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ABSTRACT

MicroRNAs (miRNAs) are short RNAs that act as
guides for the degradation and translational repres-
sion of protein-coding mRNAs. A large body of work
showed that miRNAs are involved in the regulation
of a broad range of biological functions, from devel-
opment to cardiac and immune system function,
to metabolism, to cancer. For most of the over
500 miRNAs that are encoded in the human
genome the functions still remain to be uncovered.
Identifying miRNAs whose expression changes
between cell types or between normal and patho-
logical conditions is an important step towards
characterizing their function as is the prediction of
mRNAs that could be targeted by these miRNAs. To
provide the community the possibility of exploring
interactively miRNA expression patterns and the
candidate targets of miRNAs in an integrated envi-
ronment, we developed the MirZ web server, which
is accessible at www.mirz.unibas.ch. The server
provides experimental and computational biologists
with statistical analysis and data mining tools oper-
ating on up-to-date databases of sequencing-based
miRNA expression profiles and of predicted miRNA
target sites in species ranging from Caenorhabditis
elegans to Homo sapiens.

INTRODUCTION

MicroRNAs (miRNAs) are a continuously growing class
of small RNAs that act as guides in the translational
silencing and degradation of target mRNAs (1). Many
miRNAs are conserved over large evolutionary distances
such as between human and worm (2). Fundamental bio-
logical processes such as development (3–6), metabolism
(7–9), cardiac (10) and immune system function (11) have

been shown to be regulated by miRNAs, and aberrant
miRNA expression has been associated with cancers
(12,13).

There are various approaches to miRNA expression
profiling, one of which is small RNA sequencing.
Classical cloning and sequencing of size-separated small
RNAs have been used to generate a large atlas of miRNA
expression profiles (14), and this approach can be scaled
up considerably through deep sequencing technologies
(15). Microarray-based expression profiling is also a pop-
ular approach, which has been used for instance to char-
acterize the miRNA expression cancer samples (12). In
contrast to sequencing, microarray-based profiling does
not allow identification of novel miRNAs.

Numerous approaches have also been proposed for
miRNA target prediction. Because the 50-end of
miRNAs (known as ‘seed’) appears to be important for
target recognition, a number of tools focus on the evolu-
tionary conservation of miRNA seed-complementary
regions in 30-UTRs (16–19). Other approaches emphasize
the energy of hybridization between miRNA and target
(20–22), the expected anti-correlation between the expres-
sion level of miRNAs and their mRNA targets (23,24), the
properties of the environment of the miRNA target site
(25,26) or combine various features of the miRNA target
site itself (27,28).

Studies in both native expression (29) as well as trans-
fection-induced miRNA overexpression situations (30,31)
indicate that within a given tissue, the miRNAs that
are most strongly expressed have the largest impact
on mRNA targets. For this reason, deciphering the
miRNA-dependent post-transcriptional regulatory layer
in a given tissue or cell type needs to start from the
miRNA expression profile of that tissue or cell type.
Conversely, it is very common that one identifies differ-
ences in miRNA expression between cells at various stages
of differentiation or between normal and malignant cells,
and the natural question is what mRNAs are most likely
to be affected by the change in miRNA expression.
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To address these types of questions, we developed MirZ
(www.mirz.unibas.ch), a web service that integrates two
resources that we developed in the context of previous
research projects: the smiRNAdb miRNA expression
atlas (14), and the ElMMo miRNA target prediction algo-
rithm (18).

MATERIALS AND METHODS

The smiRNAdb miRNA expression atlas

smiRNAdb (14) is a unique, web-accessible and widely
used resource of miRNA profiles determined by sequenc-
ing from hundreds of Homo sapiens, Mus musculus and
Rattus norvegicus samples. The web interface of
smiRNAdb features an extended repertoire of on-line
analyses such as visualization and hierarchical clustering
of miRNA expression profiles, principal component ana-
lysis, comparison of miRNA expression between two (sets
of) samples with the aim of identifying the miRNAs whose
expression differs most between the samples. We used the
Brenda tissue ontology (32,33) as a guide in organizing the
samples such that the user can readily identify related cell
lineages or normal and pathological samples derived from
a given tissue type. Our tissue hierarchy has four levels:
the organ/system (e.g. hematopoietic system), subsystem
(e.g. lymphoid lineage), cell type (e.g. B cell) and further
cell type classification (e.g. B lymphocyte). MiRNAs
themselves can be analyzed independently, grouped by
their 2–7 subsequence, or grouped in precursor clusters.
Two miRNAs are placed in the same precursor cluster if
their loci are within 50 kb of each other in the genome, or
if they share a mature form.

As an example, one may be interested in comparing
miRNA expression between effector and naive human
CD4+ T lymphocytes. SmiRNAdb features a ‘Sample
comparison’ tool, which was specifically designed for the
pairwise comparison of miRNA (sets of) samples. The
user would select to compare the sample named ‘hsa_T-
cell-CD4-effector’ to the sample named ‘hsa_T-cell-
CD4-naive’. Because the naive CD4+ T cell sample and
the effector CD4+ T cell sample differ widely in the total
number of sequenced miRNAs (1374 versus 89), the pre-
cision of the miRNA frequency estimates in the two sam-
ples will also be very different. This situation is common in
sequencing-based datasets making the identification of
miRNAs whose expression is significantly different a
non-trivial problem. At the heart of the tools offered by
smiRNAdb, however, is a Bayesian model for computing
the posterior probability that the frequency of a miRNA in
the total miRNA population differs between two (sets of)
samples. We compute this probability assuming a bino-
mial sampling model and integrating over the unknown
miRNA frequencies in the samples. This approach—
described in details in Berninger et al. (34)—takes into
account both the variability between sample sizes and
the absolute miRNA counts.

Figure 1 shows the results of comparing the miRNA
expression profiles of naive versus effector CD4+ cells.
The names and sizes of the samples being compared are
shown at the top of the page, followed by the log-likelihood

ratio log(Psame/Pdiff) of two models, one which assumes
that the frequencies of miRNAs are the same and one
that assumes that they can be different between the sam-
ples. The log-likelihood ratio takes positive values
when the miRNA frequencies are similar and negative
values when they are different. In this case, the log-
likelihood ratio is positive, indicating that overall, the
frequencies of miRNAs in these samples are more likely
to have been the same. The list of miRNAs ranked from
most dissimilar to most similar expression follows. Each
row contains the name of an miRNA, the direction of
regulation (up or down), the cloning counts and frequen-
cies in both samples and provides a direct link to the
predicted targets of the miRNA. The model indicates that
with a 18% versus 54% cloning frequency, and despite
the small size of the effector CD4+ T-cell sample, miR-
142-5p is very likely to be downregulated in effector
cells. Again, this can be inferred from the negative
value of log(Psame/Pdiff) for miR-142-5p. From this page,
the user can select one or several miRNAs that came
out differentially expressed and can browse the list of pre-
dicted targets (Figure 2). In the case of miR-142-5p, the top
10 predicted targets include four transcription factors
(AFF4, ONECUT2, ZFPM2 and ZNF148), and a kinase
(PRPF4B) involved in pre-RNA splicing. These genes
could provide a starting point for experimental studies on
the function of miR-142-5p in T lymphocytes.
Since the original release of smiRNAdb, we have imple-

mented an additional tool for performing principal com-
ponent analysis on the miRNA expression profiles, we
added more possibilities for the user to download
miRNA profile data for further processing and we started
to incorporate other publicly available small RNA
sequencing datasets from Danio rerio, Drosophila melano-
gaster and Caenorhabditis elegans. We reimplemented the
software that was originally written in Perl CGI to use
Java Server Faces technology and Apache/Tomcat. The
computations are now performed on a computing cluster,
with job distribution managed by the Sun Grid Engine
queuing system. Finally, we enhanced the result screens
of our on-line analysis tools with hyperlinks that directly
take the user to the miRNA target predictions within
the context of the smiRNAdb query, i.e. preserving the
selected organism, miRNAs and tissue (if available).
Refer to the web connectivity map in the Supplementary
Material for an overview of the new links between
smiRNAdb and ElMMo, as well as of the external
ressources that we use in performing various analyses.

The ElMMo miRNA target prediction algorithm based
on comparative genomic analysis

To be able to address the question of what mRNA is most
likely affected by the change in expression of a miRNA,
we coupled smiRNAdb to a PHP-based web interface to
the ElMMo miRNA target predictions (18).
Returning to the example of the hsa-miR-142-5p

miRNA that was highlighted in ‘The smiRNAdb miRNA
expression atlas’ section, the web interface allows aside
from browsing the predicted targets, a number of other
queries. For instance, given an organism (H. sapiens in
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this example), the user can choose to scan for predicted
miRNA target sites not only the default set of transcripts,
which is all known RefSeq (35) mRNAs in the chosen
organism, but also subsets of transcripts. The SymAtlas
project (36) of the Genomics Institute of the Novartis
Research Foundation (GNF) generated microarray-based
mRNA expression profiles for a wide range of tissues.
These profiles are incorporated in MirZ, giving the user
the possibility to restrict target prediction to mRNAs that
are expressed in a given cell type. The web interface further
allows to scan an arbitrary number of mRNAs for up to 20
miRNAs simultaneously. Alternatively, the user can limit
the number of mRNAs to scan to 20 mRNAs and then
retrieve predicted target sites in these mRNAs for an arbi-
trary number of miRNAs.
MiRNAs exert their effector function through ribonu-

cleoprotein complexes (miRNP) that contain, aside from
the guiding miRNA a member of the Argonaute family of
proteins. The determinants of productive miRNA–target
site interactions are not entirely known, but a large body
of work (16,37–41) established that perfect complementar-
ity of the 7–8 ns from the 50-end of the miRNA—the
so-called miRNA ‘seed’—is critical for target recognition.
Although miRNA target sites that do not satisfy this con-
straint have been described, at the genome-wide level the

accuracy of predicting such sites is low (16,18). Other than
perfect seed complementarity, the location of the putative
target site within the 30-UTR (18,25,42), structural acces-
sibility (21,22,43), the nucleotide composition in its vicin-
ity (25,26) and the complementarity of specific positions in
the miRNA 30-end to the target site (25) have all been
reported to improve the accuracy of miRNA target pre-
diction, yet the relative importance of these features
remains unknown. The ElMMo miRNA target prediction
method that we developed is based on a Bayesian model
that only uses comparative genomics information. Yet it
has as high an accuracy as other widely used target pre-
diction programs that incorporate additional constraints,
and measures of predictive performance on a set of exper-
imentally validated miRNA targets in D. melanogaster
can be found in the article describing the ElMMo
method (18). Importantly, our model does not have any
free parameters, and can easily accommodate additional
species whose genome sequence becomes available.

Going back to our example, Figure 2 shows the ElMMo
predictions for miR-142-5p inH. sapiens. This result screen
is organized in two sections: (i) a miRNA-centric summary
featuring per-miRNA target prediction statistics and a
figure showing the smiRNAdb tissues where the selected
miRNAs are mostly expressed, and (ii) a mRNA-centric

Figure 1. Screenshot of the web page showing the result from comparing miRNA expression of human CD4+ effector T cells with the CD4+ naive T
cells. Details are provided in the text.
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summary that ranks all mRNAs predicted to be targeted
by the selected miRNAs. In this later section, mRNAs are
ordered by decreasing expected number of miRNA target
sites under selective pressure, defined as the sum of all
target site posterior probabilities for the selected
miRNAs. The location of the putative target sites in the
30-UTR is also indicated.

From the result screen, the user has the possibility to
zoom onto a specific transcript to visualize the multiple
genome alignments in the regions of the predicted target
sites, and to find additional information about the tar-
geted mRNAs from the Genbank database of the
National Center for Biomedical Information (NCBI).
Our web service also offers the possibility to run a Gene
Ontology (GO) analysis searching for GO terms that are
significantly over- or under-represented in the predicted
miRNA targets through a modified version of the
GeneMerge software (44). For instance, in the case of
miR-142-5p, the most significantly enriched Biological
Process GO term is ‘regulation of transcription, DNA-
dependent’ (hypergeometric P-value <10�10, after
Bonferroni multiple testing correction), followed by two
‘muscarinic acetylcholine receptor’-associated GO terms
(P< 10�10). The muscarinic acetylcholine receptor has
been shown to be involved in autocrine control of cell
proliferation, including the proliferation of immune cells
(45). This type of analyses could thus provide experimen-
tal scientists with clues to the function of miR-142-5p in
the naive CD4+ T cells.

The current release of ElMMo features miRNA target
predictions for H. sapiens, M. musculus, R. norvegicus,
D. rerio, C. elegans and D. melanogaster. Of these, the
M. musculus and R. norvegicus predictions were not pres-
ent in our initial publication (18). Furthermore, for the
remaining organisms, the current predictions are based
on the genome sequences of a larger set of species, because
more fully sequenced genomes became available since
2007. We further based our predictions on the most
recent mRNA sequences and 30-UTR annotations pro-
vided by the RefSeq database (35). Concerning the micro-
array profiles that the user can use to guide miRNA target
discovery in specific tissues and aside from the H. sapiens
profiles that were used in our original ElMMo release
(18), we incorporated similar mRNA expression profiles
for M. musculus and R. norvegicus. Finally, the ElMMo
web interface now informs the user about the smiRNAdb
samples in which the selected miRNAs are most strongly
expressed.

Experimental data

The miRNA sequences that were used for miRNA sample
annotation and for miRNA target prediction were
obtained from the miRBase release 12.0 (46). For the
miRNA profiles, MirZ includes a total of 297 samples:
173 for H. sapiens (14), 88 for M. musculus (14), 16 for
R. norvegicus (14), 10 for D. melanogaster (47), 9 for
D. rerio (48) and 1 for C. elegans (49).

Figure 2. Screenshot of the web page showing the ElMMo miRNA target predictions for miR-142-5p in all H. sapiens RefSeq mRNAs. The target
predictions results are organized in two sections. The first section—located on the upper part of the web page—is miRNA-centric and features
miRNA target predictions statistics as well as a figure showing the smiRNAdb tissues where the miRNA is mostly expressed. The second,
mRNA-centric section is located on the lower part of the web page and provides a ranked list of mRNA predicted to be targeted by miR-142-5p.
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For miRNA target predictions, we used the most recent
genome assemblies available at the University of
California Santa Cruz (UCSC) (50): hg18 for H. sapiens,
mm9 for M. musculus, rn4 for R. norvegicus, danRer5 for
D. rerio, ce6 for C. elegans and dm3 for D. melanogaster.
We further used the following UCSC genome assemblies
in the pairwise genome alignments: panTro2, rheMac2,
mm9, rn4, canFam2, monDom4, bosTau4 and galGal3
for H. sapiens; panTro2, rheMac2, hg18, rn4, canFam2,
monDom4, bosTau4 and galGal3 for M. musculus;
panTro2, rheMac2, hg18, mm9, canFam2, monDom4,
bosTau3 and galGal3 for R. norvegicus; tetNig1, fr2 and
oryLat2 for D. rerio; caeJap1, caePb2, caeRem3, cb3 and
priPac1 for C. elegans; and dp4, droAna3, droEre2,
droGri2, droMoj3, droPer1, droSec1, droSim1, droVir3,
droWil1 and droYak2 for D. melanogaster. mRNAs for all
organisms were downloaded from the RefSeq database on
21 January 2009.
The links between sequence entities in various databases

were made by mapping them all to the Gene database
of NCBI (35). MiRNA expression profiles, microarray
mRNA profiles and miRNA target predictions are
stored as relational databases managed by a PostgreSQL
server (www.postgresql.org).

CONCLUSION AND FUTURE DIRECTIONS

Using a concrete example comparing effector to naive
CD4+ T-cells, we showed how MirZ can help isolating
miRNAs that may be involved in a given biological func-
tion, and then provide clues into which molecular path-
ways may be controlled by these miRNAs to achieve their
biological function. The integration of miRNA expression
profiles with genome-wide miRNA target prediction com-
bined with the tools we implemented—a Bayesian model
for sample comparison, multivariate exploratory statistics,
GO-term enrichment analysis—makes MirZ a powerful
tool for studying miRNA-based regulation.
Since its publication, the miRNA expression atlas has

been a valuable resource to the research community,
and with the more general availability of deep sequencing
technologies, more miRNA expression datasets are
expected to emerge. Being able to explore and compare
these datasets in a unified framework is highly desirable,
and we plan to further support such analyses by updating
MirZ as new datasets become available. Particularly for
D. melanogaster, we currently only incorporate small-sized
samples, and for C. elegans a whole-worm sample.
The target prediction methods also continue to evolve.

In particular, additional determinants of miRNA target-
ing specificity must exist because not all transcripts that
contain miRNA seed matches respond in a given
experiment, but what these determinants are is still an
open question (25,26). If a significantly better target
prediction method emerges, this could be incorporated
in our server.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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8. Poy,M.N., Eliasson,L., Krützfeldt,J., Kuwajima,S., Ma,X.,
Macdonald,P.E., Pfeffer,S., Tuschl,T., Rajewsky,N., Rorsman,P.
et al. (2004) A pancreatic islet–specific microRNA regulates insulin
secretion. Nature, 432, 226–230.
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