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Abstract

The main contribution of this thesis is a novel algorithm for fitting a Three-Dimensional
Morphable Model of faces to a 2D input image. This fitting algorithm enables the estimation of
the 3D shape, the texture, the 3D pose and the light direction from a single input image.

Generally, the algorithms tackling the problem of 3D shape estimation from image data use
only the pixels intensity as input to drive the estimation process. This was previously achieved
using either a simple model, such as the Lambertian reflectance model, leading to a linear fitting
algorithm. Alternatively, this problem was addressed using a more precise model and minimizing
a non-convex cost function with many local minima. One way to reduce the local minima problem
is to use a stochastic optimization algorithm. However, the convergence properties (such as the
radius of convergence) of such algorithms, are limited. Here, as well as the pixel intensity, we
use various image features such as the edges or the location of the specular highlights. The
3D shape, texture and imaging parameters are then estimated by maximizing the posterior of the
parameters given these image features. The overall cost function obtained is smoother and, hence,
a stochastic optimization algorithm is not needed to avoid the local minima problem. This leads
to the Multi-Features Fitting algorithm that has a wider radius of convergence and a higher level
of precision.

The new Multi-Feature Fitting algorithm is applied for such tasks as face identification, facial
expression transfer from one image to another image (of different individuals) and face tracking
across 3D pose and expression variations.

The second contribution of this thesis is a careful comparison of well known fitting algorithms
used in the context of face modelling and recognition. It is shown that these algorithms achieve
high run time efficiency at the cost of accuracy and generality (few face images may be analysed).

The third and last contribution is the Matlab Morphable Model toolbox, a set of software
tools developed in the Matlab programing environment. It allows (i) the generation of 3D faces
from model parameters, (ii) the rendering of 3D faces, (iii) the fitting of an input image using
the Multi-Features Fitting algorithm and (iv) identification from model parameters. The toolbox
has a modular design that allows anyone to builds on it and, for instance, to improve the fitting
algorithm by incorporating new features in the cost function.
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Notations

a Vectors are denoted by lowercase bold letters.
ai Element i of the vector a.
A Matrices are denoted by uppercase bold letters.
AM×N Matrix with M rows and N columns.
AT Transpose of the matrix A.
Ai, j Element (i, j) of the matrix A. This is a scalar.
A·, j Column vector formed by the column j of the matrix A.
I Identity matrix whose dimension depends on the context.
1M×N M ×N matrix for which all elements are equal to one.
vec(A) Vectorisation of the matrix A. If A is a M×N matrix, vec(A) is a MN×1 column

vector.
a(M) If a is a R × 1 column vector, a(M) is a M × R/M matrix. It is assumed that R/M

is an integer value.
〈a,b〉 Scalar product of vectors a and b.
a × b Vector product of vectors a and b.

3D Morphable Model Notations

Nv Number of vertices in the model.
Nt Number of triangles in the model.
S 3 ×Nv Matrix with a 3D shape.
T 3 ×Nv Matrix with an RGB texture (one colour per shape vertex).
NS Number of shape principal components.
NT Number of texture principal components.
α NS × 1 Column vector with the shape parameters. In the case of a segmented

face, it is a NS × 4 matrix with one column per segment.
β NT × 1 Column vector with the texture parameters. In the case of a segmented

face, it is a NT × 4 matrix with one column per segment.
σS,i Standard deviation of the shape principal component i.
σT,i Standard deviation of the texture principal component i.
(u, v) The reference frame on which the 3D shapes and the RGB textures are repre-

sented is denoted by (u, v). The model vertices are located at integer values of
(u, v).

Rendering Notations

ρ Column vector of the 2D projection parameters.
ι Column vector of the light and colour transformation parameters.
γ Imaging parameters, i.e. concatenation of ρ and ι.
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8 NOTATIONS

R 3 × 3 Rotation matrix.
W 3 ×Nv 3D Shape matrix in world coordinates.
nv

i 3×1 Unit-length direction normal to the face surface in vertex i in object centred
coordinates.

nv,w
i 3 × 1 Unit-length direction normal to the face surface in vertex i in world

coordinates.
nt

j 3 × 1 Unit-length direction normal to the triangle t of the triangle list.
d 3 × 1 Unit-length direction of a light source.
tI
i Colour ti with illumination effects.

tC
i Colour tC

i after the camera colour transformation.
ti 3 × 1 Vector with the R, G, B albedo colour of vertex i.
p(u, v;α,ρ) 2× 1 Vector valued function with the X-Y projection of the model vertex (u, v).

For a 3D shape in the span of the model, this projection depends on the shape
parameters α and on the projection parameters ρ.

p−1(x, y;α,ρ) 2 × 1 Vector with the inverse projection of p(u, v;α,ρ): projection of a image
frame point (x, y) into the reference frame (u, v).

t(u, v) 3×1 Vector valued function with the R, G, B colour intensities of a facial texture
expressed on the reference frame. For integer values of (u, v) in the reference
frame domain, its values are given by a texture matrix: t(ui, vi) = T·,i. For non
integer values, t(u, v) is obtained by interpolation of T using the triangle list.

Fitting Notations

I(x, y) R, G, B colour of the input image arranged in a 3 × 1 column vector.
Im(x, y) R, G, B colour of the model image arranged in a 3 × 1 column vector.
f x(I(x, y)) Feature function that extracts feature x from an input image. The superscript,

x, may be c, e, a, s, p, or t to denote, respectively, the pixel colour feature,
the edge feature, the anchor feature, the specular highlight feature, the prior
probability feature, and the texture constraint feature.

ec 3N f
c × 1 Residual vector obtained when fitting the pixel colour feature to the

incenter of N f
c triangles.

ec
i 3 × 1 Sub-vector of ec with the R, G, B, colour residual of fitting triangle i. In

the case of fitting a grey-level image this is a scalar.
ee N f

e × 1 Residual vector of the edge feature obtained when fitting N f
e model

edge points. (ee
i is a scalar).

ea 2N f
a × 1 Residual vector of the anchor point feature obtained when fitting N f

a
anchor points.

es 3N f
s ×1 Residual vector of the specular highlight feature obtained when fitting

N f
s model triangle overlapping a specular highlight.

et 3N f
c × 1 Residual vector of the texture constrained feature obtained when N f

c
triangles are fitted by the pixel colour feature.



Chapter 1

Introduction

Face image analysis, in the context of computer vision, is, in general, about acquiring a high-level
knowledge about a facial image. Its purpose is to answer typical questions such as follows: Who
is the individual whose face is photographed? What is his emotional state? Is he happy or sad?
What is its age? In which direction is a person looking? In these cases the task of face image
analysis is to infer some knowledge from a photograph. Another aspect of this field is about
synthesising a novel image given a photograph, and, hence, to answer questions such as follows:
How would look like a given person if its emotional state would change to sad or happy or if he
would mimic someone else? How would the face of a given person appear in ten years time? The
work presented in this thesis endeavours to answer some of the aforementioned questions and
has the potential to answer many more.

A facial image conveys many pieces of information such as the identity of a person, the gender
of a person, his expression, his age, the illumination environment in which the photograph was
taken, and the direction the person is looking at, relative to the camera. These are (some of)
the sources of variations of a facial image. The task of face image analysis is hence, given a
face photograph, to infer these pieces of information and to synthesise a novel facial image in
which some of them are modified, while keeping the other constant. The problem of face image
analysis has then two parts: The inference part aiming at estimating semantic knowledge from a
face photograph; and the synthesis part that uses this knowledge to generate a novel facial image.

A unified approach addressing these two objectives is to construct a generative face image
model that codes all the sources of variation separately and independently. The face image model
should be generative such as it is capable of synthesising a photo-realistic face image. This model
is then used to address the inference problem by estimating the model parameters that, when used
for synthesising, produce the same facial image as the input photograph. This scheme is called an
analysis by synthesis framework. Naturally, reproducing exactly the same facial image is generally
not feasible. Hence, the analysis task should estimate the parameters synthesising an image that
resembles as much as possible to the given facial image.

Clearly, an analysis by synthesis framework is made of two components: a generative model
and an analysing algorithm, called fitting algorithm. The generative facial image model used
here, which was not developed as part of this thesis work, but introduced in [10], is the 3D
Morphable Model (3DMM). An overview of its fundamental concepts, its construction and use
to render a face image is made in Chapter 2. The main novelty of this thesis is a new fitting
algorithm, called Multi-Features Fitting (MFF) algorithm, explained in Chapter 4. In Chapter 5,
the 3D morphable model and the multi-features fitting algorithm are used to answer two of the
aforementioned questions: In Section 5.1, our framework is used to identify a facial photograph;
and in Section 5.2, the expression of the facial photograph of one individual is transfered to another
photograph of someone else.

The first section of Chapter 3 gives a review of the major fitting algorithms proposed in the
literature. It will be seen that they all treat the fitting problem as an optimisation problem.
The major difference between them lies in the cost function that is to be minimised and in the
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10 CHAPTER 1. INTRODUCTION

approximations of the image formation process being made. A commonality of these algorithms
is that they follow a top-down strategy: It is assumed that the facial images belong to a class for
which a model has been constructed. Hence, they rely on acquired class-specific knowledge. A
typical work-flow of a top-down approach follows.

class-specific knowledge
↓

parameters −→ recognition
l

image

Figure 1.1: Top-down approach work-flow.

This is in contrast to earlier approaches in the field of computer vision, called bottom-up
methods, which are based on estimating an internal 3D model from image data without knowledge
of the object class nor of the recognition task at hand [9, 50]. This image analysis technique first
extracts some features from the image, such as the contours, and use them to estimate a view-point
invariant representation of the object analysed, on which, finally, recognition is performed. The
work-flow of this process is outlined on Figure 1.2.

image −→ feature −→ 3D model −→ recognition

Figure 1.2: Bottom-up approach work-flow.

In the present work, we use a combination of top-down and bottom-up methods. Similarly to
the top-down approach, we use a face specific model to drive the recognition to plausible result.
However, in contrast to a purely top-down method, the image evidence used does not consist only
on the image pixels but also on some features derived from the input image beforehand. Hence,
the image analysis work-flow used in this work is depicted as follows.

class-specific knowledge
↓

parameters −→ recognition
l

image −→ features

Figure 1.3: Integrated top-down/bottom-up approach work-flow adopted for the Multi-Features Fitting algorithm
presented in this thesis.

I argue in this thesis that the convergence properties of a fitting algorithm improve if it uses
a combination of top-down and bottom-up approaches, i.e. if not only the pixel intensity of the
input image is used to drive the fitting but also some features, extracted from the image using a
nonlinear process, such as the image edges or the location of the specular highlight. An example
of this process is shown on Figure 1.4.

A major property of a cost function, which is to be optimised, is its convexity. A convex and
smooth cost function has a single optimum. Hence, applied on this function, any optimisation
algorithm would find this unique optimum that is also the global optimum. Thus, the image
analysis algorithm would have the assurance to find the best description possible of an input
image. In an analysis by synthesis approach, which is intrinsically a top-down method, the
class-specific knowledge used is a model of the image formation process that is able to generate
a photo-realistic image of an instance of the object studied. The task of the analysis algorithm
is to invert this model: recover from an input image the model parameter able to instantiate it.
However, as the image formation process is nonlinear, the cost function minimised during image
analysis is non-convex. As a result, the image description yielded may not be optimal and can be
very different from the real one. Thus, I developed a method that does not invert the full image
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PSfrag replacements

Image Features Model Features

3DMM
prior

texture
constr.

fusion

Fitting3DMM

Figure 1.4: 3D Shape, texture and imaging parameters are estimated using the pixel intensity (page 40), the edges
(page 43) and the specular highlights (page 51) detected in the input image, shown on the top row. Additionally,
two model-based features are used: the 3D Morphable Model (3DMM) prior (page 54) and texture constraints
(page 55). Second row: plots of each feature cost function along the azimuth angle. These cost functions are
combined (page 37) yielding a smoother function that the one based on pixel intensity alone, which is, then,
minimized.

formation process as one step, but rather uses an intermediate level of representation, called the
feature level. The purpose of these features is to make the cost function used in the fitting better
behaved, i.e. more convex, with fewer local minima.

An interesting problem of pattern analysis would be, given a set of images and an image
formation model, to find automatically the intermediate features required to make the fitting of
the image model to the input images through these features, a convex optimisation problem. This
would require uncovering the features representations and the algorithm able to extract them from
input images. This automatic feature selection problem is difficult due to several reasons. First, it
is clearly apparent whether a given cost function is convex or not, but when it is non-convex, there
is no mathematical tool to analyse how remote it is from a convex function on a given domain.
Second, selecting a feature would require a feature space modelling the ensemble of features.
The construction of such a feature space, general enough to be able to instantiate various types
of features (such as edges, specular highlight or image constraints), has never, to the best of my
knowledge, be attempted. Therefore, the selection of these features was based on image cues used
in the field computer vision. I show in this work that using this ensemble of features yields a
global cost function that is more convex and suffer less from the local minima problem.

1.1 Fitting Algorithms Characteristics

A fitting algorithm seeks the parameters of the image model that would produce a facial image as
close to the input image as possible. These parameters explain the image and can be used for high-
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level tasks such as identification. In order to analyse and compare different fitting algorithms, it
is interesting understand their characteristics. Hereafter follows a list of their five major features.

• Accuracy: The accuracy, with which the face estimate approximates the ground truth, is
crucial for the application that is to use the fitting results (and generally the level of accuracy
required depends thereon). Accuracy of the fitting algorithm per se may be measured by
several manners. The norm of the residual between the synthesised face obtained from the
fitted model parameter and the input image is one choice. Its advantage is its straightforward
and automatic computation that make it suitable for comparing fitting results. However, it
must be used with care, as its value depends from image to image: A fitted dark image will
have a lower residual norm than a brighter image even if its fitting is less accurate. Another
disadvantage of this measure is that its value is not intuitive and has limited meaning for a
human user. A qualitative measure, meaningful for a human user, is the visual comparison
of the input photograph and the synthetic image rendered using the fitted parameters. If the
model is a 3D model, then it is more informative to render a synthetic image at another view
than the fitted image and to compare it with the same individual photographed from this
novel view. This reveals how the fitting algorithm was able to estimate the third dimension.
Obviously, this measure is not quantitative and, hence, cannot be used to compare fitting
results obtained on an ensemble of face images. Another measure, which might be the one
that offers the optimal compromise, is to test the fitting results on a specific quantitative
application, such as identification, for instance. The advantage is that it can be easily and
automatically recomputed in the same fashion, even across research lab. It’s disadvantage is
that it does not reflect the accuracy of the fitting algorithm per se, but rather the accuracy of
the combination of the fitting and identification algorithms used. Identification experiments
obtained with the fitting algorithm developed in this thesis are presented in Section 5.1 on
page 67.

• Efficiency: The computational load allowed for the fitting algorithm is clearly dependent on
applications. Security applications, for instance, require fast algorithms (i.e., near real time).

• Robustness: A good fitting algorithm should be robust to non-Gaussian residual. The as-
sumption of normality of the difference between the image synthesised by the model and
the input image is generally used for its simple least squares cost function. However, this
assumption is frequently violated owing to the presence of accessories or artifacts (glasses,
hair, specular highlight).

• Automatic behaviour: The fitting should require as little human intervention as possible,
optimally with no initialisation.

• Applicability: The domain of application of a fitting algorithm is the type of facial images that
are suitable to be fitted by an algorithm. There exist view-specific fitting algorithms that can
be applied to facial images viewed from a specific direction (such as frontal face images, for
instance). There are fitting algorithms able to recover ambient light only and that, generally,
fail to fit faces lit by a directional light. There exist, even, person specific algorithms capable
of fitting a small number of individuals. The domain of application of a fitting algorithm
strongly depends on the type of generative face model it uses. Naturally, an optimal fitting
algorithm should be applicable on any facial photographs.

An algorithm capable of any of the five aforementioned features is difficult to set up. An algorithm
capable of all five features is the holy grail of model-based computer vision. The different methods
proposed in the literature for addressing the fitting problem are summarised in Chapter 3. It will
be seen that the fitting algorithms proposed so far trade off efficiency for accuracy: Several efficient
algorithms have been proposed that works at interactive rates; however what is gained in speed
is lost in accuracy and in applicability.

An interesting question facing anyone, having the task to design a fitting algorithm, concerns,
then, the feature he should favour. Should he opt for an efficient algorithm at the expense of
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accuracy or vice versa? One element that might help his decision is the fact that processor speed
increases dramatically with time. Gray [35] shows that, since 1980, the processor speed (measured
in MIPS, million instructions per second) has followed the Moore’s Law [53] that predicted its
double every year. Intel [45] reports that with the advent of nanotechnology, the Moore’s Law
will be sustained for at least the next decade. So, a fitting algorithm that now runs in 1 minute
per face image, may run in less than a second in six years from now (and at 68 Hz in 12 years).
On the other hand, what is certain is that the accuracy of a fitting algorithm stays constant over
time. Therefore, in the design of the Multi-Features Fitting algorithm presented in this thesis, I
favoured accuracy over efficiency.
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Chapter 2

Image synthesis with the 3D
Morphable Model

In this chapter, the 3D Morphable Model construction is reviewed. In the analysis by synthesis
framework that we adopted, the synthesis part plays an important role and is therefore detailed
in Section 2.2. The image synthesis is the method by which a facial image is produced from a set
of model parameters. The model construction and the image synthesis were reported in the thesis
of Volker Blanz [10].

2.1 3D Morphable Model Construction

The construction of a 3D morphable model requires a set of example 3D faces (e.g., laser scans).
The morphable model used for this thesis was constructed with 200 laser scans acquired by a
Cyberware 3030PS laser scanner. The constructions is performed in three steps: First, the laser
scans are preprocessed. This semi automatic step aims to remove the scanning artifacts and to
select the part of the head that is to be modelled (from one ear to the other and from the neck to the
forehead). In the second step, the correspondences are computed between one scan chosen as the
reference scan, and each of the other scans. Then a principal components analysis is performed
to estimate the statistics of the 3D shape and texture of the faces.

2.1.1 Motivations of the representation

The model should be generic and code all the sources of variations to allow synthesis and analysis
of any facial photograph. The coding of these sources of variation separately and independently
is important because of two reasons. Firstly, the analysis of a face image yields, then, directly
the high-level knowledge desired as the value of the model parameters. If the parameters are
independent, they are not affected by one another. For instance, for the task of identification, it
is paramount that the identity parameter stay constant, even if the illumination, the pose or the
expression of the individual vary on input photographs. Secondly, after the analysis of a facial
image, one or several sources of variation may be modified to generate a new facial image that
retains certain characteristic of the input photograph, while changing others. For instance, in the
case of an expression transfer application, a new facial image is produced with a new expression
of the same person in the input photograph. This novel expression could come from another facial
photograph of another individual.

A 3D representation enables the accurate modelling of any illumination and pose as well as the
separation of these variations from the rest (identity, expression, etc.). The generative model must
be able to synthesise images from any individual. In a morphable model, the identity variation is
modelled by making linear combinations of faces of a small set of persons. In this chapter, we show
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16 CHAPTER 2. IMAGE SYNTHESIS WITH THE 3DMM

why linear combinations yield a realistic face only if the set of example faces is in correspondence.
A good generative model should be restrictive in the sense that unlikely faces should be rarely
instantiated. To achieve this the probability density function of human faces is learnt and used as
a prior probability to synthesise faces.

Three-Dimensional Representation

Each individual face can generate a variety of images. This huge diversity of face images makes
their analysis difficult. In addition to the general differences between individual faces, the ap-
pearance variations in images of a single individual can be separated into the following four
sources.

• Pose changes can result in dramatic changes in images. Due to occlusions different parts of
the object become visible or invisible. Additionally, the parts seen in two 2D views change
their spatial configuration relative to each other.

• Illumination changes influence the appearance of a face even if the pose of the face is
fixed. Positions and distribution of light sources around a face have the effect of changing
the brightness distribution in the images, the locations of attached shadows and specular
reflections. Additionally, cast shadows can generate prominent contours in facial images.

• Facial expressions, an important tool in human communication, are another source of vari-
ations in images. Only a few facial landmarks that are directly coupled with the bony
structure of the skull, such as the interocular distance or the general position of the ears, are
constant in a face. Most other features can change their spatial configuration or position via
articulation of the jaw or muscle action (e.g, a moving eyebrows, lips or cheeks).

• In the long term, a face changes because of ageing, changing a hairstyle, or use of makeup
or accessories.

The isolation and explicit description of all these different sources of variations must be the
ultimate goal of a face analysis system. For example, it is desirable that the parameters that code
the identity of a person are not perturbed by a modification of pose. In an analysis by synthesis
framework this implies that a face model must account for each of these variations independently
by explicit parameters.

The main challenge for the design of such systems is to find or choose a description of these
parameters that allows the appropriate modelling of images on the one hand and gives a precise
description of an image on the other.

Some of the sources of variations, such as illumination and pose, obey the physical laws of
nature. These laws reflect constraints derived from the three-dimensional geometry of faces and
the interaction of their surfaces with light. They are optimally imposed by a 3D representation,
which was therefore chosen for the morphable model.

On the other hand, there are additional regularities between faces that are not formulated as
physical laws but can be obtained by exploiting the general statistics of faces. These methods
are also denoted as learning from examples. It is expected that learning schemes that conform
or incorporate the physical constraints are more successful in tasks such as generalising from a
single image of a face to novel views or to different illumination conditions.

As a result, the 3D morphable model uses physical laws to model pose and illumination as
well as statistical methods to model identity and expression. As we see in the next two sections,
these statistical methods require the faces to be put into correspondence.

Vector Space of Faces

In the previous section, we saw that a facial image under any illumination and viewed from any
angle can be obtained using a 3D face representation. The model must be able to generate facial
image of any individual as well. One way of generating any face is by making a face space that
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spans the identity variations and sampling from it. As the face surface is represented as a discrete
set of points, the face space is a vector space, and a face must be vectorised. Then, assuming that
the dimension of this vector space is finite, a new face can be produced by a linear combination of
existing vectorised faces.

Correspondence. Then, the question is, how to victories a face. As an example, let us consider
the case of 2D face images; the same argument is applied to 3D faces. If the raw textures were
vectorised simply by concatenating the pixel of a face image, as was done by Turk and Pentland
[68], already the mean of two textures would not appear as a face texture. As the edges of these
two textures are very unlikely to fall on the same pixels, the result would be blurry and present
double edges and such artifacts. Hence, facial images in their pixel representation do not form
a vector space. For correct image modelling and synthesis, it is not sufficient to consider only
image intensities, it is also necessary to consider the spatial locations of object features. That is,
the correspondence between images has to be established. Then, face images must be sampled
on a set of feature points common to all faces. This set of points is called the reference frame.
Only a separate addition of the shape sampled in the reference frame and texture, also sampled
in the common reference frame, satisfies the vector space requirements. Hence, shape alone
forms a vector space, and texture alone forms another vector space. The face vector space is the
combination of these two vector spaces.

The utilisation of correspondence for image modelling was proposed by several authors [8, 25,
37, 47, 69]; for a review see Beymer and Poggio [7]. The common feature of these methods is that
they all derive their facial model, used for the analysis and synthesis of face images, from separate
texture and shape vector spaces. It should be noted that some of these approaches do not extract
the correspondence of physical points: Lanitis et al. [47], for instance, put into correspondence
the 2D occluding contour, which varies from pose to pose. In contrast, our approach puts in
correspondence 3D points that are equivalent across object instances.

The optical flow algorithm used to compute correspondences between faces is reviewed in
Section 2.1.3.

Face Statistics. In the previous paragraph, a vector space of faces was introduced. To use this
space appropriately, an orthogonal basis and a probability distribution over this space must be
defined. The probability distribution over the face space is important for the robustness of the
fitting algorithm and required to yield a maximum a posterior estimate. Assuming a Gaussian
distribution, principal component analysis is used to derive the orthonormal basis of the shape
and texture vector space and to estimate the mean and covariance matrix from a set of exemplar
faces in Section 2.1.4.

2.1.2 Preprocessing Laser Scans

Preprocessing laser scans is a semi automatic step that aims to remove the scanning artifacts and
select the part of the head that is to be modelled. It is performed in three consecutive stages.

1. Holes are filled, and spikes (i.e., scan artifacts) are removed using an interactive tool.

2. The faces are rigidly aligned in 3D using the 3D-3D absolute orientation method [40].

3. The parts of the head that we do not wish to model (e.g., the back of the head behind the
ears, the hair area, and the region underneath the throat) are trimmed.

2.1.3 Dense Correspondences Computed by Optical Flow

To automatically compute dense point-to-point correspondences between two 3D laser scans of
faces, an optical flow algorithm is used. The scans are recorded by a laser scanner, measuring
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the radius (i.e., depth), r, along with the colour R,G,B of faces. Optical flow is computed on a
cylindrical representation, I(h, φ), of the coloured 3D scans:

I(h, φ) =
[

r(h, φ),R(h, φ),G(h, φ),B(h, φ)
]

. (2.1)

Correspondences are given by a dense vector field v(h, φ) = [∆h(h, φ),∆φ(h, φ)], such that each
point of the first scan, I1(h, φ), corresponds to the point I2(h + ∆h, φ + ∆φ) on the second scan. A
modified optical flow algorithm [12] is used to estimate this vector field.

Optical flow on grey-level images Many optical flow algorithms (e.g. [6], [43], [49]) are based
on the assumption that objects in an image sequence I(x, y, t) conserve their brightness as they
move across the images at a velocity (vx, vy)T.

dI
dt
= vx

∂I
∂x
+ vy

∂I
∂y
+
∂I
∂t
= 0 (2.2)

For a pair of images, I1 and I2, taken at two discrete moments, the temporal derivatives, vx, vy

and ∂I
∂t , in Equation (2.2), are approximated by finite differences ∆x, ∆y, and ∆I = I2 − I1. If the

images are not from a temporal sequence but show two different objects, corresponding points can
no longer be assumed to have equal brightnesses. Still, optical flow algorithms may be applied
successfully.

A unique solution for both components of v = (vx, vy)T from Equation (2.2) can be obtained if
v is assumed to be constant on each neighbourhood R(x0, y0), and the following expression [6, 49]
is minimised at each point (x0, y0).

E(x0, y0) =
∑

x,y∈R(x0,y0)

[

vx
∂I(x, y)
∂x

+ vy
∂I(x, y)
∂y

+ ∆I(x, y)
]2

(2.3)

A 5 × 5 pixel neighbourhood R(x0, y0) is used. In each point (x0, y0), v(x0, y0) can be found by
solving a 2 × 2 linear system (see Blanz and Vetter [13] for details). To deal with large displace-
ments v, the algorithm of Bergen and Hingorani [6] employs a coarse-to-fine strategy using a
Gaussian pyramid of down-sampled images: With the gradient-based method described above,
the algorithm computes the flow field on the lowest level of resolution and refines it on each
subsequent level.

Generalisation to 3D coloured surfaces For processing 3D laser scans I(h, φ), Equation (2.3) is
replaced by

E =
∑

h,φ∈R

∥

∥

∥

∥

∥

∥

vh
∂I(h, φ)
∂h

+ vφ
∂I(h, φ)
∂φ

+ ∆I(h, φ)

∥

∥

∥

∥

∥

∥

2

(2.4)

with a norm
∥

∥

∥I(h, φ)
∥

∥

∥

2
= wrr2 + wRR2 + wGG2 + wBB2 (2.5)

Weights wr, wR, wG, and wB compensate for variations in the radius data and the red, green,
and blue texture components; and they control the overall weighting of shape versus texture
information. The weights are chosen heuristically. The minimum of Equation (2.4) is again given
by a 2 × 2 linear system (see [13]).

Correspondences between scans of different individuals, who may differ in overall brightness
and size, are improved by using Laplacian pyramids (band-pass filtering) rather than Gaussian
pyramids (low-pass filtering). Additional quantities, such as Gaussian curvature, mean curvature,
or the surface normal, may be incorporated in I(h, φ) to improve the results. To obtain reliable
results even in regions of the face with no salient structures, a specifically designed smoothing
and interpolation algorithm [13] is added to the matching procedure on each level of resolution.



2.1. 3D MORPHABLE MODEL CONSTRUCTION 19

2.1.4 Face Space Based on Principal Components Analysis

We mentioned that the correspondences enable the formulation of a face space. The face space is
constructed by putting a set of M example 3D laser scans into correspondence with a reference laser
scan. This introduces a consistent labelling of all Nv 3D vertices across all the scans. The shape
and texture surfaces are parameterised in the (u, v) reference frame, where one pixel corresponds
to one 3D vertex (Figure 2.1). The 3D position in Cartesian coordinates of the Nv vertices of a face
scan are arranged in a shape matrix, S; and their colour in a texture matrix, T.

S =

















x1 x2 · · · xNv

y1 y2 · · · yNv

z1 z2 · · · zNv

















, T =

















r1 r2 · · · rNv

g1 g2 · · · gNv

b1 b2 · · · bNv

















(2.6)
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Figure 2.1: Texture and shape in the reference space (u, v).

Having constructed a linear face space, we can make linear combinations of the shapes, Si, and
the textures, Ti of M example individuals to produce faces of new individuals.

S =
M
∑

i=1

αi · Si, T =
M
∑

i=1

βi · Ti (2.7)

Equation (2.7) assumes a uniform distribution of the shapes and the textures. We know that
this distribution yields a model that is not restrictive enough: For instance, if some αi or βi areÀ 1,
the face produced is unlikely. Therefore, we assume that the shape and the texture spaces have
a Gaussian probability distribution function. Principal component analysis (PCA) is a statistical
tool that transforms the space such that the covariance matrix is diagonal (i.e., it decorrelates the
data). PCA is applied separately to the shape and texture spaces. We describe the application of
PCA to shapes; its application to textures is straightforward. After subtracting their average, S,
the exemplars are arranged in a data matrix A and the eigenvectors of its covariance matrix C are
computed using the singular value decomposition [58] of A.

S = 1
M

∑M
i=1 Si, ai = vec(Si − S), A = [a1, a2, . . . , aM] = UΛVT

CA =
1
M AAT = 1

M UΛ2UT
(2.8)

The component vec(S) vectorised S by stacking its columns. The M columns of the orthogonal

matrix U are the eigenvectors of the covariance matrix CA, and σ2
i =

λ2
i

M are its eigenvalues, where
the λi are the elements of the diagonal matrix Λ, arranged in decreasing order. Now, instead of
representing the data matrix A in its original space, it can be projected to the space spanned by
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the eigenvectors of its covariance matrix. Let us denote by the matrix B this new representation
of the data, and by CB its covariance matrix.

B = UTA CB =
1
M

BBT =
1
M
Λ

2 (2.9)

The second equality of the last equation is obtained because UTU = I and VTV = I, where I
is the identity matrix with the appropriate number of elements. Hence the projected data are
decorrelated, as they have a diagonal covariance matrix. Hereafter, we denote by σS,i and σT,i the
variances of, respectively, the shape and the texture vectors.

There is a second advantage in expressing a shape (or texture) as a linear combination of
shape principal components, namely dimensionality reduction. It is demonstrated in [28], that
the subspace, spanned by the columns of an orthonormal matrix X, with N dimensions that
minimises the mean squared difference between a data vector a, sampled from the same population
as the column vectors of the matrix A, and its reconstruction, XXTa, is the one formed by the N
eigenvectors having largest eigenvalues: X =

[

U·,1, . . . ,U·,N
]

, where U·,i denotes the ith column of
U. On average the decrease of the mean squared difference follow the curve of the variance that
is plotted on Figure 2.2. It can be seen that for the 50 the decrease is polynomial and for higher
principal components it is exponential.
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Figure 2.2: Semi logarithmic plot of the shape and texture eigenvalues. For each plot a polynomial (dashed) line
and an exponential (dotted) line are fitted and their equation printed.

Let us denote U·,i, the column i of U, and the principal component i, reshaped into a 3 × Nv

matrix, by Si = U(3)
·,i . The notation a(n)

m×1 [52] folds the m × 1 vector a into an n × (m/n) matrix.
Now, instead of describing a novel shape and texture as a linear combination of examples, as

in Equation 2.7, we express them as a linear combination of NS shape and NT texture principal
components.

S = S +
NS
∑

i=1

αi · Si, T = T +
NT
∑

i=1

βi · Ti (2.10)

The third advantage of this formulation is that the probabilities of a shape and a texture are readily
available from their parameters.

p(S) ∼ e
− 1

2
∑

i
α2

i
σ2

S,i , p(T) ∼ e
− 1

2
∑

i
β2

i
σ2

T,i (2.11)

2.1.5 Segmented Morphable Model
As mentioned, our morphable model is derived from statistics computed on 200 example faces. As
a result, the dimensions of the shape and texture spaces, NS and NT, are limited to 199. This might
not be enough to account for the rich variations of individualities present in mankind. Naturally,
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one way to augment the dimension of the face space would be to use 3D scans of more persons
but they are not available. Hence we resort to another scheme: We segment the face into four
regions (nose, eyes, mouth and the rest) shown on Figure 2.3 and use a separate set of shape and
texture coefficients to code them [12]. This method multiplies by four the expressiveness of the
morphable model. The results presented in the Chapter 5 are based on a segmented morphable
model with NS = NT = 100 for all segments. In this thesis, we denote the shape and texture
parameters by α and β when they can be used interchangeably for the global and the segmented
parts of the model. When we want to distinguish them, we use, for the shape parameters, αg for
the global model (full face) and αs1 to αs4 for the segmented parts (the same notation is used for
the texture parameters).

Figure 2.3: Image showing the four segments of the segmented morphable model: the nose, the eyes, the mouth
and the rest.

2.2 Morphable Model to Synthesise Images
One part of the analysis by synthesis loop is the synthesis (i.e., the generation of accurate face
images viewed from any pose and illuminated by any condition). This process is explained in this
section.

2.2.1 Shape Projection
To render the image of a face, the 3D shape must be projected to the 2D image frame. This is
performed in two steps. First, a 3D rotation and translation (i.e. a rigid transformation) maps the
object-centred coordinates, S, to a position relative to the camera in world coordinates.

W = RγRθRφS + tw11×Nv
(2.12)

The angles φ and θ control in-depth rotations around the vertical and horizontal axis, and γ
defines a rotation around the camera axis; tw is a 3D translation. A projection then maps a vertex
i to the image plane in (xi, yi). We typically use two projections: the perspective and the weak
perspective projection.

Perspective :















xi = tx − f W1,i
W3,i

yi = ty + f W2,i
W3,i

Weak perspective :
{

xi = tx − f W1,i
yi = ty + f W2,i

(2.13)

where f is the focal length of the camera, which is located in the origin; and (tx, ty) defines the
image-plane position of the optical axis. The negative sign in front of the X component of the
world coordinate exists for legacy reasons.
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For ease of explanation, the shape transformation parameters are denoted by the vector ρ =
[ f φ θ γ tx ty tTw]T, andα is the vector whose elements are theαi. The projection of the vertex i to the
image frame (x, y) is denoted by the vector valued function p(ui, vi;α,ρ). This function is clearly
continuous in α, ρ. To provide continuity in the (u, v) space as well, we use a triangle list and
interpolate between neighbouring vertices, as is common in computer graphics. Note that only
Nvv vertices, a subset of the Nv vertices, are visible after the 2D projection (the remaining vertices
are hidden by self-occlusion). We call this subset the domain of the shape projection p(ui, vi;α,ρ)
and denote it by Ω(α,ρ) ∈ (u, v).

In conclusion, the shape modelling and its projection provides mapping from the parameter
space α,ρ to the image frame (x, y) via the reference frame (u, v). However to synthesise an image,
we need the inverse of this mapping, detailed in the next section.

2.2.2 Inverse Shape Projection

The shape projection aforementioned maps a (u, v) point from the reference space to the image
frame. To synthesise an image, we need the inverse mapping: An image is generated by looping
on the pixels (x, y). To know which colour must be drawn on that pixel, we must know where this
pixel is mapped into the reference frame. This is the aim of the inverse shape mapping explained
in this section.

The inverse shape projection, p−1(x, y;α,ρ), maps an image point (x, y) to the reference frame
(u, v). Let us denote the composition of a shape projection and its inverse by the symbol ◦; hence,
p(u, v;α,ρ) ◦ p−1(x, y;α,ρ) is equal to p(p−1(x, y;α,ρ);α,ρ), but we prefer the former notation for
clarity. The inverse shape projection is defined by the following equation, which specifies that
under the same set of parameters the shape projection composed with its inverse is equal to the
identity.

p(u, v;α,ρ) ◦ p−1(x, y;α,ρ) = (x, y)

p−1(x, y;α,ρ) ◦ p(u, v;α,ρ) = (u, v)
(2.14)

Because the shape is discrete, it is not easy to express p−1 analytically as a function of p, but it
can be computed using the triangle list: The domain of the plane (x, y) for which there exists an
inverse under the parameters α and ρ, denoted byΨ (α,ρ), is the range of p(u, v;α,ρ). Such a point
of (x, y) lies in a single visible triangle under the projection p(u, v;α,ρ). Therefore, the point in
(u, v) under the inverse projection has the same relative position in this triangle in the (u, v) space.
This process is depicted in Figure 2.4.
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Figure 2.4: Inverse shape function p−1(x, y;α,ρ) maps the point q (defined in the (x, y) coordinate system), onto
the point q′ in (u, v). This is done by recovering the triangle that would contain the pixel q under the mapping
p(u, v;α,ρ). Then the relative position of q in that triangle is the same as the relative position of q′ in the same
triangle in the (u, v) space.
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2.2.3 Illumination and Colour Transformation
Ambient and Directed Light We simulate the illumination of a face using an ambient light and
a directed light. The effects of the illumination are obtained using the standard Phong model,
which approximately describes the diffuse and specular reflection on a surface [31]; see [13] for
further details. The parameters of this model are the intensity of the ambient light (La

r , La
g, La

b),
the intensity of the directed light (Ld

r , Ld
g, Ld

b), its direction (θl and φl), the specular reflectance of
human skin (ks), and the angular distribution of the specular reflections of human skin (ν). For
clarity, we denote by the vector ti the ith column of the matrix T, representing the RGB colour of
the vertex i. When illuminated, the colour of this vertex is transformed to tI

i .

tI
i =

















La
r 0 0

0 La
g 0

0 0 La
b

















· ti +



















Ld
r 0 0

0 Ld
g 0

0 0 Ld
b



















·
(

〈nv,w
i ,d〉 · ti + ks · 〈ri,vi〉ν · 13×1

)

(2.15)

The first term of this equation is the contribution of the ambient light. The first term of the
last parenthesis is the diffuse component of the directed light and the second term is its specular
component. To take account of the attached shadows, these two scalar products are lower bounded
to zero. To take account of the cast shadows, a shadow map is computed, using standard computer
graphics techniques [31]. The vertices in the cast shadow are illuminated by the ambient light
only.

In Equation 2.15, d is the light direction in Cartesian coordinates, which can be computed from
its spherical coordinates by:

d =

















cos(θl) · sin(φl)
sin(θl)

cos(θl) · cos(φl)

















(2.16)

The normal of the vertex i, nv,w
i , is expressed in world coordinates. World coordinates of a normal

are obtained by rotating the normal from the object centred coordinates to the world coordinates.

nv,w
i = RγRθRφnv

i (2.17)

The normal of a vertex in object centred coordinates, nv
i , is defined as the unit-length mean of the

normals of the triangles connected to this vertex (i.e. the triangles for which this vertex is one of
the three corners).

nv
i =

∑

j∈Ti
nt

j

‖
∑

j∈Ti
nt

j‖
(2.18)

where Ti is the set of triangle indexes connected to the vertex i. The normal of a triangle is
determined by the unit-length cross product of the vectors formed by two of its edges. If si1 , si2 ,
and si3 are the Cartesian coordinates of the three corners of the triangle j (these indexes are given
by the triangle list), then its normal is:

nt
j =

(si1 − si2 ) × (si1 − si3 )
‖(si1 − si2 ) × (si1 − si3 )‖ (2.19)

In the Equation (2.15), vi is the viewing direction of the vertex i, which is the direction between
the vertex i and the camera centre. The camera centre is at the origin of the world coordinates.

vi = −
W·,i
‖W·,i‖

(2.20)

The vector ri in Equation (2.15) is the direction of the reflection of the light coming from the
direction d. As the graph in Figure 4.14 on page 52 shows, it is computed as follows:

ri = 2 · 〈nv,w
i ,d〉nv,w

i − d (2.21)



24 CHAPTER 2. IMAGE SYNTHESIS WITH THE 3DMM

Colour Transformation Input images may vary a lot with respect to the overall tone of colour.
To be able to handle a variety of colour images as well as grey level images and even paintings,
we apply gains gr, gg, gb, offsets or, og, ob, and a colour contrast c to each channel [12]. This is a
linear transformation that yields the definitive colour of a vertex, denoted by tC

i , by multiplying
the RGB colour of a vertex after it has been illuminated, tI

i , by the matrix M and adds the vector
o = [or, og, ob]T.

tC
i =M · tI

i + o, where (2.22)

M =

















gr 0 0
0 gg 0
0 0 gb

















·

















I + (1 − c)

















0.3 0.59 0.11
0.3 0.59 0.11
0.3 0.59 0.11

































(2.23)

For brevity, the illumination and colour transformation parameters are regrouped in the vector
ι. Hence the illuminated and colour corrected texture depends on the coefficients of the texture
linear combination regrouped in β, on the light parameters ι, and on α and ρ used to compute the
normals and the viewing direction of the vertices required for the Phong illumination model.

Similar to the shape, the colour of a vertex i, tC
i , is represented on the (u, v) reference frame

by the vector valued function tC(ui, vi;β, ι,α,ρ), which is extended to the continuous function
tC(u, v;β, ι,α,ρ) by using the triangle list and interpolating.

2.2.4 Image Synthesis
Synthesising the image of a face is performed by mapping a texture from the reference to the
image frame using an inverse shape projection.

Im(x j, y j;α,β,ρ, ι) = tC(u, v;β, ι,α,ρ) ◦ p−1(x j, y j;α,ρ) (2.24)

where j runs over the pixels that belong to Ψ (α,ρ) (i.e., the pixels for which a shape inverse exist,
as defined in Section 2.2.2).



Chapter 3

Compendium of Face Image Analysis
Techniques

The previous chapter detailed the 3D Morphable Model, a mathematical formulation of the full
image formation process. It takes into account most of the sources of facial image variations
(flexible shape deformation, varying albedo, 3D rotation, and directed lights). A face recognition
algorithm is intrinsically a method that is inverting this image formation process, i.e. inverting
Equation (2.24), thereby separating the identity from the imaging parameters. The first algorithm
that inverted the full image formation process, and that made the least assumptions, treating the
problem in its full complexity, is the Stochastic Newton Optimisation (SNO) [10, 12, 13]. It casted
the task as an optimisation problem estimating all the model parameters (shape, texture, rigid
transformation and illumination). The only assumption made is that the pixels are independent
and identically distributed with a residual normally distributed. This is a difficult and computa-
tionally expensive optimisation problem, as the cost function is non convex. To avoid the local
minima problem, the optimisation was made stochastic: At each iteration of the fitting algorithm,
the cost function and its derivatives are evaluated on a very small set of points (40) that are ran-
domly chosen. This stochasticity introduces a perturbation on the derivatives that minimises the
risk of locking on a local minimum. The price to pay is a computationally expensive algorithm
with several thousands iterations.

Over the past years, many face recognition methods have been presented. Having computa-
tional efficiency and tractability as main goal, these methods restrain the domain of applicability
and make several assumptions. It is interesting to analyse the assumptions made by each of these
methods and their limitations in light of the 3DMM.

Eigenfaces Since the beginning of the nineties, statistical method for face recognition are exten-
sively used. It started with Kirby and Sirovich [46] and Turk and Pentland [68], who applied a
principal component analysis (PCA) on facial images. With their technique, a facial image was
coded with a low number of coefficients by projecting it to the orthogonal subspace obtained by
PCA. These coefficients could then be used for identification. This method was also applicable
to video compression, as one face image, encoded in the low-dimensional principal component
subspace, could be reconstructed to the original image space. The problem was that this image
was blurry for reasons explained in Section 2.1.1. In this method, the different sources of varia-
tions of faces are not separated: they are all modelled by one set of parameters that also encodes
identity. As a result, it suffers from a limited generalisation capabilities across viewpoints and
light directions and limited identification performances.

25
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3.1 Correspondence-based methods

Point Distribution Model and Active Shape Model To remove the blurriness artifact of the
Eigenface approach, Craw and Cameron [25] aligned the face images and segmented the face part
from the background image. Then they applied PCA on the textures put in coarse correspondence
by sampling them on a reference frame defined by a few landmarks. Cootes et al. [19, 23]
represented, then, the 2D face shapes as a sparse set of feature points that corresponded to one
another across a face ensemble. Applying PCA on this set of points yielded a Point Distribution
Model (PDM).

Though it can be argued that there is no major conceptual difference between the PDM’s of
the early nineties and the 3D shape model of the 3DMM (detailed in Chapter 2), as both models
compute statistics on a set of points in correspondence, yet there are three major differences
between the two models: (i) The use of 3D rather than 2D. (ii) The 3DMM is a dense model
including several thousands vertices whereas the PDM uses a few tens. (iii) As implemented by
Cootes et al., the PDM includes landmarks on the contour between the face and the background.
This contour depends on the pose of the face on the image and on the 3D shape of the individual.
Thus the landmarks on it do not represent the same physical points, and hence should not be
put in correspondence across individuals. The authors of the PDM argue that it is capable of
handling ±20◦ out of the image plane rotation. However, the 2D shape variation induced by this
3D rigid transformation is encoded in the 2D shape parameters, resulting in shape parameters not
independent of the face pose. This reduces the identification capabilities of this model.

The algorithm used to fit a PDM to an image is called the Active Shape Model (ASM) and
its first version appeared in Cootes and Taylor [21]. This version used the edge evidence of the
input image to adjust the 2D translation, 2D scale, image plane rotation and shape parameters
of the model. Each iteration of this fitting algorithm included two steps: First, each model point
was displaced in the direction normal to the shape contour, toward the strongest edge, and with
an amplitude proportional to the edge strength at the point. This yielded a position for each
model point that would fit better the image. The second step was to update the 2D pose and
shape parameters reflecting the new position of the model points. To increase the likeliness of
the resulting shape, hard limits were put on the shape parameters. This method proved itself
not robust enough to deal with complex objects, where the model points do not necessarily lie on
strong edges. Therefore, the second version of the ASM [22] modelled the grey-levels along the
normal of the contour at each model point. Then, during model search, a better position for a
model point was given by the image point, along the normal of the contour, that minimised the
distance to its local grey-level model. An exhaustive search for this minimiser was performed
that evaluated all the points along the normal within a given distance of the model point. A
PCA model was used to model a grey-level profile along the normal of a contour point. Then the
distance minimised during fitting is the norm of the reconstruction error of a grey-level profile
obtained from a point along the normal evaluated as a potential minimiser. A predicament of
the local grey-level models, as they were implemented in the ASM, is the fact that one half of
the pixels modelled are outside the face area, in the background area, and hence could change
randomly from image to image.

Active Appearance Model The first identification experiment on facial images fitted by an ASM
was made by Lanitis et al. [48]. After fitting an image by the ASM, the grey texture enclosed
withing the face contour was sampled on the reference frame defined by the mean shape (and
called shape-free texture) and modelled by a PCA model. The features used for identification
were the shape and texture coefficients of the shape and texture models.

Continuing in this direction, researchers started to use not only the pixels along the normal
of the landmark points but rather the full texture in the face area to drive the parameter fitting
algorithm. The main motivation was that, as the algorithm would use more information, the
fitting would converge faster to a more accurate minimum more robustly. First, Gleicher [34],
with the Image Difference Decomposition (IDD) algorithm, then Sclaroff and Isidoro [65], with
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the Active Blobs, and Cootes et al. [20], with the Active Appearance Model (AAM), used the full
texture error to compute, linearly, an update of the model parameters. The texture error, δt, is
the difference between the texture extracted from the input image and sampled using the shape
parameters and the model texture.

δt = I(x, y) ◦ p(u, v;α) − t(u, v;β) (3.1)

The aim of the fitting algorithm is to estimate the shape and texture model parameters that
minimise the square of the norm of the texture error.

min
α,β
‖δt‖2 (3.2)

For efficiency reasons, the texture difference is projected onto a constant matrix, which yields the
shape and texture model parameters update.

(

δα
δβ

)

= A · δt (3.3)

Then the next estimate is obtained by adding the update to the current estimate.

α← α + δα and β← β + δβ (3.4)

This algorithm would be a gradient descent optimisation algorithm, if the matrix relating the
texture error to the model update, the matrix A, was the inverse of the Jacobi matrix. Assuming A
to be constant, is equivalent to assuming that the model Jacobi matrix is constant and hence that
the rendering model is linear. We have seen that the sources of nonlinearities of the rendering
model are multiple: (i) The out of the image plane rotation and the perspective effects induce a
nonlinear variation of the shape points projected onto the image plane. (ii) The modification of the
light source direction produce a nonlinear variation in pixel intensities. (iii) The warping of the
texture using the shape parameters is nonlinear as well. As the face model on which this fitting
algorithm is applied, is 2D, allow only small out of the image plane rotation, and does not model
directed light sources, the first two sources of nonlinearities could be limited. Thus, the authors
showed that this fitting was effective on facial images with no directed light and with small pose
variations. However, it does not produce satisfactory results on the full 3D problem addressed in
this thesis.

The constant matrix relating the texture error to the model update, the matrix A, was first
computed by a regression using texture errors generated from training images and random model
parameters displacement. Then, it was estimated by averaging Jacobian matrix obtained by
numerical differentiation on typical facial images. A problem with these two approaches is that
the pixels outside the face area are sampled to form the training texture error. Thus, the quality of
the estimate obtained on an input image depends on the resemblance of the background of this
image to the one of the images used for computing the matrix A.

To enlarge the domain of application of the Active Appearance Model to faces viewed from
any azimuth angle, Cootes et al. [24] introduced the multi-view AAM. It is constituted of five
AAMs, each trained on facial images at different pose (front, left and right side views and left
and right profile). So, the fitting was also constituted of five constant Jacobi matrices. This is an
ad-hoc solution addressing one of the limitations of a 2D model that was not pursued afterwards.

Inverse Compositional Image Alignment algorithm As aforementioned, for efficiency reasons,
the AAM treats the matrix relating the texture error to the model parameter update as constant.
This is based on the assumption that the Jacobi matrix (that should be recomputed at each iteration)
is well approximated by a constant matrix. However, this matrix is not constant owing to the
warping of the texture by the shape. Baker and Matthews [1] introduced the Inverse Compositional
Image Alignment (ICIA) algorithm, that also uses a constant Jacobi matrix, but the matrix is shown,
to a first order, to be constant. The fixedness of the updating matrix is not assumed anymore.
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This was achieved by a modification of the cost function to minimise. Instead of optimising
Equation (3.2), the following cost function is minimised.

min
δα
‖t(u, v; 0) ◦ p(u, v; δα) − I(x, y) ◦ p(u, v;α)‖2 (3.5)

To clarify the notations, in what follows, the dependency on the frame coordinates (x, y) and (u, v)
is not explicit anymore; only the dependency on the model parameters is left. A first Taylor
expansion of the term inside the norm of the cost function yields:

min
δα
‖t(0) ◦ p(0) + t(0)

∂p
∂α

∣

∣

∣

∣

∣

α=0
δα − I ◦ p(α)‖2 (3.6)

Differentiating this cost function with respect to the shape parameter update, equating to zero,
and rearranging the terms, yields the expression of the parameter update:

δα =

[

t(0)
∂p
∂α

∣

∣

∣

∣

∣

α=0

]†
(I ◦ p(α) − t(0) ◦ p(0)) (3.7)

where the notation † denotes the pseudo-inverse of a matrix. This derivation leads to a Gauss-
Newton optimisation [33]. In a least squares optimisation, the Hessian is a sum of two terms: the
Jacobi matrix transposed and multiplied by itself and the purely second derivative terms. In a
Gauss-Newton optimisation, the Hessian is approximated by its first term only. The reason is that
in a least square optimisation (such as minx

∑

i e2
i ), the second derivative term of the Hessian of the

cost function is the sum of the Hessian matrices of the elements, ∂2ei
∂x2 , multiplied by their residual,

ei. When the residuals ei are small, the approximation is adequate. Hence, a Gauss-Newton
optimisation algorithm is more efficient than a Newton algorithm, as the second derivatives are
not computed. It is not surprising that the ICIA algorithm is equivalent to a Gauss-Newton
optimisation, as it was derived using a first order Taylor approximation.

The essence of the ICIA algorithm, is that the Jacobi matrix, t(0) ∂p
∂α

∣

∣

∣

∣

α=0
does not depend on

the current estimate of the model parameters, neither on the input image. It is then constant
throughout the fitting algorithm. This constancy is not assumed but derived from a first order
expansion. The update is, then, not added to the current estimate as in the case of the AAM fitting
algorithm, but composed with the current estimate.

p(u, v;α)← p(u, v;α) ◦ p−1(u, v; δα) (3.8)

Baker et al., in [1], do not make the distinction between the reference and the image frames. A
consequence of this, is that they require the set of warps to be closed under inversion. This leads
them to a first order approximation of the inverse shape projection (called inverse warping in their
nomenclature): p−1(x, y;α) = p(u, v;−α). This does not agree with the identity defining the inverse
shape projection of Equation (2.14): As shown in Figure 3.1, a point from (u, v), q′, is mapped under
p(u, v;α) to q in (x, y). Hence, to agree with the identity, this point q must be warped back to q′
under p−1(x, y;α). So, the displacement in q which should be inverted is the one from q′. However,
in Baker et al. [1], the displacement function p is inverted at the point q, leading to the point b,
instead of q′. This is due to the fact that the distinction between the two coordinates systems is
not made. This approximation is less problematic for a sparse-correspondence model as used by
Baker for which the triangles are quite large (see Image (b) of Figure 2 of [1]), because the chances
that both q and q′ fall in the same triangle are much higher than in our dense correspondence
model for which the triangles are much tinier. When q and q′ fall in the same triangle, then their
displacements are similar to a first order approximation, due to the linear interpolation inside
triangles, and the error made during composition is small.

The improvement of ICIA over AAM is that, as the updating matrix is derived mathematically
from the cost function and not learnt over a finite set of examples, the algorithm is more accurate
and requires less iterations to converge. The fact that the Jacobi matrix is constant is the first
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Figure 3.1: First order approximation of the inverse shape projection defined by Baker and Matthews in [1].

factor of the efficiency of the ICIA algorithm. The second factor is the fact that only the shape
parameters are iteratively updated. The texture parameters are estimated in a single step after the
recovery of the shape parameters. This is achieved by making the shape Jacobi matrix t(0) ∂p

∂α

∣

∣

∣

∣

α=0
orthogonal to the texture Jacobi matrix, by projecting out the shape Jacobi matrix onto the texture
Jacobi matrix. It is therefore called the project out method. This induces a perturbation on the
shape Jacobi matrix. However, if the texture model has few components (Baker and Matthews
use less than ten components), then the error is small.

ICIA is an efficient algorithm. However, its domain of application is limited. It is a fitting
algorithm for 2D AAM, hence cannot handle out of the image plane rotation and directed light.
After discussion with Simon Baker, it also appears that it achieves its best performance when
fitting images of individuals used for training the model. On novel subjects, the performance and
accuracy are comparable to the AAM fitting algorithm. The ICIA is hence a person-specific fitting
algorithm.

ICIA applied to the 3DMM As part of this thesis work, the ICIA fitting algorithm was adapted
to use the 3DMM in [63]. Several modifications of the original algorithm had to be made in order
to obtain accurate results. The first one was to use the precise inverse shape projection defined in
Section 2.2.2, which makes the distinction between the reference and the image frames. The use
of this inverse shape projection leads to the definition of the following cost function:

‖t(u, v;∆β) ◦ p−1(x, y;γd) ◦ p(u, v;γd + ∆γ) − t−1(I(x, y) ◦ p(u, v;γ);β)‖2 (3.9)

where γ is the vector formed by the concatenation of the shape parameters, α, and the rigid
transformation parameters, ρ. The derivatives are precomputed at the parameters γd. Projecting
out the shape Jacobi matrix onto the texture Jacobi matrix would significantly perturb the shape
update, hence the project out method was not used. Thus, the texture parameters, β, are also
iteratively updated. The texture parameter update is denoted by the vector ∆β. This required the
definition of the inverse texture transformation:

t−1(t(ui, vi);β) = t(ui, vi) −
NT
∑

k=1

βk · Tk
·,i, (3.10)

where Tk
·,i denotes the ith column of the matrix Tk, i.e. the deviation of the RGB colour of vertex

i along the principal component k. This definition was chosen for the texture inverse because,
then, a texture composed with its inverse, under the same set of parameters is equal to the mean
texture: t−1(t(ui, vi;β);β) = T·,i, see Equation ( 2.10 on page 20).



30 CHAPTER 3. COMPENDIUM OF FACE IMAGE ANAL. TECH.

This algorithm is not as efficient as the original ICIA, but it is more accurate and its domain of
applicability is also wider: It is able to fit input facial images at any pose and of any individual.
This was demonstrated in the identification experiments reported in [60]. However, this algorithm
does not handle directed light sources. There is a second predicament of this algorithm. In an
implementation of ICIA, the parameters at which the derivatives are computed γd = [αdTρdT]T
must be selected. A natural choice for the shape parameters is αd = 0. The selection of ρd is not as
trivial, because the derivatives of the shape projections are computed in a particular image frame
set by θd and by φd. Therefore, the two rotation angles should be close to their optimal values
(depending on the input image). Hence, a set of Jacobians is computed for a series of different
directions. During the iterative fitting, the derivatives used are the ones closest to the current
estimation of the angles. Note that, at first, this approach might seem very close to the View-based
approach [24, 54, 55]. The difference is, however, fundamental. In this approach, the extraneous
(rotation) parameters are clearly separated from the intrinsic (identity, i.e. α,β) parameters. They
are, however, convolved with one another in the View-based approach.

2D+3D Active Appearance Model Recently, Xiao et al. [70] extended the ICIA algorithm,
originally developed for to the fitting of 2D AAM, to the fitting of a 2D+3D AAM. The aim of
this fitting algorithm is to recover the 3D shape and appearance of a face very efficiently (more
than 200 fps). They argued that the difference between a 2D AAM and the 3DMM is that the
3DMM codes, additionally to the (X,Y) coordinates, the Z coordinate for each shape vertex. We
will see, shortly, that there is an additional major difference between these two models. Xiao
et al. [70] showed that, in fact, any 2D projection of a 3D shape in the span of a 3DMM can
also be instantiated by a 2D AAM, but at the expense of using more parameters. The 2D AAM
requires up to 6 times more parameters than the 3DMM to model the same phenomenon. A weak
perspective projection model was used to demonstrate this. This property would not hold for a
perspective projection. They also showed that such a 2D AAM would be capable of instantiating
invalid shapes, which is natural, as 3D transformations projected to 2D are not linear in 2D. The
conclusion is that it is possible to fit facial images with non frontal poses with a 2D AAM trained
on frontal pose. To ensure the validity of the shape estimated and to increase the efficiency of
the algorithm, Xiao et al. impose the constraint that the 2D shape is a legitimate projection of
a 3D shape modelled by a 3DMM. Thus, 3DMM shape model parameters and weak projection
parameters are required to exist such as they produce a 2D shape equal to the one estimated by
the 2D fitting algorithm. This is implemented as a soft constraint by augmenting the original ICIA
cost function by a term proportional to the discrepancy between the 2D AAM estimated shape
and the projection of the 3DMM shape. This seems to be a rather inefficient solution as, here, two
shapes have to be estimated: The 2D AAM shape as well as the 3DMM shape and the projection
parameters. The 3DMM model is only used to ensure the validity of the 2D AAM shape. The 2D
AAM shape is used to warp the shape-free texture onto the image frame.

Xiao et al. [70] argued that the difference between a 2D AAM and the 3DMM is that the
3DMM codes depth information for each vertex and the 2D AAM does not. There is another
major difference. The 3DMM is a dense model whereas the AAM is a sparse shape model. 76000
vertices are modelled by the 3DMM and a few tens by the AAM. This dense sampling enables
the 3DMM to separate the texture from the illumination, thereby estimating a texture free of
illumination effects. This is because, the shading of a point depends mostly on the normal of this
point and on its reflectance properties. (The self-cast shadow term of the illumination depends
also on the full 3D shape of the object.) Therefore, to accurately model the illumination, it is
required to accurately model the normals. The normal of a point depends on the local 3D shape in
a neighbourhood of this point. Hence, the 3D surface is required to be densely sampled in order
to permit an accurate computation of the normals. Thus, it is not possible for a sparse 3D shape
model to accurately separate the shading from the texture. It would then be difficult to relight a
facial image with a different lighting configuration, as it is possible with the dense 3DMM, or to
obtain high identification rates on a face recognition application across illumination.

As demonstrated in [70], the 2D+3D ICIA algorithm recovers accurately the correspondence
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between the model 3D vertices and the image. These vertices are located on edges (eyebrows,
eyes, nostrils, lips, contour). The edge features are hence used, through the input image gradient,
to drive the fitting. Although, the correspondences are recovered, it does not imply that the
estimated Z values of the landmarks is close to the Z value of the corresponding physical points
on the face surface. In a single 2D image the only depth information is contained in the lighting.
To estimate accurately the 3D shape of a surface, the lighting must be estimated and its 3D shape
recovered using a reflectance model. For example, in a frontal image, the only clue about the
distance between the nose tip and, say, the lips, is in the shading of the nose. Failing to take the
shading into account in a fitting algorithm, as it is done by the 2D+3D AAM fitting algorithm,
results in an imprecise 3D shape.

As the original ICIA fitting algorithm, the 2D+3D ICIA fitting is person-specific: it is able to
fit accurately only individual within the training set. Its main domain of application is real-time
3D face tracking.

Linear Shape and Texture Fitting algorithm LiST [61] is a 3DMM fitting algorithm developed
during the course of this doctoral work that addresses the same problem as the SNO algorithm
in a more efficient manner by use of the linear parts of the model. (A fitting is 5 times faster than
with the SNO algorithm.) It is based on the fact that if the correspondences between the model
reference frame and the input image are estimated, then fitting the shape and rigid parameters is
a simple bilinear optimisation that can be solved accurately and efficiently. To obtain a bilinear
relationship between the 2D vertices projection and the shape and rigid parameters, a weak-
perspective projection is used. One way of estimating these correspondences is by the use of a
2D optical flow algorithm similar to the one of Section 2.1.3. Hence an optical flow algorithm is
applied to a model image synthesised using the current model parameters and the input image.
These correspondences are then used to update the shape and rigid parameters. The texture
and illumination parameters can also be recovered efficiently using the correspondences: The
input image is sampled at the location given by the correspondences and first the illumination
parameters are recovered using a Levenberg-Marquardt optimisation [58], while keeping the
texture parameters constant. This optimisation is fast as only a few parameters need to be
estimated. Then using the estimated light parameters, the light effect of the extracted texture
is inverted, yielding an illumination-free texture used to estimate the texture parameters. The
texture parameters are recovered by inverting a linear system of equations. It is hence efficient
and provide an accurate estimate.

A drawback of this algorithm is that the 3D shape is estimated using correspondence infor-
mation only, not using the shading, as it is done in the SNO algorithm or in the Multi-Features
Fitting algorithm presented in Chapter 4.

3.2 Illumination-based methods
The methods described in the previous section aimed at recovering the shape and appearance of
a face using a correspondence based model. The illumination model used was very crude: only
a scalar global illumination parameter multiplying the texture was used. The methods described
in this section use a Lambertian illumination model and estimate the 3D shape of faces from
the shading. These techniques fall in the category of shape-from-shading algorithms. Several
images of the same face under different light sources direction are required to recover the 3D
shape. Correspondences between the pixels of these images are not estimated, they, rather, are
assumed given by a manual alignment preprocessing step. Hence, the correspondence-based and
the illumination-based methods are complementary: they each address one part of the problem.
Only the 3DMM method addresses both problems in an unified approach.

A general comment about these methods is that they all assume a crude illumination model:
Faces are assumed to have a Lambertian reflectance function. The intensity of a pixel is, then,
the product of the albedo by the cosine of the angle between the light direction and the normal
of the physical point imaged. The cast shadows and specular highlight are hence not modelled
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contrasting with the phong illumination model chosen in this work. A selection of the most
prominent techniques in this field is presented hereafter.

The Illumination Cone It was shown by Belhumeur and Kriegman [5] that the set of all n-
pixel images of an object with a convex shape (i.e. with no cast shadows), at one pose, and
with Lambertian reflectance, under arbitrary combinations of point light sources, forms a convex
polyhedral cone in the image space

� n. The convex cone is completely defined by the set of
normals of the object.

Previous shape-from-shading approaches required the light source position to be accurately
known. One of the improvement of the illumination cone, is that the illumination cone can
be estimated without knowledge of light source locations. If three images of the object at the
same pose, and illuminated from different directions, with no pixel in attached nor cast shadow, are
available, then, the illumination cone can be estimated precisely by a singular value decomposition.
However, there is only one light source direction for which no pixel is in shadow: the viewing
direction. To address this issue, Georghiades et al. [32] proposed an iterative algorithm that treats
some pixels as invalid and does not use them in the estimation of the cone. Seven images (and
not three) are then required as input. The constraint that the recovered surface must be integrable
is used.

To model pose variation, a view-based approach is used. The space of appearance variation
of an individual across pose and illumination variations is the union of the illumination cones
acquired at different poses.

This algorithm is applied to an identification task. A set of illumination cones is computed
for every individual in the gallery set. Hence, at least seven images per pose are required for
the subjects in the gallery set. Then identification of a test image is performed by computing the
distance to all illumination cones. Minimising this distance yields the identity of the subject in the
test image.

The 9D Illumination Subspace All the face recognition methods that model lighting effects
assume a single directed light source. Ramamoorthi and Hanrahan [59], and Basri and Jacobs [3]
presented an efficient way of taking into account an infinite number of light source directions,
assuming the object is Lambertian and convex (no cast shadows). This method is based on the
fact that the Lambertian positive cosine law is a low-pass filter of light.

Both lighting and Lambertian reflectance can be described as functions on the surface of a
sphere. The intensity of (distant) light is function of its direction and can be represented as an
environment map [26] for which one pixel gives the intensity of light in one direction. Lambertian
reflectance is a function of the direction of the surface normal. According to Lambert’s law, the
intensity, i, reflected by a point is the product of its albedo, ρ, and the sum over all light directions,
u, of the intensity of the light in a direction, l(u), times the positive dot product of the light direction
and the normal, n, of the point. In the continuous case, the sum is replaced by an integral.

i = ρ
∫

sphere
max(0,uT · n) · l(u) · du (3.11)

In fact, the integral can be seen as a convolution over u of the kernel, max(0,uT · n), with the
signal l(u). As the integral is over the surface of a sphere, it is convenient to represent the lighting
function l and the positive dot product function in spherical harmonics. Then the Funck-Hecke
theorem [36] may be used, which states that the convolution on the sphere of two signals is
equivalent to the multiplication of their spherical harmonics coefficients. It turns out, that the
positive dot product, which can also be called half cosine kernel, acts as a low pass filter as the
magnitude of its spherical coefficients decrease exponentially. Hence a second order spherical
harmonic approximation of the half cosine already accounts for 99.22% of its energy. A second
order spherical harmonic expansion of the lighting function involves only nine coefficients. Then
nine basis image can be computed from a dense normal field of the points of a face surface. A
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face image illuminated by any environment map, can then be synthesised by computing a linear
combination of these nine basis images. The coefficients of the linear combination are the ones of
the expansion into spherical harmonics of the environment map.

This algorithm was applied to face recognition by Basri and Jacobs [4]. Their method is quite
demanding in terms of input, as it requires a 3D scan of each individual in the gallery set. This
set of 3D scans also have to be labelled: The location of some features such as eye corners, mouth
corners and nose tip must be manually set. A test image must be similarly labelled. This labelling
is used to fit a 3D model of the gallery set to the test image. After model registration, the set of
normals can be projected to the image frame. This assigns to each pixel a normal. This normal
is correct if the identity of the 3D model is the same as the one of the test image. Then using
the spherical harmonic representation, the illumination coefficients of the test image environment
maps are computed. Using these coefficients, the texture is back-projected to the image frame and
the discrepancy between this synthetic image and the test image is computed. This is performed
for each individual in the gallery. Identification is made by assigning to the test image the identity
of the 3D model with minimal back-projection error.

We considered using this illumination model for the 3DMM. Using it, we could easily and
efficiently use a multitude of directed light sources. However, this method is not capable of
rendering cast shadows nor specular highlight. Therefore, we favoured the phong illumination
model with one light source.
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Chapter 4

Multi-Features Fitting

We have seen in the previous chapter that, to date, the fitting algorithm that estimates the 3D
face shape and albedo the most accurately, is the Stochastic Newton Optimisation algorithm [13].
Often it converges to a minimum close enough to the global minimum, such as the recovered
shape and texture approximate well those of the photographed individual. However, in many
cases, it converges to a local minimum far from the global one, yielding an unrealistic face, as seen
on Figure 4.1.

Input Stochastic Newton
Optimisation Multi-Features Fitting

Figure 4.1: Example of poor fitting yielded by the Stochastic Newton Optimisation algorithm. Top row: fitting
results obtained with the Stochastic Newton Optimisation (middle row) and with the Multi-Features Fitting (right
row) algorithms using as input the photograph on the left. Bottom row: Novel view of the fitting results of the top
row, with the texture extracted from the input image (Section 4.8 on page 63).

The contribution of this thesis is a fitting algorithm that is more robust to the local minima
problem. It is inspired from the field of pattern classification in which stronger classifiers are
constructed from multiple weaker classifiers. An overview of this theory is given in the next
section which will serve as a basis for the construction of a robust fitting algorithm.

35
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4.1 Using multiple features

4.1.1 Parallelism with pattern classification

The problem of pattern classification is to decide which of K classes an input pattern, v, belongs
to. This may be achieved by estimating the posterior probability pk that v belongs to the class k, for
k = 1, . . . ,K. We denote by p the vector of the posterior probabilities of the K classes. In essence,
in a probabilistic framework, the pattern classification problem is to estimate a function that maps
a set of patterns {v} to the posterior probabilities p. Based on this mapping, the optimum decision
can be taken by, what is called, a classifier.

The estimation of the mapping function is computed using a set of example patterns for which
their class is known. This set of examples is called a training set and the function estimation
is called learning. There exist a number of different approaches to learn this mapping from the
training set ranging from neural networks to support vector machines. Additionally, various
mappings can be computed by alteration of the training set or by modification of the set of
measurements. Hence, different classifiers can be computed for the same application. Even
though, these classifiers could have similar long-term performances, they each have their own
strengths and weaknesses. Maximising their joined strengths and repelling their deficiencies is
the endeavour of classifier combination.

There exists several techniques to combine classifiers. An overview of the most related ap-
proach to the current work follows.

• In a cascade of classifiers, a chain of classifiers is built with the purpose of adapting the
classification computational cost to the input pattern. The individual classifiers making the
chain are activated on demand: as long as a decision with a given confidence is not reached,
the pattern is given to the next classifier in the chain. If a classifier in the chain reach a
decision, then the classification stops and the decision is returned. The individual classifiers
are then arranged by increasing discriminative power and increasing computational cost:
The cheapest and least perfect answer is given by the first classifier. If this classifier is not
discriminative enough, then the pattern is passed on to the second classifier. The advantage
of this technique is to make a combined classifier as powerful as the best classifier of the
cascade but at a reduced computational expense. This technique is applied to the detection
of faces by a reduced set expansion of a Support Vector Machine in [62].

• In an voting scheme, the different classifier are seen as having equal competence and equal
rights. Then, the classifiers are seen as experts and we seek to consolidate their decision.
The Dempster’s Rule provides a way to combine the decisions of the experts based on the
theory of evidence [2]. This rule is explained in [64]. The Dempster’s Rule says that if two
independent experts yield the probabilities p1

k and p2
k for the class k, then the combined

probability is:

pk =
p1

k · p
2
k

∑K
k=1 p1

k · p
2
k

(4.1)

Classification learns a mapping from a space of pattern to a class label. There is an analogy
with the fitting problem which aims to provide a mapping between a 2D face image and the model
parameters. The pattern classification problem is to find the class that maximises the posterior
probability given the training set; whereas the fitting problem is to find the model parameters that
maximise the posterior probability given the 3D Morphable Model. In a voting scheme several
classifiers are used to gather evidence that are then combine using the Dempster’s Rule. Similarly,
a fitting algorithm could gather features (instead of evidence) and use them to maximise the
posterior probability. The motivations behind combining classifiers is that sub-classifiers could
focus on a restrained set of evidence (in the case of the voting scheme) or a restricted sub-space of
the class label (in the case of the hierarchical classifier) and then be combined together to obtain
a classifier that has better performance than if a single classifier was used. Similarly, a fitting
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algorithm could be more robust to the imaging condition or to the local minima problem if it
was based on multiple features. So instead of maximising p(x|I) as does the Stochastic Newton
Optimisation algorithm, we maximise p(x| f 1(I), . . . , f N(I)), where the feature function f i(I) extracts
a specific feature from the image. In the case of the pixel colour feature, for instance, the feature
function is, naturally, the identity.

4.1.2 Multiple feature based posterior
A multiple features fitting algorithm aims at maximising the posterior probability of the model
parameters given not only the input image but also different features of it. To make the notations
more readable, we derive the formula using two features, f 1 and f 2, and making their dependence
on the input image I implicit. Using the Bayes rule and denoting by θ the ensemble of model
parameters, we have on the one hand:

p(θ, f 1, f 2) = p(θ) · p( f 1, f 2|θ) = p(θ) · p( f 1|θ) · p( f 2| f 1, θ), (4.2)

and on the other hand:
p(θ, f 1, f 2) = p(θ| f 1, f 2) · p( f 1, f 2). (4.3)

Combining these two equations yields:

p(θ| f 1, f 2) =
p( f 1|θ) · p( f 2| f 1, θ) · p(θ)

p( f 1, f 2)
. (4.4)

If the features are independent, this equation becomes:

p(θ| f 1, f 2) =
p( f 1|θ) · p( f 2|θ) · p(θ)

p( f 1) · p( f 2)
. (4.5)

The aim of the multiple feature fitting algorithm is to maximise the above equation with respect to
the model parameters, θ. If f 1 is the identity, as in the case of the pixel colour feature for instance,
then multiplying the equation by its probability function will not influence the optimum θ. Hence
the term p( f 1) may collapse in the above equation. If we use a deterministic algorithm for the
second feature, such as the canny edge detector, in the case of an edge based feature, then p( f 2) = 1.
As a result this equation is simplified to:

p(θ| f 1, f 2) = p( f 1|θ) · p( f 2|θ) · p(θ). (4.6)

Maximising this equation is equivalent to minimising the negative of its logarithm:

− ln p(θ| f 1, f 2) = − ln p( f 1|θ) − ln p( f 2|θ) − ln p(θ). (4.7)

In this thesis, I call a cost function the negative of the logarithm of a probability function, as it is to
be minimised.

As aforementioned, the use of combined classifiers, in the pattern classification field, stems
from the fact that each classifier has different strengths and their combination maximises the
overall performances. For example, an optimal cascaded classifier is constructed with a chain of
classifiers such as the classifier i achieves its maximum discriminations on the patterns that are
poorly discriminated by the first i − 1 classifiers. Similarly, for the fitting problem, optimally,
the different features cost functions should have local minima in different areas of the parameter
space. Then, the combination of the multiple cost functions would have fewer local minima and
a smoother behaviour on the parameter space as it is shown in Figure 4.2.

As it is shown on Figure 4.2, one local minimum would persist in the combined cost function,
if this local minimum is consistent across all the different feature cost functions. If the features are
independent this is not likely to happen. To make this even less likely to happen, a good strategy
is to use as many features as possible.
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-ln p(f1|x)
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-ln p(f2|x)
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-ln p(x|f1, f2)

x

Figure 4.2: Two feature cost functions with, each, two minima. The last plot shows the multiple feature cost function
(plain line) with one single minimum yielded by the addition of the two weak cost functions (dashed lines).

4.1.3 Feature Characteristics

It is shown in the previous section, that using different features provides a fitting algorithm more
robust to local minima. The features that are used in the fitting algorithm can be categorised with
respect to some characteristics detailed here.

Image based vs. model based. The last term of Equation (4.6) is the prior that enforces the
fitting results to be a likely face. The prior probability of the model parameters is given by
the Principal Component Analysis, that assumes the shape and the texture to have a Gaussian
probability model. However, this assumption is suspicious as it appears that some faces with a
high probability according to the PCA model are rather unlikely faces. For instance, the texture
shown in Figure 4.3 is obtained by a linear combination of principal components whose coefficients
are all within 2 standard deviations; and it clearly appears that this texture is unlikely. This texture
is actually yielded by fitting an image illuminated by multiple light sources. As the fitting was
done with only one light source, the light was poorly estimated, and rubs off on the estimated
texture. This problem happens because the PCA model is not restrictive enough. In order to

Figure 4.3: Example of unlikely texture for which the PCA coefficients are all within 2 standard deviation. This
texture was obtained by fitting an image with multiple light sources. The asymmetry of the texture is a residual
from the illumination inversion algorithm and stems from the fact that the attached shadows were not properly
recovered (because this light source was not well estimated). Thus the texture is affected by a lighting artifact and
re-renderings at other illumination conditions would be poor.

reduce this problem, additional features are used that restrict the model parameters such as they
generate more realistic faces. These features depend only on the model parameter and not on the
input image, hence they are called model based features. On the other hand, the features that do
depend on the input image are called image based features.
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Convexity. A convex cost function has one stable state, the one and only global minimum. A
descent optimisation algorithm, initialised anywhere in the parameter space, always recovers the
global minimum of a convex cost function. Convexity is, hence, an important characteristic of a
cost function. It is sometimes possible to prove that a cost function is convex, especially for the
model based cost functions. However, it is not possible to assess the convexity of image based
cost functions, in general, as they do depend on the input image; for these, changing the input
image, modifies the behaviour of the cost function.

Comparing cost function only on their convexity property is not informative as two non-convex
cost functions might have a different density and number of local minima. Therefore, we use the
concept of domain of convergence. The domain of convergence of a cost function is the domain that
includes the global minimum and on which this function is convex. It is defined as the domain
around the global minimum on which the Hessian of the function is positive definite. The smaller
the domain of convergence, the more non-convex is the cost function.

Finding the domain of convergence analytically for an image based cost function is not possible
as an input image cannot be expressed analytically (an input image is merely a series of discrete
pixels). Hence, the domain of convergence can only be estimated for a given input image. In
a high-dimensional parameter space, estimating the domain of convergence is computationally
expensive. What is tractable is to estimate the degree of non-convexity by introspecting the
analytical form of a cost function and using some conjectures about input images. This is what
we propose to do in the present work. We will hence grade cost functions as highly non-convex,
non-convex or convex.

Holistic vs. sparse. A holistic feature involves the whole set of model vertices, whereas a sparse
feature includes a limited set of model vertices. The cost function of a holistic feature depends on
all the vertices of the model. So, the model parameter update, given at one iteration of the fitting
algorithm, seeks to reduce the fitting error on the whole face area. For this feature type, the set of
possible corresponding pixels for one model vertex is the entire set of pixels in the input image.

On the other hand, a sparse cost function involves a limited number of vertices. The set of
image pixels that these vertices correspond to, is also restricted. This subset of image pixels is
extracted by the feature preprocessing function f i(I). There are two types of sparse features: Either
the vertices in the cost function are localised on a small region of the face, and then the purpose
of the feature is to refine the 3D shape estimate in this area (the specular highlight feature is an
example of sparse localised feature); or the model vertices used in the cost function are scattered
throughout the face area, in which case, the purpose of the feature is to put these vertices efficiently
in correspondence with the image (an example of such a feature is the edge based feature). Hence,
the set of correspondence on the whole face area is rather coarse, as only information about a
limited number of points is used. This type of feature is used at an early stage of the fitting
to rapidly put in coarse correspondence the model with the image and, afterwards, holistic and
localised features are used to refine the correspondence and the shape estimate.

Biased vs non-biased As seen in Section 4.1.2, the purpose of an image-based feature is to extract
some information about the input image. It is then, this extracted information that is fitted to the
same feature of the model. However it may happen, that the image feature and the model feature
do not correspond to one another. For instance, in the case of the textured edge feature, the image
edges are extracted by a canny edge detector. The model edges, on the other hand, are set by
a human expert, independently of the input image (Figure 4.9 on page 47). It may happen that
these edges do not correspond exactly to one another: Their might be missing edges in the image,
or the canny edge detector might yield spurious edges due to lighting. In such a situation, we
say that this image-based feature introduces a bias on the estimate. Despite this lack of accurate
correspondence, a biased feature might still be used to bring the model in coarse correspondence
with the image. As a result, a biased feature should be used in the early stages of the fitting but
not in the latest stages.

In the next section, the different features used within this thesis are detailed.



40 CHAPTER 4. MULTI-FEATURES FITTING

4.2 Image based features
As mentioned in Section 4.1.3, we distinguish two types of features: Image based feature and
model based features. In this section the image based features are detailed, leaving the model
based ones for the next.

A good image based feature adheres to the two following criteria:

• The cost function of an ideal feature is convex. If it is not convex, as is the case for an image
based feature (see previous section), it should have a large domain of convergence.

• A feature should be robustly extracted from any input image. This means that a feature
based on the edges, for instance, should extract always the same intrinsic edges, located on
the same facial features, independently of the input image, and should not extract artifact
edges produces by shadows. For a feature based on the specular highlights, the robustness
criteria means that the preprocessing algorithm should, for instance, detect the highlights
on the face skin and not on the glasses.

4.2.1 Pixel colour feature
Fitting the pixels colour aims to recover the correspondence, the 3D shape, and the texture by
matching the colour of the face image generated by the model to the colour of the input face image.

The correspondences are estimated using the edges implicitly: Edge information is convolved
with the texture. Using the edges to recover the correspondence can only be done by a combined
estimation of the texture and the shape. This is one source of the non-linearities of the cost
function.

The second cue used to estimate the 3D shape is the shading. The shape from shading part of
the cost function is also non-linear as the directed light source and the texture are unknown. As a
result, the shape, the texture and the illumination condition are to be estimated together.

Pixel colour cost function

The feature used to fit the pixel colour, f c, is simply the input image.

f c(I(x, y)) = I(x, y) (4.8)

Assuming the pixels to be independent, the probability of the input image given the model
parameters is the product of the probabilities of each pixel given the model parameters.

− ln p(I(x, y)|θ) = −
∑

i

ln p(I(xi, yi)|θ) (4.9)

Assuming that the difference between the synthetic image and the input image is Gaussian and
the variance is the same for all pixels, yields the following probability (with Im(x, y) given in
Equation 2.24 on page 24):

p(I(xi, yi)|θ) = exp
(

− 1
2 · σ2 · (I(xi, yi) − Im(xi, yi))2

)

· 1√
2πσ2

(4.10)

Hence, the pixel feature cost function, for one pixel, is formulated as follows:

− ln p(I(xi, yi)|θ) ∝ 1
2

(I(xi, yi) − Im(xi, yi))2 (4.11)

The cost function, Cc, can then be written as the inner product of the error vector ec.

Cc =
1
2

ecT · ec, with ec
i = I(xi, yi) − tC(u, v;β,α,γ) ◦ p−1(xi, yi;α,ρ) (4.12)
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As mentioned in Section 2.2.2, the inverse shape mapping p−1(xi, yi;α,ρ) cannot be expressed
analytically easily. However, composing Equation (4.12) on its right with p(u, v;α,ρ), using
Equation 2.14 on page 22, and sampling the reference frame instead of the image frame, yields a
cost function that depends on the forward shape mapping, which is expressed analytically.

ec
i = I(xi, yi) ◦ p(ui, vi;α,ρ) − tC(ui, vi;β,α,γ) (4.13)

Note that this error function is formally not the same as the one of Equation (4.12), as this one is
sampled on the reference frame and the former one, on the image frame.

The plot of the pixel colour cost function along the azimuth rotation angle of the example
image shown on Figure 4.4, is shown on Figure 4.5. It is clear, on this plot, the pixel colour cost
function suffers from many local minima.

(a) (b) (c) (d)

Figure 4.4: (a) Example of an input image on which the features cost functions are computed. The cost functions
are computed using the initial values for the shape, texture and illumination parameters shown in the rendering
(b). They are plotted for variations of the azimuth angle of ±20◦ shown in the rendering (c) and (d).

Figure 4.5: Plot of the pixel colour cost function along variations of the azimuth angle of ±20◦ around the optimum.
The cost function is evaluated on the input image shown on Figure 4.4 and for variations of the azimuth angle also
shown on this figure. The vertical line is positioned at the value of the azimuth angle at the minimum reached by
the fitting algorithm detailed in Section 4.6.
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Derivatives

In this section, the derivative of the pixel colour cost function with respect to a shape parameter
is worked out. In the previous section, it was mentioned that the cost function is sampled
on the reference frame. Sampling it at one vertex is not the wisest choice as computing the
derivative of the unit-length normal at one vertex with respect to a shape parameter is involved
and computationally expensive. A better choice is to compute it at the incenter of a triangle.

Differentiating Equation (4.12) with respect to the shape parameter j, yields:

∂Cc

∂α j
=
∂ec

∂α j

T

· ec (4.14)

ec is the vector of residuals evaluated at the incenters of the triangles sampled among the visible
triangles. ec

i is the triplet of RGB residual at the incenter of the triangle i. Its derivative is computed
using Equation (4.12) and 2.22 on page 24.

∂ec
i

∂α j
=
∂I
∂x
·
∂px

∂α j
+
∂I
∂y
·
∂py

∂α j
−
∂tC

i

∂α j
(4.15)

The first two terms of this equation is the part of the derivative that recovers the correspondence
using the gradient of the input image. The interesting part of this derivative is the last term. This
is the shape from shading part of the fitting algorithm. It is expressed using Equation 2.15 on
page 23.

∂tC
i

∂α j
=M · Ldir ·

(

∂〈nt
i ,d〉
∂α j

ti + ks
∂〈ri,vi〉ν
∂α j

13×1

)

(4.16)

where Ldir is the diagonal matrix, with the directed light intensities on its diagonal, Ld
r , Ld

g, Ld
b . It is

a simple matter of calculus to differentiate the diffuse and the specular highlight scalar products
of this expression.

Implementation Details

When implementing the pixel colour section of the fitting algorithm, the following issues are
important.

• Fitting the triangle centre. The expression of the derivative of the normal at a triangle’s
corner with respect to the a shape parameter is much more complex than the one of the
normal at a triangle centre. Therefore, it is the triangles centre that are fitted and not the
model vertices. Hence, a shape and texture model expressed in the triangle centre must be
computed. This is done by averaging the shape and texture principal components of the
three corners of a triangle (in the mff oi MMT Function (See Appendix B).

• Selection of the triangles to be fitted. Opposed to the Stochastic Newton Algorithm, the
triangles that are fitted are sampled once at the beginning of an optimisation process (a
stage, as defined in Section 4.6) and not at each iteration. All the visible triangles are not
fitted because the computational time of the algorithm would be prohibitive. Hence, the
triangles that are fitted must be selected. The selection function must not be arbitrary, as it
has a major influence on the fitting result. If, for example, the triangles are selected with
a uniform probability on the visible triangles, then very few vertices will be sampled in
the interesting regions of the face (nose, lips, and eyes) as most of the vertices are located
on the cheeks, neck and forehead. Therefore, the fitting parameter sel coef specifies the
proportion of vertices sampled on the different face regions. Hence, a uniform probability
is defined on each of these regions. This uniform probability is then multiplied by a factor
that accounts for the surface of a triangle in the image frame (using the current fitting
parameters). The triangles that constitute the pixel intensity cost function are then sampled
using this probability distribution function.
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• Number of triangles. The number of triangles that form the cost function is also an im-
portant parameter. The more triangles are included, the better will be the fitting, and the
less overfitting will occur. However, the computational time for each iteration would be
increased. I found out that using 1000 triangles was a good compromise.

• Cast shadow and vertex visibility update. Ideally, the vertices in the cast shadow and
the visibility of each vertex should be recomputed after each iteration, using the current
light direction and pose parameters. However, doing so would substantially increase the
computational load. Hence the cast shadows and the visibility are computed only before
each stage of the algorithm (Section 4.6).

4.2.2 Edge Feature

The aim of the fitting algorithm is to estimate the 3D shape. This is achieved by recovering
correspondences with the 3D shape model and estimating the parameter of this shape model. So,
estimating the correspondence is paramount. Edge feature is precisely suited to this problem, as
it can be used to recover correspondence between the edges of the model face image and the ones
of the input image more robustly than using the pixel intensity alone.

Using the pixel intensity alone, any vertex of the model could theoretically be set in corre-
spondence with any pixel of the input image. However, the number of possible correspondence
for edges is much more limited as the edge pixels constitute a sub-set of the set of pixels with a
much lower cardinality (three orders of magnitude). As a result, the number of possible solution
is considerably reduced. Hence, we say that the edge feature is a sparse feature.

The cost function that fits the edges gives a direct constraint on the shape. As opposed to the
pixel colour feature that conceals shape information in the image gradient and in the shading,
the edge reveals explicit shape information. As a result, the Jacobi matrix of the edge feature is
more constant across the parameter space than the one of the pixel colour feature. Hence, it is
reasonable to expect that the domain of convergence of the edge feature is wider than the one of
the pixel colour feature.

The plot of the cost function along the azimuth rotation angle of the example image shown in
Figure 4.4, is shown on Figure 4.6. It is much smoother than the plot of the pixel colour feature
shown in Figure 4.5 and has only one minimum.
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Figure 4.6: Plot of the edge cost function along variations of the azimuth angle of ±60◦ around the optimum. The
cost function is evaluated on the input image shown on Figure 4.4. The vertical line is positioned at the value of
the azimuth angle recovered at the end of the fitting.
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Edge cost function

A deterministic algorithm is used to find the edges such as the canny edge detector. It provides a
binary edge map for the input image:

f e(I(x, y)) = canny(I(x, y)) (4.17)

Each image edge pixel is assigned an index j = 1, . . . , J and their 2D positions are referenced by qe
j .

I denote by the vector qe
k(i), the 2D coordinates of the input image edge points in correspondence

with the edge point of the model image pi. Here, the index i runs over all the visible model edge
points. I assume, for now, that the mapping between the input image and the model image edge
points, k(i), is known. It is explain hereafter how it is estimated. If the edge points are independent,
and identically normally distributed over the image, then the probability of the edge map, given
the shape model parameter α and the rigid transformation parameters ρ is

p( f e(I)|α,ρ) =
∏

i

exp















−
‖qe

k(i) − pi‖2

2σ2















1
2πσ2 (4.18)

Under these assumptions, the edge feature cost function is

− ln p( f e(I)|α,ρ) ∝ Ce = eeT · ee, with ee
i (α,ρ) = ‖qe

k(i) − pi‖ (4.19)

In this cost function, I have omitted the terms that do not depend on the parameters, and hence
that have no influence on the position of the minimum in the parameter space.

One observation can be made on the edge based cost function in Equation (4.19) comparing it
with the pixel colour cost function in Equation (4.12). The edge based function involves only 2D
distances. As a result, the cost function to be optimised is not a composition of a shape term and
a texture term, as in the pixel colour feature. Rather, the edge cost function includes only a shape
term. Hence, we may expect its degree of non-convexity to be lower than the pixel colour cost
function.

So, now the question is, how to estimate the mapping k(i)? The same rule as the Iterative
Closest Point (ICP) algorithm is used: The model edge point i is set in correspondence with the
input image edge point closest to it:

k(i) = arg min
j=1,...,J

‖qe
j − pi‖ (4.20)

Similar the ICP algorithm, fitting the edges involves, at each iteration, the following two steps: First
the correspondence mapping, k(i), is computed. Then, given this mapping, the model parameters
are updated such as the cost function of Equation (4.19) is reduced. However, performing these
two steps separately is not optimal, as modifying the mapping k(i) alters the minimum. Hence, it is
desirable, to update k(i) along with the parameters α and ρ. Levenberg-Marquardt ICP (LM-ICP)
is an algorithm, proposed by Fitzgibbon [30], addressing this problem. The difference between
the Fitzgibbon algorithm and this one, is that in [30], only the rigid parameters were estimated.
Here, not only the rigid parameters ρ are estimated but also the non-rigid parameters α.

The trick is to use the Chamfer Distance Transform (CDT) [14]. It is defined as the mapping
D(x) that associates a point of the image space, x, with the distance to the closest edge point:

D(x) = min
j=1,...,J

‖qe
j − x‖ (4.21)

The Chamfer Distance Transform at the image point, x, in essence, incorporates two pieces of
information: The closest edge point to x, which, according to the ICP algorithm, is set in corre-
spondence with x; and the distance between these two points. Hence, it replaces both the mapping
k(i) and the distance ‖qe

k(i) − pi‖. As a result, using the Chamfer Distance Transform, the edge cost
function is transformed to:

ee
i (α,ρ) = D

(

pi(α,ρ)
)

(4.22)
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The edge cost function is computed simply by sampling the Chamfer Distance Transform at
the position where the edge model points are projected under the current shape and projection
parameters.

Note that the CDT depends only on the input image, not on the model parameters. Hence, it
can be computed only once, at the beginning of the fitting algorithm. An efficient implementation
of the computation of D(x) is proposed in [29] , whose complexity is O(2wh), where w and h are
the width and height of the input image. An example of Chamfer Distance Transform is shown
on Figure 4.7.

Figure 4.7: Edge map of the input image shown in Figure 4.4 and its Chamfer Distance Transform.

Derivatives

Differentiating the edge cost function of Equation (4.22) with trespect to the shape parameter j is
straightforward and yields:

∂ee
i

α j
=
∂D
∂x

(pi) ·
∂px

i

∂α j
+
∂D
∂y

(pi) ·
∂py

i

∂α j
(4.23)

The advantage of the LM-ICP algorithm is that the derivatives of the CDT encode both the
derivative of the mapping function k(i) and the one of the distance between corresponding points.
As opposed to the ICP algorithm, in which the derivative do not depend on the mapping and,
hence, regard it as being constant for each update of the parameter. As a result, in the LM-
ICP algorithm, used here, the parameter update takes into account the variation of the mapping
function. This is the reason why this scheme is called ’soft correspondence’. The derivatives of
the CDT for the example of Figure 4.7 are shown on Figure 4.8.

Textured edges

I mentioned in the previous section how to obtain the input image edge map (using the canny
edge detector) and how to derive a cost function from it (using the Chamfer Distance Transform).
However, I did not address yet, how to compute the model edges. This is the purpose of this
section.

An edge result from a change in texture and not from shading induced by lighting. Hence,
edges are independent of the lighting. In this work, I distinguish between two type of edges:
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Figure 4.8: Derivatives along x (first image) and along y (second image) of the Chamfer Distance Transform shown
in Figure 4.7. The images shown are actually the absolute value of the derivatives.

Firstly, edges marking the border between two facial features, such as the edges around the
eyebrow marking the border between the eyebrow and the forehead on the upper part and the
eye on the lower part. These edges are called textured edges. Secondly, edges located at the border
between the face and an non-face part of the image. These edges are called Contour edges and will
be addressed at the next section.

Textured edges do not move on the face surface as the pose of the face changes (only their
visibility state can change). As, they do not depend on the lighting either, they are independent on
imaging conditions. Hence, their location is constant on the reference frame. As the face surface
of the 3D Morphable Model is densely sampled by 3D vertices, we may treat as model edges a
constant subset of model vertices. The subset of model vertices chosen as textured edges is shown
on the texture map of the average head on Figure 4.9.

Note that, generally, there is no one-to-one mapping between the model edge points and the
image edge points: Some edge points could be not detected in the image. These are called missed
edges. Additionally, artifact edges due to shading could be detected. These problems introduce a
lack of correspondence between image and model edges. This is specially the case for textured
edges, which are constant and set manually. Hence, the textured edge cost function may be biased.
Therefore, it is used at the initial stage of the fitting algorithm to get the major face features in
correspondence, but not at final stage.

Contour edges

Computing contour edges is more involved than computing textured edges. As opposed to the
textured edges, the vertices of the contour edges do depend on the rigid parameters. Hence, the
set of contour vertex indexes vary with the pose of the face. Contour edges are defined as the set
of points in the image plane that are on the border between the face area and the non-face area.
There exists another definition for the contour: The contour of a 3D model projected on an image
plane can also be defined as the set of vertices of the 3D model whose normal is orthogonal to the
direction of the viewing vector. The viewing vector of a vertex connects the camera centre to the
vertex. However, we do not use this definition as it yields contours that could be difficult to fit.
As an example, consider the model image shown on the left of Figure 4.11. Some of the vertices
on the upper part of the ridge of the nose would be considered on the contour according to the
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Figure 4.9: The textured edges on the face surface are shown on this figure in white on the texture map of the
average head.

second definition, but not according to the first definition. These vertices are marked with a black
line on Figure 4.10. As the norm of the image gradient on these contour pixels is small, these
pixels would not be detected as edges by any edge detector.

Figure 4.10: The pixels marked by a black line are contours according to the normal-based definition but they
would be difficult to fit as they would not be detected as edge points.

The fitting of contour edges proceeds in two steps: First, the model vertices on the contour
for the current rigid parameters are selected, then these vertices are fitted to the input edges in
the same way as for textured edges, i.e. using the Chamfer Distance Transform. The following
algorithm is used for the selection of model contour edges:

1. Vertex map: First the vertex map is constructed. A vertex map is a rendering of the face, but
instead of setting the R, G, B colour at one pixel a vertex index is set. The vertex whose index
is set at one pixel, is the one that is projected nearest to this pixel.

2. Binary vertex map: The vertex map is converted to a binary format by thresholding the vertex
map to one. The binary vertex map has, hence, a value of one for any pixel in the face area
of the image, and zero, for any pixel outside the face area.
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3. Erosion and subtraction: The morphological operation of erosion is applied to the binary
vertex map, using as structuring element a disk of radius of one pixel. Then this eroded
binary image is subtracted to the binary vertex map obtained at step 2. The resulting binary
image is the contour map. Each pixel on this contour map set to one is on the contour of
the face. Sampling the vertex map (obtained at step 1.) on these pixels yields the indexes of
vertex on the contour.

4. Contour vertex indexes: Some of the contour vertices yielded by the previous step are not
correct. This is because the 3D Morphable Model does not model the entire skull. It only
models the points ranging from one ear to the other and from the top of the forehead to the
neck. As a result, some parts of its contour, on the lower part of the neck and on the top of
the forehead, are artificial. These artificial contour points are removed at this step. The good
news is that the artificial contour are present always in the same area of the face. Hence,
they are constant. Thus a list of the vertex indexes on the artificial contour can be made. So,
finally, all the contour vertex indexes yielded by step 3 that are on the artificial contour list
are removed. This step yields the indexes of the contour vertex used for fitting.

The result of this algorithm on an example image is shown in Figure 4.11. A rendering of the
images yielded by each step of the algorithm is shown on this Figure.

Model image Step 1 Step 2

Step 3 step 4

Figure 4.11: Rendering of the images yielded by the four step of the algorithm computing the model contour, when
applied to the ’Model image’ shown in the upper left part of this figure.

Robust edge fitting

Two tricks are used to make the edge feature fitting more robust.

Using edge orientation The behaviour and the quality of the edge fitting depends mostly on
the quality of the estimated correspondence, k(i). Hence, it is paramount to increase as much as



4.2. IMAGE BASED FEATURES 49

possible the quality of these correspondences. Towards this goal, we use an additional clue: the
edge orientation. The idea is that if two edge points have different orientation, say one is from an
horizontal edge and the other from a vertical edge, it is quite unlikely that they correspond to one
another, even if they are close from one another. So, are set in correspondence edge points that
have a direction close enough. As directions, the direction of the normal to an edge, ϕ, is used
and is computed using the image gradient:

ϕ = atan2
∂I/∂y
∂I/∂x

(4.24)

The function atan2 is the same as tan−1, except that, instead of returning a value in [− π2 ,
π
2 ], it returns

a value that ranges in all four quadrants, using the signs of the numerator and denominator. This
formula is used for both the input image edges and the model edges. The orientation of the input
image edge pixels is denoted by ϕIj and the one of the model edge points, by ϕmi .

The four quadrants in [−π, π] are segmented into regions, [ϕl
n, ϕ

u
n[, indexed by n. Then subsets,

Kn, of the set of input image edge pixels, {1, . . . , J}, are formed:

Kn = { j | ϕl
n ≤ ϕIj < ϕu

n} (4.25)

If the regions are overlapping, then edge pixels may be included in several regions. One Chamfer
Distance Transform is computed for each of these regions:

Dn(x) = min
j∈Kn
‖qe

j − x‖ (4.26)

Then a mapping between the model edge points i and the region indexes is computed, by assigning
a model edge point to the region whose centre is the closest to its direction:

n(i) = arg min
n
‖ϕmi −

ϕu
n − ϕl

n

2
‖ (4.27)

As opposed to the input image edge points, a model edge point may be assigned to only one
region. Finally, the error vector of the cost function is transformed to:

ee
i (α,ρ) = Dn(i)(pi(α,ρ)) (4.28)

It is important that the edge direction regions overlap. This allows for some discrepancy
between the model edge direction and the input image direction. This is most useful at the
beginning of the algorithm, when the orientation between edges might be quite different due to
initialisation of the rotation angles being far from the global optimum.

Note that there is a major difference in the treatment of the orientation for textured and contour
edges. The direction of the image edges can be computed for the textured and contour edges as
aforementioned. However, the sign of contour edges is not meaningful as it depends on the colour
of the background: If the contour is white, the direction of the image edge has another sign than
if the background is black. To compensate for this, the sign of the direction of contour edges
is not taken into account. This is achieved by modifying the way the input image edge pixels
are separated into subsets. For the contour edges, instead of using the subsets defined by Kn on
Equation (4.25), I use subsets formed byK c

n, as follows:

K c
n = { j | ϕl

n ≤ ϕIj < ϕu
n or π − ϕu

n ≤ ϕIj < π − ϕl
n} (4.29)

Naturally, here, ϕl
n and ϕu

n are restrained to [0, π].

Missed edge points If an edge point is not detected in the input image by the edge detector, it is
said to be missed. When there are missed edge points, the corresponding model edge points are
set in correspondence with wrong image edge points. It could even be that these corresponding
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image edge points belong to another object in the image and are located far from the true edge
point. As the cost function used in Equation (4.19) is a sum of square cost function, these points
have a large influence on the parameter update. To reduce it, the Chamfer Distance Transform is
thresholded, such as any distance larger than a given threshold is set to this threshold. Hence the
Chamfer Distance Transform of Equation (4.21) is replaced by:

D(x) = min(θe, min
j=1,...,J

‖qe
j − x‖) (4.30)

Note that it is possible to combine this thresholded cost function with the one that uses edge
orientation.

Figure 4.12 shows the same plot as in Figure 4.6, but for the thresholded edge cost function.
It can be seen that the robustness towards missed points is obtained at the expense of a reduced
domain of convergence: Now, the domain in which the cost function is convex is smaller than the
one of Figure 4.6.
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Figure 4.12: Plot of the thresholded edge cost function, with a threshold of 10 pixels, along variations of the
azimuth angle of ±60◦ around the optimum. The cost function is evaluated on the input image shown in Figure 4.4.
The vertical line is positioned at the value of the azimuth angle recovered at the end of the fitting.

Implementation Details

When implementing the edge feature of the fitting algorithm, the following issues are important.

• Number of edge orientation. For the textured edges, the angles between [−π, π] is divided
into 8 bins and for the contour edges in 4 bins.

• Contour edges computation. Ideally, the model vertices that form the contour edges should
be recomputed at each iteration, as the pose and shape parameters change at each iteration.
However, for performance reasons, the contour edges are computed only before a fitting
stage (Section 4.6).

4.2.3 Anchor points feature

An anchor point is a point of the image plane for which the correspondence with the 3D Morphable
Model is known. In this thesis, we assume that a human user set this point by clicking on the
image and on the same model point. Alternatively, an anchor point could be detected using
an automatic detector. It was shown by Heisele in [41] that a few set of facial points can be
automatically detected across various poses: In [41], 14 points are detected.
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As the corresponding point of an anchor is known, the anchor point feature is the feature that
gives the maximum information, but it is also the sparsest feature, as this information can be
obtained only for few points.

As for the edge feature, the anchor cost function involves only shape measurements. There
are two difference between the anchor cost function and the edge based one: Firstly, the corre-
spondences do not have to be estimated for the anchor cost function as they are known. Secondly,
rather than minimising the euclidean distance, the distances along both X and Y between the
model and the image points are minimised:

Ca = eaT · ea, with ea
i (α,ρ) =

(

qa,x
i − px

i (α,ρ)
qa,y

i − py
i (α,ρ)

)

(4.31)

Here, the index i runs over the anchor points. As mentioned in the edge feature section, if the
correspondences are known, as it is the case for anchor point feature, and if a weak perspective
projection is used, then the cost function is bilinear. Hence, few points are needed to find its
minimum. This is the reason why a few anchor points may be used to find good initialisation
value for the rigid parameters and for a few shape principal components. For instance, 6 anchor
points were used to plot the anchor cost function shown on Figure 4.13 along variations of the
azimuth angle.
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Figure 4.13: Plot of the anchor cost function, with 6 anchor points, along variations of the azimuth angle of ±60◦

around the optimum. The cost function is evaluated on the input image shown in Figure 4.4. The vertical line is
positioned at the value of the azimuth angle recovered at the end of the fitting.

As the correspondences of the anchor points are set manually, they may not be optimal, in
the sense that these correspondence may not yield the smallest difference between the synthetic
model image and the input image. Therefore, using this feature in the latest stage of the fitting
algorithm introduces a bias. Hence, this feature is used only in the initial stage of the fitting
algorithm to estimate initial rigid parameters and some shape principal components coefficients.

4.2.4 Specular highlight feature

The specular highlight feature is the last image based feature developed in this thesis. This feature
is based on the fact that the peak of the specular lobe of the BRDF (Bidirectional Reflectance
Distribution Function) has the direction of the reflection vector (see Figure 4.14): A point of the
face surface at the peak of the specular lobe has a normal that has the direction of the bisector
of the angle formed by the light source direction and the camera direction. Hence detecting the
specular highlight points yields a direct relationship between the geometry of the face surface at
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these points and the camera and light directions. This relationship can then be used to recover the
surface normal at these points if the camera and light directions are known.
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Figure 4.14: The light vector, d, is reflected along the reflection vector, r.

The camera direction (relative to the face, given by the rigid parameters) and the light direction
influence all the pixels of the face area. Hence, these two directions can be recovered stably and
accurately. So, I propose to first estimate these directions using all the pixels, then taking these
directions constant, to refine the estimate of the normal of the points that are located on a strong
specular highlight.

Example

Figure 4.15 shows on the left an input image and on the right specular highlight pixels detected
with the algorithm of Section 4.2.4 (The interesting points are located on the left of the tip of
the nose). A comparison of the fitting results obtained with and without the specular highlight
feature is shown on Figure 4.16. The leftmost image on this figure shows an input image, while the
rightmost image is a photograph of the same lady as in the first image, at a novel view. The three
images on the top row were obtained with a fitting algorithm that did not use the specular highlight
feature; while the three images on the bottom row reflects results yielded with a fitting algorithm
that used the specular highlight feature. The first column shows renderings of the fitting results.
Here, both fittings appear to be similar. The second column shows the fitting results at a novel
view (the same view as the rightmost image). The tip of the nose is better fitted when the specular
highlight feature is used. This is more clear on a rendering of the face contour only, presented on
the third column of the figure. The face contour is drawn on the novel view picture (rightmost
image). The contour of the tip of the nose fits better the novel view photograph when the fitting
result, made on the front view image, that used the specular highlight feature is used.

The conclusion is that the specular highlight is a good clue that gives direct depth information.

Detecting specular highlights

Points at the peak of the specular lobe appear very bright. If the light source intensity is strong
enough, these pixels even saturate. Hence, automatically detecting them can be done with a
relatively simple algorithm: If two channels of a pixel are above a threshold, say 250, then this
pixel is marked as being at the peak of the specular highlight lobe. An example of the specular
highlight detection using this algorithm is shown on Figure ??(b): The detected pixels are marked
by a black dot. The points on the left of the tip of the nose are correctly detected. Note that this
algorithm would also detect spurious pixels imaged from an object that has a very bright colour,
as the wall on the right of the face in the example image. This, however, does not perturb the
fitting algorithm, as these points are not in the face area and hence, are not used for fitting.
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Input Detected Specular
Highlight Pixels

Figure 4.15: Result yielded by the specular highlight pixel detection algorithm. The left image is the input image on
which the specular highlight algorithm, detailed in the next section, is applied. The detected points are marked as
black pixels on the left image. The interesting pixels are located on the left of the tip of the nose (region surrounded
by a white ellipse).

1. Fitting Results 2. Novel Views 3. Contours

Figure 4.16: Example of the improvement yielded by the specular highlight feature. The leftmost image is a
photograph used as input to compare the results of two instances of the fitting algorithm. The rightmost image is a
photograph of the same lady at another view. The first instance of the fitting, whose results are shown on the top
row, does not use the specular highlight feature. The second instance (bottom row) does use the specular highlight
feature. The images on the first column show renderings of the fitting results obtained with both algorithms. The
second column shows renderings at a novel view (the one of the rightmost image) of the same fitting results. The
last column shows the contour of the model images of the second column. It is clear that the tip of the nose
matches better the novel view image when the fitting algorithm uses the specular highlight feature (see the region
surrounded by a black ellipse on the second and third columns).

Specular highlight cost function

A point at the peak of the specular highlight lobe has a normal equal to:

ns(α,ρ) =
r + d
‖r + d‖ =

v(α,ρ) + d
‖v(α,ρ) + d‖ (4.32)

where r is the reflection of the light with direction d (see graph on Figure 4.14). For a specular
point, the reflection vector r is equal to the viewing vector, v, which is the unit-length vector
connecting the point on the face surface and the camera.
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So, the specular highlight cost function which pushes the normal of the corresponding model
points to ns follows:

Cs = esT · es , with es
i = nt,w

k(i)(α,ρ) − ns
i (α,ρ) (4.33)

Note that, here, es
i is a sub-vector of es with three components and that ns

i is the normal of the
specular highlight point with index i, computed with Equation (4.32), and nt,w

k(i) is the normal in
world coordinates of the corresponding model triangle. The aim of the specular highlight fitting
is to modify the shape parameters α such as the model normal nt,w

k(i)(α,ρ) is close to the normal
obtained by the specular feature, ns

i (α,ρ). This cost function could be applied to change the vertex
normal or the triangle normal. As for the pixel colour feature, the triangle normal is chosen owing
to its simpler derivative.

Recall that the specular highlight feature is used at the final stage of the fitting algorithm, when
the face rigid parameters and the light direction have a stable estimate. Therefore, this feature is
used to update only the shape parameters α, not the rigid parameters neither the light direction.
At this stage, the correspondence between the model and the image is also quite accurate. Hence
k(i), the mapping between the specular pixel i and the corresponding triangle, is set as follows:
k(i) is the index of the triangle whose centre projects the nearest to the specular pixel i.

The derivatives of this cost function are calculated in Appendix A.1.

4.3 Model based features

The face analysis method that we use is model based. This means that we have constructed a
model capable of synthesising human face images. The analysis task is then to find the model
of the parameters explaining a given input face image, such as the synthetic image is as close as
possible to the input image. Hence it is important that the model is able to render any input face
image, such as the discrepancy between the model image and the input image can be small, and
optimally null. We say then that the model is generic: it is able to reproduce any input face image.
Another important characteristic of a model is its ability to generate only valid or realistic human
faces. Then the model is said to be restrictive.

The image based features detailed in the previous section aimed at making the model image as
close as possible to the input image by relying on the generative properties of the 3D Morphable
Model. The purpose of the model based features addressed in this section is to restrict the model
parameters such as the output of the fitting is a plausible face.

The importance of model based features is highlighted by the problem of over-fitting. Over-
fitting happens when the fitted faces matches closely the input face at the sampling pixel used in the
fitting but the discrepancy between the two face images is large elsewhere. It is the image based
features that make the fitting result close to the input image at the sampling points, and the model
based features that make it close for all other points.

4.3.1 Gaussian Prior probability features

As seen in Equation 4.6 on page 37, the maximum a posterior estimate is obtained by maximising
the likelihood multiplied by the prior. In the development of the 3D Morphable Model, it is
assumed that the 3D shape and the texture in correspondence have a normal distribution. The
diagonal covariance matrix of these two distributions was estimated by applying a Principal
Component Analysis to a set of exemplar shape and textures. This analysis yields the following
prior for the shape and texture:

p(α) ∼ e
− 1

2
∑

i
α2

i
σ2

S,i , p(β) ∼ e
− 1

2
∑

i
β2

i
σ2

T,i . (4.34)
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Hence the cost function of the prior is:

Cp =
∑

i

α2
i

σ2
S,i

+
∑

i

β2
i

σ2
T,i

(4.35)

4.3.2 Texture Constraints Feature
What is the proportion of the albedo and the shading intensity in the intensity of a pixel? Resolving
this ambiguity is one of the centre piece of the fitting algorithm. It is addressed using an albedo
prior model that yields the likelihood of a face texture. In order to clearly separate the light and
texture contribution in a face image, the texture model must be restrictive enough such as to allow
only valid textures.

Figure 4.3 on page 38 shows the texture obtained by the PCA model with parameters within 2
standard deviations. This texture is quite unlikely but still its parameters are all within their valid
range according to the PCA model. This means that the Gaussian distribution is not restrictive
enough and improved fitting results could be obtained if it was better modelled.

The second column of Figure 4.17 shows an example of a poor fitting where the light intensity
is under-estimated and the texture over-estimated. As these effects compensate each other, the
fitting result rendered in image (b) look plausible. However when the texture from the image is
extracted and the illumination inverted, the result is affected by some blueish regions that look
unnatural. (The process of texture extraction and inverse illumination is detailed in Section 4.8 on
page 63.)

Input Without texture constraint
feature

With texture constraint
feature

(a) (b) (c)

(d) (e)

Figure 4.17: Comparison of fitting result with and without the texture constraint feature. (a): Input photograph.
(b) and (c): Rendering of the fitting result obtained without and with, respectively, the texture constraint feature.
(d) and (e): Inverse illuminated extracted texture obtained from the fitting results shown in images (b) and (c),
respectively.
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To address this problem, another model based feature is used that constrains the resulting
texture. The valid intensity range of a pixel is [0, 255]. This constraint is not enforced by the
Gaussian prior texture model. Imposing a valid range over all the texture points makes the
texture less likely to be over-estimated (as in the second column of Figure 4.17) and, hence, makes
the light intensity less likely to be under-estimated. The results shown in the third column of the
same figure are obtained by imposing, during fitting, the model colour intensity to be in the range
[5, 250]. This is achieved by using the following cost function:

Ct =
1
2

etT · et, with et
i =























ti − l if ti < l
0 if l ≤ ti ≤ u
ti − u if ti > u

(4.36)

where ti is the colour intensity of a channel of a model vertex used for fitting, and l and u are
the lower and upper bounds of the valid intensity range. Note that this feature is not a hard
constraint, but is rather a soft constraint, whose influence on the resulting estimate is relative to
the other features.

4.4 Features Summary

A list of the features and their properties is presented on Table 4.1. In this table the last feature, the
texture smoothness feature, is not addressed in this thesis because it was not evaluated. However,
I think that the results could be improved by constraining the gradient of the texture map. A model
of the gradient of the texture map can be made using the exemplar heads. Then an additional
cost function could be used, in a similar fashion as the cost function of the texture constraint, that
would constraint the estimated texture to have a valid gradient. This would, for instance, reduce
the risk of obtaining a texture map similar to the one shown on Figure 4.3 on page 38, whose
gradient is clearly invalid.

Image vs Model
based Convexity Holistic vs.

Sparse
Biased vs.

Non-biased

Pixel colour Image based Highly
non-convex Holistic Non-biased

Textured Edge Image based Non-convex Sparse,
scattered Biased

Contour Image based Non-convex Sparse,
scattered Non-Biased

Anchor points Image based Non-Convex Very sparse,
scattered Biased

Specular Highl. Image based Non-convex Very sparse,
localised Non-biased

Prior Prob. Model based Convex Holistic Non-biased

Texture Constr. Model based Convex Sparse,
scattered Non-biased

Texture
Smoothness Model based Convex Holistic Non-biased

Table 4.1: Summary of features used for fitting and their main characteristics.
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4.5 Robust Fitting
The cost functions of the image based features are derived assuming that the feature elements
(pixels in the case of the pixel colour feature and edge points in the case of the edge feature)
are independently and identically distributed (see, for instance, Equations (4.10) and ( 4.18 on
page 44)). In the case of a normal distribution, this led to a quadratic cost function (see, for
instance, Equations (4.12) and ( 4.19 on page 44)).

The problem is that a quadratic cost function, plotted in Figure 4.18, is not robust to outliers.
In the context of this work, an outlier is defined as a feature element that does not adhere to the
generating equation assumed by the model. For instance, as glasses or facial hair are not modelled
by the 3DMM, these pixels and the feature elements derived from them can not be predicted by
the model and hence are outliers. If the difference between the pixel values of the model estimate
and the outlier pixels induce random and independent fluctuations normally distributed with
zero mean, then the sum of squares cost function would be legitimate. However, this is rarely the
case. Usually, outliers are not normally distributed and differ by large from the value predicted by
the model: they have a large residual. The problem with a sum of square cost function is that the
weight in the estimate yielded, of a feature element is proportional to its residual: the larger the
residual of a feature element, the more it influences the solution. Hence, in presence of outliers,
the sum of square solution might differ drastically from the outlier-free solution.

To increase robustness, a cost function must be more forgiving about outlying measurement;
that is, it should increase less rapidly than ei

2. Towards this goal, Huber [44], introduced the error
norm ρ(x) and modified the expression of a cost function as follows:

C =
∑

i

ρ(ei) (4.37)

When the error norm is chosen to be ρ(x) = x2, the resulting estimate is the sum of square estimate.
Then, Hampel et al. [38] introduced the influence function, ψ(x) = dρ

dx . It characterises the bias that
a particular measurement has on the estimate. For a least squares estimate, the influence of a
measurement increases linearly and without bound with its residual (see Figure 4.18).
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Figure 4.18: Quadratic error norm (left) and its influence function (right).

One example of robust cost function is the Huber’s minimax estimator [44] for which the
influence function is bounded:

ρσ(x) =















x2 |x| ≤ σ
2σ|x| − σ2 |x| > σ

ψσ(x) =















2x |x| ≤ σ
2σ sign(x) |x| > σ

(4.38)

A plot of the Huber function and its influence function is shown in Figure 4.19.
A function even more robust to large residuals is the Lorentzian estimator that assumes that the

outliers have a Cauchy distribution [39, 67]. A Cauchy distribution is characterised by its heavy
tails. It makes the influence of outliers fall off to zero:

ρσ(x) = log
(

1 +
1
2

(x
σ

)2
)

ψσ(x) =
2x

2σ2 + x2 (4.39)



58 CHAPTER 4. MULTI-FEATURES FITTING

−20 −15 −10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

ρ (x)
−20 −15 −10 −5 0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

ψ(x)

Figure 4.19: Huber error norm (left) and its influence function (right). The vertical lines indicate the ±σ values.

A plot of the Lorentzian function and its influence function is shown in Figure 4.20.
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Figure 4.20: Lorentzian error norm (left)and its influence function (right). The vertical lines indicate the ±σ values.

Note that all feature elements with large residual are not necessarily outliers. Especially at the
beginning of the fitting process, due to the lack of correspondence, pixels with large residual could
be inliers. This is the reason why I favour using the Huber function rather than the Lorentzian
function.

Example on synthetic images and synthetic noise Optimisation theory says that if the noise
distribution1 agreed to the assumption, then the estimate would be unbiased and would have a
minimum variance equal to the Cramer-Rao lower bound. An unbiased estimate approach the
true value as the number of sampled points constituting the cost function tends toward infinity.
The assumption of the noise distribution is then of critical importance.

This fact is shown by the following experiment. A facial image was generated with known
parameters. Only the texture parameters were fitted, the shape, rigid and illumination parameters
remained constant at their optimum values. The noiseless optimisation problem is then linear. As
99 texture parameters were used, in absence of noise, a cost function including 99/3 points would
be enough to recover a perfect estimate in a single iteration of the fitting algorithm. (The division
by 3 is because of the RGB channels available for each point.) The optimum noiseless image is
shown on Figure 4.21.

Then, a significant amount of noise was added to the optimum image. A first input image
was made with a Gaussian noise with zero mean and a standard deviation of 60. (The standard
deviation of the pixels in the face area of the noiseless image is 64). A second input image was
constructed with a Cauchy noise with zero as localisation parameter and 15 as scale parameter.
(Note that this Cauchy noise is considerably larger than the noise of the first input image, as its
standard deviation is more than 5,000). These two input images are shown on the top row of
Figure 4.22. They were clamped to the range [0, 255] for visualisation purposes.

1The noise, here, is what the model cannot predict, i.e. the difference between the input image and its optimal model
approximation.
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Figure 4.21: Ground truth synthetic image used for the cost function comparison.

The two input images were fitted using a least squares cost function and a Lorentzian cost
function. A rendering of the fitting result is shown on the middle and bottom row of Figure 4.22.
Recall that a least square cost function is based on a Gaussian noise and a Lorentzian cost function,
on a Cauchy noise. As seen on the figure, when the noise assumption is correct, the estimate is
accurate and the cosine of the angle between the ground truth and estimated texture parameter
vectors (used as identification measure in the next chapter) close to one. In the case of a Gaussian
noise and Cauchy cost function, the estimate is also accurate owing to the robustness of this cost
function. However, in the case of a Cauchy noise and a least squares estimate, the estimate is
poor. This experiment leads to two conclusions. First, even in presence of significant noise, if the
noise assumption is valid and if the number of sampled point is high (here, 20,000 points were
used), the estimation is accurate. Second, if the difference between the input image and the model
estimate is not Gaussian, a least square cost function should not be used, but rather a Lorentzian
or Huber cost function.

Ideally, after the optimisation, the residual should be checked to validate the choice of the cost
function. If the distribution of the residual does not agree to the cost function chosen, another
run of the optimisation algorithm should be carried out with a new cost function. As this would
significantly increase the fitting time, it is not performed in the multi-features fitting algorithm.
However, here, a robust cost function is used.

4.6 Multi-Features Fitting Algorithm
In the previous sections of this chapter, I motivated the use of multiple features and detailed the
features used in the Multi-Feature Fitting algorithm presented in this section.

Different features have different purposes: For example, edges are used to put the predominant
facial features in correspondences, while pixel colour is used to infer the 3D face shape using shape
from shading. Edges constitute a sparse feature: they contain information about a few facial points.
Hence, only a few shape principal components can be stably fitted to them. On the other hand, as
the image includes several thousands pixels, the pixel colour feature may be fitted stably to many
more shape components. However the edge feature has a wider domain of convergence than the
pixel colour feature. Hence, it should be used at an initial stage of the fitting. It should not be
used at a final stage of the fitting, though, because of its bias (see Section 4.2.2).

These facts argue in favour of a multi-stage fitting algorithm. The Multi-Feature Fitting
algorithm is sectioned in different stages: each stage fits a set of features to a set of parameters
using a Levenberg-Marquardt optimisation algorithm[33]. The estimate yielded by one stage
constitute the starting value of the next stage. Table 4.2 lists the five stages of the algorithm and
details the feature and the parameters fitted at each stage.

At a given stage, a cost function is formed by the weighted addition of the cost functions of
each feature fitted (See Section 4.1.2 on page 37). As explained at the beginning of this chapter,
the feature cost functions are added because the different features are assumed to be independent.
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Gaussian noise Cauchy noise

Input

σN = 60 σN = 15

LSQ fitting

cos(β, β̂) = 0.957 cos(β, β̂) = −0.1334

Lorentzian
fitting

cos(β, β̂) = 0.939 cos(β, β̂) = 0.982

Figure 4.22: Fitting results obtained on input images affected by Gaussian and Cauchy noise using least square
and Lorentzian cost functions. Top row: Input images. Middle row: Renderings of the fitting results obtained with a
least squares cost function. Bottom row: Renderings of the fitting results obtained with a Lorentzian cost function.
The cosine of the angle between the ground truth and the estimated parameter vectors is printed underneath the
each rendering.

For instance, the estimate yielded by step 4 is obtained by:

min
α,β,γ

τeCe + τcCc + τpCp + τtCt (4.40)

In this equation the different τ’s are the weighting constants.
Figure 4.23 shows the result of the fitting after each stage of the algorithm on an example input

photograph. Fitting Figure 4.23 on an 3.0 GHz Intel Pentium IV computer requires 70 seconds.
The timing spent for the reparation and optimisation of each stage is listed in Table 4.3. The
fitting of each step requires a preparation. For the edge feature, the Chamfer distance transform
must be computed for each orientation. For the pixel colour feature, the triangles, on which
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Features Parameters
Stage
Nb. Anchor textured

edges
contour
edges

pixel
colour

texture
constr.

specular
highl. prior rigid α illum. β Nb.

of Par.

1 X X X 7
2 X X X X few 27
3 X X X few 32
4 X X X X X X X X 217
5 X X X X X segm. segm. 792

Table 4.2: List of features and parameters fitted at each stage of the Multi-Feature Fitting algorithm. On the last
line ’segm.’ stands for segmented (i.e. a segmented fitting is performed at this stage).

Figure 4.23: Fitting results obtained after each step of the Multi-Features Fitting algorithm. The first image shows
the input photograph. The next two images show the fitted model edges in bold and the input image edges in
plain. These are the results of the first two steps. Then, renderings of the results of the next three steps are shown
overlaying the input image.

the cost function is to be computed, must be sampled; and a morphable model including only
these triangles is constructed, which increases the computational efficiency of each iteration of
the optimisation. The decrease of the pixel colour error for the stage 3, 4, and 5 is shown on

Stage Nb. Preparation Optimisation
1 3.82 s 0.08 s
2 5.36 s 0.36 s
3 1.75 s 0.37 s
4 4.58 s 9.11 s
5 14.74 s 29.41 s

Total 69.58 s

Table 4.3: This table list the time spent by each stage of the Multi-Feature Fitting algorithm to fit the image shown
in Figure 4.23. These timings were measured on a 3.0 GHz Intel Pentium IV computer. The preparation time is
the time required to prepare the data before the optimisation.

Figure 4.24. There is one line per segment on the fifth stage because there is one optimisation per
segment. The pixel error is computed on the sampling points. As the sampling points change at
each stage, there is a small increase of the error at the beginning of one stage.

A Matlab implementation of this algorithm is provided in the Morphable Model Toolbox. This
toolbox is detailed in Appendix B.

Implementation Details To implement the overall fitting algorithm, the following decisions
must be taken.

• Stages selection. The number of stages included in the MFF algorithm, the features and
the parameters fitted at each stages were chosen empirically such as to maximise the per-
formances of the fitting algorithm. For instance, I tried to combine stages 1 and 2. At the
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Figure 4.24: Plot of the pixel colour error at each iteration of stages 3, 4, and 5. For the stage 5, as there is one
optimisation for each segment, there is one line per segment.

beginning of stage 1, nothing is known about the face. Hence, the contour at a frontal pose
(from which the fitting is initiated) might be very different from the one of the input image.
As the model contour is computed at the beginning of a stage, it is better to start its fitting
when a good estimate of the pose is available. As this estimate can be obtained with inner
edges and anchor points only, the first stage is constituted from these two features.

A second trial was made by combining stages 3 and 4. However, through experimentation,
I observed, that the best convergence properties of the shape-from-shading term (fitted at
stage 4), were obtained when a good initial estimate of the light direction was available.
Therefore, I included the step 3, at which the pixel colour feature is used to fit only the
texture and light parameters. The aim of this step, is to use the shape recovered by the
edges, to get a good initial estimate of the texture and the light direction.

• Weighting parameters. The weight of each feature cost function, denoted by τ, is the most
important parameter of the fitting algorithm. An appropriate value was found by trial and
error on a few example input images.

• Robust cost function. A robust cost function (Section 4.5) may be applied on each feature
cost function. It is not necessary to apply on the edge feature as the edge feature is already
robust (Section 4.2.2). Only the pixel intensity cost function is made robust. A Huber cost
function is used for it. The sigma of the Huber function is constant for each stage (stage 3
and 4: 20, stage 5: 10).

4.7 Fitting Results

Some fitting results and reconstructions are presented on Figure 4.25. The input photographs
are part of the PIE and FERET face image databases. The first column show photographs used
as input to the fitting algorithm whose estimate is rendered overlaying the input and displayed
on the second column. On the third column, the fitting results are rendered with the rigid and
illumination parameters estimated by fitting the images shown on the fourth column. This is an
illustration of the capacity of the model and the fitting algorithm to compensate for the imaging
parameters while keeping the identity of the individual constant.
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Input Fitting Result Novel View Novel View

Figure 4.25: Example of fitting results. The second column shows renderings obtained from the input images
shown on the first column and rendered overlaying them. On the third column are displayed renderings using the
same shape and texture parameters as on the second column but with the rigid and illumination parameters of the
fourth column, which shows photographs of the same individuals at a novel view.

4.8 Texture extraction and illumination correction

The purpose of the 3D Morphable Model and its fitting algorithm is to recover the 3D shape
and the albedo of a face given a photograph. The shape and texture recovered are view and
illumination invariant such as a face image, with the same identity, can be synthesised at any
pose and under any illumination. Generally, the texture produced by the texture model is rather
smooth and lacks the fine details. The photorealism of the model image is improved if the texture
extracted from the input image is used instead of the model texture.

The notations used here are introduced in Sections 2.2.1 and 2.2.3.
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A texture, te,C, is extracted from the input image, for each visible vertices, by sampling the
input image at the pixels where the vertices are projected.

te,C(ui, vi) = I(x, y) ◦ p(ui, vi;α,ρ) for (ui, vi) ∈ Ω(α,ρ) (4.41)

The next step is to inverse the illumination from te,C, such as it can be re-illuminated in another
environment. This is performed by inverting the light equations of Section 2.2.3 on page 23 and
replacing tC

i by te
i .

te,I
i =M−1 · (te,C

i − o) (4.42)

Then, inverting Equation 2.15 on page 23 yields the inverse illuminated extracted texture, te
i .
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Improving the illumination inversion on the cast shadows area The third images on Figure 4.26
shows the texture extracted from the input image (shown on the first image) and using the fitting
result (shown on the second image). The fitting result presents a cast shadow on the left of the
nose that is not present in the input image. Several reasons can explain this fact. Firstly, the
estimation of the light direction, or of the 3D shape could be poor resulting in an inaccurate cast
shadow produced by the rendering. Secondly, the light source illuminating the face could be soft
resulting in soft shadows that are not appropriately rendered with our model. A third reason
is that the face image could have been manipulated and the cast shadow attenuated. When a
cast shadow is present in the fitting result and not in the input image, the fitting result is darker,
resulting in a bright spot in the illumination inverted extracted texture at the location of the cast
shadow (as seen on the left of the nose on the third image of Figure 4.26). Therefore, an improved
illumination inversion algorithm, which handles this case, is presented here.

Figure 4.26: Texture extraction and illumination inversion. The second image shows a rendering of the fitting
result obtained using as input the first image. The third image is the extracted texture without special cast shadow
handling. The last image presents the extracted texture with the special cast shadow handling detailed in this
paragraph. The illumination parameters, estimated by the fitting algorithm, are not optimal, as the reconstructed
image presents a cast shadow on the left of the nose, not present in the input image. Hence, the reconstructed
image is darker in this region due to the lighting. As a result, the illumination inverted texture is too bright in this
area. This artifact has disappeared on the last image.

For one vertex in the cast shadow area, there are two ways to invert the illumination: (i) Using
the algorithm detailed in previous paragraph and discarding the contribution of the directed
light. This would assume that this vertex is indeed projected in the cast shadow area of the input
image. (ii) Using the algorithm detailed in the previous paragraph and retaining the directed light,
assuming that this vertex is projected to a point in the input image not in the cast shadow area.
Then, the question is, which colour to use for this pixel, the one obtained assuming a cast shadow
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(scheme (i)), or the one assuming no cast shadow (scheme (ii)). Even tough the cast shadow is not
properly estimated, the model texture could still be a good estimate of the real texture of the facial
image. Therefore, the extracted colour chosen is the one closest to the model colour for the vertex.

This algorithm was applied to extract the texture of the input image of Figure 4.26 and its result
is shown on the last image of this figure. The bright spot visible on the extracted texture using the
original algorithm (third image) is not present anymore on the one using this novel algorithm.
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Chapter 5

Applications

In this chapter, the Multi-Features Fitting algorithm is demonstrated on the following three appli-
cations: face recognition from a single photograph, expression transfer from one photograph to
another and face tracking on a sequence of face images.

5.1 Identification and verification

In this section, the 3D Morphable Model and the Multi-Features Fitting algorithm are evaluated
on two applications: identification and verification. In the identification task, an image of an
unknown person is provided to the system. The unknown face image is then compared to a
database of known people, called the gallery set. The ensemble of unknown images is called the
probe set. In the identification task, it is assumed that the individual in the unknown image is in
the gallery. In a verification task, the individual in the unknown image claims an identity. The
system must then accept or reject the claimed identity. Hence, the person is not assumed to be in
the gallery set. Verification performance is characterised by two statistics: The verification rate
is the rate at which legitimate users are granted access. The false alarm rate is the rate at which
impostors are granted access. The performance of a verification task does not depend on the
number of individual in the gallery set, as opposed to the identification task. See, for instance, the
Face Recognition Vendor Test 2002 report [56] for a more detailed explanation of these recognition
tasks.

Dataset. We evaluate our approach on two datasets. Set 1: a portion of the FERET dataset [57]
containing images with different poses. In the FERET nomenclature these images correspond to
the series ba through bk. We omitted the images bj as the subjects present a smiling expression. A
few examples of the FERET smiling images are shown on Figure. The purpose of this section is
pose and illumination invariant face recognition. As expression invariant face recognition is not
the aim of this work, the series of images bj is not part of the test set.

The portion of the FERET dataset, used in this series of experiments, includes 194 individual
across 9 poses at constant lighting condition except for the series bk: frontal view at another
illumination condition than the rest of the images.

Set 2: A portion of the CMU–PIE dataset [66] containing images of 68 individuals at 3 poses
(frontal, side and profile) and illuminated by 21 different directions and by ambient light only.
Figure 5.2 shows images illuminated by the 21 light directions. Among the 68 individuals, 28
wear glasses, which are not modelled and could decrease the accuracy of the fitting. None of
the individuals present in these sets were used to construct the 3D Morphable Model. These sets
cover a large ethnic variety, not present in the set of 3D scans used to build the model.

67
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Figure 5.1: FERET images included in the series bj, showing a smiling expression, omitted in the recognition
experiments

18 19 20 21 22

2 3 4 5 6 11 12 14 15 16 17

10 7 8 9 13

Figure 5.2: Images of illuminated by the 21 light directions of the CMU-PIE dataset. The number of each flash
light appears the images.

Distance Measure. Identification and verification are performed by fitting an input face image to
the 3D Morphable Model, thereby extracting its identity parameters, α and β. Then, recognition
tasks are achieved by comparing the identity parameters of the input image with those of the
gallery images. We define the identity parameters of a face image, denoted by the vector c, by
stacking the shape and texture parameters of the global and segmented models (see Section 2.1.5 on
page 20) and rescaling them by their standard deviations:
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(5.1)

We define a distance measures to compare two identity parameters c1 and c2. The measure, dA,
is based on the angle between the two vectors (it can also be seen as a normalised correlation).
This measure is insensitive to the norm of both vectors. This is favourable for recognition tasks as
increasing the norm of c produces a caricature which does not modify the perceived identity:

dA =
cT1 · c2

√

(

cT1 · c1

) (

cT2 · c2

)

(5.2)

FERET Results. Table 5.1 lists percentages of correct rank 1 identification obtained on the FERET
dataset. The pose chosen as gallery is the one with an average azimuth angle of 11.2◦, i.e. the
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condition be. The first plot of Figure 5.3 shows the ROC for a verification task for the same gallery
and the nine other poses in the probe set.

Probe View Pose φ Correct Identification
bb 38.9◦ 92.7%
bc 27.4◦ 99.5%
bd 18.9◦ 99.5%
be 11.2◦ gallery
ba 1.1◦ 96.9%
bf −7.1◦ 99.5%
bg −16.3◦ 95.8%
bh −26.5◦ 89.6%
bi −37.9◦ 77.1%
bk 0.1◦ 80.7%

mean 92.4%

Table 5.1: Percentage of correct identification on the FERET dataset. The gallery images are the view be. φ
denotes the average estimated azimuth pose angle of the face. Ground truth for φ is not available. Condition bk
has different illumination than the others.
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Figure 5.3: ROC for a verification task on the FERET and PIE dataset. The gallery images of the PIE dataset are
at the side view and for the illumination 13. The gallery images of the FERET dataset are at the view be (Same as
for Table 5.1).

CMU–PIE Results. The CMU–PIE dataset is used to test the performance of this method in
presence of combined pose and illumination variations. Table 5.2 summarises the rank 1 identifi-
cation performance averaged over all lighting conditions for front, side and profile view galleries.
Table 5.3 details the identification result for each light direction. Illumination 13 was selected for
the galleries. The second plot of Figure 5.3 shows the ROC for a verification using as gallery a
side view illuminated by light 13 and using all other images of the set as probes.

Discussions A few remarks and conclusions may be drawn from the identification and verifica-
tion experiments. Recognition of a profile view is consistently and substantially less accurate than
for front or side views. This may be due to the fact that many important facial features such as the
eyes, nose and mouth, are less visible on a profile view. Hence, these features provide fewer edges
and are then more difficult to fit reliably. The best generalization performances are obtained for a
side view gallery.
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Gallery
View

Probe View mean
front side profile

front 99.9% 98.4% 75.6% 91.3%
(98.5–100.0) (91.0–100.0) (38.8–94.0)

side 96.4% 99.3% 83.7% 93.1%
(89.6–100.0) (97.0–100.0) (52.2–100.0)

profile 76.3% 86.0% 89.4% 83.9%
(64.2–91.0) (67.2–98.5) (64.2–98.5)

Table 5.2: Mean percentage of correct identification obtained on the PIE data set, averaged over all lighting
conditions for front, side and profile view galleries. In brackets are percentages for the worst and best illumination
within each probe set. The overall mean of the table is 89.4%.
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Front Gallery
Front Side Profile

100 96 79

100 91 58

100 97 39

99 99 55

100 100 70

100 97 78

100 99 76

100 96 75

100 100 82

100 99 75

100 97 78

100 100 84

-1 100 87

100 100 91

100 100 88

100 100 88

100 99 79

100 100 61

100 97 67

100 100 79

100 100 81

100 100 94

100 98 76

Side Gallery
Front Side Profile

97 100 81

90 97 61

93 100 52

94 97 54

94 97 76

91 99 85

94 100 87

99 100 91

99 100 94

94 99 78

97 100 90

99 100 100

100 -1 96

100 100 97

100 100 94

100 100 96

100 100 93

94 97 67

91 100 73

97 100 91

100 100 91

100 100 97

96 99 84

Profile Gallery
Front Side Profile

76 82 91

75 67 76

73 78 64

72 78 75

64 75 79

69 81 93

73 78 93

66 85 97

78 97 99

69 72 78

70 90 96

79 93 99

85 96 -1

91 99 97

88 99 97

91 99 99

85 97 99

69 79 72

64 75 82

75 85 99

82 94 99

87 97 99

76 86 89

Table 5.3: Details of the identification results in presence of combined pose and illumination variation for the
CMU-PIE dataset. The first column lists the directed light number. The three groups of triple columns show the
results obtained for three different galleries: Front, side and profile. For each gallery, the percentage of correct
identification for a pose-illumination condition is displayed.

Good results are obtained for identification across light variation. For front and side views, the
lowest identifications percentages are obtained on the flash light number 2. On this illumination
condition, a large part of the face area is either in the shadow or on a specular highlight (see
Figure 5.4). In these regions, shape-from-shading is not applicable and the only depth clue used
by the fitting is the specular highlight feature. Therefore, the 3D shape estimation is not optimal,
explaining the poor pose generalisation performance for this illumination condition.

Additionally it was shown in [11] that the identification performance depends on the fitting
accuracy. The more precise the fitting, the better is the identification across pose and illumination
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Figure 5.4: Example of imaging condition that yields lower identification performance. These photographs are part
of the CMU-PIE dataset and they were taken with the flash light number 2.

variation.

5.2 Automatic facial expression transfer

In this thesis, I focused mostly on three modes of variations of human face photographs: identity,
pose and illumination. In this section and the next, I address another major mode of variation:
facial expression. The conclusion that will be drawn is that the change of expression can also be
handled by the 3D Morphable Model paradigm. One of the major achievement of the 3DMM, is its
ability to model the identity, the pose and the illumination independently from each other, using
independent parameters. This enables the facial analysis to be invariant to the imaging conditions
but also to estimate these parameters separately and to compensate for them. The goal of the
expression modelling is similar: the expression variations should be modelled independently
from the identity. This would allow the separation of these two sources of variations in an input
image. From there, any image with non-neutral expression could be fitted and, then, its expression
modified. For instance, the expression of two face images could be exchanged while preserving
their identity. An example of this application is shown on Figure 5.5, where the expression of Mr
Bean is transfered to Tony Blair and vice-versa.

Expression model. When the expression of a given face vary, its shape is modified but not the
texture: the albedo of a point on the face remains constant. Hence, the expression part of the 3d
morphable model only affects the shape part of the model, not the texture.

In the 3DMM, the identity subspace is modelled by deviations from the mean identity. Sim-
ilarly, the expressions are modelled by deviations from the identity subspace. This is based on
the assumption that the expression subspace is orthogonal to the identity subspace and that the
expressions of each individual have a general likeness. While it is true that the precise motion
of, say, the lips between the neutral expression and, say, a smile is different for two individuals,
we can nonetheless say that these motions are similar enough, such as an accurate model can be
constructed from them. Then, an expression can be simply added to a neutral face to create a face
with an expression and with the same identity as the neutral face.

The dataset used to construct the expression morphable model is composed of 3D scans of
individuals with a neutral expression and with various expressions such as smiling, frowning
and mouth opened. They are shown on Figure 5.6. The scan of the first individual was acquired
with a different scanner and under different illumination condition than the other scans, which
explains its different overall colour. Some people were marked with black and white dots to ease
the correspondence computation of the 3D scans. Note that, to avoid a topology conflict with the
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Figure 5.5: Example of facial expression transfer. The expression of Mr Bean is transfered to Tony Blair and vice
versa.

identity morphable model, it was decided not to model the inside part of the mouth.
First the neutral scans are put in correspondence with the identity morphable model. The scans

with expressions are then put in correspondence with the neutral scan of the same individuals.
Hence these expressions scans are also in correspondence with the identity morphable model.
As these scans are in correspondence, they are then in a vector space and can be added and
subtracted to/from one another. Hence, to obtain the motion of the face points between the neutral
and another expression, the neutral scan of one individual is subtracted from an expression scan
of the same individual:

S∆, ji = S j
i − S0

i (5.3)
In this equation, the expression scan j from the individual i is subtracted from its neutral expression
(indexed by 0) to form the expression deviation, free of its original identity. A PCA model is then
constructed from the expression vectors, S∆, ji , in a similar way as the identity PCA. The first twelve
principal components are shown on Figure 5.7. In fact, this figure displays a set of renderings of
a face constructed from the mean texture and the expression shape deviations added to the mean
shape.

The shape model is then composed of an identity part and an expression part. A linear
combination of the principal components of these models can be made to obtain the shape of the
face of any individual with any expression (within the linear span of the model, naturally):

S = S +
NS
∑

i=1

αi · Si +

NE
∑

i=1

εi · SE,i (5.4)

In this equation a linear combination of the NE shape expression principal components, SE,i, with
the coefficients εi yields the expression deviation. The expression components are not orthogonal
to the identity components. Hence, the Equation (5.4) cannot be inverted easily, but this does not
have any influence on the fitting algorithm.
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Neutral Expressions

Figure 5.6: Renderings of the exemplars 3D scans used to built the shape expression model. The first column
shows the neutral expression scans and the other ones, scans with non-neutral expression. The expression space
spans this set of expressions.

The correspondence computation of the expression 3D scans and the construction of the
expression morphable model is not part of the material of this thesis. This was achieved by Curzio
Basso in our research group. However, what is part of this thesis, is the usage of this model to fit
facial photographs with non-neutral expression.

Fitting of a non-neutral expression face photograph. The fitting algorithm used to fit faces with
expressions is exactly the same as for faces with neutral expression. The only difference is that
the shape model is augmented with the expression principal components. In fact, even the fitting
algorithms parameters are the same for the identity only fitting and for the identity and expression
fitting. This shows the robustness of the fitting algorithm.

The fitting results on the input images of Mr Bean and Tony Blair (see Figure 5.5) are shown
on the second column of Figure 5.8. The first column shows the anchor points used for the fitting,
and the last column shows a rendering of the fitting results with the expression parameters set
to zero: εi = 0. The expression of these images seems rather neutral while the identity seem
to be preserved. This shows that the expression variation is only explained by the expression
coefficients and the identity by the identity coefficients.
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Figure 5.7: Renderings of the first 12 of the 18 shape expression principal components. The expression principal
components are added to the mean shape of the identity model. A face is formed from this shape and from the
mean texture of the identity model. Renderings of the side view of these faces are displayed.

Expression transfer. To transfer the expression from one photograph to the other, the expression
parameters are simply exchanged between the fitting results of the two photographs. The result
is shown on Figure 5.5.

Future work. One problem of the expression model is its inability to model appropriately the
forehead wrinkles. Hence, these wrinkles are not recovered by the fitting result of Mr Bean (see
Figure 5.8), they are still present on the synthetic image of Mr Bean with the expression of Tony
Blair and they are not transfered to Tony Blair (see Figure 5.5). The expression model is, currently,
rather sparse, and does not account for the forehead wrinkle. Hence, a better compensation of
these wrinkles could be obtained by a more complete expression model.

5.3 Face tracking without anchor points
The last application addressed in this thesis is face tracking. Face tracking is about following the
motion of the face of an individual through a sequence of images.

In a tracking application, the identity is known to remain constant throughout the sequence.
Hence, once the identity is fitted to the first frame, only the pose and the expression parameters
need to be subsequently updated (assuming that the illumination within the scene is constant).
The idea is, then, that the edges, alone, encode enough information to recover the pose and the
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Input with anchors Fitting Result Neutral Expression

Figure 5.8: Fitting of images with the identity and expression 3DMM. The second column shows renderings of the
fitting results obtained on the input images of the first column, which also displays the anchor points used. The
third column shows renderings of the fitting results with expression parameters set to zero.

expression of an individual. From a perception point of view, this argument seems legitimate, as
a human can easily recognise the pose and the expression from a rough hand-drawn sketch of a
face.

The first frame is then fitted as usual, using landmarks and using all the stages of the multi-
features fitting algorithm, thereby recovering the shape, the texture, the rigid and the illumination
parameters. Then, only the second stage of the fitting algorithm is used to fit the next frames of
the sequence. This stage relies only on the edges to fit the textured edges and the contour edges
of the model. The only difference with the original second step of the algorithm, is that here, the
rigid and the expression parameters, only, are fitted, not the identity parameters.

This results in a relatively fast tracking algorithm. The Matlab implementation of the tracker,
on a Intel 3.0GHz Pentium IV computer takes 4.4s to prepare each image (compute the edges and
the chamfer distance transforms) and 0.15s for the optimisation.

The tracking is experimented on a sequence of 450 frames acquired at about 30 fps. This is a
sequence of a person turning his head and at the same time changing his expression: from neutral
to smiling, then he opens the mouth and afterwards starts speaking. The avi file is located in the
file named matlab/tracking/tracking2.avi. Each fiftieth frame is shown on Figure 5.9.

Conclusion. The rigid parameters are always accurately recovered. the expression is also most
of the time nicely fitted: the model follows the smile smoothly and open the mouth with the input.
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A problem occurs though, when the subject starts speaking after having widely open his mouth.
At that point there is a fitting error: the upper edge of the lower lips is fitted to the lower edge of
the lower lips (see frame 401). The interior of the mouth is not modelled, hence the upper edge
of the lower lips is considered as a contour edge. As we have seen on Section 4.2.2, although an
orientation can be computed for contour edges, their sign is arbitrary: depending on the colour of
the interior of the mouth (white if the teeth are visible, pink or black if not), the normal id upward
or downward. As the direction of the edge cannot be computed, the corresponding edge in the
image, could be sometime mistaken with another edge which has the same orientation but which
could have another direction. This is what happen between the upper edge of the lips and its
lower edge. To improve the result, the interior part of the mouth should be modelled additionally.
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Figure 5.9: Input and fitting result of each fiftieth frame of the tracked sequence.
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Chapter 6

Conclusions

In this thesis, I presented a novel method able to address several facial image analysis problems.
The first application demonstrated was the facial image identification and verification. In an
identification experiment, the objective is to find, in a set of images, called the gallery set, a face
image of the same person as the test image. In a verification problem, the aim is to determine
whether two input facial photographs show the same person. These two applications were set up
in their most general form, in which a single image per individual was available in the gallery set
and a single test image was used; additionally, no constraint were put on the facial photographs,
allowing the pose and the illumination to vary (the only requirement was that the facial expression
is neutral). To tackle these problems, one must derive a face signature invariant to illumination
variation and rigid transformations. A natural way to reach this goal is to use a 3D representation.

Another application presented in this thesis concerned facial expressions. A facial image
analysis system addressing expression variations could have many objectives: A human-computer
interaction device would attempt to recognise the expression of a face, regardless of its identity, in
order to decipher the emotional state of a user. An identification algorithm would endeavour to
recognise a person irrespective of his/her expression. In computer graphics, synthesising realistic
facial expressions is a difficult problem. One way of tackling this problem is by mapping the
expression of a performer to the face of someone else. This is the second application presented
in this work. One obvious requirement for an expression transfer (or mapping) system is to be
capable of separating the identity from the expression of a facial image. Then, this system has to
apply this expression on another individual’s photograph.

The third application developed here is face tracking in a video sequence. The aim is to follow
the facial movement induced by rigid transformations and expression variation of someone’s face
in a series of images acquired at very small intervals in time (such as 25 frames per second). It
was demonstrated that edges, alone, formed a good feature to track these facial motions.

All the applications aforementioned necessitate the separation of the different sources of vari-
ation of facial images. In an analysis-by-synthesis approach, the first step is to construct a model
able to generate facial images in all conditions and in which the sources of variation are factored.
In the first two chapters of this thesis, a face model was presented that separates rigid transfor-
mation, illumination and identity variations. Rigid transformation and illumination are modelled
using physically-based techniques, while identity is modelled by learning the differences between
individuals over a training set.

In a 3D framework, the image analysis problem is to estimate the 3D shape of a face from
a single input facial image. The only clue available in a single image about depth is contained
in the shadings and the shadows. However using this information requires the illumination
environment and the texture of the face to be known. As these are not known, the problem is
ill-posed. One way out of this dilemma is by using prior knowledge. Therefore, texture and shape
PCA models are employed to constraint the set of possible solution. A lighting model is also used,
the Phong reflectance model, which has a few parameters when only one light source is handled.
However, even applying this prior models is not enough to obtain an accurate estimate of the
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3D shape when just a few manually set anchor points are used as input. This is because the cost
function to be minimised is highly non-convex and exhibits many local minima. In fact, the shape
model requires the correspondences between the input image and the reference frame to be found.
Using only facial colour information to recover these correspondences is not optimal and may
be trapped in regions that present similar pixel intensity variations (eyes/eyebrows, for instance).
Other features could be used to obtain a more accurate estimate of the correspondences and, as
a result, of the 3D shape. One example of such feature is formed by the edges. Other features
that improve the shape and texture estimate are the specular highlight and the texture constraints.
The specular highlight feature uses the specular highlight location, detected on the input image,
to refine the normals, and, thereby, the 3D shape of the vertices affected. The texture constraint
enforces the estimated texture to lye within a specific range, which improves the illumination
estimate.

To avoid getting trapped in local minima, the SNO algorithm used a stochastic optimization
that introduced a random error on the derivative of the cost function. This is performed by
sampling the cost function at a very small number of points (40 pixels). This random error enables
the algorithm to escape from local minima. On the other hand, the MFF algorithm, presented in
this paper, has a smoother cost function owing to the various sources of information used. Hence,
it is not required to use a stochastic optimization algorithm and the pixel intensity feature may
be safely sampled at many more points providing a more stable parameter update. Hence, much
fewer iterations are needed to reach convergence (a few tens instead of several thousands in the
case of SNO). As a result, as well as being accurate, MFF is also more efficient than SNO.

Because the 3DMM tries to account for all sources of variation and to separate them, we think
that it sets the path to a unified approach addressing the full problem of facial image analysis.
However, there are still a number of sources of variations that it does not model. Addressing
these will not only expand the type of images the model could render and fit, but also, improve
the accuracy of the estimation of the 3D shape by the fitting algorithm. This is why, handling the
following issues would improve the overall performances of the system:

• Reflectance and illumination: Currently, the fitting can recover only a single directed light
source using the Phong reflectance model. Several limitations follow, which have an impact
on the accuracy of the 3D shape recovery. The Phong reflectance model represents the way a
surface point reflects light. Additionally to the diffuse component, it can generate specular
highlight and, using the 3D shape, cast shadows. However, it is only an approximation
of how the human skin reflects light. As aforementioned, the depth information lies in
the shading. As a result, using a reflectance closer to the one of the human skin and an
illumination environment closer to the one in which a photographed face is surrounded,
will improve the 3D shape recovery. The reflectance of a surface point is given by its
Bidirectional Reflectance Distribution Function (BRDF). Marschner et al. [51] and Debevec
et al. [27] show a method to measure and to use the BRDF of human skin. From these
measurement a model of the BRDF could be constructed and used in our 3DMM and its
fitting algorithm. Using a proper BRDF is only one part of the way. Another part is to use
not only one light sources but several of them, such as an environment map, which is used
in computer graphics since years. This last modification is, however, not trivial to put in
practice as it would increase dramatically the number of parameters to fit.
The cast shadows also reveal some depth information. The manner by which the cast shadow
information is taken into account by the pixel colour feature of the fitting algorithm is not
optimal. A binary attribute is given to the fitted vertices reflecting their belonging to a cast
shadow. If a vertex is in the cast shadow, then there is no contribution of the directed light
in the cost function and in its derivatives. This binary attribute is set at the beginning of a
fitting stage and kept constant for the entire stage. However, to improve the light direction
estimate and the 3D shape recovery, the attribute should be (i) differentiated with respect
to the light direction and to the shape parameters, and (ii) updated after each iteration.
The problem is that doing so would considerably increase the computational load of the
algorithm. Hence, a technique should be introduced to use efficiently the cast shadows.
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• Expression: The expression model used in the expression transfer application is not repre-
sentative of all the variations of human faces. There is only one example face with an open
mouth. The ’smiling’ expression does not cover the whole range of smiles possible. The
wrinkles on the forehead are not modeled at all. This is why the wrinkles of Mr. Bean were
not fitted and hence could not be transfered to Tony Blair. When the expression model will
span more expression variations, then the expression fitting will improve. The interior of
the mouth and the teeth are not modeled, either. Hence, it is difficult to fit an input facial
photograph with an open mouth. Curzio Basso, a doctorate student in our group, is working
on extending the expression model toward these goals.

• Localised model: The 3D Morphable Model is a holistic model. The shape and texture
parameters influence the whole shape and texture. This is based on the assumption that any
vertex of the face is correlated to all the other ones. While there may be some correlation
between all the vertices at low spatial frequency, it is quite unlikely to find this type of
correlation at high frequency. There is some evidence supporting this assertion. Figure 6.1
shows the decrease of the reconstruction error of the shape and texture as the number of
holistic principal components increase. These plots were performed using PCA models
trained on the 200 heads scanned at the Max Planck Institute of Tübingen. For testing, the
scans provided by the University of South Florida were used. The shape reconstruction
error is measured by the Euclidean distance between corresponding vertices of a test scan
and its model reconstruction. This error is then averaged over all vertices of one scan and
over all testing scans. The shape reconstruction error is expressed in millimetre. For the
texture the Euclidean distance between the three colour channels is used as a measure.

Initially, the decrease is rapid. However, as the number of holistic PCA dimensions in-
creases, the influence on the reconstruction error is attenuated. A regime is reached about
the hundredth dimension. An exponential line is then fitted. Using this exponential line,
we may extrapolate the number of dimensions that would be required to reach a certain
reconstruction accuracy. It turns out that 458 shape dimension would be required to obtain 1
mm accuracy; 927 dimensions, for 0.5 mm; and 2017 dimensions, for 0.1 mm accuracy. Con-
cerning the texture, 617 dimensions are necessary to attain 10 grey-levels; 1689 dimensions,
for 5 grey-levels; and 4177, to reach 1 grey-level. Observe that the exponential lines, at the
200th dimensions, are below the reconstruction error line. Hence these extrapolated values
are rather conservatives.
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Figure 6.1: Plots of the shape and texture reconstruction error computed on a test set of 3D scans. For each
plot an exponential line (dashed) is fitted to the part of the curve that has reached its regime (after the 100th
dimension).

The conclusion that can be drawn is that a holistic model may be appropriate to account for
the low frequencies, but not to code the higher frequencies. This is why a model localised in
the spatial domain and in the frequency domain could yield a more efficient coding of the
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facial shape and texture. Reinhard Knothe, a doctorate student in our group is working on
the construction of such a localised morphable model.

Addressing these modelling issues will not only refine the generative expressiveness of the
model but will also ameliorate the fitting accuracy. There are also other points that would augment
the fitting performances:

• Outlier detection: The major source of fitting inaccuracies is the presence of outlying pixels
in a facial image. An outlying pixel, or outlier, is a pixel inside the face area of an image
whose value cannot be predicted by the model nor by the noise distribution assumed by
the fitting cost function. Typical examples of outliers are glasses, specular highlight due to
the presence of glasses, and occluding objects such as facial hair. Naturally, a black pixel
in the eye region due to sun glasses may be predicted by the model, but doing so, would
substantially modify the model parameters and deteriorate the fitting of the rest of the face.
Hence fitting an outlier is prejudicial not only because the fitted model parameter would
account for an artifact such as glasses but also because it would substantially decrease the
overall quality of the fitting in the outlier-free region of the face. This problem was raised
in Section 4.5 and addressed by the use of a robust cost function such as the Huber function
or the Lorentzian function. These estimators are part of the class of estimators called M-
estimator [38, 44] and are based on the fact that outliers have a substantial discrepancy and
hence pixel with large error should be down-weighted. These function depend on a value,
σ, that sets the limit between the inliers and the outliers. This value depends on the image
and is difficult to adjust: For instance, the value of σ would be different for a bright image
than for a darker image. Another drawback of the M-estimator is that some inliers may
have a large fitting error and discarding them would jeopardise the quality of the fitting.
This may happen at the beginning of the fitting algorithm when there is an important lack
of correspondence. For instance, the model pupil may overlap the skinny area between the
eye and the eyebrow inducing a large residual. It is this residual which is to drive the model
parameters to improve the correspondence and, hence, it should not be down-weighted.
Therefore, a better scheme should be used to detect outliers, based not only on the residual
but also on the Jacobi matrix.

One strategy towards this goal might be the following: In a local optimisation technique,
each pixel used in the fitting error gives an update direction of the model parameter [33].
The update direction obtained at one iteration is the sum of the update directions of all pixels
used. If all these directions are parallel or nearly parallel, then all pixels are in agreement
about the direction to take to reduce the cost function. In this case, all pixels are inliers.
However, if there are pixels giving rise to directions deviating from the direction of the
majority of pixels, then these are outliers. an algorithm detecting these deviations is not
trivial to set up. Jean-Sebastian Pierrard, a doctorate student of our group, is working on
these issues.

• Automatic anchor points localisation: A drawback of the fitting algorithm presented here is that
it is not automatic. A user must click on a few anchor points to initialise the rigid parameters
of the model. These points could be automatically detected using detection algorithm such
as the one of Heisele et al. [42] or Burl et al. [16]. Then, potentially, more points could be
used to constraint the algorithm. For instance, there could be a detector of an open/closed
mouth that would initialise the expression model to an open or closed mouth. Additionally,
these algorithms would not only yield a localisation for anchor points but also a likelihood
that would be used in a probabilistic fitting algorithm to increase its robustness.



Appendix A

Derivative

A.1 Derivative of the Specular highlight cost function

In this appendix, the calculus of the derivative of the specular highlight cost function is detailed.
Recall from Equation 4.33 on page 54, that the signed cost of fitting one specular point is:

es = nt,w(α) − ns(α) (A.1)

As explained in the Section 4.2.4 on page 51, only the shape parameters are updated as this feature
is used at the end of the fitting to refine the shape. Therefore, in the cost function, only the
dependence on the shape parameter is mentioned. The normal of a triangle in world coordinate,
nt,w = RγRθRφnt, where nt is the normal in object coordinate expressed in Equation 2.19 on
page 23, is rewritten as follows:
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with
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where s1, s2, and s3 are the 3D coordinates of the three corners of the triangle, in world coordinates,
that depend linearly on the shape parameters α. The derivative of the normal is then:
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To differentiate the cost function, the derivative of the normal of the points at which the specular
highlight occur is also required. This normal is expressed in Equation 4.32 on page 53.
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with
Lns =
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(A.6)

The viewing direction v depends on the world coordinates:
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its derivative is then:
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Now the derivative of the specular highlight cost function for one vertex is function of the
derivative of the unnormalized normal elements nx, ny, and nz, and of the derivatives of the world
coordinates, which can easily be computed.



Appendix B

Matlab Morphable Model Toolbox

As part of this doctoral work, a Matlab toolbox was implemented, called the Morphable Model
Toolbox (MMT). Its main features are programs able to generate 3D faces from model parameters,
render 3D faces, fit 3D face from an input image using the Multi-Features Fitting algorithm and
perform identification. This appendix is a user manual of the MMT.

All the figures and the tables of this thesis are entirely reproducible using the MMT. The next
appendix details the procedure required to reproduce them.

At the time of writing this thesis, I am not allowed to make the Morphable Model Toolbox
public for copyright reasons. I hope that this will change in the future.

System requirements The MMT is stand-alone. It requires Matlab version 6.5 or higher, the
Matlab Optimization Toolbox and the Matlab Image Processing Toolbox. With Matlab version
6.5, the MMT is required to be run on a computer with 1Gb of RAM. With Matlab 7.0, or higher,
500Mb of RAM is necessary.

B.1 Installation

Path installation It is assumed that the Morphable Model Toolbox is extracted into the directory
MMT DIR. Before each use of the MMT, the file mmt install path.m must be executed. This
file, first sets the MMT DIR as a global variable then registers all the subdirectories of the MMT
with matlab. As this file is to be called before each use of the MMT, it is recommended to put the
following two lines in the startup.m file, located in the $HOME/matlab directory.

addpath ˜/matlab/MMT
mmt_install_path

In this example, the MMT is in the directory MMT located in the Matlab directory of your home
directory.

MEX Files The MMT includes some functions implemented in C++ for efficiency. These func-
tions use loops intensively, such as the rendering function for instance that loops over the pixels.
They are coded in standard C++ and do not use any external library. Hence they are stand alone
and should be compilable on any machine running Matlab. mmt install mex.m is a file that
produce all the MEX files of the MMT. It must be executed the first time the MMT is used. If the
MEX compiler is properly installed in the Matlab distribution, the MEX files of the MMT should
be generated without problem. Refer to the Matlab manual for more information about the MEX
Compiler.
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B.2 Morphable Model Toolbox Tour
In this section, some example of usage of the Morphable Model Toolbox are presented.

Example of generating a 3D head and rendering it. The script directory includes two exam-
ples. The first example script, script rendering.m shows how to generate a random 3D head
from the model and how to render it. It first load the model, its triangle list, and the data used to
blend the segments of a segmented face (Section 2.1.5 on page 20):

% load the model
load MPI_99.mat
% load the triangle list and the mask
load topo_5.mat
% load the data needed for the blending of the 4 segments
load segment_5.mat

The model loaded includes 99 shape and texture dimensions. Then, random shape and texture
coefficients are generated by sampling from a Gaussian distribution with zero mean and identity
covariance matrix.

% generate random shape and texture parameters
alpha = randn(99, 1);
beta = randn(99, 1);

Rendering parameters are loaded from the file rp.mat in the directory data/param.

load rp.mat % load a few realistic rendering parameters
rp = rp_garden; % use lighting parameters estimated from a

% garden photograph
rp.phi=0.6; % phi is the azimuth rotation angle
rp.width = 256; % output image size
rp.height = 256;

Then the face is generated, the image rendered and displayed.

img = model2img(alpha, beta, rp, model, tl);
figure(1)
imshow(img)

A segmented 3D face (Section 2.1.5 on page 20) is generated and rendered with the following code:

% generate random shape and texture parameters
% for the four segments
alpha = randn(99, 4);
beta = randn(99, 4);

% render a segmented head
img = model2img(alpha, beta, rp, model, tl, ...

[], [], [], segment);
figure(2)
imshow(img);

The process of 3D face generation and rendering can be decoupled. First the 3D shape and the
texture are computed.

shape = smahal2shape(alpha, model, segment);
tex = tmahal2tex(beta, model, segment);
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Then the 3D face can be rendered.

img = shatex2img(shape, tex, rp, tl);
figure(3)
imshow(img);

Example of Face Fitting The code of this example is located in the file script fitting.m
in the directory script. First some global variables are set: MMT DIR is the root directory
of the Morphable Model Toolbox that should be defined in the startup.m file. The variable
SHOW SAMPLING POINTS displays, at each iteration of the fitting, the projection of the model
points on which the pixel error function is computed. The variable FEATURE SIGNIFICANCE
shows at the end of each stage, the importance of each feature in determining a parameter update
at each iteration. Setting these variables enable or disable the corresponding visualisation feature.

global MMT_DIR
global SHOW_SAMPLING_POINTS
SHOW_SAMPLING_POINTS=0;
global FEATURE_SIGNIFICANCE
FEATURE_SIGNIFICANCE=1;

The fitting data, the image and anchor files are loaded.

% load the default fitting parameters
fit_data = get_fit_data;

img_fn = fullfile(MMT_DIR, ’data’, ’img’, ’Hee.png’);
anchor_fn = fullfile(MMT_DIR, ’data’, ’img’, ’Hee.anchors’);
in_img = double(imread(img_fn));
anchor = read_anchor(anchor_fn);

Some optional parameters are set in the structure opt. The field quality sets the number of
stages to use, and the field verbose sets the level of information output during fitting. This
field takes a character string. The string ’verbose’ prints the fitting error at each iteration, the
string ’brief’, prints the fitting error after each fitting stage, and the string ’silent’ would
not output anything.

% fitting will be verbose and run to the highest quality
opt.quality = length(fit_data.fp);
opt.verbose = ’verbose’;

Then the Multi-Features Fitting algorithm can be launched.

fres = fit_image(in_img, anchor, fit_data, opt);

At the end of the fitting, a figure, similar to the Figure 4.23 on page 61, showing the fitting result
at the end of each stage is displayed. Once the fitting is done, the resulting 3D face is computed.

shape = smahal2shape(fres.alpha, fit_data.model, ...
fit_data.segment);

tex = tmahal2tex (fres.beta, fit_data.model, ...
fit_data.segment);

Then a rendering of the fitted image overlapping the input image is computed and displayed.

img = shatex2img(shape, tex, fres.rp, fit_data.tl, in_img);
figure(3)
imshow(img);
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The texture of the input image may be extracted and the illumination inverted. The extracted
texture may then be use for rendering. This should produce an image very close to the input
image.

% extract the texture from the input image
ext_tex = inv_ext_tex(in_img, shape, tex, fres.rp, ...

fit_data.tl);
figure(4)
imshow(tex2img(ext_tex(:)/255, fit_data.mask, ’interleaved’));

% make a rendering using the extracted texture
figure(5)
imshow(shatex2img(shape, ext_tex, fres.rp, ...

fit_data.tl, in_img));

A Wavefront OBJ 3D file may then be produced to export the 3D head to any Computer Graphics
software package.

objwrite(fullfile(MMT_DIR, ’script’, ’fres_Hee’), shape, ...
ext_tex(:), fit_data.tl, fit_data.mask);

Directory Structure The .m files are located in subdirectories of the MMT DIR directory. The list
of subdirectories follows.

data The data directory contains the .mat files that hold the necessary data for the MMT.
The files are arranged in subdirectories of the data directory depending on the part of the
MMT that the files are used for. The param directory includes the file rp.mat that stores a
few rendering parameters with realistic illumination configurations. The directory model
includes the files that store the morphable model, i.e., the shape and texture PCA models and
topological information such as the triangle list. The directory fit data includes fitting
parameters and other data used for the fitting. The directory img includes a few images and
their anchor files used as example to illustrate the fitting.

doc The doc directory includes some files that provides documentation about the MMT.

fitting The directory fitting includes all the .m files necessary for the implementation of
the MFF algorithm.

html This directory provides documentation of the MMT in HTML format. The file index.html
is the main documentation file. The whole documentation tree is produced by the function
mmt html help.m located in the MMT DIR directory. It is based on the package m2html
available at http://www.artefact.tk/software/matlab/m2html/.

id The Matlab functions located in the directoryid are used to do identifications and verifications
experiments after fitting a series of images. It contain specific files for making directly
statistics on the PIE and FERET face image databases.

image proc This directory includes a few files performing image processing operations needed
by the MFF algorithm.

interactive There are two GUI interactive programs implemented in the MMT.view shatex.m
uses the Matlab patch function that renders a 3D textured mesh using OpenGL and allows
its 3D rotation interactively. The second program, place anchors.m is a tool to easily
place anchor points on an input image and return an anchor point structure that can then be
used for the fitting algorithm.

mex The mex files are located in the mex directory. The C++ source files are in its subdirectories
include and src.



B.3. DOCUMENTATION 89

misc The directory misc includes severals miscellaneous functions used in the toolbox.

rendering All the function implementing the face generation and the rendering, described in
Chapter 2 on page 15, are located in the rendering directory.

script Several examples showing how to use some functionalities of the toolbox are located in
the script directory.

B.3 Documentation

If the Morphable Model Toolbox is installed (Section B.1) in the directory mmt on the Matlab path,
issuing the following command at the Matlab prompt lists the MMT functions and a one line
document describing them.

help mmt

Typing help followed by any function name provides a more detailed description of the function.

B.4 3D Face Generation and Rendering

This section gives an overview of the functions available in the directory rendering for gener-
ating 3D heads from model parameters and rendering them.

High level 3D face generation functions

smahal2shape Compute the shape from the morphable model shape parameters. This function
implements the Equation 2.10 on page 20. If the input coefficients include four segments,
then this equation is computed four times (one for each segment) and the segments are
blended using the functions tex2img, blendImage, and img2tex.

tmahal2tex Compute the texture from the morphable model texture parameters. Performs
intrinsically the same thing as smahal2shape, but for the texture.

High level rendering functions

model2img Render an image from its morphable model and rendering parameters. Calls
successively the functions smahal2shape, tmahal2tex, shape2screen, rasterize,
normal vertex, illumtex and render (or render gray, if the image is a grey-level
image).

shatex2img Render a shape and a texture to an image. This function preforms a subset of the pre-
vious function. The only difference is that the functions smahal2shape and tmahal2tex
are not called, as the shape and texture are directly given as input to the function.

defrp Return default rendering parameters. The rendering parameters structure is detailed in
Section B.6 on page 92.

Low level rendering functions Equation 2.12 on page 21 that is performing the rigid transforma-
tion, is a simpler version of the one implemented by the MMT. This simple form of this Equation
is used in Chapter 2, because it uses only the parameters tuned during fitting. However, to al-
low richer transformation other parameters are used for the rendering. The projection equation
implemented follows:

W = s · R · S + (R · to + tw − tc) 11×Nv
(B.1)
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Where s is a 3D scaling factor, R is the full 3D rotation matrix equal to RγRθRφRα, to is a 3D object
translation, and tc is the 3D camera position. Translating by tc transform the coordinates from an
object centred representation to world coordinates. The resulting translation is multiplied by a
matrix full of ones such as it is applied to all the vertices of the head. During fitting s, to and tc are
kept constant.

proj param Return projection parameters given rendering parameters. This function calls the
function rotmat that computed the rotation matrix. Then it scales the matrix by s. It also
compute the translation resulting from the addition of all the translation vectors.

rotmat Compute the multiplication of the four rotation matrices, Rγ · Rθ · Rφ · Rα, given the 4
angles.

smahal2screen Project to 2D screen coordinates a shape given by its parameters. This function
is a shortcut calling smahal2shape and shape2screen.

shape2screen Project a shape from 3D object coordinates to 2D image frame. This function
implements the Equation (B.1) and the Equation 2.13 on page 21.

shape2world Transform a shape from object coordinates to world coordinates. This function
implements a subset of the previous function: It computes the world coordinates given by
Equation (B.1).

world2screen Compute the 2D screen coordinates projected from 3D world coordinates. This
function implements Equation 2.13 on page 21.

normal vertex Compute the normals of the vertices. Depending on the input being the model
vertices in object coordinate, S, or in world coordinate, W, the normals in object coordinate
nv, or in world coordinates nv,w are returned. Equation 2.18 on page 23 and Equation 2.19 on
page 23 are implemented in this function. The normal computation is performed by a C++
function, normal vertex, implemented in the file mex/include/normals.h.

illumtex Illuminate a texture vector using the Phong reflectance model. To compute the cast
shadows, the functions comp_shadow and isshadow are used. Equations (2.15, 2.20, 2.21,
2.22, and 2.23 on page 24) are implemented in this function.

comp shadow Compute the cast shadow buffer for every light sources. This function computes
a rotation matrix and a translation that transform the Z-direction of the world coordinate
system to the lighting direction and then calls the function comp sbuffer that performs a
Z-buffer computation.

comp sbuffer Compute the cast shadow buffer. The buffer computation is performed by a C++
function, comp_sbuffer, implemented in the file mex/include/isshadow.h. Actually,
this function is very similar to the Z-buffer computation function.

isshadow Compute if a vertex is in a cast shadow based on the cast shadow buffer and the vertices
in light coordinates. This function is implemented in C++ in the function isshadow coded
in the file mex/include/isshadow.h.

rasterize Compute for each pixel of an image which triangle projects to it and the barycentric
coordinates of the pixel in the triangle. This is a C++ functions implemented in mex/src/
rasterize_matlab_driver.cpp and in mex/include/rasterize.h.

render Draw a pre-rasterized object into an image. This function implements the Equation 2.24 on
page 24. Its code is located inmex/src/normal_render_mex.cpp and inmex/include/
normal_render.h.
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Segment blending functions

blendimage Blends several parts of an image in one image. This C++ is implemented in the file
mex/include/blend.h.

pyrgauss Compute a gaussian pyramid of a set of images. This C++ is implemented in the file
mex/include/blend.h.

Visualisation functions

img2tex Converts a texture map image into a texture vector. This function convert a texture
map represented as an image in the reference frame (u, v) shown in Figure 2.1 on page 19 to
the vectorised representation, T, of Equation 2.6 on page 19.

tex2img Converts a texture vector into an texture map image. This function is the inverse of the
transformation carried out by the previous function.

render contour Overlay a face contour on an image. This function applies the algorithm
described in Section 4.2.2 on page 46 to find the contour of a 3D object and then draws them
in an image.

normalize Rescale a n-dimensional data to ease its display. This function is usually used before
displaying an image.

objwrite Save a head to a Wavefront OBJ file in order to export it to another computer graphics
modelling software package.

B.5 3D Face Fitting - An Implementation of MFF
The multi-features fitting algorithm software is an algorithm made for researchers to experiment
new features and new cost functions. Therefore, one of its key feature is its maintainability and
re-usability. To achieve this goal, the code is separated into five layers, listed on Table B.1. Each
function of one layer calls a function of the next layer.

Layer Functions

1 fit image, fit fres, fit feret,
and fit pie lights

User level.

2 mff fit Main fitting function.

3 lsqnonlin
Matlab nonlinear least square
minimisation.

4 cost full Main cost function.

5
cost anchor, cost lmicp norm
cost tex, cost spec, cost map,
and cost tex constr

Feature cost functions.

Table B.1: The five layers of the implementation of the MFF algorithm in the Morphable Model Toolbox.

Layer 1 - User level functions The first layer is the user layer. A fitting is initiated from these
first layer functions. They are all prefixed by fit . These function vary with respect to the type
of input they accept. They all output a fitting result structure. fit image accepts an image, a list
of anchor points, and a fitting parameter structure. fit fres is used to continue a fitting from
a fitting result structure. This function is useful to test a specific stage: the tester does not have
to restart the whole fitting for each test, but may resume it at a specific stage. fit feret and
fit pie light are used to fit the FERET and PIE face image databases.
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Layer 2, 3 and 4 - Main fitting and cost functions All the user level functions call the function
mff fit, which is the main fitting function. The task of this function is to loop on the fitting stages
and on the segments to be fitted at each stage. The number of stages is the number of elements
in the fitting parameters structure (Section B.6). If one stage is a segmented fitting, an inner loop
on the segments is also performed. For each segment of each stage, three tasks are accomplished:
(i) mff oi is called. This function aims at collecting the necessary data for each feature that is
fitted at one stage. It takes an element of the fitting parameter structure as input and returns a
cell of optimisation parameters (Section B.6). (ii) The Matlab Optimization Toolbox, lsqnonlin
is called. This function performs a nonlinear least squares fitting using an implementation of
the Levenberg-Marquardt algorithm[33]. The cost function minimised is cost full, with, as
parameter, a cell of optimisation parameters. In this cell, there is one element per feature to fit at
the current stage. The function cost full has two tasks. First, it calls the features cost functions
(see next layer) and assemble them into a single residual vector and Jacobi matrix. Second, it
transforms each feature cost function and Jacobi matrix such as an M-estimator (Section 4.5 on
page 57) instead of a least square estimator is used by the lsqnonlin function. (iii) The function
mff fit also prints some information about the fitting process and may renders some image to
visualise the fitting result.

Layer 5 - Features cost functions Each function of this layer implements a feature cost function
and computes its Jacobi matrix. These functions are called by cost full. Table B.2 relates the
MMT functions to the cost function that it computes.

cost_anchor Anchor points feature (Section 4.2.3 on page 50)
cost_lmicp_norm Oriented edge feature (Section 4.2.2 on page 43)
cost_tex Pixel color feature (Section 4.2.1 on page 40)
cost_spec Specular highlight feature (Section 4.2.4 on page 51)
cost_map Gaussian prior probability features (Section 4.3.1 on page 54)
cost_tex_constr Texture constraints feature (Section 4.3.2 on page 55)

Table B.2: List of MMT cost functions and their related feature.

B.6 Data Structures
This section provides some information on the data structures used in the MMT.

A 3D shape and an RGB texture including Nv vertices may be represented by a 3 ×Nv matrix
or by a 3Nv × 1 vector. The former representation is called the channelised format and the later the
interleaved format.

B.6.1 Morphable model

The morphable model data is stored in a structure called model that includes the following fields.

sha mean Mean shape in interleaved format.

sha evect Shape principal components in the interleaved format. For NS shape components, it
is stored in a 3Nv ×NS matrix. The column i stores vec(Si) (see Equation 2.10 on page 20).

sha eval NS × 1 vector for which element i is σS,i (see Equation 2.11 on page 20).

tex mean, tex evect, tex eval Same as the above but for the textures instead of the shapes.

n sha dim Number of shape principal components, i.e. NS.
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n xp sha dim If the shape model contains some expression variation, then n xp sha dim is
the number of components of sha evect coding the expression variations. Otherwise,
n xp sha dim must be null. Note that these expression components must be the last
columns of sha evect.

B.6.2 Rendering parameters
The rendering parameters, denoted in this thesis by γ, encode the rigid parameters, ρ, and the
illumination parameters, ι. The rendering parameters are used to render an image of a 3D mesh
(a 3D mesh is defined by a set of Nv vertices and a triangle list). Default rendering parameters
are returned by the function defrp. Rendering parameters are stored in a Matlab structure that
is usually denoted by the variable rp and that contain the following fields:

name type default value description
width scalar 640 Width of the rendered image.
height scalar 486 Its height.
gamma scalar 0 Rotation angle about the Z-axis.
theta scalar 0 Rotation angle about the X-axis.
phi scalar 0 Rotation angle about the Y-axis.
alpha scalar 0 Rotation angle about the X-axis.
t2d 2 × 1 (0, 0) 2D translation, denoted by tx and ty in Equa-

tion 2.13 on page 21.
camera_pos 3 × 1 (0, 0, 3400) 3D camera position in world coordinates in

millimetres, denoted by tc in Equation (B.1).
scale_scene Not used anymore.
object_size Not used anymore.
shift_object 3 × 1 (0, 0,−46125) 3D translation performed before the rota-

tion. The value is in micrometres and it is
denoted by to in Equation (B.1).

shift_world 3 × 1 (0, 0, 0) 3D Translation of the world coordinates ori-
gin in millimetres, denoted by tw in Equa-
tion (B.1). When fitting using a perspective
projection then the Z value of this parame-
ter is fitted. In the case of an orthographic
projection, it is not fitted.

scale scalar 10−3 3D Scale denoted by s in Equation (B.1).
ac_g 3 × 1 (1, 1, 1) Colour gain denoted by [gr, gg, gb] in Equa-

tion 2.23 on page 24.
ac_c scalar 1 Colour contrast denoted by c in Equa-

tion 2.23 on page 24.
ac_o 3 × 1 (0, 0, 0) Colour offset denoted by o in Equa-

tion 2.22 on page 24.
ambient_col 3 × 1 (0.6, 0.6, 0.6) Ambient light colour denoted by [La

r ,La
g,La

b]
in Equation 2.15 on page 23.

rotm 3 × 3 I 3D Rotation matrix denoted by R in Equa-
tion (B.1).

use_rotm scalar 0 If this parameter is zero, the rotation ma-
trix used is the one obtained by the multi-
plication of the four rotation angles gamma,
theta, phi, and alpha. If it is zero, then
rotm is used instead.
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do_remap scalar 0 If zero, the colour transformation described
by Equations 2.22 and 2.23 on page 24 is not
performed. In this case tC

i = tI
i .

dir_light struct. empty Structure storing the light direction and its
intensity.

do_specular scalar 1 If zero, does not render the specular high-
light.

phong_exp scalar 8 Phong exponent of the specular highlight
denoted by ν in Equation 2.15 on page 23.

specular scalar 25.5 Strength of the specular highlight denoted
by ks in Equation 2.15 on page 23.

do_cast_

shadows

scalar 1 If zero, no cast shadows are rendered.

sbufsize scalar 200 Half of the size of the cast shadow buffer.
proj string perspective Select the type of 2D projection. May be

’perspective’ or ’orthographic’.
n_chan scalar 3 Specify the number of colour channel. Must

be 3 for colour images and 1 for grey-scale
images.

illum_method string ’phong’ Type of illumination method. Only
’phong’ is supported for the moment.

The field dir light is a structure with the following two fields:

name type description
dir 3 × 1 Light direction in Euclidean coordinates.
intens 3 × 1 Colour intensity of the directed light.

The following parameters are estimated during fitting: t2d, f, gamma, theta, phi, ac g,
ac c, ac o, ambient col, and both fields of dir light. If the parameter proj is set to
’perspective’, then the Z component of shift world is also estimated.

B.6.3 Fitting parameters
Top-level fitting parameters The parameters controlling the fitting are stored in a structure
referenced by fp. Default fitting parameters are returned by the function get fit data. The
fitting parameters structure includes the following fields:

name type description
match_shape scalar If zero, the shape parameters, α, are not fitted.
match_tex scalar If zero, the texture parameters, β, are not fitted.
match_pose scalar If zero, the rigid and projection parameters, ρ, are not fitted.
match_illum scalar If zero, the illumination parameters, ι, are not fitted.
match_xp scalar If zero, the expression shape parameters denoted by εi in

Equation 5.4 on page 72, are not fitted. The current release
of the Morphable Model Toolbox does not include an ex-
pression model, hence this parameter may not be set to
one.
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do_inner scalar If one, the textured edge feature is used.
do_ctr scalar If one, the contour edge feature is used.
do_tex scalar If one, the pixel colour feature is used.
do_map scalar If one, the prior probability feature is used.
do_anchor scalar If one, the anchor point feature is used.
do_spec scalar If one, the specular highlight feature is used.
do_tex_constr scalar If one, the texture constraint feature is used.
init_rp struct. Initial rendering parameters. Any field missing is ini-

tialised to its default value.
sha_dim 1 ×NS If match shape is one, this field specify which shape prin-

cipal component is to be fitted. If sha dim(i)=0, then the
PC i is not fitted.

tex_dim scalar Number of texture principal component to fit.
nseg scalar Should be 1 if dosegment = 0 and 4 if dosegment = 1.
do_segment scalar If one, perform a segmented fitting. If 0, perform a global

fitting.
seg_name 4 × 1 Cell array with the name of each segment stored as a string.
edge struct. Parameters passed to the canny edge algorithm to detect

the edges in the input image.
cdt struct. Parameters used to computed the Chamfer Distance Trans-

form.
f_inner struct. Parameters used to compute the textured edge cost func-

tions.
f_ctr struct. Parameters used to compute the contour edge cost func-

tions.
f_tex struct. Parameters used to compute the pixel colour cost functions.
f_map struct. Parameters used to compute the prior probability cost func-

tions.
f_anchor struct. Parameters used to compute the anchor cost functions.
f_spec struct. Parameters used to compute the specular highlight cost

functions.
f_tex_constr struct. Parameters used to compute the texture constraint cost

functions.

Edge detector parameters The following fields of the structure edge are parameters of the canny
edge detector:

name type description
percent scalar This value is used to compute the threshold of the high

threshold [17]. The higher is this parameter, the more
edges will be returned. Default value: 0.7.

thresh_ratio scalar The low threshold is obtained by multiplying this pa-
rameter by the high threshold. This parameter must be
between 0 and 1. Default value: 1.

sigma scalar Standard deviation of the Gaussian used as a low-pass
filter. Default value: 1.
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Chamfer Distance Transform parameters The following fields of the cdt structure are used to
tune the computation and of the CDT and the transform applied to it:

name type description
interpol string Specifies the way the CDT is interpolated. As the vertices are

projected on non-integer values of the image frame, the CDT
must be interpolated between the pixels. Two values are ac-
cepted for this parameter: ’bilinear’ computes an bilinear
combination using the four neighbouring pixels. ’round’ uses
the value of the nearest pixel. ’bilinear’ should always be
used. Default value: ’bilinear’.

transform string After the CDT is computed, it is transformed by the func-
tion cdt transform. The purpose is to make the edge fit-
ting more robust. Several transformations are allowed, see the
documentation of the cdt_transform function. Default value:
’huber thresh.

sigma scalar CDT transformation parameters, see the documentation of the
cdt_transform function. Default value: 4.

thresh scalar CDT transformation parameters, see the documentation of the
cdt_transform function. Default value: 10.

Parameters common to each feature The parameters of each feature are arranged in structures.
The name of these structures are prefixed by a f . The following three fields are common to all
features.

name type description
name string Name of the feature.
tau scalar Weight of the feature. This parameter correspond to the τ

parameter of Equation 4.40 on page 60.
err_trsfm struct. This structure specifies which error transform, ρσ(x) in

Equation (4.37), is used to fit the feature and its param-
eters.

The followings are fields of the err trsfm structure that define the error norm used to fit a
feature.

name type description
transform string Name of the error norm. One of the following three

string must be set: ’nothing’ for a least squares fitting,
’huber’ for a fitting using the Huber’s minimax estimator
of Equation 4.38 on page 57, or ’lor’ for the Lorentzian
error function of Equation (4.39).

sigma scalar Value of the parameter σ of the Huber and Lorentzian error
norms. This parameter is not used for a least squares fitting.
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Edge feature parameters Additionally to the fields common to all features, the textured edges
and contour edges features include the character string parameter orient. It specifies the number
of bins that are used to quantise the [−π, π] angle range between the image and contour edges
direction. More information about this parameter is available in the help of functionmakeorient.
The structure f ctr includes the parameter true ctr, as well. This is a Nv × 1 vector for which
element i is one if the vertex i may be a valid contour vertex. This vector is used at step 4 of the
contour computation (page 48).

Pixel colour feature parameters The pixel colour feature parameter structure, f tex, includes
the following fields.

name type description
npoint scalar Number of points used to compute the pixel colour cost

function. If the input image is a colour image, the error
vector ec, includes three times as many elements. This
parameter is used in the preparation function mff oi, in
which npoint triangles are selected to be fitted.

blind_tri Nt × 1 The element i of this vector is 1, if the triangle i may be
used to fit the model. The file fp data.mat holds such a
vector for which the lower part of the neck, the ears and
the upper forehead are set not to be fitted.

blind_isvis Nv × 1 This parameter has no influence on the fitting. It is only
used to computed the full pixel colour error obtained at the
end of the fitting. The vertex i is not used to compute the
residual if the element i of this parameter is null.

sel_tri_coef Nt × 1 This parameter sets the likelihood of selecting a triangle. It
is computed by the function make tri coef and depends
on the location of a triangle on the face (mouth, nose, eyes,
and rest).

The probability density function of selecting one of the npoint triangle to be fitted among
the set of visible model triangles is not uniform. If it was uniform, very few triangles would be
selected in the nose, mouth and eyes region, as most of the model vertices are located on the cheek
area. Hence, to favour the nose, mouth and eyes area over the cheek region, a non-uniform PDF
is used to sample the model triangles that are fitted.

The probability of selecting a triangle is proportional to the multiplication of two factors: The
first factor depends on the visibility of the triangle, the most visible a triangle is, the most likely
it is to be chosen. The visibility of a triangle is given by the dot product of the triangle’s normal,
nt,w, and its viewing direction, v. The second factor depends on location of the triangle on the
face. Each region of a face is assigned to a weight that defines the importance of the area in the
fitting. The higher the weight, the more likely a triangle is to be chosen. The weight is set in the
field sel coef of the structure f tex. The weight of each triangle is stored in sel tri coef
and computed in the function make tri coef based on sel coef.

Prior probability parameters The prior probability feature parameters structure, f map, in-
cludes two parameters, lambda shape and lambda tex, that weights the shape and texture
part of the Gaussian prior cost function of Equation 4.35 on page 55.

Anchor point feature parameters The anchor point feature parameters structure, f anchor,
holds one parameter, tau ctr, that weight the residual of the contour anchor points. If this



98 APPENDIX B. MATLAB MORPHABLE MODEL TOOLBOX

parameter is null, the contour anchor points are not used for the fitting, if it is infinite, the inner
anchor points are not used.

Specular highlight feature parameters The specular highlight feature parameters structure,
f spec, includes the parameter npoint that sets the maximum number of specular points used
for fitting.

Texture constraint parameters The texture constraint feature, f_tex_constr, includes the
following three parameters:

name type default value description
npoint scalar 300 Maximum number of points not in the valid

texture range, that can be included in the
texture constraint cost function.

lo scalar 0 Lower bound of the valid texture intensity
range.

hi scalar 255 Upper bound of the valid texture intensity
range.

B.6.4 Cost functions parameters
The fitting parameters, detailed at the previous section, are changed by the user to modify the
behaviour of the fitting algorithm. These parameters are utilised by the functions mff fit and
mff oi (page 92). There is another set of parameters called the cost function parameters. These
parameters are used by the feature cost function. They are stored in a cell array referenced by oi.
In fact, this cell array does not only store parameters values but also any data required by the cost
functions to compute their residuals and Jacobi matrices.

The cell array oi is given as input argument to the Matlab optimisation function lsqnonlin
that passes it on to the main cost function cost full. oi includes one cell element per features
fitted. This cell element is a structure that holds the information necessary to a feature cost function
to perform its computation.

Parameters common to all features The following fields are required for all features. They are
used by the function cost full.

name type description
fct function

handle
Handle to the cost function.

err_trsfm struct. Error norm transformation structure described at page 96.
npoint scalar Length of the residual vector returned by the cost function.
tau scalar Weight of the feature (Equation 4.40 on page 60).
f_name string Name of the feature. This is a copy of the field name of

fitting parameters structure fp (page 96).

Edges The textured and contour edge cost function structure include the following fields:
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name type description
cdt struct. Chamfer Distance Transform data structure. It is described

hereafter.
model struct. Shape model including only either the vertices of the textured

edges or the vertices of the contour. This sub-model is com-
piled from the full 3DMM by the function submodel.

g_idx cell
array

The number of elements in this cell array is equal to the num-
ber of edge orientation bins. g idx(i) lists the indexes of the
model edge vertexes at orientation i.

The Chamfer Distance Transform data structure, cdt, is a cell array. The number of elements in
this cell array is equal to the number of edge orientation bins specified by the parameters orient
of the feature structures f inner and f ctr (page 96). A cell element is a CDT that includes only
the edges at a specific orientation. Each cell elements include the following three matrices:

name type description
cdt h × w Chamfer Distance Transform for a particular orientation.
cdt_dx h × w Derivative of cdt along X.
cdt_dy h × w Derivative of cdt along Y.

Anchors The anchor cost function structure include the following fields:

name type description
model struct. Shape model including only the model vertices in corre-

spondence with the anchor points. This sub-model is com-
piled from the full 3DMM by the function submodel.

screen 2 ×Na X-Y coordinates of the anchor points. Na refer to the num-
ber of anchor points.

Pixel colour The pixel colour cost function structure include the following fields:

name type description
img h × w × 3 or h × w Input image. It is a 3D matrix if the image is a

colour image and a 2D matrix if it is a grey-level
image.

dImg_dx same as img Derivative along X of the input image.
dImg_dy same as img Derivative along Y of the input image.
tri_idx npoint ×1 Indexes of the triangles to be fitted.
ver_idx 3npoint ×1 Indexes of the vertices of the selected triangles.
isshad npoint ×1 isshad(i) is one if the triangle i is in a cast

shadow.
corner_model struct. Shape model with the vertices listed in ver idx.
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center_model struct. Shape and texture model with npoint vertices.
Each vertex of this model is a ’virtual’ vertex lo-
cated at the triangle incenters of the 3DMM. It is
computed by averaging the shape and texture PC
of the three corners of the model corner model.

outlier_img h × w An outlier image may be used by the fitting. If it is
available it may be given as input to the function
mff fit. This is a binary image where a pixel is
set to one if it is an outlier in the input image. In
this case it is not used in the computation of the
pixel colour cost function.

alpha NS × 1 Value of the shape parameters, α, before the fitting.
This is used used in case the shape is not fitted.

beta NT × 1 Value of the texture parameters, β, before the fit-
ting. This is used used in case the texture is not
fitted.

Texture constraint The texture constraint cost function structure include the following fields:

name type description
img h × w × 3 or h × w Input image.
center_model struct. Same as the field center_model of the pixel

colour cost function data structure.

Specular highlight The specular highlight cost function structure include the following fields:

name type description
spec_img h × w Binary image with the pixels detected on the specular high-

light.
corner_model struct. Shape model of the vertices in correspondence with the

pixels on the specular highlight.
center_model struct. Shape model of the incenters of the triangles whose corners

are in the corner model.

Prior probability The prior probability cost function structure include the following fields:

name type description
n_xp_sha_dim scalar Number of expression shape components.



Appendix C

Reproducing figures and experiments

The algorithms detailed in this thesis should not be analysed only from their theoretical perspec-
tive, for this analysis can not fully predict the behaviour nor the relevance of these algorithms
on specific images. Numerical experiments must be carried out and these experiments must be
reproducible.

Buckheit and Donoho [15] report that Claerbout, a distinguished exploration geophysicist, has
championed the concept of really reproducible research in the computational sciences. The goal of
exploration seismology is to produce an image of the subsurface as accurate as possible. However,
Claerbout [18] has pointed out that the research deliverable is not an image itself, but instead the
software environment that, applied in the right way, produces the image, and which, hopefully,
could be applied to other datasets to produce equally nice images. The scientific findings may
turn out to be a knowledge of parameters settings for this complex software environment that seem
to lead to good results on real datasets.

Donoho summarises Claerbout’s standpoint as follows: An article about computational science
in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual
scholarship is the complete software development environment and the complete set of instructions which
generated the figures.

To reproduce the figures, the tables and the experiments reported in this thesis, the Morphable
Model Toolbox (Appendix B on page 85) is required. Additionally, some Matlab files are necessary.
Tables C.1 and C.2 list the files required to reproduces the figures and the tables, respectively.

Some figures are not reproducible. These figures and the reason why they are not reproducible
are listed on Table C.3.

101



102 APPENDIX C. REPRODUCING FIGURES AND EXPERIMENTS

Figures Matlab files
4.2 matlab/cost strong weak/strong cost.m
4.3 matlab/slack prior/bad tex.m
4.4, 4.5, 4.6, 4.12, and 4.13 matlab/cost features/cost features.m
4.7, and 4.8 matlab/edge/cdt example.m
4.9 matlab/edge/inner edges.m
4.10, and 4.11 matlab/edge/contour.m
4.16 matlab/specularities/example.m
4.17 matlab/tex constr/tc example.m
4.18, 4.19, and 4.20 matlab/mestimator/mestimator plot.m
4.21, and 4.22 matlab/noise/noise cost.m
4.23, and 4.24 matlab/multi stage/ms example.m
4.25 matlab/fit res/fit res.m
4.26 matlab/tex ext/tex ext.m
5.3 matlab/id/id.m
5.5, and 5.8 matlab/xp/xp transfer.m
5.7 matlab/xp/xp model.m
5.9 matlab/tracking/tracking.m
6.1 matlab/model/rec error.m

Table C.1: List of files that reproduces the figures of this thesis.

Tables Matlab files
4.3 matlab/multi stage/ms example.m
5.1, and 5.2 matlab/id/id.m

Table C.2: List of files that reproduces the tables of this thesis.

Figures Reason

4.1

This figure requires a fitting with the SNO algorithm, it
was produced using the interactive program Mouflon de-
veloped by our research group. This program is not pub-
licly available.

4.14 Figure made with xfig.
5.6 Training 3D scans for expression are not publicly available.

Table C.3: List of figures that are not reproducible and the reason why this is the case.
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