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Abstract 

 

The PI3K signaling cascade, a key mediator of cellular survival, growth and metabolism, is 

frequently altered in human cancer. Activating mutations in PIK3CA, which encodes the alpha 

catalytic subunit of PI3K, occur in ~30% of breast cancers. These mutations result in constitutive 

activity of the enzyme and are oncogenic but it was not known whether they are sufficient to 

induce mammary carcinomas in mice. In this work, we generated mice conditionally expressing 

mutant PIK3CA H1047R in the luminal mammary epithelium targeted by either an MMTV or a 

WAP promoter. We demonstrated that expression of PIK3CA H1047R evokes heterogeneous 

tumors that express luminal and basal markers and are positive for the estrogen receptor. 

Additionally, we showed that such PIK3CA H1047R expression leads to a dramatic delay in 

mammary gland involution and that parity accelerates PIK3CA H1047R-induced carcinogenesis. 

Our results suggest that the PIK3CA H1047R oncogene targets a multipotent progenitor cell and 

show that this model recapitulates features of human breast tumors with PIK3CA H1047R. 

We further showed that WAP targeted expression of another PIK3CA mutant, E545K, 

also induces mammary tumors, albeit with a longer tumor latency. Interestingly, luminal 

expression of wild type PIK3CA does not result in tumor formation, demonstrating that the in 

vivo tumorigenicity of mutant PIK3CA is caused by the mutation rather than overexpression. 

Expression of PIK3CA mutations in all cells of the mouse leads to premature death. The 

mice develop multiple hematomas underneath the skin once they express mutant PIK3CA, 

however, no defect in the blood coagulation cascade or platelets was discovered and the exact 

cause of death remains unknown. 

Mammary epithelial cells (MEC) from PIK3CA mutant mice had enhanced sphere-

forming capacity with respect to both, size and frequency. In addition, when transplanted into a 

cleared fat pad, H1047R mutant epithelial cells partially reconstitute the gland and form 

hyperplasias that progress to carcinomas. 
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Introduction 

1. The Mammary Gland 

1.1 Mammary gland development and physiology 

Since the human breast is not readily accessible for research only little is known about human 

breast development (Howard and Gusterson 2000). Therefore, much of our knowledge about 

mammary gland biology comes from extensive studies on the mouse mammary gland which is 

thought to be regulated by growth patterns and control mechanisms comparable to those of 

the human breast (Cardiff and Wellings 1999). A unique feature of the mammary gland with 

respect to other organs is the fact that much of its developmental processes occur postnatally 

during puberty and later during reproductive cycles. 

After birth the mammary epithelium consists of a rudimentary ductal tree embedded in 

a stromal environment called the mammary fat pad. With the onset of puberty and the 

secretion of the ovarian hormones estrogen and progesterone, the tips of this rudimentary 

ductal system enlarge forming specialized structures called terminal end buds (TEB) which 

further branch and fill the mammary stroma. TEBs are highly proliferative and a monolayer of 

stem cells within the cap cells of the TEBs gives rise to the two major cell types of the bi-layered 

mammary gland epithelium. Luminal epithelial cells form the inner layer and secrete milk 

during lactation. The luminal cells are surrounded by contractile myoepithelial cells which 

squeeze the secreted milk (Silberstein 2001). 

During pregnancy several hormones including progesterone and prolactin induce 

massive tissue remodeling characterized by ductal branching and extensive cell proliferation to 

form the alveoli, the functional units of the mammary gland which secrete milk. By the end of 

pregnancy the mammary epithelium fills out the whole mammary fat pad (Silberstein 2001; 

Oakes, Hilton et al. 2006). After lactation the mammary gland undergoes tissue remodeling 

called involution, during which the secretory alveoli collapse and massive epithelial cell death 
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occurs while the adipocytes gradually increase in volume (Watson 2006). The involuted 

mammary gland resembles that of a virgin mouse and is ready to go through another 

reproductive cycle. 

 

1.2 The mammary gland cell hierarchy 

Adult stem cells have the capability to produce all the cell types of a given organ. In the 

mammary gland adult stem cells have been described by their ability to reconstitute a 

functional gland when donor mammary tissue fragments or even a single cell was transplanted 

into an epithelium-free fat pad (Deome, Faulkin et al. 1959; Kordon and Smith 1998; 

Shackleton, Vaillant et al. 2006; Stingl, Eirew et al. 2006; Sleeman, Kendrick et al. 2007). 

Transplantation experiments led to the identification of cells capable of forming either 

ductal- or lobule-limited outgrowths. While lobuloalveolar progenitors lack cap cells at the tip 

of TEBs and are therefore unable to penetrate the fat pad, ductal progenitors fill the fat pad but 

fail to undergo lobuloalveolar development during pregnancy (Kordon and Smith 1998; Bruno 

and Smith 2010). 

The combination of cell surface markers and fluorescence-activated cell sorting (FACS) 

technology has led to the identification and isolation of distinct mammary epithelial cell 

subpopulations. Based on the expression levels of the heat stable antigen (CD24) the cells of 

the mammary gland can be separated into CD24high, CD24med, and CD24neg cells. The CD24high 

cell population is enriched in luminal cells and therefore stains almost exclusively for the 

luminal marker cytokeratin 18 (K18) (Sleeman, Kendrick et al. 2006). The CD24high cells can 

further be resolved into two subpopulations based on their expression levels of the stem cell 

antigen 1 (Sca-1). CD24 positive cells expressing Sca-1 (CD24high/Sca-1+) are enriched in luminal 

cells expressing the estrogen receptor (ER) and do not have mammary gland repopulating 

activity. In contrast, the CD24high/Sca-1- cells are mostly ER negative and have potent colony 

forming activity in vitro and limited mammary gland repopulating activity in vivo (Sleeman, 

Kendrick et al. 2007). The cell population expressing moderate levels of CD24 (CD24med/low) 
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stains mostly positive for the basal marker cytokeratin 14 (K14) but negative for K18 and 

contains basal epithelial cells. These can be further resolved based on the levels of β1-integrin 

(CD29) or α6-integrin (CD49f) in a stem cell enriched population and in a population containing 

mainly myoepithelial cells. The stem cell enriched population is characterized by high 

expression levels of CD29, high levels of CD49f, moderate levels of CD24, and the absence of 

Sca-1 (Shackleton, Vaillant et al. 2006; Sleeman, Kendrick et al. 2006; Stingl, Eirew et al. 2006). 

The CD24med/low cells expressing low levels of CD29/CD49f are mainly myoepithelial cells. The 

CD24neg population contains non-epithelial cells (Sleeman, Kendrick et al. 2006). 

 

Figure 1. FACS-based separation of mammary epithelial cells into distinct subpopulations. Using the cell surface 

marker CD24, cells from the mammary gland can be separated into three populations: CD24neg, CD24low, and 

CD24high. The CD24neg cells are stromal cells while the CD24low and CD24high cells are epithelial cells. The CD24high 

cells are luminal epithelial cells and can be further separated into a Sca-1+ population (enriched in ER+ cells) and a 

Sca-1- population (enriched in ER- cells). Based on their CD49f expression, the CD24low cells which are basal 

epithelial cells can be further separated into myoepithelial cells (CD49flow) and a mammary stem cell enriched 

population (CD49fhigh). 

 

2. Breast Cancer 

2.1 Breast cancer prevalence 

Breast cancer is by far the most common form of cancer in women and accounts approximately 

for 23% of all cancers in women worldwide. In absolute numbers, in the year 2008, an 
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estimated 1’384’000 new breast cancer cases occurred while the disease accounted for roughly 

458’000 deaths worldwide (World Health Organization). 

 

2.2 Breast cancer classification 

Breast cancer is a heterogeneous disease both histologically and molecularly. Efforts have been 

made in the past decades to classify breast cancers into different subtypes which would allow 

patient prognosis and prediction of optimal treatment. Historically, human breast cancers were 

grouped into approximately 18 different subtypes based on histological features (Stingl and 

Caldas 2007), however, the prognostic and predictive value of this classification is very limited 

(Sims, Howell et al. 2007). Of a better clinical value is the status of ER, progesterone receptor 

(PR), and the epidermal growth factor receptor 2 (HER2/ErbB2) which has direct impact on 

treatment strategies. 

Global gene expression profiling of breast cancer has led to the identification of at least 

six distinct and reproducible subtypes: luminal A, luminal B, ErbB2-enriched, basal, normal-like, 

and claudin-low (Perou, Sorlie et al. 2000; Sorlie, Perou et al. 2001; Sorlie, Tibshirani et al. 2003; 

Sotiriou, Neo et al. 2003; Herschkowitz, Simin et al. 2007; Perou and Borresen-Dale 2011). 

Notably, patients with luminal A breast cancer have the best prognosis (Sorlie, Tibshirani et al. 

2003). 

The luminal subtypes are characterized by the expression of luminal cytokeratins and 

genes typical for luminal cells of the normal mammary gland (e.g., K8/18, K19, CD24, Mucin1, 

and GATA3) (Rakha, El-Sayed et al. 2007) as well as expression of the hormone receptors ER 

and/or PR (Rouzier, Perou et al. 2005; Hu, Fan et al. 2006; Sotiriou and Pusztai 2009). The 

luminal subtypes A and B can be discriminated based on tumor grade, genomic grade and 

patient outcome. Breast tumors of the luminal subtype A are typically of lower tumor grade, 

have a lower genomic grade, and correlate with improved patient survival compared to those 

of luminal subtype B (Sorlie, Tibshirani et al. 2003; Sotiriou, Neo et al. 2003; Loi, Haibe-Kains et 
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al. 2007; Sotiriou and Pusztai 2009). Further, luminal A tumors are sensitive to endocrine 

therapy whereas those of luminal B subtype show incomplete sensitivity to endocrine therapy 

(Sotiriou and Pusztai 2009). 

The ErbB2-enriched molecular subtype of breast cancer is typically characterized by 

elevated expression of ErbB2 and accounts for ~10% of breast cancers (Perou and Borresen-

Dale 2011). Another ~10% of breast cancers are clinically defined ErbB2-positive breast cancers 

that co-express ER and fall into the luminal subtypes (typically luminal B) (Sotiriou and Pusztai 

2009; Perou and Borresen-Dale 2011). ErbB2-enriched tumors are generally of higher tumor 

grade than luminal tumors (Sotiriou and Pusztai 2009) and correlate with a bad prognosis 

(Sorlie, Perou et al. 2001; Sorlie, Tibshirani et al. 2003; Hu, Fan et al. 2006). Elevated levels of 

surface ErbB2 result in the formation of homodimers and heterodimers with other receptor 

tyrosine kinases of the human epidermal growth factor receptor (HER) family including 

epidermal growth factor receptor 1 (EGFR) and 3 (ErbB3) (Graus-Porta, Beerli et al. 1997; Hynes 

and Lane 2005). ErbB2 and ErbB3 form a potent tumorigenic heterodimer and activate key 

signaling cascades including the mitogen-activated protein kinase (MAPK) and phosphoinositol-

3-kinase (PI3K) pathway (Holbro, Beerli et al. 2003; Hynes and Lane 2005). Some of the ErbB2 

positive tumors are sensitive to trastuzumab, an antibody targeting the extracellular domain of 

ErbB2 which is used in combination with chemotherapy as the gold standard treatment for 

metastatic ErbB2 positive breast cancer (Hynes and Lane 2005; Nahta and Esteva 2006). 

Breast tumors of the basal-like subtype are less frequent than those of the luminal or 

ErbB2 positive subtype and correlate with a very aggressive disease although they can be 

particularly sensitive to chemotherapy (Rouzier, Perou et al. 2005). Some basal-like tumors 

express high levels of basal cytokeratins like K5 and growth factor receptors including EGFR and 

c-Kit. However, most of the basal-like tumors lack expression of ER, PR, and ErbB2 and are 

therefore also called triple negative (TN) tumors (Sotiriou and Pusztai 2009). A characteristic 

feature of basal-like carcinomas is the dysfunction of BRCA1, a gene involved in DNA repair and 

chromosomal stability (Turner, Reis-Filho et al. 2007; Sotiriou and Pusztai 2009). Sporadic basal-

like tumors display BRCA1 promoter methylation and/or transcriptional inactivation (Turner, 
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Tutt et al. 2004; Turner, Reis-Filho et al. 2007). BRCA1 germ line mutations correlate with 

increased breast cancer susceptibility and a link between hereditary BRCA1-associated tumors 

and the basal-like subtype has been described (Easton, Ford et al. 1993; Foulkes, Stefansson et 

al. 2003). 

 

3. PI3K Signaling 

 

The phosphatidylinositol 3-kinase (PI3K) pathway is often subverted during neoplastic 

transformation (Engelman, Luo et al. 2006) and provides cancer cells with a competitive 

advantage by decreasing cell death and increasing cell proliferation, migration, invasion, 

metabolism, angiogenesis, and resistance to chemotherapy. Mechanisms of activation of the 

PI3K pathway in cancer include the loss of expression or rare mutation of the PTEN 

phosphatase that reverses PI3K action (Rhei, Kang et al. 1997; Ueda, Nishijima et al. 1998; 

Perren, Weng et al. 1999; Depowski, Rosenthal et al. 2001; Perez-Tenorio, Alkhori et al. 2007), 

the activation downstream of oncogenic receptor tyrosine kinases, the mutation/amplification 

of Akt, and the mutation and/or amplification of PIK3CA. 

 

3.1 PI3K classification 

PI3Ks are lipid kinases that phosphorylate different phosphatidylinositols (PI) at the 3’ position 

of the inositol ring. There are three classes of PI3K based on their substrate preferences and 

domain structure. 

Class I PI3Ks preferentially phosphorylate PI-4,5-bisphosphate (PI-4,5-P2 or PIP2) to 

generate PI-3,4,5-trisphosphate (PI-3,4,5-P3 or PIP3) and are further divided into two 

subfamilies. Class IA PI3Ks are activated by receptor tyrosine kinases (RTKs) in contrast to class 

IB PI3Ks that are activated by G-protein-coupled receptors (GPCRs) (Katso, Okkenhaug et al. 
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2001). In response to extracellular signals class I PI3Ks regulate cell growth, survival, apoptosis, 

protein synthesis, and metabolism. 

Class II PI3Ks preferentially generate PI-3-P but poorly phosphorylate PI-4,5-P2. Class II 

PI3Ks bind to clathrin and regulate clathrin-mediated membrane trafficking and receptor 

internalization (Gaidarov, Smith et al. 2001). Vps34 is the only member of class III PI3K and was 

identified in yeast as a regulator of trafficking vesicles from the Golgi apparatus to the vacuole 

(Odorizzi, Babst et al. 2000). However, relatively little is known about the specific functions of 

class II and III PI3K. 

 

 

Figure 2. The classification and molecular architecture of PI3Ks. The architecture of the catalytic and adaptor 

subunits of class I PI3Ks and the domains of class II and III PI3Ks are shown. The dashed lines represent the 

extended N-terminal region that exists in the long adaptor subunits p85α and p85β but is absent in the shorter 

p55α/p50α and p55γ forms. The p85 binding domain (green) of class IA catalytic subunits is referred to as adaptor 

binding domain (ABD) in the text. BH: breakpoint cluster region homology, PIK: phosphatidylinositol kinase 

homology, SH2: Src-homology 2 domain, SH3: Src-homology 3 domain, Adapted from (Engelman, Luo et al. 2006). 

 

3.2 Structure of class I PI3Ks 

Class IA PI3Ks occur as heterodimers consisting of a p110 catalytic and a p85 regulatory subunit. 

There are three highly homologous catalytic isoforms p110α, p110β, and p110δ, which are 

encoded by the three genes PIK3CA, PIK3CB, and PIK3CD. The class IA catalytic proteins contain 



Introduction 

 

 

14 
 

an N-terminal adaptor binding domain (ABD) which interacts with the regulatory subunits, a 

Ras-binding domain (RBD) which enables interaction with the small GTPase Ras, a C2 domain, 

the helical domain, and a C-terminal kinase domain. 

Class IA catalytic subunits bind to a total of five different regulatory subunits encoded by 

three genes. PIK3R1 encodes p85α as well as to the two shorter proteins p55α and p50α. p85β 

and p55γ are encoded by PIK3R2 and PIK3R3, respectively. All regulatory isoforms share a 

common p110-binding domain or inter-SH2 (Src-homology 2) domain flanked by two SH2 

domains. The two longer isoforms p85α and p85β further contain an N-terminal Src-homology 

3 (SH3) domain and a breakpoint cluster region (BCR) homology (BH) domain flanked by two 

proline-rich regions (Fruman, Meyers et al. 1998; Engelman, Luo et al. 2006). 

 

3.3 The growth factor receptor/PI3K/Akt signaling axis 

In its inactive state the regulatory subunit p85 keeps the kinase activity of the catalytic subunit 

p110 at a low activity state via an intermolecular interaction of the N-terminal SH2 domain of 

p85 with the helical domain of p110 (Yu, Zhang et al. 1998). As mentioned above class IA PI3Ks 

are activated by upstream receptor tyrosine kinases (RTK) including the insulin receptor (IR), 

the insulin-like growth factor 1 receptor (IGF-1R), the platelet-derived growth factor receptor 

(PDGFR), and members of the epidermal growth factor receptor (EGFR) family. Binding of the 

respective ligands induces receptor dimerization resulting in receptor autophosphorylation. 

Phosphorylated tyrosine residues within the cytoplasmic domain of these receptors or within 

adaptor molecules like the insulin receptor substrate (IRS) 1 and 2 recruit the regulatory 

subunit p85 via its SH2 domains. Binding of the SH2 domain of p85 to phosphotyrosine residues 

relieves the inhibition of p110 and mediates translocation of the catalytic subunit to the plasma 

membrane (Okkenhaug and Vanhaesebroeck 2001). Interaction with the GTP-bound form of 

the RAS protein further increases PI3K kinase activity (Rodriguez-Viciana, Warne et al. 1994; 

Rodriguez-Viciana, Warne et al. 1996) 
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Activated PI3K converts PIP2 into PIP3, a reaction which is reverted by the tumor 

suppressor phosphatase and tensin homolog deleted on chromosome ten (PTEN) (Maehama, 

Taylor et al. 2001; Wishart and Dixon 2002). PIP3 recruits proteins containing a pleckstrin 

homology (PH) domain including the downstream molecules 3-phosphoinositide-dependent 

kinase 1 (PDK1) and Akt (Corvera and Czech 1998). Upon autophosphorylation, PDK1 

phsophorylates the serine-threonine kinase Akt on Thr 308 (Alessi, James et al. 1997). In 

addition, and dependent on the physiological context, Akt is phosphorylated at the 

hydrophobic motif on Ser 473 by the mammalian target of rapamycin (mTOR)/rictor complex or 

DNA-dependent protein kinase (DNA-PK) which results in full Akt activation (Sarbassov, Guertin 

et al. 2005; Bozulic, Surucu et al. 2008). Akt is a key effector of PI3K-mediated signaling 

regulating a myriad of downstream targets and cellular responses (Figure 3). 

 

Figure 3. The PI3K/Akt signaling pathway regulates a myriad of downstream targets and cellular responses. The 

PI3K/Akt and related pathways are key effectors of receptor tyrosine kinases. Activation of membrane kinases 

including the epidermal growth factor receptor (EGFR) by external growth factors initiates receptor dimerization 

and activates these intracellular pathways. Akt is activated downstream of PI3K and has multiple targets including 

MDM2, NF , FKHR, BAD, GSK3β, and mTOR to regulate cell cycle, apoptosis, metabolism, growth, and translation. 

Adapted from (Hennessy, Smith et al. 2005). 
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3.4 PI3K signaling mediates cell survival and cell cycle progression 

Akt promotes cell cycle progression by blocking forkhead box (FOXO) transcription factors. Akt 

phosphorylates discrete sites on FOXO proteins resulting in their exclusion from the cell nucleus 

and targeting to proteasomal degradation (Biggs, Meisenhelder et al. 1999; Brunet, Bonni et al. 

1999; Kops, de Ruiter et al. 1999; Takaishi, Konishi et al. 1999; Tang, Nunez et al. 1999; 

Matsuzaki, Daitoku et al. 2003; Plas and Thompson 2003). Inhibition of FOXO results in 

decreased expression of cyclin dependent kinase inhibitors p27kip1 and p21cip1, increased levels 

of cyclin D1 and D2 and a decline in proapoptotic proteins including BIM and FasL (Medema, 

Kops et al. 2000; Dijkers, Birkenkamp et al. 2002; Ramaswamy, Nakamura et al. 2002; Schmidt, 

Fernandez de Mattos et al. 2002; Seoane, Le et al. 2004). Akt negatively regulates levels of the 

tumor suppressor p53 via phosphorylation of MDM2, an E3 ubiquitin ligase, which causes 

degradation of p53 (Zhou, Liao et al. 2001). In contrast to FOXO and p53, PI3K activity results in 

activation of the transcription factor NFκB mediating cell survival and cell proliferation (Bader, 

Kang et al. 2005). Akt can also regulate survival and cell cycle progression by directly 

phosphorylating and inhibiting the proapoptotic protein BAD (Datta, Dudek et al. 1997; del 

Peso, Gonzalez-Garcia et al. 1997) and the cell cycle inhibitor p27kip1 (Liang, Zubovitz et al. 2002; 

Shin, Yakes et al. 2002; Viglietto, Motti et al. 2002). 

 

3.5 PI3K signaling regulates protein synthesis 

Akt phosphorylates the protein tuburin, a member of the tuberous sclerosis complex 2 (TSC2) 

(Inoki, Li et al. 2002; Potter, Pedraza et al. 2002). This event inhibits the GAP (GTPase activating 

protein) activity of the TSC1-TSC2 complex resulting in an increase in the active GTP-bound 

form of its substrate Rheb (small G protein Ras homologue enriched in brain) which in turn 

phosphorylates and activates the mTOR complex 1 (mTOR-raptor complex or mTORC1) 

(Garami, Zwartkruis et al. 2003; Inoki, Li et al. 2003; Zhang, Gao et al. 2003). The mTORC1 in 
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turn phosphorylates the eukaryotic translation initiation factor 4E-binding protein (4E-BP1) and 

p70S6Kinase. On the one hand hyperphosphorylated 4E-BP1 dissociates from the eukaryotic 

translation initiation factor 4E (eIF4E) allowing it to form an active translation initiation complex 

at the 5’ end of mRNA (Ruggero and Sonenberg 2005). On the other hand p70S6Kinase 

phosphorylates the ribosomal protein S6 resulting in increased protein synthesis (Hay and 

Sonenberg 2004; Engelman, Luo et al. 2006).  

 

3.6 PI3K signaling controls metabolism 

Upon growth factor binding, PI3K regulates several processes important for nutrient uptake and 

cell metabolism via its downstream mediator Akt. In insulin-responsive tissues like fat and 

striated muscle, Akt2 is the predominant Akt isoform and activation of Akt2 promotes the 

translocation of the glucose transporter 4 (GLUT4) to the plasma membrane (Engelman, Luo et 

al. 2006; Manning and Cantley 2007). Once glucose is within the cell it can be converted into 

glycogen for storage or enter glycolysis for energy production, two processes in which Akt is 

involved. Akt phosphorylates and inhibits glycogen synthase kinase 3 (GSK3) which prevents it 

from blocking glycogen synthase and thus stimulates glycogen synthesis (Manning and Cantley 

2007). At the same time, in liver, Akt can inhibit gluconeogenesis and fatty acid oxidation 

through direct control of peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α) 

(Li, Monks et al. 2007). 

 

4. The PI3K pathway in normal mammary gland physiology 

4.1 The roles of Akt isoforms in normal mammary gland physiology 

The expression levels of the different isoforms of Akt in the mammary gland differ significantly 

during a reproductive cycle. By the end of pregnancy and throughout lactation, Akt1 is the 

predominant isoform being expressed. With the onset of mammary gland involution Akt1 levels 

drop dramatically. In contrast, Akt2 levels drop by the end of pregnancy and remain low during 
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lactation and early involution. Expression of both isoforms goes back to pre-pregnancy levels by 

the end of involution (day7) (Boxer, Stairs et al. 2006; Maroulakou, Oemler et al. 2008). Unlike 

for Akt1 and Akt2, expression levels of Akt3 do not change much during the reproductive cycle 

of mice (Boxer, Stairs et al. 2006; Maroulakou, Oemler et al. 2008). 

Expression of a constitutively active form of human Akt1 in mice under the control of 

the mouse mammary tumor virus long terminal repeat (MMTV-LTR) caused a dramatic delay in 

mammary gland involution by attenuating cell death (Hutchinson, Jin et al. 2001). Elevated and 

prolonged expression of tissue inhibitor of metalloproteinase-1 (TIMP1) was detected in 

transgenic animals throughout involution. This may contribute to the delay in involution by 

inhibiting matrix metalloproteinases (MMP) such as MMP-3 (Schwertfeger, Richert et al. 2001). 

In addition to delayed involution, a precocious accumulation of lipids during pregnancy and an 

overall increase in the size and number of lipid droplets as well as milk stasis was found in these 

animals. Moreover, the milk fat content was increased in transgenic mice expressing activated 

Akt1 which might be a cause for the lactation defect observed in these animals (Schwertfeger, 

McManaman et al. 2003). Overexpression of wild-type Akt1 under the control of the MMTV 

promoter resulted in a similar delay in involution, however, unlike for activated forms of Akt, 

overexpression of wildtype Akt1 did not evoke neoplasias (Ackler, Ahmad et al. 2002). 

Mice with mammary epithelial cell specific deletion of Akt1 but not Akt2 fail to produce 

sufficient milk. Although the lobuloalveolar development in Akt1 deficient mice appeared 

normal, epithelial cells secreted less milk than in wild-type (Boxer, Stairs et al. 2006) and the 

alveolar structures found in glands of mice with ablated Akt1 were significantly smaller and 

were completely devoid of lipid droplets. Expression of milk proteins such as the whey acidic 

protein (WAP) and β-casein was delayed which correlated with decreased phosphorylation of 

signal transducer and activator of transcription 5a (Stat5a), an important mediator of prolactin-

induced signaling. 

In contrast to AKT1 deletion, AKT2 ablation resulted in enhanced formation of 

lobuloalveolar structures and precocious luminal cell differentiation. Interestingly, the 
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accelerated mammary epithelial differentiation observed in AKT2-null mice is non-cell-

autonomous as transplantation of AKT2-null mammary epithelial cells into wild-type recipient 

mice resulted in normal formation of lobuloalveolar structures and differentiation. This 

observation can be explained by the fact that Akt2 is mainly expressed in stromal cells of the 

mammary gland (Maroulakou, Oemler et al. 2007). Further, the lack of Akt1 caused accelerated 

involution whereas the ablation of AKT2 resulted in a delay in involution. Deletion of AKT3 does 

not have an overt effect on lobuloalveolar differentiation and involution (Maroulakou, Oemler 

et al. 2008). 

 

4.2 The roles of PTEN in normal mammary gland physiology 

MMTV-targeted overexpression of PTEN results in a lactation defect due to a reduced number 

of alveolar epithelial cells, a consequence of reduced proliferation and increased apoptosis 

during pregnancy (Dupont, Renou et al. 2002). Conversely, mammary-specific deletion of both 

PTEN alleles resulted in precocious mammary gland development including increased 

proliferation, excessive side branching, and expression of milk proteins at the virgin state. On 

the other hand, involution was delayed due to an Akt-mediated reduction in apoptotic cells (Li, 

Robinson et al. 2002).  

 

4.3 The effects of p110α on normal mammary gland physiology 

MMTV-mediated expression of myristoylated p110α, which is directed to the plasma 

membrane, resulted in constitutive activation of the PI3K pathway and delayed mammary gland 

involution (Renner, Blanco-Aparicio et al. 2008). In the present work, I found that expression of 

the gain-of-function mutant p110α H1047R (see section 6.1) delayed mammary gland 

involution which is in line with the above mentioned study (Renner, Blanco-Aparicio et al. 

2008). 
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5. PI3K pathway in mammary gland tumorigenesis 

5.1 Akt isoforms in mammary gland tumorigenesis 

Akt1 and Akt2 have different effects on tumorigenesis. In mice that develop tumors due to 

mammary gland specific expression of the viral oncogene polyoma middle T (PymT) uncoupled 

from the PI3K pathway (MTY315/322F), coexpression of active Akt1 severely accelerated tumor 

formation by reducing cell death, but did not affect metastasis (Hutchinson, Jin et al. 2001). In 

mice expressing activated ErbB2 (NDL), constitutively active Akt1 reduced tumor latency, led to 

a more differentiated tumor phenotype, and significantly decreased the number of lung 

metastases (Hutchinson, Jin et al. 2004). Conversely, ablation of AKT1 dramatically delayed 

tumor onset in PymT and ErbB2 transgenic mice (Maroulakou, Oemler et al. 2007). 

In contrast to Akt1, expression of active Akt2 did not affect tumor latency in either PymT 

or in ErbB2 transgenic mice, however, it increased the number of lung metastases (Dillon, 

Marcotte et al. 2009). Conversely, deletion of AKT2 accelerated tumor formation in either 

mouse model (Maroulakou, Oemler et al. 2007). 

Deletion of Akt3 had no overt effect on tumorigenesis in either PymT or ErbB2 

transgenic mice (Maroulakou, Oemler et al. 2007). 

 

5.2 PTEN in mammary gland tumorigenesis 

Mammary-specific deletion of PTEN resulted in mammary epithelial hyperplasia and tumor 

formation eventually (Li, Robinson et al. 2002). Heterozygous deletion of PTEN in mice 

conditionally expressing the oncogene Wnt-1 significantly decreased tumor latency. Notably, in 

the majority of the resulting tumors expression of the remaining wild-type allele was lost. This 

suggests that tumor cells with loss of heterozygosity (LOH) have a growth advantage over cells 

retaining one PTEN allele (Li, Podsypanina et al. 2001). Interestingly, even subtle changes in 

PTEN expression can affect suscebtibility to cancer. Mice bearing a hypomorphic allele of PTEN 

expressed ~20% less PTEN mRNA than wild-type mice, a reduction that was sufficient to induce 

mammary tumors in the majority of animals (Alimonti, Carracedo et al. 2010). In contrast to 
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PTEN deletion, overexpression of PTEN increased tumor latency and decreased tumor growth 

rate in mice expressing oncogenic Wnt-1 (Zhao, Cui et al. 2005). 

Notably, a non cell-autonomous role was demonstrated for PTEN in the formation of 

breast carcinomas. In a recent study, ablation of PTEN in fibroblasts of the mammary gland 

accelerated tumorigenesis. The lack of PTEN caused elevated levels of the transcription factor 

Ets2 and induced genes involved in matrix remodeling and macrophage recruitment (MMP9, 

CCL3) (Trimboli, Cantemir-Stone et al. 2009). 

 

5.3 p110α in mammary gland tumorigenesis 

Expression of myristoylated p110α in mice under the control of the MMTV promoter caused 

morphological changes in mammary ducts of young virgin animals and induced mammary 

carcinomas in ~30% of multiparous females (Renner, Blanco-Aparicio et al. 2008). This 

demonstrates that constitutive activation of p110α results in phenotypes resembling those of 

PTEN loss in vivo (see above). However, this system is artificial and myristoylated p110α does 

not occur in human disease. More recently, we and others (Adams, Xu et al.) generated mice 

conditionally expressing mutant p110α (see section 6.1). These animals form a diverse 

spectrum of mammary carcinomas with 100% penetrance (see section “Results” in this work). 

 

6. PI3K in breast cancer 

6.1 PIK3CA mutations are oncogenic 

Mutations in the gene PIK3CA which encodes for the alpha catalytic subunit of PI3K occur with 

high frequency in several solid carcinomas including those of the colon, breast, brain, and 

stomach (Bachman, Argani et al. 2004; Broderick, Di et al. 2004; Campbell, Russell et al. 2004; 

Samuels, Wang et al. 2004; Lee, Soung et al. 2005; Levine, Bogomolniy et al. 2005). 

Interestingly, the vast majority of mutations in PIK3CA occur at two “hotspots” within the 

coding sequence. Two missense mutations result in the amino acid substitutions E542K and 
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E545K in the helical domain of the protein and another missense mutation leads to the 

substitution H1047R within the kinase domain. 

Expression of the mutant p110α proteins in chicken embryonic fibroblasts (CEFs) was 

transforming and all three mutations increased the lipid kinase activity of the enzyme and 

caused constitutive activity of the PI3K pathway (Kang, Bader et al. 2005). Injection of these 

mutant p110α transformed CEFs into newly hatched chickens induced tumors that showed a 

high degree of vascularization (Bader, Kang et al. 2006). Interestingly the kinase domain 

mutation (H1047R) induced tumors more potently than the helical domain mutations 

(E542K/E545K). Administration of the mTOR inhibitor RAD001 inhibited tumor growth 

suggesting that activation of mTOR signaling is important in mutant p110α-mediated 

tumorigenesis (Bader, Kang et al. 2006). Expression of E545K and H1047R mutant p110α in the 

immortalized but non-transformed mammary epithelial cell line MCF10A increased the PI3K 

kinase activity, allowed epidermal growth factor (EGF)-independent cell growth, anchorage-

independent growth, and disrupted the normal architecture of these cells when grown in 3-

dimensional culture, a phenotype that was mTOR-dependent (Isakoff, Engelman et al. 2005). In 

a cultured human mammary epithelial cell line expressing inactivated p53, hTERT, and high 

levels of c-myc, mutant p110α (E545K, H1047R, myr-PIK3CA) could substitute for the need of 

SV40 largeT antigen for cell transformation (Zhao, Liu et al. 2005). 
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Figure 4. Point mutations in PIK3CA observed in human tumors. Sequencing of the PIK3CA gene in human tumor 

samples revealed somatic point mutations in 38 residues. The mutations localize to various domains of the p110  

primary structure as indicated. 'Hot-spot' mutations are observed at residues E542, E545 and H1047 and are 

highlighted in orange. The figure indicates frequencies of mutation for cancers of the colon, breast, and others, 

which include liver, brain, stomach, lung, and ovary. Adapted from (Bader, Kang et al. 2005). 

 

In contrast to p110δ and p110γ wild-type isoforms, wild type p110α is unable to transform CEFs 

by itself (Kang, Denley et al. 2006). The activation loop of PI3K was shown to determine 

phosphoinositide substrate specificity (Bondeva, Pirola et al. 1998), however substitution of the 

p110α activation loop with that of p110γ and p110δ respectively was not sufficient to render 

p110α oncogenic showing that the activation loop does not determine oncogenicity (Denley, 

Gymnopoulos et al. 2009) among class I PI3Ks. 

Apart from their lipid kinase activity all class I p110 isoforms possess protein serine 

kinase activity (Dhand, Hiles et al. 1994; Lam, Carpenter et al. 1994). However, it was 

demonstrated that it is the lipid kinase activity as well as the lipid product PIP3 that are 
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essential for mutant p110α-mediated transformation (Kang, Denley et al. 2006; Denley, 

Gymnopoulos et al. 2009). 

Rare mutations in p110α also possess the potential to transform cells and to activate 

downstream signaling albeit to a smaller extent than the 3 most common mutations (E542K, 

E545K, H1047R) (Gymnopoulos, Elsliger et al. 2007). 

 

 

6.2 Different mechanisms lead to hyperactivity of p110α hotspot mutants 

Recent genetic and biochemical studies suggest different mechanisms of activation for p110α 

helical and kinase domain mutants. The kinase domain mutant H1047R is thought to trigger a 

conformational shift mimicking the one induced by Ras binding. This model is supported by an 

earlier study demonstrating that Ras binding to p110 induces a conformational change of the 

substrate-binding site (Pacold, Suire et al. 2000) and by mutagenesis experiments in which 

either the p85 binding domain (ABD) or the Ras binding domain (RBD) were deleted. While 

deletion of the ABD completely abolishes the transforming potential of the H1047R kinase 

domain mutant, mutagenesis in the RBD leaves the oncogenic potential of H1047R unaffected 

(Zhao and Vogt 2008). In addition, computational and structural analysis of the H1047R protein 

suggests that the mutation could allow enhanced substrate-to-product turnover (Mankoo, 

Sukumar et al. 2009). Interestingly, although H1047R depends on binding to p85 for 

transforming cells, activation of Akt occurred also in the absence of p85 interaction highlighting 

the importance of additional mechanisms than Akt activation for cellular transformation by 

mutant p110α (Zhao and Vogt 2008). 

In contrast to H1047R, the amino acid substitutions E542K and E545K mimic relief of 

inhibition of p110α upon binding of p85 to growth factor receptors. This model is supported by 

structural data gained from p110α bound to p85 which demonstrates that the charge reversal 

caused by the mutations E542K and E545K disrupts the inhibitory interaction between p85 and 

the helical domain of p110α (Miled, Yan et al. 2007). Further studies showed that mutagenesis 

of the RBD disrupts the oncogenic activity of the helical domain mutants whereas deletion of 
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the ABD has no effects on the transforming potential of E542K/E545K demonstrating that 

kinase and helical domain mutants have opposing requirements of either p85 or Ras for their 

oncogenic capacity (Zhao and Vogt 2008). Of note, the kinase activity of H1047R mutated 

p110α could be increased by binding to phosphorylated IRS-1 as a consequence of growth 

factor stimulation similar to the wild type enzyme. In contrast, the activity of E542K and E545K 

mutated molecules was independent of growth factor signaling (Carson, Van Aller et al. 2008). 

 

Figure 5. Mechanism of activation of PIK3CA mutants E542K/E545K. In the wild-type PI3K enzyme, the catalytic 

subunit p110α is kept in a low-activity state via an intramolecular interaction with the regulatory subunit p85 (left). 

Upon binding of the SH2 domains of p85 to phosphorylated tyrosine residues on growth factor receptors, p110α is 

relieved from the inhibitory interaction with p85 and becomes active (center). The glutamate to lysine substitution 

in the helical domain mutants causes a charge reversal which interferes with this inhibitory interaction resulting in 

constitutive active p110α independent of activated growth factor receptors (right). Adapted from (Lee, Engelman 

et al. 2007). 

 

 

6.3 PIK3CA mutations in human breast cancer 

PIK3CA is mutated in ~30% of human breast cancers (Bachman, Argani et al. 2004; Campbell, 

Russell et al. 2004; Samuels, Wang et al. 2004; Lee, Soung et al. 2005; Levine, Bogomolniy et al. 

2005; Saal, Holm et al. 2005; Buttitta, Felicioni et al. 2006; Li, Rong et al. 2006; Maruyama, 

Miyoshi et al. 2007; Gonzalez-Angulo, Stemke-Hale et al. 2009; Kalinsky, Jacks et al. 2009; 

Michelucci, Di Cristofano et al. 2009). Interestingly, the kinase domain mutations are more 

common in breast cancer (~15% of breast cancers) than the helical domain mutations (~10%) 
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(Bachman, Argani et al. 2004; Saal, Holm et al. 2005; Li, Rong et al. 2006; Maruyama, Miyoshi et 

al. 2007; Perez-Tenorio, Alkhori et al. 2007; Lai, Mau et al. 2008; Gonzalez-Angulo, Stemke-Hale 

et al. 2009; Kalinsky, Jacks et al. 2009; Michelucci, Di Cristofano et al. 2009) although some 

studies found similar frequencies of exon 9 and exon 20 mutations (Buttitta, Felicioni et al. 

2006; Barbareschi, Buttitta et al. 2007). This is in contrast to PIK3CA mutation in colorectal 

cancer where the helical domain mutations are predominant (Samuels, Wang et al. 2004). 

Helical domain and kinase domain mutations appear to be mutually exclusive although in rare 

cases tumor samples with double mutants were reported (Saal, Holm et al. 2005). However, it 

could be possible that these rare cases are multiclonal tumors with areas harboring one 

mutation and different areas expressing the other mutation type. PIK3CA mutations and loss of 

PTEN do not seem to be mutually exclusive events although in one report only little overlap 

between mutant PIK3CA and loss of expression of PTEN was found (Saal, Holm et al. 2005; 

Perez-Tenorio, Alkhori et al. 2007; Stemke-Hale, Gonzalez-Angulo et al. 2008; Li, Zhu et al. 

2010). 

 

 

6.4 Association of PIK3CA mutations with clinicopathological markers 

The association of PIK3CA mutations with clinicopathological parameters is still under debate. 

PIK3CA mutations associate significantly with ER- and PR-positive tumors (Saal, Holm et al. 

2005; Li, Rong et al. 2006; Maruyama, Miyoshi et al. 2007; Kalinsky, Jacks et al. 2009; Li, Zhu et 

al. 2010) although some studies failed to find significant association of PIK3CA mutations and 

ER (Buttitta, Felicioni et al. 2006; Barbareschi, Buttitta et al. 2007; Michelucci, Di Cristofano et 

al. 2009). In some studies an association of mutant PIK3CA with overexpression of the growth 

factor receptor ErbB2 (Saal, Holm et al. 2005) was observed whereas in other studies no such 

correlation could be detected (Li, Rong et al. 2006; Maruyama, Miyoshi et al. 2007; Li, Zhu et al. 

2010) or even an inverse correlation was observed (Buttitta, Felicioni et al. 2006; Perez-Tenorio, 

Alkhori et al. 2007; Kalinsky, Jacks et al. 2009). Further, mutations in PIK3CA correlated with the 

occurrence of lymph node metastases (Saal, Holm et al. 2005) whereas other studies failed to 
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detect a positive association with lymph node metastases (Buttitta, Felicioni et al. 2006; 

Maruyama, Miyoshi et al. 2007) or found H1047R mutations to anti-correlate with lymph node 

involvement (Kalinsky, Jacks et al. 2009). No association of mutant PIK3CA with mutation in the 

tumor suppressor gene TP53 was observed (Buttitta, Felicioni et al. 2006; Li, Rong et al. 2006; 

Maruyama, Miyoshi et al. 2007). Furthermore, no association with several clinicopathological 

markers was apparent when the helical and kinase domain mutation were analysed separately 

(Barbareschi, Buttitta et al. 2007). 

In one report, the presence of PIK3CA mutations correlated with tumor diameter and 

with well differentiated histology (Li, Rong et al. 2006), while in other reports no association of 

PIK3CA mutations with tumor size and histological grade was observed (Buttitta, Felicioni et al. 

2006; Maruyama, Miyoshi et al. 2007). In one study, even an association of PIK3CA mutations 

with small tumor size was reported (Perez-Tenorio, Alkhori et al. 2007). 

In terms of tumor histology, PIK3CA mutations were observed more frequently in 

invasive lobular carcinomas (ILC) (45% with PIK3CA mutations) than in invasive ductal 

carcinomas (IDC) (25%) (Buttitta, Felicioni et al. 2006; Maruyama, Miyoshi et al. 2007). 

Interestingly, a particular correlation of helical domain mutations with lobular carcinomas could 

be detected while no difference in the distribution of kinase domain mutations was found 

(Buttitta, Felicioni et al. 2006; Barbareschi, Buttitta et al. 2007). 

Similar frequencies of PIK3CA sequence alterations were observed in carcinomas in situ 

and adjacent invasive carcinomas suggesting that genetic mutations in PIK3CA occur relatively 

early in breast tumorigenesis (Dunlap, Le et al. 2010; Li, Zhu et al. 2010; Miron, Varadi et al. 

2010). This finding is consistent with a report that PIK3CA mutations were observed in breast 

tumor samples from various stages (I-IV) (Saal, Holm et al. 2005). Since PIK3CA mutations were 

rarely detected in ductal intraepithelial neoplasias (IDN) PIK3CA events mostly seem to occur 

during progression from IDN to the carcinomas in situ (Li, Zhu et al. 2010). 
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6.5 PIK3CA mutations and patient outcome 

Studies of PIK3CA mutants with respect to metastases-free survival and overall patient survival 

are contradictory. While some studies did not find a correlation of PIK3CA mutations with 

patient prognosis (Saal, Holm et al. 2005; Stemke-Hale, Gonzalez-Angulo et al. 2008; 

Michelucci, Di Cristofano et al. 2009) other studies associated PIK3CA mutations with worse 

outcome (Li, Rong et al. 2006) while in yet other reports a favorable outcome was associated 

with PIK3CA mutations (Maruyama, Miyoshi et al. 2007; Kalinsky, Jacks et al. 2009). The 

association of PIK3CA mutations with favorable patient outcome appears to be paradoxical 

given the potent transformation potential of PIK3CA mutation in vitro (Meyer and Bentires-Alj 

2010). One possible explanation for this “PIK3CA paradox” is that most experimental models 

assess effects on primary tumor growth and not metastases and long-term survival. 

Alternatively, PIK3CA mutations might only moderately activate the pathway and/or 

constitutive activity of mutant PIK3CA may induce negative feedback loops that preclude a 

more pronounced activation of the pathway (Li, DeFea et al. 1999). 

Interestingly, there was a significant difference between E542K/E545K and H1047R 

mutations in terms of patient outcome. While H1047R mutations were associated with 

improved survival (Barbareschi, Buttitta et al. 2007; Kalinsky, Jacks et al. 2009), E542K/E545K 

mutations predict poor prognosis for disease-free survival (Barbareschi, Buttitta et al. 2007). Of 

note, in the latter study no association with survival was found when both classes of PIK3CA 

mutation were combined (Barbareschi, Buttitta et al. 2007). Another group associated 

particularly H1047R mutations with a worse patient outcome, however, in these studies either 

only IDCs were used excluding for example ILCs in which helical domain mutations were shown 

to be enriched (Lai, Mau et al. 2008) or only aggressive ErbB2-positive and triple negative 

cancers, in which PIK3CA mutation are very rare, were analyzed (Lerma, Catasus et al. 2008; 

Michelucci, Di Cristofano et al. 2009). 
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Rationale and Aims of the Work 

Breast cancer is the most common form of cancer in women and accounts for more than 

450’000 deaths worldwide annually. Breast cancer treatment includes surgery, radio-, and 

chemotherapy, as well as targeted therapy for ER-positive and ErbB2-positive tumors. Many 

breast cancer patients show either de novo or acquired resistance to those therapies 

highlighting the urgent need for new therapeutic targets and preclinical models in which the 

molecular mechanisms of treatments and resistance can be studied. 

PIK3CA, which encodes the alpha catalytic subunit of PI3K, was found to be mutated at a 

high frequency in various types of cancer including breast cancer. These mutations result in 

constitutive activation of the enzyme and were demonstrated to be transforming in vitro and in 

vivo, however, whether mutant PIK3CA can initiate mammary carcinomas in mice was 

unknown.  

Mouse models of breast cancer including various transgenic mice overexpressing 

activated ErbB2 have made significant contributions to the understanding of the biology of 

breast cancer.  Given the high frequency of PIK3CA mutations in breast cancer, we decided to 

generate and characterize mouse models expressing the two most common activating 

mutations (E545K and H1047R). Our aims were: 

1) to investigate whether PIK3CA mutations induce carcinomas in the mouse and to 

characterize such tumors both, histologically and molecularly 

2) to identify molecular differences between E545K- and H1047R-evoked tumors 

3) to identify the cell(s)-of-origin for mutant PIK3CA-driven mammary tumors 
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Results and discussion of the published manuscript “Luminal 

Expression of PIK3CA Mutant H1047R in the Mammary Gland 

Induces Heterogeneous Tumors” 

Expression of PIK3CA H1047R in luminal mammary epithelial cells induces 

carcinomas 

To test whether PIK3CA H1047R evokes mammary carcinoma, we generated transgenic mice 

that conditionally expressed this mutation in the mammary epithelium. The correct integration 

of the construct in ES cells conditionally expressing PIK3CA H1047R (Figure 1A) was tested by 

Southern blotting and PCR (Figure 1B and data not shown). The ES cells were used to generate 

the H1047R line and the mutation was confirmed by DNA sequencing (Figure 1B right). Next, 

H1047R animals were crossed to WAPiCre mice in which expression of recombinase Cre was 

driven by the whey acidic protein (WAP) promoter that is active in alveolar progenitor cells and 

differentiated secretory luminal cells (Wintermantel, Mayer et al. 2002; Boulanger, Wagner et 

al. 2005; Booth, Boulanger et al. 2007; Bruno and Smith 2010). We also crossed H1047R animals 

to mice expressing Cre under the control of the mouse mammary tumor virus long terminal 

repeat (MMTV-Cre), which results in expression within luminal mammary epithelial cells 

(Andrechek, White et al. 2005). 

Female bi-transgenic WAPiCre H1047R mice and littermate controls (WAPiCre) were 

generated. Mammary glands from WAPiCre H1047R virgin mice had GFP-positive areas 

indicating expression of the oncogene (Figure 1C left). This is consistent with previous studies 

that reported activity of the WAP promoter in a fraction of mammary epithelial cells in virgin 

mice (Booth, Boulanger et al. 2007; Bruno and Smith 2010). Examination of whole-mounts and 

hematoxylin and eosin (H&E)-stained sections revealed on average 5.7 (±2.2) neoplastic lesions 

in glands from 21- to 24–week-old virgin WAPiCre H1047R mice but not from up to 18–week-

old WAPiCre H1047R virgin or age matched littermate controls (Figure 1C right). 

 



Part I: PIK3CA H1047R Induces Heterogeneous Mammary Carcinomas 

 

 

32 
 

 

 

Figure 1. Targeted expression of mutant p110α in luminal mammary epithelial cells. (A) Schematic of the 

construct used for generating transgenic mice conditionally expressing PIK3CA H1047R. The PIK3CA cDNA is 

flanked by a floxed STOP cassette upstream and an IRES2-EGFP reporter element downstream. Expression of 

PIK3CA H1047R is driven by a chicken β-actin (CAGS) promoter. (B) Southern blotting of genomic DNA from wild-

type and PIK3CA H1047R mice (left) and sequencing of genomic DNA from H1047R transgenic mice harboring a A 

to G mutation at nucleotide 3140 (right). (C) Left panel: Fluorescence images of glands from virgin WAPiCre control 

and virgin WAPiCre H1047R mice showing GFP expression. Right panel: Representative images of mammary glands 

from WAPiCre control mice (left), WAPiCre H1047R virgin mice between 12 and 18 weeks old (center), and 

WAPiCre H1047R virgin mice between 21 and 24 weeks old (right). Images show whole-mount preparations (top) 

and H&E-stained sections (bottom). The red arrows indicate neoplastic lesions. Inserts show the indicated areas at 

higher magnification. Table shows quantification of neoplastic lesions. Scale bars = 1 mm (whole mounts, 

fluorescence images) and 100 μm (H&E images). 
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The WAPiCre H1047R and control mice were impregnated to achieve maximal Cre-

mediated recombination and the pubs were removed the day after delivery. Whereas parous 

WAPiCre mice did not form tumors, WAPiCre H1047R mice developed mammary tumors on 

average 36.8 (±4.9) days after delivery of the pups, corresponding to an age of 140.3 (± 6.9) 

days (Figure 2A). Bi-transgenic MMTV-Cre H1047R mice and littermate controls (MMTV-Cre) 

were generated and left as virgins. Surprisingly, ~75% of the MMTV-Cre H1047R animals died 

before the age of 4 months. Although we did not identify the cause of death, we consider that 

leakiness of the MMTV promoter causing deleterious H1047R expression in tissues other than 

the mammary gland was a likely cause (D.S.M. and M.B-A., unpublished observations). 

However, ~25% of the MMTV-Cre H1047R mice were viable and formed mammary carcinomas 

on average after 214 (±22.6) days, whereas no tumors were detected in MMTV-Cre control 

mice (Figure 2B). 

Since the average age of tumor onset between parous WAPiCre H1047R and virgin 

MMTV-Cre H1047R mice differs by ~75 days (140.3 vs. 214 days), we sought to investigate 

whether pregnancy accelerates PIK3CA H1047R-driven tumorigenesis. To address this question 

we compared tumor onset in nulliparous and parous WAPiCre H1047R mice and found tumor 

onset to occur significantly earlier in parous mice than in nulliparous mice (Figure 2C). These 

data show that pregnancy accelerates tumor onset in WAPiCre H1047R mice. 
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Figure 2. WAPiCre H1047R and MMTV-Cre H1047R mice develop mammary tumors. (A) Kaplan-Meier curves 

showing tumor onset in bi-transgenic WAPiCre H1047R mice (n=12) and WAPiCre littermate controls (n=7). The 

mice were impregnated and the pups removed from the mothers the day after delivery. Bi-transgenic animals 

developed palpable tumors on average 36.8 (±4.9) days after delivery, corresponding to age 140.3 (±6.9) days. (B) 

Kaplan-Meier curves showing tumor onset in double transgenic MMTV-Cre H1047R mice (n=7) and MMTV-Cre 

littermate controls (n=8). MMTV-Cre H1047R mice developed palpable tumors on average within 214 (±22.6) days. 

(C) Kaplan-Meier curves showing tumor onset in virgin WAPiCre H1047R (n=7) and parous WAPiCre H1047R mice 

(n=12). Parous animals developed palpable tumors on average at 140.3 (±6.9) days and all animals had at least one 

tumor within 183 days of age. In contrast, by 170 days, only one out of seven virgin WAPiCre H1047R mice 

developed a tumor (at 141 days). The difference in tumor latency between parous and virgin animals is significant 

(P = 0.0006). 

 

We then assessed the mechanisms underlying the accelerated tumor onset seen in 

parous vs. nulliparous WAPiCre H1047R mice. Fluorescence images and Western Blot analysis 

showed enhanced GFP expression in glands from parous mice indicating an increase in the 

number of cells that underwent Cre-mediated recombination and thus expressed H1047R 
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(Figure 3). In addition, whole mounts of the involuting glands revealed a dramatic delay in 

involution in mice expressing PIK3CA H1047R compared with control animals (Figure 4A), which 

is in line with previous reports of a delayed involution when the PI3K pathway is hyperactivated 

(Schwertfeger, Richert et al. 2001; Li, Robinson et al. 2002). Immunostaining for cleaved 

caspase-3 revealed a decrease in the number of apoptotic cells in involuting glands from 

WAPiCre H1047R mice compared with control mice, suggesting that reduced cell death is the 

cause of the delayed involution (Figure 4B,C). Our results suggest, therefore, that the 

acceleration of tumor onset is most likely due to an increase in the number of cells expressing 

PIK3CA H1047R in parous glands and to impaired cell death in involuting glands with the 

H1047R mutation. Indeed, pregnancy-induced proliferation could facilitate the acquirement of 

further genomic alterations and therefore accelerates tumorigenesis. 

      

 

Figure 3. GFP expression in glands from virgin and parous WAPiCre H1047R mice. Fluorescence images of a gland 

from WAPiCre H1047R virgin mouse (left) and of a day 8-involuting gland (right) showing GFP expression (upper 

panel). Immunoblotting of mammary gland lysates from virgin and parous WAPiCre H1047R mice as indicated 

(lower panel). Scale bars = 1 mm. 
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Figure 4. Expression of PIK3CA H1047R delays mammary gland involution. (A) Representative images of 

involuting glands. The pups were removed from the mothers the day after delivery and the glands isolated 2 days 

(left panel) and 8 days (right panel) later. Whole mounts (left) and H&E-stained sections (right) are shown. (B) 

Cleaved caspase-3 immunostainings for glands at involution day 2 for both the WAPiCre control (left) and WAPiCre 

H1047R mice (right). (C) Relative proportion of cleaved caspase-3-positive cells in day 2-involuting glands from 

WAPiCre control (left) and WAPiCre H1047R mice (right). * P < 0.001. Scale bars = 1 mm (whole mounts) and 100 

μm (H&E images). 
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Analysis of RNA and proteins from WAPiCre H1047R and MMTV-Cre H1047R-induced 

tumors confirmed that mutant PIK3CA was expressed in the bi-transgenic mice (Figure 5A, B). In 

addition, tumors from both WAPiCre H1047R and MMTV-Cre H1047R mice showed threefold 

higher phospho-Akt levels than mammary tumors from the MMTV-NeuNT model. In contrast, 

activation of the Erk1/2 pathway in PIK3CA H1047R tumors tended to be weaker than in tumors 

from MMTV-NeuNT mice (Figure 5C). 

Our results show that luminal expression of PIK3CA H1047R induces mammary tumor 

formation. This is consistent with the observation that conditional expression of mutant PIK3CA 

H1047R in type II lung alveolar epithelial cells causes lung adenocarcinomas in transgenic mice 

(Engelman, Chen et al. 2008) and suggests that this mutation plays a causal role in epithelial 

cancers. 
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Figure 5. Tumors from WAPiCre H1047R and MMTV-Cre H1047R mice express mutant PIK3CA. (A) RT-PCR 

showing expression of PIK3CA H1047R in WAPiCre H1047R and MMTV-Cre H1047R mammary tumors but not in 

heart or kidney of a WAPiCre H1047R animal. (B) Expression of exogenous p110α as indicated by P110α-

immunoprecipitation (IP) from MMTV-NeuNT, WAPiCre H1047R, and MMTV-Cre H1047R tumor lysates using anti-

p110α (left) or anti-HA antibodies (right). (C) Immunoblotting of mammary tumor lysates from the indicated 

genotypes using the specified antibodies (left) and quantification of pErk1/2 and pAkt S473 signals (right). * not 

significant; **P <0.01; SN: supernatant. 

 



Part I: PIK3CA H1047R Induces Heterogeneous Mammary Carcinomas 

 

 

39 
 

WAPiCre H1047R and MMTV-Cre H1047R-evoked mammary tumors are 

heterogeneous 

To gain insight into significant patho-physiological features, 22 WAPiCre H1047R and 21 MMTV-

Cre H1047R-induced mammary tumors were characterized histologically. MMTV-Cre H1047R-

caused tumors showed multiple adenomyoepitheliomas, with clusters of well-delineated 

polypoid tumors composed of a mixture of glandular epithelium and interstitial fusiform cells 

with abundant polar cytoplasm (Figure 6 top row left). Similar tumors have been reported in 

MMTV-Cre/Ptenfl/fl/ErbB2KI mice, suggesting that an activated PI3K pathway mediates this 

histotype (Schade, Rao et al. 2009). 

In contrast, the WAPiCre H1047R mice formed a more diverse spectrum of tumors with 

five distinct histotypes. The most prevalent tumor phenotypes found are adenosquamous 

carcinomas (54.6%) and adenomyoepitheliomas (22.7%). Adenocarcinomas with squamous 

metaplasia (13.6%) and adenocarcinomas (9.1%) were also observed albeit at lower frequencies 

(Figure 6 top row and Figure 7A). All the glands surrounding the tumors displayed diffuse 

adenocarcinomatosis with invasive periductal cords of neoplastic epithelial cells in dense 

connective tissue (Figure 6 top row right). 

To further characterize H1047R-induced carcinomas, tumors were stained for luminal 

cytokeratin 18 (K18), basal/myoepithelial cytokeratin 14 (K14), and myoepithelial α-smooth 

muscle actin (α-SMA) markers, as well as for ER and the progesterone receptor (PR). Notably, 

~18 to ~26% of the tumor cells of the adenomyopitheliomas from both transgenic mice 

expressed ER and ~16% expressed PR in the luminal cells (Figure 6 and Figure 7B). Other tumor 

histotypes also contained ER-positive cells but at lower frequencies (<5%) (Figure 6 and Figure 

7B). WAPiCre- and MMTV-Cre H1047R tumors were positive for both luminal K18 and basal 

K14. The relative tumor area positive for K14 was ~15% in adenomyoepitheliomas and 

adenocarcinomatosis, whereas in the other phenotypes it ranged between 26% and 43%. The 

percentage of K18-positive tumor area was 25% in adenocarcinomatosis and ranged between 

36 to 45% in the other tumor histotypes (Figure 6 and Figure 7B). Although the majority of 
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tumor cells expressed either K18 or K14, some cells were positive for both K14 and K18 (Figure 

8A). As expected, the K14-positive cells within WAPiCre- and MMTV-Cre H1047R 

adenomyoepitheliomas were also α-SMA-positive (Figure 6). In contrast, the K14-positive cells 

within adenosquamous carcinomas observed in WAPiCre H1047R mice were largely negative 

for α-SMA, a characteristic of human metaplastic breast cancer in which PIK3CA is mutated in 

~50% of cases (Hennessy, Gonzalez-Angulo et al. 2009). Interestingly, all tumors showed very 

low rates of apoptosis (0.2-1.4%) (Figure 6 and Figure 7B), most likely due to the anti-apoptotic 

effect of an activated PI3K pathway. We also found the percentage of Ki-67-positive cells to be 

lower in adenomyoepitheliomas and adenocarcinomatosis than in all other tumor phenotypes 

(Figure 6 and Figure 7B). 
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Figure 6. WAPiCre H1047R and MMTV-Cre H1047R-evoked tumors express basal markers. (A) H&E-stained 

sections and immunostainings for ER, K18, K14, and α-SMA from MMTV-Cre H1047R adenomyoepithelioma and 

different WAPiCre H1047R tumor histotypes as indicated. 
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Figure 7. Quantification of H1047R-evoked tumors. (A) Relative prevalence of adenosquamous carcinoma (blue), 

adenomyoepithelioma (red), adenocarcinoma with squamous metaplasia (green), and adenocarcinoma (purple) 

among MMTV-Cre H1047R and WAPiCre H1047R-evoked tumors. (B) The table summarizes histological analysis for 

the markers ER, PR, K18, K14, α-SMA, Ki-67, and cleaved caspase-3 in 25 different tumors consisting of five distinct 

tumor histotypes from both WAPiCre H1047R and MMTV-Cre H1047R mice. Indicated is the proportion of positive 

tumor cells (ER, PR, Ki-67, cleaved caspase-3) or the positive tumor area (K18, K14, α-SMA). 

 

 

Figure 8. (C) Fluorescent image of DAPI staining (blue) and immunostaining of K18 (green) and K14 (red) in a 

WAPiCre H1047R tumor section. The arrow indicates K14/K18 double-positive cells. Asterisks indicate K14 and K18 

single-positive cells. (D) Images of immunostaining for GFP and K14 in WAPiCre H1047R (top) and MMTV-Cre 

H1047R tumor sections (bottom). Arrows indicate areas of K14/GFP double-positive cells. Scale bars = 100 μm. 
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These data show that luminal expression of PIK3CA H1047R can induce mammary 

tumors expressing the basal marker K14. To exclude the possibility that luminal PIK3CA H1047R 

induces expression of paracrine factors that transform basal cells, we analyzed K14-positive 

cancer cells for GFP expression by immunostaining and FACS. There was a significant overlap 

between K14 and GFP expression (Figure 8B), suggesting that some K14-positive cancer cells 

within the WAPiCre H1047R and MMTV-Cre H1047R tumors resulted from expression of the 

oncogene in luminal cells. This supports the emerging notion that some tumors with basal 

characteristics arise from luminal cells (Lim, Vaillant et al. 2009; Molyneux, Geyer et al. 2010). 

Taken together, our results show that luminal expression of PIK3CA H1047R evokes 

mammary tumors, recapitulating the heterogeneity of human breast cancer. These results lead 

to major conclusions. The finding that PIK3CA H1047R causes ER- and PR-positive tumors 

suggests that PI3K activity expands ER-positive mammary cells, consistent with the presence of 

PIK3CA H1047R mutations in human ER-positive tumors (Saal, Holm et al. 2005). 

The presence of cancer cells expressing luminal and basal markers in WAPiCre- and 

MMTV-Cre H1047R-evoked tumors suggests in both models that multipotent progenitor cells 

are the targets of H1047R-mediated transformation. The WAP promoter is active in a 

multipotent progenitor population, the parity-identified mammary epithelial cells (PI-MECs), 

which are present in nulliparous mice and are expanded after pregnancy (Booth, Boulanger et 

al. 2007; Bruno and Smith 2010). Tumors that developed in WAPiCre H1047R nulliparous mice 

most likely derived from PI-MECs because this is the cell population that expresses WAP-driven 

Cre in glands from nulliparous mice (Bruno and Smith 2010). PI-MECs were shown recently to 

be the target of MMTV-NeuNT-driven carcinogenesis (Bruno and Smith 2010; Jeselsohn, Brown 

et al. 2010). Therefore, it is plausible that PI-MECs are the cells-of-origin of cancer in both 

WAPiCre- and MMTV-Cre H1047R-evoked tumors but at this stage we cannot completely 

exclude that expression of PIK3CA H1047R in more differentiated cells also contributes to 

tumor formation in these models. 
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Figure 9. H&E-stained sections and immunostainings for K18 and K14 from MMTV-NeuNT-evoked tumors. Scale 

bars = 100 μm. 

 

The observation of different histotypes between WAPiCre H1047R- and MMTV-Cre 

H1047R-derived tumors has several possible explanations. First, WAPiCre H1047R mice but not 

MMTV-Cre H1047R mice went through pregnancy. Second, it is possible that the cellular targets 

of MMTV- and WAP- are overlapping but not congruent.  

The fact that tumors from MMTV-Cre H1047R but not MMTV-NeuNT mice express K14 

(Figure 6 and Figure 9) suggests a model in which PIK3CA H1047R transforms multipotent 

progenitors, allowing differentiation along the luminal and basal lineages. In contrast, the 

NeuNT oncogene favors luminal differentiation resulting in K18-positive but not K14-positive 

tumors. An alternative and more interesting explanation is that the MMTV promoter is active in 

differentiated luminal cells and H1047R causes their dedifferentiation to multipotent 

progenitor cells, which then give rise to K14- and/or K18-positive cancer cells. This would 

suggest a role for PIK3CA H1047R in cancer cell plasticity, a hypothesis that merits testing. 
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Results 

WAPiCre E545K but not PIK3CA wild-type mice form mammary tumors 

In order to test whether expression of wild-type PIK3CA (PIK3CAwt) or the helical domain 

mutation E545K induces mammary tumors we generated transgenic mice that carry a 

conditional allele of human PIK3CAwt or the E545K mutant cDNA analogous to the H1047R mice 

described before (see Figure 1 in section “Part I: Characterization of the WAPiCre H1047R 

Mouse Model”). We then crossed these mice to WAPiCre mice to obtain mammary gland 

specific expression of the transgenes. The resulting WAPiCre PIK3CAwt and WAPiCre E545K 

females were impregnated to induce maximal WAP activity and Cre-mediated excision of the 

STOP cassette and subsequently monitored for tumor formation. While WAPiCre PIK3CAwt mice 

did not develop mammary carcinomas after 230 days, WAPiCre E545K females had palpable 

tumors after an average of 80.8 (± 8.0) days (Figure 1). 

 

 

Figure 1. WAPiCre E545K mice develop mammary tumors with longer latency than WAPiCre H1047R mice. (A) 

Kaplan-Meier curves showing tumor onset in bi-transgenic WAPiCre H1047R mice (n=12), WAPiCre E545K mice 

(n=10) and WAPiCre PIK3CAwt females (n=7). The mice were impregnated and the pups removed from the mothers 

the day after delivery. Bi-transgenic H1047R animals developed palpable tumors on average 36.8 (±4.9) days after 

delivery, WAPiCre E545K mice formed tumors on average 80.8 (±8.0) days after delivery, whereas WAPiCre 

PIK3CAwt mice did not form palpable tumors after 230 days. 
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PIK3CA E545K is a weaker inducer of mammary carcinomas than H1047R 

Expression of both the helical domain and the kinase domain mutation caused tumor formation 

in vivo, however, the average latency to tumor onset was different (80 days for WAPiCre E545K 

vs. 37 days for WAPiCre H1047R). To gain insight into possible differences in molecular signaling 

pathways activated by the two different p110α mutants we performed immunoblotting for 

various signaling molecules including downstream effectors of PI3K such as Akt and mTOR 

(Figure 2). Surprisingly, lysates from WAPiCre E545K evoked tumors contained comparable 

phospho-levels for Akt, Erk1/2, mTOR and the ribosomal protein S6 which is a downstream 

target of mTOR. This finding suggests that in tumors, both activating mutations of PIK3CA 

activate the investigated downstream signaling to a similar extent. 

 

Figure 2. Tumors from WAPiCre H1047R and WAPiCre E545K mice express comparable levels of p-Akt, p-Erk1/2, 

p-mTOR, and p-S6. Immunoblotting of mammary tumor lysates from the indicated genotypes using the specified 

antibodies. 

 

Discussion and Outlook 

Parous WAPiCre PIK3CAwt mice do not form tumors after 230 days while mice expressing either 

E545K or H1047R mutant p110α develop mammary carcinomas after an average of 80.8 and 

36.8 days after delivery, respectively. This suggests that the tumorigenic effect caused by 

mutant PIK3CA is mostly due to the mutation rather than overexpression of the gene (Figure 1). 
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Furthermore, the shorter tumor latency observed in WAPiCre H1047R mice as compared to 

WAPiCre E545K animals suggests that p110α H1047R is a more potent oncogene than the 

helical domain mutation E545K which is in concordance with a previous study performed on 

chicken embryonic fibroblasts (Bader, Kang et al. 2006). The lipid product PIP3 was 

demonstrated to be essential for p110α-mediated transformation and therefore a simple 

explanation for the difference in tumor latency would be that p110α E545K produces less PIP3 

than H1047R resulting in less activation of the effector Akt and its downstream targets. 

However, levels of S473 phosphorylated Akt and S6, both indicating active PI3K signaling, are 

comparable in E545K- and H1047R-evoked tumors suggesting that the signaling amplitude 

induced by either mutant p110α E545K or H1047R is similar. Based on this finding and the fact 

that the helical and kinase domain mutants have different requirements for Ras and p85 (Zhao 

and Vogt 2008), it is tempting to speculate that these mutations might activate a distinct set of 

downstream pathways. 

In order to test this hypothesis we isolated RNA from a set of WAPiCre E545K and 

H1047R tumors and performed whole genome expression profiles. 

In the future we will: 

1) Test whether WAPiCre E545K mice produce a comparable set of tumor histotypes as 

WAPiCre H1047R mice. For this purpose we harvested tumors from WAPiCre E545K 

mice and we are currently analyzing their histology similar to that of WAPiCre 

H1047R-evoked tumors. 

2) Analyze whole gene expression profiles that we gained from WAPiCre E545K- and 

H1047R-evoked mammary tumors. 

3) Investigate whether involution in WAPiCre E545K mice is delayed as in WAPiCre 

H1047R mice. 
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Part III: Total Body Expression of Mutant PIK3CA 

Results in Premature Death and Alters Mammary 

Epithelial Cell Properties  
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Results 

Whole body expression of mutant PIK3CA is lethal 

In order to investigate how whole body expression of mutants of p110α affects the physiology 

of mice and whether they induce mammary tumors we crossed mice carrying a conditional 

allele of either wild-type, E545K or H1047R mutant PIK3CA to animals expressing a tamoxifen-

inducible CreERT2 fusion protein under the control of a chicken β-actin promoter (CAGS-

CreERT2 mice). CAGS-CreERT2 mice expressing conditional PIK3CA alleles were treated with 

tamoxifen on five consecutive days before two days without injection followed by another 

tamoxifen treatment for five consecutive days (Figure 1). 

 

 

Figure 1. Tamoxifen induction scheme. Control and CAGS-CreERT2 PIK3CA transgenic mice were injected on 5 

consecutive days with 1 mg tamoxifen. On days 6 and 7, the mice were left untreated before receiving tamoxifen 

injections for an additional 5 consecutive days. Note that in contrast to CAGS-CreERT2 PIK3CAwt or E545K mice, 

CAGS-CreERT2 H1047R mice were never injected with more than 5 doses of tamoxifen because they died within 

the first week of treatment. 

 

To test whether wild-type and mutant PIK3CA is expressed in the bi-transgenic mice and 

in the mammary gland in particular, we isolated mammary epithelial cells from mice of all 

genotypes. After growing them as spheroids in suspension culture for one week to increase the 

number of cells, we isolated RNA and performed reverse transcription-PCR (RT-PCR). Using 

primers specifically binding to the human PIK3CA gene and the HA-tag we detected a PCR 

product in all the transgenic mice but not in the control mice demonstrating expression of the 

transgene (Figure 2). 
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Figure 2. Wild-type and mutant PIK3CA are expressed in CAGS-CreERT2 PIK3CA mice. RT-PCR amplification of 

transgenic HA-PIK3CA was performed on cDNA from mammary cells isolated from mice with the indicated 

genotypes. cDNA from CAGS-CreERT2 mice and water served as negative controls (columns 1 and 6) and plasmid 

containing PIK3CA DNA was used as positive control (column 5). Cells isolated from CAGS-CreERT2 PIK3CAwt, 

E545K, and H1047R mice express the transgene (columns 2-4). RT-PCR amplification of gapdh was performed for 

equal loading (bottom row). 

 

While tamoxifen-induction in CAGS-CreERT2 mice expressing PIK3CA wild-type (CAGS-

CreERT2 PIK3CAwt) caused no obvious phenotype, tamoxifen-treated CAGS-CreERT2 expressing 

mutant PIK3CA E545K or H1047R developed a severe phenotype. CAGS-CreERT2 H1047R 

animals died within one week and CAGS-CreERT2 E545K mice within three weeks. Interestingly, 

even without any tamoxifen administration, both CAGS-CreERT2 H1047R and E545K mice died 

within 2 months and 4 months, respectively, which is most likely due to leakiness of the 

CreERT2 system. Although macroscopic analysis of organs including heart, liver, spleens, and 

colon revealed no obvious phenotype, hematomas on ears, tail and pads were observed (Figure 

3). 
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Figure 3. Whole body expression of mutant PIK3CA is lethal whereas expression of wild-type PIK3CA induces 

mammary carcinomas with a long latency. In the absence of tamoxifen, mice carrying a conditional allele of 

mutant H1047R or E545K develop hematomas on the ears, tail, and pads starting at the age of around 3 weeks. 

Eventually both, CAGS-CreERT2 H1047R and E545K mice, die prematurely within 2 and 4 months, respectively (top 

two panels).  Tamoxifen induction in these mice accelerates the phenotype and leads to death within 1 (CAGS-

CreERT2 H1047R) and 3 weeks (CAGS-CreERT2 E545K). Untreated CAGS-CreERT2 PIK3CAwt mice are of normal 

phenotype and do not die prematurely. Treatment of these mice with tamoxifen does not result in an abnormal 

phenotype at young age, however, at an average age of 429 (±25) days CAGS-CreERT2 PIK3CAwt mice develop 

mammary carcinomas with 100% penetrance as shown by the Kaplan-Meier curves. Red arrows point on 

hematomas observed on untreated CAGS-CreERT2 H1047R and E545K mice (bottom two panels). 
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To check what might cause the rapid death in CAGS-CreERT2 H1047R mice after 

tamoxifen induction, we administrated tamoxifen to CAGS-CreERT2 H1047R and CAGS-CreERT2 

control mice on 3 consecutive days and sent the animals to the company “Frimorfo” (Marly, 

Switzerland) for in-depth analysis. Since the only overt phenotype observed in CAGS-CreERT2 

H1047R mice were hematomas, the analysis carried out by Frimorfo was centered on blood 

coagulation, blood parameters, and metabolic parameters. 

The platelet counts were similar in control and CAGS-CreERT2 H1047R mice and the 

bleeding time and bone marrow histology were normal in the mutant mice. Based on these 

findings, a platelet defect in CAGS-CreERT2 H1047R animals can be excluded. Further, the 

coagulation cascade does not seem to be involved since both, Quick-time and TPP assays, 

produced similar results in control and CAGS-CreERT2 H1047R mice. Histological examination 

did not reveal major abnormalities in the vessel wall, however, in one CAGS-CreERT2 H1047R 

mouse, neovascularization of thrombotic vessels was taking place. In certain mutant animals 

vascular dilation occured, however, the cause for this observation could not be identified. 

Weakness of the vessel wall or a failure of the right heart might be the reason for this 

phenotype. 

Analysis of blood plasma revealed pathological values for some liver and pancreas 

enzymes. The levels of the enzymes glutamic pyruvic transaminase (GPT) and glutamic 

oxaloacetic transaminase were increased ~2 fold and the pancreatic enzyme amylase was 

elevated ~50% in CAGS-CreERT2 H1047R mice compared to control animals. Major differences 

were also detected for plasma metabolites. The plasma levels of glucose in CAGS-CreERT2 

H1047R mice were ~50% and the levels of triglycerides only ~20% of the levels in control 

animals. The detailed Frimorfo report is in the Appendix on page 93. 

Interestingly, induction of CAGS-CreERT2 PIK3CAwt mice with tamoxifen did not cause 

any phenotype comparable to that of PIK3CA mutant mice and the animals were healthy as 

were control mice. However, after a long latency of ~430 days, these mice started to develop 

mammary carcinomas with 100% penetrance. 
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CAGS-CreERT2 H1047R-derived mammary epithelial cells exhibit increased 

sphere-forming capacity 

To investigate whether the MECs from mice expressing wild-type or mutant PIK3CA have 

altered properties regarding self-renewal and proliferation, we isolated cells from the 

mammary glands of transgenic animals and cultured them in suspension as mammospheres. 

Mammospheres were first described by Dontu and co-workers (Dontu, Abdallah et al. 2003) as 

a surrogate assay for stemness/progenitor properties of epithelial cells. A stable number of 

mammospheres simplistically means that every mammosphere contains one mammosphere-

forming cell. If the number of spheres increases with passaging one mammosphere must 

contain more than one sphere-forming cell arguing for enhanced self-renewing to occur. The 

size of the spheres allows conclusions on the proliferative capacity of the sphere-forming 

epithelial cells. 

5’000 freshly isolated mammary cells were seeded as single cells and cultured for one 

week. Interestingly, cells isolated from mammary glands of CAGS-CreERT2 E545K or H1047R 

formed significantly more mammospheres than CAGS-CreERT2 control mice or mice expressing 

wild type PIK3CA (Figure 4A). Moreover, spheres expressing mutant p110α formed larger 

mammospheres (Figure 4B). For the subsequent passage (M1), mammospheres were 

enzymatically digested and 5’000 cells were seeded again as single cells. For the M1 passage 

only CAGS-CreERT2 control- and CAGS-CreERT2 H1047R-derived MECs were seeded. The 

number of mammospheres formed was similar to that in passage M0 (Figure 4A). 
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Figure 4. Mammary cells expressing PIK3CA mutants have enhanced sphere-forming capacity. (A) 5000 freshly 

isolated mammary cells from mice of the indicated genotypes were seeded in triplicates on a 24-well ultra-low 

attachment dish. Cells were grown in suspension for 7 days and the number of mammospheres (>50μm diameter) 

formed in each well was counted. For CAGS-CreERT2 control 15.7 (±3.7), for CAGS-CreERT2 PIK3CA 16.7 (±2.0), for 

CAGS-CreERT2 E545K 31.0 (±4.5), and for CAGS-CreERT2 H1047R 46.7 (±3.2) mammospheres were formed on 

average (M0, top). Mammospheres were enzymatically digested into single cells which were seeded again (M1, 

bottom). (B) Examples of typical M0 mammospheres from CAGS-CreERT2 control (top) and CAGS-CreERT2 H1047R 

cells are shown (bottom). Scale bar represents 200 μm. 

 

Expression of H1047R results in an accumulation of a mammary epithelial cell 

population enriched in ER-negative cells 

We next assessed whether expression of H1047R altered the mammary epithelial cell hierarchy. 

We isolated MECs from untreated seven-week old CAGS-CreERT2 control and H1047R mice and 

excluded lymphocytes via CD45 negative selection. Using the cell surface markers Sca-1 and 

CD24, we separated the epithelial cells into three subpopulations: Sca-1neg CD24med (enriched in 

stem cells and myoepithelial cells), Sca-1neg CD24high (enriched in ER- luminal epithelial cells), 
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and Sca-1pos CD24high (enriched in ER+ luminal epithelial cells). Analysis of MECs from glands 

expressing H1047R revealed a much less clear resolution into the subpopulations showing only 

two major populations (Figure 5A). Since the mice used for the FACS analysis were not induced 

with tamoxifen, only 25-35% of the epithelial cells were GFP-positive and therefore the density 

plot in Figure 5A represents the overlap of H1047R-expressing and –non-expressing cells. When 

we restricted the analysis on the H1047R cells expressing GFP, resolution into the three 

subpopulations was possible, however, a dramatic accumulation of Sca-1neg CD24high cells was 

manifested (Figure 5B). While in the normal gland ~30% of the epithelial cells are Sca-1neg 

CD24high this population accounts for ~85% of mutant epithelial cells (Figure 5B). These data 

suggest that H1047R expression results in an accumulation of the Sca-1neg CD24high cell 

population. 

 

Figure 5. FACS analysis of cells from CAGS-CreERT2 H1047R mammary glands reveals a dramatic accumulation of 

Sca-1neg CD24high cells. (A, top) Mammary gland cells were isolated from at least 7 mice and digested to single cells 

which were stained for CD45, CD24 and Sca-1. The CD45- epithelial cells from both control (left) and CAGS-CreERT2 

H1047R mutant mice (right), were separated based on their expression levels of CD24 (x-axis) and Sca-1 (y-axis). 

(A, bottom). Histograms show expression levels of GFP (x-axis) in mammary epithelial cells from above. (B) 

Distribution of only GFP+ mammary epithelial cells from CAGS-CreERT2 H1047R mice based on their expression 

levels of CD24 (x-axis) and Sca-1 (y-axis). 
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CAGS-CreERT2 H1047R mutant MECs produce aberrant outgrowths and 

mammary tumors eventually 

The major aim of generating mice expressing mutant PIK3CA H1047R in all cells (CAGS-CreERT2 

H1047R) was to investigate whether such mice would develop mammary carcinomas and, if so, 

whether these tumors are different from tumors formed in mice specifically expressing mutant 

H1047R in luminal mammary epithelial cells (WAPiCre H1047R). Since CAGS-CreERT2 H1047R 

mice die before overt tumor onset, we transplanted the mammary epithelium of CAGS-CreERT2 

H1047R and CAGS-CreERT2 control mice into wild-type Balb/c recipient mice. We isolated the 

mammary glands of the donor mice, chopped them into pieces, and digested them 

enzymatically. The resulting organoids were incubated as suspension culture over night and 

injected the next day into cleared fat pads of three-week old recipient mice. The outgrowth was 

scored six to twelve weeks after the transplantation. Whole mount preparations revealed that 

transplanted control epithelium repopulated the whole fat pad while H1047R mutant 

epithelium was hyperplastic and repopulated the fat pad only partially (Figure 6A). H&E 

stainings prepared from glands isolated six weeks after transplantation confirmed the 

hyperplastic phenotype of H1047R mutant epithelium (Figure 6B). 

 

Figure 6. CAGS-CreERT2 H1047R derived mammary epithelial cells form aberrant outgrowths in vivo. (A) 

Mammary glands from donor CAGS-CreERT2 control and CAGS-CreERT2 H1047R mice were isolated and digested 

enzymatically. The resulting organoid suspension was injected with matrigel into cleared fat pads of three-week 

old Balb/c recipients. 6 weeks after transplantation the glands were harvested and prepared as whole mounts. 

Scale bars represent 2mm. (B) H&E sections showing outgrowth produced by CAGS-CreERT2 H1047R (left) and 

control epithelium (right). Scale bar represents 100 μm. 
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The recipient mice transplanted with control or mutant epithelium were monitored for 

tumor formation. As expected, mice transplanted with control tissue did not form any tumors 

while mice with H1047R mutant epithelium developed mammary carcinomas after 221.3 

(±20.3) days. By the end of the study 16 mice that formed H1047R mutant donor epithelium 

outgrowths developed a mammary tumor while only 3 mice did not (Figure 7). 

 

Figure 7. CAGS-CreERT2 H1047R-derived mammary epithelial cells form tumors in vivo. Kaplan-Meier curves 

showing tumor onset in Balb/c mice transplanted with CAGS-CreERT2 H1047R mutant epithelium (n=19). 16 mice 

developed palpable tumors on average 221.3 (±20.3) days after transplantation. Three mice (15.8 %) showed 

aberrant outgrowths but did not form a mammary tumor by the end of the study (320 days after transplantation). 

 

Discussion and Outlook 

Upon tamoxifen induction the three CAGS-CreERT2 PIK3CA transgenic mouse lines express 

either wild-type or mutant PIK3CA E545K or H1047R. Expression of H1047R or E545K caused 

premature death within one or three weeks, respectively. Since there is a certain degree of 

leakiness inherent to this Cre-mediated recombination system (data not shown), even CAGS-

CreERT2 H1047R and E545K mice that were not induced with tamoxifen died within two or four 

months, respectively. We found that, starting from the age of three weeks, transgenic mice 
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started to develop large hematomas underneath the skin of the ears, tail, and pads (Figure 3) 

without the administration of tamoxifen. This suggested a coagulation problem or enhanced 

leakiness of blood vessels as a result of mutant p110α expression. Further analysis of the 

transgenic animals by Frimorfo (Marly, Switzerland), however, revealed that a platelet defect 

can be excluded and that bleeding time and blood coagulation are not affected in CAGS-

CreERT2 H1047R mice. 

Of note, CAGS-targeted expression of the transgene seems to affect various organs 

including liver, pancreas, and the cardiovascular system (blood vessels) as plasma levels of 

some liver and pancreatic enzymes and of the metabolites glucose and triglycerides are 

pathologic. The dramatic change in glucose and triglycerides might not be surprising given the 

important role of PI3K and its downstream effectors in the regulation of metabolism 

(Engelman, Luo et al. 2006; Manning and Cantley 2007). Recently, p110α was demonstrated to 

be an important mediator of insulin metabolic action in liver and glucose homeostasis and 

ablation of p110α in the liver caused an increase of serum glucose levels which is in line with 

our finding of decreased glucose levels in the PIK3CA H1047R mutant mice (Sopasakis, Liu et al. 

2010). 

In conclusion, the examination by Frimorfo shows that bleeding time and blood 

coagulation are not affected in CAGS-CreERT2 H1047R mice. Although PIK3CA H1047R 

expression affects plasma levels of glucose and triglycerides and causes pathological levels of 

some liver and pancreatic enzymes the cause for the hematomas and premature death remains 

unclear and merits further analysis. Of note, CAGS-CreERT2 E545K show hematomas much like 

CAGS-CreERT2 H1047R mice and die prematurely albeit with a longer latency. The fact that 

CAGS-CreERT2 E545K mice show a similar but weaker phenotype than CAGS-CreERT2 H1047R 

mice is interesting and is in line with the weaker potency of E545K to induce mammary 

carcinomas in mice as compared to H1047R mice. Once more, this raises the question about the 

mechanism explaining this difference in potency. The easiest explanation would be that E545K 

is a less potent activator of downstream signaling than H1047R. However, at least in mammary 

carcinomas, induced by mutant p110α, no difference in the signaling amplitude could be 
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detected using phosphorylation of Akt, mTOR, and S6 as read-outs. As discussed in the previous 

section, it might be that the two types of mutations activate a slightly different set of 

downstream pathways, a hypothesis that merits testing. 

The observation that tamoxifen-induced CAGS-CreERT2 PIK3CAwt mice develop 

mammary tumors after ~430 days is interesting for two reasons. On the one hand, this is the 

only obvious phenotype that we observed with any mouse model expressing wild-type PIK3CA 

(WAPiCre PIK3CAwt, CAGS-CreERT2 PIK3CAwt) and demonstrates that the additional copy of 

human PIK3CA on top of endogenous PIK3CA allows transformation and induction of mammary 

tumors in mice. On the other hand, we have not observed any tumors in mice expressing wild-

type PIK3CA targeted by the WAP promoter 240 days after delivery which corresponds to ~320 

days of age (see Figure 1, part II) indicating that the WAPiCre PIK3CAwt mice might develop 

tumors as well as they become older. Alternatively, and more interestingly, the CAGS promoter 

might target PIK3CAwt expression to a mammary epithelial subpopulation which is susceptible 

to PIK3CAwt-evoked tumorigenesis but not targeted by the WAP promoter. 

When cells from mammary glands of CAGS-CreERT2 PIK3CA mutant mice were seeded 

in suspension they formed more mammospheres which are generally larger than those derived 

from control mice. In line with the difference in tumor latency and induction of premature 

death, this phenotype was more pronounced in cells expressing H1047R which formed around 

three times more mammospheres than control cells whereas cells expressing E545K formed 

only twice the number of spheres than control cells. Interestingly, no difference in sphere 

number was observed in cells expressing wild-type PIK3CA as compared to control cells, 

suggesting that the enhanced sphere-forming capacity of cells expressing mutant PIK3CA is due 

to the oncogenic mutation rather than overexpression. The fact that after one passage the 

number of spheres remained the same in both control and H1047R mutant cells (Figure 4A), 

suggests that expression of mutant PIK3CA does not affect the self-renewing capacity of mutant 

MECs but may still affect survival of these cells. However, more and larger spheres were formed 

by mammary cells expressing mutant PIK3CA indicating that the proliferative capacity of these 

cells is enhanced. In concordance with our findings, Korkaya et al. found that activation of the 
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PI3K pathway via PTEN knockdown in human MECs increased the number and size of 

mammospheres in suspension (Korkaya, Paulson et al. 2009). 

While control organoids reconstituted the whole fat pad, when transplanted into 

cleared recipient glands, CAGS-CreERT2 H1047R-derived organoids produced outgrowths that 

were hyperplastic and the mutant epithelium reconstituted the fat pad only partially (Figure 

6A). We can only speculate why mutant mammary epithelium results in solely partial 

outgrowth in recipient fat pads at this stage of the study. It might be possible that expression of 

mutant PIK3CA results in a depletion of mammary stem cells (Figure 5). Alternatively, there 

might be a defect in cap cells which are required for the protrusion of the mammary epithelial 

cells through the mammary fat pad. The progression of the hyperplasias produced by H1047R 

mutant organoids into carcinomas is in concordance with the oncogenic potential of mutant 

p110α in vivo we and others observed (Figure 2 part I; Figure1 part II) (Adams, Xu et al. ; Bader, 

Kang et al. 2006; Engelman, Chen et al. 2008). It will be interesting to analyze the tumor 

histotypes produced by the transplanted CAGS-CreERT2 H1047R-derived organoids since the 

expression of PIK3CA H1047R is allowed in all the epithelial subpopulations. Therefore other 

cells (e.g. basal epithelial cells) could serve as the cell-of-origin in these glands which might 

result in tumor histotypes different from the ones we observed in tumors where H1047R 

expression was targeted to cells in which the WAP or MMTV promoter is active. 

In FACS experiments, we observed a strong accumulation of cells expressing H1047R 

(GFP-positive cells) within the CD24high Sca-1- population. This population, at least in the normal 

mammary gland, is enriched in ER- luminal epithelial cells and possesses limited mammary 

gland repopulating activity (Sleeman, Kendrick et al. 2007). In contrast, only ~15% of GFP-

positive cells were found in the CD24high Sca-1+ and CD24med Sca-1- population, respectively. 

This data indicates that in CAGS-CreERT2 H1047R transgenic mice the basal cell compartment 

which includes mammary stem cells and myoepithelial cells as well as the ER+ enriched 

population are depleted (Figure 5B). This finding is consistent with reports demonstrating the 

importance of PTEN for the maintenance of hematopoietic stem cells (HSC) as the absence of 

PTEN drove HSCs into cell cycle resulting in the depletion of HSCs and the initiation of leukemia 
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(Yilmaz, Valdez et al. 2006; Zhang, Grindley et al. 2006). In a murine model of prostate cancer, 

deletion of PTEN led to the expansion of a prostatic stem/progenitor cell subpopulation and 

tumor initiation (Wang, Garcia et al. 2006). In light of these observations, we speculate that 

expression of mutant H1047R results in an expansion of a mammary progenitor population that 

eventually gives rise to mammary carcinomas. However, this hypothesis is relying on FACS 

analysis based on the expression of the markers CD24 and Sca-1. Thus, we cannot exclude that 

mammary epithelial cells start to express different levels of CD24 and/or Sca-1 once they 

express H1047R, and therefore, would cause a shift in the FACS profile. Further experiments are 

required to confirm the depletion of basal cells and expansion of a progenitor population 

including transplantation assays and proper characterization and quantification of the FACS 

sorted populations based on the expression of differentiation markers (K14, K18, ER) and 

colony-forming capacity. 
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Summary and Outlook 
 

We demonstrated that expression of PIK3CA E545K or H1047R in the mammary gland evoked 

heterogeneous tumors that recapitulated features of human disease and that a multipotent 

progenitor was likely to be the target of mutant PIK3CA-induced tumorigenesis. Notably, the 

H1047R mutant was a more potent inducer of mammary carcinomas than the E545K mutant.  

We showed that whole body expression of PIK3CA mutants E545K or H1047R in mice 

resulted in premature death, however, the cause of death remains unclear. We further 

demonstrated that H1047R expression in all cells resulted in the formation of mammary 

carcinomas upon transplantation of the mutant mammary epithelium into recipient mice.  Of 

note, expression of H1047R in all cells of the mammary gland resulted in an accumulation of a 

mammary epithelial cell subpopulation that is enriched in ER-negative luminal epithelial cells 

and we therefore speculate that cells within that mammary epithelial subpopulation are the 

targets of H1047R-mediated carcinogenesis. 

In the future the mutant PIK3CA mouse models generated in the present work should 

be helpful for detecting collaborating pathways in mutant PIK3CA-induced tumorigenesis. In 

addition, several kinase inhibitors targeting PI3K are in clinical trials and these mouse models 

should help anticipate potential mechanisms of resistance and test combination therapies that 

may synergize with PI3K inhibition. 
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Material and Methods 

Transgenic Mice 

We constructed a vector with a transcriptional STOP sequence flanked by loxP sites upstream of 

the 5’-terminally HA-tagged human PIK3CA cDNA (Addgene) and an IRES2-EGFP reporter 

element (pIRES2-EGFP vector, Clontech). The resulting loxP-STOP-loxP-HA-PIK3CA-IRES2-EGFP 

fragment was cloned into a recombination-mediated cassette exchange (RMCE) plasmid. The 

vector was introduced into the modified Rosa26 locus of Balb/c mouse embryonic stem (ES) 

cells by RMCE and the ES cells used for blastocyst injection (Tchorz, Kinter et al. 2009). Chimeric 

mice were mated with Balb/c mice and transgenic mice identified by genotyping using the 

primers 5’-TGGCCAGTACCTCATGGATT-3’ and 5’-GCAATACATCTGGGCTACTTCAT-3’. FVB/N-

Tg(MMTV-Cre) and FVB/N.B6-Tg(WAPiCre) mice were described previously (Wintermantel, 

Mayer et al. 2002; Andrechek, White et al. 2005). Tg(MMTV-Cre) mice are in the FVB/N 

background and B6-Tg(WAPiCre) mice were backcrossed for five generations to an FVB/N 

background. MMTV-NeuNT (strain TG.NK) mice were purchased from Charles River 

(Wilmington, MA). 

 

Immunohistochemistry 

The following antibodies were used: K14 (Thermo Scientific, RB-9020, 1:1000), K18 (Fitzgerald, 

#GP11, 1:500), GFP (Invitrogen, A11122, 1:500), ER (Santa Cruz, SC-542, 1:1000), PR (Thermo 

Scientific, RM-9102, 1:200), α-SMA (Thermo Scientific, RB-9010, 1:500), cleaved caspase-3 (Cell 

Signaling, #9661, 1:100), and Ki-67 (Thermo Scientific, RM-9106, 1:1000). 
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Protein Analysis 

Mouse tumors were lysed in a modified RIPA buffer [50mmol/L Tris-HCl (pH 7.5); 1% NP40; 150 

mmol/L NaCl; 0.5% sodium deoxycholate; 0.1% SDS; 5 mmol/L EGTA; 2 mmol/L 

phenylmethylsulfonyl fluoride; 2 μg/mL each of aprotinin, leupeptin, and pepstatin; 2 mmol/L 

Na3VO4; 10mmol/L NaF; 10mmol/L β-glycerophosphate; 10mmol/L sodium pyrophosphate]. For 

immunoprecipitation, samples were lysed in Co-IP buffer [25mM Tris-HCl (pH 7.5); 2.5mM 

EGTA; 75mM NaCl; 0.75mM MgCl2; 12.5mM β-glycerophosphate; 12.5mM NaF]. Antibodies 

were purchased from Cell Signaling except for α-GFP (MBL), α-K14 (Thermo Scientific), and α-

HA (Covance). 

 

Statistical analysis 

Survival curves were generated using the Kaplan-Meier method with the software StatView. 

 

Southern Blot 

12 μg of genomic DNA isolated from mouse tails were digested with a total of 8 U of AvrII 

enzyme (New England Biolabs) and separated on a 1% Agarose gel. A DIG-labeled DNA probe 

targeting the neomycin resistance cassette was amplified using the PCR DIG Probe Synthesis Kit 

(Roche) and the primers ATGGGATCGGCCATTGAACAAGAT and CGGCCATTTTCCACCATGATAT. 

 

RT-PCR 

RNA was isolated from 100-200 mg of mouse tissue using Trizol (Invitrogen) according to the 

manufacturer’s protocol. Traces of contaminating DNA were removed by a 30 minutes 

incubation of 5μg of RNA with TURBO DNase (Ambion) at 37°C and RT-PCR performed using the 

ThermoScript RT-PCR System (Invitrogen). Taq Man polymerase and appropriate buffers were 



Material and Methods 

 

 

66 
 

purchased from New England Biolabs. Human PIK3CA was detected using the primers 

CAGATCCCAGTGTGGTGGTACG and CCTCACGGAGGCATTCTAAAGT and endogenous gapdh was 

detected using the primers CATCAAGAAGGTGGTGAAGC and GGGAGTTGCTGTTGAAGTCG. 

 

MEC isolation and mammosphere assay 

Mammary glands were isolated from mice and chopped into fine pieces using a razor blade. The 

pieces were digested on a rotor shaker at 37 degrees in a solution containing DMEM-F12 

medium (Gibco), collagenase *300 U/ml+, hyualuronidase *100 U/ml+, insulin *10μg/ml+, 

hydrocortisone *0.5μg/ml+, β-mercaptoethanol (1:250’000), and antibiotics (penicillin and 

streptomycin) for 2-3 hours. The resulting organoid suspension was incubated with red blood 

cell lysis buffer to remove erythrocytes. After washing with PBS, organoids were incubated for 

5-10 minutes with HiQtase at 37 degrees and pipetted up and down extensively to produce 

single cells. After washing with 2% fetal calf serum FBS the cells were resuspended in 

suspension medium consisting of DMEM-F12 medium, 1X B27 supplement (Invitrogen), 

recombinant FGF [20ng/ml], mouse EGF [20ng/ml], and gentamycin [100 μg/ml+ and filtered 

through a 40 μm cell strainer. 5’000 cells were seeded in 0.5 ml of suspension medium into 

wells of a 24-well dish. For passaging spheres were collected and digested in 0.05% Trypsin 

solution at 37 degrees for 5 minutes. Cells were resuspended in suspension medium, filtered 

through a 40 μm cell strainer, and were counted before seeding as single cells analogue to first 

passage. 

 

FACS analysis 

Isolation of MECs was performed according to the protocol of Sleeman and co-workers 

(Sleeman, Kendrick et al. 2006) with the exception of the antibody that was used to stain CD24. 

We used a PerCP/Cy5.5-labeled anti-mouse CD24 antibody (Biolegend, #101823, 1:33).
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