE00” WN lelpuoy20jiw “4030e) UoREBUOS uone|sues) N1 sisay3uAs urejosd < L'6TT F 288T TE6 F 96ET TETTT0C W4N1]
basioy uondunsaqg uone: se|d ublS | PT-3)9d+ / uoissaadx3z | joJ3uod / uoissaidx3y 39s 2qo.dd ETEE)

(s0°0<d) 1591 enouy Aem-T ay3 ssed jou pip Inq ‘syuswliadxa 2a4y3 |je ul PT-)9d Aq paiejn6aidn a1am jey) pue suiajodd |elIPUOYD0}ILW BPOOUD Jey) Sauab Jo 3



lars




102

lars
Chapter III: ERRa functions in PGC-1a induced mitochondrial biogenesis


iogenesis

duced mitochondrial b

n

T685L9VY T 288y 4o Jonpsues| Buijeubis 1100 8'TT ¥ £ST S'S F v8 1©7$0£20T 1901
T'bL0bEN T urj0.4d Joydue (YXud) aseunt v Buijeubis 810°0 0'TE ¥ 89% 06T F bEE 1757529072
1'62£00008 T ute304d Joyoue (Wxd) aseuny v Buijeubis ¥10°0 9'vS ¥ 908 SIE F 7SS 7S p/9102 TdV)Y|
T'¥£9€£0009 eq@ig ‘z ‘xaidwoogns eydje T (suouinbiqn) aseusboipAyap HAVN soydxo L£O'0 9'9L F €46 00 F €0£ 17 422602 2v4nan
basjay uondunsaq :a_umu_u_mmn_u_ 2ouedyiubIs _ 0T-)9d+ ‘ uoissaidx3 1043u0D / uoissaidx3y 39S 2qo.d ETEY:)

*159) eAouy Aem-T ayj buisn pajejndjed sem (s||@2 buissaidxa-|eb-g) [013u0d 03 pasedwod s|j2d Buissaidxa PT-DDd Ul dseaudul ay3 Jo aduedyiubls ay |
SsjusWILIAdX? 934Y] [|e WOy SAN|RA JO WIS F UBSW By} SMOYS uolssaldx3

“Jauuew juspuadap-0yy3 ue ul T-D9d Aq paie|nbal ae sauab ¢ asay) Jayraym pa1sa) 194 J0u aARY DM
e)9q J01dedau uabouise Jo eydie soydedas usbouise Aq paie|nbas se payiodas usaq aAeyY € ‘Q-V SIS Ul sauab S/ T JO

[2221-292T 'S°119D “|o1g "IoW (£002) ‘12 39 "W ‘931 uery] s|192 Sozn

[2£21-292T 'S°119D "[01g "I0W (+002Z) "|e 39 "W ‘93 UEI3] S||92 SOZN Ul SUIXO[EJ 1O USJIXOWEe] ‘|0Ipe.3sd 03 3suodsad uj s103dadaa usbolisa Aq paje|nbal se pajiodal usaq aAey Jey) -V SISIT WOJY SBUSD 4

103

PGC-1a

ions in

ERRa funct

Chapter Il

1'8T€€1A e@x09 3ungns eydje ‘103oe) uondudsuely uejold buipulg vo uonduosuesy| pauiwaiap jou €8T F LOT 69 F 0L 1278810TZ vdgavo|
210200 WN e@i/p 'z IUNgNs e33q 10308y UoRdLdSURLY ufR30.d Bulpulq VO uondudsuey| pauILIRIEp Jou 0L F 66 9'S F LIT 1©TX€L1902 24davo)
T'%STS00 WN ngns e3aq “I03oey uondudsuedy ujold bulpulq vo uonduosuesy| paulwialap Jou T°¢T ¥ 68T 09T ¥ 0T 1e7ST819%02 Ta9ddv9|
1'¥Sv2z T J031oey Atojesidsal sespnu uonduosueny| pauiuuziap jou 0'€ F LS 1€ ¥ 95 1e7ST082TTC
Tvsvea T J0308) Alojedidsal seapnu uonduosuesy| paulwaap Jou €9 F ¥0T ¥’ ¥ 60T ®T6LTTITT
T'TT0S00 WN T 403oey Asojesidsal Jeapnu uonduosue.| paulwa3ap Jou S'SF v6 S'S F vl 1e7STZ59%0C T4UN
basjoy uondidsaq se|n| asueoyiubls DT-)Dd+ / uoissaidx3y 1043u0d / uoissaidx3y 39s aqoid [auan|
SjuaWIIadXa 224Y) [|e WOl SaN|eA JO WIS F URSW 3y SMOYS uoissaidxg
*(vdavD ‘zadavo ‘19d9VD) Sw.0j0s! Z-4UN pue T-A4N bunuasaidaa s3as aqoud 10j sanjea uoissasdxy
T°5£920009 861890 01 Je|lWIS 9/ZFIOW utR10.d |ednaylodAy umousjun S00°0 S'€Ev F 80L CEF vh¥ 1S $/2602
§55/8€99 861892 01 Jejiwis 9/Z¥IDW uljo.d [ea1ayrodAy umouun 6100 8'8€ ¥ ¢SS 8T F §9¢ eTSTELT60T 9LTPIONW
1°£8500009 8612D9W u1104d |ednayjodAy umouxun €00°0 9'SL F LTvT T'19 ¥ 1v6 1TXT62£60C 86TCOONW
T'v9¥8T0” WN 620SaW u130.4d s|122 J0jiuabold/ws di3z10dojeway paziRdeleydun umousjun 810°0 08 F €€6 V'LEF LTS 1©7ST/6S8TC 620Saw
T'S9TPTO WN uijo4d SZTIdSH umouun o000 €8 F 0€6 9°0€ F 29€ 1879006TC STTOdSH
T°9S0T0” WN T 2uab paonpur eixodAy asnous o Bojouao A umouxun £00°0 PrT F ST6T S'LTT F L9TT 1©TXSH8LIT T9IH
T°0Z8TETIV ura304d BUBIQUIBWSUR.Y 3|GIPNPUI BUOWLIOY YIMO.B umousjun €00°0 €'6ZT F 08T T'6CT F 686T 1€7ST62602

TETLIETIV ur2104d BUBIQUIBWSUR.] B|GIPNPUI BUOWIOY YIMOIB umousun £00°0 P'ITIT ¥ 021C 1'66 ¥ ¥SCT 1®78¥T60T WLIHD



lars




103

lars

lars




lars

lars
Chapter III: ERRa functions in PGC-1a induced mitochondrial biogenesis

lars
Chapter III: ERRa functions in PGC-1a induced mitochondrial biogenesis


Chapter Ill: ERRa functions in PGC-1a induced mitochondrial biogenesis

Supplement 2

Schreiber et al.
Supplement 2

A. Oligonucleotides used to determine gene-specific mRNA levels by quantitative real-time PCR.

Gene Forward primer 5°-3 Reverse primer 5°-3’ NCBI no. exons
ATPsynf3 GCAAGGCAGGGAGACCAGA CCCAAAGTCTCAGGACCAACA NM 001686 |2/3
B actin TCACCCACACTGTGCCCATCTACGA | CAGCGGAACCGCTCATTGCCAATGG | NM 001101 |3
CACT CTGGAGAACGGATCAAGTGCT CCCTTTGTAGATGCCTCGGAT NM 000387 |4/5
CcoX 11 CCTGCGACTCCTTGACGTTG AGCGGTGAAAGTGGTTTGGTT NM 173705 |---
COX4il CAAGCGAGCAATTTCCACCT GGTCACGCCGATCCATATAAG NM 001861 |2/3
Cytc CCAGTGCCACACCGTTGAA TCCCCAGATGATGCCTTTGTT NM 018947 | 2/3
ERRa AAGACAGCAGCCCCAGTGAA ACACCCAGCACCAGCACCT NM 004451 | 4/6
IDH3A ATTGATCGGAGGTCTCGGTGT CAGGAGGGCTGTGGGATTC NM_005530 |9/10
mtTFA GATGCTTATAGGGCGGAGTGG GCTGAACGAGGTCTTTTTGGT NM 003201 |5/6
NRF-1 CAGCAGGTCCATGTGGCTACT GCCGTTTCCGTTTCTTTCC NM 005011 | 3/4
NRF-2 CAAGGCAACAGATGAAACGG GACTTGCTGACCCCCTGAACT NM 005254 |7/9
36B4 CTGTGCCAGCCCAGAACACT TGACCAGCCCAAAGGAGAAG NM 001002 |3/4
Tim22 CCAAGTCCAGCCAAGAGTGAG CAGCGGTAAACACCCCAAAT NM 013337 | 1/2

B. Oligonucleotides used in gel mobility shift assays.
(the core sequence of an ERRa recognition site is in bold)

Gene/position

Sequence 5°-3

TRa/-443
TRao M4
random
ATPsynf3/-338
Cyt ¢/-596
Cytc/-9
IDH3A/-4023
IDH3A/-282

GCGATTTGTCAAGGTCACACAGCGC
GCGATTTGTCAAGtgCACACAGCGC
GCGCTAGACTCGGGCTTGCGGACGC
GCGAAAGCCCAAGGACAGGCAACGC
CGCCTAGAACAAGGTCACGAGCCGC
GCGTAAGTCCAAGGACACGCCGCGC
GCGAGATCACAAGGTCAGGAGGCGC
GCGCGCTGTTAAGGTAAGACGTCGC

C. Oligonucleotides used to clone the ATPsynB and Cyt C promoter sequences.
(gene-specific sequences are in bold)

Gene

Forward primer 5°-3

Reverse primer 5°-3°

ATPsynp (-385/+90)
Cyt ¢ (-686/+55)

GGACTCGAGGCCCCTATGGCTGTCACCTAG
GGAGTCGACAAATGCAGCACCTTCCTCAGT

GCCAAGCTTGCGACGCTGAAGGGGTGAGT
GCCAAGCTTCGCTGGCACAACGAACACT
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Results and discussion

Regulation of mitochondrial biogenesis by PGC-13

PGC-1p has a similar expression pattern as PGC-1a (Kressler et al., 2002), and has
also been reported to induce mitochondrial biogenesis (Meirhaeghe et al., 2003; St-
Pierre et al., 2003). Given that our work established a role for ERRa in mediating the
PGC-1a effects in mitochondrial biogenesis, we were interested to test if ERRa could
be acting also downstream of PGC-1p to increase the mitochondrial content in
SAOS2 cells. To answer this question, we first infected SAOS2 cells with
adenoviruses expressing GFP or PGC-1B and analyzed the mitochondrial DNA
content of the cells (figure 6A). We observed that PGC-1p induced mitochondrial

biogenesis as potently as PGC-1a., around 2 fold after 48 and 60 hours.

PGC-1 can interact with and coactivate ERRa (Kressler, unpublished data; (Kamei
et al, 2003)). We would therefore expect that PGC-13, like PGC-1a, induces the
expression of endogenous ERRa in SAOS2 cells. As can be seen in figure 6 B, PGC-
1B upregulates ERRoc mRNA levels strongly. Both basal and PGC-1B-induced
expression of ERRa could be suppressed by siRNA specific for ERRa., enabling us to
ask whether the induction and expression of ERRa is important for the effects of
PGC-1B on mitochondrial functions. First, we looked at the expression of mtTFA, the
mitochondrial replication and transcription factor, and isocitrate dehydrogenase 3, a
key enzyme of the TCA cycle. As results in figure 6 C show, PGC-1 induces both
genes, and this induction depends on endogenous ERRa, as it is not seen when ERRa
expression is blocked via siRNA. Nevertheless, when we tested the importance of
ERRa on the induction of mitochondrial density by PGC-1B (figure 6 D), we
observed only a small, not significant inhibition of the effect of PGC-1p. Although

these data are very preliminary and more work should be done, our results suggest
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that PGC-1p requires the function of the endogenous ERRa to induce at least some
genes important for mitochondrial biogenesis. It seems as though ERRa is not as
important for PGC-1 as for PGC-la for the final increase of the mitochondrial
content in the cell, although more careful analysis would be required to conclude this.
It would be interesting to test, if the PGC-lo homologues and ERRa act as a
complex, or if PGC-1B induces mitochondrial biogenesis under different
physiological conditions distinct from PGC-la. In particular the role of ERRa in
PGC-1 signaling should be further studied.
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Figure 6. PGC-1f induces mitochondrial biogenesis through ERRa.

(A) SAOS2 cells were infected with adenoviruses expressing GFP, PGC-1a or PGC-1p3
(MOI40). 48 and 60 hours later, total cellular DNA was isolated and analyzed by quantitative
real-time PCR. Levels for COX2 (mitochondrial DNA) were normalized to B-actin (nuclear
DNA) levels and expressed relative to the GFP control with was set as one. Equal expression
levels for PGC-1a and PGC-1p were controlled by western blot analysis (not shown). Values
are the mean = SEM of two experiments with duplicates. Asterisks indicate that values with
PGC-1a or PGC-1 are significantly induced compared to GFP infected cells. *< 0.02, **<
0.003, ***< 0.005. (B, C, D) Cells were infected with adenoviruses expressing control
(pSUPER) or siRNA for ERRa, and 3 days later re-infected with adenoviruses expressing
GFP or PGC-1f at an MOI of 20 (B,C), or 40 (D). (B,C) RNA was isolated at 24 hours after
infection with PGC-1o viruses, and analyzed by real-time RT-PCR. Data shown here
represent the mean £ SEM of two experiments with duplicates. The mRNA levels of ERRa,
mtTFA and IDH3 were normalized to the levels of 36B4 and expressed as fold induction
compared to control (GFP and pSUPER infected cells). Asterisks show that values of the
PGC-1p infected cells with siRNA are significantly reduced compared to PGC-1 without
siRNA (*< 0.0001, **< 0.005, *< 0.0002) and values for mtTFA are also significantly
induced by PGC-1p without siRNA compared to cells without PGC-13 (*< 0.0001), as
determined by students t-test. (D) DNA was harvested at 60 hours after GFP or PGC-
1B expression, and analysed as in A. Data represent mean £ SEM from two experiments with
duplicates. Asterisks indicate that values with PGC-1f are significantly induced compared to
values without (no siRNA) *< 0.0002; values with PGC-1 and siRNA are not significantly
reduced compared to no siRNA. **p=0.054.
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Chapter IV: Analysis of PGC-1a and GR expression profiles

Results and discussion

PGC-1a is a coactivator that is expressed in an inducible, tissue-specific manner, and
that regulates metabolism in response to stressors, such as cold, fasting or exercise. As
discussed earlier, PGC-1a exerts its effects via interactions with many different
nuclear receptors and other transcription factors like HNF4, PPARy, GR, NRF1,
MEF2C (Knutti et al., 2000; Michael et al., 2001; Puigserver et al., 1998) and ERRa.
Furthermore, PGC-1a. acts as a strong activator of GR-mediated transcription in
transient transfection assays (Knutti et al., 2000). GR is activated by glucocorticoids,
whose levels also increase in response to stressors, including cold, fasting or exercise,
and is known to contribute to the mobilization of energy during stress. Interestingly,
glucocorticoids may regulate the expression of PGC-1a in liver (Yoon et al., 2001),
suggesting a complex regulatory interaction. Since the two proteins can be viewed as
acting in response to stressors, it seems likely that they collaborate, at least partially,
to regulate genes important in stress responses. Our goal was therefore to analyze how
PGC-1la and GR would influence each other’s effects on gene expression. At the
same time, we could analyze how PGC-1a impacts gene expression in collaboration
with other transcription factors (i.e. absence of hormone), and identify gene targets for
GR, since only a few direct targets were known when this study started. The previous
two chapters focused on genes induced by PGC-1a in an ERRa-dependent manner.
In this chapter we will discuss the preliminary analysis of expression profiling of

genes responsive to PGC-1a and/or GR:

Part 1: Introduction into the experimental settings and the in silico analysis method
Part 2: Genes or programs that are regulated by PGC-1a independent of GR

Part 3: The effect of activated GR on PGC-1a regulated expression profiles
A) genes that are induced by PGC-1a and repressed by GR
B) genes that are activated by PGC-1a in a GR-dependent manner
Part 4: Genes that are regulated by GR independent of PGC-1a
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Part 1: Introduction

The cell culture system chosen should fulfill two major requirements: cells should,
first, express wild type GR that can be activated by glucocorticoids, and, second, have
low or possibly no detectable levels of PGC-1a expression, so that we could compare
GR responses in the absence and presence of PGC-1 a.. Because many established cell
lines express inactive GR, we decided to test SAOS2 cells that stably express GR and
that were recently characterized (Rogatsky et al., 1997). Furthermore, the osteoblast
progenitor nature of SAOS2 cells was interesting, given that glucocorticoids can
induce bone loss. To introduce the coactivator PGC-1a with high efficiency, we
constructed adenoviral expression vectors for PGC-1a. These vectors could deliver
efficient expression of PGC-1a in ~70 % of the cells, when used at a multiplicity of

infection (MOI) of 50 (figure 1 A).

First, we used transient transfection assays to determine if the adenovirally expressed
PGC-1a was transcriptionally active. Figure 1 B shows that adenovirally expressed
PGC-1a was able to enhance GR activity at a model reporter luciferase construct, by
5- to 6-fold. Next, we analyzed if adenovirally expressed PGC-1a was able to induce
endogenous target genes. For a PGC-lo target, we assayed the expression of
cytochrome ¢ (Wu et al., 1999). As seen in figure 1 C, cytochrome ¢ was induced by
the PGC-1a adenovirus already at an MOI of 5; an MOI of 50 showed a stronger
induction. For a GR target, we chose the cell cycle-dependent kinase-inhibitor p21, a
known target gene for GR in SAOS2 cells (Rogatsky et al., 1997), and asked how
many hours of glucocorticoid treatment were required to detect its induction. Figure 1
D shows that p21 mRNA levels were already increased after ~1 hour of treatment
with 50 nM corticosterone, and reached a plateau after 3 hours. Finally, we
determined the expression levels of PGC-1a at different times after infection. PGC-
la expression was detectable at 4-6 hours after infection, and reached steady levels at
~ 10 hours (see figure 1B chapter 2). Based on these findings, we decided on a
protocol where cells were infected with either control or PGC- 1o expressing viruses

(MOI 50) for 14 hrs, and treated with either vehicle (ethanol) or hormone (50 nM
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corticosterone in ethanol) for the next 3 hours. At 17 hours after infection, cells were
harvested and RNA was prepared.
After RNA isolation of the following four conditions, the expression profiles were
analyzed on the Affymetrix U133A arrays:
Cells infected with  control Bgal adenovirus, treated with vehicle (1)
control Bgal adenovirus, treated with glucocorticoids (2)
PGC-1a expressing adenovirus, incubated with vehicle (3)

PGC-1a, incubated with glucocorticoids (4)
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Figure 1. Titration of the experimental settings.

(A) Immunofluorescence staining with a polyclonal antibody against PGC-1a, after the
infection with an adenovirus expressing PGC-la a for around 48 hours. Left picture
represents a nuclear DAPI staining. (B) SAOS2 cells were infected with adenoviruses
expressing control (Bgal) or PGC-1 a for 48 hours. Transfection of an MMTV-Luc reporter
was performed at the same time and then luciferase activity was measured. (C) Cells were
infected with different amounts of PGC-1a expressing adenovirus for around 48 hours. RNA
was harvested and analyzed by quantitative RT-PCR. Cytochrome ¢ mRNA levels were
normalized to 36B4 levels and expressed relative to the control levels without PGC-1a. and in
the absence of glucocorticoids. One representative experiment with duplicates. (D) After
infection with the PGCla expessing adenovirus for around 48 hours, cells were treated with
50 nM corticosterole for the indicated amount of time. Isolated RNA was analyzed by
quantitative RT-PCR and values for p21 were normalized to levels of 36B4 and expressed as
fold of the control. Data show one experiment with duplicates. The same results were
obtained with another GR target gene.
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To determine the genes that were differentially regulated from one condition to the
other, we used the Microarray Suite program v5 (Affymetrix). Comparison of the
genes expressed under the different conditions led us to generate four groups of lists,
each with a list of up- and a list of down-regulated genes (figure 2). These lists served
as the starting point for the subsequent analysis. In the following chapters, we will
present some first validations of these results and furthermore discuss some functional
groups with respect on their relevance for PGC-1a or GR signaling, followed by the
discussion of selective interesting examples of genes that were regulated on the gene
chips (examples marked in bold). At the current state of the analysis, we have
verified that PGC-1a regulates the program of mitochondrial biogenesis, and the
expression of many ‘mitochondrial genes’ in an ERRa -dependent manner (Chapter
3). Furthermore, we have verified by real-time PCR the expresion levels of 23

additional genes that are regulated by PGC-1a and/or GR.

The human UI133A array contains approximately 22,500 probe sets, representing
around 14,500 well-characterized genes or 18,400 transcripts and variants. As the
numbers suggest, some genes are represented more than once on the gene chip array.
Only a small percentage of the genes are represented several times, whereas most
genes appear only once on the U133A chip. Due to this fact, in the subsequent
analysis I will use the terms ‘probe set’, when genes represented multiple times have
not been eliminated, and “genes”, when the actual number of genes has been
determined. Our experience from the analyzed lists suggests that the number of

regulated genes is around 10 to 20 % less than the number of probe sets.

Several different layers of statistical analysis have been incorporated into the analysis.
Besides the cutoff lines set by the Affymetrix software, the data was normalized with
the robust multichip analysis (Irizarry et al., 2003), and only genes that were
consistently regulated in all three experiments were taken into account. Notably, the
three repeats of the experiments were done on different days, as far as more than 6
months from each other. Further statistical analysis was provided using the 1-way
anova test, and setting a threshold of significance of 0.05. All values above were
designated as “not significantly regulated”. While the use of this cutoff has reduced

the large number of genes to be analyzed, it has also excluded some genes that fell
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below the significance level, using these stringent conditions, but were found to be
significantly regulated by quantitative RT-PCR analysis. In the following sections,

only “significantly regulated” genes will be presented or discussed.

Figure 2B presents the numbers of probe sets that were differentially regulated by
PGC-1a and GR, classified into four groups. Two points appeared to be interesting at

first glance:

First, more probe sets were induced by PGC-1a than by GR. This could be explained
by the fact that PGC-1a exerts its transcriptional coactivator function with several
different endogenous nuclear receptors and other transcription factors. Furthermore,
PGC-1a expression could be detected after around 4-6 hours (figure 1 B chapter 2).
Around eleven hours of PGC-1a expression could possibly lead to indirect effects on
the expression of some genes. The conditions for GR were more stringent (3 hrs of

activation) and could have led to fewer indirect effects.

The second point was that a smaller percentage of probe sets was significantly
repressed by PGC-1a alone compared to with GR alone (group A and C). Whereas
PGC-1la a repressed significantly 40 % of the probe sets in the absence of GR, the
latter repressed 74 % significantly. These findings indicate that the role of PGC-1a in
transcriptional repression is smaller than in activation. This observation is supported
by the absence of any data for PGC-1a. as a negative regulator of transcription.

Even more striking is the situation if both factors are present and activated (group B
and D). PGC-1a only represses 6 out of 340 probe sets significantly, but GR represses
47 % significantly. This clearly demonstrates that PGC-1a does not exert a function
in GR mediated repression and even influences GR signaling positively, since a lower

percentage of GR targets were significantly repressed in the presence of PGC-1a.
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Figure 2. Transcriptional profiles of PGC-1a and GR in SAOS2 cells

(A) The comparison of genes expressed in the different conditions, using the Microarray Suite
program, led to four groups of probe sets, each with two lists: one of up- and one of down-
regulated genes. (B) Numbers of probe sets that were regulated, in each of the 8 lists. The
“significantly” regulated probe sets were determined using the 1-way anova test and a cut-off
value of 0.05.
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Part 2: Genes that are regulated by PGC-la in the absence of

glucocorticoids

PGC-la exerts its functions in metabolism by interacting with several different
nuclear receptors and other transcripton factors (reviewed in Knutti and Kralli, 2001;
Puigserver and Spiegelman, 2003). Importantly, PGC-1a is expressed at significant
levels in some tissues, such as heart and muscle, in the absence of any stress, i.e. at a
state when glucocorticoid levels are low (Knutti and Kralli, 2001; Puigserver and
Spiegelman, 2003). It is therefore expected that many of the effects of PGC-1a on
gene expression are GR-independent. Our first goal was therefore to identify genes

and pathways that were regulated by PGC-1a in the absence of any glucocorticoids.

Classification of all genes significantly induced by PGC-1a

The classification of all genes induced significantly by PGC-1a in the absence of
glucocorticoids shows an interesting picture (figure 3). As discussed in chapter 3,
around 28 % of all induced genes are nuclear encoded with a function in
mitochondrial biogenesis. Assuming that there are around 700 to 800 genes with
functions in mitochondria, as proposed recently by Mootha and coworkers (Mootha et
al., 2003), ~23-26 % of all ‘mitochondrial genes’ are induced by PGC-1a, already at
17 hours after infection with the PGC-1a adenovirus. Since this function of PGC-1a
was already discussed extensively, the main focus of this chapter will be on the genes

that have no predicted function in mitochondrial biogenesis.
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As can be seen in figure 3 and table 1 of the Appendix I, all PGC-1a induced genes
were classified into functional groups. Interestingly, the second largest group of genes
seems to be involved in cell signaling processes, such as cytoskeletal organization,
cell growth and viability, and others. Followed by this, there is a group of genes
involved in protein homeostasis, with roles in protein synthesis, transport, and
ubiquitination, and, next, a group of genes encoding transcriptional regulators,
including ERRa. The wide variety of genes regulated by PGC-1a suggests that PGC-
la expression influences many cellular processes; some of them will be discussed in

the following paragraphs.

Classification of all 475 genes that were significantly induced by PGC-1o

et o
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Figure 3. Classification of all genes that were significantly induced by PGC-1la in the
absence of glucocorticoids (475 genes, represented by 547 probe sets).

The graph illustrates the portion of each functional group. The most prominent function was
chosen for the classification. Cell signaling includes: cytoskeleton organization, cell adhesion,
apoptosis, cell cycle, differentiation, immune response and signaling pathways. Protein
homeostasis includes protein synthesis, posttranslational modification, protein folding,
trafficking and ubiquitination. The group of metabolism includes genes involved in energy
homeostasis, oxidative stress, lipid, cholesterol, nucleotide metabolism and some others. (The
list of the gene, together with their classification, can be found in table 1 of the Appendix I)
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RNA processing

Monsalve and coworkers have proposed a function for PGC-1a in the regulation of
RNA processing (Monsalve et al., 2000). In their study, PGC-1a was able to interact
with different splicing factors, and influence the splicing pattern of a fibronectin
minigene, presumably as a result of the interaction between the C-terminus of PGC-
la (RS and RRM domains) with the splicing factors. Interestingly, PGC-la
expression in SAOS2 cells led to the induction of six proteins involved in mRNA
splicing (one cdk-like kinase known to affect splicing, two RNA-binding motif
factors, a homologue of a drosophila splicing factor and more importantly, a
component of the spliceosome), as well as ribonuclease P, which is involved in
tRNA splicing, Although we have not tested yet the significance of these factors,
these observations raise the possibility that the reported effect of PGC-1a on splicing
are due not to direct interactions with splicing regulators, but rather to indirect effects
of PGC-1a on the expression of some splicing components. It would be interesting to
test if PGC-1a influences splicing in general or perhaps only the processing of some

specific mRNAs.

Transcription

Several transcription factors and coregulators were induced by PGC-1a, suggesting
that some of the genes regulated in the arrays may be indirect, rather than direct

targets of PGC-1a.

EAR-2 (erb A related 2, NR2F6) is a member of the orphan nuclear receptor family
that was identified as TRa -related gene in 1988 (Miyajima et al., 1988). The function
of EAR-2 is not fully understood, though it seems to act as a transcriptional repressor.
High expression levels in the liver have suggested a role in the repression of
apolipoproteins, lipid transporters with an important role in lipid and cholesterol
metabolism (Ladias et al., 1992; Vorgia et al., 1998). Other studies have suggested a
role for EAR-2 together with COUP-TFII in the repression of the estrogen activity on
the oxytocin gene promoter (Chu et al., 1998; Chu and Zingg, 1997). Interestingly,
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ERRa and EAR-2 were identified in the same study to both regulate aromatase, the
key enzyme of estrogen synthesis, albeit in opposite directions (Chen et al., 2001;

Yang et al., 2002; Yang et al., 1998).

Interestingly, we also detected the regulation of other orphan nuclear receptors by
PGC-1a, such as LXRP and LRH-1, two receptors involved in the regulation of lipid
metabolism. Furthermore, PGC-1a expression led to the repression of COUP-TF 11, a
nuclear receptor with repressor activities, (Pereira, 2000) and RXRa, the common
heterodimer partner for many nuclear receptors (reviewed in Rastinejad, 2001). Since
not all of these genes were regulated significantly, they will not be discussed further,
though, it could be important to verify their regulation by PGC-1a, and to test a

potential role of PGC-1a in the regulation of lipid metabolism.

SRC-1 was the first nuclear receptor coactivator identified (Kamei et al., 1996; Onate
et al., 1995) and belongs to the class of histone modifying coactivators. Early studies
showed the assembly of SRC-1 together with PGC-1a and CBP (Puigserver et al.,
1999) in a complex that exerts HAT activity. Later studies by Surapureddi et al
(Surapureddi et al., 2002) confirmed these data by the identification of a putative
PPARa -interacting cofactor complex (PRIC) from rat liver, which contained CBP,
SRC-1, PGC-1a and others. Besides SRC-1, several other coactivators were induced
by PGC-1a, for example TRAP80, a member of the mediator complex, which was
also proposed to interact with PGC-la (Surapureddi et al., 2002; Wallberg et al.,
2003). Interestingly, the regulation of these genes by PGC-1a suggests a much higher
complexity in transcriptional regulation than expected. It could imply that increases in
levels of PGC-1a in response to specific metabolic signals alter the expression of
specific coactivators, as well as recruit them to PGC- 1o complexes. Such complex

mechanisms may explain the potency with which PGC-1a induces specific pathways.
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Cell signaling

Our early studies, before the gene expression profiling experiments, had already
suggested that PGC-1a expression in SAOS2 cells influences cell shape, cytoskeleton
organization and possibly cell growth or viability. As can be seen in figure 4, both the
actin (A) and the tubulin staining (B) change dramatically after PGC-1a expression
for around 48 hours. Interestingly, one of the PGC-1a repressed genes was a member
of the tubulin family, suggesting that changes in the pattern of cytoskeletal proteins

expressed could underlie the observed changes in cell shape.
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Figure 4. PGC-1a expression changes the morphology of SAOS2 cells.

SAOS2 cells were infected with an adenovirus expressing PGC-1a or the control Bgal for
around 48 hours (MOI 50). The GFP expressing cells represent PGC-1a positive cells, since
PGC-1a and GFP were expressed from the same bicistronic message of this vector. (A) Actin
staining. (B) Tubulin staining.
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The role of PGC-1a in differentiation. The regulation of many genes involved in
cell signaling, cytoskeleton organization, cell growth, but also the influcence of PGC-
la on the cell shape, suggested to us that PGC-1a might alter the differentiation state
of the cells. SAOS2 cells are osteoprogenitor cells that posses the ability to
differentiate into osteoblasts or adipocytes, (Diascro et al., 1998). While ERRa has
been shown to promote bone formation and induce osteopontin, ERRo expression
also parallels adipocyte differentiation and leads to the induction of the B-fatty acid
oxidation enzyme MCAD (Bonnelye et al., 2001; Bonnelye et al., 1997; Sladek et al.,
1997; Vanacker et al, 1998; Vega and Kelly, 1997). Interestingly, neither
osteopontin, nor alkaline phosphatase, osteocalcin, collagens or other classical
osteoblast markers were upregulated by PGC-1a. However, these may be genes
induced in later stages of development. PGC-la did induce the expression of
C/EBPJ, a transcription factor carrying roles in both adipocyte and osteoblast
differentiation (Guerra et al., 1994; Gutierrez et al., 2002; Lane et al., 1999).

Three more differentiation factors, BMP-2, VEGF and lipin were upregulated by
PGC-1a. BMP-2 induces the differentiation of mesenchymal cells into osteoblasts,
chondrocytes or adipocytes (Ahrens et al., 1993). VEGF was identified as a BMP-2
target and could also be involved in myoblast, osteoblast or adipocyte differentiation
(Claffey et al., 1992; Marrony et al., 2003; Midy and Plouet, 1994). Finally, lipin was
suggested as an important factor for adipocyte differentiation, and mutations in its
gene cause lipodistrophy (Peterfy, 2001). However, it has also been identified as a
marker of muscle atrophy in fasted mice and rats with renal failure, cancer or diabetes

(Lecker et al., 2004).

The induction of these factors by PGC-1a could imply that SAOS2 cells differentiate
into adipocytes, rather than osteoblasts. This would be consistent with the induction of
other genes in these cells, such as the ones encoding enzymes of the fatty acid
oxidation pathway. However, it is not possible at this state of analysis to tell which, if
any, differentiation program is induced by PGC-1a. Differentiation studies over a
longer period of time, and possibly in different cell types, could give some insight into

the role of PGC-1a and possibly ERR a in driving differentiation programs.
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Metabolism

Oxidative stress. ROS (reactive oxygen species) are byproducts of several metabolic
reactions in the cell and primarily in mitochondria. An excess of ROS in mitochondria
is able to cause oxidative stress. To prevent the oxidative damage of cellular
machineries and in particular of the DNA, cells have developed a complex antioxidant
defense system consisting of superoxide dismutases and glutathione transferring
enzymes. PGC-1a, a potent regulator of mitochondrial biogenesis has been proposed
to be involved in the cellular response to oxidative stress. The significant induction of
three glutathione transferases, as seen in our gene chip experiment, and of SOD2
(verified by real time RT-PCR), is consistent with this theory. Interestingly, at 17
hours after infection with the PGC-1a adenovirus, cells have not yet made new
mitochondria. Thus, the enhancement of enzymes fighting oxidative stress seems to
fit a program induced by PGC-la in preparation for the oxidative stress that is
expected from the increased mitochondrial activity at later times, rather than as a

response to the upregulated oxidative phosphorylation and oxidative stress.

Glucose catabolism in SAOS2 cells. During fasting, in the fasting hyperglycemia
situation of diabetes type II and during physiological exercise, glycogen serves as the
major energy storage for the body. By the time glycogen reserves are exhausted, the
body has to seek for new alternatives. Non-carbohydrates like lipids, provided from
adipocytes and mainly muscle proteins are catabolized and glycerol, lactate and amino
acids can be used for gluconeogenesis in the liver, which is regulated by PGC-1a
(Yoon et al., 2001). Peripheral tissues as adipocytes, bone or muscle are not
gluconeogenic, and therefore depend on glycogenolysis, uptake of glucose from the
circulation, and glycolysis.

The following metabolic enzymes were induced in our experiments (see figure 5):

1) We detected an increase in the amylo-1, 6-glucosidase, 4-a-glucanotransferase,
the glycogen debranching enzyme, which is activated during glycogenolysis.

2) An increase in phosphoglucomutase, could convert the resulting glucose 1-
phosphate into glucose 6-phosphate, thereby making it accessible for glycolysis.

3) Furthermore, we saw an upregulation of phosphofructokinase, the key enzymatic

step in glycolysis.
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4) The glycerol 3-phosphate dehydrogenase reaction in glycolysis forms NADH+H",

which is not able to enter the mitochondria to be oxidized by the respiratory chain.

Therefore, upregulation of the malate-aspartate shuttle tries to overcome this by

reducing oxaloactetate to malate and transporting the latter into the mitochondrion.

There, malate is oxidized back to oxaloacetate, “producing” one NADH+H", which

can then be used by the respiratory chain.

In conclusion, assuming that the increased expression of genes also leads to an

increased production of the enzymes described here, PGC-la seems to induce

catabolic pathways in the SAOS2 cells, by activating glycogenolysis and glycolysis.

These processes could provide the necessary substrates for entry into the

mitochondrial oxidative pathways, and the production of ATP.

Glycogen

UDP-glucose 1

Glucose-1-P

I+ 2

&P = > Glucose
Glucose-6-P & - "M

Fructose-8-P

3

Fructose-1,6-P,

A
¥ in
4 PE‘T:’ ’ﬂﬂlan ]

Oxelactate > Pyruvate = Lactate

Oxaloacetate €——— Pyruvate

r'd

Acetyl-CoA
TCA *
cycle
NEFA

{ Key to numbered enzymes |

1 amylo-1, 6-glucosidase, 4-ce-
glucanotransferase

2 phosphoglucomutase
3 phosphofructokinase

4 malate-aspartate-shuttle

Cytosol

Mitochondrion

Figure 5. PGC-1a influences glycogen breakdown and glycolysis in SAOS2 cells.

Catabolic glucose pathway, numbers indicate proteins that were induced in our gene chip

experiments. (Adapted from Moller, 2001).
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Part 3: Genes regulated by PGC-1a and glucocorticoids

GR exerts at least two types of effects on stress responses: 1) suppressive functions
that either protect the cells from a metabolic overshoot or help prepare for new stress
responses, and 2) permissive and stimulating effects that are part of the stress
response (reviewed in Sapolsky et al., 2000). Based on this, we decided to analyze:

A) if any of the PGC-la induced genes in the absence of glucoorticoids were
inhibited by glucocorticoids, suggesting a suppressive function for GR in PGC-1a
signaling, and B) genes whose induction was dependent on both PGC-la and

glucocorticoids

A) Genes that were induced by PGC-1« but repressed by GR

24 probe sets (21 genes) were significantly induced by PGC-1a and repressed by GR
(figure 6). To examine the possible programs that could be induced by PGC-1a and
repressed by GR, we classified the genes according to their proposed functions (Table

2 of Appendix I).

Probe sets that were induced by PGC-1x and repressed by glucocorticoids

PGC-1o induced without glucocorticoid repressed
glucocorticoids with PGC-1a

Figure 6. Venn Diagrams were genereated using GeneSpring. 24 probe sets were
significantly induced by PGC-1a but repressed by GR.
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Strikingly, only 3 genes with mitochondrial function were repressed by GR,
suggesting that GR does not play a role in mitochondrial biogenesis in our system, as
will be discussed later. A few of the other genes could be classified into one
functional group, the BMP-2 signaling pathway: BMP-2, VEGF and G0/G1. The
TGFB superfamily member BMP-2 and VEGF, and their possible function in
osteoblast or adipocyte differentiation were discussed before. The putative
lymphocyte G0/G1 switch gene is highly expressed in adipocytes and stimulated by
BMP-2 in late adipogenic differentiation (Bachner et al., 1998; Russell and Forsdyke,
1991). Our data could suggest that PGC-la induces a differentiation program in
SAOS2 cells, but GR inhibits it. This is of course speculative, since it is not clear at

this point if BMP-2 induces adipocyte or osteoblast differentiation in SAOS2 cells.

Metabolism

GR suppresses the metabolic function of PGC-1a in SAOS2 cells in two ways.
Phosphoenolpyruvate carboxykinase 1 (PEPCK1) is known as a key enzyme for
gluconeogenesis in liver and kidney. In adipocytes, PEPCK is important not for
gluconeogenesis, but rather for glyceroneogenesis, which leads to the reesterification
of fatty acids and to lipid synthesis (reviewed in Hanson and Reshef, 2003).
Glyceroneogensis seems to be essential for storing the fatty acids, when they are not
required for energy. PGC-1a induced the expression of PEPCKI1, suggesting that it
could promote glyceroneogenesis in our cell system. GR repressed PEPCK1, as it has
been shown before to do in adipocytes, in vivo and in vitro, and consistent with its
role in promoting lipolysis and inhibiting lipid synthesis in adipose tissue
(Nechushtan et al., 1987). Interestingly, this regulation of PEPCK1 would further
suggest that the SAOS2 cells display adipocyte-like characteristics.

An interesting question arises, which transcription factor mediates the PGC-la
upregulation of PEPCKI1. In liver, HNF4, GR and FOXO1 have been implicated in
the PGC-la induction of PEPCKI1 (Herzig et al.,, 2001; Yoon et al., 2001). In
adipocytes, PPARy has been proposed to play an important role in the regulation of

PEPCKI expression (Tontonoz et al., 1995). Furthermore, PPARY is a major regulator
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of adipocyte differentiation and was proposed to be upregulated by BMP-2 (Grimaldi,
2001; Hata et al., 2003). Although, PPARy expression was not altered in our
experiments profiles, it could be activated by fatty acids and coactivated by PGC-1a

in our cell system.

Pyruvate dehydrogenase kinase 4 (PDK4) was induced, not repressed by
glucocorticoids. However, because this regulation may fit the suppressive effects of
glucocorticoids on PGC-1a induced pathways, it is discussed here. PDK4 inhibits the
activity of the pyruvate dehydrogenase complex by phosphorylation and prevents
pyruvate from entering the TCA cycle. The induction of PDK4 by GR has been
reported earlier. Interestingly, it seems to be dependent on binding to FOXO1, a factor
also shown to be required for PGC-1a and HNF4 regulation of PEPCKI1 in liver
(Furuyama et al., 2003; Puigserver et al., 2003). As figure 7 A shows, the expression
values of the gene chips suggested that the induction of PDK4 was stimulated by
PGC-1a. However, analysis of the mRNA levels by quantitative real-time PCR in
figure 7 B suggests no role for PGC-1a. Further analysis is necessary to determine if
PGC-1a coactivates GR on the PDK4 promoter. The physiological implications of the
PDK4 regulation by GR is that it would block the entry of energy substrates (whose
levels would be increased by PGC-1a -induced glycogenolysis and glycolysis), into
the TCA cycle and the respiratory chain. This suppressive effect on the PGC-la
induced program could be to protect cells from an overload with energy in form of
ATP, or, quite likely, to divert energy substrates away from the cell’s oxidative

system and back to the liver, where they could be used for gluconeogenesis.
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Figure 7. Pyruvate dehydrogenase kinase 4 is induced by GR

(A) Expression values represent the mean + SEM from the three experiments analyzed on the
U133A chip. (B) SAOS2 cells were infected with adenoviruses expressing fgal or PGC-1a
(MOI 50). At 14 hours, cells were treated with 50 nM of corticosterone or vehicle for 3 hours.
RNA was then isolated and analyzed by real-time RT-PCR. The mRNA levels for pyruvate
dehydrogenase 4 were normalized to the mRNA levels of 36B4 and expressed relative to the
Bgal infected cells treated with vehicle. Results shown are the mean + SEM of 4 experiments
with one value. Asterisks indicate that values with and without PGC-1a are significantly
induced by glucocorticoids, *< 0.02
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B) Genes that were induced by PGC-1a dependent on GR

We compared the PGC-1a -induced probe sets, in the absence and presence of
glucocorticoids. As we show in figure 8§ A, many new genes appeared to be regulated
by PGC-1a in the presence of hormone. In addition, more than half of the PGC-1a
induced probe sets in the absence of glucocorticoids were also regulated in their
presence. This represents a group (319 probe sets) that seems to be induced
independently of GR (although, as exception, 6 of these probe sets may also be
responsive to glucocorticoids). More interestingly, 171 probe sets responded to PGC-
la only in the presence of glucocorticoids. As this represented around a third of all
PGC-1a upregulated genes in both conditions, it would suggest an important function
for GR in PGC-1a signaling. To obtain a subgroup of these probe sets that were
induced significantly by both PGC-1a and GR, we compared the lists of probe sets
induced in response to PGC-1a in presence of glucocorticoids, and GR-induced genes
in the presence of PGC-1a (figure 8 B). This revealed a consistent group of 55 probe
sets (49 genes) that were induced by PGC-1a and GR (shown as Table 3 in Appendix
I). Strikingly, this represented only a small subgoup of the 171 probe sets that were
induced by PGC-1a only in the presence of glucocorticoids. We do not exclude that
the rest are not dependent on both PGC-la and GR. Experimental validation of
members from the different groups will be required to gain some insights on the
significance of the regulated genes. Our current analysis focused on the group of the

55 probe sets.
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A Probe sets that were induced by PGC-1u with and without glucocorticoids
PGC-1a induced without PGC-1u induced with
glucocorticoids glucocorticoids

B Probe sets that were induced collaborately by PGC-1« and by glucocorticoids

PGC-1o induced with glucocorticoid induced with
glucocorticoids PGC-1a

Figure 8. Comparison of the probe sets that were regulated by PGC-1a and GR. (A) GR
activation shifts the PGC-1a responsive probe sets. (B) Overlap of PGC-1a and GR induced
genes.

To validate some of our findings, we analyzed the mRNA levels of three examples by
quantitative real-time PCR. Figure 9 A and B shows the UI133A expression values
next to the results of the quantitative real-time PCR for Bardet Biedl syndrome 1
(BBS1), solute carrier 19 member 2 (thiamine transporter) and interleukin receptor 22
(IL22R). As could be observed, all three were upregulated by GR, with an additional
effect of PGC-1a.
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Figure 9. Genes that are regulated by PGC-1a and GR

(A) Values represent the mean £ SEM of three different expression profile experiments with
the human 133A chips. (B) Cells were infected with either the controls (Bgal) or PGC-1a
expressing adenovirus for 14 hours. Then, cells were treated with glucocorticoids for 3
additional hours and RNA was isolated. The mRNA levels were analyzed by quantitative
PCR. Values for Bardet Biedl syndrome 1, the thiamine transporter and interleukin receptor
22 were normalized to the levels of 36B4 and expressed relative to the Pgal control and
vehicle. Results represent the mean = SEM of four to five different experiments. Asterisks
indicate that values with glucocorticoids and without PGC-1a were significantly induced (*<
0.05, ** < 0.006, *** < 0.0001) or values with PGC-1a and glucocorticoids showed a
significant enhancement to the ones without PGC-1a (* < 0.05, ** < 0.0006).
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These results showed that both GR and PGC-1a regulate the expression of these
genes. We cannot yet tell if this is due to direct regulation by PGC-1a and GR.
Further studies are necessary to determine if GR binds directly the promoters of

IL22R, thiamine transporter and BBS1 and if PGC-1a coactivates GR on these genes.

Classification of genes in this group according to proposed functions, implied a
regulation of the cell cycle and cell viability by GR and PGC-1a, since we detected
an induction of the cycle inhibitor p21, which was already identified as GR target in
SAOS2 cells and used as a control for the experimental design ((Rogatsky et al.,
1997), figure 1), and a few more genes involved in cell cycle arrest or apoptosis
(Appendix I table 3). We also observed the induction of transcriptional regulators,
signaling molecules and several other cellular pathways. More experiments are
necessary to verify these preliminary data. In the following, some examples will be

discussed.

Metabolism

PGC-1a and GR regulate together important metabolic factors. Bardet Biedl
syndrome (BBS) is a heterogeneous, autosomal recessive disorder, which is
characterised by mental retardation, obesity, hypogonadism, short stature, retinitis
pigmentosa and polydactyly, and secondary disorders like diabetes, hypertension and
renal and cardiac anomalies (reviewed in Katsanis et al., 2001). At least five gene loci
seem to be involved in the manifestation of this syndrome, but the most important was
allocated to BBS1. BBS4 could play a role in signaling, and BBS6 seems to act as
molecular chaperone; the function of BBS1 is not yet known. Interestingly, not only
BBS1 was induced in our experiments, but also BBS6, also known as McKusick-
Kaufman gene (MKKS), which was significantly upregulated by PGC-1a with some
GR responsiveness (see Appendix I table 1 and 3 respectively).

Humans lack biosynthesis pathways for several micro-nutrients like thiamine, also
known as vitamine Bl. Uptake through nutrients and in particular the transport of

those vitamins via the thiamine transporter are essential. The active form of
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thiamine serves as cofactor for several metabolic enzymes involved in carbohydrate
catabolism (reviewed in Schorken and Sprenger, 1998), the biosynthesis of
neurotransmitters, and the production of reducing equivalents used in the oxidative
stress defenses (Gibson and Zhang, 2002). For example, thiamine is essential for the
pyruvate dehydrogenase complex, the key enzyme in glucose metabolism that
provides acetyl-CoA and NADH for the TCA cycle. Defects in the thiamine
transporter THTR1 lead to diabetes mellitus, sensoneural deafness, cardiovascular
diseases, neurosensory defects and defects in the haematopoietic system (Beri-beri,

Wernicke encephalopathy (Singleton and Martin, 2001)).

We have verified the regulation of BBS1 and the thiamine transporter by PGC-1o and
GR, as seen in figure 9. It remains to be further analyzed if GR directly binds to the
promoters of those genes and what could be the function of BBS1. Regulation of
these target genes supports previous findings that defects in PGC-1a signaling, but
also prolonged glucocorticoid levels, could be involved in insulin-resistance,
hyperglycaemia and diabetes (Ek et al., 2001; Hammarstedt et al., 2003; Hara et al.,
2002; Lane et al., 1999; Rosmond, 2002).

Signaling

GR possibly regulates PGC-1a activity. The MAP kinases p38 and the stress-
activated protein kinase/c-Jun N-terminal kinases (SAPK/JNK) are activated by stress
generators such as toxins, proinflammatory cytokines and also by reactive oxygen
species (ROS) during oxidative stress. Work of our and other labs have shown that the
activity of PGC-1a is induced through p38 phosphorylation, in response to cytokines,
and through the displacement of a repressor (Fan et al., 2004; Knutti et al., 2001;
Puigserver et al., 2001). PGC-1a and GR induced the kinase MAP3K7, better known
as TAKI1. Strikingly, TAK1 is the upstream MAP kinase for MKK®6, which in turn
phosphorylates and activates p38 (Moriguchi et al., 1996). These data would suggest a
feedback mechanism of PGC-1a for its own activation and more importantly, another

mechanism by which GR could regulate PGC-1a activity.
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Although MAP kinases show some specificity, they exert influence on many different
functions in cell signaling. TAK1 was also shown to act in response to the PGC-1a
target BMP-2, a growth factor involved in differentiation and discussed before
(Shibuya et al., 1998). However, the fact that GR repressed BMP-2 but induced
TAK1, would suggest that TAK1 does not respond to BMP-2 in this system. Promoter
binding studies with TAK1 and phosphorylation studies with PGC-1a in the absence

and presence of glucocorticoids could provide support for this theory.

PGC-1a regulates GR through a negative feedback mechanism. “Prereceptor” or
“intracrine” regulatory mechanisms have been described for several steroid hormones
and involve target tissue activation or inactivation of the circulating hormone.
Glucocorticoid metabolism is regulated by two isoenzymes of 11B-hydroxysteroid
dehydrogenase 11B8-HSD (Stewart and Krozowski, 1999). The type 1 isozyme (118-
HSD1) is involved in the generation of the active glucocorticoid, cortisol, in tissues
with high GR expression like liver, gonads or adipose tissue (Tannin et al., 1991). In
contrast, 113-HSD2 converts active cortisol to inactive cortisone. In tissues with high
MR expression, like kidney and colon, 11B-HSD2 acts to protect the MR from
cortisol, which binds to GR and MR (Albiston et al., 1995). Deficiency of 118-HSD2
leads to hyperactive MR, natrium retention and hypertension (reviewed in Stewart,
1999; Wilson et al., 2001). Surprisingly, studies have also suggested a high expression
for 11B3-HSD2 in osteoblast cells (Bland et al., 1999; Eyre et al., 2001), not known to
have functional MR, suggesting an alternative role for this enzyme in the regulation of
bone homeostasis or cell proliferation. Experiments revealed insensitivity to
glucocorticoids in cells that show a high 118-HSD2 activity (Bland et al., 1999; Eyre
et al., 2001). This suggests an important role for 113-HSD2 in modulating ligand
availability for GR. The regulation of 118-HSD2 by GR and PGC-la implies an
interesting, up to date unidentified negative feedback regulation of GR activity.
Interestingly, the expression levels were not altered in the presence of one factor
alone, but induced around 1.8 fold in the presence of both. This could imply an
essential function for PGC-la in this regulation. Further studies should address
whether GR acts on 113-HSD2 directly, and the requirement of PGC-1a instead of

other coactivators.
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PGC-1a and GR influence the expression of the vitamin D receptor. Vitamin D
receptor (VDR) functions as a ligand-induced nuclear receptor regulating the
expression of genes involved not only in the control of calcium homeostasis,
phosphate homeostasis and bone remodeling, but also in immunomodulation,
inhibition of cell growth and induction of cell differentiation (Lin and White, 2004).
Polymorphisms in the VDR gene, besides the ERa gene, were proposed by many
studies as candidates in contributing to osteoporosis in menopausal women.
Strikingly, osteoporosis appears as a negative side effect of long-term glucocorticoid
treatment in patients with autoimmune diseases. In our cell system, VDR was one of
the GR targets, where PGC-lo was definitively required for the induction.
Interestingly, the cytochrome P450 enzyme (CYP24A1), which inactivates cycling
vitamine D, was significantly upregulated by PGC-1a and repressed by GR. Although
many other examples that were discussed before implied a non-osteoblast phenotype
for the SAOS2 cells and VDR does not exclusively function in bone, the regulation of
the VDR could imply a role for PGC-la as a coactivator for GR in the bone.
Consistent with this J. Miner and his group recently identified a new synthetic
compound, which activates GR and reduces the ability to interact with PGC-1a, but
still allows to interact with other coactivators (Coghlan et al., 2003). Interestingly, this
compound showed similar antiinflamatory effects as glucocorticoids, but less side

effects in bone.
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Part 4: Genes that were regulated by GR independent of PGC-1a

Our data suggested that PGC-1a and GR could exert some collaborative functions in
SAOS?2 cells. However, not all GR -induced genes were regulated by PGC-1a. This
led us to further analyze the GR induced expression profiles. Figure 10 shows that the
expression of PGC-la dramatically influenced the expression profiles of GR.
Interestingly, three times more probe sets were induced by GR only in the presence
than only in the absence of PGC-la, supporting the idea that PGC-la plays an
important role in the regulation of GR activity. Still, 139 probe sets were significantly
induced irrespective of PGC-1a expression. We focused on this group of genes in our
first analysis. As can be noted in table 4 of the Appendix I, assignment of proposed
functions to this group of induced genes suggests an effect of glucocorticoids on
many cellular processes, including effects on a large number of transcriptional

regulators.

Comparison of all GR regulated probe sets in the absence and presence of PGC-1u

glucocorticoid induced glucocorticoid inducad
without PGC-1ax with PGC-1ot

Figure 10. Ven Diagragram compares all probe sets significantly induced by GR, in the
absence and presence of PGC-1a.

139



Chapter IV: Analysis of PGC-1a and GR expression profiles

Furthermore, only three probe sets were induced by GR independent on PGC-1a. and

significantly repressed by latter. One example will be discussed later.

To verify that the regulation of some of these genes does not depend on PGC-1a, we
analyzed the mRNA levels of two examples: lipase protein and zinc finger protein
145. Lipase is a protein with unknown function, but sequence analysis revealed some
similarity with acetyltransferases, which could suggest a function in metabolism. The
zinc finger protein 145 or promyelocytic leukemia zinc finger (PLZF) protein gene is
disrupted in therapy-resistant acute promyelocytic leukemia (APL) (Chen et al.,
1993). This Kruppel-like transcription factor seems to be involved in apoptosis,
growth suppression (Shaknovich et al., 1998) and differentiation of different tissues,
for example in adipocyte differentiation (Sekiya, 2004). As seen on the UI33A
expression values and the mRNA levels tested by quantitative RT-PCR in figure 11,
both genes responded to glucocorticoids, whereas expression of PGC-1a did not show

any effect.
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Figure 11. Genes induced by GR independent of PGC-1a.

(A) Affymetrix U133 A expression values represent the mean £ SEM from three experiments.
(B) SAOS2 cells were infected with adenoviruses expressing pgal or PGC-1a (MOI 50) for
14 hours, followed by a 3 hour treatment with 50 nM of corticosterone or vehicle. Then, RNA
was isolated and analyzed by quantitiative RT-PCR. The mRNA levels for lipase and the zinc
finger protein 145 were normalized to the mRNA levels of 36B4 and expressed relative to the
Bgal infected cells treated with vehicle. Results shown are the mean + SEM from 4
experiments with one value. As the asterisks show, were the values with glucocorticoids
significantly induced to the values without. *< 0.02, ** 0.0004, *** < 0.005
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Role of GR in mitochondrial biogenesis. Since early results suggested a regulation
of mitochondrial biogenesis by glucocorticoids, several studies have provided support
for these findings (Allan et al., 1983; Wakat and Haynes, 1977). Characteristics of
long-term stress situations are enhanced catabolism of muscle protein and stimulation
of hepatic gluconeogenesis. Eventually, insulin resistance followed by diabetes and
increased energy expenditure can occur. Several studies have shown an increased
expression of genes with functions in mitochondria after glucocorticoid treatment in
liver (Kadowaki and Kitagawa, 1988; Morris and Kepka-Lenhart, 2002), colon
(Rachamim et al., 1995) and in muscle (Weber et al., 2002). In contrary, the decrease
of several mitochondrial enzymes was observed after glucocorticoid treatment in
kidney and pancreas (Fabregat et al., 1999; Simon et al., 1998). Finally some evidence
exists for the localization of GR in mitochondria (Demonacos et al., 1995;
Demonacos et al., 1993; Demonacos et al., 1996; Moutsatsou et al., 2001; Tsiriyotis et
al., 1997) or for the association with the mitochondrial outer membrane (Koufali et
al., 2003). However, the mechanism of this glucocorticoid action, is still not clear,
since no regulation of the mitochondrial transcription and replication factor mtTFA

could be seen (Weber et al., 2002).

Based on the parallel activation of PGC-1a and GR by some stressors, the role of
both proteins in the regulation of energy pathways, and the ability of PGC-la to
regulate GR activity, it appeared possible that PGC-la and GR regulate
mitochondrial biogenesis coordinately. However, the analysis of glucocorticoid
induced or repressed genes revealed only a small percentage of genes with
mitochondrial function. This does not rule out the potential collaboration between GR
and PGC-lo in mitochondrial biogenesis completely, since glucocorticoids may
function in this program in a cell-type specific manner, and not in SAOS2 cells.
Recent results suggested an important role for the regulation of mitochondrial
biogenesis by glucococrticoids in muscle (Weber et al., 2002). It would be therefore
interesting to establish a muscle cell system to study the role of GR/PGC-la in

mitochondrial biogenesis.
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Transcription

GR might affect DNA repair through the regulation of forhead box transcription
factor 3A. In the following, one example will be discussed, which is one of the three
genes that were induced by GR but repressed by PGC-1a.

Forkhead box O 3A (FOXO3A) was represented by four probe sets on the UI33A
chip, and three of them were significantly induced in all three experiments by
glucocorticoids. PGC-1a significantly repressed FOXO3A expression in the absence
of hormone, whereas it did not show an effect in the presence. FOXO transcription
factors are regulated by protein kinase B in response to insulin signaling (Kops et al.,
1999). Studies have implicated a role for them in the regulation of cell cycle and cell
viability (Dijkers et al., 2000a; Dijkers et al., 2000b; Medema et al., 2000). Insulin
activates PI3kinase, which in response activates PKB by phosphorylation. The
subsequent phosphorylation of FOXO3A by PKB leads to the shuttling of FOX0O3A
out of the nucleus, and to its inactivation (Brunet et al., 2002). FOXO3A possibly
regulates cyclin-dependent-kinase inhibitor p27 expression through the regulation of
ubiquitin-mediated degradation and causes cell cycle arrest in the G1 phase (Medema
et al., 2000). Since the insulin-PI3K pathway seems to be involved in the regulation of
life span in Caenorhabditis elegans (Lin et al., 1997; Ogg et al., 1997), Greenberg and
colleagues were wondering if a similar mechanism could be identified in mammals.
Interestingly, their studies suggested a FOXO3A dependent induction of G2-M cell
cycle arrest and DNA repair (Tran et al., 2002). Their DNA microarray analysis
identified two factors that were induced by FOXO3A and involved in DNA repair,
GADD45 and PA26. Strikingly, both of these genes were also induced by GR,
independent of PGC-1a in our experiments.

PGC-1a influenced the cell morphology of SAOS2 cells (figure 4), and also induced
several genes involved in the induction of cell cycle arrest and apoptosis. Some
factors, which generate cell cycle arrest, like p21, were induced by both PGC-1a and
GR. However, whereas PGC-1a. overexpression seems to induce stress to the cells,
GR might counteract this effect and tries to protect the cells from DNA damage
through the regulation of FOXO3A.
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Chapter V: Discussion

Numerous different coactivators and coactivator complexes have been identified to
modulate nuclear receptor signaling. Increasing amount of evidence gained with many
studies in the last years have proposed that coactivators define the specificity of
transcriptional regulation in a promoter- and tissue-specific manner. The goal of my
thesis was to analyze if the tissue-specific and signal-inducible coactivator PGC-1a
would provide specificity to GR signaling and the signaling of other nuclear receptors.
We designed a cellular model system with either undetectable levels of PGC-1a or
overexpressed PGC-1a, and with inactive or actived GR. Our results gave us new
information about the role of the orphan nuclear receptor ERR o in PGC-la
signaling. Furthermore, we asked if PGC-1a would be able to redirect GR signaling
to a specific subset of genes, thereby altering the specificity of gluccocorticoid

signaling.

Part 1: The function of ERRa in PGC-1a signaling

PGC-1a regulates the orphan nuclear receptor ERRa..

The identification of ligands for orphan nuclear receptors in the last years opened a
new view on the regulation of metabolism by nuclear receptors, which can function as
direct metabolite sensors, and respond immediately and specifically to the metabolic
requirement of the cell (reviewed in (Giguere, 1999). Still, some receptors like ERRa
remain ‘orphan’. ERRa expression is high in tissues with high B-fatty acid oxidation
and seems to regulate a key enzyme in this program, MCAD (Luo et al., 1997; Sladek
et al., 1997; Vega and Kelly, 1997). Interestingly, ERRa knockout mice show
reduced adipose tissue and the altered expression of several enzymes involved in lipid
metabolism (Luo et al., 2003). We demonstrated that the expression of ERRa
paralleledd the specific expression of PGC-1a., a sensor and integrator of metabolic
signals, in tissues with high energy demands (Schreiber et al., 2003). Moreover, our
data suggested that PGC-1a is important for ERa function, by regulating both its

expression and activity, thereby serving as a protein ligand for this orphan receptor.
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Finally, we have shown that PGC-la induces the expression of ERRa through an
autoregulatory loop, in which low levels of ERRa enable PGC-la to induce the

ERRa promoter.

PGC-1a as a regulator of several orphan nuclear receptors.

Our expression analysis revealed that PGC-1a also induced other orphan nuclear
receptors, like LXRP and LRH-1, which seem to play an important role in the
regulation of lipid metabolism (Francis et al., 2003; Repa and Mangelsdorf, 2000) and
EAR-2 (erb A like 2), a less known family member with proposed functions in lipid
metabolism and estrogen signalling (Ladias et al., 1992; Yang et al., 1998). Strikingly,
besides ERRa, also other orphan nuclear receptors like LXRo or RAR are regulated
through autoregulatory loops (Laffitte et al., 2003; Leroy et al., 1991; Li et al., 2002).
Interestingly, PGC-1o. was recently reported to induce FXR expression in liver, in
response to fasting (Zhang et al., 2004). PGC-1a coactivates PPARy or HNF4 at the
FXR promoter, leading to enhanced FXR levels and the regulation of lipid
metabolism. Our findings, together with these recent studies, suggest that PGC-la
may serve as a regulator of several orphan nuclear receptors, orchestrating the

regulation of metabolism in response to metabolic demands.

PGC-1a regulates mitochondrial biogenesis in collaboration with ERRa.

Mitochondrial biogenesis describes the processes required for the formation and
homeostasis of mitochondria. The efficiency of mitochondrial respiration is under the
strict control of physiological activity, temperature changes, hormones, growth
factors, cell cycle or developmental aspects (Moyes and Hood, 2003; Scarpulla,
2002). One of the key factors controlling the rapid adaptation to enhanced respiratory
demands seems to be PGC-1a, which is regulated by exercise, fasting or thermogenic
processes (reviewed in Knutti and Kralli, 2001; Puigserver and Spiegelman, 2003).
Ectopic expression of PGC-1a led to the induction of mitochondrial biogenesis in
muscle, heart and adipose tissue. In adipocytes and perhaps myocytes, PGC-1a seems

to regulate the expression of genes encoding mitochondrial proteins, especially the
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mitochondrial replication and transcription factor mtTFA through the induction and
interaction with NRF-1 and NRF-2 (Baar et al., 2002; Wu et al., 1999). In SAOS2
cells, we observed that the increase in the mitochondrial content by PGC-la was
highly dependent on ERRa, and that NRF-1 and NRF-2 levels did not change. Our
results suggest that ERRa does not influence the basic, constitutive activity of
mitochondria, which could be exerted by NRF-1, NRF-2, Spl, YY1, CREB, MEF-2
proteins and others that have been proposed before (reviewed Scarpulla, 2002). In
contrast, PGC-1a. modulates mitochondrial activity in collaboration with ERRa,
possibly in response to physiological signals like exposure to cold or fasting. Our
findings are supported by an integrative genomic and proteomic approach by Mootha
and coworkers, who recently identified ERRo as a transcription factor that is
coregulated with mitochondrial biogenesis (Mootha et al., 2003). Furthermore, ERRa
knockout mice show reduced cytochrome c levels (Luo et al., 2003). Since we
propose that ERRa regulates the mitochondrial content of the cell in response to
metabolic requirements, it would be interesting to analyze the response of ERRa-
deficient mice to exercise or cold, and determine the effects on mitochondrial
functions. Experiments with isolated primary tissues like adipose cells or muscle
could also test if PGC-1a is still able to induce mitochondrial biogenesis in ERRa-

deficient cells.

The possible role for ERRy in PGC-1a regulated pathways.

Interestingly, PGC-1a has also been shown to coactivate the other two members of
the ERR family, ERRP and ERRy (Hentschke et al., 2002; Huss et al., 2002; Kamei et
al., 2003) Although ERR is mainly expressd during early embryonic development
with only low levels in the adult, ERRy seems likely to be coexrpessed with ERRa in
several tissues (Bonnelye et al., 1997b; Heard et al., 2000; Hong et al., 1999; Sladek
et al., 1997; Susens et al., 2000). All three family members show high similarities in
the DBD and seem capable of binding the same response elements; still they may
exert different specificities in the regulation of target promoters, as for example SHP
(Sanyal et al., 2002). Our lab furthermore observed that all three receptors bind to the

same interaction surface in PGC-1a (Knutti, unpublished). These data suggest some
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potentially overlapping functions for ERRa,, ERRf} and ERRy. Some differences must
exist, since the ERRP knockout mouse is embryonic lethal (Luo et al., 1997), while
disruption of ERRa leads to viable mice (Luo et al., 2003).

Interestingly, ERRa mice displayed decreased ERRf3 expression, which could suggest
the regulation of ERR3 by ERRa.. Recent studies also proposed a regulation of ERRa
by ERRY or vice versa, since the interaction of both family members in vitro inhibited
their transcriptional activity (Huppunen and Aarnisalo, 2004). Although this
interaction remains to be verified in vivo, these observations suggest that some
regulatory network exists between ERRa, ERR} and ERRy. We did not detect any
ERRy in our system, suggesting that even if ERRy could compensate for the loss of
ERRa function, this would not be evident in the SAOS2 cells. Analysis of ERRy
overexpression or disruption by siRNA and the effects on mitochondrial biogenesis in
another cell line could address the question of the involvement of ERRy in ERRa
pathways, and in particular mitochondrial biogenesis. At least four scenarios seem
possible: (1) ERRa and ERRy could bind as heterodimers to the promoters of
mitochondrial genes and play a role in PGC-1a pathways. (2) ERRy could replace
ERRa and mediates PGC-1a programs in different tissues or in response to different
physiological requirements. (3) ERRy regulates ERRa activity through competition
for binding sites or by direct protein-protein interaction, or by binding to the ERRa
promoter. (4) ERRy cannot replace ERRa; instead it mediates distinct PGC-1la

functions.

As observed before, ERRa is able to not only activate, but also inhibit transcription
(Sladek et al., 1997; Zuo and Mertz, 1995). Our experiments with the ERRa promoter
suggested a dependency on the concentration: in low amounts ERRa activates
transcription from its own promoter, and at high levels it represses it. The effect of the
cellular concentration on ERRa function was already described for the interaction
with ERa (Kraus et al., 2002). Interestingly, overexpression studies have proposed
that ERRa acts as a repressor of PGC-1a function on the PEPCK promoter (Ichida et
al., 2002). Given our findings that ERRa can activate and repress at the same time the
ERRa promoter, it seems important that any conclusion on the role of ERRa at any

promoter are based on loss of function, as well as gain of function experiments. Our
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findings demonstrate that ERRo functions are complex, and imply that ERRa
function may depends on the cell type, promoter and especially the available

cofactors.

Role of PGC-1p in mitochondrial biogenesis.

Our results suggest that both PGC-1a and PGC-1p require the transcriptional activity
of ERRa to induce the expression of ‘mitochondrial function’ genes. Although our
data are still preliminary, PGC-1B shows less dependency on ERRa to increase
mitochonddrial density. Strikingly, also PRC, the third PGC-1a homologue, increased
the cellular content of mitochondria, although the role of ERRa in this function has
not yet been analyzed. Whereas PGC-1ac and ERRa were induced by metabolic
signals, PGC-1f and PRC are not. In contrast, PRC was regulated during proliferation
(Andersson and Scarpulla, 2001), whereas PGC-1f is possibly controlled by the
differentiating state of the cell (Kamei et al., 2003; Lin et al., 2002). It is still an open
question, whether there is a redundancy among the three PGC-1 family members, and
if so, why. In particular the structural differences of the three family members suggest
that they should carry distinct functions. It is possible that PGC-1a, PGC-1p and PRC
regulate mitochondrial biogenesis through the integration of different cellular
requirements like cell cycle, differentiation, proliferation and metabolism. The
question remains, which place is taken by ERRa in the induction of mitochondrial
biogenesis by PGC-1B. As suggested by others, PGC-1 shows some differences in
the regulation of mitochondrial processes to PGC-1a. Studies observed that PGC-1p,
but not PGC-1a expression led to the regulation of specific enzymes that protect from
oxidative stress (St-Pierre et al., 2003). This could propose that ERRa together with
PGC-1a regulates different mitochondrial pathways than with PGC-1[3. However, our
data is still preliminary and more experiments are necessary to define the role of

ERRa in PGC-1p signalling.
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Part 2: Analysis of the PGC-1a and GR expression profiles

PGC-1a induced specific metabolic pathways in SAOS2 cells.

GR plays an important role in bone homeostasis and long-term treatment with
glucocorticoids leads to osteoporosis. Although no studies with PGC-1a function in
bone are available, an interesting study identified a new GR ligand, which prevented
the interaction with PGC-1a and were proposed to have less side effects on glucose
metabolism and bone homeostasis (Coghlan et al., 2003). These findings suggest that

PGC-1a may play a role in regulating GR functions in bone.

In the osteoprogenitor SAOS2 cell line, PGC-1a activated specific metabolic
programs. We saw the promotion of catabolic pathways as the glycogenolysis and
glycolysis, the induction of new mitochondria and the upregulation of enzymatic
pathways in mitochondria like the B-fatty acid oxidation, the TCA cycle and the
respiratory chain. Furthermore, our results demonstrated the induction of several
transcription factors like ERRa,, EAR-2, CEBPS and others, which possibly mediate a
part of the PGC-1a response. Interestingly, we found that a significant group of the
PGC-1a induced genes, which were exclusively regulated by PGC-1a and not by GR,
were dependent on ERRa, namely genes involved in the regulation of mitochondrial
pathways. We also provided some evidence that at least some of those genes were
regulated directly by ERRa, through binding to the promoters of these genes. This
implies ERR a as an important mediator of PGC-1a functions. Further studies with
overexpressed or reduced levels of ERRa could provide more indications about the

participation of ERRa to other PGC-1a regulated pathways in SAOS2 cells.

PGC-1a function was strongly altered by glucocorticoids.

PGC-1a regulates cellular metabolism and energy balance in response to several
stressors and glucocorticoids could possibly modulate PGC-1a action. Furthermore,
both PGC-1a and GR are involved in diseases like diabetes. We observed that PGC-
la dramatically influenced the profile of genes induced by glucocorticoids, and vice

versa. The major difference between the PGC-la regulated pathways that were
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independent of, and dependent on GR was seen in the mitochondrial biogenesis,
which was induced by PGC-1a alone, and was only minimally influenced by GR. The
role of glucocorticoids in PGC-la mediated programs appeared to be both
“permissive/stimulative” and “suppressive”. On the one hand, we observed the
collaborate induction of interesting metabolic factors involved in diabetes and obesity,
such as the thiamine transporter or the Bardet Biedl syndrome 1. On the other hand,
GR repressed the activity of the pyruvate dehydrogenase complex (via PDK4) and the
expression of PEPCK1, which were induced by PGC-1a. These results suggest that
PGC-1la does not act as a general transcriptional coactivator of GR, which would
enhance the activity of GR on all target genes. To the contrary, PGC-1a seems to play
a specific role in GR signaling, inducing specific cellular programs. However, at this
state of the analysis and with not much experimental validation of the array results,
not many conclusions can be drawn about the common or opposing cellular programs.
The quantitative analysis of mRNA levels of more genes, coupled to in silico
promoter studies, cellular assays, and experimental validation of the resulting data

could give more information.

The nature of SAOS2 cells.

Myocytes, adipocytes, chondrocytes and osteoblasts all derive from the same
mesenchymal progenitor cell. Previous studies mostly referred to SAOS2 cells as
osteoblast cells. In contrast, our analysis of the PGC-1a expression profiles suggested
that SAOS2 cells are osteoprogenitor cells rather that osteoblast cells. These findings
are supported by the previous observation that SAOS2 cells are able to differentiate
into adipocytes (Diascro et al., 1998). We could not detect a regulation of osteopontin
by PGC-1a, although it has been proposed as an ERRa target gene (Bonnelye et al.,
1997a; Vanacker et al., 1998), or of any other bone marker. In contrast, we observed
adipocyte features, such as the induction of the -fatty acid oxidation genes by PGC-
la. Surprisingly, we also observed the induction of myocyte-specific genes, such as
the genes encoding myoglobin and the cardiac specific Hsp27, which were induced by
PGC-la. The induction of BMP-2 and CEBPS, which are able to promote both
osteoblast and adipocyte differentiation, suggest that PGC-1a and GR could play a
role in the differeniation of the SAOS2 cells. Furthermore, PGC-1a and GR seem to
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exert antiproliferative effects in our system by the induction of p21 and other factors,
which could be involved in differentiation. On account of these observations it would
be interesting to perform differentiation studies in the SAOS2 cells with

overexpressed PGC-1a, and in particular analyse the possible role of ERRa.

Can PGC-1a be replaced by other coactivators?

Our results suggest that PGC-1a exerts distinct programs with ERRa and influences
the activity of GR on specific target genes. However, the question arises, if only PGC-
1o can exert these functions, or if other coactivators like SRC-1 could induce similar
responses, for example mitochondrial biogenesis. In principle, this was one question I
would have liked to answer during my thesis. Due to several reasons I decided to

focus on other aspects. Therefore I would like to discuss this possibility at this point.

If the induction of SRC-1 levels by PGC-la can be verified, it would be indeed
interesting to test the activity of SRC-1 on some of the identified targets. Furthermore,
I would suggest an experiment with specific downregulation of SRC-1 by siRNA to
reveal if PGC-la is still able to induce mitochondrial biogenesis or if SRC-1 is
required for PGC-la functions. The disruption of SRC-1 (Picard et al., 2002)
suggested at least some dependency in the regulation of energy metabolism by PGC-
la. However, the function of PGC-lo shows high complexity and several
requirements would have to be fulfilled by SRC-1. For example, PGC-1a induced the
expression of other coactivators, like TRIP 80, a component of the mediator complex.
Earlier studies suggested already that PGC-la interacts with SRC-1 to recruit
chromatin-modifying coactivators like CBP and with the mediator complex as bridge
to the basal transcription machinery. Interestingly, SRC-1 was also shown to interact
with the mediator and may therefore replace PGC-1a.. Importantly, PGC-1a seems to
represent the regulatory element in this complex, responding to several signals like the

cAMP cascade activated by glucagon, glucocorticoids or phosphorylation by p38.
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An important argument against SRC-1 being able to substiture PGC-1a function may
stem from studies on the orphan receptor ERRa. Expression and activation of ERRa
seems important for the induction of the mitochondrial biogenesis program.
Unpublished work from our group shows that coactivators like SRC-1 are very poor
in activating ERRo, suggesting that they could not substitute for all PGC-la

functions.

In conclusion, the specific function of PGC-1a seems to be a sum of several pieces,
such as the expression at the right time and the right place, the ability to interact with
specific nuclear receptors like ERRa, the induction of specific target genes, and

finally the post-translational regulation by specific signaling pathways.
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Summary and conclusions

In the last years, increasing numbers of coactivators that regulate the transcriptional
activity of nuclear receptors have been identified. Many of the coactivators seem to
act as complexes, although redundancy has also been observed. Coactivators exert
different functions like bridging to the basal transcription machinery or modification
of chromatin structures. PGC-1a seems to take a special place in this scenery of
transcriptional regulation. It was observed that PGC-1a levels were induced under
certain physiological conditions, which signal increased metabolic demands. Ectopic
expression of PGC-la is sufficient to increase the mitochondrial density of cells
representing different tissues, thereby leading to the proposal that PGC-1a is a key
regulator of mitochondrial biogenesis. Furthermore, PGC-la. expression was
connected to the misregulation of metabolism in obesity and diabetes. It is astonishing
that the overexpression of only one component leads to the induction of so many
programs; one would think that this makes the system vulnerable. To execute its
metabolic functions, PGC-1a interacts with several different nuclear receptors like
HNF4, PPARy, ERRa, GR and more. Interestingly, also the expression of these
receptors is controlled by metabolic means, as observed for HNF4, PPARy, and
ERRa for example, which respond to fasting. Possibly, it is the induction of both the
specific coactivator and the nuclear receptor, controlled by different systems, that

leads to the activation of the specific downstream programs.

We observed that PGC-1a. is controlling the expression of the orphan nuclear receptor
ERRa by an autoregulatory loop. This induction of ERRa seems to be essential for
PGC-1a to regulate mitochondrial biogenesis, (as shown by siRNA for ERRa
experiments), and ERRa fused to the VP16 activation domain is sufficient to induce
this program. The identification of binding sites for ERRa in genes encoding
mitochondrial proteins and our in vitro studies suggest that ERRa regulates these
genes directly, coactivated by PGC-1a.. However, although PGC-1a and ERRa were
induced by the same physiological programs, it remains to be determined if ERRa

and PGC-la regulate mitochondrial biogenesis in response to specific metabolic
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signals in vivo. Moreover, the question remains if ERRa is required for the induction
of mitochondrial biogenesis by PGC-1a in all tissues and situations. The analysis of
ERRa levels during exercise and muscle could give more information. In particular, it
would be interesting to determine ERRa levels in liver and muscle of diabetes
patients, since the increase of PGC-1a expression in the one and the decrease in the
other tissue seems to be connected to the misregulation of metabolic processes. In this
case, ERRa could possibly provide a starting point for the development of new drugs

against diabetes.

Glucocorticoid levels are increased during organismal stress situations, similar to
PGC-1a expression levels. Upon fasting, GR even regulates the expression of PGC-
la. Whereas GR does not play a role in the regulation of mitochondrial processes by
PGC-1a in SAOS?2 cells, in remains to be further analysed in other tissues. However,
as the previous studies suggested and our data supported, PGC-1a could play a role in
several GR regulated pathways in vivo, besides the gluconeogenesis in liver. We
observed a high number of genes that was regulated by PGC-1a only in the presence
of glucocorticoids. The data also suggest that GR regulates PGC-1a function in
metabolism positively and negatively. Furthermore, both influenced the cell growth
and the expression of “differentiation-inducing” genes in SAOS2 cells. At this state of
the analysis it is not clear, if PGC-la induces adipocyte differentiation in SAOS2
cells and if GR could influence this program. Finally and importantly, our data
provide further support to the hypothesis that PGC-1a serves as a key component that

confers specificity to nuclear receptor signaling.
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Appendix I

Table 1: Genes induced by PGC-1a without glucocorticoids
Table 2: Genes induced by PGC-1a and repressed by GR
Table 3: Genes induced by PGC-1a and GR

Table 4: Genes induced by GR in the absence and presence of PGC-1a
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Peroxisome proliferator-activated receptor y coacti-
vator-1 (PGC-1) is a tissue-specific coactivator that en-
hances the activity of many nuclear receptors and coor-
dinates transcriptional programs important for energy
metabolism. We describe here a novel PGC-1-related co-
activator that is expressed in a similar tissue-specific
manner as PGC-1, with the highest levels in heart and
skeletal muscle. In contrast to PGC-1, the new coactiva-
tor shows high receptor specificity. It enhances potently
the activity of estrogen receptor (ER) a, while having
only small effects on other receptors. Because of its nu-
clear receptor selectivity, we have termed the new pro-
tein PERC (PGC-1 related Estrogen Receptor Coactiva-
tor). We show here that the coactivation function of
PERC relies on a bipartite transcriptional activation
domain and two LXXLL motifs that interact with the
AF2 domain of ER« in an estrogen-dependent manner.
PERC and PGC-1 are likely to have different functions
in ER signaling. Whereas PERC acts selectively on ER«
and not on the second estrogen receptor ERB, PGC-1
coactivates strongly both ERs. Moreover, PERC and
PGC-1 show distinct preferences for enhancing ERa in
different promoter contexts. Finally, PERC enhances
the ERa-mediated response to the partial agonist tamox-
ifen, while PGC-1 modestly represses it. The two coacti-
vators are likely to mediate distinct, tissue-specific re-
sponses to estrogens.

Nuclear receptors are ligand-regulated transcription factors
with a broad range of functions in development, physiology,
and behavior. They include steroid hormone receptors for glu-
cocorticoids, mineralocorticoids, progestins, estrogens, and an-
drogens, as well as receptors for thyroid hormone, retinoids,
vitamin D, and intermediary metabolites (1). They use a con-
served DNA binding domain (DBD)! to interact with specific

* This work was supported by the Swiss National Science Founda-
tion, the University of Basel, Novartis Stiftung (to S. N. S.), and the
Max Cloétta Foundation. The costs of publication of this article were
defrayed in part by the payment of page charges. This article must
therefore be hereby marked “advertisement” in accordance with 18
U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted
to the GenBank™ / EBI Data Bank with accession number(s) AF468496
and AF468497.

#To whom correspondence should be addressed. Tel.: 41-61-267-
2162; Fax: 41-61-267-2149; E-mail: anastasia.kralli@unibas.ch.

! The abbreviations used are: DBD, DNA binding domain; HREs,
hormone response elements; LBD, ligand binding domain; SRC, steroid
receptor coactivator; TR, thyroid hormone receptor; RXR, retinoid X
receptor; GR, glucocorticoid receptor; ER, estrogen receptor; PPAR,
peroxisome proliferator-activated receptor; PGC-1, PPARYy coactivator
1; HNF, hepatocyte nuclear factor; NRF, nuclear respiratory factor;
PRC, PGC-1-related coactivator; PERC, PGC-1-related estrogen recep-
tor coactivator; ERE, estrogen response element; aa, amino acid(s); PR,
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sites in the genome, termed hormone response elements
(HREs). DNA-bound receptors can activate the expression of
genes in the vicinity of HREs, via two transcriptional activation
functions, denoted AF1 and AF2. AF1 lies in the N-terminal
part of the receptors and varies significantly from one receptor
to another. AF2 is located at the conserved ligand binding
domain (LBD) and relies on an agonist ligand-induced protein
conformation (2-5). Depending on cellular and promoter con-
text, AF1 and AF2 act independently or synergistically to reg-
ulate gene expression.

A large number of proteins that interact with the AF2 do-
main and enhance the activity of nuclear receptors have been
identified (reviewed in Refs. 6—8). They include the three mem-
bers of the pl60 steroid receptor coactivator (SRC) family
(SRC-1/NcoA-1, TIF2/GRIP1/NcoA-2, AIB1/pCIP/ACTR/RAC3/
SRC-3), the cointegrators CBP and p300, components of the
Mediator complex, individual coactivators such as PGC-1,
NRIF3, ASC-2/RAP250, PELP1, and CAPER, and the family of
CITED proteins (6—12). Most of these coactivators harbor one
or multiple LXXLL motifs (L being leucine and X any amino
acid) within short amphipathic helices (13, 14). These LXXLL
motifs, also called NR boxes, interact with a hydrophobic
pocket of the ligand-activated LBD of the receptors, thereby
recruiting the coactivators to target DNA sites (15-17). The
diverse coactivators are then thought to regulate transcription
via enzymatic modification of chromatin or other transcription
proteins, and/or physical recruitment of components of the
transcriptional machinery (reviewed in Refs. 6—8). The multi-
tude of nuclear receptor coactivators suggests that at least
some of them carry distinct and specific functions. They may do
so by interacting with specific subsets of receptors, acting in
selective cell types, directing receptor function to subsets of
target genes or conferring regulation by other signals.

Of the so far identified AF2 coactivators, most interact with
many, if not all, nuclear receptors. Although particular LXXLL
motifs of SRC-1, TIF2, and SRC-3 display preferences for spe-
cific receptors, the three p160 coactivators can enhance the
activity of most nuclear receptors (18, 19). CBP and p300 are
general coactivators, not only of nuclear receptors but also of
many nonreceptor transcription factors (7). AF2 coactivators
that display receptor specificity include NRIF3, PELP1, CA-
PER, and CITED1. NRIF3 enhances selectively the activity of
the thyroid hormone receptor (TR) and retinoid X receptor
(RXR), without affecting the glucocorticoid (GR), estrogen (ER)
or vitamin D receptors (9). The other three receptor-selective
coactivators potentiate preferentially the activity of the two
ERs, ERa and ERB (10-12). None of the ER-specific AF2 coac-
tivators described so far distinguish between ERa and ERpB,

progesterone receptor; MR, mineralocorticoid receptor; AR, androgen
receptor; AD, activation domain; RRM, RNA recognition motif; g-gal,
B-galactosidase; HA, hemagglutinin.

This paper is available on line at http://www.jbc.org
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A PGC-1 Homolog Is an ERa-selective Coactivator

receptors that bind similar ligands and carry distinct biological
functions (20, 21).

Few coactivators show tissue-specific expression. One of
them is PGC-1, which is expressed at high levels in tissues such
as heart, skeletal muscle, kidney, and brown fat (22-24).
PGC-1 expression is induced also in a tissue-specific manner, in
response to particular physiological states such as exposure to
cold or fasting (22, 25, 26). Induction of PGC-1 in response to
signals indicating metabolic needs of an organism can then
lead to the activation of pathways important for energy home-
ostasis, such as adaptive thermogenesis, mitochondrial biogen-
esis, fatty acid oxidation, and gluconeogenesis (22, 25-29).
PGC-1 interacts with and enhances the activity of many nu-
clear receptors, like the peroxisome proliferator-activated re-
ceptors (PPAR) « and vy, TR, GR, ERea, hepatocyte nuclear
factor 4 (HNF4), as well as nonreceptor transcription factors
like the nuclear respiratory factor 1 (NRF1) (22, 24, 2628, 30).
A characteristic feature of PGC-1, not shared by other nuclear
receptor coactivators, is its C-terminal domain. It harbors se-
quence motifs typical of RNA processing regulators and has
been implicated in the regulation of pre-mRNA splicing (31).

The existence of sequence-related coactivators, such as the
three p160 SRC proteins, or CBP and p300, may reflect the
evolutionary adaptation of duplicated genes to similar but dis-
tinct biological functions. Recently, a PGC-1 related coactivator
(PRC) that is ubiquitously expressed and enhances the activity
of NRF1 was described (32). Here, we report the cloning and
characterization of a third member of the family. PERC (PGC-1
related estrogen receptor coactivator) is expressed in a tissue-
specific manner and displays a striking preference for func-
tional interactions with ERa among the nuclear receptors.

EXPERIMENTAL PROCEDURES

Cloning of PERC—Total RNA was isolated from HeLa cells with the
Trizol reagent (Invitrogen). Full-length ¢cDNA was synthesized either
by standard procedures using oligo(dT) primers or with the GeneRacer
kit (Invitrogen). Oligo(dT)-primed cDNA was used to amplify sequences
from exon 2 to the end of the predicted PERC open reading frame. The
5’ part and first exon of the cDNA, which were absent from the pub-
lished genome sequence, were amplified in a nested polymerase chain
reaction (PCR), using internal exon 3-specific PERC primers, 5’ Gene-
Racer Primers, and cDNA synthesized with the GeneRacer kit. Multiple
clones were analyzed and sequenced. Two types of PERC ¢cDNAs were
found at a ratio of 1:1 (of 12 clones). They differed by a 117-bp sequence,
which corresponds to exon 4 of PERC. Restriction sites were introduced
by PCR at the 5’ and 3’ ends of the PERC coding sequences, and
full-length PERC (including the 117-bp exon 4) and PERC-s (lacking
exon 4) clones were constructed by standard subcloning procedures. The
PERC sequences have been submitted to the GenBank™ data base
under accession numbers AF468496 and AF468497. The full-length
PERC is the human homolog of the recently described mouse PGC-1p3
(33).

Expression Analysis—Total RNA was isolated from tissues of 6—8-
week-old mice using the Trizol reagent and checked for its integrity by
agarose gel electrophoresis and ethidium bromide staining. RNA (400
ng) was converted to cDNA in a 20-ul reaction at 45 °C for 45 min using
MultiScribe reverse transcriptase (Applied Biosystems) and random
hexamer primers according to the manufacturer’s instructions. Real-
time PCR with the LightCycler system (Roche Diagnostics) was used for
the amplification and quantification of PERC, PGC-1, and B-actin
cDNA. LightCycler reactions were performed in a final volume of 15 ul,
using 3 ul of cDNA, 10 pmol of specific primers, and the LC FastStart
SYBRGreen kit (Roche Diagnostics) as recommended by the manufac-
turer (denaturation at 95 °C for 15 s, annealing at 60 °C for 5 s, exten-
sion at 72 °C for 10 s; 40 cycles, with the PCR product being monitored
at 72 °C at the end of each cycle). A melting curve from 65 to 95 °C
(0.05 °C/s) at the end of the reaction was used to check the purity and
nature of the product. In all cases, a single PCR product was detected.
Primers were chosen with the help of the OLIGO 4 program and were
from different exons, so as to avoid amplification of possible DNA
contamination of the RNA preparation. The sequences of the primers
and the sizes of the PCR products were as follows: 5'-CAA GCT CTG
ACG CTC TGA AGG-3’ (exon 4) and 5'-TTG GGG AGC AGG CTT TCA
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C-3’ (exon 5) for PERC (product 201 bp), 5'-GGA GCC GTG ACC ACT
GAC A-3' (exon 4) and 5'-TGG TTT GCT GCA TGG TTC TG-3’ (exon 5)
for PGC-1 (product 176 bp), 5'-GGT CAT CAC TAT TGG CAA CGA G-3’
(exon 3) and 5'-GTC AGC AAT GCC TGG GTA CA-3’ (exon 4) for
B-actin (product 196 bp). Control reactions performed on plasmid DNA
confirmed that the PGC-1 primers could not amplify PERC sequences
and vice versa. For quantification, standard amounts for each template
(from 400,000 to 128 plasmid copies, in 1:5 dilutions) were analyzed in
parallel to the samples. The cycle numbers needed for a log-linear phase
product to reach the crossing point, which was set above the back-
ground noise, were plotted against the logarithm of the input plasmid
copy number and fitted to a standard curve. The cDNA copy numbers
for each gene were calculated from the standard curve, and the copy
numbers of PERC and PGC-1 were normalized to the number of B-actin
copies in the sample. Results shown are from duplicate reactions, using
the same ¢cDNA preparation. Similar results were obtained from inde-
pendent preparations of cDNAs from two female and two male mice.

Plasmid Constructs—PERC deletion and point mutants were gener-
ated by standard PCR methods and verified by sequencing. All PERC
variants were subcloned into pcDNA3/HA, pcDNA3/GAL4DBD (con-
taining Gal4 DBD as a HindIIl/Ndel fragment from pGBKT7 (CLON-
TECH)), and pGADT7 (CLONTECH). More information on the plas-
mids is available on request. Expression plasmids p6RGR, p6RMR,
pSVARo, pSG5/ERa, pcDNA3/HA-hPGC-1, and pSG5/SRC-1e, as well
as the luciferase reporter plasmids pTAT3-Luc, pERE-tk-Luc (one copy
of the vitellogenin A2 ERE fragment (—334 to —289 nucleotides, rela-
tive to transcription initiation) (VERE)), and pGK1 have been described
(24). The following expression and luciferase reporter plasmids were
generously provided: pSG5/hPR (34), pSG5/hERB (E. Treuter), pSV-
SPORT1/mPPARY2 and p3xPPRE-tk-Luc (M. Meyer), pSG5/hTRB and
pSG5/mRXRa (H. Gronemeyer), pMMTV-LTR-Luc (35), pminPbLUC-
neo (F. Hamy), pC3-Luc (5). For the expression of the Gal4DBD/hER«-
LBD fusion in yeast, the hERa-LBD (308C) was amplified by PCR from
pSG5/ERa and subcloned into pGBKT7 to yield pGBKT7/hERa(308C).
To generate hERa AF2 mutant 1.539/540A, the LBD was amplified by
PCR from pRST7/hERa-LL (30) and subcloned either into pGBKT7 to
yield pGBKT/hERa(308C)-LL or into pSG5/ERa to yield pSG5/hERa-
LL. The luciferase reporter plasmids pA(VERE)x1-Luc and
PAVERE)x2-Luc were constructed by cloning the vERE-containing
HindIII fragment from pERE-tk-Luc into the HindIII site upstream of
the minimal alcohol dehydrogenase promoter of pALuc (35).
PA(CERE)x1-Luc and pA(cERE)x2-Luc have a monomer or dimer of the
sequence 5'-GAG CTC GAG AGG TCA CAG TGA CCT GTC-3’ (consen-
sus (cERE) half-sites are underlined) at the Sall site of pA-Luc.
PA(DR4)x2-Luc has the sequence 5'-CTT AGG TCA CTT CAG GTC
AGC CTC GAG GGA GGT CAC TTC AGG TCA GTC-3' (DR4 half-sites
are underlined) at the HindIIIl/Sall sites of pA-Luc.

Cell Culture and Transfections—COS7 and U20S cells were cultured
in Dulbecco’s modified Eagle’s medium supplemented with 9% fetal
bovine serum. Charcoal-stripped fetal bovine serum was used when
assaying hormone responses. Media lacking phenol red were used in
experiments with AR or ERs. Cells were seeded into six-well plates 24 h
prior to transfection by the calcium phosphate precipitation method. All
transfections included 0.2 ug of p6RlacZ for normalization of transfec-
tion efficiency. Standard amounts of expression and reporter plasmids
per transfection in coactivation assays were: 1 pug of nuclear receptor
expression plasmid, 1 pug of luciferase reporter, 0.5 pg of
pcDNA3/HA-PERC (and its variants) or pcDNA3/HA-hPGC-1. For co-
activation of AR in COS7 and coactivation of ERa in U20S, 1 pg of
pcDNA3/HA-PERC, pcDNA3/HA-hPGC-1, and pSG5/hSRC-le was
used. When assaying the transcriptional activity of the Gal4DBD-
PERC fusion proteins in COS7, 0.5 ug of pcDNA3/GAL4DBD-PERC (or
its variants) and 1 ug of the Gal4-responsive pGK1 luciferase reporter
were transfected. After overnight exposure to the DNA-calcium phos-
phate precipitate, cells were washed and incubated for an additional
24 h in fresh medium containing either hormone or vehicle (0.1%
ethanol or Me,SO). Assays for luciferase and p-gal activities were
performed as described previously (24). Luciferase values normalized to
B-gal activity are referred to as luciferase units. Data shown represent
the mean *= S.D. of four to six values from at least two independent
experiments performed in duplicates.

Yeast Two-hybrid Interaction Assay—A diploid yeast strain with
integrated Gal4-responsive B-gal reporters (CG1945xY187, CLON-
TECH) was transformed by the lithium acetate transformation method
with pGBKT7/hERa(308C) or pGBKT7/hERa(308C)-LL (Gal4 DBD
fused to the hERa LBD) and pGADT7/PERC constructs (Gal4 AD fused
to PERC wild type or mutants). Transformants were grown to station-
ary phase, diluted 1:20 in selective media containing either ethanol
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Fic. 1. PERC is a new member of the PGC-1 protein family. A, schematic representation of the PERC protein, its sequence features, and
comparison with PGC-1 and PRC. The shaded part of the N terminus indicates the predominantly acidic region. Amphipathic a-helical leucine-rich
motifs are marked as L1, L3, NR1, and NR2; of these, NR1 and NR2 conform to the LXXLL sequence. Also indicated are two regions rich in
glutamic acids (E) (aa 430—450 and 807—824), two sequence motifs (AGLTPP(T/A)TPP and GDHDYC) that are highly conserved among the three
proteins, and the putative RRM. The percent similarities of the conserved regions among PGC-1 and PERC, or among PGC-1 and PRC, are shown
in between the protein diagrams. Serine/arginine-rich regions (RS) are present in PGC-1 and PRC but not PERC. Finally, PRC is characterized
by a unique, long proline-rich region. B, multiple sequence alignment (Clustal W) of the conserved N-terminal region. The alternatively spliced
exon 4 of PERC is boxed. Identical residues in at least two of the proteins are shaded; residues marked by asterisk, colon, and period are identical,
conserved, or semi-conserved, respectively, in all three proteins. C, PERC localizes to the nucleus. Right, HA-tagged PERC protein in transiently
transfected COS7 cells was detected by immunofluorescence, using a monoclonal mouse anti-HA antibody and a goat anti-mouse rhodamine-
conjugated antibody. Left, differential interference contrast image acquisition of the same field. The arrow indicates the nucleus of a HA-PERC
expressing cell.

vehicle (0.1%) or 10 um 17B-estradiol (E2), grown for an additional 16 h
at 30 °C in 96-well plates, and assayed for B-gal activity as described
previously (35).

Immunofluorescence—COST7 cells were transfected with the HA-
PERC expression vector pcDNA3/HA-PERC using FuGENE (Roche Mo-
lecular Biochemicals). PERC was detected in fixed cells by fluorescence
microscopy, using a mouse monoclonal antibody against the HA epitope
(HA.11, Babco) and a rhodamine-conjugated goat anti-mouse antibody
(Jackson Laboratories) as described previously (24).

we amplified and cloned cDNAs representing this PGC-1 hom-
olog (see “Experimental Procedures”). Sequence analysis of the
identified cDNAs indicated the existence of two isoforms, likely
resulting from alternative splicing. The longer cDNA encodes a
protein of 1023 amino acids (aa), which we named PERC. The
short isoform, referred to as PERC-s, is identical to PERC
except that it lacks aa 156 to 194, sequences that correspond to
exon 4 of the gene. Fig. 1A shows a diagram of the predicted

RESULTS

Identification and Sequence Analysis of a PGC-1-related
c¢DNA—Sequencing of the human genome revealed a locus on
chromosome 5 with significant sequence similarity to PGC-1
and distinct from the PGC-1-related coactivator PRC (32). Us-
ing primers designed against the predicted coding sequences,

open reading frame of PERC, indicating interesting sequence

features and homologies to the related proteins PGC-1 and

PRC. The greatest similarity between the three proteins is in

the C-terminal half of PERC (45—46% over 450 aa). This region

includes a RNA recognition motif (RRM), which has been im-

plicated in the regulation of RNA processing (31), and two
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Fic. 2. PERC mRNA is expressed in a tissue-specific manner.
Levels of mouse PERC and PGC-1 mRNAs in different mouse tissues
were determined by real-time quantitative RT-PCR (see “Experimental
Procedures”), normalized to B-actin mRNA levels, and expressed as
copies of PERC or PGC-1 per 1000 B-actin copies in each sample. Data
shown are from a 6—8-week-old male, except for the ovary RNA, which
is from a 6—8-week-old female. Comparable results were obtained with
c¢DNAs prepared from tissues of one more male and female. SKM,
skeletal muscle; ADG, adrenal gland; WAT, white adipose tissue.

conserved short motifs of as yet unknown function (Fig. 1A). In
contrast to PGC-1 and PRC, which have short serine/arginine-
rich stretches (RS motif) N-terminal to the RRM, PERC has no
RS domain. Instead, PERC has two glutamic acid-rich
stretches (aa 430—450 and aa 807—824). A similar stretch of
glutamic acids has been described in the nuclear receptor co-
activator PELP1 (10). The second conserved region between the
three proteins is the N-terminal region (Fig. 1, A and B). The
first 130 aa of PERC are predominantly acidic residues, inter-
spersed with leucines (25% aspartic and glutamic acids, 14%
leucines, and just one basic residue). Alignment of this region
with PGC-1 and PRC highlights the presence of a conserved
leucine-rich motif (aa 92-96 of PERC), termed L1 here. In
addition, PERC has two LXXLL motifs, indicated as NR1 and
NR2 in Fig. 1. NR1 shows sequence conservation to the LXXLL
motifs of PGC-1 and PRC, while NR2 is unique to PERC. The
similarity between PERC and PGC-1 extends beyond NR1 and
includes the region of a third Leu-rich motif of PGC-1; a Leu-
motif is, however, not discernible in this region of PERC (Fig.
1B). Finally, consistent with the presence of nuclear localiza-
tion signal sequences, PERC is a nuclear protein (Fig. 1C).

PERC Is Expressed in a Tissue-specific Manner—To deter-
mine PERC mRNA levels in different tissues in a quantitative
and sensitive manner, we employed real-time RT-PCR with
RNA from mouse tissues. Primers were chosen so as to detect
specifically the long, exon 4+ PERC transcript. As seen in Fig.
2, PERC was detected at highest levels (>20 copies of PERC/
1000 copies of B-actin) in heart and skeletal muscle. Interme-
diate levels (5—-10 copies of PERC/1000 copies of B-actin) were
seen in brain, kidney, liver, and adrenal gland. Lower PERC
levels were detectable in ovary, intestine, and white adipose
tissue. Expression in spleen, thymus, testis, and lung was
below 1 copy/1000 copies of actin. The tissue distribution of
PERC appears very similar to that of PGC-1 (22—-24). Quanti-
tation of PGC-1 mRNA in the same tissue samples demon-
strated that the two genes are indeed expressed with similar
profiles and at similar levels in most tissues. A notable excep-
tion is the kidney, where PGC-1 levels were significantly
higher.

The PGC-1 Homolog Selectively Enhances the Activity of
ERo—The similarity to PGC-1 and the presence of two LXXLL
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Fic. 3. PERC selectively enhances the activity of ERa. COS7
cells were cotransfected with expression plasmids for the indicated
nuclear receptors, the corresponding luciferase reporter constructs
(pERE-tk-Luc for ERa and ERB; pTAT3-Luc for PR, MR, and GR;
pMMTV-LTR-Luc for GR; pminPbLUCneo for AR; pA(DR4)x2-Luc for
TRB/RXRa; 3xPPRE-Luc for PPARy/RXRa), and either pcDNA3 control
vector (white bars) or expression vectors for PERC (dark gray bars),
PGC-1 (light gray bars), or SRC-1e (black bars). Cells were treated with
50 nMm 17B-estradiol (ERa and ERp), progesterone (PR), aldosterone
(MR), or corticosterone (GR), 100 nM dihydrotestosterone (AR), T3
(TRB/RXRa), or 1 uM rosiglitazone and 1 uM 9-cis-retinoic acid
(PPARY/RXRa) for 24 h and assayed for luciferase activity. Data are
expressed as fold enhancement of nuclear receptor activity by coactiva-
tor in the presence of hormone, i.e. activity in the presence of hormone
and absence of coactivator was set equal to 1 for all receptors.

motifs suggested that PERC could function as a coactivator of
nuclear receptors. To test this, we evaluated the effect of PERC
overexpression on the ligand-dependent trancriptional activity
of different nuclear receptors. We introduced full-length nu-
clear receptors, with or without PERC, in COS7 cells and
assessed their ability to induce the expression of appropriate
luciferase reporters in the presence of hormone. To our sur-
prise, PERC had either no or just marginal effects on ERp,
progesterone receptor (PR), mineralocorticoid receptor (MR),
GR, androgen receptor (AR), TRB/RXRa, or PPARY/RXRa, es-
pecially when compared with the activity of PGC-1 under the
same conditions (Fig. 3). The one nuclear receptor where PERC
functioned as a potent coactivator was ERa. The selective ac-
tivation of ERa was not due to a special feature of the estrogen-
responsive luciferase construct (single copy of vERE upstream
of the thymidine kinase promoter), because ERB function at the
same estrogen-responsive reporter was minimally affected by
PERC. Moreover, PERC had at most a 2-fold effect on GR
activity irrespective of whether this was measured with a re-
porter having three tyrosine aminotransferase GREs or part of
the MMTV LTR. Neither PERC nor PGC-1 had any effect on
AR, which was however responsive to the effects of SRC-1, a
coactivator of the p160 family. We concluded that PERC shows
a remarkable selectivity for ER«, while its homolog PGC-1 can
activate potently most nuclear receptors.

PERC Interacts with ERa in a LXXLL-, AF2-, and ligand-
dependent Manner—To determine whether PERC and ERa
interacted physically, and if so, to find out the requirements for
such an interaction, we employed the yeast two-hybrid system.
As shown in Fig. 4, the LBD of ER« interacted with full-length
PERC in a ligand-dependent manner. Mutations in helix 12 of
the ERa LBD (L539A/L540A) abolished the interaction, indi-
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Fic. 4. PERC interacts physically with the LBD of ER« in a
ligand, AF-2, and LXXLL-motif dependent manner. A, amino acid
sequences of PERC motifs NR1 and NR2. Leucines indicated in bold
were substituted with alanines in PERC nrl and nr2 mutants. B, yeast
expressing Gal4DBD-ERa-LBD (wild type or AF2 mutant L539/540A)
and either Gal4AD alone (not shown) or Gal4AD-PERC were grown in
the absence or presence of 10 uMm 17B-estradiol (E2) and assayed for
B-gal activity. No activity was detected in yeast expressing Gal4DBD-
ERa-LBD and Gal4AD. C, yeast expressing Gal4DBD-ERa-LBD and
the indicated Gal4AD-PERC variants were grown in the presence of 10
uM 17B-estradiol and assayed for B-gal activity.

cating that it depends on the structural integrity of the AF2
domain (4, 36). To test the involvement of the two LXXLL
motifs of PERC in the interaction with ER«, we substituted the
leucines in each motif by alanines (Fig. 4A4). Mutations in either
NR1 or NR2 alone reduced the interaction, while the double
nrl/nr2 mutation abolished it (Fig. 4C). In conclusion, PERC
interacts via two motifs, NR1 and NR2, with a ligand-depend-
ent conformation of the ERa¢ AF2 domain.

We next determined whether the requirements of the inter-
action detected by the two-hybrid assay were also important for
the ability of PERC to enhance the activity of full-length ERa.
Coexpression of PERC with the receptor in COS7 cells en-
hanced the activity of ERa in the presence of the agonist
estradiol, but had no effect in the absence of hormone or the
presence of the antagonist tamoxifen (Fig. 5A). Enhancement
required an intact AF2 function, because the AF2 mutation
L539A/L540A abolished responsiveness to PERC (Fig. 5A). Fi-
nally, mutations in either motif NR1 or NR2 reduced PERC
activity, and the double nrl/nr2 mutation abolished coactiva-
tion (Fig. 5B). These findings demonstrated that PERC func-
tion in ER« signaling depends on an agonist ligand and intact
complementing interaction surfaces: AF2 of ERa and NR1/NR2
of PERC. Interestingly, NR1 is missing in the natural isoform
PERC-s, which lacks the 39 aa encoded by exon 4. Coexpression
of this short isoform showed indeed that PERC-s had a reduced
ability, similar to that of the PERC nr1 mutant, to enhance the
hormone-dependent activity of ERa. Consequently, mecha-
nisms that regulate the alternative splicing of exon 4 of PERC
could modulate cellular responses to estrogens.

A Potent Bipartite Transcriptional Activation Domain (AD)
in the N Terminus of PERC Is Required for Coactivation—The
N-terminal region and in particular motif L1 of PERC is well
conserved among the three members of the PGC-1 family (Fig.
1B). In PGC-1 and PRC, this region harbors a potent trancrip-
tional AD (24, 28, 32). To test whether PERC also carries such
an AD, we asked if full-length PERC tethered to DNA activates
transcription. A fusion of PERC to the DBD of Gal4, which

A PGC-1 Homolog Is an ERa-selective Coactivator

recruits PERC to a Gal4-responsive luciferase reporter, indeed
activated transcription strongly (Fig. 6A). Deletion of the first
91 aa of PERC abolished activation, indicating that the N-
terminal part is essential for the activation function (Fig. 6A).
The first 91 aa (N91) fused to the Gal4 DBD were sufficient to
activate transcription. However, full transcriptional activity of
PERC required additional sequences up to aa 128. Gal4 DBD
fused to aa 1-128 (N128) was the strongest PERC activator,
enhancing transcription by more than 20,000-fold in COS7
cells (Fig. 6A). Within the 91-128 region, the conserved motif
L1 contributed to the activation function. Point mutations that
substituted the leucines of L1 with alanines reduced PERC
transcriptional activity, in the context of both full-length PERC
and the N128 construct (Fig. 6A). Our findings suggest a bi-
partite N-terminal AD. The first part is encoded by aa 1-91 and
is essential, while the second part relies on motif L.L1 and con-
tributes to full activity. This bipartite AD function is crucial for
the ability of PERC to enhance the activity of ERa (Fig. 6B).
Deletion of the first 91 aa or mutations in motif L1 abolished or
reduced, respectively, PERC coactivation (Fig. 6B), suggesting
that both components of the AD are required for full function of
PERC in ER signaling.

PERC and PGC-1 Confer Distinct Functional Properties to
Ligand-activated ERa—To address whether PERC and PGC-1
fulfill similar functions when acting with ERa, we compared
the effects of the two coactivators on estrogen signaling in
different contexts. First, we evaluated PERC and PGC-1 func-
tion on ERa-activated transcription at different promoter con-
texts (Fig. 7A). A single consensus ERE upstream of the min-
imal alcohol dehydrogenase promoter was preferentially
responsive to PGC-1 activity. PERC caused a small, reproduc-
ible 2—-3-fold enhancement, compared with a 10-fold increase by
PGC-1. ERa acting from two copies of the consensus ERE or a
longer vitellogenin A2 ERE fragment (—334 to —289 nucleo-
tides, relative to transcription initiation) upstream of the same
minimal promoter was equally responsive to the two coactiva-
tors. On the other hand, two copies of the vitellogenin ERE
fragment, or a 1.8-kb fragment of the estrogen-responsive com-
plement 3 (C3) promoter, were enhanced stronger by PERC
than by PGC-1 (Fig. 7A). These observations suggest that
PERC and PGC-1 may selectively activate distinct ER«a targets
genes.

ERa signaling depends on the nature of the activating li-
gand, as well as the cellular and promoter context (5, 37, 38). In
particular, there are classes of ER ligands that act in a tissue-
selective manner. For example, tamoxifen is an antagonist in
the mammary gland but an agonist in the bone, uterus, and
cardiovascular system (reviewed in Ref. 39). One of the under-
lying molecular mechanisms for the agonist action of tamoxifen
is thought to involve the cooperation of tamoxifen-bound ER«
with tissue-specific cofactors. To determine how PERC and
PGC-1 affect the response to tamoxifen, we employed the C3
promoter, which has been characterized for its responsiveness
to this agonist (38, 40). In the osteosarcoma cells U20S, tamox-
ifen activated the C3 promoter strongly, although not as well as
estradiol (Fig. 7B). PERC expression further enhanced the
tamoxifen response by 2-fold. In contrast, PGC-1 modestly re-
pressed the tamoxifen-induced response (Fig. 7B). These find-
ings suggest that the relative activities of PERC and PGC-1
may contribute to the tissue-specific action of partial agonists
like tamoxifen.

DISCUSSION

We report here the cloning and characterization of PERC, a
new member of the PGC-1 family of proteins and a coactivator
of ERa. In contrast to PGC-1, which activates many nuclear
receptors, PERC shows a unique receptor selectivity. It po-
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Fic. 5. Coactivation of ERa by PERC depends on an agonist ligand and the integrity of AF2 of ERa and NR1/NR2 of PERC. A, COS7
cells transfected with expression plasmids for ERa (wild type or AF2 mutant), the ER-responsive luciferase reporter pERE-tk-Luc, and either
pcDNAS3 control vector (white bars) or PERC expression vector (dark gray bars) were treated for 24 h with ethanol vehicle (—), 50 nm 173-estradiol
(E2), 5 uM tamoxifen (Tam) or both ligands (E2/Tam) and assayed for luciferase activity. Data are expressed as fold enhancement by PERC, with
activity in the absence of PERC and ligand set equal to 1. B, COS7 cells transfected with an expression plasmid for ER«a, the ER-responsive
luciferase reporter pERE-tk-Luc, and either pcDNA3 vector control (white bars) or expression vectors for PERC and its indicated variants (dark
gray bars) were treated for 24 h with 50 nm 17B-estradiol and assayed for luciferase activity. PERC-s lacks exon 4 (aa 156-194). Data are expressed
as fold enhancement of ERa activity by PERC in the presence of hormone.
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FIG. 6. A bipartite transcriptional activation domain in PERC
is required for coactivation of ERa. A, transcriptional activity of
PERC. COS7 cells transfected with the luciferase reporter pGK1 and
either Gal4DBD control vector or the indicated Gal4DBD-PERC vari-
ants were assayed for luciferase activity. Data are expressed relative to
the activity in cells expressing the Gal4DBD alone (vector), which was
set equal to 1. Note that the y axis scales are different in the two panels.
B, coactivation function of PERC. COS7 cells transfected with an ER«
expression plasmid, the ER-responsive luciferase reporter pERE-tk-
Luc, and either pcDNAS3 vector control (white bars) or expression vec-
tors for PERC and its indicated variants (dark gray bars) were treated
for 24 h with 50 nm 17B-estradiol and assayed for luciferase activity.
Data are expressed as fold enhancement of ER« activity by PERC in the
presence of hormone. 91C, aa 91-1023 of PERC; N91, aa 1-91 of PERC;
N128 and N128/L1A, aa 1-128 of PERC wild type and PERC L1A
mutant, respectively.

tently enhances the ligand-dependent activity of ER«, while
having only minimal effects on the activity of the related re-
ceptor ERB or other nuclear receptors tested here. Further-
more, PERC and PGC-1 confer distinct properties to ERa sig-
naling. Thus, the relative activities of the two coactivators may
contribute to the specific profiles of estrogen responses in dif-
ferent tissues.

PERC, PGC-1, and the recently described PRC (32) define a
new, small family of coactivators. The conserved features of the
family reside primarily in the N- and C-terminal domains,
which carry the effector functions of these coactivators: activa-
tion of transcription and regulation of pre-mRNA processing
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Fic. 7. PERC and PGC-1 confer differential promoter- and
ligand-specific activation of ERa. A, coactivation of ERa by PERC
or PGC-1 in different promoter contexts. COS7 cells transfected with an
ERa expression plasmid, the different ER-responsive luciferase report-
ers (cEREX1, cEREX2, vEREX1, vEREX2, and C3 promoter) and
either pcDNA3 control vector (white bars) or expression vectors for
PERC (dark gray bars) and PGC-1 (light gray bars) were treated for
24 h with 50 nm 17B-estradiol and assayed for luciferase activity. Data
are expressed as fold enhancement of ERa activity by each coactivator
in the presence of hormone. B, the activity of tamoxifen-bound ER« in
U20S osteosarcoma cells is enhanced by PERC but not by PGC-1. U20S
cells transfected with an ERa expression plasmid, the reporter pC3-
Luc, and either pcDNAS3 control vector (white bars) or expression vec-
tors for PERC (dark gray bars) and PGC-1 (light gray bars) were treated
for 24 h with ethanol vehicle (—), 50 nm 17B-estradiol (E2), or 5 um
tamoxifen (Tam) and assayed for luciferase activity.
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(24, 28, 31, 41). Thus, the three coactivators are likely to
employ similar mechanisms to mediate their biological func-
tions. Whether PERC, which lacks the RS domain of PGC-1, is
able to regulate RNA processing has to be addressed in future
experiments. PERC, PGC-1, and PRC also share sequence sim-
ilarities outside the effector domains: the LXXLL motifs that
enable interactions with nuclear receptors and additional small
conserved motifs that may represent interaction surfaces for
other transcription factors or regulators (Fig. 1). At the same
time, the significant sequence divergence, particularly in the
unique central domains of the proteins, suggests that the three
members of the family have acquired unique functions and
roles.

The mechanism by which the N-terminal AD of PERC regu-
lates transcription is not clear yet. The corresponding region of
PGC-1 can interact with SRC-1 and CBP, suggesting that it
acts as a scaffold for the recruitment of other coactivators (41).
Our studies here indicate a bipartite AD that contacts more
than one target. The reduced transcriptional activity of the
L1A mutant points to the conserved motif L1 as one of the
interaction surfaces. An additional contact must reside in the
first 90 aa, which are essential and sufficient for transcrip-
tional activation. Neither SRC-1 nor CBP overexpression en-
hanced PERC transcriptional activity, implicating targets
other than these two coregulators. Since PGC-1 and PERC are
strong activators of transcription in yeast, which do not have
SRC-1 or CBP, it seems likely that the N-terminal ADs can
contact evolutionary conserved components of the transcrip-
tional machinery (24).2 Delineation of the exact interaction
surfaces of PGC-1, PRC, and PERC, as well as identification of
the proteins they contact, will shed light on the mechanisms by
which these ADs act.

An important feature of the PGC-1 family is the presence of
LXXLL motifs, which mediate interactions with the LBDs of
nuclear receptors. PERC has two canonical LXXLL motifs:
NR1, which is conserved in PGC-1 and PRC, and NR2, which is
unique to PERC (28, 30, 32, 42). Both NR boxes contribute to
the physical interaction with ER« and to efficient coactivation
of this receptor. Notably, the presence of NR1 depends on the
inclusion of the small exon 4. The detection of two PERC
isoforms, with and without this exon, and the decreased ability
of the short PERC-s to activate ER«, suggest that regulation of
this alternative splicing event could be used to modulate ER«
signaling. Interestingly, the mouse homolog of PERC, which
was recently described as PGC-18, harbors an additional
LXXLL motif that is upstream of NR1 (aa 140—-144) and not
conserved in the human protein (33). We do not know yet
whether this third motif functions as a nuclear receptor inter-
action domain, and if so, whether it enables functional inter-
actions with ERa or other receptors. Although no data have
been presented yet on the ability of the mouse protein to coac-
tivate the different receptors we have tested here, it is possible
that the mouse and human homologs may have diverged in
their nuclear receptor specificity.

Our experiments demonstrate clearly that PERC is a coac-
tivator of ERa. The fact that this coactivation function depends
on a physical interaction between the LXXLL motifs of PERC
and the AF2 domain of ERa raises the question of why PERC
has only minor effects on many other nuclear receptors that
harbor similar AF2 domains. The reason for this receptor se-
lectivity is not clear, particularly since PERC can interact
physically with other ligand-activated receptors, such as GR.?
One possible explanation is that the affinity of the GR-PERC
interaction is lower than that of GR with other endogenous AF2

2D. Kressler and A. Kralli, unpublished observations.
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coactivators. If so, PERC may not get recruited efficiently at
GR target sites. An alternative explanation is that the physical
interaction mediated by the PERC NR boxes and the receptor
AF2 binding pocket is a necessary, but not sufficient, step for
coactivation. Coactivators have been proposed to undergo con-
formational changes subsequent to docking to transcription
factors. These changes may enable their enzymatic activities or
the recruitment of additional regulators (41, 43). Similarly, the
conformation of nuclear receptors may change upon interaction
with coactivators. Thus, specificity in the functional interaction
between PERC and ERa could be due to conformational
changes subsequent to binding that may activate either PERC,
by unmasking its AD, or ER«, by enabling its AF1 activity.
Consistent with an activation step for PERC, we have observed
that deletion of C-terminal and central domains of PERC result
in a much more potent transcriptional regulator (Fig. 6). It
seems likely that the PERC AD is masked in the context of the
full-length protein, similar to what has been shown for PGC-1
(41).

Besides their differences in nuclear receptor specificity,
PERC and PGC-1 display distinct preferences for the promoter
context in which they enhance ERa activity. The two types of
EREs we have tested, a vERE and a synthetic cERE, contain
the same consensus core but differ in the flanking sequences.
Such differences have been shown before to influence ERa-ERE
interactions (44). Moreover, the vitellogenin fragment includes
additional 5’ sequences, where a second, nonconsensus ERE
can be discerned (—312 to —298 nucleotides, relative to tran-
scription initiation). Finally, due to the difference in the length
of the flanking sequences, the dimerized elements vERE X2
and cERE X2 present ERa binding sites with different spacing.
Thus, multiple properties, such as flanking sequences, the
presence of additional nonconsensus sites, and the spacing
between EREs, may account for the distinct utilization of
PERC and PGC-1 at the different promoters. Notably, PERC
seems to prefer promoters with multiple sites, such as the
dimerized EREs, or the C3 promoter that has at least three
EREs (40). Different response elements may induce distinct
nuclear receptor conformations and thereby influence either
the recruitment of the coactivators or the activity of the re-
cruited coactivators (45, 46).

An additional context that reveals differences in PERC and
PGC-1 function is the ability of the two coactivators to promote
the agonistic effect of the partial agonist tamoxifen. In a cell
and promoter context where tamoxifen is an agonist, PERC
enhances this agonist activity, while PGC-1 represses it. In this
respect, PERC acts like the p160 coactivators, which can en-
hance the agonist activity of tamoxifen (47—49). Presumably,
PERC can interact, directly or indirectly, with the tamoxifen-
induced conformation of ERa. PGC-1 cannot do so, at least in
the context of the C3 promoter in U20S cells. Because of its
antagonist activity in the mammary gland, tamoxifen is used to
treat estrogen-dependent breast tumors. Many of these tumors
develop resistance to tamoxifen and some start recognizing it
as an agonist (reviewed in Ref. 39). Our findings suggest that
the nature, as well as the relative levels of different AF2
coactivators, may determine the cellular response to tamoxifen.
Evaluation of PERC and PGC-1 levels in breast tumors will be
important to test whether these two coactivators contribute to
the responsiveness, or lack of, to endocrine therapy.

PERC mRNA distribution is very similar to that of PGC-1.
PGC-1 function in heart, muscle, and liver may mediate phys-
iological state signals to tissue-specific transcriptional activa-
tion of proteins that regulate energy and glucose homeostasis.
For example, in response to exposure to cold, PGC-1 induces
the expression of uncoupling proteins and stimulates energy
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expenditure in brown fat and muscle, while in response to
fasting, it stimulates gluconeogenesis in liver (Refs. 26 and 29
and reviewed in Ref. 50). The similar expression profile of
PERC may be indicative of a second pathway that relates
energy needs to specific metabolic responses, possibly under
different regulatory input and with a different outcome. This
could increase specificity and flexibility of the transcriptional
responses. Estrogens can have profound effects on systems
other than the reproductive one. In both males and females,
estrogens have protective effects on the cardiovascular and
skeletal system, regulate adipose function, and affect glucose
and lipid metabolism (51-54). Mice that lack a functional ER«
have increased adipose mass, develop mild glucose intolerance
and insulin resistance, and show decreased energy expenditure
(54, 55). Similarly, humans with deficiencies in estrogen sig-
naling show a propensity for insulin resistance and altered
lipid metabolism (52). It will be interesting to test whether
these estrogen effects require PGC-1, PERC, or a combination
of the two coactivators.

The mechanisms by which estrogens act in a tissue- and
promoter-specific manner are complex (20, 21). Mice with ge-
netic ablations of the p160 coactivators SRC-1 or SRC-3/AIB1
show only mild defects in estrogen signaling (56—-58). Thus, it
seems likely that multiple coactivators can cooperate with ERs
to mediate appropriate tissue-specific and physiological state-
dependent responses. The molecular unraveling of estrogen
activity will require an understanding of all ERa and ERB
interactors as possible contributors to estrogen signaling. Here,
we have described a tissue-specific coactivator, PERC, which
shows a remarkable selectivity for ERa over other nuclear
receptors. Future studies will define the reason for selectivity,
as well as the biological role of PERC.
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Appendix ITI

Material and methods

PGC-1a antibody

The first 293 aa of PGC-1a were expressed as GST-fusion protein in E. coli (BL21)
with a 2-2.5 hour induction by IPTG (0.1 mM). Lysis was performed with 50 mM
Tris, pH 8.0, 1 mM EDTA, 100 mM NaCl containing 0.1 mM PMSF, protease
inhibitors and 0.2 mg/ml lysozyme by incubating on ice for 30 minutes. Subsequent,
0.1 % DOC was added and the lysate was incubated for 15 minutes at 37 °C. DNA
was digested with 10 pg/ml DNase I for 30 minutes at room temperature and the
reaction was stopped with EDTA. In the following, the lysate was cleared by
centrifugation for 20 minutes at 4 000 g and the supernatant was loaded on a GST
column. The following elution was performed with 10 mM reduced glutathione in 50
mM Tris, pH 8.0 by incubating 10 minutes at room temperature. The eluate was
injected into rabbits 5 times (Eurogentec Inc, Belgium) to produce antiserum. The
final bleeding was purified by ammonium sulfate precipitation as followed: After
clearance for 30 minutes at 3 000g, 0.5 x volume of saturated ammonium sulfate was
added slowly while stirring and mixture was incubated over night at 4°C. Large
protein aggregates or proteins precipitating with lower concentration of ammonium
sulfate were removed by centrifugation for 30 minutes at 3 000g. In the second step
with 1 x volume ammonium sulfate for at least 4 hours the antibodies were
precipitated, then they were collected by centrifugation, solved in PBS-/- and dialyzed

versus PBS-/- over night.

Cell lines, Infections, and Transfections

SAOS2-GR(+)(Rogatsky, 1997) cells were cultured in Dulbecco’s modified Eagle’s
medium (sigma D6429, with 4500mg/l glucose, l-glutamine and sodium pyruvate,
substitutes pyridoxine hydrochloride for pyridoxal hydrochloride) supplemented with
charcoal-stripped 9% fetal calf serum (FCS) and 200ng/ml G418 at 37 °C with 7.5 %
CO, and split 1:3 every 4™ to 5™ day. For the analysis of the gene expression profiles,

cells were kept in normal fetal calf serum. One day before infection, cells were plated
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with 7-9x10° cells per well in a 10 cm dish with DMEM and stripped FCS and were
kept from then on in medium with stripped FCS. For the other experiments cells were
always kept in medium with charcoal-stripped fetal calf serum. The analysis of the
mRNA levels, protein extracts, genomic DNA and living cells the FACS analysis was
done with 1.8x10° cells in 6-well plates or 2-3x10° cells per well in 6 cm plates and
around 8x10* cells were split in 12 well plates for immunofluorescence. Adenoviruses
were thawn on ice and sonicated 3 times for around 10 sec and were pipetted (only
with filter tips, dilutions were made to have always at least 10 ul volume per well)
directly in the cell culture plates with fresh medium (5 ml for 10 cm, 1 ml for 6 well,
0.5 ml for 12 well, 1.5 ml for 6 cm plate). Incubation occurred for around 2 hours and
then cells were washed and fresh medium was added. Infections were done at a
multiplicity of infection (moi) of 20 (mRNA analysis, protein analysis of the RNAI),
40 (FACS analysis, DNA analysis and control protein analysis) or 100 (gene chip
experiments). The adenoviruses expressing siRNA (pSUPER or ERR2-3) were
always infected 3 days before the infection with GFP or PGC-1a at an MOI of 100.
For transfections in presence of the siRNA for ERRa, around 8x10° cells were split in
10 cm plates and infected with the adenoviral vectors expressing siRNA (pSUPER or
ERR2-3). After 3 days, cells were split in 6-well plates with 1.6x10° cells per well.
The next day, cells were incubated with fresh medium while the CaPOy4 precipitate
was prepared: DNA was mixed with 3 pl 2.5M CaCl, and Tris up to 25 ul per well of
a 6-well plate and 25ul 2x HBS was added dropwise while vortexing. Precipitates
were allowed to form for 10 minutes before adding to the cells. After incubating over
night for around 14-16 hours, cells were washed once with 1x PBS -/-. Cell lysates
were prepared 40 to 48 h after transfection and assayed for luciferase activity.

Transfections included 0.2 pg of p6RlacZ for normalization of transfection efficiency,
100 ng pcDNA3.HA-hPGC-1 and 250 ng of the Iluciferase reporter
pERRa.prom.short-Luc. Different amounts of pcDNA3/ERRa from 250 ng to 61 ng
were obtained by 1:4 dilution steps, were cotransfected. Samples were filled up with

pcDNA3 to have the same amount of DNA.
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Luciferase reporter assay

Cells were washed with PBS-/- (2 ml) twice, lysed by incubation with 100 pl reporter
lysis buffer (Promega) on ice. Lysates were scraped off using a rubber policeman and
transferred to an eppendorf tube. Next, the cell trash was removed by centrifugation
for 3 minutes at 20 000 g, 4 °C. 20 pul of the lysate were used to measure luciferase
activity using the Microlite TLX1 luminometer (Dynatech Laboraties, Inc.) and 20 pl
were assayed for b-Gal activity using CPRG (Roche) as substrate and the Thermomax

microplate reader (Molecular Devices, Inc.).

Buffers and chemicals

Buffers: The 2x HBS buffer for transfections contained 280 mM NaCl, 1.5 mM
Na,HPO, and 50 mM HEPES, pH 7.05. TBST consisted of 150 mM NaCl, 10 mM
Tris pH 7.5, 0105 % Tween-20.

Chemicals: The 250x protease inhibitor mix included aprotinin, leupeptin and
pepstatin each at 250ug/ml in DMSO. PMSF was dissolved in isopropanol as a 250
mM (250x) stock. Corticosterone (Fluka, 27840) was diluted with 100 % EtOH down
to 1x10 and added to the cells in a 1:2000 dilution (50 nM).

Westernblot analysis

Cells were incubated in lysis buffer (100 mM Tris pH 8, 0.5% NP40, 150 mM NaCl,
1 mM EDTA) supplemented with fresh 1mM PMSF and protease inhibitor mix for 10
min, 4°C. Proteins separated by SDS-PAGE (7,5 % gels) were blotted onto
nitrocellulose membranes using the semi-dry electrophoresis transfer system.
Membranes were blocked for around 30 minutes to one hour at room temperature or
over night (4 °C) by incubation with 9 % milk in TBST. The primary antibodies were
diluted in TBST with 4.5 % milk for the PGC-1a antibody (Schreiber et al., 2003) in
concentrations from 1: 6000 to 1: 8000 and with 9 % milk for the ERRa antibody
(Johnston et al., 1997) in a concentration of 1:3000 to 1:3300 (kept at 4 °C with 0.018
% NaN3 and recycled for several weeks). Incubation occured over night at 4 °C or at
least for 1 hour at room temperature. Secondary antibodies were purchased from
Biorad. Bound antibodies were detected by enhanced chemiluminescence SuperSignal

(Pierce).
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RNA analysis

Total RNA was isolated using the TRIzol® reagent (Invitrogen Life Technologies).
Cells were washed once with PBS-/- and TRIzol® reagent was added to the cells (1ml
per well in a 6-well plate, 2 ml for a 10 cm dish). After incubating the cells at room
temperature for 3-5 minutes, cells were harvested by pipetting up and down. RNA
was extracted with 0.2ml chloroform per 1ml Trizol, incubated for 2-3 minutes at
room temperature and centrifuged for 15 minutes at 4°C, not more than 12 000 g.
Next, the aqueous phase was transferred into a fresh tube and 0.5ml isopropanol was
added. After 10 minutes incubation at room temperature, samples were centrifuged
for 10 minutes at 4°C at not more than 12 000 g. Supernatants were removed and
washed with 1 ml 75% ethanol (DEPC treated water) and centrifuged for 5 minutes at
4°C for not more than 7 500 g. After aspirating the ethanol, the pellets were dried for
maximum 5 minutes and resuspended with 10-15 pl H,O (DEPC treated). Samples
were incubated for around 20 minutes on ice and then frozen at -70°C. RNA was

checked for its integrity by agarose gel electrophoresis and ethidium bromide staining.

DNA isolation

Infected cells were trypsinized after 48 or 60 hours of infection. One half was
analyzed by westernblot to control for PGC-1a wt and mutant expression, from the
other half, genomic and mitochondrial DNA was isolated. Cells were lysed with
10mM Tris, pH 8, 100 mM EDTA, 0.5 % SDS and RNA was digested with 100
ug/ml RNase A for 30 min at 37°C, followed by incubation with 100 pg/ml proteinase
K at 50 °C over night. After three extractions with 25:24:1 phenol/chloroform/isoamyl
alcohol, aqueous phases were precipitated with one volume of isopropanol and
incubated for around 3-4 hours at 4°C with gentle inversion. Precipitates were
collected by centrifugation at 9.000 x g for 20 min, dried and solved in TE buffer pH
8 over night at 4°C. To completely solve the DNA and make it more accessible for
quantitative PCR it was sheared with a syringe and subsequently incubated at 60 °C
for around 20 min. The specificity of the signals was controlled by RNAse treatment,
which did not have an effect, and DNAse treatment, which led to a destruction of the

signal.
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Quantitative RT-PCR analysis of mRNA and DNA

Per sample, 800 ng RNA was converted to 20 pl cDNA (TagMan, Applied
Biosystems) with random hexamer primers (25°C, 10 minutes, 46 °C, 45 minutes, 95
°C, 5 minutes) and specific transcripts were quantified by real-time PCR using the
Light Cycler system (Roche Diagnostics). Samples were measured in a 15 ul volume
with 1.5ul of a 5 uM primer stock solution for each primer, 1.2 ul MgCl, (25 mM)
and 1.2 pl of the Mix including enzyme and SYBR green provided with the
LightCycler FastStart DNA Master SYBR green I kit (Roche Diagnostics). At the
end, 2 pul of the cDNA were added and samples were centrifuged for 1 minute at
770g. After preincubation at 95°C for 10 minutes, products were amplified (95°C for
15 seconds, 60 °C for 5 seconds and 72 °C for 10 seconds) for 40 cycles. A melting
curve from 65 to 95°C (0.05°C/sec) at the end of the reaction was used to check the
purity and nature of the product. In all cases, a single PCR product was detected. The
sequences of the primers, which were designed in two different exons to avoid DNA
contamination and the sizes of the PCR products are listed in a supplementary table
following the material and method section. For quantification, either plasmid dilutions
(5 dilutions 1:5) or 5 serial (1:3) cDNA dilutions from not infected cells were used as
standard. All values were normalized to the mRNA levels of 36B4.

DNA was diluted down to 1 ng/ul. Cytochrome oxidase II was measured as
mitochondrial encoded gene and normalized to B-actin as nuclear encoded gene. For
the standards, DNA of not infected cells was serially diluted 4 times from 10 ng in 1:3
dilution steps. Copy numbers for quantification were set arbitrary. Quantification of
both mRNA and DNA levels was done with the arithmetic fit points method, whereas

the noise band and crossing line were set mostly around 0.4.

FACS analysis

After 48 hours of infection, SAOS2-GR(+) cells were incubated for 30 min at 37°C
with 500 nM MitoFluor Red 594 for flow cytometry (Molecular Probes Inc.), diluted
in medium. To accumulate the dye in actively respiring mitochondria, cells were
incubated for another 30 min with fresh medium at 37°C. Cells were trypsinized,
washed twice with PBS-/- and resuspended in 300-500 pl PBS-/- containing 1 mM
EDTA to avoid cell clumps. Mitochodrial density was analyzed in living cells by flow
cytometry (FACSCalibur, Beckton Dickinson) and data were analyzed using the
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software WinMDI 2.8 developed by Joseph Trotter (http://www.scripps.edu). Each

measurement represents 20 000 events. Similar GFP expression for PGC-1a wild type
and mutant was detected in the FL1 channel, mitochondrial density was measured in
the FL4 channel. In parallel, extracts were analyzed by western blot analysis to
control for similar expression levels of PGC-la wild type and mutant and the

induction of ERRa protein levels.

Immunofluorescence
Cells were grown in 12well plates on coverslips with around 8x10* cells per well.

When mitochondrial density was analyzed, cells were incubated for 30 min at 37°C
with 500 nM CM-H,;XRos (Molecular Probes, Inc.) diluted in medium. To

accumulate the dyes in actively respiring mitochondria, cells were incubated for
another 30 min with fresh medium at 37°C. Mitochodrial density was analyzed in
living cells or after fixation with 3 % PFA in PBS+/+ by light microscopy (Zeiss,
Axioplan 2). For staining with the PGC-1a antibody, cells were fixed with 3 % PFA,
washed with PBS+/+, permeabilized with 0.1 % triton X-100 for 5 minutes and again
washed with PBS+/+. After blocking for 30 minutes with 1 % BSA in PBS+/+, cells
were incubated with the primary PGC-la antibody (1:500) for 1-2 hours and
subsequently washed twice with 0.5 % BSA and twice with PBS+/+. Staining with a
secondary anti-rabbit antibody coupled to Cy3 was done for 30 minutes. After the
subsequent washing steps as before, nuclei were stained with 50 ng/ml DAPI for 1-2
minutes, cells were washed and mounted with the vectashield mounting reagent

(Vector Laboratories Inc., Burlingame, CA).

Target preparation and hybridization of the HG-U133A GeneChips

Microarray analysis was performed using HG-U133A GeneChips™ (Affymetrix,
Santa Clara, USA). 10 pg of total RNA (isolated from SAOS2-GR(+) cells) was
reverse transcribed using the SuperScript Choice system for cDNA synthesis (Life
Technologies) according to the protocol recommended by Affymetrix (GeneChip
Expression Analysis: Technical Manual (2001) p. 2.1.14-2.1.16). The oligonucleotide
used for priming was 5’-ggccagtgaattgtaatacgactcactatagggaggcgg-(t)4-3° (Genset
Oligo, France) as recommended by Affymetrix. Double-stranded cDNA was cleaned
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by phenol:chloroform extraction and the aqueous phase removed by centrifugation
through Phase-lock Gel (Eppendorf). In vitro transcription was performed on 1 pg of
cDNA using the Enzo BioArray High Yield RNA transcript labelling kit (Enzo
Diagnostics, USA) following the manufacturer’s protocol. The cRNA was cleaned
using RNAeasy clean-up columns (Qiagen). To improve the recovery from the
columns the elution water was spun into the matrix at 27 g and then left for one
minute prior to the standard 8000 g centrifugation recommended by Qiagen. The
cRNA was fragmented by heating in 1x fragmentation buffer (40 mM Tris-acetate pH
8.1, 100 mM KOAc, 30 mM MgOAc) as recommended by Affymetrix. 10 ug of
fragmented cRNA were hybridised to a HG-U133A GeneChip (Affymetrix) using
their standard procedure (45°C, 16 hours). Washing and staining was performed in a
Fluidics Station 400 (Affymetrix) using the protocol EukGE-WS2v4 and scanned in

an Affymetrix GeneChip scanner.

Microarray analysis

Chip analysis was performed using the Affymetrix Microarray Suite v5 and
GeneSpring 5.1 (Silicon Genetics). Changes in gene expression were assessed by
looking for concordant changes between replicates using a signed Wilcoxon rank test
(as recommended by Affymetrix). The “change” p-value threshold was < 0.003. Any
gene whose detection p-value was > 0.05 in all experimental conditions was discarded
from the analysis as being unreliable data. The differentially regulated genes
overlapping in all three experiments were identified using the GeneSpring software.
Classification into functional groups was done with help of the annotations of the
Affymetrix NetAffx Analysis Center, SOURCE, the National Center for
Biotechnology Information PubMed and LocusLink and with the OXPHOS and
human mitoDB_ 6 2002 lists curated at the Whitehead Institute Center for Genome
Research (Mootha et al., 2003).
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