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Abbreviations and Constants 

(Q)SAR  (quantitative) structure-activity relationships 

ATP   adenosine triphosphate 

ABC   ATP binding cassette 

BOLD   blood oxygenation level dependent 

BSA   bovine serum albumin 

CBF   cerebral blood flow 

CBVrel relative cerebral blood volume 

CMC   critical micellar concentration 

CMRglu / O2 cerebral glucose / oxygen consumption 

CNR   contrast-to-noise ratio 

CNS   central nervous system 

CPP   cell-penetrating peptide 

DHb   deoxyhemoglobin 

DMEM  Dulbecco’s modified Eagle medium 

DMSO  dimethylsulfoxide 

ECAR   extracellular acidification rate 

EDTA   ethylenediaminetetraacetic acid 

EU    energy units 

FACs   fluorescence activated cell sorting (cytometry technique) 

FBS   fetal bovine serum 

Fg    fluorescent FITC bound to a spacer peptide g 

Fg-TATP  fluorescent peptide Fg linked to TATP 

FITC   fluorescein isothiocyanate 

FMRI   functional magnetic resonance imaging 

FOV   field of view 

g spacer peptide ((βA)GGGG) used for linking FITC to TATP 

GABA  γ (gamma)-aminobutyric acid 

GAGs   glycosaminoglycans 

GRE   gradient echo 

HIV   human immunodeficiency virus 

HS    heparan sulfate 

HSPG   heparan sulfate proteoglycans 
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IMEM   Iscove’s modified Eagle medium 

ISFET   ion sensitive field effect transistor 

ITC   isothermal titration calorimetry 

LAPS   light-addressable potentiometric sensor 

MDR   multidrug resistance 

MOS-FET metal oxide semiconductor-field effect transistor 

MTX   matrix 

NA Avogadro’s number: NA = 6.023 · 1023 mol-1 

Pgp   P-glycoprotein 

PtcO2/CO2 transcutaneous oxygen/carbon dioxide tension 

PTD   protein transduction domain 

R universal gas constant R = 8.31 J·mol-1·K-1 

R1 spin-lattice or longitudinal relaxivity (=1/T1)

R2 spin-spin or transverse relaxivity (=1/T2)

R2
* effective spin-spin relaxivity (=1/T2

*)

RARE   rapid acquisition with relaxation enhancement 

RF    radiofrequency 

ROI   region of interest 

SE    spin echo 

T1 longitudinal relaxation time 

T2 transverse relaxation time 

T2
* effective transverse relaxation time 

TAT   trans-acting activator of transcription 

TATP   PTD peptide (YGRKKRRQRRR) of HIV-1 TAT 

TE    echo time 

TMD   trans-membrane domain 

TR    repetition time 
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Foreword 

During the present thesis, I had the occasion to study living mammalian cells with 

biophysical techniques that allowed me the fascinating observation of life through the eyes of 

modern science. What the physicists Heisenberg and Schrödinger postulated in 1926 for the 

observation of electrons ("The observation itself changes the probability function 

discontinuously") can be extended to many fields of experimental research, and was certainly 

true for the observations reported in the present thesis: although the experiments were 

conducted in living cells, the observation itself required conditions that altered the life of the 

studied cells. For example, the observation of the entire organism with fMRI required the 

application of an anaesthetic; the superfusion of the cells in the microphysiometer proceeded 

with a blood substitute and at different partial gas pressures than found in the body; etc. Such 

experimental variations are integral part of the observation and the consequences of such 

conditions are addressed also in the present thesis. 

In the last period of my work, I had the chance to work with living mice. Such models are 

nowadays routinely used for pre-clinical studies in the development of medical drugs and 

represent a fundamental step preceding phase I clinical trials. Especially the genetic 

elimination of a single protein (transgenic models) became a helpful tool to study the effects 

of such proteins on the entire organism and handling of diseases. However, such kind of 

animal experimentation is subjected to ethical and moral considerations on our rights, as 

humans, in exploiting other living organisms for our own profits. 

While a complete abolition of animal experimentation seems to be utopian at the moment, 

a concrete effort can actually be done to reduce the number of animals needed for an 

experiment, to refine the methods employed for the investigation and, where possible, to 

replace animals with alternative models. Such biocentric, or at least less anthropocentric, 

philosophy is currently officially adopted by the Swiss Federal Law, and advertised under the 

acronym RRR (Refine, Reduce, Replace). In the last part of the thesis, it was my intention to 

actively take part to the RRR effort, by contributing to the development and adaptation of less 

invasive techniques for animal experimentation. 

In summary, it was an interesting experience for me to study the diversity of metabolic 

responses in animal systems such as living cultured cells and mice, which allowed me to 

acquire experimental knowledge of the link between basic and preclinical biomedical 

research. 
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Summary 

 

The present thesis describes in three parts how living cells can be investigated on different 

biological levels, and how these techniques can be used to non-invasively evaluate the effect 

of drugs in the context of biomedical and pharmaceutical research. 

 

In the first part, Pgp activation is studied in living cells studied in culture. Here, 

microphysiometry, monolayer techniques and computer modeling were applied to investigate 

the interaction of drugs with human P-glycoprotein (Pgp). Pgp is a transmembrane ABC-

transporter that protects cells from a wide variety of toxic substances. Pgp is helpful under 

most biological conditions since it provides natural protection from toxins, but its activity can 

lead to resistance development in chemotherapy e.g. of cancers and microbes. In particular, 

the reported techniques provided a novel method to study Pgp-substrate interactions in real-

time and in living murine cellular systems in which human Pgp have been expressed. 

Investigation of Pgp-substrate interactions is then extended to the structure-activity 

relationships (SAR) of potential Pgp substrates, on the basis of a recognition mechanism 

based on intramolecular hydrogen bond acceptor patterns. 

 

In the second part, living cultured murine cells were studied under the influence of cell 

penetrating peptides (CPPs). CPPs are a class of compounds that traverse biological 

membranes very efficiently, although the precise uptake mechanism is not yet known. 

Elucidation of the exact uptake mechanism is, however, of great interest, given the potential 

of this class of compounds for pharmacological and biotechnological purposes. A CPP 

derived from the HIV-1 peptide TAT was studied using fluorescence confocal microscopy 

and microphysiometry as principal techniques. 

 

In the third part of the thesis, the biological observation level was switched from living 

cells in culture to the entire organism using magnetic resonance imaging as a non-destructive 

method to observe biological effects of drugs. In pharmaceutical research the development of 

a commercial compound requires similar observation levels during the long evaluation 

process starting from high throughput screening of potential bioactive molecules and ending 

with the launch of one selected therapeutically successful product. The intermediate steps 

include basic in vitro studies, in vivo experimentation with cell culture, pre-clinical assays 
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with intact animal models and phase I-III clinical trials with humans. For ethical and practical 

reasons, major attempts are made to replace invasive animal models by non-invasive 

techniques that can be applied in the same way to the clinical research providing thus a 

smooth transition between pre-clinical and clinical phases. This last part of the thesis adapts 

and optimizes such a recent imaging method to detect brain activation non-invasively in mice 

and to allocate the activated brain areas in mice without the need for surgery. 

 

In particular, the study focused on the activation of metabotrobic GABA(B) receptors in 

the mouse brain, upon stimulation with baclofen. The technical goal of this project was to 

adapt functional magnetic resonance imaging (fMRI) protocol at high field (7T) to the small 

size of the murine brain. The biological goal was to characterize regions in the brain, that 

show an enhanced activity under the influcence of baclofen - a know stimulator of GABAB 

receptors. 
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Part One: P-Glycoprotein 

Foreword and Context of the Project 

A search with the headword “P-glycoprotein” using the common biomedical database 

pubmed (www.pubmed.org) results in currently (2003) over 7000 scientific publications. This 

simple example gives a coarse, yet indicative illustration of the interest in this molecule and 

the effort research has made up to now, June 2003, to understand its function. 

P-glycoproteins or Pgps (P stays for permeability) belong to the superfamily of ATP-

binding cassette (ABC) proteins, also called ABC transporters or traffic ATPases. The general 

function of ABC transporters is to transport a large variety of chemicals (from peptides to 

simple ions) through biological lipid membranes against their concentration gradients, at the 

expense of ATP hydrolysis. 

 

The ABC transporter superfamily is a large gene family that has been highly conserved 

during evolution (Miyauchi et al., 1992), and which pertains to organisms from different 

phyla, from prokaryotes to eukayrotes (Descoteaux et al., 1992). It includes 51 members in 

humans, 55 in flies, 129 in plants and over 300 in bacteria so far (Cai and Gros, 2003).  

 

Human P-glycoprotein (Juliano et al., 1976; Juliano and Ling, 1976; Kartner et al., 1983; 

Riordan et al., 1985) is a 170 kDa integral protein composed of two homologous halves, each 

containing six putative transmembrane domains (TMDs) and an ATP-binding site, separated 

by a flexible linker polypeptide (Ambudkar et al., 1999). Pgp carries few N-linked 

glycosylation sites on the extracellular loop joining TMD 1 and TMD 2, and four intracellular 

phosphorylation sites on the linker domain between TMD 6 and TMD 7 (Figure I.1). 

 

Human Pgp is the product of the MDR1 gene, cloned for the first time in 1986 by Chen et 

al. (Chen et al., 1986). In the same year, similar genes were sequenced from mice (mdr 1a 

(mdr 3), mdr 1b (mdr 1) and mdr 2) (Gros et al., 1986; Gros et al., 1986) and hamsters 

(Gerlach et al., 1986), showing pronounced homology in the amino acid sequences. 

 

MDR genes owe their names to a phenomenon called multidrug resistance (MDR). The 

origins of the MDR phenotype are manifold (Beck, 1989; Cole et al., 1992; Cole et al., 1994; 

Endicott and Ling, 1989; Gottesman and Pastan, 1993), but the expression of Pgp on cancer 
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cell surfaces is probably the most studied among them. Such phenotypic peculiarities were 

reported first by Biedler and Riehm (Biedler and Riehm, 1970), who demonstrated that 

Chinese hamster cells selected for resistance to actinomycin D became also simultaneously 

resistant to puromycin, vincristine, vinblastine, mithramycin, daunorubicin, mitomycin C and 

demecolcine. With the appearance of MDR, tumor cells acquire resistance against a great 

variety of drugs, often unrelated to the compound applied initially. MDR has also been 

observed during the pharmacotherapy of epilepsia (Aronica et al., 2003; Rizzi et al., 2002; 

Tishler et al., 1995), various mycosis (Kontoyiannis and Lewis, 2002; Wirsching et al., 2000), 

bacterial infections (Putman et al., 1999; Van Bambeke et al., 2000; Van Bambeke et al., 

2003; Van Bambeke et al., 2003) and parasitosis. Under these conditions, the transporters are 

either activated and/or upregulated. This leeds to an efficient export of the intruding 

chemicals resulting in an increased detoxification (in the case of chemical hazards), but a 

reduced efficiency of drugs. Indeed, Pgp-like efflux transporters have been found in different 

pathogenic microorganisms, and in several parasitic protozoa such as Plasmodium,

Leishmania and Entamoeba, and have been shown to contribute to the drug resistance 

phenotype (Howard et al., 2002; Ullman, 1995). 

 
Figure I.1. Secondary structure of human P.glycoprotein. Two homologous halves of 6 
putative TMD are connected by a flexible linker  peptide. Two ATP binding sites are 
highlighted  (circles). Phosphorylated groups and point mutations are shown (black dots). 
Adapted from (Ambudkar et al., 1999) 
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To reduce MDR there are also attempts to express Pgp mutants in sensitive tissues (bone 

marrow) of cancer patients, in order to target tumors with higher drug concentrations while 

protecting normal tissues (Gottesman, 2003; Podda et al., 1992). 

Beyond its inauspicious role, mainly in cancer treatment Pgp plays an important 

physiological function in healthy organisms. In mammals, Pgp is expressed constitutionally in 

cells specialized in selective transport, e.g. the apical membrane of small intestine enterocytes 

(Benet et al., 1999), the endothelial cells of brain capillaries involved in the constitution of the 

blood-brain barrier (BBB) (Schinkel et al., 1996; Thiebaut et al., 1989), the luminal 

membrane of hepatocytes (Silverman and Schrenk, 1997), and generally in all tissues in 

which a highly selective compartmentalization is needed, such as kidney, pancreas, adrenal 

glands, colon, jejunum, liver, brain (Thiebaut et al., 1987). Functional expression of Pgp is 

also observed in the luminal surface of secretory epithelial cells of the pregnant uterus 

(Piekarz et al., 1993) and in the placenta (MacFarland et al., 1994). 

 

The basic challenges in fundamental research consist in understanding how Pgp 

recognizes its substrates, how the ATP-driven catalytic cycle leading to drug extrusion 

functions, and how the molecular pathways inducing and modulating Pgp expression on the 

cell surface are triggered.  

The apparent lack of specificity for substrates has been a veritable mystery for a long time. 

The only accepted homologies among Pgp substrates were their hydrophobic and amphiphilic 

nature (Ford and Hait, 1990; Gottesman and Pastan, 1993). However, the incompleteness of 

such an interpretation has been pointed out by the observation that compounds such as 

morphine, which is rather hydrophilic, can also be recognized by Pgp (Fischer, Gottschlich 

and Seelig, unpublished results). Based on the analysis of 100 compounds interacting with 

Pgp a recent model suggests a further common property (Seelig, 1998). According to this 

model, the ability of a compound to act as a Pgp substrate, inhibitor or inducer of Pgp 

overexpression is determined by the presence of specific intramolecular electron donor or 

hydrogen bond acceptor patterns. The patterns consist of two electron donor groups (or 

hydrogen bond acceptor) with a spatial separation of 2.5 ± 0.5 Å (called type I pattern), and 

three electron donor groups with a spatial separation of 4.6 ± 0.6 Å between the outer groups 

(called type II pattern). Recently, Ekins et al. (Ekins et al., 2002) reported three dimensional 

quantitative structure-activity relationship (3D-QSAR) models for various Pgp inhibitors, 

outlining again the requirement of multiple hydrophobic and hydrogen bond acceptor features 

for molecules interacting with Pgp.  
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It is now commonly accepted that the interaction between Pgp and its substrates takes 

place from the inner leaflet of the lipid membrane. For this reason, the thermodynamics and 

kinetics of substrate transport is determined (i) by the lipid-water partition coefficeint, 

depending in turn on the packing density of the membrane, π, and the cross-sectional area of 

the substrate molecule, AS, as well as by the direct interaction of the substrate with Pgp via 

hydrogen bond formation within the membrane (Seelig et al., 2005). 

After a compound is intercepted by Pgp, an allosteric transition, induced by the hydrolysis 

of one molecule of ATP is likely to take place, however, no direct structural observation 

exists yet. As a result, the substrate is transferred from the inner leaflet to the outer leaflet of 

the lipid membrane, and thus can be released extracellularly. Once the molecule is released, 

Pgp recovers its original conformation at the expense of a second ATP molecule (Sauna and 

Ambudkar, 2000).  

 

In the absence of xenobiotics, Pgp keeps its ATPase activity, even though at a lower rate, 

most likely due to the transport or “flip flop” of endogenous substrates such as phospholipids. 

Pgp thus may play a role in keeping the asymmetry of the lipid membrane (Higgins, 1994; 

Romsicki and Sharom, 2001).  

 

For the study of the catalytic cycle of Pgp e.g., vanadate trapping (Dey et al., 1997; Kerr et 

al., 2001; Urbatsch et al., 1995) was used. To monitor substrate transport kinetics, several 

techniques have been employed, e.g. the calcein-AM assay (Hollo et al., 1994; Liminga et al., 

1999), inorganic phosphate release from ATP hydrolysis in inverted plasma membrane 

vesicles and monoclonal antibody staining (Schinkel et al., 1993).  

We developed a method to monitor P-gp-substrate interactions in living cells and in real-

time, based on microphysiometry (McConnell et al., 1992). First human uterus sarcoma cells 

were used (Fisher, PhD thesis; (Nervi, 2000) and later pig kidney cells and mouse embryo 

fibroblasts (Landwojtowicz et al., 2002) were used. The technique consists in measuring 

modulations of the cellular metabolism associated with the ATPase activity of Pgp, by 

microphysiometry (Mcconnell et al., 1992). The following chapters will focus on two aspects 

(Landwojtowicz et al., 2002; Nervi, 2000): (i) The coupling between Pgp ATPase activity and 

the extracellular release of H+ and (ii) the interaction of drugs and surfactants both carrying 

appropriate H-bond acceptor groups with Pgp. 
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Chapter 1. Pgp-substrates Interactions in Living Cells 

1.1 Introduction 

An efficient inhibition of multidrug resistance (MDR) represents a great hope for various 

pharmacological treatments. This requires a detailed understanding of the mechanisms 

underlying the MDR phenomenon. In the past, transmembrane ABC-transporters have been 

identified as main elements responsible for the appearance of MDR phenotype in almost all 

kinds of living organisms. Human P-glycoprotein, a 170 kDa 12 TMD ABC-transporter coded 

by the MDR1 gene (Chen et al., 1986), is probably the most extensively studied among them. 

A detailed understanding of Pgp-substrate interactions would provide useful information for 

the appropriate design of inhibitors and for improved drug delivery to target organisms. 

 

We measured standard drugs known to be Pgp substrates (Landwojtowicz et al., 2002; 

Nervi, 2000), in order to test the microphysiometry technique and to assess the correlation 

with data obtained with conventional ATPase activation assays (Litman et al., 1997). In 

parallel, our investigation has been extended to compounds generally not or barely 

acknowledged as specific Pgp substrates, such as detergents (Nervi, 2000). 

 

Already fifteen years ago, observations have been made that surfactants reveal some 

activity in the reversal of multidrug resistant (MDR) phenotype (Friche et al., 1990; Sehested 

et al., 1989; Woodcock et al., 1992), and few years later in the alteration of Pgp ATPase 

activity (Doige et al., 1993; Orlowski et al., 1998; Zordan-Nudo et al., 1993). 

 

In the earliest studies, the hypothesis of a direct interaction of surfactant with Pgp was 

suggested (Friche et al., 1990; Loe and Sharom, 1993). However, in following studies, the 

inhibition of Pgp by detergents was considered to rather be the result of an indirect 

mechanism involving the alteration of the physical chemical properties of the cytoplasmic 

membrane (Batrakova et al., 2001; Bittner et al., 2002; Buckingham et al., 1996; Hugger et 

al., 2002; Hugger et al., 2002; Regev et al., 1999).  

Despite the lack of a precise understanding of the effect of detergents on Pgp function, 

recent research focuses on the simultaneous application of nonionic surfactants (and similar 

molecules) with compounds that have proven to inhibit Pgp: novel applications of Pluronic 

block copolymers (= a detergent) in the treatment of drug-resistant tumors have been 
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reviewed by Kabanov (Kabanov et al., 2002). Also preclinical (Jagannath et al., 1999) and 

clinical trials (Martin-Facklam et al., 2002; Rischin et al., 1996) using these compounds for 

cancer treatment have already been described. 

 

The use of Pluronics (poly(oxyethylene)-poly(oxypropylene) block copolymers) as a 

vector for drug delivery emerged in 1992, (Kabanov et al., 1992). This investigation showed 

that pluronic P85 was able to produce a drastic enhancement of the efficiency of cell loading 

with a fluorescent dye linked to Staphylococcus aureus enterotoxin B (SEB), and suggested 

endocytosis as possible transport mechanism. 

 

In the following years, several reports described that combinations of pharmacological 

agents and polyethoxylated surfactants, or similar ester derivates, could improve the oral 

bioavailability of the drug and lower the multidrug resistance activity of Pgp (Banerjee et al., 

2000; Cornaire et al., 2000; Dintaman and Silverman, 1999; Komarov et al., 1996) and related 

transporters (Miller et al., 1999). By means of flow cytometry with Caco-2 cells it was shown 

that nonionic detergents, such as Tween 80, reverse MDR even more efficiently than standard 

non-detergent Pgp-modulators, such as verapamil, trifluoperazine and reserpine (Lo et al., 

1998). 

 

Nevertheless, the mechanism of action of detergents on Pgp remained unclear, (see 

(Kabanov et al., 2003) for a review). Some studies suggest that MDR reversal by Pluronics 

and other surfactants could occur, apart from membrane fluidization, also through effects on 

buffer osmolarity, via direct transporter inhibition, or mitochondrial toxicity leading to an 

induction of energy depletion in the cell, i.e., a decrease of intracellular ATP available for Pgp 

(Batrakova et al., 2001; Batrakova et al., 2001; Johnson et al., 2002). Other investigations 

support the assumption, that membrane fluidization is not the only explanation for surfactant-

induced Pgp inhibition (Rege et al., 2002). A biological explanation for the cellular uptake of 

polysorbate 80-coated nanoparticles (Kreuter, 2001) was recently given by Aliautdin and 

coworkers. They described how drugs could cross the blood-brain barrier (BBB) by 

endocytotic inclusions from endothelial cells of cerebral vessels, through the adsorption of 

apolipoproteins of the blood plasma to the particles surface and their interaction with 

receptors of low-density lipoproteins on endothelial cells (Aliautdin et al., 2003). 
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Support for a direct interaction of surfactants with Pgp was recently provided by a 

comparative study that showed selective Pgp versus MRP2 modulation by nonionic 

polyethoxylated compounds, including polysorbate 80 (Tween 80) (Bogman et al., 2003). 

 

At concentrations below their critical micellar concentration, detergents were generally 

considered as biologically inactive compounds and, as such, of no or little toxicity (Lo, 2003). 

However, toxic effects have been reported recently, at a pharmacological as well as at the 

environmental level. At the pharmacological level, it has been shown that the use of 

surfactants in drug delivery formulations can produce toxic side effect, e.g., acute 

anaphylactoid hypersensitivity reactions, peripheral neuropathies (ten Tije et al., 2003; van 

Zuylen et al., 2001), hyperlipidaemia, abnormal lipoprotein patterns and aggregation of 

erythrocytes (Gelderblom et al., 2001). At the ecological level, the unceasing accumulation of 

surfactants, mainly originating from cleaning industry, is an inauspicious reality. Cultured fish 

hepatocytes P-gp-function was shown to be altered by non-ionic detergents, such as the 

alkylphenolic surfactant nonylphenol diethoxylate (NP2EO), suggesting that water pollutants 

most probably can impair the organismal defence of ichthyic fauna against xenobiotics (Sturm 

et al., 2001). 

 

Very few studies approached the investigation of Pgp-surfactant interaction on a physical-

chemical basis. Correlation between surfactant biological activity and their critical micellar 

concentration have been proposed (Miller et al., 1997; Zastre et al., 2002).  

 

The common characteristic of surfactants interacto with Pgp, despite their more or less 

pronounced amphyphilic nature, is the presence of a variable number of ethoxylated groups. 

The length of the ethoxylated chains was recently shown to play a role in the efficiency of the 

Pgp-modulatory activity of pluronics (Batrakova et al., 1999; Batrakova et al., 2003; Lo, 

2003) and other polyethoxylated compounds (Sauna et al., 2004). These results were 

interpreted on the basis of classical physical chemical features, such as the variable 

hydrophobicity and the sterical properties of the compounds. It was further shown that 

ethoxylated surfactants, which are commonly used detergents in industry and home care 

products, interact with human Pgp, whereas alkylphenols, which are toxic environmental 

polluants derived from anaerobic biodegradation of alkylphenol ethoxylates, did not show any 

effect on Pgp activity (Loo and Clarke, 1998). 
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The aims of the present work were i) to establish the microphysiometer technique for the 

study of standard Pgp substrates, ii) to correlate the measured extracellular acidification rate 

in vivo with previous measurements of Pgp ATPase activity in reconstituted systems, and iii) 

to investigate Pgp activation by surfactants and to then correlate activation with the ability of 

surfactants to act as H-bond donors. 
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1.2 Theory 

The Cytosensor® Microphysiometer System: Biological Foundations 

Chemo-organo-heterotrophic systems (definition: require organic substrates to get their 

carbon for growth and development), such as mammals, utilize sugars, amino acids and fatty 

acids as primary carbon sources for metabolic energy. Under natural aerobic conditions, 

energy is extracted from glucose and stored in the form of ATP via the cytosolic Embden-

Meyerhof pathway coupled with the mitochondrial TCA cycle and oxidative phosphorylation. 

Hypoxic conditions, such as commonly present in in vitro cell cultures (Mandel, 1986), as 

well as tumoural features (Warburg, 1926), have been shown to induce a switch in the cell 

metabolism of pyruvate from the oxidative phosphorylation toward lactic fermentation 

(Gebhardt et al., 1978). The yield of the latter reaction is 19 times lower in terms of ATP 

production per glucose molecule (2 ATP/glucose versus 38 ATP/glucose). The rate of acid 

production of the fermentative pathways is much more pronounced than aerobic respiration, 

with a yield of 1 H+/ATP compared to 0.167 H+/ATP, respectively.  

 

Mammalian cells in culture can also obtain 30 to 100% of their metabolic energy from 

glutamine oxidation (Zielke et al., 1984), which leads to an energy yield of 29 ATP/glutamine 

and a proton production of 0.111 H+/ATP (Owicki and Parce, 1992). 

 

In previous studies it has been estimated that adherent mammalian cells in culture can 

produce ~ 1 ·108 H+s-1cell-1 (Parce et al., 1989), corresponding to at least 108 ATPs-1cell-1 

(Owicki et al., 1990). 

 

The extrusion of acidic metabolites from the cell is performed passively or through several 

facilitated mechanisms. Some lactic acid and CO2 can exploit the permeability of the lipid 

membrane and be evacuated by passive diffusion. Lactic acid is also excreted by means of the 

monocarboxilic acid transporter. Bicarbonate can cross the cytoplasmic membrane through 

several anion transporters, e.g. the chloride-bicarbonate antiporter. Protons are transported via 

several H+-channels and pumps, such as the Na+/H+-ATPase (Fischer et al., 1999). 

 

External stimulation, e.g. exposure to a toxic agent or the activation of a receptor, can induce 

physiological alterations in the cell, such as changes in the ionic equilibrium or the metabolic 
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activity. As a consequence, the cellular ATP consumption changes. Since ATP hydrolysis is 

coupled with the production of acidic metabolites, a variation of the extracellular acidification 

rate (ECAR) results in parallel. The Cytosensor® Microphysiometer allows a precise detection 

of the latter parameter. 

 

Figure 1.1. Schematic representation of cellular metabolism and its relationships to 
physiological processes such as receptor activation. The principal features of cellular 
proton economy are shown. Not all the indicated pathways are necessarily used by all cells. 
The putative contribution of P-glycoprotein (P-gp) is shown.  
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The Cytosensor® Microphysiometer System: Physical Basis 

The Cytosensor® Microphysiometer System is essentially a very sensitive pH-meter 

connected with a thermoregulation and a network of peristaltic pumps. Its core is composed 

by a so called “sensor chamber”, which consists of a teflon container with a silicon chip on 

the bottom. The physical principle of the sensor is similar to that of an ISFET (“Ion Sensitive 

Field Effect Transistor”). Living cells, which continuously produce acidic metabolites from 

their metabolic activity (see previous section) act as proton source, S.  

 

The surface of the chip exposed to the aqueous environment is covered by a SiO2 insulator 

layer, as for normal MOS-FET (“Metal Oxide Semiconductor-Field Effect Transistor”). The 

Si plate is much thicker (order of mm) than a normal industrial transistor (order of µm) and is 

formed by a pure single-crystal (commercial transistors are contaminated with metals from 

the chemical periodic system III or V group). To induce an electrical flow, IR-light is used 

instead of metal contaminations. Indeed, the single-crystal of Si has a very specific 

absorbance of Electromagnetic (EM) radiation with a wavelength λ = 900 nm and, when 

excited by an amplitude-modulated light-emitting diode (LED), it becomes a conductor. As a 

consequence of these features, the sensor is called light-adressable potentiometric sensor 

(LAPS). 

 

An external electronic circuit (connection between ohmic contact and aqueous 

compartment) controls the potential, ψ, applied from the Si to the aqueous solution and 

measures an alternating photocurrent, Ip. Such a photocurrent is alternate current (ac)-coupled 

and is generated when the LED illuminates the underside of the Si chip. 

 

The potential from the Si to the solution can be adjusted so that the sensor can become (i) 

forward biased or (ii) reverse biased. In the first case no photocurrent is produced, while in 

the second a depletion layer, resulting in a potential gradient, is created under the insulator. At 

the atomic level, this corresponds to a hole-electron pair creation upon radiation absorption 

from the LED. Because an electric field is present in the chip, holes and electrons move in 

opposite directions, producing the local current. This situation is similar to a p-/n-channel in 

transistors. No direct current passes through the insulator.  
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The applied potential, ψ, at which the photocurrent begins to flow is defined as the sum of 

several contact potentials of the hardware (which are constant) and the surface potential of the 

solution-insulator interface. A determination of the changes in ψ required to produce the 

photocurrent permits thus to measure the variations of the surface potential. 

The insulator surface is partially covered by silanol groups (SiOH) and few amino functions 

(SiNH2), both of which can be titrated as a function of pH. The surface is neutral at pH ~ 3.5. 

Consequently, at physiological pH the surface becomes negatively charged. This feature 

makes the surface potential pH-dependent. Such a dependence is Nernstian (= the plot of the 

potential difference vs. the logarithm of the ionic activity is linear with a slope of 2.303 

RT/zAF, e.g. 59.16/zA mV per unit change of paH at 298.15 K).) and linear from pH 2 to 11 

(Hafeman et al., 1988). 

 

Figure 1.2. Raw data and Rate data from Cytosensor™ Microphysiometer measurements. In 
the upper scheme, the applied voltade (VPIP, mV) is plotted versus time. During cyclic 
pump-off periods (OFF), the ECAR is calculated from the derivative of the photocurrent 
drop recirded in raw data (blue line) and plotted as a function of time (-µV ·s-1). 

 

The raw data and rate data recorded during the experiments are based on variations of the 

photocurrent (see Figure 1.2). The system sweeps the applied voltage every second, producing 

a curve of photoresponse (Ip) versus the applied voltage (Vp). The inflection point (IP) of the 

curve is characterized by particular IPIP [µA] and VPIP [mV]. In raw data VPIP is plotted versus 

time. When the pumps are off, the extracellular acidification causes a weakening of the 
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surface potential. The corresponding electric field also diminishes and the photocurrent drops. 

At 37 °C, the VPIP shift corresponds to about 61 mV per pH unit. The derivative of the slope 

generated in the raw data, during the ECAR -dependent photocurrent drops, is calculated and 

plotted versus time to illustrate the rate data [-µV ·s-1]. 
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Surface Activity and the Gibbs Adsorption Isotherm 

 When an amphyphilic compound is injected into an aqueous solution, a distortion of the 

surrounding water cluster occurs, leading to a decrease of the entropy of the system. To reach 

a more stable energetic state, the amphyphilic molecules tend to be extruded from the bulk 

phase and accumulate at the air-water interface. Such an entropy-driven process is called the 

Hydrophobic Effect. The presence of surfactant molecules at the air-water interface, can be 

observed macroscopically as a lowering of the interfacial tension of the aqueous solution, 

defined as 

 

0γ γ π− = , (1) 

 

where γ0 is the surface tension of pure water (∼ 72 mN/m at 20 °C), γ is the surface tension of 

the surfactant containing solution, and π is the surface pressure. The latter can be determined 

experimentally with the Wilhelmy vertical plate method (see material and methods). 

The thermodynamics of the adsorption of a surfactant to an air-water interface can be 

described by the Gibbs adsorption isotherm. According to Gibbs, the change in the interfacial 

tension of the solvent can be described as 

 

i id dγ µ− = Γ∑ , (2) 

 

where µi and Γi are the chemical potential and the surface excess concentration of any 

component of the system, respectively. 

At equilibrium between the interfacial and bulk phase, the change of the chemical potential of 

any component of the system, dµi, can be expressed as 

 

lni id RTd aµ = , (3) 

 

where ai is the activity (mole fraction · activity coefficient) of any component of the system, 

and RT the thermal energy. For solution concentrations < 10-2 M containing only one non 

dissociating surfactant, the activity of the solvent and the activity coefficient of the solute can 

be considered as constant and the mole fraction of the solute can be replaced by its molar 

concentration, CS (Rosen, 1989) . Equation (1) can thus be written as 
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lnS Sd RT d C dγ π= − Γ = − (4) 

 

which corresponds to the commonly used form of the Gibbs equation, for aqueous solutions 

of nonionic surfactants. 

The surface excess concentration, ΓS, is defined as the excess, per unit area of interface, of 

the amount of any component actually present in the system over that present in a reference 

system of the same volume in which the bulk concentrations in the two phases remain 

uniform up to a hypothetical (Gibbs) dividing surface (Rosen, 1989): 

 

( ) 1
S A S

n N A
A

−∆Γ = = ⋅ (5) 

 

where As is the area per molecule required at the interface. In the absence of electrostatic 

interactions AS is identical with the cross-sectional area, Ad, if the limiting value, Γ∞, defined 

as 

 

ln S

d
RTd C

π
∞Γ = (6) 

 

is reached. Under these conditions the surface pressure, π, increases linearly with the 

logarithm of concentration, Cs. The cross-sectional area of the surfactant molecule can thus be 

directly calculated from equations (5) and (6), and the plot of π versus lnCS which yields a 

straight line. 

The surface excess concentration, Γ, can also be expressed according to the Langmuir 

adsorption isotherm, by the following equation: 

 

1

aq

aq

aw S

aw S

K C

K C
∞Γ = Γ

+
(7) 

 

where Kaw is the air-water partition coefficient. The combination of an integral form of 

equation (6) with equation (7), gives rise to the Szyszkowsky equation, which relates the 
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change in the surface tension, dγ, (or surface pressure, π) with the air-water partition 

coefficient, Kaw, as  

 

( )ln 1 aw SRT K Cπ ∞= Γ + (8) 

 

Monolayer experiments determine directly the lowering of the surface tension, γ, or the 

increase in surface pressure, π, as a function of the concentration of the surface active 

compound injected into the aqueous solution. From the fit of the π/logC plot, Kaw can be 

obtained. 

The air-water interface can be regarded as model system for the membrane-water interface 

system due to (i) the similarity of dielectric constant of air (εair ~ 1) with that of the interior of 

a lipid membrane (εlipid ~ 2), (where the dielectric constant of water is εwater ~ 80) and (ii) its 

ability to orientate amphiphilic molecules in an anisotropic manner. From these points of 

view, the air-water interface represents a much better model for lipid membranes, than 

organic solvents, which are isotropic and have higher dielectric constants.  

The penetration of a compound into a lipid bilayer requires work which is proportional to the 

lateral packing density of the lipid bilayer, πbi ~ 32-34 mM ·m-1 (Fischer et al., 1998; Seelig, 

1987), and the cross-sectional area of the inserting molecule: 

 

∆W = πbi · AS (9) 

 

The lipid-water partition coefficient has to take into account those impeding factors and can 

thus be expressed as 

 

0

S bi

B

A

k T
lwK K e

π −
  
 = (10) 

 

where K0 corresponds approximately to the air-water partition coefficient, Kaw, if the surface 

pressure of a surfactant concentration CS = Kaw
-1 is negligibly small. 

 

Type I/II Units 

 According to a model developed by Seelig (Seelig, 1998), compounds can be recognized 

by Pgp through H-bond acceptor (or electron donor) groups (e.g. carbonyl-, ether-, hydroxy-, 
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tertiary amino groups, π-electrons systems, and certain halides),arranged in specific special 

recognition patterns. Such recognition patterns consist of (i) two electron donor groups at a 

distance of 2.5 ± 0.5 Å, (ii) two electron donor groups with a spatial separation of 4.6 ± 0.6 Å 

or (iii) three electron donor groups with the two outer groups separated by 4.6 ± 0.6 Å, 

defined as Type I Units (i) and Type II Units (ii and iii). A graphical representation of 

hydrogen bond acceptor patterns is shown in Figure 1.3. 

 

Figure 1.3. Type I and II Units. Type I: two electron donor groups distributed at a distance 
of 2.5 ± 0.5 Å. Type II: two electron donor groups with a spatial separation of 4.6 ± 0.6 Å 
or three electron donor groups with the two outer groups separated by 4.6 ± 0.6 Å (Seelig, 
1998). 

 

Hydrogen Bond Acceptor Strength 

 For simplicity hydrogen bond acceptors were divided into two groups: strong ones (“A”, 

e.g., >C=O, -OR, contributing one energy unit, EU, corresponding to maximally 20 kJ/mole) 

or weak ones (“a”, e.g., -NR3, -N=, -RX, -SR, -C6H5, contributing ½ EU). “AA”, “Aa” or “aa” 

Type I Units correspond thus to 2, 1.5 or 1 EU, respectively.The number of EU of a molecule 

determines the strength of its binding to the H-bond donor side chains of the TM α-helices of 

Pgp, which most probably represent the binding sites of the transporter (Seelig et al., 2000). 
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1.3 Material and Methods 

Compounds 

The nonionic surfactants n-ethyleneglycol monododecylether (C12EOn=3, C12EOn=8), 

Triton X-100, polysorbate-80 (Tween 80), and the zwitterionic detergent Chaps (3-

[(cholamidopropyl)dimethylammonio]-propanesulfonate), were purchased from Fluka 

(Buchs, Switzerland). Amiloride, chlorpromazine, colchicine, trifluoperazine, (R/S) 

verapamil, and vinblastine were from Sigma (Steinheim, Germany), and calcein 

acetoxymethyl ester (calcein-AM) from Molecular Probes (Leiden, The Netherlands). 

Amitriptyline and cyclosporin A were gifts from Merck (Darmstadt, Germany) and Novartis 

(Switzerland), respectively. For stock solutions, compounds were dissolved in water, except 

for cyclosporin A, vinblastine, calcein-AM and C12EO3, which were dissolved in DMSO. 

Final solutions were prepared in DMEM, and actual solvent concentrations were ≤ 0.5%. [u-
13C6]-D-glucose was purchased from Cambridge Isotope Laboratories, Inc. (Andover, 

MA,USA). The P-glycoprotein-specific antibody MRK16 was a gift from Dr. M.M. 

Gottesman (National Cancer Institute, Bethesda, U.S.A.). Purified mouse standard isotype 

IgG2a,k and FITC-labeled anti mouse IgG2a were from Pharmingen (San Diego, U.S.A.). Cell 

culture media and additional compounds required for cell culture were from Gibco-BRL 

(Basel, Switzerland). 

 

Cell Lines 

Mouse embryo fibroblasts, both wild type (NIH3T3) and transfected with the human 

MDR1 gene (NIH-MDR-G185) (Cardarelli et al., 1995), were a kind gift from Dr. M.M. 

Gottesman (National Cancer Institute, Bethesda, U.S.A.). Pig kidney cells LLC-PK1 and 

MDR-LLC, were provided by Dr. P.Borst (The Netherlands Cancer Institute). 
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Cell Culture 

Cells were grown as monolayer cultures in sterile cell culture flasks (Costar, 25-75 cm2), 

and incubated at 37 °C in a Heraeus Incubator, in an air atmosphere supplemented with 5 % 

CO2 and humidity saturation of 100%. DMEM was chosen as cell culture medium, 

supplemented with 1% L-glutamine (0.3 g/L), 1% penstrep (100 units/mL) and 10% FBS 

(v/v). NIH-MDR-G185 cells were kept under growth selection with 0.15 µM (60 ng/mL) 

colchicine. 1:10 passages were performed twice a week, from confluent cultures, after 

treatment with trypsin-EDTA (Gibco). Cellular stocks aliquots of 107 cells/ mL were prepared 

in DMEM, 10% DMSO, 10% FBS and kept in 1.8 mL Nunc CryoTubes frozen in liquid 

nitrogen. Detailed protocols for cell handling are reported elsewhere (Nervi, 2000). 

 

Cell Doubling Time Determination 

Exponentially growing NIH3T3 and NIH-MDR-G185 cells were seeded into 30 mm 

dishes (2 for each cell line and for each day), in amounts of 104 cells/2.5 mL DMEM/dish. 

Every 24 hours, the number of cells was determined by averaging the amount of cells counted 

in two dishes for each cell line, after trypsinization with 0.5 mL trypsin-EDTA solution, using 

a cell Coulter counter. The latter procedure was repeated for 8-10 days, until a plateau 

(confluence) was reached. 

 

Cell extraction 

Approximately 108 living mouse embryo fibroblasts (NIH-MDR-G185) were grown for 

12 h in DMEM medium containing [u-13C] glucose (5 mM) and then removed from the tissue 

culture dishes by using trypsin-EDTA, as described above. The cells were rinsed twice with 

PBS and immersed in 5 mL of 6% perchloric acid to precipitate/inactivate all proteins 

including enzymes that could have metabolized the compounds even after cell lysis. 

Subsequently, the cells were lyzed by subjecting them for 15 min on an ultrasonic bath 

(Branson Sonifier, Danbury, CT; 50 W/mL) under a nitrogen atmosphere (at 4°C). Then, the 

precipitated proteins were removed by centrifugation (Eppendorf, 14000 g) and the 

supernatant, containing the water-soluble metabolites was neutralized with 4% KOH. KOH in 

combination with HClO4 was chosen as base-acid system because the solubility for KClO4 is 

much smaller than any other salt from acid base neutralization, which is important for later 

residual salt contents in NMR (line broadening). The precipitate of KClO4 was removed by 
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centrifugation (16000 g) and the supernatant was lyophilized overnight. The lyophilized 

metabolites were resolved in 0.5 mL of 99.9 % D2O for further analysis by high-resolution 
13C- and 1H-NMR spectroscopy. The pH of the solution was adjusted to 7.4 (uncorrected pH 

reading for deuterated water) using deuterated perchloric acid and potassium deuteroxide 

(KOD). Five µL of a 0.5 M solution of [2,2,3,3-D4]-3-(trimethylsilyl)-propionic acid sodium 

salt (TSP) was added to provide an internal concentration standard and chemical shift 

reference.  

 

In vitro high-resolution 13C and 1H NMR spectroscopy 

In vitro high-resolution 13C-NMR spectra (at 9.4 Tesla, 100 MHz) of cell extracts were 

obtained on a Bruker Avance 400 NMR spectrometer using the following settings: 50,000 

scans, 45° pulses, 250 ppm spectral width, 1H broadband decoupling and a repetition time of 3 

s. In vitro high-resolution 1H-NMR spectra were acquired at 400 MHz using the following 

settings: 64 scans, 90° pulses, 12 ppm spectral width and a longer repetition time of 20 s to 

avoid saturation of the proton signals. 

 

Detection of P-gp Expression 

The cellular expression level of P-gp was estimated by FACs analysis. Aliquots of 2-3·105

cells were incubated in IMEM containing 5% FBS at 37 °C for 30 min in the presence of the 

human Pgp-specific monoclonal antibody MRK16 or the mouse standard isotype antibody 

IgG2a,k. After washing, cells were reincubated at 37 °C for 30 min in the dark, in the presence 

of FITC-labeled anti mouse IgG2a. Cells were then washed (IMDM), centrifuged (1000 rpm, 5 

min) and resuspended in PBS (supplemented with 1% BSA) and FACs analysis was 

performed using a FACscalibur flow cytometer (BD Biosciences). 

 

ATPase Assay 

 Reagents: 

1) Pi reagent.1% ammonium molybdate (or molybdic acid, ammonium salt) in 2.5 N 

sulfuric acid and 0.014% antimony potassium tartrate. Then 50 mL distilled water and 

6.9 ml concentrated sulfuric acid (36.2 N) were added in a 250 ml beaker. To the 

mixture, 1 g ammonium molybdate (powder) and 14 mg of antimony potassium 
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tartrate were added and stirred for 20 min in a hood. Distilled water was then added to 

reach a total final volume of 100 ml. The final solution was stored at room 

temperature, in a glass bottle covered with aluminum. 

2) 100 mM MES-Tris, pH 6.8. 100 mM MES solution (1.95 g/100 mL). PH adjusted to 

6.8 with Tris solution (2M). 

3) 2x Assay buffer (5 mL). 4.12 mL 100 mM MES-Tris (pH 6.8); 0.5 mL of KCl (1 M); 

0.2 mL sodium azide (0.25 M), 0.16 mL EGTA (0.125 M, pH 7.0); 7.5 mg ouabain 

powder; 20 µL DTT (1M). Before use, 50 µL MgCl2 (2 M) was added per 5mL buffer. 

4) 5% SDS solution 

5) 1% ascorbic acid (100 mg/10 mL water; freshly prepared and stored on ice) 

6) 10 mM sodium ortho-vanadate: 9.2 mg/5 mL water. Freshly prepared solution 

incubated at 100 °C for three min (calibration: OD=3.6 at λ=268 nm corresponds to 1 

mM). 

7) 100 mM ATP (disodium salt, pH 7.0, stored at –80 °C). 

8) 1mM potassium phosphate (stored at –20 °C) 

9) several Pgp substrates dissolved in DMSO or water. 

 

For the ATPase assay, all reactions were performed in 15 mL glass tubes immersed in a water 

bath at 37 °C. In one tube, 50 µL buffer, 31 µL H2O, 3 µL vanadate (10 mM) or water, and 10 

µL membrane extracts (~ 1 mg membrane/mL; ~ 20 ng proteins) were mixed and incubated 

for 5 min. After addition of 1 µL Pgp substrate or an equivalent amount of solvent, the 

solution was again incubated for 3 min. In a third step, 5 µL ATP (100 mM, pH 7.0) was 

added. The final solution was incubated for 20 min, during which ATP hydrolysis occured. 

To stop the reaction, tubes were rapidly removed from the bath, 100 µL SDS (5%) were 

added and the tubes were quickly vortexed. After addition of 400 µL Pi reagent, 500 µL H2O

and 200 µL ascorbic acid (1%), the system was incubated for 10 min at room temperature. 

Finally, optical density was measured at λ=880 nm. Inorganic Pi concentrations were 

calculated from the absorbance values, according to a standard phosphate curve 

(multiplication of absorbance by a factor ~ 61). The turnover of ATP hydrolysis was then 

obtained in nmoles Pi · min-1 · (mg protein)-1, by normalizing the Pi concentration obtained 

(multiplication by a factor 5). 

One complete assay for one substrate concentration, required 10 glass tubes, i.e., A) two 

negative controls (no vanadate, no membrane extract, no drug), B) two controls for basal 

endogenous ATPase activity (only membrane extract), C) two controls for the inhibition of 
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endogenous ATPase activity (vanadate, membrane, no drug), D) two assay for drug induced 

ATPase activity (no vanadate, membrane extracts, active compound) and E) two controls for 

inhibition of drug-induced ATP hydrolysis (vanadate, membrane and active compound). 

Where no drug was added, the same volume of solvent alone (1 µL DMSO or water) was 

injected in test tubes. For the determination of the drug-induced Pgp activation (fold), data 

obtained from the difference between D) and E) were divided by the difference between B) 

and C). 

 

Cytosensor Measurements 

Extracellular acidification rates (ECAR) of cells were monitored in real time using a four 

or eight channels Cytosensor® Microphysiometer (Molecular Devices, Menlo Park, CA, 

U.S.A.) (Mcconnell et al., 1992). This device is based on silicon technology and allows 

detection of pH changes down to 0.001 pH units/min by means of a light addressable 

potentiometric sensor (LAPS). Protons excreted by cells upon stimulation come into contact 

with the LAPS and induce a change in the applied voltage in the order of a few µVolts/sec. 

The instrument was calibrated at 37 °C, and a correspondence of 1 pH unit = 60.37 ± 1.28 mV 

was measured. 

 

Aliquots of 3-4 ·105 cells were seeded into capsule cups (12 mm diameter plates with a 

microporous polycarbonate membrane bottom) and were left in the incubator overnight for 

sedimentation in the presence of the same medium used for culture (see above). For the 

cytosensor measurement, capsule cups were transferred into the sensor chambers, adequately 

covered with capsule spacers and inserts, in order to create a void volume of 6 mm diameter 

and 50 µm height. Thus, the actual number of cells available for the measurement is reduced 

to ~1/4 of the total amount. The system was stabilized at 37 °C and cells were superfused by 

peristaltic pumps with ~ 100 µL/min DMEM without sodium bicarbonate, to limit pH 

buffering.  

 

Peristaltic pumps were programmed to function for 1 min 40 sec, and then to stop for a 

period of 20 sec, in a periodic cycle. During the 20 sec pause interval, acidic metabolites 

accumulated in the sensor chamber. ECAR measurements, in µV/sec, started 5 sec after pump 

stop and lasted for 13 sec. All data were directly processed by the software Cytosoft for 

Macintosh (Molecular Devices, Menlo Park, CA, U.S.A.). Before P-gp stimulations, cells 
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were allowed to reach a stable ECAR (30 min to 1 hour). For stimulations, the normal running 

medium was switched to the drug containing medium for 2 min 40 sec. During this period, 

two ECAR data points were recorded, one after 40 sec (transient situation) and the second two 

minutes later (steady-state conditions established). For data analysis, the cellular ECAR 

change corresponding to the latter point was considered, normalized to the basal activity, and 

therefore expressed in percentage (or fold) of the basal ECAR. 

 

Cytosensor microphysiometry detects pH changes as a function of time in the sensor 

chamber solution. For a quantification of H+ release rate the measured ECAR was corrected 

for the buffering capacity of the superfusing medium. To this purpose, the phosphate buffer of 

DMEM was taken into account, and the buffer capacity was calculated as β = 0.35 mM for 

1mM buffer at pH 7.40. The buffer capacity of other medium components, such as amino 

acids, was neglected. The calculated β corresponds thus to the lower buffering limit. 

 

Kinetic Model. 

The drug concentration dependent ECAR modulations were fitted with a modified 

Michaelis-Menten equation, described in detail by Litman et al. (Litman et al., 1997; Litman 

et al., 1997). The model assumes a transporter activation, if one substrate molecule (S) per 

transporter (T) binds, and it assumes inhibition after a second substrate molecule per 

transporter binds as described by the following scheme: 
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where T(ATP)St and T(ATP)St2 are Pgp-ATP complexes with one and two substrate molecules 

bound, respectively. T(ADP) is the Pgp-ADP complex, Pi is the inorganic phosphate released 

into the cytosol, and Srel is the substrate molecule released extracellularly. 

As reported in scheme (1), the kinetic parameters describing the ATPase hydrolysis during the 

substrate transport by Pgp can be obtained either from the quantification of Pi release or from 

the quantification of H+ release according to equation (2): 
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where VSaq is the ECAR as a function of the substrate concentration in solution, CSaq, V0 is the 

basal activity in the absence of substrate, V1 is the maximum transporter activity (if only 

activation occurred), and V2 is the activity at infinite substrate concentration. 

 

Surface activity measurements 

Surface activity measurements of surfactants were performed at room temperature, with 

the Wilhelmy vertical plate method, as described in detail elsewhere (Nervi, 2000; Seelig et 

al., 1994). Stock solutions were prepared in pure water and serial aliquots were injected by 

means of Hamilton syringes into a home built 20 ml or 3 ml teflon trough filled with 10 mM 

Tris/HCl buffer (pH 7.40) and 114 mM NaCl. 

 

Estimation of Hydrogen Bond Energy 

The models of the three-dimensional structures of the compounds as well as the spatial 

distances between hydrogen bond acceptor groups in Pgp recognition patterns were obtained 

using a modified version of the Allinger’s MM2 force field approach (Burkert and Allinger, 

1982) implemented in the software ChemOffice (CambridgeSoft Corporation, Cambridge, 

MA, U.S.A.). The hydrogen bond acceptor strength of the compounds was estimated in 

arbitrary energy units (EU), according to the model described in section 3.2 (Seelig, 1998). 
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1.4 Results 

Cell growth characterization 

In order to investigate the behavior of mouse embryo fibroblasts under the culture 

conditions chosen, the growth rate of cells has been followed during 8 days. From the 

exponential growth phase, the doubling time has been calculated for NIH3T3 and NIH-MDR-

G185. The latter were grown in DMEM (1% Penstrep, 1% L-glutamine, 10% FBS) or in the 

presence of DMEM and the selecting agent colchicine (60 ng/mL), to take into account 

potential alterations in the cell cycle under selection pressure. 

Results are reported in Figure 1.4. 

Figure 1.4. Cellular Growth Curve. The number of cells grown in culture is plotted against 
time. (A) NIH3T3 cells, (B) NIH-MDR-G185 cells grown in DMEM, (C) NIH-MDR-G185 
cells grown in DMEM supplemented with 60 ng/ml colchicine. 

 

From an exponential growth fit of the plots, the population doubling rate was determined as 

22.7 ± 1.2 hours for NIH3T3, 25.2 ± 2.1 hours for NIH-MDR-G185 grown in DMEM and 

27.2 ± 4.3   hours for NIH-MDR-G185 cells grown in the presence of colchicine. 
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The growth curves show that transfected cells (~ 1.10 · 105 NIH-MDR-G185/cm2) become 

confluent at a lower density than wild type cells (~ 2.15 · 105 NIH3T3/ cm2) and that 

colchicine does practically not affect cell growth. 

 

Assessment of the Expression Level of P-glycoprotein on the Cell Surface 

To assess the expression of Pgp in the plasmamembrane of MDR1 transfected cells, an 

immunocytochemical assay was performed using the human Pgp specific antibody MRK16. 

After appropriate antibody staining (see section 1.3) NIH-3T3 and NIH-MDR-G185 mouse 

fibroblasts were analyzed by FACS. For comparison, the same essay was applied to pig 

kidney LLC-PK1 and LLC-MDR cells (Landwojtowicz et al., 2002). 

Figure 1.5 shows that the relative fluorescence intensity of wild type mouse embryo 

fibroblasts NIH3T3 (A) is negligibly small in comparison to that of Pgp expressing NIH-

MDR-G185 cells (B, blue line) and that the fluorescence resulting from NIH3T3 staining with 

MRK16 (blue) does not differ from the unspecific binding with the control antibody (green) 

or the FITC-labeled anti-mouse IgG2ak (black). The slightly shifted position of the stained cell 

populations, from the endogenous fluorescence of untreated cells (red), is a normal effect 

resulting from unspecific binding. Possible differences in the integrals of curves are a 

consequence of the choice of the region of interest in the dot plot obtained from the 

cytometric assay (plot not shown), which can include a variable number of events for different 

samples. Transfected fibroblasts NIH-MDR-G185 (Figure 1.5B), however, showed a relative 

fluorescence intensity three orders of magnitude higher than that of the corresponding 

untreated or Pgp unspecifically stained cell populations. Distribution curves in Figure 1.5B) 

did not show any overlapping region, indicating that almost all NIH- MDR-G185 cells were 

stably transfected and thus expressing a high level of human Pgp. 

 

The situation of wild type pig kidney LLC-PK1 cells (Figure 1.5C) is similar to that of 

NIH3T3. Despite a generally broader Gaussian distribution of the fluorescence, no significant 

distinction could be made between MRK16-stained cells (blue) and unspecific binding 

controls (green and black). However, in analogy to NIH-MDR-G185 cells, MRK16 labeling 

of transfected pig kidney LLC-MDR-PK1 cells (Figure 1.5D, blue and magenta lines) 

revealed a relative fluorescence intensity of almost three orders of magnitude higher than 

observed in control populations (green, black and red). Interestingly, the fluorescence 

distribution of LLC-MDR-PK1 cells grown in DMEM without the presence of vinblastine as 
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selecting agent (Figure 1.5D) blue line) shows two distinct peaks at relative fluorescence 

intensities of ~ 101 and ~ 103, respectively. This corresponds to two distinct cell populations: 

the peak with fluorescence intensity ~ 101 shows that 30-40% of cells were not transfected (or 

had lost the MDR1 gene). Indeed, in MRK16-stained LLC-MDR-PK1 cells, grown in the 

presence of selective agent, the lower peak disappeared. 

 

Figure 1.5. Assessment of P-glycoprotein Expression by Immunocytochemical Staining and 
FACs Analysis. Plots report the number of events versus the relative fluorescence intensity, 
reported in arbitrary units (logarithmic scale). Cell lines: mouse embryo fibroblasts A) wild 
type NIH3T3 and B) human MDR1 transfected NIH-MDR-G185; pig kidney cells C) wild 
type LLC-PK1 and D) transfected LLC-MDR-PK1 grown with (magenta) or without (blue) 
selecting agent vinblastin. Colored lines correspond to (red) untreated cells, (black) control 
antibody, (green) FITC-labeled anti-mouse IgG2ak, and (blue and magenta) MRK16.  

 

For comparison, the measurements of all cell lines with immunocytochemical MRK16 

staining are summarized in Table 1.1. 

 

A B

DC
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Table 1.1. Quantification of fluorescence intensity upon MRK16-staining. Peak: relative 
intensity corresponding to the top of the distribution curve. Mean: average of relative 
fluorescence intensity of the cell population. Events: number of cells representing the 
population included in the region of interest. 

 

Glycolytic Predominance in the Metabolism of Cultured Cells. 

 The predominance of glycolytic metabolites in cultures of mouse embryo fibroblasts, 

NIH-3T3, was investigated by 13C-NMR spectroscopy. For this experiment, 3.5 g/L [u-13C]-

D-glucose was added to the culture medium DMEM (containing 1 g/L normal D-glucose). 

After 24 hours incubation, cells were removed from culture and metabolites extracts were 

analyzed as described in section 1.3. 

 
Figure 1.6. In vitro 13C-NMR Spectroscopy of cell metabolite extracts. Metabolites extracts 
of NIH3T3 fibroblasts after 24 hours incubation with 3.5 g/L [u-13C]-D-glucose. The 
predominance of glycolysis is demonstrated by the incorporation of 13C in the resonance of 
lactate (C1: 179 ppm (doublet, 56 Hz coupling), C2: 69.5 ppm (doublet of doublet), C3: 21 
ppm (doublet, 36 Hz coupling)). TSP (tetrasilanephosphate) was used as reference.  
 

The uniformely 13C-labeled [u-13C6]-D-glucose was chosen, because the resulting 

homonuclear 13C spin coupling allows the unambiguous assignment of every metabolite that 

is produced from the glucose. As shown in Figure 1.6, most of the 13C was detected in the 

resonance of lactate (C1: 179 ppm (doublet, 56 Hz coupling), C2: 69.5 ppm (doublet of 

doublet), C3: 21 ppm (doublet, 36 Hz coupling)) and not in TCA cycle derived metabolites. 

Indeed, the signal at 34 ppm, corresponding to C4-glutamate, is not higher than 2% of the C3-

lactate signal, demonstrating that the cells prefer the anaerobic glucose metabolism over the 

NIH3T3 LLC-PK1 NIH-MDR-G185 LLC-MDR-PK1 (vin) LLC-MDR-PK1
peak 5.94 13.34 1027.35 632.09 620.82
mean 9.14 19.69 1044.49 475.44 248.51
events 8542 6655 9311 6485 7044

C1-lac
C3-lacC2-lac

TSPC1-gly C2-gly

C4-glut

C1-lac
C3-lacC2-lac

TSPC1-gly C2-gly

C4-glut
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oxidative metabolism. The singlet resonances at 52, 59, 62 and 181 are assigned to a natural 

abundance compound not originating from the u-labeled glucose (13C-13C couplings) and is 

most likely pyro-glutamate formed by intramolecular condensation of supplemental glutamine 

from the cell culture medium. (Willker et al., 1995). 

Determination of Physical Chemical Parameters of Surfactants 

As cited above, Pgp recognizes and binds its substrates directly from the inner leaflet of 

the lipid membrane. Passive diffusion is thus an important step in the kinetics of binding of 

compounds from the aqueous extracellular surroundings to the transporter. To characterize 

Pgp substrates from a physical chemical point of view, surface activity measurements have 

been performed (see section 1.3). From the Gibbs adsorption isotherms (π/logC plots) the 

following parameters have been obtained, i.e., the concentration of surface activity onset, C0,

the surface excess concentration, Γ∞, from which the cross-sectional area, AS, can be 

calculated, the critical micellar concentration, CMC, and the air-water partition coefficient, 

Kaw, from which the lipid-water partition coefficient, Klw, can be evaluated. Measurements of 

every single parameter are described in detail elsewhere (Nervi, 2000).  

Figure 1.7. Gibbs Adsorption Isotherms (π/logC plots). The surface pressure, π, is plotted 
versus logC. (�) Triton X-100, (�) C12EO8, (�) Chaps. From the plot, surface activity 
onset concentration (1), critical micellar concentration (2), surface excess concentration (3), 
cross.sectional area (4) and air-water partition coefficient (5), can be obtained. 

 

The air-water partition coefficient, Kaw, the critical micelle concnetraiton, CMC, and the 

cross-sectional area, As, of the compounds are relevant for the present investigation and are 
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therefore listed in Table 1.2. Figure 1.7 shows π/logC plots of three nonionic surfactants i.e., 

Triton X-100 (�), C12EO8 (�) and Chaps (�) as an example.  

 

Pgp-substrates Interactions observed in Living Cells by Microphysiometry. 

A Transient Metabolic Change Occurs in Pgp-Overexpressing Cells Exposed 

to Pgp Substrates. 

In our experiments, the extracellular excretion of acidic metabolites in NIH3T3 and NIH-

MDR-G185 mouse fibroblasts was used to monitor the cellular metabolism associated to Pgp 

ATPase activity. The extracellular acidification rate (ECAR) of cells was recorded in real 

time by microphysiometry. The ECAR of NIH3T3 and NIH-MDR-G185 in the presence of 

cell culture medium alone (see section 1.3) was considered as basal metabolic rate and 

defined as was defined as 100% (percent) or 1 (fold). All modulations of the ECARs induced 

by Pgp substrates were thus reported as fold or percentage variations of the basal rate. 

Wild type NIH3T3 (n=13) and transfected NIH-MDR-G185 (n=25) cells induced an 

electrical potential variation of -66±(SD18;SE5) µV·s-1 and -64±(SD22;SE4) µV·s-1,

respectively, corresponding to a pH variation of 1.1±0.3(SD) mpH·s-1 (NIH3T3) and  

1.06±0.4(SD) mpH·s-1 (NIH-MDR-G185) on the silicon chip, where n is the number of 

experiments made. The number of cells in the measuring chamber was ~ 4·105. Considering 

the phosphate buffer capacity of DMEM, a quantification of the ECAR leads to values of 

(7.42 ± 2.0)·106 H+·s-1·cell-1 for NIH3T3 and (7.15 ± 2.7)·106 H+·s-1·cell-1 for NIH-MDR-G185 

cells. Such values illustrate the minimum amount of possible proton release, since the buffer 

capacity of other compounds, e.g. amino acids, has been neglected.  
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Figure 1.8 shows the reaction of wild type 

and transfected fibroblasts to the exposure of 10 

µM verapamil (A), 10 µM triton X-100 (B), or 

10 µM Tween80 (C), during and interval of 2 

minutes and 40 seconds. The administration of 

these compounds induced a transient ECAR 

increase in Pgp-overexpressing, but not in wild 

type cells. For verapamil, a maximum ECAR of 

~170% was reached in NIH-MDR-G185 cells 

after 40 sec, which returned to the basal value 

after ~30 min. Triton X-100 induced a 

maximum ECAR increase to ~160% after 40 sec 

and the recovery time was ~20 min, whereas 

Tween80 induced a maximum ECAR of ~145% 

after only 20 min and required ~90 min for 

complete recovery to the basal rate. For wild-

type NIH3T3 cells, the drug-induced ECAR 

modulation of all compounds is much lower, if 

not negligible. 

Drug- and detergent-induced ECAR 

modulations in NIH-MDR-G185 cells were 

investigated over a wide concentration range. 

The ECAR variation induced after 2’40’’ of 

exposure to the compound was chosen for data 

evaluation (see section 1.3). In a first step, we 

screened several well-known Pgp-substrates, 

such as amitriptylin, cyclosporin A, verapamil 

and vinblastin, in order to asses the relationship 

between Pgp ATPase activation and ECAR. 

Data are reported in Figure 1.9.  
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Figure 1.9. Extracellular Acidification Rate (ECAR) of NIH-MDR-G185 Cells, as a 
Function of Drug Concentration. Amitriptylin (�), vinblastin (□), cyclosporin A (▲), and 
verapamil (●). Dashed and continuous lines describe fits of the measurements according to 
a modified Michaelis-Menton model assuming activation with one and inhibition with two 
substrate molecules bound to the transporter (see equation 1 in section 1.3). Vertical bars 
show standard deviations. 

 

Amitriptyline and verapamil showed a bell-shaped dependence of the ECARs as a fuction 

of concentration with maxima of about 1.8 - 2.0 times the basal activity. In one experiment, 

amitriptyline stimulation of cells led to very high ECAR values (V1 > 4.5), which explains the 

high values for standard deviation. Vinblastine increased the ECAR of NIH-MDR-G185 less 

than 1.1 fold, whereas cyclosporine A (0.02 µM and 10 µM) did not induce any relevant 

ECAR modulation. Data were evaluated with a multiparameter fit (dashed and continuous 

lines) based on a modified Michaelis-Menton model (see Material and Methods) developed 

for previous investigations of inorganic Pi release upon ATPase activity of Pgp (Litman et al., 

1997). The kinetic parameters obtained from the fits are reported in Table 1.2. The 

comparison of data obtained in the present work, with data obtained from a parallel work 

(Landwojtowicz et al., 2002) with LLC-PK1 cell line, and from previous measurements of 

inorganic Pi release data (Litman et al., 1997) is discussed in the next section. 

 

0.01 0.1 1 10 100 1000
0.9
1.0
1.1

1.2
1.3

1.4
1.5
1.6
1.7
1.8

1.9
2.0

2.1
2.2
2.3
2.4

vinblastine
cyclosporin A
amitriptyline
verapamil

 

A
ci

di
fic

at
io

n
R

at
e

[F
ol

d]

Concentration [µM]



44 

Detergents can Act as Specific Modulators of the Cellular Metabolism 

Associated to Pgp ATPase Activity. 

To assess a possible specificity of the surfactant effect on Pgp ATPase activity, one 

zwitterionic detergent (chaps) and four nonionic detergents were chosen, i.e., two n-

ethyleneglycol monododecylethers (C12EOn , n=3 and n=8), triton X-100, Tween 80,. 

Experiments were performed the as for standard Pgp substrates in NIH-MDR-G185.  

Whereas transient ECAR modulations were specifically induced by Triton X-100, Tween 

80, and C12EO8 (see Figure 1.10B) and C)), no consistent selective ECAR modulations were 

produced with C12EO3 and Chaps. 

 

Figure 1.10 shows the ECAR modulations induced by surfactants on NIH-MDR-G185, 

over a concentration range of four orders of magnitudes. On average (n=10 experiments) 

triton X-100 showed the ability to increase the ECAR of NIH-MDR-G185 cells up to ~ 1.4-

1.6 fold of the basal activity, at a concentration around 10-12 µM. For higher concentrations, 

a progressive, reversible inhibition was observed. Likewise, C12EO8 enhanced the ECAR of 

NIH-MDR-G185 cells, with a maximum of ~ 1.8 fold of the basal activity at a concentration 

of ~ 6 µM. Tween 80 had also a specific effect on NIH-MDR-G185 cells (see also figure 

1.8C), even though at a different time scale compared to triton X-100 and C12EO8. In contrast, 

C12EO3, induced a very low concentration-dependent ECAR modulation which was, however, 

observed in both transfected and wild type cells, and therefore was considered as not related 

to Pgp activity. Chaps which is known to be a non-substrate for Pgp, did not induce any 

ECAR modulation both in wild type and transfected fibroblasts, in a concentration range 

between 0.5 µM and 100 µM. Data could be fitted to the modified Michaelis-Menten model 

used for standard substrates. The kinetic parameters are reported in Table 1.2. 
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Figure 1.10. Extracellular acidification rates (ECAR) of NIH-MDR-G185 cells, as a 
function of surfactant concentration. Solid symbols represent: Triton X-100 (■), C12EO8 
(●), Tween 80 (▲), C12EO3 (◊), and Chaps (○). Dashed and continuous lines report 
measurements fit according to the modified Michaelis-Menton model described as in figure 
2. Standard deviations are shown. 

 

The evidence for a direct interaction with Pgp was further investigated for Triton X-100. 

In Figure 1.11 the ECAR modulation induced by 8 µM Triton X-100 is shown in the presence 

of increasing concentrations (0 µM (A), 1 µM (B), and 10 µM (C)) of cyclosporin A. In the 

presence of 10 µM cyclosporin A, the effect of triton on NIH-MDR-G185 cells could be 

suppressed. This argues in favor of a specific competition mechanism. 
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Figure 1.11. Inhibition of Triton X-100-induced ECAR Increase by Cyclosporin A. ECAR 
modulations in NIH-MDR-G185 (■,●) and NIH3T3 (∇) cells are shown, after 2’40’’ 
exposure to 8 µM triton X-100 alone (A), and in the presence of 1 µM (B) and 10 µM (C) 
cyclosporin A, respectively. 

 

Membrane Solubilizing Effect of Triton X-100.  

So far, the effect of detergents on the ECAR of Pgp overexpressing cells were investigated 

at concentrations below the critical micellar concentration (CMC). Under these conditions the 

effects of detergents were fully reversible. Figure 1.12 shows the response of NIH-3T3 and 

NIH-MDR-G185 cells to an exposure of Triton X-100 (0.3 mM) above the critical micelle 

concentration (CMC = 0.23 mM) during the same period of time as applied in experiments 

shown in Figure 1.8 (2’40’’). This lead to a rapid and irreversible ECAR decrease in both, 

wild type and transfected cells and can be attributed to cell lysis. 

Figure 1.12. Cell lysis upon detergent action. Exposure of NIH-MDR-G185 (■,●) and 
NIH3T3 cells to 300 µM triton X-100 during a period of 2’40’’ (outlined area). ECAR 
modulations are expressed in fractions of the basal activity, which is arbitrarily defined as 
1.0. 
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Substrate MW HAP HA EU pKa 1/Kaw CMC ∆∆Gam AD K1 K2 V1 V2 K1 K2 V1 V2 K1 K2 V1 V2
[g/mol] Type Dist. [a.u.] [uM] [uM] [kJ/mol] [Å] [uM] [uM] [fold] [fold] [uM] [uM] [fold] [fold] [uM] [uM] [fold][fold]

[Å] pH7.4 pH7.4 pH7.4 pH8.0 * * * * ** ** ** ** *** *** *** ***
Amitriptyline 277.4 aa (1, 3) 2.55 2 9.4 277.8 5000 -6.96 52 ± 4 50.00 550 2.2 0.75 80 400 1.47 0.8 108 110 2.3 0.9

aa (1, 4) 2.86d
C12EO3 318.5 AA(1;7) 0(2) - 1.35 50 35 1 36.25 0.95 1.19 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
C12EO8 538.8 AA(1;7) 6 - 0.455 110 58 1.67 57.5 2.1 0.3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

AA(1;10)
AA(1;13)

Calcein-AM 994.9 AA (1, 3) x 9 2.28 23 5 0.38 3 -4.88 69 7.2 10 1.29 1.24 0.12 0.25 0.8 1.1 n.d. n.d. n.d. n.d.
AAa (1,3,7) x 2 4.54

Chaps 614.9 - - 29.16 600 93 - - - - n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
Cyclosporine A 1203 Aa (1, 3) x 7 2.27 12.5 - 0.05 n.d. n.d. n.d. 0.05 7 1.06 0.98 0.02 2 1.08 0.8 0.1 1.7 1.1 0.6

AA (1, 5) 4.74
Diltiazem 414.5 AA (1, 3) 2.28 3.5 8.06 37.15 480 -6.13 70 ± 3 n.d. n.d. n.d. n.d. 25 190 1.45 0.8 73 677 3.3 0

Aa (1, 3) 2.28
Progesterone 314.5 Aa (1, 3) 2.63 1.5 - 28.82 80 -2.22 100±10 n.d. n.d. n.d. n.d. 17 200 1.41 0.6 18 294 2.6 0.3
Trifluoperazine 407.5 aa (1, 3) 2.14 3 3.91 5.13 170 -8.33 58 n.d. n.d. n.d. n.d. 12 100 1.33 0.7 6.5 24 2 0.6

aa (1, 3) 2.6 8.09
aa (1, 4) 2.94

Triton X-100 647 AA(1;7) x2 6 - 0.81 230 54 4.24 150 1.63 0.3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
AA(1;22)

Tween 80 1310 AA (1, 3) 6(+2n) - 0.12 10 69 41 200 2.1 0.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
AA (1, 4)
AA (1, 5)
AA (1, x) xn

R/S-Verapamil 454.6 AA (1, 4) 2.69 5 8.6 6.02 320 -9.47 71 ± 2 0.8 210.8 1.89 0.8 1.5 100 1.25 0.9 2.5 99 2.1 0.6
AA (1, 4) 2.69
aa (1, 7) 4.73

Vinblastine 811 AAA (1, 3, 5) 3.54d 8.5 5.4 2.14 100 -9.21 140 ± 4 5.33 40 1.12 0.93 7 55 1.11 1 1.3 17 1.5 0.5
AA (1, 3) x 2 2.28 7.4
Aa (1, 5) 4.95

* Scientist: Pierluigi Nervi; Cell Line: NIH-3T3/NIH-MDR-G185; Method: Cytosensor
** Scientist: Ewa Landwojtowicz; Cell Line: LLC-PK1/LLC-PK1-MDR; Method: Cytosensor
*** Scientist: Thomas Litman; Cell Line: Caco-2; Method: Reconstituted vesicles, Pi release Ta
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1.5 Discussion 

The aim of the present project was to contribute to the elucidation of the multidrug 

resistance (MDR) phenotype, associated to the expression of Pgp in the plasma membrane of 

living cells by studying the interactions between the human MDR1 gene product, P-

glycoprotein (Pgp), and its substrates. To this purpose we established a method based on 

microphysiometery which allows studying standard Pgp-substrate interactions in living 

cultured mammalian cells.We then applied this technique (i) to investigate the relationship 

between ECARs in MDR1 transfected cells in vivo and Pgp ATPase activity in inverted 

plasma membrane vesicles (Litman) both induced by well-known Pgp substrates and ii) to 

analyze surfactants, as potential Pgp substrates in living cells. (iii) The kinetic data obtained 

for the interaction of detregents with Pgp were then related to their physical chemical 

parameters, conformational properties and hydrogen bond acceptors patterns (Seelig, 1998). 

 

P-glycoprotein ATPase Activation can be monitored on-line in Living Cells 

 

Conventional studies of drug-induced Pgp ATPase activity are usually based on 

measurements of inorganic phosphate (Pi) release as a result of ATP hydrolysis and are 

performed either in reconstituted systems, or in inverted plasma membrane vesicles extracted 

from cells overexpressing Pgp (Litman et al., 1997; Sauna and Ambudkar, 2000). Here, we 

adapted a technique that allows, real-time monitoring of the metabolic activity of intact living 

cells, to the investigation of drug-induced stimulation of Pgp ATPase activity. 

The turnover of energy production and consumption through the complex metabolic 

network of a cell is coupled with the production of waste acidic metabolites which need to be 

excreted into the extracellular environment, in order to keep a favourable intracellular pH. 

Using a Cytosensor™ Microphysiometer System (McConnell et al., 1992), it has been 

possible to detect the extracellular release of acidic metabolites (H+), by measuring 

extracellular pH changes during cell stimulation with various compounds as a function of 

time, with a sensitivity of 0.001 pH units/min. Extracellular acidification reflects the overall 

cellular metabolism. Therefore, to monitor activation of a specific transporter or receptor, 

such as Pgp, reference and model systems with background activity as similar as possible are 

required. Wild type mouse embryo fibroblasts, NIH3T3, and the same cell line transfected 
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with the human MDR1 gene, NIH-MDR-G185, showed to be an ideal system for the study of 

Pgp-substrates interactions with the microphysiometer. In NIH-MDR-G185, FACs analysis 

showed a stable Pgp expression level higher than that in NIH3T3 by a factor of 103, while the 

amount of Pgp in NIH3T3 cells was insignificant (see Figure 1.5 A) and B)). 

 

As shown in Figures 1.8 and 1.9, ECAR changes were induced in NIH-MDR-G185 cells, 

after exposure to Pgp substrates, but not in wild type cells. Since the Pgp expression level is 

the main difference (other minor differences in gene expression may have been induced by 

the transfection; M. Gottesman, personal communication) between wild type and transfected 

cells, one can conclude that extracellular acidification is a response to the drug induced 

ATPase activation of the transporter. Moreover, the drug induced ECAR modulations 

measured as a function of concentration in Pgp expressing cells could be fitted with a 

modified version of the Michaelis-Menten equation, a model initially proposed by Litman and 

coworkers (Litman et al., 1997) for the assessment of inorganic phosphate release in CR1R12 

inverted membrane vesicles. This model assumes activation with one substrate molecule 

bound, and an inhibition after a second drug molecule binds to the transporter (see section 

1.3). A linear correlation between the activation constants, K1, and the maximum velocities, 

V1, derived from ECARs and phosphate release measurements,respectively, were also 

observed for LLC-MDR1 pig kidney cells, (Landwojtowicz et al., 2002). Interestingly, 

consistent shifts of the maximum velocities, V1, induced by different Pgp substrates were 

observed depending on the system used for the measurements. For example, the 

concentration-dependent ECAR profile induced by verapamil stimulation, showed a shift of 

V1 by a factor of ~ 1.55 between NIH-MDR-G185 cells (V1 ~ 1.8-1.9 · basal rate) and LLC-

MDR1 cells (V1 ~ 1.2-1.3 · basal rate). This difference was assumed to be correlated to the 

different amount of Pgp expressed in the model employed. To test this assumption, we 

investigated the Pgp expression level in NIH-MDR1 and LLC-MDR1 cells. As shown in 

Figure 1.5 (data reported in table 1.1), FACs analysis by MRK16 monoclonal antibody 

staining (see section 1.3) showed that the Pgp expression level in NIH-MDR-G185 cells is a 

factor ~ 1.6 higher than in LLC-MDR1 cells, which is in good agreement with the difference 

found for the maximum ECARs in the two cell lines. From this, it was concluded that also the 

difference between V1 in LLC-MDR1 cells (Landwojtowicz et al., 2002) and reconstituted 

vesicles was related to different Pgp expression levels. 
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The validity of microphysiometry as a method for on-line monitoring of drug-induced Pgp 

ATPase activation in living cells was further supported by a quantitative determination and 

comparison of the turnover numbers of Pgp, calculated from our ECAR data (NIH-MDR-

G185 fibroblasts) and previous data obtained from Pi release experiments. In a previous study, 

the amount of Pgp molecules/cell was estimated as ~ 1.95 · 106 Pgp copies/cell (≅ 0.56 pg

Pgp/cell) for NIH-MDR-G185 cells by Ambudkar and coworkers (Ambudkar et al., 1997), by 

titrations with Pgp-specific monoclonal antibody UIC2. From these values, the same group 

determined the turnover of Pgp during pumping of verapamil, in terms of Pi release. At 

maximum activation, the turnover was estimated as ~3.26 Pi · s-1 · Pgp-1 (Kerr et al., 2001). 

We thus calculated the corresponding turnover number from ECAR data obtained by 

microphysiometry. Taking into account the number of cells (~ 1-4 ·105) contributing to the 

observed acidification rate in the capsule cups and the minimal buffer capacity of the running 

medium, turnover numbers at basal rate and maximum activation were calculated. For 

verapamil, a turnover at maximum Pgp activation was estimated as ~ 3.2 H+ · s-1 · Pgp-1,

which is in striking agreement with the number determined for Pi release. Data are reported in 

Table 1.3. It should be noted that these calculations involve several approximations. For 

example, the actual buffer capacity of DMEM would be higher, taking into account the 

contribution of compounds other than phosphate buffer (e.g. amino acids). Nevertheless, these 

results provide a reasonable estimation of the Pgp turnover, and support the assumption of a 

direct correlation between ECAR and intracellular Pi release from ATP hydrolysis by Pgp. 
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Table 1.3. Turnover numbers for P-glycoprotein activity during maximum activation upon 
interaction with substrates. The maximum velocity (Vmax, fold of basal value) was 
determined in Pgp overexpressing living mouse embryo fibroblasts, NIH-MDR-G185, by 
fitting drug concentration-dependent ECAR profiles with a modified Michaelis-Menton 
model. The turnover numbers, expressed in terms of extracellular proton 
release/cell/second, is calculated assuming the presence of ~ 0.56 pg Pgp/cell. 

 

Direct involvement of Pgp in the substrate transport-coupled proton excretion. 

 

Several factors reported here suggest a direct coupling between Pgp ATPase activity 

(therefore Pi and substrate transport) and the drug-modulated excretion of protons by cells, i.e. 

i) the linear correlation between kinetic constants obtained from extracellular H+ release and 

intracellular Pi release in independent studies (Landwojtowicz et al., 2002); ii) the 

correspondence between the maximum velocities for drug-induced proton transport and the 

cellular Pgp expression level; iii) the quantitative correspondence of turnover numbers 

obtained independently from ECAR and Pi release data (see above); iv) the possibility to 

competitively inhibit the compound-induced ECAR change with Cys A (see Figure 1.11 here 

and Figure 5 in (Landwojtowicz et al., 2002)), and v) the exclusion of the contribution of 

other important pH regulating transporters, such as Na+/H+ and Cl-/HCO3
- antiporters, to the 

drug-induced ECAR (Landwojtowicz et al., 2002) 

Moreover, we have shown that lactate is the main acidic product resulting from wild type 

cell activation, pointing to an essentially glycolytic pathway of ATP synthesis. It can therefore 

be assumed that ATP for driving Pgp activation in MDR1 transfected cells is also produced 

via the glycolytic pathway.  

 

Compound Vmax Turnover ECAR
fold H+*s-1*Pgp-1 H+*s-1*cell-1

amitriptyline 2.2 4.324 8579640
C12EO3 - - -
C12EO8 2.1 3.964 7864670
Calcein-AM 1.29 1.045 2073413
Chaps - - -
Cys A - - -
Triton X-100 1.63 2.27 4504311
Tween 80 2.1 3.964 7864670
verapamil 1.89 3.21 6005748
vinblastine 1.12 0.432 857964
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The Effect of Drugs on Pgp ATPase Activity is related to their Hydrogen 

Bonding Potential and their Partition Coefficient for Lipid Membranes.  

 

As described previously (Seelig and Landwojtowicz, 2000), the inverse of the 

concentration required for half-maximum activation of the transporter (K1) can be linearly 

correlated with the air-water partition coefficient (Kaw) of the substrate molecule, in a double 

logarithmic plot. Moreover, Kaw provides a good estimation of the lipid-water partition 

coefficient, Klw (see section 1.2) It was therefore assumed that the membrane insertion step,is 

rate limiting for the interaction of a substrate with Pgp.  

 

Pgp substrates structural features were further screened according to the recognition 

pattern model proposed earlier (Seelig, 1998). Figure 1.13 shows the maximum (V1) and 

minimum (V2) ECARs induced by drugs and surfactants in living Pgp-overexpressing cells, 

plotted as a function of the number of H-bond acceptor patterns (HAU’s) on substrates. The 

maximum activity, V1, is high for compounds with a low affinity for the transporter (=low 

number of H-bonding (or energy) units, see section 1.3) and decreases exponentially with 

increasing substrate affinity for the transporter (=higher H-bonding strength (see Table 1.2)). 

For example, compounds like cyclosporin A, which is considered as a Pgp inhibitor, 

possesses 12.5 EU’s, and gives almost no ECAR activation. On the other hand amitriptyline, 

which has only 2 EU, induced an ECAR increase up to ~ 2 fold, compared to the basal 

metabolic activity.  

The comparison of these kinetic data obtained from the two cell lines, namely LLC-MDR1 

(Landwojtowicz et al., 2002) and NIH-MDR-G185, reflects the different Pgp expression 

levels detected by FACs analysis (see Figure 1.5). Although the shapes of the curves are 

similar, NIH-MDR-G185 induces consistently higher V1. A less distinct correlation is 

observed for V2. This is most probably due to the fact that the minimum rate is obtained 

mathematically from the fitting procedure and can not be measured.  

From the combination of these parameters, i.e., maximum ECAR activation and H-

bonding strength, the potential of a substrate to act as modulator or inhibitor can be assessed. 

As shown in Figure 1.10 of the present study and elsewhere (Landwojtowicz et al., 2002), 

further experiments demonstrate a direct competition between two compounds for H-bonds 

formation with the transporter. In this sense, inhibitors like cyclosporin A would block the 

action of other substrates, by occupying much more “binding sites” of Pgp per drug molecule. 
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Indeed, the higher the number of EU of the competing molecule, the weaker the inhibitory 

effect of cyclosporin A. 

 

Figure 1.13 Influence of the H-bonding energy on the rate of drug-induced ATPase 
activation in living MDR1 overexpressing cells. The maximum (V1) (open black squares, 
solid red circles) and minimum (V2) (open blue circles, solid black squares) extracellular 
acidification rates (ECAR) are plotted as a function of the H-bonding energy. 1) 
amitriptylin; 2) C12EO3; 3) C12EO8; 4) calcein-AM; 5) cyclosporine A; 6) diltiazem; 7) 
progesterone; 8) trifluoperazine; 9) Triton X-100; 10) Tween 80; 11) verapamil; 12) 
vinblastin. Circles indicate data from NIH-MDR-G185 cells, while the squares correspond 
to data from LLC-MDR1 cells taken from (Landwojtowicz et al., 2002) for comparison. 
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Surfactants as specific modulators of P-glycoprotein ATPase activity 

 

The successful development of microphysiometry for the study of Pgp-substrate 

interaction with standard substrates, suggested the possibility to investigate the role of 

surfactants as potential substrates for Pgp. To this purpose, we screened four nonionic 

detergents, e.g. Triton X-100, C12EO8, C12EO3, Tween 80 and a zwitterionic, Chaps, for 

their effect on the ECAR of NIH3T3 and NIH-MDR-G185 cells. In agreement with previous 

observations, Chaps showed to be a non-substrate for Pgp, as no ECAR change was observed. 

From a physical chemical point of view, two characteristics make this compound a non-

substrate for Pgp. Indeed, i) Chaps is a zwitterionic molecule and therefore the rate of flip-

flop into the inner leaflet of a biological membrane (an essential step for the recognition from 

Pgp) is extremely low, and ii) in agreement with the reported recognition pattern model 

(Seelig, 1998) no H-bond acceptor patterns are present on this compound. 

Polyethoxylated nonionic surfactants, e.g, Triton X-100, Tween 80, C12EO8 and C12EO3 

are in contrast electrically neutral, which allows a fast flip-flop. In addition, polyethoxylated 

detergents carry a variable number of hydrogen bond acceptor groups. 

Triton X-100 showed an evident concentration dependent effect on the ECAR of NIH-MDR-

G185 cells, as shown in Figure 1.10. Such molecule carries several (7 to 15) ethoxylated 

groups in the hydrophylic tail, which could form H-bonds with Pgp. However, in contrast to 

other Pgp substrates, like most drugs which show rather rigid H-bond acceptor patterns the 

highgly flexible polyethoxylated chains most likely form only transient H-bond acceptor 

patters. Therefore the number of EU’s given has to be considered as an upper limit. Computer 

3D-modelling and the comparison of the maximum velocity, V1, with standard compounds 

such as verapamil, allowed an estimation of the potential H-bond energy of Triton X-100 of ~ 

5-6 EU.  

The hypothesis of a direct interaction of Triton X-100 with Pgp was supported by 

competition experiments with cyclosporin A. Stimulations with Triton X-100 (8 µM) were 

performed after 20 min incubation with cyclosporin A (1 µM  and 10 µM, respectively). 

While 1 µM cyclosporine A had little effect on the Triton X-100 induced ECAR, 10 µM of 

the same compound could inhibit the Pgp response to Triton X-100 stimulation almost totally 

(see Figure 1.11). 
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The octaethyleneglycol monododecilether, C12EO8, showed an effect on Pgp ATPase 

activity similar to Triton X-100, even though with higher V1 values. Even though an 

analogous number of EU’s has been evaluated by computer modelling simulation in vaco, the 

broad range of the length of the ethoxylated chains in Triton X-100 (n = 7 to 15) may lead 

effectively to different number of EU. Moreover the two compounds, C12EO8 and Triton X-

100, differ in the structure of the hydrophobic cores, resulting in different amphyphilicities. 

 

To reduce the influence of structural differences and to thus assess the role of H-bond 

acceptor patterns for the interaction with Pgp more precisely, we also investigated the non-

ionic detergent triethyleneglycol monododecylether, C12EO3. This surfactant differs from 

C12EO8 due to its shorter ethoxylated, hydrophylic tail. Despite its detergent action 

(Heerklotz and Seelig, 2000), C12EO3 had almost no influence on the ECAR of NIH-MDR-

G185, arguing again in favour of a direct detergent-Pgp interaction through a specific 

recognition pattern as a basis for the ECAR increase. 

 

Finally, Tween 80, which carries four polyethoxylated tails with totally 20 ethoxylated 

groups, produced a selective increase of the ECAR of NIH-MDR-G185 cells, similarly to 

C12EO8 and Triton X-100. The higher hydrophilicity of Tween 80, compared to that of the 

other nonionic detergents was evident in surface activity measurements. In addition the time 

required to reach a stable surface pressure was much longer than for Triton X-100 or C12EO8 

(data not shown). The slow partitioning into the air-water interface most likely reflects the 

slow partitioning into the membrane-water interface. As a result the membrane concentration 

has not reached its maximum value at the stimulation time appropriate for the other 

compounds invsdtigated ( 40s + 2min) as seen in figure 1.8C.  

 

The maximum ECARs induced by detergents in NIH-MDR-G185 cells are plotted 

together with standard Pgp substrates, in Figure 1.13. It is evident that the detergents fit the 

exponential curve drawn through standard Pgp substrate quite well, except tween for which 

the number of effective H-bond acceptor patterns seems to be clearly over estimated. 

Considering the flexible structure of these ethoxylated detergents and thus the lack of rigid H-

bond acceptor patterns, the V1 can be traced back to the exponentially decay tendence, as for 

standard compounds. Probably, the actual HAU number of such detergents is a bit less than 

what determined by vacuum 3D-modelling, considering the restriction of freedom when 

inserted in a membrane. Finally, as mentioned in several works, the action of detergents in 
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disturbing Pgp activity indirectly by changing the order parameters of a biomembrane, is well 

possible. However, this feature is also observed in standard Pgp substrates (Schuldes et al., 

2001).  

Our findings show that the presence of H-bonding donor groups plays a role in the 

interaction of detergents with Pgp, similarly to that found for standard Pgp substrates. Most 

probably, the exact description of the mechanism of action of these molecules in alterating 

Pgp ATPase activity involve the synergistic contribution of both solubilizing effect and a 

specific H-bond mediated interaction with the transporter (Seelig and Gatlik, Minireviews, in 

press). 

In conclusion, our results suggest therefore that not only drugs, but any compound 

which has recognition patterns, e.g. drug additives, can interact with P-glycoprotein. Drug 

additives with such features may have profound effects on drug absorption and should 

therefore be considered carefully for the development of drug formulations.  
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Part Two: The Cell Penetrating Peptide HIV-1TAT-PTD 
 

Summary 

The aim of the present work was to find possible interaction mechanisms of the cell-

penetrating peptide (CPP) HIV-1 TAT-PTD with living cells. Recently, it has been postulated 

that the penetration mechanism observed in several studies is, actually, an artifact occurring 

during cell fixation with paraformaldehyde or methanol, a commonly used treatment for the 

preparation of cells for epifluorescence microscopy analysis. Our intent was to perform 

observations of the interaction of the CPP with cells, while preserving in vivo conditions 

without the use of fixation. Microphysiometry and confocal microscopy turned out to be 

adequate methods for our purpose. By means of these techniques, we measured (i) the ability 

of HIV-1 TAT-PTD to penetrate into non-fixated living mouse embryo fibroblasts, NIH-3T3, 

(ii) the kinetics of the uptake process, (iii) the inhibition of the peptide uptake with exogenous 

heparan sulfate or by enzymatic digestion of the extracellular glycosaminoglycans with 

heparinases, and (iv) the possible occurrence of structural alterations on the cells, as well as 

(v) functional changes, e.g., metabolic modulations. Our experiments showed clearly that 

HIV-1 TAT-PTD penetrates into intact cells, thus excluding the hypothesis of a fixation 

artifact: the penetration occurred in a time scale of seconds. However, not all cells integrated 

the peptide. 

 

Morphological alterations appearing as dense dark aggregates, to which the trivial 

denomination of “dark spots” was attributed, were observed on the cell surface using 

differential interference contrast (DIC) microscopy. Such aggregates were present exclusively 

on fibroblasts presenting TAT-PTD uptake and their size increased during the uptake process. 

The enzymatic removal of extracellular heparan sulfate, as well as the simultaneous addition 

of exogenous heparan sulfate with TAT-PTD reduced the uptake of TAT-PTD and the 

appearance of aggregates. Moreover, in the case of simultaneous addition of heparan sulfate, 

the appearance of small aggregates in the surrounding medium was observed. The latter 

observations argue in favor of the theory that the aggregates are composed of TAT-PTD 

bound to the GAG heparan sulfate. 
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The experiments in vivo were supported by measurements in vitro. The binding constant 

of the fluorescent CPP interaction with heparan sulfate, K = 4.6·104 M-1, was determined by 

isothermal titration calorimetry (ITC). The interaction of Fg-TAT-PTD and heparan sulfate in 

vitro induced fluorescence quenching and formation of aggregates, in analogy to the 

observations with confocal microscopy. Finally, we found that the administration of TAT-

PTD specifically induced alterations of the extracellular acidification rate (ECAR) of NIH-

3T3 fibroblasts, which reflects a disturbance of the overall cellular metabolism. These latter 

findings allow at the same time some considerations on the potential toxicity of such a 

compound to mammalian cells. 

 

Chapter 2. Interactions of HIV-1 TAT Protein Transduction 

Domain with Living Fibroblasts. 

2.1 Introduction 

A biological lipid bilayer constitutes an efficient barrier against the intracellular 

penetration of biomolecules. This property is essential for the protection of tissues and for the 

appropriate compartmentalization of different biological environments inside an organism. 

However, such a protective mechanism can represent a disadvantage during the 

pharmacological treatment of diseases, by reducing the bioavailability of therapeutic and 

diagnostic agents. Therefore, during the last half century, pharmacological research has been 

directed towards the development of drugs and pharmaceutical delivery formulations that 

optimize the passage of the drug through the cell membrane in order to reach biological 

targets (organs, tissues, cells). The developed administration strategies include encapsulation 

of the active compounds into liposomes or their linkage to so called cell-penetrating peptides 

(CPPs, not yet commercialized). The latter are polypeptides with many positively charged 

amino acids, which enhance the intracellular transport of almost every kind of covalently 

attached molecule, from proteins (Schwarze et al., 1999; Stein et al., 1999) to nucleic acids 

(Eguchi et al., 2001), from small drug molecules (Nori et al., 2003; Rothbard et al., 2000; 

Wender et al., 2002) to large liposomal or metal particles (Lewin et al., 2000; Torchilin et al., 

2001). If Fe is taken up by the cells, then the MRI image contrast changes in analogy to the 

intravascular contrast agent endorem used in chapter 3. 
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The first report on the involvement of polycationic peptides as enhancers of drug delivery 

appeared in 1968. Twenty years after the first observation of genetic transformation in 

pneumococci (Avery, 1944, J. exp. Med. 79, 137), attempts were made to achieve genetic 

transformation of higher organisms by means of nucleic acids extracted from infectious or 

oncogenic viruses, in order to initiate infection or malignant transformation. Focusing on the 

biological effect of infection or transformation, little importance was attributed to the specific 

physiology of uptake of the exogenous molecules. This gap was clearly highlighted in a report 

of H. J.-P. Ryser (Ryser, 1968) who showed interest in the details of adsorption and uptake of 

macromolecules by mammalian cells. In his work (Ryser, 1968), Ryser discovered that 

incubating cultured mammalian cells with natural histones (Lys-rich) or synthetic 

polycationic peptides, such as polylysine, polyarginine or polyornithine, led to an improved 

cellular uptake of exogenous proteins. 

 

Twenty years later, a natural compound with similar physical chemical features was 

discovered. A natural polycationic peptide was derived from the HIV-1 tat protein, an 86-

amino acid protein that was identified as the trans-acting activator of the transcription (TAT) 

of the human immunodeficiency virus (HIV-1) (Frankel and Pabo, 1988; Frankel and Pabo, 

1988). This peptide was able to cross efficiently the cytoplasmic membrane of mammalian 

cells in culture (Frankel and Pabo, 1988; Green et al., 1988) and, moreover, was able to carry 

and transport covalently attached heterologous proteins and fluorescent dyes into cells (Fawell 

et al., 1994; Mann and Frankel, 1991). More recently, further polycationic peptides with 

membrane translocating activities were discovered, both of synthetic or natural origin, e.g. 

transportan (Pooga et al., 1998; Soomets et al., 2000), antennapedia (AntP) (Derossi et al., 

1994; Lindsay, 2002), and herpes simplex virus HSV-1 VP22 (Bennett et al., 2002). These 

compounds have different primary structures and different natural biological functions. 

However, because of their common functionality in the enhancement of cellular uptake, they 

all have been classified as cell-penetrating peptides (CPPs) (Lindgren et al., 2000) or trojan 

horse peptides (Derossi et al., 1998). In spite of its similar physical chemical features, 

polylysine is less efficient and has not been included in this group (Mitchell et al., 2000). 

 

The proper physical mechanism of uptake of CPPs is actually still unknown (Silhol et al., 

2002). It is also not known whether all these different peptides penetrate into a cell by means 

of the same mechanism. Early studies showed that uptake mechanisms, such as classical 

endocytosis, receptor- or transporter-mediated active import, can probably be excluded 
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(Derossi et al., 1996). The transport also seems to be energy-independent, as it could be 

observed even at 4 °C (Derossi et al., 1996). On the other hand it was reported that sodium 

azide-induced inhibition of oxidative phosphorylation could block CPPs translocation 

(Mitchell et al., 2000). The uptake of CPPs by passive diffusion through the cytoplasmic 

membrane can also be rejected, because of the highly positively charged nature of these 

peptides. Recent theories suggested alternative mechanisms for CPPs uptake, based on 

complex formation of the polycationic peptides with anionic molecules on the cell membrane, 

such as glycosaminoglycans (Frankel and Pabo, 1988; Sandgren et al., 2002; Tyagi et al., 

2001) or lipids (Derossi et al., 1996; Prochiantz, 2000), which would reduce the electrical 

charge of the peptides and allow the intracellular translocation in some way across the lipid 

bilayer . Recently, it has also been suggested that the uptake of CPPs is only an artifact caused 

by chemical cell fixation with paraformaldehyde, which is a widely adopted procedure for 

epifluorescence microscopic analysis (Lundberg and Johansson, 2001). Skeptical reports 

(Lundberg and Johansson, 2001) clash therefore with other works that share an optimistic line 

of thinking and suggest potential applications involving CPPs in pharmacology and 

biotechnology (Zhao and Weissleder, 2004). As mentioned above, there is hope, that linking 

CPPs covalently to other molecules could enhance the cellular uptake of these compounds and 

thus increase the efficiency of drug delivery, improve biotechnological techniques, or provide 

gene therapy strategies without the employment of viral vectors (Schwarze et al., 2000). 

However, prior to clinical applications, the import mechanisms and the exclusion of possible 

toxic effects of CPPs should be clearly ascertained. 

 

The present work focuses on one particular cell penetrating peptide, namely the HIV-1 

TAT-PTD. The trans-acting activator of transcription, TAT (Sodroski et al., 1985), is one of 

the 15 proteins encoded by the human immunodeficiency virus type 1, HIV-1. It is an 86 (or 

101 in human blood (Rana and Jeang, 1999)) amino acids long polypeptide specified by a 

regulatory gene composed of two coding exons. TAT plays an essential role in the 

upregulation of viral DNA transcription. It acts in the nucleus by binding to a specific viral 

RNA stem-loop called tat-responsive element (TAR) and to other host cell kinases that 

enhance the processivity of RNA polymerase II at early elongation steps (Clavel et al., 1986; 

Karn, 1999). Indeed, in the absence of TAT, the RNA pol II complex interrupts prematurely 

the transcription after about 100 nucleotides (Laspia et al., 1989). 
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The TAT sequence can be subdivided into several distinct regions on the basis of its 

amino acid composition, i.e., a N-terminal activation acidic region (amino acids 1 - 19), a 

cysteine-rich domain (amino acids 20 - 31), a hydrophobic core region (residues 32 - 47), a 

basic region (residues 48-57), a glutamine-rich region (residues 60-71), and a RGB motif 

(residues 72-86). The cysteine-rich fragment plays a role in the activation of the RNA pol II 

transcription complex, whereas the basic region together with the hydrophobic core are 

responsible for the binding of TAT to the TAR sequence of viral mRNA (Long and Crothers, 

1995; Luo et al., 1993; Weeks et al., 1990). 

 

A number of studies showed that small regions of TAT were able to enter cells within 5 -

10 minutes and to import covalently attached compounds of various nature (Frankel and Pabo, 

1988). The minimal amino acid sequence of TAT required for cellular internalization was 

found to be the sequence of amino acid 47-57 (H3N-YGRKKRRQRRR-COO-) in the basic 

region, and was called TAT protein transduction domain, TAT-PTD (Ho et al., 2001; Vives et 

al., 1997). 

 

In a number of studies the potential toxicity of TAT-PTD was tested for cultured cells, by 

exposing them to different amino acid sequences of the peptide (for variable period of time). 

For example, residues 31-61 of the TAT peptide (82 amino acid residues) were shown to 

cause concentration-dependent neurotoxicity (Mabrouk et al., 1991; Nath et al., 1996; 

Sabatier et al., 1991). However, no neurotoxic effects were observed for the TAT-PTD 

(residues 48-82) (Fawell et al., 1994). Two other studies investigated the toxicity of TAT-

PTD on cell cultures (Hallbrink et al., 2001; Vives et al., 1997). Long (24 hours) exposures of 

cells to TAT-PTD at concentrations of 20 – 100 µM induced necrosis in 60 % of cells (Vives 

et al., 1997), whereas no acute toxic effect were observed for short incubation times (≤ 30 

minutes). 

 

Considering the biomedical potential of CPPs, and given the controversial aspects 

summarized above, the interaction of the TAT-PTD was studied in living cells to elucidate the 

mechanisms of action of TAT-PTD. Recently, thermodynamical analysis have been 

performed, to prove the interactions between TAT-PTD and three different 

glycosaminoglycans, e.g., heparan sulphate, heparin, and chondroitin sulphate B, in vitro 

(Ziegler et al., 2003; Ziegler and Seelig, 2004). These studies provided first quantitative data 
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for the evaluation of the possible uptake mechanisms based on a CPPs–GAGs complex 

formation. 

 

The aim of the present study was to further characterize the TAT-PTD interaction with 

living cells. For this purpose, a fluorescent derivate of TAT-PTD was employed to study in 

vivo the possible translocation mechanism by confocal laser scanning fluorescence 

microscopy (CLSM), without taking recourse to fixation techniques. In parallel, several 

experiments were performed in order to assess the role of the GAG heparan sulfate in the 

uptake of TATP. Moreover, information on the metabolic activity of cells in vivo when 

exposed to TAT-PTD and heparan sulfate were obtained by means of microphysiometry. 

The experiments reported here provided dynamical, morphological and functional 

information on the interactions of TAT-PTD with mammalian cells that can contribute to an 

understanding of the behavior of CPPs and their potential for possible future biological and 

clinical applications. 
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2.2 Theory 

The Confocal Laser Scanning Microscope 

 The Leica TCS SP confocal microscope is equipped with three lasers for the simultaneous 

excitation of three different fluorescent wavelenghts and three different detectors. Each 

detector (photomultipliers) can be independently controlled for gain and offset in order to 

obtain an optimal image quality. The lasers (power ~ 25 mW) connected to the instrument 

include an argon laser (488 nm excitation line), a krypton laser (λex = 568 nm), and a helium 

neon laser (λex = 633 nm). These laser allow the collection of fluorescent images in the green 

range (FITC, GFP), near red range (rhodamine, TRITC, Texas red), and far red range (Cy5). 

In addition, the lasers can be used to obtain bright field images with differential interference 

contrast (DIC) optics or phase contrast. The Leica TCS SP, equipped with individual 

spectrophotometers for up to 4 detection channels eliminating the need for emission filters in 

the scan head, allows continuous selectable wavelength bands for various fluorescent dyes. 

Images are first viewed on a Leica DMIRBE inverted microscope equipped with an UV filter 

set, FITC filter set and a rhodamine filter set. The lasers are interfaced to the microscope via a 

fiber optic cable. Images are collected through acoustical optical tunable filters (AOTF) which 

provide a precise control of the laser intensity and can also turn the laser beams on or off at 

exactly the correct time and place. Attached to the Leica inverted microscope is a multiphoton 

laser that allows acquisition of fluorescent images in the UV to near red range. The control of 

data collection and manipulation of the scan parameters can be performed through the Leica 

TCS SP software running under Windows NT. Images are stored as TIFF files with 

resolutions ranging from 256 x 256 to 2’048 x 2’048 pixels (Leica Microscopy and Scientific 

Instruments Group, Heerburg, CH). 
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2.3 Material and Methods 

Cell Line 

Mouse embryo fibroblasts, NIH-3T3, were a kind gift of Dr. M.M. Gottesman (NCI, NIH, 

Bethesda (MD), USA).  

Cell Culture 

NIH-3T3 cells were grown in DMEM supplemented with 10% (v/v) fetal bovine serum, 

0.3 g/L L-glutamine, 100 units/mL penicillin, and 100 units/mL streptomycin and incubated 

in standard cell culture conditions, i.e., humidity saturated air supplemented with 5% CO2 and 

temperature of 37 °C.  

Compounds 

Heparan sulfate, sodium salt (fraction I17, average MW = 14.2 ± 2 kDa; sulfate content of 

6.44 %; about 30 sulfated disaccarides units) was purchased from Celsus Laboratories 

(Cincinnati (OH), USA). Heparinase III and all other compounds of HPLC grade were 

obtained from Fluka (Buchs, Switzerland). 

Peptide Synthesis 

The synthesis of TATP (H3N+-YGRKKRRQRRR-COO-), g (H3N+-(βA)GGGG-COO-)

and g-TATP (H3N+-(βA)GGGGYGRKKRRQRRR-COO-) was performed by Dr. André 

Ziegler on a solid phase resin using an Abimed EPS221 peptide synthesizer (Langenfeld, 

Germany) (Ziegler and Seelig, 2004). Before removing the resin and the protection groups, 

the amino terminus of g-TATP and g were covalently linked to fluoresceine isothiocyanate 

(FITC, F) via a thiourea bond (Ho et al., 2001). The beta-alanine (βA) was required to prevent 

the loss of the FITC during the subsequent removal of the resin and the protection groups by 

treatment with trifluoroacetic acid. Peptide purification was performed by preparative high 

pressure liquid chromatography (HPLC). The masses of TATP (1560.8), g (704.7) and Fg-

TATP (2247.5) were determined by electrospray ionization mass spectrometry. Peptide purity 

(>97%) was assessed by analytical HPLC. 

Determination of Binding Parameters In Vitro 

The binding of Fg-TATP to heparan sulfate was assessed in vitro by static right-angle 

light scattering, fluorescence quenching and high-sensitivity isothermal titration calorimetry. 
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Buffer 

Solutions were prepared in 10 mM TRIS, 100 mM NaCl and pH 7.40. The samples were 

filtered (0.44 µm) and degassed immediately before use (140 mbar, 8 min). 

Static Right-Angle Light Scattering 

Static light scattering at right angle was measured with a Jasco FP 777 fluorimeter (Tokyo, 

Japan) at a wavelength λ = 350 nm and a temperature of 28 °C, under constant stirring. For 

light scattering experiments, quartz cuvettes of 3.5 mL volume and a cell length of 1 cm were 

used. The cells were filled with 2.8 mL of Fg-TAT-PTD solution and 4 µL aliquots of 

heparan sulfate solution were added at injection intervals of 1 minute. Control experiments 

were performed by injecting heparan sulfate into buffer, without the peptide. 

Isothermal Titration Calorimetry 

The binding process of TAT-PTD to heparan sulfate was measured with high-sensitivity 

isothermal titration calorimetry, using a Microcal VP-ITC calorimeter (Microcal, Northamton, 

MA, USA) with a reaction cell volume of Vcell = 1.4037 mL. For the unlabeled TAT-PTD, the 

calorimeter cell contained the heparan sulfate solution at a concentration 0
HSC ~ 12 µM and 

aliquots of volume Vinj = 10 µL of a concentrated TAT-PTD solution ( 0
pC ~ 800 µM) were 

injected. With each injection, the total peptide concentration in the calorimeter chamber 

increased by δC = 5.7 µM. The increase of the total reaction volume was also taken into 

account for the HS concentration and the correction factor applied was: 

0
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cell i inj
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V nV

=
+

,

where ,i HSC is the heparan sulfate concentration after ni injections. For the peptide solution 

the corresponding correction factor is: 
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V
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where ,i pC is the peptide concentration in the calorimeter cell, after ni injections. 

For the fluorescent-labeled Fg-TAT-PTD, a peptide solution of concentrations 0
pC ~ 70-80 

µM was placed into the calorimeter cell and was titrated with glycosaminoglycan solutions of 

500 µM. 
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Control experiments were performed by injecting TAT-PTD and heparan sulfate solutions 

into pure buffer. The heats of dilution of the control titrations , typically -1 to +1 µcal for 

heparan sulfate and -10 to -20 µcal for the concentrated TAT-PTD solutions, were subtracted 

from the heats measured for the binding reactions. All solutions were degassed immediately 

before use by placing them in a 140 mbar atmosphere, for 8 min. 

Cytosensor Measurements In Vivo 

The equipment and measurement methods used for microphysiometry experiments using 

the Cytosensor™ Microphysiomenter were identical to that described in section 1.3 of the 

present work. 

Confocal Laser Scanning Microscopy In Vivo 

For CLSM analysis, mouse embryo fibroblasts were directly seeded onto sterile non-

coated microscopic cover slips especially inserted into six-well dishes. Cells aliquots were 

incubated for ∼ 48 h in order to reach a confluency of ∼ 40-60 % at the time of measurement.  

 

Figure 2.1. Perfusion chamber for Confocal Laser Scanning Microscopy. Cells are directly 
grown as monolayers on uncoated glass cover slips, until 40-60% confluence. For 
measurements, the cover glass is placed upside down on a microscopic glass slide, 
separated by an appropriately cut filter paper spacer of 1 mm thickness. The chamber is 
filled with DMEM to keep cell culture conditions. The construction allows microinjections 
using a micropipette. In addition, medium flow can be produced by placing an additional 
filter paper on the side opposite to the aperture of the chamber (not shown on the scheme). 

 

Cell-carrying cover slips were transferred in an up-side-down position on top of a custom-

made microscopic perfusion chamber (volume ∼ 0.25 mL), allowing image acquisitions and 

cover slip

spacer

cells

syringe

glass slide
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the injection of labeled peptides, simultaneously (see Figure 2.1). For the experiments, the 

perfusion chamber was initially filled with DMEM containing the fluorescent peptide, except 

for kinetic studies, for which the fluorescent peptide (or heparane sulfate) was injected into 

DMEM at the indicated time (see results). Confocal images were acquired using a Leica TCS-

NT-SP1 scanning system mounted on an inverted microscope DMIRBE (Leica Microsystems, 

Heerbrugg, Switzerland) with a PL APO (planapochromats) datapoints for both lateral 

dimensions of 250 µm (see section 2.2 for details). Monochromatic Argon laser excitation 

(488 nm) was used for the excitation of FITC and the recorded fluorescence intensity was 

plotted using a false-color green scale. Detection with a FITC/TRITC filter (emission bands 

of 503-533 nm and 582-622 nm, respectively) was used for simultaneous measurements of 

FITC and propidium iodide. 
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2.4 Results 

Uptake of Fg-TAT-PTD by Mouse Embryo Fibroblasts 

The uptake of the fluorescent HIV-1 TAT-PTD peptide by living mouse embryo 

fibroblasts, NIH-3T3, was investigated by confocal laser scanning microscopy and differential 

interference contrast microscopy. In order to preserve in vivo conditions, cells were directly 

grown in complete cell culture DMEM on sterilized uncoated cover slips and mounted 

immediately before the observation up-side down on top of a home-made microscopic 

perfusion chamber of volume V ~ 250 µL (see Figure 2.1). 

 

Figure 2.2. Confocal Laser Scanning Microscopy of Living Mouse Embryo Fibroblasts.
Simultaneous recordings of differential interference contrast images (DIC, upper row, green 
scale) and fluorescence signal at 520 nm (F520, lower row, false green scale). A) NIH-3T3 
cells were grown on uncoated cover slips and mounted upside down on top of a 
microscopic perfusion chamber filled with 0.25 mL of fluorescent marker peptide, Fg, at 20 
µM. Images were recorded 4 min after exposure to Fg. No uptake from the cells. B) 30 µL 
of 200 µM of Fg-TATP were added to the same fibroblasts, yielding to a concentration of ~ 
21 µM of Fg-TATP. Images depict the situation after 4 min from the injection of Fg-TATP. 
Note the appearance of dark spots (white arrow in DIC) and fluorescent labeling of the 
nucleus (F520 image). C) Same sample shown in B), 2 minutes later (different field of 
view), after being rinsed 3 times with 0.5 mL DMEM. The fluorescence in the extracellular 
space is removed, as well as the dark spots. D) Different fibroblast pool exposed directly to 
100 µM Fg-TATP for 4 min. Few dark spots and fluorescent cells are highlighted (white 
arrows). Bar represent 50 µm. 
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In a first set of experiments, the perfusion chamber was filled with a solution containing 

20 µM of the fluorescent marker peptide Fg. After a 4 minutes incubation, cells were 

observed under the microscope. As shown in the lower image of figure 2.2A), pronounced 

fluorescence became visible in the extracellular surroundings. No evident morphological 

changes of cells occurred and no sign of an uptake of the fluorescent compound could be 

observed. 

 

In a second step, 30 µL of a 200 µM solution of the fluorescent marker Fg, covalently 

linked to the HIV-1 TAT-PTD, were administered to the same fibroblasts population, 

corresponding to a final concentration of ~ 21 µM of Fg-TAT peptide. Figure 2.2B) reports 

the situation after a 4 minutes contact with the Fg-linked cell penetrating peptide HIV-1 TAT-

PTD. Two aspects deserve attention, i.e. i) the appearance of intracellular fluorescence in the 

F520 image (lower row), and ii) the formation of “dark spots” in the DIC image (highlighted 

by white arrows in figure 2.2). Further observations (see later in the text) confirm that there is 

a correspondence between the appearance of the “dark spots” and the uptake of the peptide. 

Moreover, it is interesting to note that the highest intracellular signal was localized in the 

nucleus. Figure 2.2C) shows the same fibroblasts population 2 minutes later than in figure 

2.2B), after being rinsed 3 times with 0.5 mL of DMEM, to remove the fluorescent 

compounds from the extracellular space. The difference of the cell distribution is simply due 

to the snapshot taken in another field of view. Here it is interesting that, after washing, the 

“dark spots” disappeared, and that the cells labeled with the fluorescent TAT peptide became 

better distinguishable. The pictures shown in figure 2.2D) illustrate another population of 

fibroblasts, immersed directly into 100 µM of Fg-TAT peptide, for 4 minutes. The situation is 

very much analogue to what observed in figure 2.2B) but with more cells labelled per 

population. 

 

Dynamical Morphological Considerations – Confocal Microscopy 

One advantage of confocal microscopy of intact living cells is the possibility to monitor 

the cellular incorporation of the fluorescent Fg-TATP with almost real-time (2s-resolution). 

Indeed, to our knowledge, uptake of CPP was never imaged with such a time resolution.

Dynamical recordings were performed by taking serial snapshots images under the confocal 

microscope, at intervals of 2 seconds, during the administration of 60 µL of a 500 µM solution 

of fluorescent Fg-TATP stock solution (corresponding to a final concentration CFg-TATP ~ 100 
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µM) to mouse embryo fibroblasts, NIH-3T3. The first appearance of the fluorescent label in 

the cell nucleus occurs as early as 4 seconds after the exposure of cells to the CPP.  

 

Figure 2.3. Kinetics of Fg-TAT-PTD uptake from Mouse Embyo Fibroblasts, NIH-3T3.
Dynamical recordings with DIC (gray scale images) and CLS microscopy (520 nm, green 
images) were performed every 2 seconds. At an instant defined as t = 0 s, 60 µL of a 500 
µM Fg-TAT-PTD solution were injected into the 250 µL perfusion chamber, yielding a 
final concentration of ~ 100 µM Fg-TAT-PTD. For practical reasons, only snapshots at 
times -2, 10, 30 and 300 seconds are shown. Note the time-dependent increasing size of the 
dark aggregates in DIC images, and the correspondent appearance of intracellular 
fluorescence in F520 images. The bar represents 50 µm. 
Graph: dynamics of Fg-TAT-PTD averaged over 11 different fibroblast populations. The 
number of labeled cells visible in the F520 images was divided by the total number of cells 
seen in the DIC images. The mean ratios obtained are plotted as a function of the exposure 
time to Fg-TAT-PTD (empty squares). Bars indicate standard deviations (n = 11). A fit of 
the mean values with a monoexponential function (f (%) = 0.68·(1-e^(-0.41·tmin))) is shown 
(solid line). 
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The percentage of cells incorporating the peptide increased with time of exposure in an 

exponential-like way (figure 2.3). However, a relevant fraction of cells (~ 50 % of the total 

population) did not incorporate Fg-TATP, even after 4 minutes. The time-dependent cellular 

uptake of the Fg-TATP was fitted for 11 different cell preparations with a monoexponential 

function , such as  

 
min( 0.41 )(%) 0.68 (1 )tLabeled Cells e − ⋅= ⋅ − ,

leading to a half-time of ~ 1.8 min for the uptake of Fg-TAT by the cells, which corresponds 

to a first-order rate constant k = 0.007 s-1 at the particular peptide concentration employed in 

our measurement (CFg-TATP ~ 100 µM) (see graph in figure 2.3). 

 

Another interesting phenomenon observed is the temporal correlation between the 

incorporation of Fg-TATP and the formation of the “dark spots” on the cell surface. As 

mentioned above, the spots appeared only on cells that integrated the peptide. Moreover, i) the 

formation of the spots slightly preceded the intracellular appearance of fluorescence, and ii) 

the size of the spots increased as a function of the contact time of the fibroblasts with the 

peptide. As it will be discussed in the next section, the “dark spots” are considered to be 

molecular aggregates of the peptide and the cellular GAGs. 

 

Dynamical Functional Considerations – Microphysiometry 

We wanted to know whether the metabolism of the cells was affected by incorporation of 

the Fg-TATP. We exposed mouse embryo fibroblasts, NIH-3T3, to the CPPs and measured 

the proton extrusion rate with the Cytosensor™ Microphysiometer (Mcconnell et al., 1992). 

 

Extracellular acidification rates (ECAR) of fibroblasts were monitored in real time upon 

stimulation with increasing concentrations of TAT-PTD, i.e., 5, 50 and 500 µM. As shown in 

figure 2.4, the ECAR is influenced by the presence of TAT-PTD in a concentration dependent 

manner. Indeed, a 160 seconds exposure of fibroblasts to TAT-PTD resulted in a rapid 

decrease of the ECAR, which denotes an apparent slow down of the general cellular 

metabolism. After switching back to normal DMEM, the original basal ECAR was recovered 

completely within 2-4 minutes. Figure 2.4 depicts the ECAR alteration upon stimulation with 

5 µM (A), 50 µM (B), and 500 µM (C) of TAT-PTD. Three cell populations are displayed, 
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i.e., a control line stimulated only with normal DMEM (green), and two lines stimulated with 

TAT-PTD (red and black). No remarkable ECAR decrease was observed in the presence of 5 

µM TAT-PTD, However, a 10 % inhibition of the basal ECAR could be obtained upon 

addition of 50 µM TAT-PTD. In the presence of 500 µM TAT-PTD, fibroblasts reduced their 

ECAR by 25-40 % (the case reported in figure 2.4C) showed one of the strongest effects). 

Even at such high concentration, the basal ECAR could be re-stabilized completely in a short 

time. Repeated stimulations with 500 µM TAT-PTD (n > 4) ) led to a progressive decrease of 

the basal ECAR and thus to an incomplete recovery (data not shown). 

 

Figure 2.4. Concentration-Dependent ECAR decrease induced by TAT-PTD. The effect of 
TAT-PTD on NIH-3T3 mouse embryo fibroblasts (red and black lines) was tested by 
microphysiometry at concentrations of A) 5 µM, B) 50 µM and C) 500 µM. Control 
stimulations with only DMEM are also shown (green line). The extracellular pH change is 
measured every 2 min, during 20 sec., and expressed in percent of the basal ECAR. 
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 The effects of CPPs on the cellular metabolism could be neutralized by a simultaneous 

administration of HS. As shown in Figure 2.5B) a co-administration of 500 µM TAT-PTD 

and 36 µM HS (red and black lines) inhibited the effect of TAT-PTD on the ECAR, 

completely after 40 seconds stimulation (3d points from left) and slightly after 2’40’’ (4th 

points from left). The effect was even more pronounced by adding 72 µM HS to the TAT-

PTD (figure 2.5C)), which completely reversed TAT-PTD induced ECAR decrease after 40 s 

and reduced the effect of more than 50 % after 2’40’’. The behavior of two other cell 

populations measured simultaneously in different sensor chambers is shown in figure 2.5B) 

and C) (lines blue and magenta). Here, only HS was added. Exogenous HS alone also caused 

an ECAR decrease in NIH 3T3 fibroblasts of just 5 -7 % for both concentrations tested ( B) 

36 µM and C) 72 µM). 

 

Figure 2.5. Heparan Sulfate Inhibits TAT-PTD Activity. Cytosensor™ Microphysiometer 
recordings of NIH-3T3 mouse embryo fibroblasts extracellular acidification rate. A) cells 
were stimulated with 500µM TAT-PTD (red, black lines). B) Co-administration of 36 µM 
heparan sulfate and 500 µM TAT-PTD (red, black) and stimulation with only HS 36 µM 
(blue, magenta). C) Co-administration of 72 µM HS and 500 µM TAT-PTD (red, black) 
and stimulation with only 72 µM HS (blue, magenta). Control stimulations with DMEM are 
shown (green lines). 
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The effect of the TAT-PTD on the ECAR of 3T3 cells was further investigated by 

administrating equivalent amounts of amino acids, i.e., lysine, arginine, glycine, glutamine 

and tyrosine in the monomeric forms. The effect of monomeric aminoacids was significantly 

lower than that of the TAT-PTD peptide. All results are summarized in figure 2.6. 

 

Figure 2.6. Effect of TAT-PTD, Heparane Sulphate and Monomeric Amino Acids on NIH 
3T3 fibroblasts metabolism. Cells (5·105- 1·106) seeded in sensor chambers of a 
Cytosensor™ Microphysiometer were supplemented with ~ 120 µL/min medium. The 
extracellular pH was measured every two minutes cycles, during a “pump off” interval of 
20 seconds. Selective switch of perfusing medium were performed, to supplement cells for 
2 min 40 sec with the different compounds (indicated under the x-axis of the graph). 
Alteration of the ECAR upon selective stimulations are reported (black and gray bars). The 
ECAR recovery are depicted (white bars) 2 pump cycles after the end of stimulations, 
during which cells were supplemented with DMEM. All data are expressed in percent of 
the basal acidification rate measured before the stimulation. HS, heparan sulphate; TATP, 
TAT-PTD; X, glycine, glutamine and tyrosine each at 50 or 500 µM. (*, P < 0.05 versus 
baseline; #, P < 0.05 versus 500 µM TAT-PTD). 
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Heparane Sulfate Induces Fluorescence Quenching and Inhibits Fg-TATP 

Uptake 

We tested the effect of the glycosaminoglycan heparan sulfate on the uptake of Fg-TATP 

by NIH-3T3 cells. In a similar experimental setup for confocal microscopy as described 

above, a cell population already in contact with Fg-TATP for 4 minutes (figure 2.7A), upper 

image), was next exposed to heparan sulfate in a molar ratio of HS/Fg-TATP ~ 0.16.  

 

Figure 2.7. Exogenous Heparan Sulfate and Heparinase III affect Fg-TAT-PTD Uptake. A) 
Mouse Embryo Fibroblasts, NIH-3T3, were incubated in a 100 µM Fg-TAT-PTD solution. 
After 4 minutes, from Fg-TAT-PTD injection, exogenous heparan sulfate, HS, was added, 
yielding a molar ratio HS/Fg-TAT-PTD of ~ 0.16. CLSM F520 snapshots were recorded 
before (upper image) and directly after (lower image) HS addition. Note the extracellular 
fluorescence quench in the presence of HS. B) Magnification of one fibroblast from the 
preparation shown in A) (lower image). In both DIC (upper) and F520 (lower) images, 
aggregates of different size are visible on the cell surface (black arrow in DIC) and in the 
extracellular medium (dashed circles). C) Recordings a new preparation, 4 minutes after 
simultaneous administration of HS/Fg-TAT-PTD at a ratio of ~ 0.16. Intracellular labeling 
of fibroblasts and aggregates are conspicuously inhibited. D) Fibroblasts were grown 1 
hours in the presence of 15 mU heparinase III, then rinsed with DMEM, and exposed for 4 
minutes to 100 µM Fg-TAT-PTD. This treatment reduced the uptake of Fg-TAT-PTD. Bars 
represent 50 µm. 

 

N
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As a result, the fluorescence of the extracellular medium was quenched as shown in the 

lower image of figure 2.7A) and the preparation became similar to that seen after removal of 

the extracellular medium by repeated rinse, shown in figure 2.2C), i.e., the contrast of the 

intracellular versus extracellular fluorescence signal was definitely enhanced. 

 

At a higher magnification (figure 2.7B)), the appearance of tiny aggregates in the free 

medium was observed (dashed circles), presenting similar optical features than the “dark 

spots” occurring on the cell surface of labeled fibroblasts. 

 

The effects of heparan sulfate depended, however, on the sequence of its addition with 

respect to the peptide addition. While injecting HS 4 minutes after the cellular exposure to Fg-

TATP had only effects on the extracellular environment, the simultaneous addition of HS and 

Fg-TAT consistently inhibited the uptake of the peptide by the cells, as shown in figure 2.7C). 

Moreover, the efficiency of the inhibition of peptide uptake depended on the molar ratio of 

heparan sulfate/Fg-TATP. Indeed, a decrease of the fraction of CPP incorporating cells from 

46 % to 6 % was observed by changing the molar ratio heparan sulfate/Fg-TATP from 0/100 

to 16/100 (see graph in figure 2.8). 

 

Heparinase III reduces TATP Uptake 

 To further test the involvement of heparan sulfate in the binding and uptake process of the 

HIV1-TAT PTD peptide, we performed confocal microscopy measurements of fibroblasts 

populations previously treated with 15 mIU of heparinase-III (Suzuki et al., 2002), during 1 

hour.  

 

This enzyme is able to degrade the heparan sulfate chains at the low sulfation regions 

(Linhardt et al., 1990). The fraction of the cell population that integrated the peptide 

subsequently to the enzymatic treatment was reduced by 32 % as compared to preparations 

shown in figure 2.7D), 
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Figure 2.8. Quantitative analysis of Heparan sulfate- and heparinase III-induced Fg-TAT-
PTD uptake inhibition. NIH-3T3 cells were immersed into 100 µM Fg-TAT-PTD without i) 
and with ii) 4 µM and iii) 16 µM hepapan sulfate. iv) After 1 hour incubation with 
heparinase III. The number of fibroblasts that incorporated the peptide (counted in F520 
images) was divided by the total number of cells (counted in DIC images). Mean values 
obtained from 5 different experiments, and 4 different fields of view for each experiment 
(>150 cells), are depicted in the graph (mean±SD, n=5). P < 0.05 (*), and P < 0.001 (**) 
versus the peptide alone. 

 

In vitro assessment of Binding, Aggregate Formation and Fluorescence 

Quenching. 

 The experiments described above showed that the glycosaminoglycan heparan sulfate 

interacts with the uptake mechanism of TAT-PTD peptide. In order to better define the direct 

interaction of heparan sulfate with the cell penetrating peptide, in vitro analysis have been 

performed to quantify the binding strength between the two compounds and the efficiency of 

the fluorescence quenching observed with confocal microscopy. 

 

The thermodynamic parameters of binding were determined by high sensitivity isothermal 

titration calorimetry and are shown in figure 2.9A). 
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The binding of heparan sulfate to Fg-TATP, at 28 °C, is exothermic and the reaction enthalpy 

is ∆H0 = - 3.60 ± 0.23 kcal per mol of Fg-TATP. The binding constant is K0 = (4.6 ± 1.2) · 104

M-1 and is one order of magnitude smaller than what measured in a previous work for a non-

fluorescent TATP (Ziegler and Seelig, 2004). The difference between fluorescent and non-

fluorescent TATP is probably caused by the hydrophobic fluorescent reporter group. 

 

Figure 2.9. In Vitro Assessment of Fg-TAT-PTD Interactions with Heparan Sulfate. Binding 
Parameters, Aggregate formation, and Fluorescence Quenching.. A) The binding of HS to 
Fg-TAT-PTD was measured by isothermal titration calorimetry (ITC). Data (�) report the 
heat release from a titration of 2 µL HS (0.50 mM) aliquots into 78.1 µM Fg-TAT-PTD. 
Injections were performed every 5 min, at 28 °C. Thermodynamic analysis of the binding 
isotherm (line) yields a reaction enthalpy ∆H0 = -3.60 ± 0.23 kcal/mol of Fg-TAT-PTD, a 
binding constant K0 = (4.6 ± 1.2) · 104 M-1 and n = 6.7 ± 0.4 binding sites (at 28 °C). B) 
Right-angle light scattering at λ = 450 nm of a titration of 4 µL of 0.10 mM HS (�) or 4 µL 
pure buffer (�) aliquots into a 2.8 mL of a 15.6 µM Fg-TAT-PTD solution, at injection 
intervals of 1 min and 28 °C temperature. C) Fluorescence quenching in 2.8 mL of 15.6 µM 
Fg-TAT-PTD at 28 °C, after serial additions of 4 µL aliquots of 100 µM HS (�), 5.2 mM 
KI (�), or buffer (�), respectively. Experiments were performed under constant stirring. 

 

The employed HS has a maximum of 6.7 ± 0.4 independent binding sites for Fg-TATP. A 

Fg-TATP molecule carries 8 positive charges, which allows a simultaneous interaction with 

several HS molecules. In a solution containing Fg-TATP and HS, crosslinking is likely to 
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occur, depending on the molar ratio of the two compounds. A consequence of crosslinking is 

the formation of aggregates. In our study, the tendency to aggregation was analyzed 

quantitatively as a function of the molar ratio HS/Fg-TATP, using right-angle light scattering. 

Figure 2.9B) shows a titration of Fg-TATP with heparan sulfate. The light scattering intensity 

at 450 nm is reported against the molar ratio HS/Fg-TATP. For the experiment, serial 

injections of 4 µL of HS 0.10 mM were performed at intervals of 1 min into a 15.6 µM 

solution of Fg-TATP. As a control, the same amount of pure buffer was injected instead of 

HS. From the graph in figure 2.9B) it can be observed that a concentration dependent light 

scattering occurs during the titration of Fg-TATP with HS. The light scattering intensity 

resulting from HS addition increased almost linearly up to a molar ratio HS/Fg-TATP = 0.16 

± 0.02 (solid squares). For higher concentrations of HS, the scattering intensity decreased 

again. Differently, the control titration using pure buffer showed no significant light scattering 

(empty squares). 

 

In a similar experiment, the fluorescence intensity of Fg-TATP was measured during a 

titration of the latter compound with HS. Figure 2.9C) shows the occurrence of fluorescence 

quenching of Fg-TATP upon addition of HS in vitro, at 28 °C, under constant stirring. 

Fluorescence intensity decreased during the serial injection of 4 µL aliquots of a 100 µM HS 

solution and reached a plateau for a HS/Fg-TATP molar ratio = 0.14, which corresponds 

virtually to a complete binding of the peptide (as shown by ITC, figure 2.9A)). Further 

addition of heparan sulfate had no longer significant effect on the fluorescence signal. This 

suggests that the presence of negative charges (HS) had a higher effect on the fluorescence 

quenching than the aggregation which disappeared after this equivalence point. As a 

comparison, the same experiment was performed by titrating Fg-TATP with 4 µL aliquots of 

potassium iodide, KI, 5.2 mM (figure 2.9C), empty circles), a commonly used salt for 

quenching the fluorescent signal of fluorescent proteins in a non-denaturing manner. Figure 

2.9C) shows clearly that the fluorescence quenching of HS was more efficient than an 

addition of 0.4 M potassium iodide. As a control, the same titration was performed with 

equivalent amounts of pure buffer (figure 2.9C), empty squares). No consistent reduction of 

the fluorescence intensity was observed in this case. 
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Assessment of Membrane Integrity 

 In order to determine whether the intracellular inclusion of Fg-TAT-PTD was related to an 

impairment of the cytoplasmic membrane of cultured fibroblasts and handling under the 

microscope, we performed a test to assess membrane integrity. A compound known to be 

unable to cross an intact lipid bilayer, namely propidium iodide, was taken for this purpose 

(fluorescence at λ = 617 nm). Cells were kept in the presence of 33 µM propidium iodide for 

4 minutes and then, after appropriate rinse with DMEM, analyzed by confocal microscopy by 

laser scanning at 617 nm. As shown in figure 2.10A), a small portion of cells were leaky (2 

cells visible in the field of view). Directly thereafter, ~ 100 µM Fg-TAT-PTD were injected in 

the perfusion chamber containing the same cell population. Four minutes later, the snapshot 

shown in figure 2.10B) was recorded at 520 nm. No correlation could be observed between 

Fg-TAT-PTD and a lack of membrane integrity. Indeed, from a comparison of figure 2.10A) 

and B), one can easily see that several intact cells not labeled with propidium iodide were able 

to integrate Fg-TAT-PTD. 

 

Figure 2.10. Assessment of Membrane Integrity in cultured NIH3T3 Mouse Fibroblasts.
The correlation of TAT-PTD uptake and possible damage of the cytoplasmic membrane 
was investigated. A) Mouse embryo fibroblasts were incubated for 4 minutes with 33 µM 
propidium iodide, a compound incapable of crossing an intact cytoplasmic membrane. Two 
minutes later, after washing twice with DMEM, cells were observed under a CLS 
microscope at λ = 617 nm. Two cells show incorporation of the dye (red signal). B) The 
same cells were then exposed to ~ 100 µM Fg-TAT-PTD. The image was recorded at λ =
520 nm, 4 minutes from the injection of Fg-TAT-PTD. There is no relation between Fg-
TAT-PTD and propidium iodide incorporation. Bar corresponds to 50 µm. 
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Notes on an Interesting Observation 

 The microliters-injection of Fg-TATP into the microscopic chamber used for confocal 

microscopy measurements requires particular attention. For example, air bubbles have to be 

carefully avoided. Indeed, a small air bubble between two close glass slides can have a 

dramatic effect on the cells grown on the microscopic cover slip. Figure 2.11 shows the 

passage of an air bubble over cultured fibroblasts, NIH-3T3, placed in the space of the 

perfusion chamber, between the two glass slides separated by the spacer of 1 mm (see figure 

2.1, in section 2.3).  

 

Figure 2.11. Effect of an Air Bubble-Induced Hydrostatic Pressure on Fibroblasts 
Monolayers in Microscopic Preparations. The perfusion chamber used for CLSM analysis, 
limited by two glass slides separated by ~ 1 mm, was filled with DMEM. The figures 
sequence shows the effect of the passage of an air bubble over mouse embryo fibroblasts, 
NIH-3T3, in the chamber. The dark shadow in the images taken at time t = 4, 6, 8 seconds 
is the migration front of the bubble. As a consequence of this, the cells were squeezed 
against the glass slide resulting in a drastically different, budding-like form (visible in 
images at t = 6, 8, and 12 s). This artifact is not observable by simple contact with air and it 
is distinctly different from the other observations in DIC microscopy, i.e., aggregates 
formation and Fg-TAT uptake. Bar corresponds to 50 µm. 

 

The front of the air bubble can be easily recognized by the large black front moving, in a few 

seconds, from the left lower to the right upper corner in the DIC images. The hydrostatic 

pressure created by the air bubble between the slides is apparently high enough to squeeze the 

cells. As a result, the fibroblasts assume a completely deformed shape, characterized by a 

pronounced budding of the cell membrane. This feature is distinctly different from the dark 

aggregates produced by Fg-TATP administration, described above. This bubbling effect is 

most pronounced for cells lifted from the glass plate, a situation that occurs periodically 

during the normal cell cycle of adherent cells in cell culture. In contrast, fibroblasts that are 

well spread on the slide, are less morphologically affected by the bubble-induced hydrostatic 

pressure. Indeed, the simple exposure of cells to air, or even artificial drying on a single glass 

plate does not produce a similar effect. 
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2.5 Discussion 

 

The biological mechanism of cell penetrating peptides is quite controversial, and not 

understood. The aim of the present work was to provide a better understanding of the 

interaction of a particular CPP, HIV1-Fg-TAT-PTD, with living mouse embryo fibroblasts, 

NIH-3T3, the cell line chosen as model for our experiments. 

 

Advantages of Confocal versus Epifluorescence Microscopy 

 The special feature of the present investigation was the use of confocal microscopy, which 

allowed a distinction between intracellular and extracellular fluorescence, without the need to 

remove the fluorescent peptide from the extracellular medium or without the need of chemical 

cell fixation. The spatial resolution was sufficient to identify the intracellular label: as shown 

in figure 2.2B), the number of cells that presented Fg-TAT uptake in unwashed preparations 

was not different from that after the removal of extracellular dye (figure 2.2C)). A rinse with 

DMEM is however of some usefulness to the improvement of the image contrast. 

 

A good distinction between intracellular and extracellular fluorescent signal in a 

microscopic preparation in vivo is only possible because of the confocal nature of the images. 

In the measurements reported here, the sampled image plane thickness was 0.5 µm, and was 

the same for the intracellular and extracellular peptide. In contrast, the conventional 

epifluorescence microscopy used in many earlier studies on TATP recorded the fluorescent 

signal from a larger sample thickness. Under such conditions, where the sample depth is 

usually 0.1 - 1 mm, the large amount of fluorescent dye in the extracellular layers above the 

cells is much more abundant than that at the interior of the cells, which have an axial depth in 

the order of ~ 10 µm. In conventional fluorescence microscopy, removal of the extracellular 

Fg-TATP and fixation of cells is a prerequisite for the detection of intracellular signal coming 

from Fg-TATP, thus excluding the possibility to observe the uptake phenomenon and to 

record kinetical data in living cells. 
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The Uptake of CPP is Not an Artifact of Fixation 

The present experiments clearly exclude the possibility that the uptake of CPP is due to an 

artifact occurring during cell fixation with paraformaldehyde or methanol (Lundberg and 

Johansson, 2001),, a procedure currently done for analysis with epifluorescence microscopy. 

The uptake of Fg-TATP showed in figure 2.2B-D is, to our knowledge, the first report of this 

phenomenon in intact, non fixated and living cells. As such, this observation supports more 

than 40 previously published studies on chemically fixated cells (see (Schwarze et al., 2000) 

for a review). The main critic to those studies published in the past was the potential damage 

of the cell membrane upon chemical fixation which could lead to an increased membrane 

permeability (Lundberg and Johansson, 2001). In the present work, any chemical fixation was 

avoided and physiological osmotic conditions were respected. Under these conditions, mouse 

embryo fibroblasts, NIH-3T3, incorporated the peptide Fg-TATP within a very short time, 

i.e., already after a few seconds, and definitely after 4 minutes. Therefore, the present results 

show that the uptake of Fg-TATP is not an artifact of cell fixation (Lundberg and Johansson, 

2001). Moreover, the control experiment reported in figure 2.2A) illustrates that i) the Fg 

marker dye alone is not able to penetrate into the fibroblasts, and that ii) the cell membranes 

were intact before the administration of the fluorescent dye. As shown in Figure 2.10, the 

integrity of the cell membrane was further tested by incubating cells with propidium iodide, a 

commonly used marker to assess plasma membrane integrity. Here, only a few damaged cells 

were present in the preparation (which is a normal fraction of cells grown in culture) as 

evidenced by confocal microscopy at 617 nm, the wavelength of propidium iodide 

fluorescence. However, healthy cells that resisted the uptake of propidium iodide, were able 

to incorporate Fg-TATP. This integrity of the cytoplasmic membrane of fibroblasts before the 

exposure to Fg-TATP cannot support a recent report where only cells with flawed membranes 

showed accumulation of TAT (Kramer and Wunderli-Allenspach, 2003). 

Morphological Alterations occur on The Cytoplasmic Membrane upon TAT-

PTD Exposure 

 Exposure of mouse embryo fibroblasts, NIH-3T3, to the cell penetrating peptide Fg-TAT 

leads to the appearance of “dark spots” on the cell surface, as shown in figure 2.2D). In 

general, there was only one spot per cell, sometimes two. The specific characteristics of the 

DIC (Nomarski, 1955) suggests that such dark spots are actually dense aggregates on the cell 

membrane of fibroblasts. It is interesting to note that the aggregates appeared only on the cells 

that integrated the fluorescent Fg-TATP. This aggregate formation was not reported in 
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previous studies, most probably due to the fixation procedures. Indeed, the aggregates could 

be removed by rinsing the cells 2-3 times with DMEM. Another reason could be the specific 

heparan sulfate/peptide ratio that is needed for aggregate formation (see figure 2.9B)). 

 

However, the aggregate formation observed in vivo is in excellent agreement with 

observations reported in a recent study in vitro (Ziegler and Seelig, 2004). The formation of 

aggregates was observed between the heparan sulfate and the non-fluorescent peptide HIV1 

TAT-PTD. Moreover, it was found that the size of the aggregates was dependent on the molar 

ratio and the order of mixing of the two compounds (the aggregates are larger, if the peptide is 

first in the tube/excess - this way a single HS added will cross-link several peptides). 

 

In analogy to these in vitro observations, the results obtained from the experiments in vivo 

suggested that the dark aggregates shown in figure 2.2 could result from the binding of Fg-

TATP to heparan sulfate or other type of glycosaminoglycans present on the plasma 

membrane of the fibroblasts. This hypothesis was tested by adding exogenous heparan sulfate 

to cells, after their exposure to the fluorescent peptide. As shown in figure 2.7B), the presence 

of free HS resulted in an additional formation of aggregates in the extracellular medium, 

previously limited to the cell plasma membrane only confirming that mixing Fg-TATP to HS 

also produces aggregates. It is important to point out that the free aggregates and those 

anchored to the cell membrane had the same image contrast in DIC microscopy. A major 

difference was the size. The aggregates found in the extracellular space had a diameter < 1 

µm, whereas those present on the cell surface were distinctly bigger, with a diameter < 5 µm. 

This may be due to different molar ratios of the compounds used, the time of exposure of the 

cells to the Fg-TATP (see dynamical observations) and differences in the chemical nature of 

the glycosaminoglycans involved in the reaction. Indeed, the exogenous heparan sulfate added 

consisted of a fraction of HS with a low molecular weight (average MW ~ 14’200), whereas 

heparan sulfate chains extracted from cellular proteoglycans of fibroblasts have molecular 

weights in the order of ~ 45’000 (Turnbull and Gallagher, 1991). 

 

Dynamics of Fg-TAT-PTD Incorporation by Fibroblasts 

 In the present work, it has been shown that the Fg-TATP is taken up by living mouse 

embryo fibroblasts, NIH-3T3, in a very short time. Indeed, fluorescent labeling of the nucleus 
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occurred already 4 seconds after the exposure to the peptide. Interestingly, and as already 

reported in previous works (Frankel and Pabo, 1988; Green et al., 1988; Hallbrink et al., 

2001), around 50 % of cells did not incorporate the Fg-TATP. The reason for this difference 

remains unclear yet. It could be speculated that this is due to a differential expression of 

glycosaminoglycans on the cell surface, at different steps of the cell cycle. The rate constant 

for the velocity of labeling of the cell population, calculated from our results as k = 0.007/s is 

also in agreement with what reported in other studies (Frankel and Pabo, 1988; Green et al., 

1988). However the uptake in the experiments reported here was faster than that obtained 

from studies based on a cell-coulter assay using a fluorescence quenching test, where a first-

order rate constant for TATP uptake was estimated around 0.0003/s (Hallbrink et al., 2001). 

Such differences could be attributed to experimental conditions chosen for the investigation 

and also to the cell strain employed. 

 

The temporal resolution obtained in our experiments allowed observations of the growth 

of the aggregates of Fg-TATP on the cell membrane. The aggregates preceded the appearance 

of the intracellular fluorescence by some seconds, and increased in size as a function of the 

contact time (afer 4 min up to ~ 5 µm). This phenomenon could suggest the hypothesis of an 

initial homogeneous distribution of glycosaminoglycans on the cell membrane, which could 

be consecutively recruited to a particular region of the cell, with a particularly favorable 

electrostatic environment for the binding of polycationic compounds like TATP. 

 

The accumulation of large aggregates on the cell membrane displays certainly an 

unphysiological condition and, as such, may be toxic for the cells. This is supported by 

previous reports. A 24 hours exposure of HeLa cells to similar concentrations of TATP as 

employed here was shown to induce cell necrosis in 60 % of the cells. 

 

Inhibition of Fg-TATP Uptake by Heparan Sulfate 

 The Inhibition of Fg-TATP Uptake by heparan sulfate is a further indication of the role of 

cellular glycosaminoglycans such as heparan sulfate for CPP uptake. The inhibition of Fg-

TATP uptake by the addition of exogenous HS is, however, not unique. In a previous work, 

the cellular uptake of cationic polylysine could be inhibited by a simultaneous administration 
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of exogenous heparin (Morad et al., 1984), an intracellular compound of similar structure than 

extracellular heparan sulfate. 

Fluorescence Quenching by Heparan Sulfate 

The fluorescent signal was an important parameter for the qualitative evaluation of the 

measurements. However, the intensity of confocal images depends on a variety of parameters 

and therefore it cannot be exploited for a quantitative evaluation of the Fg-TATP 

concentration in the cells or in the extracellular space: A possible binding to cellular 

compounds, such as heparan sulfate, could lead to fluorescence quenching and thus distort the 

analysis. 

Enzymatic Removal of HS results in a Decrease of TATP Uptake. 

 Further evidence that the recognition of Fg-TATP by cells occurs through a interaction 

with glycosaminoglycans was provided by the experiments shown in figure 2.7D). In these 

experiments, cells were treated with heparinase III prior to the administration of Fg-TAT. 

Under these conditions, a decrease in the number of labeled fibroblasts by ~ 30 % was 

observed. The fact, that the inhibition upon enzymatic digestion was not complete, suggests 

that other similar membrane polysaccharides, such as chondroitin sulfate, could be involved 

in the recognition process or that heparinase treatments cannot achieve a total removal of the 

glycosaminoglycans, for example because of sterical hinderance (Schulz et al., 1998).  

 

The role of glycosaminoglycans for the uptake of CPP is still a matter of debate. One of 

the first studies on TAT uptake (Mann and Frankel, 1991) proposed that the absorption of 

TAT proceeded via non-specific endocytosis, and that glycosaminoglycans were not involved 

in the uptake, because heparinase treatment could not inhibit TAT uptake completely (in 

analogy to the present experiments). Alternative uptake mechanisms were proposed by other 

groups (Derossi et al., 1996; Prochiantz, 2000) such as lipid binding. However, an increasing 

number of studies is now supporting the idea that TAT uptake proceeds through a specific 

binding to heparan sulfate (Belting, 2003; Rusnati et al., 1997; Sandgren et al., 2002; Tyagi et 

al., 2001). The findings of the present work are also in favor of the hypothesis of specific 

binding to HS. 
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TAT can alter Cellular Physiology 

 Only a few studies investigated the toxicity of TAT-PTD. In one work, it was observed 

that 100 µM of TAT-PTD induced necrosis in 60 % of cells after a 24 hours exposure time. 

However, no acute toxic effects were observed for exposure times < 30 min (Vives et al., 

1997). Observations made in the present work by microphysiometry, clearly show that TAT-

PTD was able to decrease the overall cellular metabolism of mouse embryo fibroblasts, NIH-

3T3. This phenomenon is an indicator of some cytotoxicity. However, the acute cytotoxic 

effect could be rapidly reversed when the peptide was removed from the culture medium. On 

the other hand, repeated exposures to high concentrations of TAT-PTD produced irreversible 

cell changes, decreasing permanently their basal ECAR. Combining CLSM and Cytosensor 

observations, one can conclude that the adsorption of TAT-PTD onto the plasma membrane 

results in a decrease of the metabolic activity. The molecular nature of this process remains 

unknown and could be a blocking of ion channels by aggregate formation, a transient 

membrane structure distortion (resulting in a general malfunctioning of membrane related 

energy-driven processes), or other mechanisms. 

 

Another interesting correlation can be made between CLSM imaging with the fluorescent 

TAT-PTD analogue and functional microphysiometry obtained with TAT-PTD. The presence 

of the glycosaminoglycan heparan sulfate could inhibit both the Fg-TAT-PTD uptake in the 

image experiments and the decrease of the TAT-PTD-induced extracellular acidification rate. 

These observations point again towards an interaction of TAT-PTD with cells associated 

GAGs because a competitive inhibition occurs between exogenous HS and the putative 

binding partners of TAT-PTD on the cells membrane. 

 

The toxicity of TAT-PTD is a property of the polypeptide only. Adding of the individual 

amino acids in their monomeric form and at concentrations employed for TAT-PTD does not 

produce any decreases in the ECAR. This suggests that cross-linking of TAT-PTD with the 

negatively charged binding partners is necessary for the internalization process, as well as for 

the ECAR alteration. It is also noteworthy that some amino acid sequences can act as key 

signals, for example for the entry into the cellular nucleus (Weis, 2003). As seen in CLSM, 

the nuclear internalization of Fg-TAT-PTD occurred also within seconds. 

 The observation of the fast intracellular labelling of fibroblasts with Fg-TAT-PTD, in 

particular the fast concentration of the dye inside the nucleus, may also explain the slow-
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acting toxicity of this peptide. Indeed, compounds with high DNA affinity, such as ethidium 

bromide, are well known for their mutagenic activity. Because of its large positive charges, 

TAT-PTD may bind very efficiently to the negatively charged nuclear DNA. Therefore, a 

mutagenic activity of TAT-PTD could be possible. 

 

2.6 Conclusion 

Mechanism of TAT-PTD Cellular Uptake 

 The aim of the present study was to investigate the mechanism(s) of the incorporation of 

HIV1 TAT-PTD into living cells. To this purpose, in vivo confocal microscopy and 

microphysiometry experiments were performed, extended by in vitro observations using 

isothermal titration calorimetry, right-angle light scattering and fluorescence quenching tests. 

Specifically we aimed at testing whether (i) cellular glycosaminoglycans could be involved in 

the CPP uptake, and ii) whether CPP incorporation is an artifact of cell fixations. 

 

In the present work the second point could be excluded by performing measurements in 

vivo, avoiding chemical fixation. An uptake of fluorescent FITC-labeled HIV1-TATP derivate 

was clearly observed under in vivo conditions. In particular, the uptake of the fluorescent 

TAT-PTD occurred within a few seconds from the time of administration. The appearance of 

the intracellular labeling was preceded by the formation of dense aggregates, exclusively 

associated with the cell surface of labeled cells. Neither aggregate formation nor intracellular 

fluorescence were observed for cells incubated only with the Fg-marker, indicating the 

specific role of the TATP fragment for transport through the membrane. 

 

The involvement of GAGs was tested to identify the nature of the observed dense 

aggregates. Co-administration of exogenous heparan sulfate with the peptide inhibited both 

the incorporation of TAT-PTD and the formation of aggregates. Moreover, heparan sulfate 

induced fluorescence quenching of Fg-TATP and the formation of aggregates in the 

extracellular medium. These aggregates had similar optical features than those observed on 

the cell membrane of fibroblasts. The same effects could be reproduced in vitro (isolated 

systems of heparan sulfate and Fg-TATP). 
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 The enzymatic removal of heparan sulfate GAGs from the fibroblasts led to similar 

results, i.e., the inhibition of aggregate formation and TATP uptake.  

 

To test cellular function, microphysiometry was employed and confirmed an activity of 

TATP on mouse embryo fibroblasts (NIH-3T3) on a similar time scale as observed with 

confocal microscopy. An exposure to the CPP resulted in a rapid, concentration-dependent 

decrease of the extracellular acidification rate (ECAR) of the fibroblasts. The decrease of the 

ECAR could be inhibited by a simultaneous administration of exogenous heparan sulfate. 

However, the ECAR decrease could not be mimicked by an equivalent concentrations of the 

same amino acids added as monomers. 

 

Ryser, in his work published in 1968 (Ryser, 1968), stressed already the difference 

between adsorption and uptake. In our study, these two concepts could be translated into A) 

“aggregate formation” and B) “fluorescent label internalization”. B) is most probably the 

consequence of A), and A) seems to require the presence of the GAG heparan sulfate in order 

to occur. These findings, in agreement with others (Tyagi et al., 2001), suggest that also the 

internalization of HIV-1 requires an adsorption at the cell surface with heparan sulfate or 

similar proteoglycans of the glycocalix. The aggregates observed in the present work are new 

findings for this particular CPP. However, a similar phenomenon has been reported in the past 

for specific antibodies against heparan sulfate (Martinho et al., 1996) and its proteoglycan 

syndecan-1 (Carey et al., 1994). Such antibodies induced aggregates on cells and enhanced 

the cellular uptake, including the transfer to the cell nucleus (Ishihara et al., 1986). 

Importantly, this phenomenon was also observed at 4 °C (Martinho et al., 1996) and is 

therefore in surprisingly close analogy to the reported, temperature-independence of the TAT 

uptake (Vives et al., 1997) and polylysine uptake (Ryser, 1968). 

 

While the adsorptive process of TATP seems to be confirmed with these experiments, it 

could not be answered how the subsequent internalization mechanism proceeds. It could be a 

new type of transport that include a rapid translocation to the nucleus, or a more classical 

adsorptive endocytosis. However, inverted micelle formation with lipids (Derossi et al., 1996; 

Prochiantz, 2000) appears to be very unlikely.  

 

Therefore, the evident adsorption reported in this work strengthens the hypothesis of 

endocytosis as a likely mechanism for the uptake of CPPs. Adsorptive endocytosis should 
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involve the formation of endosomes, which were seen in fixated cells (Console et al., 2003), 

but could not be observed with the techniques employed in the present study.  

 

Finally, as seen in microphysiometry experiments, the potential toxicity of CPP should be 

seriously taken into account and caution should be used before the formulation of attractive 

clinical methods for the improvement of drug delivery and gene therapies involving these 

CPPs. 
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Part Three: Functional Magnetic Resonance Imaging of 

the Mouse Brain 

General Introduction 

Functional magnetic resonance (fMRI) is one of the most modern imaging applications 

based on nuclear magnetic resonance (NMR). It is not the aim of this work to present the 

theory of NMR in general, as this is extensively reported in textbooks (Levitt, 2001). In order 

to outline the complexity of the experiments performed in the present project it is, however, 

necessary to shortly review the historical steps leading to the fMRI development both from 

the technical as well as from the biological point of view.  

 

The discovery of NMR, reported for the first time in 1946 (Bloch, 1946; Bloch et al., 

1946; Bloch et al., 1946; Purcell et al., 1946), awarded Edward Purcell and Felix Bloch with 

the Nobel Prize in Physics 1952. Twenty-five years later the first NMR experiment on living 

organisms was performed by Raymond Damadian (Damadian, 1971). In this experiment, 

Damadian found that the relaxation times of malignant tumors differed significantly from 

those of normal tissues, suggesting the potential use of 1H-NMR for clinical diagnostics. In 

the same period, Moon and Richards (Moon and Richards, 1973) showed how the 

intracellular pH could be determined in intact erythrocytes by chemical shift differences using 

high-resolution 31P-NMR spectroscopy.  

 

Between 1973 and 1974, Lauterbur (Lauterbur, 1973) and Mansfield (Garroway et al., 

1974) described the first NMR imaging experiment (or MRI, for Magnetic Resonance 

Imaging). This technique involved the superposition of position-dependent magnetic fields 

gradients to the static magnetic field, which allowed the reconstruction of the spatial 

distribution of spins in the form of an image. Further improvements of planar imaging 

techniques, included the 2-dimensional Fourier imaging technique (2DFT), introduced in 

1975 by Kumar, Welti and Ernst (Kumar et al., 1975; Kumar et al., 1975). Pulsed NMR in 

combination with Fourier Transform represents nowadays the heart of modern NMR 

experiments. The achievements of Richard Ernst in pulsed Fourier Transform NMR and MRI 

were acknowledged with the Nobel Prize in Chemistry 1991. The Nobel laureates in medicine 

were awarded to Mansfield and Lauterbur just recently (2003).  
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In 1977, Damadian demonstrated MRI of the whole body. In the same year, Peter 

Mansfield developed the echo-planar imaging (EPI) (Mansfield, 1977; Mansfield and 

Maudsley, 1977; Mansfield and Maudsley, 1977), a technique that allowed NMR imaging at 

video rates (30 ms / image). 

In 1980, Edelstein and coworkers adapted Ernst's technique to the imaging of the body 

(Edelstein et al., 1980; Edelstein et al., 1980; Hutchison et al., 1980). At this time, the 

temporal resolution of image acquisition was in the order of five minutes. By 1986, the 

imaging time could be reduced to about five seconds mainly as a result of stronger magnetic 

fields (no longer need for averaging) and faster switching gradients (for the use of EPI). 

 

Since then, improvement of technical aspects, e.g. superconducting technologies, allowed 

the construction of scanners with higher and more homogeneous magnetic fields. In 1987 

echo-planar sequences could be used to image a single cardiac cycle in real-time (Chapman et 

al., 1987). In the same year Charles Dumoulin was perfecting magnetic resonance 

angiography (MRA), which allowed imaging of flowing blood without the use of contrast 

agents (Dumoulin et al., 1987; Dumoulin et al., 1987; Wood et al., 1987). 

 

Functional MRI (fMRI) was developed in 1993 and included the use of Gadolinium 

(however, the effect of Gadolinium as contrast agent for MRI was already found in 1988 

(Villringer et al., 1988)). Functional MRI allows the mapping of activated regions of a living 

organism in response to a neuronal excitation. In neurosciences the development of fMRI 

opened up a new non-invasive way to map the activated brain regions responsible for 

cognitive and motor processes.  

 

In parallel, other imaging techniques were developed. In 1994, researchers at the State 

University of New York at Stony Brook and Princeton University developed MRI of 

hyperpolarized 129Xe gas for lung imaging (Albert et al., 1994). Lung imaging is a challenge 

because the thin alveoli have many air-to-tissue interfaces so that the local magnetic field is 

disturbed (susceptibility differences) resulting in non-coherent spins for MRI. Nowadays, 

NMR spectroscopy and MRI are world-wide used techniques, which find applications from 

routine clinical diagnostic and surgery (open scanners), to basic science solid-state 

spectroscopy, and cognitive sciences. 
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Chapter 3. fMRI of the Murine Brain 

3.1 Introduction 

Functional MRI finds its main application in brain research and neurocognitive studies 

using fMRI have rapidly increased in the last few years. The technique is based on the 

finding, that tissue activation causes changes of blood flow (hemodynamic modulations) and 

oxygen consumption. Various phenomena based on hemodynamic modulations of activated 

brain regions are exploited for fMRI acquisitions: i) blood-oxygenation level dependent 

(BOLD) effect (Ogawa et al., 1992), ii) arterial spin labeling (ASL) techniques, based on T1 in 

cerebral blood flow (CBF) (Kwong et al., 1992), and iii) relative cerebral blood volume 

differences (rCBV) (Belliveau et al., 1991; Belliveau et al., 1990). The latter method, also 

called bolus technique, requires the use of intravascular contrast agents that alter the magnetic 

susceptibility of the microscopic vessels. 

 

The promise of fMRI for mapping brain function extends also to animal models and thus 

has the potential to link fundamental and clinical research. The first application of fMRI to 

animal models goes back to Hyder and coworkers (Hyder et al., 1994) who could localize 

with BOLD contrast an activated volume of brain tissue in chloralose-anaesthetized rats 

during electrical stimulation of the forepaw. A similar experiment in rats highlighted the 

correlation between BOLD response and the frequency of electrical peripheral stimulation 

(Gyngell et al., 1996). These studies, together with T2*-weighted imaging (Brinker et al., 

1999), provided evidence that the hemodynamic signal observed with fMRI is tightly coupled 

to the neural electrical activity in the activated brain areas. This correlation is called 

neurovascular coupling.

As a result, fMRI in rat models has been extended to study cerebral tissue pathologies. 

Functional alterations upon pharmacological stimulation with the GABAA antagonist 

bicuculline could be observed in cases of ischemic seizures (Dijkhuizen et al., 2000; Hoehn et 

al., 2001; Reese et al., 2000). These findings highlighted the potential of fMRI for pre-clinical 

research. It is a non-invasive imaging modality able to provide functional, i.e. physiological, 

readouts for the assessment of brain function even in the absence of structural evidences for 

tissue impairment (see (Rudin et al., 1999) for review). 
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Other contrast methods, based on T1 (ASL) or T2 (CBV) weighted imaging, have been 

tested in fMRI preclinical studies on animals (see (Beckmann et al., 2001) for review), both 

during electrical (Kerskens et al., 1996; Silva et al., 1999) and pharmacological (Chen et al., 

2001) stimulation paradigms. Contrast agent enhanced fMRI techniques were shown to 

provide a signal-to-noise ratio (SNR) 1.5 to 6 times higher than BOLD imaging, depending on 

the magnetic field strength of the scanner (Mandeville et al., 1998). 

 

In parallel to the development of fMRI, an increasing number of animal models for 

various diseases have emerged, mainly based on transgenic mice. This requires further 

technical improvements due to the smaller brain size in mice as compared to rats. Indeed, the 

sensitivity of MR scans decreases with decreasing voxel size which directly affects the spatial 

resolution of the MR image obtained. This problem can be compensated by longer acquisition 

times (higher number of averaged scans). However, the fact that in vivo MRI with animals 

requires the employment of systemic anaesthesia limits the total experimental time. The 

monitoring and controlling of physiological parameters (body temperature, respiration, blood 

gas levels) is another fundamental requirement for performing fMRI on anaesthetized animals 

and this is still a challenge considering the small size of mice. Recently, the first fMRI studies 

on mice have been published by Müggler and coworkers (Mueggler et al., 2001; Mueggler et 

al., 2003; Mueggler et al., 2002). Using a state of the art equipment, these works reported for 

the first time relative CBV variations in healthy mice, using fMRI in response to a 

pharmacological stimulation (Mueggler et al., 2001). Subsequently, the same technique was 

applied to detect hemodynamic response impairments in transgenic amyloid precursor protein 

(APP23) murine models, using an electrical stimulation paradigm (Mueggler et al., 2002). 

The evolution of the hemodynamic response could be determined in a long-time scheduled 

experiment with the same model (Mueggler et al., 2003). Such methods will replace in part 

invasive techniques, and thus improve the animal welfare and decrease the number of animals 

that are currently employed in basic research. 

 

The aim of the present work was to apply functional MR imaging to the mouse brain, 

using a transgenic mouse model to measure the brain response to the neuro-transmitter 

gamma-amino-butyric acid (GABA). A first goal was to identify in vivo cerebral areas related 

to GABA(B) receptor activation. For this purpose, a pharmacological stimulation paradigm 

(using the acknowledged GABA agonist baclofen) was chosen. A second goal was to assess 

with fMRI functional differences between wild type and GABA(B)-R1-/- knock-out mice. In 
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1997, a gamma-amino-butyric acid receptor type B (GABA(B)) knock out mouse model was 

produced for the first time (Kaupmann et al., 1997). Mice with a GABA(B)-R1 knock out 

genotype present a number of phenotypic peculiarities, i.e., hyperactivity (typical clock-wise 

compulsive running in the cage), epileptic seizures, almost permanent piloerection (which is 

an indicator of a frightened attitude) and disordered behaviour (in burrow organization, social 

life). As a third goal, we investigated whether drugs suspected to interact with GABAB 

receptors act on specific brain regions. Among them was γ-hydroxy-butyrate (GHB), a 

precursor of γ-amino-butyric-acid (GABA). Recently, GHB has become a popular party drug. 

Indeed, people ingesting GHB are subject to hypnotic-like cognitive and emotional 

alterations, not devoid of side effects. Finally, the potential use of in vivo 13C-NMR 

spectroscopy to study the GHB metabolism in mice was evaluated. 
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3.2 Theory  

Measuring Relative Cerebral Blood Volume Changes 

 

Cerebral blood volume changes can be measured with fMRI with two different methods, 

using either exogenous intravascular contrast agents that can affect the protons relaxivity 

(Moseley et al., 1992) or the local magnetic susceptibility (Hamberg et al., 1996). The first 

method involves the fast injection of a contrast agent into the cardiovascular system of the 

organism. Subsequently, the signal drop during the first pass of the contrast agent through the 

microvasculature is quantified (see (Rudin et al., 1997) for a comparison between intra-

arterial and intravenous injection). This method is called Bolus technique or dynamic 

susceptibility contrast technique (for a detailed description of tracer kinetics, see (Buxton, 

2002), page 318). In short, this technique correlates the variation of the effective spin-spin 

relaxivity, ∆R2*, with the cerebral blood volume, CBV: 

 

20
( )R t dt CBV

∞ ∗∆ ∝∫ [1] 

 

According to this equation, CBV maps1 can be calculated from measured changes in ∆R2*

performed pixel-by-pixel. This relation is valid, because ∆R2* is proportional to the local 

concentration of the tracer, CT(t), that changes as a function of CBV. However, it seems that 

for spin-echo studies the relationship between ∆R2 and CT(t) is non-linear, which makes the 

calculation of the relative CBV (rCBV) less accurate compared to other techniques. 

 

The second method assumes a stable plasma concentration of the contrast agent in the 

brain. After an intravenous (i.v.) injection, the concentration of the intravascular contrast 

agent reaches a steady-state. The non-linear relationship between ∆R2 (or ∆R2*) and CT(t) 

does no longer affect the accuracy, because CT(t) is theoretically constant. In practice, the 

stability of steady-state depends on the half-life of the contrast agent in the vascular system, 

which can become a limiting factor in the duration of an experiment. The use of intravascular 

contrast agents with a long half-life in blood is recommended. 

 

1 CBV maps are images where the image intensity represents a certain CBV value. 
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 The measured NMR signal intensity in a particular brain area is influenced by the local 

contrast agent concentration that changes when the regional cerebral blood volume (CBV) 

changes. Consequently, changes in signal amplitude reflect changes of the rCBV in that brain 

area. This method is called steady-state contrast-enhanced technique.

After injection of the contrast agent, the transverse relaxation rate (∆R2 or ∆R2*) in the 

animal brain varies from the pre-injection baseline. This change is proportional to the local 

CBV, times some function (f) of the plasma concentration of the paramagnetic contrast agent 

[P] (Belliveau et al., 1990); (Boxerman et al., 1995). Under steady-state conditions, the 

plasma concentration of the contrast agent is constant and the transverse relaxation rate is 

directly proportional to the CBV: 

 

2 ( ) ( )R t k CBV t∗∆ = ⋅ [2] 

 

where the constant k depends on the injected amount of the contrast agent. 

 

Relative changes of CBV (%), for example during a functional stimulus, can be calculated 

assuming monoexponential decay of the MR signal and neglecting other interferences, e.g. 

BOLD effect: 

 
( )

0( ) TE K CBV tS t S e− ⋅ ⋅= [3] 

 

where S0 is the equilibrium signal before injection of contrast agent, TE is the echo delay and 

k·CBV(t) describes the transverse relaxation rate R2 (= 1/T2) or R2* (= 1/T2*), for SE or GRE 

acquisitions, respectively. 

 

In functional imaging, the relative CBV change related to the functional stimulus can be 

calculated by correlating the signal intensities measured before the injection of the contrast 

agent, S0, the signal at steady-state after the injection of the contrast agent, S(0), and the 

signal during the functional stimulation, S(f). The resulting fractional volume change ∆CBV 

= CBV(t) – CBV(0) can thus be expressed as 
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During exogenous contrast enhanced functional imaging, an opposing effect can occur 

between increases in ∆R2* due to the increased blood volume and decreases in ∆R2* due to 

endogenous (deoxyhemoglobin) agent (BOLD effects). Therefore, sufficiently high amounts 

of exogenous contrast agent must be used in order to induce relaxation rate changes that 

significantly exceed BOLD effects. Recently, Scheffler and coworkers (Scheffler et al., 1999) 

could quantify rCBV changes and blood oxygenation level and thus separate the competing 

influences of oxygenation and blood volume changes in T2
*-weighted images, by using an 

acoustic stimulation paradigm in humans. 
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 3.3 Material and Methods 

 

All animal experiments were performed according to the Swiss federal laws for animal 

protection (animal experiment licence #1897: “GABA-B Rezeptorstudien am Mausmodell”). 

 

Animal Models 

Wild type Balb/c and GABAB(1) – deficient (Balb/c GABAB(1)
-/-) mice were kindly 

provided by Prof. Dr. Bernhard Bettler (Pharmazentrum, Basel, CH). For the transformation, 

the GABAB(1)  gene of Balb/c embryonic stem (ES) cells (Dinkel et al., 1999) was knocked 

out by homologous recombination with a targeting vector containing a neomycin (neo) 

resistance marker flanked by 4.6 and 1.4 kb of 129Sv DNA. The targeted mutagenesis caused 

a deletion of a 8.5 kb in the GABAB(1)  locus carrying the exons 7, 8, 9 and 10 which, together 

with exons 3-15, are responsible for the encoding of the N-terminal and transmembrane (TM) 

domains 1-6 of the polypeptidic receptor. The mutant genome was therefore isogenic for all 

Balb/c genes, except the 6kb recombined 129Sv DNA fragment that replaced the 8.5 kb of the 

GABAB(1) allele. The resulting GABAB(1)
+/- Balb/c cells were injected into C57BL/6 

blastocysts and chimeric males were crossed with Balb/c females. The resulting F1 generation 

of inbred Balb/c GABAB(1)
+/- mutant mice was thus heterozygous only for the GABAB(1) 

mutant allele. Finally, homozygous knocked-out Balb/c GABAB(1)
-/- mice were obtained at 

Mendelian ratio from Balb/c GABAB(1)
+/- X Balb/c GABAB(1)

+/- breeding pairs (Schuler et al., 

2001). 

 

Balb/c GABAB(1)
-/- mice present several phenotypic peculiarities at molecular, 

physiological and behavioural level, e.g., loss of detectable GABAB binding sites and GABA-

induced GTPγ[35S] binding, downregulation of the GABAB(2) subunit, loss of both pre- and 

postsynaptic GABAB responses, spontaneous epileptiform activity, hyperlocomotion, 

hyperalgesia and impairments in passive avoidance learning (Schuler et al., 2001). 

 

Compounds 

Sterile isotonic (0.9% NaCl, which is 9 g/L) NaCl solution was purchased from Fresenius 

(Stans, CH), Isoflurane was from Abbot (Cham, CH), Endorem (11.2 mg/mL) was from 
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Guerbet (France), γ-amino butyric acid (GABA) and γ-butyrolactone (GBL) were from Fluka,

baclofen was from Novartis (Basel) and 1-13C-labelled γ-hydroxy-butyrate was synthesized in 

our laboratory by Peter Ganz.  

 

NMR and MRI Scanners 

In Vivo functional Magnetic Resonance Imaging 

MRI and fMRI experiments were performed on a Biospec 70/20 (Bruker, Karlsruhe, 

Germany) with a gradient system of 14 cm inner diameter and a permanent magnetic field 

strength of 7 Tesla. All directives for the pulse sequences were managed through the Bruker 

manufactured softwares XwinNMR v3.1 and Paravision v2.0/v3.0 running on both Unix and 

Linux platforms. 
In Vitro High Resolution 1H and 13C NMR spectroscopy 

1H and 13C NMR spectroscopy of the compounds used were conducted on a Bruker DRX 

400 (9.4 Tesla) and experimental conditions were chosen as described in chapter 1. 

 

Animal Preparation for fMRI 

Prior to the measurements, mice were kept in type II cages (2-3 animals per cage) in a 

quiet environment with 12 hours dark/light cycles and had access to fresh water and complete 

food ad libitum.

For the experiments, wild type Balb/c mice and knock-out Balb/c GABAB(1)
-/- mice were 

initially anaesthetized in a chamber where a gas mixture of 3 % Isoflurane in 200 mL·min-1 O2

and 600 mL·min-1 N2O was dispensed. Mice were then transferred onto a home-made cradle 

(wood and plexiglas) and kept under 1.5-2.5 % isoflurane anaesthesia through a mask. Mouse 

eyes were kept humid with eye protective cream (Cibavision), to avoid damage from drying 

during the anaesthesia. For the infusions, a cannulation of the tail-vein was performed with a 

30-gauge needle (Microlance3, 0.3 x 13 mm) connected to a syringe by a polyethylene tube 

(inner diameter = 0.4 mm). After cannulation, mice were carefully positioned in the cradle 

with removable adhesive tape. Particular care was necessary to immobilize the head (to avoid 

MRI motion artifacts), yet allowing free respiration at all times. A home-made respiration 

sensor was leant on the mouse abdomen, to record respiration frequency through 
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diaphragmatic/abdominal mouvements and adapt the dept of the anaesthesia. Finally, the 

prepared animal was introduced into the scanner for fMRI. 

 

When the homoeothermic mouse heating system became available (formerly only water-

operated system for rats), the cradle was replaced by a precasted electrical heating blanket and 

a lubricated rectal thermometer connected with the feedback heating system was employed to 

stabilize the mouse body temperature. 

 

MRI Protocol 

The radiofrequency probe was an Alderman-Grant of 30 mm inner diameter. The imaging 

protocol for relative CBV changes visualization consisted of a fast spin-echo relaxation 

enhancement (RARE) sequence. Parameters: TR = 1100 ms; effective TE = 45 ms; RARE-

factor = 8; FOV = 1.6 x 1.6 cm2; matrix dimension (MTX) = 128 x 128; slice thickness 

(SLTH) = 1 mm; frequency sweep width = 50 kHz; 7 slices, resulting in an acquisition time of 

18 s; number of averages/averaged experiments NA = 2 and NAE = 10, respectively, resulting 

in a total acquisition time of 6 min. 

fMRI Protocol 

The protocol developed for functional NMR imaging of relative CBV changes, consisted 

of an automated repetition (20 times) of the above described series, resulting in a total 

experimental duration of 2 hours. After 3 scans (18 min) of a pre-contrast base line, 50 mg 

Fe/kg body weight of superferromagnetic nanoparticles (Endorem®) were injected i.v. as 

contrast agent. After 4 more scans (24 min) to reach stady state, 5 mg baclofen/kg body 

weight or a correspondent volume of isotonic NaCl solution (placebo) were infused through 

the intravenous (i.v.) tail cannulation. 

 

Analysis of fMRI Acquisitions 

Images were analyzed according to signal intensity changes over time using the software 

BioMap 2.x (Martin Rausch, Novartis-Pharma AG, Basel) and CBVrel changes were 

calculated according to eq. 4.  
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Monitoring of Physiological Parameters 

Anaesthesia 

Mice were anaesthetized with a gas mixture of 0.7-3 % Isoflurane in 200 mL·min-1 O2 and 

600 mL·min-1 N2O, through a face mask. The animals were allowed to breathe spontaneously 

and the isoflurane concentration was regulated in order to keep a constant breathing rate of ~ 

60 min-1.

Respiration 

 The monitoring of the breathing rate was achieved using a home-made mechanical/fiber 

optic sensor, connected to the computer. The sensor (consisting of a thin plexiglas strip 

connected to a light gate) was carefully situated on the abdomen of the mouse, near the costal 

arch. Shifts of the plexiglas strip induced by the respiratory movements, in turn interrupted 

the passage of a fiber optic beam and were monitored on the computer. 

Temperature 

In initial experiments, regulation of the mouse body temperature could not be made. In a 

later moment, a homoeothermic blanket system (Harvard Apparatus, Holliston, MA, USA) 

became available. Here, mice were placed backside on the heating blanked and a rectal 

thermometer was used to record the body temperature. The thermometer was connected with 

a feedback system aiming at a stable measured temperature of 37 °C. 
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3.4 Results 

 

The purpose of the present chapter was to develop a fMRI protocol to identify specific 

activated brain regions in mice after pharmacological stimulation of GABA-B receptors. 

 

Determination of Tissue-specific Relaxation Times in the Mouse Brain 

 The sensitivity to detect minute changes in CBV measurements is highest if the effective 

TE of the fMRI sequence is chosen close to the T2 of the tissue (Figure 3.1). 

 

Fig. 3.1. Decay of the transverse magnetization Mxy after a spin excitation as a function of 
the relaxation times. Two spin populations with different relaxation times T2 = 60 and 100 
ms were plotted. Here, changes in R2 can be best detected at a time point where the 
difference between the relaxation curves is maximized, i.e. exactly between both relaxation 
times (here 80 ms). 

 

Therefore, determination of T2 in different brain areas are required especially with addition of 

the contrast agent Endorem® (see Figure 3.2)  

For this purpose, the relaxation times of different brain areas were measured by using a 

multislice-multiecho spin echo (MSME) imaging sequence, where the echo spacing between 

consecutive images were set to a 20 ms spacing. This sequence is a modified Carr-Purcell-

Meiboom-Gill (CPMG) sequence where the spins are first excited with a 90° pulse and the 

signal is repeatedly measured during consecutive 180° refocusing pulses:  
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Figure 3.2. Determination of tissue-specific T2 in the Mouse Brain using a multislice-
multiecho (MSME) spin-echo MRI sequence with a echo spacing of TE = n·20 ms between 
adjacent images; taken without (upper row) or after (lower row) intravenous injection of the 
intravascular contrast agent Endorem® (50 mg/kg body weight). Field strength B = 7T, TR 
= 2500 ms. The decay of the MR signal (due to the differential relaxation rates) in different 
brain areas represents a critical factor to choose (i) an optimal TE in fMRI  (ii) the 
preservation of sufficient signal from the fast-relaxing cerebral regions must be chosen. 

 

The images of Figure 3.2 show that the NMR signal in some brain areas relaxes slower 

than in others. A quantitative analysis of the image intensity in the different brain regions was 

fitted to M = M0[exp(-t/T2)]. Long relaxation times were found in the  brain areas with high 

water motility, such as ventricle (average T2 of 170 ms and 125 ms for normal brain and in 

the presence of 50 mg/kg body weight Endorem®, respectively) or a high fat content (average 

T2 = 90 and 80 ms). The shortest relaxation rates could be observed in the muscular tissues 

where the water motility is restricted (average T2 = 35 and 25 ms). Data are reported in 

Figure 3.3. 
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Figure 3.3. Tissue-specific Relaxation Time T2 in different Brain Areas. The spin-spin 
relaxation time T2 at 7T was calculated from MSME MRI scans in several brain areas of 
the mouse prior and after i.v. injection of 50 mg/kg body weight of the intravascular 
superparamagnetic contrast agent (Endorem®) according to the monoexponential decay 
function M = M0[exp(-t/T2)]. Average values resulting from the analysis are reported in the 
table on the right. 

 

As reported by Kaupmann and coworkers (Kaupmann et al., 1997), GABAB receptors are 

distributed homogeneously throughout the brain (see Figure 3.4). However, it is not possible 

to foresee which specific anatomical regions are activated upon systemic baclofen 

administration - an agonist of the GABAB receptor. The fact, that analogues compounds to 

baclofen, such as GHB (also found to be a weak GABAB agonist) affects emotional and 

sensorial processes, may suggest an involvement of brain regions connected to the limbic 

system. For our experiments, we thus adapted the TE of the RARE sequence to the T2 

measured in the cortical and amygdaloid regions in the presence of endorem (average T2 of 

60 ms). At the same time, however, we performed multislice (7) scans, in order to cover an 

extensive brain volume. 
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Figure 3.4 In situ hybridization analysis of GABAB-R1 transcripts in rat brain. Tissue 
sections were hybridized to 35S-labelled antisense probes. Darkfield illuminations of 
representative autoradiograms of coronal (a,b) and horizontal (e) sections. A) dorsal 
hippocampus plane; b) ventral hippocampus plane; c) dorsal tier of the brain. Transcripts 
are abundant in all cerebral cortical layers, especially in the layer IVb (LVIb), and many 
subcortical structures. CA1-CA3: pyramidal cell layer subfields of hippocampus; DG: 
dentate gyrus; MH: medial habenula; MG: nucleus geniculatus medialis; SNc: substantia 
nigra, pars compacta; VTA: ventral tegmental area; AN: amygdaloid nuclei; ARH: nucleus 
arcuatus hypothalami; MM: corpora mammillaria; P: Purkinje cells of the cerebellum; GL: 
granular layer of cerebellum. The pictures are a personal courtesy of Prof. Bernhard Bettler, 
university of Basel. Adapted from (Kaupmann et al., 1997). 

 

Baclofen-Induced Cerebral Blood Volume Changes in wt Mice 

To assess changes in the relative CBV of specific brain regions of wild type Balb/c mice, 

modulations of the MRI signal from the post-contrast base-line were recorded, then roughly 

screened on a pixel-to-pixel basis with a Paravision analysis tool and then with the software 

Biomap (Martin Rausch, Novartis-Pharma AG, Basel). After defining an intensity threshold, 

groups of voxels corresponding to specific brain regions were merged into selected regions of 

interest (Roi). From Roi, the relative cerebral blood volume change (CBVrel) upon baclofen 

systemic injection was calculated considering the NMR signal intensities pre- and post- 

injection of the contrast agent, according to the equation (4). After screening of several 

regions in the different slices of the mouse brain, one region was identified, that presented 

significant activation in both hemispheres, after injection of baclofen (5 mg/kg body weight). 

The two vertical red dashed lines define the brain volume included in the MRI scans shown in 

Figure 3.5 B) and C). As an histological reference, Figure 3.5 A) reports a pictorial 

representation of the murine brain surface. 
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Figure 3.5. Activated Regions of Interest (ROIs) in the Mouse Brain. A) Sketch of the 
murine brain surface: the dashed red lines display the imaging planes selected for fMRI 
scans B) and C); the indicative topography of the sulcus rhinalis (rs), cortex perirhinalis 
(areas 35 and 36) and cortex entorhinalis is highlighted in dark grey. A,P,D,V indicate 
anterior, posterior, dorsal and ventral orientations of the brain, respectively.  
B) and C): steady-state contrast enhanced fMRI of a Balb/c mouse (coronal scans): after 
reaching steady-state with the contrast agent (i.v. injection of 50 mg/kg body weight of 
Endorem®), a dose of 5 mg/kg body weight of the GABA agonist baclofen was injected i.v. 
The red areas include the regions of interest (Roi) in which a significant change in CBV 
was observed.  
RARE sequence at 7T: TR = 1100 ms; effective TE = 45 ms; RARE-factor = 8; FOV = 1.6 
x 1.6 cm2; MTX = 128 x 128; SLTH = 1 mm; frequency sweep width = 50 kHz; number of 
averages/averaged experiments NA = 2 and NAE = 10, number of repetitions NR = 20 
including pre-contrast scans. Slice positions are B) ~ -1 mm and C) ~ -2.5 mm from 
Bregma. 
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Figure 3.6 Histological Sections of the Mouse Brain. Slices positions: A) Bregma: -1.64 
mm; interaural: 2.16 mm; B) Bregma: -2.75 mm; interaural: 1.05 mm. The dashed white 
lines include the regions activated upon baclofen exposure, as shown by fMRI at 7T. 
Anatomical abbreviations: Ect: cortex entorhinalis; PRh: cortex perirhinalis; LEnt: cortex 
entorhinalis lateralis; AuV: auditory cortex, pars ventralis; Au1: primary auditory cortex;  
AuD: auditory cortex, pars dorsalis BMA, BMP, BLA, BLV, BLP: nuclei corpum 
amygdaloideum; S2: second somatosensory cortex; RSA, RSG: retrosplenial 
agranular/granular cortex; cg: cingulum; D3V: ventriculus tertius (dorsal part); CPu: 
putamen and ncl. caudatus (striatum); LGP: ncl. pallidus lateralis (ncl. lentiformis); 
CA1,CA2,CA3: hippocampal fields; DG: gyrus dentatus; fi: fimbria hippocampus; S: 
subiculum; mt: tractus mammillothalamicus; rf: fissura rhinalis; Pir: cortex piriformis; 
SNC, SNR: substantia nigra (pars compacta and pars reticularis); LV: lateral ventricle; 
S1BF, S1Tr, S2: somatosensory cortex (primary and secondary); M1, M2: primary and 
secondary motor cortex; V1M, V2B, V2L: visual cortex (primary and secondary); Th: 
thalamic area; VPM: thalamic nucleus (ventral posteromedial). Adapted from “The Mouse 
Brain Library” (National Institute of Mental Health, USA). 
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Figure 3.7. Baclofen-induced Brain Activation in Balb/c Mice. Relative CBV changes are 
plotted as a function of time since administration of baclofen (min). In a group of four 
Balb/c mice (black squares), i.v. injection of baclofen at a dose of 5 mg/kg body weight 
was injected. In a control animal (dark diamonds), a correspondent volume of saline 
isotonic solution (NaCl 0.9 %) was administered instead of baclofen.. A significant 
(P<0.001) ∆CBV(%) of ~ 10-12 % appears bilaterally in cortical regions including 
auditory, perirhinal and entorhinal cortex. Vertical bars represend SD. Mice are freely 
breathing. No heating system. Isoflurane concentration of 0.6-1.2% in the gas mask. 

 

Figure 3.7 displays the relative change of CBV in wild type Balb/c mice brain, against 

time. The data were extracted from the highlighted region of interest situated in the brain 

cortex (Figure 3.5 B) and C), red ROI), comprising the auditory, perirhinal and entorhinal 

cortical areas (see Figure 3.6). In figure 3.7, the first three points (corresponding to scans 0-2), 

were considered as steady-state baseline Endorem concentration. In a group of 4 mice, the 

injection of the GABA agonist baclofen caused a decrease of the signal intensity in the 

selected cortical area, corresponding to a CBVrel increase of ~ 5 %. The ∆CBVrel reached a 

maximum of 10-12 % after 18 minutes after the agonist injection (black squares). The 

baseline was reached again after 48 minutes. Data correspond to mean values ± standard 

deviation from 4 different animals. As a control, an equivalent amount of isotonic NaCl 

solution was injected in a mouse of the same progeny (black diamonds). In this case, no larger 

changes in ∆CBVrel were observed. The difference in the median hemodynamic response 
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measured between the control and positive subjects was assessed by non-parametrical analysis 

(Mann-Whitney) and showed statistical significance (P<0.001). 

 

These initial experiments were performed without an appropriate system to keep a 

constant mouse body temperature. Considering the temperature evolution reported in Figure 

3.9, it is clear that the animals were measured in hypothermic conditions and the consequence 

of this will be discussed in the next section. We therefore limited the number of animals used 

to 5 (4 positive stimulations and 1 placebo control). 

When a homoeothermic blanket system became available (see material and methods in 

section 3.2), further experiments were performed with the new experimental setup. In these 

cases, two wild type and one knock out model were measured at a constant measured rectal 

temperature of 37 °C. For the evaluation of the temperature regulation device, a few 

observations deserve attention: 1) to keep a rectal temperature of 37 °C, the blanked surface 

had a temperature of 54 °C, which is a dangerous condition for the animal skin in contact; 2) 

under these heated conditions, the same concentration of 5 mg/kg body weight of baclofen 

was much less tolerated than under hypothermic conditions which resulted in a deep 

respiratory depression at the limit of respiratory failure. We therefore limited the investigation 

with this second experimental setup to 3 animals (2 wt and 1 ko). Future experiments should 

aime at reducing the baclofen concentration at these temperatures and at stabilizing the 

temperature over a longer time (to avoid larger T differences between rectum and blanket).  

 

Comparison between wt and ko strains led to the following conclusions: paralysis and 

strong respiratory depression after baclofen administration was only observed in wt mice and 

such instability was not only limited to the brain, but was a generalized effect (oscillation 

even in muscular tissues), fMRI data show (Figure 3.8) that a change in CBV in wild type 

mice was observed, in contrast with GABAB-R1 k.o. animals. However, this significant 

cortical activation observed in the first experimental setup (see Figure 3.7) could not be 

reproduced when using the heating device. The possible reasons for these differences will be 

discussed in the next section. 



111 

 

Figure 3.8. Baclofen-induced Brain Activation in Balb/c Mice. Percent CBV changes in 
cortical Roi as in Figure 3.5 are reported as a function of time (min), after administration of 
baclofen at 5 mg/kg body weight. Experiments were performed with two Balb/c wild type 
(black squares and triangles) and one GABAB-R1 knock-out (black circles) mice. Freely 
breathing animals. Rectal temp. = 37 °C kept stable through electrical heating blanket. 
Isoflurane concentration of 2-2.5% in the gas mask. 
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Correlation Between Mouse Body Temperature, Respiration and Anesthesia 

 

In our experiments, mice were allowed to breathe freely and were kept under anaesthesia 

through a face mask. Under anaesthesia, the endogenous capacity to regulate body 

temperature is impaired. For this reason, we investigated the evolution of body temperature of 

anaesthetized mice left at room temperature (20 °C), in the absence and presence of a heating 

device. In parallel, we monitored the breathing rate and the concentration of isoflurane 

required to keep the mouse anaesthetized. 

 

Figure 3.9. Evolution of temperature and Breathing Rate during Anaesthesia. The plots 
report: A) the measured rectal temperature of a Balb/c mouse breathing under face-mask 
anaesthesia with Isoflurane/O2/N2O; B) the breathing rate of the animal during the same 
experiment (blue squares), and C) the required concentration of Isoflurane necessary to 
keep the animal anaesthetized (green line). 

 

In figure 3.9 A) the variation of mouse body temperature is displayed against time (black 

squares). Here, the temperature decreases exponentially with time. In the experiment shown, 

already in the first minutes, the rectal temperature decreases by approximately 0.4 °C/min. 

After 60 minutes, the temperature decreased to 29.3°C indicating the need for a heating 

device. At time t = 62 min., the heating blanket was turned on, leading to a rapid increase of 
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the body temperature up to 37 °C, which was the programmed temperature in the 

homeothermic system. At all times, the concentration of isoflurane was adjusted to limit 

respiratory depression and stage IV narcosis (= asphyxia), (Figure 3.9 C), green line): after 10 

minutes, isoflurane was set to 1.2 % and the mouse came to a breathing rate of 30-35 

breathes/min (Figure 3.9 B). Note that at this time the rectal temperature droped to 33 °C. By 

keeping this isoflurane concentration, the respiration frequency increased a few minutes later 

up to 100 breathes/min and the mouse tended to wake up. The isoflurane was shortly 

increased to 2.0 %. As a consequence, a respiration was depressed again to 40 breathes/min. 

After 40 min, however, isoflurane concentration could be decreased again to 1.2 %, without 

waking up the mouse (in other mice, isoflurane concentration could be even kept as low as 0.6 

%) having a rectal temperature of 30 °C. 62 minutes after the beginning of the experiment, the 

mouse rectal temperature was of 29 °C. The heating blanket was then turned on, leading to a 

rapid increase of the mouse rectal temperature up to 37 °C. As a consequence of the 

temperature increase, the breathing rate increased distinctly after a 2-3 minutes delay, and the 

mouse started to wake up. The isoflurane concentration was subsequently increased, to keep 

the animal anesthetized. At a rectal temperature of 37 °C, the mouse could not be kept under 

anesthesia with an isoflurane concentration lower than 2 %. These observations indicate that a 

heating device is necessary to maintain the mice at physiological temperatures even during 60 

min fMRI experiments and that a tracheal intubation (artificial ventilation) of the mouse 

would facilitate the regulation of the anaesthesia. 

 

Analysis of GABA precursors for in vivo 13C-NMR spectroscopy 

 

Activation of brain regions with GABA agonist leads to the question of how the GABA 

agonists are metabolized in the mouse brain. With the goal to investigate the GABA 

metabolism in the mouse brain in vivo, we first recorded in vitro high resolution 13C-NMR 

spectra in order to characterize the molecules of interest. Three compounds, namely GABA, 

GBL and GHB, were considered. 

 



114 

 
Figure 3.10. 13C-NMR Spectroscopy of GABA and Related Metabolites. (A) GABA, (B) 
GHB and (C) baclofen. 

 

In Figure 3.10, 13C-NMR Spectra of GABA, GHB and baclofen are shown. The main 

differences are represented by the C-4 shift induced by the -OH residue of GHB (in 

comparison to GABA) and the phenyl ring of baclofen, indicated by the resonances C'. 

The biosynthesis of GABA occurs in the brain via decarboxylation of glutamate by 1- 

Glutamic Acid Decarboxylase (GAD). The metabolism of GABA proceeds via transamination 

to succinic semialdehyde by the enzyme GABA transaminase (GABA-T). After a 

dehydrogenase step, the molecule re-enters the TCA cycle as succinate acid (Daikhin and 

Yudkoff, 1998). The resonances C-4 and C-3 should thus be sensitive in vivo NMR 

parameters as they are strongly affected by all 3 enzymatic steps. Small changes in carbon C-

3, however, will be hard to detect by in vivo spectroscopy because it overlaps with much 

stronger signals from tissue lipids (-CH2- groups, 24-32 ppm) - in contrast to C-4. Carbon C-

1 is also unsuited for 13C labeling experiments because it also overlaps with tissue lipids (-

COOH group, 180 ppm) and has a long relaxation T1 time which causes signal saturation 

during rapid pulsing experiments. 
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3.5 Discussion 

The aim of the present study was to develop an fMRI protocol for imaging mouse brain 

activity after GABAB activation. To target GABABergic activation, we chose a 

pharmacological stimulation paradigm involving a systemic infusion of the known GABA 

agonist baclofen. The experiments were carried out on Balb/c mice. In addition to wild type 

mice, our study included a recently established strain derived from Balb/c mice by Bettler and 

coworkers (Schuler et al., 2001), in which the genes coding for GABAB-R1 receptor subunits 

have been stably knocked out. The goal was to compare wild type vs K.O. mice, in order to 

elucidate neural patterns underlying cerebral GABABergic activity. We were also interested 

in γ-hydroxybutyrate (GHB), a GABA derivative with agonistic affinity for GABAB 

receptors (Lingenhoehl et al., 1999) which is increasingly employed as life style drug (Wong 

et al., 2004). 

 

In a group of four Balb/c wild-type mice, a significant transient increase (30-40 min) of 

CBVrel in the order of 10-12% was observed after the systemic injection of 5 mg/kg body 

weight of baclofen. The hemodynamically activated brain regions included parts of the 

perirhinal, entorhinal and ventral auditory cortical areas. The maximum ∆CBVrel was 

observed at ~20 min after baclofen infusion and returned to basal values after ~ 1 hour.  

The activation could be monitored by fMRI at 7T with a spatial resolution of 125 x 125 

µm in the in-plane dimensions and a slice thickness of 1mm.  

Especially for small animals with limited tissue volume such as mice, MRI tends to be a 

compromise between image resolution and physiological stability: the higher the resolution, 

the less signal per voxel, the more signal averaging (= accumulation time) is required for an 

acceptable contrast. Signal averaging, however, is not only limited because of the stability of 

the animal in anaesthesia, but also because of the time window of the observed effect and the 

desired temporal resolution to follow such processes. In our experiments, the pharmacological 

GABAB receptors stimulation was expected to result in a long-lasting effect (slow synaptic 

inhibition; in the order of minutes), different from an electric stimulation with only a short 

transient effect (in the order of seconds). Considering a total experimental time above one 

hour, the number of averages were chosen such as to yield a good image quality, yet still a 

good temporal resolution for the drug effect: the time to record 7 brain slices was 6 min for 

the present experiments. 
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Relation between observed CBV Changes, Physiological Parameters and 

Anesthesia 

The appropriate monitoring and control of physiological parameters such as respiration, 

body temperature and blood gases concentration is crucial for a correct experimentation and 

interpretation of experimental results especially in fMRI. The small size of mice, which are 

one order of magnitude smaller than rats, make this task particularly challenging. 

 

In the present experiments, the mice had no tracheal intubation which is routinely used in 

humans in clinical anaesthesia. This procedure allows a mechanical regulation of the 

breathing rate, though this might cause severe injuries of the trachea when performed in such 

small organisms as mice. Therefore, the anaesthesia gas was provided by a face mask and the 

breathing rate was maintained at 60/min by adjusting the amount of isoflurane (reciprocal 

correlation). At physiological temperature (38°C in mice), the drop from 100 breathes/min to 

60/min as caused by the isoflurane provides usually a reasonable anaesthesia. On the one 

hand, free breathing is advantageous for handling. On the other hand, respiratory depression 

caused by anaesthesia and pharmacological stimulation, together with the physiological 

breathing irregularities, such as respiratory sinus arrhythmia (Neff et al., 2003) can lead to 

artifacts (blood gases and blood pressure changes) and critical conditions for the animal. 

The anaesthesia regulation used in our experiments has an important co-variable that 

might be fundamental for the discussion of the fMRI results: the breathing rate does not only 

depend on the amount of isoflurane (reciprocal relation), but also on the temperature 

(proportional relation). 

The first set of experiments was carried out in the absence of the appropriate mice heating 

device. To keep a stable mouse body temperature at physiological conditions (38 °C), an 

electrical homoeothermic feedback system was introduced in the later experimental setup. By 

inducing a hypothermic state (29°C) when the mouse heating device was not yet available, the 

first group of mice lowered their breathing rate already by hypothermia, so that less isoflurane 

was required to adjust the breathing rate to 60/min (0.5 - 1.2% instead of 2 - 2.5%, compared 

to mice at 37°C). The anaesthesia was less pronounced in this group of mice and the mice 

were more sensitive to sensorial (auditory and olfactory) stimulation under the influence of 

baclofen. In contrast, the thermo-stabilized mice (37°C) experienced a more profound 

anaesthesia (higher isoflurane content 2-2.5%). Therefore, the previously observed brain 

activation was not observed in the second group. In addition to the more pronounced 
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anaesthesia, isoflurane causes a general lowering of neural processes (Simon et al., 2001; 

Sugimura et al., 2001), has strong vasodilatory effects (Matta et al., 1999) and can interact 

with baclofen activity (Sugimura et al., 2002). 

Comparison of both mice groups allows the following two conclusions: (i) in fMRI, the 

existence of activated brain areas might be highly dependent on the depth of the anaesthesia. 

(ii) In order to eliminate breathing artefacts, the breathing gas should be administered by 

mechanical ventilation. 

The mice heating device could also be improved: heat was provided only by a half-body 

through which lacked a heating blanket on top of the animal. The feedback system, however, 

is regulated according to the input from the rectal thermometer and mice have a very low 

thermal inertia because of the high body surface/volume ratio. To keep 37°C rectal 

temperature, the single-sided heating blanket needed a temperature of 54°C, which is a 

dangerous condition for the mouse skin. Consequently, the surface temperature of the 

abdomen is much colder, because of its contact with cold air in the MRI tube (16-18 °C). This 

strong temperature gradient results in an instability of the vascular circulation, and thus 

affects the CBF and ∆CBVrel measurements in fMRI. This technical system could be 

improved either by a double-sided heating device or by heating the entire MRI tube (including 

the mice) with hot air. However, this would be only possible in combination with intratracheal 

intubation. 

Beside the less pronounced anaesthesia, also the direct effects of hypothermia on CBV 

could be responsible for the large CBV changes observed in the first group of mice. 

Hypothermia reduces CBF and CBV as a consequence of the reduced metabolism (Thomas et 

al., 2001). Such conditions have been shown to increase the signal amplitude originating from 

CBVrel changes during fMRI (T. Mueggler, personal communication). 

 Finally, the biological effects of baclofen on respiration (Olpe et al., 1978) and its 

different pharmacodynamics at different temperatures must also be considered. Besides its 

relaxant activity on muscles, baclofen has been shown to reduce the respiratory rate in rats, 

(Sved and Tsukamoto, 1992; Trippenbach, 1995). Moreover, it can alter blood dependent 

parameters such as CBV although there is non consense in the existing literature. Depending 

on the dose and site of injection (Chahl and Walker, 1980), baclofen can lower the blood 

pressure (Saito et al., 1999), especially in combination with anaesthesia (Brouillette and 

Couture, 2002; Lyew et al., 2003) or induce an increase of arterial pressure (Landulpho et al., 

2003) and heart rate (Trippenbach and Lake, 1994). In contrast, it has also been reported that 
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baclofen has no effect on arterial pressure, but modulates the carotid chemoreceptor reflex 

(Suzuki et al., 1999). 

It can be concluded that the moderate hypothermia and anaesthesia technique used for the 

first group of mice had some advantages to detect CBV changes after systemic baclofen 

infusion. 

 

CBVrel Changes in the Auditory Cortex after Systemic Baclofen Infusion in 

Wild-type Balb/c Mice. 

The discussion of the observed brain activation (auditory cortical areas) requires a brief 

summary of known brain anatomy. The auditory pathways starts from the nervus 

vestibulocochlearis, which projects separately toward vestibular and cochlear nuclei. From 

there, the auditory tract continues through the corpus trapezoideum and the lemniscus 

lateralis, and the information is projected to the colliculus inferior (IC), which is a crucial 

switching centre for acoustic reflexes. Through the pedunculus colliculi inferioris, the 

auditory tract continues to the medial geniculate body, which is then connected tonotopically 

to the auditory cortex. Few years ago, highly organized corticocollicular projections were 

described (Herbert et al., 1991). 

The colliculus inferior was recently shown to be sensitive to baclofen (Ma et al., 2002; 

Zhang and Wu, 2000). According to those findings, GABAergic inhibition in the auditory 

midbrain can be suppressed by a presynaptic activation of GABAB receptors. Here, 

stimulation with baclofen was shown to decrease the amplitude of inhibitory postsynaptic 

potential (IPSP) in the inferior colliculus (Ma et al., 2002), and thus promote the induction of 

long-term potentiation (LTP), in the presence of electrical activity in more peripherical 

regions of the auditory network, such as the lemniscus lateralis (Zhang and Wu, 2000). 

Our fMRI data show an activity change in auditory cortical areas, in terms of CBVrel 

changes, under the influence of baclofen. In our experiments, a continuous auditory 

stimulation is provided by the MRI gradients noise. Baclofen in the CNS could open the “IC 

gate”, which would lead to the alteration of the auditory excitation. Ultimately, this temporal 

pattern would correlate with a metabolic degradation of baclofen. On the basis of this auditory 

stimulation, it becomes more evident why one group of mice (not thermoregulated, ~ 0.5 – 1.2 

% isoflurane) did show this activation, whereas another group of mice (thermostabilized, ~2 – 

2.5 % isoflurane) was no longer sensitive to this baclofen-enhanced auditory stimulation. Our 
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project started with the screening of brain regions that could be activated under the influence 

of baclofen. Now that an activated brain region has been found and plausible interpretations 

have been proposed, a more detailed investigation should test this hypothesis. For example, 

the experiments could be repeated by isolating the animal from external auditory stimuli, 

using different degrees of anaesthesia and sire more attention to anatomical parts connected 

with the auditory network, such as the IC. 

 

CBVrel Changes in the Perirhinal/Entorhinal Cortex after Systemic Baclofen 

Infusion in Wild-type Balb/c Mice. 

 

Baclofen systemic administration resulted in a selective activation of cortical areas 

comprising brain regions including the auditory, perirhinal and entorhinal cortex of Balb/c 

wild-type mice. 

On the basis of the present experiments, it is not possible to elucidate the 

neurophysiological mechanisms causing the activation. However, a comparison with other 

studies allows a better understanding of how the activation of GABAB receptors could lead to 

such regional CBV changes. 

 

The effect of baclofen and other GABA agonists (such as GHB) on the functioning of 

memory has been discussed before (Teter and Guthrie, 2001). Behavioural studies in rats and 

mice describe impairing (Pitsikas et al., 2003; Stackman and Walsh, 1994), as well as 

enhancing (Saha et al., 1993; Sharma and Kulkarni, 1993) effects of baclofen on the 

achievement of memory requiring tasks. Memory and learning are highly complex tasks that 

involve many brain areas that are part of the limbic system. A schematic representation of the 

connections between these brain regions is shown in Figure 3.11. It is assumed that long-term 

potentiation (LTP) plays a crucial role in memory formation and that LTP induction is 

modulated through GABAB autoreceptors involved in the limbic system (Davies et al., 1991). 

As a GABAB agonist, baclofen directly interferes with these processes. Elucidation of such 

GABA activations in fMRI would ideally require the absence of anaesthesia. However, 

sensory stimuli may still influence the cerebral activity of an anesthetized animal, allowing a 

pavlonian-like conditioning under moderate anaesthesia (A. Lüthi, personal communication). 
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In the pathways involved in recognition, the perirhinal cortex, as well as the entorhinal 

cortex and hippocampus occupy a crucial role (Brown and Aggleton, 2001; Wan et al., 1999). 

Only the first two areas were found to be activated in the present study (in addition to the 

already discussed auditory cortex). The following outline could provide an interpretation for 

such selectivity. 

The perirhinal cortex is connected with the medial dorsal thalamic nucleus, while the 

hippocampus is connected with the anterior thalamic nucleus and the entorhinal cortex has 

both connections. Perirhinal and parahippocampal cortex together provide two thirds of the 

connections with entorhinal cortex, which is the gateway to the hippocampus. 

Although perirhinal cortex and hippocampus are anatomically linked, they are not necessarily 

dependent on each other, as shown, for example, in their independent roles in encoding 

episodic information and familiarity-based recognition (Aggleton and Brown, 1999).  

Studies focusing on the perirhinal cortex have shown differences in GABA transmission 

between temporal and entorhinal inputs including the differential activation of presynaptic 

GABAB receptors and differential regulation of inhibitory synaptic transmission in this 

region. These properties may be important in the control of neuronal activity in this region  

(Garden et al., 2002) and thus in its selective activation under specific stimulation. 

Unfamiliar information has shown to activate selectively perirhinal and parahippocampal 

regions, whereas retrieval activates more hippocampus and subiculum (Gabrieli et al., 1997). 

 

Moreover, the perirhinal cortex is strongly connected with the amygdala, a centre 

responsible for emotional processes. An activation in this regions upon GABAB receptor 

stimulation could be therefore expected, considering the amnesic and hypnotic effects 

observed in patients treated with other GABAB agonists, such as GHB (Teter and Guthrie, 

2001). 

 

Properties that distinguish the perirhinal cortex from the hippocampus, include parameters 

that could suggest why we observe an activation in these areas under our experimental 

conditions. The most studied memory-requiring tasks involve the visual system. However, the 

perirhinal cortex can receive multimodal sensory inputs (Burwell et al., 1995). For example, 

perirhinal/entorhinal cortex, but not hippocampus, were shown to be involved in olfaction-

based recognition (Petrulis and Eichenbaum, 2003). 
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Recent works support an influence of baclofen on the olfactory system in vitro (Belluzzi et 

al., 2004; Isaacson and Vitten, 2003) and on olfactory related learning tasks in rats in vivo 

(Okutani et al., 2003). 

Considering also the fact, that in the rodent brain, the olfactory system is more developed 

than in humans, the localization of CBV change in the perirhinal cortical areas of mice may 

be triggered by some incidence of the experimental conditions, i.e., a synergistic effect of 

baclofen and an olfactory stimulation coming from isoflurane under moderate hypotherma. 

Indeed, the pungent odour of isoflurane is a well known adverse feature of this inhalant, so 

that in the clinical literature it is often suggested to treat patients with other pre-medication 

anaesthetics, such as short acting barbiturates. Under deep narcosis, the patient is obviously 

not conscious of such irritant aspect of isoflurane. However, especially in the light anaesthesia 

of the first animal group and considering the rodent olfactory system, it is probable that the 

substance can induce a neural excitation in the olfactory bulbs, and thus transmit information 

to the linked cortical areas, in particular the perirhinal cortex. According to this hypothesis, 

the GABAergic modulatory effect of baclofen would induce CBV changes in this region. 

A future study could look systematically at these originally unexpected factors to prove 

whether this effect can be avoided by switching the administration of isoflurane from the face 

mask to an intratracheal intubation of the animal, which, by directly reaching the bronchi, 

would suppress the trigger of olfactory receptors. 
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Figure 3.11 Schematic diagram of the principal pathways underlying encoding and 
recollection of information in the brain. The areas where ∆CBVrel changes were observed 
by fMRI upon baclofen systemic administration (auditory, perirhinal, entorhinal cortex) are 
highlighted in red boxes. The influence of additional sensorial stimulation (olfactory, 
auditory) is reported over a classical diagram that relies brain structures of the limbic 
system involved in the encoding of episodic information and recollective aspects of 
recognition. The relative thickness of the lines indicates the putative importance of the 
connections. 
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Practical Considerations for in vivo 13C-NMR Spectroscopy on GABAB ko Mice 

 

In vivo 13C-NMR spectroscopy is much less sensitive than 1H-NMR imaging. First, the 

carbon atoms has 2 isotopes, 98.9 % 12C and only 1.1 % 13C. The latter is the isotope able to 

produce a NMR signal. This results in a much lower sensitivity, compared to the NMR signal 

generated from 1H. Secondly, the gyromagnetic ratio of the 13C nucleus is smaller than that of 
1H, which again affects the sensitivity. Moreover, spectroscopy does not focus on the single 

resonance from abundant tissue water, but on the spectral dispersion of compounds that are 

much less concentrated in living tissue (usually < 5 mmoles/L tissue), compared to water (40 

moles/L tissue). 

 

For two types of metabolites, namely lipids and glycogen, their concentration in living 

tissues is sufficient to quantify differences using just the natural abundance 13C signals. In 

most cases, however, 13C-NMR spectroscopy of natural abundance 13C signal is not sensitive 

enough to differentiate minute changes in tissue metabolites (concentration usually < 5 

mmoles/L tissue). In addition, the "background" 13C signals of lipids may mask the smaller 

signal from metabolites. Therefore, 13C NMR spectroscopy most often relies on stable isotope 

labelling. The molecule of interest, or a metabolic precursor, is synthesized with one or more 

selected carbon atoms replaced entirely by the 13C isotope. In this way, the 13C-NMR 

sensitivity can be increased by up to a factor 102, depending on how much of the endogenous 

metabolite can be replaced within the tissue (= fractional enrichment). To maintain 

physiological conditions, the absolute tissue level of the metabolite should not change, 

whereas for a good NMR observation, the fractional enrichment should rapidly increases to 

100% at the same time. This goal can only be achieved if the turnover rate of this molecule is 

very high or after longer infusion times. 

 

The background signal from lipids, which in general changes slowly over time, is simply 

subtracted during the infusion of the 13C enriched compounds. In this way, the pathway and 

the rate of metabolism for the 13C labelled molecule can be followed throughout the catabolic 

(or anabolic) process. For several reasons, however, the position of the 13C label within the 

molecule must be chosen with care.  
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Carbon atoms with a short NMR T1-relaxation time (e.g. methyl groups) are usually 

preferred over those with a longer relaxation time (e.g. carboxylic groups), in order to avoid 

saturation of the signal (and thus sensitivity decrease) induced by too rapid a pulsing. Indeed, 

to maintain an equal signal strength, carbons with a long relaxation time would require a very 

long repetition time (TR > 5 · T1) between the repetitive RF pulses, which is not suitable for 

in vivo experiments. 

 

Another factor that must be considered for the design of an appropriately labelled 

compound is its metabolic fate. An early “loss” of the labelled atoms in the metabolic 

pathways (e.g. via decarboxylation) should be avoided, in order to follow the metabolite for a 

sufficient number of metabolic steps. A third reason is purely technical: not every carbon 

position of a molecule is easily accessible for chemical labelling. 

 

Considering the aspects mentioned above, the neurotransmitter and drugs used in the 

fMRI experiments were subjected to various NMR measurements and considerations in order 

to focus on what carbon position would be the most appropriate for in vivo 13C NMR 

spectroscopy on mouse brains. Figure 3.12 shows the chemical structures of the compounds 

investigated, namely the endogenous neurotransmitter GABA (A), the medical GABA agonist 

baclofen (B) and the "party drug" GHB (C).  
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Figure 3.12. Chemical Structures of GABA and related Compounds. 
 

Using high resolution 13C NMR at 9.4 T, the following parameters were investigated, i.e., i) 

the chemical shift of the carbons with special consideration of a possible overlap with lipid 

resonances, ii) the effect of in vivo repetition times (~ 2 s) on relaxation/saturation, and iii) 

expected signal-to-noise ratios for a 60 min spectrum. The latter factor is based on the 

assumption that for a mouse of 30 g body weight, doses of GHB and baclofen of not more 

than 60 µg and 1.35 mg, respectively, can be administered because of the toxicity of the 

compounds. Indeed, the LD50 is 2 mg/kg (i.v.; male rats) and 45 mg/kg (i.v.; male mice) for 

GHB and baclofen, respectively (data from The Merck Index 12th ed.). In the case of 

baclofen, the dose used in our fMRI experiments was ~ 5 mg / kg mouse, and presented 

already toxic effects in few cases. For the evaluation of the signal-to-noise in a realistic in 

vivo MRS experiment (repetition time of 2s and 2000 scans), the effective amount of baclofen 
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present in the mouse brain has to be considered, which would be a small percentage (≤ 2-4% 

of the body volume) of the total amount injected. This would correspond to ~ 6 µg baclofen 

for an injection of 5 mg/kg body weight into a 30 g mouse. For 13C-MRS, 6 µg baclofen 

enriched with 13C to 100% would correspond to an equal amount of 13C present in ~ 0.6 mg of 

natural abundance baclofen (at only 1.1% fractional enrichment). The latter amount of non-

enriched compound was therefore chosen for in vitro 13C-NMR spectroscopy, as shown in 

Fig. 3.10. 

 

From a metabolic view, positions 2 to 4 are much more appropriate to be labelled, because 

the position C-1 can undergo rapid decarboxylation. Figure 3.10 C) also illustrates that under 

usual in vivo spectral conditions (repetition time = 2 s), the carboxylic C-1 is highly saturated 

and the signal-to-noise is much worse than for all other carbons. Although recorded at 9.4 

Tesla (and not at 7 Tesla as in the in vivo magnet), these spectra give a good estimate for the 

expected signal-to-noise at 7 Tesla. Labelling the position C-1 for in vivo experiments is 

inappropriate for a third reason: the carboxylic C-1 group of all compounds in Figure 3.10 

overlaps with the carboxylic resonances of lipids (175-185 ppm). Slight changes in the lipid 

composition during the experimental time might cause severe artifacts when subtracting NMR 

spectra before and after the infusion. An overlap with the lipid resonances at 22-32 ppm (-

CH2-) and 55-65 ppm (glycerol backbone and N-(CH3)3 groups) is also expected for the C-3 

of all compounds and the C-4 of GHB, respectively, so that positions C-2 (eventually C-4) 

seems to be the most appropriate position to be labelled for in vivo 13C spectroscopy. 

Despite these obvious disadvantages to label position C-1 for in vivo NMR spectroscopy, 

C-1 is the easiest position to label from a chemical point of view. 
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3.5 Conclusion 

 

In the present study, fMRI could be successfully applied to in vivo measurements of mice. 

Baclofen-induced changes in cerebral blood volume (CBVrel) were detected in healthy mice in 

vivo. The CBV changes were localized in the auditory and perirhinal brain regions and might 

reflect the baclofen-enhanced response to sensorial (auditory and olfactory) stimuli. 

 

Several conclusions can be drawn, i.e., i) functional information can be obtained from 

fMRI in mice; ii) monitoring and stabilization of physiological conditions is of fundamental 

importance in such experiments for the appropriate evaluation of cerebral hemodynamic 

responses; iii) concomitant sensory stimulations can influence the localization of 

hemodynamic changes. This is an important aspect for the choice of new technical methods in 

the study of systemic pharmacological compounds acting on a wide area of the CNS, and 

especially with pharmaca that induce sensorial alterations, such as baclofen or GHB. 
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