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Summary

Long-term biological surveys that use a constant sampling regime are rare. This is un-

fortunate, as understanding complex biological systems often requires long-term stud-

ies. A promising source of long-term data could be the biodiversity monitoring schemes

that were implemented in many countries some decades ago. However, scientists have

criticized biodiversity monitoring programs and other long-term surveys because they

often lack well-articulated scientific hypotheses that were formulated prior to data col-

lection. This is probably the main reason why scientists working on functional biology

have only rarely used existing data from such monitoring programs, leading to the fact

that a huge body of long-term data is still awaiting analysis.

In the first part of this thesis, I aimed to improve methods for analysing long-term

survey data. I developed a new method to estimate demographic parameters without

the need to individually mark the animals. Using that method, I was able to obtain

yearly survival rates of Nightingales (Luscinia megarhynchos) that were very similar to

the survival estimates obtained from a traditional mark-recapture model applied to the

ringing data from the same nightingale population. Since data for traditional mark-

recapture analyses are rarely available for large spatial scales, the developed model could

open up new possibilities by making the data of long-term surveys available for research

on animal demography. I presented such an application by applying the developed

model to data on Yellowhammers (Emberiza citrinella) from the nation-wide common

bird census in Switzerland. I found that territories were colonized at the highest rates in

the lowlands. This was in contrast to survival, which was relatively low in the lowlands

but tended to increase with altitude. These estimates on demographic rates could not

be predicted from the altitudinal patterns of Yellowhammer abundance, which shows

highest densities at low altitudes. By providing information on demographic rates,
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0. SUMMARY

our demographic monitoring framework thus considerably broadens the possibilities

for biological inference based on data from large-scale bird monitoring programs.

Important benefits from analysing data of long-term surveys are that these data can

be used either to generate new hypotheses about the biological system or to test hy-

potheses that otherwise would have needed a long-running and expensive experiment.

In the second part of the thesis, I presented four case studies with such analyses of

long-term survey data. I used the survey data on singing activity in male nightingales

to formulate hypotheses about the prospecting activity of females. I then tested the

predictions in an experimental setup. I found that the timing of female prospecting

corresponded to the period of the night when the singing activity of unpaired males

was higher than that of paired males. In contrast to females, territory searching males

have been shown to prospect territories almost exclusively during the dawn chorus.

At dawn, both paired and unpaired males sang at high rates, suggesting that in con-

trast to nocturnal singing, dawn singing is important to announce territory occupancy

to prospecting males. In the nightingale, the sex-specific timing of prospecting thus

corresponded to the differential signalling routines of paired and unpaired males, and

the temporal patterns in the behaviour of signallers and receivers thus appeared to be

mutually adapted.

In two further case studies, I tested the effectiveness of agri-environment schemes

(AES) to promote general biodiversity in the agricultural landscape of the canton Aar-

gau, and to reduce homogenization of floristic communities in Swiss grassland. In the

first study, I found that in vascular plants and snails, the species richness increased on

plots with AES, but not on control plots without AES, whereas in butterflies and birds,

no significant differences were found between AES plots and control plots. I concluded

that the agri-environment scheme in the canton of Aargau was effective in protecting

and promoting biodiversity, but that the effect depended on the group of organisms.

However, when I analysed the grassland of entire Switzerland, I found that in the last

decade the floristic communities became more and more similar. Thus, I concluded

that local-scale changes in land use regimes implemented by agri-environment schemes

and other conservation efforts on parts of the grassland area were apparently not yet

sufficient to prevent an overall taxonomic homogenization in the Swiss grassland.
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Résumé

Des études biologiques à long terme avec un échantillonnage constant sont rares. Cela

est regrettable, puisque des suivis à long terme sont souvent nécessaires pour aider à

comprendre les systèmes biologiques complexes. Les programmes de suivi de la biodiver-

sité qui ont été impliqués dans certains pays durant les dernières années pourraient donc

être une source de données provenant d’études biologiques à long terme intéressante.

Toutefois ces programmes de suivi de biodiversité et d’autres études biologiques à long

terme ont été critiqués par des scientifiques car souvent des hypothèses scientifiques

précises formulées avant la collection de données manquent. Probablement cela est la

raison principale pour laquelle des scientifiques travaillant dans le domaine de la biolo-

gie fonctionnelle ont jusqu’à présent que rarement travaillé avec des données existantes

provenant de tels programmes de suivi de biodiversité. Suite à ce fait, un grand nom-

bre de données provenant d’études biologiques à long terme est encore et toujours en

attente d’être analysé.

Dans la première partie de ma thèse de doctorat j’ai essayé d’améliorer les méthodes

d’analyse pour des données provenant de suivis à long terme. Dans ce contexte, j’ai

développé une nouvelle méthode qui permet d’estimer les données démographiques sans

qu’il soit nécessaire de marquer des animaux individuellement. J’ai utilisé cette méthode

pour calculer le taux de survie pour une population du Rossignol philomèle (Luscinia

megarhynchos) ce qui a produit des résultants très similaires aux résultats provenant

d’un modèle traditionnel marquage-recapture appliqué à la même population de Rossi-

gnols philomèles bagués. Les données nécessaires pour les analyses marquage-recapture

traditionnelles sont rarement disponibles pour des régions entières. Le modèle développé

pourrait donc viabiliser de nouvelles possibilités en rendant accessibles les données

de suivis à long terme pour la recherche concernant la démographie d’animaux. J’ai

présenté une telle application ou le modèle à été appliquée aux données du Bruant jaune
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0. RÉSUMÉ

(Emberiza citrinella) provenant du monitoring des oiseaux nicheurs répandus de Suisse.

Les résultats montraient que les territoires en plaine sont occupés avec le taux le plus

élevé alors que le taux de survie a été relativement faible en plaine et semble augmenter

avec l’altitude. La prédiction de ces estimations pour des paramètres démographiques

ne serait pas possible si seulement la distribution altitudinale du Bruant jaune, qui

démontre que les densités les plus élevées sont observées en plaine, serait connue. Notre

système de suivi démographique permet donc de nouvelles possibilités d’analyses pour

les données provenant de programmes de suivi ornithologiques de grande taille.

L’analyse de données provenant de suivis à long terme à des avantages importants

car ces données peuvent être utilisés pour élaborer de nouvelles hypothèses concernant

le système biologique ainsi que pour tester des hypothèses existantes dont la vérification

aurait autrement nécessité d’une expérience de longe durée et à des cots élevés. Dans la

deuxième partie de ma thèse de doctorat j’ai présenté quatre études exemplaires avec ce

type d’analyse avec des données provenant de suivis à long terme. J’ai utilisé les données

d’un suivi de l’activité du chant chez des Rossignols philomèles mâles afin de pouvoir

formuler des hypothèses concernant la prospection des territoires par les femelles. J’ai

en suite testé les prédictions résultants dans une expérience et trouvé que les femelles

prospectent les territoires durant la nuit, ce qui est la période dans laquelle les mâles

non accouplés chantent plus intensivement que les mâles accouplés. Contrairement aux

femelles, les mâles prospectaient des territoires presque exclusivement durant l’aube.

Puisque l’aube est la période où tous les mâles – accouplés ou non accouplés – chantent

très intensivement cela laisse supposer que le chant durant l’aube est surtout censé

aider à défendre les territoires contre les autres mâles contrairement aux objectifs du

chant nocturne. Chez le Rossignol philomèle le moment de la prospection de territoires

différait donc entre les sexes et correspondait au comportement différent des mâles

accouplés et des mâles non accouplés. Le comportement des individus émettant les

signaux et des individus qui les perçoivent semble donc être évolué de manière mutuelle.

Dans les deux études suivantes j’ai testé l’efficacité des systèmes agro-environnemen-

taux pour promouvoir la biodiversité dans le paysage agricole du canton d’Argovie

ainsi que pour réduire l’uniformisation des communautés floristiques dans les prairies

suisses. Dans la première étude j’ai pu démontrer que le nombre d’espèces de plan-

tes vasculaires et de mollusques a augmenté sur les surfaces bénéficiant d’un système

agro-environnemental contrairement au nombre d’espèces sur les surfaces sans système

vi



agro-environnemental. Cependant aucun effet significatif n’a pu être démontré pour les

papillons diurnes ainsi que pour les oiseaux. De ces résultats j’ai conclu que le système

agro-environnemental du canton d’Argovie était efficace pour protéger et promouvoir

la biodiversité mais que cet effet dépendait des groupes d’organismes étudiés. L’analyse

des prairies de toute la Suisse a relevé une homogénéisation des communautés floris-

tiques lors les dernières dix années. De ce résultat j’ai conclu que les changements

impliqués à l’échelle régionale par des systèmes agro-environnementaux et d’autres me-

sures de conservation ne semblent pas avoir un effet suffisant pour pouvoir stopper

l’homogénéisation des communautés floristiques observés dans les prairies à l’échelle

nationale Suisse.
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1. THESIS INTRODUCTION

1.1 Long-term surveys in biology

Much of contemporary ecology and conservation biology is concerned with detecting

and understanding temporal changes in biological systems, such as changes in the

abundance of single species, changes in the compositions of species of a community or

the functioning of entire ecosystems (Caughley 1994, Norris 2004, Royle and Dorazio

2008). Yet, temporal changes of biological systems may often be small and difficult to

detect; furthermore, we usually have little knowledge concerning the time-lags between

a given effect and its related responses (Lepetz et al. 2009, van Strien et al. 2011).

Thus, understanding changes in biological systems requires long-term studies on data

that are collected using a constant sampling scheme (Yoccoz et al. 2001, Walther et al.

2002, Lepetz et al. 2009, Szabo et al. 2010). An impressive example for the collection of

long-term data is the continuous plankton recorder survey (Reid et al. 2003). Analysing

the data that were continuously recorded since 1931 has provided important insights

into broad study areas and ecological phenomena such as eutrophication, biodiversity

and climate change (Reid et al. 2003). The scientific value of the continuous plankton

recorder survey is reflected in the number of almost 900 scientific papers that have been

published by the end of 2001 (Olson et al. 1966, Reid et al. 2003).

Unfortunately, long-term biological surveys that use a constant sampling regime are

rare for several reasons (Wolfe et al. 1987, Magurran et al. 2010). Probably the most

important reason is that collecting high-quality data over long periods of time requires

considerable investment of time, money and institutional support (Szabo et al. 2010).

Furthermore, the usual time lag from the start of data collection until results can be

published may refrain scientists from planning and conducting long-term surveys, and

funding bodies from supporting such surveys.

In recent decades, however, several biodiversity monitoring schemes have been im-

plemented to assess spatial and temporal trends in biological systems (Yoccoz et al.

2001, Pereira and Cooper 2006, Lindenmayer and Likens 2009). The emphasis of most

of these monitoring schemes is on the evaluation of the efficiency of management policies

(Yoccoz et al. 2001) and thus, schemes were often implemented for political reasons.

Nonetheless, the data obtained from these monitoring schemes can be of high scientific

quality. This is because such schemes need to provide highly reproducible, statisti-

cally sound data over long time periods to achieve their political goal of evaluating

2



1.2 Outline of the thesis

the efficiency of conservation policies (Weber et al. 2004). Therefore, many biodiver-

sity monitoring schemes may potentially provide long-term survey data on biological

systems that could be used by scientists to answer general questions about the func-

tioning of biological systems, beyond simply describing temporal trends in abundance

of organisms (Magurran et al. 2010, Couvet et al. 2011).

Recently, however, scientists have criticized biodiversity monitoring programs and

other long-term surveys mainly because they often lack well-articulated scientific hy-

potheses that were formulated prior to data collection (Yoccoz et al. 2001, Nichols and

Williams 2006, Lovett et al. 2007, Lindenmayer and Likens 2009). Obviously, collecting

data without clear a priori hypotheses is in contrast to the common scientific praxis

of aiming at strong inference (Platt 1964). Following the praxis of strong inference,

conclusions from data are scientifically sound only if i) several a priori hypotheses are

formulated, ii) experiments are conducted that have several possible outcomes, and iii)

the results of an experiment allows to reject at least one of the a priori hypotheses.

Apparently, this approach cannot be strictly applied to answer functional questions

on population biology based on data from monitoring programs that were collected to

answer other questions. Therefore, scientists working on functional ecology have only

relatively rarely used existing data from such programs, leading to the fact that a huge

body of long-term data is still awaiting analysis.

1.2 Outline of the thesis

The main aim of this thesis was to improve biological inference that can be drawn

from analysing data from long-term biological surveys. In the first part of the thesis,

I developed new statistical tools to analyse the data from long-term surveys. In the

second part of the thesis, I conducted several case studies, in which I analysed the data

from different long-term surveys and biodiversity monitoring programs.

1.2.1 Part I: Development of new statistical methods to analyse long-

term monitoring data

Monitoring programs usually focus on the abundance of the studied species, but the

functioning of biological systems is likely to become more explicit when demographic

3



1. THESIS INTRODUCTION

parameters such as survival, fecundity or immigration could be obtained from long-

term monitoring programs (Saracco et al. 2008). In chapter 2, I used the long-term

occupancy data on nightingale territories (Amrhein et al. 2002, Amrhein et al. 2004,

Amrhein et al. 2007) to develop a new method to estimate demographic parameters

from survey data without individual recognition. The developed method on estimating

demographic parameters (i.e. local survival and territory colonization) seems promising

because it can be applied to large amounts of data that are available from long-term

surveys. In chapter 3, I refined this method on demographic monitoring and applied

it to the data of the common bird census of Switzerland (Kéry and Schmid 2004, Kéry

and Schmid 2006).

The singing activity of birds is an important predictor of the detectability (i.e. the

probability of detecting a present individual during a survey) that needs to be accounted

for in monitoring programs in order to obtain unbiased estimates of the population size

of the studied species (Kéry and Schmid 2004, Kéry and Schmid 2006, Amrhein et al.

2007). Therefore, understanding why singing activity may differ between males and

why it may change in the course of the season is likely to have important implications

for the analysis of data from breeding bird surveys that are usually part of long-term

monitoring programs (Link and Sauer 1998, Jiguet et al. 2005, Kéry et al. 2005, Baillie

et al. 2009). In chapter 4, I used the nightingale singing activity data (Amrhein et al.

2002, Roth et al. 2009) to develop a change-point model in a Bayesian context that is

able to account for the different seasonal singing routines of paired males and bachelors

(Amrhein et al. 2002, Thomas 2002). Using that model, I analysed the seasonally

changing singing activity of paired and unpaired nightingales.

1.2.2 Part II: Analyses of data from long-term surveys

In the second part of the thesis, I analysed the data from different long-term surveys.

In chapter 5, I used the long-term survey data on singing activity in male nightingales

to formulate hypotheses about the prospecting activity of females. The formulation of

new hypotheses is a typical product of analysing long-term survey data (Couvet et al.

2011). Long-term surveys thus often create semi-experimental opportunities to built

and test hypotheses about the functioning of biological systems (Kerr et al. 2007).

Using such a semi-experimental setup, I investigated the diel timing of information

gathering of female nightingale searching for males.
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1.3 The analysed long-term data

A further advantage of long-term surveys is that the data are collected using a

standard design, and thus can be used to test hypotheses that were developed long after

the sampling scheme has started (Couvet et al. 2011). In the remaining three chapters,

I tested such a posteriori hypotheses. In chapter 6, I tested the effectiveness of an

agri-environment scheme in promoting the biodiversity in the agricultural landscape of

the canton Aargau. I compared the species richness per study plot at an initial phase

of the agri-environment scheme and five years later. The effects of the AES were then

tested against the change of species richness in conventionally used agricultural areas.

In recent years, a major concern in conservation biology is that specialist species or

species with a restricted range are gradually replaced by range-expanding cosmopolitan

species (Devictor et al. 2008, Naaf and Wulf 2010). Thus, locally separated species

communities may become more and more similar to each other, a process that has

been called biotic homogenization (Olden 2006, Rooney et al. 2007). In chapter 7,

I tested whether the recent change of land use regimes in part of the Swiss grassland

that happened due to the implementation of agri-environment schemes and other con-

servation efforts was sufficient to prevent the grassland of Switzerland from taxonomic

homogenization.

Finally, in chapter 8, I tested a common practice in conservation biology, in that

indicator species are used as surrogates to identify areas of high conservation value (Noss

1990, Andelman and Fagan 2000). I used data from the Swiss Biodiversity Monitoring

Programme and the Swiss breeding bird survey to analyse the use of species from

different trophic levels as a surrogate for plant, butterfly and bird species richness.

1.3 The analysed long-term data

1.3.1 The Nightingale project

The study area of the nightingale (Luscinia megarhynchos) project is the Petite Camar-

gue Alsacienne in France, about 10 km north of Basel. Within the nightingale project,

two different long-term surveys were conducted. For the first long-term survey, each

year since 1994, we captured and colour-ringed the owners of about 50 territories as well

as their mates, which is around 80% of the individual nightingales that were present

each year at the study site.
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For the second long-term survey, each year and every day throughout the entire

breeding season, we surveyed the settlement of males at the study site by recording the

song posts of males during the hour before sunrise. Similarly, a nocturnal census round

was done every night to record the song posts of nocturnally singing males. Given

that only unpaired males sing regularly at night (Amrhein et al. 2002, Amrhein et

al. 2004), we were able to determine for each male the pairing status and the date of

pairing, which is given as the day after which a male was heard singing at night for the

last time (Amrhein et al. 2002, Amrhein et al. 2004, Amrhein et al. 2007). During

the breeding seasons 1997 to 2003, the mean proportion of unpaired males in the study

population was 33 ± 14%; however, in single years, the proportion of unpaired males

can be close to 50% (Amrhein and Zwygart 2004, Amrhein et al. 2007).

1.3.2 The monitoring studies

The biodiversity program of the canton Aargau

In 1996, a long-term research project was started to monitor the biodiversity in the

whole canton of Aargau (Stapfer 1999, Wagner and Edwards 2001). The sampling

scheme is based on a regular grid that covers the entire canton with 516 grid points.

The grid points were selected by taking every second point of a 1 km grid based on the

national coordinate system. On each study plot at such a grid point, vascular plant,

snail, butterfly and bird species were counted. Every year, one fifth of these sample

plots are surveyed, and each sample plot is surveyed every five years. The sampling

protocol was adapted to the different species groups. Vascular plants species were

counted in a circle of 10 m2, and on the outer line of the circle in which plant species

were counted, eight soil samples were taken during the plant surveys and the number of

snail species was estimated from these soil samples. Bird species were estimated from

five surveys in a circle with 100 m radius, and for butterflies, 11 surveys were made

along a transect of 250 m length (butterflies were recorded within 5 m to each side of

the transect line).

The biodiversity monitoring scheme of Switzerland

The Swiss Biodiversity Monitoring scheme (BDM, www.biodiversitymonitoring.ch) was

launched in 2001 to monitor Switzerlands biodiversity and to meet the Convention on
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Biological Diversity of Rio de Janeiro (Weber et al. 2004). In the BDM scheme, mosses,

vascular plants, snails, butterflies and breeding birds are surveyed on two different

grids that both cover entire Switzerland but differ in grid density and grain size. The

species richness of mosses, vascular plants and snails is investigated on a systematic

grid covering 1650 circular 10 m2 plots; while the species richness of vascular plants,

butterflies and birds is investigated on a systematic grid covering about 500 squares

of 1 km2. Note that vascular plants are surveyed on both grids. Every year, one fifth

of these sample plots from both grids are surveyed – constituting a regularly spaced

subsample of all sites – and, each sample plot is surveyed every five years. The field

methods for all species groups are highly standardized and are described elsewhere

[mosses: Bergamini et al. (2006); snails: Kobialka et al. (2010); vascular plants :

Plattner et al. (2004), Bühler and Roth (2011); butterflies: Kéry and Plattner (2007),

Kéry et al. (2009); birds: Kéry and Schmid (2004), Kéry and Schmid (2006)].

The Common Breeding Bird Survey of Switzerland

The Common Breeding Bird Survey is conducted since 1999 by the Swiss ornithological

institute (Schmid et al. 2004, Kéry and Schmid 2006). In the common breeding bird

survey, 267 squares of 1 km2 are laid out as a grid across the entire country and are

surveyed each year using territory mapping methods (Bibby et al. 2000, Zbinden et

al. 2005). During each breeding season (15 April – 15 July), three visits (two visits in

high altitude squares with less than 10% forest cover) are conducted to each square by

highly qualified volunteers. Visits follow an irregular transect route that aims to cover

as much as possible of a square and that remains constant during subsequent years.

For more details about the methods and results, see for instance Zbinden et al. (2005),

Schmid et al. (2004) or Kéry and Schmid (2004).

1.4 Paper outlines

Chapter 2 – Roth, T. and V. Amrhein. 2010. Estimating individual survival using

territory occupancy data on unmarked animals. Journal of Applied Ecology 47:386-392.

Survival estimation forms the basis of much ecological research, and usually requires

data on marked animals. In population studies of territorial animals, however, data

are often collected on animal territory occupancy without identification of individuals,
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and so far could not be used to estimate demographic parameters such as survival. In

this chapter, I developed a hierarchical site-occupancy model for estimating survival

from territory occupancy data. To evaluate the model, I used simulated data as well as

real data from the long-term nightingale monitoring. I found that estimates of survival

from this model were very similar to the estimates obtained from a traditional mark-

recapture analyses of the ringing data of the nightingales. Since data collection for

mark-recapture analysis is usually invasive and labour intensive, applying my model

to territory occupancy data from large-scale monitoring programs could make large

amounts of data available for research on animal demography.

Chapter 3 – Roth, T., M. Kéry, M. Schaub, H. Schmid, and V. Amrhein. In prep.

Estimating demographic rates using data on unmarked individuals from bird monitoring

programs.

The effects of management action or of environmental factors would become more

explicit when demographic parameters such as survival could be estimated. In this

chapter, I developed a demographic monitoring framework to obtain estimates of de-

mographic rates for unmarked individuals. The framework is based on the model that I

developed in chapter 2. Applying the framework on data of unmarked Yellowhammers

(Emberiza citrinella) from the common bird census in Switzerland, I found that ter-

ritories were colonized at the highest rate in the lowlands. In contrast, local survival,

which is the probability that an individual survives until the next reproductive period

and settles in the same territory again, was relatively low in the lowlands but tended

to increase with altitude. I concluded that my demographic monitoring framework

considerably broadens the possibilities for inference based on large-scale monitoring

programs. Applying my model on data covering large altitudinal or latitudinal ranges

could provide estimates on geographic variation in demographic parameters that are

urgently needed to understand the effects of climate change on population performance.

Chapter 4 – Roth, T., P. Sprau, M. Naguib, and V. Amrhein. In prep. Sexually

selected signalling in birds: a case for Bayesian change-point analysis of behavioural

routines.

In this chapter, I introduce Bayesian change-point analysis as a promising tool in re-

search on behavioural routines. Using change-point models, it is possible to analyse
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data with abrupt changes in the functional relationships, even if the changes are caused

by unobserved switches of state in the studied system. Unobserved switches can occur,

for example, in the temporal dynamics of populations, in predator-prey interactions

and territory defence behaviour, and whenever animals switch from one state to an-

other. The presented model can estimate the position of the change-points and should

therefore be of great value in research on animal behaviour. I developed and applied

the change-point model in the context of sexually selected signalling of male nightin-

gales. Based on observations of nocturnally singing males, but without empirical data

on the presence and behaviour of females, my model provided realistic estimates of the

pairing success of males and of the dates of pair formation. Using the change-point

model, I was able to detect novel patterns of seasonal trends in singing activity that

were obscured when using a traditional generalized linear mixed model.

Chapter 5 – Roth, T., P. Sprau, R. Schmidt, M. Naguib, and V. Amrhein. 2009. Sex-

specific timing of mate searching and territory prospecting in the nightingale: nocturnal

life of females. Proceedings of the Royal Society B-Biological Sciences 276:2045-2050.

In studies on sexual signals like bird song, the receiving side, which is often the females,

has long been quite neglected. In nightingales, the diel timing of information gathering

strikingly differed between females searching for males and males prospecting for terri-

tories. Unpaired females searched for males exclusively at night when mostly unpaired

males were singing, while non-territorial males have been shown to search for territories

only at dawn, when all males are singing. Furthermore, males that sang with higher

intensity around midnight were more likely to attract a female. Taken together, the

results suggest that in the nightingale, the singing of males serves mate attraction at

night but territory defence at dawn.

Chapter 6 – Roth, T., V. Amrhein, B. Peter, and D. Weber. 2008. A Swiss

agri-environment scheme effectively enhances species richness for some taxa over time.

Agriculture Ecosystems & Environment 125:167-172.

The effectiveness of agri-environment schemes (AESs) in promoting biodiversity was

recently debated. One reason for limited effectiveness of AESs may be their applica-

tion to small and scattered patches of land. The study of this chapter presents the

evaluation of a scheme adopted by the canton of Aargau, Switzerland, which seems
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to be unique in its consequent focus on entire farms, aiming at increasing quality and

quantity of ecological compensated areas (ECAs). In vascular plants and snails, the

species richness increased during a period of five years on plots with AES, but not

on control plots without AES. In butterflies and birds, no significant differences were

found between AES plots and control plots in the change of species richness over time.

While butterfly species numbers generally decreased, bird species numbers increased

on both AES plots and control plots. It appears that agri-environment schemes can be

effective in protecting and promoting biodiversity, but the effect may depend on the

group of organisms

Chapter 7 – Bühler, C. and T. Roth. 2011. Spread of common species results in

local-scale floristic homogenization in grassland of Switzerland. Diversity and Distri-

butions 17:1089-1098.

In this chapter, I assessed changes in plant species richness and changes in species

dissimilarity at local scale in Swiss grassland between the time periods 2001–2004 and

2006–2009. I examined changes in species richness and changes in Simpson dissimilar-

ity index of vascular plants in grassland (meadows and pastures). The results show

that species richness of vascular plants in grassland increased during the study period.

In contrast, species dissimilarity of plants decreased, suggesting local-scale floristic ho-

mogenization of grassland in Switzerland. Floristic homogenization was mostly due to

the spread of common species, namely the species that are tolerant to high nutrient

levels, the species of low conservation value and the species adapted to moderate tem-

perature levels. Target species for conservation did only marginally affect taxonomic

homogenization. In contrast to the predictions from studies of taxonomic homogeniza-

tion on larger scales, the taxonomic homogenization of grassland at local scale was not

explained by the spread of neophytic species. Based on our analyses, I concluded that

the biotic diversity of grassland in Switzerland changed considerably between 2001–

2004 and 2006–2009. The observed taxonomic homogenization was merely because of

the spread of common species. Local-scale changes in land use regimes implemented by

agri-environmental schemes and other conservation efforts on parts of the entire grass-

land area were, apparently, not sufficient to prevent the total grassland from recent

taxonomic homogenization.
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Chapter 8 – Roth, T. and D. Weber. 2008. Top predators as indicators for species

richness? Prey species are just as useful. Journal of Applied Ecology 45:987-991.

The use of top predators as surrogates to identify protected areas has been criticized.

However, recently a strong positive relationship was found between the presence of

top predators and species diversity of several taxa. In this chapter, I used data from

the Swiss Biodiversity Monitoring Programme and the Swiss common breeding bird

survey to analyse the use of raptor species as a surrogate for plant, butterfly and bird

species richness. For each raptor species, I compared species richness in sites where a

raptor species was recorded with the remaining sites in which the raptor species was

not recorded. For comparison, I conducted the same analyses using tits Parus spp.

I found little justification for a focus on top predators when identifying conservation

areas. For bird and plant species richness, raptors were reasonable surrogates for high

species richness, but no raptor species predicted sites with above-average butterfly

species richness. The presence of tit species performed equally well as the presence

of raptor species to predict sites with high species richness of birds and plants, and

performed even better for predicting high butterfly species richness. Based on these

results, I concluded that conservation managers using indicator species should be aware

that relationships among higher taxa are complex and depend on the species group and

the scale of analysis. As shown with the case of raptors, the usefulness of a biodiversity

indicator can vary between adjacent areas even if the same species groups are analysed.

I recommended the use of more than one indicator species from different taxonomic

groups when identifying areas of high biodiversity.
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2. ESTIMATING INDIVIDUAL SURVIVAL USING DATA ON
UNMARKED ANIMALS

Abstract

Aim Survival estimation forms the basis of much ecological research, and usually re-

quires data on marked animals. In population studies of territorial animals, however,

data are often collected on animal territory occupancy without identification of individ-

uals, and so far could not be used to estimate demographic parameters such as survival.

Location Petite Camargue Alsacienne, France.

Methods We developed a hierarchical site-occupancy model for estimating survival from

territory occupancy data without individual identification. We defined survival as the

probability that an individual occupying a territory survives until the next reproductive

period and settles in the same territory again. To evaluate our model, we used simulated

data as well as real data from a long-term study on Nightingales Luscinia megarhyn-

chos, from which independent mark-recapture data and territory occupancy data were

available.

Results When applied to simulated data sets on territory occupancy, with parameter

settings that are typical for different monitoring programs (i.e., ten years duration,

three or eight visits per season, and 55 or 200 territories surveyed), our model yielded

unbiased estimates of survival even if detection of territories was low (i.e., if detection

probability during a single visit was p = 0.3 or p = 0.7). When applied to the data on

Nightingale territory occupancy, estimates of survival from our model were very similar

to the estimates obtained from a traditional mark-recapture model (Cormack-Jolly-Seber

model) applied to independent ringing data from the same nightingale population.

Main conclusions Data collection for mark-recapture analysis is usually invasive and

labour intensive, and suitable data are rarely available from large-scale monitoring pro-

grams covering entire regions or countries. Applying our model to territory occupancy

data from such monitoring programs could make large amounts of data available for

research on animal demography.

Keywords: Bayesian analysis, capture recapture, common birds census, robust de-

sign, state-space models, territory colonization, territory fidelity, WinBUGS
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2.1 Introduction

Research in conservation biology, ecology and evolution often requires knowledge on es-

timates of survival in individual animals (Stearns 1992, Hoekstra et al. 2001, McCarthy

et al. 2008, Ruiz-Gutierrez et al. 2008). In field studies, estimates on survival and other

demographic parameters are usually obtained from data on individually marked ani-

mals (Lebreton et al. 1992, Sandercock 2006). A major drawback of these methods

is that they usually are invasive because individuals need to be captured and marked.

This can be stressful for the animals and time- and labour-intensive for researchers

(Vögeli et al. 2008).

However, large data sets from non-invasive monitoring programs or from population

studies on single species are available, where animals are not captured and marked and,

thus, cannot be individually recognized. For instance, the British Trust of Ornithology

(BTO) stores detailed maps of almost a million bird territories, collected during the

British common birds census program over more than 40 years (Baillie et al. 2009), and

long-term territory occupancy data are available for many individual species (Sergio

and Newton 2003). This huge body of data so far could not be used to rigorously

estimate demographic parameters such as survival, for lack of a framework to analyse

territory occupancy data without individual recognition.

Demographic parameters could not be estimated from territory occupancy data

because a territory that is occupied in two successive seasons may be occupied by

the same surviving individual, or by two different individuals. In the latter case, the

territory owner of the first year may have died or left for some other place, and a

new individual may have occupied the territory in the following season. Conceptually,

territory occupancy data are thus the result of two different probabilistic events. The

first is local survival of a territory owner, which is the probability that a particular

individual occupying a territory during one breeding season survives and settles in

the same territory during the next breeding season. The second event is territory

colonization, which is the colonization of territories by individuals new to the study

site, or by individuals that occupied another territory at the same study site during

the previous breeding season. Clearly, without individual recognition, local survival of

a territory owner cannot be observed directly.
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We developed a model for estimating local survival of territory owners and colo-

nization of territories, using territory occupancy data of unmarked animals. By also

estimating the probability of detecting an occupied territory, the model can handle

situations where occupied territories are detected imperfectly, i.e. where the probabil-

ity of detecting an occupied territory is p < 1. The parameters of our model can be

estimated only if each year, the territories are surveyed more than once, i.e., if data are

collected under a robust sampling design (Kendall et al. 1997). Our model builds on

the framework of site-occupancy models, which usually estimate the dynamics of the

proportion of sites being occupied by a species as a function of local species extinction

and species colonization probabilities (MacKenzie et al. 2003, MacKenzie et al. 2006,

Royle and Kéry 2007). In our present model on territory occupancy data, we treat

territories as concepts that are analogous to the single sites in site-occupancy models.

We re-parameterized the dynamic site-occupancy model of Royle & Kéry (2007), to

contain parameters for individual survival and colonization probability. We evaluated

the performance of our model by using simulated data as well as data from a long-term

population study on Nightingales Luscinia megarhynchos. We used data on nightingales

to obtain survival estimates from territory occupancy data under our model, and then

compared those estimates with conventional survival estimates under a Cormack-Jolly-

Seber (i.e., mark-recapture) model applied to data from ringed nightingales of the same

population. We show that territory occupancy data without individual recognition are

useful for estimating demographic parameters such as local survival, which should open

up great opportunities for large-scale demographic analyses of animal populations.

2.2 Model structure and notation

2.2.1 Sampling strategy

Suppose that a population of a territorial species is repeatedly sampled for the presence

of territory owners in i = 1, . . . , n territories during t = 1, . . . , T breeding seasons.

During each breeding season, the territories are surveyed at j = 1. . . . , J visits, yielding

observed territory occupancy histories that are based on detection/non-detection data

of anonymous territory owners. It is required that J > 1; such a sampling design is

usually referred to as a robust design (Kendall et al. 1997). Sampling designs with
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repeated visits per year are typical for many monitoring programs that use territory-

mapping techniques to obtain population estimates of birds and other animals. For

instance, in the Common Birds Census of Switzerland, study plots of 1km2 are selected

across the entire country, and each plot is visited 2-3 times within the breeding season

of a species and over many years (Kéry and Schmid 2006). During each visit, the

position of a detected territory owner, such as a singing male bird, is recorded on a

map, yielding observations of occupancy status of territories all over Switzerland.

Denote yj(i, t) as the observed territory occupancy state, i.e., a territory is observed

to be occupied at breeding season t at visit j if yj(i, t) = 1, or is not observed to

be occupied if yj(i, t) = 0. We assume that yj(i, t) are independent and identically

distributed for each territory i and breeding season t. Denote x(i, t) as the true territory

occupancy state, i.e., a territory i is occupied at time t if x(i, t) = 1, or is not occupied

if x(i, t) = 0. Unlike in traditional site-occupancy models, we modelled the occupancy

history conditional on the first observed occupancy: the occupancy history for territory

occupied for the first time at t = fi is the vector [x(i, t)]Tt=fi
with x(i, fi) = 1. Thus,

potential territories are considered only from the first time they are occupied by a

territorial individual; potential territories that have never been occupied, and territories

before first occupation are not considered in the model.

An important point is that the true occupancy state variable x(i, t) is usually not

directly observable, i.e., yj(i, t) is not the same as x(i, t) because a territory owner is

not always detected. Our model accounts for this by including a component for the

observation process (see below). The observation process links the observations yj(i, t)

with the true occupancy state x(i, t). Thus, observed territory occupancy data can be

naturally described as a state-space model (Royle and Kéry 2007).

2.2.2 Demographic territory-occupancy model: the state process

We describe the state process by using two submodels. The first submodel expresses

observed territory occupancy dynamics as a function of the probability of individual

survival and continued tenancy of a territory by its owner. This is what we define as

local survival, because it includes both actual survival and territory fidelity. The second

submodel includes the probability that an empty territory is colonized. Note that local

survival is not the same as what is usually described as apparent survival when analyzing

mark-recapture data with a Cormack-Jolly-Seber model (Lebreton et al. 1992). In
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the context of mark-recapture data, apparent survival is usually the probability that

an individual survives and returns to the same study site. Therefore, if surviving

individuals do not switch territories between years within the study site, local survival

from our present territory occupancy model and apparent survival from a Cormack-

Jolly-Seber model will coincide. However, if many individuals switch territories between

years within a study site, local survival and apparent survival will diverge.

For the first submodel, let the parameter φt be the local survival probability of a

territory owner from year t − 1 to t. Denote the latent (i.e., not directly observable)

territory fidelity state z(i, t); if a territory i is occupied at time t by the same individual

as at time t− 1 then z(i, t) = 1, otherwise z(i, t) = 0. The latent territory fidelity state

z(i, t) is assumed to be Bernoulli distributed with parameter φt, depending on the true

territory occupancy state of the previous year x(i, t − 1). The local survival process

(first submodel of the state process) is given by the conditional model

z(i, t)|x(i, t− 1) ∼ Bernoulli

�
x(i, t− 1)φt

�
(2.1)

for t = fi + 1, . . . , T . In other words, if an individual has occupied a territory at time

t − 1 (i.e., x(i, t − 1) = 1), then its latent territory fidelity state z(i, t) is a Bernoulli

random variable with parameter φt. If no individual was occupying a territory at t− 1

(i.e., x(i, t − 1) = 0), then z(i, t) is Bernoulli distributed with success probability 0,

that is z(i, t) = 0 with probability 1.

The second submodel of the state process concerns the probability a currently not

occupied territory is colonized by a new individual. Let the parameter be the territory

colonization probability. Conditional on the latent territory fidelity state z(i, t), the

true territory occupancy state x(i, t) is a Bernoulli random variable with

x(i, t)|z(i, t) ∼ Bernoulli

�
z(i, t) + r(1− z(i, t))

�
(2.2)

Thus, if the latent territory fidelity state z(i, t) = 1, then the true territory occupancy

state is x(i, t) = 1 with probability 1, otherwise x(i, t) is a Bernoulli random variable

with parameter r. Taking the two submodels eqn 2.1 and eqn 2.2 of the state process

together, a territory is occupied at time t if the male occupying the territory at time

t − 1 survives and returns to the same territory with probability φt, or if a new male

colonizes the territory with probability r. The model assumes the same colonization

probability r for territories that were not occupied the previous breeding season (i.e.,
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x(i, t − 1) = 0), and for territories that were occupied the previous breeding season

(i.e., x(i, t−1) = 1) before the territory owner left or died. Thus, in the present model,

the territory occupancy state x(i, t) is assumed to be independent of the previous year

territory occupancy state x(i, t− 1) given that z(i, t) = 0 (i.e., given the territory was

previously not occupied, or the former territory owner died or did not return to the

same territory).

An alternative way of specifying a territory occupancy model could have been to

describe territory occupancy directly in terms of local survival and territory coloniza-

tion, similarly to Royle & Kéry (2007), who formulated site occupancy of a species as a

result of local survival and colonization. Their formulation of a dynamic site occupancy

model could also be adapted to territory occupancy data, by treating territories as sites.

Here, we preferred a slightly different strategy by using the latent territory fidelity state

variable z(i, t) that indicates whether a particular territory owner was occupying the

same territory also in the previous breeding season. The inclusion of the latent terri-

tory fidelity state into the model is not mathematically necessary, but is biologically

relevant: territory owners can acquire fitness benefits from returning to a previously

occupied territory, e.g. because they are familiar with the territory (Hoover 2003, Mid-

dleton et al. 2006). Having the latent territory fidelity state variable specified, the

model directly estimates whether a male present in a territory was there also one year

before, and inference on biological differences between returning and colonizing males

is straightforward.

2.2.3 Observation process

Usually, not all territories that actually are occupied in a study site are also detected in

monitoring programs (Kéry and Schmid 2006, Amrhein et al. 2007, Royle et al. 2007);

our model accounts for this imperfect detection by including the observation process.

Let the parameter p be the probability of observing a territory owner during a visit

given that the territory is occupied. Similarly to the recently developed site occupancy

models (MacKenzie et al. 2003, Dorazio et al. 2006, MacKenzie et al. 2006), the de-

tection probability p and the true territory occupancy x(i, t) need to be estimated from

repeated visits to the territories each year (i.e., employing a robust design), otherwise

the parameters cannot be identified. Conditional on the true territory occupancy state
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x(i, t), the observation yj(i, t) is given as a Bernoulli random variable

yj(i, t)|x(i, t) ∼ Bernoulli

�
x(i, t)p

�
(2.3)

Thus, if a territory is occupied (i.e., x(i, t) = 1), then it is observed during visit j to

be occupied with probability p; if a territory is not occupied (x(i, t) = 0), it is not

observed to be occupied with probability 1.

2.3 Bayesian analysis and assessment of model perfor-

mance

We used a Bayesian analysis of our model based on Markov chain Monte Carlo methods

MCMC (Link et al. 2002). We assessed convergence using the Gelman-Rubin diagnostic

(Brooks and Gelman 1998). MCMC simulations were conducted using WinBUGS 1.4

(Gilks et al. 1994), executed in R using the R add-on library R2WinBUGS (Sturtz et

al. 2005). See Appendix S.2.8, for the WinBUGS implementation of our model.

To explore the performance of our model, we simulated data sets under the territory

occupancy model described above. Annual local survival was simulated as normally

distributed over the years with an overall mean (φt) and standard deviation (φsd). See

Appendix S.2.9 for an R function to simulate data under our model. For the Bayesian

analyses of the simulated data, we assumed conventional diffuse (i.e., U(0, 1)) prior

distributions for r and p; the φt were assigned normal priors on the logit scale with

equal, but unknown mean and variance, i.e. logit(φt) ∼ N(µ, τ). The parameters µ

and τ were then assigned further distributions; we used the conjugate distributions

µ ∼ N(0, 0.67) and τ ∼ Gamma(100, 100). Such a specification leads to rather diffuse

priors for φt; if instead a conventional diffuse prior distribution was used for µ, the

logit-transformation of µ would result in a U-shaped parameter distribution with much

of the density near 0 or 1 (Calvert et al. 2009).

The simulations revealed that our model performed well when the sample size was

reasonably large and when there were eight visits to the territories per year (i.e., n = 200

and J = 8, Fig. 2.1, Table 2.1.a). Under such conditions, the model provided estimates

for local survival, territory colonization and detection probability that were close to the

true values and had relatively narrow credible intervals. None of the estimators of the

parameters were biased. When sample size was sparse and detection probability was
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Figure 2.1: Simulation Results - Parameter estimates obtained from analysing a sim-

ulated data set with intermediate detection probability (p=0.5) and with a relatively large

sample size (number of territories n = 200; number of study years T = 10; number of visits

per year J = 8). Shown are estimated means and 95% credible intervals of the posterior

distribution of the local survival per year (φ2001 −−φ2009), the mean of the local survival

per year (φmean), the colonization rate (r), and the detection probability (p). Crosses

indicate the true parameter values used for the simulation.
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low (i.e., n = 55, p = 0.3, J = 8, Table 2.1.a), the parameter estimators were slightly

biased: the model on average slightly overestimated r and slightly underestimated

φt. Biases in parameter estimators were rather strong, however, when low detection

probability was coupled with few yearly visits to the territories (i.e., p = 0.3, J = 3,

Table 2.1.b). This is probably because the reduced information in the data resulted in

a posterior distribution of the parameters that to some extent was influenced by the

prior. Thus, for these small sample situations, the posterior distribution was probably

highly skewed, and the posterior median or mode would likely be more appropriate

point estimators (Gelman et al. 2004).

2.4 Case study: nightingale data

To further explore our model, we used data collected in a long- term population study

on nightingales in the Petite Camargue Alsacienne in the Upper Rhine Valley in France.

From 2000 to 2009, we monitored the occupancies of 55 territories by means of daily

rounds of inspection following a fixed route covering all 55 territory sites that were

occupied at least once during the study period (Amrhein et al. 2002, Amrhein et al.

2007, Roth et al. 2009). Territories occupied by a singing male nightingale were rela-

tively stable across years irrespectively of the identity of the territory holder, because

nightingales frequently use the edges of bushes, paths or rivers as territory borders.

Each year, the field season lasted from the day the first male had settled at the

study site (mean ± SD = 9 April ± 4.7 days; n = 10) until the end of May. On

average, the males arrived on 18 April (±2.3 days); no trend in the mean arrival date

over the years could be detected (linear regression: year = -0.12, d.f. = 8, t = 0.44, P

= 0.67). In order to remove males from the data set that were present in a territory

for a few days only (transients), we defined a territory as being occupied only if a male

was heard singing during at least five inspection rounds per year. During the 10 years

of the study, the 55 nightingale territories were occupied during 5.2 ± 2.8 years; six of

the territories were occupied only once, and four of the territories were occupied each

year. Each year, 52.3 ± 15.0% of the 55 territories were occupied.

The identity of males was ascertained by regular capturing and ringing throughout

the field season (Amrhein et al. 2002, Amrhein et al. 2007). In the 10 years of the

study, the territorial males were captured and ringed in 62.5 ± 22.3% of the territories
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Parameter Cover Bias Length Cover Bias Length Cover Bias Length

(a) Eight visits per study year (J=8), as in the British common birds census (Baillie et al. 2009)

p=0.7 n=200 p=0.5 n=200 p=0.3 n=200

φmean 0.98 0.00 0.36 0.95 -0.02 0.38 0.94 -0.02 0.40

r 0.91 0.00 0.12 0.95 0.01 0.14 0.93 0.01 0.15

p 0.96 0.00 0.03 0.96 0.00 0.04 0.86 0.01 0.04

p=0.7 n=55 p=0.5 n=55 p=0.3 n=55

φmean 0.98 0.00 0.41 0.95 -0.04 0.46 0.95 -0.05 0.47

r 0.94 0.01 0.19 0.91 0.02 0.23 0.90 0.03 0.23

p 0.97 0.00 0.06 0.96 0.00 0.07 0.95 0.00 0.07

(b) Three visits per study year (J=3), as in the Swiss common birds census (Kéry & Schmid 2006)

p=0.7 n=200 p=0.5 n=200 p=0.3 n=200

φmean 0.91 -0.02 0.38 0.95 -0.04 0.42 0.80 -0.14 0.53

r 0.90 0.01 0.14 0.93 0.00 0.15 0.96 0.04 0.32

p 0.98 0.00 0.07 0.77 -0.06 0.09 0.50 0.06 0.17

p=0.7 n=55 p=0.5 n=55 p=0.3 n=55

φmean 0.95 -0.03 0.46 0.94 -0.07 0.56 0.58 -0.14 0.80

r 0.92 0.02 0.22 0.94 0.06 0.36 0.64 0.04 0.45

p 0.95 0.01 0.11 0.93 0.03 0.20 0.49 0.08 0.28

Table 2.1: Summary of simulation results for the parameters φmean (mean of local survival

per year), r (colonization rate) and p (detection probability). Given are credible interval

(CRI) coverage (cover: proportion of 100 simulation replicates that the 95% CRI contained

the true parameter value), bias (difference between mean estimate minus true value), and

CRI length (length: mean length of CRI). True parameter values used for simulation were

inspired by the analysis of our nightingale data, with r = 0.30, φmean = 0.55, and φsd =

0.20. The number of study years was set to T = 10. The number of territories was set to

cover a relatively large sample size (n = 200) and, alternatively, the sample size from our

nightingale data (n = 55).
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that were occupied in a given year. Between 2000 and 2008, we captured 99 different

males; males that were caught in 2009 for the first time were excluded from the analyses,

as those males could not provide information on survival.

We analysed the nightingale territory occupancy data with our model, including

year effects on local survival (φt), and assuming a constant territory colonization (r)

and detection probability (p). For the Bayesian analyses, we assumed conventional

diffuse [i.e. U(0, 1)] prior distributions for the parameters. To test how the model would

perform when analysing results from a conventional breeding bird monitoring scheme,

in which usually no more than eight to ten visits are being made to a given territory

(Baillie et al. 2009), we applied the model to a subset of the at least 40 daily visits we

made at the study site each year. This subset included observed nightingale territory

occupancy data from eight arbitrarily chosen visits (observed territory occupancies from

the visits made every fifth day from 15 April to 20 May). The results on local survival

from our model were then compared with the yearly apparent survival (φt, which is

the probability an individual survives between two years and returns to the same study

site), obtained from analysing the data on captured individuals with a state-space

formulation of the traditional Cormack-Jolly-Seber model (CJS, i.e. a mark-recapture

model, Royle 2008). The CJS model also included a constant capturing probability

(p). For the Bayesian analyses of the CJS model, we assumed conventional diffuse [i.e.

U(0, 1)] prior distributions for all φt and p.

The results from analysing the nightingale data showed parallel fluctuations of the

local survival calculated from territory occupancy data under our model, and of appar-

ent survival estimated from mark-recapture data (Fig. 2.2); the posterior means of the

yearly estimates were strongly correlated (Pearson’s correlation: r = 0.82, t = 3.77, d.f.

= 7, P = 0.007).

2.5 Discussion

We developed and illustrated a new model for estimating local survival from a de-

mographic site-occupancy model applied to territory occupancy observations without

individual recognition of animals. Similar to the recently developed site occupancy

models (MacKenzie et al. 2003, Dorazio et al. 2006, MacKenzie et al. 2006), our

model can cope with imperfect detection of the occupied territories. Unless data were
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very scarce, our simulation results revealed that parameter estimates were reliable also

when some occupied territories are not detected due to a low detection probability or

due to a small number of visits per territory. This is important, because territory occu-

pancy data from monitoring schemes or population studies of single species are usually

obtained by visiting the potential territories during only few visits per year, and be-

cause territory owners are not always detected (Kéry and Schmid 2006, Amrhein et al.

2007, Royle et al. 2007).
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Figure 2.2: Local survival and apparent survival of the studied nightingales -

Local survival estimates obtained from territory occupancy data under our model, com-

pared to apparent survival estimates obtained from ringing data. Given are estimated

values of localapparent survival per year (φ2001 – φ2009), and the mean local apparent sur-

vival (φmean). Our present territory occupancy model was used to analyse eight visits per

territory and year (black dots), and a traditional Cormack-Jolly-Seber model was applied

to the mark-recapture data from ringed nightingales (open squares). Shown are means and

95% credible intervals of the posterior distributions.

An important condition for applying our model is that territories can be monitored

accurately in all years of a study. Arguably, the size and shape of territories may change

between years depending on social and environmental variables (Pärt and Gustafsson

1989, Pons et al. 2008). However, in many species, the locations of territories remain

relatively stable from year to year, because territory owners often defend areas that

include rare but spatially stable resources such as isolated habitat patches, nest cavities,
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or food resources (Newton 1998). If the locations, but not the shape or size of the

territories remain stable between years, accurate territory occupancy data may still be

obtained. Indeed, high quality territory occupancy data are available for many species,

e.g. from national monitoring schemes (Sergio and Newton 2003).

A benefit of the hierarchical model formulation that we used for our model is its

great flexibility and ease with which the model can be adapted to different situations

(Royle and Dorazio 2008). The present model contained local survival probabilities

that varied between years, but constant territory colonization and detection probabil-

ities. If appropriate, however, dynamic effects could also be considered for temporally

changing colonization and detection probabilities. Further, the hierarchical modelling

approach also allows covariates to be included (Royle and Dorazio 2008). For example,

our models could be used to investigate how the variation in local survival or territory

colonization correlates with characteristics of the territories, or with characteristics of

the territory owners such as measures of sexually selected traits or of pairing status.

Such information could provide a deeper understanding of the populations and individ-

uals under study (for the integration of covariates in hierarchical models in a Bayesian

framework, see for instance Kéry and Royle 2008). Our model could also be used for

large-scale investigations of demographic parameters, to compare local survival and

colonization rates among regions in entire countries.

In most species, only males are surveyed in monitoring programs, because they often

are more conspicuous than females and actively advertise their territories (Andersson

1994). When using data from monitoring programs, our model thus is likely to estimate

only local survival of males. However, the advantage of territory occupancy data is that

they can easily be collected or, in the case of many national monitoring programs (Kéry

and Schmid 2006, Baillie et al. 2009), often already are available. Furthermore, in the

case of certain endangered species or of species that are difficult to capture, researchers

may prefer not to mark individuals. Under such circumstances, observed territory

occupancies might be the only data available.

In the case study on nightingales, the survival estimates obtained from our territory

occupancy model corresponded very well with the survival estimates obtained from

a mark-recapture model, suggesting that our territory occupancy model is generally

reliable. Note, however, that local survival as estimated from our model and apparent

survival as estimated from mark-recapture models are expected to coincide only if
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between years, individuals do not switch territories within the study site. If such

switches do occur, they are not usually detected in studies on territory occupancy of

unmarked birds, leading to underestimation of true survival when applying our model.

As in other bird species (Harvey et al. 1979, Beletsky and Orians 1987, Pärt and

Gustafsson 1989), a moderate proportion of male nightingales at our study site do

switch territories from one year to the next (unpublished data). Because the birds at

our study site are part of a larger nightingale population in the Upper Rhine Valley,

several males that switched territories may have selected new territories outside our

study site. In such cases in which individuals emigrate from a study site, both the

estimates on local survival of unmarked animals and the estimates on apparent survival

of marked animals will be similarly biased due to territory switches, which may explain

why in our nightingale study, both models yielded similar estimates.

Estimating demographic parameters from survey data without individual recogni-

tion seems to be a promising new tool, but its potential for general application needs to

be further explored. More studies are needed that apply the model to other territorial

species and compare the results with traditional estimates of demographic parame-

ters using marked individuals. Additionally, further development of our model may

contribute to the advancement of integrated population models that combine differ-

ent sources of demographic data (Schaub et al. 2007). Thus, mark-recapture data

and territory occupancy data may be combined to obtain more precise estimates of

the parameters described in this study, or of estimates of additional parameters. In

conclusion, we suggest that adopting hierarchical mark-recapture models to territory

occupancy data can make large amounts of data available for research on animal de-

mography.

2.6 Acknowledgements

For help during data collection in the nightingale project, we thank Hansjoerg Kunc,

Martin Lutsch, Marc Naguib, Rouven Schmidt, Philipp Sprau, and the field assistants.
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S.2.8 WinBUGS model specification

WinBUGS model specification for the demographic site-occupancy model. The model

includes constant colonization rate r, constant detection probability p and yearly local

survival φt.

# MODEL DEFINITION OF THE TERRITORY OCCUPANCY MODEL

#

# The following data should be provided:

# y[i,m] = observations, Matrix with n rows and J*T columns, with

# m =((t-1)*J)+j for the jth visits in year t

# nter = number of territories (n)

# nyears = number of years (T)

# visits = number of yearly visits (J)

# first[i] = vector with year of first occupation for each territory

#

# Parameters to be estimated:

# phi[t] = yearly local survival

# r = territory colonization

# p = detection probability

#

# Latent state variables:

# x[i,t] = true territory occupancy state

# z[i,t] = territory fidelity state

for(i in 1:nter){
x[i,first[i]] dbern(1)

for(j in 1:visits) {
y[i,(first[i]-1)*visits+j] dbern(p)

}
for(t in (first[i]+1):nyear) {
# first submodel of state process

mu1[i,t] <- phi[t] * x[i,t-1]
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z[i,t] dbern(mu1[i,t])

# second submodel of state process

mu2[i,t] <- z[i,t] + r * (1-z[i,t])

x[i,t] dbern(mu2[i,t])

# Observation process

mu3[i,t] <- p * x[i,t]

for(j in 1:visits) {
y[i,((t-1)*visits+j)] dbern(mu3[i,t])

}
}
}
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S.2.9 R code for the simulation function

R code for the function to simulate data for testing the territory occupancy model.

The yearly local survival φt is simulated with φt ∼ N(φt,φsd).

# FUNCTION TO SIMULATE TERRITORY OCCUPANCY DATA

sim.set <- function(x1 lambda,nyear,n ter,visits,phi mean,phi sd,r,p) {
### The following parameters should be given to the function:

### x1 lambda = probability a territory is occupied at t=0

### nyear = number of study years (T)

### n ter = number of territories (n)

### visits = number of visits each year (J)

### phi mean = mean yearly local survival

### phi sd = sd of yearly local survival

### r = territory colonization

### p = detection probability

### Define matrix x (true territory occupancy state)

### Note: x includes a column for t=0

x <- matrix(rep(0, (nyear+1)*n ter), ncol=(nyear+1))

x <- as.data.frame(x)

names(x) <- paste("t", 0:nyear, sep="")

### Define the matrix y that contains the observations, the first J

### columns will contain observed occupancy states for the first year on

### the 1...J visits, the J+1 column will contain the observations of

### the first visit in the second year...

y <- matrix(rep(0, nyear*n ter*visits), ncol=(nyear*visits))

y <- as.data.frame(y)

### Simulate the yearly local survival

### Note 1: make sure that 0 <= phi <= 1

### Note 2: phi[1] is the local survival from t=0 to t=1, it will not

### be possible to estimate phi[1] with the territory occupancy model

phi <- rnorm(nyear, phi mean, phi sd)

phi[phi<0] <- 0; phi[phi>1] <- 1
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### Simulate territory occupancies at t=0 (each territory is occupied at

### t=0 with probability x1 lambda)

x$t0 <- rbinom(n ter, 1, x1 lambda)

### Simulate x and y from t=1 to t=nyear

### BE AWARE: t = year+1 (because x contains occupancy state for t=0)

for(i in 1:n ter) {
for(t in 2:(nyear+1)) {
x[i,t] <- rbinom(1,1,x[i,t-1]*phi[t-1])

x[i,t] <- rbinom(1,1,max(x[i,t],r))

for(j in 1:visits) {
y[i,((t-2)*visits)+j] <- rbinom(1,1,x[i,t]*p)

}
}
}
### Return observed territory occupancy matrix, i.e. the observations

as.matrix(y)

}
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Abstract

Aim Large-scale monitoring programs are mostly designed to survey population sizes

of unmarked animals. However, the effects of management action or of environmental

factors would become more explicit when demographic parameters such as survival could

be estimated. Here, we developed a demographic monitoring framework for exploring

the spatial configuration of occupied territories detected in nation-wide bird monitoring

programs, to obtain estimates of demographic rates for unmarked individuals.

Location Switzerland.

Methods To test the performance of our model, we simulated eight years of territory

mapping, with parameter settings that are typical for bird monitoring programs (five

visits per season, 100 territories surveyed).

Results We found that our method is able to obtain realistic estimates of demographic

rates. Bias was low provided that territories were fairly stable over years and that be-

tween visits, movements of birds were low to intermediate. Applying our framework on

data of unmarked Yellowhammers Emberiza citrinella from the nation-wide common

bird census in Switzerland, we found that territories were colonized at the highest rate

in the lowlands. In contrast, local survival, which is the probability that an individual

survives until the next reproductive period and settles in the same territory again, was

relatively low in the lowlands but tended to increase with altitude.

Main conclusions We conclude that our demographic monitoring framework consid-

erably broadens the possibilities for inference based on large-scale monitoring programs.

Applying our model on data covering large altitudinal or latitudinal ranges could provide

estimates on geographic variation in demographic parameters that are urgently needed

to understand the effects of climate change on population performance.

Keywords: Bayesian analysis, breeding bird survey, site-occupancy, state-space model,

territory colonization, territory fidelity, WinBUGS
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3.1 Introduction

Nation-wide animal monitoring programs usually focus on estimating temporal varia-

tion in population trends of selected species (Link and Sauer 1998, Yoccoz et al. 2001).

Such trend estimates are key instruments to inform resource managers and policy mak-

ers and to improve the management of ecosystems and of natural resources (Norris 2004,

Gaston and Fuller 2008). For example, trend estimates of population size revealed that

recent climate change affects animal populations (Gregory et al. 2009). However, there

is often a lag from the time when environmental conditions change until a population

responds by changing its size (Desante et al. 2001). Such a time lag can occur, for

example, because immediately after a deleterious event, non-breeding individuals from

other areas may immigrate into the population, thus resulting in apparent stability of

local breeding densities despite decreasing fecundity (Newton 1992, van Strien et al.

2011).

The effects of management action or of environmental factors would become more

explicit when demographic parameters such as survival, fecundity or immigration could

be directly estimated from large-scale monitoring programs (Saracco et al. 2008). The

estimation of demographic rates often needs data from individually marked animals

(Lebreton et al. 1992, Sandercock 2006). However, the collection of data of marked

individuals is often invasive and labor intensive and rarely applied to a large spatial

scale (but see the Constant Effort Ringing Programs in birds, e.g. Saracco et al. 2010).

Therefore, the development of methods to estimate demographic rates that do not rely

on trapping and marking individuals and that make use of the huge amounts of data

that have been collected for many decades during non-invasive monitoring programs

are highly desirable(Greenwood and Robinson 2006, Manning and Goldberg 2010).

Recently, a statistical model was proposed for estimating local survival (which is the

probability that an individual occupying a territory survives until the next reproductive

period and settles in the same territory again) based on territory occupancy data that

are obtained without marking individuals (Roth and Amrhein 2010). Note that we

define a territory as a patch of habitat that could be occupied by the studied species.

The model can be applied to small spatial scales to estimate local survival and terri-

tory colonization probabilities for an intensively surveyed study population of a single
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songbird species. The model assumes that each individual can be assigned to a terri-

tory without error and that the number of territories is known. Here, we developed

new methods for estimating the demographic parameters local survival and territory

colonization from data on unmarked birds that are collected during nation-wide bird

monitoring programs. From all available studies on the varying abundance of animals,

bird monitoring programs have probably covered the largest spatial and temporal scales

worldwide (Robbins et al. 1989, Julliard et al. 2006, Baillie et al. 2009). Bird moni-

toring programs often use territory mapping techniques, by recording the positions of

territorial males during several visits to a study site for each breeding season (Kéry

and Schmid 2006). However, the data collected from those monitoring schemes usually

do not directly deliver territory occupancy data that could be used for estimating local

survival and territory colonization (sensu Roth and Amrhein 2010). Instead they pro-

vide maps, where the location of recorded individuals at each visit is indicated. These

locations could be also summarized with coordinates. The territory-mapping methods

for analyzing data from large-scale monitoring do provide the number of occupied terri-

tories per breeding season, but so far they do not provide information on the potential

number of territories that would be available for occupation. This can be illustrated

with the following example. Consider a territory mapping study revealing 10 occupied

territories in each of two consecutive breeding seasons. This could mean the study

site contains 10 territories that were occupied during both breeding seasons. However,

this could also indicate that the study site contains 20 territories, with the first half of

territories being occupied during the first breeding season, and the second half during

the second breeding season. But even more refined, in both cases the study site may

contain an additional but unknown number of territories that were occupied in neither

of the two breeding seasons. Thus, without accounting for the spatial configuration of

territories, a long-term territory mapping study would not provide territory occupancy

data.

The main obstacle for obtaining territory occupancy data from large-scale monitor-

ing programs is that defining the locations of territories from the huge amounts of data

is simply unfeasible when done by hand. A formal framework is thus needed to explore

the spatial configuration of the occupied territories in consecutive years, and to autom-

atize the calculation of territory occupancy data. In the present study, we develop a

formal framework for obtaining territory occupancy data from existing bird monitoring

46



3.2 Demographic monitoring framework

programs and a statistical model to analyze the obtained data for estimating local sur-

vival and territory colonization. We use simulated data to test the performance of our

procedures, and we analyze data on the Yellowhammer Emberiza citrinella obtained

from a large-scale bird monitoring program, the Swiss common bird census (Kéry and

Schmid 2006).

The strength of our approach is that the effect of ecologically important covariates

on local survival and territory colonization can now be investigated on large spatial and

temporal scales. We provide an example of such an application by including altitude

as a covariate for local survival and territory colonization in our model on the Yel-

lowhammer. Altitude is likely to be an important predictor for demographic rates, as

it is for the distribution of birds (Maggini et al. 2011). Studies examining demographic

parameters over larger altitudinal ranges are so far hardly available (Chamberlain et al.

2012); however, they are important to understand how bird populations are affected

by locally changing temperatures, and thus are useful models to predict responses of

populations to a warming climate (Kim and Donohue 2011). Because high mountains

are likely to be particularly vulnerable to climate change, there is a need to understand

the demographic mechanisms that dictate future altitudinal shifts in the distributions

of birds and of other organisms (Chamberlain et al. 2012).

3.2 Demographic monitoring framework

3.2.1 Assigning multi-year bird detections to unique territories to ob-

tain territory occupancy data

Bird monitoring programs using territory-mapping data are usually designed for pro-

viding the number of occupied territories Ct for each breeding season t = 1, . . . , T . The

main goal in bird monitoring program is to infer temporal trends in the number of oc-

cupied territories Ct. However, usually it is not analyzed from bird territory-mapping

which of the Ct territories that were occupied in breeding season t were the same terri-

tories as those occupied in the next breeding season t+ 1, and which of the territories

were only occupied in one of the breeding seasons. Consequently, the total number

of territories that were occupied at least once (N) is not known. Note that N is not

necessarily the total number of territories in the study site because it does not include

those territories that were never occupied during the survey. We will account later
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for the territories that were never occupied during the survey, but for the present we

assume that N is the total number of territories available in the study site. To obtain

territory occupancy data the number of territories (N) is essential, and the occupied

territories Ct that are observed during territory mapping need to be allocated to the

i = 1, . . . , N territories.

Let define the occupied territories that were observed during territory mapping

during the entire study with a unique id p = 1, . . . , P , where P =
�

Ct. We propose

a algorithm to allocate the p = 1, . . . , P occupied territories observed during terri-

tory mapping during the entire study to the i = 1, . . . , N territories. Let define the

allocation state variable Ap ∈ {1, . . . , N} that contains the information to which of

the territories i = 1, . . . , N an occupied territory p that was observed during territory

mapping belongs. For instance A13 = 5 would mean that during territory mapping

the territory i = 5 was observed to be occupied and this observation of an occupied

territory got the id-number p = 13 that is unique over all breeding seasons. If the

same territory was observed to be occupied during an other breeding season, then this

observation of an occupied territory would get an other unique id, say p = 24, and the

allocation to the territory would be A24 = 5.

The aims of our territory-alignment algorithm are to derive the unknown number

of territories N and the allocation stat variable Ap. One of the assumptions of the

territory-alignment algorithm is that in a given breeding season, a territory can be

occupied only once. Thus, if for example the observations of occupied territories with

id-number p = 1 and p = 2 were recorded during the same breeding season, then

A1 �= A2. The second assumption is that if two observations of occupied territories

(for example p = 3 and p = 4) are located further away than a threshold distance D,

they are always considered as belonging to two different territories also if they were

not recorded during the same year (thus A3 �= A4). The threshold distance D is the

maximal possible distance between two observations of a male that is occupying the

same territory. The choice of D can be informed by the territory mapping data (e.g.,

from observations of simultaneously singing males), from a preliminary study, from

telemetry data or from the literature. Later, we will use simulation to gauge the effects

of different choices of D on the estimators of the demographic parameters.

We let the territory-alignment algorithm start with the starting values N = P and

Ap = p, thus all occupied territories that were observed during territory mapping over
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the entire study (i.e. p = 1, . . . , P ) are allocated to different territories. The algorithm

is then formulated as follows:

1. Select the two observations of occupied territories a ∈ {1, . . . , P} and b ∈ {1, . . . , P}
with the shortest distance, i.e. min(distance[a ←→ b]) with a �= b.

2. If the shortest distance between two ’occupied territories’ is larger than D, i.e.

min(distance[a ←→ b]) > D, then stop the algorithm.

3. If all observations of occupied territories that were previously allocated to terri-

tory a and b (i.e. all observations of occupied territories with Ap = a or Ap = b)

were recorded in different years, then fuse these territories (i.e. set Ap = a for all

p with Ap = b) and remove one territory from the available territories (i.e. set

N = N − 1); otherwise, if at least two observations of occupied territories that

were previously allocated to territory a and b were recorded in the same year, set

the distance between the two territories a and b to a value larger than D (i.e. set

min(distance[a ←→ b]) = D + 1).

4. If the total number of territories N equals the maximum number of occupied ter-

ritories identified by territory mapping in one year, stop the algorithm; otherwise

go to step 1 of the algorithm.

On completion of the territory-alignment algorithm, we obtain the number of ter-

ritories N and the allocation vector Ap. Note, however, that at this stage the number

of territories N is biased low since it does not yet contain the territories that were

never occupied during the study period. We will account for this bias in the territory-

occupancy model below. From the number of territories N and the allocation state

variable Ap, it is now straightforward to derive the observed territory occupancy data.

Denote the observed territory occupancy data Yi,t ∈ 0, 1, . . . , J as the number of times

a territorial male was observed in territory i = 1, . . . , N during the J visits and during

breeding season t = 1, . . . , T . These observed territory occupancy data Yi,t are the data

that are analyzed using the model that is described next. See Appendix S.3.7 in the

Supplementary information for an implementation of the territory-alignment algorithm

written in R software.
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3.2.2 Territory occupancy model to estimate demographic rates from

territory occupancy data

Our model is based on that of Roth and Amrhein (2010) and allows us to estimate local

survival and territory colonization from data obtained from bird monitoring programs

using our method of territory alignment. Note, however, that the territory-alignment

algorithm as described above yields estimated territory occupancy data Yi,t. We have

currently no way to gauge the associated estimation error and our territory occupancy

model assumes that no error is made in the assignment of bird locations to territories

over all years of study. This will introduce bias to the degree that the assignments of

birds to territories are not perfect over the years (see simulations below).

Roth and Amrhein (2010) model is a robust-design site-occupancy model, treating

the territories as concepts that are analogous to the single sites in site-occupancy models

(Kendall et al. 1997, MacKenzie et al. 2003, MacKenzie et al. 2006, Royle and Kéry

2007). The territory-occupancy model also contains a parameter for the detection

probability, which is the probability that the territory holder of an occupied territory

is observed during one visit to the territory during a monitoring survey. In contrast to

Roth and Amrhein (2010), we here also aimed to use the number of available territories

as an indication of habitat availability and, therefore, aimed to estimate the number

of territories that were never observed to be occupied during the entire study period.

From the concept, the proposed extension of the Roth and Amrhein (2010) model is

similar to the extension of a mark?recapture model to estimate survival (e.g. Cormack-

Jolly-Seber model) to a mark-recapture model that simultaneously estimates survival,

recruitment and population size (e.g. Jolly-Seber model, Lebreton et al. 1992, Link

and Barker 2005). The Roth and Amrhein (2010) territory-occupancy model, for which

the number of available territories was not in focus, conditioned on the breeding season

the territory was observed to be occupied for the first time, whereas here we developed

an unconditional model, thus all occupancy data were analyzed from the first breeding

season. Thus, we added a new parameter Ψ, which is the occupation probability of a

territory during the first breeding season. Denote as the true territory occupancy state

Xi,t, i.e. Xi,t = 1 if territory i is occupied during season t, and Xi,t = 0 otherwise.

We assume that the true territory occupancy state Xi,t of territory i during the first
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breeding season is given as a Bernoulli trial with probability ψ

Xi,1 ∼ Bernoulli(ψ) (3.1)

We further assume that the true territory occupancies Xi,t in later seasons evolve

according to a Markov process as a function of two demographic processes. The first

process is the probability an individual will survive and will continue to occupy the same

territory (φi). We term this local survival, because it is the product of the probabilities

of survival and territory fidelity (Roth and Amrhein 2010). The second process is

represented by the probability that an empty territory is colonized (ri). The latent

territory occupancy state Xi,t for the breeding seasons t = 2, . . . , T can be described

by

Zi,t ∼ Bernoulli(φiXi,t−1) (3.2)

Xi,t ∼ Bernoulli(Zi,t + ri(1− Zi,t)) (3.3)

Eqn 3.2 describes the local survival of the male in territory i from one breeding season

to the next. The state variable Zi,t denotes the territory fidelity of a male in territoryi:

if territory i is occupied during breeding season t by the same male as during breeding

season t − 1 then Zi,t = 1, otherwise Zi,t = 0. Note that the territory fidelity state

during the first breeding season (Zi,t) can not be estimated since the latent territory

occupancy state Xi,0 before the first breeding season is not known. eqn 3.3 describes

the colonization of territory i with probability ri if the territory was not reoccupied by

the male from the previous breeding season (Zi,t = 0); if the territory is occupied by

the same male as in the previous season, then Zi,t = Xi,t = 1.

Our model accounts for imperfect detection of a territory in a breeding season by

assuming that the number of detections of territory i during breeding season t is a

binomial random variable with index J (corresponding to the number of surveys).

Yi,t ∼ Binomial(J, pXi,t)) (3.4)

In the Roth and Amrhein (2010) model, the local survival φ was assumed to be year

specific, whereas the territory colonization probability r and the detection probability

p were assumed to be constant. Because territories are likely to differ in quality, we

here allowed the demographic parameters local survival φi and territory colonization ri
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to vary among territories (Hoover 2003, Howlett and Stutchbury 2003). We formulated

both parameters on the logit scale as Normal random effects,

logit(φi) ∼ Normal(µφ,σ
2
φ) (3.5)

logit(ri) ∼ Normal(µr,σ
2
r ) (3.6)

where µφ is the mean (over territories) and σ
2
φ the among-territory variance of the logit

transform of local survival probability; and µr is the mean and σ
2
r the among-territory

variance of the logit transform of territory colonization probability.

The parameter space of our model is not fixed, because the number of territories

that were never occupied is not known. We therefore used data augmentation (Royle

et al. 2007) and Markov chain Monte Carlo methods (MCMC) to obtain Bayesian

estimates of all parameters in our territory-occupancy model. We added to the observed

territory occupancy data Yi,t m hypothetical territories with all 0 detection histories.

The dimension of Zi,t and Xi,t in the augmented data set is then fixed to M territories,

where M is the sum of the number of territories that were occupied at least once

(N) plus m. To analyze the augmented data, we fit a re-parameterized version of

the territory occupancy model. We added one hierarchical layer by defining a binary

variable wi to indicate whether territory i in the augmented list of M territories is

available for occupation (wi = 1) or not (wi = 0). We defined wi such that wi ∼
Bernoulli(ω). Let define the total number of available territories, including territories

that were never occupied, as H. It can be calculated as a derived quantity with H =
�

wi, and can be interpreted as habitat availability for the study species. For more

details about the territory occupancy model formulation and the analyses of the model

using WinBugs (Gilks et al. 1994, Lunn et al. 2009), we refer the reader to Roth and

Amrhein (2010).

3.3 Applications

3.3.1 Simulation study

In our previous work (Roth and Amrhein 2010), we showed that a territory occupancy

model similar to the model introduced above is able to recover unbiased estimates of

local survival and territory colonization when the territory occupancy data are observed
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data. Here, however, we apply the model to territory occupancy data that were derived

using our territory-alignment algorithm for data from bird monitoring programs. It

is likely that the untreated uncertainty in the derived territory occupancy data will

lead to biased estimates of the target parameters. We conducted a simulation study

to investigate some of the likely biases induced by errors in the territory alignment

process. See Appendix S.3.8 of the supplementary material for R code to simulate

territory occupancy data.

We aim to simulate the positions of territorial males that are observed during several

years of territory mapping, and start with simulating the positions of the H territories

that are available for occupation. These positions of territories are fixed during the

entire study period. If a male occupies a territory, the simulation routine assumes

that the male has a activity center within the territory that is fixed during a given

breeding season, but is subject to variation between breeding seasons. The center of

activity might reflect the song post or the nesting site of the territorial male, and the

song post or the nesting site may be fixed in a given breeding season but may change

from breeding season to breeding season, irrespectively of whether it is the same male

that occupies the territory in the two breeding seasons. Further, the observed positions

of territorial males during territory mapping are subject to variation within breeding

seasons. This is simply because territorial males may change their positions between the

J visits that are conducted during the single breeding seasons. Note, that it is variation

within breeding seasons that determines what is usually considered as territory size.

The number of territorial males that were observed during the study depends on local

survival, territory colonization and detection probability, and was simulated under the

territory occupancy model described above. In summary, our simulation routine can

be described in four steps:

1. Determine the location of each territory in the study site by using a uniform

distribution of patch coordinates and a minimal distance between territories.

2. Simulate the activity centers of the males that occupy the territories (‘between

year variation of activity centers’).

3. Given the position of the activity centers in one year, simulate for each visit

the positions of the male that occupies the territory (‘between visit variation of

positions of males’).
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4. Given local survival φi, territory colonization ri and detection probability p, sim-

ulate the number of times a male in territory i and breeding season t is observed.

See Appendix S.3.9 of the supplementary material for an R-function to simulate territory-

mapping data with the described simulation routine. We considered three scenarios to

investigate the bias and precision of the parameter estimates. First, we simulated ‘sta-

ble territories’ with no between-year variation of activity centers (i.e. σ
year = 0, see

Appendix S.3.8) and with little movement of territorial males between visits (σind = 10,

see Appendix S.3.8). Second, we simulated ‘rather stable territories’ with little between-

year variation of activity centers (i.e. σ
year = 10) and with intermediate movement of

territorial males between visits (σind = 20). Third, we simulated ‘unstable territories’

with large between-year variation of activity centers (i.e. σ
year = 20) and with large

movement of territorial males between visits (σind = 30). See Fig. 3.1 for example data

that were simulated under the three scenarios.

We aimed to simulate a realistic study of a songbird in a study site of 3km x 3km.

We used the following specification for each of the 100 performed simulations for each

of the three scenarios. The specification was used to reflect a typical field study using

territory mapping technique (Kéry and Schmid 2006, Baillie et al. 2009, Roth and

Amrhein 2010). The study lasted for T = 8 breeding seasons. Each breeding season,

the study site was visited J = 5 times for mapping territorial males, and territorial

males were detected with a probability of p = 0.5. We assumed that within the study

site and during the entire study, there were H = 100 territories available for occupation

with at least 100m distance between the territories. During the first study year, the

territories were occupied with a probability of ψ = 0.6. Thereafter, each breeding

season, some territorial males settled in the same territory as in the previous breeding

season, with an average local survival probability of φ̄ = 0.6 (Howlett and Stutchbury

2003, Roth and Amrhein 2010). Empty territories were colonized with an average

probability of r̄ = 0.3 (Roth and Amrhein 2010). Both local survival and territory

colonization varied among territories on the logit-scale, with φSD = rSD = 0.2. For

running the territory-alignment algorithm, we used for each simulation a threshold

distance D = 200 that was twice the minimal distance between territories (we tested

the effect of the threshold distance on estimates of demographic parameters in a further

simulation study, see below). For the Bayesian analyses of the territory occupancy
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Figure 3.1: The three simulation scenarios - Example simulations showing the data of

three years of territory-mapping, simulated according to three scenarios: stable territories

with no between-year variation of activity centers and with little movement of territorial

males between visits (Scenario 1, upper panel), rather stable territories with little between-

year variation of activity centers and with intermediate movement of territorial males

(Scenario 2, panel in the middle) and unstable territories with large between-year variation

of activity centers and with large movements of territorial males between visits (Scenario

3, lower panel). The open circles, closed circles and the crosses indicate the observed

positions of territorial males during territory mapping in the first, second and third study

year, respectively. The large grey circles are the territories that need to be estimated using

the described demographic monitoring routine. The data are simulated under the described

simulation routine (see Appendix S.3.8) for N = 30 territories, with average local survival

φ̄ = 0.6, average territory colonization r̄ = 0.3, and with detection probability of p = 0.5.

See text for further specification of the simulation.
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model, we assumed conventional diffuse prior distributions [i.e. U(0,1) for ψ, φ̄, r̄, p

and ω; U(0.01,2) for φSD and rSD].

Bias Coverage CRI-length

a) Scenario 1

φ̄ -0.03 0.96 0.21

r̄ 0.04 0.84 0.15

p 0.00 0.95 0.05

b) Scenario 2

φ̄ -0.04 0.92 0.22

r̄ 0.04 0.79 0.15

p 0.00 0.94 0.05

c) Scenario 3

φ̄ -0.12 0.48 0.25

r̄ 0.06 0.57 0.14

p 0.00 0.98 0.05

Table 3.1: Summary of 100 simulations according to each of three scenarios: a) stable

territories with no between-year variation of activity centers and with little movement

of territorial males between visits, b) rather stable territories with little between-year

variation of activity centers and with intermediate movement of territorial males and c)

unstable territories with large between-year variation of activity centers and with large

movements of territorial males between visits. Given are the results for the parameters φ̄

(average local survival), r̄ (average colonization probability) and p (detection probability).

Given are credible interval (CRI) coverage (the proportion of 100 simulation replicates that

the 95% CRI contained the true parameter value), bias (difference between mean estimate

minus true value), and CRI length (mean length of CRI). See text for the true parameter

values used for simulation.

The results of our simulation studies demonstrated that our method of demographic

monitoring (i.e. application of our model to data obtained in our territory-alignment

method) is able to recover realistic estimates of local survival and territory coloniza-

tion from data of unmarked individuals in bird monitoring programs, provided that

territories are fairly stable over years and within-territory movement of males was low

to intermediate only. Local survival tended to be biased low with little bias in the

first two scenarios and intermediate bias in the third scenario (Table 3.1). Territory
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colonization tended to be biased high with little bias in the first two scenarios and

only slightly higher bias in the third scenario (Table 3.1). Detection probability was

unbiased in all three scenarios. Therefore, our method of demographic monitoring may

be applied mainly to species with territories that remain relatively stable from year to

year. Such species with stable territories include species that defend areas including

rare but spatially stable resources such as isolated habitat patches, nest cavities, or

food resources.

In a second simulation study, we aimed to investigate the effect of the chosen thresh-

old distance D on the parameter estimates. The threshold distance D is the maximum

possible distance between two observations of a male that is occupying the same terri-

tory. We simulated data under scenario 2 above and used different values of D. Results

show that except for very low values of D, estimates of local survival were unaffected

by D (Fig. 3.2). In contrast, the estimates of territory colonization depended on the

threshold distance D that was used for the analyses, and the bias slightly increased

with increasing D (Fig. 3.2).

In a third simulation study, we investigated how the number of available territories

(H) at the study site would affect the estimates of the demographic parameters. We

simulated data under scenario 2 above and varied the number of available territories H.

We found no effect of the number of territories (H) on the estimates of local survival or

territory colonization. The bias in estimates of both demographic parameters remained

constant (Fig. 3.3).

3.3.2 Analysis of Yellowhammer data

As a case study for our approach to demographic monitoring, we analyzed data from the

long-term monitoring program on the common birds in Switzerland, the ‘Monitoring

Häufige Brutvögel’ MHB (Kéry and Schmid 2004, Schmid et al. 2004). Launched

in 1999, 267 squares of 1km2 are laid out as a grid across the entire country and

are surveyed each year using territory-mapping methods. Every square is visited 2-3

times in each breeding season. We analyzed a subsample of 100 squares for 2004-

2009 and digitized the coordinates of each observed individual bird. We chose data

from the Yellowhammer Emberiza citrinella, which is widespread in Switzerland in

open landscapes (Schmid et al. 1998). The Yellowhammer has fairly well recognizable

territories and should therefore not pose too many problems in terms of our model
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Figure 3.2: Effects of the threshold distance - The effects of the threshold distance

(D) on the estimates of local survival (white boxes) and territory colonization (grey boxes).

The threshold distance D is the maximal possible distance between two observations of a

male that is occupying the same territory and needs to be defined to run the algorithm to

obtain territory occupancy data from bird monitoring programs. Shown are boxplots of

the bias for 100 simulations under scenario 2 (see text).
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Figure 3.3: Effects of the number of territories - The effects of the number of

territories (H) on the estimates of local survival (white boxes) and territory colonization

(grey boxes). Shown are boxplots of the bias for 100 simulations under scenario 2 (see

text).
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assumptions. Yellowhammers were observed in 58 squares, in which the mean±SD

number of occupied territories per square and year was 4.0±0.2. We used our territory

alignment algorithm to deduce territory occupancy data using a threshold distance

D = 200m to each of the 100 squares. The choice of the threshold distance D was based

on a preliminary analysis of the five squares with the highest density of Yellowhammers

where the maximal distance between two observations of a male that were presumably

occupying the same territory was about 200m. We augmented the observed data in

each square with 10 potential territories (see Data augmentation in earlier section).

We then aimed to analyzed the territory occupancy data of the k = 1, . . . , 100

squares with the described territory occupancy model. Up to now, the territory oc-

cupancy data was formulated for a single study site, but now yellowhammer data are

from 100 different sites. Therefore, we had to add an additional hierarchical layer to

the occupancy model. We fitted a model where the average local survival of a square

and the average territory colonization of a square, µφ and µr, respectively, were both

related to the elevation (linear and squared; altk and alt
2
k) of square k and to its number

of territories occupied at leas once (Nk) according to

logit(µφ,k) = α0 + α1altk + α2alt
2
k + α3Nk (3.7)

logit(µr,k) = β0 + β1altk + β2alt
2
k + β3Nk (3.8)

In eqn 3.7, α0 is the intercept, α1 is the linear, and α2 the quadratic effect of altitude,

and α3 is the linear effect of the number of territories observed in square k. Similarly

in equation 3.8, β0 is the Intercept β1 is the linear, and β2 the quadratic effect of

altitude, and β3 is the linear effect of the number of territories observed in square k.

Furthermore, the first-year occupancy probability was assumed to be different for each

square k, i.e. Ψk. Likewise, the probability ωk that a territory in the augmented list is

part of the territories that are available for occupation was assumed to be different for

each square.

The specification of the model was as follows: the study lasted for T = 6 breeding

seasons (2004-2009). Each breeding season, the studied 100 squares were visited J = 3

times (except for high altitude squares with J = 2 visits). As in the simulation study,

we adopted a Bayesian analysis of our territory-occupancy model using Markov chain

Monte Carlo methods (MCMC; Link et al. 2002). We assumed conventional diffuse

prior distributions [i.e. U(0,1) for ψk, φ̄k, r̄k, p and ωk; U(0.01,2) for φSD and rSD;
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Norm(0,1) for α1, α2, α3, β1, β2 and β3]. See Appendix S.3.10 for a description of the

model in the BUGS language.

3.3.3 Results on the Yellowhammer

We found that local survival of Yellowhammers tended to increase with altitude (linear

effect of altitude [α1]: mean=0.79, 95%-credible interval CI=-0.17 – 1.66; quadratic

effect of altitude [α2]: mean=0.51, CI=-0.24 – 1.32; left panel of Fig. 3.4). In contrast,

the probability of a Yellowhammer territory to be colonized decreased linearly with

altitude, and thus territories were colonized at the highest rates in the lowlands (linear

effect of altitude [β1]: mean=-0.38, CI=-0.70 – -0.05; quadratic effect of altitude [β2]:

mean=0.05, CI=-0.29 – 0.29; right panel of Fig. 3.4). Thus, average local survival

at the squares was negatively correlated with the average territory colonization of the

squares (r=-0.79, df=98, t=12.57, p<0.001). The number of observed territories in a

square may explain this negative correlation of local survival and territory colonization:

local survival tended to decrease with the number of territories (α3: mean= -0.10, CI=-

0.21 – 0.04), whereas territory colonization increased with the density of territories (β3:

mean= 0.12, CI= 0.08 – 0.16).
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Figure 3.4: Results of the Yellowhammer study - Estimates of local survival (left

panel) and territory colonization (right panel) over different altitudes obtained from terri-

tory mapping data of Yellowhammer from the Swiss Common Bird Census (MHB). Shown

are the regression lines (bold lines) and the 95% credible interval of the regression lines

(grey shade) for squares with 10 territories that are available for occupation..
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3.4 Discussion

We presented and tested a new framework for exploring the spatial configuration of

occupied territories provided by bird monitoring programs to obtain estimates on lo-

cal survival and territory colonization of the studied species. Applying our framework

on the data of unmarked Yellowhammers from the nation-wide common bird census

in Switzerland, we found that territories were colonized at the highest rate in the

lowlands, while local survival increased with altitude. These estimates on demographic

rates could not be predicted from the altitudinal patterns of Yellowhammer abundance,

which shows highest densities at low altitudes (Maumary et al. 2007). By providing

information on demographic rates, our demographic monitoring framework thus con-

siderably broadens the possibilities for inference based on data from large-scale bird

monitoring programs.

Habitats with the highest densities of a species are usually assumed to be optimal for

that species. However, local survival might be considered as reflecting habitat quality

more directly than overall abundance. This is because individuals often use their own

reproductive performance at a site to assess the current and expected future quality of

the habitat, and respond by returning or not returning to the same site (Hoover 2003,

Howlett and Stutchbury 2003, Sergio and Newton 2003). Thus, high local survival

should indicate habitats of high quality. The analysis on the Yellowhammer, however,

revealed that average local survival was low in lowlands, where territory colonization

rate and density of Yellowhammers were highest. Such a pattern could potentially be

explained if lowland habitat were to function as ecological trap, in which individuals

preferentially settle despite its relatively low quality (Robertson and Hutto 2006). In

Switzerland, ecological compensated areas have been mainly implemented in the inten-

sively used agricultural land in the lowlands, and they provide new habitat in which

Yellowhammers prefer to establish their territories (Herzog et al. 2005, Birrer et al.

2007). Whether or not ecological compensated areas could act as ecological traps for

Yellowhammers could be explored in experimental studies (Robertson and Hutto 2006).

Survival rates are usually obtained from capture-recapture data on individually

marked animals (Lebreton et al. 1992, Sandercock 2006). However, marking individu-

als and reencounter them is often invasive and labor intensive and is rarely used in the

frame of large-scale monitoring programs (but see Saracco et al. 2010). Most of the

62



3.4 Discussion

currently known non-invasive methods to estimate demographic rates rely on individual

recognition based on morphological characters (Meekan et al. 2006) or songs and calls

(Vögeli et al. 2008), or based on hair samples using genetic techniques (Kéry et al.

2011). In our new demographic monitoring framework, the spatial locations of territo-

ries can be seen as a new way to identify individuals (Manning and Goldberg 2010).

Such a spatial recognition of territory holders is of course prone to error, because dif-

ferent individuals may occupy different territories during consecutive breeding seasons.

Traditional capture-recapture models are based on the assumption that there are no

errors in recognition of individuals, and could thus not be used in our framework. In

contrast, our territory occupancy model accounts for imperfect recognition of individu-

als by including the territory colonization probability: errors in individual recognition

could occur when an individual occupies a territory that was previously occupied by

another individual. Thus, the territory colonization probability as estimated from our

model can be regarded as the nuisance parameter accounting for imperfect recogni-

tion of territory holders, allowing for estimates of local survival that are corrected for

imperfect individual recognition.

In most territorial species, it is usually the males that are more conspicuous than

the females and the males actively advertise their territories (Andersson 1994). There-

fore, mainly the males are surveyed in monitoring programs, and our model is likely to

estimate only local survival of males (Roth and Amrhein 2010). However, the advan-

tage of applying our demographic monitoring framework to national bird monitoring

programs is that bird monitoring programs have probably covered the largest spatial

and temporal scales worldwide (Robbins et al. 1989, Julliard et al. 2006, Baillie et

al. 2009). Thus, local survival can now be investigated on large spatial and temporal

scales.

Much effort is currently focused on predicting the impact of climate change on pop-

ulations of animals and plants (Walther et al. 2002, Parmesan 2006). It is therefore

necessary to understand how the demographic parameters of a population are affected

by variation in ambient temperatures. Studies on intraspecific variation in demographic

parameters across altitudes offer a particularly useful tool for predicting population re-

sponses to a warming world, and demographic studies across multiple ranges of altitude

are urgently needed (Kim and Donohue 2011). At least for birds, however, few studies
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have considered variation in demographic parameters in relation to altitude (Chamber-

lain et al. 2012). Our territory occupancy model for analyzing the Yellowhammer data

was parameterized using a hierarchical modeling approach (Gelman and Hill 2007) to

provide estimates on 100 different sites (1km squares) from Switzerland. Under the

hierarchical modeling approach, we were able to obtain altitude-specific estimates on

local survival and on territory colonization for the Yellowhammer by combining all of

the data within a single model. Thus, applying our hierarchical territory occupancy

model on data from bird monitoring programs covering large altitudinal (Kéry and

Schmid 2006) or latitudinal ranges (Baillie et al. 2009) could provide estimates on ge-

ographic variation in demographic parameters that are urgently needed to understand

the effects of climate change on population performance. We thus hope that the pre-

sented demographic monitoring framework will help to inform resource managers and

policy makers by providing information on large-scale demographic rates.
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S.3.7 R-function for estimating territory occupancy data

R-function for estimating territory occupancy data from bird monitoring programs

using territory mapping methods. The following arguments should be provided to the

align()-function:

obs.data data.frame with two columns that contains the ob-

served positions of territorial males

put.ter id of the occupied territory (p in the manuscript) for

all positions of territorial males in obs.data.

year year for all positions of territorial males in obs.data

D The threshold distance D that is the maximal possible

distance between two observations of a male that is

occupying the same territory.

The align()-function returns the following results:

Y[i,t] Observed territory occupancy data for territory i and

year t

# R-FUNCTION FOR ESTIMATING TERRITORY OCCUPANCY DATA

align <- function(obs.data, put.ter, year, D) {
### Estimate the centres of the occupied territories and count the total

### number of observations in that territory

ter <- data.frame(list(

terID = names(tapply(obs.data[,1], put.ter, mean)),

year = tapply(year, put.ter, mean),

x = tapply(obs.data[,1], put.ter, mean),

y = tapply(obs.data[,2], put.ter, mean),

obs = table(put.ter)

))

ter$terID <- as.integer(ter$terID)

ter <- ter[order(ter$terID),]

### Calculate the distances between all territories.

dist <- data.frame(matrix(NA, nrow=nrow(ter), ncol=nrow(ter)))

x <- ter$x
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y <- ter$y

for(t.y in 2:nrow(ter)) {
for(t.x in 1:(t.y-1)) {
### Note: if territories are recorded during the same year the distance

### between these territories remains ’NA’

if(ter$year[t.y] != ter$year[t.x]) dist[t.y,t.x]

<- sqrt((x[t.x]-x[t.y])*(x[t.x]-x[t.y]) + (y[t.x]-y[t.y])*(y[t.x]-y[t.y]))

}
}

### Prepare a list; in that list we will note all the occupied territories

### from territory mapping in the different years that belong to the same

### territory.

terlist <- list()

for(t in 1:nrow(ter)) terlist[t] <- ter$terID[t]

### Calculate the maximum number of occupied territories per year and set

N

ex <- max(apply(table(ter$year, ter$terID)>0, 1, sum))

N <- nrow(ter)

### Start alignment algorithm

while(ifelse(sum(!is.na(dist))==0, FALSE, min(dist, na.rm=T) < D & N>ex))

{
### Get the two territories with minimal distances

fuse <- which(dist==min(dist, na.rm=T), arr.ind=T)[1,]

### get all the putative territories that are already allocated to these

### two territories

to fuse ter <- c(unlist(terlist[min(fuse)]),unlist(terlist[max(fuse)]))

### Make sure that the territories that should be fused are all from

### different years

ausw <- rep(FALSE, nrow(ter))

for(ii in to fuse ter) ausw[ter$terID==ii] <- TRUE
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fuseOK <- sum(table(ter$year[ausw])>1)==0

### Fuse territories if all territories are from different years

if(fuseOK) {
terlist[[min(fuse)]] <- to fuse ter

ter$terID[ter$terID == max(fuse)] <- min(fuse)

dist[unlist(terlist[[max(fuse)]]),] <- NA

dist[,unlist(terlist[[max(fuse)]])] <- NA

for(k in 2:length(unlist(terlist[[min(fuse)]]))) {
dist[min(fuse), ter$year==ter[terlist[[min(fuse)]][k],"year"]] <- NA

dist[ter$year==ter[terlist[[min(fuse)]][k],"year"], min(fuse)] <- NA

}
}
### If territories should not be fused set distance between the two

### territories to ’NA’

if(!fuseOK) {
dist[unlist(terlist[[max(fuse)]]),] <- NA

dist[,unlist(terlist[[max(fuse)]])] <- NA

if(length(unlist(terlist[[min(fuse)]]))>1) {
for(k in 2:length(unlist(terlist[[min(fuse)]]))) {
dist[min(fuse),ter$year==ter[terlist[[min(fuse)]][k],"year"]] <- NA

dist[ter$year==ter[terlist[[min(fuse)]][k],"year"],min(fuse)] <- NA

}
}
}
}

### Make observed territory occupancy data (Y[i,t])

ter$terID <- as.integer(factor(ter$terID))

Y <- data.frame(matrix(0,nrow=length(unique(ter$terID)), ncol=max(ter$year)))

for(t in 1:max(ter$year)) Y[ter[ter$year==t, "terID"],t] <- ter[ter$year==t,

"obs.Freq"]

### Return results
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list(ter=ter, Y=Y)

}
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S.3.8 Description of the simulation

In this supplement, we developed a model to simulate data from a bird monitoring

program using territory-mapping techniques. We will use that model to simulate data

and test our procedures for demographic monitoring described in the main body of the

manuscript.

Description of simulation model

Suppose that a population of a territorial species is sampled using territory mapping

methods (Bibby et al. 2000) during j = 1, . . . , J visits within a breeding season.

During each visit, the location of every visual or acoustic contact with a territorial

(i.e. usually singing) male of the surveyed species is mapped. The observed positions

of territorial males from all visits during a given year are combined and clustered to

territories based on the knowledge of species-specific territory size and the clustering

of observations (Kéry and Schmid 2006, Gottschalk and Huettmann 2011). Let assume

that within the study site, i = 1, . . . , N territories are available for occupation, and

N remains constant over the entire study. Let further assume that each territory has

a position (i.e. the centre of the territory) within the study site that is fixed during

the entire study. Furthermore, let assume that each male occupying a territory has an

activity center where the male is most likely to be observed. The activity center of a

male is not necessarily in the center of its territory, and the position of the activity

centers of the males may also change from breeding season to breeding season. Denote

the centers of the territories S(x/y − coordinates)i as the two-dimensional matrix that

contains the x- and y-coordinates of the centres of the i = 1, . . . , N territories. Further,

denote the activity centres A(x/y − coordinates)i as the three-dimensional matrix that

contains the x- and y-coordinates of the male that occupies territories i during breeding

season t = 1, . . . , T . We assume that the activity centres A(x/y − coordinates)i, t

of the males vary from the centers of the territories S(x/y − coordinates)i with a

Normal distribution and standard deviation σ
year. Furthermore, the positions of the

territorial males vary around the activity centers A(x/y − coordinates)i,t with a normal

distribution and standard deviation σ
ind.

For the data simulation, we first assume that all N territories were occupied during

the entire study of T breeding seasons and were always detected during the J visits.
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We therefore simulate V = N × T × J observations of territorial males. Denote the

observations P (x/y − coordinates)v as the two-dimensional matrix that contains the

x- and y-coordinates of all v = 1, . . . , N × T × J positions of territorial males. Then

the observations P (x/y − coordinates)v are given by

A(x/y − coordinates)i, t ∼ Norm(S(x/y − coordinates)i,σ
year) (3.9)

P (x/y − coordinates)v ∼ Norm(A(x/y − coordinates)i, t,σ
ind) (3.10)

Since territories are not always occupied and males of occupied territories are not always

detected, we now describe which of all the possible observations P (x/y − coordinates)v

were indeed observed. The simulation routine has to account for two different patterns.

First, it is only possible to observe a territorial male when the territory is occupied, and

whether a territory is occupied depends on the demography of the population. Second,

also if a territory is occupied, the male of the territory may be not observed. Denote

Xi,t as the true territory occupancy state of territory i = 1, . . . , N during the breeding

seasons t = 1, . . . , T . If territory i during breeding season t is occupied, then Xi,t = 1;

otherwise Xi,t = 0. We assume that during the first breeding season of the study, a

territory i is occupied with probability ψ, thus

Xi,1 ∼ Bernoulli(ψ) (3.11)

We assume that the territory occupancies after the first breeding season are the result

of two demographic processes. The first is the probability of individual survival and

continued tenancy of a territory by its owner, which we define as local survival, because

it includes both actual survival and territory fidelity (Roth and Amrhein 2010). The

second process includes the probability that an empty territory is colonized. Let the

parameter φi,t be the local survival probability of a territory owner in territory i from

breeding season t− 1 to t, and let ri,t be the colonization probability of a territory i in

breeding season t given that the territory is not occupied. Then the territory occupancy

Xi,t for the breeding season t = 2, . . . , T is described in two steps

Zi,t ∼ Bernoulli(φi,tXi,t−1) (3.12)

Xi,t ∼ Bernoulli(Zi,t + ri,t(1− Zi,t)) (3.13)
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Eqn 3.12 describes the survival of a male from one breeding season to next breeding

season. The state variable Zi,t denotes the territory fidelity of a male: if territory i is

occupied at time t by the same male as at time t− 1 then Zi,t = 1, otherwiseZi,t = 0.

Eqn 3.13 describes the colonization of the territory if the territory was not reoccupied

by the male from the previous breeding season.

In the simulation model, we also acknowledge that territories may differ in quality

(Hoover 2003, Howlett and Stutchbury 2003), and thus local survival φi,t and territory

colonization ri,t may vary between territories. We assumed that the variation among

territories is described by a normal distribution with a correlation ρ between local

survival φi,t and territory colonization ri,t. In real world data, would may expect the

correlation ρ between local survival φi,t and territory colonization ri,t to be positive

because an individual in a territory of high quality will be more likely to return to the

same territory than an individual in a territory of low quality, and similarly a territory

of high quality is more likely to be colonized by a new individual than a territory of

low quality.

φi,t ∼ Norm(φ̄,Σ) (3.14)

ri,t ∼ Norm(r̄,Σ) (3.15)

with Σ =

�
φ
2
SD ρφSDrSD

ρφSDrSD r
2
SD

�
(3.16)

We now have described the generation of the territory occupancy dataXi,t that depends

on the demographic parameters local survival φi,t and the colonization probability ri,t.

When applying territory-mapping methods, the location of a territorial male can be

observed only if a territory is occupied, i.e. if Xi,t = 1,. However, even if the territory

is occupied, in some instances the territorial male may be overlooked and thus its

position is not recorded. Denote Iv as a logical variable indicating whether one of

all the v = 1 . . . , N × T × J possible observation P (x/y − coordinates)v was indeed

observed (i.e. Iv = 1) or remains a potential observation (i.e. Iv = 0). Let define p as

the probability that an individual of an occupied territory is detected, then

Iv ∼ Bernoulli(pXi,t) (3.17)

Thus, the data of territory mapping methods are all potential observations

P (x/y − coordinates)v with Iv = 1. In Appendix S.3.9, we give a function written
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in the software R (R Development Core Team 2010) that simulates data using the

described data model.
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S.3.9 R-function to simulate data

R-function to simulate data under the simulation routine described in Supplement S.3.8

The following arguments should be provided to the sim()-function

N The fixed number of available territories in the study

site.

T The number of studied breeding seasons.

J The number of visits per breeding season.

psi1 The probability that a territory is occupied in the first

breeding season.

phi mean The average local survival.

phi sd The standard deviation of the variation in local sur-

vival between territories.

r mean The average territory colonization.

r sd The standard deviation of the variation in territory

colonization between territories.

roh The correlation between local survival and territory

colonization.

p The detection probability.

sd year The variation (SD) of activity centres around the ’hy-

per territory centres’.

sd ind The variation (SD) of potential observations around

the activity centres.

min dist The minimal distance between the ’hyper territory

centres’.

size site The size of the (squared) study site in meter.

# R-FUNCTION TO SIMULATE DATA

sim <- function(N, T, J, psi1, phi mean, phi sd, r mean, r sd, roh, p, sd year,

sd ind, min dist, size site) {

### Load libraries

library(MASS)
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### Define data structures

S <- array(NA, dim=c(N,2))

A <- array(NA, dim=c(N,T,2))

P <- array(NA, dim=c(N*T*J,2))

X <- array(NA, dim=c(N,T))

Z <- array(NA, dim=c(N,T))

I <- rep(NA, N*T*J)

year <- rep(NA, N*T*J)

putative ter <- rep(NA, N*T*J)

### Simulate positions of centres of territories in study site

S[1,1] <- runif(1, 0, size site)

S[1,2] <- runif(1, 0, size site)

i <- 2

while(i <= N) {
x next <- runif(1,0, size site)

y next <- runif(1,0, size site)

if(f min dist(S[1:(i-1),1],S[1:(i-1),2],x next, y next)>min dist) {
S[i,1] <- x next

S[i,2] <- y next

i <- i+1

}
}

### Simulate activity centres of males for all years

for(t in 1:T) {
A[,t,1] <- rnorm(N, S[,1], sd year)

A[,t,2] <- rnorm(N, S[,2], sd year)

}

### Simulate all possible observations and make a territory index c for each

### observation that is unique for each activity centre

counter <- 1
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territory index <- 1

for(i in 1:N) {
for(t in 1:T) {
for(j in 1:J) {
P[counter,1] <- rnorm(1, A[i,t,1], sd ind)

P[counter,2] <- rnorm(1, A[i,t,2], sd ind)

putative ter[counter] <- territory index

counter <- counter + 1

}
territory index <- territory index +1

}
}

### Simulate phi and r for each territory

COV <- roh * phi sd * r sd

lphi mean <- log(phi mean/(1-phi mean))

lr mean <- log(r mean/(1-r mean))

var.cov.matrix <- matrix(c(phi sd*phi sd, COV, COV, r sd*r sd),2,2)

temp.dat <- mvrnorm(n=N, mu=c(lphi mean, lr mean), Sigma=var.cov.matrix)

phi <- exp(temp.dat[,1])/(1+exp(temp.dat[,1]))

r <- exp(temp.dat[,2])/(1+exp(temp.dat[,2]))

### Simulate territory occupancies

X[,1] <- rbinom(N, 1, psi1)

for(t in 2:T) {
Z[,t] <- rbinom(N, 1, X[,t-1]*phi)

X[,t] <- rbinom(N, 1, Z[,t]+(1-Z[,t])*r)

}

### Simulate logical vector that indicates whether the location of a

### potential observation is observed

counter <- 1

for(i in 1:N) {
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for(t in 1:T) {
for(j in 1:J) {
I[counter] <- rbinom(1, 1, X[i,t]*p)

year[counter] <- t

counter <- counter + 1

}
}
}

### Return true observations data, i.e. all P[v] with I[v]==1, as well as

the

### year in which a true observation was observed, an Index to which of the

### occupied territory an observation belongs to and the true territory

### occupancy data X[i,t]

list(obs.data=P[I==1,], year=year[I==1], put.ter=putative ter[I==1], X=X,

S=S)

}

### Help-function to get minimum distance from one point (xpoint,ypoint)

to

### all other points (xkoord, ykoord)

f min dist <- function(xkoord, ykoord, xpoint, ypoint) {
res <- numeric()

for(i in 1:length(xkoord)) {
res[i] <- sqrt((xkoord[i]-xpoint)*(xkoord[i]-xpoint)

+ (ykoord[i]-ypoint)*(ykoord[i]-ypoint))

}
min(res)

}
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S.3.10 WinBUGS model description

WinBUGS model description to estimate the demographic parameters from the ob-

served territory occupancy data of Yellowhammer (Emberiza citrinella).

# TERRITORY OCCUPANCY MODEL FOR YELLOWHAMMER-DATA

model {

### Define Priors

###--------------

phi ∼ dunif(0,1)

alpha0 <- logit(phi)

alpha1 ∼ dnorm(0,1)

alpha2 ∼ dnorm(0,1)

alpha3 ∼ dnorm(0,1)

phi sd i ∼ dunif(0.01,2)

phi prec i <- 1/(phi sd i*phi sd i)

r ∼ dunif(0,1)

beta0 <- logit(r)

beta1 ∼ dnorm(0,1)

beta2 ∼ dnorm(0,1)

beta3 ∼ dnorm(0,1)

r sd i ∼ dunif(0.01,2)

r prec i <- 1/(r sd i*r sd i)

p ∼ dunif(0,1)

lp <- logit(p)

p sd i ∼ dunif(0.01,2)

p prec i <- 1/(p sd i*p sd i)

# Square specific priors

for(k in 1:K) {
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psi1[k] ∼ dunif(0,1)

omega[k] ∼ dunif(0,1)

}

### Define parameters

###------------------

# Site level

for(k in 1:K) {
# local survival

lphi k[k] <- alpha0 + alpha1*alt1[k] + alpha2*alt2[k] + alpha3*(nter[k]-10)

# territory colonization

lr k[k] <- beta0 + beta1*alt1[k] + beta2*alt2[k] + beta3*(nter[k]-10)

}
# Territory level

for(i in 1:M) {
# local survival

lphi i[i] ∼ dnorm(lphi k[site[i]], phi prec i)I(-100,100)

logit(phi i[i]) <- lphi i[i]

# territory colonization

lr i[i] ∼ dnorm(lr k[site[i]], r prec i)I(-100,100)

logit(r i[i]) <- lr i[i]

# detection probability

lp i[i] ∼ dnorm(lp, p prec i)I(-100,100)

logit(p i[i]) <- lp i[i]

}

### Model definition

###-----------------

for(i in 1:M){
w[i] ∼ dbern(omega[site[i]])

mu1[i,1] <- w[i] * psi1[site[i]]

X[i,1] ∼ dbern(mu1[i,1])

mu3[i,1] <- p i[i] * X[i,1]
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Y[i,1] ∼ dbin(mu3[i,1], J[i])

for(t in 2:T) {
mu1[i,t] <- phi i[i] * X[i,t-1]

Z[i,t] ∼ dbern(mu1[i,t])

mu2[i,t] <- Z[i,t] + ((1-Z[i,t])*r i[i]*w[i])

X[i,t] ∼ dbern(mu2[i,t])

mu3[i,t] <- p i[i] * X[i,t] Y[i,t] ∼ dbin(mu3[i,t], J[i])

}
}

}
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Roth, T., P. Sprau, M. Naguib, and V. Amrhein. In prep. Sexually selected

signalling in birds: a case for Bayesian change-point analysis of behavioural rou-

tines.
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4. CHANGE-POINT ANALYSIS OF BEHAVIOURAL ROUTINES

Abstract

Aim Responses of organisms to environments or conspecifics may abruptly change

once the organism changed its state. For example, the expression of sexually selected

signals often depends on the pairing status of the sender. A likely change in signalling

routines at the event of pair formation should thus be taken into account when investi-

gating a sexually selected trait like birdsong.

Location Petite Camargue Alsacienne, France.

Methods We developed a change-point model in a Bayesian context to analyse the

seasonally changing singing activity in male nightingales, Luscinia megarhynchos, for

which the pairing status was assumed to be unknown. We used our change-point singing

activity model to estimate the pairing success of the males as well as the dates of pair

formation.

Results We obtained results on pairing success and date of pair formation that were

consistent with our capturing data and with earlier studies. We also found that the peak

in nocturnal and dawn singing activity was after the period of female arrival and was

later in the season in unpaired males than in paired males. Those seasonal patterns of

singing activity were obscured when using generalized linear mixed models, which are

traditionally used to analyse seasonal patterns of behavioural routines.

Main conclusions Based on our analyses, we argue that change-point models are

powerful analytical tools for many fields of research and may be used whenever animals

abruptly switch behavioural routines.

Keywords: female arrival, Luscinia megarhynchoss, model-based approach, piecewise

regression, state-space models, switch-point analyses
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4.1 Introduction

Responses of organisms to environments or conspecifics may abruptly change once a

threshold has been crossed or once the organism changed its state. Abruptly changing

responses may occur in space; for instance, the population size of a species in a par-

ticular region may abruptly decrease when a threshold of available habitat is reached

(Swift and Hannon 2010). Likewise, abrupt responses may occur in time; for instance,

an individual advertising to attract a mate may instantly change its behaviour after pair

formation (Krebs et al. 1981, Nemeth 1996, Staicer 1996, Amrhein et al. 2002). The

exact time or threshold when such abrupt changes in responses take place are usually

called change-points (Thomson et al. 2010). Accurate estimation of the change-points

is important, as subsequent estimation of ecological quantities depends on the position

of the change-points, and not accounting for the change-points may lead to misleading

results (Beckage et al. 2007).

Birdsong has evolved under both inter- and intrasexual selection, and the males’

song mostly serves to attract females and to repel rival males (Catchpole and Slater

2008). Singing activity was often shown to change depending on the stages of breeding

cycle of the female; such stages are the fertile period of the female before the first egg

is laid, the egg-laying period, or the incubation period. Singing activity in birds is a

case where not accounting for change-points has possibly led to contradicting results

in the published literature. Møller (1991) reviewed studies on male singing activity

that mostly did not account for change-points between the individual stages of the

breeding cycle; he concluded that more than 70% of the studied bird species showed

a peak of singing activity during the time of the year when females are fertile. Gil et

al. (1999), however, reviewed studies on singing activity that were mostly based on

analyses that did account for the change-points between the individual stages of the

breeding cycle. The authors concluded that in most species, the males did not show

a peak of singing activity during the fertile period of their mates. We argue that the

contradicting conclusions in the reviews by Møller (1991) and Gil et al. (1999) might

be due to the different treatments of the change-points in the studies they reviewed.

In songbirds, the singing activity of males often decreases immediately after pair

formation, thus the switch in pairing status leads to a change-point in singing activity

(Krebs et al. 1981, Hayes et al. 1986, Gibbs and Wenny 1993, Otter and Ratcliffe
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1993, Amrhein et al. 2002, Hennin et al. 2009). Ideally, studies on a behaviour like

singing activity should be based on data from individuals for which the stages of the

breeding cycle are known. However, investigating temporal patterns of singing with

sudden changes of singing activity upon pair formation is challenging for at least two

reasons. First, in many species, female breeding behaviour is elusive, and the dates

of pair formation and of the stages of the breeding cycle may be unknown for part

or most of the males. Second, sudden changes of singing activity lead to non-linear

patterns that are difficult to describe with statistical methods assuming linearity, such

as generalized linear models (GLM) or generalized linear mixed models (GLMM; Toms

and Lesperance 2003).

Here, we suggest the use of change-point models in a Bayesian framework to over-

come such difficulties. Change-point models are a class of models that were recently

proposed for addressing ecological estimation problems when abrupt changes in states

occur (Beckage et al. 2007). We define the pattern of the individually changing singing

activity in the course of the day as the daily singing routine (Hutchinson et al. 1993).

We provide a change-point model to analyse the nocturnal singing routines from dusk

to dawn in individual male nightingales Luscinia megarhynchos, for which the exact

date of female arrival and the individual stages of the breeding cycle were unknown.

The nocturnal singing of nightingales conforms to one of two distinct types of singing

routines (Amrhein et al. 2002, Thomas 2002), and the switches between the singing

routines are related to switches in pairing status (Amrhein et al. 2002, Amrhein et al.

2004, Roth et al. 2009). The bachelor singing routine is characterized by high singing

activity during most of the night; it is sung by males that remain unpaired throughout

the breeding season (bachelors) and by paired males before arrival of the mate (Roth

et al. 2009). Following pair formation, the males typically stop singing at night, which

we call the paired male singing routine.

We developed a change-point singing activity model that accounts for the unknown

male pairing success and the unknown date of female arrival. By including male pairing

success as an unknown parameter into the model, we formalized the assignment of male

pairing success. This is in contrast to earlier studies, where we usually assessed male

pairing success from nocturnal singing activity of subjects by manually defining subjects

as paired if they ceased regular nocturnal song after the beginning of the breeding season

(e.g., Kunc et al. 2006, Schmidt et al. 2008). We show that purely observational
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data on male nocturnal singing activity are sufficient to estimate meaningful dates of

female arrival and of male pairing success, without the necessity to empirically collect

data on females. Since similar switches in behavioural routines are likely to occur

in many different fields of research, we argue that change-point models open up new

opportunities for studies in ecology and evolution.

4.2 Methods

4.2.1 Study site and field protocol

Data collection took place from 10 April to 20 May 2008 at the Petite Camargue

Alsacienne in the Upper Rhine Valley in France. The study site comprises a mosaic of

forest patches, pastures, fields, reeds, ditches and artificial ponds of about one square

kilometre. To survey the singing activity of males, we made standardized rounds of

inspection throughout our study site and recorded for each territory whether a bird

was singing (Amrhein et al. 2004, Amrhein et al. 2007). Singing activity of a male

was defined as the probability that the male was heard singing during an inspection

round. The nocturnal rounds lasted between 50 and 65 min and followed a fixed

route of 8.5 km length; the direction of the rounds was fixed for a particular night,

but the direction was changed from one night to the next. We made nine rounds

of inspection per night (Roth et al. 2009). The first round started at sunset (dusk

round), and the last round started 75 min before sunrise (dawn round). The seven

remaining rounds (N1 to N7) were spaced out regularly between the dusk and the

dawn round. Thus, the exact starting time of the rounds slightly changed from day to

day due to the seasonal changes of sunset and sunrise. The mean starting times (±SD

in minutes) were 20:44±20 (dusk round), 21:47±14 (N1), 22:50±9 (N2), 23:54±4 (N3),

0:57±2 (N4), 2:00±6 (N5), 3:03±12 (N6), 4:06±17 (N7) and 5:09±22 (dawn round).

Territories with singing males were excluded from the analyses if males deserted their

territories during the study period, or if male song posts were further than 100 m away

from our route of inspection (perpendicular distance). We obtained suitable data on

singing activity of 31 males. Based on our observations on ringed individuals from

previous studies, we assumed that an individual singing in a territory was the same

individual male throughout the study period. At the study site, the first male started

to sing in its territory during the night from 11 to 12 April. Thus, the data cover 39
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nights, 9 rounds per night and 31 occupied territories, yielding 10,881 observations of

male singing activity, which is whether or not a male was singing on a particular round

of inspection.

As in our previous studies (Amrhein et al. 2002, Amrhein et al. 2004, Amrhein

et al. 2007), the identity and pairing status of the studied males were ascertained by

capturing and ringing the male and, if present, its mate. Pairing status of males was

further controlled by examining the territories of males for female alarm calls (part

of the data on singing activity and pairing status from this study were also published

in Roth et al. 2009). Permission for ringing was granted by Henri Jenn and by the

Centre de Recherches par le Baguage des Populations d’Oiseaux, Paris. Mist-nets were

usually opened before sunrise and stayed open for about 5 h. Mist nets were checked

every 30 min, birds were ringed in their territory and were released within 30 min of

capture. Since mist-netting sessions were distributed throughout the field season and

were often not done exactly at the time of female arrival, the exact time of female

arrival and pair formation was unknown in most cases. In this study, we therefore did

not use information from mist-netting to estimate the parameters of the change-point

singing activity model (see below), but the mist-netting data were used to test for the

plausibility of the results obtained from the model.

4.2.2 Change-point singing activity model

Suppose that a population of i = 1, . . . , N occupied territories are sampled during

t = 1, . . . , T days over the course of the breeding season. During each day t, the

territories are surveyed at r = 1, . . . , R rounds of inspection performed at different

times of the day, yielding the observed singing state variable Xi,r,t. If a male in territory

i was heard singing at day t during round of inspection r then Xi,r,t = 1, otherwise

Xi,r,t = 0. Let the parameter Mi,r,t be the probability a male is singing at day t during

round of inspection r in territory i. From the day after a male was heard in territory i

for the first time (ai +1), we assumed that the singing state variable Xi,r,t is Bernoulli

distributed with the singing probability Mi,r,t as its parameter. Thus the singing state

variable is given by the model

Xi,r,t ∼ Bernoulli(Mi,r,t) (4.1)

for i = 1, . . . , N , r = 1, . . . , R and t = (ai + 1), . . . , T .
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A consistent pattern of the dusk-to-dawn singing for nightingales is that individual

males sing according to one of two distinct types of singing routines (Amrhein et al.

2002, Thomas 2002). We define singing routine k = 1 for the bachelor singing routine

and k = 2 for the paired male singing routine. We modelled the singing activity Mi,r,t

at the logit-scale and assumed a random male effect αi, and for each round r and

each singing routine k a different intercept µr, k, as well as different linear β1r,k and

quadratic β2r,k temporal trends of the singing activity in the course of the season:

log

�
Mi,r,t

1−Mi,r,t

�
= αi + µr,k + β1r,kt+ β2r,kt

2 with αi ∼ N(0,σα) (4.2)

Eqn 4.1 and 4.2 is a formal description of the dusk-to-dawn singing in nightingales

over the breeding season that allows for k = 1, . . . ,K distinct singing routines (in the

case of Nightingales we assume K = 2). However, so far the singing routine k (or the

individual stages of the breeding cycle that predict the singing routines) needs to be

known for each of the males in their territories i and for all days t. As this is not the

case in our data and will often not be the case in similar studies on song of territorial

male birds, we assumed a random processes for the latent (i.e. not directly observable)

pairing status and the latent day of female arrival. We assumed that the singing routine

k is a deterministic function of the realizations of these two random processes. Denote

the singing routine state variable yi,t; if a male in territory i at day t sings the bachelor

singing routine (k = 1) then yi,t = 1, otherwise if the male in territory i at day t

sings the paired male singing routine (k = 2) then yi,t = 2. Denote the latent pairing

state variable psi; if a male in territory i remains unpaired throughout the breeding

season (bachelor) then psi = 0. Otherwise if a female pairs to a male and settles in its

territory i at some time during the season then psi = 1. We assumed the pairing state

variable psi to be the outcome of a Bernoulli trial with the pairing probability π as its

parameter

psi ∼ Bernoulli(π) (4.3)

In Nightingales, bachelors conform to the bachelor singing routine (k = 1) throughout

the season (Amrhein et al. 2002). Thus we assumed yi,t = 1 for all males with psi = 0

and for all days t. The dusk-to-dawn singing routine of paired nightingales, however,

depends on the latent female arrival, and when a male pairs to a female it immediately

switches from the bachelor to the paired male singing routine (Amrhein et al. 2002,
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Amrhein et al. 2004). Denote the latent female arrival time fai as the day t a female

settles in territory i. We assumed the day of female arrival fai, (i.e. the change-point)

to be normally distributed with average female arrival φ and standard deviation σφ,

but the arrival of a female fai in territory i was restricted to the date the male arrived

in that territory (ai) and a latest possible date e of female arrival (see below):

fai ∼ Norm(φ,σφ) with ai ≤ fai ≤ e (4.4)

A formal description of the singing routine state is then given as

yi,t =






1, for psi = 0
1, for psi = 1 and t<fai

0, for psi = 1 and t ≥ fai

(4.5)

Thus, only paired males (i.e. ps = 1) from day t when the female arrived in their

territory sing the paired male singing routine (i.e. yi,t = 2). The entire change-point

singing activity model (eqn 4.1 to 4.5) is thus specified with 58 parameters: the pairing

probability π, the mean female arrival φ, the standard deviation of female arrival σφ,

an intercept µr,k, linear slopes β1r,k and quadratic slopes β2r,k for each of the nine

inspection rounds and the two singing routines, and the standard deviation σα of the

random male effect.

4.2.3 Bayesian analyses

We used a Bayesian analysis of our change-point singing activity model based on Markov

chain Monte Carlo methods (MCMC; Link et al. 2002). We assessed convergence using

the Gelman-Rubin diagnostic (Brooks and Gelman 1998). MCMC simulations were

conducted using WinBUGS 1.4 (Gilks et al. 1994), executed in R using the R add-

on library R2WinBUGS (Sturtz et al. 2005). Posteriors were based on three parallel

chains with 15’000 iterations each, discarded the first 10’000 and thinned the remainder

by five. The specification of the model was as follows: the study duration was from

the day when the first male was heard singing in its territory (t = 1: night from 11 to

12 April) to the night from 19 to 20 May (t = 39). During these T = 39 days, each of

the N = 31 occupied territories were visited daily during R = 9 rounds of inspection

(r = 1: dusk round; r = 2 . . . 8: nocturnal rounds N1 to N7; r = 9: dawn round).

We restricted the latest possible day of female arrival to 10 May (e = 30) because in

earlier studies, we have never observed a female arriving after 10 May (unpublished

92



4.3 Results

observations; Amrhein et al. 2007). We assumed diffuse prior distributions for the

parameters, which were uniform U(0, 1) for the pairing probability π, U(1, 25) for the

mean female arrival φ, U(0, 10) for the standard deviation of female arrival σφ, U(0, 1)

for all of the intercepts on the probit scale eµr,k/(1+e
µ
r,k), normal N(0, 2) for linear slopes

β1r,k and for quadratic slopes β2r,k and uniform U(0, 2) for the standard deviation of

the random male effect σα. In Appendix S.4.7, we provide the model description in the

BUGS-language.

To compare the results obtained from the change-point singing activity model with

the results from a traditional generalized linear mixed model (GLMM) on the singing

activity that does not account for the stages of breeding cycle nor for different pairing

status of the males, we used the LME4 package (Pinheiro et al. 2006) in the software

R (v.2.12.1; R Development Core Team 2011). For each of the rounds, we fitted a

separate GLMM with a logistic link function. We regressed a linear and quadratic

temporal term on the binary singing activity (singing or not singing); to account for

the repeated measures, we also included individual male as a random factor. For the

GLMMs, as for the change-point singing activity model, we only used data from the

day after the male was heard singing for the first time.

4.3 Results

4.3.1 Parameter estimates and performance of the model

We described a change-point model on singing activity in nightingales that does not

incorporate prior information on pairing status and date of pair formation of the males,

but allows for two distinct types of dusk-to-dawn singing routines. Using this model,

we estimated the percentage of paired males in our population to be 76% (95%-credible

interval CI: 60-89%). This estimate corresponded to our mist-netting data on the same

subjects collected during the same year, from which we concluded that 25 out of the 31

studied males (81%) were paired (Roth et al. 2009). Note that the mist-netting data

were not used in the current change-point singing activity model and that in the present

study, the percentage of paired males was estimated using only the observational data

on male singing activity. The estimated average female arrival was in the night from 27

to 28 April (CI: 25/26 April - 30 April/1 May), which corresponds to an earlier study

93



4. CHANGE-POINT ANALYSIS OF BEHAVIOURAL ROUTINES

at the same study site, in which we found a mean female arrival on 26 April (Amrhein

et al. 2007).

Overall, the nocturnal and dawn singing activity was higher in bachelors than in

paired males (Fig. 4.1). The largest differences in nocturnal and dawn singing activity

were found at the end of the season, which was due to the distinct seasonal increase in

nocturnal singing activity of bachelors (Table 4.1). Both for bachelors and paired males,

the peak in singing activity was after the period when most females arrived to the study

site (i.e. between 21 April and 3 May; Amrhein et al. 2007). Irrespectively of the time

of the day, singing activity of paired males was highest in the first week of May, which

is the period when females usually are laying eggs and start incubating (Amrhein et al.

2004), whereas the peak in singing activity of bachelors was in the second or third week

of May. This corresponds to our earlier studies that reported highest diurnal singing

activity of paired males during the laying period, whereas the diurnal singing activity

of bachelors continuously increased until the end of the incubation period (Amrhein et

al. 2002, 2004, 2007).

Round Bachelors Paired males

L-effect L-trend Q-effect Q-trend L-effect L-trend Q-effect Q-trend

Dusk 0.13 0.61 + -0.47 0.01 0.59 1.85 + -0.11 -0.03 ∩
N1 -0.39 2.17 -2.50 0.10 -1.46 3.12 -4.13 0.09

N2 0.54 1.13 + -0.27 0.29 -0.22 3.23 -2.92 -0.38 ∩
N3 0.73 1.23 + -0.34 0.15 0.03 2.34 + -2.47 -0.65 ∩
N4 0.80 1.31 + -0.70 -0.21 ∩ 0.86 3.35 + -4.05 -1.82 ∩
N5 0.80 1.30 + -0.72 -0.23 ∩ 0.69 3.12 + -3.67 -1.69 ∩
N6 0.83 1.34 + -0.77 -0.28 ∩ 0.24 2.69 + -3.33 -1.41 ∩
N7 0.94 1.46 + -0.69 -0.18 ∩ 0.32 1.63 + -1.68 -0.77 ∩
Dawn 0.79 1.40 + -0.38 0.18 0.28 1.18 + -0.83 -0.23 ∩

Table 4.1: Credible intervals of the linear (L) and quadratic (Q) temporal trends of

nocturnal singing activity of male nightingales in the course of the season, for the bachelor

singing routine and the paired male singing routine. A significant linear trend (+) or peak

(∩) of singing activity is indicated by credible intervals that do not include zero.

The proportion of males singing the bachelor singing routine decreased from 100%

at the start of the breeding season to about 20% at the end of the study period (Fig.

4.2), which corresponded to the 6 of the 31 males that remained unpaired throughout

the breeding season (Roth et al. 2009).
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Figure 4.1: Seasonal singing activity - Seasonal development of nocturnal singing

activity (i.e. the probability that a male was encountered singing) in nightingales, for nine

daily rounds of inspection (dusk round, nocturnal rounds N1-N7, and dawn round). Given

are mean and 95% credible intervals of the posterior distributions of the singing activities

for bachelors (◦) and paired males (•; pairing status of males was estimated from our

model). The average starting times of each of the nine rounds are given in the headers of

each panel.
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4.3.2 Traditional model

The traditional GLMMs that could not account for the pairing success of the males nor

for the change-points of female arrival suggested different patterns of seasonal singing

activity: the singing activity of the third nocturnal round (N3) linearly decreased over

the season (quadratic term: z=1.6; p=0.12; linear term: z=3.5; p<0.001), while no

temporal trend was detected for the first two nocturnal rounds (quadratic term: both

z<1.0; both p>0.30; linear term: both z<0.6; both p>0.52). The seasonal singing

activity at all other rounds peaked in the middle of the study period (quadratic term:

all z>3.3; all p<0.001). This peak in singing activity was estimated to be around

the period of female arrival at the end of April (see Fig. 4.3 for dusk round, fourth

nocturnal round (N4) and dawn round). Therefore, the result of the GLMMs suggested

an earlier peak in singing activity than the change-point singing activity model, which

consistently with our earlier empirical data (Amrhein et al. 2002, 2004, 2007) suggested

a peak in singing activity of bachelors and paired males after most females had arrived

at the study site.
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Figure 4.2: Proportion of male nightingales singing the bachelor singing routine

- The proportion is estimated for each day over the course of the season. Given are mean

and 95% credible intervals of the posterior distributions.
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4.4 Discussion

We described a change-point model of nightingale signalling routines that was based on

observations of nocturnally singing males and did not use empirical data on the presence

and behaviour of females, but incorporated general knowledge about nocturnal singing

routines from previous studies (Amrhein et al. 2002, Amrhein et al. 2004, Amrhein et

al. 2007, Roth et al. 2009). Compared to our earlier studies on nightingales from the

same study population, our model provided realistic estimates of the pairing success

of males and of the date when one of the most important change-points in the singing

activity occurred, which is the event of female settlement in the territory of a male.

Using the change-point model, we were also able to detect patterns of seasonal trends

in singing activity that were obscured when using a traditional generalized linear mixed

model that did not account for the two different singing routines nor for the change-

points.
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Figure 4.3: GLMM estimate of the seasonal singing activity - Seasonal devel-

opment of nocturnal singing activity (i.e. the probability that a male was encountered

singing) in nightingales, during the dusk round of inspection, during the round in the

middle of the night (N4), and during the dawn round. Given are mean and 95% credi-

ble intervals of the posterior distributions of traditional generalized linear mixed models

(GLMM). The GLMMs used the same data as in Fig. 1 but could not account for different

singing routines in bachelors and paired males, nor for change points at the dates of female

arrival. The average starting times of each of the nine rounds are given in the headers of

each panel.

If in a population, different individuals follow a different daily signalling routine,

then the proportion of singing individuals (i.e. the population-wide singing activity)
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is influenced by the proportion of individuals using the particular signalling routines.

Thus, the population-wide signalling activity does not necessarily reflect patterns of

individual behaviour. In the case of nightingales, at the beginning of the season, the

males sang according to the bachelor singing routine. Because the individual singing

activity of bachelors increased in the course of the season, the population-wide singing

activity in our study population increased at the beginning of the breeding season

before the females arrived. Thus, as estimated from the traditional generalized linear

mixed model, the highest population-wide singing activity was at the period of female

arrival, and from then the population-wide singing activity decreased. This decrease

of population-wide singing activity after female arrival is mostly due to the decreasing

number of males singing according to the bachelor singing routine and is in contrast

to the increasing singing activity of bachelors revealed from the change-point singing

activity model. Therefore, when analysing temporal patterns of singing activity, it

is important to take male pairing status and different singing routines of paired and

unpaired males into account.

After female arrival, paired males often resume nocturnal singing during a short

period mainly during the first week of May, which is linked to the mate’s egg laying

period (Amrhein et al. 2002, Kunc et al. 2007). In an earlier study, 13 out of 15 paired

males resumed nocturnal singing for about three nights once the females started egg

laying (Amrhein et al. 2002). The functions of this second period of nocturnal song in

paired nightingales are unclear, but likely are related to both intrasexual and intersexual

behaviour (Amrhein et al. 2002, Naguib et al. 2011). A potential intersexual function

could be to encourage the mate to increase the investment into the brood (Amrhein

et al. 2002), whereas a potential intrasexual function is that increased singing during

egg-laying serves to repel neighbouring males, to minimize the risk of cuckoldry (Møller

1991). In this study, we found that the nocturnal singing activity of paired males during

the approximate time of egg laying was much lower than the nocturnal singing activity

of bachelors during the same time period. Whereas the main function of nocturnal

song in bachelors is most likely to attract females (Amrhein et al. 2002, Roth et al.

2009), the lower singing activity of paired males compared to bachelors suggests that

the nocturnal singing of paired males during egg-laying is probably less likely to attract

additional social mates (Amrhein et al. 2002).
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4.4 Discussion

In its current form, our change-point singing activity model estimates a single

change-point in singing activity, which is the date of pair formation. However, analysing

change-point models in a Bayesian framework has the advantage that the models can

be adapted to different situations (Chen et al. 2011, Schutz and Holschneider 2011).

For example, the beginning and end of nocturnal song in paired males during egg lay-

ing are additional change-points that could be included into the singing activity model.

Further, one could also include covariates of the change-points into the model. If, for

instance, data on territory quality are available, one could use our model to investi-

gate whether the date of female settlement is correlated with characteristics of a male’s

territory such as food availability or scrub structure (Wilson et al. 2005). Here, we

have shown that even a very simple change-point model can considerably improve infer-

ences on signalling activity compared to the results of a traditionally used GLMM, and

additionally can estimate important change points such as the date of pair formation.

In many fields of research, data do not have a linear functional relationship with

time or space, but show abrupt changes in this relationship, as is the case with the

nocturnal singing activity of nightingales that abruptly decreases once a male pairs to

a female. For example, populations of animals can switch from stable to unstable states

when the temperature increases (Ohlberger et al. 2011). In such cases, change-point

models reliably identify the events of changes in the temporal dynamic of populations

(Thomson et al. 2010). However, abrupt changes are also expected to occur in most

behavioural contexts. Examples are likely to include: predator-prey interactions, where

a predator may switch between different prey species depending on the abundance of

the prey (Garrott et al. 2007), perhaps leading to changes in the vigilance of preferred

and non-preferred prey; contest behaviour, where rivals switch between strategies to

assess the fighting ability of the opponent (Hsu et al. 2008), which may lead to sudden

changes in the intensity of a contest; or territory defence behaviour, where an activation

of the immune system following the infection with a pathogen affects song production

of the territorial male (Blumstein et al. 2010). We therefore argue that change-point

models provide a flexible and reliable tool for analysing data with abrupt changes in

functional relationships caused by an unobserved switch of state in the studied subjects.
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S.4.7 The change-point singing activity model in the BUGS-

language

# WINBUGS MODEL DESCRIPTION

model {
### Define Priors

### *************

pi dunif(0,1) ### Pairing success

phi dunif(1,25) ### Average female arrival

sigma.phi dunif(0,10) ### SD of female arrival

tau.phi <- pow(sigma.phi, -2)

for(r in 1:R) {
for(k in 1:K) {
mu[r,k] dunif(0,1) ### Intercept of singing probability of

round ### r and singing routine k

lmu[r,k] <- log(mu[r,k]/(1-mu[r,k]))

beta1[r,k] dnorm(0,0.25)I(-5,5) ### Linear effect of time and singing routine

k

beta2[r,k] dnorm(0,0.25)I(-5,5) ### Quadratic effect of time and singing

routine k

}
}
sigma.alpha dunif(0,2) ### SD of random male effect

tau.alpha <- pow(sigma.alpha, -2)

for(i in 1:N) {
alpha[i] dnorm(0,tau.alpha) ### Random male effect

}
### Model for singing activity MU[i,t,r]

### ************************************

for(i in 1:N) {
for(t in (a[i]+1):T) {
for(r in 1:R) {
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logit(MU[i,t,r]) <- alpha[i] + lmu[r,y[i,t]] + beta1[r,y[i,t]]*((t-20)/10)

+ beta2[r,y[i,t]]*((t-20)/10)*((t-20)/10)

X[i,t,r] dbern(MU[i,t,r])

}
}
}
### Model for the singing routine state (y[i,t])

### ********************************************

for(i in 1:N) {
ps[i] dbern(pi)

fa[i] dnorm(phi, tau.phi)I(a[i],30)

for(t in 1:T) {
ty[i,t] <- ps[i] * step(t-fa[i])

y[i,t] <- ty[i,t] + 1

}
}
}
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5. SEX-SPECIFIC TIMING OF MATE SEARCHING AND
TERRITORY PROSPECTING IN NIGHTINGALES

Abstract

Aim Formal models have shown that diel variation in female mate searching is likely

to have profound influence on daily signalling routines of males. In studies on acoustic

communication, the temporal patterns of the receivers’ signal evaluation should thus be

taken into account when investigating the functions of signalling.

Location Petite Camargue Alsacienne, France.

Methods In bird species in which diel patterns of signalling differ between males singing

to defend a territory or singing to attract a mate, the diel patterns of mate and territory

prospecting is suggested to depend on the sex of the prospector. We simulated newly

arriving female nightingales (Luscinia megarhynchos) by translocating radio-tagged fe-

males to our study site.

Results The mate searching females prospected the area mostly at night, visiting sev-

eral singing males. The timing of female prospecting corresponded to the period of the

night when the singing activity of unpaired males was higher than that of paired males.

In contrast to females, territory searching males have been shown to prospect territories

almost exclusively during the dawn chorus. At dawn, both paired and unpaired males

sang at high rates, suggesting that in contrast to nocturnal singing, dawn singing is

important to announce territory occupancy to prospecting males.

Main conclusions In the nightingale, the sex-specific timing of prospecting corre-

sponded to the differential signalling routines of paired and unpaired males. The tem-

poral patterns in the behaviour of signallers and receivers thus appear to be mutually

adapted.

Keywords: signalling routines, timing of prospecting, nocturnal song, dawn chorus
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5.1 Introduction

Almost all animals show behavioural traits that vary depending on the time of day (Mc-

Namara et al. 1987). Studies investigating animal behaviour around the clock often

reveal surprising temporal flexibility; for example, young reed warblers (Acrocephalus

scirpaceus) regularly show nocturnal movements well before migration (Mukhin et al.

2005), and golden hamsters (Mesocricetus auratus) are nocturnal in captivity but diur-

nal in nature (Gattermann et al. 2008). Most behaviour is energy and time consuming,

and the optimal daily routine is thought to be an adaptive compromise (Hutchinson et

al. 1993). Behavioural routines have often been studied with an emphasis on external

factors such as light, temperature, food availability or predation risk (e.g. Olsson et

al. 2000; Thomas and Cuthill 2002; Macleod et al. 2005). However, behaviour fre-

quently occurs in social contexts, and interactions with conspecifics may strongly shape

behavioural routines (Davidson and Menaker 2003; Helm et al. 2006). In the context

of social interactions, daily routines can be predicted using formal models without

necessarily including environmental factors (McNamara et al. 1987).

Social interactions often involve information transfer from signalling individuals to

receivers (Bradbury and Vehrencamp 1998). It has been shown that signalling indi-

viduals adjust the timing of their signals in order to avoid acoustic interference with

other signalling individuals on short temporal scales (Todt and Naguib 2000; Gerhardt

and Huber 2002; Brumm 2006). Individuals are also likely to time their signalling to

the period when intended receivers are present and ready to collect information. On

the receiver side, individuals often gather information by active prospecting an unfa-

miliar area or by visiting the territories of conspecifics (Reed et al. 1999). Receivers

are expected to show prospecting activity at time periods when relevant information

is available (Boulinier et al. 1996; Reed et al. 1999; Piper et al. 2006). Prospect-

ing behaviour that would be independent of the behaviour of the signallers would be

costly and inefficient and is therefore not likely to be adaptive (Kondoh and Ide 2003).

Thus, patterns in the diel timing of signalling and in the diel timing of prospecting are

expected to be correlated.

Using formal models, it has been demonstrated that diel variation in female prospect-

ing behaviour is likely to have profound influence on the timing of daily routines in
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males (Hutchinson et al. 1993). However, few studies investigated female mate search-

ing directly by tracking individuals during the period of primary mate choice (i.e.,

during the initial selection of a social partner; Bensch and Hasselquist 1992; Draud

et al. 2008). Recently, Jacot et al. (2008) reported one of the first studies on daily

routines of signalling and information gathering, investigating the diel signalling activ-

ity of male field crickets (Gryllus campestris). Most females were captured near the

males in the late afternoon, when singing activity of the males was highest and best

reflected male nutritional condition. However, such a temporal pattern of capturing

success could arise even if female prospecting activity would show no clear diel pattern:

males signalling at particularly high rates could simply have attracted more females

because the signalling males were more easily detected by the females. It thus remains

to be shown whether, during the period of social mate choice, the timing of female

prospecting activity correlates with male signalling patterns.

Among the several signal modalities, acoustic communication is particularly suitable

to investigate diel variation in the timing of signalling and prospecting, because acoustic

signals can be modulated within a short time period, and often follow diel rhythms.

A well studied acoustic communication system is bird song, which is mostly used by

territorial males, to repel competitors and to attract potential mates (Catchpole and

Slater 2008). In some bird species, resource holding males signal their quality to females

mainly at dawn (Otter et al. 1997; Double and Cockburn 2000; Dalziell and Cockburn

2008; Murphy et al. 2008). In other species, dawn singing seems to be relatively

unimportant in mate attraction, but males may address potential mates during other

times of the day (Staicer 1996; Staicer et al. 1996).

Here, we investigated the association between the timing of male signalling and the

timing of sex-specific prospecting in nightingales (Luscinia megarhynchos). Territorial

male nightingales sing intensely at dawn, and mostly unpaired males sing also at night

but stop nocturnal song after pair formation (Amrhein et al. 2004a). Nocturnal song

was thus suggested to serve attracting females (Amrhein et al. 2002), and dawn singing

seems to serve mainly to defend a territory (Amrhein et al. 2004b; Kunc et al. 2005).

In an earlier study, it has been shown that non-territorial male nightingales prospect

territories during the dawn chorus (Amrhein et al. 2004b). If nocturnal song of unpaired

males serves to attract females, we predicted that female nightingales prospect for

mates at night. In this study, we thus simulated unpaired females that prospect an
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unfamiliar area by translocating female nightingales to our study site. We used radio

telemetry to observe their mate searching behaviour during the first two days and nights

after translocation. We then compared the diel prospecting patterns of females with

the results obtained on males (Amrhein et al. 2004b). We found that the timing of

prospecting is sex-specific in the nightingale and is related to the timing of signalling

in paired males and unpaired males.

5.2 Material and methods

The study took place in two years (2007 and 2008) at the Petite Camargue Alsacienne

in the Upper Rhine Valley in France, where we had surveyed about 50 nightingale

territories per year since 1994 (Amrhein et al. 2002). The identity of males and females

were controlled by regular mist-netting, and the birds were individually marked with

a metal ring and a unique combination of three colour rings. Pairing status of males

was further controlled by examining the territories of males for female alarm calls. The

first males started singing in their territories on 10 April in 2007 and on 11 April in

2008, and the first female was captured on 21 April in 2007 and 20 April in 2008.

5.2.1 Translocation

We captured female nightingales 70 km north of our study site. At the capture site,

we monitored singing activity of males by surveying singing males at midnight and

in the early morning. When a resident male stopped singing at night, indicating the

arrival of a female (Amrhein et al. 2002, 2004a), we placed mist nets in its territory and

captured the female within three days after the male had stopped nocturnal song. From

21 April to 4 May 2007, we translocated 10 females from the capture site to our study

site. We released the females with a transmitter glued to their back feathers at about

12.00, within 5 hours of capture. All translocated females were tracked continuously

during the first 42 hours at the release site. We used the total stretch of way a female

covered per hour as our measure of prospecting activity. In cases in which the location

of the females could not always be identified precisely because of particularly rapid

and lengthy movements, the distance measurements taken during the corresponding

hours were omitted from the analyses. The resulting sample sizes for each hour are

given in Fig 5.1. Translocated females that eventually settled within the study area
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were checked at least once within three days until the transmitters fell off or stopped

signalling after ca. 3-4 weeks. We used telemetry equipment by Titley Electronics,

Australia: three element Yagi antennae, Regal 2000 receivers and LT1 transmitters

(equipment mass of 1.0 g = 4.6% of the average mass of our subjects). We stopped

translocating females as soon as we captured the first female carrying an egg at the

capture site. The study plots and the methods used in the present study were the same

as in an earlier translocation study on male nightingales (Amrhein et al. 2004b).

5.2.2 Singing activity

Singing activity of males was surveyed in a preliminary study from 2 May to 6 May

2007, and during a more extended period from 11 April to 4 May 2008, one year after

the female translocation experiment. We made nine rounds of inspection per night at

our study site. The first round started at sunset (dusk round), and the last round

started 75 min before sunrise (dawn round); the seven remaining rounds (N1 to N7)

were spaced out regularly between the dusk and the dawn round. The exact starting

time of the rounds slightly changed from day to day due to the seasonal changes of

sunset and sunrise; mean starting times for the rounds are given in Fig 5.3. Rounds

lasted between 50 and 65 min and followed a fixed route of 8.5 km length; the direction

of the rounds was fixed for a particular night, but the direction was changed from one

night to the next. Territories with singing males were excluded from the analyses if

males deserted their territories during the study period, or if male song posts were

further than 100 m (perpendicular distance) away from our route. We used the date

at which we captured the first female at our study site to subdivide the study period

into a period prior to female arrival, when all males where unpaired (11 April to 20

April) and a period during female arrival when males started to get paired (21 April

to 4 May). For each period (before female arrival and during female arrival) and for

each round (dusk-round, N1 to N7 and dawn-round), we plotted singing activity in the

figures as the proportion of rounds a male was recorded to sing. We also subdivided

the males into paired males and unpaired males (bachelors), depending on whether a

male was paired at the end of the study period. Because we used the arrival date of the

first female at the study site to define the period of female arrival for all males, some

subsequently paired males were still unpaired in the beginning of the period of female

arrival.
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5.2.3 Statistical analyses

All statistical analyses were performed using the software R (v. 2.6.1; R Development

Core Team 2007). All sample sizes refer to the number of individuals. Descriptive

statistics in the text are given as mean ± sd. To account for the repeated sampling of

the same individuals and, thus, the non-independence of data points, we used linear

mixed-effect models (LMM) with individual subject fitted as random factor, includ-

ing individual-specific intercepts and slopes (Gelman and Hill 2007). To investigate

temporally changing prospecting activities of females, we fitted the distance covered

per hour as response variable, the individual females as random factor, and the date

of translocation and the hour (time of day) as covariates; to account for the daily cy-

cles of prospecting activity, we modelled the hour as a sine-cosine function (Crawley

2007). We started with the full models including all variables, and then removed non-

significant terms (Crawley 2007). To investigate the effect of pairing status on daily

singing patterns, we used generalized linear mixed models (GLMM) with a logistic link

function (LME4 package; Bates and Sarkar 2006), because the response variable was

binary (singing or not singing). We fitted the singing activity as response variable,

the rounds (numbered from 1 to 9; 1=dusk-round, 9=dawn-round) as covariate, the

pairing status (paired male or bachelor) and the seasonal period (before and during

female arrival) as fixed factors, and the individual males as random factor. To test

for a possible curvilinear pattern in the nocturnally changing singing activity, we addi-

tionally fitted the quadratic term of the covariate round2 to the model. In the figures,

we give the mean values of prospecting activity and singing activity with bootstrapped

95% confidence intervals (10’000 iterations; Crawley 2007).

5.3 Results

5.3.1 Translocation

The prospecting activity of females, as indicated by the total distance covered per hour,

showed a distinct diel pattern (LMM, hour: df=2, p<0.001): the females covered short

distances during the day, they were stationary in the hour between 22.00 and 23.00,

but covered long distances during the second half of the night from about 01.00 to

about 04.00 (Fig. 5.1). At dawn, the distances covered per hour dropped to low levels.
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Figure 5.1: Prospecting activity of female nightingales - Total distances covered

per hour (mean and bootstrapped 95% confidence interval) are given for the 42 hours after

translocation of females to the study site. Sample sizes are given at the top of the figures;

grey shaded areas indicate nocturnal periods from sunset to sunrise.

The length of the distances covered per hour did not change as the season progressed

(LMM, date of translocation: df=1, p=0.84). The eight females for which we could

determine the exact starting times started nocturnal movements between 23.50 and

3.38, and average starting times were 02.29 (±1.77 h; n=7) in the first night and 00.38

(±1.32 h; n=5) in the second night. The prospecting trips lasted from 13 min to 235

min (103.23±76.14 min; n=7). In total, the females covered 0 to 4.71 km (1.12±1.67

km; n=7) during the first night and 0 to 6.17 km (1.49±2.67 km; n=5) during the

second night. Note that the average distances covered are likely to be underestimated,

because hours during which we lost track of the females were omitted from the analyses.

Fig. 5.2 shows the prospecting path of a female performed during the second night after

translocation, visiting at least six males singing. Each female performed a prospecting

trip at least during one night. Five of the 10 females finally settled in a territory

of a male within our study area, three females returned to the capture site, and the

remaining two females left our study site but were not recorded back at the capture

site. From the five females that left our study site, four left during the first night (after

having visited several males within our study area) and one during the second night. Of

the five females that settled and paired to a male within the study area, three settled

in a territory of a male during the first night, one during the second night, and one

during the third night. After settlement in a male’s territory, none of the females were

located outside the territory again during our occasional checks. In 2008, at least one
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translocated female returned to the same territory in our study area in which it settled

in 2007.

200m

N

stopstart

Figure 5.2: Path of prospecting females - The prospecting path of a single radio-

tracked female in the second night after translocation. Between 23.50 and 3.30, it covered

5.8 km and visited at least six of the territorial males singing that night (black dots),

spending between 5 and 35 minutes in the territories of the males. The female finally

settled and paired to the male in the last territory visited that night (stop).

5.3.2 Singing activity of paired males and bachelors

To test for an effect of study year on singing activity, we fitted a first generalized

linear mixed model (GLMM) using the data on singing activity of 34 males surveyed

during a limited period in 2007 and of 31 males from the corresponding period in

2008. The changes of singing activity across our nocturnal rounds seemed not to differ

between the two years (GLMM, interaction round×year: df=1, p=0.634; interaction

round2×year: df=1, p=0.723), and the measures of average singing activity across

nocturnal rounds were strongly correlated between years (Pearson correlation, mated

males: r=0.875, t=4.773, df=7, p=0.002; bachelors: r=0.950, t=8.087, df=7, p<0.001).

Therefore, in all further analyses we used the data of 2008 only, when singing activity
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was surveyed continuously during the entire study period. In 2008, we monitored the

singing activity of 31 males that arrived at the study site on average on 16 April (±4.2

days). Later during the breeding season, 25 of those males were paired and 6 were

bachelors. Male singing activity followed a distinct temporal pattern between dusk and

dawn: singing activity dropped to zero in the first round after dusk, and thereafter

increased continuously until dawn (Fig. 5.3). This general development of singing

activity over the night was not found to differ between the period before and during

female arrival (GLMM, interaction round?period: df=1, p=0.132). However, singing

activity differed between paired males and bachelors depending on the period before or

during female arrival (GLMM, interaction period?status: df=1, p<0.001) and on the

time of the night (GLMM, interaction round?status: df=1, p<0.001). Before female

arrival, paired males sang more than bachelors during the second and third nocturnal

rounds (N2 and N3, as indicated by non overlapping 95% CI in Fig. 5.3.a). During

the period of female arrival, during the rounds from about midnight (N3) until the last

nocturnal round (N7; Fig. ??.b), bachelors sang more than paired males (note that

some subsequently paired males were still unpaired in the beginning of the period of

female arrival, which explains why there was nocturnal singing activity of paired males

during that period). No difference in singing activity among paired males and bachelors

could be detected for the dusk or dawn rounds (Fig. 5.3).

5.4 Discussion

Translocated female nightingales covered the longest distances between 01.00 and 04.00

at night. This is in contrast to the temporal pattern of territory prospecting in non-

territorial male nightingales that made significant movements only during the dawn

chorus in the one or two hours before sunrise, as shown in an earlier study using the

same methods and the same study populations (Amrhein et al. 2004b). This sex-

specific timing of prospecting corresponded to the singing activity of territorial males:

females searching for mates showed prospecting activity mostly at night when mainly

bachelors were singing, while territory searching males showed prospecting activity only

at dawn when all territorial males were singing intensely, and vacant territories should

become apparent (Amrhein et al. 2004b). Thus, in the nightingale, the sex-specific
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Figure 5.3: Male singing activity - Singing activity of 31 males as censused during

nine rounds per night, starting at sunset and ending at sunrise, (a) prior to female arrival

(11 April until 20 April) and (b) during the time of female arrival (21 April until 4 May).

Singing activity of a male is expressed as the proportion of rounds it was heard singing

(mean and bootstrapped 95% confidence interval). Closed circles indicate males that are

paired or will be paired (N=25), open circles indicate bachelors (N=6). Dusk and dawn

rounds started at sunset and 75 minutes before sunrise, respectively; the remaining rounds

(N1 to N7) were spaced out regularly between the dusk and dawn round. Starting times

of the rounds are given as averages for the respective periods of the breeding season.

patterns in the diel timing of prospecting and the patterns in the diel timing of male

signalling were correlated.

State dependent models of daily singing routines have been used to simulate diel

fluctuations in the birds’ energy reserves (McNamara et al. 2001). These models accu-

rately predicted the typical temperate zone passerine singing routines. However, male

singing routines have also been suggested to depend on female behaviour if the male

pairing propensity (i.e. the probability that a singing male pairs in a particular time in-

terval) varies with time of day (Hutchinson et al. 1993). Therefore, the optimal singing

routine of males may strongly be influenced by the temporally changing availability

of females. In nightingales, unpaired males that are singing at night when females

are prospecting for mates most likely have a higher pairing probability than unpaired

males that would be singing exclusively at dawn. As predicted by the formal models

(Hutchinson et al. 1993), this should shape the optimal singing routine of signalling

males and may explain the occurrence of nocturnal song in the nightingale.

Nocturnal song of otherwise diurnal species is comparatively rare in western Palaearc-

tic songbirds (Amrhein et al. 2002); in those species, nocturnal prospecting of mate
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searching females could potentially explain nocturnal singing of the males. However,

nocturnal prospecting by females seems to be adaptive only if there is nocturnal song

by males. It still remains unclear whether nocturnal singing is a cause for or an ef-

fect of nocturnal prospecting by females, and how nocturnal song evolved in the first

place. A possible scenario is that in nocturnally migrating species like the nightingale,

males that happened to sing at night had a higher pairing success because they more

readily attracted females arriving from migration. This could have led to the evolution

of nocturnal song in males, and of nocturnal prospecting in females. Because of the

mutual dependence of the timing of signalling and of the timing of signal evaluation

by receivers, formal models of daily routines in both behaviours would need to include

game theoretic approaches (McNamara et al. 2001).

Females usually base their choice of mate on reliable signals indicating male quality

(Andersson 1994). Particularly in monogamous species, females are likely to evaluate

males also with regard to their pairing status (Staicer 1996), and females are expected

to trade between male quality and pairing status (Slagsvold and Drevon 1999). By

prospecting at night, female nightingales may be able to infer both the pairing status

and the quality of singing males. Clearly, nocturnal song is a good indicator of male

pairing status, since it is mainly bachelors that sing at night (Amrhein et al. 2002,

2004a). However, if nocturnal song is costly in the nightingale (Thomas 2002), noc-

turnal singing may also serve as an honest signal of male quality. In this study, at the

beginning of the season before the arrival of females, the singing activity of males that

later in the breeding season successfully attracted a female was higher around midnight

(rounds N2 and N3), as compared to the singing activity of males that later could not

attract a female. An early start of nocturnal singing in the first hours of the night

could thus indicate male quality. In contrast to the first hours of the night, the singing

activity at dawn or dusk did not predict future pairing status of males. Thus, females

may not base their choice of mate on dawn or dusk singing in the nightingale. This is

in line with an increasing number of studies providing evidence that a main function of

dawn singing is territory defence in several songbirds (Slagsvold et al. 1994; Liu 2004;

Kunc et al. 2005; Amrhein and Erne 2006).

Our study showed that sex-specific timing of prospecting for territories or mates

corresponded to the differential singing activity of paired and unpaired males in the
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nightingale. The temporal patterns in the behaviour of signallers and receivers thus

appear to be mutually adapted.
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6. A SWISS AGRI-ENVIRONMENT SCHEME ENHANCES SPECIES
RICHNESS OVER TIME

Abstract

Aim The effectiveness of agri-environment schemes (AESs) in promoting biodiversity

was recently debated. One reason for limited effectiveness of AESs may be their appli-

cation to small and scattered patches of land. This study presents the evaluation of a

scheme adopted by the canton of Aargau, Switzerland, which seems to be unique in its

consequent focus on entire farms, aiming at increasing quality and quantity of ecological

compensated areas (ECAs).

Location Canton of Aargau, Switzerland.

Methods The temporal changes of species richness of plots with ECA were compared

with the temporal changes of species richness of plots without ECA.

Results In vascular plants and snails, the species richness increased during a period

of five years on plots with AES, but not on control plots without AES. In butterflies

and birds, no significant differences were found between AES plots and control plots

in the change of species richness over time. While butterfly species numbers generally

decreased, bird species numbers increased on both AES plots and control plots.

Main conclusions It appears that agri-environment schemes can be effective in pro-

tecting and promoting biodiversity, but the effect may depend on the group of organisms.

Keywords: agri-environment scheme, policy evaluation, species diversity, ecological

compensated area, Aargau, Switzerland

126



6.1 Introduction

6.1 Introduction

Most European countries have launched agri-environment schemes (AESs) more than

one decade ago (Kleijn and Sutherland 2003), and schemes currently cover more than

25% of all farmland in the EU15 countries (EU 2005). The total average annual ex-

penditure on agri-environment payments is estimated at e3.7 billions for 2003 in the

European Union (EEA 2002). In the United States, for the period between 2000 and

2003, the expenditures averaged US$ 2.0 billions annually (Herzog 2005). In the OECD

(Organisation for Economic Cooperation and Development) countries, the expenses for

AES sum up to about 8% of the total budget for agriculture (OECD 2003). Kleijn and

Sutherland (2003) reviewed 62 studies evaluating European AES and pointed out that

the majority of studies were inadequate to assess reliably the effectiveness of the AES

because no baseline data were collected to examine trends in biodiversity over time

(Kleijn and Sutherland 2003, Herzog 2005). The few studies that compared the change

of species richness in AES fields and control plots included only few species groups

(mainly plants and birds) or were located within or in the direct vicinity of nature

reserves that were protected for a long time (Peter and Walter 2001, Brereton et al.

2002). A particularly comprehensive study of several species groups in five European

countries compared current species richness in AES plots with control plots, but did

not include trends over time (Kleijn et al. 2006).

AES are often applied to small patches of land, which are referred to as ecological

compensated areas (ECAs). Frequently, ECAs are scattered and unconnected, with

negative influence on the effectiveness of AES in promoting biodiversity (Whittingham

2007). In 1994, the canton of Aargau, Switzerland, started to establish an AES that

was aimed to take this shortcoming of AES into account. The scheme was based on

special contracts with farmers (Kanton Aargau 2005). In addition to high standards

concerning the quality of the ECA, the quantity and distribution of the ECA within the

farm were evaluated and improved before a farmer could get a contract and additional

payments. New ECAs were placed in a way to supplement and link existing ECAs or

nature reserves in the area. If a farmer implemented a minimum proportion (currently

12%) of his farmland, he received an additional bonus.

Generally, ECA categories may differ in the way they affect species richness spatially

or temporally, which often renders evaluating the success of the entire AES difficult.
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So far, AES evaluations mainly investigated the effect of single categories of ECA on

species richness (Kleijn and Sutherland 2003, Kleijn et al. 2006). However, it is often

the general aim of an AES that all ECA categories taken together successfully increase

species richness in the entire agricultural landscape.

Here, we present a long-term study evaluating the effects of the Aargau AES on the

biodiversity of several trophic levels (primary producers: vascular plants; pollinators:

butterflies; first level consumers: snails; top level consumers: birds). Sampling plots

based on a regular grid were selected from the entire surface of the Aargau agricultural

landscape, and species richness per study plot at an initial phase of the AES was

compared with the species richness five years later. The effects of the AES were then

tested against the change of species richness in conventionally used agricultural areas.

6.2 Material and methods

The canton of Aargau is a 1403 km2 sized county in the north of Switzerland with

relatively large areas of intense farming. More than half of the farmlands are meadows

or pastures (53%), and most of the rest is arable land (44%; mainly maize, wheat, barley,

potatoes, sugar beets, and rape). Farmland size of an average farm in the canton of

Aargau is 20.8 ha (all figures from Swiss Statistics, www.bfs.admin.ch). The focus of the

Aargau AES was on entire farms, aiming at increasing the quality and quantity of ECA

(Schmid et al. 1990, Kanton Aargau 2005). To implement an efficient strategy, farmers

that joined the AES in Aargau were advised by persons with ecological and agricultural

education. The ecological potential of the entire land of a farm was assessed with a

particularly close look at the grassland, on which a plant inventory was taken. Farmer

and adviser collaborated in devising how to realise an environmentally and biodiversity

friendly farming practice and a target-oriented management of the ECA. On each farm,

ECAs were established on the most promising areas (in terms of maximum biodiversity

gain and not in terms of the economic perspective of the farmer). Care was taken

that ECAs were grouped close together and that the surrounding farmland of the farm

under contract was less intensively farmed (mainly by reducing the use of fertilizers).

Making a contract secured additional payments, and farmers committed themselves to

strict ecological measures for at least six years. General payments were made for the

entire surface of a farm to compensate for the generally environmental friendly farming
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practice, and additional payments were made for each ECA depending on the category

of the ECA. The average year (±SD) of contract starts of the ECA situated within our

study plots (see below) was in July 1995 (±3.2 years). At the end of 2006, more than

530 farmers had agreed on such a contract, and the surface of those farms was about

20% of the Aargau agricultural landscape. The average area of ECA of the farms under

contract amounted to 23% of their land and to 2’565 ha in total.

species group number of number of number of number of p-value p-value

treatment plots control plots species A species B state change

vascular plants 33 211 15.3 (± 8.7) 16.2 (± 9.8) 0.007** 0.005**

snails 33 209 4.1 (± 4.3) 3.9 (± 4.9) 0.097 0.012*

butterflies 52 35 6.7 (± 3.7) 5.6 (± 3.4) 0.014* 0.607

birds 120 61 9.0 (± 4.3) 11.5 (± 4.4) 0.004** 0.420

*p<0.05; **p<0.01; ***p<0.001

Table 6.1: Sample sizes and mean species numbers (±SD) of all study plots at the initial

survey (number of species A) and at the second survey 5 years later (number of species B).

In 1996, a long-term research project was started to monitor biodiversity in the

whole canton of Aargau (Stapfer 1999). We used the data from this biodiversity mon-

itoring program to investigate the impact of the Aargau AES on biodiversity. The

sampling scheme was based on a regular grid that covered the entire canton. Based on

the national coordinate system, 516 grid points were selected by taking every second

grid point of a grid with 1 km grid length. On each study plot at such a grid point, vas-

cular plant, snail, butterfly and bird species were counted twice, the first time between

1996 and 2000 (1998 and 2000 for butterflies) and the second time between 2001 and

2005 (2003 and 2005 for butterflies). For each study plot, there were exactly five years

between the first and the second census period. The sampling protocol was adapted to

the different species groups, and sampling was done at two different spatial scales: On

the small scale, vascular plants and snails were surveyed. Plants species were counted

in a circle of 10 m2, and on the outer line of the circle in which plant species were

counted, eight soil samples were taken during the plant surveys and the number of

snail species was estimated from these soil samples. On the larger scale, bird species

were estimated from five surveys in a circle with 100 m radius, and for butterflies, 11

surveys were made along a transect of 250 m length (butterflies were recorded within

5 m to each side of the transect line). If possible, all individuals within the study plots

of the four species groups were identified to the species level. The few individuals not
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identified to the species level were excluded from the data. Land use information for

each study plot was collected during the first visit. For the present study, only plots

with at least 75% agricultural land use were included into the analyses. A few surveys

not fulfilling the criteria of the sampling protocol were excluded from the analyses (see

Table 6.1 for the sizes of each data set).

For the analysis, the study plots were divided into two groups: if there was ECA

within a plot, independently of the category and the size of ECA, the plot was included

into the treatment group (AES plot). If there was no ECA within the plot, the plot was

included into the control group. Because the plot size depended on the study group,

the study plots were divided into treatment and control groups for each species group

separately: The study plots of plants and snails were included into the treatment group

if there was ECA within the study circle of 10 m2. Similarly, the study plots of birds

were included into the treatment group if there was ECA within the 100 m circle. For

the butterflies, a study plot was included into the treatment group if there was ECA

within 50 m of the transect. This approach using two spatial scales implies that the

proportion of study plots that were included into the treatment groups differed among

taxa: for plants and snails, 14% of the study plots were included into the treatment

group, while for birds and butterflies, 60 and 66%, respectively, were included into

the treatment group (Table 6.1). Furthermore, the mean proportion of a study plot

area covered by ECA differed among species groups. For vascular plants and snails,

the mean (±SD) proportional area of ECA within a study plot was 89.9% (±26.4),

for butterflies 13.3% (±15.6), and for birds 16.7% (±8.5) (reference date: 31.12.2005).

Differences in species numbers per plot between the two groups (treatment and control)

were tested using Wilcoxon rank sum tests.

Within or in the surroundings of the study plots, defined as a circle of 500 m radius

around the centre of the sample plot, ECA had been established in 129 (53%) of the 244

study plots (reference date: 31.12.2005) and the overall surface of the ECA per circle

ranged from 0.07 to 29.9 ha. The total area of the ECA within the 500 m circles was

592.0 ha, of which 308.8 ha (52.2%) were low intensity hay or litter meadows, 186.8

ha (31.6%) hedges, traditional orchards or trees, 43.6 ha (7.3%) pastures, and the

remaining 52.8 ha (8.9%) of other categories such as wild flower strips, arable fallows

or ruderal areas.
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Figure 6.1: Change of species richness over time - Notched box-plots show the

differences of species richness per study plot between the two study periods (initial survey

1996–2000 and repeated survey 2001–2005 for vascular plants, snails and birds; 1998–2000

and 2003–2005 for butterflies). For each study plot, there were exactly five years between

the first and the second census period. ECAs are study plots with ecological compensated

area, and controls are study plots without ecological compensated area. For sample sizes,

see Table 6.1. Boxes are median and 25% and 75% percentiles, whiskers are non-outlier

ranges, dots are outliers, and non-overlapping notches indicate significant differences in

central tendency (Wilcoxon rank sum tests: vascular plants: p = 0.005; snails: p = 0.012;

butterflies: 0.607; birds: 0.429).
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To examine the change of single species, the number of study plots in which a

particular species was not observed during the first study period but was observed

during the second study period (increase) were compared with the number of study

plots in which the species was observed during the first but not during the second study

period (decrease). This was done for all observed species, and numbers of increase and

decrease were evaluated using McNemar tests (Zar 1999). All analyses for this study

were done using the software R 2.4.0 (R Development Core Team 2006).

6.3 Results

During the first study period, three of the four species groups (plants, butterflies and

birds) showed significantly higher species richness in study plots with ECA compared to

control plots (all numbers mean ±SD, p-values from Wilcoxon rank sum tests; vascular

plants: ECA = 19.2 (±9.9), control = 14.6 (±7.9), p = 0.007; snails: ECA = 5.0

(±4.3), control = 4.0 (±4.3), p = 0.097; butterflies: ECA = 7.3 (±3.8), control =

5.6 (±3.1), p = 0.014; birds: ECA = 9.7 (±4.0), control = 7.7 (±4.4), p = 0.004).

Between the first and the second study period, the species richness of vascular plants

and snails increased on plots with ECA, but not on control plots without ECA (Fig.

6.1). In study plots with ECA, the increase in species numbers of plants and snails

per study plot was on average 5.1 species (relative increase: 26.9%) and 1.4 species

(27.2%), respectively. The number of bird species per study plot increased significantly

in the agricultural landscape of Aargau (mean increase of all study plots between 1996–

2000 and 2001–2005: 2.05 species, n = 181, Wilcoxon signed rank test: p < 0.001).

However, the increase in bird species numbers in plots with ECA was not different

from control plots (Fig. 6.1). The number of butterfly species generally decreased in

the agricultural landscape of Aargau, irrespective of whether the study plots included

ECA or not (mean decrease of all study plots between 19982000 and 20032005: -1.13

species, n = 87, Wilcoxon signed rank test: p < 0.001). The decrease in butterfly

species numbers in plots with ECA was not different from control plots (Fig. 6.1). In

the agricultural landscape of Aargau, 16 species increased significantly (5 plant species,

3 butterfly species, 8 bird species), while 18 species decreased significantly (12 plant

species, 1 snail species, 5 butterfly species; for tests and details, see Table 6.2).
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6.4 Discussion

During the first study period, which corresponded to an early state of the AES, three

of the four species groups (plants, butterflies and birds) showed significantly higher

species richness in study plots with ECA compared to control plots. Thus, the study

plots with ECA could have profited from the AES already at this early stage of the

contracts. Alternatively, the higher initial species richness could reflect the fact that

ECAs were established mainly in ecologically more valuable agricultural areas. In the

present study, the initial dissimilarity among plots was controlled for by comparing

the temporal change of species richness on both the AES and control plots (Kleijn

and Sutherland 2003). Between the first and the second study period, the species

richness of vascular plants and snails increased on plots with ECA, but not on control

plots. Therefore, this study suggests that the AES in the canton of Aargau effectively

enhanced species diversity for vascular plants and snails. Studies testing for an effect of

AES on biodiversity have regularly investigated plant species numbers and often found

that it is difficult to enhance plant species diversity in intensively used agricultural

landscape (Kleijn and Sutherland 2003). This conclusion is in contrast to our results

and to the results from another study in Switzerland that confirmed higher species

richness of vascular plants on ECA compared to conventionally managed fields (Knop

et al. 2006).

Herzog et al. (2005) found almost no general benefits of ECA for grassland birds

and orchard birds in the agricultural landscape of the entire Switzerland. In contrast,

we found that in the agricultural landscape of the canton of Aargau, the bird species

richness per study plot increased, and the negative trend in the number of bird species

found on a larger scale may have been reversed (Zbinden et al. 2005, Donald et al.

2006). Three of the eight bird species for which a positive trend could be identified were

proposed as indicator species for agriculture landscapes [Columba palumbus, Passer

montanus and Emberiza citrinella; Gregory et al. (2005)]. The farms under contract

covered around 20% of the Aargau agricultural landscape and provided resources that

are most valuable for farmland birds [e.g. fallows, non-cropped habitats, or extensively

managed grassland; Vickery et al.( 2004)].

However, the similarly mobile butterfly species decreased in the canton of Aargau

irrespective of the AES. This is an alarming result, as butterfly diversity is at a very low
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Species change increase decrease χ
2 p-value

Plants:

Bromus hordeaceus + 22 8 5.63 0.018

Phleum pratense + 28 10 7.61 0.006

Poa trivialis + 75 35 13.83 <0.001

Veronica arvensis + 36 1 31.24 <0.001

Veronica chamaedrys + 27 8 9.26 0.002

Achillea millefolium - 0 7 5.14 0.023

Cardamine pratensis - 12 34 9.59 0.002

Galinsoga ciliata - 0 7 5.14 0.023

Helictotrichon pubescens - 6 18 5.04 0.025

Lolium multiflorum - 34 59 6.19 0.013

Matricaria recutita - 4 16 6.05 0.014

Poa annua - 31 55 6.15 0.013

Poa pratensis - 7 54 34.69 <0.001

Polygonum persicaria - 11 27 5.92 0.015

Rumex obtusifolius - 15 31 4.89 0.027

Taraxacum officinale - 30 62 10.45 0.001

Veronica persica - 12 91 59.07 <0.001

Snails:

Carychium tridentatum - 16 35 6.35 0.012

Butterflies:

Cynthia cardui + 19 7 4.65 0.031

Gonepterix rhamni + 6 0 4.17 0.041

Lasiommata megera + 9 0 7.11 0.008

Aphantopus hyperantus - 4 21 10.24 0.001

Colias hyale/alfacariensis - 5 20 7.84 0.005

Inachis io - 4 22 11.12 0.001

Melicta parthenoides - 0 10 8.1 0.004

Pararge aegeria - 1 27 22.32 <0.001

Birds:

Dendrocopos major + 24 11 4.11 0.043

Passer montanus + 30 13 5.95 0.015

Emberiza citrinella + 27 11 5.92 0.015

Turdus viscivorus + 28 12 5.63 0.018

Sylvia atricapilla + 29 8 10.81 0.001

Columba palumbus + 47 11 21.12 <0.001

Erithacus rubecula + 21 8 4.97 0.026

Parus palustris + 27 13 4.23 0.04

Table 6.2: Species for which a significant trend between the first study period and the

second study period 5 years later could be detected (change) in the agricultural landscape

of the canton of Aargau. Number of study plots in which a particular species was not

observed during the first study period but was observed during the second study period

(increase) were compared with the number of study plots in which the species was observed

during the first but not during the second study period (decrease). The significance of the

trends was tested using McNemar tests.
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level and generally decreases in the Central Plateau of Switzerland (Koordinationsstelle

Biodiversitätsmonitoring Schweiz 2006), and the AES was apparently not able to stop

this decrease so far. Note, however, that the differences of the responses to the Aargau

AES in the four species groups may be partly explained by differences in the plot sizes.

ECA covered most of the area of the small sized study plots for plants and snails, but

only a smaller fraction of the larger study plots for birds and butterflies. Therefore,

the larger proportion of conventional land use within the study plots for birds and

butterflies may have blurred the effect of AES.

In the majority of cases, the general goal of AES is to protect and increase overall

species diversity (Kleijn and Sutherland 2003) and not to protect a single species group

(e.g. Ottvall and Smith 2006) or a particular species (Peach et al. 1998, Aebischer et

al. 2000). However, our study showed that the effect of AES on biodiversity may vary

depending on the group of organisms. This was also found in other studies including

more than one species group to investigate the effect of AES on biodiversity (Kleijn

and Sutherland 2003, Kleijn et al. 2006, Knop et al. 2006). Therefore, if the goal of

AES is to protect general biodiversity, then the effectiveness of an AES can only be

assessed adequately if several indicator species groups are included into the study.

Less mobile species groups are likely to benefit from an AES only if ECA plots are

close to each other (Ockinger and Smith 2007). In the canton of Aargau, the species

richness per study plot increased among the less mobile species (plants and snails),

which suggests that the aims of the Aargau AES to connect ECA were achieved. The

effect of the Aargau AES was not tested against the effect of other conventional AES,

and the average farm in the canton of Aargau is small compared to farm sizes in other

parts of Europe. However, the Aargau AES with its contracts focussing on entire farms

instead of single fields and its effort to connect ECA seem to have had positive effects

at least on parts of biodiversity measures and may be regarded as a model for other

regions and countries.
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7. FLORISTIC HOMOGENIZATION OF SWISS GRASSLAND

Abstract

Aim We assess changes of plant species richness and changes in species dissimilarity

at local scale in Swiss grassland between the time periods 2001-2004 and 2006-2009.

Further, we provide an ecological interpretation of the observed taxonomic homogeniza-

tion of vascular plants.

Location Switzerland.

Methods Changes in species richness and changes in Simpson dissimilarity index of

vascular plants in grassland (meadows and pastures) were examined. The analyses were

based on species lists recorded on 339 10 m2 sample plots from a systematic sample cov-

ering the entire Switzerland. Each sample plot had been surveyed once in 2001–2004

and once in 2006–2009 with 5 years between the first and the second survey. Changes in

species dissimilarity were interpreted by comparing the relative contribution of several

indicator species groups.

Results Mean species richness of vascular plants in grassland increased during the

study period. In contrast, species dissimilarity of plants decreased, suggesting local scale

floristic homogenization of grassland in Switzerland. It was mostly due to the spread of

common species, namely the species that are tolerant to high nutrient levels, the species

of low conservation value and the species adapted to moderate temperature levels that

led to taxonomic homogenization. Target species for conservation did only marginally

affect taxonomic homogenization. In contrast to the predictions from studies of taxo-

nomic homogenization on larger scales, the taxonomic homogenization of grassland at

local scale was not explained by the spread of neophytic species.

Main conclusions The biotic diversity of grassland in Switzerland changed consider-

ably between 2001–2004 and 2006–2009. The observed taxonomic homogenization was

merely due to the spread of common species. Local-scale changes in land use regimes

implemented by agri-environmental schemes and other conservation efforts on parts of

the entire grassland area were, apparently, not enough to prevent the total grassland

from recent taxonomic homogenization.

Keywords: Beta diversity, biodiversity monitoring, biotic homogenization, grassland,

meadows, Simpson index
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7.1 Introduction

Taxonomic homogenization is the decrease in species dissimilarity between sample units

over time (Olden and Rooney 2006). It is a simple prediction that follows from human-

induced changes of environments that favour few winning species and negatively affect

many others (Smart et al. 2006, Rooney et al. 2007). So far, studies on taxonomic

homogenization have been mainly conducted by comparing extant and historic species

lists among large grid cells, counties, countries or even continents, i.e. on large spatial

scales (e.g. Kühn and Klotz 2006, Schwartz et al. 2006, Melo et al. 2009). In such

studies on large spatial scales, taxonomic homogenization has been shown to take place

in various species groups, and has often been attributed to the invasion of alien species

or the replacement of specialist species by generalist species (Wiegmann and Waller

2006, Kerbiriou et al. 2009, Qian and Guo 2010).

In contrast to many studies on a large spatial scale, only few studies on taxonomic

homogenization have been conducted on a local scale, i.e. by comparing study plots of

about one hectare (Smart et al. 2006, Lambdon et al. 2008, Arevalo et al. 2010, Naaf

and Wulf 2010). However, to understand the effect of human-induced environmental

changes on biodiversity, studies on local scale are equally important as studies on large

spatial scale. Firstly, this is because changes in land use regimes or changes in con-

servation planning are often implemented at a local scale (Margules and Pressey 2000,

Naaf and Wulf 2010). Furthermore, it is at the local scale that interactions between

species and their physical environment are strongest and thus local scale studies pro-

vide insights into ecological mechanisms and allow predictions of how human activities

will affect biodiversity (Huston 1999). Secondly, local scale studies on taxonomic ho-

mogenization are needed because it could be challenging or even misleading to predict

effects of human activity on biodiversity at the local scale from studies of taxonomic

homogenization on large spatial scales. A variety of different processes affect biotic

diversity only some of which may operate equally at all spatial scales. For example,

species richness generally decreases at the global scale but often increases at the local

scale (Sax and Gaines 2003). Similarly, opposing trends of taxonomic homogenization

at different spatial scales may become apparent, as soon as more studies on taxonomic

homogenization at the local scale are available. For example, the invasion of alien

species that is one of the major causes for taxonomic homogenization at large spatial
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scale, seems unlikely to be a major driver for taxonomic homogenization at local scale

(Smart et al. 2006, Lambdon et al. 2008).

Meadows and pastures (that we refer to as grassland) are probably among the habi-

tat types that are most severely affected by land use regimes and have high priority in

conservation planning (Jacquemyn et al. 2003). Grassland with high biological diver-

sity used to be common in Central Europe, but intensification of land use have severely

reduced the biotic diversity of most grassland areas in the last century (Marini et al.

2008). In the last few decades considerable conservation efforts, for example in the

form of agri-environmental schemes and the legal protection of habitats, are target-

ing grassland with the aim of increasing their biotic diversity (Kleijn and Sutherland

2003, Oster et al. 2009, FOEN 2010). The central instruments of the implementation

of measures to conserve grassland are contracts between farmers and authorities or

conservation bodies. These contracts contain agreements on land management, con-

servation, maintenance measures and the financial compensation for all efforts (FOEN

2010). However, it is an open question if the local-scale changes in land use regimes

induced by agri-environmental schemes and other conservation efforts on parts of the

entire grassland area were enough to prevent the total grassland area from further de-

cline in species richness and from taxonomic homogenization. Alternatively, factors

known to have a strong and usually negative effect on biodiversity at large spatial

scales, such as climate change or the introduction of neophytic (i.e. alien plant) species

may have led to taxonomic homogenization of grassland also at a local scale.

In Switzerland, meadows and pastures are habitat types of high priority for conser-

vation, and more than 93,000 hectares of grassland have been registered as ecological

compensation areas and are under contract with farmers (FOEN 2010). Several studies

in different regions of Switzerland have reported a positive effect of ecological compen-

sation areas on plant species richness (Herzog et al. 2005, Knop et al. 2006, Roth et

al. 2008). Our first goal in this study was to assess recent changes in biotic diversity

of Swiss grassland across the entire range of land use regimes. Our second and main

goal was then to identify potential mechanism that may explain the observed temporal

changes in species dissimilarity. We investigated the temporal change in species rich-

ness and species dissimilarity of vascular plants at the vegetation plot level between the

two time periods 2001-2004 and 2006-2009, using the data from the Swiss biodiversity

monitoring program (BDM, Weber et al. 2004). Since conservation is targeting species
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that became rare, we expected that due to conservation efforts in the last decade, an

increase in distribution of the group of rare species should have led to both an increase

in plant species richness and an increase in plant species dissimilarity. Specifically, we

asked (1) whether or not taxonomic homogenization (i.e. a decrease in species dissim-

ilarity) occurred in the grassland of Switzerland over the last decade, (2) whether the

change of species dissimilarity in grassland depended on the altitudinal levels, on the

species richness of the sample plots or on the relevance of the sample plots for conser-

vation (i.e. grassland habitat of high conservation relevance vs. grassland habitats of

low conservation relevance), (3) whether the change in species dissimilarity was differ-

entially driven by groups of species assumed to reflect processes that act locally (i.e.

species groups indicating different nutrient levels and species groups reflecting different

levels of conservation value) and (4) whether the change in species dissimilarity was

differentially driven by groups of species assumed to reflect processes that act glob-

ally (i.e. species groups indicating different temperature levels or neophytic species vs.

indigenous species).

7.2 Methods

7.2.1 Study site and field protocol

The study took place between 2001 and 2009 in Switzerland. The country covers ap-

prox. 41000 km2 in central Europe and altitudes from 193 to 4634 m a.s.l. About 70%

of Switzerland is mountainous (60% Alps and 10% Jura Mountains). We used the data

from the Biodiversity Monitoring of Switzerland (BDM, www.biodiversitymonitoring.ch)

that was launched in 2001 to monitor Switzerlands biodiversity and to meet the Con-

vention on Biological Diversity of Rio de Janeiro (Hintermann et al. 2000). In the

BDM scheme, vascular plants are one of three species groups investigated on a system-

atic grid with random origin, covering 1650 circular 10 m2 plots. Every year, one fifth

of these sample plots are surveyed and each plot is surveyed every five years. Thus,

between 2001 and 2009 four fifth of the 1650 plots were surveyed twice.

Fieldwork was highly standardised and was carried out by qualified botanists that

recorded all plants on a surveyed plot. Each surveyed plot was visited two times per field

season, except for plots at high altitudes with short vegetation period where only one

inspection per field season was conducted. For each sample plot, the botanists identified
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the type of habitat according to the definition developed for Switzerland (Delarze and

Gonseth 2008). Further the land use category was identified using a system of 32 pre-

defined land use categories similar to the CORINE Land Cover system (Büttner et al.

2004). For annual reporting of the BDM results, the 32 land use categories were then

aggregated to six main types of land use, i.e. forests, meadows and pastures, arable

land, settlements, alpine pastures and mountains.

For the present study, we analysed a subset of the 1650 BDM sample plots that were

surveyed once between 2001-2004 (i.e. the first survey) and a second time between 2006-

2009 (i.e. the second survey), and of which the land use category was either meadows

and pastures or alpine pastures in both surveys. It should be noted that the definition

of grassland applied for this study is, thus, defined by the management regime and

independent of the species association found on the plots. The sample size was 339

grassland plots in total 7.1.

Figure 7.1: Distribution of study plots - The figure gives the distribution of the 339

grassland sample plots from the Swiss Biodiversity Monitoring programme used in this

study.

For the analyses, individual plants too small for reliable identification on species

level were omitted. The proportion of the individual plants not identified on species

level compared to the total number of recorded species per sample plot was small (mean

± SD of all sample plots: 5.6 ± 5.4% unidentified plants). However the proportion of
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unidentified plants slightly decreased from the first survey to the second survey (mean

± SD difference: -1.4 ± 7.3% unidentified plants). Since the proportion of unidentified

plants was small and the temporal decrease of the proportion of unidentified plants did

not depend on the classes of sample plots we analysed, i.e. altitude (ANOVA: F=0.8,

df=3, p=0.50), species richness of the plots (Welch t-test: t=0.13, df=295.3, p=0.89) or

relevance for conservation (Welch t-test: t=0.10, df=308.5, p=0.92), we were confident

that the omission of unidentified plants did not bias our results on species richness or

species dissimilarity.

7.2.2 Classes of sample plots and classes of species groups

Prior to analyses, we defined different classes of sample plots and classes of species

groups that we assumed to behave differently in terms of temporal change in species

richness or species dissimilarity. We assorted the 339 plots in three different ways.

First, plots were classed according to four altitudinal levels based on the temperature

zonation of Switzerland (Schreiber et al. 1997), i.e. colline, montane, subalpine and

alpine. Second, plots were classed according to their species richness as either species-

poor (<35 species, i.e. below the average species richness of the second survey) or

species-rich (�35 species). And third, plots were classed according to their relevance for

conservation into plots of low relevance for conservation and plots of high relevance for

conservation. Plots containing the habitat types ‘nutrient-rich meadows’ or ‘nutrient-

rich pastures’ following Delarze and Gonseth (2008) were considered as being of low

relevance for conservation. The remaining plots, i.e. the plots with high relevance for

conservation, contained different habitat types of dry or wet nutrient poor sites that

corresponded to the protected biotope types adopted by Swiss law since 2000 (Swiss

Federal Council 1991).

We also assorted the species in four different ways (Table 7.1). We classed the

species into species groups indicating different nutrient level, i.e. eutrophic, mesotrophic

and oligotrophic species and into groups indicating species of different conservation

value, i.e. very low, low and high conservation value. The rationale was that if local

scale factors such as changes in land use regimes or changes in conservation efforts

had strong effects on species richness and species dissimilarity, we assumed that the

temporal changes in species richness and species dissimilarity would differ between the

species groups of different nutrient-level and the species groups of different conservation
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value. We further classed the species into groups with different altitudinal centres

of distribution, i.e. species of warm, moderate and cold temperature levels and into

neophytes, archaephytes and indigenous species. Here, the rationale was that if global

scale factors such as climate change or the introduction of neophytic species had strong

effect on the observed species richness and species dissimilarity, we assumed that the

temporal change in species richness and species dissimilarity would differ between the

species of different temperature levels and between indigenous species and neophytes.

Indicator Classes Source

Nutrient level eutrophic = typically on nutrient rich sites (171 species) Landolt (2010)

mesotrophic = no clear preference (251 species)

oligotrophic = typically on nutrient poor sites (397 species)

not assigned = no indicator value available (6 species)

Conservation value very low = ubiquitous, often dominant on intensely managed

sites (27 species)

BAFU and BLW

(2008); Landolt

low = ubiquitous, ”standard” or commonplace grassland

species (37 species)

(2010)

high = target- or indicator species for grassland according to

conservation objectives of the Swiss authorities (235 species)

rest = remaining species not typically grassland species: no

conservation value assigned (526 species)

Temperature level warm = centre of distribution at colline and lower montane

levels (281 species)

Landolt (2010)

moderate = centre of distribution at montane level (160

species)

cold = centre of distribution at higher montane level or

above (350 species)

not assigned = no indicator value available (34 species)

Alien species neophytes = species introduced by humans after 1500 AD

(14 species)

Landolt, 2010

archaephytes = species introduced by humans before 1500

AD (37 species)

indigenous = species that appeared without assistance by

humans (681 species)

not assigned = no indicator value available (93 species)

Table 7.1: Description of the classes used for the grouping of the 825 recorded species

into species groups.

The analyses of the four species groups (Table 7.1) suggested that the observed

taxonomic homogenization is mainly due to the spread of common species (see results).

We therefore used the BDM data of all 1650 study plots to class the species into different
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categories of abundance and analysed the following groups of species separately: species

recorded on less than 5%; on 5-25%, on >25-50%, on >50%-75% and on >75% of the

1650 sample plots.

7.2.3 Statistical analysis

For all classes of sample plots and all classes of species groups (see previous chapter),

we calculated the mean changes in species richness between the first and second survey.

Further, we computed a measure of temporal change in species dissimilarity (i.e. the

‘differentiation diversity’, sensu Jurasinski et al. 2009). Among the many indices that

measure species dissimilarity (or similarity), the Simpson dissimilarity index was among

the ones with the best properties (Koleff et al. 2003, but see Tuomisto 2010). The

Simpson dissimilarity index is especially useful when the species dissimilarity between

sample plots should be expressed independently of the species richness of the sample

plots (Lennon et al. 2001, Kühn and Klotz 2006). In this study, we aimed to analyse the

change in species richness and the change in species dissimilarity independently from

each other. Thus, we preferred to use the Simpson index instead of another commonly

used index, the Jaccard dissimilarity index. However, as a basis for comparison, we

also presented the results for the Jaccard index in the figures, but discussed mainly the

results of the Simpson index. The Jaccard dissimilarity index between two sampling

plots was calculated as

βJ = 1− a

a+ b+ c
(7.1)

where a is the number of species shared between two sample plots, and b and c are the

numbers of species only found in one or only in the other sampling plot. The Simpson

dissimilarity index between two sampling plots was computed as

βS =
min(b, c)

min(b, c) + a
(7.2)

Thus, both the Simpson dissimilarity index and the Jaccard index range from 0, i.e.

all species in common, to 1, i.e. no species in common.

Our measure of the temporal change in species dissimilarity of several sampling

plots (∆Sim) was then the average difference of the Simpson dissimilarity index of the

second survey (β2
k) minus the Simpson dissimilarity index of the first survey (β1

k) for
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all k = 1, . . . ,K possible combinations of two sample plots from the totally N sample

plots.

∆Sim = 100

K�
k
(β2

k − β
1
k)

K
with K =

�
N

2

�
(7.3)

A positive value of ∆Sim would indicate that the species composition between the two

plots became less similar from the first to the second survey, i.e. taxonomic differen-

tiation; a negative value of ∆Sim would indicate that the species composition became

more similar, i.e. taxonomic homogenization.

To get an estimate of the precision of the change in species dissimilarity ∆Sim,

we adopted a Jackknife approach (Jones 1974): we removed one sample plot from the

analysis and again calculated ∆Sim as described above. We repeated that procedure

until every sample plot was once removed from the calculation of ∆Sim. The 2.5% and

97.5% percentiles of all the calculated ∆Sim each with one sample plot removed were

taken as an estimation of a 95% confidence interval. The approach to estimate the

change in species dissimilarity ∆Sim and its precision as described here, is the same as

the one used to calculate the indicator Diversity of Species Communities’ of the BDM

(see indicator ‘Z12’, www.biodiversitymonitoring.ch).

Testing for group differences of the change in species dissimilarity using traditional

tests such as t-test or ANOVA would lead to an inflation of sample size. This is

because there are N(N − 1)/2 elements in a dissimilarity matrix calculated from N

sample plots (Naaf and Wulf 2010). To avoid an inflation of sample size, we instead

used a permutation test with 1000 permutations of the group identities of the sample

plots (Manly 2007). As a test statistic for the permutation test we used the averaged

residuals.

For each subset of species (i.e. the analyses of the species groups), we calculated the

change in ∆Sim as follows. The Simpson dissimilarity index for the first survey for a

given pair of sampling plots (β1
k) was calculated exactly as above, including the records

of all species. For the Simpson dissimilarity index of the second survey (β2
k), however,

we allowed to change only the species of the analysed species group, the records of all

the other species were held constant (i.e. as recorded during the first survey). The

resulting ∆Sim was then taken as a measure of the net effect on the change in species

dissimilarity of the analysed species group only.
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Sample sizes for the different groupings of sample plots, mean species richness of

the first and second survey and the mean Simpson index of the first and second survey

are given in Table 7.2. All analyses were done with the statistical software R (R

Development Core Team 2011).

Stratum N Simpson index Species richness

first second first second

All types 339 0.723 0.715 33.6 35.0

Colline 34 0.534 0.536 25.2 25.1

Montane 156 0.506 0.494 29.9 31.5

Subalpine 60 0.685 0.674 41.3 42.7

Alpine 89 0.705 0.697 38.1 39.9

Species-rich 163 0.756 0.742 45.2 46.0

Species-poor 176 0.656 0.641 22.8 24.9

High-value 126 0.776 0.771 38.9 40.5

Low-value 213 0.542 0.530 30.5 31.8

Table 7.2: Given are the sample sizes (N), mean species dissimilarities of the first and

second survey (Simpson index) and mean species richness of the first and second surveys

of the different classes of sample plots that were analysed.

7.3 Results

Over all plots, the species dissimilarity (∆Sim) of Swiss grassland decreased between the

first and the second survey, suggesting recent and short-term taxonomic homogenization

of grassland in Switzerland (permutation test: p<0.001, 7.2). In contrast, the mean

species richness of the same plots increased from the first to the second survey by 4.2%

(mean increase of 1.4 species, paired t-Test: t=4.3, df=338, p<0.001). Note, however,

that the proportion of unidentified species slightly decreased from the first to the second

survey, which could partly explain the increase in species richness between the first and

the second survey.

7.3.1 Taxonomic homogenization of different groups of sampling plots

The temporal change in species dissimilarity depended on the altitudinal level (permu-

tation test: p<0.001), with highest taxonomic homogenization (i.e. the lowest values
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of ∆Sim) found in montane and subalpine grassland whereas no biotic homogenization

was found at the colline level (7.2a). Temporal change in species dissimilarity was not

found to differ between species rich and species poor plots (permutation test: p=0.998;

7.2b). However, this finding depended on the type of index used for the analysis.

Using the Jaccard index instead of the Simpson index resulted in a higher degree of

homogenization for species poor plots compared to species rich plots. Furthermore, the

temporal change in species dissimilarity depended on the conservation value of the plots

(permutation test: p<0.001): strong taxonomic homogenization was found in plots of

low conservation while taxonomic homogenization was relatively weak in plots of high

conservation value (7.2c).
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Figure 7.2: Temporal change in species dissimilarity and species richness be-

tween first and second survey in Swiss grassland - The sample plots are classed

according to the altitudinal levels (a/d), according to the species richness of the second

survey (species poor: below average species richness; species rich: above average species

richness, b/e) and according to the conservation relevance of the meadow type (c/f). Shown

are the mean ± 95% confidence intervals of the temporal changes in species dissimilarity

based on the Simpson index (solid circles of a-c), based on the Jaccard coefficient (open

circles of a-c) and of the temporal change in species richness (solid circles of d-f).

The increase in species richness was not found to differ between groups of different

altitudinal levels (ANOVA: F=0.9, df=3, p=0.46, 7.2d) nor between groups of different

relevance for conservation (Welch t-test: t=0.2, df=267.4, p=0.81, Fig 2f). However,

the species richness of plots of low species richness tended to increase more than of
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plots with high species richness (Welch t-test: t=1.8, df=286.5, p=0.07, 7.2e).

7.3.2 Taxonomic homogenization of different groups of species

The analyses of the species groups that we assumed to indicate local land use regimes

and local conservation efforts, i.e. the species groups reflecting nutrient-level and con-

servation value, suggested that it were mainly the eutrophic and mesotrophic species,

and thus, the species of low conservation value that were responsible for the taxonomic

homogenization in the grassland of Switzerland. In contrast, the changes of species

dissimilarity induced by oligotrophic species or by species of high conservation value

were only marginal (7.3a and b). In terms of the change in species richness, however,

all the different sets of species contributed to the overall increase in species richness

(7.3c and d).

The effect on change in species dissimilarity of the species groups we assumed to

indicate climate change, i.e. the species groups of different temperature levels, seemed

to vary strongly between the different species groups. Species that prefer warm tem-

peratures (i.e. species with a distribution mainly at colline and lower montane levels)

increased species dissimilarity, while species of moderate temperature level (i.e. species

with distribution mainly at montane level) led to taxonomic homogenization (7.4a).

The large differences of the temporal change in species dissimilarity found between the

species of different temperature levels was not apparent when analysing the change

in species richness: independent of the temperature level of the species, the species

richness tended to increase (7.4c).

The effect of neophytic species on the temporal change in species dissimilarity was

only marginal and, contrary to expectation, it tended to increase species dissimilarity

weakly (7.4b). Overall, only few neophytic species were recorded in our data set and no

change in species richness was recorded for neophytes between first and second survey

(7.4d).

The results for taxonomic homogenization of different species groups suggested that

taxonomic homogenization was mainly due to the increase in common species, namely

the species that are tolerant to high nutrient levels, the species of low conservation

value and the species adapted to moderate temperature levels. We therefore directly

analysed the effect of species groups that differ in their abundance. We found that

the contribution to taxonomic homogenization strongly varied between species groups
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Figure 7.3: Effect of species groups - Temporal change of species dissimilarity and

species richness between first and second survey for species groups that are assumed to

reflect land use regime (i.e. nutrient level a/c) and conservation effort (i.e. species of

different conservation value, b/c). Shown are the mean ± 95% confidence intervals of the

temporal changes in species dissimilarity based on the Simpson index (solid circles of a-b),

based on the Jaccard coefficient (open circles of a-b) and of the temporal change in species

richness (solid circles of c-d).
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Figure 7.4: Effect of species with different temperature level and differences

between neophytic, archaoephytic and indigenous species - Temporal change of

species dissimilarity and species richness between first and second survey for species groups

that are assumed to reflect climate change (i.e. species groups indicating temperature level

a/c) and the species group of neophytic, archaoephytic and indigenous species (b/c). Shown

are the mean ± 95% confidence intervals of the temporal changes in species dissimilarity

based on the Simpson index (solid circles of a-b), based on the Jaccard coefficient (open

circles of a-b) and of the temporal change in species richness (solid circles of c-d).
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that differ in abundance (7.5a). Although species of intermediate abundance and very

abundant species equally increased in species richness (7.5b), the increase of species of

intermediate abundance resulted in higher species dissimilarity while the very common

species resulted in strong taxonomic homogenization.

7.4 Discussion

In Switzerland, the mean plant species richness of grassland at local scale increased

from 2001-2005 to 2006-2010, while during the same period the species dissimilarity

decreased suggesting local scale and short-term taxonomic homogenization of the grass-

land in Switzerland. Apparently, recent conservation efforts targeting Swiss grassland

– for example in the form of agri-environmental schemes – were not able to counteract

local scale floristic homogenization. To our knowledge, this is the first study to demon-

strate recent floristic homogenization of grassland for an entire country in spite of the

sustained conservation efforts aiming at increasing biotic diversity of grassland.

The analyses of the different species groups suggested that the taxonomic homog-

enization was mainly due to an increase of already common and generalist species,

namely the species that are tolerant to high nutrient levels, the species of low conser-

vation value and the species of moderate temperature level. It is important to note

that sample plots with change in land use between the first and the second survey had

been excluded from the analyses. Therefore, the observed taxonomic homogenization

took place in sites continuously managed as grassland. Unlike habitat destruction, tax-

onomic homogenization within a habitat is evidence for a rather inconspicuous change

in biotic diversity that took place in a short time period. From a conservation perspec-

tive, several of our findings are important. On the one hand, overall species diversity

of grassland has increased including sites of high conservation value. Furthermore,

part of the increase in species richness was due to an increase of target species for

conservation. These results on its own may be considered as a success of conservation

efforts. On the other hand, the spread of a limited number of ubiquitous generalist

species has lead to more uniform species assemblages, i.e. taxonomic homogenization.

To some extend, taxonomic homogenization counteracts conservation objectives aiming

to preserve locally typical species assemblages.
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Figure 7.5: Differences between abundant and rare species - Temporal change of

species dissimilarity and species richness between first and second survey for species that

differ in total abundance over all habitats in Switzerland. Species are grouped according to

proportion of the ca.1650 sample sites of the Biodiversity Monitoring Switzerland that are

occupied by the species. Shown are the mean ± 95% confidence intervals of the temporal

changes in species dissimilarity based on the Simpson index (solid circles of a), based on

the Jaccard coefficient (open circles of a) and of the temporal change in species richness

(solid circles of b).
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Taxonomic homogenization, however, is not always a negative indication of decreas-

ing biodiversity (Rooney et al. 2007). For the grassland in Switzerland, the taxonomic

homogenization seemed to be caused mainly by an increase of common and general-

ist species. This finding is in accordance with results from other studies that found

an increase of native ubiquitous, meso- or eutrophic species into species-rich grassland

(Bennie et al. 2006, Bergamini et al. 2009) or temperate forest plant-communities

(Rooney et al. 2004, Naaf and Wulf 2010). But, since we found no indication that the

increase of common species negatively affected species of conservation value in the last

decade, the taxonomic homogenization of Swiss grassland presumably is not an indi-

cation of decreasing biodiversity. However, such an interpretation needs to be treated

with caution, since a study period of only a decade might not be enough to demonstrate

a decline of uncommon specialists caused by the spread of common generalists. For

example in forest understory plant communities, the increase of species with a broad

habitat range was accompanied by biotic impoverishment to a lower degree after two

decades than after 50 years (Rooney et al. 2004, Naaf and Wulf 2010).

Taxonomic homogenization at large spatial scales has usually been attributed to the

invasion of alien species or the replacement of specialist species by generalist species

(Wiegmann and Waller 2006, Kerbiriou et al. 2009, Qian and Guo 2010). However, in

Switzerland the taxonomic homogenization of grassland at a local scale could not be

explained by the spread of neophytic (i.e. alien) species. This is in accordance with

other local-scale studies that also did not find an effect of alien species on taxonomic

homogenization (Smart et al. 2006, Lambdon et al. 2008, Naaf and Wulf 2010).

Furthermore, in our case the increase in common and generalist species within the last

decade seemed not to have negatively affected specialist species of high conservation

value. These results suggest that floristic homogenization in Swiss grassland was neither

attributed to the invasion of neophytic species nor to the replacement of specialist

species by generalist species. Therefore, our study adds also to the evidence that it is

difficult to predict changes in taxonomic homogenization at the local scale from studies

on large spatial scales.

Biotic homogenization is often linked to an increase in species richness (Rahel 2002,

Olden 2006, Smart et al. 2006, Kerbiriou et al. 2009, Naaf and Wulf 2010). Similarly,

in our study, the overall trend in the Swiss grassland was towards an increase in species

richness but towards a decrease in species dissimilarity. In spite of the prevalence of
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studies that reported a negative correlation in the development of species richness and

temporal change in species dissimilarity, the temporal trend of species dissimilarity has

to be viewed as a process on its own and needs to be evaluated independently of species

richness but in the context of other environmental factors (Smart et al. 2006, Devictor

and Robert 2009, Filippi-Codaccioni et al. 2010). In our study, the species richness

of the group of species typical for warm temperatures and for low altitudes increased.

This increase in species richness was positively linked to a moderate increase in species

dissimilarity and indicates that both the species richness and the species dissimilarity

diversity may increase.

We conclude that between the two surveys of 2001-2005 and 2006-2009 the species

dissimilarity of Swiss grassland considerably declined suggesting local scale taxonomic

homogenisation. The observed taxonomic homogenization was mainly due to the spread

of common species. Local-scale changes in land use regimes implemented by agri-

environmental schemes and other conservation efforts on parts of the entire grassland

area were apparently not enough to prevent the total grassland from recent taxonomic

homogenization.
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8. TOP PREDATORS AS BIODIVERSITY INDICATORS

Abstract

Aim The use of surrogates to identify protected areas is a common practice in conser-

vation biology. The use of top predators as surrogates has been criticized but recently a

strong positive relationship was found between the presence of top predators and species

diversity of several taxa. As mentioned by the authors, these striking results need to be

assessed on a larger scale.

Location Switzerland.

Methods We used data from the Swiss Biodiversity Monitoring Programme and the

Swiss breeding bird survey to analyse the use of raptor species as a surrogate for plant,

butterfly and bird species richness. For each raptor species, we compared species rich-

ness in sites where a raptor species was recorded and compared these sites with the

remaining sites in which the raptor species was not recorded. For comparison we con-

ducted the same analyses using tits Parus spp. Tits are common prey species of some

raptor species and were the most species-rich generalist genus in our data.

Results We found little justification for a focus on top predators when identifying con-

servation areas. For bird and plant species richness, raptors were reasonable surrogates

for high species richness but no raptor species predicted sites with above-average but-

terfly species richness. The presence of tit species performed equally as well as the

presence of raptor species to predict sites with high species richness of birds and plants,

and performed even better for predicting high butterfly species richness.

Main conclusions Conservation planners using indicator species should be aware that

relationships among higher taxa are complex and depend on the species group and the

scale of analysis. As shown with the case of raptors, the usefulness of a biodiversity

indicator can vary between adjacent areas even if the same species groups are analysed.

We recommend the use of more than one indicator species from different taxonomic

groups when identifying areas of high biodiversity.

Keywords: biodiversity, indicator species, Parus, predictor, raptor, surrogate, Switzer-

land, tit
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8.1 Introduction

A key interest in applied ecology is the identification of areas with high native species

richness, partly because it has been argued that these areas have high conservation

importance. In fact, few conservation practitioners select areas based on species richness

alone (Pressey 1994, Margules and Pressey 2000, Jackson et al. 2004). In particular,

some impoverished places, such as semi-arid areas and mountain tops, host a specific

fauna and/or flora not found elsewhere. In these cases, complementarity and not species

richness might be the goal for conservation (Cabeza and Moilanen 2001, Williams et

al. 2006). Nevertheless, there is continued interest in whether a single or few species

groups should be used as indicators of high species richness (Noss 1990, Simberloff 1998,

Thomson et al. 2007).

Top predators have considerable publicity value but their use as indicator species

in conservation is controversial (Kerr 1997, Andelman and Fagan 2000, Roberge and

Angelstam 2004, Ozaki et al. 2006). Recently, Sergio and colleagues (Sergio et al.

2005, Sergio et al. 2006) emphasized the benefits to biodiversity conservation of the

preservation of top predators. In the Italian Trentino region, Sergio, Newton and

Marchesi (2005) and Sergio et al. (2006) recorded more bird, tree and butterfly species

in 1-km squares inhabited by raptor species compared with paired controls. They

concluded that there is a tight association between the occurrence of top predators

and high biodiversity value, at least in the Trentino region, and suggested that the

generality of these findings should be assessed further. We have performed one such

assessment.

In a comprehensive national biodiversity monitoring programme (Biodiversity Mon-

itoring Switzerland, www.biodiversitymonitoring.ch), bird, butterfly and plant species

richness were estimated based on repeated visits to about 500 grid cells of 1 km width

(Hintermann et al. 2000, Weber et al. 2004). We tested whether grid cells where a

raptor species was observed had higher species counts of birds, butterflies and plants

than grid cells where the same raptor species had not been observed. This approach

is similar to the one used by Sergio, Newton and Marchesi (2005) and Sergio et al.

(2006) but we aimed to assess the generality of their findings at a larger spatial scale.

Sergio, Newton and Marchesi (2005) and Sergio et al. (2006) suggested that predators

are more useful as an indicator than species from a lower trophic level. We tested that
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assertion by performing the same analyses on both raptors and the most species-rich

generalist genus, selected a priori, the tits Parus spp.

8.2 Methods

Switzerland is a small country (41’285 km2) in western Europe. A country-wide bio-

diversity monitoring programme was begun in 2001 (Hintermann et al. 2000). We

selected 509 out of the 41’285 possible 1 km grid cells (hereafter called cells) by taking

a systematic sampling grid fixed to a randomly selected reference cell. This sampling

scheme was designed to produce factual information on the dynamics of biodiversity

within the country for government agencies, politicians and the general public (We-

ber et al. 2004). Eight cells were covered entirely by lakes or glaciers and 26 others

were too dangerous to survey. Those cells were excluded, hence the data set represents

Switzerland excluding the area of lake surfaces, glaciers and steep cliffs. The altitudes

of the cells excluded because of steep cliffs were too high to provide potential breeding

habitat for raptors or tits (Schmid et al. 1998) and we did not expect the exclusion of

these cells to bias our analyses systematically. Average forest cover (± SD) was 31.5%

(± 27.8) and 18% of cells were attributed to the Jura mountains, 23% to the Swiss

plateau and the remaining 59% to the Alps.

Fieldwork lasted from 2001 (2003 for butterflies) to 2005, with one-fifth of the

cells surveyed each year. The subsample of cells surveyed each year was regularly

spaced over the whole of Switzerland. Therefore the shorter monitoring period for

butterflies resulted in a smaller sample size but not in a systematic bias in the results.

Species richness of birds, butterflies and plants was estimated based on repeated visits

by specialists to each cell. Each cell was visited twice for plants, up to three times

for birds [three visits in cells ≤ 2000 meters above sea level (m a.s.l.) and two in

cells > 2000 m a.s.l.] and up to seven times for butterflies (seven visits in colline and

montane cells, six in subalpine cells and four in alpine cells). Plants and butterflies were

counted along the same 2.5-km long transect within cells. The transect was selected

using fixed rules that aimed to cover as much as possible of the cell area. Bird data

originated from the Swiss breeding bird survey Monitoring Häufige Brutvögel (Schmid

et al. 2004, Kéry and Schmid 2006). A few surveys of cells not fulfilling the strict

sampling protocol (e.g. restrictions on date, time or weather conditions) were excluded
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from the analyses. Studies of biodiversity patterns are sometimes criticized because

of detectability problems (Boulinier et al. 1998) but we were confident that species

detectability in this study was high for the following reasons: (i) species detectability

of birds has been assessed and has been proven to be high and vary little with sources

of variation such as species observer and sites (Kéry and Schmid 2006); (ii) species

detectability of plants and butterflies was enhanced by repeated visits. For more details

about data collection see Pearman and Weber (2007) and Schmid, Zbinden and Keller

(2004).

Switzerland Tessin Trentino

Total area (km2) 41’285 2’812 6’206

Number of 1 km grid cells 402* 47* 64�†
Minimum elevation (m a.s.l.) 192 192 67

Maximum elevation (m a.s.l.) 4634 3400 3769

Number of regular breeding raptors 15-17‡ 7-8‡ 8-9‡
Number of regular breeding bird species 174§ 148§ 145¶
*Mean number of grid cells among the three species groups.
�Mean number of sample sites (raptor territories and controls).

†Sergio et al. 2006; ‡Hagemeijer and Blair (1997); §Schmid et al. (1998);

¶Pedrini, Caldonazzi and Zanghellini (2005)

Table 8.1: Features of the study sites, throughout Switzerland (this study), the canton

Tessin (this study) and the Trentino mountains [study site of Sergio, Newton and Marchesi

(2005) and Sergio et al. (2006)].

For the main analyses we used the entire data set, which contained the species lists

of 464 (for birds), 283 (for butterflies) and 459 (for plants) 1-km grid cells. The canton

of Tessin in the southern part of Switzerland and the Trentino mountains (the study

area of Sergio, Newton and Marchesi 2005 and Sergio et al. 2006) are adjacent areas

with, presumably, much the same species pool (Table 8.1). To compare better our

results with those reported by Sergio, Newton and Marchesi et al. (2005) and Sergio et

al. (2006) we also analysed a subset of the data that included the cells from the canton

of Tessin only. For each analysis, the 1-km cells from the Swiss Biodiversity Monitoring

Programme were divided into two groups: one group of cells where a raptor species was

recorded (raptor cells) and a second group with all the remaining cells (control cells).

All raptor species recorded in at least 20 cells were analysed: Red Kite Milvus milvus L.
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(103 cells), Black Kite Milvus migrans Bodd. (117), Goshawk Accipiter gentilis L. (26),

Sparrowhawk Accipiter nisus L. (47), Common Buzzard Buteo buteo L. (260), Common

Kestrel Falco tinnunculus L. (138) and Tawny Owl Strix aluco L. (38). We assessed

the differences in species richness of birds (excluding the raptor species analysed),

butterflies and plants between raptor and control cells. As count data often deviate

from a normal distribution, we used the non-parametric MannWhitney U-test to assess

differences among raptor and control cells.

Bird Butterflies Vascular plants

w n p-value w n p-value w n p-value

Raptors:

Milvus milvus 5885 103 <0.001 *** 10418 67 <0.001 *** 18104 102 0.931

Milvus migrans 7440 117 <0.001 *** 11770 78 <0.001 *** 18947 116 0.443

Accipiter gentilis 2661 26 <0.001 *** 2485 17 0.392 3996 26 0.013 *

Accipiter nisus 6451 47 <0.001 *** 3275 27 0.800 7420 47 0.009 **

Buteo buteo 7438 260 <0.001 *** 10781 161 0.028 * 16551 257 <0.001 ***

Falco tinnunculus 18695 138 0.004 ** 7784 87 0.437 20764 136 0.355

Strix aluco 4417 33 <0.001 *** 2789 21 0.779 5089 32 0.016 *

Tits:

Parus ater 3418 368 <0.001 *** 2936 226 <0.001 *** 4952 363 <0.001 ***

Parus caeruleus 8285 257 <0.001 *** 13070 157 <0.001 *** 17372 252 <0.001 ***

Parus cristatus 14549 264 <0.001 *** 5911 161 <0.001 *** 14323 262 <0.001 ***

Parus major 2584 330 <0.001 *** 8900 202 0.025 * 9059 325 <0.001 ***

Parus montanus 24243 145 0.405 2878 91 <0.001 *** 16027 144 <0.001 ***

Parus palustris 7708 236 <0.001 *** 11695 143 0.002 ** 16012 231 <0.001 ***

* P<0.05, ** P<0.01, ***P<0.001.

Table 8.2: Results of the Mann-Whitney U -test. The Bonferroni critical value for 36

tests is 0.0014; w: test statistic, n: number of grid cells with presence of the raptor species

or Parus species.

The genus Parus (tits) represents species that are more generalist in their diets and

have smaller per-pair area requirements than raptors. They were the most species-rich

generalist genus recorded. All Parus species recorded in at least 20 cells were analysed

in the same way as the raptors. The following textitParus species were included in

the analysis: Coal Tit Parus ater L. (368 cells), Blue Tit Parus caeruleus L. (257),

Crested Tit Parus cristatus L. (264), Great Tit Parus major L. (330), Willow Eit Parus

montanus Conrad (145) and Marsh Tit Parus palustris L. (236). All calculations and

graphs were carried out using the software R (R Development Core Team 2006).
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8.3 Results

The mean ± SD number of observed species for all cells in the Swiss Biodiversity

Monitoring Programme was 32.1 ± 12.6 bird species, 34.0 ± 17.3 butterfly species and

230.1 ± 64.9 plant species. The mean number of cells only from the canton of Tessin

was 23.8 ± 9.7 bird species, 42.7 ± 14.3 butterfly species and 230.5 ± 91.0 plant species.

For each of the seven raptor species, bird species richness per cell was higher in cells

where the raptor was observed than in cells where it was not observed (Table 8.2 and

Fig. 8.1). Four raptor species indicated cells with high plant species richness but none

of the raptor species indicated high butterfly species richness. In contrast, the mean

number of butterfly species in cells with records of Black Kite, Red Kite and Common

Buzzard was significantly lower compared with control cells.
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and location. Therefore the results may be biased towards the
representation of these species and interpretation of the
results may be difficult. More importantly, conservation prior-
ities are usually drawn up within administrative regions or
biogeographically meaningful regions: a method based on
the presence of  a raptor species as a surrogate for species
richness cannot judge if  some of  the most important places
for conservation are outside the range of  the raptor species.
Our study used sites throughout Switzerland, therefore our
assessment was based on a given region, which is a rational
unit within which conservation priority decisions can be made.

We also noted that, while some studies have suggested that
species with few occurrences are better indicators of species
richness (Lawler 

 

et al

 

. 2003) and others have found the

Fig. 1.  Performance of raptor species (graphs to the left) and Parus species (graphs to the right) as species richness indicators. The box plots
show species richness per 1-km grid cells occupied by a raptor or Parus species (dark boxes) and grid cells not occupied by the species (light
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Figure 8.1: Raptor species and Parus species as biodiversity indicators - Per-

formance of raptor species (graphs to the left) and Parus species (graphs to the right) as

species richness indicators. The box plots show species richness per 1 km grid cells occupied

by a raptor or Parus species (dark boxes) and grid cells not occupied by the species (light

boxes). Boxes represent median and 25% and 75% percentiles, whiskers are non-outlier

ranges and dots are outliers of avian (first row), butterfly (second row) and plant (third

row) species richness.

Five out of six tit species indicated high bird species richness, and all tit species

indicated high plant species richness per cell (Table 2 and Fig. 1). The occurrence
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of coal tit, crested tit and willow tit also indicated cells with high butterfly species

richness, but the mean of butterfly species richness of cells with blue tit, great tit and

marsh tit was significantly lower compared with control cells.

All analyses were repeated using the grid cells from the canton of Tessin only. The

results of these analyses were comparable with the above results (Table 8.3).

8.4 Discussion

We used data from the national Swiss Biodiversity Monitoring Programme to show that

the observed presence of a raptor species indicated cells with high species richness of

birds and plants. We did not find that the presence of a raptor indicated high butterfly

species richness. Moreover, Parus species performed equally well compared with raptor

species as predictors for cells with high bird and plant species richness, and even better

as predictors for cells with high butterfly species richness.

Sergio, Newton and Marchesi (2005) and Sergio et al. (2006) provided evidence of

the usefulness of raptor species as an indicator of high species richness. The authors also

claimed that bird species of lower trophic level, such as insectivorous and herbivorous

species, are not good predictors of high species diversity. However, our results suggest

that the performance of raptor species as indicators of high species richness largely

depends on the species group analysed; raptors predicted cells with high bird species

richness, to a lesser extent cells with high plant species richness, but not cells with

high butterfly species richness. Furthermore, the species of tit, representing a lower

trophic level, performed equally well in indicating cells with high species richness. Our

results support other studies that show indicator relationships among higher taxa to

be complex and to depend on the species group (Vessby et al. 2002, Thomson et al.

2007).

In this study we assessed the value of top predators as indicators of high species

richness at a larger scale than the study of Sergio, Newton and Marchesi (2005) and

Sergio et al. (2006). In biodiversity indicator studies, variation in scale may lead to

different results because of the inclusion of more or fewer biogeographical regions or

habitat types (Bohning-Gaese 1997, Favreau et al. 2006). For example Parus species

that are more common in the Alps than in other parts of Switzerland, such as the Coal

Tit, Crested Tit and Willow Tit (Schmid et al. 1998), were good predictors of high

170



8.4 Discussion

butterfly species richness in this study. These results may simply reflect the fact that

the numbers of butterfly species are higher in the Alps than in other parts of Switzerland

(Koordinationsstelle Biodiversitätsmonitoring Schweiz 2006). These particular Parus

species might be of less value in predicting species richness in a study on a smaller

scale that only included the Alps. However, we also analysed data from the canton of

Tessin, adjacent to the study area of Sergio, Newton and Marchesi (2005) and Sergio et

al. (2006) and at a comparable scale. Our conclusions remained the same as from our

analyses of data from the whole of Switzerland: Parus species predict species richness

at least equally as well as raptor species.

Bird Butterflies Vascular plants

w n p-value w n p-value w n p-value

Milvus milvus 0 0 0

Milvus migrans 52 3 0.344 1 65 3 0.630

Accipiter gentilis 1 1 1

Accipiter nisus 51 5 0.030 * 27 2 0.815 60 5 0.059

Buteo buteo 166 11 0.109 59.5 5 0.697 158 11 0.077

Falco tinnunculus 324 16 0.838 116 9 0.615 378 16 0.225

Strix aluco 78 6 0.064 42 4 0.441 112 6 0.345

Parus ater 153 38 ¡0.002 ** 62 23 0.082 172 38 0.006 **

Parus caeruleus 174 25 0.001 ** 119 12 0.984 *** 105 25 ¡0.001 ***

Parus cristatus 199 17 0.025 * 82 9 0.367 252 17 0.199

Parus major 138 30 ¡0.001 *** 127 16 0.985 115 30 ¡0.001 ***

Parus montanus 313 28 0.277 59 19 0.014 * 329 28 0.414

Parus palustris 157 24 ¡0.001 *** 88 12 0.220 91 24 ¡0.001 ***

* P<0.05, ** P<0.01, ***P<0.001.

Table 8.3: Results of the Mann-Whitney U -test using grid cells from Tessin only. For

empty table cells, too few data were available to perform the test. w: test statistic, n:

number of grid cells with presence of the raptor species or Parus species.

Sergio, Newton and Marchesi (2005) and Sergio et al. (2006) stated that each of

their bird species assessments reflected the biodiversity of an area of approximately 1

km2 (Sergio et al. 2006). However, these authors detected only around 6.5 avian species

on average, which is about four times less than the number of species detected per 1

km cell in this study. The canton of Tessin in the southern part of Switzerland and the

Trentino mountains are adjacent areas with, presumably, much the same species pool.

If we considered cells from the canton of Tessin only, the average avian species richness

of the Sergio, Newton and Marchesi (2005) and Sergio et al. (2006) study was 3.5 times

lower than ours. The species detectability of birds in the Swiss Biodiversity Monitoring
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Programme used for this study was estimated to be 89% (Kéry and Schmid 2006).

In contrast, we assume that a large number of birds remained undetected in Sergio,

Newton and Marchesi (2005) and Sergio et al. (2006) study. Imperfect detection of

species is a fundamental problem in ecological studies (Boulinier et al. 1998): measures

of species richness may be confounded by the detectability of species and the problem

is pronounced for very low species detection probabilities.

Sergio, Newton and Marchesi (2005) and Sergio et al. (2006) concentrated on re-

gions where the target raptor species occurred. For each raptor species the regions

differed in size and location. Therefore the results may be biased towards the rep-

resentation of these species and interpretation of the results may be difficult. More

importantly, conservation priorities are usually drawn up within administrative regions

or biogeographically meaningful regions: a method based on the presence of a raptor

species as a surrogate for species richness cannot judge if some of the most important

places for conservation are outside the range of the raptor species. Our study used

sites throughout Switzerland, therefore our assessment was based on a given region,

which is a rational unit within which conservation priority decisions can be made. We

also noted that, while some studies have suggested that species with few occurrences

are better indicators of species richness (Lawler et al. 2003) and others have found the

opposite pattern (particularly for Switzerland; (Pearman and Weber 2007)), the spatial

pattern of species richness of widely distributed species is correlated to a greater degree

with overall richness than the spatial pattern of species with few occurrences. Our

study provides no evidence that single species with few occurrences (e.g. Goshawk and

Sparrowhawk in this study) differed in their potential to indicate cells with high species

richness from widely distributed species (e.g. Parus spp. and Common Buzzard).

Sergio, Newton and Marchesi (2005) and Sergio et al. (2006) reframed an old debate

in conservation biology by suggesting that top predators are valuable as biodiversity

surrogates. However, from an ecological perspective, based on the data-base of the

Swiss Biodiversity Monitoring Programme and the Swiss breeding bird survey, we have

found little evidence to justify conservation focusing on top predators. Raptor presence

indicated areas with high species richness reasonably well, at least for avian and plant

species richness. However, other species groups, such as tit species, are of equal value

in identifying areas of high species richness. We conclude that the usefulness of a

biodiversity indicator can vary between adjacent areas even if the same species groups
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are analysed. This should be considered when using surrogate species for conservation

planning. We recommend the use of complementary indicator species from different

trophic groups to assess biodiversity.
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