edoc-vmtest

Drosophila transcription factor AP-2 in proboscis, leg and brain central complex development

Monge, I. and Krishnamurthy, R. and Sims, D. and Hirth, F. and Spengler, M. and Kammermeier, L. and Reichert, H. and Mitchell, P. J.. (2001) Drosophila transcription factor AP-2 in proboscis, leg and brain central complex development. Development, Vol. 128, H. 8. pp. 1239-1252.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5250948

Downloads: Statistics Overview

Abstract

We report loss- and gain-of-function analyses that identify essential roles in development for Drosophila transcription factor AP-2. A mutagenesis screen yielded 16 lethal point mutant alleles of dAP-2. Null mutants die as adults or late pupae with a reduced proboscis, severely shortened legs (approximately 30% of normal length) lacking tarsal joints, and disruptions in the protocerebral central complex, a brain region critical for locomotion. Seven hypomorphic alleles constitute a phenotypic series yielding hemizygous adults with legs ranging from 40-95% of normal length. Hypomorphic alleles show additive effects with respect to leg length and viability; and several heteroallelic lines were established. Heteroallelic adults have moderately penetrant defects that include necrotic leg joints and ectopic growths (sometimes supernumerary antennae) invading medial eye territory. Several dAP-2 alleles with DNA binding domain missense mutations are null in hemizygotes but have dominant negative effects when paired with hypomorphic alleles. In wild-type leg primordia, dAP-2 is restricted to presumptive joints. Ectopic dAP-2 in leg discs can inhibit but not enhance leg elongation indicating that functions of dAP-2 in leg outgrowth are region restricted. In wing discs, ectopic dAP-2 cell autonomously transforms presumptive wing vein epithelium to ectopic sensory bristles, consistent with an instructive role in sensory organ development. These findings reveal multiple functions for dAP-2 during morphogenesis of feeding and locomotor appendages and their neural circuitry, and provide a new paradigm for understanding AP-2 family transcription factors.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Molecular Zoology (Reichert)
UniBasel Contributors:Reichert, Heinrich
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Company of Biologists
ISSN:0950-1991
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:19
Deposited On:22 Mar 2012 13:16

Repository Staff Only: item control page