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Abstract. An algebra A over a field k is FCR if every finite dimensional repre-
sentation of A is completely reducible and the intersection of the kernels of these
representations is zero. We give a useful characterization of FCR-algebras and
apply this to C*-algebras and to localizations. Moreover, we show that “small”
products and sums of FCR-algebras are again FCR.

1. Introduction

It is well-known that the enveloping algebra 4(g) of a semisimple Lie algebra
g in characteristic zero has the following remarkable properties:

e Every finite dimensional representation of 4/(g) is completely reducible.
e $U(g) is residually finite dimensional, i.e., the intersection of the kernels
of all finite dimensional representations is zero.

The first property is due to WEYL, the second to HARISH-CHANDRA (see
[Dix77], 2.5.7, p. 84).

Question. Are there other algebras satisfying these properties and how do
they look?

We introduced the following notion in [KrS94] in order to study this
question.

Definition. An algebra A over an arbitrary field k is an FCR-algebra if
every finite dimensional representation of A is completely reducible and A
is residually finite-dimensional.

(FCR = “Finite dimensional representations are Completely Reducible”)

At that time the only known examples of FCR~algebras beside the finite di-
mensional semisimple algebras were the enveloping algebras of semisimple
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Lie algebras (in characteristic zero) and the quantum enveloping algebras
4 (g) for g not a root of unity. Since then a number of new examples of FCR-
algebras have been discovered: Invariant algebras of enveloping algebras and
direct summands ([KrS94], [KSW99]), algebras of invariant differential op-
erators ([MvB98], [Sch00]), generalized Weyl algebras and orthosymplectic
Lie superalgebras ([KiS00]).

The aim of this paper is to give a simple, but useful characterization of
FCR-algebras (section 3) and to apply this to C*-algebras (section 3) and
to localizations (section 4). Moreover, we show that “small” direct products
and direct sums (with a unit adjoined) of FCR-algebras are again FCR
(section 2).

Remark 1. The classification of (affine Noetherian) FCR~algebras is an open
problem, even in small dimensions. It is not hard to see that there are no
such algebras in GELFAND-KIRILLOW-dimension (GK-dimension) equal to
1. (In fact, it follows from [SSW85] that any such algebra is PI and from
[Fa87] that a (finitely generated) FCR-PI-algebra is finite dimensional.)

The smallest examples known so far are {(sly) and its invariant subal-
gebras under a finite group of automorphism, all in GK-dimension 3 (see
[KrS94]). We congecture that there are no FCR-algebras in GK-dimension
2. At this time, we can only show that any residually finite homomorphic
image of an enveloping algebra has GK-dimension > 3.

2. Products and sums

Theorem 1. Let (A;)ier be a family of FCR-algebras over a field k. Assume
that the cardinality of k is greater or equal than the cardinality of the index
set I. Then the product [],.; A; is an FCR-algebra.

Theorem 2. Let (4;)icr be a family of FCR-algebras over a field k. Then
the sum k © @, Ai is an FCR-algebra.

(We add a copy of k and define multiplication by (A, a) - (¢, b) = (A, Ab+
pa—+ab) so that we have again a k-algebra with a unit. Clearly, k@D, .; 4; C
[I;c; Ai is a (unital) subalgebra in a natural way.)

icl

It is clear that both algebras are residually finite dimensional, since the
intersection of the kernels of the projection homomorphisms

pr;: A:= HAZ' — Aj
il
and of the homomorphisms
pj: A= k@@Ai — Aj, (\,a) = A+a; and pr: A:= k@@Ai —k
icl il
is zero in both cases. So the main point is to prove that every finite dimen-
sional representation is completely reducible. We will do this by showing
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that for every surjective k-algebra homomorphism A — B where B is a fi-
nite dimensional algebra, there is a finite subproduct []g ... A;, C A which
maps surjectively onto B. This reduces the proof to the following result.

Proposition 1. A finite product of FCR-algebras is FCR.

Proof. This is clear: Every homomorphism H:'L:l A; — B onto a finite di-
mensional algebra B factors through a product [[;_; A;/a; where the alge-
bras A;/a; are finite dimensional and hence semisimple. O

Proof of Theorem 2. Let ¢: A := k ® @,.; A — B be a homomorphism
onto a finite dimensional algebra B. Lifting a k-basis of B to A we see that
there is a finite sum k @® @y, 4i, Which contains all these representatives.
Therefore, p(k ® @g 50 Ai,) = B- As a k-algebra, the sum k @ @y ;0 Ai,
is isomorphic to k x [[q,ie Ai, » hence is FCR by Proposition 1. O

For the proof of the first theorem we need some preparation.

Lemma 1. Let k be a field and consider the product C := [[; k where the
index set I has a cardinality less or equal to the cardinality of k. Then every
k-homomorphism C — B into a finite dimensional k-algebra B factors
through a projection onto a finite product [[; k — [laue k- In particular,
the image of C in B is a finite product k x k X --- X k.

Proof. For any subset J C I we denote by ey the idempotent defined by

o= {1 tied
€j)i =
! 0 ifigdJ

We have to show that the kernel of any k-homomorphism ¢: [[; ¥ — B,
B finite dimensional, contains an idempotent e; where JJ C I is cofinite. In
fact, this means that the kernel contains Ce; = []..; k, hence the homo-
morphism factors through C/Cey =[[;cp ; k-

Because of the assumption we can choose an element a € C such that
all components a; are distinct. The image b := p(a) € B satisfies an
equation Y ._ Ab® = 0 where Ay € k and A\, = 1. The polynomial
p(z) :== Y 0_, Asz® has only finitely many zeros in k. Therefore, p(a;) = 0
for only finitely many ¢ € I. This implies that the support J of the element
p(a) € ker ¢ is cofinite. (The support of an element ¢ € C is defined to be
the subset {i € I | ¢; # 0}.) Therefore, the kernel contains Cp(a) = Ce;
and we are done. O

jeJ

Proof of Theorem 1. Let ¢: [[,c; Ai — B be a surjective homomorphism
onto a finite dimensional k-algebra B. We have [, k C [[;c; Ai in a natural
way. By our Lemma 1 above there is an idempotent e; € ker o N[, k£ with
cofinite J C I. Hence, the homomorphism ¢ factors through a finite product

i€l finite

and we are done by Proposition 1. O
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Remark 2. We do not know if Theorem 1 holds without the assumption on
the cardinality of the field k. However, our argument breaks down as shown
by the following example. Consider the product A := [[F2. The maximal
ideals in this algebra correspond bijectively to the ultrafilters of N. It is
well-known that there are many ultrafilters which are different from the
principal filters (i.e. those filters consisting of all subsets containing a given
element ¢ € N, corresponding to the maximal ideal J[y, (;; F2.). However,
we have A/M = Fy for every maximal ideal M of A.

On the other hand we will see later that every product of matrix rings
over division rings is FCR (section 3, Corollary 1).

3. A characterization of FCR-algebras

Theorem 3. Let A be a k-algebra where k is an arbitrary field. The follow-
ing assertions are equivalent:

(i) Every finite dimensional representation of A is completely reducible.
(ii) For every two-sided ideal I C A of finite codimension we have I? = I.
(iil) If My, My are two-sided mazimal ideals of finite codimension then we

have M1 n M2 = M1M2 = Mng.

(The last statement includes the condition M?* = M for every two-sided
mazimal ideal of finite codimension.)

Proof. (i) = (ii): Let I C A be a two-sided ideal of finite codimension. Then
A/I is a finite dimensional semisimple algebra and I/I? is a semisimple
A/I-module. If T where different from I? then we can find an A-submodule
K/I? C I/I? of finite codimension such that the quotient I /(K + I?) is non-
trivial. If follows that M := A/(I? + K) is finite dimensional. Therefore, we
have an exact sequence

0—1I/K—M— A/l —0

of finite dimensional A-modules. By assumption, these modules are semisim-
ple and thus the sequence splits. Hence M is annihilated by I, and so
I/(I? + K) = IM = 0, in contradiction to the choice of K. Thus we have
I=1%

(ii) = (iil): Put I := My N Ms. Then I has finite codimension and we
obtain I? C MMy N MyM,; C I. Since I? = I by assumption, the claim
follows.

(iii) = (i): Let J C A be a two-sided ideal of finite codimension. We have
to show that the algebra A/J is semisimple. Since A/J is finite dimensional
there are only finitely many two-sided maximal ideals My, Mo, ... , My con-
taining J, and

(Ml ﬂMgﬂmMs)/JC A/J
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is the nilradical of A/J. From the assumption we obtain, by an easy induc-
tion, that

D:=MNMN...N Mg = Ma(l)M0(2) .- ~MU(S)

for any permutation o of {1,2,...,s}. Therefore, D> = D and so the nil-
radical D/I is trivial. O

We will now give an interpretation of statement (iii) in the Theorem above.
Let us first look at an example.

Example 1. Consider the k-algebra B := and the two two-sided max-

k k
00

k k
0 k

imal ideals M, := [ } and My := [8 Z} We find

M1M2 = |: :| = Ml n M2 and MQMl = (0)

00

On the other hand, there is an exact non-split sequence of (left) A-modules
k
0— A/M; — 3 — A/M; — 0

whereas Ext!(A/M,, A/M;) = 0. This is a general fact as seen from the
following lemma.

Lemma 2. Let A be a k-algebra and Py, P, two simple A-modules. Put
M; := Anny P;. Then we have

EXth(P%Pl):O — M1M2:M1 QMQ.

Outline of Proof. Given any exact sequence 0 — P — P — P, — 0 of A-
modules we see that P is annihilated by the product My Ms. So if MM, =
M; N My we obtain a surjective homomorphism A/M; N My = A/M; &
A/Mjy — P which implies that P is semisimple.

On the other hand, every module P annihilated by M;M; admits an
exact sequence 0 — MyP — P — P/MsP — 0. Hence P is an extension
between an A/Ms-module P/M5P and an A/M;-module MsP. So if every
such sequence splits, it follows that P is annihilated by M; N Ms and so
MMy = My N M. O

As an application of Theorem 3 we will show that all finite dimensional
representations of a C*-algebra are completely reducible.

Proposition 2. Let A be a C*-algebra with unit. Then every two-sided ideal
I of finite codimension is closed, *-invariant and satisfies I = I. In partic-
ular, every finite dimensional representation of A is completely reducible.
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Proof. (a) We start with a general remark about ideals in C*-algebras. If
I C A is a closed two-sided ideal then [ is automatically #-invariant by
Proposition 1.8.2 of [Dix64]. It follows that I is generated by hermitian
elements, i.e. those x € I which satisfy * = x. Moreover, every hermitian
x € I can be written in the form x = 27 — 2~ where both 27 and = have
a positive spectrum ([Dix64,7?]) and belong to I. (We regard I itself as a
C*-algebra.) Now we can use Proposition 1.6.1 of [Dix64] and conclude that
x = a? — b? where a,b € I. (In particular, we have I? = I.)

(b) Let M be a two-sided maximal ideal of A. Then M is closed: It’s
closure is again a two-sided ideal and cannot contain the unit element 1 of
A, because every element of the form 1+ z is invertible in A for ||z|| < 1.

Now let M7, M5 be two two-sided maximal ideals in A. Then M; N M,
is closed and therefore generated by elements of the form x = a? — b? where
a,b € M; N My by (a). But this implies that M; N My C M;Ms. Thus
statement (iii) of Theorem 3 is satisfied and the claim follows. O

Let us recall here that a VON NEUMANN regular algebra A is defined to
be a k-algebra which satisfies the following condition: For every element
a € A there is an x € A such that a = azxa (see [La9l] Theorem 4.23).
This implies that I = I? for every (left or right) ideal. Thus we obtain the
following results.

Proposition 3. If A is a VON NEUMANN regular algebra then every finite
dimensional representation of A is completely reducible.

Corollary 1. An arbitrary product A = [[;c; A; of VON NEUMANN reg-
ular algebras A; is again VON NEUMANN reqular and so every finite di-
mensional representation of A is completely reducible. In particular, every
product [[;c; My, (K;) of matriz rings over division rings K; is FCR.

(Ct. section 2, Remark 2)

4. Localization

We add some results about the localization of an FCR-algebra R with re-
spect to a (right) Ore set S C R. (For definitions and basic properties of
non-commutative localization we refer to [La98, Chap. 4]. Since we do not
exclude 0-divisors in .S we always assume that S satisfies the following ad-
ditional condition: If sr = 0 for some s € S and r € R then there is an
s’ € S such that rs’ =0.)

Proposition 4. Let R be an FCR-algebra, S C R be a right Ore set and
Rg the corresponding localization.

(1) Every finite-dimensional representation of Rg is completely reducible.
(2) If J C Rg is a two-sided ideal of finite codimension and I := JN R then

J=1IRs and R/ = Rs/J.
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(3) If S is generated by finitely many normalizing elements (i.e. elements
s satisfying sR = Rs), then Rg is FCR. In this case, the two-sided
mazximal ideals of finite codimension of Rg are of the form M' = M Rg =
RsM where M is a two-sided mazximal ideal of R of finite codimension
which does not contain s.

Proof. Let J C Rg be a two-sided ideal of finite codimension. Then I :=
J N R has finite codimension in R, hence I? = I by assumption. Moreover,
J = IRg and so J2 = (IRg)(IRs) D I?Rs = IRs = J, proving (1) by
Theorem 3. Moreover, R/I C Rs/J and Rs/J = (R/I)g where S is the
image of S in R/I. Now Lemma 3 below shows that R/I — Rg/.J, proving
(2).
For (3) we can assume, by induction, that S = {s* |i =0,1,2,...}. We
already know from (1) that every finite dimensional representation of Rg is
completely reducible. It remains so show that the intersection in Rg of the
maximal two-sided ideals of finite codimension is zero. Put

M :={M C R| M a two-sided maximal ideal of finite codim, s ¢ M }.

For every M € M we have RsM Rs = RsM = M Rg. In fact, given m € M
and i > 0 we have s'm = m/s’ and ms* = s'm/ for suitable m’,m” € R,
because s is normalizing. Since the image of s in R/M is non-zero and
normalizing, we see that s is invertible modulo M and so m’,m” € M.
This implies that ms™* € RgM and s~*m € M Rg which proves the claim.
Moreover, it follows that (R/M)g = R/M where S is the image of S in
R/M, and so R/M — Rs/RsMRy3.

We now claim that (1,2 v RsM = (0). Let a = rs~" be an arbitrary el-
ement in (), RsM. Then 7 € RN((prep BsM) = (Nprenq M. Putting

M’ :={M C R| M a two-sided maximal ideal of finite codim,s € M}

we have, by assumption,

(1 Mn (| M=(0).

MeM MeM’

Since s € (Vyrepmr M we see that rs = 0 for every 7 € ()¢ M. Hence
a=rs""=(rs)s =1 = 0. This completes our proof. t

Lemma 3. Let A be a left or right Artinian algebra and S C A an Ore set.
Then the canonical map A — Ag is surjective.

Proof. This is clear since a non 0-divisor in an Artinian algebra is invertible.
O

Ezample 2. The assumptions of part (3) of Proposition 4 are necessary as
shown be the following examples. Let g be a simple (complex) Lie algebra
and $i(g) its enveloping algebra. If we choose for S the set of all non-zero
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central elements then S consists of normalizing elements, but U(g)s is a
simple ring, hence not FCR.

Putting S = {s° | i = 0,1,2...} where s a nilpotent element of g then
S is an Ore set. (This was first observed by LEPOWSKY and follows from
the fact that ad(s) is locally nilpotent in 4(g).) But i(g)s has no finite
dimensional representation and so $4(g)s is not FCR.
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