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Abstract. An algebra A over a field k is FCR if every finite dimensional repre-
sentation of A is completely reducible and the intersection of the kernels of these
representations is zero. We give a useful characterization of FCR-algebras and
apply this to C∗-algebras and to localizations. Moreover, we show that “small”
products and sums of FCR-algebras are again FCR.

1. Introduction

It is well-known that the enveloping algebra U(g) of a semisimple Lie algebra
g in characteristic zero has the following remarkable properties:

• Every finite dimensional representation of U(g) is completely reducible.
• U(g) is residually finite dimensional, i.e., the intersection of the kernels

of all finite dimensional representations is zero.

The first property is due to Weyl, the second to Harish-Chandra (see
[Dix77], 2.5.7, p. 84).

Question. Are there other algebras satisfying these properties and how do
they look?

We introduced the following notion in [KrS94] in order to study this
question.

Definition. An algebra A over an arbitrary field k is an FCR-algebra if
every finite dimensional representation of A is completely reducible and A
is residually finite-dimensional.
(FCR = “Finite dimensional representations are Completely Reducible”)

At that time the only known examples of FCR-algebras beside the finite di-
mensional semisimple algebras were the enveloping algebras of semisimple
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Lie algebras (in characteristic zero) and the quantum enveloping algebras
Uq(g) for q not a root of unity. Since then a number of new examples of FCR-
algebras have been discovered: Invariant algebras of enveloping algebras and
direct summands ([KrS94], [KSW99]), algebras of invariant differential op-
erators ([MvB98], [Sch00]), generalized Weyl algebras and orthosymplectic
Lie superalgebras ([KiS00]).

The aim of this paper is to give a simple, but useful characterization of
FCR-algebras (section 3) and to apply this to C∗-algebras (section 3) and
to localizations (section 4). Moreover, we show that “small” direct products
and direct sums (with a unit adjoined) of FCR-algebras are again FCR
(section 2).

Remark 1. The classification of (affine Noetherian) FCR-algebras is an open
problem, even in small dimensions. It is not hard to see that there are no
such algebras in Gelfand-Kirillow-dimension (GK-dimension) equal to
1. (In fact, it follows from [SSW85] that any such algebra is PI and from
[Fa87] that a (finitely generated) FCR-PI-algebra is finite dimensional.)

The smallest examples known so far are U(sl2) and its invariant subal-
gebras under a finite group of automorphism, all in GK-dimension 3 (see
[KrS94]). We conjecture that there are no FCR-algebras in GK-dimension
2. At this time, we can only show that any residually finite homomorphic
image of an enveloping algebra has GK-dimension ≥ 3.

2. Products and sums

Theorem 1. Let (Ai)i∈I be a family of FCR-algebras over a field k. Assume
that the cardinality of k is greater or equal than the cardinality of the index
set I. Then the product

∏
i∈I Ai is an FCR-algebra.

Theorem 2. Let (Ai)i∈I be a family of FCR-algebras over a field k. Then
the sum k ⊕ ⊕

i∈I Ai is an FCR-algebra.

(We add a copy of k and define multiplication by (λ, a) · (µ, b) = (λµ, λb +
µa+ab) so that we have again a k-algebra with a unit. Clearly, k⊕⊕

i∈I Ai ⊂∏
i∈I Ai is a (unital) subalgebra in a natural way.)

It is clear that both algebras are residually finite dimensional, since the
intersection of the kernels of the projection homomorphisms

prj : A :=
∏
i∈I

Ai → Aj

and of the homomorphisms

pj : A := k⊕
⊕
i∈I

Ai → Aj , (λ, a) �→ λ+aj and pr: A := k⊕
⊕
i∈I

Ai → k

is zero in both cases. So the main point is to prove that every finite dimen-
sional representation is completely reducible. We will do this by showing
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that for every surjective k-algebra homomorphism A → B where B is a fi-
nite dimensional algebra, there is a finite subproduct

∏
finite Aiν

⊂ A which
maps surjectively onto B. This reduces the proof to the following result.

Proposition 1. A finite product of FCR-algebras is FCR.

Proof. This is clear: Every homomorphism
∏n

i=1 Ai → B onto a finite di-
mensional algebra B factors through a product

∏n
i=1 Ai/ai where the alge-

bras Ai/ai are finite dimensional and hence semisimple. �

Proof of Theorem 2. Let ϕ : A := k ⊕ ⊕
i∈I Ai → B be a homomorphism

onto a finite dimensional algebra B. Lifting a k-basis of B to A we see that
there is a finite sum k⊕⊕

finite Aiν which contains all these representatives.
Therefore, ϕ(k ⊕ ⊕

finite Aiν
) = B. As a k-algebra, the sum k ⊕ ⊕

finite Aiν

is isomorphic to k × ∏
finite Aiν

, hence is FCR by Proposition 1. �

For the proof of the first theorem we need some preparation.

Lemma 1. Let k be a field and consider the product C :=
∏

I k where the
index set I has a cardinality less or equal to the cardinality of k. Then every
k-homomorphism C → B into a finite dimensional k-algebra B factors
through a projection onto a finite product

∏
I k → ∏

finite k. In particular,
the image of C in B is a finite product k × k × · · · × k.

Proof. For any subset J ⊂ I we denote by eJ the idempotent defined by

(eJ)i =

{
1 if i ∈ J,

0 if i /∈ J.

We have to show that the kernel of any k-homomorphism ϕ :
∏

I k → B,
B finite dimensional, contains an idempotent eJ where J ⊂ I is cofinite. In
fact, this means that the kernel contains CeJ =

∏
j∈J k, hence the homo-

morphism factors through C/CeJ =
∏

i∈I\J k.
Because of the assumption we can choose an element a ∈ C such that

all components ai are distinct. The image b := ϕ(a) ∈ B satisfies an
equation

∑n
s=0 λsb

s = 0 where λs ∈ k and λn = 1. The polynomial
p(x) :=

∑n
s=0 λsx

s has only finitely many zeros in k. Therefore, p(ai) = 0
for only finitely many i ∈ I. This implies that the support J of the element
p(a) ∈ ker ϕ is cofinite. (The support of an element c ∈ C is defined to be
the subset {i ∈ I | ci �= 0}.) Therefore, the kernel contains Cp(a) = CeJ

and we are done. �

Proof of Theorem 1. Let ϕ :
∏

i∈I Ai → B be a surjective homomorphism
onto a finite dimensional k-algebra B. We have

∏
I k ⊂ ∏

i∈I Ai in a natural
way. By our Lemma 1 above there is an idempotent eJ ∈ ker ϕ∩∏

I k with
cofinite J ⊂ I. Hence, the homomorphism ϕ factors through a finite product

ϕ :
∏
i∈I

Ai →
∏
finite

Aiν
→ B

and we are done by Proposition 1. �
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Remark 2. We do not know if Theorem 1 holds without the assumption on
the cardinality of the field k. However, our argument breaks down as shown
by the following example. Consider the product A :=

∏
N

F2. The maximal
ideals in this algebra correspond bijectively to the ultrafilters of N. It is
well-known that there are many ultrafilters which are different from the
principal filters (i.e. those filters consisting of all subsets containing a given
element i ∈ N, corresponding to the maximal ideal

∏
N\{i} F2.). However,

we have A/M = F2 for every maximal ideal M of A.
On the other hand we will see later that every product of matrix rings

over division rings is FCR (section 3, Corollary 1).

3. A characterization of FCR-algebras

Theorem 3. Let A be a k-algebra where k is an arbitrary field. The follow-
ing assertions are equivalent:

(i) Every finite dimensional representation of A is completely reducible.
(ii) For every two-sided ideal I ⊂ A of finite codimension we have I2 = I.
(iii) If M1, M2 are two-sided maximal ideals of finite codimension then we

have M1 ∩ M2 = M1M2 = M2M1.

(The last statement includes the condition M2 = M for every two-sided
maximal ideal of finite codimension.)

Proof. (i) ⇒ (ii): Let I ⊂ A be a two-sided ideal of finite codimension. Then
A/I is a finite dimensional semisimple algebra and I/I2 is a semisimple
A/I-module. If I where different from I2 then we can find an A-submodule
K/I2 ⊂ I/I2 of finite codimension such that the quotient I/(K+I2) is non-
trivial. If follows that M := A/(I2 +K) is finite dimensional. Therefore, we
have an exact sequence

0 → I/K → M → A/I → 0

of finite dimensional A-modules. By assumption, these modules are semisim-
ple and thus the sequence splits. Hence M is annihilated by I, and so
I/(I2 + K) = IM = 0, in contradiction to the choice of K. Thus we have
I = I2.

(ii) ⇒ (iii): Put I := M1 ∩ M2. Then I has finite codimension and we
obtain I2 ⊂ M1M2 ∩ M2M1 ⊂ I. Since I2 = I by assumption, the claim
follows.

(iii) ⇒ (i): Let J ⊂ A be a two-sided ideal of finite codimension. We have
to show that the algebra A/J is semisimple. Since A/J is finite dimensional
there are only finitely many two-sided maximal ideals M1, M2, . . . , Ms con-
taining J , and

(M1 ∩ M2 ∩ . . . ∩ Ms)/J ⊂ A/J
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is the nilradical of A/J . From the assumption we obtain, by an easy induc-
tion, that

D := M1 ∩ M2 ∩ . . . ∩ Ms = Mσ(1)Mσ(2) · · ·Mσ(s)

for any permutation σ of {1, 2, . . . , s}. Therefore, D2 = D and so the nil-
radical D/I is trivial. �

We will now give an interpretation of statement (iii) in the Theorem above.
Let us first look at an example.

Example 1. Consider the k-algebra B :=
[
k k
0 k

]
and the two two-sided max-

imal ideals M1 :=
[
k k
0 0

]
and M2 :=

[
0 k
0 k

]
. We find

M1M2 =
[
0 k
0 0

]
= M1 ∩ M2 and M2M1 = (0)

On the other hand, there is an exact non-split sequence of (left) A-modules

0 → A/M2 →
[
k
k

]
→ A/M1 → 0

whereas Ext1A(A/M2, A/M1) = 0. This is a general fact as seen from the
following lemma.

Lemma 2. Let A be a k-algebra and P1, P2 two simple A-modules. Put
Mi := AnnA Pi. Then we have

Ext1A(P2, P1) = 0 ⇐⇒ M1M2 = M1 ∩ M2.

Outline of Proof. Given any exact sequence 0 → P1 → P → P2 → 0 of A-
modules we see that P is annihilated by the product M1M2. So if M1M2 =
M1 ∩ M2 we obtain a surjective homomorphism A/M1 ∩ M2 = A/M1 ⊕
A/M2 → P which implies that P is semisimple.

On the other hand, every module P annihilated by M1M2 admits an
exact sequence 0 → M2P → P → P/M2P → 0. Hence P is an extension
between an A/M2-module P/M2P and an A/M1-module M2P . So if every
such sequence splits, it follows that P is annihilated by M1 ∩ M2 and so
M1M2 = M1 ∩ M2. �

As an application of Theorem 3 we will show that all finite dimensional
representations of a C∗-algebra are completely reducible.

Proposition 2. Let A be a C∗-algebra with unit. Then every two-sided ideal
I of finite codimension is closed, ∗-invariant and satisfies I2 = I. In partic-
ular, every finite dimensional representation of A is completely reducible.
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Proof. (a) We start with a general remark about ideals in C∗-algebras. If
I ⊂ A is a closed two-sided ideal then I is automatically ∗-invariant by
Proposition 1.8.2 of [Dix64]. It follows that I is generated by hermitian
elements, i.e. those x ∈ I which satisfy x∗ = x. Moreover, every hermitian
x ∈ I can be written in the form x = x+ − x− where both x+ and x− have
a positive spectrum ([Dix64,?]) and belong to I. (We regard I itself as a
C∗-algebra.) Now we can use Proposition 1.6.1 of [Dix64] and conclude that
x = a2 − b2 where a, b ∈ I. (In particular, we have I2 = I.)

(b) Let M be a two-sided maximal ideal of A. Then M is closed: It’s
closure is again a two-sided ideal and cannot contain the unit element 1 of
A, because every element of the form 1 + x is invertible in A for ||x|| < 1.

Now let M1, M2 be two two-sided maximal ideals in A. Then M1 ∩ M2

is closed and therefore generated by elements of the form x = a2 − b2 where
a, b ∈ M1 ∩ M2 by (a). But this implies that M1 ∩ M2 ⊂ M1M2. Thus
statement (iii) of Theorem 3 is satisfied and the claim follows. �

Let us recall here that a von Neumann regular algebra A is defined to
be a k-algebra which satisfies the following condition: For every element
a ∈ A there is an x ∈ A such that a = axa (see [La91] Theorem 4.23).
This implies that I = I2 for every (left or right) ideal. Thus we obtain the
following results.

Proposition 3. If A is a von Neumann regular algebra then every finite
dimensional representation of A is completely reducible.

Corollary 1. An arbitrary product A =
∏

i∈I Ai of von Neumann reg-
ular algebras Ai is again von Neumann regular and so every finite di-
mensional representation of A is completely reducible. In particular, every
product

∏
i∈I Mni(Ki) of matrix rings over division rings Ki is FCR.

(Cf. section 2, Remark 2)

4. Localization

We add some results about the localization of an FCR-algebra R with re-
spect to a (right) Ore set S ⊂ R. (For definitions and basic properties of
non-commutative localization we refer to [La98, Chap. 4]. Since we do not
exclude 0-divisors in S we always assume that S satisfies the following ad-
ditional condition: If sr = 0 for some s ∈ S and r ∈ R then there is an
s′ ∈ S such that rs′ = 0.)

Proposition 4. Let R be an FCR-algebra, S ⊂ R be a right Ore set and
RS the corresponding localization.

(1) Every finite-dimensional representation of RS is completely reducible.
(2) If J ⊂ RS is a two-sided ideal of finite codimension and I := J ∩R then

J = IRS and R/I
�−→ RS/J .
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(3) If S is generated by finitely many normalizing elements (i.e. elements
s satisfying sR = Rs), then RS is FCR. In this case, the two-sided
maximal ideals of finite codimension of RS are of the form M ′ = MRS =
RSM where M is a two-sided maximal ideal of R of finite codimension
which does not contain s.

Proof. Let J ⊂ RS be a two-sided ideal of finite codimension. Then I :=
J ∩ R has finite codimension in R, hence I2 = I by assumption. Moreover,
J = IRS and so J2 = (IRS)(IRS) ⊃ I2RS = IRS = J , proving (1) by
Theorem 3. Moreover, R/I ⊂ RS/J and RS/J = (R/I)S̄ where S̄ is the
image of S in R/I. Now Lemma 3 below shows that R/I

�−→ RS/J , proving
(2).

For (3) we can assume, by induction, that S = {si | i = 0, 1, 2, . . . }. We
already know from (1) that every finite dimensional representation of RS is
completely reducible. It remains so show that the intersection in RS of the
maximal two-sided ideals of finite codimension is zero. Put

M := {M ⊂ R | M a two-sided maximal ideal of finite codim, s /∈ M}.

For every M ∈ M we have RSMRS = RSM = MRS . In fact, given m ∈ M
and i ≥ 0 we have sim = m′si and msi = sim′′ for suitable m′, m′′ ∈ R,
because s is normalizing. Since the image of s in R/M is non-zero and
normalizing, we see that s is invertible modulo M and so m′, m′′ ∈ M .
This implies that ms−i ∈ RSM and s−im ∈ MRS which proves the claim.
Moreover, it follows that (R/M)S̄ = R/M where S̄ is the image of S in
R/M , and so R/M

�−→ RS/RSMRS .
We now claim that

⋂
M∈M RSM = (0). Let a = rs−i be an arbitrary el-

ement in
⋂

M∈M RSM . Then r ∈ R∩ (
⋂

M∈M RSM) =
⋂

M∈M M . Putting

M′ := {M ⊂ R | M a two-sided maximal ideal of finite codim, s ∈ M}

we have, by assumption, ⋂
M∈M

M ∩
⋂

M∈M′

M = (0).

Since s ∈ ⋂
M∈M′ M we see that rs = 0 for every r ∈ ⋂

M∈M M . Hence
a = rs−i = (rs)s−i−1 = 0. This completes our proof. �

Lemma 3. Let A be a left or right Artinian algebra and S ⊂ A an Ore set.
Then the canonical map A → AS is surjective.

Proof. This is clear since a non 0-divisor in an Artinian algebra is invertible.
�

Example 2. The assumptions of part (3) of Proposition 4 are necessary as
shown be the following examples. Let g be a simple (complex) Lie algebra
and U(g) its enveloping algebra. If we choose for S the set of all non-zero
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central elements then S consists of normalizing elements, but U(g)S is a
simple ring, hence not FCR.

Putting S = {si | i = 0, 1, 2 . . . } where s a nilpotent element of g then
S is an Ore set. (This was first observed by Lepowsky and follows from
the fact that ad(s) is locally nilpotent in U(g).) But U(g)S has no finite
dimensional representation and so U(g)S is not FCR.
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