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RATIONAL COVARIANTS OF REDUCTIVE GROUPS
AND HOMALOIDAL POLYNOMIALS

HANSPETER KRAFT AND GERALD W. SCHWARZ

ABSTRACT. Let G be a complex reductive group, V a G-module and f € O(V)&
a nonconstant homogeneous invariant. We investigate relations between the fol-
lowing properties:

e df:V — V* is dominant,

e [ is homaloidal, i.e., df induces a birational map P(V) — P(V*),

e V is stable, i.e., the generic G-orbit is closed.

If f generates O(V)%, we show that the properties are equivalent, generalizing
results of SATO-KIMURA on prehomogeneous vector spaces.

Introduction

Our ground field is C, the field of complex numbers. Throughout this note,
G will be a reductive (complex) algebraic group, and V a (finite dimensional
algebraic) G-module. We denote by O(V) the algebra of polynomial functions
on V and by O(V)% the subalgebra of G-invariant functions. The algebraic
quotient (of V' by G) is the morphism 7y:V — VG corresponding to the
inclusion O(V)¢ c O(V). Similar definitions and notation apply to an affine
G-variety, i.e., an affine variety X equipped with an algebraic action of G.

If f € O(V)Y, then the differential

df:V = V* wv—df(v):(T,V=V)—-C

is G-equivariant, where V* denotes the dual G-module. The (schematic) fiber
F := f7}(f(v)) is non-singular at v if and only if df(v) # 0, in which case
Kerdf(v) = T, F, the tangent space to F' at v. Note that if f is homogeneous
and df is dominant, then df defines a rational map ®;:P(V) — P(V*) of finite
degree. If ®; is birational, then f is said to be homaloidal.

We say that V is stable if the set of closed G-orbits contains a non-empty
open subset of V. The main results of this paper are the following.

Theorem A. Let f € O(V)Y be a homogeneous invariant. If the differential
df: vV — V* is dominant, then V is a stable G-module.
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Theorem B. Assume that the invariant ring O(V)Y is generated by a homo-
geneous function f. Then the following are equivalent:
(i) The differential df:V — V* is dominant;
(ii) The differential df induces a birational map ®¢:P(V) — P(V*), ie., f
is homaloidal;
(iii) The G-module V is stable.

A crucial step in the proof of Theorem B is Proposition C, below, which is
interesting in its own right. In a way it gives conditions for LUNA’s Slice Theo-
rem ([Lu73], see also [SI89]) to hold “generically.” Recall that a G-equivariant
morphism ¢: X — Y is excellent if the induced morphism ¢: X /G — Y//G is
étale and the following diagram is cartesian:

X 2., v

A
X)G —— v)G

In particular, excellent morphisms are étale. A subset S of an affine G-variety
X is saturated if S = 3 (7x(S)).

Proposition C. Let X and Y be two smooth affine G-varieties of the same
dimension and let p: X — Y be a G-equivariant dominant morphism. As-
sume that the generic fibers (see §1) of mx and my are G-isomorphic. Then
there 1s a non-empty saturated open set U C'Y such that the induced morphism
Plo-1n: " (U) = U is excellent.

In the special case of a G-module and its dual the assumption on the generic
fibers is automatically fulfilled.

Proposition D. Let ¢:V — V* be a G-equivariant dominant morphism. Then
the generic fibers of my and my« are isomorphic.

The following relations between V and V* come in handy:

Proposition E. Let V be a G-module. Then

(1) V is stable if and only if V* is stable.
(2) The principal isotropy groups (see §1) of V. and V* are the same.

Outline of the paper. In §1 we state and prove a generalization (Proposition
1) of Proposition C, and we prove Propositions D and E and Theorem A. In §2
we consider the special case of G-modules with one-dimensional quotient, and
we give the proof of Theorem B, which generalizes results obtained by SATO-
K1iMURA [SaK77] for prehomogeneous vector spaces. In §3 we show how to obtain
the SATO-KIMURA results from Theorem B.
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§1. Dominant Covariants

Let X be an affine G-variety. Note that any fiber F' of 7x: X — X/G is
without invariants in the sense that O(F)¢ = C. We say that I is a generic
fiber of mx (or of X ) if there is a nonempty open subset Z C X//G such that
7% (Z) — Z is a G-fiber bundle with fiber F' (in the étale topology). LUNA’s
slice theorem [Lu73] shows that any smooth affine G-variety has a generic fiber
F. Moreover, F has the form G « W where H C G is reductive and W is an
H-module without invariants. In particular, F' is smooth and G acts transitively
on the irreducible components of F. The subgroup H (or any G-conjugate of
H) is called a principal isotropy group of X. A nonsmooth affine G-variety may
not have a generic fiber.

For completeness, we add the following well-known result:

Lemma 1. Let o: F' — F’ be a dominant G-equivariant morphism where F and
F' are G-isomorphic affine varieties without invariants. Then @ is an isomor-
phism.

Proof. Since ¢ is dominant, we have a G-linear inclusion ¢*: O(F’) — O(F). By
assumption, the isotypic components of O(F') and O(F’) are finite dimensional
of the same dimension. Thus ¢* is an isomorphism. ]

The next result is a generalization of Proposition C of the introduction.

Proposition 1. Let X and Y be irreducible affine G-varieties of the same di-
mension which have generic fibers Fx and Fy, respectively. Assume that Fx
and Fy are G-isomorphic and that G acts transitively on the irreducible compo-
nents of Fix. If p: X — Y is a dominant G-equivariant morphism, then there is
a non-empty saturated open set U C'Y such that ¢ is excellent on o= (U).

Proof. Tt suffices to find a (non-empty) saturated open set X’ C X such that
o|lx: X' — Y is excellent, since every such X’ contains a dense subset of the form
@ Y(U) where U C Y is open and saturated. Therefore, we can assume that
mx: X — X//G and my:Y — Y//G are both fiber bundles over smooth bases
with fibers F'x and Fy, respectively, and that : X/G — Y/G is dominant.
Shrinking further we can assume that @ is étale.

Let Xy C X be the (non-empty) G-stable open set where ¢ is smooth. If a
fiber F' of mx meets Xg, then ¢(F) has the same dimension as F', hence contains
an irreducible component of a fiber F’ of my. Since G acts transitively on the
irreducible components of the fibers, we get that ¢(F) = F’, and Lemma 1
shows that ¢ induces an isomorphism F = F”.

The argument above shows that we can assume that every fiber of mx is
mapped isomorphically onto a fiber of my. Thus we obtain a map ¢: X —
X/ G xyyq Y of fiber bundles over X /G inducing isomorphisms on the fibers.
The following lemma shows that ¢ is an isomorphism, i.e., that ¢ is
excellent. |
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The lemma below is certainly well-known. Since we could not find a suitable
reference, we include a short proof.

Lemma 2. Letp: X — S and ¢:Y — S be two fiber bundles with fiber F' and let
©: X — Y be a morphism of fiber bundles (i.e., oy = p) inducing isomorphisms
©0s: Xo =Y, on the fibers for all s € S. Then ¢ is an isomorphism.

Proof. (a) Let us first assume that ¢ is a finite morphism and let x € X, y :=
p(x) € Y and s := p(z) = q(y). Then ¢*: Oy, — Ox, is finite and injective
and induces, by assumption, an isomorphism Oy, /m;Oy,, = Ox z/m;Ox 5.
It follows that Ox , = Oy,y + m,Ox, and so Ox , = Oy, by NAKAYAMA’s
Lemma. Hence ¢ is an isomorphism.

(b) Next we remark that the lemma also holds if Y is normal, since every

bijective morphism onto a normal variety is an isomorphism, by ZARISKI's Main
Theorem (see [Mu88, Ch. 3, §9]).

(c¢) In general, let X — X be the normalization of X and S — S the normal-
ization of S. We obtain a commutative diagram

X X X
l Pl

G —— S
where all horizontal maps are finite and where p is a fiber bundle with fiber
F, the normalization of F. A similar diagram is obtained for Y. Moreover, ¢

induces a fiber bundle morphism ¢: X — Y which is again an isomorphism on
the fibers. It now follows from (b) that ¢ is an isomorphism:

Therefore, ¢ is finite and the lemma follows from (a). O

In order to prove Propositions D and E of the introduction, we use the fol-
lowing well-known lemma:

Lemma 3. Let G be a connected reductive group. Then there exists an auto-
morphism 7: G = G with the following property: If p:G — GL(V) is a repre-
sentation of G, then po1:G — GL(V) is equivalent to the dual representation
p*:G — GL(V*).

As a consequence, we see that for a connected reductive group G any covariant
p:V — W can be regarded as a covariant ¢*: V* — W* by simply changing the
action of G by the automorphism 7. Moreover, the quotient map my:V — V)G
can be identified with the quotient map 7y «: V* — V*//G.
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Remark. It is essential in the lemma above that G be connected. In fact, the
smallest Mathieu group M;j; has a non self-dual representation W of dimen-
sion 10, but Mj; has no outer automorphism. (This example was shown to
us by GURALNICK.) We do not know if the invariant rings of W and W* are
isomorphic.

Proof of Proposition D. Let p:V — V* be a dominant covariant. We want to
show that the generic fibers of my and 7y« are isomorphic. We first assume
that G is connected. We have seen above that ¢ can be regarded as a covariant
p*:V* — V, and the composition ¢* o p:V — V is a dominant covariant. It
follows from Proposition 1 that for a generic fiber F' of V the image F’ :=
©*(¢(F)) is also a generic fiber of V, and the composition F — ¢(F) — F’ is
an isomorphism. Hence F = ¢(F). Since the generic fibers of V and V* are
irreducible and of the same dimension, it follows that ¢(F') is a generic fiber F™*
of V* and that F = F*.

In case of a general reductive group G we can apply Propositions C and D to
G and find a G%-saturated open set U C Y such that ¢ is excellent on ¢~ (U)
with respect to the action of G°. Replacing U be GU we may assume that U is
G-saturated. In the following diagram

e (U) —2—

0 0
|~ |-

-0

e~ (U))G° —— U)G°

lﬁv lm

e (U))G —— UJG

the upper square is cartesian, the maps W?/ and 71'?/* are the quotients of the G°-
action, and the maps 7 and 7y« are quotients by the finite group G := G/G°.
It suffices to show that the generic fibers of 7y and 7y~ have the same number
of elements, or, equivalently, that the generic fibers of 7y and 7y« have the same
number of components.

Let G’ denote the kernel of the action of G on V/G®. Then the number ny
of components of the generic fiber of 7y equals [G : G’]. The following lemma
shows that ny = ny~, proving the proposition. O

Lemma 4. Let N C G be a normal subgroup, and let W be a G-module. Then
(WNY* and (W*)N are isomorphic G /N-modules. In particular, the kernels of
the actions of G on WY and (W*)N are the same.

Proof. One easily reduces to the case that W is an irreducible G-module. Since
W is G-stable, either N acts trivially on W, or N acts nontrivially on W and
WH = (0). But W* is also an irreducible G-module, and N acts trivially on W*
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if and only if it acts trivially on W. Thus, (W¥)* and (W*)Y are either both
zero or W*. |

Proof of Proposition E. Let V be a G-module, and let Vi denote V' considered
as a G%-module. Then V is stable if and only if Vj is stable. Since Vj is stable if
and only if the generic fiber of 7y, is an orbit, the comments following Lemma
3 show that Vj is stable if and only if V" is stable. Thus stability of V and V*
are equivalent.

Let H be a principal isotropy group of V, and let N denote Ng(H)/H. By
the Luna-Richardson Theorem [LuR79], the restriction map O(V)¢ — O(VH)N
is an isomorphism where the action of N on V# has trivial principal isotropy
groups (hence is stable). The action of N on (V*)¥ ~ (VH)* is then also
stable with finite principal isotropy groups. By [Lu75], O(V*)¢ — O((V*)H)N
is finite, and every closed N-orbit in (V*) lies in a closed G-orbit in V*. Since
O((V*)YH)N and O(V*)¢ have the same dimension (= dim V/G), some closed N-
orbit in (V*)H intersects the closed orbit of a generic fiber of V*. It follows that
H C H*, where H* is a principal isotropy group of V*. Repeating the argument
for V* shows that H* is contained in a conjugate of H, hence H = H*. O

We now give the proof of Theorem A of the introduction.

Proof of Theorem A. Let ¢:V — V* be a covariant. For any point v € V, the
derivative dp(v): T,V — Ty,)V* ~ V* gives a bilinear form 3, on T,V ~ V,
namely, 3, (w1, ws) := dp(v)(wy)(ws). Since p is a covariant, 3, is G,-invariant,
and 3, is non-degenerate precisely at the points v where ¢ is étale. Now assume
that f € O(V)Y and ¢ := df. Then the form (3, is the Hessian of f and is
symmetric. If ¢ is dominant, Propositions C and D give us an open G-saturated
subset U C V* such that ¢|,-1(py: ¢ Y(U) — U is excellent, and we may assume
that U and ¢~ !(U) are affine. The following result of LUNA (see [Lu72], [Lu73])
shows that the action of G on =1 (U) is stable, proving Theorem A. O

Theorem (Luna). Let X be a smooth affine G-variety. Assume that for each
x € X there is a Gy-invariant non-degenerate symmetric bilinear form on the
tangent space T, X. Then X is stable.

§2. One-dimensional quotients

Let V be a G-module such that the invariant ring O(V)% is generated by
the homogeneous function f of degree d. Then O(V*)¢ is also generated by a
homogeneous function f* of degree d.

Proposition 2. Let V, G, f and f* be as above and let Gv = Gv be a closed
orbit in V. Then

(1) f*odf is a non-zero multiple of f4=1.
(2) df*(df(v)) = cyv for some non-zero ¢, € C.
(3) IfV is stable, then df is dominant.
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Proof. We may choose an isomorphism V ~ C” such that G C GL,(C) is the
complexification of a compact subgroup K C U,(C). Let ( , ) denote the
standard hermitian inner product on C". Then Kempf-Ness theory ([KeN79],
cf. [Sch89]) tells us the following: Let v € V. Then

(x) Ty(Gv) L v if and only if Gv is a closed orbit and (v,v) = gigg(gv,gv).
Assume that V' is stable, and choose 0 # v € V' such that Gv is closed. We may
assume that (gv, gv) achieves its minimum at v. If df (v) = 0, then df vanishes
on G(Cv) which is dense in V. Thus df = 0, which is impossible. Let A denote
the linear form df (v) # 0. Then T,(Gv) = Ker A has dimension n — 1, and so
AMw) = c¢(w,v) for all w € V and a suitable ¢ € C. Considered as an element
of V** v lies in the annihilator of T\(G\): if A € g, then (AX)(v) = A(—Av) =
c(—Av,v) € (gv,v) = {0}. But this shows that A L T»(G\) (using the induced
hermitian inner product on V*). Thus G is a closed orbit in V* and A € G\ is
a point of minimal norm. Hence f*(\) # 0, giving (1). Since V* is also stable,
we may apply the reasoning above to v’ := df*(\) € V**. We obtain that v’
generates the annihilator of T (G\), so that v’ is a non-zero multiple of v € V**.
We have (2), and (3) follows since G(C)) is dense in V*.

In general, let H be a principal isotropy group of V. Then the action of
N := Ng(H)/H on VH is stable, and by the Luna-Richardson Theorem [LuR79],
the restriction f of f to VH generates the invariant ring O(VH)N. For v € V',
we have df (v) € (V*)H and using the canonical isomorphism (V*)# ~ (VH)*
this linear function identifies with df (v)|y» = df(v). Proposition E shows that
H is also the principal isotropy group of V*. Hence f* = f*|,.n generates the
invariant ring O(V*#)N. By the first part of our proof, f*(df (v)) = f*(df(v)) #
0 and df*(df (v)) = df*(df(v)) is a multiple of v, so we have (1) and (2). O

Corollary 1. Let V, f and f* be as above. If df:V — V™ is dominant, then
df* odf = cf%21dy for a non-zero constant ¢ € C.

Proof. Since df is dominant, V is stable by Proposition 1 and df*(df(v)) is
a nonzero multiple of v for every v not in the nullcone Ay = f~1(0) of V.
Since G x C* has a dense orbit in V' and since df* o df is G-equivariant and
homogeneous, df* o df(w) = h(w)w for all w € V, where h(w) is a nonzero
homogeneous polynomial of degree d(d — 2). Clearly, h is G-invariant, hence it
has the given form. O

We now give the proof of Theorem B of the introduction.

Proof of Theorem B. If df induces a birational map ®;:P(V) — P(V*), then df
is dominant, and conversely by Corollary 1. Dominance of df and stability of V/
are equivalent by Proposition 2 and Theorem A. O
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Examples. It is easy to find cases where df is not dominant. Start with any
G-module V' with a one-dimensional quotient f:V — C, let H be a reductive
group and W a nonzero H-module without invariants. Then V := V & W is a
G := G x H-module with a one-dimensional quotient given by f: (v,w) — f(v).
Clearly df(V) C V, so df is not dominant.

§83. Prehomogeneous vector spaces

Let V be a prehomogeneous G-module and x a character of G. A function
f:V — Cis called a semi-invariant (with character x ) if f(gv) = x(g)f(v) for all
g € G. It is easy to see that semi-invariants have to be homogeneous functions.
Note that the subalgebra C[f] C O(V) is the invariant ring under Gy := Ker x.
In fact, f is Gp-invariant and the fibers of the restriction of f to the dense orbit
Gv are exactly the Gg-orbits.

We say that V is regular if there is a semi-invariant f whose Hessian does not
vanish identically; equivalently (by Theorem B), f is homaloidal. The following
result is essentially contained in the work [SaK77] of SATO-KIMURA.

Theorem 3. Let V' be prehomogeneous, and let v € V such that Gv is dense in
V. Then the following are equivalent:

(1) V is regular.

(2) There is a semi-invariant f with character x such that V is a stable
Go-module, where G := Ker x (a reductive group).

(3) The isotropy group G, is reductive.

(4) The complement of Gu is a hypersurface.

If these conditions hold then a semi-invariant f is homaloidal if and only if its
zero set is the complement of the dense orbit Guv.

Proof. Given a semi-invariant f, let x s denote the corresponding character. If
V is regular, then we have a semi-invariant f such that df: V — V* is dominant,
and an application of Theorem A (or B) shows that V' is a stable (G := Ker x)-
module. Thus (1) implies (2). If Gy and f are as in (2), then the isotropy group
(Go)y is reductive. Since f(v) # 0, we have G, = (Go)w, giving (3). If (3), then
Gv ~ G/G, is affine, which forces the complement V' \ Gv to be a hypersurface,
giving (4). If S := V \ Gv is a hypersurface, let f be a function defining S.
Then f is a homogeneous semi-invariant, and the fibers of f: V' — C over C\ {0}
are the (Go := Ker xs)-orbits in Gv. Since all of these orbits have dimension
dim V' — 1, they are all closed. Hence the action of Gy on V is stable, and V is
regular by Theorem B. Thus (4) implies (1).

Let f be a semi-invariant. If f~1(0) =S := V' \ Gv, we have shown that f is
homaloidal. Suppose that f~!(0) # S. Then there is an irreducible component
S’ of S such that f|g:S" — C is dominant. It follows that the generic fiber of f
consists of a (G := Ker xf)-orbit in Gv, together with at least one other orbit.
Hence V is not a stable Gy-module, and f is not homaloidal. O
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Remark. The last statement of the theorem above proves a very special case
of a conjecture by DOLGACHEV claiming that a homogeneous polynomial f with
prime decomposition [ [, f;** is homaloidal if and only if [], f; is homaloidal (see
[Do00], end of section 3).

Example. Let G = SLy x(C*)3 and V = (C?)3. The group SLy acts on each
copy of C? in the standard way, and (t1,t2,t3) € (C*)3 sends (v, ve,v3) € V to
(t1v1,tave,tgvg). Clearly V is a prehomogeneous G-module. Let f;;(v1,v2,v3)
denote the determinant (v;,v;), 1 <i < j < 3. Then the semi-invariants are the
products of the f;;, and a semi-invariant is homaloidal if and only if it has each
of f12, fi3 and fa3 as a factor.
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