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EQUIVARIANT AFFINE LINE

BUNDLES AND LINEARIZATION

Hanspeter Kraft and Frank Kutzschebauch

Abstract. We show that every algebraic action of a linearly reductive

group on affine n-space Cn which is given by Jonquière automorphisms is
linearizable. Similarly, every holomorphic action of a compact group K

by (holomorphic) Jonquière automorphisms is linearizable. Moreover, any
holomorphic action of K on C2 by overshears is linearizable, too. These

results are based on the fact that equivariant algebraic or holomorphic affine

line bundles over Cn are trivial.

§1. Algebraic affine line bundles

Let G be an algebraic group and let X be a variety with an algebraic
action of G. We assume that the base field k is algebraically closed of
arbitrary characteristic (cf. Remark 3 at the end of §1). Consider the
trivial affine line bundle π:X × A1 → X over X. We want to study the
possible lifts of the G-action to X × A1. Clearly, every character χ of G
defines such a lift:

g(x, z) := (gx, χ(g)·z) for g ∈ G, x ∈ X, z ∈ A1.

We call this a trivial lift (with character χ).

Proposition 1. Assume that G is linearly reductive and that G acts triv-
ially on the invertible regular functions on X. Then every lift of the G-
action is equivalent to a trivial lift.

As usual, we denote by O(X) the (global) regular functions on X and by
O(X)∗ the invertible ones.

Remark 1. The assumption about the action on the invertible functions on
X is always satisfied if O(X)∗ = k∗ or if G is connected (see [KK89, §1,
Proposition 1.3]). However, the assumption is necessary as shown by the
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following example. Let G = Z/2Z act on X := A1 \ {0} by x !→ x−1. Then
the lift to X × A1 given by (x, z) !→ (x−1, xz) is not equivalent to a trivial
lift since the representations on the fibers over the two fixed points 1 and
−1 are not equivalent.

As an easy consequence of Proposition 1 we get the following result.
(The special case where G is a finite cyclic group was proved by Ivanenko
[Iv96].)

Corollary 1. Let G be a linearly reductive group acting algebraically on
affine n-space An by Jonquière automorphisms. Then the action is lin-
earizable, i.e., the image of G in Aut An is conjugate to a subgroup of the
diagonal matrices.

Proof. Recall that the Jonquière subgroup Jn is the following subgroup of
polynomial automorphisms of An:

Jn := {ϕ = (ϕ1,ϕ2, . . . ,ϕn) ∈ Aut A
n | ϕi ∈ k[x1, x2, . . . , xi]

for i = 1, . . . , n}

If the action of G is by automorphisms from Jn then we get induced G-
actions on the subspaces Aj ⊂ An of the first j coordinates, and the corre-
sponding projections

A
n → A

n−1 → A
n−2 → · · · → A

2 → A
1

are G-equivariant. By induction, we can assume that the action is linear
on An−1. Then the claim follows from Proposition 1 applied to the affine
line bundle An → An−1. !
Proof of Proposition 1. The G-action on the bundle X × A1 has the form

g(x, z) = (gx,λg(x)z + µg(x))

where λ and µ are regular functions on G × X satisfying

λgh(x) = λg(hx)·λh(x), λe(x) ≡ 1(a)
µgh(x) = λg(hx)·µh(x) + µg(hx), µe(x) ≡ 0(b)

We first claim that λ does not depend on x ∈ X. Since for any g ∈ G the
function λg(x) is invertible it follows from the assumption that λg(hx) =
λg(x) for all h ∈ G. Thus, by (a), λg(x) is a character of G, for every
x ∈ X. If G is connected then the invertible function λ on G × X has the
form λg(x) = χ(g) ·f(x) where χ ∈ O(G) and f ∈ O(X) (see [KK89, §1
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Proposition 1.1]). Since λe(x) ≡ 1 we see that f is a constant and so λ
is independent of x ∈ X. In general, we have gn ∈ G0 for some n ∈ N.
Hence, λg(x)n = λgn(x) is independent of x, and the claim follows.

It is clear now that the action on X × A1 is equivalent to a trivial lift
(with character λ) if and only if the bundle π:X × A1 → X has a G-
equivariant section s: X → X × A1, x !→ (x,σ(x)). This means that the
regular function σ ∈ O(X) satisfies

(c) σ(gx) = λg ·σ(x) + µg(x) for g ∈ G, x ∈ X.

Now we consider the following locally finite G-representation on O(X):

g ∗ f(x) := λg ·f(g−1x) for g ∈ G, x ∈ X.

(This is the regular representation on O(X) multiplied with the character
λ.) Define ρ ∈ O(G × X) by

ρg(x) = λg ·µg−1(x)

and consider it as a map G → O(X). Then equation (b) becomes

(b′) ρgh = ρg + g ∗ ρh

i.e., ρ:G → O(X) is an “algebraic” cocycle. (A map η:Y → O(Z) where
Y, Z are algebraic varieties is called algebraic if the corresponding function
η(y, z) := η(y)(z) on Y × Z is regular.) Moreover, the third equation (c)
becomes

(c′) ρg = g ∗ σ − σ.

This means that the lift is equivalent to a trivial lift if and only if ρ is a
coboundary. But it is well known that for a linearly reductive group G every
algebraic cocycle with values in a (locally finite and rational) representation
is a coboundary:

H1
alg(G, M) = 0 for every G-module M.

(We will give a short argument for this claim in Remark 2 below.) This
proves our result. !
Remark 2. The proof above shows that for a given G-variety X all lifts of
the G-action to X ×A1 are equivalent to trivial lifts if and only if we have
H1

alg(G,O(X) ⊗ χ) = 0 for every characters χ of G. On the other hand,
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putting X = G it is obvious that every affine G-bundle π:G×A1 → G has
a G-equivariant section. Hence we get

(d) H1
alg(G,O(G) ⊗ χ) = 0

for every algebraic group G and every character χ. If G is linearly reductive
then O(G) contains every irreducible (rational) representation of G as a
direct summand and so H1

alg(G, M) = 0 for every G-module M .

Remark 3. It is clear from the proofs above that Proposition 1 and its
Corollary 1 hold for an arbitrary ground field k, i.e., if everything is defined
over k.

§2 Holomorphic affine bundles

In the following paragraphs we are working over the base field C of
complex numbers. Let G be a complex reductive group and K ⊂ G a
maximal compact subgroup. The first result is analogous to Proposition 1
of the previous paragraph. Let X be a Stein G-space and let π:E → X be
a holomorphic affine bundle over X, i.e., the fibers of E are isomorphic to
Cn for some n and the structure group is the affine group Aff(Cn). The
following result is an easy consequence of the equivariant version of Oka’s
principle in [HK95]. It generalizes Theorem 1.2 in [AR95].

Proposition 2. Assume that X is (continuously) K-equivariantly retra-
ctable to a K-fixed point x0 ∈ X. Then every lift of the G-action to E
is holomorphically equivalent to a trivial lift, i.e., the bundle is trivial and
the action on the fiber is given by a fixed representation τ :G → Aff(Cn)
independent of the base point.

Proof. We shortly indicate how to get the result from [HK95]. Let τ : G →
Aff(Cn) be the representation given by the G-action on the fiber Ex0 of E
over the fixed point x0 and denote by E0 the G-product bundle X × Cn

with respect to τ , i.e., the G-action on E0 is diagonal and on the second
factor given by the representation τ . Now consider the G-bundle Iso(E0, E)
([HK95, p. 340]). Using an equivariant version of the Covering Homotopy
Theorem together with the fact that X is K-equivariantly retractable to a
point one shows that Iso(E0, E) admits a topological K-equivariant section
(see [HK95, §12, Corollary 1, Remark]). Then the Homotopy Theorem in
loc. cit. §11 gives a holomorphic G-equivariant section of Iso(E0, E) which
implies that E0 and E are holomorphically G-equivariantly isomorphic.

!
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Let us denote by Jhol
n the holomorphic Jonquière group:

Jhol
n := {ϕ = (ϕ1,ϕ2, . . . ,ϕn) ∈ Authol(Cn) | ϕi = ϕi(z1, . . . , zi)

for i = 1, . . . , n}
where Authol(Cn) is the group of holomorphic automorphisms of Cn. Using
Proposition 2 above we can carry over the linearization result of §1 (Corol-
lary 1) to the holomorphic setting. In fact, the same proof works here, too.
But in order to get the result also for compact groups (and not only for
reductive groups) we have to use a result concerning the following problem:

Extension problem. Given a holomorphic action of a compact group K
on Cn, does it extend to a holomorphic action of the universal complexifi-
cation G = KC?

For Jonquière-type actions it has a positive answer.

Lemma 1. Every action of a compact group K on Cn by Jonquière auto-
morphisms extends to an action of the universal complexification G = KC

by Jonquière automorphisms.

Proof. By induction, we can view Cn as an affine line bundle over Cn−1 on
which K acts by bundle isomorphisms and assume that the claim holds for
the action on Cn−1. Now we can apply the following result due to Heinzner
and Ianuzzi (see [HI96, §8 Theorem]):

A holomorphic principal K-bundle P
π−→ X with complex structure

group S extends to a holomorphic principal KC-bundle P " π−→ X".

We use this theorem in the case where X = X" = Cn−1, S = Aff(C) and
P is the corresponding (trivial) principal bundle Cn−1 × Aff(C) → Cn−1.
Thus the K-action on the line bundle P also extends to a KC-action by
bundle isomorphisms, and the claim follows. !
Corollary 2. Every action of a compact group K or a complex reductive
group G on Cn by holomorphic Jonquière automorphisms is linearizable.

§3. Holomorphic actions by overshears

In case of dimension 2 we can prove more. Denote by Shn the so-called
group of overshears. (This notion is introduced in [RR88].) This is the
subgroup of Authol(Cn) generated by affine automorphisms and automor-
phisms of the form

(z1, . . . , zn) !→ (a(z2, . . . , zn)z1 + b(z2, . . . , zn), z2, . . . , zn)

where a, b are arbitrary holomorphic functions on Cn and a is invertible.
Clearly, Shn contains the holomorphic Jonquière subgroup Jhol

n .
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Proposition 3. Every holomorphic action of K (or G) on C2 by overs-
hears is linearizable, i.e., the image of K (or G) in Sh2 is conjugate to a
subgroup of GL2(C).

Remark 4. The group of overshears is dense in the holomorphic automor-
phism group with respect to the compact-open topology, but it is a proper
subgroup of the holomorphic automorphism group ([AL92]). Clearly, com-
pact-open topology is not the right topology for such global questions like
linearization. At the end of the paper we will describe an example of a
holomorphic automorphism of C2 which is not contained in the group of
overshears (cf. loc. cit.).

The proof of the proposition above is based on the following structure
theorem due to Ahern and Rudin (see [AR95, Theorem 1.4]).

Theorem. The group Sh2 of overshears on C2 is a free amalgamated prod-
uct of the affine group Aff(C2) and the holomorphic Jonquière group Jhol

2

over their intersection.

Proof of Proposition 3. By assumption, the action of K is given by a ho-
momorphism K → Sh2. The theorem above together with the following
Lemma 2 implies that the image of K is conjugate to a subgroup of Aff(C2)
or of Jhol

2 . In the first case it is well-known that every compact subgroup
of Aff(C2) is conjugate to a subgroup of GL2(C). In the second case we
can apply Corollary 2. The case of a holomorphic action of G is clear since
G is the universal complexification of any maximal compact subgroup K.

!
Lemma 2. Let G be a topological group which is a free amalgamated prod-
uct of two closed subgroups A, B ⊂ G over their intersection A ∩ B. Then
every compact subgroup K of G can be conjugated into one of the two fac-
tors.

Proof. We use the following two facts about amalgamated products:
(a) If an element g ∈ G has roots of arbitrary degree then g can be

conjugated into one of the two factors. (This is easy to prove.)
(b) A subgroup H of G of bounded length (i.e. there is an N ∈ N such

that the length of every element h ∈ H in the product representa-
tion is ≤ N) can be conjugated into one of the two factors (Serre
[Se80, I.4.3 Theorem 8]).

We will show that K is of bounded length which implies the claim by fact
(b) above.
(1) First suppose that K is a compact torus T = (S1)k. Let t ∈ T be a
regular element which means that the subgroup {tn | n ∈ Z} is dense in
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K. Since t has roots of arbitrary degree it can be conjugated into one of
the two factors: gtg−1 ∈ A or B for some g ∈ G, by fact (a) above. Since t
is regular and the factors are closed in G we get gTg−1 ⊂ A or B. Hence,
the length of each element in the torus is at most 2 × length(g) + 1.
(2) Next we suppose K to be connected. One can find finitely many com-
pact subtori T1, T2, . . . , Tn ⊂ K (not necessary mutually disjoint) in K
such that the product map T1 × T2 × · · · × Tn → K is surjective. In fact,
choose tori T1, T2, . . . , Tk ⊂ K such that their Lie algebras span the Lie
algebra of K as a vector space. Then the differential of the product map
at the identity e ∈ K has maximal rank. Hence, the image of the map
contains some neighborhood V of e ∈ K. It is well-known that V generates
K, hence K =

⋃∞
i=1 V i. Since K is compact we have K = V m for some

m ∈ N and so the product map

(T1 × T2 × · · ·× Tk) × (T1 × T2 × · · ·× Tk) × · · ·× (T1 × · · ·× Tk)
︸ ︷︷ ︸

k×m factors

→ K

is surjective. Since, by (1), the elements in the tori Ti have bounded length
the same holds for K.
(3) For the general case we remark that a compact group has only finitely
many connected components and that each element in a component can be
written as a product of a fixed element in that component with an element
of the identity component. !
Remark 5. In the algebraic setting one knows that Aut(C2) is the free
amalgamated product of Aff(C2) and J2 over their intersection (Theorem
of van der Kulk [vdK53], cf. [Kr89, §1]). It was shown by Wright in [Wr79]
that for an algebraic action of a linear algebraic group G on C2 the image
of G in Aut(C2) is of bounded length, hence conjugate to a subgroup of
Aff(C2) or of J2 by Serre’s result (see fact (b) of the proof above). An
alternate proof of this can be obtained along the lines of the proof above,
since every connected linear algebraic group is generated by finitely many
subgroups of the form C∗(= GL1(C)) and C+, and both groups contain
elements t which generate a Zariski-dense subgroup and admit roots of
arbitrary degree.

Finally, we mention that Proposition 3 includes a result concerning the
Extension Problem (§2):

Corollary 3. Every action of a compact group K on C2 by overshears ex-
tends to an action of the universal complexification G = KC by overshears.

The following example is due to Andersen-Lempert [AL92]. We give a
short proof based on our considerations above.
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Example. The holomorphic automorphism ϕ(z, w) = (zezw, we−zw) of C2

is not contained in Sh2.

Proof. Suppose that all the roots ϕn(z, w) = (ze
1
n zw, we−

1
n zw) of ϕ are con-

tained in Sh2. Then, by fact (a) in the proof of Lemma 2 the automorphism
ϕ is conjugated to an automorphism in Aff(C2) or to an automorphism in
Jhol

2 . Clearly, the fixed point set of an affine automorphism is connected,
and it is not difficult to see that the fixed point set of an automorphism in
Jhol

2 is either connected or consists of (countably many) copies of C. On the
other hand the fixed point set of ϕ consists of copies of C∗ together with
the coordinate axes. This contradiction shows that one of the roots ϕn is
not contained in Sh2. Since ϕ and ϕn are conjugated by a linear map the
claim follows. !

Note added in Proof: The second author and Harm Derksen have re-
cently shown that there exist non-linearizable holomorphic actions of C∗

on affine 4-space C4. The details will appear elsewhere.
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