Draisma, Jan and Kraft, Hanspeter and Kuttler, Jochen. (2006) Nilpotent subspaces of maximal dimension in semisimple Lie algebras. Compositio Mathematica, 142 (2). pp. 464-476.
|
PDF
- Submitted Version
186Kb |
Official URL: http://edoc.unibas.ch/dok/A5842772
Downloads: Statistics Overview
Abstract
We show that a linear subspace of a reductive Lie algebra g that consists of nilpotent elements has dimension at most equal to the number of positive roots, and that any nilpotent subspace attaining this upper bound is equal to the nilradical of a Borel subalgebra of g. This generalizes a classical theorem of Gerstenhaber which states this fact for the algebra of n x n matrices.
Faculties and Departments: | 05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > Algebra (Kraft) |
---|---|
UniBasel Contributors: | Kraft, Hanspeter |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Cambridge University Press |
ISSN: | 0010-437X |
e-ISSN: | 1570-5846 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: | |
edoc DOI: | |
Last Modified: | 26 Oct 2017 06:50 |
Deposited On: | 08 Jun 2012 06:48 |
Repository Staff Only: item control page