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Abstract 
 
All terrestrial environmental processes involve the soil including hydrological, geological, 
meteorological, ecological and anthropological factors. The stress on natural soils increases 
significantly with agricultural and urban land use as a consequence of the world‘s growing 
population. This leads among others to deforestation and soil sealing and consequently to the 
decrease of natural habitats and resources. Thus, protection and preservation of soil and the 
maintaining and avoiding of negative affects from land-use change marks is a challenge for the 
policy, agricultural economics, and the geosciences. 
A perspective for maintaining and avoiding extensive and destructive land use is given by the 
optimization of current land use. Therefore reliable information of soil and subsoil properties are 
needed. However, direct analysis of crucial soil properties, e. g. grain size or soil moisture is still 
time consuming and costly, and provides only single point information. But in particular soil data 
for medium and large-scale areas are needed for the assessment of soil development and future-
oriented planning. 
Proximal soil sensing techniques (PSS) offers an opportunity for obtaining data from medium and 
large–scale areas time and cost efficient. However, all PSS methods response only indirectly to 
the relevant soil properties and could be affected by several soil properties. Hence, a recent 
challenge is the improvement of PSS data evaluation and interpretation. 
The presented PhD thesis addresses the improvement of data evaluation and interpretation of the 
PSS methods electromagnetic induction (EMI) and gamma spectrometry (GS) at three different 
test sites and three different problems. For each problem an individual adjusted approach was 
develop, applied and critical discussed. 
In Part I the study consider the moisture distribution at a land slide affected hill slope in Austria 
by means of EMI. The presented study monitored the temporal, spatial and vertical behavior of 
soil-moisture distribution at a previously identified dynamic slope area over a period of nine 
month. By the assumption of relative temporal stability of soil properties, seasonal changes in 
measured electric conductivity (EC) should originate from soil moisture content. This study also 
faces the challenge of shifts in absolute EC values resulting from different calibration situation or 
different EMI devices and provides an opportunity for comparability of different EC data. By this 
approach an delineation of soil moisture pattern was successful derived. Part I also explores the 
visualization of temporal changes in three-dimensional subsurface data. 
Part II focuses the problem of synthesis and simplification of multilayered input data of a 
floodplain in Central Germany towards a clear delineation of surface. This study tackle the 
problem by a K-means cluster algorithm in order to generate a 2dimensional map from the test 
site that includes the main characteristics from divergent input data. However do the generated 
cluster partitions really reflect the main characteristics of soil properties? Hence, this study also 
addressed on the reliability of such cluster maps by validation of independent soil properties such 
as grain-size, thickness of soil layers, and the color. The results show that not all partitions can be 
confirmed by independent soil samples; one of three clusters significantly differs from the others, 
the other two clusters could not confirmed by the considered parameters. 
Part III investigates a floodplain of a low-mountain river in Switzerland in order to detect the 
ancient active stream channels (AAC). This part is subdivided into two approaches; first a 3D 
subsurface model as a result from the iterative inversion of predicted EMI values was generated. 
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Thereby various electric conductivity maps (EC) were generated by forward modeling and 
compared with the corresponding measured data. The study use the best fitted input data for the 
generation of the 3D model. In a second approach a K-means cluster map for the floodplain 
surface was generated that combines the main characteristics from multilayered subsurface data 
by synthesis and simplification analogue to Part II. The obtained cluster characterizes different 
soil conditions, which are indicative for the delineation of AAC. 
Although developed under specific site conditions all demonstrated approaches offers portability 
and should be applied in other applications. 
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Introduction 

 
1.  Motivation / Problems and approaches 

 

All terrestrial environmental processes involve the soil including hydrological, geological, 

meteorological, ecological and anthropological factors. The stress on natural soils increases 

significantly with agricultural and urban land use as a consequence of the world‘s growing 

population (approx. 1.6Mill humans per week, Helmholtz Statistic 2011). This leads among 

others to deforestation and soil sealing and consequently to the decrease of natural habitats and 

resources. Thus, the protection and preservation of soils along with prevention measures in land-

use scenarios is a challenge for the policy, agricultural economics, and the geosciences (Huisman 

et al. 2008). Although most countries still have reserves, soil is a finite resource and needs a 

consideration as most precious and threatened resource (Banwart 2011), and all planning 

concepts should rely on sustainable land-use scenarios. 

A perspective for maintaining and avoiding extensive and destructive land use is given by the 

optimization of current land use, e. g. by reutilization of anthropogenic modified soils and 

agriculturally site-specific crop management (SSCM) (Pringle et al. 2003, Green et al. 2007). 

Therefore reliable and detailed spatial and temporal information of relevant soil and subsoil 

properties are needed that allow an adaptive land-use management, for example the adjustment of 

fertilizer and pesticide applications (Green and Erskine 2004, Behrens et al. 2005, Behrens and 

Scholten 2006). Relevant soil properties in terms of agriculture and land management options are 

for example bulk density, soil moisture, soil texture, and organic carbon content due to its strong 

relation to environmental soil processes (e. g., Rawls et al. 1991, Tamari et al. 1996, Schaap and 

Bouten 1996, Schaap et al. 1998, Pachepsky et al. 1996, 1999, Minasny et al. 1999, Wosten et al. 

2001, Western et al. 2002, Pachepsky and Rawls 2004, Parajka et al. 2006, Mahmood and Vivoni 

2008, Deng et al. 2009) In addition, reliable soil data in adequate temporal resolution provide 

essential information for predicting effects of climatic and environmental change on soil 

conditions. Hence, the investigation of soil properties has become a key issue in soil and 

geosciences  (Lin 2003, Carrolla and Oliver 2005, Behrens and Scholten 2006, Corwin et al. 

2006, Hartemink and McBratney 2008, Behrens et al. 2009, Brocca et al. 2009, Eggleton et al. 

2009, Zacharias et al. 2009, Minasny et al 2010). 
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However, direct analysis of crucial soil properties, e. g. grain size or soil moisture by soil 

sampling is still time consuming and costly, and provides only single point information. In 

addition, direct soil information are mostly available only for small-scale areas, but precise soil 

data are also needed for medium and large-scale areas (up to several square kilometers) for the 

assessment of soil development and future-oriented planning. Prediction of soil conditions over 

large scales e. g., by upscaling is complex due to the heterogeneity of soil properties and this 

issue has been addressed in discussions since more than a decade (McKenzie et al 2008). Hence, 

methods are needed for time and cost efficient acquisition of soil and subsoil data from medium 

and large-scale areas.  

Proximal soil sensing techniques (PSS) are an opportunity for obtaining data from medium and 

large–scale areas that allow a time and cost efficient characterization of soils and subsoils 

(Hubbard and Rubin 2003, Pellegrin and Wannemaker 2005, Becht et al. 2006, Lambot et al 

2006, Steelman & Endres 2009, Viscarra Rossel et al. 2011, McBratney et al. 2011, Hura et al. 

2011). PSS started in the early 20century by using a dynamometer for mechanical resistivity and 

spreads (Sudduth 2011). Since then, PSS has been enhanced and represents nowadays a highly 

developed sensing technology. The principle of PSS is the measurement of easily recordable 

physical variables, which are representative for specific soil properties, the so-called proxy 

values. Relatively easy obtainable proxies are for example the electric conductivity, the gamma 

decay or different color spectrums. Proxies are typically obtainable from surface and do not need 

an engagement in soil structure by probe taking. 

A widespread application area for PSS methods is in hydrological and hydrogeological questions 

due to the complexity for obtaining direct hydrological related data, e. g. for investigation of soil 

moisture (Huth and Poulton 2007, Wagner et al. 2008, Martinez et al. 2010) riverbed 

investigation (Kim et al. 2002) groundwater distribution information (Belaval et al. 2003, 

Manheim et al. 2004, Taniguchi et al. 2007, Nyquist et al. 2008) or investigations of ground 

water table (Loheide et al. 2005, Abdu et al. 2008, Buchanan and Triantafilis 2009). Two 

common and established PSS methods capable for hydrological and hydrogeological questions 

are electromagnetic induction (EMI) (McNeil 1980, Lesch et al. 2005, Triantafilis and Lesch 

2005, Pellergin and Wannamaker 2005, Wong et al. 2006, Hayley 2007, Martinez et al. 2011) 

and gamma spectrometry (GS) (Bierwirth et al. 1996, Wong and Haper 1999, Taylor et al. 2002, 

Pracilio et al 2006, Viscarra Rossel et al. 2007, Altdorff and Dietrich 2011) due to the significant 

relation between the obtained geophysical parameters apparent electric conductivity (EC) and 

natural gamma decay (DC). These parameters are  in significant relation to several relevant soil 

properties, e. g. soil moisture and clay content (e. g., Hedley et al. 2004, Pracilio et al. 2006, 



Introduction 
 

6 
 

Martinez et al. 2010). Both methods are able to record high precision soil data in combination 

with the use of Global Positioning System (GPS) for simultaneous spatial allocation of sampling 

points. This simultaneous spatial allocation allows a new dimension of soil data acquiring e. g., 

by car-borne surveys. This facilitates a parallel and multiple data collection e. g., parallel EC and 

gamma ray recording. Also it increases as a result the amount and quality of data on the one hand. 

On the other hand, while GPS connected EMI and GS recordings and its combination delivers 

more precise and multidimensional results, also the interpretation becomes often more 

complicated and usually requires the output of dissimilar maps. In addition, EMI and GS 

response only indirectly to the relevant soil properties (a problem of PSS methods in generally). 

Hence, new approaches and analysis tools for multidimensional data are needed, which is a recent 

challenge in soil science. In particular, the improvement of the reliability of PSS results towards 

the solution of specific questions is an addressed question.  

 

The presented PhD thesis addresses the improvement of data evaluation and interpretation of the 

proximal soil sensing methods electromagnetic induction (EMI) and gamma spectrometry (GS) at 

three different test sites and three different problems. All demonstrated studies deal with the 

delineation of characteristic structures in the subsoil, the subsequent data analysis as well as with 

the critical interpretation towards an assessment of soils as scientific base for future oriented 

land-use recommendations.  

The thesis addresses in particular the following questions: 

 

(1) How can the comparability of the absolute EMI values assured and shifts of data 

ranges excluded? 

(2) Is a delineation of soil moisture and its spatial and temporal distribution with EMI 

possible? 

(3) Are EMI and GS results able to delineate similar soil characteristics from the same 

test site? 

(4) How can multidimensional subsurface data are combined towards a 2dimensional 

test site mapping and do the generated partitions really reflect the main 

characteristics of soil properties? 

(5) Can an EMI forward modeling approach predict the measured EMI values and the 

structure of four different investigation depths with just one model? 

(6) Is a reliable 3dimensional delineation of significant structures in subsurface 

possible by EMI and GS data only? 
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The presented studies discuss these questions by means of practical examples and leads to a 

distinct conclusion. 

 

 

2. Methodology 

 

In the following section a short introduction into the measuring principles of EMI and GS is 

given for a better understanding of the demonstrated approaches. 

 

Electromagnetic induction (EMI) 

EMI is based on the difference of electric properties of soil material. A two coils system in the 

measuring device generates and receives electromagnetic fields; thereby one coil generates a 

primary electromagnetic field and stimulates the conductor in the subsoil. The electric properties 

of the subsurface material respond to primary electromagnetic field and engendered a weak 

secondary field, which overlays the primary electric field. The second coil receives the primary 

and secondary fields. In dependency of electric soil properties, the secondary field varies in its 

intensity: the higher conductive the soil material the higher measured apparent conductivity. A 

description of the technical details is given in Knödel et al. (2005).  

EMI devices differ in its maximum exploration depth, which is controlled by the coil distance, 

the coil configuration, and measuring frequency. In generally, larger coil distances increase the 

exploration depth, but also the coil configuration has an influence on the investigation depth. The 

investigation depth or pseudo depth (PD) is an integral signal and means that 3/4 of original 

signal originates from the area from PS to the surface (in an ideally homogeneous subsoil) 

(McNeill 1980). There are two common coil configurations, the horizontal position ϕH, where 

the coils axis are arranged parallel to the ground and the vertical position ϕV where the coils axis 

stand orthogonal to the ground surface. Figure 1 shows two different PD with relatively responses 

for horizontal and vertical configuration on example of the EM38 device (Geonics Limited). 

While the PD of ϕH  is maximum 0.75m, the PD of the ϕV reaches up to 1.5m. It demonstrates 

the PD of the vertical mode is always approx. two times higher then the horizontal mode (McNeil 

1980) 
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Figure 1 comparison of relative responses for vertical and horizontal modes, x-axis depth [m], y-axis sensitivity [%] 

(McNeill 1980) 

 

However the obtained electric conductivity signal (EC) is an integral signal that responds to 

several soil properties, e. g. clay content, moisture content, bulk density and grain size. Thus 

making an allocation to one of these qualities can be difficult (Rein et el. 2004, Mojid 2007). 

Nevertheless, EMI is an established tool for subsoil characterization since several decades and 

offers a bought range of application possibilities. A frequent application of EMI technology is the 

detection of clay minerals due to its relatively high electric conductivity in contrast to the 

background. Thus a number of studies postulate a positive correlation of clay with the EC signal 

(e.g. Bierwirth et al. 1996, Hedley et al. 2004, Triantaflis & Lesch 2005, Pracilio et al. 2006, 

Mojid et al. 2007, Weller et al 2007). Other studies use EMI for characterizing of a sanitary 

landfill McNeil (1980), investigation of soil-moisture pattern (Kachanoski et al. 1988, Mojid et 

al. 2007) or considered the soil texture with EMI (Cockx et al. 2007). Hedley et al. (2004) found 

a relation between the EC signal and the cation-exchange capacity, Abdu et al. (2008) predicted 

the water holding capacity with EMI devices and Robinson et al. (2009) used EMI for crop 

prediction. 

 

In this thesis the ground conductivity meters EM38DD and EM31MK (Geonics Limited, 

Mississauga, Ontario Canada) come to apply in both horizontal and vertical coil configurations 

and obtain integral investigation depths between 0.75m and 6m 

  

 

Gamma-ray spectrometry (GS) 
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Measuring principle of the gamma spectrometry is based on the natural decay of radioactive 

elements in rocks and soils and its ability to emit electromagnetic waves with discrete energies 

(IAEA 2003, Viscarra Rossel et al. 2007). The radiance is scaled by the distance and power of the 

emitted particle in alpha, beta and gamma – last one has the highest energies (up to several MeV) 

and the largest outrange with reach up to approx 30cm from subsoil (IAEA 2003). Signals related 

to potassium (range of 1.370–1.570 MeV), uranium (range of 1.660–1.860 MeV) and  thorium 

(range of 2.410–2.810 MeV) as well as the total count (range of 0.4–2.810 MeV) (Figure 2) . 

 

 
Figure 2 Typical gamma-ray spectrum and position of the element peaks for potassium, uranium, thorium, and total 

count (Viscarra Rossel et al. 2007) 

 

The emitted discrete energies enable an allocation to the corresponding elements. This allows a 

detector at the surface the counting the impacts from the emitted energy. A gamma detector 

contains a piezoelectric crystal and a high sensitive recording device. If a gamma particle hits the 

crystal during the survey, the stimulated crystal generates a measurable electric impulse. In 

relation to the discrete gamma energies the triggered impulse is higher or lower and allowed a 

subsequently allocation from the recorded data to the elements  - see more details in ´Guidelines 

for radioelement mapping using gamma ray spectrometry data´ (IAEA 2003).  

In soil science usually the elements potassium, uranium, thorium will extract and considered 

(Minty et al. 1997, Viscarra Rossel et al. 2006, Viscarra Rossel et al. 2007, Buchanan and 

Triantafilis 2009). These elements stand in a close context to defined soil components because 

it’s chemical configuration. GS was original developed for commodity prospection and comes to 
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applying in soil science since almost more then two decades (e.g. Dickson et al. 1996, Cook et al. 

1996, Dickson & Scott 1997, Wilford et al. 1997, Buchanan and Triantafilis 2009). Darnley & 

Ford (1987) derived from the gamma signal information of parent material of soils.  Other studied 

postulates correlations from GS signal with clay content (Worg & Haper 1999, Taylor et al. 2002, 

Pracilio et al.2006, Viscarra Rossel et al. 2007) Bierwirth et al. (1997) investigates hydrological 

infiltration beds in soil using gamma spectrometry, Viscarra Rossel et al. (2006) found a 

correlation of gamma signal with the pH values in soil and Wong et al. (2008) postulates 

correlation of the GS signal with soil texture.  

 

In the presented studies of this thesis a GSCar gamma spectrometer (GF Instruments / Czech 

Republic) with 512 5.66 keV channels and a total measuring range from 100 keV to 3 MeV was 

used. 

 

 

 

  3. Thesis organization 

 

The presented thesis is divided into three parts, each representing a standalone article including 

corresponding references.  

Due to the thematically overlapping slightly reiteration within this thesis might be possible. 

 

In Part I consider a land slide affected hill slope in Vorarlberg / Austria. The creeping landslide 

at this very inhomogeneous area is triggered by precipitation infiltration and its corresponding 

changes in vadose zone moisture distribution (Schneider, 1999, Lindenmaier et al. 2005, 

Wienhöfer et al. 2011). The shear zone is located in a depth between 8m and 11m and is 

observable at the surface (Schneider, 1999). Reliable information of spatial soil moisture 

distribution and its associated dynamics is fundamental to any investigation or assessment of the 

landslide processes. However obtaining reliable information on spatial moisture dynamics over 

the field scale remains a challenge (Parajka et al 2006, Abdu et al. 2008, Wagner et al. 2008, 

Brocca et al. 2009). 

Thus, apparent electric conductivity data from EMI was used from individual depth intervals up 

to 6m as proxy for soil moisture investigation due to the (dependent) relationship between 

moisture and electric soil conditions. The presented study in Part I monitored the temporal, 

spatial and vertical behavior of soil-moisture distribution at a previously identified dynamic slope 
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area over a period of nine month (Lindenmaier et al. 2005) (Figure 3). By the assumption of 

relative temporal stability of soil properties, seasonal changes in measured EC should originate 

from soil moisture content. 

 

 

Test field

subgacial till

loamy scree / scree

cretaceous marls

subgacial till

loamy scree / scree

cretaceous marls

N

Infiltration of  precipitation

Generation of pressure 

Creeping landslide 

After Lindenmaier et al. 2005

 
 
Figure 3 Schematic figure of the landslide affected hill; due to infiltration of precipitation without subjacent drainage 

a lateral pressure is generated that triggers the landslide in relation to the soil moisture, by means of an EMI 

monitoring of  moisture distribution a delineation of areas with different soil-moisture dynamics is possible  

 

 

This study also face the challenge of shifts in absolute EC values due to different calibration 

situation or different EMI devices and provide one opportunity for comparability of different EC 

data. Part I also explores the visualization of temporal changes in three-dimensional subsurface 

data. 

 

In Part II focus on the delineation of different soil properties of a medium scale floodplain 

(approx. 50,000m²) in Central Germany from multidimensional input data (Figure 4). As 
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mentioned the demand for reliable high-precision maps of soil and subsoil properties has 

increased over the past years. These multidimensional data sets can lead to multilayered and 

complex maps of parameters which are only indirectly related to soil properties and soil 

functions. However, in applications usually just one clear elementary map is required. Part II of 

the thesis therefore addresses the problem of simplification and synthesis of multidimensional 

subsurface data for the generation of a 2D map. While the development of survey methods and its 

combination delivers more precise and multidimensional results, also the interpretation becomes 

often more complex and usually leads to multilayered maps. For example, the use of different 

survey methods (e.g. EMI and GS) results in different maps because the different methods 

measure various physical variables, which can be related to one single soil property in variable 

manner. But the real world application of land use and further investigation approaches usually 

demands a clear and elementary partitioning of the surface, for example in terms of agricultural 

issues. Therefore, a synthesis and simplification of information from different input maps are 

required (Figure 4). 

 

River Mulde

Test field

Embankment

N

100 m

?

Multilayered survey maps requires a synthesis 
and simplification of the 2D result map

 
Figure 4 The studied  floodplain with the test field (enclosed with red line on the left side) and a schematic figure of 

the motivation for the simplification and synthesis of multilayered subsurface data for generation of a 2D map (right 

side) 

 

 

The study tackle the problem of synthesis by a K-means cluster algorithm in order to generate a 

2dimensional map from the test site that includes the main characteristics from divergent input 

data. However do the generated cluster partitions really reflect the main characteristics of soil 

properties? Hence, this study focuses on the reliability of such cluster maps by a critical 

evaluation of the generated partitions. Therefore, independent soil properties such as grain-size 

characteristics, thickness of soil layers, and the color of randomly taken soil samples were 
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compared with its cluster allocation. If the generated cluster partitioning reflects the main 

characteristics of the soil, the chosen properties should significantly correlate with the cluster 

allocation. 

 

In Part III deals with the problem of river restoration and applied restoration measures. Since the 

positive effects from river restoration to several environmental processes have become aware, 

methods for effective restoration are required. This study investigates a floodplain of a low-

mountain river in Switzerland in order to detect the ancient active stream channels (AAC) as 

basis for river restoration measures (Figure 5).   

 

Morphological and dispositional features 
within the ancient active channel belt

Test field

GW - SW Interaction

Current constructed 
riverbed 

 
Figure 5 Schematic figure of the investigated floodplain: ancient active river channel (AAC) with geomorphological 

units developed in the transition between high and low flow (middle) current riverbed (left) with increasing ground 

floor and location of test field (red line) 

 

This part is subdivided into two approaches; first a 3D subsurface model as a result from the 

iterative inversion of predicted EMI values was generated. Thereby various electric conductivity 

maps (EC) were generated by forward modelling and compared with the corresponding maps 

from measured data. The geological input parameters were varying until the predicted EC maps 

fit to the real EC values. Subsequently, the study use the best fitted input data for the generation 

of the 3D model. In a second approach a K-means cluster map for the floodplain surface was 

generated that combines the main characteristics from multilayered subsurface data by synthesis 
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and simplification analogue to Part III. The obtained cluster should characterize different soil 

conditions, which are indicative for the delineation of ancient active channel zones.  
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Abstract 
Spatial and temporal soil moisture dynamics play a major role in landslide affected areas. 
Landslide activity is largely controlled by pore pressure changes in response to rising 
groundwater levels, which can be related to changes in vadose zone moisture distribution. While 
knowledge of soil moisture conditions is of utmost importance to the prediction of landslides, it is 
difficult to obtain reliable information over the field-scale. A possibility of filling that 
information gap is the indirect mapping of soil moisture by electromagnetic induction (EMI), due 
to the relationship between moisture and electric soil conditions. However the fact that EMI data 
can vary in its absolute data ranges by other influences hindered a direct comparison of survey 
data in order to explore its changes. 
This study uses spatial and temporary EMI measurements to delineate moisture patterns over a 
heterogeneous, landslide-affected hill slope. By means of discovering this pattern and its dynamic 
changes, resulting in the derivation of zones of potential higher and lower land slide vulnerability 
is possible. 
As such, we investigate the temporal, spatial and vertical behavior of moisture distribution over a 
nine-month period; EMI measurements include four different integral depths: 0.75 m, 1.5 m, 3 m, 
and 6 m. We tackle the problem of comparability by normalization of the obtained EMI data. To 
separate the dynamic moisture signal from the geological signal, we subtract the temporal values 
from the mean values and delineate any relative changes at each depth. From the standard 
deviations obtained from the temporal maps, we identify areas of higher and lower dynamic soil 
moisture changes. To reveal the relationship between soil moisture and topography, we use high-
resolution aspect, slope, and altitude data in comparable format. A two-layer system could be 
indentified: one upper more dynamic layer which is associated with hill altitude and a deeper, 
more stationary layer with a different structure. Slope and aspect have only marginal influence on 
the moisture pattern.  
The approach developed in this study was able to identify moisture dynamics over larger scales 
and with complex accessibility problems. In addition, it allows for the visualization of temporal 
changes in three-dimensional subsurface data. 
 
Key words: soils moisture pattern, EMI monitoring and normalization, landslide, proximal soil sensing, visualizing 
temporal changes 
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1. Introduction 
Spatial and temporal soil moisture dynamics play a major role in landslide affected areas and 
their associated forecast (Flageollet et al. 1999, Bogaard & Van Asch 2002, Malet et al. 2004, 
Talebi et al. 2007, Chambers et al. 2010). The risk of landslide activity is expected to increase, 
due to the effects of climate change, e.g. expected increase in extreme natural events and due to 
intensified land use across mountainous areas and resultant changes of soil properties, in 
particular the moisture content. Several studies demonstrated the critical role of spatial soil 
moisture distribution in combination with hill slope stability, specifically the water content of the 
upper centimetres (Nyberg 1996, Crave & Gascuel-Odoux 1997, Van Asch et al. 2001). In 
general, the risk of landslides increases with increasing soil water content. However landslide 
processes show complex mechanical and fluid interactions and several studies also highlights 
some contradictory cases, due to negative feedback (Iverson 2005, Van Asch 2009). In any case, 
obtaining reliable information of spatial soil moisture distribution and its associated dynamics is 
fundamental to any investigation or assessment of landslide processes. (Crave and Gascuel-
Odoux, 1997, Famiglietti et al., 1998, Wienhöfer et al. 2009). 
Although several soil moisture measurement strategies have been developed over the last few 
decades, obtaining reliable information on spatial moisture dynamics over the field scale remains 
a challenge (Parajka et al 2006, Abdu et al. 2008, Wagner et al. 2008, Brocca et al. 2009, 2010). 
A possibility for filling this information gap is the mapping of soil moisture by means of 
geophysical properties, e.g. from the electric conductivity measured by electromagnetic induction 
(EMI), due to the (dependent) relationship between moisture and electric soil conditions (Dietrich 
1999, Brevik et al. 2006, Wong et al. 2006, Buchanan & Triantafilis 2009, Chambers et al. 2010). 
EMI has been an established tool for subsurface characterization for several decades (McNeil 
1980, Triantafilis and Lesch 2005, Robinson et al. 2009, Wong et al 2009). It has the capacity to 
non-invasively map over larger spatial areas with low operation costs. The method is easy to 
apply and can be automated to collect georeferenced data. However, one of the challenges with 
this method is that it records an integrated electrical conductivity (EC) value, and includes the 
effects of clay and mineral properties, porosity and water content; hence, making an allocation to 
one of these qualities, in this case  oil moisture, can be difficult (Rein et el. 2004, Mojid 2007, 
Buchanan & Triantafilis 2009). Despite the fact that several EMI studies attest a positive 
correlation of electric conductivity with soil moisture (Brevik 2006, Wong 2006, Huth & Poulton 
2007), a generalization is not feasible due to the multiplicity of affecting properties, as long as 
other potential variables remain unknown. 
Given the relative temporal stability of soil properties, seasonal changes in measured EC signal 
will be due to changing moisture conditions within the soil. Thus, the comparison of different 
EMI maps presents a potential opportunity to explore changes in soil moisture and to identify 
more hydrologically active locations (Abdu et al. 2008). Robinson et al. (2009) identified zones 
of water depletion and accumulation in a tropical deltaic soil by the subtraction of different EMI 
surveys. Similar to this study, Martinez et al. (2010) applied a procedure for deriving the moisture 
content at an agricultural test field. Both studies postulated a significant effect of precipitation 
upon the measured EC contrast. However, a simple determination of water content from EC, 
before and after periods of rainfall for areas with higher precipitation levels, is difficult because 
of the lack of a dry reference day. This is particularly true if the temporal sampling interval is 
larger than the frequency of rain events. Even if significant wet and dry periods are identified, the 
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distribution of water within heterogeneous soils can only partly be explained by the time 
distribution and rate of precipitation input (Price & Bauer 1983). Takagi and Lin (2011) showed 
that soil moisture variability in hills increases exponentially with increasing catchment-wide 
wetness due to subsurface lateral flows. Kampf (2011) demonstrated by means of a hypothetical 
hillslope and real precipitation data that simulations show a nonlinear increase in subsurface 
stormflow with increasing initial storage. In addition, the resident time of the water within 
heterogeneous, cohesive soils is difficult to assess and cannot be correlated with the magnitude or 
frequency of such precipitation events. The schematic diagram in Figure 1 shows the 
precipitation and evapotranspiration processes on a homogeneous soil in comparison with 
heterogeneous soil on a hill slope.  
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Figure 1: Schematic diagram of precipitation and evapotranspiration processes at an homogeneous (A) and 
inhomogeneous soil (B) on a hill slope; the levels of gray reflex the lever of saturation: dark grey means saturated, 
white means dry 
 
 
While infiltration and drying in homogeneous soils occurs in a more linear fashion, it should be 
noted that these processes occur at a variable rate within heterogeneous soils, and therefore, a 
direct correspondence of measured EC values to rain events is difficult. 
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In all cases, the main challenge is the separation of the dynamic, moisture-induced signal from 
the static geological background signal.  
We use EMI to investigate the dynamic moisture pattern for a heterogeneous, landslide-effected 
Alpine soil during a nine-months monitoring period under different weather conditions (wet to 
dry). Landslides at this hill slope usually occur in the upper few meters and are triggered by 
changes in moisture conditions (Schneider, 1999, Lindenmaier et al. 2005, Wienhöfer et al. 
2009). Thus, our surveys will focus on the moisture distribution within this zone. In comparison 
to other studies, we investigate the temporal, horizontal and vertical behaviour of moisture 
distribution over a nine-month monitoring period for four different investigation depths: 0.75 m, 
1.5 m, 3 m, and 6 m. However, the fact that EMI data can vary in its absolute data ranges as a 
result of other influences hindered a direct comparison and its use for further calculations. 
Therefore we normalized the obtained EMI data and, eliminating the need for shifts in absolute 
values. To separate the geological signal from the dynamic moisture signal, we subtract the 
temporal value from the mean values. For this purpose, we use discretion and normalize all EC 
values to the same dimensionless data range, in order to adjust for any differences in absolute 
data ranges. We also use the standard deviation of all depths to identify any layers of higher or 
lower dynamic moisture variability. For our investigation of the relationship between soil 
moisture and topographic data, we use a digital elevation model to represent general aspect, 
slope, and altitude data in a comparable format.  
This study focuses on the development of an investigation method of dynamic changes in soil 
moisture for sites with a dimension of several thousand square meters and/or with challenging 
accessibility. In addition, the method aims to address the issue of location optimization for future 
measurements / instrumentations. 
 
2. Materials and Methods 
 
2.1 Study area 
 
 General setting 
The Heumoeser slope test site belongs to the Vorarlberg Alps and is a rainfall-triggered land slide 
area located 10 km east of the city of Dornbirn (north-western Austria). The whole investigative 
area extends to a total of 1800 m x 600 m, with elevations between 1360 m and 940 m. Landslide 
events were first recorded since the mid 1960´s and from the 1990´s onwards, the area was the 
subject of various investigation approaches. Thereby, a resultant movement velocity of up to 
15cm per year with higher rates in spring and summer was observed, and the shear zone 
identified at an approximate depth of between 5 and 11 m (Schneider, 1999). Further 
investigations show a verifiable dependency of slope stability in combination with rainfall 
(Schneider, 1999, Lindenmaier et al. 2005, Wienhöfer et al. 2009) which could be resolve into 
several discrete rupture episodes. The topsoil material consists of very heterogeneous loamy scree 
and glacial till, with high silt/clay content and glacial components of varying size from the 
surrounding bedrock. The bedrock basement consists of layered upper cretaceous marls with a 
main tectonic fault direction of NW–SE and a secondary direction of NE-SW (Schneider 1999). 
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 Test site 
For the definition of an intensive test field, we use the hydrotopic delineation method of 
Lindenmaier et al. (2005) that divides the slope into 4 different local hydrotopes, as a result of 
combination with available vegetation, topography, slope, and geological data. Thereby we 
selected an area within the most dynamic north-western part, which is characterized by highly 
variable relief and small-scale features, such as bulging and plane areas that may be attributed to 
soil creep. Soil in this area is very cohesive and has stagnic properties that indicate low 
infiltration capacities (Lindenmaier et al. 2005). The test field extends over an area of 
approximately 7500 m², with an altitude ranging from 1050 m to 1100 m above sea level (asl). In 
general, the hillslopes have a strike of N-S and dip towards the east with a maximum slope of 
26°. The test site is naturally bordered in N and S by coniferous forest. South, several meters 
from the test site border, the altitude rises up to approx. 1250 m asl with slope up to 50°. Due to 
the amount of natural springs and the high annual precipitation (long-term average 2155 mm, 
Wienhöfer et al 2009), the vegetation is ample, filled with grassland in summer, varying with in 
respect to the heterogeneities of the soil.  
 
2.2 Soil Samples 
In late July, twelve soil probes were taken within the test field and grain size analyses were 
performed in the laboratory. The probes were taken by a Pürckhauer soil probe up to a depth of 
1m, randomly distributed in the test field (Figure 2).  
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Figure 2 Satellite photo with  contour lines and test field (grey) with raw data distribution from EMI survey, in this 
case March (dark grey line), the location of the soil samples (black crosses) as well as the location of the FDR 
transect (double arrow)  
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The sediments were divided into an upper (0 - 0.60 m) and a lower horizon (0.60 – 1 m). For 
grain size analysis, a SEDIMAT 4- 12 (UGT / Germany) is used, according the German standard 
DIN ISO 11277.  
 
 
 
2.3 FDR 
For validation of results, we attempt to utilize Frequency-Domain-Response (FDR) data. FDR is 
a common method for indentifying the volume moisture content, based on the distinctions in 
dielectric permittivity from water relative properties to soil matrix properties (Jones et al. 2005, 
Bittelli et al. 2008). However, measurement with dielectric permittivity is only a proxy and 
limited by several conditions, in particular by a very high electric conductive soil matrix, e.g. 
with high clay content (Blonquist, Jr. et al. 2005, Bogena et al 2007). 
In this study, the FDR data was monitored along an approx. 8 m transect during the summer 
months (late July to mid Sep.) The transect was located in the middle of the test site in an area 
where sharp changes were recorded in the uppermost EC data from previous surveys (  Figure2 
and 7). Two different types of Frequency-Domain-Response (FDR) loggers were used, five 
ThetaProbes ML2x FD (UMS/Germany) and two 5TM Soil Moisture-Probes (DECAGON / 
Pullman, WA USA), therefore seven in total, all buried at a depth of 15 cm.  
 
2.4 EMI survey and database 
For EMI monitoring, we used EM38DD and EM31MK2 devices (Geonics Limited, Mississauga, 
Ontario Canada) in horizontal and vertical dipole coil configurations. Thereby we obtained the 
following integral values related to pseudo depths (PD) of 0.75 m - EM38 horizontal (EM38h), 
1.5 m - EM38vertical mode (EM38v), 3 m - EM31vertical mode (EM31h) and 6 m - 
EM31vertical mode (EM31v). The PD means two-thirds of the response signal originates from 
the soil above (McNeil 1980). Both EMI units were connected with a DGPS system and were 
used manually at a height of approx. 20cm (Em38) and approx. 35 cm (Em31). Surveys were 
collected at walking speed depending on the topographic conditions, approx. 2-3 km/h. The track 
distance was approx. 5 m and the recording frequency was 5 Hz for both instruments. In six 
separate field survey dates, we collected 24 data sets with approximately 200.000 total DGPS 
allocated point data (approx. 8400 each), evenly distributed over the test field, an example of raw 
data distribution is seen in Figure 2. The surveys took place between March and October 2010. 
EC values are highly sensitive to outside influences, such as temperature, solar radiation, and 
battery voltage; consequently, device calibration is complex and reproducibility of absolute data 
is rendered difficult, despite regular calibration (Domsch 2004, Pellerin & Wannamaker 2005, 
Hayley et al. 2007, Abdu et al 2008, Santos & Porsani 2011). This limits the scope of the 
informational value of the results, in particular for monitoring studies. These drawbacks are well 
known in the geosciences community and still in discussion; on the European scale the European 
Committee for Standardization currently devise a schedule for standardization of EMI near 
surface survey (CEN 2010).  
In this study we calibrated the devices according to the manual and at the same calibration point 
(except March); nevertheless the data ranges vary significantly for each measuring mode, in 
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particular the Em38h data from the upper soil (see   Figure3 for measured absolute min/max 
values, evident outliers <0.5% of the total data points are already removed).  
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  Figure3: Box and whisker plots of EC for different survey dates and investigation depths (evident outliers already 
removed), whiskers indicate the total range (widest spread month underlined), top and the bottom of the box show 
the 25th and 75th percentiles, and the line inside the box is the median value; a) Em38h, b) Em38v, c) Em31h and d) 
Em31v 
 
 
 
These differences underlie the problems of absolute values as further calculations with the 
absolute values will not lead to useful results being obtained. 
Comparing the maps is possible based upon working with normalized, discrete relative data. 
Therefore, we first filtered the raw data with approx. 5 – 95 % from whole range, in order to 
avoid an overweighting of values in the subsequently normalized data sets. Then we interpolated 
all data by means of variogram analyses and block Kriging to obtain a separate EC map for each 
measuring day and investigation depth. Subsequently, we rasterize all maps to the same grid size 
(1x1m) and obtain a matrix with identical coordinates (x; y) and their corresponding EC values. 
Now we normalize all EC values to a comparable data range with 0.00 as the smallest value to 1 
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as the biggest value, subsequently also referred to as . This maintained the relation in data range 
and allowed visualization with identical scaling to take place, as well as further calculations.  
Similar to the EC data, we prepared the altitude, the aspect and the slope of the data sets without 
normalizing the data ranges. 
 
2.5 EMI data analysis 
For each of the four investigation depths, we use the arithmetic mean σ  from the (dimensionless) 
values to visualize the geological structure without the dynamic signal (  Figure4).  
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  Figure4: A – topographical data, B – EC mean value (dimensionless), and C – standard deviation of each 
investigation depth 
 
Then we subtract the mean value σ  from the day value n nσ  to highlight the seasonal changes 

(SC) (SC = nσ - σ ). Subsequently, we divide the results of SC by the mean value σ  to delineate 

the relative changes (RC) and for further contrast (RC= ( nσ - σ ) / σ  ). For a small amount of 

data, σ  is zero, thus the corresponding RC values are omitted (division by zero). In addition, the 
data range of RC is partly extreme, due to a very small σ  for these data points. 
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Furthermore, we calculate the standard deviation (SD) from each investigation depth.  
Precipitation data is provided from the Stadt Dornbirn (Vorarlberger Landesregierung 2010). The 
meteorological station is located approximately 500m from the test field. Due to local conditions, 
a representative constant groundwater table is non-existent. 
 
 
3. Results and Discussion 
 
3.1 Soil samples 
 
The results of the soil samples confirm the assumption of very loamy and cohesive soil. Table 1 
shows the results of the grain size [vol %] analysis of the upper soil, split into depths of 0-  0.60 
m and 0.60 - 1 m, as well their corresponding min/max and mean values. 
 
Table 1: grain size [vol %] of the soil samples taken in two different depths [cm] with min/max 
values  

SS # clay 0-60 silt 0-60 sand 0-60
clay 60-

100 
silt 60-

100 
sand 60-

100 
1 20,67 57,62 21,71 43,36 49,04 7,60 
2 33,34 45,69 20,97 36,00 47,00 17,00 
3 22,86 56,47 20,67 41,32 44,52 14,17 
4 25,67 51,48 22,85 25,67 51,48 22,85 
5 42,21 42,52 15,27 42,21 42,52 15,27 
6 33,73 51,72 14,55 34,14 51,49 14,37 
7 37,39 50,90 11,71 45,38 37,19 17,43 
8 42,84 45,93 11,24 42,84 45,93 11,24 
9 43,56 41,52 14,92 45,63 40,25 14,11 

10 29,89 53,38 16,73 29,71 50,91 19,38 
11 19,57 49,97 30,46 18,76 64,96 16,28 
Min 19,57 41,52 11,24 18,76 37,19 7,60 
Max 43,56 57,62 30,46 45,63 64,96 22,85 

Mean 33,34 50,90 16,73 41,32 47,00 15,27 
 
 
Generally, both depths have very high clay and silt content; however a distinct difference 
between the upper and the lower sediments is not observable in this data, apart from slightly 
lower clay content in the upper centimetre. Furthermore, no spatial correlation appears in this 
data; despite the relatively small number of sample points, results from the probes clearly 
illustrate the inhomogeneous conditions of the site. 
 
3.2 FDR 
The data collected in September showed the soil around the transect to be completely saturated, 
as the majority of the FDR probes were located under water. Results obtained show very high 
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conductivity (<0.5dS/m) with a marginal dynamic over the whole monitoring distance 
(>0.02dS/m) leading to implausible moisture content (< 53%) and an unlikely dynamic variation 
in moisture (lesser then 1% vol). This indicates an error, presumably induced due to the very high 
clay content. This problem occurs when the conductivity of the soil is very high which affects the 
measured high frequency wave. The results show FDR measurement is not suitable for soil 
moisture measuring at this test site, consequently we did not include the FDR data in our further 
approaches and investigation.  
In the following section, we focus on identifying moisture patterns in general, without 
quantitative interpretations. 
 
3.3 EMI 
Despite calibrating the devices according to the manual; the data ranges vary for each measuring 
mode. Generally, the range decreases with investigation depth. It was not possible to define a 
preferential month for the widest ranges. A noticeable and striking find is the negative EC values 
obtained in the Em38h values. These negative values can occur if the calibration point, the point 
where the instrument was set to zero, has a higher conductivity than some parts of the test field. 
The negative values in the results underlie the problem of comparing absolute values and the 
demand for normalization. In addition to the negative values, note the decrease in absolute values 
for the Em38h between Sept and Oct, as an example of relative changes of values. Therefore, we 
work further with normalized EC data. The attempt to directly combine EC data with 
precipitation data is always difficult and does not lead to distinct conclusion in this study. 
Although a general indication for a relationship exists, this precludes the temporal precipitation 
distribution of the test site and lacks a “dry reference day”, due to continual rain events (Figure 
5).  
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Figure 5: precipitation during the monitoring period with survey data (after Amt der Vorarlberger Landesregierung 
2010) 
 
 
Even if the precipitation was clearly divided into wet and dry periods, the resident time of the 
water in the soil would remain unknown and, particularly for glacial till and silt layers, the 
resident time is usually longer than seasonal precipitation variability. A tracer test in the same 
hydrotope, approx. 50 m distance from the test site, was aborted after three hours without visible 
percolation of salt tracer in a 1 m³ excavation. Furthermore, a heterogeneous soil matrix 
distribution and complex evapotranspiration processes make a direct allocation of the moisture 
movement to the precipitation events unfeasible (see schematic diagram in   Figure1). 
 
3.4 Spatial results 
The mean values of EC in   Figure4b show clear patterns of areas with higher and lower 
conductivity. In general, the eastern area is more conductive in all maps, particularly in the upper 
region. The values decrease with PD of 3m (Em31h) and slightly increase in the lowermost part 
(Em31v), probably due to reaching the saturated zone. Regarding the structure of the EC 
distribution, a two-layer system could be detected with different orientations: one upper with E-
W orientated pattern and one deeper, with S-N orientated pattern represented by the uppermost 
signal (Em38h) and the lowest signal (Em31v). The different investigation depth reflects the 
contrast of the layers. Note that the Em31h integrative signal is still affected by the upper layer 
but lower structures dominate the signal. By assuming the structure of the mean values may 
reflect the geological situation; the higher conducted areas presumably contain regions with 
thicker local glacial till or clay layers.  
When comparing EC data with topographical information (  Figure4a), a relation of altitude and 
the uppermost maps is apparent, whilst the deeper maps seem more affected by the aspect, in 
particular the Em38v map. Figure 6 shows the combination of all variables vs. each other.  
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  Figure6: Plots of the variables: mean (a -Em38h; b – Em38v; c – Em31h; d – Em31v) standard deviation  SD (e -
Em38h; f – Em38v; g – Em31h; h – Em31v) and topographic data (i – altitude; j – slope; k – aspect) 
 
 
 
The bar charts in the uppermost cells contain the data value distribution, e.g. unimodal for the 
aspect and more bimodal for the Em38mean. The other boxes highlight the relationship of two 
variables respectively. Besides a linear trend of the mean values of Em38v, Em31h and Em31v, a 
negative linear relationship of altitude and all EC mean values, fading with depth, is visible. 
However, other variables, including the aspect, are contrary to expectations. This gives reason to 
the assumption that the altitude direction controls the upper layer’s moisture dynamic. 
 
3.5 Temporal results 
Temporal maps of investigation depths vary in data range and EC distribution (Figure 3). Except 
in March we calibrate at the same calibration point; apparently in March a higher conductive 
location then the test field was used. Note furthermore, the decreasing of absolute values in 
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Em38h between Sept and Oct as example for relative changes of data ranges that demands 
normalization for further proceedings. 
Despite the fact temperature also vary with seasons, the differences during a field day was 
marginal and could be neglected; the majority of the signal contrast originates from changes in 
soil moisture. 
To delineate dynamic areas, we use the standard deviation (SD) from all surveys over the 
complete monitoring period. The SD of maps is an appropriated indicator for moisture dynamic 
areas. 
Regarding   Figure4c, the division in an upper, more dynamic moisture area and a deeper, 
stationary layer is identifiable with an observable, clear decrease in dynamic moisture region area 
with depth. This graduation is normal and reflects the reliability of the results. It is interesting 
that some higher dynamic areas in the upper layer correspond with special lower areas in the 
lower maps, e.g. in the SE of the site. These zones could be related to the altitude 
data, however the plots in   Figure6 did not contain spatial information that show unordinary 
dependencies with changing orientations on very small scales response to these areas.  
For a more detailed analysis, we consider the temporal changes of the upper and lower layer. 
From four available investigation depths, we perform in depth analysis upon the top Em38h (PD 
0.75m) and lowermost Em31v signal (PD 6m), only due to its significance concerning layer 
deviation. 
Analogous to the mean data, the Em38h data (PD 0.75m) shows a visibly E-W pattern with 
intensive and sharp contrasts (  Figure7a).  
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  Figure7: Em38h (PD 0.75m) A - temporal data (dimensionless), B – seasonal change, and C – relative changes 
 
 
 
In general, the higher areas are located in the eastern part, predominantly in warmer months. The 
difference maps in   Figure7b highlight zones of temporal change, with an intensive contrast 
observed in obtained results for March, May and October. Of interest is the dislocation of 
depletion and accumulation zones, in particular between Sept and Oct. The maps of relative 
changes in Figure 7c describe areas with a higher dynamic variability. These areas are 
independent from depletion and accumulation and move only slightly over time. Comparing 
topographical data, dynamic motion predominantly takes place according to the E-W altitude 
(compare   Figure4a). We interpret these changes in the upper layer as soil moisture movement 
downwards, dependent upon the slope. 
In the lower part of Em31v data (PD 6m), the situation is different, with all maps showing a 
similar and more stationary EC distribution (  Figure8a).  
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  Figure8: Em31v (PD 6m) A - temporal data (dimensionless), B – seasonal change, and  C – relative changes 
 
 
 
 
In comparison to the top distribution, the lower data shows a more N-S oriented structure with a 
characteristic peak in the eastern part. Although the maps look similar, Figure 8b displays 
significant areas of higher and lower dynamic seasonal change. In this figure, the N-S orientation 
is even more remarkable, partly because of an accurate 90° front, especially in warmer months – 
note high contrast between the May and July data, note that the sharp contrast is not an artificial 
item. Regarding the altitude increasing of the region in south, we interpret the seasonal changes 
in the Em31v data as a movement of moisture pattern toward north, different than the upper 
dynamic layer. While the upper layer is more affected by the altitude of the test site (W-E), the 
lower patterns are predominant influenced by an N-E direction, from the broader topographical 
settings. The predominant flow direction of the entire part of the hill is assumedly toward north as 
result from the ascent of hill in south, the second direction is toward east. This situation is similar 
to the hill slope creeping; here the subsurface pressure is generated toward N-E and the 
movements react towards S-E (Lindenmaier et al. 2005). 
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The last column in Figure 8 shows the relatively change. As expected from the similarity of the 
EC maps, the relative changes in   Figure8c are marginal in comparison to the upper layer in   
Figure7c. Conspicuous by their absence in these maps are the northernmost part in the West and 
the southernmost part in the West in particular at the comparison of May / July. This area is 
obviously the most dynamic region of the lower layer. 
 
4. Conclusion 
 
We derived the soil moisture dynamic from temporal and spatial EC maps. The normalization of 
EC values allowed a comparison of temporary maps and subsequent further calculation to take 
place. This study thereby shows normalization of discrete EC data as a potential opportunity for 
the common calibration problems and shifts in absolute data and ranges. The separation of the 
dynamic moisture signals from the geological stationary background by subtraction of the 
temporal values from the mean values delineated relative changes of each investigation depth. A 
two-layer system could be identified; one upper more dynamic layer (PD 1,50m) with an E/W 
structure and a deeper, more inactive layer (PD 6m) with a N/S oriented structure. 
We demonstrated that the soil pattern within the upper layer is associated with the test site 
altitude, whilst the pattern within the deeper layer is by its N-S structure obviously more related 
to the broad topographical and geological settings. Spatial distribution within the test site as well 
as temporal changes of moisture patterns, are strongly influenced by altitude; the other variables 
slope and aspect do not significantly affect the data at either depth. However, the plotting method 
is probably inadequate to consider all complex relations in this special case due to the lack of 
spatial information. It can be said, that slope will assuredly play a role in moisture distribution, 
but to reveal this, the investigation has to focus on much smaller scales. 
An analysis of the influence of precipitation upon the measured data was not feasible due to 
continual rain events and its high variability during the monitoring period, as well as the highly 
heterogeneous and cohesive soil of the test site. A reasonable investigation of dependencies 
between precipitation and EC values requires precise knowledge about the moisture content of a 
reference day or temporary high resolution monitoring. If rain events and EC data are monitored 
daily, they will probably establish a reasonable dependency. 
Soil moisture measurement by FDR probes was not successful at this site, presumably due to the 
very high clay content. Alternatively, a validation of soil moisture from the upper horizon could 
be made using other methods, e.g. by gravimetric water content. However, validation of lower 
patterns up to 6 m by representative soil probes at different measurement days will impose a 
technical effort, potentially to an unrealistic degree, and work against any advantages gained 
from utilizing EMI. 
Regarding the results, this applied approach was able to successfully identify moisture dynamics 
at larger scales and for test sites with complex accessibility problems, whilst also yielding the 
advantage of portability. In terms of landslide process understanding and forecast, the approach 
can provide information of higher dynamic regions as an indication for its changing wetness and 
consequently for its vulnerability – by means of the Em34 device up to a depth of 30m and more. 
Accordingly, the demonstrated procedure is able to generate dynamic maps from the whole hill 
slope with short data acquisition time and low operational costs. Thus, the EMI moisture 
monitoring should accompany landslide investigations, preferably at the start of research for the 
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selection of areas needing further intensive and higher resolution investigation (e.g. DGPS / 
inclinometer monitoring stations). The study also shows that the practice of EMI monitoring is 
not limited by areas with heterogeneous topography and / or complex accessibility nor by high 
clay content, in comparison to other investigation methods like ground-penetrating radar (GPR), 
an advantage for the majority of landslide affected hill slopes. 
The method applied in this study is a useful process for the separation of temporal changes from 
stationary background. In addition, it allows for the visualization of temporal changes in three-
dimensional subsurface data.  
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Abstract 
Today rapid survey methods of proximal soil sensing (PSS) provide an increasing number of 
different and highly resolved data. These multidimensional data sets can lead to multilayered and 
complex maps of parameters which are only indirectly related to soil properties and soil 
functions. However, in applications usually just one clear elementary map is required. It is 
increasing importance is to tackle this problem utilizing a cluster algorithm for the synthesis and 
reduction of multidimensional input variables. The cluster algorithm provides a partitioning of 
the investigated site whereby the units are characterized by the statistics of the PSS data. 
Therefore, the question that arises is how suitable is the suggested partitioning in terms of the 
delineation of different soil units. 
In this study we investigate the suitability of cluster partitioning through a case study at a 
medium scale test site (approx. 50,000 m²). Two common PSS methods: electromagnetic 
induction (EMI) and gamma spectrometry (GS) will be employed to create a data set for 
partitioning by a K-means cluster. The result of the cluster analysis is a delineation of three 
different parts. In contrast to previous studies, we evaluate the generated partitions by 
independent soil properties such as grain size, horizon thickness and color of stratified randomly 
taken soil samples. The analyses of the soil properties show that one of three clusters significantly 
differs from the others in terms of grain size distribution and horizon thickness. The partitioning 
of the other two clusters could not confirmed by the considered parameters of the soil samples. 
Nevertheless, the case study demonstrates the combination of different PSS data by K-means 
clustering as a potential approach for site partitioning. However an evaluation of the results of the 
cluster analysis through the collection and analysis of soil samples is highly recommended.   
 
 
 
Keyword: site partitioning, proximal soil sensing, rapid soil survey, cluster analysis, EMI, 
gamma-spectrometry, site-specific crop management (SSCM), 
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1. Introduction 
 
The demand for reliable high-precision partitioning of test sites has increased over the past 
several years. Hence, the investigation of soil properties becomes increasingly important (Lin 
2004, Vitharana et al. 2008, Behrens et al 2009, Zacharias et al. 2009, Minasny et al 2010). 
Adaptive land use management, e.g. agricultural site-specific crop management (SSCM) 
demands reliable maps which include significant information of relevant criteria from the 
subsurface (Moral et al. 2010, Twarakavi et al 2010). To address these requirements, several 
direct and indirect survey methods can provide an increasing number of different and highly 
resolved data. In particular, the number of proximal soil sensing techniques (PSS) has increased 
in recent time due to the advantages of non-invasive techniques being  time and cost efficient. 
Common PSS survey methods are for example electromagnetic induction (EMI) (McNeil 1980, 
Triantafilis and Lesch 2005, Robinson et al. 2009) ground penetrating radar (GPR) (Huisman et 
al. 2003, Lambot et al 2006, Steelman & Endres 2009), electrical resistivity tomography (ERT) 
(Pellegrin and Wannemaker 2005; Becht et al. 2006) as well as gamma spectrometry (Pracilio et 
al.2006,Viscarra Rossel et al. 2006a).  Also near infrared (NIR) and far infrared (FIR) (Minasny 
et al. 2008, Viscarra Rossel et al 2011, McBratney et al. 2011), or chlorophyll fluorescence 
(Buschmann and Lichtenthaler 1998, Lichtenthaler et al 2005, Hura et al. 2011) have become 
more popular in the last years.  
However, all of these methods response only indirectly to the relevant soil properties for land use 
and management. In addition, the measured proxies could be affected by several soil properties 
and leads usually to plurivalent results. Thus a combination of different survey methods improves 
the quality of the test site map (Kvamme 2006, Paasche et al 2007, Ernenwein 2009). On the 
other hand, while the development of survey methods and its combination delivers more precise 
and multidimensional results, also the interpretation becomes often more complicated and usually 
requires the output of multilayered maps. But the real world application of land use and further 
investigation approaches, like site-specific crop management (SSCM) (Pringle et al. 2003, Green 
et al. 2007, Moral et al. 2010) and sampling strategies, usually requires a clear and elementary 
partitioning of the surface and therefore the synthesis and simplification of characteristics from 
multilayered result maps. A general challenge is therefore the inclusion of various highly 
resolved field data to improve the result map according to its natural soil conditions as well as the 
synthesis and simplification of the essential characteristics from its primary data.  Thus users 
must find a balance between a multiplicity of soil information and the demand for simplification. 
The application of a mathematical cluster algorithm is a useful method to tackle this problem. It 
is based on the minimization of the total sum of squared deviations within a cluster group and has 
gained increasingly popularity in the geosciences. Through which different sources of soil 
information are used for the partitioning, synthesis and simplification of different test sites. The 
majority of authors work predominantly with topographical data (Irvin et al. 1997,  
Theocharopoulos et al. 1997, Burrough et al. 2000, Bragato 2004, Bakhsh et al. 2007, Etzelmüller 
et al. 2007), while others use chemical soil properties for partitioning (Søvik & Aagaard 2003, 
Spijker et al. 2005, Vašát et al 2010), soil texture (e.g. Twarakavi et al 2010), work with 
theoretical data sets (e.g. Simbahan and Dobermann 2006), use geophysical data as input towards 
partitioning of subsoil (e.g. Dietrich et al. 1998, Tronicke et al. 2004, Paasche et al. 2007, 
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Dietrich & Tronicke 2009, Paasche et al. 2010) or use texture and geophysical data (Moral et al. 
2010). Li et al (2007) use interdisciplinary input data, e.g. vegetation index, EC, total nitrogen, 
organic matter and cation exchange for clustering towards the delineation of site-specific 
management zones.  
Since the cluster algorithm was established, the generated partitioning maps have been getting 
more and more acceptable as means for a valid distinction of soil, e.g. for further management 
applications. However, clustering is an abstract mathematical tool that works only with discrete 
values. Thus, the results do not necessarily lead to a reasonable partitioning of the test site, e.g. 
the number of partitions is inadequate for further purposes. Hence, a critical question is: do the 
generated cluster partitions really reflect the main characteristics of soil properties? 
In this study we evaluate a cluster partitioning approach for the upper horizon of a medium scale 
test site (approx. 50,000 m²). Thereby two common proximal soil sensing methods, 
electromagnetic induction (EMI) and gamma spectrometry (GS) were used, and data 
simplification and synthesis through the use of the common K-means clustering. We discuss the 
partitioning with respect to the properties of the single clusters. In comparison to previous studies 
we evaluate the cluster parts by stratified randomly taken soil samples from the upper 60 cm, 
considering the soil properties grain size, horizon thickness and color of the samples as 
independent parameters.  
If the generated cluster partitioning reflects the main characteristics of the soil, the chosen 
properties should significantly correlate with the cluster allocation. 
 
2. Materials and Methods  
 
2.1 Test Site  
The test site Löbnitz / Saxony, Germany, is situated along the bank of the Mulde River in 
northern Saxony at around 80 m above sea level with no significant alteration. Located on a flat 
floodplain in a glacially and periglacially modeled landscape, the subsurface of the site is 
characterized by unconsolidated sediments with varying proportions of clay, silt, sand and gravel. 
The cultivation of the area is limited to grassland, which has been left unaltered for several years. 
Field measurements focused on a 50,000 m² sector between the riverbank and the levee.  
 
 
2.2 Applied Field Methods  
 
 2.2.1 EMI 
EMI has been an established tool for subsurface characterization for several decades (McNeil 
1980, Triantafilis and Lesch 2005, Robinson et al. 2009, Wong et al 2009). It provides the 
possibility of cost and time efficiently noninvasive mapping of larger areas. The method is easy 
to apply and can be automated to collect georeferenced data. We use EMI data due to its potential 
dependency on several central soil properties, e.g. clay content, porosity, bulk density and 
moisture content for a rapid currently characterizing of our test field (Rein et al. 2004, Mojid 
2007).  
In this study we used the ground conductivity meters EM38-DD (Geonics Limited, Mississauga, 
Ontario Canada) in both horizontal and vertical dipole configurations. Thereby we obtained maps 
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for integral values related to pseudo depths (PD) of 0.75 m - EM38-DD horizontal (Em38h) and 
1.5 m - EM38-DD vertical mode (Em38v. The PD explain the predominate regions of signal 
origin – see details in McNeil 1980. The EM38DD were used with a connected GPS system, 
fixed on top of sled at heights of approx. 0.2 m and pulled by an all-terrain vehicle. Accuracy of 
the GPS was <0.1m. The recording frequencies were 5 Hz at a measuring speed of at most 10 
km/h and a track pitch of 5 m.  
 
 2.2.2 GS 
In addition to the EMI survey we use GS as a rapid indicator of the upper soil due to its 
dependency on the mineral content. Mineral content could allow us to draw conclusions from the 
genesis of the soil as well as from distribution processes therein (Taylor et al. 2002, Pracilio et 
al.2006, Viscarra Rossel et al. 2006a).   
In this study we use a GSCar gamma spectrometer (GF Instruments / Czech Republic) with 512 
5.66 keV channels and a total measuring range from 100 keV to 3 MeV. In a gamma 
spectrometer natural γ−radiation emitted from the elements in the upper soil hit a sodium iodine 
crystal that triggers an electric impulse depending on the energy of the impact (see details in 
IAEA 2003.). The technical setup of the gamma survey in our study is similar to the EMI 
measurements, in that a sled was pulled with the GSCar instrument. We use a recording 
frequency of 0.2 Hz. After recording, we extract  the signals related to potassium from the whole 
recorded energy spectrum (range of 1.370–1.570 MeV), uranium (range of 1.660–1.860 MeV) 
and thorium (range of 2.410–2.810 MeV) as well as the sum of these three signals, in the 
following called dose rate (DR) as the common gamma unit. These chemical elements (K, U, Th) 
can offer insight to soil properties, e.g. to the clay content (Wong and Harper 1999, Taylor et al. 
2002, Wong et al. 2008). However these dependencies mostly vary with test site, thus a 
generalization is not appropriate. Nevertheless, the γdata normally relates to the grain size and 
can therewith give an insight in sediment distribution of the test site.  
 
Soil sampling for evaluation 
In relation to the generated cluster map, we take soil samples by stratified random distribution in 
the test field (Figure 2). The samples were taken by a Pürckhauer soil probe up to a depth of 0.60 
m. We collected 21 soil samples in total and characterized the sediments based on grain size, 
horizon thickness and color by field designation according to the German soil mapping 
legislation (BGR 2005), colors were defined according to the Munsell Soil Color Chart ® (e.g  
Viscarra Rossel et al. 2006b). 
 
 
2.3 Data analysis and preparation 
We recorded two EMI and four gamma data sets. Evident outliers of the EMI were removed by 
hand, that is single highly exposed unnatural high and low data (< 0.5% of the total raw data). To 
remove other outliers all recorded raw data sets were filtered with approx. 5 – 95 % from whole 
data range. Subsequently we interpolated all data sets according to its variogram by block 
Kriging to obtain separate EC maps for both investigation depth and gamma maps for the three 
elements potassium, uranium, and thorium (for details see Isaaks and Srivastava 1989, Webster et 
al. 2001). As common unit we also interpolated the DR data (Fig 1). 



Part II 
 

48 
 

 

 
 

 
 

Figure 1: Contour maps of electromagnetic induction (EMI) and gamma-spectrometry (GS): a) Em38h, b) 
Em38v, c) K, d) Th, e) and f) Dose rate (DR) 

 
 
 
For cluster analysis identical coordinates are needed for the discrete variables. Therefore, the 
same grid was applied to all maps. Regarding the different spatial resolution of the raw data and 
the size of the test site, we chose a grid size of 4x4 m. Then we combined all grid data to a 
collective matrix with identical coordinates (x; y) and their corresponding values of p valid 
variables. 
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2.3 Cluster analysis  
We mentioned the problem of synthesis and simplification of multivariable data in the 
introduction. In this study we tackle that problem by mathematical cluster partitioning.  
A cluster analysis groups data according to their similarities and reduces the data to its significant 
characteristics. This method is a functional tool for the allocation of multidimensional data sets 
and has been becoming common in the geosciences for more than a decade (Irvin et al. 1997, 
Dietrich et al. 1998, Burrough et al. 2000, Moral et al 2010. Paasche et al. 2010).  In this study 
we use the partitioning clustering of K-means (Dietrich and Tronicke 2009, Twarakavi et al. 
2010). It partitions n observations into k clusters. Thereby, the set of variable values assigned to 
one spatial point is considered as one observation. The K-means clustering assigns an observation 
to only one cluster. The mathematic principle of a K-means cluster algorithm is to minimize the 
total sum Φ  of squared deviations from the cluster mean for all considered variables for a 
predefined number of clusters (MacQueen, 1967):  
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where p is the number of variables, k the number of clusters and ni the number of observations 
assigned to cluster i. The value x ji, is the arithmetic mean for the variable j over all observations 

assigned to cluster I and x jmi ,, is the value of the variable j of the mth observation in the ith  

cluster. Note that no spatial coordinates are considered in the calculation ofΦ .  
This study should evaluate the usual praxis of cluster partitioning. The Euclidean distance is the 
most common distance function, usually the default setting in cluster programs and capable for 
multi-dimensional data sets (Munkres 2000, Søvik and Aagaard 2003). Thus, from the plurality 
of possible distances we choose the Euclidean distance. The Euclidean distance needs normalized 
variables to avoid an overweighting of higher values. Therefore we normalized all variables (v) to 
a comparable data range with 0.00 as the smallest value to 1 as the biggest value with: 
 
 

          (2) 
 
 
A precondition for reasonable clustering is the independence of input variables to avoid 
overweighting. Therefore we analyze the data relationships in step B 1). The simplest method for 
the consideration of data relationships is the plotting of each variable against another. However, 
often dependencies are more complex and will not become obvious by simple plotting. In this 
study we work with a principal component analysis (PCA) as a common tool for the discovery of 
hidden dependencies (Jolliffe 2002, Backhaus et. al 2003, Miranda et al. 2008). The basic 
principle of PCA is a mathematical transformation of contingently correlated variables into a 
smaller number of uncorrelated variables, the principal components. The position of the variables 
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to the coordinates shows their dependencies; same or similar positions indicate a dependency (for 
details see Backhaus et. al 2003). 
Despite its independence, in respect to the quality and the origin of the investigation depth, not all 
of the recorded data have the same relevance for the aspired partitioning of a test site. Thus for 
effective cluster partitioning a critical selection of input variables is necessary. 
At the start of the cluster analysis, the number of desired clusters has to be appointed. In this 
study we based the number of suitable clusters on the elbow criterion (Backhaus et al. 2003, 
Dietrich and Tronicke 2009, Twarakavi et al. 2010). For this purpose, we plot  the total sum of 
squared deviations s as a definition of variance vs. the number of clusters n . For each cluster the 
squared deviations of its variables vary with respect to the fitting of data point assortment and 
usually decrease with increasing of cluster numbers (Simbahan et al. 2006). According to the 
elbow criterion, the optimal number of clusters is reached when an addition of further clusters 
yields no more sufficient information:. the break point in this function  (see Fig 3)  
 
 

 

Figure 2 Result map of the demonstrated example including the soil sample locations: the map merge the signals from 
thorium, uranium and the uppermost EMI data (Em38h). The cluster describes the gamma- depression (cluster 1) as 
well as the clear E-W division with northern branches (cluster 3) as respect to the Em38h data  

 
 
 
For cluster assignment we used the software SYSTAT 12 (Systat Inc. 2007).  
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3. Results and Discussion  
 
3.1 EMI and gamma results  
During the survey we recorded a data setof approx. 30,000-point EMI-data (15,000 for each 
investigation depth) and approx. 2000-point γ−data. The maps of EM38-DD horizontal (PD 
0.75m) and vertical (PD 1.50m) vary only marginally (Figure1). The deeper vertical EM38-DD 
values are greater than the very near-surface signal from Em38h, possibly a result of drying-out 
processes towards the surface. In all investigation depths an E-W subdivision is visible with a 
higher conductive western oval and a southern branch towards the east (Fig 1). The EC increases 
in the oval by approximately 5 mS/m in both maps. This feature presumably points to local 
quaternary clay or silt layers with higher electrical conductivity. 
The interpolated maps of the γ−spectrometry are shown in Figures 1(c-f). The potassium signal 
slightly increases towards the south but its spatial distribution scatters intensively as result of a 
high nugget effect of the data. This indicates a marginal contingent of potassium for the majority 
of the test field. The thorium and uranium maps show a distinct area of lower concentrations in 
the middle of the test site. This area could possibly be the result of anthropogenic back filling 
with significant low gamma-concentration material, e.g. sand that did not affect the EMI signal in 
the same intensity. Apart from this obvious depression, the spatial characteristics of the single 
data sets differ from each other. While the rate of thorium increases towards the south similar to 
the potassium map, the uranium values increase more to the north. The DR is normally used to 
distinguish the general gamma counts. Consequently DR reflects the signals of all three values, in 
particular the increase of counts towards the south and the north. In addition to that, the gamma 
depression in the center is more pronounced in this map (Figure 1f).  
Because of the petrophysical properties of soil, apparent electrical conductivity and γ−decay are 
related, however it is not a simple relationship and depends on several variables (Triantafilis and 
Lesch 2005, Buchanan and Triantafilis 2009, Robinson et al. 2009, Wong et al 2009). In general, 
both signals could be affected by similar soil properties. EC could be affected by clay and 
mineral content, porosity, bulk density and moisture content (Rein et al. 2004, Mojid 2007). 
Gamma decay also responds to mineral content and could be affected by soil moisture (IAEA 
2003). Specifically, both signals are usually affected by clay mineral. Some authors postulate a 
mostly positive correlation of clay with the EC signal (Hedley et al. 2004, Caroll et al. 2007, 
Mojid et al. 2007, Weller et al 2007), and others suggest a correlation of clay with the γ−signal 
(Bierwirth et al. 1996, Wong and Harper 1999, Taylor et al. 2002, Pracilio et al.2006, Viscarra 
Rossel et al. 2006a). Accordingly, a similar trend in apparent conductivity, in particular the very 
near-surface values (Em38h) and γ−values, had been expected but did not occur at our test field. 
The gamma depression for example is indiscernible in the EMI data.  
The data from EMI and gamma surveys lead to different resulting maps and illustrate the 
complexity of interpreting geophysical data from different survey methods. Choosing either map 
as generally valid excludes some useful information present in the second.  
A combination of recorded information of both survey methods is needed. Therefore we use the 
K-means clustering to prepare a map of the characteristics from the topsoil up to a depth of 
approx 0.5 m.  
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3.2 Cluster partitioning and final resulting maps 
A reasonable clustering function needs independent input variables. Thus, in this study we did 
not use the dose rate (DR) due to its function as gamma sum parameter. 
 By means of the PCA, 94.8 % of the available variables can be described by three components 
(table 1).  
 
 
Table 1 Results of the PCA. The Component loadings show the variance of each variable explained by three factors, 
e.g., factor 1 explains 98.6% of the EM38H signal, factor 2–92.8% of the TH signal, and factor 3–97.6% of the K 
signal; below the total variance, three factors explain 94.47% of the total variance. 
 

Component Loadings 
  1 2 3 

EM38H 0.986 -0.018 0.069 
EM38V 0.970 -0.181 -0.079 

K 0.062 0.113 0.976 
TH 0.040 0.928 0.190 
U 0.171 0.867 -0.345 

 
Percent of Total Variance Explained 

1 2 3 
38,92 33,18 22,37 

 
 
Concerning the results of the PCA, a clear fractionation between EMI data and among gamma 
data is visible. While the EMI data lies more on the first component, the thorium and uranium 
data correspond with the second component and the third component almost only describes the 
potassium value. The directions of the EMI vectors in component 1 show once again similarities 
in the EM38h and EM38v values. Hence, we exclude the EM38v signal also due to its deeper 
investigation depth. Besides the depression, thorium and uranium differ in its component 
allocation, so we use both of them in order to bring additional information about the whole test 
field. The independency of potassium at component 3 would seem most appropriate for further 
processing. However due to the noisy and insignificant signal, the information of this variable is 
marginal, thus we drop it out from further proceeding. Regarding the desired partitioning of the 
upper decimeter, the data from EM38h, Th, and U contains potential information. Consequently 
we further cluster with these variables. 
 
Now we define the number of appropriate clusters. The plot of the total sum of squared 
deviations s vs. the number of clusters  clearly shows the breakpoint at n = 3 (see   Figure3).  
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Figure 3: Elbow criteria for selection of appropriated number of cluster , which plots the total sum of squared 
deviations s vs. the number of clusters. The breakpoint is located at n = 3 
 
 
The result map combined the significant distinctions of the gamma and the upper EMI survey 
(Figure 2). Thereby the partitioning describes the γ−depression (cluster 1) as well as the clear E-
W division with southern branches (cluster 3) with respect to the Em38h data.  
A closer examination of the cluster properties displays the distinct differences of the three 
partitions. Figure 4 shows the dimensionless plots of the used variables with its allocation to the 
corresponding cluster. 
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Figure 4: Dimensionless scatter plots for the demonstrated example with its allocation to the corresponding cluster. The 
lines in the topmost boxes show the data ranges of each variable with its cluster identification by related color; e.g. 
Em38h values shows a bimodal distribution whereof the higher values belongs to the cluster 3 (yellow line) 

The lines in the topmost boxes are histograms of the respective variables and show what data was 
assigned to the respective clusters. The cluster algorithm splits multimodal data ranges: the 
bimodal histogram in Em38h was separated by clustering as well as the plateaus from the peak in 
gamma data. Therewith cluster 1 (orange line) contains low γ−rate (the depression) and medium 
EC values, cluster 2 (blue line) comprises of medium γ-rate with lower EC values corresponding 
to the lower Em38h values in the east (compare with Figure 1a) and cluster 3 (yellow line) 
contains higher Th and U data and the high EC values from the western part in particular. The 
box and whisker plots in Figure 5 shows the properties of the three clusters in its real units; 
cluster two and three are differ in its EC values while cluster 1 is characterized by significantly 
low gamma data. 
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Figure 5 Soil properties of the defined three clusters (x-axe): above EM38h, in the middle the Th and below the U 
values of each cluster; whiskers indicate the total range, top and the bottom of the box show the 25th and 75th 
percentiles, and the line inside the box is the median value 
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3.3 Evaluation of generated cluster map 
For the independent evaluation of the generated cluster map, soil samples were taken up to a 
depth of 0.60 m. 21 soil samples were obtained  distributed over all cluster partitions (Figure 2). 
According to the floodplain, the main grain size of all samples is silt and clay, nevertheless the 
considered properties vary (table 2). 
Cluster 1 (the gamma depression) shows significant dissimilarities to cluster 2 and 3 (Table 2). 
 
Table 2 Properties of the soil samples; number, grain size (cy – clay, si – silt, s – sand, g – gravel), A horizon 
thickness from surface, color from 1st and 2nd layer (after Munsell Soil Color Chart ®) and cluster allocation 
 

Sample # 
Grain size 
1th Layer  

Grain size 
2nd Layer  

A horizon [cm] 
Soil Color 1th 

Layer 
[YR/Value/Chroma]

Soil Color 2nd 
Layer 

[YR/Value/Chroma]

Cluster 
allocation 

1 Si si cy Si cy 25 10 YR 4 4 7.5YR 5 5 3 

2 Si si cy Si cy 25 10 YR 4 5 7.5YR 4 4 3 

3 Si si cy Si cy 29 10 YR 5 3 10 YR 5 4 3 

4 Si si cy Si cy 26 10 YR 4 3 10 YR 4 4 3 

5 Si si cy Si cy 30 10 YR 4 4  7.5YR 4 4 3 

6 Si si cy Si cy 30 10 YR 5 4 10 YR 4 4 3 

7 Si si cy Si cy 38 10 YR 4 3 10 YR 4 4 3 

8 Si si cy Si cy 40 10 YR 4 3 10 YR 5 4 3 

9 Si si cy Si cy 36 10 YR 5 3 10 YR 4 4 3 

10 Si si cy Si cy 32 10 YR 5 4 10 YR 4 4 3 

11 Si si cy Si cy 22 10 YR 4 3 10 YR 4 4 2 

12 Si si cy Si cy 26 10 YR 4 3 10 YR 5 4 2 

13 Si si cy Si cy 35 10 YR 4 3 10 YR 5 4 2 

14 Si si cy Si cy 28 10 YR 4 3 10 YR 5 4 2 

15 Si si cy Si cy 28 10 YR 5 4  7.5YR 5 4 2 

16 Si s cy g Si cy s 41 10 YR 5 4 10 YR 4 4 1 

17 Si s cy g Si cy s 43 10 YR 5 4 10 YR 4 4 1 

18 Si s cy g Si cy s 48 10 YR 5 4 10 YR 4 4 1 

19 Si s cy g Si cy s g 41 10 YR 5 4 10 YR 4 4 1 

20 Si s cy g Si s cy 42 7.5YR 5 3 7.5YR 43 1 

21 Si s cy g Si cy s 50 10 YR 5 3 10 YR 4 2 1 
 
 
 It is characterized by the presence of sand and gravel in the soil with a gravel size up to 2 cm, no 
other sample contains sand or grain, also the clay content was slightly lower than in cluster 2 and 
3. Also the thickness of the first layer (see also Figure 6) is in a completely other range then 
cluster 2 and 3 with no overlapping.  
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Figure 6: Custer allocation (x-axe) vs. thickness of the A layer / y axe [cm], the thickness of the A layer variation 
corresponds with cluster 1 only, distinction between 2 and 3 are not significant 
 
 
In addition, the colors within cluster 1 are mostly consistent.  
The relative high content of sand and gravel at this part is a probable explanation for the 
relatively low gamma values due to the potential negative correlation of sand and gamma counts 
(Taylor et al 2002). Probably this part is an anthropogenic relic from the riverbank building; 
maybe by refilling soil, it may also explain the significant deeper first horizon. Regarding these 
results, the cluster partitioning for this part was successful. 
The distinction between cluster 2 and 3 is not clear and only marginal; grain size and horizon 
thickness are similar, only the color allocation in cluster 2 is more homogeneous but not 
sufficiently significant. The considered properties of cluster 2 and 3 did not lead to the cluster 
allocation.  In this respect the suggested partitioning does not fit the main characteristics. 
Regarding this fact, the distinction between them comes from differences in the EC value, which 
cannot be explained by the grain size or horizon thickness. Differences in EC possibly originate 
from changes in soil moisture that could affect the EC signal significantly (Dietrich 1999, Rein et 
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al. 2004, Buchanan & Triantafilis 2009). However, to consider the soil moisture distribution by 
EMI, a much more complex monitoring strategy is needed. Also, the soil moisture was not a part 
of the study aim due to its variability.  
Regarding the demonstrated three cluster solution only one of the three defined parts could be 
successfully validated. Concerning the chosen number of clusters, this example shows that the 
appropriated number of clusters cannot necessarily be defined by technical estimation (e.g. elbow 
criteria) and also needs the sense of proportion. For this test site probably a two cluster solution 
could be more adequate with a distinction between the gamma depression and its surroundings. 
 
4. Conclusion 
This study combines EMI and gamma spectrometry surveys towards the evaluation of test site 
partitioning. The EMI and gamma data describe different soil pattern and consequently lead to 
different resulting maps. We apply a common K-means cluster algorithm for synthesis and 
simplification of various input data and generate a map for the upper soil. This approach leads to 
an integral map that reduces and comprises the essential characteristics of the used input 
variables. The 3 cluster map contains the E-W partitioning from EMI as well as the prominent 
gamma depression in the center of the test site and reflects the fundamental characteristics of the 
input data. 
However, an independent evaluation of the suggested clusters shows that not all three partitions 
can be confirmed by independent soil samples. The analysis of the soil properties shows that one 
of three clusters significantly differs from the others in terms of grain size distribution and 
horizon thickness The partitioning of the other two clusters could not confirmed by the 
considered parameters of the soil samples. A potential reason for the difficulties by the sample 
allocation to these clusters is maybe the influence of several factors on the measured EC, such as 
soil moisture, that have not been focused on in this study.   
Nevertheless, one partition describes the main character of soil properties, grain size and horizon 
thickness without any ground truthing. Thus, the demonstrated combination of high resolute PSS 
data and K-means clustering is a potential approach for cost and time efficient site partitioning. 
However a critical evaluation of resulting final map by soil sampling is nevertheless 
recommended. Thereby the cluster partitions allow for stratified randomly taken soil samples, a 
decreasing of sample numbers, and thus decreased time, effort and cost. 
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Abstract 
River restoration and applied restoration measures are of increasing importance for integrated 
water resources management (IWRM) as well as for ecosystem services including water storage 
and purification, habitat provision and climate regulation. However, often river restoration is 
planned and realized by engineering and constructing aspects only and hydrogeological settings 
and ancient stream channels are neglected. As a result, desired outcomes of restoration projects 
are reduced with no significant alteration of stream conditions by simultaneously increasing 
costs. An opportunity to reach the full restoration potential is to investigate ancient active stream 
courses by applying hydrogeophysical methods as basis for targeted restoration measures.  
In this study, we investigate the ancient active channel zone in a floodplain of a heavyly modified 
low-mountain river in Switzerland by means of hydrogeophysical data with two different 
approaches. In the first approach we use data from electromagnetic induction (EMI) with four 
different integral depths (0.75 to 6m) and gamma-spectrometry (GS) to generate a geological 
structure model (GSM) iteratively by means of various electric conductivity (EC) forward 
models. This geological structure model allows a 3D delineation of potential ancient stream 
courses. In the iterative modelling process we vary the geological input parameters based on the 
measured data until the synthetic EC maps fit to the real EC values. Subsequently, we use the 
best fitted input data for generation of final GSM as basis for active reconstruction 
measurements.  
In a second approach we generate a K-means cluster map for the floodplain surface that combines 
the main characteristics from multilayered subsurface data by synthesis and simplification. The 
obtained cluster delineates parts of significant different soil conditions and therewith provides an 
indication for areas of potential ancient active channel zones. Hence, the map distinguishes 
between areas of higher and lower flood vulnerability as well as higher and lower possible river 
affection as basis for land use recommendation. 
A comparison with independent Ground Penetrating Radar (GPR) data has confirmed the 
obtained structures of both results. Thus, both demonstrated approaches are appropriate tools for 
the characterization of test sites with no additional subsurface information and with the capacity 
for detecting ancient active channel zones.  
 
Keyword: river restoration, ancient stream course, EMI, gamma-spectrometry, EC forward modelling, cluster 
analysis, GPR 
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1. Introduction 
Intact river conditions gain significance due to their positive effects on several environmental 
processes and their corresponding management relations, e.g. integrated water resources 
management (IWRM), flood and drought prevention as well as for ecological issues, like habitat 
protection and revegetation (Rohde et al 2004). Since this relation has become apparent, several 
legislation frameworks now require river protection and rehabilitation to preserve the river 
systems and to avoid negative effects of anthropogenic chances, e.g. the ‘Water and Rivers 
Commission Act’ (1995) in Australia, the ´Water Framework Direction´ (WFD) (EC 2000) and 
the Swiss ´Gewässerschutzverordnung´ (Swiss Government 2011) in Europe. The WFD for 
example requires a ´good ecological status´ for all water bodies until 2015, which means “the 
biological quality […] show low levels of distortion resulting from human activity but deviate 
only slightly from […] undisturbed conditions.”  Nevertheless, the majority of rivers in the 
industrialized countries remain anthropogenicly modified - in Central and Western Europe 
approximately 15 - 30% of them heavily according to the WFD (EEA 2011). 
An opportunity to upgrade the river and floodplain status is to attempt a (partial) restoration of 
the natural river conditions. River restoration can increase flow storage and energy dissipation of 
passing flood waves. These measures include increased widening, remeandering of the river 
channel, increasing channel length relative to the floodplain; restoring channel-floodplain 
connectivity; and revegetating banks and the floodplain (Sholtes and Doyle 2011). Although 
channel and floodplain restoration is generally accepted as forward-looking prospect for flood 
attenuation and habitat protection, studies about its efficiency are still seldom and numerous 
restoration efforts remain without the desired functional effects (Sivirichi et al. 2011). A possible 
explanation for the failure of restoration success is that in applications usually standardized 
common reconstruction measures are applied instead of individually adjusted and best optimized 
measures. Also, river restoration is usually planned and realized in consideration of engineering 
and constructing aspects only and hydrogeological settings and ancient stream morphology are 
neglected. As a result, desired outcomes of restoration projects are reduced with no significant 
alteration of stream conditions by simultaneously increasing costs (Lennox et al. 2011). In 
Switzerland, where the demonstrated approach took place, the current 
´Gewässerschutzverordnung´ from August 1st 2011 defines several requirements for the purpose 
of river revitalization . For the river wideness spatial conditions dependent on the depth of the 
channel bottom exist. For channels deeper than 1m a width of 11m is required; 1-5m depth 
require a width of six times the depth plus 5m and rivers deeper than 5m require a width of depth 
plus 30m (capture 7, part 1). Also, the width of the anthropogenicly affected rivers is defined. But 
do these standardized common reconstruction recommendations really reflect the natural 
conditions of rivers? The key element in terms of river restoration is the estimation of its natural 
character. 
An opportunity for obtaining the natural river conditions and thus for individually adjusted 
restoration measurements is given by the investigation of ancient active stream channels (AAC). 
The AAC represents the area of the morphological and depositional features generated in the 
transition between high and low flows. Within this area a dynamic interaction between 
groundwater and surface water takes place. Thereby, the accumulated morphological patterns, 
e.g. gravel banks act as drainage as well as buffer depending on the current discharge (Figure 1). 
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Figure 1 Sketch of the investigated floodplain: possible location of ancient active channel (AAC) 
with geomorphological elements developed in the transition between high and low flow 
conditions (middle), the current straightened riverbed rigtht (flow direction toward north) and 
location of the test field (red line) 
 
 
 A connection between these permeable units of the ancient river and the present river could lead 
to the best restoration potential. In addition, due to the AAC system information of the dimension 
from the morphological units could be estimated, that provides an assessment of the process scale 
involved (square meter or square kilometre) as basis for flood prevention management. 
However, an investigation of the AAC system demands a consideration of rivers in context of its 
spatial and temporal character in past, present, and future (Larsen & Harvey 2011). The 
description of the status of rivers in the most valid legislation frameworks, e.g. in Europe the 
WFD as well as the analogue Swiss legislation, does not consider the ancient active channel 
zones. Therefore, in the past decade Brierley and Fryirs have developed a method for assessment 
of key attributes of river styles framework as an integrative river classification scheme (Brierley 
and Fryirs 2000, 2005, 2008). This method includes the stages of (1) river character and behavior, 
(2) geomorphic river condition, (3) its recovering potential and (4) possible management 
applications. Considering the workflow of this process one main challenge is the investigation of 
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geomorphic river conditions in respect of the recovering potential and its possible 
implementation. In respect of the budget of the corresponding communes / landowner methods 
for characterizing of subsurface structures are demanded that delineate potential AAC zones by 
non invasive, cost and time efficient methods. 
Ideally, the detected AAC area is reconstructed or a connection of the present river to the AAC is 
established, e.g. by excavation to reroute parts of the stream to the AAC. However, in most cases 
a restoration of the ancient river course is practically unfeasible due to limitations of funding 
and/or other limitations like land use conflicts with the agriculture industry. If the theoretical 
restoration potential due to these limitations can not be realized, a partitioning of the surface 
should allow the communes to distinguish between areas inside and outside the AAC. 
Hydrologically higher connected and highly flood-prone areas can thus be distinguished from 
less endangered parts. However, this surface partitioning demands a synthesis and simplification 
of characteristics from multilayered subsurface data. The surface partitioning should reflect the 
natural conditions of different layers in the subsurface regarding the ancient river streams. If the 
location of the ancient river stream is known, selective management options reduce potentially 
adverse effects on anthropogenic use. For example, application of fertilizers should significantly 
vary between regions of ancient active channel zones and their corresponding alluvial clay. Also 
potential overflow areas have to be identified.  
Regardless of type and extent of a reconstruction or protection measure, the knowledge the 
characteristic of the ancient river stream is essential for all effective management options. The 
knowledge about the existence of an AAC can be derived from hydro-geophysical measurements.  
Hydro-geophysical methods are non-invasive techniques providing time and cost efficient 
surveys. Common hydro-geophysical methods are electromagnetic induction (EMI) (McNeil 
1980, Triantafilis and Lesch 2005, Robinson et al. 2009), electrical resistivity tomography (ERT) 
(Pellegrin and Wannemaker 2005; Becht et al. 2006), ground penetrating radar (GPR) (Huisman 
et al. 2003, Lambot et al 2006, Steelman & Endres 2009) or gamma spectrometry (Pracilio et 
al.2006, Viscarra Rossel et al. 2006). These methods have been successfully applied in 
hydrogeological research for several years. Buchanan and Triantafilis (2009) have investigated 
the water table with EMI and gamma spectrometry and Abu et al (2008) have derived the water 
holding capacity from an EMI signal. Nyquist et al. (2008) have used ERT on river stream 
bottoms to map groundwater discharge and assess groundwater-surface water interactions within 
streams. Huggenberger and Meier (1993) have used GPR to investigate fluvial sediments, Chem 
et al (2001) have attempted the investigation of hydrological conductivity with GPR and Truss et 
al. (2007) have derived high resolution hydrological soil properties. 
In this study, we investigate a part of a floodplain of a heavily modified (see definition in WFD) 
low-mountain river in Switzerland with different noninvasive hydrogeophysical methods in order 
to delineate the AAC for further restoration and management measures. The part of the floodplain 
under investigation comprises the region of the ancient active river channel. We combine data 
from electromagnetic induction (EMI), gamma-spectrometry (GS) and ground penetrating radar 
(GPR) to investigate the subsurface of the ancient stream courses. We apply and compare two 
different approaches. In a first approach we generate a 3D model of the subsurface. The obtained 
data are used for an EMI forward modelling and inversion to compare the predicted EMI maps 
with the measuredones. Thereby, the input parameters of the best fitted model are being used for 
a geological structure model. This model describes different layers and therewith possible ancient 
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active channels as basis for active reconstruction measurements. In the second approach we 
generate a K-means cluster map of the floodplain surface (2D) that combines the main 
characteristics of multilayered subsurface data. The obtained cluster delineates parts of 
significantly different soil conditions and thus provides an indication for areas of potential 
ancient active channel zones. Hence, the map distinguishes between areas of high and low flood 
vulnerability as well as areas of possibly high and low river affection as a basis for land use 
recommendations. 
Both approaches above should delineate the main characteristics of AACs at test sites with no 
additional subsurface information. 
 
 
2. Field methods and data base 
 
2.1 Test site  
The investigated floodplain is part of the low mountain river Enziwigger two kilometres north of 
Hergiswill in Canton Luzern, Switzerland. The Enziwigger generally runs from South to North 
and has a catchment of approx. 38 km² and a precipitation average of 1055 mm (2000 to 2010). 
The water retention and the corresponding storage capacity of the catchment soils are marginal. 
Thus precipitation events dominate the flow rate. Average flow rate is 2 m³/s (City of Willisau, 
2008). The aquitard consist of cohesive conglomerate und sandstone of the upper molasses and is 
overlayed with highly hydraulic conductive alluvial gravel (Geological Map Switzerland 1994). 
The river has been straightened twice, first in the early 19th century (Geographical Dictionary 
Switzerland 1910) and second in the early 1970´s. Altogether approx. 60% of the whole stream is 
currently modified. The test site is situated in a quaternary valley with altitude decreasing slightly 
towards the North and comprises an area of approx. 3500 m² currently used for agricultural issues 
(Figure 1 and 2).  
 

 
Figure 2 Investigated part of the floodplain: Enziwigger (blue double line) with tributary (blue line), test field (black 
framed) and location of GPR profile (red line) as well as contour lines of the surface topography [m above sea level] 
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The corresponding river part was relocated from its original meandering position to the 
easternmost valley during the second modification. This segment is characterized by both 
riverbank block constrictions and riverbed steps, which should control the stream velocity. 
Between the steps the river bed increases due to barring of water and lose therewith partly the 
contact to the floodplain, a general problem at constructed rivers.  
At the time of this study no geological borehole information on this region of the Enziwigger was 
available. 
 
2.2 EMI 
EMI has been an established tool for subsurface characterization for several decades due to its 
feature of quick and noninvasive mapping of large areas (McNeil 1980, Triantafilis and Lesch 
2005, Robinson et al. 2009). For the car-borne EMI survey we used EM38DD and EM31MK2 
devices (Geonics Limited, Mississauga, Ontario Canada) in horizontal and vertical dipole coil 
configurations. Thereby we obtained the following integral values related to 0.75 m - EM38 
horizontal (EM38h), 1.5 m - EM38vertical mode (EM38v), 3 m - EM31vertical mode (EM31h) 
and 6 m - EM31vertical mode (EM31v). The pseudo depth PD means approx. three-quater of the 
response signal originate from the soil above – see details in McNeil 1980. Both EMI units were 
used in conjunction with a GPS system and were fixed on top of sledges at heights of 0.4 m and 
0.1 m above ground, respectively and pulled by an all-terrain vehicle. The recording frequency in 
this study was 5 Hz, track pitch approx. 3 m and the vehicle drove with a speed of at most 10 
km/h. Accuracy of the GPS was <0.1m.   
Despite proper device calibration according to the manual negative signal values were obtained in 
the EM38h signal. Negative values can occur if the calibration point, the point where the 
instrument is set to zero, has a higher conductivity than other parts of the test site. This limits the 
scope of the informational absolute value of the results, in particular for monitoring studies, 
because further calculations with absolute values will not lead to useful results. These drawbacks 
are well known in the geosciences community and are still in discussion. The European 
Committee for Standardization has currently devised a schedule for standardization of EMI near-
surface survey information and investigation (CEN 2010). Owing to these problems we consider 
relative EC values for revealing structural information only. Figure 3 shows interpolated EC 
maps with a clear N/E- S/W structure and variable depth profile of electric conductivity (EC) 
with relatively lower values in the near surface and higher values in the deeper areas.  
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Figure 3 Contour maps of electromagnetic induction (EMI): a) EM38h, b) EM38v, c) EM31h, d) EM31va clear N/E- 
S/W structures and variable depth profile of electric conductivity (EC) with relatively lower values in the near 
surface and higher values in the deeper areas (note the differs scales).  
 
 
2.3 Gamma-spectrometry (GS) 
Gamma-spectrometry (GS) is a method to measure upper soil composition due to its dependency 
on the mineral content (Pracilio et al.2006, Viscarra Rossel et al. 2006). In a gamma spectrometer 
natural γ−radiation emitted from elements in the upper soil hits a sodium iodine crystal that 
triggers an electric impulse depending on the energy of the impact (see details in IAEA 2003.) 
The technical setup of the gamma survey in our study was similar to the EMI measurements. We 
used a GSCar gamma spectrometer with 512 5.66 keV channels and a total measuring range from 
100 keV to 3 MeV and a recording frequency of 0.2 Hz. From the recorded energy spectrum we 
extracted the signals related to potassium (K) (range of 1.370–1.570 MeV), uranium (U) (range 
of 1.660–1.860 MeV) and thorium (Th) (range of 2.410–2.810 MeV) as well as the sum of these 
three signals, in the following called dose rate (DR) as the common gamma unit. These chemical 
elements (K, U, Th) can offer insight into soil properties, e.g. clay content (Wong & Harper 
1999, Taylor et al. 2002, Wong et al. 2008). Figure 4 shows the interpolated result maps with 
clear distribution structures.  
In general the γ−values increase in the western part with lowest values in the northeastern edge – 
see the sum signal DR in Figure 4d). However, while the K and Th maps show a higher peak in 
the middle of the test site, the U values increase considerably towards the South.  
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Figure 4 Contour maps of gamma-spectrometry (GS): a) K, b) Th, c) and d) Dose rate (DR), In generally the 
γ−values increases in the western part with lowest values in the north-eastern edge – see the sum signal DR in Figure 
4d) 
 
 
 
3. Computer based methods  
 
3.1 Modelling approach  
We derive the geological structure model (GSM) model iteratively by means of an EC modelling 
approach. Thereby, we use the geophysical survey data for generation of different synthetic 
geological input data for an EC forward modelling program. The input parameters were varied 
until the predicted EC maps fit the measured EC values. The geological input settings of the best 
fitted map were used for the generation of the final geological structure model.  
For EC forward modelling we use a modified version of the 1.5D program SYNDATA 
(University of Technology Delft / NL 1995, Van der Krug 2000). SYNDATA is based on the 
response function of EMI devices (McNeil 1980) and can predict resistivity at a point on the 
surface of a horizontally stratified half-space based on multilayered resistivity values below. 
Fixed parameters in the modelling process are coil distance, measuring frequency and mode 
(vertical or horizontal) of the EMI metre. As input data SYNDATA requires information about 
the subsurface layers. These free parameters are number, thickness, and resistivity of the 
subsurface layers and are being iteratively changed during the modelling process. 
For generation of multi-layered (3D) EC predictions we modify the SYNDATA program in a 
way that allows the modelling of unlimited 1.5D input data and its subsequent allocation to 
spatial coordinates and various pseudo depths (PD). In doing so, we obtain predicted EC values 
of four different 2.5D maps equivalent to the PD maps of the measured data. Now we compare 
the structure of the predicted with the measured EC map and adjust iteratively the input data until 
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the best fit is reached. The input parameters of the best fitted EC model were used in the final 
geological structure model for a 3D delineation of potential ancient active channel zones.  
The modelling workflow can be divided into the following items: (i) definition of measuring 
device(s) (ii) definition of number of layers, (iii) definition of layer thickness, (iv) definition of 
layer EC condition, (v) evaluation of synthetic EC maps by iteration, and (vi) generation of the 
GSM.  
 
 
3.2 Cluster approach  
A cluster analysis groups data according to their similarities and reduces the data to its significant 
characteristics. This method is a functional tool for the allocation of multidimensional data sets 
and has been in use in the geosciences for more than a decade (Irvin et al. 1997, Dietrich et al. 
1998, Paasche et al. 2010). In this study we use K-means clustering with Euclidean distance 
(Dietrich and Tronicke 2009, Altdorff and Dietrich 2011). It partitions n observations into k 
clusters. The mathematic principle of a K-means cluster algorithm is to minimize the total sum 
Φ  of squared deviations from the cluster mean for all considered variables for a predefined 
number of clusters (MacQueen, 1967). The Euclidean distance is the most common distance 
function, usually the default setting in cluster programs and practical for multi-dimensional data 
sets (Munkres 2000, Søvik and Aagaard 2003). The Euclidean distance needs normalized 
variables to avoid an overweighting of higher values. Therefore we normalize all variables v to a 
comparable data range with 0.00 as the smallest value and 1 as the biggest value. 
After normalizing we use all available hydro-geophysical field data as well as the topographic 
altitude (Topo) as input for the cluster algorithm towards a partitioning of the floodplain surface. 
For cluster assignment we use the software SYSTAT 12 (Systat Inc. 2007). 
 
 
4. Results and discussion 
 
4.1 Modelling approach  
We defined the coil space and the frequency (i) according our EMI devices with 1 m, 17000 Hz 
(horizontal) / 14000 Hz (vertical) for the EM38DD and 3.66 m, 9600 Hz for the EM31MK2. 
Regarding the unknown subsurface situation we reduce the geological units to three (ii) in order 
to keep the calculated results manageable.  
The definition of layer thickness (iii) and layer EC condition (iv) are crucial for the EC results 
and therewith for the deduced geological model and demands a sense of possible proportions. 
Given that no geological information was available for the test site, we first estimate the depth of 
the layers from the measured EMI information by assuming the measured EC signal corresponds 
to the thickness of the corresponding layer only. This certainly does not reflect the natural 
conditions for all test site regions. However a simplification is necessary for the initial model. In 
doing so, we derive the depth of the first layer from the EM38v signal and analogously the 
second layer from the lager EM31 signal. As potential thickness we define a range between 
approx. 0.5 and 1.80 m for the first layer and 1.3 and 2m for the second (its adequate to a depth of 
approx. 1.75 to 4m). These depths corresponds approximately to the investigation depths of the 
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respective EMI devices and their measuring configuations. We also use in addition to the EM31 
all gamma results for generation of model parameterization towards similar layer thicknesses.  
After defining the layer thickness (iii), the definition of layer EC condition (iv) was concerned. 
As basis for the adjustment of the EC conditions we strongly simplify conductivity of the layer as 
quasi-homogeneous, it means we determine just one EC value for the whole layer. Then we 
successively manually change the EC value in steps of 2 and 5 mS/m from low (2 mS/m) to high 
(70 mS/) for each layer. Each model was used for the prediction of all four different EC integrals 
according to the real measured data of EM38h, EM38v, EM31h, and EM31v. Regarding the 
effort of manual input changes, we optimize the adjustment of input parameters in respect to the 
obtained results towards the best fitting. We run SYNDATA with approx. 120 different 
geological input properties.  
During the evaluation of synthetic EC maps by iteration (v) the predicted maps were compared 
with the measured maps. The best fit was reached, if the synthetic EC maps show the best 
structure approximation to the measured EC data. Thereby the main characteristics of the 
measured EC maps should be described by the synthetic EC maps. Regarding the difficulties of 
measuring absolute EC values and their comparability, in particular with data of different EMI 
devices, reproducibility of the measured absolute data was not aimed for. 
In addition to the structure adjustment, the coefficient of determination (R²) was estimated. In 
respect to the shifts between estimated and measured EC values we regulate the model results by 
normalization of the predicted values to the data range of the corresponding measured data.  
The following input variables show the best fitting: 1st layer thickness generated by the EM38v 
signal* 0.16 with EC 10 mS/m; 2nd layer thickness generated by the potassium signal* 3.0 with 
EC 2 mS/m and the 3rd layer (no thickness limitation needed) with EC 30 mS/m.  
Figure 5 and 6 show the comparison of predicted and measured EC distribution.  
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Figure 5 comparison measured vs. predicted EM38 maps, above the measured data, below the corresponding 
prediction; note that each color scale is different and shows equal numbers in order to allow a visualisation of 
structural information 
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Although the data range clearly deviates from the measured values, all four estimated maps 
reflect the main characteristics of the survey maps (except some technically caused outliers).  
The EM38 predictions in Figure 5 fit the measured maps better, probably due to the deriving of 
the upper soil parameters from the measured EM38v signal. Both predicted maps only vary 
marginally in their structure. However, considering the data ranges the predicted EM38h map is 
slightly lower than the EM38v and follows the trend of the measured maps. For all predictions in 
this model the coefficient of determination (R²) between measured vs. prediction is much higher 
than in any other model, in case of EM38 0.795 - EM38h and 0.814 - EM38v. 
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Figure 6 comparison measured vs. predicted EM31 maps, above the measured data, below the corresponding 
prediction; each color scale is different analogue to Figure 4 
 
Concerning the EM31 maps in Figure 6 the deviation of the structure prediction is evidently 
higher; in particular in the south-western part the oval higher area is deformed. Nevertheless, the 
main characteristics agree in both predictions as well as the trend of the data ranges; the EM31h 
data range is higher in the measured and modelled map. The coefficient of determination (R²) for 
the EM31 maps are 0.642 - EM31h and 0.783- Em31v. 
The input properties from this model are used for the final geological structure model (vi). Basis 
for the topography of the surface (Topo) interpolation builds the GPS data from the field surveys. 
From the interpolated surface altitude (in m above sea level) the first and second layer was 
subtracted and its surface interpolated analogue to the altitude. The thickness of the third layer in 
SYNDATA is infinite and does not need a limitation. Finally the layers were overlapped for the 
3D structure model, as basis for profiles and further visualisation (Figure 7) 
Regarding the electrical properties of the model we assume the 1st layer (10mS/m) consists of silt 
and sand as well as clay; the 2nd layer (2 mS/m) of sand and gravel and the 3rd layer (30 mS/m) 
consists of clay and silt.  
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  Figure7: Results of the iterative procedure of floodplain modelling by synthetic EC maps and a GPR-profile: 
Simplified three layer GSM, upper layer (1st) silt and clay, middle layer (2nd) sand and gravel, and lower layer (3rd) 
clay and silt; the GPR shows following a relatively homogeneous upper layer two significant depressions which 
correspond with the 3rd layer depression of the GSM; and potential AAC zones (white arrows); above the cluster 
map with 3 partitions. 
 
 
 
4.2. Cluster approach 
Purpose of the second approach is to combine the main characteristics of multilayered subsurface 
data to a simplified 2D surface partitioning map (Altdorff and Dietrich 2011). This map should 
distinguish zones of potential LAP and zones outside of it. For clustering we use the following 
input variables, EM38h and v, EM31h and v, K, U, Th and topography. Although we obtain four 
partitions according to the elbow criterion we decide to limit the cluster map to three clusters. As 
a consequence, we obtain a clear and reasonably partitioned map with significant distinctions that 
is also appropriate with respect to manageable land use recommendations.
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Figure 8 Soil properties of the defined three clusters (y-axes): above the EC of EM38h, v, EM31h and v, below the Gamma values as well as topography (m above sea level); 
whiskers indicate the total range, top and the bottom of the box show the 25th and 75th percentiles, and the line inside the box is the median val
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Figure 8 shows the box-and-whisker plots of the estimated cluster and its corresponding 
variables. Cluster 1 dominates by the lowermost EM38 and highest EM31 data, highest K, U and 
Topo values and the majority of upper Th values. Cluster 2 contains the highest EM38, lowest 
EM31 data and medium gamma values as well as the majority of the lowest Topo data. The 
characteristics of cluster 3 are not as distinguished as cluster 1 and 2, it contains the lowermost 
Topo and gamma values, the contingent on other variables are proportionately low.  
Concerning the result map Figure 7, a clear deviation with continuous clusters is visible, cluster 1 
comprises the area afar from the current river stream (in this view the right side), cluster 2 the 
middle part and cluster 3 the riverside. Regarding the corresponding properties cluster 1 might 
descript a lesser hydrologically active area that probably little related to the ancient active 
channel zone. Indication therefore is e.g. the high EM31 values as potential result of a thicker 
fine grainy layer in the deeper subsoil. Opposite to that, cluster 2 could describes an area with 
higher likelihood of an ancient active channel zone. Here, high EM38 values can be a result of a 
re-sedimentation and lowest EM31 data an indicator of a lower conductive layer in the deeper 
subsoil probably caused by a thicker sand and grain layer. Cluster 2 also comprises the majority 
of minor Topo data. We interpret this part as a possible ancient active channel zone with higher 
potential hydrological connection. Finally, cluster 3 describes the riverside with lowermost Topo 
and gamma values. This part could be artificially affected by replacing of the river. An 
assessment of the hydrological relation for this cluster is not certain from the available data. 
However the striking distance to the river gives reason to the assumption of good hydrological 
connection. 
Regarding selective management options for a reduction of the anthropogenic effect a distinction 
between cluster 1 and 2 is recommended. Due to the assumption of a potential LAP at cluster 2, 
this obviously more connected subsurface is more flood-prone and not recommended for house 
building. In addition, this part should as little as possible be treated with fertilizers and pesticides. 
Area of cluster 1 in contrast seems more flood robust and is rather acceptable for agriculture 
applications. The part of cluster 3 is very close to the current river and from this point improper 
for intensive use or house building 
 
4.3 Validation of results 
For an independent validation of the results we use a ground penetrating radar (GPR) profile that 
crosses the whole test field. We use the georadar system pulseEKKO Pro with a transmitter 
(Sensors & Software Inc.) for three 2D reflexion profiles and one common mid point (CMP). The 
profile comprises a length of 190 m and was measured by a 50 Hz antenna with 1 m distance. We 
situated it in the northern border of the test site. The data was processed and elevation corrected 
by the program Reflex-Win (Sandmeier Software 2010). 
The comparison of the geological structure model with the GPR profile shows considerable 
similarities (Figure 8). The GPR profile shows two significant depressions with nadirs at approx. 
25 m and 65 m corresponding to the depressions of the structure model. In relation to the 
electrical properties of the model layers we interpret these depressions in the lowermost layer as 
indication for a potential ancient active channel zone filled with sand and gravel (2nd layer). Also 
the increas of the thickness of the 3rd layer towards west (in Figure 7 the right side) is confirmed 
in the GPR profile by the decreasing trend of reflex horizon. Thus we assume the GSM delineates 
the main characteristics of the floodplain subsurface. 
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The GPR profile also verifies the partitions of the cluster map. As can be seen in Figure 7 the 
channel structure of the profile is described by cluster 2 (pale blue) bordered by clusters 1 and 3 
as potential ancient riversides. Therewith also the partitioning of the 2D cluster map can be 
confirmed.  
 
 
5. Conclusion 
 
Purpose of this study was the exploration of the natural characteristic of part of a relocated low 
mountain river. We investigated the subsurface of a part of the floodplain above the potential 
ancient active channel region (AAC). Thereby we used non-invasive hydro-geophysical methods 
towards the delineation of the AAC zones as the crucial area for further restoration and 
management issues. A connection between the AAC and the present river could lead to the best 
restoration potential. In addition, reliable information about the AAC and its involved 
morphological units provided an assessment of the dimension of the potentially effected process 
scale. We employed two approaches. In the first approach we obtained a 3D structure model by 
means of an iteratively EC forward modelling which distinguishes three layers with different 
properties. The form and dimension of the layers as well as the related EC values gave indication 
for more hydrological active parts and so consequently for the ancient active channel zone.  
In the second approach we partitioned the floodplain surface according to the multilayered 
subsurface to distinguish areas of different hydrological properties by a K-means clustering. We 
obtained a map of three different partitions. These partitions were characterized by significant 
differences of soil properties between and similarities within them and reflected parts of different 
hydrological properties. Therewith areas of higher and lower flood vulnerability as well as higher 
and lower river affection were distinguished for land use recommendation.  
Both approaches could be confirmed by a validation of independent GPR data. The comparison 
of the results with the GPR profile showed significant similarities. Thus we assumed that both 
approaches lead to reliable results. While the modelling approaches provided a 3D delineation of 
structure information the cluster approach lead to a 2D map with clear distinction of areas above 
the potential ancient active channel zone. In addition to the 2D partitioning, the 3D model had the 
advantage of providing depth information and could therefore be used as a basis for a relocation 
of the modified river to its original channel.  
In this study we derived the layer thickness from survey data of a snap-shot situation. Thus a 
distinction between temporal and average signal was not feasible. A monitoring under different 
weather conditions will help to distinguish the temporal, e.g. moisture signals from the geological 
(average) signal. Average data should increase the quality of the derived layers and hence the 
resolution of the structure model. However for the purpose of this study the model resolution is 
adequate. 
Regarding the manual adjustment of input parameters during the modelling, a computer 
controlled automatism for best fitting, e.g. Model-Independent Parameter Estimation (PEST) 
could decrease the effort as well as increase the quality of the predicted maps and consequently of 
the final structural model.  Thus upcoming software development and further studies at different 
test sites are desirable for the advancement of the demonstrated modelling approach.  
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Regarding the completely unknown subsurface both approaches discussed provide opportunities 
for delineating the main characteristics of soil from the near subsurface up to several meters 
depth. 
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Summary and Conclusion 

 

The demand of methods to quantify and best utilize the soil’s natural capital is increasing 

simultaneous with the world‘s growing population and the corresponding stress on soils (Banwart 

2011). Therefore, reliable high-precision information from soil and subsoil properties are needed. 

An opportunity for the acquisition of reliable high-resolute soil and subsoil data is given by 

proximal soil sensing methods (PSS). The ability to combine noninvasive survey data with spatial 

information by GPS decreases the time of data collection and allows thus data acquisition from 

medium and large scale areas. However, all of these methods are responding only indirectly to 

the soil properties relevant for land use and management, e. g. soil moisture and grain size. In 

addition, the measured proxies can be affected by several soil properties, which can lead to 

ambiguous results. Hence, a recent challenge in soil science is the improvement of the reliability 

of PSS results towards the solution of specific questions.  

The presented thesis has addressed the application and improvement of PSS results at the 

example of using  EMI and GS at three different filed studies with different specific questions.  

 

Part I This part considers the delineation of soil moisture pattern at a landslide affected hill slope 

in Vorarlberg / Austria. This landslide is triggered by infiltration of precipitation and the 

corresponding pore pressure changes which is related to changes in vadose zone moisture 

distribution (Schneider 1999, Lindenmaier et al. 2005, Wienhöfer et al. 2011). Consequently, 

information of spatial and temporal soil-moisture dynamics are required. The study shows the 

difficulties in obtaining soil moisture information from larger areas with heterogeneous 

topography and / or complex accessibility.  

A typical approach of obtaining, the soil moisture information is given by Time-Domain-

Response (TDR) and / or Frequency-Domain-Response (FDR) due to the contrast of dielectric 

permittivity of soil water and soil-matrix material (Jones et al. 2005, Bittelli et al. 2008). 

However, the application of TDR / FDR at this site has not leaded to plausible results 

(presumably due to the very high clay content). The study therefore uses EMI data as proxy for 

soil moisture and delineates spatial and temporary moisture patterns over a complex landslide 

affected slope. 

The first study also shows that the practice of EMI monitoring is neither limited to areas with 

heterogeneous topography and / or complex accessibility nor by high clay contents. This is an 

clearly advantage in comparison to other investigation methods like ground-penetrating radar 
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(GPR), which cannot be applied on relative high-conductive ground. The applied EMI monitoring 

approach in this study is a useful process for the separation of temporal changes from stationary 

background. In addition, it allows for the visualization of temporal changes in three-dimensional 

subsurface data.  

 

 

Part II This part discusses the problem of synthesis and simplification of multidimensional test-

site information and its reliability. The study has shown  that different survey methods resulted in 

different pattern of soil classification and consequently to different maps of soil properties. 

However, land-use management requires usually a clear partition of the ground surface. K-means 

clustering has been become a common tool in geosciences during the last decade (Irvin et al. 

1997, Dietrich et al. 1998, Burrough et al. 2000, Moral et al. 2010,  Paasche et al. 2010). Part II 

discusses the K-means clustering approach as common possibility for merging multivariate soil 

data and its critical validation. Therefore, EMI and gamma data from a Central German 

floodplain were  acquired and compared with each other. Then, the multiple data were merged 

towards a clear partitioning of surface with a K-means cluster algorithm. The study has 

demonstrated that the application  of K-means result  in an integral map of shallow subsurface 

partitions that reduces and comprises the essential characteristics of the used input variables.  

The study has also addressed the reliability of the generated cluster partitions by an independent 

evaluation. Therefore stratified randomly soil probes were takes and concerned in terms of grain 

size distribution and horizon thickness. The results show that not all partitions could be 

confirmed by independent soil samples. One of three clusters significantly differs from the others 

in terms of grain size distribution and horizon thickness and confirm so the reliability of the 

corresponding cluster delineation. The partitioning of the other two clusters could not confirmed 

by the considered parameters of the soil samples. A possible reason for the difficulties is very 

likely the influence of several factors on the measured EC, such as soil moisture, that has not 

been taken into account by  this study. Nevertheless, one partition describes the main 

characteristics of soil properties, grain size and horizon thickness without any ground truth data. 

Thus, the demonstrated combination of PSS data with a high resolution and K-means clustering is 

a potential approach for cost and time efficient site partitioning. The study has also illustrated that 

a critical evaluation of the final map by soil sampling is nevertheless recommended.  

Nevertheless  a site partitioning based on cluster analysis  enables a selective soil sampling and 

thus target-orientated and efficient measures at lower time and cost efforts.  
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Part III has addressed the problem of effective river restoration. Since the relation of intact river 

conditions and positive effects on several environmental processes and their corresponding 

management relations have become evident, river restoration has become increasing important. 

Therefore, several legislation frameworks deal with  river protection and rehabilitation in order to 

preserve the river systems and to avoid negative effects of anthropogenic  actions. Nevertheless, 

river restoration is often planned and realized by standardized engineering and constructing 

aspects only and hydrogeological settings and ancient stream channels are neglected. As a result, 

desired outcomes of restoration projects are reduced with no significant alteration of stream 

conditions by simultaneously increasing costs. The key element in terms of river restoration is the 

estimation of the river’s natural character and, subsequently, the adjustment of restoration 

measures. The study dealing with this problem  has demonstrated the ability of EMI and gamma 

surveys for investigation of ancient active channel zones (AAC) at a floodplain of a low 

mountain river in Switzerland. As a result of this study, a connection between the AAC and the 

present river could have to the best restoration potential.  

This part of the thesis was split into two approaches, the first approach has addressed the 

generation of a 3dimensional geological structure model, and the second approach has proceeded  

toward the 2dimensional delineation of the 3dimensional subsurface data. This approach offers 

the land owner or the decision makers an adaptive river protection or restoration concept with 

respect to the funding budget.   

In the first approach the study has obtained a 3dimensional structure model by means of iterative 

EC forward modelling. The EC forward model requires the thickness and the resistivity of 

different layers and predicts the electric conductivity (EC) on surface. By comparing the structure 

of the predicted EC data with the measured EC data, an iterative adjustment of the input data has 

been possible that has proceeded until the best fit was reached. The input parameters of the best 

fitted model were then used for the generation of the 3D geological structure model. The model 

distinguished between three layers with different properties as indication of the potential AAC 

region. Independent results from ground penetration radar have confirmed the structure of the 3D 

model. The forward modelling of 3D EMI values was possible due to a modification of the 1.5D 

model SYNDATA (University of Technology Delft / NL 1995, Van der Krug 2000).  

The second approach of Part III deals with the partitioning of the floodplain surface by a K-

means clustering analogue to the approach described  in Part II of this thesis. The purpose  of 

segmentation of the multilayered subsurface was to distinguish areas of different hydrological 

properties. These partitions were characterized by significant differences of soil properties 

between the clusters and similarities within the clusters. As a result, the obtained clusters  reflect 
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zones of different hydrological properties and are regarded as of areas of higher and lower flood 

vulnerability as well as areas of higher and lower river  adverse effect affection in terms of land-

use recommendation.  

 

 

Scientific achievement  

 

Regarding the initial problems of the thesis, the following conclusions can be drawn: 

 

(1) How can the comparability of the absolute EMI values assured and shifts of data ranges 

excluded? This question addresses directly the drawback of EMI technology and is discussed in 

Part I of the thesis. As already mentioned, EC data represent integral values, which are highly 

sensitive to several external influences, such as temperature, solar radiation, and battery voltage. 

Consequently, the calibration of the EM device is complex and the reproducibility of absolute 

data is difficult, despite the same calibration procedure (e. g. Domsch 2004, Pellerin and 

Wannamaker 2005, Hayley et al. 2007, Abdu et al 2008, Santos and Porsani 2011). This fact 

definitely limits the area of application due to the decreased  significance of the EM results, in 

particular for monitoring studies because for monitoring of EC values, reproducibility is curial to 

omit changes in EC signals (CEN 2010). Part I of the thesis suggests a comparability of the EMI 

values by normalizing of discrete single values. This  has allowed a comparison of temporary 

soil-structuring maps and subsequent further calculation to take place. Therefore, the study 

suggested the filtering of the raw data with  the limits of 5 – 95 % from whole range, the 

interpolation and the subsequent rasterization of all maps to the same grid size in order to obtain a 

matrix with identical coordinates (x; y) and their corresponding EC values. After normalization 

all data including those with shifts are in the same range of scale that allows a visualization with 

identical scales  as well as further calculations even for data sets with negative values.  

 

(2) Is a delineation of soil moisture and its spatial and temporal distribution with EMI possible? 

The approach in Part I demonstrates the delineation of spatial and temporal distribution of soil 

moisture under the assumption that changes in EC signal are strongly associated to changes in 

soil moisture. Given the relative temporal stability of properties of the soil matrix, seasonal 

changes in measured EC signal  are caused by changing moisture conditions within the soil. 

Thus, the comparison of normalized EMI maps presents a potential opportunity to explore 

changes in soil moisture and to identify hydrological  zone of different dynamics in both spatial 
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and temporal dimensions (see Part I Figure 4 as well as Part I Figure 7 and 8). Thereby the 

visualization of the standard deviation (SD) obtained from raster grid data of repeated 

measurements offers the possibility for identification of areas of higher and lower dynamic soil 

moisture changes (Part I Figure 4). In addition, the separation of the dynamic moisture signals 

from the stationary geological background by subtraction of the temporal values from the mean 

values is an opportunity for delineation of relative changes of each of the regarded investigation 

depths (see Part I Figure 7 and 8).  

Consecutively, the delineation of spatial and temporal moisture distribution by means of EMI is 

possible according to the approach described in Part I. 

 

(3) Are EMI and GS results able to delineate similar soil characteristics from the same test site? 

Part II points out that EMI data and gamma data are basically related to each other, however, it is 

not a simple relationship and it depends on several variables (Triantafilis and Lesch 2005, 

Buchanan and Triantafilis 2009, Robinson et al. 2009, Wong et al. 2009). The study in Part II has 

discussed the problems of influence from similar soil properties on the both signals. In general, 

both signals could be affected by similar soil properties, for example by clay and mineral content 

as well as moisture content (Cockx et al.1997, IAEA 2003, Rein et al. 2004, Mojid 2007,) In 

particular, clay mineral can affect both signals. Several studies postulate a general positive 

correlation between clay content and EC signal (Hedley et al. 2004, Caroll et al. 2007, Mojid et 

al. 2007, Weller et al 2007), and others suggest a correlation of clay with the γ−signal (Bierwirth 

et al. 1996, Wong and Harper 1999, Taylor et al. 2002, Pracilio et al. 2006, Viscarra Rossel et al. 

2007). In the thesis, GS is applied on two different floodplains with presumablely noticeable clay 

content. Consequently, similarities between both the EMI and gamma maps are expected. 

However the results of both studies show that significant similar soil pattern did not occur. The 

gamma depression shown in Figure 1 of Part II is indiscernible in the EMI data while increased 

EC values in the west are not reflected in the gamma data . Moreover, the obtained  maps of EMI 

and GS results in Part III differ in its characteristics of higher and lower values (see Part III 

Figure 3 and 4). In general the γ−values increase in the western part with lowest values in the 

northeastern edge, inparticular the sum signal DR while the EMI values of the upper EM38h 

device shows almost an inverse distribution.  

Although both methods could be affected by similar soil properties, the resulting maps not 

imperatively delineates similar soil characteristics. 
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(4) How can multidimensional subsurface data are combined towards a 2dimensional test site 

mapping and do the generated partitions really reflect the main characteristics of soil 

properties? The increasing number of survey methods (e. g. from proximal soil sensing) provides 

an increasing number of different data in high resolution, which results in multilayered and 

complex parameters maps . However, for most applications usually just one elementary map is 

required. Part II has discussed the opportunity of merging multidimensional data by a K-means 

cluster algorithm. A cluster analysis groups data according to their similarities and reduces the 

data to its significant characteristics. Therewith a synthesis and simplification of multivariable 

data is possible. Regarding the obtained results (see Part II figure 1 and 2) the combination of the 

relevant characteristics from the input variables are observable. The final map contains the E-W 

partitioning structure from EMI as well as the prominent gamma depression in the centre of the 

test site. Analogue to Part II in Part III the combination of the multidimensional input data by 

using an K-means clustering leads to plausible results. Figure 7 shows an evident synthesis of the 

2D map from the 3D input data below (see Part III figure 7). In summary, a K-means clustering 

is feasible to combine multidimensional subsurface data. 

As discussed in Part II, the reliability of the generated maps is directly related to the input 

variables, or in other words: the cluster map is only as good as the input parameters. This fact 

addresses the question of the reliability of the applied methods. In the presented study, a 

combination of EMI and GS data is used, however, for validation of the results, the following 

parameters were available: grain size, soil colour and horizon thickness. A validation of the 

partitions with EC and GS point measurements  could evaluate the probability of significant 

dissimilarities between the clusters certainly. However, the purpose of the study was practical 

oriented and should evaluate the typical use of K-means algorithms in soil science. Two of three 

clusters could nevertheless confirmed by the independent soil properties from  soil sampling.The 

demonstrated combination of EMI, GS data and K-means clustering is a potential approach for 

cost and time efficient site partitioning. However, a critical evaluation of the resulting map by 

soil sampling is nevertheless recommended. 

 

 

(5) Could an EMI forward modeling predict the measured EMI values and the structure of four 

different investigation depths with just one model? The study in Part III shows EMI forward 

modeling as potential tool for iterative inversion towards subsurface characterization. The 

demonstrated model has successfully predicted the structure from measured EMI values of four 

different investigation depths. One model was able to predict the structure of the following 
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integral values related to 0.75 m - EM38 horizontal (EM38h), 1.5 m - EM38vertical mode 

(EM38v), 3 m - EM31vertical mode (EM31h) and 6 m - EM31vertical mode (EM31v). However, 

due to the great dissimilarities in data ranges of the measured data sets, the prediction of 

measured EMI values was not  achieved. This problem is related to the high sensitivity of the 

EMI devices to influences, such as temperature solar radiation, and battery voltage. The 

calibration of EM sensors is complex and reproducibility of absolute data is  limited, despite 

regular calibration (Domsch 2004, Pellerin and Wannamaker 2005, Hayley et al. 2007, Abdu et al 

2008, Santos and Porsani 2011). This hampers the exact prediction of absolute EC values by 

means of forward modeling. In contrast to the absolute EC values, the structures of predicted 

maps confirms the main character of the corresponding maps from all four different investigation 

depths (see Part III Figure 5 and 6), hence EC forward modeling can predict the structures of EC 

maps of four different investigation depths with one model successfully. 

 

(6) Is a reliable 3dimensional delineation of significant structures in subsurface possible by EMI 

and GS data only? Conventionally, the answer is no. However, the study in Part III demonstrates 

that a subsurface delineation with EMI and Gamma data is basically possible. Precondition for 

this is the iterative inversion of EC condition of the geological layers by forward modeling. A 3D 

structure model was generated that delineates the area of potential ancient active river channel. 

An independent validation by ground penetration radar (GPR) could confirm the significant 

structures of the 3D model.  

In this study the layer thickness was derived from survey data just one survey day and represents 

a ´snap-shot situation´. Thus, a distinction between the temporal signal, influenced e.g. by soil 

moisture and the average signal was not feasible. Repeated measurements under different weather 

conditions would help to distinguish the temporal signal from the geological (average) signal 

according the demonstrated approach in Part I. The average data should definitely increase the 

quality of the derived layers and hence the resolution of the structure model because temporal 

influences on the EMI and GS signals e.g. by soil moisture could be excluded. Thus the deriving 

of layer thickness by means of EMI and GS signal represents more stationary conditions. 

However, for the purpose of the delineation of ACC, the model resolution was adequate. 

Regarding the manual adjustment of input parameters during the modelling, a computer 

controlled automatism for best fitting, e. g. Model-Independent Parameter Estimation (PEST) 

could decrease the effort as well as increase the quality of the predicted maps and consequently 

the quality of the final structural model. Upcoming software developments and further studies at 

different test sites are desirable for the advancement of the demonstrated modelling approach.  
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Regarding the completely unknown subsurface, both approaches discussed in Part III provide 

opportunities for delineating the main characteristics of soil from the near subsurface up to 

several meters depth. 

 

In summary, this thesis addresses the improvement of data evaluation and interpretation of 

proximal soil sensing methods electromagnetic induction (EMI) and gamma spectrometry (GS). 

Therefore three different test sites with three different problems were investigated and concerned. 

For each problem an individual adjusted approach was develop, applied and critical discussed. 

All developed evaluation approaches gained the information yield of the measured proxy data.  

Although developed under specific site conditions all demonstrated approaches offers portability 

and should be applied in other applications.  
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