Petrovic, Jelena and Ibric, Svetlana and Betz, Gabriele and Parojcic, Jelena and Duric, Zorica. (2009) Application of dynamic neural networks in the modeling of drug release from polyethylene oxide matrix tablets. European journal of pharmaceutical sciences, Vol. 38, H. 2. pp. 172-180.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5251586
Downloads: Statistics Overview
Abstract
The main objective of this study was to demonstrate the possible use of dynamic neural networks to model diclofenac sodium release from polyethylene oxide hydrophilic matrix tablets. High and low molecular weight polymers in the range of 0.9-5 x 10(6) have been used as matrix forming materials and 12 different formulations were prepared for each polymer. Matrix tablets were made by direct compression method. Fractions of polymer and compression force have been selected as most influential factors on diclofenac sodium release profile. In vitro dissolution profile has been treated as time series using dynamic neural networks. Dynamic networks are expected to be advantageous in the modeling of drug release. Networks of different topologies have been constructed in order to obtain precise prediction of release profiles for test formulations. Short-term and long-term memory structures have been included in the design of network making it possible to treat dissolution profiles as time series. The ability of network to model drug release has been assessed by the determination of correlation between predicted and experimentally obtained data. Calculated difference (f(1)) and similarity (f(2)) factors indicate that dynamic networks are capable of accurate predictions. Dynamic neural networks were compared to most frequently used static network, multi-layered perceptron, and superiority of dynamic networks has been demonstrated. The study also demonstrated differences between the used polyethylene oxide polymers in respect to drug release and suggests explanations for the obtained results.
Faculties and Departments: | 05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Ehemalige Einheiten Pharmazie > Industrial Pharmacy Lab (Betz) |
---|---|
UniBasel Contributors: | Betz, Gabriele |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Elsevier |
ISSN: | 0928-0987 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 22 Mar 2012 14:19 |
Deposited On: | 22 Mar 2012 13:16 |
Repository Staff Only: item control page