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1.1 Introduction 

The field of asymmetric catalysis is one of the most important areas in modern organic 

synthesis and its relevance has been illustrated when the Nobel Prize in 2001 was given to 

KNOWLES, NOYORI and SHARPLESS for their work in this field.[1] Although many chiral 

catalysts have been already designed, there is still a great range of reactions where the 

development of novel highly selective catalysts is required. However, selectivity is not a 

predictable property of a catalyst for asymmetric transformations. Thus, catalyst screening is 

essential when working in the field of asymmetric catalysis. For this reason high-throughput 

screening became a more and more important field of research, allowing the fast measurement 

of enantiomeric excesses.[2] Consequently the screening of a catalyst library, even if it 

contains a large number of compounds, is no longer the bottleneck in the development of an 

enantioselective catalytic process. In fact the synthesis of such a library is very labor-intensive 

as chiral catalysts have to be obtained in high optical purity. Especially for structurally novel 

catalysts this might require the development of new methodologies for the preparation of 

these compounds prior to evaluation of their properties. As this is a very time-consuming 

approach and success cannot be guaranteed, this effort is often not taken and many potential 

catalysts remain unexplored. 

Screening methods that allow the determination of a catalyst by testing its racemic form 

would strongly enhance the range of possible structures that can be explored. Moreover, 

structural optimization of a catalyst could be accelerated considerably in cases where the 

preparation of enantiomerically pure derivatives is difficult. 

 

1.1.1 Previously Reported Approaches Towards Selectivity Determination by 

Testing Racemates 

Only few methods that allow the potential of chiral catalysts to be estimated by testing the 

racemic form have been reported previously. 

KAGAN and co-workers showed that it is possible to evaluate the enantiodiscrimination 

potential of a racemic catalyst in the sequence of two consecutive reactions at two prochiral 

units of a substrate.[3] As model reaction they describe the enantioselective borane reduction 

of ketones catalyzed by chiral oxazaborolidines (scheme 1). 
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Scheme 1. Testing racemic chiral catalysts in the enantioselective borane reduction of ketones 
according to KAGAN and co-workers.

[3]
 

 

However this methodology relies on certain requirements that have to be fulfilled. First, the 

presence of a stereogenic center after the first reduction step should not influence the 

selectivity of the catalyst for the second step. Therefore they used a diketone with three 

methylene-units between the two functional groups as a model substrate. If those reactive 

centers are now sufficiently separated, the reduction of the second ketone-function should 

proceed with the same selectivity as the reduction of the first (ee1 = de2). Furthermore they 

assumed that the same catalyst enantiomer is performing both the first and the second 

reduction. Therefore a reaction had to be chosen in which the second step is relatively fast 

compared to the catalyst release after the first step. If these assumptions are true, the first 

reduction step will proceed with the selectivity induced by the catalyst (ee1) forming either the 

(R) or the (S) product, depending on which catalyst enantiomer was involved and on its 

selectivity. As the same catalyst enantiomer is now involved in the second reduction as in the 

first step, the second stereogenic center is supposed to be formed preferentially with the same 

configuration as the first stereogenic center. Only the minor enantiomer will end up being the 

meso-substrate. This means, the higher the selectivity of the catalyst is, the higher the de of 

the (R,R)- respectively the (S,S)-diol will be. From this de value and with the assumptions 

made above the ee induced by the catalyst for each stereogenic center can be calculated (eediol 

= ee1 × de2 = ee1
2 since ee1 = de2). For the example shown above comparable results from this 

screening method and the preparative reaction using enantiopure catalysts have been obtained. 

However, KAGAN and co-workers reported as well that they investigated two additional 

catalytic reactions based on this methodology, rhodium-catalyzed hydrosilylation and 
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ruthenium-catalyzed transfer hydrogenation. For those cases they were not able to observe 

any diastereoselectivity and therefore the determination of the catalyst´s selectivity was not 

possible. The reason for this was found in the fact that the binding interactions between the 

catalyst and the reactant were not sufficient and therefore the catalyst dissociated from the 

substrate between the two consecutive reaction steps. These findings show, that conditions 

needed for this screening approach are only met in very special cases. 

 

In 2001 LLOYD-JONES and co-workers published a very intriguing concept to estimate the 

selectivity of a chiral catalyst by testing its racemic form.[4] The concept relies on the use of 

scalemic substrate mixtures (enantioenriched substrate with defined enantiomeric excess). By 

reacting with a racemic catalyst under pseudo-zeroth-order conditions (saturation conditions 

under which the reaction rate does not display a direct relationship with the substrate 

concentration) the enantiomeric excess of such a substrate changes upon proceeding 

conversion. As pseudo-zeroth-order conditions are rather common in kinetic resolutions,[5] the 

method seems to be fairly generally applicable. The model reaction on which this method was 

validated was the kinetic resolution of allylic acetates by palladium-catalyzed allylic 

substitution (scheme 2). 

 

Scheme 2. Estimation of the selectivity by reacting a racemic Pd-catalyst with a scalemic substrate 
mixture according to LLOYD-JONES and co-workers.

[4]
 

 

For a catalyst with perfect enantioselectivity (selectivity factor s = kfast/kslow = ∞) each of the 

catalyst enantiomers do only react with one of the substrate enantiomers. As both catalyst 

enantiomers do react at the same rate (pseudo-zeroth-order conditions) the two substrate 

enantiomers are consumed in equal amounts until all of the minor enantiomer has been 

converted to product and the substrate ee increases with conversion. On the other hand, for an 

unselective catalyst (s = 1) the two catalyst enantiomers do react with both of the substrate 

enantiomers in a statistic fashion and the substrate ee remains constant throughout the 

reaction. If the evolution of the substrate ee is now followed over proceeding conversion 

different graphs depending on the catalyst selectivity have been calculated (figure 1, left). As 

shown, catalyst with a higher selectivity will give a graph with a higher slope. When then two 
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racemic Trost-ligands have been tested, two different graphs were obtained (figure 1, right). 

The one obtained from the ligand bearing a five-membered ring back-bone showed the higher 

slope suggesting a higher selectivity of the corresponding catalyst compared to the one 

bearing a six-membered ring back-bone. Indeed when the enantiopure catalysts were tested in 

the preparative kinetic resolution reaction, the same selectivity trend was observed. 

 

Figure 1. Evolution of the substrate ee upon proceeding conversion. Left: calculated graphs for 
different catalyst selectivities; right: experimental data from testing racemic TROST-ligands.

[4]
 

 

However there are as well certain drawbacks connected with this methodology. As several 

data points have to be collected in order to create a graph as shown in figure 1, the screening 

itself is very laborious. Furthermore it cannot be applied to enantioselective reactions of 

prochiral substrates but only to kinetic resolutions. And finally it allows only an approximate 

estimation and not the exact determination of the enantioselectivity of different catalysts. 

 

A different approach in this context, is the so-called chiral poisoning.[6] In this case not a 

racemic catalyst mixture is used but a chiral additive which deactivates one of the catalyst 

enantiomers prior to the transformation to be evaluated, It was demonstrated by FALLER and 

PARR that in the rhodium-catalyzed hydrogenation of dimethyl itaconate with a racemic 

mixture of chiraphos as ligand a certain extent of enantiomeric excess can be obtained upon 

addition of (S)-methophos as chiral poison (scheme 3). 
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Scheme 3. Chiral poisoning of a racemic catalyst mixture in the rhodium catalyzed hydrogenation.
[6]

 

 

However it has to be mentioned that using enantiopure (R,R)-chiraphos without additional 

methophos the hydrogenation proceeds in considerable higher selectivity yielding >98% ee. 

This shows that either the poisoning was not sufficient or the additive has a deleterious effect 

on the selectivity of the catalyst. Furthermore suitable chiral poisons might not always be 

available for various catalysts.  

 

Those above mentioned approaches to enable selectivity determination by testing racemic 

catalyst mixtures are still suffering from certain restrictions and limitations. PFALTZ and co-

workers previously reported a screening method based on the detection of reaction 

intermediates by electrospray ionization mass spectrometry (ESI-MS),[7] which could have the 

potential to be modified towards testing racemates for selectivity determination.[8] 

 

1.1.2 ESI-MS Screening of Enantiopure Catalysts 

1.1.2.1 ESI-MS as a Tool for Detection of Organo-Metal Compounds in Solution 

Besides MALDI (matrix assisted laser desorption ionization), electrospray ionization (ESI) is 

one of the mildest ionization techniques, allowing the transfer of intact molecular ions into the 

gas phase without defragmentation.[9] The charged compounds being analyzed can either be 

transient species, or protonated/deprotonated forms or ion adducts of neutral species. As only 

charged species can be visualized, ESI-MS enables the detection of charged reaction 

intermediates in the presence of a great excess of uncharged molecules. 

In 1968 DOLE and co-workers reported the possibility of generating gas-phase ions by 

electrospraying of a polymer solution into an evaporation chamber.[10] The method was then 

significantly improved by YAMASHITA and FENN which were able to combine electrospray 
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ionization with mass spectrometry.[11] Together with the MALDI technique and NMR 

spectroscopy these findings had a significant impact in the field of analyzing biological 

macromolecules and its importance has been illustrated by awarding FENN (ESI-MS)[12] along 

with TANAKA (MALDI-MS)[13] and WÜTHRICH (NMR)[14] with the Nobel Prize in 2002. 

The first characterization of an ionic transition metal complex by ESI-MS was reported in 

1990 by CHAIT and co-workers who detected bipyridil and 1,10-phenantroline ruthenium 

complexes.[15] In 1999 HINDERLING and CHEN applied for the first time ESI-MS for a 

reactivity screening of olefin polymerization catalyst libraries.[16] Upon mixture of eight 

complexes in comparable concentration with ethylene and ESI-MS analysis of the resulting 

charged species with a mass of m/z > 2000 they could show that the most abundant signal 

obtained after MS/MS analysis corresponded to the most active catalyst as such high mass 

was only reached upon very successful polymerization. Later ADLHART and CHEN described a 

similar approach for ruthenium catalyzed ring-opening metathesis polymerization (ROMP).[17] 

As reaction intermediates in this example are uncharged they were trapping those with a 

monomer-unit containing a side chain bearing a cationized functional group. Thus, the formed 

species became charged and detectable by ESI-MS, allowing for the reactivity determination 

of neutral complexes in solution.[18] 

 

1.1.2.2 ESI-MS Screening in the Palladium Catalyzed Kinetic Resolution of 

Allylic Esters 

In their first example for the evaluation of a chiral catalyst by ESI-MS screening, MARKERT 

and PFALTZ described an easy and fast screening method to determine the intrinsic selectivity 

of palladium catalysts in the kinetic resolution of allylic esters.[19] The selectivity in this 

reaction equals the relative ratios of the two rate-constants k1 over k2 and thereby the ratio of 

the two Pd-allyl species formed as reaction intermediates (scheme 4). As common kinetic 

resolutions start from enantiomeric substrates and therefore the intermediates formed would 

have the same mass, here mass labels had to be introduced on the substrates. Substitution in 

the para-position of the benzyl ring has shown to be suitable as this position is sufficiently far 

away from the reaction center and has no influence on the outcome of the reaction. Starting 

from these two so-called quasi-enantiomeric mass labeled substrates the intermediates formed 

become now distinguishable by a mass-spectrometric method. Determining the ratio of the 

two corresponding MS signals gives therefore direct access to the ratio of k1/k2 and by this 

two the selectivity of the catalyst used. 
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Scheme 4. Selectivity determination in the palladium catalyzed kinetic resolution of allylic esters by 

ESI-MS upon use of mass-labeled pseudo-enantiomeric substrates.
[19]

 

 

When for example an achiral catalyst was tested, the intermediate ratio was determined to be 

at 50:50 (s = 1) as expected (figure 2, left). On the other hand, with a chiral and 

enantioselective catalyst an intermediate ratio of 9:91 (s = 10) was observed (figure 2, right). 

 

Figure 2. Selectivity determination by ESI-MS screening of different catalyst. Left: an achiral ligand 
leads to an unselective catalyst (intermediates formed in a 50:50 ratio, s = 1); right: a chiral ligand 
leads to a selective catalyst (intermediates formed in a 9:91 ratio, s = 10).

[19]
 

 

A great advantage of this method, besides the time saving, is the determination of the intrinsic 

selectivity of the catalyst. Selectivity determination by performing the preparative catalytic 

reaction can lead to falsified results as catalytically active impurities or unselective 

background reactions have an influence on the enantiomeric excess of the isolated reaction 

product. However, this method could at that time only be applied to kinetic resolutions and 

not to enantioselective reactions of prochiral substrates as different mass-labels have two be 

installed on the two different enantiomers of the substrate. If the stereogenic center is formed 

during the reaction instead of being present in the starting material this of course is no more 

possible. 
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1.1.2.3 ESI-MS Screening in the Palladium Catalyzed Allylic Alkylation 

In 2008 MÜLLER and PFALTZ reported an extension of the ESI-MS screening method to 

overcome this problem.[20] Rather than using the prochiral starting material in the screening 

they performed a back reaction screening starting from the catalysis products bearing the 

chiral information. They validated this approach by applying it in the palladium-catalyzed 

allylic substitution reaction (scheme 5). Here the selectivity determining step is the 

nucleophilic addition onto the palladium-allyl intermediate. 

 

Scheme 5. Back reaction screening approach to enable selectivity determination in the palladium-
catalyzed allylic substitution.

[20]
 

 

This variation was possible due to the principle of microscopic reversibility,[21] which says 

that the ratio of the rate constants k3/k4 (which equals the selectivity in the allylic substitution) 

equals the ratio of the rate constants of the corresponding back reaction (k�3/k�4). The concept 

of ESI-MS screening of a back reaction has further been successfully applied to Diels-Alder 

reactions, both organo- and copper-catalyzed, by TEICHERT and PFALTZ
[22] and organo-

catalyzed conjugate additions by FLEISCHER and PFALTZ.[23]  
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1.1.2.4 Simultaneous Screening of Catalyst Libraries by ESI-MS  

All the above mentioned ESI-MS screening methods rely on the detection of mass-

spectrometrically distinguishable reaction intermediates. This opens the possibility of a 

simultaneous parallel screening of catalyst libraries as long as the individual catalysts are 

different in mass (figure 3). This was first shown by PFALTZ and co-workers in the kinetic 

resolution of allylic acetates using differently substituted P,P-ligands.[24] Such a parallel 

approach has as well been applied for all other reactions for which an ESI-MS screening has 

been established.[20,22-23] 

 

Figure 3. Simultaneous ESI-MS screening of catalyst of different mass (top: set of 5 different 
precatalysts; bottom: formation of 5 different intermediate pairs after quasi-enantiomer addition).

[8]
 

 

As the described ESI-MS screening protocols avoid selectivity determination by conducting 

the preparative reaction, including work-up and product analysis, they provide a rapid access 

to the selectivity of different catalyst, especially when simultaneous screenings are performed. 

However, the very time-consuming synthesis of a library of different optically pure chiral 

catalyst is still required for all of the above mentioned ESI-MS methods and thus they just 

move the bottleneck from the screening part to the synthesis part for the development of novel 

catalysts. 
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1.1.3 Objectives of This Work 

The aim of this project was the development of an ESI-MS screening method, based on the 

approach of PFALTZ and co-workers[7] and the concept of LLOYD-JONES,[4] which allows for 

the rapid and facile selectivity determination of different racemic catalysts in the allylic 

substitution reaction. 

This reaction was chosen as it is a very well-studied reaction where detailed knowledge about 

the mechanism was gained. Furthermore MÜLLER and PFALTZ have previously demonstrated 

that this reaction can be screened in the reverse direction.[20] Moreover this reaction has been 

proven to be an important and very powerful method for the asymmetric formation of C-C 

and C-heteroatom bonds.[25] 

For this purpose a set of different chiral ligands had to be synthesized in racemic form. The 

structure of those ligands was based on phosphino-oxazoline (PHOX) ligands (figure 4). It 

has been previously shown that PHOX ligands form very active and selective palladium-

catalysts for the allylic substitution reaction.[26] However, the only aryl-PHOX ligand that was 

studies has been Ph-PHOX as the asymmetric synthesis of other aryl-derivatives is very 

challenging. Therefore this kind of ligands seems to be well suited to be tested in their 

racemic form. 

 

Figure 4. Aryl-PHOX ligands to be synthesized and evaluated in the allylic substitution reaction in their 
racemic forms. 
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1.2 The Concept of Testing Racemic Catalyst Mixtures by ESI-MS 

Screening 

1.2.1 Relation Between Catalyst Selectivity and Detected Intermediate Ratio 

Combining the concept of selectivity determination by testing racemic catalysts as described 

by LLOYD-JONES
[4] and the concept of ESI-MS back reaction screening in the allylic 

substitution reaction as described by MÜLLER and PFALTZ
[20] should allow to develop a 

protocol for selectivity determination which is very time-saving in both the synthesis of a 

catalyst library and the screening of those catalysts. 

 

Scheme 6. Concept of selectivity determination by ESI-MS screening of racemic catalyst mixtures 
(ArMe = 4-Me-C6H4, ArEt = 4-Et-C6H4). (Left: result obtained upon testing an unselective catalyst; right: 
result obtained upon testing catalyst with perfect selectivity; bottom: simulated mass-spectra). 
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Starting from a scalemic mixture of mass-labeled pseudo-enantiomeric substrates, upon 

reaction with a racemic catalyst mixture the mass-spectrometric detectable reaction 

intermediates would form in different ratios depending on the selectivity of the catalyst. In 

theory two extreme cases are possible (scheme 6). If the catalyst shows no selectivity  

(s = 1), each of the catalyst enantiomers reacts with each of the two substrates without any 

differentiation and therefore in a statistical fashion (scheme 6, left). Thus, the substrate ratio 

defines the ratio in which the detectable catalysis intermediates are formed. If the substrates 

have been applied in the 75:25 ratio, the detected intermediate ration will end up to be 75:25 

as well. On the other hand, for a catalyst with perfect selectivity (s = ∞), each of the catalyst 

enantiomers does only react with its matching substrate counterpart (scheme 6, right). For 

example the (R)-catalyst with the (S)-substrate (labeled with two methyl-groups, red) and the 

(S)-catalyst with the (R)-substrate (labeled with two ethyl-groups, blue). In this ideal case a 

50:50 ratio of the catalysis intermediates would be observed by ESI-MS. In reality different 

catalysts of course will show selectivities in between those two extreme cases. The higher 

selective they are, the lower the detected intermediate ratios will be and vice versa. The exact 

relation between a catalyst´s selectivity factor s and the intermediate ratio can be calculated 

from the following equation (equation 1) assuming pseud-zeroth-order conditions, where R is 

the detected intermediate ratio and Q the ratio in which the two mass-labeled quasi-

enantiomeric substrates have been applied (for derivation of this equation see chapter 8). 

       (equation 1) 

 

1.2.2 Sensitivity of the Method and Choice of Substrate Ratio 

The enantiomeric excess of a catalyst can easily be calculated from equation 1 after 

performing the racemate screening. Figure 5 shows the relation of the enantiomeric excess 

calculated from the screening and the detected intermediate ratio for different substrate ratios 

used. The lower the slope of such a curve is, the more sensitive the screening method is, as 

then little changes in the detected intermediate ratio do not have a big influence on the ee 

which is calculated. Or with other words, a catalyst providing a slightly different ee compared 

to another catalyst would lead to a significant different intermediate ratio detected by ESI-

MS. Comparing the graphs for the different substrate ratios used as shown in figure 5 it can be 

seen that the higher the substrate ratio is, the higher the sensitivity of the method becomes. 

This is not very surprising as the intermediate ratio can only end up being between 1:1 and the 
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substrate ratio. This means that a higher substrate ratio leads to a higher range in which the 

data points can be found. Just looking at this finding, a very high substrate ratio seems to be 

desirable to use. But the other side of the coin is the detection limit. If the substrate ratio 

applied becomes too high, the minor signal might vanish in the noise signal. Furthermore a 

few turnovers of the catalyst do have a lower influence on the substrate ratio if it is closely to 

1:1. Taking this into account a substrate ratio of 3:1 seems to be the best compromise between 

above mentioned points. 

 

Figure 5. Dependency of the enantiomeric excess/intermediate ratio on the substrate ratio which was 
applied (calculated graphs). 

 

Another property concerning the sensitivity can be found regarding the lower ee range. The 

curves shown in Figure 5 do not shown linear behavior in the entire detection range. For 

enantiomeric excesses lower than about 35% the curves show a higher slope than in the range 

above 35% ee. This is accompanied with lower sensitivity in this low selectivity range. 

However, since in a catalyst screening one searches for highly selective catalysts, lower 

sensitivity in this range is not really problematic. 
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1.3 Synthesis 

1.3.1 Substrate Synthesis 

Mass-labeled quasi-enantiomeric substrates 8 had to be synthesized in an enantiomerically 

pure fashion. This was achieved according to a previously reported route.[20,27] The key step in 

the synthesis was the palladium catalyzed allylic substitution. Therefore the corresponding 

benzoate precursors 7 were prepared (scheme 7). 

 

Scheme 7. Synthesis of the benzoate precursors for the substrate preparation. 

 

This was accomplished starting from commercially available aryl iodides 1 which were 

treated with acrolein diethyl acetal (2) in a Heck reaction using of Pd(OAc)2 followed by 

acidic workup to give acrylaldehydes 3 in high yields. These were then converted to the 1,3-

diaryl allylic alcohols 5 by nucleophilic 1,2 addition of the aryl-lithium species to the 

corresponding aldehyde. After subsequent esterification with benzoylchloride (6) in the 

presence of NEt3 the desired allylic benzoates 7 were obtained in good yield (overall yields: 

72% for 7a, 25% for 7b). 
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Scheme 8. Formation of enantiopure quasi-enantiomeric substrates by palladium catalyzed allylic 
substitution using i-Pr-PHOX ligands. 

 

Palladium-catalyzed allylic alkylation of the benzoates 7 by acetyl acetone using  

i-Pr-PHOX as chiral ligand yielded finally the desired quasi-enantiomeric mass-labeled 

substrates 8 in high yields (scheme 8). In both cases a perfect enantiomeric purity was 

obtained which is crucial for the planned ESI-MS screening-studies. 

 

1.3.2 Catalyst Synthesis 

1.3.2.1 Racemic Aryl-Dimethyl-PHOX Ligands 

 

Figure 6. Ar-dimethyl-PHOX ligands 9 to be tested. 

 

As described before the aim of the project was to evaluate the selectivity of novel aryl-PHOX 

derived catalysts in the allylic substitution. The first class of such ligands to be tested were 

Ar-PHOX ligands bearing an additional gem-dimethyl substitution on the oxazoline ring 
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(figure 6). It has been previously shown, that such a substitution can have a beneficial effect 

on the selectivity of a PHOX ligand in [3+2] cycloadditions of azomethine ylides with Ag(I)-

PHOX catalysts[28] or in enantioselective Heck reactions of 2,3-dihydrofuranes and palladium-

catalyzed allylation reactions of fluorinated silyl enol ethers.[29] 

 

Retrosynthetic analysis of aryl-dimethyl-PHOX ligands 9 

The synthesis of aryl-dimethyl-PHOX ligands 9 was accomplished by ortho-lithiation and 

treatment of the corresponding 1-phenyl oxazolines 10 with chloro diphenylphosphine 

(scheme 9) The key step in the synthesis should then be the formation of these oxazolines. It 

was planned to achieve this by a Ritter reaction between 1-aryl 2,2-dimethyl epoxides 11 and 

benzonitrile (12). Epoxide species 11 can be obtained by epoxidation of the corresponding 

alkenes 13, which can be derived from the aryl-aldehydes 14 by Wittig olefination. 

 

Scheme 9. Retrosynthetic analysis of aryl-dimethyl-PHOX ligands 9. 
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Synthesis of phenyl-dimethyl-PHOX ligand 9a 

According to the retrosynthetic analysis shown in scheme 9, 2,2-dimethyl-3-phenyloxirane 

(11a) was obtained from commercial available benzaldehyde (14a) by Wittig reaction[30] with 

iso-propyltriphenylphosphonium iodide (15) followed by epoxidation using MCPBA[31] in 

68% yield over two steps (scheme 10). 

 

Scheme 10. Synthesis of 1-phenyl 2,2-dimethyl epoxide 11a. 

 

As mentioned above the key step in the synthesis was the Ritter reaction[32] between epoxide 

11a and benzonitrile (12). Mechanistically this reaction proceeds as shown in scheme 11. The 

epoxide 11a gets activated by trifluoro borane. Thus, the epoxide opens to form the 

carbocationic species 16a whose charge is in stabilized benzylic position. This carbocation 

gets then trapped by the nitrile group of 12 to form 17a. Subsequent ring closure affords the 

oxazoline 10a. However, if 11a opens to form the tertiary carbocation 18a, the following 

reaction with benzonitrile would afford the regioisomeric oxazoline 19a. 

 

Scheme 11. Proposed mechanism of the Ritter reaction. 
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When the reaction was carried out, oxazoline formation occurred in acceptable 42% yield 

(scheme 12). It was found, that indeed two different oxazoline species have been formed in a 

ratio of 21:1. The major isomer could be isolated by column chromatography. However, 

determination of the constitution of this isomer proved to be very difficult by conventional 

analysis methods. 

 

Scheme 12. Ritter reaction to form 1-phenyl oxazoline 10a. 

 

Thus, analysis had to be conducted after derivatization. During the course of the following 

synthesis towards the final ligand structure phosphine oxide 20a (or the corresponding 

regioisomer 22a) was obtained as a side product (see scheme scheme 14). As this was an 

undesired product from the first point of view, this was selected to be used for the 

derivatization. The idea to differentiate between the isomers has been N-methylation and 

subsequent NMR and NOESY analysis (scheme 13). 

 

Scheme 13. N-methylation for distinguishing between the oxazoline regioisomers.(Top: NOESY 
interaction between benzylic proton and N-Me should be present; bottom: the same interaction is not 
possible). 
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The interaction of interest is the one between the benzylic proton and the protons of the N-Me 

group. If the desired regioisomer was formed, these protons should interact over space as the 

benzylic proton is adjacent to the nitrogen atom. If the other regioisomer is present, this 

interaction cannot be found due to the large distance in between. Furthermore N-methylation 

should have a higher influence on the group adjacent to the nitrogen atom. If the desired 

regioisomer was formed, there should be a significant low-field shift of the benzylic proton 

and a smaller low-field shift of the gem-dimethyl protons, while for the wrong regioisomer the 

influence should be on the same level as all of these protons would be in �-position relative to 

the nitrogen atom. 
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Figure 7. Top: 
1
H-NMR spectra after and before N-methylation; bottom: NOESY experiment. 
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Comparison of the actual 1H-NMR spectra before and after derivatization already gives a 

strong hint for the formation of the desired regioisomer. While the gem-dimethyl groups are 

low-field shifted by 0.66 ppm, the chemical shift of the benzylic proton changes by 1.79 ppm 

(Figure 7 top). This indicates that the two methyl groups are in �-, the benzylic proton in  

�-position to the nitrogen atom. NOESY analysis of the N-methylated compound supports 

this observation as interaction between the N-methyl group and the benzylic proton has been 

observed (figure 7 bottom, orange circle). As described above this should only be possible if 

the desired regioisomer is present. 

Next, the phosphine moiety had to be installed. First it was tested to achieve this aim by 

ortho-lithiation followed by reaction with chloro diphenylphosphine.[33] Although 31P-NMR 

analysis of the crude mixture indicated formation of the desired compound, purification by 

column chromatography only gave the corresponding phosphine oxide 20a in low amounts. 

Different purification attempts did not improve the outcome. Therefore 20a was synthesized 

by treatment of the reaction mixture with H2O2. This species could be purified and isolated in 

64% yield and subsequently reduced back to the desired phosphine species 9 using phenyl 

silane.[33] Thus, the synthesis of the final ligand structure could be accomplished in 12% 

overall yield (scheme 14). 

 

Scheme 14. Formation of phenyl-dimethyl-PHOX 9a. 
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This ligand was then submitted to complexation with a palladium source to investigate its 

ability to form a palladium allyl species. For this purpose it was reacted with 1 equivalent of 

[Pd(C3H5)(MeCN)2]PF6 (scheme 15 top). When the resulting product was analyzed by ESI-

MS the desired signal at m/z = 582 was observed. Interestingly NMR analysis of the formed 

complex showed different signals for the two possible diastereoisomers which can be formed 

(24a and 24a’). This observation suggests that the additional gem-dimethyl substitution in the 

ligand backbone pushes the phenyl group on the stereogenic center more towards the 

palladium center and thus the allyl group, although unsubstituted, cannot rotate freely. When 
1H-NMR spectra were recorded at different temperatures sharper signals were found at lower 

temperature (scheme 15 bottom), which is in agreement with this proposal. A solvent 

dependence was observed as well. 31P-NMR measurements gave two signals in CDCl3 while 

only one signal was found in d6-DMSO. 

 

 

Scheme 15. Top: synthesis of the palladium-allyl complex bearing ligand 9a; bottom: 
1
H-NMR spectra 

of the allyl protons of 24a at varying temperatures (top: lowest temperature, bottom highest 
temperature). 
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Synthesis of further aryl-dimethyl-PHOX ligands 9 

According to the above described synthetic pathway further aryl-dimethyl PHOX derivatives 

were synthesized (scheme 16). 

 

Scheme 16. Synthesis of further aryl-dimethyl-PHOX ligands. 

 

Synthesis of 1-naphthyl-dimethyl-PHOX 9b was accomplished by the same route as for the 

phenyl equivalent 9a giving an overall yield of 6%. However ligand 9c bearing an anthracenyl 

substituent could not be accessed using this route. While the Wittig reaction did proceed in 

very good yield, the epoxide 11c was obtained in only 7% yield. Therefore this ligand 

synthesis was be finished. 

 

1.3.2.2 Racemic Ar-PHOX Ligands 

Synthesis of Ph-PHOX ligand 27a 

Besides the novel PHOX ligands which were planned to be tested by the ESI-MS screening 

method, literature-known Ph-PHOX[33] was supposed to be synthesized for comparison. In a 

first attempt the same synthetic pathway as for the Ar-dimethyl-PHOX ligands 9, starting 
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from commercial available styrene oxide 25a, was tested (scheme 17). Unfortunately the 

desired oxazoline could only be obtained in very poor yield and not be purified. Attempts to 

convert it into the PHOX ligand by ortho-lithiation failed, most likely due to the residual 

impurities. When the Ritter reaction was carried out using 2-bromo benzonitrile to facilitate 

the subsequent ortho-lithiation no product was formed at all. Changing the Lewis acid from 

BF3 to BCl3 yielded in no desired product formation as well. 

 

Scheme 17. Attempt to synthesize 2,4-diphenyl oxazoline via Ritter reaction. 

 

Thus, the synthetic route had to be changed. Common PHOX synthesis is very often 

performed starting from the corresponding amino alcohol.[26d,33-34] Therefore a synthetic route 

including the synthesis of racemic amino alcohol 30a according to the retrosynthetic analysis 

shown in scheme 18 was tested. 

 

Scheme 18. Retrosynthetic analysis of Ph-PHOX (27a) via amino alcohol formation. 

 

Formation of the desired ligand 27a was planned to be accomplished by lithium-halogen 

exchange and subsequent treatment with chloro diphenylphosphine. Oxazoline formation 

should be obtained starting from the corresponding benzamide (29a) which is available from 

2-amino-2-phenylethanol (30a). The synthesis of the amino alcohol could be achieved by 
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reduction of the corresponding azido-alcohol which can be obtained by epoxide opening with 

sodium azide of compound 25a. 

 

Scheme 19. Synthesis of Ph-PHOX ligand 27a. 

 

Starting from commercially available styrene oxide (25a) the formation of azido alcohol 31a 

in aqueous acidic media proceeded in 65% yield.[35] Reduction of the azido functionality was 

first tried using NaBH4 in the presence of CoCl.[36] Unfortunately the desired amino alcohol 

was only formed in low yields and the resulting crude mixture could not be purified. 

Therefore a Staudinger reaction was performed and the desired compound 30a could be 

obtained.[37] It was found that upon acidic work-up an increased yield could be obtained since 

the formation of side-products during the work-up was suppressed.[38] According to a 

literature-known procedure,[34] oxazoline 28a was formed via benzamide synthesis and 

subsequent cyclization upon use of MsCl in 73% yield over two steps. After ortho-lithiation 

and phosphine introduction racemic Ph-PHOX 27a was obtained in an overall yield of 18% 

(scheme 19). In contrast to the dimethyl-PHOX ligands this time purification could be carried 
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out at the stage of the final ligand and no oxidation-purification-reduction sequence was 

necessary. 

Furthermore it was planned to test PHOX ligands without a gem-dimethyl substitution in the 

backbone but bearing substituents on the aryl ring at the stereogenic center. This kind of 

ligands would be of particular interest since the corresponding enantiopure amino acids are 

not commercially available or very expensive. Thus, they seem to be well-suited to be 

evaluated in a racemate screening. As examples of such Ar-PHOX ligands 9-anthracenyl-

PHOX and two 3,5-dialkyl substituted Ar-PHOX ligands were synthesized and tested (figure 

8). Such catalysts, bearing additional substituents on the aryl-ring might show an increased 

selectivity due to the increased sterical demand close to the stereogenic center. 

 

Figure 8. Ar-PHOX ligands with increased sterical demand on the aryl moiety. 

 

Synthesis of 9-anhtracenyl-PHOX ligand 27b 

Following the same synthetic route as used for Ph-PHOX 27b, 9-anthracenyl-PHOX 27b was 

prepared (scheme 20). Starting point was the corresponding anthracene-9-carbaldehyde (14c). 

This was transformed into the epoxide 25b by a Corey-Chaykovsky reaction[39] which was 

subsequently ring opened by NaN3. The epoxidation did not proceed with full conversion and 

the epoxide could not be separated from the residual aldehyde. However, epoxide opening did 

work as well with unreacted aldehyde present in the reaction mixture and the azido alcohol 

could be easily separated from the aldehyde by column chromatography. When the reduction 

to the amino alcohol was carried out under Staudinger conditions no conversion towards the 

amino alcohol was observed. Reduction by hydrogenation with activated Pd/C[40] gave the 

desired compound 30b in high yield. Benzamide formation was accomplished upon reaction 

with benzyl chloride and subsequent cyclization gave the oxazoline 28b in quantitative yield. 

Unfortunately installation of the phosphine moiety by lithium-halogen exchange failed under 

various conditions tested. 
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Scheme 20. Attempt to synthesize 9-anthracenyl-PHOX ligand 27b. 

 

Consequently the synthetic route was changed. As described by PFALTZ and co-workers 

PHOX ligands can as well be obtained by reaction between an amino alcohol and  

2-(diphenylphosphino)benzonitrile 32 in the presence of ZnCl2.
[33] Since the amino alcohol 

30b was already obtained, this approach was tested (scheme 21). 
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Scheme 21. Synthesis of 9-anthracenyl-PHOX ligand 27b. 

 

Since the synthesis of azido alcohol 31b as shown in scheme 20 did only proceed in 39% 

yield over two steps, the reaction conditions for the epoxide opening were optimized. Here a 

1:1 mixture of acetone and water was used as solvent and the reaction was carried out at 

elevated temperature. In this way the yield of 31b was increased to 69% over two steps. 

Subsequent hydrogenation gave the amino alcohol 30b as described above. Oxazoline 

formation according to the literature described protocol yielded the zinc-complex 33b.  

2-(diphenylphosphino)benzonitrile 32 was easily obtained from 2-bromobenzonitrile.[41] 

Removal of the zinc dichloride was achieved by reacting 33b with bipy to give the  

9-anthracenyl-PHOX 27b ligand in 54% yield. Therefore the synthesis of 27b succeeded with 

an overall yield of 14% starting from anthraldehyde (14c). 

 

Synthesis of 3,5-dialkyl-phenyl-PHOX ligands 27c and 27d 

According to the synthesis shown in scheme 21, two 3,5dialkyl-phenyl-PHOX ligands were 

synthesized (scheme 22). Although the aldehydes 14c and 14e are commercially available 

they were synthesized as they are fairly expensive from commercial sources. These syntheses 

were accomplished by formylation of the corresponding aryl bromide species 34 in high 

yields. All following steps proceeded as described above allowing an easy access to the 

desired racemic PHOX ligands 27c and 27d. 
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Scheme 22. Synthesis of aryl-PHOX ligands 27c and 27d. 

 

Figure 9 summarizes the different racemic PHOX ligands which were synthesized during 

these studies. 

 

Figure 9. Summary of successfully synthesized PHOX ligands. 
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1.4 Screening Results 

1.4.1 Screening Conditions 

The screening of racemic catalysts mixtures was carried out in analogy to the protocol of the 

ESI-MS screening of enantiopure catalysts for selectivity determination in the palladium 

catalyzed allylic substitution reaction (scheme 23).[20] The precatalyst was obtained from pre-

complexation of the corresponding P,N-ligand with [Pd(C3H5)(MeCN)]OTf prior to the actual 

screening. A catalyst loading of 2 mol% was applied. To activate the precatalyst 5 mol% of 

[Na([15]crown-5)][CEt(CO2Et)2] (35) was added. The quasi-enantiomeric substrates were 

mixed in a ratio of approximately (R)-8a/(S)-8b = 3:1. The ratio did not have to be at exactly 

3:1 as equation 1 for the calculation of the selectivity can be used for varying ratios. As well it 

was possible to use a substrate mixture with (S)-8b as the major quasi-enantiomer ((R)-8a/(S)-

8b = 1:3). After a reaction time of about 30 seconds an aliquot of the reaction mixture was 

diluted 200-fold with the corresponding solvent to terminate the reaction. The selectivity was 

determined by analysis of the signals corresponding to the intermediates 36 and 37 and 

subjection of this ratio to equation 1. 

 

Scheme 23. Screening conditions. 

 

It has been reported previously that the counter ion of the precatalyst has an influence on the 

outcome of the reaction in terms of enantiomeric excess.[42] Use of an OTf � counter ion for 

example leads to a higher catalyst selectivity compared to a Cl-anion. Not only the selectivity 
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was influenced but at the same time as well the detectability of the intermediates by ESI-MS 

was affected too. When for example ligand 9a was applied to the screening conditions the 

desired intermediates 36a and 37a could be observed when the counter ion was OTf � while 

no intermediates were detected for PF6
� as counter ion (figure 10). 

 

Figure 10. Influence of the counter ion on the detectability of the reaction intermediates (top: counter 

ion = PF6
�; bottom: counter ion = OTf �. 

 

1.4.2 Screening of Racemic Aryl-Dimethyl-PHOX Ligands 

The new aryl-dimethyl-PHOX ligands 9 were intended to be evaluated in the palladium-

catalyzed allylic substitution. The additional gem-dimethyl substitution in the 5-position of 

the oxazoline backbone should force the aryl substituent in 4-position more towards the 

reactive center due to steric demand. As shown in chapter 1.3.2 (scheme 15) initial NMR 

experiments had already supported this assumption. The actual influence on the selectivity 

was evaluated by an ESI-MS racemate screening approach. 

It was found that both ligands do form the desired precatalyst complex 24 upon reaction with 

[Pd(C3H5)(MeCN)]OTf. The desired mass-signals were observed by ESI-MS analysis of the 

precatalyst solution (scheme 24). 



ESI-MS Screening of Racemic Catalyst Mixtures 

 

33 

 

Scheme 24. Precatalyst formation using aryl-dimethyl-PHOX ligands 24a and 24b. 

 

When the precatalysts were mixed with the quasi-enantiomeric substrates in DCM the desired 

intermediates 36a and 37a were observed. The theoretical ee´s induced by the catalysts were 

calculated according to eq. 1 (table 1, entries 1 and 2). It was found that the aryl-dimethyl-

PHOX ligands show a very low selectivity in the allylic substitution reaction. For ligand 9a an 

enantiomeric excess of 21% was calculated. For ligand 9b an even lower selectivity was 

found (5% ee). Obviously, the two geminal methyl groups, which alter the conformation of 

the oxazoline ring by interaction with the adjacent aryl substituent, have a detrimental effect 

on the enantioselectivity. Furthermore it was observed that the ratio of intermediates detected 

by ESI-MS was not constant throughout multiple measurements. Thus, the calculated ee 

values given in table 1 are mean-values of four (for ligand 9b) respectively five (for ligand 

9a) measurements (for the single screening results see chapter 8.2). These findings match the 

suggested low sensitivity of the screening method in the low ee region as described in chapter 

1.2.2. For comparison the literature-known Ph-PHOX ligand 27a was tested as well (entries 3 

and 4). When the screening was carried out in DCM an enantiomeric excess of 56% was 

calculated, in toluene 72% ee was found. This shows that the screening method also allows 

evaluation of solvent effects. The observation that higher selectivities can be obtained in 

toluene compared to DCM was already reported previously.[42b] However it was shown as 

well that significantly shorter reaction times can be achieved in DCM compared to toluene,[43] 

which makes the reaction more viable. Therefore the catalyst screenings in this work were 

carried out in DCM as solvent. The screening results obtained for ligand 27a were constant 



Chapter 1 

 

34 

throughout multiple runs. Again this is in agreement with the in chapter 1.2.2 postulated 

sensitivity of the method. For more selective catalysts the screening seems to be significantly 

more robust than for less selective catalysts. 

 

Table 1. ESI-MS screening results of rac-9a,b and rac-27a. 

Entry Ligand Solvent ee
[a]

 [%]
 

s
[a] 

1 

 

DCM 5 1.11 

2 

 

DCM 21 1.53 

3 

 

DCM 56 3.55 

4 

 

toluene 72 6.14 

[a]: Calculated from eq. 1. 

 

  



ESI-MS Screening of Racemic Catalyst Mixtures 

35 

1.4.3 Verification of the Results Obtained for Racemic Ph-PHOX and Aryl-

Dimethyl-PHOX Ligands 

Having obtained the results from the racemate screening as described in table 1, the ee values 

had to be verified. For this purpose an ESI-MS screening of the enantiopure catalysts was 

performed.[20] The corresponding enantiomerically pure ligands were obtained by semi-

preparative HPLC purification of the corresponding phosphine oxides and subsequent 

reduction using PhSiH3 to the desired enantiopure ligands. The results from this screening are 

shown in figure 11 (red bars) and compared to the values obtained from the racemate 

screening (blue bars). 

 

Figure 11. Comparison of the screening results. 

 

Evidently, the enantioselectivities obtained with the enantiopure catalysts deviated 

significantly from the values calculated for the racemic catalysts. However, the 

enantioselectivity order was the same, demonstrating that the most selective catalysts and the 

best conditions (e.g., choice of solvent) can be readily identified by screening racemic 

catalysts. Both methods have shown that the PHOX derivative 27a induces the highest 

selectivity from the ligands tested. As well the same solvent effect was observed by both 

screening methods. Interestingly the difference between the ee-values increases with 

increasing selectivity of the corresponding catalyst. When the actual ee values, obtained from 

the screening of enantiopure catalysts, were plotted against the values from the racemate 

screening, surprisingly a perfect linear correlation between the two data sets was found 

(figure 12). 

0

10

20

30

40

50

60

70

80

90

100

4b in DCM 4a in DCM 4c in DCM 4c in

toluene

ca
cl

u
la

te
d

 e
n

a
n

ti
o

m
e

ri
c 

e
x

ce
ss

 [
%

] 

enantiopure catalyst

racemic catalyst

c
a
lc

u
la

te
d

 e
n

a
n

ti
o

m
e
ri

c
 e

x
c
e
s
s
 [

%
]

27a

in toluene

27a

in DCM

9a

in DCM

9b

in DCM

enantiopure catalyst

screening

racemate screening

5

21

56

72

4

25

76

94



Chapter 1 

36 

 

Figure 12. Correlation between the enantiomeric excesses obtained by the two screening methods. 

 

The linear relation between the values was of excellent accuracy (R2 = 0.998). Thus, it should 

be possible to determine the actual enantioselectivity of a chiral catalyst from its racemic form 

by applying the correction function obtained by linear regression. When the selectivity values 

obtained by the two methods were compared, an exponential relation was found (figure 13). 

The goodness of fit was slightly lower than the one shown above but still in a very good range 

(R2 = 0.993). However, as the linear relation shown in figure 12 is more easy to handle and of 

slightly better accuracy, the equation obtained from this regression was chosen as correction 

function. 

 

Figure 13. Correlation between the selectivities obtained by the two screening methods. 
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1.4.4 Screening of Racemic Aryl-PHOX Ligands 

Having established a reliable ESI-MS screening method for the determination of a catalyst´s 

selectivity by testing its racemic form, further ligands were evaluated in the palladium-

catalyzed allylic substitution reaction. As gem-dimethyl substitution in the 5-position of the 

oxazoline backbone of the ligands shown in chapter 1.4.2 has a deleterious effect on the 

selectivity of the resulting catalysts it was decided to test Ar-PHOX ligands with an increased 

sterical demand on the aryl ring on the stereogenic center. Three ligands of that kind were 

chosen for the ESI-MS racemate screening (27b-c, figure 14). 

 

Figure 14. Ar-PHOX ligands to be evaluated by ESI-MS screening of their racemic forms. 

 

The first ligand which was tested was the 9-anthracenyl PHOX 27b. Upon complexation with 

[Pd(C3H5)(MeCN)2]OTf formation of the desired precatalyst 24c was observed by ESI-MS. 

However, when the quasi-enantiomeric substrate mixture was added, the desired catalysis 

intermediates could not be detected but only decay of the precatalyst was observed 

(scheme 25). 

 

Scheme 25. ESI-MS screening of rac-24c. 
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When a preparative reaction using racemic ligand 27c was carried out to evaluate the activity 

of the resulting catalyst, less than 5% product had formed even after 24 h (scheme 26). 

Apparently, the sterically demanding anthracenyl-substituted ligand does not form an active 

catalyst. 

 

Scheme 26. Preparative allylic alkylation using rac-27c. 

 

Although this result did not lead to the finding of a selective catalyst it shows that an inactive 

catalyst does not give any misleading signals in the screening. Furthermore it proves that the 

detected signals exclusively correspond to the desired reaction intermediates and not to any 

kind of undesired background reaction which could affect the intermediate ratio. 

 

The two other ligands which were evaluated are the ones bearing a 3-5-dialkyl substitution on 

the aryl ring in the 4-position of the oxazoline moiety. PREGOSIN and co-workers previously 

reported a beneficial effect of meta-substituents on aryl groups in enantioselective 

hydrogenations, allylic substitutions and Heck reactions.[44] Ligands 27c and 27d were 

therefore screened in DCM under the conditions described above. The results of this 

screening are summarized in table 2. For comparison the result for Ph-PHOX 27a is listed as 

well (entry 3). 

 

Table 2. ESI-MS screening results of rac-27c and rac-27d. 

Entry Ligand ee
[a]

 [%] s
[a]

 [%]
 

Corrected ee
[b]

 [%]
 

1 3,5-dimethyl-phenyl PHOX 27c 56 3.55 74 

2 3,5-di-tert-butyl-phenyl PHOX 27d 61 4.13 81 

3 phenyl PHOX 27a 56 3.55 74 

[a]: Calculated from eq. 1; [b]: calculated from the correction function shown in figure 12. 
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As shown table 2, ligand 27c did induce the same enantioselectivity as the corresponding Ph-

PHOX. This indicates that a relatively small methyl-substitution in the meta-position of the 

phenyl ring does not have an influence on the selectivity of the catalyst. However when ligand 

27d was tested in the screening a slightly increased ee was calculated. The bulky meta tert-

butyl substituents apparently have a small but distinct positive effect on the enantioselectivity 

of the catalyst. The 61% ee found correspond to a corrected value of 81% ee (calculated from 

the correction function shown in figure12). To verify this finding the enantiopure catalyst was 

tested as well in an ESI-MS screening. And indeed an enantiomeric excess induced by the 

catalyst of 82% was found. When the correction function for the selectivity factor shown in 

figure 13 was applied to the s-value shown in table 2 a selectivity factor of s = 9.23 was 

calculated. Comparison with the result from the ESI-MS screening of the enantiopure catalyst 

(s = 10.11) again showed very good agreement. 

 

1.4.5 Elucidation of the Reason for the Difference Between the Results 

Obtained from Racemic and Enantiopure Catalyst Screening 

The findings described above show that due to the correction function, especially the one 

found by linear regression (see figure 12), the screening method indeed allows for the exact 

determination of the ee induced by a catalyst in the preparative reaction by testing its racemic 

form. However there is still one question unanswered: why do the ee values obtained from the 

racemate screening differ from the values determined from the enantiopure catalyst? 

As described in chapter 1.2.1, equation 1 for the calculation of the selectivity of a catalyst was 

derived under the assumption of pseudo zeroth-order conditions.[5] It was assumed that the ee 

difference results from a deviation from these ideal conditions. If the turnover rates of the two 

catalyst enantiomers show some dependence on the substrate concentration, the amount of 

intermediate 36 derived from the more abundant quasi-enantiomer 8a should be higher than 

that under pseudo-zeroth-order conditions, resulting in a lower predicted selectivity when 

equation 1 is applied. In this case, the observed linear correlation would imply that the 

deviation from pseudo-zeroth-order conditions affects the ee values of the different catalysts 

by the same degree. To verify this assumption the racemate screening of ligand 27d was 

carried out at different substrate-to-catalyst (S/C) ratios (table 3). 
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Table 3. ESI-MS screening at varying catalyst loadings. 

Entry S/C 
Intermediate ratio 

36:37 

Calculated ee 

[%] 

1 25:1 2.13 58 

2[a] 50:1 2.04 61 

3[b] 100:1 1.87 68 

4[b] 200:1 1.64 76 

[a]: Standard screening conditions as shown in scheme23; [b]: low signal intensity. 

 

Indeed the assumed dependence of the screening results on the catalyst loadings has been 

observed. When the S/C-ratio was raised from 25:1 to 200:1 the calculated enantiomeric 

excess increased from 58% ee to 76% ee indicating that for lower catalyst loadings the 

difference between the two screening methods is smaller. However, due to the low signal 

intensity observed with S/C-ratios of ≥100:1 (the standard 2 mol% catalyst loading used in 

this work (entry 2)), which gives more reliable results, is preferred. These findings show that 

even under conditions that deviate from an ideal zeroth-order regime, the screening method 

allows for the determination of reliable ee values. 
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1.5 Summary and Outlook 

In summary it was shown that by combination of the concept of racemate screening reported 

by LLOYD-JONES
[4] and the ESI-MS back reaction screening methodology developed by 

PFALTZ,[7,20] the enantioselectivity of a chiral catalyst can be determined from its racemic 

form by mass spectrometric screening of a non-equal mixture of two quasi-enantiomeric 

substrates. This allows for a very easy and fast screening of a catalyst library as, on the one 

side, synthesis of the individual library members is no more needed to be carried out in an 

enantioselective fashion, and on the other hand, the screening itself does not require workup 

or product isolation. Although the results obtained from this racemate screening deviated from 

the actual ee in a preparative reaction, the determination of the true selectivity of the catalyst 

was possible due to the finding of a linear correlation between these values which could be 

used as a correction function. 

This methodology seems to be a valuable addition to existing screening methods, especially 

for the evaluation of catalysts which are not readily available in enantiomerically pure form. 

In this context the behavior of new PHOX ligand derived catalysts in the palladium-catalyzed 

allylic substitution reaction could be analyzed, which had not been tested before. While an 

asymmetric synthesis of these ligands would be very challenging, it was shown that the 

racemic ligands could be synthesized by a short sequence starting from readily available 

starting materials. During this work five new racemic PHOX catalysts were synthesized. By 

subjecting the corresponding catalysts to the ESI-MS racemate screening an aryl-PHOX 

ligand, bearing a sterical demanding 3,5-di-tert-butyl-phenyl substituent on the stereogenic 

center, was found which showed an increased selectivity compared to the previously reported 

Ph-PHOX ligand. Furthermore it was found that additional gem-dimethyl substitution on the 

oxazoline back-bone had an deleterious influence on the performance of such aryl-PHOX 

derived catalysts. 

Future work might be dedicated to the development of a parallel screening approach of 

multiple catalysts in analogy of the previously reported work for the enantiopure catalyst by 

PFALTZ and co-workers.[24] 
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2.1 Introduction 

2.1.1 Historical Overview 

The homogeneous metal-catalyzed asymmetric hydrogenation of unsaturated compounds is a 

very powerful tool in organic synthesis as such reactions commonly proceed under very mild 

reaction conditions, with low catalyst loadings, mostly quantitative yields, perfect atom 

economy and with high enantioselectivities,[45] demonstrated for example in the well-known  

L-DOPA process developed by MONSANTO.[46] 

While the asymmetric hydrogenation of functionalized olefins, bearing a coordinating group 

in the close proximity of the double bond, has been already achieved in the late 1960s and in 

the 1970s using rhodium or ruthenium catalysts,[1b,47] the asymmetric hydrogenation of 

unfunctionalized olefins remained a big challenge for several years. Inspired by the work of 

CRABTREE and co-workers,[48] in 1998 PFALTZ and co-workers achieved a break-through in 

this field by using an cationic iridium complex bearing a bidentate chiral phosphino-oxazoline 

(PHOX) ligand for the hydrogenation of such substrates.[49] In the following years several 

related catalysts have been developed, such as SimplePHOX,[50] ThrePHOX,[51] NeoPHOX[52] 

and others[53] (figure 15), which have been applied in the asymmetric hydrogenation with 

great success. 

 
Figure 15. P,N-Ligand derived complexes for the asymmetric iridium-catalyzed hydrogenation. 

 

2.1.2 Objectives of This Work 

As described in chapter 1, new members of the PHOX ligand family have been synthesized 

during this work. Since PHOX derived complexes are known to be very effective 

hydrogenation pre-catalysts,[26c,49,54] these novel PHOX derivatives were aimed to be 

converted to the corresponding iridium complexes and their behavior in the asymmetric 

hydrogenation of various olefins to be evaluated. 
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2.2 Catalyst Synthesis 

The synthesis of PHOX ligands 9a, 9b and 27d has been described in chapter 1 (for summary 

see scheme 27). Enantiomerically pure catalysts were obtained by semi-preparative HPCL 

resolution of the corresponding phosphine oxides 20a, 20b and 38 and subsequent reduction 

to the desired PHOX derivatives. 

 
Scheme 27. Synthesis of PHOX ligands as described in chapter 1. 
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These enantiopure ligands were transformed into the corresponding iridium-complexes by 

reaction with [Ir(COD)Cl]2 in DCM and subsequent anion exchange with NaBArF 

(scheme 28).[55] 

 
Scheme 28. Complexation towards the iridium-precatalysts 39. 

 

The formation of the precatalysts for the iridium-catalyzed asymmetric hydrogenation derived 

from the three different PHOX derivatives did proceed in all cases. The lower yields for 39a 

and 39b compared to 39c together with the hydrogenation results shown in the tables below 

indicate that in the case of dimethyl substitution in the backbone the substituent R1 is more 

pushed into the direction of the coordination-side and therefore complexation becomes more 

difficult due to sterical hindrance. 
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2.3 Hydrogenation Results 

The hydrogenation of different model-substrates using the above described novel PHOX-

iridium complexes are summarized in the following tables. 

 

Table 4. Hydrogenation of (E)-prop-1-ene-1,2-diyldibenzene (40). 

 

Entry Precatalyst R
1 

R
2 Conv.

[a]
 

[%]
 

ee
[b]

 [%] 

(Config.) 

1 

 

(R)-39a Ph Me 11 4 (R) 

2 (R)-39b 1-naphthyl Me 14 4 (S) 

3 (R)-39c 
3,5-di-tert-butyl 

phenyl 
H 45 58 (R) 

[a]: Determined by GC analysis; [b]: determined by HPLC analysis on a chiral stationary phase. 

 

In the hydrogenation of trans-methyl stilbene (table 4) only low conversions were achieved. 

Especially the gem-dimethyl PHOX containing pre-catalysts showed very low activity (entry 

1 and 2). As well in terms of selectivity they were inferior to complex 39c. However, this 

catalyst achieved only 58% ee at 45% conversion. 
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Table 5. Hydrogenation of (E)-1-(but-2-en-2-yl)-4-methoxybenzene (42). 

 

Entry Precatalyst R
1 

R
2 Conv.

[a]
 

[%]
 

ee
[b]

 [%] 

(Config.) 

1 

 

(R)-39a Ph Me 43 15 (S) 

2 (R)-39b 1-naphthyl Me 43 16 (S) 

3 (R)-39c 
3,5-di-tert-butyl 

phenyl 
H 55[c] 35 (R) 

[a]: Determined by GC analysis; [b]: determined by GC analysis on a chiral stationary phase; [c]: 2% 
isomerization towards the (Z)-substrate was observed. 

 

The hydrogenation of olefin 42 was achieved with slightly better results (table 5). The pre-

catalysts 39a and 39b showed comparable performance, both converting the hydrogenation 

substrate 42 with 43% giving the hydrogenation product 43 with low enantiomeric excess 

(15% ee respectively 16% ee, entries 1 and 2). Again complex 39c was slightly superior but 

still not very satisfying behavior (entry 3). 

 

Table 6. Hydrogenation (E)-2-methyl-3-phenylprop-2-en-1-ol (44). 

 

Entry Precatalyst R
1 

R
2 Conv.

[a]
 

[%]
 

ee
[b]

 [%] 

(Config.) 

1 

 

(R)-39a Ph Me n.d.[c] n.d. 

2 (R)-39b 1-naphthyl Me n.d.[c] n.d. 

3 (R)-39c 
3,5-di-tert-butyl 

phenyl 
H >99[d] 78 (R) 

[a]: Determined by GC analysis; [b]: determined by HPLC analysis on a chiral stationary phase; [c]: a 
mixture of different products was formed; [d]: 10% of side products were formed. 
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In the hydrogenation of the allylic alcohol 44 (table 6) the different complexes showed 

significantly different behavior. While the dimethyl-PHOX containing pre-catalysts 39a and 

39b only led to a complex mixture of unidentified side-products, complex 39c fully converted 

the olefin with acceptable 10% of undesired by-product formed. The enantiomeric excess was 

found to be relatively good 78%. 

 

Table 7. Hydrogenation of (E)-ethyl 3-phenylbut-2-enoate (46). 

 

Entry Precatalyst R
1 

R
2 Conv.

[a]
 

[%]
 

ee
[b]

 [%] 

(Config.) 

1 

 

(R)-39a Ph Me 3 n.d. 

2 (R)-39b 1-naphthyl Me 3 n.d. 

3 (R)-39c 
3,5-di-tert-butyl 

phenyl 
H 21 39 (R) 

[a]: Determined by GC analysis; [b]: determined by GC analysis on a chiral stationary phase. 

 

In the hydrogenation of the acryl ester 46 (table 7) low conversions were observed. Best 

results were obtained again using complex 39c although only 21% conversion and 39% ee 

were found. 
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Table 8. Hydrogenation of 1-(but-1-en-2-yl)-4-methoxybenzene (28) and 7-methoxy-4-methyl-1,2-
dihydronaphthalene (50). 

 

Entry Substrate Product 
H2-Pressure 

[bar] 

Conv
[a]

 

[%] 

ee [%] 

(Config.) 

1 

  

1 90[b] 66 (S)[c] 

2 

  

50 87[d] 23 (R)[e] 

[a]: Determined by GC analysis; [b]: 5% of isomerization products were formed; [c]: determined by GC 
analysis on a chiral stationary phase; [d]: 13% of oxidation product was formed; [e]: determined by 
HPLC analysis on a chiral stationary phase. 

 

In previous studies the terminal olefin 48 and the cyclic olefin 50 have shown to be very 

challenging substrates. Therefore the most active and selective complex 39c of the three 

prepared was tested in the hydrogenation of these two substrates (table 8). Acceptable 

conversions were found for both olefins (90% respectively 87%), although in both cases 

undesired side-product formation was observed. The hydrogenation product 49 was obtained 

in moderate 66% ee while for the reduction of the cyclic substrate 50 low selectivity was 

found. 
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Table 9. Hydrogenation of (E)-N-(1-phenylethylidene)aniline (48). 

 

Entry Precatalyst R
1 

R
2 Conv.

[a]
 

[%]
 

ee
[b]

 [%] 

(Config.) 

1 

 

(R)-39a Ph Me >99 10 (S) 

2 (R)-39b 1-naphthyl Me >99 24 (S) 

3 (R)-39c 
3,5-di-tert-butyl 

phenyl 
H >99 74 (S) 

[a]: Determined by GC analysis; [b]: determined by HPLC analysis on a chiral stationary phase. 

 

When imine substrate 52 was hydrogenated using the novel pre-catalyst complexes 39 a 

different behavior compared to the above described reduction of alkenes was found (table 9). 

While the activities of catalysts 39a and 39b were poor in the hydrogenation of all olefins 

described above, full conversion of substrate 52 to the hydrogenation product 53, was found. 

This matches the suggestion, that the iridium-catalyzed hydrogenation of imines proceeds via 

a different mechanistical pathway than the iridium-catalyzed hydrogenation of alkenes.[56] 

Nevertheless again the best result was obtained using complex 39c (entry 3) where full 

conversion and 74% ee was found. 
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2.4 Summary 

In summary, the synthesis of three novel PHOX containing iridium complexes was achieved 

(figure 16). These have shown to be active pre-catalysts for the asymmetric iridium catalyzed 

hydrogenation of alkenes and imines. In general low conversions were obtained in the 

hydrogenation of olefins. Especially the complexes 39a and 39b proved to be not very 

suitable catalysts. The gem-dimethyl substitution in the 5-position of the oxazoline backbone, 

which alter the conformation of the oxazoline ring, seem to have a deleterious effect by 

pushing the aryl-moiety towards the reactive center. By this the environment of the iridium 

center might become more occupied and due to the resulting sterical repulsion the 

hydrogenation substrates can no more easily access the metal-center. 

 
Figure 16. Synthesized PHOX containing iridium complexes. 

 

On the other hand, in the hydrogenation of an imine all three complexes showed very high 

activities, which is in agreement with the suggestion of different mechanisms for those two 

substrate classes. For all substrates tested, complex 39c shows clearly superior behavior in 

terms of activity and selectivity. Especially for the hydrogenation of allylic alcohols and 

imines with this pre-catalyst, some promising results (70-80% ee) were found. 
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3.1 Introduction 

Chiral catalysts bearing a trivalent phosphorus containing ligand are very common in 

asymmetric catalysis.[57] However, a drawback of such ligands can often be found in the low 

stability against air or moisture, especially when alkyl substituted.[58] Secondary phosphine 

oxides (SPO) have sown to be a promising alternative to circumvent these issues.[59] 

 

3.1.1 Properties of Secondary Phosphine Oxides 

Secondary phosphine oxides exist in an equilibrium between their oxo- and hydroxy-form 

(scheme 29).[60] At room-temperature the pentavalent oxo-tautomer predominates, resulting in 

an air-, moisture- and temperature-stable compound.[61] The equilibrium can be shifted 

towards the hydroxy-tautomer by either the presence of electronegative substituents on the 

phosphorus[62] or by coordination with a transition-metal.[63] 

 

Scheme 29. Equilibrium between the oxo- and the hydroxy-form of secondary phosphine oxides. 

 

Bearing two different substituents (R1 and R2), secondary phosphines become chiral on the 

phosphorus atom. The individual enantiomers are configurationally stable in solution and the 

chiral information is retained upon coordination with a metal center.[61a,64] 

 

3.1.2 Application of Secondary Phosphine Oxides in Catalysis 

A great variety of applications of such secondary phosphine oxides in catalysis has been 

found.[59] One reaction-type where different examples using SPO ligands have been reported 

was the field of cross-coupling reactions. In 2001 LI was the first to report the catalytic 

activity of a palladium-SPO complex in a Suzuki cross-coupling reaction (scheme 30).[65] 

 

Scheme 30. Suzuki cross-coupling using a palladium-SPO complex as catalyst.
[65]
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Other cross-coupling reactions have been reported as well. The stability of the palladium-SPO 

complexes even allowed for the performance of Sonogashira-reactions under air and in water, 

as reported by WOLF and LEREBOURS (scheme 31).[66] 

 

Scheme 31. Sonogashira reaction in water.
[66]

 

 

The suitability of SPO-ligands in metal-catalyzed asymmetric transformations has been 

investigated too. MINNAARD, FERINGA and DE VRIES for example reported the asymmetric 

rhodium-catalyzed hydrogenation of N-acyl dehydroamino acids and esters using P-chiral 

SPO ligands (scheme 32), although they could not achieve very high enantioselectivities.[67] 

 

Scheme 32. Rhodium-catalyzed hydrogenation.
[67]

 

 

Later, PUGIN and PFALTZ showed that a bidentate SPO,P-ligand bearing an additional chiral 

information in the backbone is able to induce very high selectivity in the hydrogenation of the 

same substrate (scheme 33).[68] 

 

Scheme 33. Highly selective rhodium-catalyzed hydrogenation.
[68]

 

 

The iridium-catalyzed hydrogenation of imines has also been reported by MINAARD, FERINGA 

and DE VRIES.[69] 
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Furthermore P-chiral SPO-ligands have been proven to form active palladium-catalysts for 

the asymmetric allylic alkylation reaction by DAI and co-workers (scheme 34).[64] Respectable 

72% ee have been reported. 

 

Scheme 34. Pd-SPO catalyzed asymmetric allylic alkylation.
[64]

 

 

3.1.3 Objectives of This Work 

As shown above secondary phosphine oxide containing catalysts show very promising 

behavior in asymmetric catalysis. Furthermore it was previously shown that bidentate SPO-

containing ligands are active in a variety of different catalytic transformations.[70] Thus the 

aim of the project was the evaluation of such catalysts in the palladium catalyzed allylic 

substitution in order to find novel, air- and moisture-stable ligands with improved selectivities 

in this reaction compared to the ones described for example in scheme 34. The idea was to 

test both phosphine,SPO and as well nitrogen,SPO containing bidentate ligands (figure17). 

 

Figure 17. SPO containing ligands to be tested in the asymmetric palladium-catalyzed allylic 
substitution reaction. 

 

The N,SPO-ligands[27] to be tested were based on the PHOX-ligand core-structure as PHOX 

ligands are known to form active palladium-catalysts for this reaction.[26c] P,SPO-ligands were 

based on systems which have previously used in highly selective iridium-catalyzed 

hydrogenations.[68,71] 
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3.2 Secondary Phosphine Oxide, Nitrogen Based Ligands 

3.2.1 Synthesis 

Secondary phosphine oxide containing PHOX ligands were obtained in a one-pot reaction 

starting from the corresponding phenyl oxazolines by ortho-lithiation, subsequent reaction 

with 1-chloro-N,N-diethyl-1-phenylphosphinamine and final quenching with water in medium 

yields (scheme35).[27] In a first attempt racemic ligands have been synthesized in order to 

evaluate their activity in the palladium catalyzed alkylation. 

 

Scheme 35. Synthesis of SPO-PHOX ligands. 

 

3.2.2 Catalysis Results 

These novel N,SPO-ligands have been tested in the palladium-catalyzed allylic alkylation 

(table 10).[27] All reaction listed were carried out at both room temperature and 65 °C for 3 d 

giving the same results under both conditions. 

 

Table 10. Catalysis results. 

 

Entry Ligand Solvent Result 

1 

 

DCM no conversion 

2 THF no conversion 

3 DMF no conversion 

4 MeOH only side-product formed 
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Table 10. Continued. 

Entry Ligand Solvent Result 

5 

 

DCM no conversion 

6 DMF no conversion 

7 MeOH only side-product formed 

 

As shown in table 10 no desired product was formed in all solvents tested. Only when the 

reactions were carried out in MeOH, the formation of a new product was observed. It was 

proven that this product was (E)-(3-methoxyprop-1-ene-1,3-diyl)dibenzene (56), resulting 

from the substitution of the benzoate function by methanol. The same reaction was again 

carried out without the addition the palladium catalyst and it was demonstrated, that this 

reaction proceeded without the need of the catalyst (scheme 36). 

 

Scheme 36. Observed formation of side-product 56 in MeOH in the absence of a Pd-catalyst. 

 

3.2.3 Complexation Behavior 

As the N,SPO-ligand derived catalysts did not show any activity in the palladium-catalyzed 

allylic alkylation, the complexation behavior of these ligands was investigated in order to find 

reasons for the lack of activity. For that purpose the N,SPO-ligands were reacted with 

different palladium-precursors and the resulting complexes were analyzed by ESI-MS.[27] 
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Table 10. Complexation behavior of ligand 55a. 

Entry Palladium source Solvent Observed mass [m/z] 

1 [Pd(C3H5)(MeCN)2]OTf toluene 647 

2 [Pd(C3H5)(MeCN)2]OTf DCM 647 

4 [Pd(C3H5)Cl]2 DCM 647 

5 [Pd(C3H5)(MeCN)2]OTf MeOH 647 

6 [Pd(C3H5)Cl]2 MeOH 647 

8 [Pd(C3H5)Cl]2 THF 647 

9 [Pd(C3H5)(MeCN)2]OTf DMF 647 

10 [Pd(C3H5)Cl]2 DMF 647 

 

First, the complexation behavior of ligand 55a was evaluated (table 10). Throughout all 

conditions tested, a complex with the mass of m/z = 647 was found. This finding was 

independent of the solvent, the palladium-precursor and the palladium/ligand-ration used. The 

observed mass corresponds to a palladium-complex bearing two N,SPO-ligands, one of them 

being deprotonated. Thus, hydrogen bonding between the two ligands was proposed 

(scheme 37) as it was observed previously for other systems already.[61a]  

 

Scheme 37. Formation of a bis-N,SPO palladium complex. 

 

Crystallization from DCM afforded crystals suitable for X-ray analysis (figure18). The 

resolved structure verified the above mentioned proposal. The position of the acidic proton 

was found by differential-fourier transformation and refined. Its distance to the two 

phosphorus atoms of 1.00 Å respectively 1.44 Å as well as the O,H,O angle of 166 ° confirm 
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the existence of a hydrogen-bonding. Furthermore it was proven that coordination takes place 

via the phosphorus atom rather than vie the oxygen of the SPO moiety which is in agreement 

with other previously described examples of SPO-transition metal complexes.[61b] 

 

Figure 18. X-ray structure of complex 57a (left: top-view; right: front-view; co-crystallized PF6 and 
DCM are omitted for clarity). 

 

Next, the complexation behavior of ligand 55b was evaluated (table 11). Again, the 

corresponding mass of a bis-SPO,N palladium complex 57b was found under most conditions 

tested (entries 1-5). Only in MeOH a different result was achieved (entries 6  

and 7). Here, reaction of the ligand with the solvent seemed to have taken place. Thus, the 

corresponding methoxy-phosphino species was formed which then was converted to the P,N 

palladium allyl complex 58 (scheme 38). Notably, when this complex was used in the 

preparative reaction no conversion was observed. 

 

Table 11. Complexation behavior of ligand 55b. 

Entry Palladium source Solvent Observed mass [m/z] 

1 [Pd(C3H5)(MeCN)2]OTf toluene 703 

2 [Pd(C3H5)Cl]2 DCM 703 

3 [Pd(C3H5)Cl]2 THF 703 

4 [Pd(C3H5)(MeCN)2]OTf DMF 703 

5 [Pd(C3H5)Cl]2 DMF 703 

6 [Pd(C3H5)(MeCN)2]OTf MeOH 460 

7 [Pd(C3H5)Cl]2 MeOH 460 
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Scheme 38. Complexation behavior of ligand 55b. 

 

The above described complexation behavior of both ligands with a palladium-source explains 

the lack of activity in the palladium-catalyzed allylic alkylation found. As all coordination-

sides of the palladium center are occupied and due to the hydrogen-bonding between the 

individual ligands they are bound very strongly, the allyl substrate can no more access the 

palladium center to then undergo the desired reaction. 
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3.3 Secondary Phosphine Oxide, Phosphine Based Ligands 

The SPO,P-ligands 59, 59’ and 60 (figure19) were kindly provided by SOLVIAS AG, 

Switzerland. Ligand 59 and 59’ are epimers with, at the beginning of this project, unknown 

configuration of the P-stereogenic center. 

 

Figure 19. P,SPO-ligands provided by SOLVIAS AG. 

 

3.3.1 Catalysis Results 

The results obtained in the palladium-catalyzed allylic alkylation with these P,SPO-ligands 

are summarized in table 12. It was clearly shown that the ferrocenyl-based P,SPO-ligands 59 

(entries 1-6) were superior to the benzothiophene based ligand 60. Furthermore a clear 

match/mismatch situation was observed for the two epimers 59, where ligand 59’ proved to be 

both more active and selective. However, for all ligands tested low yields were obtained. Best 

conditions were found using ligand 59’ in toluene at room temperature yielding the desired 

product 8a in only 14% with 95% ee (entry 5). When the reaction temperature was increased 

to 110 °C the yield could be improved (42%) but upon significant loss of selectivity (25% ee). 

Notably, no undesired side-products were formed but the unreacted staring material could be 

recovered almost completely. 
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Table 12. Catalysis results. 

 

Entry 

 

 

Ligand 

 

 

Catalyst 

loading 

[mol%] 

T 

 

[°C] 

Solvent 

 

 

t 

 

[h] 

Recovered 

7a
[a]  

[%]
 

Yield
[a]

 

 

[%] 

ee 
[b] 

[%] 

(Config.) 

1 59 2 25 DCM 44 78 18 60 (S) 

2 59 5 25 DCM 42 n.d. 44 52 (S) 

3 59 2 50 DCM 44 63 36 64 (S) 

4 59’ 2 25 DCM 41 n.d. 31 88 (S) 

5 59’ 2 25 toluene 41 84 14 95 (S) 

6 59’ 2 110 toluene 43 50 42 25 (S) 

7 60 2 25 DCM 69 89 10 16 (S) 

[a]: Isolated yield; [b]: analyzed by HPLC on a chiral stationary phase. 

 

As the catalyst derived from ligand 59’ showed high selectivity but only low activity in the 

allylic alkylation, further reaction conditions were examined. It was previously shown by VON 

MATT, that, dealing with less reactive substrates, higher yields can be obtained upon use of an 

excess of NaH as base in DMF.[43] These conditions were applied testing ligand 59 

(scheme 39). Unfortunately an even lower yield was obtained. Furthermore as well the ee 

dropped to 27%. 

 

Scheme 39. Changing reaction-conditions towards use of NaH as base. 
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A more reactive nucleophile was tested as well. MÜLLER reported that phthalimide, according 

to its lower pKa value compared to acetyl acetone, shows increased reactivity in the allylic 

substitution reaction.[42b] However, when this nucleophile was tested no desired product was 

formed but only unreacted starting material was fully recovered (scheme 40). 

 

Scheme 40. Testing ligand 59’ in the allylic amination reaction. 

 

Another attempt to increase the activity of the catalyst derived from ligand 59’ based on the 

findings reported by LLOYD-JONES and co-workers. They showed that addition of catalytic 

amounts of NaBArF to reaction mixture increases the turnover rates in the Tsuji-Trost 

allylation.[42a] These conditions were applied to the system described herein (scheme 41). 

Again the yield did not increase but dropped to 11%. 

 

Scheme 41. Testing NaBArF as additive to increase the activity of the catalyst. 

 

3.3.2 Complexation Behavior 

In order to examine the complexation behavior of the P,SPO-ligands they were reacted with 

[Pd(C3H5)(MeCN)2]OTf in DCM for 1 h at room temperature and the resulting complexes 

were analyzed by ESI-MS (table 13). It was found, that in all cases the corresponding ligand 

did bind to the palladium center. For ligand 59 two mass-signals were observed. One 

corresponded to the desired P,SPO-palladium allyl complex, the other one was assigned to the 

species without the coordinating allyl moiety, in a ratio of 1.3:1 favoring the complex without 

the allyl moiety (entry 1). A comparable result was found for ligand 60, where again the 
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 complex without the allyl moiety was formed as the major product (4.4:1, entry 3). These 

findings could explain the low activity of especially those catalysts, derived from these two 

ligands. 

 

Table 13. Complexation behavior of the P,SPO-ligands. 

Entry Ligand ESI-MS spectrum 
Observed 

mass 

Correlating 

structure 

1 59 

 

607 

 

649 

 

2 59’ 

 

607 

 

649 

 

3 60 

 

610 

 

651 
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When the complexation behavior of ligand 59’ was tested (entry 2), the desired P,SPO-

palladium allyl complex was the major product formed (38.4:1). This explains why the 

highest activity was observed for the catalyst derived from ligand 59’. It was suggested that 

the reason for the observation of the complexes without the allyl moiety can be found in the 

sterical demand of the ligands. They seem to be too bulky to allow the allyl species entering 

the coordination sphere of the palladium-center. As the test substrate was a 1,3-diphenyl allyl 

species which is more bulky than the simple allyl moiety of the pre-catalysts, this is again a 

possible explanation for the low activities described above. 

Having observed that ligand 59’ seems to allow for an easier access of the allyl species to the 

palladium-center compared to ligand 59, it was suggested the tert-butyl substituent on the 

SPO center is pointing away from the coordination center as shown in table 13, entry 2. Thus, 

the P-chiral stereogenic center was proposed to be in (S)-configuration for ligand 59’ and in 

(R)-configuration for the epimeric ligand 59. This suggestion was later confirmed when 

researchers at SOLVIAS AG were able to obtain an X-ray structure of the corresponding 

P,SPO-rhodium norbornadiene complex 62 (figure20). As it was proposed based on the 

complexation behavior of the ligands, the tert-butyl substituent on the SPO-center of 59’ was 

indeed pointing away from the coordination center and the configuration of the phosphorus 

atom was assigned as the (S) form. 

         

Figure 20. X-ray structure of rhodium complex 62 derived from ligand 59’ (the counter ion BF4 is 
omitted for clarity). 
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3.4 Summary 

In summary it was shown that Pd-catalysts derived from P-chiral bidentate N,SPO-ligands 

bearing a phenyl oxazoline backbone are not active in the allylic substitution reaction.[27] The 

reason for this was found in the tendency of such ligands to form a stable bis-N,SPO 

palladium complex with the two individual ligands bridged via hydrogen bonding. This was 

demonstrated by ESI-MS studies as well as by X-ray analysis of such a complex. 

Furthermore the properties of P,SPO-ligands in the allylic alkylation reaction were 

investigated. During these studies a very selective catalyst derived from a ligand bearing a 

ferrocenyl backbone was found. This catalyst however showed only low activity in the test 

reactions which could not be improved by various optimization attempts. ESI-MS studies on 

the complexation behavior of these P,SPO-ligands have been carried out and elucidated the 

reason for the low activities observed. The ligands which were tested seemed to be too 

sterically demanding and hence shielded the palladium-center. Therefore the substrate allyl 

species could no more coordinate to the metal-center and the reaction could not proceed. 
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4.1 Introduction 

4.1.1 Organo Catalysis 

Organocatalysis is a very fast growing field in organic chemistry providing remarkably robust 

and divers protocols for asymmetric reactions.[72] Small molecules bearing a secondary amine 

functionality are an important class of organo-catalysts. Such compounds can act as enamine 

or iminium catalyst depending on the nature of the substrate which is applied (scheme 42).[72b] 

 

Scheme 42. Activation of carbonyl compounds by iminium- (left) and enamine- (right) catalysis. 

 

Upon iminium formation by reaction of an �,�-unsaturated carbonyl compound with a 

secondary amine, the energy level of the LUMO is decreased and thus reaction with a 

nucleophile is facilitated. Reaction of a secondary amine with an enolizable carbonyl 

compound leads to formation of an enamine and therefore the reaction with an electrophile is 

enabled. 

Despite the early reports by KNOEVENAGEL in the late 18th century that amines are able to 

catalyze reactions on carbonyl compounds[73] and the remarkable enantioselectivities, which 

were achieved using L-proline as organo-catalyst in aldol reactions by the industrial groups of 

WIECHERT and HAJOS in the early 1970s,[74] the potential of small molecule catalysis has not 

been recognized until the beginning of the 21st century. Starting with the reports of LIST and 

BARBAS on the asymmetric aldol-reaction via enamine-catalysis[75] and of MACMILLAN on 

asymmetric Diels-Alder reactions via iminium-catalysis,[76] this research field came into the 

focus of the scientific community and started to grow.[77] 
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4.1.2 Organo Catalyzed Transfer-Hydrogenation 

Among a great variety of different organo-catalyzed reactions, the transfer-hydrogenation of 

�,�-unsaturated carbonyl compounds has been discovered recently by LIST and co-

workers.[78] They reported the reduction of acryl aldehydes catalyzed by a secondary amine 

upon the use of Hantzsch ester as the hydride source (scheme 43). Thus, this method mimics 

enzymatic reductions by replacing the enzyme by the organo-catalyst and the cofactor NADH 

or FADH2 by the Hantzsch ester. 

 

Scheme 43. First report of an organo-catalyzed transfer-hydrogenation of acryl aldehydes.
[78]

 

 

Especially in the conjugate reduction of �,�-unsaturated aldehydes this method proved to be 

of great value since metal catalyzed reductions often lead to the corresponding alcohols rather 

than to the saturated aldehydes.[79] There is only one report found in literature where a 

asymmetric metal-catalyzed approach was successfully applied in the reduction of acryl 

aldehydes preserving the aldehyde function.[80] KANAZAWA and NISHIYAMA described the 

rhodium-catalyzed hydrosilylation of such substrates. However, this methodology was only 

applicable to a very limited substrate scope and the products were obtained mostly in 

moderate yield or selectivity. Furthermore formation of allylic alcohols as side product was 

observed in significant quantities. Already in their first report LIST and co-workers described 

as well an asymmetric variant of this reaction using an imidazolidinone catalyst with highly 

promising results. This was later improved and a variety of �-aryl,�-alkyl acrylaldehydes 

were reduced with high selectivities.[81] In the same time MACMILLAN and co-workers 

independently reported the same reaction as well catalyzed by an imidazolidinones 

compound.[82] They slightly broadened the substrate-scope by reducing �,�-dialkyl acryl 

aldehydes. In 2006 both LIST and MACMILLAN individually reported on the reduction of �,�-

unsaturated ketones. While MACMILLAN applied the previously used imidazolidinone 

catalysts,[83] LIST described an asymmetric counter ion directed catalysis (ACDC)[84] approach 

(scheme 44).[85]  
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Scheme 44. ACDC approach reported by LIST and co-workers.
[85]

 

 

Inspired by these early works, COSSY and co-workers described the reduction of �-alkyl, 

�-heteroaryl acryl aldehydes using imidazolidinone catalysts.[86] ZHAO and CORDOVA 

reported the asymmetric reduction of acryl aldehydes using the well-known Hayashi-

Jørgenson catalyst.[87] Finally KUDO and co-workers described the use of a resin-bound 

proline catalyst for this reaction.[88] 

 

4.1.3 Objectives of This Work 

During the studies on the palladium-enamine tandem-catalyzed �-allylation of carbonyl 

compounds (see chapter 6), chiral 2,3-dihydrobenzo[1,4]oxazines were envisioned to be 

applicable as organo catalysts. As shown above there is a very limited number of catalysts 

known in literature for the organo-catalyzed transfer-hydrogenation of �,�-unsaturated 

carbonyl compounds. Thus, the aim of this project was the use of such  

2,3-dihydrobenzo[1,4]oxazine systems as catalysts for this transformation. If this could be 

achieved, the substrate scope of the reaction was supposed to be extended. So far only the 

reduction of �-alkyl,�-aryl- or �,�-dialkyl acryl aldehydes has been described in literature. 

Thus it was planned to examine as well �,�-diaryl compounds with the potential new organo-

catalyst. 
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4.2 Chiral Dihydrobenzo[1,4]oxazines as New Organo-Catalysts 

 

Scheme 45. Chiral 2,3-dihydro-benzo[1,4]oxazines as new organo-catalysts: mode of stereoinduction 
(left: (E)-selective iminium formation; right: face-selective hydride transfer). 

 

Based on the generally accepted mechanism of asymmetric transfer hydrogenation[89] it was 

thought that chiral 2,3-dihydrobenzo[1,4]oxazines 63 (scheme 45) could be a useful extension 

to the known catalysts for this reaction. 

Upon reaction between the catalyst 63 and the acryl aldehyde 64 an iminium species 65 

should be formed. This intermediate 65 can adopt a cis- or a trans-conformation. 

Discrimination between these two isomers by the catalyst is crucial in order to achieve high 

selectivity in the transformation, because in the (E)- and (Z)-isomer the opposite faces of the 

�-system are shielded. As the hydride attack occurs from the unshielded face, opposite 

enantiomers are formed from the two possible iminium isomers. The new organo-catalyst 

structure 63 should be able to selectively form the (E)-iminium species of 65 due to the planar 

conformation of the system. The benzene moiety of the catalyst is in conjugation with the �,� 

unsaturated iminium and due to sp2-hybridization, all atoms involved should be in the same 

plane. Thus, (E)-iminium formation is expected to be strongly favored because of steric 

repulsion of the olefinic proton and the benzene ring (scheme 45, left). The stereogenic center 

is sp3-hybridized and by this its substituent is not coplanar with the iminium moiety. 

Therefore less sterical interaction between the substituent on the stereogenic center and the 
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iminium moiety is present and thus this substituent does not destabilize the planar 

conformation. Once the enal-system is activated due to the iminium formation the hydride 

attack can occur. This will proceed face selectively as the substituent on the stereogenic center 

of the catalyst is shielding one face of the �-system and the hydride approaches the molecule 

from the less hindered face (scheme 45, right). 

As initial experiment to prove the general applicability of benzoxazines as organo-catalyst for 

the transfer-hydrogenation the ability of this catalyst to form the desired iminium-species 65 

was tested. For this purpose cinnamaldehyde was reacted with catalyst 63a (R1 = Bn) under 

acidic conditions and the resulting mixture was analyzed by ESI-MS. Indeed the desired 

signal corresponding to 65 was observed. Furthermore, it was shown that Hantzsch ester 67 

acts as the hydride source, as pyridine species 67, resulting from oxidation of the Hantzsch 

ester, was isolated from the reaction mixture. 

After this hydride attack, enamine species 68 is formed which, after hydrolysis, sets free the 

desired hydrogenation product 69 and the regenerated organo-catalyst 63 (scheme 46).[89] 

 

Scheme 46. Proposed mechanistic cycle. 

  



Chapter 4 

 

78 

4.3 Synthesis 

4.3.1 Catalyst Synthesis 

Catalyst synthesis was achieved according to a literature-known protocol starting from 

commercially available aminoalcohols 70 (scheme 47).[90] The aminoalcohols were first N-

Boc protected and subsequently transformed into the cyclic sulfamidates 72 by reaction of 71 

with SOCl2 followed by oxidation with RuO2. This electrophilic species was then reacted with 

2-bromophenol under basic conditions and deprotection under acidic conditions afforded the 

free amine 73. These catalyst precursors were then cyclized to the desired benzoxazines 63 by 

Buchwald-Hartwig amination.[91]  

 

Scheme 47. Synthesis of benzoxazine catalysts 63. 

 

Following the same strategy the corresponding naphthyl derivatives 75 were obtained upon 

reaction of 72 with 2-bromonaphthalen-2-ol and subsequent palladium-catalyzed ring closure 

(scheme 48). 

 

Scheme 48. Synthesis of naphthoxazine catalysts 75. 
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4.3.2 Substrate Synthesis 

As mentioned in the introduction one aim of this project was the hydrogenation of �,�-diaryl 

acryl aldehydes. For this purpose these compounds had to be synthesized in perfect (E)/(Z)-

selectivity. This was achieved according to a literature described protocol (scheme 49).[92] 

Starting from commercially available 3-phenylpropiolate (76a), ethyl acrylates (E)-78 were 

obtained by copper-catalyzed conjugate addition of the corresponding arylboronic acids 77 

with perfect (E)-selectivity according to GC analysis. Reduction to the allylic alcohols (E)-79 

with NaBH4 and subsequent mild oxidation with MnO2 afforded the desired acryl aldehydes 

(E)-64.  

 

Scheme 49. (E)-Selective synthesis of �,�-diaryl acryl aldehydes ([a]: carried out using 10 mol% 
CuOAc for 3 h; [b]: carried out in MeOH/DCM = 2:1). 

 

In a similar fashion substrate (Z)-64c was obtained. After transformation of ethyl propiolate 

(76b) into 3-(4-fluorophenyl)-propiolate (76c) by a ligand-free copper(Ι)-catalyzed 

Sonogashira-type coupling[93] with (4-fluorophenyl)boronic acid (77c) the same conditions as 

described above could be applied in order to obtain the desired (Z)-acryl aldehyde in perfect 

selectivity (scheme 50). 
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Scheme 50. (Z)-Selective synthesis of acryl aldehyde 64c (conditions for the transformation of 76 to 
64 as shown in scheme 49). 

 

As the analysis of the enantiomeric excess after the transfer hydrogenation was carried out 

after reduction to the corresponding alcohol, racemic samples of the alcohol derived from the 

hydrogenation products 69 were obtained by hydrogenation of the allyl alcohols 79 using 

palladium on charcoal (scheme 51). 

 

Scheme 51. Preparation of racemic samples for HPLC references. 

 

During this work (E)-3-(pentadeuterophenyl)-3-phenylacrylaldehyde was prepared as well 

according to the protocol described above. Unfortunately no GC or HPLC separation 

conditions were found to analyze the enantiomeric excess of the corresponding hydrogenation 

product neither of the saturated aldehyde, alcohol nor of various derivatization products. 
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4.4 Hydrogenation Results 

4.4.1 Hydrogenation of ��-Methyl Cinnamaldehyde 

For initial experiments �-methyl cinnamaldehyde ((E)-64h) was chosen as model substrate. 

First the different new organo-catalysts 63 and 75 were investigated (table14). 

 

Table 14. Catalyst screening for substrate (E)-64h. 

 

Entry Catalyst Solvent t [h] 
Conversion

[a]
 

[%] 
ee

[b]
 [%] 

(Config.) 

1 

 

63a  
(R = Bn) 

CHCl3 0.25 >99 61 (R) 

2 63b  
(R = t-Bu) 

CH2Cl2 0.75 >99 40 (R) 

3 

 

75a  
(R = Bn) 

CHCl3 0.5 >99 59 (R) 

4 75b  
(R = t-Bu) 

CHCl3 4 <10 26 (R) 

5 75b  
(R = t-Bu) 

CHCl3 24 <10 25 (R) 

[a]: determined by GC analysis; [b]: determined by GC analysis on a chiral stationary phase. 

 

When catalyst 63a was applied at room temperature in chloroform a very high activity of the 

catalyst was found. Under these conditions full conversion to the desired hydrogenation 

product 69 was found already after 15 min of reaction time (entry 1). Furthermore a 

promising enantiomeric excess of 61% favoring the (R)-enantiomer was found. When other 

catalyst derivatives were examined it was shown that benzyl-substitution on the stereogenic 

center of the catalyst leads to higher enantioselectivities compared to tert-butyl substituents. A 

possible explanation for this observation could be �-� interaction between the benzyl group of 

the catalyst and the conjugated system of the iminium moiety.[94] Due to this stabilizing 

interaction the benzyl group would be aligned above the iminium system leading to a better 
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sterical shielding of one face. Furthermore it was found that catalyst 75b, bearing a naphthyl- 

and a tert-butyl moiety seemed to be too sterically demanding. Thus, the “binding pocket” of 

the catalyst is too sterically encumbered and the acryl aldehyde cannot access the amine in 

order to undergo iminium formation resulting in very low conversion to the product even after 

24 h. By comparison of the results obtained with the two benzyl-bearing catalysts 63a and 

75a (entry 1 versus entry 3) it was found that a benzene moiety on the catalyst is already 

sufficiently sterically demanding in order to form selectively the (E)-iminium species. 

Otherwise the selectivity induced by catalyst 75a should be higher than the one obtained with 

63a as (Z)-iminium formation seems to be impossible with a catalyst bearing a naphthyl 

moiety. 

 

Table 15. Optimization studies. 

 

Entry Solvent T [°C] t [h] R 
Conversion

[a]
 

[%] 

ee
[b]

 [%] 

(Config.)
[c]

 

1 CHCl3 25 0.25 Et >99 61 (R) 

2 CH2Cl2 25 0.25 Et >99 57 (R) 

3 Toluene 25 0.25 Et >99 56 (R) 

4 Et2O 25 0.5 Et >99 69 (R) 

5 Dioxane 25 1.25 Et >99 63 (R) 

6 CHCl3 �25 15[d] Et >99 66 (R) 

7 CHCl3 �50 3 Et >99 67 (R) 

8 CHCl3 25 1 t-Bu >99 59 (R) 

[a]: determined by GC analysis; [b]: determined by chiral GC; [c]: absolute configuration determined by 

optical rotation and comparison with literature data ((�) = (R))
[95]

; [d]: conversion was not tested before 
the given reaction time. 
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Having identified catalyst 63a as the best choice, different reaction conditions were tested 

(table 15). It was shown that the nature of the solvent had only a small influence on the 

enantiomeric excess found (entries 1-5). The best result was obtained in Et2O yielding (R)-

69h in full conversion after 30 min with 69% ee (entry 4). However, when the reaction was 

carried out at decreased temperature it did not reach completion anymore. As the reaction 

proceeded faster in chloroform it could be carried out at low temperature. By this it was found 

that the selectivity increased with decreasing temperature (entries 6 and 7). The sterical 

demand of the Hantzsch-ester had essentially no effect on the ee as shown in the reaction with 

the di-tert-butyl ester (entry 8). Although full conversions were observed in most cases in less 

than one hour, the catalyst loading could not be lowered. When this was tried already with 

10 mol% catalyst loading the reaction did no more reach completion. These results show that 

dihydro-benzoxazine derivatives are very reactive catalysts yielding the desired 

hydrogenation product in remarkably short reaction times. However, in terms of selectivity 

previously reported catalysts are clearly superior to the ones described herein. 

 

4.4.2 Hydrogenation of ��-Methyl Cinnamaldehyde 

Next �-substituted acryl aldehydes were tested as potential substrates. For this, �-methyl 

cinnamaldehyde ((E)-81) was chosen as model substrate. First, the ability of the different 

catalysts to form the desired iminium species upon reaction with the substrate was evaluated. 

For this reason the corresponding catalyst was reacted with (E)-81 under acidic conditions and 

the resulting mixture was analyzed by ESI-MS (table 16). In all cases tested the desired signal 

corresponding to the iminium species was observed although always in low intensity. To 

compare the individual tendencies to form the desired iminium species the observed 

catalyst/iminium ratio was determined. By this it was found that the largest fraction of 

iminium ion was formed upon use of catalyst 75a (catalyst/iminium = 24:1). Surprisingly it 

was found that the benzoxazine catalysts 63 led to a lower fraction of iminium ion than the 

naphthoxazines 75. Again the tert-butyl substituted catalysts were too sterically demanding 

and consequently catalyst 63b showed the lowest tendency to form the desired iminium 

species (catalyst/iminium = 250:1). When for comparison cinammaldehyde was mixed with 

catalyst 63a in the presence of TFA, a catalyst/iminium signal ratio of 2.3:1 was found by 

ESI-MS analysis. 
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Table 16. Testing for the ability of the catalysts to form iminium species. 

 

Entry Catalyst 
m/z calc. 

(cat. + H
+
) 

m/z Calc. 

(iminium) 

m/z 

Obs. 

Cat./iminium 

ratio 

1 

 

63a 

(R = Bn) 
226 354 

226 
354 

29:1 

2 
63b  

(R = t-Bu) 
192 320 

192 
320 

250:1 

3 

 

75a  
(R = Bn) 

276 404 
279 
404 

24:1 

4 
(75b) 

(R = t-Bu) 
242 370 

242 
370 

53:1 

 

In agreement with the observation that no sufficient enamine formation is obtained, no 

conversion to the desired saturated aldehyde was observed when catalyst 75a was then tested 

in the transfer-hydrogenation of substrate (E)-81 (scheme 52) even after 18 h. Thus, �-

substituted aldehydes were not further investigated. 

 

Scheme 52. Attempted transfer-hydrogenation of �-methyl cinnamaldehyde ((E)-81). 

 

4.4.3 Hydrogenation of ��,�-Unsaturated Ketones 

Next, the attention was turned towards the transfer-hydrogenation of �,�-unsaturated ketones. 

As model substrate for this reaction �-methyl cyclohexenone (82) was selected and catalyst 

63a was tested under the same conditions as reported in literature for such substrates.[83] 

Again no conversion to the desired saturated ketone 83 could be observed using different 

acids (scheme 53). As expected, when the ability of the catalyst to form the desired iminium 

species was tested by ESI-MS studies no iminium signals could be observed in this case. 
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Scheme 53. Attempted transfer-hydrogenation of �-methyl cyclohexenone (82). 

 

4.4.4 Hydrogenation of ��,�-Diaryl Acryl Aldehydes 

The hydrogenation of �,�-diaryl acryl aldehydes would lead to saturated aldehydes with a 

diaryl-substituted stereogenic center in the � position. Such compounds would be very 

valuable as potential precursors for the synthesis of bioactive natural products or drugs such 

as tolteridine (84),[96] mimosifoliol (85)[97] or arpromidine (86)[98] (figure 21). 

 

Figure 21. Natural products or drugs which could be accessible from saturated aldehydes with a 

diaryl-substituted stereogenic center in the � position 

 

There are only very few examples on the enantioselective conjugate reduction of 1-acceptor-

substituted 2,2-diarylalkenes found in literature. ANDERSSON and co-workers reported on the 

iridium-catalyzed asymmetric hydrogenation of �,�-unsaturated esters, allylic alcohols and 

allylic acetates of that kind.[99] YUN and co-workers described previously the copper-catalyzed 

asymmetric reduction of 3,3-diaryl-acrylonitriles.[98] In the asymmetric hydrogenation of 

terminal diarylalkenes, WANG and co-workers showed the applicability of chiral rhodium 

catalysts.[100] However, no such reactions of �,�-diaryl-acrylaldehydes have been reported yet. 

For initial experiments with this class of substrates (E)-3-phenyl-3-(p-tolyl)acrylaldehyde (E)-

64a was chosen as test substrate (table17). 
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Table 17. Optimization studies on the transfer-hydrogenation of �,�-diaryl acryl aldehydes. 

 

Entry Catalyst Solvent 
T 

[°C] 

t 

[min] 

Conversion
[a]

 

[%] 

ee
[b]

 [%] 

(Config.) 

1 

 

CHCl3 25 15 >99 76 (+) 

2 

 

CHCl3 25 60 75 79 (+) 

3 

 

CHCl3 25 120 40 73 (+) 

4 

 

CHCl3 25 300 <10 n.d. 

5 63a Et2O 25 30 >99 63 (+) 

6 63a CH2Cl2 25 60 >99 72 (+) 

7 63a CHCl3 �20 45 >99 78 (+) 

8 63a CHCl3 �40 210 50 n.d. 

[a]: Determined by GC analysis; [b]: determined by HPLC analysis on a chiral stationary phase of the 
corresponding saturated alcohol after reduction with NaBH4. 

 

A brief catalyst screening (entries 1-4) revealed again catalyst 63a as the best choice giving 

full conversion in remarkably short reaction time. Generally significantly higher activities 

were found for the benzoxazine catalysts 63 compared to the naphthoxazines 75. Catalyst 63a 

emerged as the catalyst of choice for this reaction yielding the hydrogenation product 69a in 

full conversion with 76% ee (entry 1). Although the tert-butyl analogue 63b was slightly more 
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selective it was less practical as only 75% conversion was found even after prolonged reaction 

time of 60 min (entry 2). Furthermore it was found that again the nature of the solvent had 

only a small influence on the selectivity of the catalyst (entries 1, 5 and 6). While for �-

methyl cinnamaldehyde (64h) Et2O led to the highest selectivity now chloroform was the 

solvent of choice. Taking advantage of the high activity of the catalyst it was possible to 

perform the reaction at lower temperatures. At �20 °C still full conversion was found after 

only 45 min (entry 7). When the temperature was further decreased to �40 °C the reaction did 

not reach completion anymore (entry 8). Having found the optimal reaction conditions 

(entry 7), the scope of the reaction was examined (table 18).  

 

Table 18. Scope of the reaction.
[a] 

 
[a]: Conversion determined by GC analysis of the reaction mixture; the ee was determined by HPLC 
analysis of the corresponding alcohol on a chiral stationary phase after reduction with NaBH4. When 
given, the absolute configuration was determined by comparison of the sign of optical rotation of the 
saturated aldehyde with literature data.

[101]
 

 

Catalyst 63a showed both high activity and selectivity in the hydrogenation of the substrates 

tested. Enantiomeric excesses from 78%-91% were found. Electron-donating (64c) as well as 

as electron-withdrawing (64d-64e) substituents on the aryl moiety of the substrate were 

tolerated. The sterical demand of the substrate seemed to be the limiting factor. When 
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substituents in meta-position of the aryl ring were present in the substrate (64b and 64f) 

incomplete conversions were observed. The enantioselectivities in these examples however, 

remained at a high level. Substrate 64g bearing a substitution in the ortho-position of the aryl-

moiety proved to be unreactive. Apparently, the phenanthrenyl group induced too much steric 

hindrance and thus only traces of product were formed. 

The absolute configuration of the major enantiomers formed in this reaction is in agreement 

with the proposed model of stereoinduction shown in scheme 45. For example in the 

reduction of substrate 54b both, the cis- and the trans-isomers could be formed while 

according to the proposed mode of action of the catalyst the iminium species (E)-65b should 

be favored. If the reaction proceed via this intermediate the hydride delivered from the 

Hantzsch ester would approach the conjugate system in a Re-facial attack and after hydrolysis 

lead to the formation of (S)-69b. Reaction via iminium species (Z)-65b would lead to the (R)-

enantiomer of the hydrogenation product should be formed (scheme 54). As shown in table 

18, substrate 64b was converted to (S)-69b with 82% ee which is in accordance with the 

proposed mode of stereoinduction. 

 
Scheme 54. Verification of the proposed mode of stereoinduction. 

 

For substrate 64d both the cis and the trans isomer were applied in the transfer-

hydrogenation. It was found that the sense of chiral induction depends on the configuration of 

the C-C double bond of the substrate. While the reduction of (E)-64d resulted in formation of 
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(S)-69d (91% ee), the use of substrate (Z)-64d led to the other enantiomer (R)-69d (80% ee). 

In this respect the hydrogenation of �,�-diaryl acryl aldehydes differs from the previously 

reported reduction of �-alkyl derivatives were a stereoconvergent pathway was observed, 

leading to the same product enantiomer starting from either the (E)- or the (Z)-substrate. This 

has been rationalized by rapid cis/trans isomerization via a dienamine intermediate under the 

reaction conditions.[81] As such an isomerization is obviously not possible for �,�-diaryl 

compounds, the different (E)- and (Z)-substrates are converted to opposite enantiomers. As 

described above enantiocontrol is obtained due to sterical repulsion between the benzene 

moiety of the catalyst and the less substituted �-C atom of the substrate rather than by 

interaction with the prochiral �-CAr1Ar2 unit. Consequently, it is possible to achieve high 

enantioselectivity even with sterically and electronically very similar aryl substituents, 

provided that the substrate is available as pure (E)- or (Z)- isomer. 

For comparison the literature described (S)-2-(tert-butyl)-3-methylimidazolidin-4-one 

catalyst[102] 87 was tested in the hydrogenation of substrate (E)-64d under the reported 

reaction conditions[82] (scheme 55). 

 

Scheme 55. Comparison with the literature described imidazolidinone-catalyst 87. 

 

When this experiment was carried out a significantly lower activity of catalyst 87 was found. 

Even after 18 h the conversion did not reach more than 65% and did not further increase from 

there on. After 2 h, during which time full conversion was achieved using benzoxazine 

catalyst 63a, the conversion was found to be at only 26%. As well in terms of 

enantioselectivity catalyst 87 performed clearly inferior compared to catalyst 63a. The 

enantiomeric excess of the hydrogenation product 69d was found to be at 62% while, as 

shown in table18, upon use of catalyst 63a 91% ee were obtained. 
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4.5 Summary and Outlook 

In summary it was shown that chiral 2,3-dihydro-benzo[1,4]oxazines are efficient catalysts for 

the enantioselective organo-catalyzed transfer-hydrogenation of acryl aldehydes, a reaction 

for which only a very limited set of catalysts has been reported in literature so far. Synthesis 

of these new catalysts has been achieved by a short and reliable pathway starting from readily 

available starting materials (scheme 56). Especially the benzyl substituted derivative 63a 

showed both high activity and selectivity in this reaction, possibly due to �,�-interactions of 

the catalyst with the conjugated system of the substrate. 

 

Scheme 56. Benzyl-substituted chiral benzoxazine as efficient catalyst for organo-catalyzed transfer-
hydrogenations of acryl aldehydes. 

 

While conjugate reduction of �-substituted acrylaldehydes and of �,�-unsaturated ketones 

gave unsatisfying results, this catalyst class appears to be particularly effective for the 

transfer-hydrogenation of �,�-diaryl-substituted acrylaldehydes, a reaction which has not been 

reported for other organocatalysts yet, yielding potential precursors for the synthesis of 

various bioactive natural products or drugs. Synthesis of such substrates has been achieved in 

perfect (E)/(Z)-selectivity. Comparison with the previously established catalyst for this 

substrate class indicated superior performance of the benzoxazine catalyst and thus making it 

a valuable extension to the previously known catalysts. 

Future work on this project might be dedicated to further optimization of the catalyst. 

Especially the installation of other aryl-moiety bearing substituents on the stereogenic center 

might be interesting in order to tune both the ability of sterical shielding of one substrate face 

and the tendency to undergo �,�-interactions between the catalyst and the substrate. 

Furthermore changing the electronic properties of the benzene moiety of the catalyst by 

installation of electron-donating or withdrawing groups could lead to improved properties of 

this catalyst. 
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5.1 Introduction 

5.1.1 Peptides in Asymmetric Catalysis 

Peptides are found in various areas in daily life as for instance in hormones, toxins, drugs, 

artificial sweeteners and many other examples.[103] As well in the field of asymmetric 

catalysis peptides have been applied successfully in various transformations.[104] Peptide 

based catalysts often provide unique features which cannot be achieved with conventional 

catalyst systems. One example of the applicability of peptides in asymmetric catalysis has 

been shown by MILLER and co-workers, who reported on the asymmetric epoxidation of 

alkene carbamates (scheme 57).[105] 

 

Scheme 57. Asymmetric epoxidation of alkene carbamates.
[105]

 

 

The same group described the use of a peptide-catalyst for the desymmetrization of meso-

diols (scheme 58).[106] As well in C-C bond forming reaction such peptide catalysts attracted 

interest as for example in aldol reactions.[107] 

 

Scheme 58. Desymmetrization of bis-phenols.
[106]
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5.1.2 Tripeptide Catalyzed Conjugate Addition Reaction of Aldehydes to 

Nitroolefins 

In 2010 WIESNER and WENNEMERS described the tripeptide-catalyzed conjugate addition of 

aldehydes to nitroolefins (scheme 59).[108]  

 

Scheme 59. Tripeptide-catalyzed conjugate addition of aldehydes to nitroolefins.
[108]

 

 

In this report they could show that for all substrates tested an enantiomeric excess of at least 

90% was obtained. Furthermore this catalyst proved to be highly active as the reaction was 

conducted using only 1 mol% catalyst loading still reaching high yields. This is a remarkable 

low catalyst loading in the field of organo-catalysis which could be improved even more 

towards 0.1 mol% after kinetic studies and optimization of reaction conditions.[109] 

In analogy to organo-catalyzed aldol reactions,[110] the proposed mechanism proceeds via 

formation of an enamine species by reaction between the organocatalyst and the aldehyde 

(scheme 60). This is then followed by attack of the enamine onto the nitroolefin which should 

be the enantiodiscriminating step. Hydrolysis of the resulting iminium finally leads to the 

regeneration of the catalyst and release of the addition product.[109] 

 

Scheme 60. Proposed catalytic cycle assuming an enamine-catalysis pathway.
[109]
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However, this mechanistical pathway is not fully accepted yet. KRAUSE and ALEXAKIS for 

example proposed a mechanistical pathway via enol formation (scheme 61).[111] Hydrogen 

bonding between this enol and the catalyst and additional hydrogen bonding to the nitroolefin 

would then lead to an asymmetric transition state and subsequent attack of the enol onto the 

nitroolefin would liberate the product. 

 

Scheme 61. Proposed catalytic cycle assuming an enol pathway.
[111]

 

 

By conducting labeling experiments KRAUSE and ALEXAKIS found some evidence for this 

assumption, though it has to be mentioned that these studies were carried out in aqueous 

media, what of course has a strong influence on the enamine formation tendency and its 

stability. 

 

5.1.3 Objectives of This Work 

The aim of this project was to elucidate the actual mechanistical pathway in the organo-

catalyzed conjugate addition of aldehydes to nitroolefins using the highly active and selective 

tripeptide-catalyst previously reported. In collaboration with JÖRG DUSCHMALÉ and HELMA 

WENNEMERS it was aimed to perform ESI-MS studies in order to prove the existence of the 

enamine- and iminium-intermediates proposed for the enamine pathway. Furthermore, 

selectivity determination by ESI-MS screening of the back reaction was supposed to be 

carried out (scheme 62) based on the concept previously published by FLEISCHER and 

PFALTZ.[23] 



Chapter 5 

96 

 

Scheme 62. Aimed selectivity determination by ESI-MS back reaction screening. 

 

By this methodology the intrinsic selectivity of the attack of the enamine onto the nitroolefin 

can be determined as the enamine species is supposed to be detected by ESI-MS. If this 

selectivity equals the selectivity of the preparative reaction, this would be very strong 

evidence that the attack of the enamine species is the enantiodiscriminating step in the 

catalytic cycle. As this is only true for the proposed mechanism which is proceeding via 

enamine-catalysis this study should account to the elucidation of the reaction mechanism in 

this transformation. 
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5.2 Mechanism Studies 

5.2.1 Investigating the Forward Reaction 

First, the forward reaction of the organo-catalyzed conjugate addition of aldehydes to 

nitroolefins was examined by ESI-MS. For this purpose aldehyde 88a was reacted with the 

tripeptidic catalyst 89a in a mixture of i-PrOH/CHCl3 (9:1) and analyzed by ESI-MS. This 

corresponds to the reaction conditions previously reported by WENNEMERS.[108] When this 

experiment was carried out the corresponding mass signals of the protonated catalyst 89a and 

the protonated enamine species 90a were observed (figure 22, left). Additional signals, which 

were found, could be assigned to a dimeric species of the catalyst and in a small amount the 

sodium adduct of the catalyst was observed as well. When the nitroolefin 91 was added an 

additional signal corresponding to the desired iminium species 92a was found (figure 22, 

right). All other previously detected signals were still present in the spectrum. 

 

Figure 22. ESI-MS spectra of the studies on the forward reaction (left: after reaction between 
aldehyde 88a and catalyst 89a; right: after addition of nitroolefin 91). 

 

These findings support the assumption, that an enamine-catalysis pathway is taking place. 

Scheme 63 shows again this route. 
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Scheme 63. Proposed pathway of the formation of 93a according to the observed intermediates. 

 

5.2.2 Investigating the Back Reaction 

Having observed all desired reaction intermediates in the forward reaction the attention was 

focused on studying the back reaction (scheme 64). 

 

Scheme 64. ESI-MS studies on the back reaction. 
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For this purpose the catalysis product 93a was mixed with the tripeptidic catalyst 89a under 

the same reaction conditions as before. When this was done, again both desired intermediates 

92a and 90a were observed although the enamine species was detected with only very low 

intensity (figure 23). 

 

Figure 23. ESI-MS spectra of the studies on the back reaction. 

 

The difficulty in this approach lies in the detection of the enamine species. One problem in 

here is the fact that this is an uncharged species and in order to detect it by ESI-MS it has to 

be protonated. However the reaction conditions are not very acidic and thus such protonation 

might take place to a low extend. Furthermore this species lies in equilibrium with the 

iminium species 92a and as well with the free catalyst 89a. Especially the latter has been 

proven to be far on the side of the free catalyst.[109] Hence, if only low amounts of enamine 

species 90a are formed in the back reaction, it is already hard to detect the desired signal and 

gets even more complicated as the enamine tends to hydrolyze to give the free catalyst and the 

aldehyde. One idea to overcome this difficulty was to trap the enamine intermediate with a 

highly reactive electrophile (as for example the Eschemoser´s salt 94). This would lead to the 

formation of a positively charges iminium species 95a which can be more easily detected by 

ESI-MS. Furthermore it would act as a sink, trapping all enamine formed and by this taking it 

out of the equilibriums (scheme 65). Unfortunately this attempt was not successful and the 

desired signal corresponding to 95a could not be detected. 

 

Scheme 65. Attempted trapping of the enamine species to facilitate intermediate visualization by ESI-
MS. 
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Nevertheless it was decided to determine the selectivity of the enamine attack onto the 

nitroolefin by ESI-MS using mass labeled quasi-enantiomeric substrates.[23] For this purpose 

such substrates were synthesized following the previously published protocol (scheme 66).[108] 

 

Scheme 66. Synthesis of mass-labeled quasi-enantiomeric substrates. 

 

The desired substrates were formed with the same selectivity as the unsubstituted product 93a 

(95% ee).[108] This indicates that the para-position of the phenyl ring on the aldehyde seems to 

be a suitable position for the installation of mass labels, showing no significant influence on 

the outcome of the reaction. 

When the back reaction screening was carried out under the previously used reaction 

conditions using an equimolar mixture of these quasi-enantiomers the mass spectrum shown 

in figure 24 was obtained. 

 

Figure 24. ESI-MS back-reaction screening using mass-labeled substrates. 

 

Again basically all of the detected signals could be assigned to the corresponding reaction 

intermediates. Most of the signals observed were related to the tripeptidic catalyst. The 

iminium species 92b and 92c were observed as well. However, again the detection of the 

enamine intermediates 90 was difficult and this time the corresponding mass signals could not 

be found. It seemed likely, that under the reported reaction conditions the enamine 

intermediates are not formed in sufficient quantities in order to observe them by ESI-MS and 
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thus an optimization of the screening protocol was desirable. One approach to achieve this 

aim would be the use of charge tags on the catalyst in order to facilitate the detection of the 

otherwise uncharged enamine intermediate in analogy to previously reported ESI-MS 

studies.[112] Thus, the corresponding derivative of the tripeptidic catalyst was synthesized 

bearing an imidazolium function connected via an amide-bond in the 4-position of the second 

proline-moiety (figure 25). 

 

Figure 25. Charge-tagged tripeptidic catalyst 89b and the corresponding enamine species 90d and 
90e. 

 

When this catalyst was tested in the preparative catalysis reaction, catalyst 89b showed a 

slightly decreased selectivity compared to the uncharged catalyst-species 89a, yielding the 

conjugate addition product with 90% ee. The reason for the lowered selectivity is most likely 

found in the changed ring-conformation of the proline moiety due to the additional amide 

function in the 4-position. This catalyst derivative was then subjected to the ESI-MS back-

reaction screening. Due to solubility issues of the catalyst, the screening had to be carried out 

in CHCl3/i-PrOH = 1:1. When such a screening was performed unfortunately no desired 

enamine signals could be detected. Only the signal corresponding to the free catalyst was 

observed. Furthermore, the signals corresponding to the iminium-species, which had always 

been observed previously, were not found either. This suggests that the additional substituent 

on the tripeptidic catalyst shifts the equilibrium between free catalyst and the iminium species 

almost completely on the side of the unbound catalyst. Thus the back-reaction did not proceed 

and therefore no enamine intermediate could be detected. 

Another approach to achieve detection of the reaction intermediates was inspired by the 

finding in NMR studies of the reaction mixture. This experiment showed that the nature of the 

solvent has a significant influence on the stability of the enamine formed. When 1H-NMR 

experiments were carried out in CDCl3/d4-MeOH the �-proton of the aldehyde did exchange 

with the solvent but no enamine signal was observed. When on the other hand the same 
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experiment was conducted in d6-DMSO the enamine could be detected by 1H-NMR. Thus it 

was decided to perform the ESI-MS screening as well in DMSO (scheme 67). The resulting 

mass spectrum is shown in figure 26. 

 

Scheme 67. ESI-MS screening in DMSO. 

 

Indeed this time the desired enamine intermediates 90b and 90c could be detected by ESI-MS 

although still only in low intensity (signal-to-noise ratio of 3:1 for the minor signal). The ratio 

in which they were formed was found to be at 73:26 which corresponds to a theoretical ee 

induced by the catalyst of 47%. For comparison the preparative reaction was carried out in 

DMSO which resulted in the formation of the catalysis product with 46% ee, matching the 

value found by the ESI-MS screening. 

 

Figure 26. Resulting mass spectrum for the ESI-MS back reaction screening in DMSO. 
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5.3 Summary and Outlook 

In summary, in collaboration with JÖRG DUSCHMALÉ and HELMA WENNEMERS, ESI-MS 

studies were carried to elucidate the reaction mechanism in the organo-catalyzed conjugate 

addition of aldehydes to nitroolefins. By examination of the forward reaction all intermediates 

proposed for the enamine-catalysis pathway have been observed. As well when the back 

reaction was studied the same intermediates have been found although the enamine 

intermediate could only be detected in low intensity. 

The selectivity of the enamine attack onto the nitroolefin was studied by an ESI-MS screening 

of the back reaction using mass-labeled product enantiomers. Under the optimized reaction 

conditions which were reported to be the best for this reaction this was not possible due to low 

enamine concentration in the reaction mixture. However, when the screening was carried out 

in DMSO small quantities of the mass-labeled enamine intermediates were detected and the 

selectivity of the catalyst could be determined. Comparison with the preparative reaction 

under these conditions matched the outcome of the ESI-MS screening. This is a very solid 

hint that the organo-catalyzed conjugate addition of aldehydes to nitroolefins proceeds via 

enamine formation. 

Further evidence supporting this assumption was previously reported by WENNEMERS and co-

workers.[109] They found that the presence of water in the reaction media slows down the 

product formation, which most likely is true due to the influence of water on the enamine 

formation. 

Future work on this project might be dedicated to the optimization of the screening conditions 

in order to obtain better signal intensities. Unfortunately it was found in this work that the use 

of a charge-tagged catalyst did not enhance the detection of the reaction intermediates. 

However, having found an optimized screening protocol, additional catalysts and as well 

other reaction conditions might be evaluated to further verify the results found during this 

work. 
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6.1 Introduction 

Among various C-C bond forming reactions the asymmetric allylic alkylation reaction has 

proved to be a very versatile and powerful method for the creation of chiral compounds by 

reaction of various allyl sources with different nucleophiles in the presence of a transition-

metal catalyst.[25b] Upon use of ketone enolates as nucleophiles this reaction allows for the 

formation of �-allylated carbonyl compounds.[113] Such molecules are highly valuable and 

widely used in organic synthesis[114] especially as the allyl moiety allows for facile further 

functionalization by various methods as for example asymmetric di-hydroxylation,[115] 

epoxidation[116] or cross-metathesis.[117] 

 

6.1.1 ��-Allylation of via Preformation Activated Carbonyl Compounds 

The synthesis of such �-allylated carbonyl compounds has previously achieved mainly by 

decarboxylative intramolecular �-allylation.[118] In 2004 STOLTZ and co-workers for example 

reported on the enantioselective Tsuji-Trost allylation using different cyclic enol carbonates 

(scheme 68).[118a] 

 

Scheme 68. Asymmetric Tsuji-Trost allylation for the formation of chiral �-allyl ketones.
[118a]

 

 

Later TROST and co-workers have shown that the reaction is as well applicable to acyclic enol 

carbonates[118d] and that �-hydroxy, �-allyl aldehydes and ketones can be synthesized with 

high enantioselectivities.[118c] In 2004 BURGER and TUNGE have shown that decarboxylative 

�-allylation does proceed as well starting from allyl �-keto esters (scheme 69).[118b] 
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Scheme 69. a-allylation by use of allyl �-keto esters.
[118b]

 

 

Another approach towards �-allylated carbonyl compounds was accomplished using a 

preformed enamine species as the nucleophile for the subsequent palladium-catalyzed allylic 

alkylation reaction as shown already in 1973 by ONOUE, MORITANI and MURAHASHI 

(scheme 70).[119] Asymmetric versions of this methodology have later been demonstrated by 

HIROI and co-workers.[120] In 2007 HARTWIG reported on the iridium-catalyzed equivalent of 

this transformation.[121] 

 

Scheme 70. Use of an enamine as nucleophile in the allylic alkylation for the formation of �-allyl 
ketones.

[119]
 

 

The drawback of these examples is the requirement of the preformation of the allylic 

carbonates, �-keto esters or of the enamine species. Thus, very recently several reports on the 

direct conversion of carbonyl compounds to their �-allylated analogs have been published. 

 

6.1.2 ��-Allylation of via Tandem Catalysis 

Based on the previously described findings of the ability of enamines to act as the nucleophile 

in allylic alkylation reactions, reports on the �-allylation of carbonyl compounds proceeding 

via in-situ formation of the enamine and subsequent allylic alkylation have emerged since 

2006.[122] The first description of such a protocol has been published by IBRAHEM and 

CORDOVA (scheme 71).[122a] This report represents the first example of a new concept of 

combined transition metal catalysis and amino-catalysis.[72e,123] 
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Scheme 71. First example of a palladium- organo- tandem catalyzed �-allylation.
[122a]

 

 

They showed that upon reaction between a ketone or an aldehyde and allylic acetate in the 

presence of both a palladium- and a secondary amine-catalyst �-allylation can be obtained 

with high yields. However, no enantioselective versions have been reported. A comparable 

protocol was reported by BREIT and co-workers (scheme 72).[122d]  

 

Scheme 72. Palladium- organo- tandem catalyzed �-allylation using allylic alcohols.
[122d]

 

 

They have performed the same reaction using allylic alcohols instead of acetates. This 

circumvents the synthesis of the allylic acetate from the corresponding alcohol and leads to 

water formation as a side product instead of acetic acid. Attempts to perform this reaction 

asymmetrically have not been successful. COZZI and co-workers could show that upon use of 

an indium catalyst instead of palladium, medium selectivities could be obtained in the  

�-allylation of aldehydes.[122e] A highly selective version was reported by MUKHERJEE and 

LIST using a chiral phosphoric acid as additive (scheme 73).[122c] Here as well only the  

�-allylation of aldehydes was described. 
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Scheme 73. First highly selective approach.
[122c]

 

 

SAICIC and co-workers have described an intramolecular tandem-catalysis approach.[122b] 

However only few studies on enantioselective versions of this reaction were included and the 

obtained selectivities were not generally satisfying. 

Another strategy to achieve the �-allylation of carbonyl compounds has been reported by 

BRAUN and MEIER.[124] They have realized this aim via lithium enolate formation and 

subsequent allylic alkylation upon use of chiral additives. However this methodology suffers 

from low selectivities. A more successful concept was developed by MACMILLAN and  

co-workers. Applying their new concept of SOMO activation in organo-catalysis they could 

achieve highly selective �-allylation of aldehydes without the need of an additional transition 

metal.[125] 

 

6.1.3 Objectives of This Work 

The aim of this project was the development of a selective version of the palladium-enamine 

tandem-catalyzed �-allylation of carbonyl compounds. As shown above there is only one 

selective variant known in literature where an intermolecular approach using a palladium 

catalyst could be accomplished, as reported by LIST and co-workers.[122c] This, however, only 

seems to be applicable for the transformation of aldehydes. Based on the findings of IBRAHEM 

and CORDOVA
[122a] the aim was to test different pyrrolidine-based organo-catalysts and 

various palladium-catalysts in the reaction between carbonyl compounds, both ketones and 

aldehydes, and allylic acetates. 
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6.2 Synthesis 

Along with various organo-catalysts available from commercial sources and some which were 

kindly provided by IVANA FLEISCHER, two new organo-catalysts were supposed to be tested 

and thus had to be synthesized (figure 27). 

 

Figure 27. Organo-catalysts to be synthesized. 

 

Synthesis of (S)-allyl pyrrolidine-2-carboxylate (96) was first tried to be accomplished 

following a previously reported protocol.[120c] Therefore L-proline (98) was reacted with neat 

allyl alcohol under acidic conditions for 18 h (scheme 74). Unfortunately only traces of 

desired product were formed. As well the reaction in refluxing toluene upon use of a Dean-

Stark condenser did not lead to an improved result. 

 

Scheme 74. Attempted synthesis of 96. 

 

As the condensation under acidic conditions did not proceed successfully, base promoted 

esterification was tested (scheme 75). 

 

Scheme 75. Synthesis of the TFA salt of 96. 
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This route proved to be successful and upon treatment of 99 with allyl bromide in the 

presence of K2CO3
[126] the desired N-Boc protected allyl ester 100 was obtained in virtually 

quantitative yield. Boc deprotection was then firstly tested using a Lewis-acid[127] in order to 

avoid cleavage of the ester bond. However, this did not lead to satisfying formation of the 

desired compound. 96 was only formed in low yield and could not be purified by column 

chromatography. Thus, deprotection by use of HCl in Et2O was tested. Unfortunately again 

the desired hydrochloride salt could not be obtained. When changing the conditions towards 

use of TFA in DCM the corresponding TFA salt of 96 was obtained in almost perfect yield. 

 

Scheme 76. TFA removal to obtain 96. 

 

Finally TFA removal was achieved by basic washing of the salt with aqueous NaOH and 

extraction with DCM (scheme 76). By this the desired organo-catalyst 96 was obtained in two 

steps from commercially available N-Boc L-proline (99). 

 

Synthesis of organo-catalyst 97 was attempted following the same route as described for 96. 

For this purpose (S)-indoline-2-carboxylic acid (101) was first N-Boc protected. Subsequent 

esterification under basic conditions unfortunately failed and the desired ester 103a could not 

be obtained (scheme 77). 

 

Scheme 77. N-Boc protection of (S)-indoline-2-carboxylic acid (101) and attempted synthesis of 103a 
under basic reaction conditions. 
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Thus, ester formation was also tested upon in-situ formation of the corresponding acid 

chloride and subsequent treatment with iso-propanol (scheme 78). Again the desired 

compound was not obtained. Analysis of the reaction-products indicated Boc-deprotection 

resulting in undesired side reactions. This deprotection most likely occurred due to the 

formation of an equivalent of HCl during the reaction. 

 

Scheme 78. Attempted synthesis of 103a via in-situ formation of the acid chloride. 

 

Finally the synthesis of 97a was achieved by direct esterification of 102.[128] By this the 

desired organo-catalyst was obtained in a single step from a commercial available precursor in 

90% yield (scheme 79). 

 

Scheme 79. Synthesis of 97a. 
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6.3 ��-Allylation of Ketones 

For initial experiments the conditions reported by IBRAHEM and CORDOVA for the �-allylation 

of cyclohexanone (104) were applied.[122a] Both DMSO and THF were tested as solvents 

using different palladium-catalysts (table 19). 

 

Table 19. Initial attempts to realize the �-allylation of ketones. 

 

Entry [Pd] Ligand Solvent 
T 

[°C] 

t 

[h] 

Yield
[a]

 

[%] 

1 Pd(PPh3)4 - DMSO RT 17 <3 

2 Pd(PPh3)4 - THF RT 18 0 

3 [Pd(C3H5)Cl]2 - DMSO RT 18 <3 

4 [Pd(C3H5)Cl]2 

 

DMSO RT 20 <3 

5 [Pd(C3H5)Cl]2 108 DMSO 70 14 <3[b] 

[a]: Determined by 
1
H-NMR analysis; [b]: Pd(0) precipitated from reaction mixture. 

 

Under the conditions tested only traces of product were formed. Moreover in THF no 

conversion was observed at all (entry 2). As well using achiral PHOX ligand 108 proved to be 

unsuccessful even at elevated temperature. 

As no product was formed in the tandem-process the individual steps were examined. To 

evaluate the allylic alkylation step, enamine 109 was reacted with allyl acetate (105a) in the 

presence of a palladium catalyst (scheme 80). 
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Scheme 80. Testing the allylic alkylation reaction between enamine 109 and allyl acetate. 

 

After hydrolysis, �-allylated ketone was isolated. It was found that both mono- and di-

allylation did occur, an observation which was already previously reported.[119,120c] 1H-NMR 

analysis of those products showed, that di-allylation took place in � and �’ position rather 

than on the same �-carbon. Upon use of Pd(PPh3)4 as transition-metal catalyst the allylation 

product was obtained in 62% yield in a mono- to di-allylation ratio of 106a/110a = 3.3:1. Use 

of Pd(PPh3)2Cl2 gave the product in 57% yield (106a/110a = 6.5:1). 

Next, the formation of the desired enamine species 109 was tested. For this purpose, ketone 

104 was reacted with pyrrolidine (107) in DMSO and an aliquot of this mixture, diluted in 

MeOH, was subjected to ESI-MS analysis (scheme 81). 

 

Scheme 81. ESI-MS analysis of the reaction between 104 and 107 under previously used reaction 
conditions. 

 

The desired signal corresponding to the protonated enamine species was observed. However, 

the detected signal was of very low intensity. Thus, the influence of addition of an acid to 

facilitate the enamine formation was investigated. Again the reaction mixture was analyzed by 

ESI-MS and this time the enamine-species was the dominant signal in the spectrum 

(scheme 82). 
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Scheme 82. ESI-MS analysis of the reaction between 104 and 107 in the presence of an acid. 

 

Although this observation might as well result from the facilitated protonation of the already 

formed enamine species by which it becomes more easily detected by ESI-MS, it could as 

well be a hint that an additional acid in the reaction mixture is required for sufficient enamine 

formation. 

When, encouraged by the above shown finding, the tandem-catalysis was carried out under 

these optimized conditions, indeed quantitative �-allylation was observed (scheme 83). Again 

mono- and di-allylation was found in a ratio of 106a/110a = 9:1. 

 

Scheme 83. Successful �-allylation under acidic reaction conditions. 

 

However, when these conditions were applied to the �-allylation of 2-methyl cyclohexanone 

(111) no conversion was found (scheme 84) although enamine formation could be observed 

by ESI-MS. 

 

Scheme 84. Attempted �-allylation of 2-methyl cyclohexanone (104). 
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Having found suitable conditions for the transformation of cyclohexanone (104) into the  

�-allyl derivative, different chiral organo-catalysts have been screened in order to achieve an 

asymmetric version of this methodology (table 20). 

 

Table 20. Organo-catalyst screening in the �-allylation of cyclohexanone. 

 
[a]: Combined yield of 106a and 110a. 

 

Among the tested organo-catalysts only L-proline (98) was active in this reaction, yielding the 

�-allylation product in 33%. Notably, due to the carboxylic acid functionality of proline, 

additional use of an acid was not required. While di-allylation occurred in significant amount 

using pyrrolidine as the organo-catalyst, L-proline led to more selective formation of the 

mono-allylated product (106a/110a = 57:1). Unfortunately the transformation was found to be 

unselective and the product was obtained as a racemate. Thus, two different chiral palladium-

ligands were tested as well. Both, the Trost-ligand 116 and the PHOX-ligand 117, which have 

been previously used as palladium-ligands for the asymmetric allylic alkylation and deliver 

high enantioselectivities, were tested.[25b,26a] Pyrrolidine was used as organo-catalyst for this 
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screening as it had shown the highest activity in the previous organo-catalyst screening 

(table 21). 

 

Table 21. Palladium-ligand screening in the �-allylation of cyclohexanone. 

 

Entry Solvent 
T 

[°C] 
t 

[h] 
Ligand

*
 

Yield
[a]  

[%] 
106a/110a

 ee (106a)
[b]

[%] (Config.) 

1 DMSO 25 17 116 23 20:1 3 (S) 

2 THF 60 17 116 <3[c] n.d. n.d. 

3 DMSO 25 17 117 15 >30:1 4 (S) 

4 THF 60 17 117 <3[c] n.d. n.d. 

[a]: Combined yield of 106a and 110a; [b]: Determined by HPLC analysis on chiral stationary phase; 
[c]: Pd(0) precipitated from reaction mixture. 

 

Again very low yields were obtained in this transformation. An increase of reaction-

temperature could not overcome this issue. In fact the reaction in THF at 60 °C always led to 

precipitation of Pd(0) from the reaction mixture and only traces of the product could be 

obtained. For both ligands the reaction in DMSO at room temperature yielded preferentially 

the mono-allylation product in an almost racemic fashion. 

BREIT and co-workers have shown that phosphine ligands are required, which provide a large 

bite-angle in order to be active in the �-allylation of ketones.[122d] Thus, Xantphos (118) was 

tested in this work as well (table 22). 
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Table 22. Use of Xantphos (118) as palladium-ligand. 

Entry Organo-catalyst T [°C] Yield
[a]

 [%] ee
[b]

 [%] 

1 

 

25 22[c] 23 

2 70 95[c] 10 

3[d] 

 

70 0 - 

4 

 

70 0 - 

[a]: Isolated yield; [b]: determined by HPLC analysis on a chiral stationary phase; [c]: no di-allylation 
product formation was observed; [d]: additional p-TsOH was used. 

 

When a combination of Xantphos (118) as palladium-ligand and L-proline as organo-catalyst 

was applied in this reaction the desired allylation product 106a was obtained in low yield. 

However, under these conditions no di-allylation was observed at all. Furthermore, an 

enantiomeric excess of 23% of the mono-allylation product was found (entry 1). In order to 

increase the yield, the reaction was carried out at elevated temperature, and indeed the desired 

product could be isolated in 95% yield. Unfortunately the ee dropped down to 10% (entry 2). 

When other organo-catalysts, providing an increased sterical demand, were tested the reaction 

did not proceed anymore and no product was formed (entries 3 and 4). 

As Xantphos (118) and L-proline (98) in DMSO at elevated temperature has shown to be the 

most promising combination in terms of activity, the influence of the allyl-source under these 

conditions was evaluated (table 23). 
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Table 23. Influence of the allyl-source. 

 

Entry 105 106 
Yield

[a]
 

[%] 
(E)/(Z)

[b] ee
[c]

 [%] 

(Config.) 

1 
 

 

95 - 10 (S) 

2 
 

 

87 >99:1 7 (S) 

3 

 
 

82 >99:1 6 (S) 

4 

 
 

69 10:1 15 (�)[d] 

5 

 
 

60 3:1 22 (�) 

[a]: Isolated yield; [b]: determined by GC analysis; [c]: determined by HPLC analysis on a chiral 
stationary phase; [d]: ee of the (Z)-product was found to be at 18% (determined by GC analysis on a 
chiral stationary phase). 

 

When 3-phenyl-allyl acetate (105b) was applied to the reaction, the mono-allylation product 

106b was obtained in good yield. The selectivity remained in the same region as seen before. 

When the regioisomeric 1-phenyl-allyl acetate (105c) was applied, the results did not change 

significantly. In both cases the same regioisomer 106b was obtained as product. Allyl species 

105d gave the desired allylation product 106c in medium yield with an E/Z-ratio of 10:1. The 

enantiomeric excess of the (E)-product was found to be at 15%, which is slightly higher than 

the results obtained before. The (Z)-product was formed with 18% ee. When the alkyl 
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substituted allyl species 105e was tested, 106d was formed in 60% yield with an E/Z ratio of 

3:1. The (E)-product showed 22% enantiomeric excess. 

Next different ketones were applied in the reaction (table 24). A change of the carbonyl 

species from cyclohexanone (104) to cyclopentanone (119) resulted in lower yield and in 

racemic product. When �-tetralone (121) was used, the desired product was obtained in less 

than 3% yield. Acyclic 3-pentanone (123) did not undergo �-allylation. 

 

Table 24. �-Allylation of different ketones. 

 

Entry Ketone Product Yield
[a]

 [%] ee [%] (Config.) 

1 

  

95 10 (S)[b] 

2 

  

43 
rac.

[c] 

3 

  

<3 n.d. 

3 

  

0 - 

[a]: Isolated yield; [b]: determined by HPLC analysis on a chiral stationary phase; [c]: determined by 
optical rotation. 

 

As the system described above has shown to be not very selective, again other palladium-

ligands, which provide a large bite-angle, were evaluated in this reaction. First, achiral DPPF 

(125) was tested in combination with L-proline (98). Only the mono-allylation product was 

observed under these conditions. However, a significantly lower yield was obtained and 

furthermore the selectivity dropped as well (scheme 85). 
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Scheme 85. Use of DPPF (125) as palladium-ligand. 

 

Next, the combination of a chiral palladium-ligand and a chiral organo-catalyst was evaluated. 

For this purpose (R),(R)-Walphos (126) was used as the palladium-ligand and L- or D-proline 

(98) as the organo-catalyst (table 25). 

 

Table 25. Combination of a chiral palladium-ligand and a chiral organo-catalyst. 

 

Entry Organo-catalyst Yield
[a]

 [%] ee
[b]

 [%] (Config.) 

1 

 

54 3 (S) 

2 

 

33 3 (R) 

[a]: Isolated yield; [b]: determined by HPLC analysis on a chiral stationary phase. 

 

In both cases again only mono-allylation was observed. Upon use of 98 the desired allylation-

product could be isolated in 54% yield. A very low enantiomeric excess of 3% was found 

(entry 1). When ent-98 was applied in this experiment an even lower yield of 33% was 

obtained. This time again only 3% ee were found but in favor of the other product-

enantiomer. As, in terms of selectivity, no match or mismatch case and formation of the 

opposite enantiomers was observed, the influence of the palladium-ligand on the 
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stereochemical outcome of the reaction seems to be negligible, at least under this reaction 

conditions. Thus, further screening for other chiral palladium-ligands seemed to be not 

promising. 

Therefore a different approach was tested. HIROI and co-workers had previously shown in the 

reaction between an enamine and a palladium-allyl complex that high selectivities could be 

obtained upon use of an intramolecular allyl source (scheme 86).[120c] 

 

Scheme 86. Selective �-allylation by use of an intramolecular allyl source.
[120c]

 

 

Inspired by this finding, L-proline allyl ester (96) was used as the organo-catalyst together 

with Xantphos (118) in the tandem-catalyzed �-allylation of cyclohexanone (104). As the 

allyl ester is no more bearing an acidic function in a first attempt its TFA salt was applied, 

hoping that the TFA would facilitate the enamine formation. Of course in this approach the 

organo-catalyst had to be used in stoichiometric amounts as it acts at the same time as the 

allyl-source. When this reaction was carried out no desired product was formed but an 

unidentified compound was isolated. GC-MS and NMR analyses gave some evidence for the 

formation of the isomerization products as depicted in scheme 87. 

 

Scheme 87. Attempted �-allylation by use of an intramolecular allyl-source. 

 

However, these undesired products could be only obtained by isomerization of the desired �-

allyl-compound. Therefore optimization of the reaction conditions was carried out. And 

indeed, when the reaction was performed without TFA but in the presence of p-TsOH the 

desired product 106a could be isolated in 69% yield (scheme 88). Unfortunately only 4% ee 

were found. Most likely the formation of the palladium-allyl complex proceeds significantly 
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faster than the formation of the enamine intermediate. Thus the allyl ester does not act as an 

intramolecular allyl source and no increased selectivity was obtained. 

 

Scheme 88. �-Allylation by use of an intramolecular allyl-source. 

 

Next, a primary amine was tested as the organo-catalyst for the reaction. For an initial 

experiment L-tert-leucine (129) was chosen (scheme 89). However, no desired product was 

formed at all even after a reaction time of 3 days and thus the search for suitable primary 

amine catalysts was no longer pursued. 

 

Scheme 89. Attempted �-allylation by use of a primary amine organo-catalyst. 

 

All above described asymmetric attempts resulted in low enantiomeric excesses of the formed 

allylation products. Besides the most obvious explanation of low selectivity of the used 

catalysts, another reason for these observations could be found in racemization of the product 

subsequent to the �-allylation. This might occur via enamine formation upon reaction of the 

allylation-product with the amine-catalyst (scheme 90). 



�-Allylation of Carbonyl Compounds by Palladium-Enamine Tandem Catalysis 

 

125 

 

Scheme 90. Possible racemization pathway. 

 

In order to evaluate the racemization tendency of an �-chiral ketone compound under the used 

reaction conditions, L-menthone (130), as it is commercially available in very high 

enantiomeric purity, was subjected to these conditions and the diastereomeric ratio was 

analyzed after 18 h using different organo-catalysts (table 26). 

 

Table 26. Racemization studies under the reaction conditions. 

 

entry R d.r. SM
[a] 

d.r. after 18 h
[a]

 

1 H 18 : 1 8 : 1 

2 CO2H 18 : 1 12 : 1 

[a]: Determined by GC analysis. 

 

Indeed it was found that the diastereomeric ratio did decrease under the reaction conditions in 

significant amounts. Such a racemization might strongly contribute to the fact that so far only 

low enantiomeric excesses could be obtained. 
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6.4 ��-Allylation of Aldehydes 

All the results shown above indicate that the system described does not tolerate any 

significant sterical hindrance between the amine-catalyst and the carbonyl compound. 

Therefore it was decided to reduce the sterical demand of the carbonyl compound in order to 

be able to use more sterically demanding and thus more selective organo-catalyst. This aim 

was supposed to be achieved by use of aldehydes instead of ketone compounds, as they 

commonly show higher activities in various transformations. Therefore it might be as well 

possible to create a quaternary stereogenic center which then would avoid racemization of the 

product by enamine formation. 

Before the formation of a quaternary stereogenic center was attempted, initial experiments on 

the �-allylation of hydro-cinnamaldehyde (69a) were carried out using Xantphos (118) and L-

proline (98) as catalyst combination (table 27). 

 

Table 27. �-Allylation of hydro-cinnamaldehyde (69a). 

 

Entry T [°C] Yield [%] ee
[a]

 [%] 

1 25 15[b] n.d. 

2 70 99[c] 3 

[a]: Determined by HPLC analysis of the corresponding alcohol after reduction with NaBH4 on a chiral 
stationary phase; [b]: determined by 

1
H-NMR, mainly side-products were formed; [c]: isolated yield, 

little impurities present. 

 

When the reaction was carried out at room temperature mainly side-products were observed 

and the desired product was formed in only 15% yield (entry 1). Increasing the reaction 

temperature could overcome this issue and the product was formed in nearly quantitative yield 

(entry 2) but in an almost racemic fashion. Again racemization upon enamine formation could 

be the reason for this. 

In order to avoid such racemization the focus was concentrated on the �-allylation of  

�-branched aldehydes to form a quaternary stereogenic center which can no more undergo 
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racemization. For this purpose 2-phenylpropanal (132) was chosen as test substrate. A first 

attempt using Xantphos (118) as the palladium-ligand and L-proline (98) as the organocatalyst 

indeed yielded in the formation of the desired allylation-product 133 however in racemic form 

(scheme 91). 

 

Scheme 91. �-Allylation of an �-branched aldehyde. 

 

A possible explanation for the lack of selectivity might be found in the configuration of the 

formed enamine intermediate. Upon reaction of the aldehyde compound 132 with L-proline 

(98) the carboxylic acid functionality could be either pointing towards or away from the  

�-position to be substituted (scheme 92). Due to sterical repulsion enamine-species 134’ 

should be favored. If this is the case, the stereogenic center is in large distance to the reactive 

center and thus might have almost no influence on the stereochemical outcome of the 

reaction. 

 

Scheme 92. Possible explanation for the low selectivity of the transformation. 

 

In order to overcome this issue it was decided to test an organo-catalyst where the stereogenic 

center is preferentially on the same side as the reaction center. Indoline-2-carboxylic acid 

(101) for example should provide such a feature. Due to the conjugation between the benzene 

moiety of the catalyst and the enamine residue, these two parts of the intermediate are co-

planer and by this the steric repulsion between the benzene ring and the �-methyl substituent 

should be stronger than the one between the carboxylic acid functionality and the �-methyl 

(scheme 93). Therefore formation of 135 should be favored over the formation of 135’. As in 
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this case the stereogenic center of the organo-catalyst is pointing towards the reaction center, 

an increased selectivity might be obtained. 

 

Scheme 93. Controlled formation of the desired enamine-species upon use of organo-catalyst 101. 

 

Unfortunately, when catalyst 101 was applied in the a-allylation of aldehyde 132 only a very 

low enantiomeric excess was found (table 28). While at 70 °C 3% ee were obtained, 

surprisingly at lower reaction-temperature racemic product was isolated. 

 

Table 28. �-Allylation of 132 using organo-catalyst 101. 

 

Entry T [°C] Yield
[a]

 [%] ee
[b]

 [%] (Config.) 

1 70 97 3 (�) 

2 25 73 rac. 

[a]: Isolated yield; [b]: determined by HPLC analysis on a chiral stationary phase. 

 

However, allylation product 133 was isolated in high yields. Therefore it seemed to be 

possible to increase the sterical demand of the organo-catalyst (table 29). This was done be 

using the methyl- and iso-propyl ester of catalyst 101. The idea was that a more bulky 

substituent on the stereogenic center might induce a higher selectivity in the transformation. 

However, when these catalysts were tested only trace-amounts of the product were found in 

both cases (entries 1 and 2). The benzoxazine catalyst 63a was not active in the �-allylation 

as well (entry 3 and 4). 
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Table 29. Organo-catalyst screening. 

 

Entry Organo-Catalyst T [°C] Yield
[a]

 [%] 

1 

 

70 3 

2 

 

70 6 

3 

 

25 <3 

4 70 3 

5 

 

25 <3 

6 70 <3 

[a]: Determined by 
1
H-NMR analysis of the crude mixture. 

 

Another approach towards the controlled formation of the desired configuration of the 

enamine intermediate would be the use of a C2-symmetrical organo-catalyst as for example 

(2R,5R)-2,5-diphenylpyrrolidine (136). In here only one enamine-species can be formed as 

rotation of the catalyst along C-N bond does not change the configuration of the enamine 

species (scheme 94). Unfortunately, when catalyst 136 was tested in the �-allylation only 

traces of product were formed at both room temperature and elevated temperature (table 29, 

entries 5 and 6).  
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Scheme 94. Use of a C2-symmetric organo-catalyst. 

 

When the ability of the organo-catalysts 63a and 97a to form an enamine upon reaction with 

aldehyde 132 was tested by ESI-MS studies (scheme 95), the desired signals could be 

detected. Actually in both cases the enamine signal was the dominant signal in the spectrum. 

 

Scheme 95. Testing for enamine formation. 

 

The finding that indoline-2-carboxylic acid (101) gave the desired product in 97% yield (table 

28) while already upon use of its methyl ester 97b only traces of product were formed, led to 

the assumption that in the �-allylation of aldehydes a carboxylic acid moiety on the catalyst is 

required to obtain product formation. As enamine formation seems to be not the problem the 

acid functionality has to play an important role as well at another point of the process. 

However, if the acid functionality is required, it is not possible to increase the sterical demand 

of the catalyst. Thus a different catalyst system had to be developed. 
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6.5 Development of a Bifunctional Tandem Catalyst 

Another approach towards the selective �-allylation of aldehydes could be the use of a 

bifunctional tandem-catalyst, bearing both the amine-moiety, responsible for the enamine 

formation, and as well the palladium coordinating residue, as for example shown in catalyst 

138 (figure 28). This compound was kindly provided by DENISE RAGEOT. 

 

Figure 28. Bifunctional tandem catalyst 138. 

 

The general applicability of such a system was previously shown by HIROI and co-workers for 

a two-step approach[120a,120b] and by SATO and TOMIOKA for an intramolecular approach.[129] 

In theory, starting from a palladium-allyl species, two of such molecules should coordinate to 

a palladium-center and form a complex as shown in scheme 96. Reaction of the free amine on 

the complex and the aldehyde 132 would then form enamine species 140. Due to the 

stereogenic center on the pyrrolidine ring, the allyl-moiety would be oriented in a face-

selective fashion relative to the enamine residue. Thus, attack of the enamine onto the allyl 

should lead to a highly enantioenriched allylation product after hydrolysis (scheme 96). Since 

complex 139 is C2-symmetric, reaction between the allyl and both of the possible enamine 

species would lead to the same product enantiomer. 

 

Scheme 96. �-Allylation by use of a bifunctional tandem catalyst. 
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To evaluate the ability of such a bifunctional catalyst to form the desired complex 139 ESI-

MS studies were carried out for initial experiments. In a first attempt the HCl-salt of 

compound 138 was reacted with a palladium-allyl precursor and the resulting mixture was 

analyzed by ESI-MS (scheme 97). As the nitrogen-atom in 138 might as well be able to 

coordinate to the palladium center two complexes are possibly formed. One would be the 

desired species 139 where two ligands bind in a monodentate fashion, the other one would be 

complex 141 where one ligand binds in a bidentate manner. Starting from the HCl salt of 139 

it was hoped that P-coordination is favored over coordination with the protonated amine. 

 

Scheme 97. Complexation study by ESI-MS. 

 

When this experiment was carried out using Pd/138-ratio of 1:1 the signal corresponding to 

the desired complex 139 could not be detected but the formation of complex 141 was 

observed (figure 29, left). The two additional signals at m/z = 879 and 1054 could not be 

assigned but upon MS/MS analysis of these peaks fragmentation to the mass m/z = 416 was 

observed again. When a Pd/138-ratio of 1:2 was applied additional signals were detected 

(figure 29, right). One signal at m/z = 682 was detected with a complex isotope pattern. This 

signal might correspond to the desired complex 139. 

 

Figure 29. ESI-MS spectra upon complexation of 138·HCl. 
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When the aldehyde 132 was added to the reaction mixture the signal at m/z = 679 even gained 

intensity. However, no desired enamine signal could be detected (figure 30). This time an 

additional signal at m/z = 644 was observed which corresponds to the palladium-complex 142 

which would be formed after enamine attack onto the allyl moiety. This observation gives 

some evidence that the reaction might be able to proceed. 

 

Figure 30. ESI-MS spectrum after addition of aldehyde 132. 

 

The same experiment as described above was as well carried out using the HCl free 

compound 138. Again complexation mainly led to the formation of complex 141 and the 

exact mass of complex 139 was not found but a signal in this range (figure 31, left). This time 

however less undesired signals were found. Upon addition of aldehyde 132 again no enamine 

signal was observed but the signal corresponding to the allyl free complex 142 (figure 31, 

right). 

 

Figure 31. ESI-MS studies using salt-free tandem-catalyst 138 (left: complexation; right: after addition 
of aldehyde 132). 
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m/z = 816 and 1005, which could not be clearly assigned to any complex. MS/MS analysis of 

the signal at m/z = 1005 showed defragmentation to the complex 141 while analysis of the 

signal at m/z = 816 resulted in fragmentation towards complex 142 (figure 32, right). 

Interestingly this occurred by loss of a fragment with the mass of m/z = 172, which is close to 

the mass of the allylation product 133 (m/z = 174). This observation again gives some 

evidence for the formation of the desired reaction product. 

 

Figure 32. Left: ESI-MS spectra after addition of p-TsOH; right: MS/MS analysis of the signal at  
m/z = 816. 

 

Encouraged by these experiments and the finding of some evidence for the formation of the 

desired allylation product the reaction was carried out on a preparative scale using 10 mol% 

catalyst loading. Unfortunately only traces of the allylation product were isolated 

(scheme 98). 

 

Scheme 98. Testing the bifunctional tandem-catalyst in the preparative reaction. 

 

The reason for this most likely is found in the predominant formation of complex 141 where 

the tandem catalyst coordinates in a bidentate fashion to the palladium center. In this complex 

the amine functionality is no more able to act as an organo-catalyst and cannot undergo 

enamine formation. Furthermore it was shown previously that a large bite-angle of the 

palladium-ligand is required to obtain �-allylation in good yields which is not the case upon 

use of the tandem-catalyst 138. 
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6.6 Summary and Outlook 

In summary different palladium-ligands and various organo-catalysts have been evaluated in 

the tandem-catalyzed �-allylation of carbonyl compounds. A combination of L-proline as 

organo-catalyst and Xantphos as palladium-ligand has been found to be the best combination 

for this transformation. Furthermore it was shown that p-TsOH as additive was crucial to 

achieve the desired transformation. Under these conditions selective-mono-allylation of 

ketones has been achieved and di-allylation could be completely suppressed. Although only 

very low enantioselectivities have been reached (6-22% ee), this is the first asymmetric 

example of a palladium-organo tandem-catalyzed intermolecular �-allylation of ketones. A 

possible explanation for the low selectivities was found in the tendency of  

�-chiral ketones to undergo racemization in the presence of a secondary amine via enamine 

formation. 

In the �-allylation of aldehydes the formation of a quaternary stereogenic center has been 

achieved, although in a non enantioselective fashion (3% ee). In order to achieve higher 

selectivities the development of a bifunctional tandem-catalyst bearing both the amine-

moiety, responsible for the enamine formation, and as well the palladium coordinating 

residue, was attempted. Coordination- and reactivity-studies by ESI-MS showed some 

evidence for the possibility to achieve the desired reaction. However, the tandem-catalyst 

tested in particular did form the allylation-product only in trace amounts. 

Future work on this project might be dedicated to the optimization of the structure of such a 

bifunctional tandem-catalyst. In this work it was shown that coordination of such a catalyst in 

a bidentate fashion leads to an inactive catalyst-species. Therefore future catalyst-structures 

might be containing two palladium-coordinating groups besides the secondary amine 

functionality. These two centers could than coordinate to the palladium in a bidentate fashion. 

In this way, the free coordination-sites of the metal-center would be occupied and the amine 

moiety would remain unbound and thus active. As it was shown that the palladium-ligand 

should provide a large bite-angle, a catalyst structure based on a xanthene core might be 

promising (figure 33). For example upon use of compounds 143 or 144 an allyl palladium-P,P 

complex should be formed and the free amine could act as the organo-catalyst. As the 

phosphine moieties in these two compounds are chiral all different diastereoisomers would 

have to be tested. In order to avoid such issues, sulfur-containing tandem-catalysts might be 

evaluated. Compound 145 would be a C2-symmetrical variant of this class. It has been shown 
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previously that bis-thio containing xanthene-ligands are active in the palladium-catalyzed 

allylic alkylation,[130] and thus compound 145 might be a promising tandem-catalyst as well. 

 

Figure 33. Bidentate tandem-catalyst structures. 

 

Another approach to optimize the structure of such a tandem-catalyst would be to avoid 

amine-coordination by increase of conformational strain. Upon use of for example compound 

145 formation of complex 146 should be favored as in complex 147 both the palladium and 

the oxygen-substituents on the pyrrolidine ring are in unfavorable axial position. The same 

would be true upon use of tandem-catalyst 148, making those two structures promising 

catalyst candidates (scheme 99). 

 

Scheme 99. Controlled monodentate binding via increased conformational strain. 
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7.1 Working Techniques and Reagents 

The synthetic procedures were performed in flame-dried glassware under argon using Schlenk 

techniques or under purified nitrogen in a glovebox (Mbraun Labmaster 130). 

Commercially available reagents were purchased from Acros, Aldirch, Alfa-Aesar, Fluka, 

Strem or TCI and used without further purification. N,N,N,N-Tetramethylethylenediamine 

was distilled from calcium hydride prior to use. 

Solvents were collected from a purification column system (PureSolv, Innovative Technology 

Inc.) or purchased from Aldrich or Fluka in septum-sealed bottles over molecular sieves. 

Column chromatographic purifications were performed on Merk silica gel 60 (Darmstadt, 

particle size 40-63 mm) or Fluka silica gel 60 (Buchs, particle size 40-63 mm) under  

0.1-0.5 bar nitrogen pressure. The eluents were of technical grade and distilled prior to use. 

 

7.2 Analytical Methods 

NMR-Spectroscopy (NMR): NMR spectra were measured on a Bruker Avance 250 

(250 MHz), a Bruker Avance 400 (400 MHz) or a Bruker Avance 500 (500 MHz) 

spectrometer, equipped with BBO broadband probe heads at room temperature. The chemical 

shifts (�) are given in ppm. 1H and 13C spectra are referenced relative to tetramethylsilane (� = 

0 ppm) using the solvent residual peaks (CDCl3 7.26 ppm, CD2Cl2 5.32 ppm, C6D6 7.16 ppm) 

and the signals of the deuterated solvents (CDCl3 77.16 ppm, CD2Cl2 53.5 ppm, C6D6 

128.1 ppm), respectively as internal standards.[131] 31P spectra are calibrated relative to 85% 

phosphoric acid (� = 0 ppm) and 19F spectra relative to CFCl3 (� = 0 ppm) as external 

standards. The assignment of 1H and 13C signals was realized with the help of DEPT and, if 

needed, two-dimensional correlation experiments (COSY, HMQC, HMBC and NOESY). 

Multiplets are assigned as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext 

(sextet), sept (septet), m (multiplet) and s br (broad singlet).  

Infrared Spectroscopy (IR): Infrared spectra were collected on a Perkin Elmer 1600 series 

FTIR spectrometer. The spectra of liquids and oils were measured as thin films between two 

sodium chloride plates, those of solid samples as potassium bromide discs. The absorption 

bands are given in wavenumbers (  [cm�1]). The peak intensity is described by s (strong), m 

(medium) and w (weak). The index br stand for broad. 
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Mass Spectrometry (MS): Mass spectra were measured by Dr. H. Nadig (Department of 

Chemistry, University of Basel) on a VG70-250 spectrometer (electron-impact ionization 

(EI)) or on a MAR 312 spectrometer (fast atom bombardment (FAB)). FAB was performed 

with 3-nitrobenzyl alcohol (NBA) as matrix. 

ESI-MS spectra were measured on a Varian 1200L Quadrupol MS/MS spectrometer using 

mild desolvation conditions (39 psi nebulising gas, 4.9 kV spray voltage, 19 psi drying gas at 

200 °C, 75 V capillary voltage, 1500 V detector voltage). The samples were diluted 

immediately prior to their analysis and measured using direct injection. 

The signals are given in mass-to-charge ratios (m/z) with the relative intensity in brackets. 

 

High Resolution Mass Spectroscopy (HRMS): High resolution mass spectra were measured 

by the group of Prof. Dr. Schürch (Department of Chemistry and Biochemistry, University of 

Bern) on a Thermo Fisher Scientific / LTQ Orbitrap XL with Nanoelectrospray Ion Source. 

 

Elemental Analysis: Elemental analyses were measured by Mr. W. Kirsch (Department of 

Chemistry, University of Basel) on a Leco CHN-900. The data are indicated in mass percent. 

 

Melting Points (m.p.): Melting points were determined on a Büchi 535 apparatus and are 

uncorrected. 

 

Optical Rotations ( ): Optical rotations were measured on a Perkin Elmer Polarimeter 

341 in a cuvette (l = 1 dm) at 20 °C. The concentration (c) is given in g/100 mL. 

 

Gas Chromatography (GC): Gas chromatograms were collected on Carlo Erba HRGC 

Mega2 Series 800 (HRGS Mega 2) instruments. Achiral separations were performed on a 

Restek Rtx-1701 (30 m × 0.25 mm × 0.12 µm), a Macherey-Nagel Optima 5-Amin (30 m × 

0.25 mm × 0.5 µm), a Macherey-Nagel Optima 5 PhMeSi (25 m × 0.2 mm × 0.35 µm) or a 

Macherey-Nagel Optima 5 Me2Si (15 m × 0.2 mm × 0.35 µm) column. For chiral separations 

Chiraldex �-cyclodextrin TFA G-TA (30 m × 0.25 mm × 0.12 µm) and Brechbühler �-

cyclodextrin DEtTButSil (SE54) (25 m × 0.25 mm × 0.25 µm) columns were used. 
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High Performance Liquid Chromatography (HPLC): HPLC analyses were measured on 

Shimadzu systems with SLC-10A system controller, CTO-10AC column oven, LC10-AD 

pump system, DGU-14A degasser and SPD-M10A diode array- or UV/VIS detector. As 

columns with chiral stationary phase Chiracel AD-H, OD-H or AS (4.6 × 250 mm) from 

Daicel Chemical Industries were used. 

 

Semipreparative High Performance Liquid Chromatography (Semipreparative HPLC): 

Separations by semipreparative HPLC were performed on Shimadzu systems with SIL 10 

Advp autosampler, CTO 10 ASVP column oven, LC 10 Atvp pump system, FCV 10 Alvp 

degasser and SPD M10 Acp diode array detector. As column with chiral stationary phase 

Chiracel AD (2 × 25 cm) from Daicel Chemical Industries was used. 

 

Thin Layer Chromatography (TLC): TLC plates were obtained from Macherey-Nagel 

(Polygram SIL/UV254, 0.2 mm silica with fluorescence indicator). UV light (254 nm), basic 

permanganate solution or ceric ammonium molybdate solution were used for the visualization 

of the respective compounds. 
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7.3 ESI-MS Screening of Racemic Catalyst Mixtures 

7.3.1 Substrate Synthesis 

(E)-3-(p-Tolyl)acrylaldehyde (3a) 

To a solution of 4-iodo-toluene (5.00 g, 22.9 mmol, 1.00 eq.) in DMF 

(85 mL), acroleine diethyl acetal (2) (8.94 g, 68.7 mmol, 3.00 eq.),  

[n-Bu4N]OAc (13.8 g, 48.8 mmol, 2.00 eq.), K2CO3 (4.75 g, 34.4 mmol, 1.50 eq.), KCl 

(1.71 g, 22.9 mmol, 1.00 eq) and Pd(OAc)2 (154 mg, 687 µmol, 3 mol%) were added and the 

solution was heated to 90 °C for 3 h. After cooling to room temperature aq. HCl (100 mL, 

2 M) was added slowly and the mixture was stirred for 10 min. It was then diluted with Et2O 

(350 mL) and washed with ice-water (750 mL). The aqueous phase was extracted with Et2O 

(3 × 150 mL), the combined organic layers were dried over MgSO4 and the solvent was 

removed under reduced pressure. Purification by column chromatography (SiO2, 5 × 20 cm, 

hexanes/EtOAc = 10:1) gave the title compound 3a as a slightly yellow solid (2.93 g, 88%). 

The analytical data match the literature values.[20] 

C10H10O (146.07 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.61 (d, 3JHH = 7.7 Hz, 1H, CHO), 7.39 (d, 3JHH = 8.1 Hz, 

2H, Ar-CH), 7.37 (d, 3JHH = 16.2 Hz, 1H, CHCHCHO), 7.16 (d, 3JHH = 8.0 Hz, 2H, Ar-CH), 

6.61 (dd, 3JHH = 15.9 Hz, 3JHH = 7.7 Hz, 1H, CHCHCHO), 2.32 (s, 3H, CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.9 (s, CHO), 153.1 (s, CHCHCHO), 142.1 (s, Ar-

C), 131.4 (s, Ar-C), 130.0 (s, Ar-CH), 128.7 (s, Ar-CH), 127.8 (s, CHCHCHO), 21.7 (s, CH3) 

ppm. 

Rf = 0.23 (SiO2, hexanes/EtOAc = 10:1). 

 

(E)-3-(4-Ethylphenyl)acrylaldehyde (3b) 

To a solution of 1-ethyl-4-iodo-benzene (8.40 g, 36.3 mmol, 1.00 eq.) in 

DMF (100 mL), acroleine diethyl acetal (2) (14.2 g, 109 mmol, 3.00 eq.), 

[n-Bu4N]OAc (21.9 g, 72.6 mmol, 2.00 eq.), K2CO3 (7.53 g, 54.5 mmol, 1.50 eq.), KCl 

(2.71 g, 36.3 mmol, 1.00 eq) and Pd(OAc)2 (247 mg, 1.09 mmol, 3 mol%) were added and the 

solution was heated to 90 °C for 3 h. After cooling to room temperature aq. HCl (100 mL, 

2 M) was added slowly and the mixture was stirred for 10 min. It was then diluted with Et2O 

(400 mL) and washed with ice-water (800 mL). The aqueous phase was extracted with Et2O 
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(4 × 200 mL), the combined organic layers were dried over MgSO4 and the solvent was 

removed under reduced pressure. Purification by column chromatography (SiO2, 5 × 20 cm, 

hexanes/EtOAc = 10:1) gave the title compound 3b as a slightly yellow solid (5.25 g, 90%). 

The analytical data match the literature values.[20] 

C11H12O (160.09 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.59 (d, 3JHH = 7.8 Hz, 1H, CHO), 7.40 (d, 3JHH = 8.2 Hz, 

2H, Ar-CH), 7.36 (d, 3JHH = 16.1 Hz, 1H, CHCHCHO), 7.17 (d, 3JHH = 8.1 Hz, 2H, Ar-CH), 

6.59 (dd, 3
JHH = 15.9 Hz, 3

JHH = 7.7 Hz, 1H, CHCHCHO), 2.59 (q, 3
JHH = 7.6 Hz, 2H, 

CH2CH3), 2.32 (t, 3JHH = 7.6 Hz, 3H, CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.8 (s, CHO), 153.0 (s, CHCHCHO), 148.3 (s, Ar-

C), 131.6 (s, Ar-C), 128.7 (s, Ar-CH), 128.7 (s, Ar-CH), 127.8 (s, CHCHCHO), 28.9 (s, 

CH2CH3), 15.3 (s, CH2CH3) ppm. 

Rf = 0.21 (SiO2, hexanes/EtOAc = 10:1). 

 

(E)-1,3-di-p-Tolylprop-2-en-1-ol (5a) 

To a solution of 1-bromo-4-methylbenzene (4a) (4.26 g, 

24.9 mmol, 1.40 eq.) in THF (50 mL), sec-BuLi (14.2 mL, 

2.5 M in hexane, 35.6 mmol, 2.00 eq.) was added dropwise at �78 °C. The resulting colorless 

suspension was warmed to �25 °C until all the precipitate was dissolved. After cooling to 

�78 °C a solution of (E)-3-(p-tolyl)acrylaldehyde (3a) (2.60 g, 17.8 mmol, 1.00 eq.) in THF 

(8 mL) was added and the reaction mixture was warmed to room temperature overnight. After 

addition of sat. aq. NH4Cl-solution (100 mL), the aqueous phase was extracted with Et2O (3 × 

30 mL), the combined organic layers were washed with sat. aq. NH4Cl-solution (3 × 30 mL) 

and brine (3 × 30 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure. Purification by column chromatography (SiO2, 5 × 20 cm, Pent/Et2O = 5:1) gave the 

title compound 5a as a colorless solid (3.78 g, 90%). The analytical data match the literature 

values.[20] 

C17H18O (238.14 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.35 (d, 3JHH = 7.9 Hz, 2H, Ar-CH), 7.31 (d, 3JHH = 7.9 Hz, 

2H, Ar-CH), 7.21 (d, 3JHH = 7.8 Hz, 2H, Ar-CH), 7.15 (d, 3JHH = 7.8 Hz, 2H, Ar-CH), 6.66 (d, 

3
JHH = 15.8 Hz, 1H, CHCHCHOH), 6.36 (dd, 3

JHH = 15.8 Hz, 3
JHH = 6.6 Hz, 1H, 
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CHCHCHOH), 5.35 (d, 3
JHH = 6.5 Hz, 1H, CHCHCHOH), 2.40 (s, 3H, CH3), 2.38 (s, 3H, 

CH3), 2.35 (s, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 138.5 (s, Ar-C), 137.5 (s, Ar-C), 137.3 (s, Ar-C), 

134.1 (s, Ar-C), 131.4 (s, CHCHCHOH), 131.1 (CHCHCHOH), 129.3 (s, Ar-CH), 127.2 (s, 

Ar-CH), 127.2 (s, Ar-CH), 126.6 (s, Ar-CH), 79.0 (s, CHCHCHOH), 21.3 (s, CH3) ppm. 

Rf = 0.25 (SiO2, Pent/Et2O = 5:1). 

 

(E)-1,3-bis(4-Ethylphenyl)prop-2-en-1-ol (5b) 

To a solution of 1-iodo-4-ethylbenzene (4b) (9.51 g, 

41.0 mmol, 1.40 eq.) in THF (80 mL), sec-BuLi (23.4 mL, 

2.5 M in hexane, 58.6 mmol, 2.00 eq.) was added dropwise at �78 °C. The resulting colorless 

suspension was warmed to �25 °C until all the precipitate was dissolved. After cooling to 

�78 °C a solution of (E)-3-(4-ethylphenyl)acrylaldehyde (3b) (4.69 g, 29.3 mmol, 1.00 eq.) in 

THF (13 mL) was added and the reaction mixture was warmed to room temperature 

overnight. After addition of sat. aq. NH4Cl-solution (150 mL), the aqueous phase was 

extracted with Et2O (3 × 80 mL), the combined organic layers were washed with sat. aq. 

NH4Cl-solution (3 × 50 mL) and brine (3 × 50 mL), dried over MgSO4 and the solvent was 

removed under reduced pressure. Purification by column chromatography (SiO2, 5 × 20 cm, 

Pent/Et2O = 5:1) gave the title compound 5a as a colorless solid (2.90 g, 37%). The analytical 

data match the literature values.[20] 

C19H22O (266.17 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.34 (d, 3JHH = 8.0 Hz, 2H, Ar-CH), 7.30 (d, 3JHH = 7.1 Hz, 

2H, Ar-CH), 7.19 (d, 3JHH = 8.2 Hz, 2H, Ar-CH), 7.13 (d, 3JHH = 8.1 Hz, 2H, Ar-CH), 6.65 (d, 

3
JHH = 15.8 Hz, 1H, CHCHCHOH), 6.34 (dd, 3

JHH = 15.8 Hz, 3
JHH = 6.6 Hz, 1H, 

CHCHCHOH), 5.36-5.32 (m, 1H, CHCHCHOH), 2.65-2.61 (m, 4H, CH2CH3), 2.02 (s, 1H, 

OH), 1.26-1.20 (m, 6H, CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 144.1 (s, Ar-C), 144.0 (s, Ar-C), 140.3 (s, Ar-C), 

134.2 (s, Ar-C), 130.8 (s, CHCHCHOH), 130.4 (CHCHCHOH), 128.2 (s, Ar-CH), 128.2 (s, 

Ar-CH), 126.7 (s, Ar-CH), 126.5 (s, Ar-CH), 75.2 (s, CHCHCHOH), 28.7 (s, CH2CH3), 28.7 

(s, CH2CH3), 15.8 (s, CH2CH3), 15.7 (s, CH2CH3) ppm. 

Rf = 0.23 (SiO2, Pent/Et2O = 10:1). 
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(E)-1,3-di-p-Tolylallyl benzoate (7a) 

To a solution of (E)-1,3-di-p-tolylprop-2-en-1-ol (5a) 

(1.90 g, 7.90 mmol, 1.00 eq.) in DCM (32 mL), NEt3 (1.75 g, 

17.3 mmol, 2.2 eq.) and catalytic amounts of DMAP was added. After cooling to �78 °C 

benzoyl chloride (6) (1.46 g, 10.4 mmol, 1.3 eq.) was added dropwise. The reaction mixture 

was warmed to room temperature overnight and afterwards quenched with sat. aq. NH4Cl-

solution (20 mL). The aqueous phase was extracted with DCM (3 × 30 mL), the combined 

organic layers were dried over MgSO4 and the solvent was removed under reduced pressure. 

Purification by column chromatography (SiO2, 5 × 20 cm, hexanes/EtOAc/NEt3 = 18:1:1) 

gave the title compound 7a as a colorless solid (2.48 g, 91%). The analytical data match the 

literature values.[20] 

C24H22O2 (342.43 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.13 (d, 3JHH = 7.1 Hz, 2H, Ar-CH), 7.57 (t, 3JHH = 7.3 Hz, 

1H, Ar-CH), 7.48-7.40 (m, 4H, Ar-CH), 7.30 (d, 3JHH = 8.0 Hz, 2H, Ar-CH), 7.21 (d, 3JHH = 

7.8 Hz, 2H, Ar-CH), 7.12 (d, 3
JHH = 7.9 Hz, 2H, Ar-CH), 6.70 (d, 3

JHH = 16.3 Hz, 1H, 

CHCHCHOBz), 6.67 (d, 3
JHH = 6.9 Hz, 1H, CHCHCHOBz), 6.43 (dd, 3

JHH = 15.9 Hz, 3
JHH = 

6.7 Hz, 1H, CHCHCHOBz), 2.37 (s, 3H, CH3), 2.34 (s, 3H, CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 165.7 (s, PhC(O)O), 138.1 (s, Ar-C), 138.0 (s, Ar-C), 

136.6 (s, Ar-C), 133.6 (s, Ar-C), 133.1 (s, CHCHCHOBz), 132.7 (s, CHCHCHOBz), 130.6 

(s, Ar-C), 129.9 (s, Ar-CH), 129.5 (s, Ar-CH), 129.4 (s, Ar-CH), 128.5 (s, Ar-CH), 127.2 (s, 

Ar-CH), 126.8 (s, Ar-CH), 126.8 (s, Ar-CH), 76.9 (CHCHCHOBz), 21.4 (s, CH3), 21.3 (s, 

CH3) ppm. 

Rf = 0.56 (SiO2, hexanes EtOAc = 4:1). 

 

(E)-1,3-bis(4-Ethylphenyl)allyl benzoate (7b) 

To a solution of (E)-1,3-bis(4-ethylphenyl)prop-2-en-1-ol (5b) 

(492 mg, 1.84 mmol, 1.00 eq.) in DCM (8 mL), NEt3 (383 mg, 

3.80 mmol, 2.1 eq.) and catalytic amounts of DMAP was added. After cooling to �78 °C 

benzoyl chloride (6) (338 g, 2.40 mmol, 1.3 eq.) was added dropwise. The reaction mixture 

was warmed to room temperature overnight and afterwards quenched with sat. aq. NH4Cl-

solution (5 mL). The aqueous phase was extracted with DCM (3 × 15 mL), the combined 

organic layers were dried over MgSO4 and the solvent was removed under reduced pressure. 
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Purification by recrystallization from hexanes/DCM gave the title compound 7b as a colorless 

solid (512 mg, 75%). The analytical data match the literature values.[20] 

C26H26O2 (370.48 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.14 (d, 3JHH = 7.3 Hz, 2H, Ar-CH), 7.57 (t, 3JHH = 7.2 Hz, 

1H, Ar-CH), 7.46-7.40 (t, 3
JHH = 8.5 Hz, 4H, Ar-CH), 7.34 (d, 3

JHH = 8.0 Hz, 2H, Ar-CH), 

7.24 (d, 3
JHH = 7.9 Hz, 2H, Ar-CH), 7.16 (d, 3

JHH = 7.9 Hz, 2H, Ar-CH), 6.73 (d, 3
JHH = 

15.9 Hz, 1H, CHCHCHOBz), 6.69 (d, 3
JHH = 6.8 Hz, 1H, CHCHCHOBz), 6.45 (dd, 3

JHH = 

15.9 Hz, 3
JHH = 6.7 Hz, 1H, CHCHCHOBz), 2.68-64 (m, 4H, CH2CH3), 1.27-1.22 (m, 6H, 

CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 165.7 (s, PhC(O)O), 138.1 (s, Ar-C), 138.0 (s, Ar-C), 

136.6 (s, Ar-C), 133.6 (s, Ar-C), 133.1 (s, CHCHCHOBz), 132.7 (s, CHCHCHOBz), 130.6 

(s, Ar-C), 129.9 (s, Ar-CH), 129.5 (s, Ar-CH), 129.4 (s, Ar-CH), 128.5 (s, Ar-CH), 127.2 (s, 

Ar-CH), 126.8 (s, Ar-CH), 126.8 (s, Ar-CH), 76.9 (CHCHCHOBz), 21.4 (s, CH3), 21.3 (s, 

CH3) ppm. 

Rf = 0.53 (SiO2, hexanes EtOAc = 4:1). 

 

(R,E)-3-(1,3-di-p-Tolylallyl)pentane-2,4-dione (8a) 

A solution of [Pd(C3H5)Cl]2 (8.00 mg, 21.9 µmol, 2.5 mol%) 

and (R)-i-Pr-PHOX (19.3 mg, 51.7 µmol, 5.9 mol%) in 

DCM (2.0 mL) was degassed in a Young tube by three 

freeze-pump-thaw cycles and afterwards stirred at 50 °C for 2 h. In a second Young tube (E)-

1,3-di-p-tolylallyl benzoate (7a) (300 mg, 875 µmol, 1.00 eq.) was dissolved in DCM 

(3.5 mL). To this solution BSA (535 mg, 2.63 mmol, 3.00 eq.), pentane-2,4-dione (263 mg, 

2.63 mmol, 3.00 eq.) and catalytic amounts of KOAc were added. After three freeze-pump-

thaw cycles the catalyst solution was added via syringe and the resulting mixture was stirred 

at 0 °C for 40 h. Then the reaction was diluted with Et2O (50 mL) and washed with ice-cold 

sat. aq. NH4Cl-solution (30 mL). The aqueous phase was extracted with Et2O (3 × 30 mL), the 

combined organic layers were dried over MgSO4 and the solvent was removed under reduced 

pressure. Purification by column chromatography (SiO2, 2 × 20 cm, hexanes/EtOAc/NEt3 = 

18:1:1) gave the title compound (R)-8a as a colorless solid (252 mg, 90%, >99% ee). The 

analytical data match the literature values.[20] 

C22H24O2 (320.42 g mol�1) 
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1
H-NMR (400 MHz, CDCl3): � = 7.17-7.13 (m, 8H, Ar-CH), 6.38 (d, 3

JHH = 15.8 Hz, 1H, 

CHCHCHacac), 6.12 (dd, 3
JHH = 15.7 Hz, 3

JHH = 7.3 Hz, 1H, CHCHCHacac), 4.30-4.27 (m, 

2H, CHCHCHacac, CH(C(O)CH3)2), 2.30 (s, 6H, ArCH3), 2.24 (s, 3H, C(O)CH3), 1.93 (s, 

3H, C(O)CH3). 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 203.2 (s, CO), 203.2 (s, CO), 137.6 (s, Ar-C), 137.3 

(s, Ar-C), 137.0 (s, Ar-C), 134.0 (s, Ar-C), 131.4 (s, CHCHCHacac), 129.8 (s, Ar-CH), 129.3 

(s, Ar-CH), 128.5 (s, CHCHCHacac), 127.9 (s, Ar-CH), 126.4 (s, Ar-CH), 74.8 (s, 

CHCHCCHacac), 49.0 (s, CH(C(O)CH3)2), 30.1 (s, C(O)CH3), 29.9 (s, C(O)CH3), 21.3 (s, 

ArCH3), 21.2 (s, ArCH3) ppm. 

HPLC (Daicel Chiracel AD-H, Hept/i-PrOH = 97:3, 0.9 mL/min, 20 °C): tR = 16.2 min  

(R)-8a, 17.5 min (S)-8a). 

Rf = 0.47 (SiO2, hexanes/EtOAc = 4:1). 

 

(S,E)-3-(1,3-bis(4-Ethylphenyl)allyl)pentane-2,4-dione 

(8b) 

A solution of [Pd(C3H5)Cl]2 (3.70 mg, 10.1 µmol, 2.5 mol%) 

and (S)-i-Pr-PHOX (8.91 mg, 23.9 µmol, 5.9 mol%) in DCM 

(1.0 mL) was degassed in a Young tube by three freeze-pump-thaw cycles and afterwards 

stirred at 50 °C for 2 h. In a second Young tube (E)-1,3-bis(4-ethylphenyl)allyl benzoate (7b) 

(150 mg, 405 µmol, 1.00 eq.) was dissolved in DCM (1.6 mL). To this solution BSA (248 mg, 

1.22 mmol, 3.00 eq.), pentane-2,4-dione (122 mg, 1.22 mmol, 3.00 eq.) and catalytic amounts 

of KOAc were added. After three freeze-pump-thaw cycles the catalyst solution was added 

via syringe and the resulting mixture was stirred at 0 °C for 40 h. Then the reaction was 

diluted with Et2O (20 mL) and washed with ice-cold sat. aq. NH4Cl-solution (15 mL). The 

aqueous phase was extracted with Et2O (3 × 15 mL), the combined organic layers were dried 

over MgSO4 and the solvent was removed under reduced pressure. Purification by column 

chromatography (SiO2, 2 × 20 cm, hexanes/EtOAc/NEt3 = 18:1:1) gave the title compound 

(S)-8b as a colorless solid (131 mg, 93%, >99% ee). The analytical data match the literature 

values.[20] 

C24H28O2 (348.48 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.16-7.13 (m, 8H, Ar-CH), 6.39 (d, 3

JHH = 15.8 Hz, 1H, 

CHCHCHacac), 6.13 (dd, 3
JHH = 15.8 Hz, 3

JHH = 7.1 Hz, 1H, CHCHCHacac), 4.32-4.28 (m, 
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2H, CHCHCHacac, CH(C(O)CH3)2), 2.60 (q, 3
JHH = 7.5 Hz, 4H, CH2CH3), 2.24 (s, 3H, 

C(O)CH3), 1.93 (s, 3H, C(O)CH3), 1.22-1.18 (m, 6H, CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 203.2 (s, CO), 203.1 (s, CO), 144.1 (s, Ar-C), 143.3 

(s, Ar-C), 137.5 (s, Ar-C), 134.2 (s, Ar-C), 131.4 (s, CHCHCHacac), 128.7 (s, 

CHCHCHacac), 128.6 (s, Ar-CH), 128.1 (s, Ar-CH), 127.9 (s, Ar-CH), 126.5 (s, Ar-CH), 

74.8 (s, CHCHCCHacac), 49.0 (s, CH(C(O)CH3)2), 30.2 (s, C(O)CH3), 29.9 (s, C(O)CH3), 

28.7 (s, CH2CH3), 28.5 (s, CH2CH3), 15.7 (s, CH2CH3), 15.5 (s, CH2CH3) ppm. 

HPLC (Daicel Chiracel AD-H, Hept/i-PrOH = 97:3, 0.9 mL/min, 20 °C): tR = 24.9 min  

(R)-8b, 29.4 min (S)-8b). 

Rf = 0.48 (SiO2, hexanes/EtOAc = 4:1). 

 

7.3.2 Ligand Synthesis 

(2-Methylprop-1-enyl)benzene (13a) 

To a solution of isopropyltriphenylphosphonium iodide (15) (5.88 g, 13.6 mmol, 

1.80 eq.) in THF (15 mL), n-BuLi (9.07 mL, 1.5 M in hexane, 13.6 mmol, 

1.80 eq.) was added dropwise at 0 °C. After stirring for 30 min benzaldehyde (14a) (767 	l, 

802 mg, 7.56 mmol, 1.00 eq.) was added. The mixture was stirred at RT for 5 h and then 

hydrolyzed with water (20 mL). The THF was removed under reduced pressure and the 

residue diluted with Et2O (30 mL). After filtration over celite and phase separation the organic 

layer was washed with water (3 
 30 mL), then dried over MgSO4 and the solvent was 

removed under reduced pressure without going below 180 mbar at 40 °C. Purification by 

column chromatography (SiO2, 3 × 20 cm, hexanes) gave the title compound 13a as a 

colorless liquid (718 mg, 72%). 

C10H12 (132.20 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.30 (t, 3

JHH = 7.4 Hz, 2H, Ar-CCHCH), 7.22 (d, 3
JHH = 

7.1 Hz, 2H, Ar-CCH), 7.17 (t, 3JHH = 7.2 Hz, 1H, Ar-CCHCHCH), 6.27, (s, 1H, CHC(CH3)2), 

1.90 (s, 3H, CH3), 1.86 (s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 138.8 (s, C(CH3)2), 135.6 (s, Ar-C), 128.9 (s, Ar-CH), 

128.2 (s, Ar-CH), 125.9 (s, Ar-CH), 125.3 (s, CHC(CH3)2), 27.0 (s, CH3), 19.5 (s, CH3’) ppm. 

IR (NaCl):  = 3024s, 2970s, 2922s, 1946w, 1883w, 1805w, 1656m, 1598m, 1492m, 1444s, 

1379m, 1180w, 1072w, 1027w, 982w, 914m, 834m, 740s, 698s, 629w cm�1. 
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MS (EI, 70 eV): m/z (%) = 132 (73, M+), 131 (15), 117 (100), 115 (36), 91 (26). 

Elemental analysis calc. (%) for C10H12: C 90.85, H 9.15; found: C 90.95, H 9.25. 

Rf = 0.43 (SiO2, hexanes). 

 

(2-Methylprop-1-enyl)naphthalene (13b) 

To a suspension of isopropyltriphenylphosphonium iodide (15) (12.8 g, 

29.7 mmol, 1.80 eq.) in THF (40 mL), n-BuLi (19.8 mL, 1.5 M in hexane, 

29.7 mmol, 1.80 eq.) was added dropwise at 0 °C. After stirring for 30 min  

1-naphthaldehyde (14b) (2.25 mL, 2.57 g, 16.5 mmol, 1.00 eq.) was added. The mixture was 

stirred at RT for 4 h and then hydrolyzed with water (30 mL). The THF was removed under 

reduced pressure and the residue diluted with Et2O (40 mL). After filtration over celite and 

phase separation the organic layer was washed with water (3 
 40 mL), then dried over 

MgSO4 and the solvent was removed under reduced pressure. The residue was diluted with 

Et2O and the obtained white solid was filtered off, whereupon the solvent was again removed 

under reduced pressure. Purification by column chromatography (SiO2, 5 × 20 cm, hexanes) 

gave the title compound 13b as a colorless oil (2.80 g, 93%).  

C14H14 (182.26 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.99-7.97 (m, 1H, Ar-CH), 7.82-7.80 (m, 1H, Ar-CH), 7.70 

(d, 3
JHH = 8.2 Hz, 1H, Ar-CH), 7.45-7.43 (m, 2H, Ar-CH), 7.40 (d, 3

JHH = 8.1 Hz, 1H, Ar-

CH), 7.28 (d, 3JHH = 7.0 Hz, 1H, Ar-CH), 6.65 (s, 1H, CH(CH3)2), 2.00 (d, 4JHH = 1.4 Hz, 3H, 

CH3), 1.70 (d, 3JHH = 1.2 Hz, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 137.0 (s, C(CH3)2), 136.1 (s, Ar-C), 133.7 (s, Ar-C), 

132.3 (s, Ar-C), 128.4 (s, Ar-CH), 126.8 (s, Ar-CH), 125.7 (s, Ar-CH), 125.5 (s, Ar-CH), 

125.4 (s, Ar-CH), 123.1 (s, CHC(CH3)2), 26.3 (s, CH3), 19.7 (s, CH3’) ppm. 

IR (NaCl):  = 3054s, 2969s, 2913s, 1926w, 1815w, 1657m, 1587m, 1506m, 1444s, 1382m, 

1333w, 1266w, 1188m, 1057w, 1012m, 978w, 865w, 828m, 784s, 649w cm�1. 

MS (EI, 70 eV): m/z (%) = 182 (64), 181 (16), 168 (12), 167 (100), 166 (19), 165 (40), 152 

(21). 

Elemental analysis calc. (%) for C14H14: C 92.26, H 7.74; found: C 92.06, H 7.88. 

Rf = 0.52 (SiO2, hexanes). 
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9-(2-methylprop-1-en-1-yl)anthracene (13c) 

To a suspension of (CH3)2CHP(Ph)3I (15) (10.0 g, 23.2 mmol, 1.80 eq.) in 

THF (40 mL), n-BuLi (15.0 mL, 1.5 M in hexanes, 23.2 mmol, 1.80 eq.) 

was added dropwise at 0 °C. After stirring for 30 min anthracene-9-

carbaldehyde (14c) (2.65 g, 12.9 mmol, 1.00 eq.) was added. The mixture was stirred at RT 

for 4 h and then hydrolyzed with water (25 mL). The THF was removed under reduced 

pressure and the residue diluted with Et2O (30 mL). After filtration over celite and phase 

separation the organic layer was washed with water (3 
 30 mL), then dried over MgSO4 and 

the solvent was removed under reduced pressure. The residue was diluted with Et2O and the 

obtained white solid was filtered off, whereupon the solvent was again removed under 

reduced pressure. Purification by column chromatography (SiO2, 5 × 20 cm, hexanes) gave 

the title compound 13c as a colorless oil (2.59 g, 86%).  

C18H16 (232.32 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.34 (s, Ar-CH), 8.14-8.10 (m, 2H, Ar-CH), 7.99-7.95 (m, 

2H, Ar-CH), 7.45-7.40 (m, 4H, Ar-CH), 6.75-6.77 (m, 1H, CH(CH3)2), 2.15 (d, 4JHH = 1.4 Hz, 

3H, CH3), 1.39 (d, 3JHH = 1.0 Hz, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 139.0 (s, C(CH3)2), 133.7 (s, Ar-C), 131.6 (s, Ar-C), 

130.0 (s, Ar-C), 128.7 (s, Ar-CH), 126.7 (s, Ar-CH), 125.8 (s, Ar-CH), 125.2 (s, Ar-CH), 

121.2 (s, CHC(CH3)2), 25.7 (s, CH3), 20.0 (s, CH3’) ppm. 

Rf = 0.43 (SiO2, hexanes). 

 

2,2-Dimethyl-3-phenyloxirane (11a) 

To a solution of (2-methylprop-1-enyl)benzene (13a) (1.50 g, 11.3 mmol, 

1.00 eq.) in DCM (50 mL), MCPBA (3.07 g, 70%, 12.43 mmol, 1.10 eq.) were 

added slowly at 0 °C. The reaction mixture was stirred for 3 d and then diluted with pentane 

(50 mL). The organic layer was washed with sat. aq. NaHCO3 (3 
 50 mL) and sat. aq. NaCl 

(1 
 50 mL), dried over MgSO4 and the solvent was removed under reduced pressure. 

Purification by column chromatography (SiO2, 3 × 20 cm, hexanes/Et2O 5:1) gave the title 

compound 11a as a yellow liquid (1.57 g, 94%). 

C10H12O (148.20 g mol�1) 
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1
H-NMR (400 MHz, CDCl3): � = 7.37-7.26 (m, 5H, Ar-CH), 3.87 (s, 1H, (CH3)2CCH), 1.49 

(s, 3H, CH3), 1.08 (s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 136.7 (s, Ar-C), 128.1 (s, Ar-CH), 127.5 (s, Ar-

CCHCHCH), 126.5 (s, Ar-CH), 64.7 (s, (CH3)2CCH), 61.2 (s, C(CH3)2), 24.9 (s, CH3), 18.1 

(s, CH3’) ppm. 

IR (NaCl):  = 3062m, 3032m, 2963s, 2927s, 1956w, 1889w, 1769w, 1604m, 1496m, 1452s, 

1381s, 1322m, 1246s, 1117m, 1032m, 910m, 850m, 799m, 743s, 700s, 624m cm�1. 

MS (EI, 70 eV): m/z (%) = 148 (48), 147 (34), 133 (18), 119 (19), 107 (12), 105 (41), 91 (53), 

90 (100), 89 (45), 79 (18), 77 (20). 

Elemental analysis calc. (%) for C10H12O: C 81.04, H 8.16; found: C 80.82, H 8.32. 

Rf = 0.53 (SiO2, hexanes/Et2O 5:1). 

 

2,2-Dimethyl-3-(naphthalen-1-yl)oxirane (11b) 

To a solution of 1-(2-methylprop-1-enyl)naphthalene (13b) (2.80 g, 15.4 mmol, 

1.00 eq.) in DCM (50 mL), MCPBA (4.12 g, 70%, 16.9 mmol, 1.10 eq.) was 

added slowly at 0 °C. The reaction mixture was stirred for 2.5 h and then diluted 

with pentane (80 mL). The organic layer was washed with sat. aq. NaHCO3 (3 
 70 mL) and 

sat. aq. NaCl (1 
 70 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure. Purification by column chromatography (SiO2, 5 × 20 cm, hexanes/Et2O 5:1) gave 

the title compound 11b as a colorless liquid (2.96 g, 97%). 

C14H14O (198.26 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.94-7.87 (m, 2H, Ar-CH), 7.78 (dd, 3

JHH = 6.9 Hz, 3
JHH = 

2.6 Hz, 1H, Ar-CH), 7.55-7.44 (m, 4H, Ar-CH), 4.30 (s, 1H, C(CH3)2CH), 1.66 (s, 3H, CH3), 

1.01 (s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 133.3 (s, Ar-C), 133.0 (s, Ar-C), 131.2 (s, Ar-C), 

128.8 (s, Ar-CH), 127.7 (s, Ar-CH), 126.3 (s, Ar-CH), 125.9 (s, Ar-CH), 125.5 (s, Ar-CH), 

124.2 (s, Ar-CH), 123.1 (s, Ar-CH), 63.6 (s, C(CH3)2CH), 61.3 (s, C(CH3)2), 24.6 (s, CH3), 

18.4 (s, CH3`) ppm. 

IR (NaCl):  = 3057m, 2961m, 1569w, 1511w, 1451w, 1381m, 1305w, 1247w, 1161w, 

913w, 872w, 788s, 698w cm�1. 
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MS (EI, 70 eV): m/z (%) = 198 (37), 183 (27), 169 (11), 155 (17), 141 (19), 140 (100), 139 

(53), 127 (11). 

Elemental analysis calc. (%) for C14H14O: C 84.81, H 7.12; found: C 84.63, H 7.28. 

Rf = 0.47 (SiO2, hexanes/Et2O 5:1). 

 

5,5-Dimethyl-2,4-diphenyl-4,5-dihydrooxazole (10a) 

2,2-dimethyl-3-phenyloxirane (11a) (250 mg, 1.69 mmol, 1.00 eq.) was 

dissolved in benzonitrile (12) (3.10 mL, 3.13 g, 30.4 mmol, 18.0 eq.) and 

the solution was cooled to 0 °C. To this mixture BF3
OEt2 (214 	l, 240 mg, 

1.69 mmol, 1.00 eq.) was added over 10 min. The reaction was allowed to 

warm up to RT and stirred for 3 h. Sat. aq. NaHCO3 (7 mL) was added and the mixture was 

stirred for further 2 h before being diluted with water (30 mL). The aqueous layer was 

extracted with DCM (3 
 45 mL), the combined organic layers were dried over MgSO4 and 

the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 3 × 20 cm, hexanes/Et2O 5:2) gave the title compound 10a as a colorless oil (169 mg, 

40%). 

C17H17NO (251.32 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.04 (dt, 3JHH = 7.0 Hz, 4JHH = 1.4 Hz, 2H, Ar-CH), 7.51 (tt, 

3
JHH = 7.0 Hz, 4

JHH = 2.0 Hz, 1H, Ar-CH), 7.44 (t, 3
JHH = 7.7 Hz, 2H, Ar-CH), 7.40-7.30 (m, 

5H, Ar-CH), 5.31 (s, 1H, NCH), 1.57 (s, 3H, CH3), 0.85 (s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 161.7 (s, NCO), 137.7 (s, Ar-C), 131.5 (s, Ar-CH), 

128.5 (s, Ar-CH), 128.5 (s, Ar-CH), 128.1 (s, Ar-C), 128.1 (s, Ar-CH), 125.8 (s, Ar-CH), 90.1 

(s, NCH), 71.0 (s, C (CH3)2), 30.1 (s, CH3), 25.3 (s, CH3’) ppm. 

IR (NaCl):  = 3063m, 3033m, 2972s, 2928m, 2363w, 1651s, 1581w, 1496m, 1453m, 

1363m, 1324s, 1289s, 1215m, 1179m, 1064s, 1005m, 971m, 939w, 860w, 780m, 744m, 

697s cm�1. 

MS (EI, 70 eV): m/z (%) = 251 (1), 146 (11), 145 (100), 104 (39), 77 (10). 

Elemental analysis calc. (%) for C17H17NO: C 81.24, H 6.82, N 5.57; found: C 80.94, 

H 6.92, N 5.69.  

Rf = 0.31 (SiO2, hexanes/Et2O 5:2). 
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5,5-Dimethyl-4-(naphthalen-1-yl)-2-phenyl-4,5-

dihydrooxazole (10b) 

2,2-dimethyl-3-(naphthalen-1-yl)oxirane (11b) (1.50 g, 7.58 mmol, 

1.00 eq.) was dissolved in benzonitrile (13.9 mL, 14.0 g, 136 mmol, 

18.0 eq.) and the solution was cooled to 0 °C. To this mixture 

BF3
OEt2 (964 	l, 1.08 g, 7.58 mmol, 1.00 eq.) was added over 10 min. The reaction was 

allowed to warm up to RT and stirred for 3 h. Sat. aq. NaHCO3 (30 mL) was added and the 

mixture was stirred for further 2 h before being diluted with water (50 mL). The aqueous layer 

was extracted with DCM (3 
 50 mL), the combined organic layers were dried over MgSO4 

and the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 3 × 20 cm, hexanes/Et2O 5:2) gave the title compound 10b as a colorless oil (690 mg, 

27%). 

C21H19NO (301.38 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.12 (dt, 3JHH = 7.0 Hz, 4JHH = 1.6 Hz, 2H, Ar-CH), 7.96 (d, 

3
JHH = 8.3 Hz, 1H, Ar-CH), 7.91 (dd, 3

JHH = 8.5 Hz, 4
JHH = 1.6 Hz, 1H, Ar-CH), 7.82 (d, 3

JHH 

= 8.1 Hz, 1H, Ar-CH), 7.59-7.45 (m, 7H, Ar-CH), 6.23 (s, 1H, NCH), 1.76 (s, 3H, CH3), 0.84 

(s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 161.5 (s, NCO), 134.1 (s, Ar-C), 133.7 (s, Ar-C), 

131.6 (s, Ar-CH), 131.0 (s, Ar-C), 129.2 (s, Ar-CH), 128.6 (s, Ar-CH), 128.5 (s, Ar-CH), 

128.3 (s, Ar-CH), 128.0 (s, Ar-C), 126.5 (s, Ar-CH), 125.8 (s, Ar-CH), 125.5 (s, Ar-CH), 

123.4 (s, Ar-CH), 122.9 (s, Ar-CH), 86.6 (s, NCH), 71.4 (s, C(CH3)2), 30.6 (s, CH3), 25.1 (s, 

CH3’) ppm. 

IR (NaCl):  = 3060m, 3029m, 2969s, 2932m, 2361w, 1651s, 1577w, 1502m, 1453m, 

1424w, 1361m, 1319s, 1290s, 1262m, 1215m, 1211w, 1181m, 1062s, 1010m, 1001w, 972m, 

943w, 927m, 856w, 777m, 742m, 731w, 695s cm�1. 

MS (EI, 70 eV): m/z (%) = 301 (4), 146 (10), 145 (100), 104 (26). 

Elemental analysis calc. (%) for C21H19NO: C 83.69, H 6.35, N 4.65; found: C 83.45, 

H 6.34, N 4.91.  

Rf = 0.17 (SiO2, hexanes/Et2O 5:2). 
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2-(2-(Diphenylphosphoryl)phenyl)-5,5-dimethyl-4-phenyl-4,5-

dihydrooxazole (20a) 

A suspension of 5,5-dimethyl-2,4-diphenyl-4,5-dihydrooxazole (10a) 

(300 mg, 1.19 mmol, 1.00 eq.) and TMEDA (200 	l, 152 mg, 1.31 mmol, 

1.10 eq.) in THF (6 mL) was cooled to �78 °C. To this, sec-BuLi 

(1.01 mL, 1.3 M in cyclohexane, 1.31 mmol, 1.10 eq.) was added dropwise over 20 min. The 

mixture was stirred at �78 °C for 60 min and then at 0 °C for 15 min. A solution of Ph2PCl 

(271 	l, 342 mg, 1.55 mmol, 1.30 eq.) in THF (2 mL) was added and the reaction mixture was 

allowed to warm up to RT overnight. H2O2 (5 mL, 5 vol% in H2O) was added, the mixture 

was stirred for 20 min and then diluted with EtOAc (20 mL). After phase separation the 

aqueous layer was extracted with EtOAc (3�
�5 mL). The combined organic layers were 

washed with sat. aq. Na2CO3 (1�
�10 mL) and sat. aq. NaCl (1�
�10 mL), dried over MgSO4 

and the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 3 × 20 cm, DCM/MeOH 20:1) gave the title compound 20a as a yellow solid (346 mg, 

64%). 

C29H26NO2P (451.50 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.05 (dd, 3

JHH = 7.6 Hz, J = 3.6 Hz, 1H, Ar-CH), 7.72-7.66 

(m, 2H, Ar-CH), 7.64-7.59 (m, 3H, Ar-CH), 7.51-7.48 (m, 3H, Ar-CH), 7.44-7.40 (m, 3H, 

Ar-CH), 7.37-7.32 (m, 2H, Ar-CH), 7.23 (d, JHH = 1.1 Hz, 1H, Ar-CH), 7.22 (d, 4
JHH = 

2.4 Hz, 2H Ar-CH), 7.04 (dd, 3
JHH = 5.7 Hz, 4

JHH = 3.5 Hz, 2H, Ar-CH), 4.70 (s, 1H, NCH), 

1.32 (s, 3H, CH3), 0.64 (s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 162.0 (d, 3

JCP = 3.3 Hz, NCO), 136.5 (s, CHPh-C), 

134.9 (d, 3
JCP = 10.7 Hz, C(P)CCH), 134.0 (d, 1

JCP = 108.0 Hz, PPh-C), 133.5 (d, 1
JCP = 

107.0 Hz, PPh’-C), 132.8 (d, 2JCP = 16.6 Hz, PCC), 132.3 (d, 1JCP = 109.5 Hz, PCC), 132.1 (d, 
2
JCP = 9.8 Hz, PPh-CCH), 132.0 (d, 4

JCP = 2.5 Hz, C(P)CHCHCH), 131.6 (d, 4
JCP = 2.8 Hz, 

PPh-CCHCHCH), 131.5 (d, 2
JCP = 9.8 Hz, PPh’-CCH), 131.4 (d, 2

JCP = 8.8 Hz, CC(P)CH), 

131.3 (d, 4
JCP = 2.7 Hz, PPh’-CCHCHCH), 130.4 (d, 3

JCP = 12.0 Hz, CC(P)CHCH), 128.5 (d, 
3
JCP = 4.5 Hz, PPh-CCHCH), 128.4 (d, 3

JCP = 4.7 Hz, PPh’-CCHCH), 128.0 (s, CHPh-CCH), 

127.6 (s, CHPh-CCHCHCH), 125.5 (s, CHPh-CCHCH), 90.7 (s, NCH), 70.6 (s, C(CH3)2), 

28.4 (s, CH3), 24.3 (s, CH3’) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = 31.2 (s) ppm. 
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IR (NaCl):  = 3420m, 3056m, 2967m, 2926m, 1734m, 1653s, 1568m, 1437s, 1363m, 

1320m, 1257w, 1198s, 1118s, 1062m, 998m, 967m, 929w, 860w, 776w, 743s, 721s, 696s, 

543s cm�1. 

MS (EI, 70 eV): m/z (%) = 451 (2), 436 (10), 346 (24), 345 (100), 344 (83), 330 (10), 320 

(19), 319 (19), 316 (21), 305 (13), 304 (18), 289 (27), 287 (29), 226 (11), 183 (15), 172 (11). 

HPLC (Daicel Chiracel AD-H, Hept/i-PrOH = 75:25, 1.0 mL/min, 40 °C): tR = 14.9 min, 

17.7 min. 

Semipreparative HPLC (Daicel Chiracel AD, hexane/i-PrOH = 80:20, 6 mL/min, 40 °C, 

200 µL, 150 mg/mL): tR = 22 min, 25 min. 

Rf = 0.33 (SiO2, DCM/MeOH 20:1). 

 

2-(2-(Diphenylphosphoryl)phenyl)-5,5-dimethyl-4-

(naphthalen-1-yl)-4,5-dihydrooxazole (20b) 

A suspension of 5,5-dimethyl-4-(naphthalen-1-yl)-2-phenyl-4,5-

dihydrooxazole (10b) (1.17 g, 3.81 mmol, 1.00 eq.) and TMEDA 

(630 	l, 493 mg, 4.25 mmol, 1.10 eq.) in THF (20 mL) was cooled to 

�78 °C. To this, sec-BuLi (3.30 mL, 1.3 M in cyclohexane, 4.25 mmol, 1.10 eq.) was added 

dropwise over 20 min. The mixture was stirred at �78 °C for 60 min and then at 0 °C for 

20 min. A solution of Ph2PCl (0.88 mL, 1.11 mg, 5.03 mmol, 1.30 eq.) in THF (6 mL) was 

added and the reaction mixture was allowed to warm to RT overnight. H2O2 (20 mL, 5 vol% 

in H2O) was added, the mixture was stirred for 20 min and then diluted with EtOAc (80 mL). 

After phase separation the aqueous layer was extracted with EtOAc (3�
�30 mL). The 

combined organic layers were washed with sat. aq. Na2CO3 (1�
�40 mL) and sat. aq. NaCl 

(1�
�40 mL), dried over MgSO4 and the solvent was removed under reduced pressure. 

Purification by column chromatography (SiO2, 3 × 20 cm, DCM/MeOH 20:1) gave the title 

compound 20b as a yellow solid (1.04 g, 54%). 

C33H28NO2P (501.19 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.11 (ddd, J = 7.5 Hz, J = 3.7 Hz, J = 0.9 Hz, 1H, Ar-CH), 

7.87-7.84 (m, 1H, Ar-CH), 7.75-7.29 (m, 19H, Ar-CH), 5.56 (s, 1H, NCH), 1.45 (s, 3H, CH3), 

0.60 (s, 3H, CH3’) ppm. 
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13
C{

1
H}-NMR (101 MHz, CDCl3): � = 161.7 (d, 3

JCP = 2.0 Hz, NCO), 135.0 (d, 3
JCP = 

10.5 Hz, C(P)CCH), 134.0 (d, 1
JCP = 108.2 Hz, PPh-C), 133.5 (s, NCHC), 133.4 (d, 1

JCP = 

106.4 Hz, PPh’-C), 132.7 (s, Naph-C), 132.7 (s, Naph-C), 132.5 (d, 2
JCP = 22.6 Hz, PCC), 

132.1 (s, PPh-CCH), 132.0 (s, PPh’-CCH), 131.6 (s, PCCHCHCH), 131.6 (d, 4
JCP = 3.0 Hz, 

PPh-CCHCHCH), 131.4 (d, 2
JCP = 8.1 Hz, CC(P)CH), 131.3 (d, 4

JCP = 2.9 Hz, PPh’-

CCHCHCH), 131.2 (d, 1
JCP = 112.5 Hz, PCC), 130.6 (d, 3

JCP = 9.6 Hz, CC(P)CHCH), 129.0 

(s, Naph-CH), 128.5 (d, 3JCP = 3.2 Hz, PPh-CCHCH), 128.4 (d, 3JCP = 3.4 Hz, PPh’-CCHCH), 

128.0 (s, Naph-CH), 126.0 (s, Naph-CH), 125.5 (s, Naph-CH), 125.3 (s, Naph-CH), 123.9 (s, 

Naph-CH), 123.1 (s, Naph-CH), 87.4 (s, NCH), 71.3 (s, C(CH3)2), 29.0 (s, CH3), 24.8 (s, 

CH3’) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = 31.2 (s) ppm. 

IR (NaCl):  = 3420m, 3055m, 2969s, 2924s, 2851m, 1653s, 1560m, 1465m, 1437s, 1363m, 

1340m, 1310s, 1257m, 1238w, 1197s, 1118s, 1105s, 1062m, 1047s, 977w, 956m, 930w, 

865w, 797s, 780s, 745m, 731s, 721s, 695s, 660w, 645w, 577w, 545s cm�1. 

MS (EI, 70 eV): m/z (%) = 501 (15), 487 (14), 486 (40), 346 (23), 345(100), 344 (99), 330 

(13), 316 (28), 305 (25), 304 (25), 289 (32), 287 (35), 226 (12), 185 (12), 183 (18), 182 (13), 

173 (14). 

HPLC (Daicel Chiracel AD-H, Hept/i-PrOH = 80:20, 1.0 mL/min, 40 °C): tR = 6.9 min, 

10.7 min. 

Semipreparative HPLC (Daicel Chiracel AD, hexane/i-PrOH = 80:20, 6 mL/min, 40 °C, 

200 µL, 150 mg/mL): tR = 25 min, 45 min. 

Rf = 0.34 (SiO2, DCM/MeOH 20:1). 

 

2-(2-(Diphenylphosphino)phenyl)-5,5-dimethyl-4-phenyl-4,5-

dihydrooxazole (9a) 

2-(2-(Diphenylphosphoryl)phenyl)-5,5-dimethyl-4-phenyl-4,5-dihydro-

oxazole (9a) (300 mg, 644 	mol, 1.00 eq.) was dissolved in phenylsilane 

(1 mL) and heated at 120 °C for 3 d. After cooling to RT MeOH (2 mL) 

was added and the mixture was stirred at 50 °C for 3 h. All volatiles were removed under high 

vacuum and the residue was purified by column chromatography (SiO2, 3 × 20 cm, 

hexanes/EtOAc 10:1) to give the title compound 9a as a white foam (200 mg, 69%). 
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C29H26NOP (435.50 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.97 (ddd, 3

JHH = 7.6 Hz, 4
JHH = 3.9 Hz, JPH = 1.3 Hz, 1H, 

Ar-CH), 7.40-7.27 (m, 15H, Ar-CH), 7.13-7.11 (m, 2H, Ar-CH), 6.88-6.85 (m, 1H, Ar-CH), 

4.91 (s, 1H, NCH), 1.24 (s, 3H, CH3), 0.55 (s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 161.5 (d, 3

JCP = 2.7 Hz, NCO), 138.9 (d, 2
JCP = 

25.7 Hz, NCC), 138.1 (d, 1JCP = 11.3 Hz, PPh-C), 138.0 (d, 1JCP = 11.3 Hz, PPh’-C), 137.2 (s, 

CHPh-C), 134.3 (d, 2
JCP = 22.8 Hz, PPh-CCH), 134.1 (d, 2

JCP = 22.6 Hz, PPh’-CCH), 133.6 

(d, JCP = 2.1 Hz, Ar-CH), 131.9 (d, 1
JCP = 18.4 Hz, C(P)C), 130.5 (s, Ar-CH), 130.0 (d, JCP = 

2.8 Hz, Ar-CH), 128.6 (s, PPh-CCHCH), 128.6 (s, PPh’-CCHCH), 128.4 (d, JCP = 7.4 Hz, Ar-

CH), 128.1 (s, Ar-CH), 128.0 (s, Ar-CH), 127.6 (s, CHPh-CCHCHCH), 125.6 (s, CHPh-

CCHCH), 89.9 (s, NCH), 70.9 (s, C(CH3)2), 29.2 (s, CH3), 24.6 (s, CH3’) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = �4.7 (s) ppm. 

IR (NaCl):  = 3049m, 3026m, 2980s, 2965s, 2923m, 2889m, 1950w, 1885w, 1734m, 1641s, 

1603m, 1584m, 1559m, 1469m, 1476m, 1461m, 1452m, 1432s, 1379m, 1360m, 1321s, 

1311s, 1296s, 1286s, 1251m, 1213m, 1183m, 1161m, 1124m, 1092s, 1069w, 1052s, 1032s, 

1001s, 966s, 929m, 915m, 886w, 862m, 804w, 779m, 743s, 717w, 694s, 637w, 620w, 612w, 

542w, 524m, 517s, 503s, 485s, 451w, 426m, 413m cm�1. 

MS (FAB, NBA): m/z (%) = 452 (13), 437 (12), 436 (36), 435 (3), 305 (27), 304 (100), 289 

(11). 

Elemental analysis calc. (%) for C29H26NOP: C 79.98, H 6.02, N 3.22; found: C 79.77, 

H 6.13, N 3.51. 

m.p.: 122-127 °C. 

Rf = 0.13 (SiO2, hexanes/EtOAc 10:1). 

 

2-(2-(Diphenylphosphino)phenyl)-5,5-dimethyl-4-

(naphthalen-1-yl)-4,5-dihydrooxazole (9b) 

2-(2-(Diphenylphosphoryl)phenyl)-5,5-dimethyl-4-(naphthalen-1-yl)-

4,5-dihydrooxazole (20b) (300 mg, 590 	mol, 1.00 eq.) was 

dissolved in phenylsilane (1 mL) and heated at 120 °C for 3 d. After 

cooling to RT MeOH (2.5 mL) was added and the mixture was stirred at 50 °C for 3 h. The 

volatiles were removed under high vacuum and the residue was purified by column 
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chromatography (SiO2, 3 × 20 cm, hexanes/EtOAc 10:1) to give the title compound 9b as a 

white solid (135 mg, 47%). 

C33H28NOP (485.56 g mol��) 

1
H-NMR (400 MHz, CDCl3): � = 8.07 (m, 1H, Ar-CH), 7.88-7.86 (m, 1H, Ar-CH), 7.81-7.45 

(m, 2H, Ar-CH), 7.50-7.48 (m, 2H, Ar-CH), 7.41-7.33 (m, 14H, Ar-CH), 6.91-6.88 (m, 1H, 

Ar-CH), 5.83 (s, 1H, NCH), 1.38 (s, 3H, CH3), 0.55 (s, 3H, CH3’) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 161.2 (d, 3

JCP = 3.2 Hz, NCO), 139.1 (d, 2
JCP = 

26.1 Hz, PCC), 138.1 (d, 1
JCP = 11.4 Hz, PPh-C), 138.1 (d, 1JCP = 12.1 Hz, PPh’-C), 134.3 (d, 

JCP = 21.0 Hz, Ar-CH), 134.1 (d, JCP = 21.0 Hz, Ar-CH), 133.7 (d, JCP = 2.2 Hz, Ar-CH), 

133.5 (s, Naph-C), 133.4 (s, Naph-C), 131.7 (d, 1
JCP = 17.9 Hz, PCC), 130.7 (s, Naph-C), 

130.5 (s, Ar-CH), 130.0 (s, Ar-CH), 129.0 (s, Ar-CH), 128.6 (s, Ar-CH), 128.5 (d, 3
JCP = 

7.5 Hz, Ar-CH), 128.5 (d, JCP = 7.3 Hz, Ar-CH), 128.0 (s, Ar-CH), 127.9 (s, Ar-CH), 126.0 

(s, Ar-CH), 125.4 (s, Ar-CH), 125.3 (s, Ar-CH), 123.5 (s, Ar-CH), 122.8 (s, Ar-CH), 86.3 (s, 

NCO), 71.7 (s, C(CH3)2), 29.7 (s, CH3), 24.7 (s, CH3’) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = �4.6 (s) ppm. 

IR (NaCl):  = 3050m, 2970m, 2927m, 1844w, 1772w, 1734m, 1700m, 1653s, 1560m, 

1451m, 1433s, 1363m, 1330w, 1308s, 1257w, 1213m, 1131w, 1086s, 1047s, 989w, 958m, 

930w, 862w, 795s, 777s, 741s, 696s, 668m, 645w, 503m cm�1. 

MS (FAB, NBA): m/z (%) = 502 (16), 487 (16), 486 (43), 485 (4), 305 (38), 304 (100), 289 

(16), 183 (13), 182 (11), 181 (15), 167 (13), 165 (11). 

Elemental analysis calc. (%) for C33H28NOP: C 81.63, H 5.81, N 2.88; found: C 83.45, 

H 6.34, N 4.91. 

m.p.: 72-75 °C. 

Rf = 0.16 (SiO2, hexanes/EtOAc 10:1). 

 

2-Azido-2-phenylethanol (31a) 

To a solution of NaN3 (2.76 g, 42.5 mmol, 5.00 eq.) in a mixture of H2O 

(14 mL) and AcOH (7.8 mL), styrene oxide (25a) (1.02 mL, 8.50 mmol, 1.00 eq.) was added 

at 30 °C and the mixture was stirred at 30 °C for 20 min. After extraction with Et2O  

(2 × 40 mL) the aqueous phase was saturated with NaCl and again extracted with Et2O  

(1 × 40 mL). The combined organic layers were washed with aqueous NaOH (10%), dried 
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over MgSO4 and the solvent was removed under reduced pressure. Purification by column 

chromatography (SiO2, 3 × 20 cm, hexanes/Et2O = 1:1) gave the title compound 31a as a 

colorless oil (910 mg, 65%). The analytical data match the literature values.[132] 

C8H9N3O (163.18 g mol��) 

1
H-NMR (400 MHz, CDCl3): � = 7.43-7.32 (m, 5H, Ar-CH), 4.70-4.66 (m, 1H, Alk-CH), 

3.77-3.74 (m, 2H, Alk-CH, OH), 2.00-1.96 (m, 1H, Alk-CH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 136.4 (s, Ar-C), 129.1 (s, Ar-CH), 128.9 (s, Ar-CH), 

127.3 (s, Ar-CH), 68.0 (s, PhCHCH2), 66.7 (s, PhCHCH2) ppm. 

Rf = 0.41 (SiO2, hexanes/Et2O 1:1). 

 

2-Amino-2-phenylethanol (30a) 

A mixture of 2-Azido-2-phenylethanol (31a) (1.71 g, 10.5 mmol, 1.00 eq.), 

PPh3 (5.50 g, 21.0 mmol, 2.00 eq.) and H2O (2 mL) in THF (37 mL) was stirred at 50 °C for 

11 h. After concentration under high vacuum aq. HCl (2 M, 15 mL) was added and the 

precipitate was filtered off. The filtrate was washed with EtOAc and the aqueous phase was 

basified by addition of aqueous NaOH (10%). The water phase was extracted with EtOAc  

(1 × 100 mL, 2 × 50 mL) and the combined organic layers were dried over MgSO4. The crude 

was purified by filtration over SiO2 eluting with EtOAc/MeOH (4:1) until all impurities were 

removed and then eluting with EtOAc/MeOH (1:1). The title compound 30a was obtained as 

a slightly yellow solid (906 mg, 63%). The analytical data match the literature values.[133] 

C8H11NO (137.18 g mol��) 

1
H-NMR (400 MHz, CDCl3): � = 7.31-7.22 (m, 5H, Ar-CH), 4.14-4.06 (m, 4H, NH2, OH, 

Alk-CH), 3.71 (dd, JHH = 11.2 Hz, JHH = 4.0 Hz, 1H, Alk-CH), 3.61 (dd, JHH = 11.1 Hz, 

JHH = 8.9 Hz, 1H, Alk-CH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 140.8 (s, Ar-C), 128.9 (s, Ar-CH), 128.0 (s, Ar-CH), 

127.0 (s, Ar-CH), 67.0 (s, PhCHCH2), 57.5 (s, PhCHCH2) ppm. 
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2-Bromo-N-(2-hydroxy-1-phenylethyl)benzamide (29a) 

To a vigorously stirred solution of 2-amino-2-phenylethanol (30a) 

(500 mg, 3.65 mmol, 1.00 eq.) and Na2CO3 (1.17 g, 11.0 mmol, 3.00 eq.) 

in DCM (12 mL) and H2O (9 mL), 2-bromobenzoyl chloride (0.55 mL, 

920 mg, 4.20 mg, 1.15 eq.) was added dropwise over the course of two minutes and the 

mixture was stirred at room temperature for 22 h. After extraction with DCM (2 × 10 mL, 2 × 

5 mL) a solution of KOH (2 N in MeOH, 2 mL) was added to the combined organic layers and 

the mixture was stirred at room temperature for 30 min. Afterwards aq. HCl (1 N) was added 

until a pH of 7 was reached (~1.5 mL). After addition of water (3 mL) and extraction with 

DCM (4 × 15 mL) the combined organic layers were washed with brine (1 × 20 mL), dried 

over MgSO4 and the solvent was removed under reduced pressure. The residue was diluted 

with hot acetone (1 mL) and hexane was added. Upon storage at �25 °C the title compound 

precipitated as a colorless solid (947 mg, 81%). The analytical data match the literature 

values.[134] 

C15H14BrNO2 (163.18 g mol��) 

1
H-NMR (400 MHz, CDCl3): � = 7.61-7.57 (m, 2H, Ar-CH), 7.45-7.28 (m, 7H, Ar-CH), 6.77 

(s br, 1H, NH), 5.29 (dd, 3
JHH = 7.3 Hz, 3

JHH = 4.7 Hz, 1H, NHCHCH2OH), 4.01 (d, 3
JHH = 

4.7 Hz, 2H, NHCHCH2OH), 2.43 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 168.0 (s, C(O)NH), 138.7 (s, Ar-C), 137.6 (s, Ar-C), 

133.7 (s, Ar-CH), 131.7 (s, Ar-CH), 130.1 (s, Ar-CH), 129.2 (s, Ar-CH), 128.3 (s, Ar-CH), 

127.9 (s, Ar-CH), 127.1 (s, Ar-CH), 119.5 (s, Ar-CBr), 66.7 (s, NHCHCH2OH), 56.8 

(NHCHCH2OH) ppm. 

 

2-(2-Bromophenyl)-4-phenyl-4,5-dihydrooxazole (28a) 

In a flame dried three-necked flask 2-bromo-N-(2-hydroxy-1-

phenylethyl)benzamide (29a) (850 mg, 2.66 mmol, 1.00 eq.) was dissolved in 

DCM (14 mL) and NEt3 (886 µL, 644 mg, 6.38 mmol, 2.40 eq.) was added. 

The solution was cooled to 4 °C and MsCl (238 µL, 352 mg, 3.06 mmol, 1.15 eq.) was added 

dropwise. The mixture was heated to 50 °C for 7 h. After cooling to room temperature sat. aq. 

NaHCO3 (5 mL) was added and the mixture was stirred overnight. After phase separation the 

aqueous layer was extracted with DCM (2 × 5 mL) and the combined organic layers were 

washed with brine (1 × 6 mL), dried over MgSO4 and the solvent was removed under reduced 
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pressure. Purification by column chromatography (SiO2, 3 × 20 cm, hexanes/EtOAc = 3:1) 

gave the title compound 28a as a colorless solid (720 mg, 90%). The analytical data match the 

literature values.[135] 

C15H12BrNO (163.18 g mol��) 

1
H-NMR (400 MHz, CDCl3): � = 7.79 (d, 3

JHH = 7.5 Hz, 1H, Ar-CH), 7.68 (d, 3
JHH = 7.8 Hz, 

1H, Ar-CH), 7.45-7.28 (m, 7H, Ar-CH), 5.48-5.43 (m, 1H, Alk-CH) 4.86-4.81 (m, 1H, Alk-

CH), 4.32-4.28 (m, 1H, Alk-CH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 164.4 (s, NCO), 142.2 (s, Ar-C), 134.0 (s, Ar-CH), 

132.0 (s, Ar-CH), 131.7 (s, Ar-CH), 129.8 (s, Ar-C), 128.9 (s, Ar-CH), 127.8 (s, Ar-CH), 

127.3 (s, Ar-CH), 126.9 (s, Ar-CH), 122.9 (s, Ar-C), 75.2 (s, NCHCH2O), 70.6 (s, CCHCH2) 

ppm. 

Rf = 0.25 (SiO2, hexanes/EtOAc 3:1). 

 

2-(2-(Diphenylphosphino)phenyl)-4-phenyl-4,5-dihydrooxazole 

(27a) 

In a flame dried two-necked flask 2-(2-bromophenyl)-4-phenyl-4,5-

dihydrooxazole (28a) (200 mg, 662 µmol, 1.00 eq.) was dissolved in Et2O 

(9 mL) and cooled to �78 °C. To this solution n-BuLi (455 µL, 1.6 M in hexane, 728 µmol, 

1.20 eq.) was added dropwise and the mixture was stirred for 30 min at �78 °C. Afterwards a 

solution of Ph2PCl (175 mg, 794 µmol, 1.20 eq.) in Et2O (1 mL) was added dropwise and the 

reaction mixture was stirred for 3 h at �78 °C and for further 18 h at room temperature. The 

solvent was removed under reduced pressure and the residue purified by column 

chromatography (SiO2, 3 × 20 cm, hexanes/EtOAc 5:1) to give the title compound as a 

colorless solid (158 mg, 59%). The analytical data match the literature values.[33] 

C27H22NOP (107.44 g mol��) 

1
H-NMR (400 MHz, CDCl3): � = 8.01 (ddd, JHH = 7.5 Hz, JHH = 3.5 Hz, JHH = 1.3 Hz, 1H, 

Ar-CH), 7.39-7.29 (m, 12H, Ar-CH), 7.21-7.19 (m, 3H, Ar-CH), 6.94-6.90 (m, 3H, Ar-CH), 

5.23 (t, 3
JHH = 9.6 Hz, 1H, NCHCHH), 4.56 (dd, 3

JHH = 10.1 Hz, 3
JHH = 8.3 Hz, 1H, 

NCHCHH), 3.88 (t, 3JHH = 8.5 Hz, 1H, NCHCHH) ppm. 

13
C{

1
H}-NMR (126 MHz, CDCl3): � = 164.8 (d, 3

JCP = 2.6 Hz, NCO), 142.2 (s, NCHC), 

139.3 (d, 2
JCP = 25.7 Hz, PCC), 138.2 (d, 1

JCP = 12.4 Hz, PPh-C), 138.0 (d, 1
JCP = 10.0 Hz, 
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PPh’-C), 134.5 (d, 2JCP = 21.1 Hz, PPh-CCH), 134.0 (d, 2JCP = 20.6 Hz, PPh’-CCH), 134.0 (d, 

JCP = 1.4 Hz, Ar-CH), 131.6 (d, 2
JCP =19.0 Hz, PCC), 130.9 (s, Ar-CH), 130.5 (d, JCP = 

3.0 Hz, Ar-CH), 128.9 (s, Ar-CH), 128.7(s, Ar-CH), 128.7 (s, Ar-CH), 128.6 (d, JCP = 9.7 Hz, 

Ar-CH), 128.5 (s, 2
JCP =19.0 Hz), 128.2 (s, Ar-CH), 127.3 (Ar-CH), 126.8 (s, Ar-CH), 74.6 

(s, NCHCH2), 70.2 (s, NCH), 21.4 (s, CH3) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = �4.8 (s) ppm. 

Rf = 0.21 (SiO2, hexanes/EtOAc = 5:1). 

 

3,5-Dimethylbenzaldehyde (14d) 

To a solution of 1-bromo-3,5-dimethylbenzene (34a) (2.03 mL, 2.76 g, 

14.9 mmol, 1.00 eq.) in THF (50 mL), n-BuLi (11.2 mL, 1.6 M in hexane, 

17.9 mmol, 1.20 eq.) was added at �78 °C over a period of 20 min and the reaction mixture 

was stirred for further 20 min until DMF (1.62 mL, 1.53 g, 20.9 mmol, 1.40 eq.) was added. 

After 1 h, water (20 mL) was added, the layers were separated and the aqueous layer was 

extracted with Et2O (1 
 40 mL). The combined organic layers were dried over MgSO4 and 

the solvent was removed under reduced pressure. Purification by Kugelrohr-distillation 

(90 °C, 0.1 mbar) gave the title compound 14d as a colorless oil (1.90 g, 95%). The analytical 

data match the literature values.[136] 

C9H10O (134.18 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.95 (s, 1H, CHO), 7.49 (s, 2H, CHC(CHO)CH), 7.27 (s, 

1H, C(CH3)CHC(CH3)), 2.40 (s, 6H, CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.0 (s, CHO), 138.9 (s, CCH3), 136.7 (s, CCHO), 

136.4 (s, C(CH3)CHC(CH3)), 127.2 (s, CHC(CHO)CH), 21.2 (s, CH3) ppm. 

 

3,5-Di-tert-butylbenzaldehyde (14e) 

To a solution of 1-bromo-3,5-di-tert-butylbenzene (34b) (5.00 g, 

18.6 mmol, 1.00 eq.) in THF (60 mL), n-BuLi (13.9 mL, 1.6 M in hexane, 

22.3 mmol, 1.20 eq.) was added at �78 °C over the period of 20 min and the reaction mixture 

was stirred for further 20 min until DMF (2.01 mL, 1.90 g, 26.0 mmol, 1.40 eq.) was added. 

After 1 h, water (25 mL) was added, the layers were separated and the aqueous layer was 

extracted with Et2O (1 
 40 mL). The combined organic layers were dried over MgSO4 and 
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the solvent was removed under reduced pressure. Drying under high vacuum gave the title 

compound 14e as a colorless solid (4.02 g, 99%). The product was pure according to NMR 

without further purification and the analytical data matched the literature values.[137]  

C15H22O (218.33 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 10.01 (s, 1H, CHO), 7.74-7.71 (m, 3H, Ar-CH), 1.37 (s, 

18H, CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.3 (s, CHO), 152.0 (s, CCCHCC), 136.3 (s, 

CCHO), 129.0 (s, CCCHCC), 124.3 (CHCCHO), 35.1 (s, C(CH3)3), 31.5 (s, CH3) ppm. 

 

2-(Anthracen-9-yl)oxirane (25b) 

A mixture of 9-anthraledhyde (14c) (3.00 g, 14.6 mmol, 1.00 eq.), 

trimethylsulfonium iodide (3.57 g, 17.5 mmol, 1.20 eq.), KOH (1.64 g, 

29.2 mmol, 2.00 eq.) and water (66 	l, 66 mg, 3.65 mmol, 0.25 eq.) in MeCN (30 mL) was 

stirred at 60 °C for 4 h. After cooling to RT the suspension was diluted with DCM, filtered 

over celite and the solvent was removed under reduced pressure to give the crude product 

(3.30 g). 1H-NMR analysis indicated 84% purity with additional 16% of the aldehyde. The 

crude product was used in the next step without further purification. 

C16H12O (220.27 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.48 (d, 3

JHH = 8.8 Hz, 2H, Ar-CH), 8.45 (s, 1H, Ar-CH), 

8.02 (d, 3
JHH = 8.3 Hz, 2H, Ar-CH), 7.57-7.53 (m, 2H, Ar-CH), 7.51-7.47 (m, 2H, Ar-CH), 

4.72 (t, 3
JHH = 3.3 Hz, 1H, OCHH), 3.59 (dd, 3

JHH = 5.6 Hz, 2
JHH = 4.1 Hz, 1H, OCH), 3.06 

(dd, 3JHH = 5.6 Hz, 2JHH = 2.9 Hz, 1H, OCHH) ppm. 

 

2-(3,5-Dimethylphenyl)oxirane (25c) 

A suspension of 3,5-dimethylbenzaldehyde (14d) (1.50 g, 11.2 mmol, 1.00 eq.), 

trimethylsulfonium iodide (2.80 g, 13.4 mmol, 1.20 eq.), KOH (1.26 g, 

22.4 mmol, 2.00 eq.) and water (50 	l, 50 mg, 2.80 mmol, 0.25 eq.) in MeCN (20 mL) was 

stirred at 60 °C for 4 h. After cooling to RT the suspension was diluted with DCM, filtered 

over celite and the solvent was removed under reduced pressure to give the crude product 

(1.18 g). 1H-NMR analysis indicated 80% purity with additional 20% of the aldehyde. The 

crude product was used in the next step without further purification. 
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C10H12O (148.20 g mol�1) 

1
H-NMR (250 MHz, CDCl3): � = 6.94 (s, 1H, C(CH3)CHC(CH3)), 6.90 (s, 2H, OCHCCH), 

3.79 (dd, 3
JHH = 4.0 Hz, 2

JHH = 2.7 Hz, 1H, OCHH), 3.12 (dd, 3
JHH = 5.5 Hz, 3

JHH = 4.1 Hz, 

1H, OCH), 2.79 (dd, 3JHH = 5.5 Hz, 2JHH = 2.6 Hz, 1H, OCHH), 2.31 (s, 6H, CH3) ppm. 

 

2-(3,5-Di-tert-butylphenyl)oxirane (25d) 

A suspension of 3,5-di-tert-butylbenzaldehyde (14e) (3.00 g, 13.8 mmol, 

1.00 eq.), trimethylsulfonium iodide (3.47 g, 16.6 mmol, 1.20 eq.), KOH 

(1.55 g, 27.6 mmol, 2.00 eq.) and water (62 	l, 62.1 mg, 3.45 mmol, 

0.25 eq.) in MeCN (30 mL) was stirred at 60 °C for 4 h. After cooling to RT the suspension 

was diluted with DCM, filtered over celite and the solvent was removed under reduced 

pressure to give the crude product (3.18 g). 1H-NMR analysis indicated 92% purity with 

additional 8% of the aldehyde. The crude product was used in the next step without further 

purification. 

C16H24O (232.36 g mol�1) 

1
H-NMR (250 MHz, CDCl3): � = 7.40 (t, 4

JHH = 1.8 Hz, 1H, CCCHCC), 7.14 (d, 4
JHH = 

1.8 Hz, 2H, OCHCCH), 3.89 (dd, 3
JHH = 4.0 Hz, 2

JHH = 2.6 Hz, 1H, OCHHCH), 3.15 (dd, 
3
JHH = 5.5 Hz, 3

JHH = 4.1 Hz, 1H, OCH2CH), 2.84 (dd, 3
JHH = 5.5 Hz, 2

JHH = 2.6 Hz, 1H, 

OCHHCH), 1.34 (s, 18H, CH3) ppm. 

 

2-Azido-2-(anthracen-9-yl)ethanol (31b) 

A solution of 2-(anthracen-9-yl)oxirane (25b) (3.21 g, 84%, 12.2 mmol, 

1.00 eq.), sodium azide (3.97 g, 61.0 mmol, 5.00 eq.), water (20 mL), acetic 

acid (12 mL) and acetone (20 mL) was heated to 50 °C and stirred for 4 h. After cooling to 

RT acetone was removed under reduced pressure and the aqueous layer was extracted with 

Et2O (2 
 40 mL), saturated with NaCl and again extracted with Et2O (1 
 40 mL). The 

combined organic layers were washed with aq. NaOH (5%) (1 
 50 mL) dried over MgSO4 

and the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 5 × 20 cm, hexanes/Et2O 3:2) gave the title compound 31b as a yellow solid  

(2.66 g, 83%). 

C16H13N3O (263.29 g mol�1) 
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1
H-NMR (400 MHz, CDCl3): � = 8.54 (s br, 1H, Ar-CH), 8.50 (s, 1H, Ar-CH), 8.05 (d, JHH = 

8.3 Hz, 2H, Ar-CH), 7.59-7.55 (m, 2H, Ar-CH), 7.52-7.48 (m, 2H, Ar-CH), 6.33 (dd, JHH = 

9.4 Hz, JHH = 4.8 Hz, 1H, Ar-CH), 4.46-4.40 (m, 1H, CHHOH), 3.96-3.90 (m, 1H, CHHOH), 

2.26-2.24 (m, 1H, NCH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 131.7 (s, Ar-C), 130.2 (s, Ar-C), 129.7 (s, Ar-CH), 

126.8 (s, CCHC), 126.5 (s, Ar-C), 125.2 (s, Ar-CH), 65.1 (s, CH2OH), 64.2 (s, NCH) ppm. 

IR (NaCl):  = 3337m br, 3049m, 2929w, 2845w, 2113s, 1623m, 1522m, 1445m, 1246s, 

1159m, 1142w, 1049s, 995m, 954w, 921w, 882s, 839m, 785m, 741m, 732s, 640m, 601m, 

546m, 462w, 418m cm�1. 

MS (EI, 70 eV): m/z (%) = 263 (22), 205 (22), 204 (100), 203 (27), 179 (12), 178 (22), 177 

(33), 176 (27). 

Elemental analysis calc. (%) for C16H13N3O: C 72.99, H 4.98, N 15.96; found: C 72.81, H 

5.15, N 15.67. 

Rf = 0.18 (SiO2, hexanes/Et2O 3:2). 

 

2-Azido-2-(3,5-dimethylphenyl)ethanol (31c) 

A solution of 2-(3,5-dimethylphenyl)oxirane (25c) (2.38 g, 80%, 13.5 mmol, 

1.00 eq.), sodium azide (4.39 g, 67.5 mmol, 5.00 eq.), water (20 mL), acetic 

acid (12 mL) and acetone (20 mL) was heated to 50 °C and stirred for 5 h. After cooling to 

RT acetone was removed under reduced pressure and the aqueous layer was extracted with 

Et2O (2 
 40 mL), saturated with NaCl and again extracted with Et2O (1 
 40 mL). The 

combined organic layers were washed with aq. NaOH (5%) (1 
 50 mL) dried over MgSO4 

and the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 3 × 20 cm, hexanes/Et2O 3:2) gave the title compound 31c as a light yellow oil  

(1.38 g, 53%). 

C10H13N3O (191.23 g mol�1) 

1
H-NMR (250 MHz, CDCl3): � = 6.99 (s, 1H, (CH3)CCHC(CH3)), 6.93 (s, 2H, CH(N3)CCH), 

4.60 (t, 3
JHH = 6.5 Hz, 1H, N3CH), 3.73 (t, 3

JHH = 6.5 Hz, 2H, CH2OH), 2.33 (s, 6H, CH3) 

ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 138.8 (s, CH3CCHCCH3), 136.2 (s, NCHC), 130.6 (s, 

CH3CCHCCH3), 125.1 (NCHCCH), 68.1 (s, NCH), 66.6 (s, CH2OH), 21.5 (s, CH3) ppm. 
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IR (NaCl):  = 3365m br, 3016w, 2920m, 2872w, 2104s, 1609m, 1465m, 1379w, 1332m, 

1253m, 1160w, 1041s, 954w, 849m, 702m cm�1. 

MS (EI, 70 eV): m/z (%) = 191 (4), 160 (38), 133 (29), 132 (88), 106 (12), 105 (100), 103 

(19), 91 (17), 79 (28), 77 (24). 

Elemental analysis calc. (%) for C10H13N3O: C 62.81, H 6.85, N 21.97; found: C 62.76, H 

7.00, N 21.69. 

Rf = 0.29 (SiO2, hexanes/Et2O 3:2). 

 

2-Azido-2-(3,5-di-tert-butyl phenyl)ethanol (31d) 

A solution of 2-(3,5-di-tert-butylphenyl)oxirane (25d) (1.63 g, 92%, 

6.47 mmol, 1.00 eq.), sodium azide (2.10 g, 32.3 mmol, 5.00 eq.), water 

(10 mL), acetic acid (6 mL) and acetone (10 mL) was heated to 50 °C and stirred for 5 h. 

After cooling to RT acetone was removed under reduced pressure and the aqueous layer was 

extracted with Et2O (2 
 20 mL), saturated with NaCl and again extracted with Et2O  

(1 
 20 mL). The combined organic layers were washed with aq. NaOH (5%) (1 
 25 mL) 

dried over MgSO4 and the solvent was removed under reduced pressure. Purification by 

column chromatography (SiO2, 3 × 20 cm, hexanes/EtOAc 3:1) yielded a slightly orange oil 

which solidified upon storage in the fridge overnight to give the title compound 31d as a 

slightly orange solid (653 mg, 37%). 

C16H25N3O (275.39 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.41 (t, 3

JHH = 1.8 Hz, 1H, CCCHCC), 7.14 (d, 3
JHH = 

1.5 Hz, 2H, NCHCCH), 4.67 (t, 3
JHH = 6.5 Hz, 1H, NCH), 3.76 (t, 3

JHH = 6.5 Hz, 2H, 

CH2OH), 2.03 (t, 3JHH = 6.5 Hz, 1H, CH2OH), 1.33 (s, 18H, CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 151.6 (s, CC(CH3)3), 135.5 (s, NCHC), 123.0 (s, 

CCCHCC), 121.3 (NCHCCH), 68.8 (s, NCH), 66.9 (s, CH2OH), 35.1 (s, C(CH3)3), 31.6 (s, 

CH3) ppm. 

IR (NaCl):  = 3316m br, 2964s, 2904m, 2867m, 2095s, 1740w, 1599m, 1476m, 1461m, 

1394w, 1363s, 1330w, 1248s, 1201w, 1060m, 925w, 897w, 873m, 823w, 714m, 697w cm�1. 

MS (EI, 70 eV): m/z (%) = 275 (2), 244 (14), 217 (21), 216 (100), 202 (21), 189 (21), 

147 (10), 133 (29), 57 (44), 41 (10). 
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Elemental analysis calc. (%) for C16H25N3O: C 69.78, H 9.15, N 15.26; found: C 70.01, 

H 9.00, N 14.97. 

Rf = 0.30 (SiO2, hexanes/EtOAc 3:1, visualized with KMnO4). 

 

2-Amino-2-(anthracen-9-yl)ethanol (30b) 

A solution of 2-azido-2-(anthracen-9-yl)ethanol (31b) (2.20 g, 8.37 mmol, 

1.00 eq.) in EtOH (28 mL) was degassed by three freeze-pump-thaw 

cycles. Pd/C (888 mg, 5%, 419 	mol, 5 mol%) was added and H2 was bubbled through this 

suspension for 20 min. Afterwards a balloon filled with H2 was attached to the flask and the 

reaction mixture was stirred for 18 h at RT. After filtration over celite the solvent was 

removed under reduced pressure to give the title compound 30b as an orange solid  

(1.58 g, 80%). The crude product was used in the next step without further purification. 

C16H15NO (237.30 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.57 (d, JHH = 7.3 Hz, 2H, Ar-CH), 8.41 (s, 1H, Ar-CH), 

8.02 (d, JHH = 7.9 Hz, 2H, Ar-CH), 7.53-7.44 (m, 4H, Ar-CH), 5.60 (dd, 3JHH = 9.7 Hz, 2JHH = 

5.3 Hz, 1H, CHHOH), 4.37 (t, 3
JHH = 10.1 Hz, 1H, NCH), 3.92 (dd, 3

JHH = 10.8 Hz, 2
JHH = 

5.3 Hz, 1H, CHHOH), 2.40 (s, 3H, NH2 OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 133.7 (s, Ar-C), 131.9 (s, Ar-C), 129.8 (s, Ar-C), 

129.7 (s, Ar-CH), 128.2 (s, Ar-CH), 125.9 (s, CCHC), 125.0 (s, Ar-CH), 66.2 (s, CH2OH), 

53.0 (s, NCH) ppm. 

IR (KBr):  = 3338s, 3300m, 3218m br, 3044s, 2879s, 2814s, 2713s, 1623s, 1521m, 1472m, 

1445m, 1419w, 1341w, 1281w, 1155m, 1084m, 1049s, 1017m, 971m, 885s, 841m, 828m, 

788m, 732s, 713m, 631m, 603m, 564w, 555m, 477w, 420w cm�1. 

MS (EI, 70 eV): m/z (%) = 237 (5), 207 (19), 206 (100), 204 (14), 179 (22), 178 (25). 

 

2-Amino-2-(3,5-dimethylphenyl)ethanol (30c) 

A solution of 2-azido-2-(3,5-dimethylphenyl)ethanol (31c) (1.35 g, 

7.07 mmol, 1.00 eq.) in EtOH (24 mL) was degassed by three freeze-pump-

thaw cycles. Pd/C (375 mg, 10%, 354 	mol, 5 mol%) was added and H2 was bubbled through 

this suspension for 20 min. Afterwards a balloon filled with H2 was attached to the flask and 
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the reaction mixture was stirred for 4 h at RT. After filtration over celite the solvent was 

removed under reduced pressure to give the title compound 30c as a slightly yellow solid 

(1.12 g, 96%). The crude product was used in the next step without further purification. 

C10H15NO (232.36 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 6.93 (s, 3H, Ar-CH), 3.96 (dd, 3

JHH = 8.3 Hz, 2
JHH = 

4.3 Hz, 1H, CHHOH), 3.71 (dd, 3
JHH = 10.8 Hz, 2

JHH = 4.4 Hz, 1H, CHHOH), 3.54 (dd, 
3
JHH = 10.7 Hz, 3JHH = 8.4 Hz, 1H, NCH), 2.36 (s br, 3H, NH2 OH), 2.32 (s, 6H, CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 142.7 (s, NCHC), 138.3 (s, CCH3), 129.2 (s, 

CH3CCHCCH3), 124.4 (s, NCHCCH), 68.1 (s, CH2OH), 57.4 (s, NCH), 21.4 (s, CH3) ppm. 

IR (NaCl):  = 3330s, 3280s, 3181s br, 3008s, 2916s, 2859s, 2731m, 1718m, 1653m, 1606s, 

1507w, 1448s, 1378m, 1358s, 1272w, 1166m, 1116m, 1065s, 981s, 943w, 896m, 882m, 845s, 

786m, 709s, 675s, 575w, 548w, 535s, 507m, 466m, 433w cm�1. 

MS (FAB, NBA): m/z (%) = 167 (11), 166 (100), 164 (11), 150 (12), 149 (98), 148 (40), 

147 (14), 145 (10), 134 (83), 133 (27), 132 (25), 131 (26), 119 (78), 117 (14), 115 (13), 105 

(21), 91 (32), 89 (10), 81 (11), 79 (14), 77 (21), 69 (13), 57 (19), 55 (21), 43 (18), 41 (22), 39 

(15). 

 

2-Amino-2-(3,5-di-tert-phenyl)ethanol (30d) 

A solution of 2-azido-2-(3,5-di-tert-butylphenyl)ethanol (31d) (500 mg, 

1.82 mmol, 1.00 eq.) in EtOH (6 mL) was degassed by three freeze-pump-

thaw cycles. Pd/C (96.5 mg, 10%, 91.0 	mol, 5 mol%) was added and H2 was bubbled 

through this suspension for 20 min. Afterwards a balloon filled with H2 was attached to the 

flask and the reaction mixture was stirred for 4 h at RT. After filtration over celite the solvent 

was removed under reduced pressure to give the title compound 30d as an off-white solid 

(453 g, quant.). The crude product was used in the next step without further purification. 

C16H27NO (249.39 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.35 (t, 4

JHH = 1.8 Hz, 1H, CCCHCC), 7.16 (d, 4
JHH = 

1.8 Hz, 2H, NCHCCH), 4.04 (dd, 3
JHH = 8.6 Hz, 2

JHH = 4.4 Hz, 1H, CHHOH), 3.75 (dd, 3
JHH 

= 10.7 Hz, 2
JHH = 4.2 Hz, 1H, CHHOH), 3.57 (dd, 3

JHH = 10.6 Hz, 3
JHH = 8.5 Hz, 1H, NCH), 

2.06 (s br, 3H, NH2 OH), 1.33 (s, 18H, CH3) ppm. 
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13
C{

1
H}-NMR (101 MHz, CDCl3): � = 151.2 (s, CC(CH3)3), 142.1 (s, NCHC), 121.8 (s, 

CCCHCC), 120.7 (s, NCHCCH), 68.4 (s, CH2OH), 58.1 (s, NCH), 35.1 (s, C(CH3)3), 31.6 (s, 

CH3) ppm. 

IR (NaCl):  = 3352 m, 3286m, 3130m br, 3089m, 2962s, 2909m, 2867m, 2812m, 1603s, 

1477m, 1465m, 1387w, 1364s, 1332w, 1270w, 1250m, 1197m, 1079s, 1040s, 964m, 925m, 

899w, 878s, 860w, 814w, 719s, 668m, 548w cm�1. 

MS (FAB, NBA): m/z (%) = 251 (17), 250 (100), 218 (18), 177 (20), 57 (67). 

Elemental analysis calc. (%) for C16H27NO: C 77.06, H 10.91, N 5.62; found: C 76.82, H 

10.77, N 5.41. 

 

4-(Anthracen-9-yl)-2-(2-(diphenylphosphino)phenyl)-4,5-

dihydrooxazole (27b) 

A solution of 2-amino-2-(anthracen-9-yl)ethanol (30b) (562 mg, 

2.37 mmol, 1.20 eq.), 2-(diphenylphosphino)benzonitrile (565 mg, 

1.97 mmol, 1.00 eq.) and ZnCl2 (309 mg, 2.27 mmol, 1.15 eq.) in 

chlorobenzene (17 mL) was heated to reflux for 6 d. After cooling to RT the suspension was 

diluted with EtOAc and filtered over celite. After removal of the solvent, the residue was 

diluted with chloroform and upon addition of TBME the dichloro-zinc complex 33b of the 

desired ligand precipitated as an orange solid which was filtered off (591 mg, 47%). 300 mg 

of this solid (466 	mol, 1.00 eq.) were dissolved in chloroform (5 mL) and 2,2’-bipyridine 

(72.7 mg, 466 	mol, 1.00 eq.) was added. The solution was stirred for 1.5 h at RT and then 

filtered over a plug of SiO2. Removal of the solvent under reduced pressure gave the title 

compound 27b as a brown solid (127 mg, 54%, 25% over 2 steps). 

C35H26NOP (507.56 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.43 (s, 1H, Ar-CH), 8.24-8.21 (m, 2H, Ar-CH), 8.07-8.04 

(m, 1H, Ar-CH), 8.01-7.99 (m, 2H, Ar-CH), 7.45-7.32 (m, 13H, Ar-CH), 7.26-7.23 (m, 3H, 

Ar-CH), 7.01 (ddd, JHH = 7.3 Hz, JHH = 4.3 Hz, JHH = 0.9 Hz, 1H, Ar-CH), 6.50 (t, 3
JHH = 

11.0 Hz, 1H, NCH), 4.66 (dd, 3JHH = 11.4 Hz, 3JHH = 8.5 Hz, 1H, NCHCHH), 4.52 (dd, 3JHH = 

10.8 Hz, 3JHH = 8.5 Hz, 1H, NCHCHH) ppm. 

13
C{

1
H}-NMR (126 MHz, CDCl3): � = 165.0 (d, 3

JCP = 1.7 Hz, NCO), 139.5 (d, JCP = 

25.4 Hz, Ar-C), 138.3 (d, JCP = 11.9 Hz, Ar-C), 137.6 (d, JCP = 10.3 Hz, Ar-C), 134.3 (d, 
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2
JCP = 21.0 Hz, PPh-CCH), 134.2 (d, 2

JCP = 20.9 Hz, PPh’-CCH), 132.3 (s, Ar-C), 132.1 (s, 

Ar-C), 131.8 (s, Naph-C), 130.9 (s, Ar-CH), 130.6 (s, Naph-C), 130.4 (s, Ar-CH), 130.4 (s, 

Ar-CH), 129.6 (s, Ar-CH), 128.9 (s, Ar-CH), 128.7 (s, Ar-CH), 128.7 (s, Ar-CH), 128.5 (s, 

Ar-CH), 128.5 (s, Ar-CH), 128.4 (s, Ar-CH), 126.1 (s, Ar-CH), 124.8 (s, Ar-CH), 124.1 (s, 

Ar-CH), 72.9 (s, NCHCH2), 66.1 (s, NCH) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = �4.8 (s) ppm. 

IR (NaCl):  = 3049m, 2954w, 1653s, 1647s, 1623m, 1560m, 1522m, 1433s, 1349m, 1307m, 

1243w, 1182w, 1158w, 1092m, 1051w, 1032m, 963w, 929w, 888m, 839w, 788w, 742s, 731s, 

696s, 629w, 544w, 502m, 420w cm�1. 

MS (ESI, 200 °C, MeOH/AcOH(5%)): m/z (%) = 508 (4, [M+H+]), 546 (100, [M+K+]). 

Elemental analysis calc. (%) for C35H26NOP: C 82.82, H 5.16, N 2.76; found: C 82.64, 

H 5.31, N 2.52. 

m.p.: 91-95 °C. 

 

4-(3,5-Dimethylphenyl)-2-(2-(diphenylphosphino)phenyl)-4,5-

dihydrooxazole (27c) 

A solution of 2-amino-2-(3,5-dimethylphenyl)ethanol (30c) (500 mg, 

3.03 mmol, 1.20 eq.), 2-(diphenylphosphino)benzonitrile (726 mg, 

2.53 mmol, 1.00 eq.) and ZnCl2 (396 mg, 2.91 mmol, 1.15 eq.) in 

chlorobenzene (22 mL) was heated to reflux for 6 d. After cooling to RT the suspension was 

diluted with EtOAc and filtered over celite. After removal of the solvent under reduced 

pressure, the residue was diluted with chloroform and upon addition of TBME the dichloro-

zinc 33c complex of the desired ligand precipitated as a light yellow solid which was filtered 

off (1.01 g, 70%). 500 mg of this solid (874 	mol, 1.00 eq.) were dissolved in chloroform 

(7 mL) and 2,2’-bipyridine (136 mg, 874 	mol, 1.00 eq.) was added. The solution was stirred 

for 1.5 h at RT and then filtered over a plug of SiO2. Removal of the solvent under reduced 

pressure gave the title compound 27c as a white solid (221 mg, 58%, 41% over 2 steps). 

C29H26NOP (435.00 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.00 (ddd, JHH = 7.4 Hz, JHH = 3.6 Hz, JHH = 1.5 Hz, 1H, 

Ar-CH), 7.38-7.30 (m, 12H, Ar-CH), 6.92 (ddd, JHH = 7.7 Hz, JHH = 4.3 Hz, JHH = 1.3 Hz, 

1H, Ar-CH), 6.85 (s, 1H, Ar-CH), 6.66 (s, 2H, Ar-CH), 5.13 (t, 3
JHH = 9.8 Hz, 1H, NCH),  
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4.50 (dd, 3
JHH = 10.1 Hz, 3

JHH = 8.2 Hz, 1H, NCHCHH), 3.88 (dd, 3
JHH = 9.4 Hz, 3

JHH = 

8.2 Hz, 1H, NCHCHH), 2.24 (s, 6H, CH3) ppm. 

13
C{

1
H}-NMR (126 MHz, CDCl3): � = 164.8 (s, NCO), 141.9 (s, NCHC), 139.3 (d, 2

JCP = 

25.4 Hz, PCC), 138.3 (d, 1
JCP = 11.9 Hz, PPh-C), 138.1 (s, CH3CCHCCH3), 137.9 (d, 1

JCP = 

10.4 Hz, PPh’-C), 134.3 (d, 2JCP = 21.2 Hz, PPh-CCH), 134.1 (d, 2JCP = 21.1 Hz, PPh’-CCH), 

134.0 (s, CC(P)CH), 131.8 (d, 1JCP =19.4 Hz, PCC), 130.8 (s, Ar-CH), 130.5 (d, JCP = 3.3 Hz, 

Ar-CH), 129.1 (s, Ar-CH), 128.8 (s, Ar-CH), 128.8 (s, Ar-CH), 128.6 (d, JCP = 7.1 Hz, Ar-

CH), 128.5 (d, JCP = 7.4 Hz, Ar-CH), 128.2 (s, CH3CCHCCH3), 124.56 (s, NCHCCH), 74.6 

(s, NCHCH2), 70.2 (s, NCH), 21.4 (s, CH3) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = �4.9 (s) ppm. 

IR (NaCl):  = 3065w, 3049w, 3000w, 2979w, 2913w, 2892w, 2852w, 1646m, 1644m, 

1633w, 1604m, 1583w, 1583w, 1474m, 1459m, 1455, 1432s, 1351m, 1331w, 1301m, 1253w, 

1242w, 1199w, 1180w, 1133w, 1120w, 1089s, 1033s, 1027s, 998w, 960m, 940w, 901m, 

880w, 847s, 775w, 742s, 719w, 693s cm�1. 

MS (FAB, NBA): m/z (%) = 453 (11), 452 (26), 437 (24), 436 (79), 435 (37), 305 (23), 304 

(100), 303 (10), 302 (25), 289 (14), 288 (16), 183 (13), 119 (18). 

Elemental analysis calc. (%) for C29H26NOP: C 79.98, H 6.02, N 3.22; found: C 80.21, 

H 6.24, N 3.13. 

m.p.: 112-115 °C. 

 

4-(3,5-Di-tert-butylphenyl)-2- 

(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole (27d) 

A solution of 2-amino-2-(3,5-di-tert-butylphenyl)ethanol (30d) 

(300 mg, 1.20 mmol, 1.20 eq.), 2-(diphenylphosphino)-benzonitrile 

(287 mg, 1.00 mmol, 1.00 eq.) and ZnCl2 (156 mg, 1.15 mmol, 

1.15 eq.) in chlorobenzene (9 mL) was heated at reflux for 6 d. After cooling to RT the 

suspension was diluted with EtOAc and filtered over celite. After removal of the solvent 

under reduced pressure, the dichloro-zinc complex 33d of the desired ligand was obtained as a 

yellow solid (650 g, 99%). 300 mg of this solid (457 	mol, 1.00 eq.) were dissolved in 

chloroform (4 mL) and 2,2’-bipyridine (71.3 mg, 457 	mol, 1.00 eq.) was added. The solution 

was stirred for 1.5 h at RT and then filtered over a plug of SiO2. Removal of the solvent under 
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reduced pressure gave the title compound 27d as a slightly yellow solid (178 mg, 75%,  

74% over 2 steps). 

C35H38NOP (519.66 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.96 (ddd, JHH = 7.6 Hz, JHH = 3.5 Hz, JHH = 1.5 Hz, 1H, 

Ar-CH), 7.40-7.32 (m, 13H, Ar-CH), 7.13 (d, JHH = 1.5 Hz, 2H, Ar-CH), 6.96 (ddd, JHH = 

7.4 Hz, JHH = 4.0 Hz, JHH = 0.9 Hz, 1H, Ar-CH), 5.15 (t, 3
JHH = 9.8 Hz, 1H, NCH), 4.46 (dd, 

3
JHH = 10.1 Hz, 3

JHH = 8.3 Hz, 1H, NCHCHH), 4.08 (7, 3
JHH = 8.4 Hz, 1H, NCHCHH), 1.31 

(s, 18H, CH3) ppm. 

13
C{

1
H}-NMR (126 MHz, CDCl3): � = 164.9 (s, NCO), 151.0 (s, (CH3)3CC), 141.3 (s, PCC), 

138.9 (d, 2
JCP = 24.5 Hz, NCHC), 138.1 (d, 1

JCP = 11.1 Hz, PPh-C), 138.0 (d, 1
JCP = 11.9 Hz, 

PPh’-C), 134.2 (d, 2JCP = 13.0 Hz, PPh-CCH), 134.1 (d, 2JCP = 12.7 Hz, PPh’-CCH), 134.0 (s, 

CC(P)CH), 132.7 (d, 1JCP = 21.7 Hz, PCC), 130.7 (s, Ar-CH), 130.2 (d, JCP = 3.5 Hz, Ar-CH), 

128.7 (s, Ar-CH), 128.7 (s, Ar-CH), 128.6 (s, Ar-CH), 128.5 (s, Ar-CH), 128.3 (s, Ar-CH), 

121.6 (s, (CH3)3CCCHCC(CH3)3), 121.2 (s, NCHCCH), 74.7 (s, NCHCH2), 70.8 (s, NCH), 

35.1 (s, C(CH3)3), 31.7 (s, CH3) ppm. 

31
P{

1
H}-NMR (162 MHz, CDCl3): � = �6.0 ppm. 

IR (NaCl):  = 3054w, 2963s, 2903m, 2866m, 1654s, 1648m, 1599m, 1560m, 1476s, 1456m, 

1435m, 1362m, 132w, 1248m, 1201m, 1134w, 1090m, 1037m, 999w, 967w, 894w, 873m, 

804w, 743s, 716m, 696s cm�1. 

MS (FAB, NBA): m/z (%) = 519 (15), 305 (15), 304 (69), 303 (23), 302 (100), 240 (20), 227 

(21), 201 (29), 57 (11). 

Elemental analysis calc. (%) for C35H38NOP: C 80.89, H 7.37, N 2.70; found: C 81.05, 

H 7.42, N 2.91. 

m.p.: 133-136 °C. 

HPLC of the corresponding phosphine oxide (Daicel Chiracel AD-H, Hept/i-PrOH = 90:10, 

0.5 mL/min, 25 °C): tR = 24.9 min, 32.0 min. 

Semipreparative HPLC of the corresponding phosphine oxide (Daicel Chiracel AD,  

hexane/i-PrOH = 93:7, 6 mL/min, 25 °C, 100 µL, 200 mg/mL): tR = 71 min, 86 min. 
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7.3.3 ESI-MS Screening of Racemic Catalyst Mixtures 

General procedure 1: The precatalyst solution (50 	l, 2.5 mM), prepared from an equimolar 

mixture of [Pd(C3H5)(MeCN)2]OTf and the corresponding ligand, was mixed with 50 	l of a 

solution (125 mM) of a 3:1 mixture of quasienantiomers (R)-8a and (S)-8b (prepared 

according to a literature procedure[20]) and 50 	l of a solution (10 mM) of [Na([15]crown-

5)][CEt(CO2Et)2]
[19]. After 30 s, an aliquot of 5 	l of the reaction mixture was taken, diluted 

with 1 mL of the corresponding solvent and analyzed by ESI-MS under mild desolvation 

conditions. The spectra were acquired in the centroid mode and the selectivity was calculated 

from the ratios of the peak heights of the signals corresponding to the major isotopomers of 

36 and 37.  
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7.4 New PHOX Containing Catalysts for the Iridium-Catalyzed 

Asymmetric Hydrogenation 

7.4.1 Complexation  

To a solution of [Ir(COD)Cl]2 (0.5 eq.) in DCM (15 mM) in a Young-tube a solution of the 

respective ligand (1.0 eq.) in DCM (25 mM) was added dropwise. The Young-tube was sealed 

and the mixture stirred at 50 °C for 1 h. After cooling to room temperature NaBArF (1.2 eq.) 

was added and the mixture stirred for 1 h at room temperature. The solvent was removed 

under reduced pressure. Elution of the side products on a SiO2-column with TBME and then 

of the product with DCM afforded the desired complexes 39. 

 

7.4.2 Hydrogenations 

Hydrogenations at elevated pressure 

The substrate (0.1 mmol) was dissolved in DCM (1 mL) in a glass vial with a stirring bar and 

the respective catalyst (1 µmol) was added. Up to four vials were placed in an autoclave 

(60 mL) which was closed, pressurized with H2 (50 bar) and placed on a stirring plate for 2 h. 

After pressure release the solvent was removed under a stream of nitrogen. The residue was 

filtered over a short plug of SiO2 eluting with EtOAc. After removal of the solvent under 

reduced pressure the residue was analyzed by GC and HPLC. 

Hydrogenations at ambient pressure 

The substrate (0.1 mmol) was dissolved in DCM (1 mL) in a glass vial with a stirring bar and 

the respective catalyst (1 µmol) was added. The vial was placed in a flask which was closed 

with a rubber septum. A H2-filled balloon equipped with a needle was put on the septum, the 

flask was flushed with H2 by pulling vacuum and placed on a stirring plate for 2 h.The solvent 

was removed under a stream of nitrogen and the residue was filtered over a short plug of SiO2 

eluting with EtOAc. After removal of the solvent under reduced pressure the residue was 

analyzed by GC and HPLC. 
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7.4.3 Analytical Data of the Hydrogenation Substrates 

(E)-Prop-1-ene-1,2-diyldibenzene (40) 

GC (Restek Rtx-1701 (30 m × 0.25 mm × 0.25 µm), 60 kPa He, (100 °C, 

2 min, 7 K/min, 250 °C, 10 min)): tR = 18.2 min (41), 21.4 min (40). 

HPLC (Daicel Chiracel OJ, Hept/i-PrOH = 99:1, 0.5 mL/min, 20 °C): tR = 15.6 min ((R)-41), 

23.8 min ((S)-41). 

 

(E)-1-(But-2-en-2-yl)-4-methoxybenzene (42) 

GC (Chiraldex �-cyclodextrin TFA G-TA (30 m × 0.25 mm × 

0.12 µm), 60 kPa H2, (60 °C, 30 min, 5 K/min, 100 °C, 20 K/min, 

160 °C, 10 min)): tR = 38.4 min ((S)-43), 38.6 min ((R)-43), 41.2 min (42). 

 

(E)-2-Methyl-3-phenylprop-2-en-1-ol (44) 

GC (Restek Rtx-1701 (30 m × 0.25 mm × 0.25 µm), 60 kPa He, (100 °C, 

2 min, 7 K/min, 250 °C, 10 min)): tR = 14.6 min (45), 16.5 min (44). 

HPLC (Daicel Chiracel OD-H, Hept/i-PrOH = 95:5, 0.5 mL/min, 40 °C): tR = 15.3 min  

((R)-45), 17.5 min ((S)-45). 

 

(E)-Ethyl 3-phenylbut-2-enoate (46) 

GC (Chiraldex �-cyclodextrin TFA G-TA (30 m × 0.25 mm × 0.12 µm), 

60 kPa H2, (85 °C, 50 min, 10 K/min, 160 °C)): tR = 42.9 min ((R)-47), 

44.9 min ((S)-47), 57.0 min (46). 

 

1-(But-1-en-2-yl)-4-methoxybenzene (48) 

GC (Chiraldex �-cyclodextrin TFA G-TA (30 m × 0.25 mm × 

0.12 µm), 60 kPa H2, (60 °C, 30 min, 5 K/min, 100 °C, 20 K/min, 

160 °C, 10 min)): tR = 38.4 min ((S)-49), 38.6 min ((R)-49), 40.3 min (48). 

 



Chapter 7 

 

176 

7-Methoxy-4-methyl-1,2-dihydronaphthalene (50) 

GC (Restek Rtx-1701 (30 m × 0.25 mm × 0.25 µm), 60 kPa He, (100 °C, 

2 min, 7 K/min, 250 °C, 10 min)): tR = 17.0 min (51), 19.7 min (50). 

HPLC (Daicel Chiracel OD-H, Hept, 0.5 mL/min, 20 °C): tR = 20.4 min ((R)-51), 27.0 min 

((S)-51). 

 

(E)-N-(1-Phenylethylidene)aniline (52) 

GC (Macherey-Nagel Optima 5-Amin (30 m × 0.25 mm × 0.5 µm), 60 kPa 

He, (150 °C, 10 K/min, 250 °C, 10 min)): tR = 12.8 min (53), 13.2 min (52). 

HPLC (Daicel Chiracel OD-H, Hept/i-PrOH = 99:1, 0.5 mL/min, 20 °C): 

tR = 24.6 min ((S)-53), 33.0 min ((R)-53). 
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7.5 Secondary Phosphinoxide Containing Ligands in the Palladium 

Catalyzed Allylic Substitution 

7.5.1 Palladium Catalyzed Allylic Alkylation 

General procedure 2: A solution of [Pd(C3H5)(MeCN)2]OTf (2.37 mg, 6.25 µmol, 2 mol%) 

and the respective chiral ligand (2 mol%) in the corresponding solvent (2.5 mL, 2.5 mM) was 

degassed in a Young tube by three freeze-pump-thaw cycles and afterwards stirred at room 

temperature for 1 h. In a second Young tube (E)-di-arylallyl benzoate (7) (107 mg, 313 µmol, 

2 mol%) was dissolved in the corresponding solvent (1.7 mL, 0.2 M). To this solution BSA 

(191 mg, 939 µmol, 3.00 eq.), pentane-2,4-dione (93.9 mg, 939 µmol, 3.00 eq.) and catalytic 

amounts of KOAc were added. After three freeze-pump-thaw cycles the catalyst solution was 

added via syringe and the resulting mixture was stirred at the given temperature for the given 

time. Then the reaction was diluted with Et2O and washed with ice-cold sat. aq. NH4Cl-

solution. The aqueous phase was extracted with Et2O twice, the combined organic layers were 

dried over MgSO4 and the solvent was removed under reduced pressure. The crude was 

purified by column chromatography (SiO2, 3 × 20 cm, hexanes/EtOAc/NEt3 = 18:1:1) and the 

enantiomeric excess was determined by HPLC on a chiral stationary phase. The analytical 

data match the literature values.[20] 

 

7.5.2 Determination of Complexation Pattern by ESI-MS 

An equimolar mixture of [Pd(C3H5)(MeCN)2]OTf and the respective chiral ligand was 

dissolved in DCM (0.5 mM) and the solution was stirred at room temperature for 1 h. Then an 

aliquot of 5 	l of the mixture was taken, diluted with 1 mL of DCM and analyzed by ESI-MS 

under mild desolvation conditions. The spectra were acquired in the centroid mode. 
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7.6 Organo-Catalyzed Transfer-Hydrogenation of ��,�-Unsaturated 

Carbonyl Compounds 

7.6.1 Catalyst Synthesis 

(S)-tert-Butyl (1-hydroxy-3-phenylpropan-2-yl)carbamate (71a) 

To a solution of phenyl alaninol (70a) (6.04 g, 40.0 mmol, 1.00 eq.) and 

triethyl amine (5.56 mL, 40.0 mmol, 1.00 eq.) in THF (120 mL), Boc-

anhydride (8.72 g, 40 mmol, 1.00 eq) was added at 0 °C. The reaction mixture was warmed to 

room temperature and stirred for 1.5 h. Afterwards the solvent was removed under high 

vacuum and the residue dissolved in EtOAc (100 mL). The organic phase was washed with 

water (2 × 100 mL) and brine (1 × 100 mL). After drying over MgSO4 the solvent was 

removed under reduced pressure to yield the desired Boc-protected aminoalcohol 71a as a 

colorless solid (9.55 g, 96%). The analytical data match the literature values.[138] 

C14H21NO3 (251.32 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.31-7.26 (m, 2H, Ar-CH), 7.23-7.20 (m, 3H, Ar-CH), 4.83 

(s br, 1H, NH), 3.90-3.80 (m, 1H, NHCHBn), 3.67-3.62 (m, 1H, CHHOH), 3.56-3.51 (m, 1H, 

CHHOH), 2.84 (d, 3
JHH = 7.1 Hz, 2H, CH2Ph), 2.64 (s br, 1H, OH), 1.41 (s, 9H, C(CH3)3) 

ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 156.3 (s, NHC(O)O), 138.0 (s, Ar-C), 129.4 (s, Ar-

CH), 128.7 (s, Ar-CH), 126.6 (Ar-CH), 79.8 (s, C(CH3)3), 64.4 (s, CH2OH), 53.8 (s, 

NHCHBn), 37.6 (s, CHCH2Ph), 28.5 (s, C(CH3)3) ppm. 

MS (ESI, 200 °C, DCM): m/z = 286 [M+Cl�]. 

 

(S)-tert-Butyl-4-benzyl-1,2,3-oxathiazolidine-3-carboxylate-2,2-

dioxide (72a) 

To a solution of imidazole (2.17 g, 31.0 mmol, 4.00 eq.) in DCM (80 mL) 

triethyl amine (2.44 mL, 17.5 mmol, 2.20 eq.) and (S)-tert-butyl (1-hydroxy-3-phenylpropan-

2-yl)carbamate (71a) (2.00 g, 7.97 mmol, 1.00 eq.) were added. The solution was cooled to 

0 °C and SOCl2 (638 µL, 8.77 mmol, 1.10 eq.) was added drop wise. The reaction mixture 

was warmed to room temperature and stirred overnight. To the resulting greenish solution 

water was added (50 mL), the layers were separated, the aqueous layer was extracted with 

DCM (2 × 20 mL) and the combined organic layers were washed with brine (1 × 50 mL). The 
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organic phase was dried over MgSO4 and the solvent was removed under reduced pressure to 

yield a greenish oil. 

NaIO4 (6.31 g, 29.5 mmol, 3.70 eq.) was dissolved in water (40 mL). To this solution 

RuO2·H2O (60.2 mg, 399 µmol, 5 mol%) was added and the mixture was stirred for 5 min at 

room temperature. The resulting yellow solution was cooled to 0 °C and a solution of the 

residue from the first step in EtOAc (30 mL) was added. After stirring at 0 °C for 1 h, the 

layers were separated and the aqueous layer was extracted with EtOAc (2 × 50 mL). and dried 

over MgSO4 and the solvent was removed under reduced pressure. Purification by column 

chromatography (SiO2, 5 × 20 cm, cyclohexane/EtOAc = 2:1) afforded an off-white solid, 

which was further purified by recrystallization from Et2O to give the desired compound 72a 

as a colorless solid (671 mg, 27%). The title compound is as well commercial available from 

Strem (MFCD17018793). 

C14H19NO5S (313.37 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.37-7.33 (m, 2H, Ar-CH), 7.31-7.28 (m, 1H, Ar-CH), 

7.24-7.22 (m, 2H, Ar-CH), 4.48-4.41 (m, 2H, SOCH2), 4.34-4.30 (m, 1H, NCHBn), 3.37 (dd, 
2
JHH = 13.6 Hz, 3

JHH = 4.1 Hz, 1H, CHHPh), 2.93 (dd, 2
JHH = 13.4 Hz, 3

JHH = 10.1 Hz, 1H, 

CHHPh), 1.56 (s, 9H, C(CH3)3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 148.6 (s, NC(O)O), 135.3 (s, Ar-), 129.6 (s, Ar-CH), 

129.2 (s, Ar-CH), 127.7 (Ar-CH), 85.8 (s, C(CH3)3), 68.9 (s, CHCH2O), 58.7 (s, 

BnCHCH2O), 38.0 (s, CHCH2Ph), 28.1 (s, C(CH3)3) ppm. 

MS (ESI, 200 °C, DCM): m/z = 348 [M+Cl�]. 

Rf = 0.61 (SiO2, cyclohexane/EtOAc = 2:1). 

 

(S)-1-(2-Bromophenoxy)-3-phenylpropan-2-amine (73a) 

In a flame-dried 2-neck flask 2-bromo phenol (178 µL, 1.54 mmol, 

1.20 eq.) was dissolved in DMF (12 mL). To this solution sodium hydride (60%, 61.7 mg, 

1.54 mmol, 1.20 eq.) was added and the mixture was stirred at room temperature for 10 min. 

Then, (S)-tert-butyl-4-benzyl-1,2,3-oxathiazolidine-3-carboxylate-2,2-dioxide (72a) (400 mg, 

1.28 mmol, 1.00 eq.) was added and the reaction mixture was stirred at room temperature for 

2 days before the solvent was removed under high vacuum. The residue was dissolved in 

dioxane (8 mL) and conc. sulfuric acid (152 µL) and water (152 µL) were added. After 



Chapter 7 

 

180 

30 min further conc. sulfuric acid (840 µL) was added and the mixture was again stirred for 

30 min. After neutralization with sat. aq. NaHCO3-solution the aqueous layer was extracted 

with DCM (3 × 30 mL), the combined organic layers were dried over MgSO4 and the solvent 

was removed under reduced pressure. Purification by column chromatography (SiO2,  

3 × 20 cm, cyclohexane/EtOAc = 2:1 � EtOAc pure) gave the desired compound 73a as a 

colorless oil (352 mg, 90%). The analytical data match the literature values.[139] 

C15H16BrNO (306.20 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.54 (dd, 3

JHH = 8.3 Hz, JHH = 1.7 Hz, 1H, Ar-CH), 7.33-

7.29 (m, 2H, Ar-CH), 7.25-7.21 (m, 4H, Ar-CH), 6.85-6.81 (m, 2H, Ar-CH), 3.98 (dd, 2
JHH = 

8.8 Hz, 3
JHH = 4.1 Hz, 1H, OCHHCHN), 3.84 (dd, 2

JHH = 8.8 Hz, 3
JHH = 6.5 Hz, 1H, 

OCHHCHN), 3.52-3.46 (m, 1H, OCH2CHN), 2.97 (dd, 2
JHH = 13.4 Hz, 3

JHH = 6.0 Hz, 1H, 

CHHPh), 2.76 (dd, 2JHH = 13.4 Hz, 3JHH = 7.9 Hz, 1H, CHHPh), 1.54 (s br, 2H, NH2) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 155.2 (s, Ar-C), 138.6 (s, Ar-C), 133.4 (s, Ar-CH), 

129.4 (s, Ar-CH), 128.7 (s, Ar-CH), 128.6 (s, Ar-CH), 126.6 (s, Ar-CH), 122.2 (s, Ar-CH), 

113.5 (s, Ar-CH), 112.5 (s, Ar-C), 73.3 (s, OCH2CHN), 52.3 (s, OCH2CHN), 40.8 (s, CH2Ph) 

ppm. 

Rf = 0.17 (SiO2, EtOAc). 

 

(S)-3-Benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazine (63a) 

In a flame-dried Young-tube a mixture of (S)-1-(2-bromophenoxy)-3-

phenylpropan-2-amine (73a) (170 mg, 478 µmol, 1.00 eq.), Pd(OAc)2 (6.50 mg, 28.7 µmol, 

6 mol%), Xantphos (16.6 mg, 28.7 µmol, 6 mol%) and tert-BuONa (57.5 mg, 598 µmol, 

1.25 eq.) in toluene (5 mL) was stirred at 100 °C overnight. After cooling to room 

temperature the mixture was diluted with EtOAc (40 mL), washed with water (1 × 40 mL) 

and brine (1 × 40 mL), dried over MgSO4 and concentrated under reduced pressure. 

Purification by column chromatography (SiO2, 3 × 20 cm, cyclohexane/EtOAc = 3:1 + 5% 

NEt3) gave the desired compound 63a as a yellow solid (90.0 mg, 69%). The analytical data 

match the literature values.[140] 

C15H15NO (225.29 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.73 (d, 3

JHH = 7.9 Hz, 1H, Ar-CH), 7.49 (d, 3JHH = 8.3 Hz, 

1H, Ar-CH), 7.40-7.35 (m, 3H, Ar-CH), 7.33-7.22 (m, 5H, Ar-CH), 7.08 (d, 3
JHH = 8.8 Hz, 
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1H, Ar-CH), 4.35 (dd, 2
JHH = 10.5 Hz, 3

JHH = 2.5 Hz, 1H, OCHHCHN), 4.07 (dd br, 2
JHH = 

10.3 Hz, 3
JHH = 6.6 Hz, 2H, OCHHCHN, NH), 3.79-3.72 (m, 1H, OCH2CHN), 2.95 (dd, 2

JHH 

= 13.3 Hz, 3JHH = 5.6 Hz, 1H, CHHPh), 2.86 (dd, 2JHH = 13.3 Hz, 3JHH = 8.7 Hz, 1H, CHHPh) 

ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 139.9 (s, Ar-C), 137.6 (s, Ar-C), 129.8 (s, Ar-C), 

129.4 (s, Ar-CH), 129.0 (s, Ar-CH), 128.7 (s, Ar-CH), 127.0 (s, Ar-CH), 125.4 (s, Ar-CH), 

125.2 (s, Ar-C), 124.4 (s, Ar-C), 123.7 (s, Ar-CH), 119.2 (s, Ar-CH), 118.8 (s, Ar-CH), 118.6 

(s, Ar-CH), 68.9 (s, OCH2CHN), 51.3 (s, OCH2CHN), 38.8 (s, CH2Ph) ppm. 

IR (neat):  = 3395m, 3035w, 2988w, 2919w, 2863w, 1607m, 1534m, 1500m, 1487m, 

1455m, 1433w, 1372w, 1356m, 1313m, 1284s, 1253w, 1203m, 1183w, 1136w, 1079w, 

1039m, 1017m, 922w, 879w, 850w, 757s, 739s, 705s cm�1. 

MS (EI, 70 eV): m/z (%) = 225 (18), 134 (100), 106 (12). 

m.p.: 62-67 °C. 

Optical rotation:  = �75 (c = 0.255, CHCl3). 

Rf = 0.46 (SiO2, cyclohexane/EtOAc = 3:1 + 5% NEt3). 

 

(S)-1-((1-Bromonaphthalen-2-yl)oxy)-3-phenylpropan-2-

amine (74a) 

In a flame-dried 2-neck flask 1-bromonaphthalen-2-ol (171 mg, 

767 µmol, 1.20 eq.) was dissolved in DMF (6 mL). To this solution sodium hydride (60%, 

31.0 mg, 767 µmol, 1.20 eq.) was added and the mixture was stirred at room temperature for 

10 min. Then, (S)-tert-butyl 4-benzyl-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide (72a) 

(200 mg, 639 µmol, 1.00 eq.) was added and the reaction mixture was stirred at room 

temperature for 2 days before the solvent was removed under high vacuum. The residue was 

dissolved in dioxane (4 mL) and conc. sulfuric acid (76 µL) and water (76 µL) were added. 

After 30 min further conc. sulfuric acid (420 µL) was added and the mixture was again stirred 

for 30 min. After neutralization with sat. aq. NaHCO3-solution the aqueous layer was 

extracted with DCM (3 × 15 mL), the combined organic layers were dried over MgSO4 and 

the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 3 × 20 cm, EtOAc) gave the desired compound 74a as a slightly orange oil  

(187 mg, 82%). 
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C19H18BrNO (356.26 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.22 (d, 3

JHH = 8.6 Hz, 1H, Ar-CH), 7.78 (d, 3JHH = 8.7 Hz, 

2H, Ar-CH), 7.57 (td, 3JHH = 6.9 Hz, JHH = 0.9 Hz, 1H, Ar-CH), 7.40 (td, 3JHH = 7.0 Hz, JHH = 

1.0 Hz, 1H, Ar-CH), 7.33-7.19 (m, 6H, Ar-CH), 4.16-4.13 (m, 1H, OCHHCHN), 3.99 (dd, 
2
JHH = 8.7 Hz, 3

JHH = 6.5 Hz, 1H, OCHHCHN), 3.56-3.50 (m, 1H, OCH2CHN), 3.02 (dd, 
2
JHH = 13.4 Hz, 3

JHH = 5.9 Hz, 1H, CHHPh), 2.80 (dd, 2
JHH = 13.4 Hz, 3

JHH = 7.9 Hz, 1H, 

CHHPh), 1.62 (s br, 2H, NH2) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 153.2 (s, Ar-C), 138.6 (s, Ar-C), 133.3 (s, Ar-C), 

130.1 (s, Ar-C), 129.5 (s, Ar-CH), 139.1 (s, Ar-CH), 128.7 (s, Ar-CH), 128.2 (s, Ar-CH), 

127.9 (s, Ar-CH), 126.6 (s, Ar-CH), 126.3 (s, Ar-CH), 124.6 (s, Ar-CH), 109.7 (s, Ar-C), 74.4 

(s, OCH2CHN), 52.6 (s, OCH2CHN), 40.8 (s, CH2Ph) ppm. 

Rf = 0.15 (SiO2, EtOAc). 

 

(S)-2-Benzyl-2,3-dihydro-1H-naphtho[2,1-b][1,4]oxazine (75a) 

In a flame-dried Young-tube a mixture of (S)-1-((1-bromonaphthalen-2-

yl)oxy)-3-phenylpropan-2-amine (74a) (300 mg, 980 µmol, 1.00 eq.), 

Pd(OAc)2 (13.2 mg, 58.8 µmol, 6 mol%), Xantphos (34.0 mg, 58.8 µmol, 6 mol%) and tert-

BuONa (118 mg, 1.23 mmol, 1.25 eq.) in toluene (10 mL) was stirred at 100 °C overnight. 

After cooling to room temperature the mixture was diluted with EtOAc (80 mL), washed with 

water (1 × 80 mL) and brine (1 × 80 mL), dried over MgSO4 and concentrated under reduced 

pressure. Purification by column chromatography (SiO2, 3 × 20 cm, cyclohexane/EtOAc = 3:1 

+ 5% NEt3) gave the desired compound 75a as a slightly orange solid (196 mg, 89%). 

C19H17NO (275.34 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.37-7.33 (m, 2H, Ar-CH), 7.29-7.27 (m, 1H, Ar-CH), 

7.25-7.22 (m, 2H, Ar-CH), 6.79 (d, 3
JHH = 7.9 Hz, 1H, Ar-CH), 6.76-6.72 (m, 1H, Ar-CH), 

6.67-6.63 (m, 1H, Ar-CH), 6.52-6.50 (m, 1H, Ar-CH), 4.25 (dd, 2
JHH = 10.5 Hz, 3

JHH = 

2.6 Hz, 1H, OCHHCHN), 3.97 (dd, 2
JHH = 10.6 Hz, 3

JHH = 6.8 Hz, 1H, OCHHCHN), 3.68 (s 

br, 1H, NH), 3.65-3.59 (m, 1H, OCH2CHN), 2.86 (dd, 2
JHH = 13.4 Hz, 3

JHH = 5.3 Hz, 1H, 

CHHPh), 2.70 (dd, 2JHH = 13.4 Hz, 3JHH = 9.0 Hz, 1H, CHHPh) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 144.0 (s, Ar-C), 137.4 (s, Ar-C), 133.2 (s, Ar-C), 

129.4 (s, Ar-CH), 129.0 (s, Ar-CH), 127.0 (s, Ar-CH), 121.6 (s, Ar-CH), 118.9 (s, Ar-CH), 
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116.6 (s, Ar-CH), 115.6 (s, Ar-CH), 69.2 (s, OCH2CHN), 50.9 (s, OCH2CHN), 38.7 (s, 

CH2Ph) ppm. 

IR (neat):  = 3392w, 3030w, 2953w, 2879w, 1580m, 1474m 1398m, 1254m, 1019m, 798s, 

744s, 703m cm�1. 

MS (EI, 70 eV): m/z (%) =275 (35), 185 (13), 184 (100), 115 (10). 

Elemental analysis calc. (%) for C19H17NO: C 82.88, H 6.22, N 5.09; found: C 82.74, 

H 6.17, N 5.01. 

m.p.: 126-130 °C. 

Optical rotation:  = �84.9 (c = 0.425, CHCl3). 

Rf = 0.64 (SiO2, cyclohexane/EtOAc = 3:1 + 5% NEt3). 

 

(S)-tert-Butyl-(1-hydroxy-3,3-dimethylbutan-2-yl)carbamate (71b) 

To a solution of tert-leucinol (70b) (5.00 g, 42.7 mmol, 1.00 eq.) and triethyl 

amine (6.00 mL, 42.7 mmol, 1.00 eq.) in THF (140 mL), Boc-anhydride (9.31 g, 42.7 mmol, 

1.00 eq) was added at 0 °C. The reaction mixture was warmed to room temperature and 

stirred for 1.5 h. Afterwards the solvent was removed under high vacuum and the residue was 

dissolved in EtOAc (100 mL). The organic phase was washed with water (2 × 100 mL) and 

brine (1 × 100 mL). After drying over MgSO4 the solvent was removed under reduced 

pressure to yield the desired Boc-protected aminoalcohol 71b as a colorless solid (8.79 g, 

95%). The analytical data match the literature values.[141] 

C11H23NO3 (217.31 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 4.69 (s br, 1H, NH), 3.86-3.79 (m, 1H, NHCHBn), 3.50-

3.44 (m, 2H, CH2OH), 2.46 (s br, 1H, OH), 1.44 (s, 9H, NHC(CH3)3), 0.92 (s, 9H, 

CHC(CH3)3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 157.3 (s, NHC(O)O), 79.7 (s, C(CH3)3), 63.2 (s, 

CH2OH), 61.1 (s, NHCHC(CH3)3), 33.8 (s, C(CH3)3), 28.5 (s, C(CH3)3), 26.9 (s, C(CH3)3) 

ppm. 
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(S)-tert-Butyl 4-(tert-butyl)-1,2,3-oxathiazolidine-3-carboxylate 2,2-

dioxide (72b) 

To a solution of imidazole (6.27 g, 92.0 mmol, 4.00 eq.) in DCM (230 mL) 

triethyl amine (7.04 mL, 50.6 mmol, 2.20 eq.) and (S)-tert-butyl-(1-hydroxy-3,3-

dimethylbutan-2-yl)carbamate (71b) (4.99 g, 23.0 mmol, 1.00 eq.) were added. The solution 

was cooled to 0 °C and SOCl2 (1.84 mL, 25.3 mmol, 1.10 eq.) was added drop wise. The 

reaction mixture was warmed to room temperature and stirred overnight. To the resulting 

greenish solution water was added (100 mL), the layers were separated, the aqueous layer was 

extracted with DCM (2 × 50 mL) and the combined organic layers were washed with brine  

(1 × 50 mL). The organic phase was dried over MgSO4 and the solvent was removed under 

reduced pressure to yield a greenish oil. 

NaIO4 (18.2 g, 85.1 mmol, 3.70 eq.) was dissolved in water (100 mL). To this solution 

RuO2×H2O (174 mg, 1.15 mmol, 5 mol%) was added and the mixture was stirred for 5 min at 

room temperature. The resulting yellow solution was cooled to 0 °C and a solution of the 

residue from the first step in EtOAc (80 mL) was added. After stirring at 0 °C for 1 h, the 

layers were separated, the aqueous layer was extracted with EtOAc (2 × 100 mL) and  

iso-propanol (35 mL) was added to the combined organic layers. The resulting black 

suspension was filtered over celite where upon a yellow solution was obtained. This was dried 

over MgSO4 and the solvent was removed under reduced pressure. Purification by column 

chromatography (SiO2, 5 × 20 cm, EtOAc) gave the desired compound 72b as a colorless 

solid (2.39 g, 37%). The analytical data match the literature values.[142] 

C11H21NO5S (279.35 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 4.58 (dd, 2

JHH = 9.7 Hz, 3
JHH = 6.2 Hz, 1H, NCHCH2O), 

4.48 (d, 3
JHH = 9.7 Hz, 1H, NCHCHHO), 4.16 (d, 3

JHH = 6.2 Hz, 1H, NCHCHHO), 1.55 (s, 

9H, NC(CH3)3), 1.00 (s, 9H, CHC(CH3)3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 150.3 (s, NC(O)O), 85.5 (s, NC(CH3)3), 67.8 (s, 

OCH2CHN), 65.2 (s, OCH2CHN), 35.6 (s, CHC(CH3)3), 27.9 (s, NC(CH3)3), 25.9 (s, 

CHC(CH3)3) ppm. 

Rf = 0.64 (SiO2, cyclohexane/EtOAc = 2:1). 
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(S)-1-(2-Bromophenoxy)-3,3-dimethylbutan-2-amine (73b) 

In a flame-dried 2-neck flask 2-bromophenol (499 µL, 4.30 mmol, 

1.20 eq.) was dissolved in DMF (40 mL). To this solution sodium hydride (60%, 172 mg, 

4.30 mmol, 1.20 eq.) was added and the mixture was stirred at room temperature for 10 min. 

Then, (S)-tert-butyl 4-(tert-butyl)-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide (72b) 

(1.00 g, 3.58 mmol, 1.00 eq.) was added and the reaction mixture was stirred at room 

temperature overnight before the solvent was removed under high vacuum. The residue was 

dissolved in dioxane (22 mL) and conc. sulfuric acid (425 µL) and water (425 µL) were 

added. After 30 min further conc. sulfuric acid (2.35 mL) was added and the mixture was 

again stirred for 30 min. After neutralization with sat. aq. NaHCO3-solution the aqueous layer 

was extracted with DCM (3 × 75 mL), the combined organic layers were dried over MgSO4 

and the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 3 × 20 cm, EtOAc + 5 % NEt3) gave the desired compound 73b as a yellow oil 

(934 mg, 96%). 

C12H18BrNO (272.18 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.53 (dd, 3

JHH = 7.9 Hz, 4
JHH = 1.6 Hz, 1H, Ar-CH), 7.27-

7.22 (m, 1H, Ar-CH), 6.89 (dd, 3
JHH = 8.2 Hz, 4

JHH = 1.3 Hz, 1H, Ar-CH), 6.83 (td, 3
JHH = 

7.6 Hz, JHH = 1.4 Hz, 1H, Ar-CH), 4.20 (dd, 2
JHH = 8.8 Hz, 3

JHH = 3.0 Hz, 1H, OCHHCHN), 

3.78 (t, JHH = 8.8 Hz, 1H, OCHHCHN), 3.00 (dd, 3
JHH = 8.8 Hz, 3

JHH = 3.0 Hz, 1H, 

OCH2CHN), 1.58 (s br, 2 H, NH2), 1.01 (s, 9H, C(CH3)3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 155.4 (s, Ar-C), 133.4 (s, Ar-CH), 128.6 (s, Ar-CH), 

122.1 (s, Ar-CH), 113.5 (s, Ar-CH), 112.5 (s, Ar-C), 71.6 (s, OCH2CHN), 59.2 (s, 

OCH2CHN), 33.3 (s, C(CH3)3), 26.7 (s, C(CH3)3) ppm. 

Rf = 0.52 (SiO2, EtOAc). 

 

(S)-3-(tert-Butyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine (63b) 

In a flame-dried Young-tube a mixture of (S)-1-(2-bromophenoxy)-3,3-

dimethylbutan-2-amine (73b) (920 mg, 3.38 mmol, 1.00 eq.), Pd(OAc)2 

(45.7 mg, 203 µmol, 6 mol%), Xantphos (118 mg, 203 µmol, 6 mol%) and tert-BuONa 

(407 mg, 4.23 mmol, 1.25 eq.) in toluene (35 mL) was stirred at 100 °C overnight. After 

cooling to room temperature the mixture was diluted with EtOAc (250 mL), washed with 

water (1 × 250 mL) and brine (1 × 250 mL), dried over MgSO4 and concentrated under 
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reduced pressure. Purification by column chromatography (SiO2, 3 × 20 cm, 

cyclohexane/EtOAc = 5:1) gave the desired compound 63b as a slightly orange solid 

(484 mg, 75%). The analytical data match the literature values.[143] 

C12H17NO (191.27 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 6.79-6.75 (m, 2H, Ar-CH), 6.66-6.62 (m, 2H, Ar-CH), 4.30 

(td, 2
JHH = 10.5 Hz, JHH = 2.2 Hz, 1H, OCHHCHN), 3.95 (dd, 2

JHH = 10.5 Hz, 3
JHH = 8.3 Hz, 

1H, OCHHCHN), 3.78 (s br, 1H, NH), 3.13 (td, 3
JHH = 8.2 Hz, JHH = 2.1 Hz, 1H, 

OCH2CHN), 1.01 (s, 9H, C(CH3)3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 144.0 (s, Ar-C), 134.5 (s, Ar-C), 121.5 (s, Ar-CH), 

118.4 (s, Ar-CH), 116.5 (s, Ar-CH), 115.5 (s, Ar-CH), 66.7 (s, OCH2CHN), 58.3 (s, 

OCH2CHN), 32.8 (s, C(CH3)3), 26.2 (s, C(CH3)3) ppm. 

IR (KBr):  = 3388m, 2956m, 2868w, 2806w, 1606m, 1592w, 1496s, 1429m, 1398w, 

1368m, 1344m, 1309m, 1283s, 1268m, 1244m, 1207s, 1190m, 1132m, 1115m, 1078w, 

1043m, 999m, 948w, 915w, 869w, 736s cm�1. 

MS (EI, 70 eV): m/z (%) = 191 (23), 134 (100), 106 (16). 

m.p.: 40-42 °C. 

Optical rotation:  = �25.0 (c = 0.500, CHCl3). 

Rf = 0.61 (SiO2, cyclohexane/EtOAc = 5:1). 

 

(S)-1-((1-Bromonaphthalen-2-yl)oxy)-3,3-dimethylbutan-2-

amine (74b) 

In a flame-dried 2-neck flask 1-bromonaphthalen-2-ol (959 mg, 

4.30 mmol, 1.20 eq.) was dissolved in DMF (40 mL). To this solution sodium hydride (60%, 

172 mg, 4.30 mmol, 1.20 eq.) was added and the mixture was stirred at room temperature for 

10 min. Then, (S)-tert-butyl 4-tert-butyl-1,2,3-oxathiazolidine-3-carboxylate-2,2-dioxide 

(72b) (1.00 g, 3.58 mmol, 1.00 eq.) was added and the reaction mixture was stirred at room 

temperature for 2 days before the solvent was removed under high vacuum. The residue was 

dissolved in dioxane (22 mL) and conc. sulfuric acid (425 µL) and water (425 µL) were 

added. After 30 min further conc. sulfuric acid (2.35 mL) was added and the mixture was 

again stirred for 30 min. After neutralization with sat. aq. NaHCO3-solution the aqueous layer 
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was extracted with DCM (3 × 75 mL), the combined organic layers were dried over MgSO4 

and the solvent was removed under reduced pressure. Purification by column chromatography 

(SiO2, 3 × 20 cm, EtOAc) gave the desired compound 74b as a slightly yellow oil  

(1.12 g, 97%). 

C16H20BrNO (322.24 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.21 (d, 3

JHH = 8.5 Hz, 1H, Ar-CH), 7.78 (dd, 3
JHH = 

8.9 Hz, JHH = 6.1 Hz, 2H, Ar-CH), 7.58-7.54 (m, 1H, Ar-CH), 7.41-7.37 (m, 1H, Ar-CH), 

7.25 (d, 3JHH = 9.0 Hz, 1H, Ar-CH), 4.37 (dd, 2JHH = 8.8 Hz, 3JHH = 2.9 Hz, 1H, OCHHCHN), 

3.91 (d, 3
JHH = 8.9 Hz, 1H, OCHHCHN), 3.05 (dd, 3

JHH = 9.0 Hz, 3
JHH = 2.9 Hz, 1H, 

OCH2CHN), 1.61 (s br, 2H, NH2), 1.03 (s, 9H, C(CH3)3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 153.4 (s, Ar-C), 133.3 (s, Ar-C), 130.1 (s, Ar-C), 

129.0 (s, Ar-CH), 128.2 (s, Ar-CH), 127.8 (s, Ar-CH), 126.3 (s, Ar-CH), 124.6 (s, Ar-CH), 

115.3 (s, Ar-CH), 109.9 (s, Ar-C), 72.8 (s, OCH2CHN), 59.4 (s, OCH2CHN), 33.3 (s, 

C(CH3)3), 26.8 (s, C(CH3)3) ppm. 

Rf = 0.50 (SiO2, EtOAc). 

 

(S)-2-(tert-Butyl)-2,3-dihydro-1H-naphtho[2,1-b][1,4]oxazine 

(75b) 

In a flame-dried Young-tube a mixture of (S)-1-((1-bromonaphthalen-2-

yl)oxy)-3,3-dimethylbutan-2-amine (74b) (1.00 g, 3.11 mmol, 1.00 eq.), Pd(OAc)2 (42.1 mg, 

187 µmol, 6 mol%), Xantphos (108 mg, 187 µmol, 6 mol%) and tert-BuONa (374 mg, 

3.89 mmol, 1.25 eq.) in toluene (30 mL) was stirred at 100 °C overnight. After cooling to 

room temperature the mixture was diluted with EtOAc (200 mL), washed with water  

(1 × 200 mL) and brine (1 × 200 mL), dried over MgSO4 and concentrated under reduced 

pressure. Purification by column chromatography (SiO2, 3 × 20 cm, cyclohexane/EtOAc = 

10:1) gave the desired compound 75b as a slightly yellow solid (522 mg, 70%). 

C16H19NO (241.32 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.77-7.71 (m, 2H, Ar-CH), 7.44 (t, 3

JHH = 7.5 Hz, 1H, Ar-

CH), 7.36-7.32 (m, 1H, Ar-CH), 7.23 (d, 3
JHH = 8.6 Hz, 1H, Ar-CH), 7.06 (d, 3

JHH = 8.7 Hz, 

1H, Ar-CH), 4.42 (dd, 2
JHH = 10.5 Hz, 3

JHH = 2.4 Hz, 1H, OCHHCHN), 4.13 (s br, 1H, NH), 
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4.04 (dd, 2
JHH = 10.4 Hz, 3

JHH = 8.3 Hz, 1H, OCHHCHN), 3.27 (dd, 3
JHH = 7.8 Hz, 3

JHH = 

1.6 Hz, 1H, OCH2CHN), 1.11 (s, 9H, C(CH3)3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 140.0 (s, Ar-C), 129.7 (s, Ar-C), 128.8 (s, Ar-CH), 

126.4 (s, Ar-C), 125.3 (s, Ar-CH), 124.5 (s, Ar-C), 123.6 (s, Ar-CH), 118.8 (s, Ar-CH), 118.8 

(s, Ar-CH), 118.5 (s, Ar-CH), 66.6 (s, OCH2CHN), 58.6 (s, OCH2CHN), 33.1 (s, C(CH3)3), 

26.4 (s, C(CH3)3) ppm. 

IR (NaCl):  = 3388w, 3056w, 2950m, 2868w, 1624w, 1597m, 1583w, 1518w, 1474m, 

1400m, 1366m, 1330m, 1315m, 1273m, 1255s, 1204m, 1129m, 1108w, 1063w, 1045m, 

1024m, 1000m, 973m, 944w, 924w, 797s, 741s cm�1. 

MS (EI, 70 eV): m/z (%) = 241 (30), 185 (13), 184 (100). 

Elemental analysis calc. (%) for C16H19NO: C 79.63, H 7.94, N 5.80; found: C 79.65, 

H 8.00, N 5.74. 

m.p.: 49-52 °C. 

Optical rotation:  = �10.1 (c = 0.485, CHCl3). 

Rf = 0.53 (SiO2, cyclohexane/EtOAc = 10:1). 

 

7.6.2 Substrate Synthesis 

Ethyl 3-(4-fluorophenyl)propiolate (76c) 

A solution of ethyl propiolate (76b) (1.58 mL, 15.6 mmol, 

1.50 eq.), (4-fluorophenyl)boronic acid (77d) (1.46 g, 10.4 mmol, 1.00 eq.), CuI (296 mg, 

1.56 mmol, 15 mol%), Ag2O (4.83 g, 20.8 mmol, 2.00 eq.) and Cs2CO3 (6.78 g, 20.8 mmol, 

2.00 eq.) in DCE (80 mL) was heated to 80 °C for 36 h under air atmosphere.[93] After cooling 

to room temperature the suspension was filtered over celite and the resulting solution was 

washed with water (3 × 100 mL). The organic phase was dried over MgSO4 and the solvent 

was removed under reduced pressure. Purification by column chromatography (SiO2,  

3 × 20 cm, Pent/Et2O = 10:1) afforded the title compound 76c as a colorless solid (645 mg, 

32%). The analytical data match the literature values.[93] 

C11H9FO2 (192.19 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.60-7.55 (m, 2H, Ar-CH), 7.09-7.04 (m, 2H, Ar-CH), 4.29 

(q, 3JHH = 7.1 Hz, 2H, CO2CH2CH3), 1.35 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 
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13
C{

1
H}-NMR (101 MHz, CDCl3): � = 164.0 (d, 1

JCF = 253.6 Hz, Ar-CF), 154.1 (s, CCO2Et), 

125.3 (d, JCF = 8.8 Hz, Ar-CH), 116.2 (d, JCF = 22.4 Hz, Ar-CH), 115.9 (d, 4
JCF = 3.6 Hz, Ar-

CCHCHCF), 85.1 (s, CCCO2Et), 80.8 (s, CCCO2Et), 62.3 (s, CO2CH2CH3), 14.2 (s, 

CO2CH2CH3) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �106.5 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 192 (15), 148 (11), 147 (100), 120 (82), 119 (10), 99 (15), 86 (11), 

84 (16). 

Rf = 0.33 (SiO2, Pent/Et2O = 20:1). 

 

Formation of ethyl 3,3-diarylacrylates 78 

General procedure 3: In a flame-dried Young-tube ethyl 3-arylpropiolate (76a) (1.00 eq.), 

arylboronic acid (77) (3.00 eq.) and CuOAc (2 mol%) were dissolved in MeOH (0.5 M). The 

solution was degassed by three freeze-pump-thaw cycles and then stirred overnight at room 

temperature. The resulting suspension was filtered over celite and the solvent was removed 

under reduced pressure. Purification by column chromatography (SiO2, 5 × 20 cm, eluent as 

listed for the Rf -value) afforded the desired ethyl 3,3-diarylacrylate.[92] 

 

(E)-Ethyl 3-phenyl-3-(p-tolyl)acrylate (78a) 

According to general procedure 3, the title compound 78a was obtained 

upon reaction of ethyl 3-phenylpropiolate (76a) with p-tolylboronic acid 

(77a) as a colorless oil (88%). The analytical data match the literature values.[92] 

C18H18O2 (266.33 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.39-7.38 (m, 3H, Ar-CH), 7.22-7.19 (m, 4H, Ar-CH), 7.13 

(d, 3
JHH = 8.2 Hz, 2H, Ar-CH), 6.36 (s, 1H, CHCO2Et), 4.05 (q, 3

JHH = 7.1 Hz, 2H, 

CO2CH2CH3), 2.36 (s, 3H, Ar-CCH3), 1.11 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.4 (s, CHCO2Et), 156.7 (s, PhCCH), 139.8 (s, Ar-

C), 139.3 (s, Ar-C), 138.1 (s, Ar-C), 129.2 (s, Ar-CH), 129.2 (s, Ar-CH), 128.4 (s, Ar-CH), 

128.1 (s, Ar-CH), 127.9 (s, Ar-CH), 116.6 (s, CCHCO2Et), 60.1 (s, CO2CH2CH3), 21.4, (s, 

Ar-CCH3), 14.1 (s, CO2CH2CH3) ppm. 
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MS (EI, 70 eV): m/z (%) = 267 (19), 266 (94), 237 (21), 222 (19), 221 (100), 195 (159, 194 

(82), 193 (38), 192 (18), 191 (26), 190 (12), 189 (20), 179 (45), 178 (82), 176 (14), 165 (24), 

152 (15), 119 (28), 115 (48), 205 (21), 91 (19), 89 (14), 77 (13), 65 (14), 63 (11), 51 (14). 

Rf = 0.29 (SiO2, Pent/Et2O = 10:1). 

 

(E)-Ethyl 3-(3,5-dimethylphenyl)-3-phenylacrylate ((E)-78b) 

According to general procedure 3, the title compound 78b was obtained 

upon reaction of ethyl 3-phenylpropiolate (76a) with (3,5-dimethyl-

phenyl)boronic acid (77b) as a colorless oil (71%). 

C19H20O2 (280.36 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.42-7.31 (m, 3H, Ar-CH), 7.24-7.15 (m, 2H, Ar-CH), 6.99 

(s, 1H, Ar-CH), 6.91 (s, 2H, Ar-CH), 6.33 (s, 1H, CHCO2Et), 4.04 (q, 3
JHH = 7.1 Hz, 2H, 

CO2CH2CH3), 2.27 (s, 6H, CH3CCHCCH3), 1.11 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.2 (s, CHCO2Et), 156.9 (s, PhCCH), 140.9 (s, Ar-

C), 139.2 (s, Ar-C), 137.9 (s, Ar-C), 131.1 (s, Ar-CH), 129.1 (s, Ar-CH), 128.0 (s, Ar-CH), 

127.8 (s, Ar-CH), 126.2 (s, Ar-CH), 117.2 (s, CCHCO2Et), 60.0 (s, CO2CH2CH3), 21.3, (s, 

CH3CCHCCH3), 14.0 (s, CO2CH2CH3) ppm. 

IR (NaCl):  = 3029m, 2980m, 2919m, 2867m, 1890w, 1723s, 1654w, 1618s, 1597s, 1576m, 

1560m, 1541m, 1494m, 1464m, 1444m, 1367s, 1350m, 1280s, 1261s, 1220s, 1159s, 1096m, 

1076m, 1044s, 914w, 876m, 852s, 774m, 699s, 668m, 646m cm�1. 

MS (EI, 70 eV): m/z (%) = 281 (21), 280 (100), 279 (25), 265 (15), 251 (23), 237 (17), 236 

(19), 235 (93), 221 (14), 209 (13), 208 (72), 207 (72), 206 (22), 205 (10), 193 (37), 192 (53), 

191 (57), 190 (22), 189 (29), 179 (11), 178 (23), 165 (31), 133 (27), 129 (20), 128 (14), 115 

(32), 105 (30), 91 (13), 89 (11), 77 (25), 51 (15). 

Rf = 0.26 (SiO2, Pent/Et2O = 50:1). 
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(E)-Ethyl 3-(4-methoxyphenyl)-3-phenylacrylate ((E)-78c) 

According to general procedure 3, the title compound 78c was 

obtained upon reaction of ethyl 3-phenylpropiolate (76a) with  

(4-methoxyphenyl)boronic acid (77c) as a colorless oil (81%). The analytical data match the 

literature values.[92] 

C18H18O3 (282.33 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.39-7.36 (m, 3H, Ar-CH), 7.25-7.23 (m, 2H, Ar-CH), 

7.22-7.19 (m, 2H, Ar-CH), 6.85-6.82 (m, 2H, Ar-CH), 6.31 (s, 1H, CHCO2Et), 4.03 (q, 3JHH = 

7.1 Hz, 2H, CO2CH2CH3), 3.81 (s, 3H, CH3O), 1.10 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.3 (s, CHCO2Et), 160.8 (s, MeOC), 156.3 (s, 

PhCCH), 139.3 (s, Ph-C), 133.1 (s, MeOCCHCHC), 129.8 (s, Ar-CH), 129.1 (s, Ar-CH), 

128.0 (s, Ar-CH), 127.8 (s, Ar-CH), 115.4 (s, CCHCO2Et), 113.8 (s, Ar-CH), 59.9 (s, 

CO2CH2CH3), 55.4 (s, CH3O), 14.01 (s, CO2CH2CH3) ppm. 

Rf = 0.35 (SiO2, Pent/Et2O = 5:1). 

 

(E)-Ethyl 3-(4-fluorophenyl)-3-phenylacrylate ((E)-78d) 

According to general procedure 3, the title compound (E)-78d was 

obtained upon reaction of ethyl 3-phenylpropiolate (76a) with  

(4-fluorophenyl)boronic acid (77d) as a colorless oil (84%). The analytical data match the 

literature values.[144] 

C17H15FO2 (270.30 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.40-7.37 (m, 3H, Ar-CH), 7.30-7.20 (m, 2H, Ar-CH), 

7.20-7.18 (m, 2H, Ar-CH), 7.03-6.97 (m, 2H, Ar-CH), 6.31 (s, 1H, CHCO2Et), 4.05 (q, 3JHH = 

7.1 Hz, 2H, CO2CH2CH3), 1.11 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.1 (s, CHCO2Et), 163.6 (d, 1

JCF = 250.1 Hz, Ar-

CF), 155.5 (s, PhCCH), 138.9 (s, Ph-C), 137.0 (d, 4
JCF = 3.2 Hz, Ar-CCHCHCF), 130.3 (d, 

3
JCF = 8.4 Hz, Ar-CFCHCHC), 129.2 (s, Ph-CH), 128.4 (s, Ph-CCHCH), 128.1 (s, Ph-CH), 

117.4 (s, CCHCO2Et), 115.5 (d, 2
JCF = 21.6 Hz, Ar-CFCHCHC), 60.2 (s, CO2CH2CH3), 14.1 

(s, CO2CH2CH3) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �111.9 (s, Ar-CF) ppm. 
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MS (EI, 70 eV): m/z (%) = 271 (15), 270 (84), 242 (10), 241 (20), 226 (18), 225 (100), 199 

(10), 198 (64), 197 (64), 196 (82), 194 (14), 183 (22), 177 (21), 176 (23), 175 (10), 170 (16), 

123 (19), 105 (19), 98 (10), 77 (12), 75 (10), 51 (15). 

Rf = 0.26 (SiO2, Pent/Et2O = 10:1). 

 

(Z)-Ethyl 3-(4-fluorophenyl)-3-phenylacrylate ((Z)-78d) 

According to general procedure 3, the title compound (Z)-78d was 

obtained upon reaction of Ethyl 3-(4-fluorophenyl)propiolate (76c) with 

phenylboronic acid using 10 mol% CuOAc for 4 h as a colorless solid (53%).  

C17H15FO2 (270.30 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.38-7.26 (m, 5H, Ar-CH), 7.22-7.17 (m, 2H, Ar-CH), 

7.10-7.04 (m, 2H, Ar-CH), 6.35 (s, 1H, CHCO2Et), 4.07 (q, 3JHH = 7.1 Hz, 2H, CO2CH2CH3), 

1.15 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.1 (s, CHCO2Et), 162.8 (d, 1

JCF = 247.6 Hz, Ar-

CF), 155.7 (s, PhCCH), 140.9 (s, Ph-C), 134.9 (d, 4
JCF = 3.5 Hz, Ar-CCHCHCF), 131.2 (d, 

3
JCF = 8.1 Hz, Ar-CFCHCHC), 129.7 (s, Ph-CH), 128.6 (s, Ph-CCHCH), 128.4 (s, Ph-CH), 

117.9 (s, CCHCO2Et), 115.0 (d, 2
JCF = 21.6 Hz, Ar-CFCHCHC), 60.3 (s, CO2CH2CH3), 14.2 

(s, CO2CH2CH3) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �113.5 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 271(16), 270 (88), 241 (17), 226 (16), 225 (100), 198 (54), 197 

(55), 196 (75), 194 (11), 183 (19), 177 (17), 176 (18), 170 (13), 123 (13), 105 (10), 51 (11). 

Rf = 0.18 (SiO2, Pent/Et2O = 20:1). 

 

(E)-Ethyl 3-(2-fluorophenyl)-3-phenylacrylate ((E)-78e) 

According to general procedure 3, the title compound 78e was obtained 

upon reaction of ethyl 3-phenylpropiolate (76a) with  

(2-fluorophenyl)boronic acid (77e) as a colorless oil (47%). Carrying out the reaction with 

10 mol% of CuOAc for 3 h afforded the desired acrylate in 82% yield. 

C17H15FO2 (270.30 g mol�1) 
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1
H-NMR (500 MHz, CDCl3): � = 7.36-7.26 (m, 4H, Ar-CH), 7.25-7.21 (m, 2H, Ar-CH), 

7.14-7.04 (m, 3H, Ar-CH), 6.33 (s, 1H, CHCO2Et), 4.07 (q, 3JHH = 7.1 Hz, 2H, CO2CH2CH3), 

1.12 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.2 (s, CHCO2Et), 160.3 (d, 1

JCF = 251.6 Hz, Ar-

CF), 150.5 (s, PhCCH), 139.0 (s, Ph-C), 131.6 (d, JCF = 2.4 Hz, Ar-CH), 130.6 (d, JCF = 

8.6 Hz, Ar-CH), 129.3 (d, 2
JCF = 11.9 Hz, Ar-CFCCH), 128.9 (s, Ph-CH), 128.4 (s, Ph-CH), 

128.0 (s, Ph-CH), 124.1 (d, JCF = 3.8 Hz, Ar-CH), 121.7 (d, JCF = 5.7 Hz, Ar-CH), 116.3 (d, 
4
JCF = 22.6 Hz, PhCCHCO2Et), 60.4 (s, CO2CH2CH3), 14.1 (s, CO2CH2CH3) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �112.9 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 271 (14), 270 (80), 169 (13), 142 (18), 226 (16), 225 (100), 109 

(13), 198 (34), 197 (47), 196 (60), 194 (15), 183 (10), 177 (16), 176 (24). 

Rf = 0.21 (SiO2, Pent/Et2O = 20:1). 

 

(E)-Ethyl 3-(naphthalen-2-yl)-3-phenylacrylate ((E)-78f) 

According to general procedure 3, the title compound 78f was 

obtained upon reaction of ethyl 3-phenylpropiolate (76a) with 

naphthalen-2-ylboronic acid (77f) as a colorless solid (40%). 

C21H18O2 (302.37 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.81-7.72 (m, 3H, Ar-CH), 7.68-7.65 (m, 1H, Ar-CH), 

7.49-7.38 (m, 6H, Ar-CH), 7.27-7.23 (m, 2H, Ar-CH), 6.50 (s, 1H, CHCO2Et), 4.07 (q, 3JHH = 

7.2 Hz, 2H, CO2CH2CH3), 1.12 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.3 (s, CHCO2Et), 156.5 (s, PhCCH), 139.1 (s, Ar-

C), 138.2 (s, Ar-C), 133.8 (s, Ar-C), 133.1 (s, Ar-C), 129.4 (s, Ar-CH), 128.9 (s, Ar-CH), 

128.8 (s, Ar-CH), 128.3 (s, Ar-CH), 128.2 (s, Ar-CH), 128.1 (s, Ar-CH), 127.7 (s, Ar-CH), 

127.1 (s, Ar-CH), 126.6 (s, Ar-CH), 125.3 (s, Ar-CH), 118.0 (s, CCHCO2Et), 60.2 (s, 

CO2CH2CH3), 14.1 (s, CO2CH2CH3) ppm. 

MS (EI, 70 eV): m/z (%) = 303 (22), 302 (100), 273 (15), 258 (13), 257 (59), 230 (44), 229 

(61), 228 (57), 227 (22), 226 (32), 215 (15), 202 (14), 155 (11), 114 (12). 

Rf = 0.18 (SiO2, Pent/Et2O = 20:1). 
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(E)-Ethyl 3-(phenantren-9-yl)-3-phenylacrylate ((E)-78g) 

According to general procedure 3, the title compound 78g was 

obtained upon reaction of ethyl 3-phenylpropiolate (76a) with 

phenanthren-9-ylboronic acid (77g) in MeOH/DCM (2:1, 0.5 M) as a 

colorless solid (34%). 

C25H20O2 (352.43 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.68 (t, 3

JHH = 8.0 Hz, 2H, Ar-CH), 7.91 (dd, JHH = 

11.0 Hz, 3
JHH = 8.4 Hz, 2H, Ar-CH), 7.72 (s, 1H, Ar-CH), 7.70-7.66 (m, 1H, Ar-CH), 7.63-

7.58 (m, 2H, Ar-CH), 7.46 (t, JHH = 7.6 Hz, 1H, Ar-CH), 7.41 (t, JHH = 3.6 Hz, 2H, Ar-CH), 

7.30-7.28 (m, 3H, Ar-CH), 6.30 (s, 1H, CHCO2Et), 4.18 (q, 3JHH = 7.1 Hz, 2H, CO2CH2CH3), 

1.21 (t, 3JHH = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 166.5 (s, CHCO2Et), 155.4 (s, PhCCH), 139.0 (s, Ar-

C), 138.6 (s, Ar-C), 131.2 (s, Ar-C), 130.9 (s, Ar-C), 130.6 (s, Ar-C), 130.3 (s, Ar-C), 129.2 

(s, Ar-CH), 129.1 (s, Ar-CH), 128.8 (s, Ar-CH), 128.1 (s, Ar-CH), 128.0 (s, Ar-CH), 127.3 (s, 

Ar-CH), 127.1 (s, Ar-CH), 127.0 (s, Ar-CH), 126.9 (s, Ar-CH), 126.7 (s, Ar-CH), 123.0 (s, 

Ar-CH), 122.7 (s, Ar-CH), 121.4 (s, Ar-CH), 60.5 2 (s, CO2CH2CH3), 14.2 (s, CO2CH2CH3) 

ppm. 

MS (EI, 70 eV): m/z (%) = 352 (23), 280 (21), 279 (100), 278 (81), 277 (22), 276 (25), 202 

(10). 

Rf = 0.22 (SiO2, Pent/Et2O = 20:1). 

 

Formation of allylic alcohol 79 

General procedure 4: In a flame-dried two-neck flask with attached reflux condenser a 

solution of ethyl 3,3-diarylacrylate (78) (1.00 eq.), NaBH4 (4.00 eq.), ZnCl2 (2.00 eq.) and 

NEt3 (2.00 eq.) in THF (0.3 M) was stirred at reflux for 3 h. Afterwards the reaction mixture 

was cooled to 0 °C and a mixture of aq. HCl (10%) and Et2O (1:2) was added in the threefold 

amount as THF was used before, whereupon gas evolution was observed. After phase 

separation the organic layer was washed with sat. aq. NaHCO3-solution, water and brine, 

dried over MgSO4 and the solvent was removed under reduced pressure. Purification by 

column chromatography (SiO2, 3 × 20 cm, eluent as listed for the Rf -value) afforded the 

desired 3,3-diaryl allylic alcohols. 
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(E)-3-Phenyl-3-(p-tolyl)prop-2-en-1-ol ((E)-79a) 

According to general procedure 4, the title compound 79a was 

obtained upon reduction of (E)-ethyl 3-phenyl-3-(p-tolyl)acrylate  

((E)-78a) as a colorless solid (91%). 

C16H16O (224.12 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.40-7.33 (m, 3H, Ar-CH), 7.18-7.15 (m, 4H, Ar-CH), 

7.11-7.09 (m, 2H, Ar-CH), 6.22 (t, 3
JHH = 6.9 Hz, 1H, CHCH2OH), 4.25-4.19 (m, 2H, 

CHCH2OH), 2.34 (s, 3H, Ar-CCH3), 1.45 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 144.3 (s, Ar-C), 139.3 (s, Ar-C), 139.1 (s, Ar-C), 

137.6 (s, PhCCH), 129.9 (s, Ar-CH), 129.0 (s, Ar-CH), 128.3 (s, Ar-CH), 127.6 (s, Ar-CH), 

127.6 (s, Ar-CH), 126.7 (s, CHCH2OH), 60.9 (s, CHCH2OH), 21.2 (s, Ar-CCH3) ppm. 

MS (EI, 70 eV): m/z (%) = 225 (12), 224 (69), 210 (10), 209 (58), 208 (10), 207 (16), 206 

(36), 194 (20), 191 (18), 182 (17), 181 (100), 179 (18), 178 (28), 166 (26), 165 (43), 131 (11), 

119 (21), 117 (19), 115 (18), 105 (22), 103 (30), 91 (16), 89 (11), 77 (11). 

Rf = 0.29 (SiO2, Pent/EtOAc = 3:1). 

 

(E)-3-(3,5-Dimethylphenyl)-3-phenylprop-2-en-1-ol ((E)-79b) 

According to general procedure 4, the title compound 79b was 

obtained upon reduction of (E)-ethyl 3-(3,5-dimethylphenyl)-3-

phenylacrylate ((E)-78b) as a colorless solid (70%). 

C17H18O (238.32 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.40-7.32 (m, 3H, Ar-CH), 7.17-7.15 (m, 2H, Ar-CH), 6.92 

(s, 1H, Ar-CH), 6.88 (s, 2H, Ar-CH), 6.22 (t, 3
JHH = 6.9 Hz, 1H, CHCH2OH), 4.20 (d, 3

JHH = 

6.9 Hz, 2H, CHCH2OH), 2.27 (s, 6H, CH3CCHCCH3), 1.36 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 144.6 (s, Ar-C), 142.0 (s, Ar-C), 139.4 (s, PhCCH), 

137.8 (s, CH3CCHCCH3), 129.9 (s, Ar-CH), 129.5 (s, Ar-CH), 128.3 (s, Ar-CH), 127.6 (s, 

Ar-CH), 127.4 (s, Ar-CH), 125.7 (s, CH CHCH2OH), 60.9 (s, CHCH2OH), 21.4 (s, Ar-CCH3) 

ppm. 

IR (NaCl):  = 3422s, 1702m, 1655s, 1561s, 1561s, 1543m, 1509s, 1459m, 839w,  

671w cm�1. 
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MS (EI, 70 eV): m/z (%) = 239 (18), 238 (100), 223 (34), 221 (15), 220 (44), 208 (18), 205 

(26), 203 (10), 202 (10), 196 (17), 195 (51), 190 (16), 189 (18), 181 (14), 180 (19), 179 (23), 

178 (33), 165 (28), 152 810), 133 (24), 131 (27), 128 (10), 119 (28), 115 (25), 105 (15), 104 

(17), 103 (69), 91 (26), 89 (12), 77 (24), 51 (10). 

Rf = 0.11 (SiO2, petrol ether/EtOAc = 9:1). 

 

(E)-3-(4-Methoxyphenyl)-3-phenylprop-2-en-1-ol ((E)-79c) 

According to general procedure 4, the title compound 79c was 

obtained upon reduction of (E)-ethyl 3-(4-methoxyphenyl)-3-

phenylacrylate ((E)-78c) as a colorless oil (88%). The analytical 

data match the literature values.[99,145] 

C16H16O2 (240.30 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.39-7.31 (m, 3H, Ar-CH), 7.20-7.15 (m, 4H, Ar-CH), 6.82 

(d, 3
JHH = 8.8 Hz, 2H, Ar-CH), 6.17 (t, 3

JHH = 6.9 Hz, 1H, CHCH2OH), 4.19 (d, 3
JHH = 

6.8 Hz, 2H, CHCH2OH), 3.80 (s, 3H, CH3O), 1.53 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 159.4 (s, CH3OC), 144.0 (s, Ar-C), 139.4 (s, PhCCH), 

134.5 (s, Ar-C), 129.9 (s, Ar-CH), 128.9 (s, Ar-CH), 128.3 (s, Ar-CH), 127.6 (s, Ar-CH), 

125.8 (s, CHCH2OH), 113.7 (s, Ar-CH), 60.9 (s, CHCH2OH), 55.4 (s, CH3O) ppm. 

Rf = 0.27 (SiO2, Pent/EtOAc = 3:1). 

 

(E)-3-(4-Fluorophenyl)-3-phenylprop-2-en-1-ol ((E)-79d) 

According to general procedure 4, the title compound 79d was 

obtained upon reduction of (E)-ethyl 3-(4-fluorophenyl)-3-

phenylacrylate ((E)-78d) as a colorless oil (95%). 

C15H13FO (228.10 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.40-7.32 (m, 3H, Ar-CH), 7.23-7.20 (m, 2H, Ar-CH), 

7.16-7.14 (m, 2H, Ar-CH), 6.99-6.94 (m, 2H, Ar-CH), 6.18 (t, 3
JHH = 6.8 Hz, 1H, 

CHCH2OH), 4.22-4.19 (m, 2H, CHCH2OH), 1.51 (t br, 1H, 3JHH = 4.9 Hz, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 162.5 (d, 1

JCF = 247.2 Hz, Ar-CF), 143.4 (s, Ph-C), 

139.0 (s, PhCCHCH2), 138.1 (d, 4
JCF = 3.2 Hz, FCCHCHC), 129.8 (s, Ph-CH),  
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129.4 (d, 3
JCF = 8.0 Hz, FCCHCHC), 128.4 (s, Ph-CH), 127.9 (s, Ph-CCHCHCH), 127.4 (s, 

CHCH2OH), 115.2 (d, 2JCF = 21.0 Hz, FCCHCHC), 60.8 (s, CHCH2OH) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �115.1 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 228 (65), 227 (10), 219 (49), 109 (16), 196 (17), 186 (18), 185 

(100), 184 (11), 183 (45), 165 (14), 133 (12), 123 (14), 121 (16), 109 (15), 105 (29), 103 (14), 

91 (10). 

Rf = 0.22 (SiO2, Pent/EtOAc = 3:1). 

 

(Z)-3-(4-Fluorophenyl)-3-phenylprop-2-en-1-ol ((Z)-79d) 

According to general procedure 4, the title compound 78d was obtained 

upon reduction of (Z-ethyl 3-(4-fluorophenyl)-3-phenylacrylate  

((Z)-79d) as a colorless oil (46%). 

C15H13FO (228.10 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.31-7.22 (m, 5H, Ar-CH), 7.17-7.12 (m, 2H, Ar-CH), 

7.09-7.03 (m, 2H, Ar-CH), 6.23 (t, 3
JHH = 6.9 Hz, 1H, CHCH2OH), 4.21 (d, 3

JHH = 6.9 Hz, 

2H, CHCH2OH), 1.56 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 162.4 (d, 1

JCF = 246.7 Hz, Ar-CF), 143.4 (s, Ph-C), 

141.8 (s, PhCCHCH2), 135.1 (d, 4
JCF = 3.5 Hz, FCCHCHC), 131.6 (d, 3

JCF = 8.0 Hz, 

FCCHCHC), 128.4 (s, Ph-CH), 127.9 (s, Ph-CH), 127.7 (s, Ph-CH), 127.7 (s, CHCH2OH), 

115.3 (d, 2JCF = 21.6 Hz, FCCHCHC), 60.8 (s, CHCH2OH) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �114.4 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 229 (12), 228 (67), 227 (13), 226 (14), 225 (19), 212 (19), 211 

(13), 210 (62), 209 (23), 197 (12), 196 (28), 186 (20), 185 (100), 184 (17), 183 (62), 170 (13), 

165 (24), 133 (19), 131 (10), 123 (19), 121 (24), 120 (10), 115 (10), 109 (19), 105 (33), 104 

(10), 103 (23), 102 (10), 101 (15), 91 (16), 84 (11), 77 (20), 75 (11), 51 (15). 

Rf = 0.31 (SiO2, Pent/EtOAc = 3:1). 
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(E)-3-(2-Fluorophenyl)-3-phenylprop-2-en-1-ol ((E)-79e) 

According to general procedure 4, the title compound 79e was obtained 

upon reduction of (E)-ethyl 3-(2-fluorophenyl)-3-phenylacrylate  

((E)-78e) as a colorless solid (94%). 

C15H13FO (228.10 g mol�1) 

1
H-NMR (500 MHz, CDCl3): � = 7.36-7.29 (m, 3H, Ar-CH), 7.27-7.23 (m, 1H, Ar-CH), 

7.20-7.15 (m, 3H, Ar-CH), 7.08 (td, 3
JHH = 7.5 Hz, JHF = 1.2 Hz, 1H, Ar-CH), 7.02 (ddd,  

3
JHH = 10.7 Hz, 3

JHH = 8.2 Hz, JHF = 1.1 Hz, Ar-CH), 6.18 (t, 3JHH = 6.8 Hz, 1H, CHCH2OH), 

4.32-4.30 (m, 2H, CHCH2OH), 1.51 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 160.3 (d, 1

JCF = 248.7 Hz, Ar-CF), 139.1 (s, Ar-C), 

138.9 (s, PhCCHCH2), 131.7 (d, JCF = 3.6 Hz, Ar-CH), 131.4 (d, JCF = 3.4 Hz, Ar-CH), 130.3 

(d, JCF = 13.0 Hz, Ar-C), 129.3 (s, Ar-CH), 129.2 (s, Ar-CH), 128.3 (s, Ar-CH), 127.7 (s, Ar-

CH), 124.0 (d, JCF = 3.6 Hz, Ar-CH), 116.2 (s, Ar-CH), 115.9 (s, CHCH2OH), 60.5 (s, 

CHCH2OH) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �114.1 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 229 (12), 228 (79), 227 (15), 211 (13), 210 (63), 109 (18), 199 

(11), 196 (17), 186 (30), 185 (100), 184 (13), 183 (50), 165 (20), 133 (15), 123 (13), 122 (13), 

121 (29), 109 (13), 105 (51), 103 (17), 101 (12), 91 (18), 77 (12). 

Rf = 0.22 (SiO2, Pent/EtOAc = 3:1). 

 

(E)-3-(Naphthalen-2-yl)-3-phenylprop-2-en-1-ol ((E)-79f) 

According to general procedure 4, the title compound 79f was 

obtained upon reduction of (E)-ethyl 3-(naphthalen-2-yl)-3-

phenylacrylate ((E)-78f) as a colorless solid (50%). 

C19H16O (260.12 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.81-7.70 (m, 3H, Ar-CH), 7.62-7.60 (m, 1H, Ar-CH), 

7.49-7.34 (m, 6H, Ar-CH), 7.23-7.20 (m, 2H, Ar-CH), 6.38 (t, 3
JHH = 6.8 Hz, 1H, 

CHCH2OH), 4.27 (d, 3JHH = 6.8 Hz, 2H, CHCH2OH), 1.59 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 144.3 (s, Ar-C), 139.3 (s, Ar-C), 139.2 (s, PhCCH), 

133.4 (s, Ar-C), 133.0 (s, Ar-C), 130.0 (s, Ar-CH), 128.4 (s, Ar-CH), 128.4 (s, Ar-CH), 128.2 
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(s, Ar-CH), 127.9 (s, Ar-CH), 127.8 (s, Ar-CH), 127.7 (s, Ar-CH), 127.2 (s, Ar-CH), 126.3 (s, 

Ar-CH), 126.2 (s, Ar-CH), 125.6 (s, CHCH2OH), 60.9 (s, CHCH2OH) ppm. 

MS (EI, 70 eV): m/z (%) = 261 (17), 260 (81), 259 (10), 243 (10), 242 (33), 241 (16), 228 

(14), 226 (13), 218 (38), 217 (100), 216 (18), 215 (40), 202 (19), 165 (11), 155 (16), 153 (16), 

152 (10), 141 (15), 128 (15), 121 (13), 115 (10), 103 (29). 

Rf = 0.47 (SiO2, Pent/EtOAc = 2:1). 

 

(E)-3-(Phenanthren-9-yl)-3-phenylprop-2-en-1-ol ((E)-79g) 

According to general procedure 4, the title compound 79g was 

obtained upon reduction of (E)-ethyl 3-(phenanthren-9-yl)-3-

phenylacrylate ((E)-78g) as a colorless solid (83%). 

C23H18O (310.14 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 8.67 (dd, 3

JHH = 8.0 Hz, 3
JHH = 5.4 Hz, 2H, Ar-CH), 7.91-

7.86 (m, 2H, Ar-CH), 7.74 (s, 1H, Ar-CH), 7.67-7.54 (m, 3H, Ar-CH), 7.42 (t, 3
JHH = 7.3 Hz, 

1H, Ar-CH), 7.29-7.24 (m, 5H, Ar-CH), 6.18 (t, 3
JHH = 6.7 Hz, 1H, CHCH2OH), 4.57-4.52 

(m, 2H, CHCH2OH), 1.66 (s br, 1H, OH) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 143.6 (s, Ar-C), 139.5 (s, PhCCH), 139.4 (s, Ar-C), 

131.7 (s, Ar-C), 131.3 (s, Ar-CH), 131.1 (s, Ar-C), 130.8 (s, Ar-C), 130.4 (s, Ar-C), 129.1 (s, 

Ph-CH), 128.8 (s, Ar-CH), 128.4 (s, Ph-CH), 128.2 (s, Ar-CH), 127.8 (s, Ar-CH), 127.2 (s, 

Ar-CH), 126.9 (s, Ar-CH), 126.8 (s, Ar-CH), 126.6 (s, Ar-CH), 126.4 (s, Ar-CH), 122.9 (s, 

Ar-CH), 122.7 (s, CHCH2OH), 60.5 (s, CHCH2OH) ppm. 

MS (EI, 70 eV): m/z (%) = 310 (35), 293 (19), 292 (74), 291 (74), 289 (11), 280 (26), 279 

(100), 278 (17), 277 (14), 276 (18), 267 (17), 265 (25), 263 (11), 252 (10), 216 (10), 215 (54), 

203 (12), 202 (17), 178 (12), 146 (10), 103 (13). 

Rf = 0.43 (SiO2, Pent/EtOAc = 2:1). 
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Formation of 3,3-diaryl acrylaldehydes 64 

General procedure 5: To a solution of 3,3-diaryl allylic alcohol (1.00 eq.) in CHCl3 (0.3 M), 

MnO2 (4.00 eq.) was added and the mixture was stirred at room temperature for 3 d. After 

filtration over celite the solvent was removed under reduced pressure. Purification by column 

chromatography (SiO2, 3 × 20 cm, eluent as listed for the Rf -value) afforded the desired  

3,3-diaryl acrylaldehydes. 

 

(E)-3-Phenyl-3-(p-tolyl)acrylaldehyde ((E)-64a) 

According to general procedure 5, the title compound 64a was afforded 

upon oxidation of (E)-3-phenyl-3-(p-tolyl)prop-2-en-1-ol ((E)-79a) as a 

slightly yellow oil (80%). The analytical data match the literature 

values.[146] 

C16H14O (222.28 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.50 (d, 3

JHH = 8.0 Hz, 1H, CHC(O)H), 7.50-7.42 (m, 3H, 

Ar-CH), 7.32-7.25 (m, 4H, Ar-CH), 7.19-7.17 (m, 2H, Ar-CH), 6.59 (d, 3
JHH = 8.0 Hz, 1H, 

CHC(O)H), 2.39 (s, 3H, Ar-CCH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.8 (s, CHC(O)H), 162.5 (s, PhCCH), 141.2 (s, Ar-

C), 137.0 (s, Ar-C), 137.0 (s, Ar-C), 130.9 (s, Ar-CH), 129.5 (s, Ar-CH), 128.8 (s, Ar-CH), 

128.4 (s, Ar-CH), 126.7 (s, CHC(O)H), 21.5 (s, Ar-CCH3) ppm. 

IR (NaCl):  = 3046s, 2833m, 1666s, 1588m, 1508w, 1442w, 1385w, 1340m, 1240w, 

1189m, 1154m, 1128s, 868w, 819s, 782m, 734m, 702m cm�1. 

MS (EI, 70 eV): m/z (%) = 222 (31), 221 (46), 208 (14), 207 (100), 191 (10), 189 (16), 179 

(28), 178 (52), 176 (12), 165 (19), 152 (18), 116 (29), 115 (56), 102 (36), 91 (25), 89 (19), 78 

(18), 77 (36), 76 (19), 75 (18), 74 (14), 65 (25), 63 (37), 52 (17), 51 (63), 50 (29). 

Rf = 0.33 (SiO2, Pent/EtOAc = 10:1). 
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(E)-3-(3,5-Dimethylphenyl)-3-phenylacrylaldehyde ((E)-64b) 

According to general procedure 5, the title compound 64b was afforded 

upon oxidation of (E)-3-(3,5-dimethylphenyl)-3-phenylprop-2-en-1-ol 

((E)-79b) as a slightly yellow solid (73%). 

C17H16O (236.12 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.50 (d, 3

JHH = 8.0 Hz, 1H, CHC(O)H), 7.47-7.41 (m, 3H, 

Ar-CH), 7.32-7.28 (m, 2H, Ar-CH), 7.07 (s, 1H, Ar-CH), 6.96 (s, 2H, Ar-CH), 6.57 (d, 3JHH = 

8.0 Hz, 1H, CHC(O)H), 2.30 (s, 6H, CH3CCHCCH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.8 (s, CHC(O)H), 162.9 (s, PhCCH),139.9 (s, Ar-

C), 138.3 (s, CH3CCHCCH3), 137.0 (s, Ar-C), 132.4 (s, Ar-CH), 130.9 (s, Ar-CH), 129.5 (s, 

Ar-CH), 128.4 (s, Ar-CH), 127.3 (s, CHC(O)H), 126.7 (s, Ar-CH), 21.4 (s, CH3CCHCCH3) 

ppm. 

IR (KBr):  = 2926m, 2840m, 2742m, 1661s, 1578s, 1440m, 1380m, 1338m, 1214m, 1580w, 

1146m, 1130s, 1028m, 911w, 893w, 872w, 854s, 784m, 712s, 703s, 664m,  

614m cm�1. 

MS (EI, 70 eV): m/z (%) = 236 (40), 235 (25), 222 (17), 221 (100), 193 (11), 192 (12), 191 

(16), 189 (11), 178 (23), 165 (11), 115 (15), 102 (15), 91 (10), 77 (10). 

HRMS (ESI-MS) calc. (m/z) for C17H17O: 237.1274 [M+H+]; found: 237.1267. 

Rf = 0.23 (SiO2, petrol ether/EtOAc = 10:1). 

 

(E)-3-(4-Methoxyphenyl)-3-phenylacrylaldehyde ((E)-64c) 

According to general procedure 5, the title compound 64c was 

afforded upon oxidation of (E)-3-(4-methoxyphenyl)-3-phenylprop-

2-en-1-ol ((E)-79c) as a slightly yellow solid (87%). 

C16H14O2 (238.28 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.45 (d, 3

JHH = 8.1 Hz, 1H, CHC(O)H), 7.49-7.42 (m, 3H, 

Ar-CH), 7.33-7.29 (m, 4H, Ar-CH), 6.91-6.87 (m, 2H, Ar-CH), 6.56 (d, 3
JHH = 8.1 Hz, 1H, 

CHC(O)H), 3.84 (s, 3H, OCH3) ppm. 
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13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.7 (s, CHC(O)H), 162.1 (s, PhCCH), 161.8 (s, Ar-

C), 137.0 (s, Ar-C), 132.0 (s, Ar-C), 130.8 (s, Ar-CH), 130.4 (s, Ar-CH), 129.4 (s, Ar-CH), 

128.4 (s, Ar-CH), 125.7 (s, CHC(O)H), 55.5 (s, OCH3) ppm. 

MS (EI, 70 eV): m/z (%) = 239 (17), 238 (100), 237 (79), 223 (16), 219 (15), 209 (13), 207 

(44), 195 (18), 194 815), 179 (13), 178 (18), 167 (13), 166 (18), 165 (58), 152 (18), 139 (12), 

135 (18), 132 (19), 108 (12), 105 (12), 102 (36), 89 (17), 78 (10), 77 (14), 76 (10), 63 (18), 51 

(16). 

HRMS (ESI-MS) calc. (m/z) for C16H15O2: 239.1072 [M+H+]; found: 239.1062. 

Rf = 0.15 (SiO2, Pent/EtOAc = 10:1). 

 

(E)-3-(4-Fluorophenyl)-3-phenylacrylaldehyde ((E)-64d) 

According to general procedure 5, the title compound 64d was afforded 

upon oxidation of (E)-3-(4-fluorophenyl)-3-phenylprop-2-en-1-ol  

((E)-79d) as a slightly yellow solid (90%). 

C15H11FO (226.08 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.50 (d, 3

JHH = 7.9 Hz, 1H, CHC(O)H), 7.51-7.43 (m, 3H, 

Ar-CH), 7.37-7.28 (m, 4H, Ar-CH), 7.09-7.05 (m, 2H, Ar-CH), 6.55 (d, 3
JHH = 7.9 Hz, 1H, 

CHC(O)H) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.5 (s, CHC(O)H), 164.3 (d, 1

JCF = 252.0 Hz, Ar-

CF), 161.2 (s, PhCCH), 136.6 (s, Ph-C), 136.0 (d, 4
JCF = 3.2 Hz, Ar-CFCHCHC), 130.8 (s, 

Ph-CH), 130.8 (d, 3
JCF = 8.6 Hz, Ar-CFCHCHC), 129.8 (s, Ph-CH), 128.6 (s, Ph-CH), 127.2 

(d, 6JCF = 1.2 Hz, CHC(O)H), 115.9 (d, 2JCF = 21.8 Hz, Ar-CFCHCHC) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �109.9 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 227 (11), 226 (73), 225 (100), 197 (29), 196 (41), 183 (17), 177 

(14), 176 (14), 170 (11), 120 (30), 102 (28), 75 (12), 51 (17). 

HRMS (ESI-MS) calc. (m/z) for C15H12FO: 227.0867 [M+H+]; found: 227.0865. 

Rf = 0.25 (SiO2, Pent/EtOAc = 10:1). 
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(Z)-3-(4-Fluorophenyl)-3-phenylacrylaldehyde ((Z)-64d) 

According to general procedure 5, the title compound 64d was afforded 

upon oxidation of (Z)-3-(4-fluorophenyl)-3-phenylprop-2-en-1-ol  

((Z)-79d) as a slightly yellow oil (76%). 

C15H11FO (226.08 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.53 (d, 3

JHH = 8.0 Hz, 1H, CHC(O)H), 7.48-7.28 (m, 7H, 

Ar-CH), 7.18-7.13 (m, 2H, Ar-CH), 7.09-7.05 (m, 2H, Ar-CH), 6.59 (d, 3
JHH = 8.0 Hz, 1H, 

CHC(O)H) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.2 (s, CHC(O)H), 163.6 (d, 1

JCF = 250.0 Hz, Ar-

CF), 161.2 (s, PhCCH), 139.8 (s, Ar-C), 132.8 (s, Ar-C), 132.8 (d, 3
JCF = 8.6 Hz, Ar-

CFCHCHC), 130.8 (s, Ph-CH), 128.8 (s, Ph-CH), 127.7 (s, Ar-CH), 115.7 (d, 2
JCF = 21.6 Hz, 

Ar-CFCHCHC) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �111.0 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 227 (11), 226 (78), 225 (100), 197 (27), 196 (40), 183 (16), 177 

(10), 176 (12), 170 (10), 120 (26), 102 (25), 51 (11). 

HRMS (ESI-MS) calc. (m/z) for C15H12FO: 227.0867 [M+H+]; found: 227.0864. 

Rf = 0.33 (SiO2, Pent/EtOAc = 10:1). 

 

(E)-3-(2-Fluorophenyl)-3-phenylacrylaldehyde ((E)-64e) 

According to general procedure 5, the title compound 64e was afforded 

upon oxidation of (E)-3-(2-fluorophenyl)-3-phenylprop-2-en-1-ol  

((E)-79e) as a slightly yellow oil (89%). 

C15H11FO (226.08 g mol�1) 

1
H-NMR (500 MHz, CDCl3): � = 9.62 (d, 3

JHH = 7.9 Hz, 1H, CHC(O)H), 7.48-7.37 (m, 4H, 

Ar-CH), 7.32-7.29 (m, 2H, Ar-CH), 7.17-7.10 (m, 3H, Ar-CH), 6.56 (dd, 3
JHH = 7.9 Hz, 5

JHF 

= 1.1 Hz, 1H, CHC(O)H) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.4 (s, CHC(O)H), 160.5 (d, 1

JCF = 253.0 Hz, Ar-

CF), 156.7 (s, PhCCH), 137.0 (s, Ph-C), 131.7 (d, JCF = 8.6 Hz, Ar-CH), 131.7 (d, JCF = 

2.1 Hz, Ar-CH), 131.0 (d, JCF = 5.7 Hz, Ar-CH), 130.4 (s, Ph-CH), 129.7 (s, Ph-CH), 128.5 
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(s, Ph-CH), 128.2 (s, Ph-C), 124.4 (d, 4JCF = 3.6 Hz, CHC(O)H), 116.6 (d, 2JCF = 22.6 Hz, Ar-

CFCH) ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �111.6 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 227 (13), 226 (85), 225 (100), 197 (30), 196 (36), 183 (15), 178 

(12), 177 (17), 176 (21), 170 (10), 120 (33), 102 (30), 77 812), 76 (10), 75 (12), 51 (20), 50 

(10). 

HRMS (ESI-MS) calc. (m/z) for C15H12FO: 227.0867 [M+H+]; found: 227.0864. 

Rf = 0.35 (SiO2, Pent/EtOAc = 10:1). 

 

(E)-3-(Naphthalen-2-yl)-3-phenylacrylaldehyde ((E)-64f) 

According to general procedure 5, the title compound 64f was 

afforded upon oxidation of (E)-3-(naphthalen-2-yl)-3-phenylprop-2-

en-1-ol ((E)-79f) as a slightly yellow solid (81%). 

C19H14O (258.31 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.57 (d, 3

JHH = 8.0 Hz, 1H, CHC(O)H), 7.85 (d, 3
JHH = 

8.5 Hz, 2H, Ar-CH), 7.79 (d, 3
JHH = 8.5 Hz, 1H, Ar-CH),, 7.75 (s, 1H, Ar-CH), 7.56-7.47 (m, 

6H, Ar-CH), 7.39-7.36 (m, 2H, Ar-CH), 6.74 (d, 3JHH = 8.0 Hz, 1H, CHC(O)H) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.7 (s, CHC(O)H), 162.3 (s, PhCCH), 137.2 (s, Ar-

C), 126.9 (s, Ar-C), 134.4 (s, Ar-C), 133.1 (s, Ar-C), 131.0 (s, Ar-CH), 129.8 (s, Ar-CH), 

129.7 (s, Ar-CH), 129.0 (s, Ar-CH), 128.6 (s, Ar-CH), 127.8 (s, Ar-CH), 127.8 (s, Ar-CH), 

127.7 (s, Ar-CH), 126.9 (s, Ar-CH), 125.2 (s, CHC(O)H) ppm. 

MS (EI, 70 eV): m/z (%) = 259 (19), 258 (100), 257 (79), 230 (16), 229 (56), 228 (44), 227 

(20), 226 (32), 215 (18), 202 (15), 181 (28), 152 (30), 151 (12), 128 (34), 127 (10), 114 (11), 

113 (11), 102 (32), 101 (13), 77 (11). 

HRMS (ESI-MS) calc. (m/z) for C19H15O: 259.1117 [M+H+]; found: 259.1114. 

Rf = 0.51 (SiO2, Pent/EtOAc = 5:1). 
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(E)-3-(Phenanthren-9-yl)-3-phenylacrylaldehyde ((E)-64g) 

According to general procedure 5, the title compound 64g was 

afforded upon oxidation of (E)-3-(phenanthren-9-yl)-3-phenylprop-2-

en-1-ol ((E)-79g) as a slightly yellow solid (98%). 

C23H16O (308.37 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.93 (d, 3

JHH = 8.0 Hz, 1H, CHC(O)H), 8.71 (dd, JHH = 

11.7 Hz, JHH = 8.4 Hz, 2H, Ar-CH), 7.91 (d, 3
JHH = 7.6 Hz, 1H, Ar-CH), 7.84 (d, 3

JHH = 

8.2 Hz, 1H, Ar-CH), 7.74-7.70 (m, 2H, Ar-CH), 7.66-7.61 (m, 2H, Ar-CH), 7.49-7.37 (m, 6H, 

Ar-CH), 6.57 (d, 3JHH = 8.0 Hz, 1H, CHC(O)H) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 193.5 (s, CHC(O)H), 162.2 (s, PhCCH), 137.8 (s, Ar-

C), 137.7 (s, Ar-C), 131.3 (s, Ar-CH), 131.0 (s, Ar-C), 130.9 (s, Ar-C), 130.5 (s, Ar-CH), 

130.1 (s, Ar-CH), 129.9 (s, Ar-C), 129.3 (s, Ar-CH), 128.8 (s, Ar-CH), 128.7 (s, Ar-CH), 

127.8 (s, Ar-CH), 127.3 (s, Ar-CH), 127.0 (s, Ar-CH), 127.0 (s, Ar-CH), 126.8 (s, Ar-CH), 

123.2 (s, Ar-CH), 122.8 (s, CHC(O)H) ppm. 

MS (EI, 70 eV): m/z (%) = 309 (23), 308 (100), 307 (66), 291 (23), 289 (12), 280 (21), 279 

(79), 278 (26), 277 (28), 276 (36), 252 (10), 232 (10), 231 (56), 203 (11), 202 (35), 201 (15), 

200 (15), 178 (26), 176 (10), 138 (13), 102 (20). 

HRMS (ESI-MS) calc. (m/z) for C23H17O: 309.1274 [M+H+]; found: 309.1267. 

Rf = 0.51 (SiO2, Pent/EtOAc = 5:1). 

 

7.6.3 Organocatalyzed Transfer Hydrogenation 

General procedure 6: To a solution of acrylaldehyde (64) (1.00 eq.), Hantzsch-ester (66) 

(1.20 eq.) and organocatalyst (20 mol%) in CHCl3 (0.2 M) was added TFA (4 mol%) at 

�20 °C. The conversion was followed by GC-MS analysis of an aliquot of the reaction 

mixture. After full conversion or conversion being constant, the solvent was removed under 

reduced pressure and the residue purified by column chromatography (SiO2, 2 × 20 cm, eluent 

as listed for the Rf -value). The enantiomeric excess of 3,3-diaryl aldehydes was determined 

by chiral HPLC analysis of the corresponding alcohol. Therefore the aldehyde was dissolved 

in MeOH (0.1 M) and the solution was cooled to 0 °C. Afterwards NaBH4 (5.00 eq.) was 

added and the mixture stirred for 1 h before it was quenched with sat. aq. NH4Cl-solution. 

After extraction with EtOAc, drying over MgSO4 and removal of the solvent under reduced 
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pressure, the residue was diluted in i-PrOH and analyzed by chiral stationary phase HPLC. 

Racemic reference samples were obtained by hydrogenation (1 bar) of the corresponding 

allylic alcohol 78 upon use of Pd on charcoal in EtOAc. 

 

3-Phenyl-3-(p-tolyl)propanal (69a) 

According to general procedure 6, the title compound 69a was obtained 

upon reduction of (E)-3-phenyl-3-(p-tolyl)acrylaldehyde ((E)-64a) 

(76%). The analytical data match the literature values.[147] 

C16H16O (224.30 g mol�1) 

MS (EI, 70 eV): m/z (%) = 224 (48), 209 (29), 206 (51), 191 (15), 182 (20), 181 (92), 180 

(10), 179 (24), 178 (31), 167 (16), 166 (63), 165 (97), 153 (10), 152 (20), 128 (12), 119 (19), 

118 (11), 117 (20), 115 (48), 105 (29), 194 (18), 103 (29), 102 (22), 92 (12), 91 (70), 90 (10), 

89 (35), 79 815), 78 (49), 77 (84), 76 (24), 75 (15), 74 (12), 65 (56), 64 (12), 63 (58), 62 (14), 

53 (12), 52 (21), 51 (100), 50 (51), 44 (11), 42 (29), 41 (21). 

GC (Macherey-Nagel Optima 5 PhMeSi (25 m × 0.2 mm × 0.35 µm), 140 kPa He, (100 °C, 

2 min, 10 K/min, 270 °C, 10 min)): tR = 15.5 min (69a), 16.9 min ((E)-64a). 

HPLC of the corresponding alcohol (Daicel Chiracel AD-H, Hept/i-PrOH = 95:5, 

0.5 mL/min, 20 °C): tR = 27.2 min ((�)-80a), 29.8 min ((�)-80a). 

Rf = 0.45 (SiO2, Pent/Et2O = 10:1). 

 

3-(3,5-Dimethylphenyl)-3-phenylpropanal (69b) 

According to general procedure 6, the title compound 69b was obtained 

upon reduction of (E)-3-(3,5-dimethylphenyl)-3-phenylacrylaldehyde 

((E)-64b) (46%). The analytical data match the literature values.[101] 

C17H18O (238.32 g mol�1) 

MS (EI, 70 eV): m/z (%) = 239 (18), 238 (100), 223 (19), 220 (21), 196 (23), 195 (74), 181 

(25), 180 (45), 179 (30), 178 (33), 166 (13), 165 (64), 133 (12), 119 (30), 115 (15), 106 (11), 

104 (16), 103 (27), 91 (19), 89 (11), 77 (19). 

GC (Macherey-Nagel Optima 5 PhMeSi (15 m × 0.2 mm × 0.35 µm), 140 kPa He, (100 °C, 

2 min, 10 K/min, 270 °C, 10 min)): tR = 11.2 min (69b), 12.3 min ((E)-64b). 
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HPLC of the corresponding alcohol (Daicel Chiracel AS, Hept/i-PrOH = 98:2, 0.5 mL/min, 

20 °C): tR = 35.9 min ((R)- 80b), 43.3 min ((S)- 80b). 

Rf = 0.49 (SiO2, Pent/EtOAc = 3:1). 

 

3-(4-Methoxyphenyl)-3-phenylpropanal (69c) 

According to general procedure 6, the title compound 69c was 

obtained upon reduction of (E)-3-(4-methoxyphenyl)-3-

phenylacrylaldehyde ((E)-64c). The analytical data match the 

literature values.[101] This time the aldehyde was reduced to the alcohol prior to purification by 

column chromatography. The alcohol was isolated in 52% yield. 

C16H16O2 (240.30 g mol�1) 

MS (EI, 70 eV): m/z (%) = 240 (33), 198 (16), 197 (100), 166 (10), 165 824), 154 (11), 153 

(21), 152 (16), 77 (12). 

GC (Macherey-Nagel Optima 5 PhMeSi (25 m × 0.2 mm × 0.35 µm), 140 kPa He, (100 °C, 

2 min, 10 K/min, 270 °C, 10 min)): tR = 17.1 min (69c), 18.5 min ((E)-64c). 

HPLC of the corresponding alcohol (Daicel Chiracel AD-H, Hept/i-PrOH = 90:10, 

1.0 mL/min, 20 °C): tR = 12.8 min ((R)-80c), 14.4 min ((S)-80c). 

Rf of the corresponding alcohol = 0.33 (SiO2, Pent/EtOAc = 2:1). 

 

3-(4-Fluorophenyl)-3-phenylpropanal (69d) 

According to general procedure 6, the title compound 69d was obtained 

upon reduction of (E)- or (Z)-3-(4-fluorophenyl)-3-phenyl-

acrylaldehyde (64d) (84% for the reduction of (E)-64d, 75% for the 

reduction of (Z)-64d). The analytical data match the literature values.[101] 

C15H13FO (228.26 g mol�1) 

MS (EI, 70 eV): m/z (%) = 228 (61), 210 (30), 186 (24), 185 (100), 183 (59), 170 (15), 165 

(67), 121 (139, 105 (28), 104 (10), 103 (14), 101 (10), 91 (10), 77 (17), 75 (10), 63 (12), 51 

(25), 50 (11). 
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GC (Macherey-Nagel Optima 5 PhMeSi (25 m × 0.2 mm × 0.35 µm), 140 kPa He, (100 °C, 

2 min, 10 K/min, 270 °C, 10 min)): 14.2 min (69d), 15.3 min ((E)-64d), tR = 15.4 min  

((Z)-64d). 

HPLC of the corresponding alcohol (Daicel Chiracel OD-H, Hept/i-PrOH = 95:5, 

0.5 mL/min, 40 °C): tR = 32.7 min ((R)- 80d), 37.2 min ((S)- 80d). 

Rf = 0.21 (SiO2, Pent/Et2O = 5:1). 

 

3-(2-Fluorophenyl)-3-phenylpropanal (69e) 

According to general procedure 6, the title compound 69e was obtained 

upon reduction of (E)-3-(2-fluorophenyl)-3-phenylacrylaldehyde ((E)-64e) 

(71%). 

C15H13FO (228.26 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.74 (t, 3

JHH = 1.7 Hz, 1H, C(O)H), 7.38-7.37 (m, 1H, Ar-

CH), 7.32-7.25 (m, 4H, Ar-CH), 7.23-7.17 (m, 2H, Ar-CH), 7.10-6.99 (m, 2H, Ar-CH), 4.92 

(t, 3
JHH = 7.8 Hz, 1H, PhCHCH2), 3.19 (td, 3

JHH = 7.8 Hz. 3
JHH = 1.7 Hz, 2H, CHCH2C(O)H) 

ppm. 

19
F{

1
H}-NMR (376 MHz, CDCl3): � = �116.9 (s, Ar-CF) ppm. 

MS (EI, 70 eV): m/z (%) = 229 (10), 228 (62), 210 (31), 186 (26), 185 (100), 184 (17), 183 

(59), 170 (16), 165 (59), 133 (10), 123 (11), 122 (17), 121 (20), 109 (12), 105 (44), 104 (11), 

103 (15), 101 (15), 91 (19), 77 (22), 75 (10), 51 (14). 

GC (Macherey-Nagel Optima 5 Me2Si (15 m × 0.2 mm × 0.35 µm), 140 kPa He, (100 °C, 

2 min, 5 K/min, 270 °C, 10 min)): tR = 21.5 min (69e), 23.3 min ((E)-64e). 

HPLC of the corresponding alcohol (Daicel Chiracel OD-H, Hept/i-PrOH = 97:3, 

0.5 mL/min, 40 °C): tR = 46.9 min ((�)-80e), 52.6 min ((�)-80e). 

Rf = 0.33 (SiO2, Pent/EtOAc = 5:1). 
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3-(Naphthalen-2-yl)-3-phenylpropanal (69f) 

According to general procedure 6, the title compound 69f was 

obtained upon reduction of (E)-3-(naphthalen-2-yl)-3-

phenylacrylaldehyde ((E)-64f) (66%). The analytical data match the 

literature values.[101] 

C19H16O (260.33 g mol�1) 

MS (EI, 70 eV): m/z (%) = 261 (10), 260 (50), 242 (15), 218 (34), 217 (100), 216 (22), 215 

(56), 203 (11), 202 (48), 153 (10), 152 (11), 128 (14), 108 (11), 107 (11), 103 (11), 77 (10). 

GC (Macherey-Nagel Optima 5 Me2Si (15 m × 0.2 mm × 0.35 µm), 140 kPa He, (100 °C, 

2 min, 10 K/min, 270 °C, 10 min)): tR = 14.8 min (69f), 16.1 min ((E)-64f). 

HPLC of the corresponding alcohol (Daicel Chiracel AD-H, Hept/i-PrOH = 90:10, 

0.3 mL/min, 20 °C): tR = 37.1 min ((R)-80f), 40.4 min ((S)-80f). 

Rf = 0.40 (SiO2, Pent/Et2O = 2:1). 

 

3-Phenylbutanal (69h) 

According to general procedure 6, the title compound 69h was obtained 

upon reduction of (E)-3-phenylbut-2-enal ((E)-64h) (68%). The analytical data match the 

literature values.[147] 

C10H12O (148.20 g mol�1) 

MS (EI, 70 eV): m/z (%) = 148 (32), 133 (30), 130 (15), 115 (13), 106 (30), 105 (100), 104 

(16), 103 (25), 91 (58), 79 (37), 78 (34), 77 (52), 65 (12), 63 (11), 55 (10), 51 (36), 41 (22). 

GC (Macherey-Nagel Optima 5 PhMeSi (25 m × 0.2 mm × 0.35 µm), 140 kPa He, (100 °C, 

2 min, 10 K/min, 270 °C, 10 min)): tR = 6.7 min (69h), 9.3 min ((E)-64h). 

GC (Chiraldex G-TA, 60 kPa, 90 °C, 30 min, 10 K/min, 160 °C, 5 min): tR = 29.3 min ((S)-

69h), 30.5 min ((R)-69h). 

Rf = 0.24 (SiO2, Pent/Et2O = 5:1). 
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7.7 Mechanistic Investigations on the Organo-Catalyzed Conjugate 

Addition Reaction 

7.7.1 ESI-MS Analysis of the Forward Reaction 

10 µL of a 0.1 M solution of the organocatalyst 89 in the corresponding solvent was mixed 

with 10 µL of a 1 M solution of 3-phenylpropanal (88a) and 10 µL of a 1 M solution of  

(E)-(2-nitrovinyl)benzene (91) in the same solvent. The mixture was shaken for 1 min and 

then diluted with 1 mL of the corresponding solvent. This mixture was analyzed by ESI-MS 

under mild desolvation conditions. The spectra were acquired in the centroid mode. 

 

7.7.2 ESI-MS Analysis of the Back Reaction 

10 µL of a 0.1 M solution of the organocatalyst 89 in the corresponding solvent was mixed 

with 10 µL of a 1 M solution of 2-benzyl-4-nitro-3-phenylbutanal (93a) in the same solvent. 

The mixture was shaken for 1 min and then diluted with 1 mL of the corresponding solvent. 

This mixture was analyzed by ESI-MS under mild desolvation conditions. The spectra were 

acquired in the centroid mode. 

 

7.7.3 Selectivity Determination by ESI-MS Screening of the Back Reaction 

10 µL of a 0.1 M solution of the organocatalyst 89 in the corresponding solvent was mixed 

with 10 µL of a 1 M solution of an euqimolar mixture of (2S)-2-(4-methylbenzyl)-4-nitro-3-

phenylbutanal ((S)-93b) and (2R)-2-(4-ethylbenzyl)-4-nitro-3-phenylbutanal ((R)-93c) in the 

same solvent. The mixture was shaken for 1 min and then diluted with 1 mL of the 

corresponding solvent. This mixture was analyzed by ESI-MS under mild desolvation 

conditions. The spectra were acquired in the centroid mode. 
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7.8 ��-Allylation of Carbonyl Compounds by Palladium-Enamine 

Tandem Catalysis 

7.8.1 Catalyst Synthesis 

(S)-2-allyl 1-tert-butyl pyrrolidine-1,2-dicarboxylate (100) 

A mixture of (L)-Boc proline (99) (4.30 g, 20.0 mmol, 1.00 eq.), allyl 

bromide (2.54 mL, 30.0 mmol, 1.50 eq.) and K2CO3 (8.28 g, 60.0 mmol, 

3.00 eq.) in acetone (50 mL) was heated to reflux for 6 h. Afterwards the solvent was 

removed under reduced pressure and the residue was dissolved in Et2O (40 mL). After 

washing with brine (2 × 40 mL), the organic phase was dried over MgSO4 and the solvent was 

removed under reduced pressure to give the allyl ester 100 as a slightly yellow oil (5.05 g, 

99%). The analytical data match the literature values.[120c] 

C13H21NO4 (255.31 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 5.94-5.83 (m, 1H, OCH2CHCH2 rotamer 1+2), 5.33-5.28 

(m, 1H, OCH2CHCHtransH rotamer 1+2), 5.23-5.18 (m, 1H, OCH2CHCHHcis rotamer 1+2), 

4.67-4.53 (m, 2H, OCH2CHCH2 rotamer 1+2), 4.32 (dd, 3
JHH = 8.4 Hz, 3

JHH = 2.9 Hz, 1H 

NCHCO2allyl rotamer 1), 4.22 (dd, 3
JHH = 8.3 Hz, 3

JHH = 3.7 Hz, 1H, NCHCO2allyl rotamer 

2), 3.56-3.33 (m, 2H, CHNCH2 rotamer 1+2), 2.26-2.11 (m, 1H, NCHCHHCH2, rotamer 

1+2), 2.00-1.78 (m, 3H, NCHCHHCH2, rotamer 1+2), 1.43 (s, 9H, C(CH3)3 rotamer 1), 1.38 

(s, 9H, C(CH3)3 rotamer 2) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 173.0 (s, CO2allyl rotamer 2), 172.7 (s, CO2allyl 

rotamer 1), 154.5 (s, NCO2, rotamer 1), 153.9 (s, NCO2, rotamer 2), 132.1 (s, allyl-

OCH2CHCH2 rotamer 1), 131.9 (s, allyl-OCH2CHCH2 rotamer 2), 118.7 (s, allyl-

OCH2CHCH2 rotamer 2), 118.2 (s, allyl-OCH2CHCH2 rotamer 1), 80.0 (s, OC(CH3)3 

rotamer 2), 79.8 (s, OC(CH3)3 rotamer 1), 65.5 (s, allyl-OCH2CHCH2 rotamer 1+2), 59.2 (s, 

NCHCO2allyl rotamer 2), 58.9 (s, NCHCO2allyl rotamer 1), 46.6 (s, CHNCH2 rotamer 1), 

46.4 (s, CHNCH2 rotamer 2), 31.0 (s, NCHCH2CH2 rotamer 2), 30.0 (s, NCHCH2CH2 

rotamer 1), 28.5 (s, C(CH3)3 rotamer 1), 28.4 (s, C(CH3)3 rotamer 2), 24.4 (s, NCHCH2CH2 

rotamer 1), 23.7 (s, NCHCH2CH2 rotamer 2) ppm. 
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(S)-allyl pyrrolidine-2-carboxylate (96) 

(S)-2-allyl 1-tert-butyl pyrrolidine-1,2-dicarboxylate (100) (2.00 g, 

7.84 mmol, 1.00 eq.) was dissolved in DCM (16 mL). To this solution TFA (4 mL) was added 

and the mixture was stirred at room temperature for 4 h. The solvent was removed under high 

vacuum and the resulting brownish oil was dissolved in NaOH-solution (1 M, 60 mL). The 

aqueous phase was washed with DCM (5 × 30 mL), the combined organic layers were dried 

over MgSO4 and the solvent was removed under reduced pressure. Drying under high vacuum 

afforded the title compound 96 as a slightly yellow oil (1.01 g, 83%). The analytical data 

match the literature values.[120c] 

C8H13NO2 (155.19 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 5.95-5.85 (m, 1H, allyl-OCH2CHCH2), 5.32-5.21 (m, 2H, 

allyl-OCH2CHCH2), 4.60 (d, 3JHH = 5.7 Hz, 2H, allyl-OCH2CHCH2), 3.77 (dd, 3JHH = 8.6 Hz, 
3
JHH = 5.7 Hz, 1H, NCHCO2allyl), 3.09-3.03 (m, 1H, CHNCHH), 2.92-2.86 (m, 1H, 

CHNCHH), 2.26 (s, 1H, NH), 2.17-2.08 (m, 1H, NCHCHHCH2), 1.89-1.67 (m, 3H, 

NCHCHHCH2) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 175.3 (s, CO2allyl), 132.1 (s, allyl-OCH2CHCH2), 

118.6 (s, allyl-OCH2CHCH2), 65.6 (s, allyl-OCH2CHCH2), 59.9 (s, NCHCO2allyl), 47.1 (s, 

CHNCH2), 30.4 (s, NCHCH2CH2), 26.6 (s, NCHCH2CH2) ppm. 

 

(S)-iso-Propyl indoline-2-carboxylate (97a) 

In a flame-dried two-neck flask (S)-indoline-2-carboxylic acid (101) 

(500 mg, 3.07 mmol, 1.00 eq.) was dissolved in i-PrOH (25 mL) and the solution was cooled 

to �30 °C. To this, SOCl2 (1.12 mL, 15.4 mmol, 5.00 eq.) was added drop wise and the 

reaction mixture was warmed to reflux and stirred for 2 h. After cooling to room temperature 

the mixture was concentrated under high vacuum and aqueous NH3-solution was added until a 

pH of 9 was reached. After extraction with Et2O (3 × 30 mL) the organic phase was washed 

with brine (1 × 40 mL), dried over MgSO4 and the solvent was removed under reduced 

pressure to afford a red oil. Purification by column chromatography (SiO2, 3 × 20 cm, 

cyclohexane/EtOAc = 2:1) yielded the title compound 97a as a colorless oil (569 mg, 90%). 

The analytical data match the literature values.[148] 

C12H15NO2 (205.25 g mol�1)  
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1
H-NMR (400 MHz, CDCl3): � = 7.09-7.07 (m, 2H, Ar-CH), 6.76-6.71 (m, 2H, Ar-CH), 5.06 

(sept, 3
JHH = 6.3 Hz, 1H, OCH(CH3)2), 4.45 (s br, 1H, NH), 4.33 (dd, 3

JHH = 10.4 Hz, 3
JHH = 

5.5 Hz, 1H, NCHCO2CH), 3.39 (dd, 2
JHH = 16.1 Hz, 3

JHH = 10.4 Hz, 1H, NCHCO2CH), 3.29 

(dd, 2
JHH = 16.1 Hz, 3

JHH = 5.5 Hz, 1H, NCHCO2CH), 1.27 (d, 3
JHH = 6.3 Hz, 3H, 

OCH(CH3)(CH3)) 1.26 (d, 3JHH = 6.2 Hz, 3H, OCH(CH3)(CH3)) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 173.8 (s, CO2CH), 150.3 (s, Ar-NCCH), 127.8 (s, Ar-

CH), 126.9 (s, Ar-NCCCH), 124.5 (s, Ar-CH), 119.5 (Ar-CH), 110.2 (s, Ar-CH), 69.1 (s, 

OCH(CH3)2), 60.0 (s, NCHCO2CH), 33.9 (s, NCHCH2), 21.9 (s, OCH(CH3)(CH3)), 21.9 (s, 

OCH(CH3)(CH3)) ppm. 

ESI-MS: m/z = 206 [M+H+]. 

 

7.8.2 ��-Allylation of Carbonyl Compounds 

General procedure 7: In a flame-dried Young-Tube the Pd-precursor (25 µmol, 2.5 mol%) 

and the corresponding ligand (50 µmol, 5 mol%) were dissolved in DMSO (2 mL) and stirred 

at room temperature for 1 h. To this a solution of the allyl-source (1.00 mmol, 1.00 eq.), the 

carbonyl compound (3.00 mmol, 3.00 eq.) and the organocatalyst (300 µmol, 30 mol%) in 

DMSO (2 mL) was added. If the organocatalyst was bearing a carboxylic acid-function 

additional p-TsOH (50 µmol, 5 mol%) was added. After stirring at room temperature 

overnight, the mixture was diluted with Et2O, washed with brine, dried over MgSO4, the 

solvent was removed under reduced pressure and the residue was dried under high vacuum. 

Purification by column chromatography (SiO2, 2 × 20 cm, eluent as listed for the Rf -value) 

yielded the desired �-allylated carbonyl compound. 

 

2-Allylcyclohexanone (106a) 

According to the general procedure 7, the title compound 106a was obtained 

upon reaction of cyclohexanone (104) and allyl acetate (105a). The analytical 

data match the literature values.[122d] 

C9H14O (138.21 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 5.82-5.72 (m, 1H, allyl-CHCH2CHCH2), 5.04-4.98 (m, 2H, 

allyl-CHCH2CHCH2), 2.57-2.50 (m, 1H, alk-CHn), 2.42-2.26 (m, 3H, alk-CHn), 2.16-1.94 (m, 
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3H, alk-CHn), 1.93-1.82 (m, 1H, alk-CHn), 1.75-1.59 (m, 2H, alk-CHn), 1.41-1.31 (m, 1H, 

alk-CHn) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 212.7 (s, C(O)), 136.6 (s, allyl-CHCH2CHCH2), 116.4 

(s, allyl-CHCH2CHCH2), 50.4 (s, C(O)CH), 42.2 (s, alk-CH2), 33.9 (s, alk-CH2), 33.5 (s, alk-

CH2), 28.1 (s, alk-CH2), 25.1 (s, alk-CH2) ppm. 

MS (EI, 70 eV): m/z (%) = 138 (100), 137 (12), 123 (31), 110 (24), 109 (58), 95 (27), 94 (44), 

40 (26). 

Rf = 0.38 (SiO2, hexanes/EtOAc = 5:1). 

HPLC (Daicel Chiracel OD-H, Hept/i-PrOH = 100:0, 0.5 mL/min, 25 °C): tR = 19.5 min ((�)-

106a), 10.5 min ((�)-106a). 

 

2-Cinnamylcyclohexanone (106b) 

According to the general procedure 7, the title compound 106b was 

obtained upon reaction of cyclohexanone (104) and 3-phenyl-allyl acetate 

or 1-phenyl-allyl acetate (105b or 105c). The analytical data match the literature values.[122d] 

C15H18O (214.30 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.34-7.26 (m, 4H, Ar-CH), 7.21-7.17 (m, 1H, Ar-CH), 6.39 

(d, 3JHH = 15.8 Hz, 1H, PhCHCH), 6.24-6.16 (m, 1H, PhCHCH), 2.71-2.64 (m, 1H, alk-CHn), 

2.46-1.36 (m, 10H, alk-CHn) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 212.6 (s, C(O)), 137.6 (s, Ar-C), 131.7 (s, PhCHCH), 

128.6 (s, Ar-CH), 128.5 (s, Ar-CH), 127.1 (s, PhCHCH), 126.1 (s, Ar-CH), 50.8 (s, 

C(O)CHCH2), 42.2 (s, alk-CH2), 33.7 (s, alk-CH2), 33.1 (s, alk-CH2), 28.1 (s, alk-CH2), 25.2 

(s, alk-CH2) ppm. 

Rf = 0.27 (SiO2, hexanes/EtOAc = 4:1). 

 

(E)-2-(2-Methyl-3-phenylallyl)cyclohexanone (106c) 

According to the general procedure 7, the title compound 106c was 

obtained upon reaction of cyclohexanone (104) and 2-methyl-3-phenyl-

allyl acetate (105d).  

C16H20O (228.33 g mol�1) 
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1
H-NMR (500 MHz, CDCl3): � = 7.31 (t, 3

JHH = 7.4 Hz, 2H, Ar-CH), 7.22 (d, 3
JHH = 7.7 Hz, 

2H, Ar-CH), 7.18 (t, 3
JHH = 7.2 Hz, 1H, Ar-CH), 6.26 (s, 1H, PhCHC), 2.74 (dd, JHH = 

13.9 Hz, JHH = 4.2 Hz, 1H, alk-CHn), 2.57-1.62 (m, 13H, alk-CHn) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 212.9 (s, CO), 138.4 (s, Ar-C), 136.5 (s, PhCHCCH3), 

128.9 (s, Ar-CH), 128.1 (s, Ar-CH), 127.1 (s, Ar-CH), 126.1 (s, PhCHC), 48.7 (s, 

C(O)CHCH2), 42.1 (s, alk-CH2), 40.4 (s, alk-CH2), 33.2 (s, alk-CH2), 28.1 (s, alk-CH2), 27.1 

(s, alk-CH2), 24.9 (s, PhCHCCH3) ppm. 

Rf = 0.37 (SiO2, hexanes/EtOAc = 5:1). 

HPLC (Daicel Chiracel IC, Hept/i-PrOH = 99:1, 0.5 mL/min, 20 °C): tR = 26.8 min  

((�)-106c), 29.9 min ((�)-106c). 

 

(E)-2-(5-Phenylpent-2-en-1-yl)cyclohexanone (106d) 

According to the general procedure 7, the title compound 106d was 

obtained upon reaction of cyclohexanone (104) and 5-phenylpent-1-

en-3-yl acetate (105e). 

C17H22O (242.36 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 7.28-7.15 (m, 5H, Ar-CH), 5.52-5.31 (m, 2H, DB-CHCH), 

2.68-1.24 (m, 15H, alk-CHn) ppm. 

MS (EI, 70 eV): m/z (%) = 242 (11), 151 (23), 133 (18), 106 (11), 105 (10), 98 (21), 91 (100), 

85 (20), 81 (23), 79 (24), 67 (43), 65 (28), 56 (29), 43 (14), 41 (51). 

Rf = 0.43 (SiO2, hexanes/EtOAc = 3:1). 

HPLC (Daicel Chiracel IC, Hept/i-PrOH = 99:1, 0.5 mL/min, 25 °C): tR = 26.4 min  

((�)-106d), 27.8 min ((�)-106d). 

 

2-Allylcyclopentanone (120) 

According to the general procedure 7, the title compound 120 was obtained 

upon reaction of cyclopentanone (119) and allyl acetate (105a). The analytical data match the 

literature values.[149] 

C8H12O (124.18 g mol�1) 
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MS (m/z (%)): 124 (21), 96 (41), 95 (26), 81 (25), 80 (18), 79 (20), 68 (61), 67 (100), 56 (10), 

55 (59), 54 (4), 53 (42), 51 (10), 42 (20), 41 (62). 

Rf = 0.43 (SiO2, hexanes/EtOAc = 5:1). 

 

2-Methyl-2-phenylpent-4-enal (133) 

According to the general procedure 7, the title compound 133 was obtained upon 

reaction of 2-phenylpropanal (132) and allyl acetate (105a). The analytical data 

match the literature values.[120c] 

C12H14O (174.24 g mol�1) 

1
H-NMR (400 MHz, CDCl3): � = 9.52 (s, 1H, C(O)H), 7.40-7.36 (m, 2H, Ar-CH), 7.31-7.24 

(m, 3H, Ar-CH), 5.54 (ddt, 3
JHH = 17.2 Hz, 3

JHH = 9.8 Hz, 3
JHH = 7.3 Hz, 1H, DB-CHCH2), 

5.08-5.02 (m, 2H, DB-CHCH2), 2.72-2.60 (m, 2H, PhCCH2CHCH2), 1.44 (s, 3H, CH3) ppm. 

13
C{

1
H}-NMR (101 MHz, CDCl3): � = 202.1 (s, C(O)H), 139.6 (s, Ar-C), 133.3 (s, 

PhCCH2CHCH2), 129.0 (s, Ar-CH), 127.5 (s, Ar-CH), 127.3 (s, Ar-CH), 118.7 (s, 

PhCCH2CHCH2), 53.7 (s, PhCC(O)H), 40.7 (s, PhCCH2), 19.0 (s, PhCCH3) ppm. 

Rf = 0.37 (SiO2, cyclohexane/EtOAc = 20:1). 

HPLC (Daicel Chiracel AD-H, Hept/i-PrOH = 99:1, 0.5 mL/min, 20 °C): tR = 10.9 min  

((�)-133), 12.0 min ((�)-133). 
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8.1  Derivation of the Formula for Selectivity Calculation for the ESI-MS 

Screening of Racemic Catalyst Mixtures 

When catalysts CR and CS react with AMe and AEt, CRAMe, CRAEt, CSAMe and CSAEt can be 

formed (see scheme below). 

 

If CR and CS react with perfect selectivity, only the intermediates CRAMe and CSAEt are 

formed. A real catalyst will form CRAEt and CSAMe as well. In an ESI-MS screening, CRAMe 

and CSAMe show one signal as they have the same molecular mass. The same holds for CSAEt 

and CRAEt. The quasienantiomeric substrates are present as a scalemic mixture with the ratio 

Q. 

The rate of formation of the intermediates CRAMe and CRAEt is: 

 

       (1) and  

      (2) 

 

kR,Me and kR,Et : rate constant for the reaction of CR with AMe and AEt. As AMe and AEt are 

quasienantiomers: kR,Me = kS,Et , kR,Et = kS,Me. 

Under pseudo zero-order conditions (saturation conditions; large excess of substrate), [AMe] 

and [AEt] remain virtually constant during the first few turnovers and the ratio Q does not 

change. As the rates of nucleophilic addition to the four allyl intermediates are identical, their 

ratios only depend on the relative rates of formation. Thus: 
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        (3) 

 

From  (4) and  (5) follows: 

 

          (6) 

 

In the same way eq. (7) is derived: 

 

         (7) 

 

Since the catalyst is racemic ([CR]tot = [CS]tot) eq. (8) holds under saturation conditions (the 

four allyl intermediates are the resting state and represent the total amounts of CR and CS). 

 

    (8) 

 

From equations (6), (7) and (8) the concentration of the four allyl intermediates can be 

calculated. 

   (9) 

       (10) 

        (11) 

        (12) 
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In the same way [CSAMe] and [CSAEt] are calculated: 

 

  (13) and   (14) 

 

From eq. (11)-(14) the signal ratio IMe/IEt can be calculated: 

 

      (15) 

 

From the signal ratio the selectivity factor s can be calculated as follows: 

 

        (16) 
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8.2 Summary of Screening Results Obtained from the ESI-MS 

Racemate Screening 

entry 

 

Ligand 

 

solvent 

 

substrate ratio 

8a:8b 

intermediate ratio 

36:37 

ee 

[%] 

1 

 

DCM 3.30 3.18 20 

2 DCM 3.30 3.17 20 

3 DCM 3.02 2.92 17 

4 DCM 3.02 2.83 26 

5 DCM 3.00 2.85 23 

   average: 21 

6 

 

DCM 3.30 3.28 9 

7 DCM 3.25 3.24 5 

8 DCM 3.42 3.42 0 

9 DCM 3.06 3.05 6 

   average: 5 

10 

 

DCM 3.15 2.27 56 

11 DCM 3.16 2.27 56 

   average: 56 

12 Toluene 3.04 1.81 72 

13 Toluene 3.09 1.72 72 

   average: 72 
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entry 

 

Ligand 

 

solvent 

 

substrate ratio 

2a:2b 

intermediate ratio 

3a:3b 

ee 

[%] 

14 

 

DCM 3.04 2.22 56 

15 

 

DCM 3.04 2.09 60.6 

16 DCM 3.08 2.05 62.4 

17 DCM 2.99 2.04 61.4 

18 DCM 3.04 2.09 60.6 

   average: 61.3 
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8.3  Crystallographic Data 

The X-ray were measured by Dr. Markus Neuberger and Dr. Sylvia Schaffner (Department of 

Chemistry, university of Basel) on a Nonius KappaCCD diffractometer, solved using direct 

methods (SIR92[150]) and refined with Crystals.[151] Unless otherwise specified hydrogen 

atoms were added geometrically. 

 

Compound 57a 

molecular formula C30H27F6N2O4P3Pd 
molecular weight [g mol-1] 792 
shape plate 
color colorless 
temperature [K] 173 
radiation Mo Kα 
wavelength [Å] 0.71073 
crystal system monoclinic 
space group P 21 
crystal size [mm3] 0.04 x 0.15 x 0.27 
a [Å] 13.1637(3) 
b [Å] 20.5355(5) 
c [Å] 14.3590(3) 
� [°] 90 
� [°] 114.1870(10) 
� [°] 90 
unit cell volume [Å³] 3540.82(14) 
Z 4 
F(000) 1824 
θ-range for data collection [°] 1.965-43.533 
calculated density [g cm-3] 1.711 
adsorption coefficient µ [mm-1] 0.958 
measured reflections 62134 
independent reflections 14824 (Rint = 0.047) 
used reflections 9082 
parameters refined 482 
R

[a] 0.0408 (I > 3 σ(I)) 
Rw

[b] 0.0599 
goodness-of-fit 1.1105 
Flack parameter 0.003 

[a]: R = Ʃ||F0|-|FC||/Ʃ|F0|; [b]: Rw = {Ʃ[w(F0-FC)2
]/Ʃ[w(F0)

2]}1/2. 
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8.4  List of Abbreviations 

Å Ångström 
Ac acetyl 
acac acetyl acetone 
anth anthracenyl 
aq aqueous 
Ar aryl 
BArF tetrakis[3,5-bis(trifluoro-methyl)phenyl]borate 
bipy 2,2’-bipyridine 
Bn benzyl 
Boc tert-butoxycarbonyl 
br broad 
BSA N,O-bis(trimethylsilyl)-acetamide 
Bu butyl 
Bz benzoyl 
calc calculated 
cat catalytic 
COD cycloocta-1,5-diene 
conc. concentrated 
config configuration 
conv. conversion 
COSY correlation spectroscopy 
d day(s) 
d doublet (NMR) 
�� chemical shift 
d.r. diastereomeric ratio 
dba dibenzylideneacetone 
DCE dichloroethane 
DCM dichloromethane 
de diastereomeric excess 
DIC di-iso-propylcarbodiimide 
diop 4,5-Bis(diphenylphosphanyl-methyl)-2,2-dimethyl-1,3-dioxolan 
DMAP 4-(dimethylamino)pyridine 
DMF dimethylformamide 
DMSO dimethyl sulfoxide 
DPPF 1,1’-bis(diphenyl-phosphino)ferrocene 
ee enantiomeric excess 
EI electron-impact ionization 
ent enantiomeric 
eq. equivalent(s) 
ESI electrospray ionization 
Et ethyl 
FAB fast atom bomardement 
GC gas chromatography 
gem geminal 
h hour(s) 
HMBC heteronuclear multiple bond correlation 
HMQC heteronuclear multiple quantum coherence 
HOMO highest occupied molecular orbital 
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HPLC high performance liquid chromatography 
Hz Hertz 
I intensity 
i-Pr iso-propyl 
J coupling constant 
k rate constant 
LUMO lowest unoccupied molecular orbital 
M molar [mol·L�1] 
M metal 
m multiplet (NMR) 
m medium (IR) 
m.p. melting point 
m/z mass-to-charge ratio 
MALDI matrix assisted laser desorption ionization 
MCPBA meta-chlorobenzoic acid 
Me methyl 
min minute(s) 
mL milliliter 
MS mass spectrometry 
MS mole-sieves 
Ms mesyl 
n.d. not determined 
naph naphthyl 
nba norbornadiene 
n-Bu 1-butyl 
NMR nuclear magnetic resonance 
NOESY nuclear Overhauser enhancement spectroscopy 
Nu nucleophile 
obs observed 
p para 
Pent penatne 
Ph phenyl 
PHOX phosphino-oxazoline 
ppm parts per million 
n-Pr 1-propyl 
p-TsOH para-toluenesulfonic acid 
q quartet 
quint quintet 
rac racemic 
Rf retention factor 
ROMP ring-opening metathesis polymerization 
RT room temperature 
s selectivity factor 
s second(s) 
s singlet (NMR) 
s strong (IR) 
S/C substrate-to-catalyst ratio 
sat. saturated 
s-Bu sec-butyl 
sec secondary 
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sept septet 
sext sextet 
SM starting material 
SOMO single occupied molecular orbital 
SPO secondary phosphine oxide 
T temperature 
t time 
t triplet (NMR) 
TBME tert-butyl methyl ether 
t-Bu tert-butyl 
TCA trichloroacetic acid 
tert tertiary 
Tf trifluoromethanesulfonyl 
TFA trifluoroacetic acid 
THF tetrahydrofurane 
TLC thin layer chromatography 
TMEDA N,N,N,N-tetramethyl ethylenediamine 
Tol tolyl 
tR retention time 
Trt triphenylmethyl 
Ts tosyl 
w weak 
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This work was dedicated to the development and evaluation of new chiral catalysts for 

asymmetric C-C and C-H bond forming reactions. In this context ESI-MS was used as a 

powerful tool for reactivity- and selectivity-studies. 

In the first part an ESI-MS screening method is described, which allows the determination of 

the selectivity of a chiral catalyst in the palladium catalyzed asymmetric allylic alkylation by 

testing its racemic form. It was shown that, by reacting a racemic mixture of the with a 

scalemic mixture of quasi-enantiomeric mass-labeled substrates, the selectivity of the chiral 

catalyst can be calculated from the ratio of the formed mass-labeled reaction intermediates. 

The value of this new method was demonstrated when different new aryl-PHOX-type ligands, 

which are not easily accessible in enantiopure form, were synthesized and evaluated in the 

allylic alkylation reaction. In this way a more selective member of this class was found 

compared to the previously reported phenyl-PHOX ligand. 

 

Since PHOX ligands are suitable ligands in the iridium-catalyzed asymmetric hydrogenation 

of C-C and C-N double bonds, the new PHOX ligands were then tested as well in the iridium-

catalyzed asymmetric hydrogenation of different unsaturated compounds. Although low 
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activities and selectivities were found in most cases, one ligand showed some promising 

results in the hydrogenation of allylic alcohols and imines. 

 

Furthermore air- and moisture-stable secondary phosphine oxide (SPO) containing bidentate 

ligands were tested in the palladium-catalyzed asymmetric allylic alkylation reaction. SPO,N-

ligands bearing a PHOX type backbone were inactive in this transformation as they tend to 

form inactive palladium-bis-ligand complexes stabilized by hydrogen-bonding between the 

two ligands. SPO,P ligands however, were able to promote the desired reaction in a highly 

selective fashion although only low activities were found. 

 

During this work as well a new organo-catalyst, based on the structure of 2,3-

dihydrobenzo[1,4]oxazine, was developed which allows for the asymmetric transfer-

hydrogenation of �,�-unsaturated aldehydes. Especially in the reduction of �,�-diaryl 

acrylaldehydes very good activities and high enantioselectivities were achieved. It was shown 

that for this particular substrate this catalyst outperformed the previously described ones. Thus 

it proved to be a useful extension to the limited known catalysts for this reaction and 

especially for this interesting class of products, which can act as precursors for many natural 

products or drugs. 
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Another organo-catalyzed reaction which was studied in this work was the conjugate addition 

reaction catalyzed by a tripeptidic organo-catalyst. As in the literature two different 

mechanistically pathways were hypothesized, via an enamine- or via an enol-intermediate, 

ESI-MS studies were carried out to clarify the actual mechanism for this transformation. All 

reaction intermediates which are postulated for the enamine-pathway could be found in both 

the forward- and the back-reaction. Furthermore the enantioselectivity of enamine-attack onto 

a nitroolefin was determined by an ESI-MS screening and it was shown that this 

enantioselectivity equals the selectivity of the preparative reaction. All of these findings 

strongly support the suggestion of an enamine-catalysis mechanism to be true in this reaction. 

 

The last part of this work aimed for the asymmetric �-allylation of carbonyl compounds by a 

tandem-catalysis approach. An intensive screening of both the organo-catalyst and the 

palladium-ligand led to reaction conditions which allowed for the selective mono-allylation of 

ketones in high yields. The formation of a quaternary center by �-allylation of  

�-branched aldehydes was also achieved. However, only low enantiomeric excesses were 

obtained in this transformation for the different catalyst systems tested. 
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