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Summary

Cancer has been one of the most serious diseases and according to the world health organiza-
tion (WHO) the total number of deaths due to cancer (7.6 million worldwide) will globally in-
crease in future to 13.1 million deaths. Tumor-growth is strongly related to the neo-formation
of blood vessels (angiogenesis), since the vessels provide the cancerous tissue with the neces-
sary nutrients and oxygen. For this reason in this study 3D high resolution visualization and
parametrization of tumor vessels down to capillary size was carried out. 3D datasets were
acquired using synchrotron radiation-based micro computed tomography (SRµCT) which pro-
vided sufficient spatial resolution to make also the smallest vessels down to 4 µm visible. The
contrast in the image is defined by the degree of X-ray attenuation/absorption in the spec-
imen. Because absorption coefficients did not differ significantly between different kinds of
soft biological tissue, contrast enhancement of the specimens was needed to obtain sufficient
contrast in the tomograms. Contrast enhancement was done either by blood vessel staining
using a contrast agent (see Chapter 2) or by generating corrosion casts of the vessels (see
Chapters 2 and 4). Alternatively, phase contrast based SRµCT was used which allowed the
vessel tree visualization without any contrast enhancement (see Chapters 3 and 4). This
technique measures the phase shift of the photon beam induced by a tumor. The sensitivity
was shown to be 25 times higher in comparison to the absorption contrast based data.
By staining the tumor vascularization as seen in Chapter 2, characteristics of the tumor vessel
morphology could be revealed. According to the vessel shape and the vessel density it was
possible to identify the interface between the tumor and the healthy tissue. Vessels in can-
cerous tissue appeared strongly twisted. Additionally, several regions were found in tumors
where the contrast agent leaked out from the cancerous vessels presumably due to damages
of the vessel walls within the cancerous tissue. Vessel-free regions could be observed which
gave evidence of necrosis in the tumor.
Most of the tumors exceeded the field of view, i.e. they do not fit the image of the camera,
when using high resolution optics to reveal the smallest vessels in the 3D dataset. Local
tomography of a tumor cast was carried out to allow high resolution imaging of a region of
interest. Because of the interest in the morphology of the whole tumor the local tomography
data was compared to the less resolution global SRµCT data. It was shown that the absorp-
tion coefficients in the locally acquired data differed significantly from the ones of the global
datasets. These differences are caused most probably by the non-locality in the filtered back-
projection calculation which is needed to generate tomograms out of the radiographs. These
non-locality artifacts caused the absorption coefficients in the tomographic slices to shift to
higher values for increasing distances of the pixels to the rotation center. For this reason this
effect is also called ’cupping artifact’. Additionally the high resolution images were affected
by edge enhancement due to the coherence of the X-ray beam which caused the peaks in the
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image histogram to appear more broadened.
One correction method, de-cupping method, empirically post-corrected the cupping artifacts
in the local tomograms using the global data as reference. In another correction method the
origination of these artifacts was prevented by extending the local sinograms using the less
detailed global ones. Mathematically a sinogram is the radon transform of a tomographic
slice [1]. It can easily be constructed using the corresponding radiographs acquired at dif-
ferent rotation aFngles. While the sinogram extension method proved better correction of
the total µ-shift (90%), the de-cupping method was more suitable to correct the histogram
broadening (78%). By matching the global and local histograms in the projections the peak
broadening caused by edge enhancement could be reduced by 41%.
An alternative method to measure the blood vessels using SRµCT is based on the measure-
ment of the X-Ray phase shift instead of the X-ray absorption when transmitting through
the specimen. The quality of two such phase contrast based SRµCT methods (grating and
propagation-based) was analyzed in Chapter 4, using the contrast-to-noise-ratio, the spatial
resolution and the presence of artifacts. For the measured tumor tissue the holotomography
technique provided better spatial resolution (SR = 8 µm) in comparison to the grating in-
terferometry (SR = 24 µm). The contrast to noise ratio however is much better in grating
interferometry (CNR = 57) than in holotomography (CNR = 11).
For further studies the data obtained by holotomography was used, as it provided the visu-
alization of the smallest vessels despite the reduced contrast. Together with the absorption
contrast based vessel cast of healthy and cancerous tissue the tumor, measured with holoto-
mography, were analyzed according to their vessel parameters. Skeletonization and vector-
ization of the voxel based data allowed an easier extraction of the characteristic parameters.
The calculations revealed a mean vessel diameter of 8.8 ± 4.2 µm and a tortuosity value of
0.18 ± 0.19 rad for all vessels in the healthy corrosion cast. The cancerous vessels showed a
mean diameter of 5.4 ± 5.5 µm and a mean tortuosity value of 0.24 ± 0.25 rad. While the
value for the vessel diameter showed differences between healthy and cancerous tissue, the
tortuosity was more or less equal for both tissues. The quantification of vessel trees using
SRµCT data belongs to the vital steps in understanding of tumor formation and growth and
in developing strategies against the disease.
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Zusammenfassung

Krebsleiden zählen zu den lebensbedrohlichsten Krankheiten der modernen Welt und laut
Aussage der Weltgesundheitsorganisation (WHO) wird die Anzahl von Krebserkrankungen
auch in Zukunft weiter ansteigen. Um Fortschritte in der medizinischen Behandlung von
Krebspatienten zu erzielen, ist die Erforschung des Tumorwachstums grundlegend. Die Expan-
sion eines Geschwulstes wird duch die Angiogenese vorangetrieben, da die Bildung von neuen
Blutgefässen die Versorgung des Krebsgewebes mit Sauerstoff und den nötigen Nährstoffen
gewährleistet. Aus diesem Grund beschäftigt sich diese Arbeit mit der Visualisierung und
Analyse von Blutgefässen in Tumoren.
Zur 3-D-Darstellung der Blutgefässe wurde Mikro-Computertomographie an Synchrotron-
strahlungsquellen (SRµCT) verwendet. Diese bildgebende Technik liefert hochaufgelöste Auf-
nahmen, die auch kleinste Blutgefässe mit einem Durchmesser von 4 µm sichtbar machen. Der
Bildkontrast wird dabei durch die Absorption der Röntgenstrahlung in der Probe bestimmt.
Bei Weichgewebe sind die Unterschiede in den Absorptionswerten jedoch zu gering, um die
Blutgefässe vom umliegenden Gewebe zu unterscheiden. Aus diesem Grund wurden in der
vorliegenden Arbeit kontrastverstärkende Massnahmen durchgeführt.
In Kapitel 2 wird beschrieben wie ausreichender Kontrast durch die Färbung der Gefässe
mit Hilfe eines Kontrastmittels herbeigeführt wurde, so dass deren Morphologie erkennbar
wurde. Die damit gewonnenen Daten machten es möglich, gesundes von krankem Gewebe
zu unterscheiden. Erkranktes Gewebe zeigte in den CT-Bildern vermehrt spiralförmige Blut-
gefässe und man konnte erkennen, dass das Färbungsmittel an einigen Stellen ausgelaufen
sein musste. Dies lässt auf eine Nekrotisierung der Blutgefässe schliessen, welche ausserdem
zur Folge hatte, dass grosse Bereiche des Tumores überhaupt keine Blutgefässe vorwiesen.
Da viele der untersuchten Tumore grösser als das durch den Detektor vorgegebene Sicht-
feld waren, wurden sowohl lokale SRµCT-Messungen eines ausgewählten Bereiches als auch
globale SRµCT-Messungen des gesamten Tumors, aber mit einer schwächeren Auflösung,
durchgeführt (Kapitel 3). Um einen genügend hohen Kontrast zu erhalten, wurde für den
Vergleich der globalen und lokalen Messungen ein Blutgefässabguss aus Polymer erstellt. Es
stellte sich heraus, dass sich die Absorptionswerte in den lokalen Tomogrammen von denen in
den globalen Tomogrammen unterschieden. Diese Unterschiede k?nnen auf die Nicht-Lokalität
der gefilterten Rückprojektion zurückgeführt werden, ein Verfahren, das die Tomogramme
aus den Projektionen errechnet. Diese verursachte eine ansteigende Verschiebung der Ab-
sorptionskoeffizienten zu grösseren Werten. Zusätzlich führte die Kohärenz der Strahlung
bei der hohen Auflösung in den lokalen Bildern zu einer vermehrten Kantenverstärkung, so
dass die Peaks in den Histogrammen breiter wurden. Da die Absorptionswerte in den glob-
alen Tomogrammen den wahren Absorptionswerten der Probe am nächsten kommen, wurden
die Werte in den lokalen Tomogrammen denen der globalen Tomogramme angepasst. Um
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die Artefakte der nicht-Lokalität zu korrigieren, wurden diese zum einen empirisch bestimmt
und aus den Bildern entfernt. In einer zweiten Methode wurde die Bildung dieser Artefakte
umgangen, indem vor der Rekonstruktion die fehlenden Bereiche in den lokalen Projektio-
nen durch die entsprechenden in den globalen Projektionen ersetzt wurden. Während die
Artefakt-reduzierende Methode die grösstmögliche Korrektur der nicht-linearen Verschiebung
der Absorptionskoeffizienten lieferte (78%), wurde die bestmögliche Korrektur der totalen Ver-
schiebung mit Hilfe der Projektionserweiterungen zu 90% herbeigeführt. Die durch Kanten-
verstärkung verbreiterten Peaks konnte man am besten korrigieren, indem man die Grauwert-
bereiche in den Histogrammen der Projektionen vor der Rekonstruktion aneinander anpasste
(41%).
Eine alternative Methode zur Bildgebung der Blutgefässe mit Hilfe von SRµCT basiert auf
der Messung der durch die Probe verursachten Phasenverschiebung der Röntgenstrahlung. Da
es verschiedene Methoden in der Phasenkontrast-basierten µCT gibt, wurden in Kapitel 4 die
Qualitätsunterschiede zweier solcher Methoden (Gitterinterferometrie und Holotomographie)
untersucht. Die Qualität wurde unter anderem anhand der räumlichen Auflösung und des
Kontrast-zu-Rausch-Verhältnisses definiert. Dabei lag die Gitterinterferometrie mit einem
fünffach höheren Kontrast-zu-Rausch-Verhältnis gegenüber der Holotomographie im Vorteil.
Die Holotomographie ermöglicht im Gegensatz dazu eine dreimal bessere Auflösung. Obwohl
diese Methode einen schwächeren Kontrast vorweist, wurde sie für weitergehende Studien
verwendet, da sie die Möglichkeit bot auch die kleinsten Blutgefässe darstellten zu können.
Zusammen mit den absorptionsbasierten Tomogrammen der Blutgefässabgüsse, sowohl von
gesundem als auch krebskrankem Gewebe, wurden die Holotomographiedaten verwendet,
um die Gefässparameter zu bestimmen. Dazu wurden die dreidimensionalen voxelbasierten
Daten skelettiert und anschliessend vektorisiert, was die Auswertung erleichterte. Die Berech-
nungen für gesundes Gewebe ergaben einen mittleren Gefässdurchmesser von 8.8 ± 4.2 µm
und ein Ausmass der Gefässwindungen von 0.18 ± 0.19 rad. Tumore zeigten dagegen einen
Gefässdurchmesser von 5.4 ± 5.5 µm und eine Ausmass der Gefässwindungen von 0.24 ± 0.25
rad. Während die Werte des Durchmessers sichtbare Unterschiede zwischen dem gesunden und
dem kranken Gewebe aufweisen, sind bei dem Ausmass der Gefässwindungen im Rahmen der
Messungen keine Unterschiede erkennbar. Die Parametrisierung der Blutgefässe mit Hilfe der
SRµCT gehört zu den vielversprechenden Methoden um die Tumorbildung zu untersuchen.
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Chapter 1

Introduction

1.1 Micro Computed Tomography to Visualize Tumor Vessel
Trees

Cancer is the second most frequent cause of death in society, although the therapeutic strate-
gies are constantly refined [2]. The formation of new blood vessels, angiogenesis [3, 4], is a
crucial step for the survival and metastasis formation of malignant tumors [5]. This is be-
cause, like normal tissues, tumors require an adequate supply of oxygen, metabolites and an
effective way to remove waste products [6]. Although novel therapeutic strategies attempt-
ing to inhibit this step are being developed, the biological regulation of this process is still
largely unknown. A computer simulation model should help to investigate tumor formation
and growth, and finally contribute to the development of treatment strategies like optimizing
dose delivery during radiation therapy or systematic selection of anti-angiogeonic drugs and
improve the insight of the underlying mechanisms [7, 8]. To make sure that the computed
results agree with tumors, one has to compare them with measured data. The visualization
of the 3D vessel network is therefore crucial for studying the physiological processes related
to angiogenesis and vascular diseases.
A most common way to analyze the morphology of blood vessel systems is the use of histol-
ogy [9]. Unfortunately 3D characterization via serial sectioning is very tedious and time con-
suming [10]. Also, the sectioning damages the biological material [11]. Promising microscopy
techniques, such as two photon microscopy, gives the opportunity of screening localized in vivo
physiological signals [12, 13]. Unfortunately, multi-photon laser microscopy is still limited to
about 200 µm depth and a restricted field of view. Other methods like scanning electron
microscopy [14] in situ appear really accurate but are restricted to the investigation of several
100 µm, due to the finite penetration ability. Magnetic resonance imaging allows in vivo
visualization of the vascular network of the whole tumor without causing damage [15, 16].
This technique achieves a resolution in the range of a few 100 µm. However, most of the
vessel diameters lie between 3 and 10 µm (50% in the cerebral cortex), therefore micrometer
resolution is necessary to visualize the smallest capillaries [17, 18]. Micro Computed Tomog-
raphy (µCT) is a 3D imaging technique which provides micrometer resolution or by adding
X-ray optics even in the nanometer resolution. µCT works like conventional clinical CT where
the intensity changes of x-ray photon beams are detected after transmission through the ob-
ject. The source of the x-rays can be a cone-beam emitting x-ray tube (laboratory source).
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Another x-ray source, synchrotron radiation, has several advantages over the conventional
x-ray tube. Using synchrotron x-ray sources one gets a coherent and very bright photon
beam [19, 20]. The increased photon flux results in a reduced exposure time which causes
a reduction in the data acquisition. A reduced experimental time-scale lowers problems due
to time dependent mechanical instabilities like shrinkages and expansions of soft biological
tissue [20]. Furthermore the synchrotron radiation source can provide a monochromatic beam
which avoids beam-hardening artifacts.
Although the contrast is visibly better in Synchrotron Radiation-based µCT (SRµCT), one is
still not able to make the vessels visible. Conventional absorption based µCT is based on the
attenuation of the light transmitting through the specimen.The attenuation can be described
by the Beer-Lambert law:

I

I0
= e−µd (1.1)

I0 and I are the intensities of the incident and transmitted radiation respectively. The spec-
imen thickness is given by d. The absorption coefficient µ does not differ strongly between
different kinds of soft biological tissue. In tumors it is therefore difficult to distinguish between
the vessels and their surroundings. To be able to see vessels in conventional SRµCT one has
therefore to increase their contrast. There are contrast enhancing preparation methods, which
were successfully applied in imaging the vascular network of the different organs. The most
common way of increasing the contrast is the staining method [17, 21–23], where a contrast
agent is injected into the vessels which does not penetrate through the vessel walls.
Another promising method is corrosion casting, where a cast agent is perfused in the vascular
network of an animal [24–26]. After resin curing (1-2 d), the soft tissue is macerated, followed
by decalcification, each for 24 hours. For µCT the casts can be immersed in osmium tetroxide
(OsO4) for several days to increase the attenuation of the light in the specimen.
Another µCT technique, where the vessels can be visualized without any contrast enhancing
preparations, is the phase contrast based µCT [27–33]. In phased contrast based µCT the
phase shift of the transmitting beam is determined instead of the attenuation which more
sensitive to structural differences within an object. The phase shift is related to the real
decrement δ of the refractive index n = 1 + iβ− δ. β is related to the absorption coefficient µ.
Due to its high sensitivity also differences in soft tissue can also be visualized. There are sev-
eral techniques that have been implemented to visualize variations in the phase. One method
to induce the phase shift is the propagation based µCT [34]. Its main advantage lies in the
rather simple experimental setup [35]. No specialized optical elements are required in order to
render phase shifts visible as intensity variations, because phase contrast may be achieved by
the simple free-space propagation [36]. To obtain the phase shift, projections are acquired at
different sample-to-detector distances. The quantity obtained by this measurement is related
to the Laplacian (the second derivative) of the refractive index [37]. Although the experi-
mental setup is easy to handle this is not the case for the retrieval of the phase information
from acquired data. The phase shift can be obtained by resolving the relationship between
the specimen induced phase shift and the contrast recorded at a sample-to-detector distance.
There are different approximation techniques to solve this problem. A mixed approach of
the contrast transfer function (CTF) and the transport of intensity equation (TIE) can be
used to obatin the phase information in the images. The different methods depend on the
compositions of the specimen. These methods need data from at least three different sample-
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to-detector distances. However, taking a reduced quality into account, one can obtain phase
information using the Paganin method where only single-distance data are necessary [36].
Another phase imaging method in tomography is grating interferometry [27, 29, 29, 31, 38].
This method takes advantage of two gratings. One is the phase grating which separates
the incoming beam in the first order and generates a self-image at a defined distance. A
second grating (amplitude grating) is placed in the plane of the self image which serves as
an intensity mask [39]. The differential phase shift is calculated by comparing the intensity
distribution without any perturbations with that of an object placed in front of the grating.
Although the experimental setup is more complex and needs more mechanical stability in
comparison to in-line methods [40], phase retrieval can easily be determined using the phase
stepping method [41]. In contrast to the propagation based technique the specimen has to be
measured in a medium which offers a similar refraction index to the specimen itself. Tumor
samples usually are measured inside a water tank to prevent phase wrapping artifacts.
The 3D information can be calculated from absorption and/or phase contrast based µCT using
the filtered back-projection algorithm [1]. The vessels can be isolated from the tomograms
using an appropriate segmentation method. But even if the volumetric data allows for an
easy vessel tree segmentation, the data have to be translated to vector-based representations
to allow the direct comparison with the related computer simulations. From the vectorized
data one can easily determine different vessel parameters like the vessel radii and length or
the number of bifurcations, which are relevant to define the vessel morphology. From the
obtained parameters one is not only able to define differences between healthy and cancerous
tissue but can also help to validate and improve computer programs simulating the tumor
neo-vascularization for a better insight into tumor growth.
The challenge of the tumor vessel analysis down to the capillary size lies 3D imaging including
appropriate spatial and density resolution. The GB sized data is needed to be segmented and
parametrized properly afterwards.

1.2 Quantitative Evaluation of SRµCT Data from Tumor

The biggest obstacle in the visualization of the vascular networks lies in the low contrast
between the vessels and the surrounding tissue, using conventional absorption µCT. Differ-
ent specimen preparation methods and µCT techniques were carried out to make the vessels
visible inside the tumor tissue. In this thesis three different kinds of imaging techniques are
proposed to overcome the problem of insufficient contrast.
In Chapter 2 the effectiveness of the contrast enhancing staining technique is presented. For
that purpose a closer look at the tumor vessel morphology is taken.
Although the spatial resolution in SRµCT was sufficient large to make the capillaries visible,
limitations can occur depending on the size of the specimen. Because of the limited detector
size and the cubically increasing amount of image data produced in moving to smaller voxel
sizes, there is a trade-off between resolution and volume that can be acquired in a single scan.
The maximum pixel size, which is enough to reveal the smallest capillaries, is approximately
1.5 µm. As most of the available detectors at synchrotron radiation beamlines have a range
of (2048x2048) pixels, the field of view (FOV) is limited to approximately 3 mm. Tumors
differ strongly in shape and size. The limitation in the FOV is therefore a limitation in the
analysis of the tumor vessels. Cutting the tumor to the appropriate size of the FOV would
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be an unpredictable invasion in the tumor morphology. µCT offers the possibility for region-
of-interest (ROI) or local imaging of a specimen which exceeds the FOV. Local tomography
however is inherent with diverse artifacts which affect the density distribution and therefore
the possibility to segment the vessel tree appropriately.
In Chapter 3, high-resolution local tomography data of the tumor cats were compared with
the one obtained by global tomography, where the specimen, in contrary to local tomography,
fits the whole field of view of the camera [25]. In order to adapt the absorption values obtained
from the two approaches, the de-cupping, sinogram extension and histogram matching was
compared. The question arised which of these approaches provides the best results.
Absorption based µCT images require sufficient contrast to make vessels visible in the tomo-
grams. As contrast enhancement mechanisms in absorption contrast µCT may cause changes
in the morphology of the vascularization, an alternative is proposed in Chapter 4. This µCT
technique is based on the phase contrast, i.e., measures the phase shift of an incoming beam
transmitting through an object of interest. Since phase contrast-based µCT is more sensitive
than absorption contrast, it is an appropriate method for the imaging of soft biological tissue.
There are different techniques to reveal the phase shift indirectly. The prominent methods,
the grating interferometer and the propagation based tomography, which imply the Paganin
method and holotomography, are used in the study presented in Chapter 4. The study exam-
ines the image quality of the proposed methods in the visualization of soft biological tissue,
defined by the spatial resolution, the contrast to noise ratio and the existence of artifacts.
Additionally an alternative specimen, here a rat-heart, was included to give a broader spec-
trum of examples for soft tissue and the found results.
The morphometric analysis of the visualized tumor vessels is presented in Chapter 5. Vessel
parameters like the vessel density, the vessel diameter and the bifurcation density are an-
alyzed to define the characteristics common and unique to tumor and healthy tissue. The
multi-modal data (absorption contrast µCT of corrosion casts and holotomography) give ev-
idence of the effectiveness to analyze the vascular structures of tumors.
The final conclusions can be found in Chapter 6.

1.3 Necessary Procedures to Obtain Vector-based Vessel Trees

1.3.1 Specimen preparation

The measured tumor samples were obtained from the Institute of Biomedical Engineering at
ETH and University of Zurich. After the in vivo experiments [42], when the tumor reached a
size which caused sufferings to the animal or led to a preferred size for following experiments,
the mice with a weight of approximately 25 g were euthanized by an intraperitoneal injection
of 350 ml Ketamine/Xylazine, the quantity varied depending on the individual weight of the
mouse. Depending on the imaging technique used, the tumor, was isolated and stabilized on
a sample holder to prevent movement of the specimen during data acquisition.

Staining : The contrast agent was a suspension of nanometer-size barium sulfate (BaSO4)
and physiological solution with a concentration of 80 g/l. The suspension was filtered
(pore size±1 µm, BD Falcon, USA) to obtain particles with dimensions less than the diameters
of the smallest vessels. Before injection, the suspension was homogenized using the ultrasonic
bath Sonorex Digital 10P, Bandelin at a temperature of 37 ◦C for a period of 10 min. After
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anesthesia the animal was perfused with 250 ml heparin to avoid thrombosis. Finally, 10
ml barium sulfate suspension was injected via the left ventricle of the heart applying the
peristaltic pump (Watson Marlow 101 U/R) as described in [43]. The barium sulfate solution
was mixed with ink to optically follow that the staining of the whole vascular system was
complete. Staining was judged as complete when the spleen became colored.
Corrosion Cast: Before application the resin was mixed with an hardener. As with the
staining method the mice were perfused with 250 ml heparin to avoid thrombosis. Thereafter
the polymer was injected with a peristaltic pump. Also here the injection could be traced
using blue ink as a marker. The polymer hardening took 2-3 days then the corrosion of the
soft and hard tissue was carried out using formic acid. After 5-7 days the mouse body was
dissolved by the acid and only the polymer in form of the mural vascularization remained.
The tumor vessels were cut from the cast and coated with osmium tetroxyd (OsO4) to provide
better contrast in the tomograms.
Phase Contrast Imaging: Since no contrast enhancing was necessary after extraction the
tumor was only fixed in 4-5% para-formealdehyde (PFA) to prevent the tissue from damages
due to decomposition and transferred into polymer containers for the imaging using SRµCT.

1.3.2 Data Acquisition using SRµCT

The SRµCT-measurements were performed at the beamline TOMCAT (SLS at PSI, Villigen,
Switzerland) and BW2 (HASYLAB at DESY, Germany) for absorption based µCT and at
the beamline ID19 (ESRF, Grenoble, France) for the phase contrast based µCT. The beam-
lines offered the experimental equipment and software for the µCT measurements. As the
available experimental equipment for the grating interferometer offered only the possibility
to carry out medium resolution tomography, it was necessary to build a high-resolution (spa-
tial resolution is better than 5 µm) grating interferometer at the beamline ID19. For that
purpose the construction of the setup and the experimental conditions were developed. The
construction also required the application of the motors running by the available software to
control the gratings. For the in-line tomography experiments no adoptions were required as
no special setting is needed and the software for the data acquisition was already provided by
the beamline. In the case of the specimen to be measured in PFA one had to take into account
that bubble development could cause artifacts in the tomograms due to specimen movements
or phase wrapping in phase contrast µCT. To reduce the bubble development the specimens
were therefore degassed in a vacuum chamber at around 10 mbar to remove the dissolved air
in the liquid. After data acquisition the tomograms were generated by fully automatic re-
construction tools based on filtered back projection [1]. Each synchrotron beamline provided
a corresponding reconstruction tool for this purpose. Before the reconstruction of the phase
contrast based µCT data, one had to retrieve the phase shift information of the raw data.

1.3.3 Image Processing

To obtain the phase information from the acquired images of the grating interferometry and
the propagation based tomography, phase retrieval processings are necessary. For the different
technFAiques adequate software was provided at ESRF (Computer code in IDL (ITT Visual
Information Solutions, Boulder, Colorado, USA), for grating interferometry [44], ANKAphase
for Paganin [45] and a phase retrieval algorithm for holotomography implemented in GNU
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Octave version 2.1.73 [37]). While the tools for the grating interferometry and the Paganin
are fully automatic, the holotomographic reconstruction needed pre-processing, for example,
the alignment of the one-angle projections acquired at different sample-to-detector distances.
For data comparison of specimens which were measured under different imaging conditions,
registration was required. For the comparison of two projections or two single tomograms 2D
registration was performed with a registration algorithm implemented in Matlab. In case of
3D data registration the tool offered by [46] was used.
For the visualization of the vessels the voxels which are part of the vessels had to be segmented.
In the absorption contrast based µCT data of the stained specimen and the corrosion cast
this was easily be done by defining an appropriate intensity-based threshold. Quantitatively
this threshold was obtained by using the Otsu method or by finding the intersection points
between the Gaussians of the vessels and the surrounding objects in the histogram. This kind
of segmentation is very effective as long as the object of interest is presented by distinguishable
Gaussians in the histogram. As soon as the histogram peaks of two different objects merge
together this method can not be used to segment the corresponding objects separately. This
is the case in the phase contrast based tomograms, where the intensity values of the vessel
are shared with other objects in the surrounding tissue. Setting a threshold would segment
both objects, therefore a feature-based segmentation was needed. In case of the vessels which
was approximated as tubes which differ in length and diameter the Frangi filter was applied.
The Frangi filter is based on the advanced line detection tool described in [47] and [48].
For the analysis of the vessel characteristics a vectorization tool was developed (see Chapter
5) which allows extraction of vessel parameters and additionally decreases the data size by
approximately 50%. The vectorization tool needs two formats for each dataset. One is the
segmented and binarized 3D dataset, the other one contains its centerline. To obtain the
centerline of the 3D image a skeletonization tool offered by [49] was used.
For the 3D visualization of the blood vessels the software VG Studio Max 2.0 (Volume Graph-
ics, Heidelberg, Germany) was applied. Thresholds and colors were manually selected to
elucidate the features of interest.
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Chapter 2

Visualization of Tumor Vessels
using Synchrotron Radiation-based
Micro Computed Tomography

2.1 Introduction

The vascular structure of tumors differs from that of healthy tissue. To understand the
formation of cancerous tissue, the vascular network of tumors should be uncovered down
to the capillary level. Standard synchrotron radiation-based micro computed tomography
(SRµCT) in absorption contrast mode provides the necessary micrometer resolution [17] even
for centimeter-sized tumors [21]. The visualization of a vessel tree, however, also requires
sufficient contrast. Because the tissue consists mainly of water and low absorbing species,
SRµCT does not lead to significant X-ray absorption differences between vessels and sur-
rounding tissue. So, the successful application of absorption contrast tomography requires
dedicated tissue preparation procedures including embedding [22] and corrosion casting [23].
The more common procedure is the use of staining materials such as the incorporation of
barium sulfate into the vessels [10,11,17,21,25].

2.2 Materials and Methods

The present study is based on the injection of a barium sulfate suspension with a grain size
of 0.5 to 1 µm and a concentration of 80 g/l via the left ventricle of the heart of mice under
anesthesia using a peristaltic pump. The mice contained C51 or U87 tumors grown during two
to three weeks until they clearly emerged to be easily extracted post mortem. The tumors
were transferred to Eppendorf tubes filled with 4% para-formealdehyde for fixation. For
the tomography measurements at the beamline TOMCAT (SLS at PSI, Switzerland) using
the photon energy of 18 keV (bandwidth 2% to 3%) the container was fixed on the high-
precision manipulator that rotated the tumor from 0◦ to 180◦ in steps of 0.12◦ to record 1501
projections. It should be mentioned that continuous irradiation of the specimen caused the
formation of bubbles. To master this serious problem, the shutter in front of the specimen was
closed during CCD-readout. Hence, the irradiation could be interrupted by 0.1 s between the
exposure periods of 0.3 s per projection. The conventional filtered back-projection algorithm
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served for the reconstruction. Because the specimen was significantly larger than the field of
view, local tomography of the inner part was performed, which yielded relative local X-ray
absorption coefficients. The 3D representations of the vessel morphology were generated by
means of VG Studio MAX 1.2.1 (Volume Graphics, Heidelberg, Germany).

 

20 µm
a) b)

Figure 2.1: The 3D representation shows the stained vessels. The yellow-colored arrow denotes
an about 20 µm-wide vessel. The red-colored arrow indicates a barium sulfate accumulation
associated with the contrast agent as the result of a damaged vessel wall. b) The 3D image
demonstrates that many capillaries in the tumor exhibit a spiral shape as exemplarily indicated
by the yellow-colored arrow.

2.3 Results and Discussion

The homogeneous staining of the capillaries using barium sulfate micro- and nanometer sized
particles is demanding, since the carrier medium has to exhibit low viscosity that associates
with density differences to the barium sulfate. Consequently, sedimentation phenomena can-
not be avoided, which result in an inhomogeneous sulfate particle distribution of the vessel
trees [11, 17]. The smaller vessels often appear interrupted [17]. In order to improve the sit-
uation, the suspension should be suitably selected. The sedimentation velocity used, derived
from Stokes law, should be as small as possible. It depends on the particle’s grain radius rp,
the density difference between the carrier medium and the particles ρ − ρp, the viscosity of
the fluid η and the gravitation constant g :

vsed =
2

9

(ρ− ρp) · r2p · g
η

(2.1)

The most important parameter is the barium sulfate particle size. It has not only to be smaller
than the smallest capillary, but well below one micrometer to reach low enough sedimentation
velocities. Much smaller nanometer-sized particles, however, show a strong tendency to form
clusters, which stop the perfusion through the blood vessel tree. Accordingly, globular barium
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sulfate particles with a narrow sub-micrometer size distribution provide most homogeneous
vessel staining. Healthy and cancerous tissue can be straightforwardly differentiated, since
the fast grown tumor tissue exhibits a much higher density of capillaries than the surround-
ing healthy vascular structure. In several regions, however, the opposite behavior has been
observed [21]. The explanation lies most probably in the necrosis of the inner part of the
tumor. It is hypothesized that the path from the arteries to the veins within the necrotic part
of the tumor is not intact anymore. Furthermore, there are several indications for damages
of the vessel walls. First, already in alive mouse the tumor becomes dark red in the advanced
stages indicating extended regions of blood coagulation. Second, the applied pressure for
the injection of the barium sulfate suspension generates leakage as experimentally found at
several sites of the tumor tissue [21] and demonstrated in Figure 2.1(a). Nevertheless, blood
vessels in the cancerous tissue with diameters down to 11 µm could be clearly identified. The
morphology of the vessel tree and the related shape of individual vessels within the cancer-
ous tissue significantly differ from the healthy parts. The 3D representation in Figure 2.1 b)
demonstrates that many vessels show a spiral shape, which belongs to typical signs of can-
cer tissue [50]. These details cannot be identified using in vivo magnetic resonance imaging,
where only vessels with diameters down to about 80 µm come to light. The quantitative
analysis of the barium sulfate stained vessels of the tumor, however, remains questionable,
since significant parts are not stained and parameters such as the bifurcation probability
versus vessel diameter cannot be meaningfully extracted. Therefore, the value of our study
for the validation of computer simulations on the tumor formation [7] is limited. Here, it is
highly desirable to improve the spatial resolution of phase contrast techniques that usually
offer enough contrast to visualize the vessel tree without any stain even in para-formaldehyde
solution [21].
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Chapter 3

Global and Local Hard X-ray
Tomography of a Centimeter-sized
Tumor Vessel Tree

3.1 Introduction

Cancer is a leading cause of death worldwide [2]. Many studies in cancer research investigate
the neo-vascularization in cancerous tissue to get insight in tumor formation and growth [21]
with the aim to develop strategies against the disease. For the detailed investigation of the
underlying phenomena, a three-dimensional visualization of the tumor vessel tree down to the
capillary level would be most helpful. The smallest capillaries in the tumors (of centimeter
size) have a diameter of around 4 µm and a wall thickness of about 1 µm [24, 51]. Syn-
chrotron radiation-based micro computed tomography (SRµCT) reaches the sub-micrometer
regime without X-ray optics [52, 53], but for the given resolution the field of view (FOV) is
restricted. For specimens, which exceed the FOV, one can only cut the specimen into pieces of
appropriate size or use the stitching technique where the projections are recorded at different
asymmetric rotation axes to obtain the entire projection images of the tumor for each rotation
angle [19, 53]. These techniques are time-consuming because they require the acquisition of
many more detector frames than a standard tomography scan. Moreover, the volume of the
data tends to become huge, which results in long times needed for data reconstruction, and
difficult management of the data. Consequently, many research teams only acquire a region of
interest (ROI) of the entire projection and reconstruct just these partial datasets, an approach
known as local tomography or truncated-projection tomography. In local tomography, how-
ever, the reconstructed X-ray absorption coefficients µ(x,y,z) do not correspond to the values
obtained from globally acquired data [28,53–55]. The deviations, a result of the interior prob-
lem, can only be slightly evaded [28] but not completely corrected [56]. Different algorithms
have been reported to partially correct the related artifacts [57, 58]. For cases in which the
absorption coefficients are known a priori for a subset of the ROI to be reconstructed, the
problem can be solved, but this requires iterative algorithms, which are relatively complex
and computationally intensive [59]. The present work deals with the question how far the
local X-ray absorption coefficients µ(x,y,z) in the different local tomograms can be corrected
using the information from the less detailed global data. First, it is tried to shift and scale
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the binned µ-values of the local data to obtain the ones of the global tomogram. Second, the
artifacts in the local tomogram have been reduced combining the high-resolution projections
with less detailed data of the missing regions before reconstruction. Third, using the rigid
or affine registration the influence of distortions for example as the result of the objective’s
aberration is addressed. Hence, the pros and cons of local tomography and the combination
between local and global tomography are elucidated. It should be noted that the corrosion
cast of the tumor vessel tree is especially suitable for this kind of evaluation as only two com-
ponents (polymer and air) are present and, therefore, the density resolution is not a limiting
factor.

3.2 Methods and Materials

3.2.1 Specimen Preparation

Three balb/c nude mice (Charles River Laboratories, France) have been used for the experi-
ments in strict adherence to the Swiss law from animal protection. A suspension of 106 C51
tumor cells (murine colon carcinoma) was injected subcutaneously on the left flank of each
animal. Ten days following injection, when the tumor have reached an average diameter of
about 10 mm, mice were sacrificed and perfused with a polyurethane-based material [25] in
order to produce a corrosion cast of the whole circulatory system. The casted tumor were
subsequently extracted and treated with OsO4 to enhance the contrast in SRµCT. The tumor
cast was fixed on the sample holder with wax, as shown in Figure 3.1.

Wax

Tumour cast

Figure 3.1: The photograph shows the corrosion cast of C51 tumor vessels grown in nude
mouse. The black color of the polyurethane cast results from the OsO4 treatment. Wax served
for fixation on the rotation stage for data acquisition.
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3.2.2 Synchrotron Radiation-based Micro Computed Tomography

SRµCT measurements were performed at the TOMCAT beamline (Swiss Light Source SLS,
Paul Scherrer Institute, Villigen, Switzerland) in absorption contrast mode [60]. A double
multilayer monochromator was used to select a photon energy of 15 keV. The tumor cast was
fixed on the rotation stage to acquire 1500 projections in 0.12◦ steps between 0 and 180◦.
The high-resolution imaging detector is based on a 4.2-megapixel CCD camera (PCO [61],
Germany, 2048 × 2048 pixels; 7.4 µm physical pixel size) coupled to the X-ray beam by a
microscope lens system (Optique Peter, Lyon, France) and a 20 µm-thin single-crystal scintil-
lator made of cerium-doped lutetium aluminum garnet (LAG:Ce) which converted the X-rays
into visible light. The microscope objective determines the magnification and the actual effec-
tive pixel size on the specimen scale. In this experiment, a PLAPO1.25× (numerical aperture
(NA) 0.04) and a UPLAPO10× (NA 0.4) objective from the Olympus UIS series (Olympus
Corporation, Tokyo, Japan) were used. Tomograms of the whole specimen were measured
using the 1.25x objective; the effective nominal pixel size with this objective was 5.92 µm.
The field of view of 12 mm for this setup was sufficient to enclose the maximal diameter of the
tumor. But the pixel size was too large to discriminate between tiny capillaries and to extract
their diameters. Six hours after the global measurements the setup is changed to 10x objec-
tive, which leads to a lateral dimension of 0.74 µm for each detector pixel The resulting FOV,
however, is only 1.5 mm wide, which is substantially smaller than the tumor size. Therefore,
this objective was only applied to perform local tomography. For both settings an exposure
time of 0.175 s per radiograph was used. The global and local measurements were carried
out each within approximately five minutes. The distance between the specimen and scintil-
lator was estimated to 2 mm for global and local data acquisition. This short distance was
chosen to minimize the effect of edge-enhancing propagation-based phase contrast, although
this phenomenon cannot be completely eliminated. At the X-ray wavelength of 0.83 Å, the
characteristic width of phase-contrast fringes at this propagation distance is (2 mm x 0.83
Å)0.5 = 0.4 µm. In the reconstructed tomograms, this leads to bright/dark fringe pairs, which
broaden the histograms of the absorption coefficients. The distance between the camera and
the scintillator was 30 cm whereby the scintillator to objective distance was 2 to 3 mm for
the 0.04 objective lens and several 100 µm for the 0.4 objective lens.

3.2.3 Data Analysis

Flat-field Correction

Flat-field images were taken before and after the acquisition of the projection radiographs
in each tomography scan. The mean intensity of the flat-field images taken before data
acquisition was higher by 7.2% for the global and by 2.0% for the local datasets than the
ones recorded after data acquisition. This can only partly be explained by variations of the
electron beam current in the source, because the top-up mode operation of the SLS keeps
these variations to approx. 2%. The reason could be the darkening of the detector lens optics
and/or predominantly, thermal changes of the monochromator. In the radiographs measured
with a pixel size of 5.92 µm there are areas without X-ray absorbing specimen, which allows
extracting the time dependent decay of intensity. This information was implemented into
the flat-field correction of the radiographs. For the flat-field correction of the data acquired
with a pixel size of 0.74 µm, the background images taken before and after the projection
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radiographs were interpolated linearly before flat-field normalization.

Reconstruction

The tomographic reconstruction of both the global and the local tomography datasets was
performed using the filtered back-projection technique, implemented in the parallel-beam
reconstruction software PyHST (European Synchrotron Radiation Facility, Grenoble, France)
[62].

Projection Analysis

The global and local projections were compared to determine potential differences between
the two objectives. The projections were termed global for 5.92 µm pixel size and local for
0.74 µm pixel size. For comparison the corresponding ROIs in the global and local projections
were selected. Rigid registration based on similarity transform was carried out (see Figure
3.2) to identify the same ROIs (common volume) in both images [63]. The software used for
the registration was MATLAB R2010a and Simulink (Mathworks Inc., Natwick, MA, U.S.A.).
The similarity transformation in two dimensions includes the two translation parameters (tx,
ty), uniform scaling (s) and one rotation parameter (ϕ).(

x′

y′

)[
s cosϕ −s sinϕ
s sinϕ s cosϕ

](
x
y

)
+

(
tx
ty

)
(3.1)

The coordinates x′ and y′ describe the transformed coordinates. The registration process
implies that one image (floating image) is transformed according to the reference image until
optimal similarity is achieved for the similarity function. Here, the ’Normalized Mutual
Information’ (NMI) was used as similarity function, which allows the registration of images
with different intensity distributions [64]. To obtain the NMI, first the joint histogram h(a, b)
of the two images had to be determined. The components consist of the X-ray absorption
coefficients from local image (a) and the absorption coefficients from the global image (b).
The intensity values in the joint histogram correspond to the counts of the absorption-value
combinations in the local and the global image, respectively. The values of the joint histogram
(a,b) describe the number of joint pixels between the reference and floating images. When
creating a joint histogram of identical images all values lie on a diagonal through the origin.
From the joint histogram the probability density function p(a, b) can be determined:

p(a, b) =
1

N
h(a, b) (3.2)

where N is the number of values in the joint histogram. p(a, b) describes the probability that
two pixels in the reference and floating images with the same coordinate have the intensity
values a and b. Using p(a, b) the Shannon-Wiener entropy Hab could be determined:

Hab = −
∑

p(a, b) log (p(a, b)) (3.3)

The higher the similarity between two images, the lower is the Shannon-Wiener entropy. The
NMI Yab is determined using the Shannon-Wiener entropy. The advantage of the NMI against
the entropy is that it does not simply maximize the overlap of air.
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Yab =
Ha +Hb

Hab
(3.4)

The NMI maximizes at the optimal alignment and can be thought of as a measure of how
well one image explains the other. For the preparation of the projections for the registration
a region, which is seen in the global as well as in the local projections is manually cropped.
The cropped region was defined to be the floating image. The reference image here was the
local projection, which had been binned by a factor of eight, the nearest integer value to the
scaling parameter, to obtain approximately the same number of pixels in both datasets. After
registration the rotation and translation parameters were used to refine the cropping. The
scaling parameter was applied to refine the re-sample factor for re-sizing the local projection.
Re-scaling was achieved by 2D cubic convolution interpolation of the image. The registra-
tion was repeated using the optimized floating and reference images until maximal similarity
between the images were achieved. A histogram was calculated from the cropped global and
the re-scaled local projections to compare the intensity distribution of both images.

Tumor Analysis

Analogue to the projections, a three-dimensional (3D) registration tool [46] to register the
tomography data was applied. The transformations were carried out along the x-, y- and z-
axes so one obtained the translation parameters (tx, ty, tz). The scaling depends here on three
orthogonal directions. Hence, the three scaling parameters sx, sy, and sz were introduced.
The histograms of the cropped global and the re-sampled local 3D datasets were determined.

Histogram Analysis

Histograms characterize the contrast and density resolution of tomography data [65]. Here, the
peak positions and the related full-width-at-half-maximum (FWHM) values were determined.
The histograms of the global and local tomograms were compared.

3.3 Results

3.3.1 Differences between Global and Local Radiographs

Figure 3.3 (a) shows a characteristic global radiograph (pixel size 5.92 µm). The dashed
rectangle represents the region used for local tomography. The full-line rectangle indicates
the selected ROI. The radiographs depicted in Figure 3.3 (b) to (e) correspond to this ROI
and contain grids as guidelines. The radiograph in Figure 3.3 (b) corresponds to the local
projection (pixel size 0.74 µm). The related down-sampled radiograph using a factor of 8.11
is shown in Figure 3.3 (d). The factor 8.11 originates from the scaling of the rigid registration
with the global data. Figure 3.3 (c) is the cropped part of the global projection as given in the
full-line rectangle. The image in Figure 3.3 (e) shows the difference image between the global
and the down-sampled local projection. In order to get a more detailed understanding of the
differences between global and local radiographs, their histograms and selected line profiles
are displayed in Figure 3.4. The histograms and line profiles originate from the data shown
in Figure 3.3 (c) and (d). The locations of the profiles are denoted using the dashed lines in
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θmax = θGlobal

Crop ROI in global image using tx, ty

ϕ = 0, s = 8

Roughly estimated tx, ty

Re-sample local image using s

Find new ϕ,tx, ty, s with rigid registration of global (θGlobal) and local

(θLocal) images using similarity transform to maximaize NMI

Crop ROI in global image using tx, ty

Re-sample localimage using s

Rotate global image using ϕ

Calculate NMI1

θGlobal > θLocal + 10 ?

θGlobal=θGlobal+1

|NMI0−NMI1|<ε?

true

false

false

NMI0 = NMI1 

true

Calculate NMI0

NMImax = 0

θGlobal = θLocal-10

NMI1
 > NMImax

 ? true θmax = θGlobal

false

use θmax

Figure 3.2: The registration procedure of local and global data is summarized in the flow
diagram. θ describes the rotation angle step at which the projection was scanned. The local
projections serve as reference the global projections as floating image.
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Figure 3.3: The radiographs of the tumor vessel cast were measured at TOMCAT beamline
(SLS at Paul Scherrer Institute, Villigen, Switzerland): (a) global radiograph with a pixel size
of 5.92 µm; dashed rectangle illustrates the region measured for local tomography with a pixel
size of 0.74 µm; full line rectangle denotes the region-of-interest shown in the other images:
(b) radiograph of local tomography using a pixel size of 0.74 µm, (c) cropped area from global
radiograph, (d) re-sampled image from local radiograph; (e) difference image between the (Ig)
and re-sampled local (Il) projection to reveal intensity differences. The 100 µm grids are
incorporated as guidelines.
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Figure 3.3. Both diagrams confirm the 35% higher I/I0-range in intensity for the local data.
As expected, the profile of the local projection shows more details.
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Figure 3.4: (a) The histograms of the global radiographs (blue-colored full line) and of the
local radiographs (red-colored dashed line) are obtained from the ROI in Figure 3. (b) The
line profiles denoted by the dashed lines in Figure 3 also show that the dynamic range of the
local radiographs is by about 30% larger with respect to the global data.

3.3.2 Analysis of the Flat-field Images

The flat-field images (see Figure 3.5) show the typical stripes that come from the multilayer
monochromator [20]. The signal intensity in these raw data describes the number of X-ray
photons which have been converted into visible light and recorded by the CCD camera. The
entity in which the signal is measured is called analogue-to-digital unit (ADU). The signal is
much lower in the global image (Figure 3.5 (a)) than in the local image (Figure 3.5 (b)). The
flat-field image in Figure 3.5 (b) is down-sampled using the factor of 8.11 to obtain the same
number of pixels in the two images. The vertical profiles along the dashed lines in the images
show the quantification of the observed intensity differences and are shown as examples in
Figure 3.5 (c). The related histograms of the 2D images shown in Figure 3.5 (d) differ in
peak position by 34% and in FWHM by 75%. The incident photon flux and exposure times
per detector frame and the CCD as well as the scintillator used for both measurements were
identical, so that the differences must be attributed to the detector lens optics. Indeed, these
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differences can be quantitatively explained from the different magnifications and numerical
apertures of the microscope objectives used (see below) and should be fully eliminated as the
result of flat-field corrections. The ADUs of the re-sampled local flat-field image shows visible
over-saturation by 9.3%. The maximal ADU value in the non-re-sampled local flat-field image
is 0.5% below the saturation limit.

3.3.3 The Absorption Histograms of Global and Local Tomography Slices

Figure 3.6 (a) shows a selected slice of global tomography from the tumor cast. The dashed
circle encloses an area imaged in local tomography. The local region has been found in the
global tomograms by 3D registration. The area within the square is presented in image
of Figure 3.6 (c) as cropped, in the image of Figure 3.6 (d) as local tomography slice re-
sampled prior reconstruction using the scaling factor of 8.11, and in the image of Figure 3.6
(e) as high-resolution local tomography slice. The incorporated grids validate the appropriate
registration. The differences between the images are properly reflected by the histograms in
Figure 3.6 (b). The histogram of the local tomography slices is remarkably broader than that
of the global data. Even more important, there are substantial shifts of the peak positions to
higher X-ray absorption coefficients.
Comparing the two histograms of local tomography one recognizes that the re-sampling has
caused a 57% reduction of the FWHM of the air peak close to µ = 0. Such a reduction is
the result of the large re-sampling factor and the associated binning [65]. The second peak
located between 10 and 20 cm-1 originates from the Os-loaded polyurethane. There is a third
peak above 60 cm-1 (not shown in Figure 3.6 (b), see Table 3.1), which stems from remaining
bone (also Os-loaded) and relates to the bright clusters in the tomography slices.

3.3.4 The Absorption Histograms of Global and Local Tomograms

Figure 3.7 compares the absorption histograms of the 3D datasets. Figure 3.7 (a) shows
the effect of re-sampling using the scaling factor 8.11. As already recognized for the 2D
data the re-sampling gives rise to significantly sharper peaks. It is reasonable to analyze
the effect of local reconstruction in absence of the differences in the optics. This can be
achieved by truncating the ROI from the global projections before reconstruction is carried
out. In Figure 3.7 (b) the histograms of the globally acquired images, where ROI cropping
took place after (blue-colored, full line) and before (red-colored, dashed line) reconstruction,
are shown. The locally reconstructed data are slightly shifted to higher absorption coefficients
and exhibit significant peak broadening. Nevertheless, peak shift and broadening are much
less pronounced than for the locally acquired data.

3.3.5 Correcting Local Tomograms using Histogram Matching

Local tomography does often not provide the correct local X-ray absorption coefficients, cp.
Figure 3.7. Therefore, the application of histogram matching well known from image process-
ing to adjust the histograms of two images [66] might be an appropriate approach to correct
the local X-ray absorption coefficients. In order to keep the procedure simple, the tomograms
were directly modified instead of the radiographs. However, it was chosen to use a simplified
approximation to histogram matching that uses only two scalar parameters and approximates
the two histograms by stretching and shifting one of them. As shown in Figure 3.4 (a), the
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Figure 3.5: The flat-field images with low-magnifying objective, pixel size 5.92 µm and high-
magnifying objective, pixel size 8.11 × 0.74 µm reveal an intensity radio according to the
numerical apertures by 0.7 which is close to the expected value 66/100.
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Figure 3.6: The tomography slice (a) is globally acquired and shows a virtual cut through the
entire tumor. The dashed circle encloses the locally acquired tomogram. The full line rectangle
corresponds to the cropped area (c) the tomography slice of the local tomography, re-sampled
using the factor 8.11 (d) and with the high spatial resolution (e). The related histograms of
the slices (b) show the massive influence of the different analytical methods on the local X-ray
absorption coefficients.
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the local data using the factor 8.11; (b) cropping globally acquired data before and after re-
construction - red-colored dashed and blue-colored full line, respectively. Three peaks can be
identified in the 3D histograms which are related to air, polymer and bone for increasing order.
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histograms of the radiographs exhibit just one peak of different FWHM. To equate the FWHM
of the re-sampled local data to that of the global histogram, the intensity values for every lo-
cally acquired and re-sampled radiograph I(x, y) is corrected using the difference between the
most frequently occurring intensity value in the global projection and in the local projection
D, and the ratio of the FWHMs R:

IHM (x, y) = R [I(x, y)− 1]−D (3.5)

Based on the corrected radiographs IHM (x, y), tomograms were reconstructed and their his-
tograms compared with the histograms of the original datasets. As displayed in Figure 3.8,
this histogram matching procedure of the locally acquired data causes a significant peak
sharpening and peak shifts to more reliable absorption coefficients. The sharpening in the
histograms of the radiographs by 35% reduces the FWHM of the air peak by 25% for the
local, re-sampled tomogram and 33% for the local tomogram. Nonetheless, the air-related
peak in the corrected histograms is still well above zero.

10
0

10
2

10
4

10
6

F
re

q
u

en
cy

 [
a.

u
.]

0 40 80 120

10
4

10
7

µ [1/cm]

F
re

q
u

en
cy

 [
a.

u
.]

Local

Local

(histogram matched)

(b)

Local (re-sampled &

histogram matched)

Local (re-sampled)
(a)

Global

Figure 3.8: Correcting local radiographs using histogram matching: (a) histograms of re-
sampled tomography data and (b) histogram of high-resolution tomography data.
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3.3.6 Extending Local Sinograms by Less Detailed Global Data

In order to complete the local projections, one may take advantage of the less detailed global
projections. Because the local and global projections have different pixel sizes, the local
projections were down-sampled using the factor of 8.11. The regions in the global projections
showing the identical regions visible in the local ones were replaced by the down-sampled local
projections with a precision in pixel size of 5.92 µm. Figure 3.9 (a) shows the comparison of
the histograms of the tomography data with and without such an extension. The extensions
of the re-sampled local projections by the less detailed global ones lead to a slight shift to
smaller absorption coefficients. Alternatively, one can up-sample the global projections to fit
the pixel size of the local data. This approach, however, yields huge datasets. Figure 3.9 (b),
therefore, shows the histograms of only one tomography slice. Again, the extension slightly
shifts the peaks to more reasonable X-ray absorption coefficients. Unfortunately, it coincides
with a significant broadening of the peaks.
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Figure 3.9: Extending local sinograms by less detailed global data: (a) histogram of re-sampled
tomography data and (b) histograms of high-resolution tomography data.

3.3.7 Empirical Cupping Correction

Cupping artifacts occur in cone-beam CT and result from beam hardening [1]. Although
the origin of beam hardening is quite different, similar behavior could be identified in the
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local tomograms presented here (cp. Figure 3.10 (a)). It was communicated [67, 68] that the
absorption peaks shift to larger absorption coefficients from the rotation center to periphery.
Thus, the tomogram was divided into eight concentric sub-domains of identical area as illus-
trated for one slice in Figure 3.10. For each of the color-coded 3D subunits the histogram
is plotted. The air peaks show larger shifts to higher X-ray absorption coefficients for larger
distance to the center of the local tomogram. Although this order is not found for the bone
peak, absorption coefficient shifts for the different distances to the rotation center have been
observed as well. These peak shifts were applied for an empirical cupping correction of the
tomography data, which might also be termed ’de-cupping’.
The correction of the histograms includes two components. First, the shift of the air-related
peak present in the data of the eight subunits (cp. Figure 3.10 (a)) was applied as individual
constant for each subunit to guarantee that the air peaks have their maxima at zero absorp-
tion. This procedure, however, shows a nonlinear dependence on the distance to rotation
center so that a cubic spline interpolation of the Matlab R2010a code has been applied to
achieve a gradual change from center to periphery. Second, the absorption coefficients in the
locally acquired data were compressed adapting the peak distances between air and Os-loaded
bone to the values of the global tomogram to obtain the bone-related maximum at the desired
absorption coefficient.
The resulted histogram is displayed in Figure 3.10 (b). Such an empirical de-cupping, how-
ever, only reduces the FWHM of the air peak by 20% and the three peaks are still much
broader than the peaks in the global data. While the peaks for air and Os-loaded bone are
forced to the absorption coefficients of the global tomogram, the Os-loaded polyurethane peak
prominent in the global data is missing in the histograms of the high-resolution data.

3.3.8 Tumor Vessel System

The software VG Studio MAX 2.0 (Volume Graphics, Heidelberg, Germany) served for the
visualization of the tumor vessels. Figure 3.11 represents 3D tumor vessel images of global and
local data, respectively. The high-resolution tomography data were corrected using histogram
matching to apply a well comparable threshold for the two images. The high-resolution
local data reveal the small capillaries, whereas the global data merely show a non-uniform
background. In the majority of cases, however, the authors show images with individually
adapted thresholds to avoid such a background and to better highlight certain features. The
Os-loaded bone leftovers, for example, are clearer visible in Figure 3.12. The direct comparison
of the global with the histogram-matched local tomography data demonstrates that the vast
majority of the small capillaries with diameters between 3 to 15 µm are missing in the image
of the global data.

3.4 Discussion

Local tomography provides useful 3D images with a lot of details, but the absorption coeffi-
cients obtained from a simple tomographic reconstruction of local tomography data are usually
inconsistent with global data, i.e., data in which the detector field covers the full width of the
specimen. Against that, the global data are generally less detailed. Therefore, in multi-scale
studies, it seems attractive to correct the local tomography data by means of the global data.
In the present study three empirical approaches were evaluated, i.e. two parameter histogram
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Figure 3.10: Empirical cupping correction of tomography data: (a) histograms of color-coded
regions with the same number of voxels; (b) histogram modification as the results of cupping
correction by means of the air peak shift.
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(a) (b)

Figure 3.11: Comparing globally (a) and locally (b) acquired 3D representations of the tumor
vessel system. The histogram matching of the locally acquired data allows choosing an equiva-
lent threshold for the local data showing a network of small capillaries and for the global data
exhibiting a non-uniform background.

Table 3.1: Selected parameters of the histogram analysis.

Position FWHM Distance
of the of the between Air-

Air-peak Air-peak Bone-peak
(1/cm) (1/cm) (1/cm)

Global tomogram 0.00 ± 0.00 0.52 ± 0.00 61.7 ± 0.2
Local tomogram 2.74 ± 0.02 5.85 ± 0.02 84.5 ± 0.3
Global tomogram from incomplete data 1.27 ± 0.02 0.89 ± 0.02 63.5 ± 0.3
Re-sampled local tomogram 2.56 ± 0.05 5.71 ± 0.02 84.6 ± 0.4
Local tomogram after de-cupping 0.54 ± 0.03 4.33 ± 0.03 66.9 ± 0.5
Re-sampled, histogram matched local tomogram 1.68 ± 0.02 1.51 ± 0.02 54.9 ± 0.5
Histogram matched local tomogram 1.91 ± 0.02 3.90 ± 0.02 54.6 ± 0.3
Re-sampled local tomogram with missing data 0.27 ± 0.01 2.18 ± 0.01 85.0 ± 0.1
Local tomogram with missing data 0.31 ± 0.02 4.90 ± 0.02 83.2 ± 0.4
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matching, sinogram extension, and multi-parameter cupping correction, to identify an effec-
tive procedure for correcting the local X-ray absorption coefficients in local tomography data.
The discrepancies between the X-ray absorption coefficients obtained from the local and the
global data is, at least partly, due to systematic artifacts, often termed bias, in the local data
that result from the fact that the locally acquired projections are truncated [69,70]. However,
differences in the response functions of the detector configurations used for the acquisitions
can be an additional source of discrepancy. Before a direct comparison between local and
global tomography, the potential influence of the detector optics should therefore be analyzed
and suitable registration algorithms with voxel precision have to be employed.
The flat-field images recorded with the objectives 1.25x (NA 0.04) and 10x (NA 0.4) exhibit
different brightness. As the numerical aperture differs by a factor of 10 and the magnification
only by a factor of 8.11, an average signal ratio between the global and the local data of
(8.11/10)2 = 0.66 should be expected. This matches the experimentally observed ratio of
around 0.7. In any case, this effect should only enter into the statistical noise properties, not
into the systematic shift of the reconstructed absorption coefficients, because the radiographs
of both datasets were corrected in the conventional manner by subtraction of dark images
and normalization to flat-field images taken with the object removed from the beam. The
observed maximal intensity for the re-sampled flat-field images exceeds the limited detector
read-out of 16-bit by 9.3%. These high values is not related to over-saturation of the detector
during acquisition but caused by re-sampling phenomena.
The rigid registration between the global and re-sampled local radiographs resulted in errors
of sub-pixel magnitude. These remaining errors, however, cannot explain the significant dis-
crepancies between the values of global and re-sampled local radiographs, as clearly identified
in the images of Figure 3.3 and 3.4. While a quantitative explanation of this phenomenon
is beyond the scope of this study, one could attribute the broader histogram of the locally
acquired data with respect to the globally acquired ones mainly to the differences in the point
spread function of the imaging system [71], especially to the tails in this function. This is be-
cause other possible contributions are canceled out by the re-sampling of the high-resolution
data to the larger pixel size of the global data. The effects, which the re-sampling procedure
eliminates (or drastically reduces), include, in particular, any differences due to the presence
of edge-enhancing phase contrast fringes in the high-resolution data, as well as the different
statistical properties of the two datasets in so far as they are directly caused by the differ-
ent pixel sizes of the data. The registration procedure of the radiographs reveals that the
agreement between the global and local images is significantly better, if the global projec-
tions are shifted by two or three angular steps θ of the specimen rotation (each step 0.12◦)
with respect to the local projections. The more reliable 3D-registration procedure of the
tomograms corroborates this observation. The related rotation parameter corresponds to θ
= 0.31◦, whereas no rotational misalignment in the perpendicular directions has been found.
Hence, the not exactly adjusted rotation angle gives rise to a misalignment of 0.05◦ from the
third angular step (θ = 0.36◦). For the tumor, this angular misalignment may cause errors
in intensity of about 1%, but contributes only in negligible manner to the discrepancies in
the histograms mentioned above also because the detector is assumed to work in the linear
domain [61]. Corrections of systematic errors as proposed by [72] cannot be applied, since the
exact composition of the specimen is unknown.
One could presume that another source of error may lie in deformations of the highly elas-
tic specimen during the data acquisition. The visible deformation in the projections (see
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Figure 3.3 (e)) however corresponds to only 1.2? and can therefore be neglected. In order
to exclude any noteworthy deformation during data recording, affine registration including
global shearing and variable scaling parameters in the orthogonal directions has been carried
out [63]. These calculations have not given any indication for such deformations. Therefore,
it can be concluded that the specimen has not changed its shape and relative movement ar-
tifacts can be excluded.
The registrations of the radiographs and of the tomograms make available the scaling param-
eters in the orthogonal directions between global and local data, which correspond to 8.11
(±0.02). This value is only slightly higher than the nominal one given by the supplier of the
objectives [71,73]. Variations between the three orthogonal directions of maximal 0.02 are well
below the pixel size of the global data. The absorption histograms of the common volumes of
globally and locally acquired data strongly differ concerning absolute and relative peak posi-
tions and half widths. The partial volume effects, much stronger in the global tomograms [74]
and the edge enhancement, more clearly visible in the local tomograms [65,75,76] can notably
influence the histograms and explain the main discrepancies between the histograms before
re-sampling or binning. As the re-sampling with a factor of about eight equals an averaging,
these two effects should be of minor importance comparing the global and the re-sampled
local absorption histograms of common volumes. Binning, which corresponds to the use of a
large re-sampling factor (here about eight), especially carried out prior reconstruction, signif-
icantly sharpens the peaks and thereby improves the contrast (density resolution) [65]. The
comparison of the histograms obtained from the high-resolution data with the re-sampled
local histograms confirms this earlier result.
While the air peak of the global tomography data is detected at X-ray absorption coefficients
close to zero (cp. Table 3.1), the air peak of the local data is located at about 2.8 cm-1. A shift
to higher X-ray absorption (1.3 cm-1) is also observed if the global data are restricted to the
common region with the local radiography for reconstruction. Therefore, in agreement with
the literature [1], this shift is regarded as an artifact due to the local acquisition geometry.
Peak broadening in 3D data histograms may originate from minor peak shifts from slice to
slice. One of the reasons for these shifts can be the photon energy gradient in X-ray beams
from multilayer monochromators. However, in the present case this phenomenon can be ex-
cluded as the effect is absent within the global tomogram. For the local data, however, the
air peak position scatters around the mean value of 2.76 cm-1 by 0.84 cm-1. Correcting this
scattering from slice-to-slice, the FWHM of the air peak does not diminish remarkably (only
0.7%).
In order to reduce the artifacts related to the truncation of the local projections, it seems to
be straightforward to complement the local radiographs (or, equivalently, the sinograms) by
the less detailed global data that was previously described as zoom-in tomography [77]. For
the datasets in the present study, however, the results of this approach, given in Figure 3.9,
are rather disappointing. The peak positions of polymer and bone in the extended local data
are only slightly shifted and still far from the peaks derived from the global tomogram. This
observation is in quantitative agreement with the simulations and experimental data of Xiao
et al. [77]. The error estimated on the basis of this approach corresponds to a reduction by
11%, which fits our result of 14%. Therefore, this approach only supports the correction of
the air-related peak. The observation that the sinogram extension approach does not yield
satisfactory results, and does not have as much effect on the data as would be needed to
match the histograms, constitutes strong evidence that, for the present dataset, the mismatch
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in reconstructed absorption coefficients between the local and global data is not primarily
due to the typical local-tomography artifacts. Since, in addition, almost all experimental
parameters were the same in the acquisition of both datasets, with the only major exception
of the detector configurations used in both datasets, one can conclude that the discrepancies
are primarily caused by differences in the detector response functions.
Among the model-independent approaches, histogram matching belongs to the powerful meth-
ods to match the data. However, conventional histogram matching is rather difficult for to-
mography data because of their size, especially since the number of voxels in the common
volume differs between the global and local data by a factor of 535. Therefore, the approach
of histogram matching of the radiographs prior to reconstruction was chosen. Because the
intensity histogram of the global data (cp. Figure 3.4 (a)) exhibits discontinuities, the con-
ventional histogram matching procedure has been replaced by a two-parameter approach to
generate a distribution with comparable peak position and half width. This approach does
not provide perfect agreement, but much better results than the sinogram extension. Eval-
uating the graphs in Figure 3.8 (a), it has to be stated that this histogram matching does
not yet yield reliable local X-ray absorption coefficients. Therefore, the two-parameter his-
togram matching of the radiographs is considered to be rather an empirical method. It also
may depend on the choice of specimen. In the present example, however, it can be applied
to determine a common threshold for the direct comparison of global and local tomography
images.

3.5 Conclusion

Local tomography is a powerful technique to generate 3D pictures of small features in a larger
specimen that exhibit a strong X-ray absorption difference compared to their surroundings.
The local X-ray absorption coefficients derived from local tomography, however, are only semi-
quantitative even after applying correction procedures.
For the two datasets investigated here, the findings from the different approaches used to
match the reconstructed values of absorption coefficients, together with the comparison of
equivalent regions in the projection data (Figure 3.4 (b)), brought us to the conclusion that
the differences observed in the reconstructed X-ray absorption coefficients in the tomograms
are predominantly due to different point-spread functions of the two detector configurations
used resulting from the exchange of the lens in front of the camera, and much less to the fact
that one of the datasets was acquired in a local geometry. In the present case, a simple his-
togram stretching method therefore yielded better results to match the reconstructed values
than, for example, sinogram extension of the local data by the global dataset.
Generally, our study shows that, when attempting to match datasets from multi-scale tomog-
raphy measurements, experimentalists should not only consider the well-known phenomenon
of the shift of the reconstructed values due to local acquisition geometries, but also potential
differences due to other factors, such as different response of the detector configurations used.
Beyond the present study, the question in how far the absorption coefficients obtained by
SRµCT - even those obtained in global geometry - are quantitatively correct depends on how
much the detector response function, in each individual case, affects the measured I/I0 values
in the normalized projections. For cases where these effects are not negligible, and where
quantitatively correct absorption values are needed, well-defined and effective calibration pro-
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tocols may have to be established.

(a) (b)

Figure 3.12: Using different thresholds for global and local data, the dense network of smaller
capillaries seen in the histogram matched local data (b) can become completely invisible in the
global data (a)
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Chapter 4

Comparing Grating-based and
Propagation-based Phase-contrast
Computed Tomography for Soft
Tissue Imaging

4.1 Introduction

The common methods for microscopic investigation of soft tissues of human and animal origin
are optical microscopy, including histology, and high-resolution magnetic resonance imaging
(MRI). MRI has the advantage of being compatible with in-vivo studies and yielding 3D
images, but its spatial resolution is limited to approximately 80 µm [42]. Optical microscopy
of histological sections reaches much better lateral spatial resolution but here the specimen has
to be cut irreversibly into thin slices. This means that sectioning is essentially a 2D method. It
usually requires invasive preparation procedures that involve fixation, dehydration or freezing,
and embedding. These time-consuming processes often cause local stress and strain within
the inhomogeneous soft tissues [78]. The related local deformations can be corrected by means
of less detailed X-ray micro computed tomography (µCT) data. True micrometer resolution
µCT, however, is incompatible with in-vivo studies because of the high X-ray dose deposited
in the investigated object. However, on extracted tissue, it yields high-resolution 3D data
of the specimen morphology. Unfortunately, the composition and density variations in soft
tissue specimens only result in weak X-ray absorption contrast. This is particularly critical
for high spatial resolution because the contrast further decreases as the features get smaller.
Contrast-enhancing techniques like staining with contrast agents or corrosion casts can be
used [21], but there are tissues for which these techniques are known to fail, e.g., tumours in
the final stage [42]. An efficient alternative to X-ray absorption contrast µCT in studying soft
tissues is µCT in phase contrast mode. In X-ray phase contrast methods, refraction and/or
diffraction of X rays on interfaces or density modulations within the specimen generate image
signal, rather than only the X-ray absorption. The exact mechanism varies from technique to
technique. Common phase contrast methods include crystal interferometry [79, 80] analyzer-
based imaging [81,82], propagation-based imaging (PBI) [75,83,84] and, more recently, X-ray
grating interferometry (GIFM) [31,39,40] as well as related other grating-based methods [85].
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These methods differ greatly in their experimental setup and in the signal they provide, but
they have in common that the signal is related to variations in the of X-ray refractive index
within the object under study. Absorption and refraction of X rays in matter can be described
by means of the complex refractive index n, which is defined as

n(x, y, z) = 1− δ(x, y, z) + iβ(x, y, z). (4.1)

Here, the decrement δ describes refraction, whereas the imaginary part β describes absorption.
Both δ and β are dimensionless real-valued quantities and depend on the X-ray wavelength and
on the elemental composition and density of the medium. In conventional X-ray absorption-
contrast imaging, the image signal is usually the transmitted intensity,

I(x, y) = I0 exp

[
−4π

λ

∫
β(x, y, z)dz

]
, (4.2)

where I0 is the incident intensity and z the beam propagation direction. A tomographic
reconstruction of (−lnI/I0) yields the distribution of linear attenuation coefficient µ, which
is linked to β by the relationship µ = 4πβ/λ. For hard X rays, both δ and β are many
orders of magnitude smaller than unity for all materials, which reflects the weak refraction
and attenuation of the radiation when it passes through matter. For X-ray photon energies
above 10 keV, however, the values of δ for light materials, such as water and soft tissue, are
much higher than the values of β. Therefore, generating contrast from variations in δ can
drastically improve the contrast-to-noise ratio. Methods that use this principle are called ”X-
ray phase contrast” methods. However, the image signal in X-ray phase contrast is generally
not related to δ as a simple line integral, and it strongly depends on setup and data analysis
algorithm. Tomographic retrieval of δ(x, y, z) from phase-contrast images therefore requires
an additional data processing step: the reconstruction of the phase projection image ϕ(x, y)
from the images recorded by the detector. Since the wavefront phase ϕ and the refractive
index decrement δ are related by

ϕ(x, y) =
2π

λ

[∫
δ(x, y, z)dz

]
, (4.3)

a tomographic reconstruction of the integrated image then yields the distribution of δ. The
algorithm used to obtain ϕ(x, y) from the experimentally recorded images, known as ”phase
retrieval”, strongly depends on the experimental setup, the physical model and the approxima-
tions used. In the following, the term ”phase tomography” was used to refer to the combined
process of data acquisition, phase retrieval and tomographic reconstruction, or its results. In
the present study a tumor from human cells grown in nude mouse and a heart from a rat are
selected to quantitatively compare three phase tomography methods: X-ray grating interfer-
ometry [31] and two propagation-based methods: holotomography [86,87] and single-distance
phase tomography using Paganin’s method [36, 45]. The sensitivity and resulted contrast
as well as the spatial resolution were discussed with the aim to elucidate the performance
properties of each of the three methods for the imaging of selected biological tissues.
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4.2 Material and Methods

4.2.1 Specimen preparation

Balb/c nude mice (Charles River Laboratories, France) were used to obtain the tumor spec-
imen, in strict adherence to the Swiss law from animal protection. A suspension of 106 C51
tumor cells (murine colon carcinoma) was injected subcutaneously on the left flank of each
animal. Extraction of the grown tumors took place at the Institute for Biomedical Engineer-
ing (ETH, Zurich) before they had reached a diameter of 3 mm. Immediately after extraction
the specimen were fixed in 5% para-formaldehyde (para-formealdehyde) to avoid decompo-
sition. To reduce bubble formation during the experiment, which is a frequent phenomenon
in µCT with spatial resolution in the micrometer range, the immersed tumor samples were
put in a desiccator for 12 hours at a pressure of 5 mbar. After this degassing procedure the
specimens were transferred into polymer pipette tips for the measurements. The heart speci-
men was obtained from a male Fischer rat (Charles River Laboratories, L’Arbresle, France).
The specimen did not show any pathological sign. After extraction, it was immersed in 10%
para-formealdehyde solution. All operative procedures related to animal care were carried
out at the ESRF and strictly conformed to the Guidelines of the French Government (licenses
380825 and B3818510002). For the experiment, the heart was placed in a plastic tube 11 mm
in diameter.

dp

Specimen Detector Specimen

Grating 1 Grating 2

(a) Inline phase contrast (b) Grating interferometry

g1 g2

xg

dm

Figure 4.1: Setup schemes for (a) propagation-based and (b) grating-based phase contrast as
used in the present study.

4.2.2 Data acquisition and processing

Both tumor and heart were investigated with grating-based tomography, holotomography,
and single-distance phase tomography using Paganin’s algorithm. The two latter methods
are both propagation-based; they were performed on the same experimental raw data. The
main differences in setup parameters between the two specimens were the spatial resolution
and the field of view. The experiments were carried out at the ID19 beamline at the Eu-
ropean Synchrotron Radiation Facility (ESRF, Grenoble, France). The technical details of
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the beamline at the time of the experiment are described elsewhere [88]. The detector con-
figurations for all measurements were indirect CCD-based systems, i.e., the X-ray intensity
profile was converted to visible light by a scintillator screen, and the visible-light image was
then projected onto the CCD sensor by lens optics. Table 1 summarizes the key experimental
parameters for the measurements.
For the tumor measurements, the detector setup consisted of a 19-µm-thick gadolinium gal-
lium garnet (GGG, Gd3Ga5O12) scintillator, microscope optics with a 4× objective (numer-
ical aperture [NA] 0.16), and a 2.5× eyepiece. The CCD-based digital detector was an ESRF
FReLoN camera (model 230-42, 2048×2048 pixels of 15 µm size). The pixels were binned
2x2, resulting in an effective grid of 1024×1024 pixels with a pixel size of 3 µm. A photon
energy of 17.6 keV was selected from the spectrum of an undulator source by Bragg reflection
on a multilayer (Ru/B4C, period 4 nm).
For the measurements on the rat heart, a powder scintillator and 2× magnifying lens optics
were used with two different detector heads: a FReLoN model 230-42 (see above) for grat-
ing interferometry and a FReLoN model TH7899 (2048×2048 pixels of 14 µm size) for the
propagation-based imaging, resulting in effective pixel sizes of 8.0 and 7.5 µm, respectively,
for grating interferometry and propagation-based imaging. A wiggler was used as a source,
and a photon energy of 19 keV selected with a double-crystal Bragg monochromator (Si-111).

(b)(a)

100 µm

7.08 7.32
δ/10-7

3.7 9.8
µ(10-4/cm)

Figure 4.2: Tomographic slices of the tumor sample measured with an interferometer at the
beamline ID19 (European Synchrotron Facility, France). Gray values are determined according
to the mean value (a) and phase difference (b) in the intensity oscillation.

Grating interferometry (GIFM)

In X-ray grating interferometry the phase shift of the photon beam transmitted through the
specimen is measured using a phase grating G1 and an absorption grating G2. Figure 4.1
(b) shows the setup of a grating interferometer schematically. G1 and G2 are line gratings.
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Grid G1 acts as a diffractive element which induces a periodic modulation in the wavefront.
Downstream of G1, this modulation leads to an interference pattern with a period gs. In the
experiments reported here, the incident wavefront was nearly plane and grating lines had a
thickness that was designed to result in a phase shift of π in the wavefront at the selected
photon energy. In this case, the period gs of the interference pattern is half of the pitch g1
of G1. The visibility of the interference fringes varies as a function of distance behind the
grating and reaches maximum values at distances [89]

dm = m
g21
8λ

(m = 1, 3, 5, ...). (4.4)

The distances dm are called fractional Talbot distances or Lohmann distances. In the following
one shall refer to the index m as the Talbot order and to dm as the m-th fractional Talbot
distance.
The analyzer grating G2 is placed downstream of G1 at one of the fractional Talbot distances
defined by Equation (4.4). The lines of G2 should be as absorbing as possible, and its period
g2 should be designed to be the same as the period of the interference pattern generated by
G1. Grating G2 works as a transmission mask and encodes fringe position into intensity of
the detector [31]. G2 is needed because fringe spacing and displacement are usually too small
to be resolved directly by the detector.
When an object is placed in the X-ray beam, the refraction caused by the object will result
in a shift and/or distortion of the interference fringe pattern at the entrance plane of G2.
The change in position of the fringes is proportional to the first lateral derivative of the
projected phase profile of the specimen, and therefore its detection gives a differential phase
contrast image. However, in the image recorded by the detector, this information is usually
superimposed on the absorption signal from the specimen.
For separating the differential phase information from the absorption information, the phase
stepping method can be used: one of the gratings G1 or G2 is laterally scanned in a few steps
over one fringe period, in the direction orthogonal to the fringe orientation (and, thus, also
orthogonal to the grating lines). This is an adaptation of the well-known general concept of
phase shifting interferometry to the particular case of a grating interferometer. As a function
of the position xg of the scanned grating Figure 4.1, the intensity recorded in each pixel of
the detector will oscillate. The phase Ψ of the measured intensity oscillation can easily be
determined from the data, for example, by Fourier analysis. It is related to the X-ray phase
shift ϕ by

Ψ(x, y) =
λdm
g2

∂ϕ(x, y)

∂x
(4.5)

The experimentally obtained map of Ψ(x, y) is called a differential phase contrast (DPC)
image. It is obvious from equation (5) that the sensitivity of a grating interferometer to the
phase gradient ∂ϕ/∂x increases with increasing inter-grating distance dm (provided the spa-
tial coherence of the X-ray beam is sufficient [89] and with decreasing grating period g2. It
is also obvious that the phase profile ϕ(x, y) can be retrieved from Ψ(x, y) through a simple
integration along the x coordinate of the image, as long as the boundary values ϕ(0, y) are
known for all positions y. This condition is usually met in tomography, unless the specimen is
larger than the field of view. The 3D distribution of the decrement δ(x, y, z) of the refractive
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index can be retrieved from ϕ(x, y) by tomographic reconstruction, as is apparent from equa-
tion (3). In experimental practice, the object imaged (or the container holding the object) is
often immersed in a phase-matching liquid in a tank with plane-parallel walls, to reduce the
strong phase contrast from the object surface (or the container wall) that can create artifacts
in the image. When immersion is used, it has to be taken into account that one obtains only
the relative values ∆δ = δ−δ0, where δ0 is the decrement of refractive index of the immersion
medium. Obviously, if the value of δ0 is known, then it can be used as a reference to determine
the absolute δ values. In addition to the DPC image, an absorption-contrast image can be
obtained from the phase stepping scan data by simply calculating the mean value of each
pixel over the oscillating intensity function.
The recovery of the DPC and the absorption image from the raw data was performed by a
computer program written by the authors in the IDL language IDL language (Exelis, Boulder,
CO, USA). This is the code routinely used at beamline ID19 for the processing of grating
interferometry data.
Experimental parameters for GIFM on the tumor specimen: The interferometer
used for the measurements on the tumor consisted of a silicon phase grating G1 with a pitch
g1 = 4µm and a gold analyzer grating G2 with g2 = 2 µm pitch. The gratings were sepa-
rated by 140 mm, i.e., the 5th fractional Talbot distance (FTD) at the photon energy of 17.6
keV. Phase-stepping scans with 4 points were performed by stepping the grating G1 over one
fringe period, i.e., over a range of g1/2, at grating positions xgj = jp1/8 (j = 0, 1, 2, 3). The
exposure time was 0.3 s per raw detector image for 359 projection angle intervals over 360◦.
Because of the strong phase gradient occurring between the edges of the sample container and
the surrounding air, phase wrapping artifacts occur [90]. In the present study, these artifacts
were eliminated by a procedure in which a priori information about the container (i.e., its
chemical composition and its rotational symmetry) was used, together with geometric infor-
mation obtained from the scan data, to model the phase profile of the container and replace
the areas around the container edges in the differential phase contrast radiographs by modeled
data, prior to tomographic reconstruction.
Experimental parameters for GIFM on the heart specimen: For the heart measure-
ment the gratings had periods of g1 = 4.8 µm and g2 = 2.4 µm. They were placed at a distance
of dm = 482 mm between one another (corresponding to m = 11, i.e., the eleventh FTD at
19 keV). Phase stepping was carried out by scanning grating G1 over one fringe period in 5
steps, with an exposure time of 1.5 s per raw image, for 1500 projections over 360◦ (i.e., 1499
angular intervals). A correction of phase wrapping effects was not necessary for these data
because the measurements were carried out while the heart in its container was immersed in
a tank filled with water, so that the phase gradient at the container walls was significantly
reduced.

Holotomography

Holotomography [86] is based on phase contrast generated by the propagation of X rays in
free space between specimen and detector. Compared to absorption-contrast imaging, the
additional information needed to solve the phase problem is obtained by taking images at
different propagation distances.
Because, at any propagation distance, the contrast transfer function (CTF) for phase con-
trast takes zero values for certain spatial frequencies, data sets for holotomography are usually
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taken at more than two distances. In the present study, the propagation distances were chosen
with a computer software tool that optimizes the overall squared CTF [35], using the photon
energy and the detector resolution (expressed in terms of pixel size) as input parameters.
This tool, named ”ht opti2” and written in the Octave programming language, is available to
users at the beamline ID19 of ESRF. Additional constraints, such as the technically feasible
minimum and maximum values of propagation distance, need to be taken into account. For
the measurements on the tumor specimen, four distances were used in the holotomography
experiment. The data were acquired at an initial pixel size of 1.5 µm of the detector and
then binned to 3 µm pixel size by software. For the initial detector pixel size of 1.5 µm,
distances between specimen and detector of dp = 13, 60, 120, 360 mm were determined. For
each of these four distances, images were taken at 800 equidistant angles over a range of 180◦,
with an exposure time of 0.3 s per raw image. For the holotomographic phase retrieval and
tomographic reconstruction, the data set acquired at 13 mm distance was excluded because
it contained strong artifacts.
For the heart measurements, data were taken at five propagation distances within the techni-
cally accessible range: 200, 400, 700, 900 and 1100 mm. The exposure time was 1 s per raw
image for 1500 projections over 360◦. In these measurements, the accessible sample-detector
distances were technically limited to 1.1 m by the travel range of the longitudinal motion stage
on which the detector of the ”medium-resolution” tomography setup at ID19 is mounted [88].
The data set acquired at 900 mm was not used for the holotomographic reconstruction be-
cause of a problem in the alignment of the images with those acquired at other distances.
The phase retrieval algorithm for holotomography at beamline ID19 is implemented in the
Octave programming language. The user can choose between several algorithms proposed.
For the present study, a mixed approach between the contrast transfer function (CTF) and
the transport of intensity equation (TIE) [37,87,91] was chosen. While the calculation of the
differential phase is based on TIE is less adapted for hard x rays (10-100 keV) [35], it is well
suited for short propagation distances. The CTF approach, on the other hand, requires that
objects have a slowly varying phase and weak absorption. The combined model has the advan-
tage that it is valid for extended propagation distances as well as non-negligible absorption.
To reduce low frequency artifacts, which can arise from the fact that the transfer function for
phase contrast is always small in the low spatial frequency range, the low-frequency compo-
nents of the phase profile are presumed to be proportional to the logarithm of the projected
intensity transmission via a fixed estimated ratio δ/β of refractive index decrement over ab-
sorption coefficient [87]. In the present case, this a-priori input parameter was taken to be
1371, corresponding to the values of δ and β of water at 17.6 keV.
The phase retrieval algorithm for holotomography data contains a filter that performs a de-
convolution of the image with the resolution-function of the detector. To obtain better insight
in the influence of this filter on the image quality the holotomography data of the heart was
processed additionally without the filter.

Single-distance phase retrieval

Under a set of simplifying assumptions, the phase profile ϕ(x, y) of the X-ray wavefront at
the exit plane of the specimen can be recovered from only a single radiograph in free-space
propagation phase contrast, taken at a suitable distance between detector and specimen. In
this case, it is not necessary to take radiographs at multiple distances as in holotomography.
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Here a simple but powerful non-iterative algorithm was used presented by Paganin et al. [36],
in a recent implementation in the Java computer language. This simple program, named
ANKAphase [45], is freely available and can be run as a standalone application or as a plug
in to the well-known software ImageJ.
There are essentially two conditions that should be met for Paganin’s algorithm to be valid.
Firstly, the ratio δ/β of the decrement of refractive index δ over the absorption coefficient β
should be constant throughout the specimen. While this implicitly allows for non-negligible
absorption by the specimen (an advantage), it also means that the chemical composition of
the specimen should vary only marginally within the object. It should be noted that, while
the multi-distance holotomography approach presented above also assumes such a fixed ratio
δ/β, it only uses this fixed ratio for the reconstruction of the low spatial frequencies. In single-
distance phase retrieval, however, the assumption of such a fixed ratio should be expected
to have much greater influence since it affects the whole frequency spectrum of the retrieved
phase map, not only the low frequencies.
Secondly, Paganin’s algorithm requires that the approximation of the phase-contrast signal
as being proportional to the Laplacian of the phase profile, (∂2ϕ/∂x2 + ∂2ϕ/∂y2), should
be valid. This is a common point with the TIE approach in holotomography (from which
Paganin’s method is derived), but not with the CTF approach. It implies that propagation
distances are limited to dp << D2/λ, where dp is the propagation distance, D the size of the
smallest feature to be resolved in the object, and λ the X-ray wavelength.
The spatial resolution of the phase maps retrieved with Paganin’s algorithm is limited to
((λdp)

0.5). This means that a trade off between spatial resolution (which improves with
shorter dp) and contrast (which increases with dp) needs to be made - an additional minus
compared with multi-distance holotomography techniques. Moreover, the spatial frequencies
at which the contrast transfer function goes through zero will not be well reconstructed with
a single-distance method (unless there is substantial absorption contrast at these frequen-
cies). These limitations may be compensated by advantages that single-distance algorithms
in general, and Paganin’s method in particular, have over multi-distance approaches. These
advantages include the greatly reduced instrumental effort and time for data acquisition, ow-
ing to the fact that radiographic projections are only required from one distance, just as in
a standard absorption-contrast measurement. In addition, the image registration steps re-
quired in holotomography data processing to merge the information from different distances
are not needed when working with data from a single distance. Moreover, Paganin’s method
essentially restricts the calculation effort for phase retrieval to two Fourier transforms of each
radiographic projection and is therefore relatively fast.
In the present study, phase recovery and tomographic reconstruction using ANKAphase was
performed for all data sets obtained by free-space propagation, in addition to the holotomo-
graphic reconstruction performed on the same data. Similar to the holotomography processing
a constant ratio of δ/β = 1371 was used for the tumor, and δ/β = 1546 for the heart.

4.2.3 Tomographic reconstruction

After phase recovery, the tomographic reconstruction of most of the data was carried out
using the program PyHST [62]. This software has been developed in-house at the ESRF and is
used as the standard tomography reconstruction program for all user experiments at beamline
ID19. PyHST uses the filtered back-projection (FBP) method with a standard ramp filter. In
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Table 4.1: Key experimental parameters for the measurements.

Tumor sample Heart sample

Detector pixel size ∆pix 3 µm 7.5 µm (PBI)
8 µm (GIFM)

X-ray photon energy E 17.6 keV 19 keV
and wavelength λ 0.704 Å 0.653 Å

Monochromator Multilayer Double crystal
Ru/B4C, 4 nm period Si-111 (Bragg)

Propagation-based imaging (PBI)

Propagation distancesa dp (13), 60, 120, 360 mm 0.2, 0.4, 0.7, (0.9), 1.1 m

Grating interferometry (GIFM)

Grating periodsg1 4 µm 4.8 µm
g2 2 µm 2.4 µm

Talbot order m 5 11
Distance dm between gratings 140 mm 482 mm

aData taken at distances in brackets were not used for holotomography reconstruction.

particular, the filter used in this study does not apply any damping to high frequencies. Some
of the data were tomographically reconstructed with code written in IDL, which implements
the same principles (i.e., FBP and no high-frequency damping). For the differential phase
contrast projection images from GIFM data, an imaginary sign filter, recently implemented in
PyHST, was used instead of the ramp filter in the filtering step of the FBP procedure. Since all
of the phase contrast methods used here are differential methods, i.e., the quantities measured
have the characteristics of a derivative of the projected phase profile, an integration constant
was added to each tomogram, to obtain absolute values of the decrement δ of refractive index.
This constant was obtained, in each case, by shifting the histogram of the tomogram data so
that the peak corresponding to the material surrounding the container corresponded to the
literature value of δ for this surrounding material. For the PBI measurements, this material
was air, with a value of δair = 7 × 10−10. For the GIFM measurements, the material was
demineralized water at room temperature. The literature value is δwater(19keV ) = 6.39×107.

4.2.4 Comparative analysis and quality assessment

To compare the quality of the images obtained by the different modalities, an analysis of their
spatial resolution and density resolution as well as the presence of artifacts was carried out.
For a detailed comparison between the methods for each specimen, equivalent regions of
interest (ROIs) had to be identified. For the measurements of the heart this was trivial
because the object had not been removed from its container between the data acquisition of
interferometry and holotomography. The tumor sample, however, had been removed from
its container between the two measurements to remove bubbles that had formed in the first
measurement. It was therefore necessary to register the tomography volume images obtained
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Figure 4.3: Tomographic slices of the tumor sample measured with holotomography at the
beamline ID19 (European Synchrotron Radiation Facility, France). The images were obtained
with no-phase retrieval (a) at the detector-to-sample distance dp of 13 mm and holotomography
reconstruction (b).

with free-space propagation with those from grating interferometry. Using a 3D registration
tool [46] the calculated transformation parameters were used to transform the interferometer
tomograms to match the ROI defined in the holotomography data.
As a measure of the spatial resolution in the tomograms, the radial spectral power function
(RSP) was calculated for regions with strong structure and normalized by the RSP of a
homogeneous area. The spatial resolution was estimated as the first observed frequency
which is greater than twice the mean value of the baseline [92,93].
For the analysis of the density resolution (CNR) the contrast-to-noise ratio [94]

CNR =
|Sa − Sb|√
σ2a + σ2b

(4.6)

was determined. In this equation, the quantities Sa and Sb are the mean values of two
homogeneous ROIs a and b in the tomograms, representing two different materials. The
quantities σa and σb denote the standard deviations of the values in these same two ROIs.
The CNR was determined for different pairs of materials a and b, where b was always the
PFA.
In addition to the CNR, the histograms of the presented tomographic slices were determined;
they give additional information on the density resolution of the different imaging modalities.
In the histograms, each ensemble of voxels representing a given material appears as a peak.
While the integral area under the peak corresponds to the number of voxels corresponding
to the material, the width of the peak - as expressed, for example, by its full width at half
maximum (FWHM) - are a measure of the density resolution: the smaller the width of the
peak, the higher the density resolution [65].
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Finally, a qualitative analysis based on visual inspection and comparison of the tomograms
obtained with the different methods was made. This analysis included such aspects as the
visual distinction of different regions and the presence of noise and artifacts, such as ring
artifacts, cupping or other low-frequency artifacts.

(c) (d)

(b)

7.6 8.2

δ/10-7(a)

100 µm

(I)

(II)(I)(II)

(III)
(IV)

Figure 4.4: Tomographic slices of the tumor sample measured with one distance propagation
based tomography (Paganin) at the beamline ID19 (European Synchrotron Radiation Facility,
France). The images differ according to their sample-to-detector distance dp by 13 mm (a),
120 mm (b), 180 mm (c) and 360 mm (d). For the features (II-dark tissue, III-bright tissue,
IV-lipid) in (c) the CNR was calculated. Noise is represented by pixels belonging to PFA
(I). Along the dashed line an image profile was made (4.10). The rectangles in (d) show the
regions (I-full of features, II-background) which had been used to determine the RSP.
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4.3 Results

The tomographic slices upon which all further analysis was based are shown in Figures 4.2
through 4.7. These figures show, for each imaging modality and phase-retrieval technique, one
slice of each specimen. The positions of the slices in the entire volume data sets were selected
for their wealth in relevant features. Clearly visible are the low-density spots (appearing
in black), which are assumed to be lipid cells. In the GIFM image (see Figure 4.2) one can
clearly distinguish between two different kind of soft tissue. Blood vessels can be seen as bright
disordered spots. The dark background is the PFA. Figures 4.2, 4.3, 4.4 show data for the
tumor measurements. Figure 4.2 shows GIFM data. The absorption tomogram Figure 4.2 (a)
and the phase tomogram Figure 4.2 (b) were extracted from the same data. Figures 4.3 and
4.4 show images obtained from free-space propagation data. Figure 4.3 (a) is an absorption
tomogram (i.e., no phase recovery was performed, and the data were treated as if they were
pure absorption-contrast data), reconstructed from data taken at the smallest propagation
distance realized (13 mm). Figure 4.3 (b) is a phase tomogram obtained by holotomography,
and Figure 4.4 shows phase tomograms obtained by applying Paganin’s method to the data
sets taken at different distances. Figures 4.5, 4.6, 4.7 show data for the heart measurements,
arranged in the same order as the tumor data in Figures 4.2, 4.3, 4.4. The CNR analysis was
performed on the ROIs marked in the panels Figures 4.4 and 4.7 (c). Its results are shown
in Tables 4.2 and 4.3 for the tumor and the heart sample, respectively. The histograms of all
slices shown in Figures 4.8 and 4.9.
The ROIs used for the RSP analysis of spatial resolution are marked by rectangles in Figures
4.4 (d) and 4.7 (d). The values of spatial resolution obtained from the RSP analysis are listed
in Tables 4.2 and 4.3. The results show strong differences between the different methods. In
addition, section profiles were taken at the positions marked by the dashed lines in Figures
4.4 (d) and 4.7 (d). These profiles are shown in Figures 4.10 and 4.11. The holotomography
reconstruction procedure includes, by default, a deconvolution with an estimated detector
resolution function to the projection data prior to the actual phase retrieval process. This is
neither the case for the Paganin software used here (ANKAphase) nor for the software used to
reconstruct the GIFM data. For comparison, an additional holotomography reconstruction of
the heart data sets was performed, in which the deconvolution was deactivated. A comparison
of the data obtained with and without the deconvolution is shown in Figure 4.15. The images
differ in sharpness and in the overall reconstructed values of δ

4.4 Discussion

As should be expected, at the photon energies used, the specimens yield hardly any absorption
contrast. This is apparent in the absorption-contrast tomograms, shown in Figures 4.2 (a),
4.3 (a), 4.5 (a) and 4.6 (a). They show hardly any features, and most of the few details that
can be seen in these ”absorption” images are actually a result of edge-enhancing inline phase
contrast, especially in Figures 4.2 (a), 4.5 (a), and 4.6 (a), which represent cases in which the
propagation distance was relatively long. The nearly-complete absence of absorption contrast
is reflected by the poor CNR values of the absorption images (Tables 4.2 and 4.3) and by the
fact that their histograms (Figure 4.8, 4.9) have only a single broad peak. Visual inspection
shows that the absorption images are dominated by noise and ring artifacts and are unusable
for practical purposes, reflecting the fact that absorption contrast is insufficient for the dis-
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Figure 4.5: Tomographic slices of a rat heart measured with a grating based interferometer at
the beamline ID19 (European Synchrotron Radiation Facility, France). The contrast is base
on pseudo absorption (a) and phase (b).
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Figure 4.6: Tomographic slices of a rat-heart measured with holotomography at the beamline
ID19 (European Synchrotron Radiation Facility, France). The images were obtained with
no-phase retrieval (a) at a detector-to-sample distance dp of 200 mm and holotomography
reconstruction (b).
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crimination of different types of soft tissue.
Unlike the absorption data, most of the phase tomograms are of high quality in terms of their
contrast-to-noise properties. This observation is valid for images obtained from all three phase
retrieval methods investigated, i.e., GIFM, holotomography and Paganin’s method. However,
substantial differences exist between the images obtained with the different methods, and/or
from different propagation distances. These will be discussed in the following.
The overall best results in terms of the contrast-to-noise ratio are obtained by interferometry.
For most of the materials in the specimens, the CNR values shown in Tables 4.2 and 4.3,
which describe the contrast to the immersion liquid PFA, are best for the GIFM data. This is
particularly true for tissue and blood. The trend is different for lipid, where the CNR values
are similar for PBI and GIFM, and for the container material, where PBI yields much higher
CNR values.
The lipid and the container material (assumed to be polypropylene) are structures with rel-
atively strong phase contrast. Closer inspection of the data reveals that the higher CNR for
these materials obtained with the PBI techniques compared to GIFM is mainly due to the
fact that the contrast at which these structures are rendered is larger in the phase-retrieved
PBI images than in GIFM; i.e., the numerator in Equation (4.6) takes a higher value. For
example, the section profiles shown in Figure 4.10 show that the reconstructed refractive in-
dex of the lipid structures in the tumor differs from the surrounding tissue by no more than
3×10−8 in the GIFM tomogram, whereas the difference exceeds 10−7in the PBI images (both
Paganin and holotomography). The reconstructed values of δ for the container material are
even extremely different between GIFM and the PBI methods: GIFM yields values around
6× 10−8 (close to the literature value of polypropylene for the working energies), while holo-
tomography and Paganin’s approach yield grossly underestimated values around 3× 10−8.
These discrepancies in the reconstructed values of δ between the methods can have various
origins. Thus, in the PBI techniques, the assumed condition of a fixed, known ratio of δ/β
may be violated to an extent that can explain the differences. This is clearly the case for
the container material, for which δ/β ranges between 5000 and 6500 for the working energies
- more than 3 times higher than the values for water, which were assumed to be uniformly
valid in the slice. GIFM is not dependent on such a priori assumptions on the X-ray opti-
cal properties and yields more quantitatively correct values for these high-contrast materials.
However, GIFM may yield systematically reduced contrast in cases where phase wrapping
occurs [90]. Even details in the reconstruction algorithms can have a non-negligible influence
on the reconstructed values. For example, the histograms in Figure 4.15 demonstrate that
the reconstructed values in holotomography depend on whether the detector deconvolution
filter is used or not.
When comparing the different PBI images, it should be expected that the images obtained
by single-distance phase retrieval should improve in CNR as the propagation distance dp is
increased, because of the generally increasing values of the contrast transfer function (Figure
4.14). Visual inspection of Figures 4.4 and 4.7 seems to confirm this expectation, but the CNR
values extracted from these images (Tables 4.2 and 4.3) only partly agree with this finding. In
particular, the CNR values obtained for lipid in the tumor sample and for blood and container
material in the heart samples do not follow the expected trend. An important reason for this
deviation from the expected behavior is the fact that systematic artifacts within the regions
assumed to be homogeneous can increase the σ values in the denominator of Equation (4.6)
and thus reduce the CNR value obtained. In particular, cupping artifacts due to imperfect

50



phase reconstruction influence the results in this way. These artifacts tend to become stronger
with increasing distance dp. This explanation is in accordance with the fact that those regions
in which the anomalous behavior of the CNR with distance occurs are relatively small in area
and strong in contrast, and are thus more likely to be affected by cupping.
The holotomography images systematically show a lesser CNR than the Paganin images. A
partial explanation can be related to the higher spatial resolution of the holotomography data
(Tables 4.2 and 4.3, Figure 4.12, 4.13), but this is not a valid explanation for the data obtained
by holotomography without the use of the detector deconvolution filter [Figure 4.13 (b)].
Not surprisingly, the use of the detector deconvolution filter in holotomography drastically
improves the spatial resolution (Table 4.3 and Figures 4.13 (b), 4.13 (c), 4.15). In terms of the
statistical properties of the images, one might expect the CNR to decrease as a result of the
use of this filter (which acts like a sharpening filter and can thus be expected to amplify noise).
However, this is not uniformly the case, as a comparison of the CNR values obtained with and
without the filter shows (Table 4.3). The fact that regions as the lipid or the container wall
exhibit a better CNR with the filter activated than without it is most probably due to the
fact that the sharpened projection images reduce cupping artifacts in the tomograms. The
same filter can, in principle, be combined with the other phase retrieval methods, although
this was not implemented in the software used for this study.
The spatial resolution, as assessed qualitatively through inspection of feature edges in the
images and estimated quantitatively by the RSP method (section 4.2.4 above and last column
in Tables 4.2 and 4.3), is clearly better in the PBI images than in the GIFM images. This
finding concerns both the absorption images and the phase tomograms. The main reason for
this systematic difference between PBI and GIFM is that, while the resolution is limited by
X-ray diffraction in both cases, the mechanism is different. In GIFM, the spatial resolution is
limited by the shear between the two interfering first orders of diffraction of the grating G1.
This shear is

s = 2
λdm
g1

(4.7)

Applied to the experimental parameters (Table 4.1), Equation (4.7) yields shear values of s
= 9.9 µm for the tumor measurements and s = 26.2 µm for the heart measurement. Since
these values are substantially larger than twice the pixel size, 2 ∆pix, the detector resolution
can be assumed to be only marginally limiting the overall spatial resolution of the GIFM
measurements reported here. In the propagation-based images, the spatial resolution is limited
by the width w of the first Fresnel zone,

w =
√
λdp (4.8)

The values of w for the PBI measurements on the tumor are w = 1.0, 2.1, 2.9, 5.0 µm
(for dp = 13, 60, 120, 360 mm). For the rat heart, they are w = 3.6, 5.1, 6.8, 8.5 µm (for dp =
200, 400, 700, 1100 mm). The observation of poorer spatial resolution in GIFM compared to
PBI (Tables 4.2 and 4.3) is thus in qualitative accordance with the theoretical expectations.
The absolute values for spatial resolution obtained via the RSP method, however, differ sub-
stantially from the values of s and w obtained from Equations (4.7) and (4.8), but it should
be considered that they were obtained with an entirely different method and using different
definitions. In addition, the detector resolution is a major limiting factor for the PBI images.
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Figure 4.7: Tomographic slices of a rat heart measured with holotomography at the beamline
ID19 (European Synchrotron Radiation Facility, France). The images were obtained using
Paganin-processing (a)-(d) for distances dp =(200, 400, 700, 1100 mm) respectively. To
determine the CNR the marked areas in (c) of the features (II-tissue, III-lipid, IV-blood, V-
container) against the background (I) were used. The dashed line demonstrates the region
along which the profiles (4.11) were taken. The rectangles in (d) show the regions (I-full of
features, II-background) which had been used to determine the RSP.
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Figure 4.8: The figure illustrates the histograms of tomographic slices of a tumor sample pre-
sented in this study. The gray values are based on the pseudo absorption coefficient (a+b)
and the real decrement of the refractive index δ. δ-values are obtained by interferometry (c),
Paganin processing at highest distances (b) and Holotomography (c). In the gray scale bar the
gray value range which can be observed in the images of the respective slice are illustrated. In
the phase contrast histograms at least two peaks PFA (left) and tissue (right) can be distin-
guished. Prominent peaks in the phase contrast histograms are labeled with: S1 - PFA, S2 -
Dark Tissue, S3 -Bright Tissue Tumor , S4 - Blood.
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The holotomography images (Figures 4.3 and 4.6) clearly have the best spatial resolution
among the tomograms obtained in this study, for each of the specimens. This is confirmed by
the quantitative values from the RSP analysis (Tables 4.2 and 4.3) and by a look at zoomed
details (Figure 4.12, 4.13). This result is more than expected because (a) holotomography
combines the good contrast of long propagation distances with the high resolution information
that can be obtained at short distances, and (b) among the different computer programs used
in this study for retrieving the phase images, the holotomography routine was the only one
with a detector deconvolution routine.
The fact that the holotomography reconstruction of the heart data set without the deconvo-
lution yields a spatial resolution even inferior to the reconstructions obtained without such a
filter using Paganin’s method (4.12, 4.13, Tables 4.2 and 4.3) indicates that the deconvolution
filter is decisive for spatial resolution.
One of the striking visual differences between the GIFM tomograms on the one hand and the
PBI images on the other - especially in the case of the heart sample - is that the PBI data
exhibit remaining phase-contrast fringes even after phase retrieval (Figures 4.6 and 4.7), while
the GIFM data do not exhibit any such artifacts (Figure 4.5).
These residual fringes in the PBI images can have a substantial influence on any quantitative
analysis of phase tomography data. In the present case, they may have affected the results
of resolution estimations by the RSP method, in which they tend to give deceivingly good
values for spatial resolution. On the other hand, if such fringes are present in regions used for
contrast analysis they will degrade the CNR value and broaden the peaks in the histograms.
(For the CNR analysis the selcted regions were used to excluded these effects, but the his-
tograms shown in Figure 4.8 and 4.9 include their effects.)
More importantly, residual fringes will generally impair the correct interpretation of the re-
constructed volume images, whether they are inspected by a human beholder or whether
machine-aided segmentation procedures are used. In both cases, the artifacts pose the risk of
false-positive recognition of features such as interfacial layers.
The GIFM phase tomography data seem less sensitive to ring artifacts than both absorption
data and PBI phase tomograms. In the Paganin-reconstructed images, the influence of ring
artifacts decreases with increasing propagation distance. This can be attributed to the fact
that, while the phase contrast generally increases with distance, the prevalence of artifacts,
which arise predominantly from imperfect correction of sharply-localized variations in the
beam profile or non-uniformity of the detector response (e.g., impurities on the scintillator),
is essentially independent of distance.

4.5 Conclusion

The comparison of synchrotron-radiation X-ray phase tomography data obtained with dif-
ferent acquisition and phase-retrieval methods, as presented in this study, quantitatively
confirms the complementarity of the three methods investigated, i.e., X-ray grating inter-
ferometry (GIFM) and two phase recovery methods in propagation-based imaging (PBI):
multiple-distance holotomography in a combined TIE/CTF approach, and single-distance
phase retrieval using Paganin’s method. The GIFM phase tomographic data have the highest
density resolution and show the best overall accuracy of the retrieved values of refractive index
(where those values were known). They do not show substantial problems with low-frequency
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Figure 4.9: The figure illustrates the histograms of tomographic slices of a rat-heart (a-e)
presented in this study. The gray values are based on the pseudo absorption coefficient (a+b)
and the real decrement of the refractive index δ. δ-values are obtained by interferometry (c),
Paganin processing at highest distances (b) and Holotomography (c). In the gray scale bar the
gray value range which can be observed in the images of the respective slice are illustrated. In
the phase contrast histograms at least two peaks PFA (left) and tissue (right) can be distin-
guished. Prominent peaks in the phase contrast histograms are labeled with: S1 - PFA, S2 -
Tissue, S3 - Vessel Wall (Heart) , S4 - Blood.
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Figure 4.10: The plots show profiles of sections in the tumor images measured with phase
contrast based µCT using X-ray grating interferometry (a) and propagation based µCT. For
the latter one can differentiate between Paganin (b) and Holotomography (c). The profile is
selected along the dashed line in the cropped region illustrated above every plot. The position
of the dashed line is highlighted in the Paganin image in Figure 4.4 (d).
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artifacts such as cupping and have no remaining phase-contrast fringes. This makes GIFM
phase tomograms easy to interpret and to segment. On the other hand, the spatial resolution
of GIFM is limited by the shear of the two beams created by diffraction in the first grating.
Our study confirms that GIFM performs best among the phase-contrast generation methods
and phase retrieval algorithms when spatial resolution need not be better than approximately
10 µm. For higher spatial resolution, PBI methods are better suited, mostly because they
are limited only by the detector resolution and by Fresnel diffraction from the specimen. The
holotomography approach used here performed by far best concerning this figure of merit. An
important factor in this good performance was the deconvolution with the estimated detector
resolution carried out by the holotomography reconstruction software. Such a deconvolution
filter would be a valuable option also in phase retrieval software for the other techniques,
where it is yet to be implemented.
For GIFM, the resolution function by which the images are deconvolved should include the
effects of grating diffraction. Paganin’s method of single-distance phase retrieval has the ad-
vantage over GIFM and holotomography that it requires no more instrumental effort than
a standard absorption tomography scan, both in terms of the experimental procedure (in
particular the net exposure time and the total time required for data acquisition) and the
amount of data and number of raw images generated. This can be an important advantage
when imaging specimens subject to degradation by exposure to radiation (e.g., development
of bubbles in aqueous environments), temperature change etc. A somewhat unexpected result
is that, in holotomography, the combined CTF/TIE approach chosen for the reconstructions
here proved to be as much influenced by strong deviations of δ/β from the assumed value, in
certain regions of the specimen, as the single-distance approach. However, holotomography
could generally have performed better in this study if the data from the shortest distance had
been usable.
From a users point of view, it can be noted that there is a tradeoff between complexity of the
setup, complexity of the data processing, and quality of the data. Among the methods used
here, GIFM is the one that requires the most complex mechanical setup. However, the data
analysis requires no other parameters than the experimental geometry, and in particular no
knowledge of the sample composition. The processing is thus, in principle, fully automatic.
An important restriction is, however, the need to avoid phase jumps. The specimen therefore
either needs to be immersed in a phase-matching liquid (here: water), or the outer edges of
the specimen (or its container) need to be replaced in the projection radiographs by modeled
data, an approach chosen for one of the samples measured in this study. Holotomography,
on the other hand, is conceptually simple in terms of data acquisition. The difficulty lies in
the processing, which requires substantial manual interaction and a good degree of expertise.
It also requires image registration of the data taken at different distances. While this step is
largely automated, it may fail or yield unsatisfactory results. Single-distance phase retrieval
with Paganin’s method is very simple and fast in terms of data acquisition and relatively easy
in processing (although it requires a reasonable correct guess of δ/β), but good results are
only obtained for ”well-behaved” objects, in which the actual ratio δ/β does not deviate too
much from the assumed value.
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Table 4.2: Contrast-to-noise ratios (CNR) and spatial resolution (SR) obtained with the dif-
ferent modalities, for the tumor sample. The CNR values were determined from the ROIs in-
dicated in Figure 4.4 (c) using the definition in Equation 4.6. The CNR is determined between
three features (dark tissue, bright tissue and lipid cells) and areas representing paraformalde-
hyde (PFA). The SR was determined with the RSP method using the regions presented in
Figures 4.4 (d).

Tumor CNR CNR CNR SR
tissue, dark tissue, bright lipid (µm)

Interferometer (Absorption) 1.5 12.2 5.2 19.2
Interferometer (Phase) 59.4 54.4 167.8 24.5
Paganin (dp = 13 mm) 6.1 11.9 139.8 12.0
Paganin (dp = 60 mm) 17.3 17.7 171.9 9.8
Paganin (dp = 120 mm) 20.4 17.3 147.6 10.2
Paganin (dp = 360 mm) 23.8 19.9 58.9 11.4
Holotomography, with detector deconvolution 11.1 11.7 97.3 8.0
Absorption (dp = 13 mm) 0.1 0.4 8.8 6.1

Table 4.3: Contrast-to-noise ratios (CNR) and spatial resolution (SR) obtained with the dif-
ferent modalities, for the heart sample. The CNR values were determined from the ROIs indi-
cated in Figure 4.7 (c) using the definition in Equation 4.6. The CNR is determined between
four materials (tissue, lipid, blood and container wall) and areas representing paraformalde-
hyde (PFA). The SR was determined with the RSP method using the regions presented in
Figures 4.7 (d).

Heart CNR CNR CNR CNR SR
tissue lipid blood container (µm)

Interferometer (Absorption) 0.6 13.3 9.5 56.5 58.9
Interferometer (Phase) 54.7 103.8 262.8 250.9 81.7
Paganin (dp = 200 mm) 13.8 29.2 89.4 594.9 49.1
Paganin (dp = 400 mm) 13.6 35.6 103.7 879.6 40.3
Paganin (dp = 700 mm) 24.1 82.6 256.1 539.9 38.6
Paganin (dp = 1100 mm) 24.9 87.4 134.5 267.6 38.6
Holotomography, without detector deconvolution 15.9 84.1 114.6 319.4 70.0
Holotomography, with detector deconvolution 9.3 97.9 112.8 428.0 40.3
Absorption (dp = 13 mm) 0.7 20.1 3.5 32.3 36.5
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Figure 4.11: The plots show profiles of sections in the rat-heart images measured with phase
contrast based µCT using X-ray grating interferometry (a+d) and propagation based µCT. For
the latter one can differentiate between Paganin (b) and Holotomography (c). The profile is
selected along the dashed line in the cropped region illustrated above every plot. The position
of the dashed line is highlighted in the Paganin image in Figure 4.7 (d).
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Figure 4.12: The images show the cropped regions of the phase contrast based tomographic
slices of the tumor to obtain the spatial resolution using the RSP. The images are ordered as
follows: GIFM (a), Holotomography with detector convolution (b) and (c-f) Paganin in the
order of smaller to larger sample-to-detector distances.
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Figure 4.13: The images show the cropped regions of the phase contrast based tomographic
slices of the rat-heart to obtain the spatial resolution using the RSP. The images are ordered
as follows: (GIFM (a), Holotomography with detector convolution (b), without detector con-
volution (b) and (d-g) Paganin in the order of smaller to larger sample-to-detector distances.
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Figure 4.14: The plots show the simulated contrast-transfer functions (CTF) for the propa-
gation based tomography measurements of the tumor sample (a) and the rat-heart (b). The
thick curves represent the combination of all CTF’s obtained for different sample-to-detector
distances dp.
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Chapter 5

Morphological assessment of the
vessel trees in cancerous and
healthy tissues using synchrotron
radiation-based micro computed
tomography

5.1 Introduction

Tumor growth directly relates to angiogenesis in cancerous tissue [3,95]. As a result, the three-
dimensional (3D) analysis of the vessel tree, including smallest capillaries, belongs to the key
issue in cancer research. While in vivo methods such as magnetic resonance imaging (MRI)
only indirectly provide the angiogenic network because of limited spatial resolution, highly
sophisticated ex vivo techniques such as synchrotron radiation-based micro computed tomog-
raphy (SRµCT) allow the direct visualization of the capillaries [11, 17]. For these studies,
however, the absorption contrast between the vessels and the surrounding soft tissues has to
be improved to allow vessel segmentation [21], which requires staining protocols [11,17], tissue
embedding [10] or corrosion casting [25]. These procedures only work for intact vessel walls.
In advanced stages of tumor formation, the vessels become leaky and the contrast agents, the
embedding compound and the low viscosity resin for corrosion casting can penetrate through
the damaged parts of the vessel walls. For these cases, phase contrast SRµCT should be
applied, since the achievable contrast is orders of magnitude higher than for the rather con-
ventional absorption contrast mode. Hence the complicated tissue preparation procedures can
be omitted at the expense of higher experimental efforts. The spatial resolution of many phase
contrast techniques, however, disallows the identification of the smallest capillaries. There-
fore, further efforts should be invested to extract the vessel tree with reasonable contrast and
true micrometer resolution so that the entire network of vessels within a reasonably large
part of the tumor can be segmented. For the phase contrast tomography data the vessels are
difficult to be segmented using intensity-based approaches such as choosing an appropriate
threshold. Therefore, the segmentation of the vessel tree was proposed by using a tool that
detects vessels by means of their characteristic geometry (tubular structure), rather than by
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a range of gray values. The feature-based method Frangi filter [96] is a well-established tool
for the segmentation of vessels [97]. The limited photon statistics, always present in SRµCT
datasets [98], impedes the segmentation of continuous vessels commonly from arteries via cap-
illaries toward veins. The passage, however, is a well-established matter of fact and, therefore,
a vital prerequisite for simulating tumor formation. A direct comparison of these simulations
with experimental high-resolution data by means of the vessel tree parameters requires not
only the segmentation itself but also includes the skeletonization [95,99] and vectorization of
the vessel tree from the SRµCT data. Once the vessel tree has been successfully extracted, one
can analyze the numerous parameters that characterize the vascular structure of healthy and
cancerous tissues [3,50,99–102]. So far, the tortuosity of the vessel tree has been reported to
be a key indicator to identify diseased tissue [99]. As soon as, the experimental parameters of
vessel trees become available, the computer codes simulating tumor growth to get detailed in-
sight in the neo-vascularization [7] can be validated or refused. Such validated simulations are
promising paths to significantly ameliorate anti-angiogenesis treatments against cancer [101].
So far, it is still unclear how well the simulations of tumor growth describe the complex
processes within the human body. In order to search for the characteristic parameters for
cancerous vessels with respect to healthy ones, it has been examined the vascular structure
of tissues on the basis of SRµCT data. Corrosion casts of healthy and cancerous tissues
imply ideal contrast and well-defined spatial resolution, but also the presence of preparation
artifacts, which, for example, inhibit the precise measurement of vessel diameters. Therefore,
additionally tumor specimens were measured using phase contrast SRµCT.
These high-resolution absorption and phase contrast tomograms are processed to produce a
vector-based representation of the vessel trees. It is shown, that the in-depth comparison of
vessel trees in terms from healthy and diseased tissues exploring the vessel diameters, bifur-
cation densities (branching), angles between branching vessels, vessel/mean void distances,
vessel lengths, tortuosity, and vessel density with the aim to find the leading indicators for
the formation of cancerous tissue.

5.2 Material and Methods

The suspension with 106 C51 tumor cells from murine colon carcinoma was subcutaneously
injected on the left flank of nude mouse (balb/c - Charles River Laboratories, France) in
strict adherence to the Swiss law for animal protection. The first mouse was euthanized after
7 days and the second animal after 14 days. The 7-day old tumor about (3 mm)3 in size
was extracted and fixed in 5% para-formaldehyde solution (PFA), before transferred into the
polymer container for SRµCT measurements in phase contrast mode.
A polyurethane-based material according to the procedure described by Krucker et al. [25]
served for exchanging the blood of the other freshly sacrificed animal to fabricate a corrosion
cast of the entire circulatory system. This cast was fragmented to harvest the tumor vessel
tree with a size of about (10 mm)3 from the left flank and the casted vessels from healthy
tissue (45 mm)3 in size from the right flank. The casts were visualized using SRµCT in ab-
sorption contrast mode.
Local tomography data of the cast from the cancerous tissue were recorded at the TOMCAT
beamline (Swiss Light Source (SLS) at Paul Scherrer Institut, Villigen, Switzerland) [60] using
a photon energy of 15 keV and a pixel size of 2× 0.74 µm. The exposure time for each of the
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1500 radiographs for equidistant rotation angles between 0◦ and 180◦ was set to 0.7 s. The 4
Mpixels detector covered only around 15% of the cast’s projection.
The tomography data of the cast from the healthy tissue were scanned at the beamline BW 2
(HASYLAB at DESY, Hamburg, Germany). The Helmholtz Center Geesthacht, Germany [98]
operated the tomography setup. Using a photon energy of 10 keV, a pixel size of 1.98 µm
and an exposure time of 5.85 s, 1440 radiographs equidistantly acquired along 360◦ with an
asymmetric rotation axis (see [19]) were combined to 720 radiographs used for data recon-
struction. The spatial resolution determined from the 10% value of the modulation transfer
function corresponded to 4.7 µm [74]. The X rays were converted to visible light by means of
CdWO4 scintillator with a thickness of 200 µm.
The SRµCT measurement taking advantage from propagation-based holotomography [34,35]
was conducted at the beamline ID 19 (ESRF, Grenoble, France). The ESRF-detector con-
sisted of a 19-µm-thick gadolinium gallium garnet scintillator, a 10× microscope optics and
the FReLoN camera (model 230-42, 2048×2048 pixels of 15 µm size) resulting in an effective
pixel size of 1.5 µm. Using a photon energy of 17.6 keV filtered from the undulator spectrum
by means of a Ru/B4C-multilayer with 4 nm-period and an exposure time of 0.3 s per radio-
graph, 800 radiographs equidistant between 0◦ and 180◦ were obtained for each of the three
specimen-detector distances 60 mm, 120 mm, and 360 mm.
For holotomography, the phase retrieval was required for the reconstruction. The phase re-
trieval algorithm, implemented in GNU Octave version 2.1.73, was a mixed approach between
the contrast transfer function (CTF) and the transport of intensity equation (TIE) [37,87,91].
The reconstruction was performed by means of the filtered back-projection technique, imple-
mented in the parallel-beam reconstruction software PyHST (European Synchrotron Radia-
tion Facility, Grenoble, France) [62]. The SRµCT data obtained in the absorption contrast
mode were reconstructed with the software available at the beamlines, both based on the
conventional filtered back-projection algorithm [1].
The tomography data were segmented using an implementation in Matlab 7.10.9 R2010a
(Simulink, The MathWorks, Inc., USA) of Kroon (2009) and skeletonized using the software
implemented in MS Visual C++ 2010 Express V.4.0.30319RTMRel by Cornea et al. [49].
For the vectorization a coded also implemented in Matlab was applied. VG Studio Max 2.0
(Volume Graphics, Heidelberg, Germany) served for the 3D representations.

5.3 Image Analysis

The image analysis of the vascularization was conducted for the healthy and the cancerous
corrosion cast as well as for the holotomography specimen of the tumor tissue.
To evaluate the local differences in the vessel parameters, four regions of interests were selected
in each tomography dataset. Three regions of interest (ROI1, ROI2, ROI3) were chosen in the
size of 180×180×180 voxels and a larger one (ROIlarge) in the size of 590×590×500 voxels,
such that they were filled with vascular structures. The distance of smaller regions to the
specimen center decreased from ROI3 to ROI1 [62].

Segmentation

In the case of the corrosion cast it was sufficient to set an appropriate intensity-based thresh-
old for the segmentation. The threshold was defined in the absorption histogram by the
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intersection point of two Gaussians related to the cast and the surrounding air [103]. The
number of voxels representing air was almost equal to the one concerning the cast. Since the
intensity values of the vessels strongly overlap with the values of other structures in the phase
contrast dataset, the feature-based algorithm ’Frangi-Filter’ was used for the vessel segmen-
tation in the holotomograms. The Frangi-Filter is based on the eigenvalues λ=(λ1, λ2, λ3) of
the three dimensional Hessian matrix [47] and provides the probability of a voxel to belong
to a vessel e.g. its vesselness [96, 104]. In this context the shape of the vessel is assumed to
be tubular [48,105]. The vesselness function of the scale s is described by:

V0(s) =

{
0 if λ2 > 0 ∨ λ3 > 0(

1− exp
(
−R2

A
2α2

))(
exp

(
−R2

B
2β2

))(
1− exp

(
− S2

2γ2

))
else

(5.1)

The ratio RA = |λ2| / |λ3| distinguishes between plate- and needle-like structures, the ratio
RB = |λ1| /

√
|λ2λ3| accounts for spherical structures S = |λ| and for the ”second order

structureness”. For an ideal tubular structure the eigenvalues fulfill the conditions |λ1| ≈ 0,
|λ1| << |λ2|, λ2 ≈ λ3 [47,96]. The constants α, β and γ determine the sensitivity of the filter
measures RA, RB und S. The sign of eigenvalues λ2 and λ3 reflects if dark vessels reside in
a bright background or vice versa. Finally, the vesselness measure is the maximum value of
the vesselness function within the range smin ≤ s ≤ smax. In the present study, the scale
range for the tube-like structures was chosen from 1 to 6 voxels (1.5 to 9 µm). The histogram
of the resulting vesselness measure revealed an exponential decay. The data were binarized
setting a threshold at 1% of the highest frequency detected. The threshold value of 1% results
from a trade-off between capturing blood vessels and avoiding detecting structures caused by
noise. It was chosen manually by visual judgment. An increase of the threshold leads to the
segmentation of noisy structures, while a decrease reduces the volume of the segmented blood
vessels.

Vectorization

The centerlines of the vessels were extracted using a skeletonization-code based on voxel
erosion [49]. A 3D component labeling algorithm ordered the skeleton data by its number of
objects. The neighboring voxels of each object were determined step by step from an arbitrary
seed point. Objects with a total size of less than 10 voxels were neglected and replaced voxels
in straight line by vectors. Finally, the vessel segments were represented by sorted lists of
centerline points. The data components of a vessel included both endings T1, Tn (0: end-
point, 1: bifurcation point), n positions of the vector points ri, its mean radius Rm with its
standard deviation Rs and the vessel length L. The radii at the centerline points were derived
from the distance transformation of the dataset and averaged to the mean radius Rm. The
vessel length L was evaluated by the sum of all distances between the vector points.

Vessel diameter, length and bifurcation

The mean diameter of the vessel tree was evaluated based on the average of all vessel radii Rm.
The vessel length is the mean of the vessel segment lengths including inter-branch distances.
The bifurcation density describes the relationship of the number of bifurcation points to the
number of vessel segments and the bifurcation angle the mean angle at the bifurcations.

68



Tortuosity

The tortuosity of the vessel tree was analyzed in terms of the distance metric (DM) and a
variant of the sum of angle metrics (SOAM) [99]. Distance metric (DM) corresponds to the
ratio between the length of a line segment and the distance between the two endings [100].
Vessels deviating from a straight line show a distance metric value larger than one. Since
this approach cannot distinguish between sinusoidal and C-curved vessels, Bullitt et al. [99]
introduced the sum of angle metric. It is based on the ratio between the total curvature of
segment and the vessel length, where the total curvature, the integral of the local curvature
over the segment, is geometrically interpreted as a sum of the in-plane angle IP and the
tortuous angle TP .

SOAM =

∑n−2
k=2

(√
IP 2

k + TP 2
k

)
L

(5.2)

In case of co-linearity between the two vector points the tortuous angle is defined as zero.
The SOAM yields a value of zero for a straight line.

Vessel and mean void distance

The vessel density represents the ratio between the voxels belonging to a vessel and the total
number of voxels. The vessel density was determined in the 3D dataset and in the three
orthogonal 2D sections. Three dimensional distance transformations of the datasets lead to
the measurements of the void density and the mean void distance. The results were obtained
by using every second voxel of the discretized vessel to reduce misleading effects due to the
voxel discretization of the vessels.

Table 5.1: Vessel parameters for the healthy vessel cast (1.98 µm detector pixel size), the
cancerous vessel cast (1.48 µm detector pixel size) and the vessels from a phase contrast
measured tumor (1.5 µm detector pixel size). The parameters were determined for the region
ROIlarge (590×590×500 voxels).

Mean Mean Tortuosity AngleBif Vessel Mean
Vessel Vesel (deg) Density Void

Diameter Length DM SOAM 3D 2D Distance
(µm) (1/cm) (rad) (%) (%) (µm)

x y z

Healthy Cast 8.8 ± 4.2 20 ± 23 1.3 ± 0.6 0.18 ± 0.19 116 ± 29 9 6 5 10 49.9 ± 0.5
Tumor Cast 5.4 ± 5.0 17 ± 23 1.2 ± 0.6 0.24 ± 0.25 117 ± 28 9 8 7 10 53.4 ± 1.7
Tumor in PFA 9.5 ± 4.2 13 ± 13 1.2 ± 0.6 0.18 ± 0.24 115 ± 33 2 1 1 1 79.3 ± 1.3

5.4 Results

Vessel volume fraction

The vessel density features an anisotropic behavior in most of the selected regions (see Ta-
ble 5.1 and 5.2). Figure 5.1 also illustrates this observation in terms of the three dimensional
distance transformation (tumor cast, ROI1), where the vessels appear in black. The col-
ored void distance differs in the orthogonal sections in its maximum and its distribution.
The largest void region can be found in the green section surrounded by rather dense vessel,
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Figure 5.1: The 3D distance transform of the cancer cast (ROI1) reveals the void distances
between the vessels. The void distance is evaluated on the segmented voxel data set in a robust
manner, by determining the distance of a voxel to its closest vessel in 3D. The mean void
distance is an indicator for the mean distances between the vessels and correlates inversely to
the vessel density. The orthogonal 2D sections represent slices with a thickness of one voxel.,
i.e. the distance of a voxel to its closest vessel.
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Table 5.2: Vessel parameters for the healthy vessel cast (1.98 µm detector pixel size), the
cancerous vessel cast (1.48 µm detector pixel size) and the vessels from a phase contrast
measured tumor (1.5 µm detector pixel size). The parameters were determined for the regions
ROI1 to ROI3 (180×180×180 voxels).

Mean Mean Tortuosity AngleBif Vessel Mean
Vessel Vesel (deg) Density Void

Diameter Length DM SOAM 3D 2D Distance
(µm) (1/cm) (rad) (%) (%) (µm)

x y z

10.2 ± 2.8 15 ± 16 1.3 ± 0.6 0.15 ± 0.2 114 ± 30 7 5 6 7 68.6 ± 2.1
Healthy Cast 5.5 ± 1.2 31 ± 36 1.2 ± 0.5 0.13 ± 0.15 116 ± 27 4 4 4 4 71.7 ± 1.2

10.9 ± 7.5 23 ± 27 1.2 ± 0.4 0.19 ± 0.19 115 ± 25 19 12 12 20 42.2 ± 1.9
4.9 ± 1.4 20 ± 24 1.2 ± 0.4 0.25 ± 0.24 119 ± 29 7 12 6 6 46.2 ± 2.3

Tumor Cast 4.0 ± 2.5 13 ± 14 1.4 ± 1.2 0.22 ± 0.26 114 ± 32 3 2 2 3 43.8 ± 1.4
5.1 ± 3.2 14 ± 18 1.3 ± 0.7 0.22 ± 0.25 115 ± 29 8 8 13 9 86.1 ± 2.1
6.4 ± 3.6 12 ± 10 1.3 ± 1.0 0.19 ± 0.24 112 ± 31 2 4 3 4 60.1 ± 2.4

Tumor in PFA 4.6 ± 1.7 9 ± 8 1.1 ± 0.3 0.17 ± 0.37 107 ± 33 5 3 3 5 76.8 ± 0.8
9.0 ± 5.6 11 ± 10 1.3 ± 0.9 0.18 ± 0.25 112 ± 33 3 3 2 2 95.1 ± 0.2

whereas the vessels are distributed more uniformly in the other two sections. The mean void
distance behaves inversely to the vessel density in ROIlarge, and in most of the smaller ROIs.

Phase contrast

The phase contrast based tomography identified successfully the vessels in the tumor without
contrast enhancing specimen preparations (see bright spots in Figure 5.2). Most of the vessels
are located in the outer region of the tumor.

Vectorization

Figure 5.3 shows the segmented vessel trees and their vectorization for ROI1, where the
red dots represent the bifurcation points. The bifurcation density was found to be 27% for
the healthy cast, 29% for the tumor cast, and 11% for the phase contrast data set. This
corresponds to volume density values for the bifurcations of 1.6 mm−3 in the healthy tissue,
to 3.8 mm−3 in the cancerous cast, and to 2.7 mm−3 in the phase tomography data. In all
selected regions the phase contrast provided the smallest bifurcation density. The bifurcation
angles exhibit a narrow distribution between 113◦ and 119◦ (see Table 5.1).

Tortuosity

Table 5.1 shows the tortuosity, the deviation from the straight line, in terms of the distance
metric (DM) and the weighted sum-of-angle-metric (SOAM). The maximum values of the
tortuosity based on the SOAM can be found for the cancer cast. Figure 5.4 illustrates the
appearance of tortuosity in the healthy and cancerous vascularization. While the tumor
features a large variety of tortuous vessels, the tortuosity in healthy tissue appears only at
very few capillaries.

Vessel diameter and length

The mean vessel diameter ranges from 5 to 15 µm. For most of the analyzed datasets the
healthy vessel cast exhibits the largest values for the diameter. The vessel length varies
between 10 and 35 µm where the phase contrast based dataset features the smallest values
for all ROIs.
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Figure 5.2: (a) The tomography slice of a tumor measured with phase contrast µCT (ID 19,
ESRF, France) displays vessels down to the capillary size. (b) The zoom-in shows lipid cells
(black) and vessels (white). The gray scale is based on the real decrement δ of the refractive
index. (c) Segmentation of these vessels was achieved using the Frangi filter.

5.5 Discussion

The vascularization was analyzed for corrosion cast of the healthy and the cancerous tissues
as well as for the tumor sample of the phase contrast measurements. As the selected voxel
length is significantly smaller than the smallest capillary diameters, the spatial resolution for
the different tomography systems is sufficient to segment the entire vessel tree. For both
healthy and cancerous tissue the vessel density is anisotropic, i.e. depending on the direction
selected. As a result, a 3D analysis is necessary to define the 3D vessel tree (see Figure 5.1
and Table 5.1 and 5.2). In contrary to the vessel behavior reported by Folarin et al. [101], the
vascularization in the present tumor cast is coarser than in the healthy one. But Folarin et
al. also stated that vesselless regions might be found in the tumor vascularization [101]. As
the vessel structure in tumor tissue appears rather unpredictable, tumors with a few and no

72



vessels have been reported as well [50].
Figure 5.2 illustrates how the phase contrast tomogram reveals the micro-vascularization. The
hemoglobin in the blood was presumed to provide sufficient contrast to distinguish the vessels
from the surrounding tissue. The tomography slices show vessels in the outer regions of the
tumors only, but the phase contrast in total reveals less vessels than the healthy corrosion cast
according to Table 5.1 and 5.2. Histologically no endothelial cells were found in the interior
of the tumor specimen. Since the tumor sample measured by means of phase tomography is
younger (7 days) than the tumor used for the corrosion cast (14 days), it can be reasonably
assumed that the cancerous angiogenesis is still at an early stage of its development [106].
The three dimensional vectorization of the vessel trees as shown in Figure 5.3 allows a quanti-
tative assessment of the vessel characteristics. The casts of cancerous and healthy tissues were
used to discover the differences between their micro-vascular structures. The tortuosity was
expected to be larger in the tumor tissue [50,99]. The present results confirm this expectation
in terms of DM and SOAM (see Table 5.1). However the tortuosity depends strongly on the
choice of the selected region. In the present study, healthy tissue revealed tortuous vessels
as well (see Figure 5.4 (a) inset). According to [24] tortuous capillaries can appear in the
neighborhood of a muscle due to muscle compressions enforced by the cast preparation itself.
The vessels of the health tissue were indeed extracted from the muscular flank of a mouse.
Additionally, Aharinejad et al. [104] confirmed that capillaries with diameters below 15 µm
can appear tortuously in both cancerous and healthy tissues.
The mean vessel diameter (Table 5.1 and 5.2) is smaller in the cancerous vessel cast and
comparable with the result of a previous study [100]. This observation is in good agreement
with the assumption of an exceeded angiogenesis in tumors involving a dense network of cap-
illaries [107]. As a result, the evaluated vessel diameter can be used to distinguish between
healthy and cancerous tissues. However it differs from the real value because of two reasons.
First the corrosion cast method may cause tissue shrinkages of several percent. Second the
corrosion of the surrounding tissue also affects the vessel wall. Hence the evaluated vessel
diameter of the casts describes rather the diameter of the vessel lumen. Another problem of
corrosion cast is the presence of leaked polymer [101], particularly, in tumor tissue where the
vessels appear damaged. Figure 5.5 shows characteristic features that are interpreted as a
result of leakages through damaged vessel walls.
For that reason the results of the phase contrast µCT method without contrast enhancement
and polymer leakages were presented. The vessel diameters are comparable with the values
of corrosion casts when the thickness of the vessel wall is taken into account. The vessel
wall of capillaries (including endothelium, basal lamina, and pericytes) feature a thickness of
approximately 1.0 µm in healthy tissue and of 1.2 µm in peritumoral tissue [18]. To allow a
better comparison with the phase contrast based data the diameter in corrosion casts have
to be increased by 2 µm. Figure 5.3 shows that the vessel tree of the holotomogram seems to
include numerous disconnected vessels. The disconnectivities can be a natural phenomenon
or a result of the segmentation. During the Frangi-Filtering noise can lead to both virtual
and disconnected vessels. As a result the number of bifurcation is small in the phase contrast
based data. The number of bifurcations in the corrosion cast however is overestimated due
to effect of leakages. The mean vessel length varies slightly for different regions. The phase
contrast dataset delivers the smallest value, because of the part of the vessels might not have
been captured by the segmentation tool.
The presence of non-connected vessels, or blind endings, in the segmented volumes can be
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due either to an artifact in the image reconstruction or to a real physiological situation. In
the corrosion casted tumor measured with absorption contrast mode, such endings have to be
considered as artifact since we assume that the vessels have to be connected to allow the cast-
ing polymer to flow. It is therefore impossible to visualize real blind endings with this mode.
Instead, in the phase contrast mode it is possible to visualize real blind endings (no contrast
agent needed) but unfortunately, it is not possible to distinguish them from the artifacts.
Nevertheless, from a biological point of view, the vascular structure of the tumor presents
several non-connected vessels due to the continuous and non-controlled rearrangement of the
vessel structure [108].

5.6 Conclusion

As tumor tissues are characterized by stronger neo-vascularization with respect to healthy
tissues, the capillaries are of special interest. This study shows that the mean diameter of
capillaries is 50% larger in healthy tissue than in the cancerous tissue, although there is
no significant difference concerning vessel density, tortuosity, bifurcation density and angle.
The mean bifurcation angle varies within the narrow range of 111 to 119 degrees. Phase
contrast µCT is a powerful alternative for the tumor vessel visualization as it allows imaging
the vascularization without any material-based preparation procedure. In comparison to
the corrosion cast, this approach enables further analyses such as optical microscopy of the
histological slices. In future research the segmentation can be improved further by applying
hysteresis thresholding [109]. It is expected to detect the bifurcation points and vascular
structures in areas of weak contrast more reliably by the local choice between two thresholds.
As a result, the number of vessel interrupted by the segmentation is expected to be reduced
leading to a higher reliability of the quantification.
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Figure 5.3: The 3D representations of the region ROI1 of each dataset (left) and the related
vectorized vessel tree (right). The images correspond to the healthy vessel cast (a), the tumor
cast (b) and the tumor in PFA acquired by phase contrast µCT (c). The red dots in the
vectorized representation indicate the bifurcation points.
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Figure 5.4: The images show 3D representations of vessel casts (healthy, a-b, cancerous, c-d).
The dashed ellipses highlight twisted vessels which are present in the healthy tissue (b) as well
as in the cancerous tissue (d).

8 µm

Figure 5.5: The region of the cancerous vessel cast presented in this figure shows strong leakages
of the polymer (dashed ellipse) due damaged vessel walls.
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Chapter 6

Conclusion

It is of main interest to visualize and analyze the tumor vessel tree down to the capillaries
to obtain a better insight in the tumor growth. For the visualization of the tumor vascular
network using absorption based SRµCT contrast enhancement, like staining or corrosion cast
was necessary to make the vessels visible in the tomographic slices. The contrast was suffi-
ciently high to allow an extraction of the 3D vessel tree with intensity-based segmentation
algorithms.
However both contrast enhancing methods had in common the same disadvantages. For both
methods leakages of the perfused product could be observed [110]. This was because the necro-
sis inside the tumor caused damages in the vessel walls. Due to the complexity of the tumor
vessel tree, it was impossible to correct the influence of the leakages in the data. Another
aspect that has to be taken into account is that the contrast agent or the polymer filled only
the lumen of the vessels. The vessel walls could therefore not be visualized in the tomograms,
making it impossible to define the total mean diameter of the vessels. In addition, further
analysis of the corrosion casts using microscopy of histological slices can not be performed
since the soft and hard biological tissue had been removed for the cast preparation.
An alternative method is presented in this thesis, where contrast enhancement was unneces-
sary. Imaging the tumor with phase contrast based SRµCT, the contrast has shown to be
better improved in comparison to the conventional absorption based technique. The contrast
of the vessels resulted most probably from the hemoglobin which is a constituent of the blood,
containing iron, which exhibits a high electron density in comparison to the other part of soft
tissue.
Phase contrast tomography was performed in propagation based tomography and grating in-
terferometry setup. Both techniques have their advantages and disadvantages. Similar to
the absorption based SRµCT measurements the spatial resolution in in-line tomography is,
besides the optics, only limited by the detector pixel size. Unfortunately this technique dealt
with difficulties in the phase retrieval and low-frequency artifacts.
The grating interferometer did not have these problems and offers additionally a much higher
contrast in the tomograms than the propagation based method. The spatial resolution in
grating interferometry is however not only limited by the detector system but also by twice
the periodicity of the second grating (absorption grating) and the lateral shear of two in-
terfering waves behind the first grating (phase grating) [31]. To date, the smallest available
grating period at ID19 (ESRF, Grenoble) is 2 µm. Therefore objects with diameters below
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4 µm cannot be detected. Although the vessels could be identified in the phase contrast to-
mograms, difficult and time consuming segmentation strategies were necessary to extract the
vessels from the tomography data.
For the characterization of the tumor vascularization the extraction of the vessel parameters
was essential. The vectorization of the voxel-based data has shown to be a helpful tool for
this purpose. Since the vectorized data format only contained information about the vessel,
the format conversion caused also a strong reduction in the data size.
Since phase contrast µCT offers the possibility to visualize the tumor vessels without the need
for invasive sample preparation to increase the contrast, it is therefore a promising technique
for the analysis of tumor angiogenesis. As the clinical applications of phase contrast µCTs
are on the rise, it can be assumed that this technique can help in the detection of illnesses
during preliminary medical investigations by the analysis of the vessel characteristics. For
that reason further enhancements in the vessel segmentation are necessary.
For a fast diagnosis and therefore advancements in cancer treatments in clinical research, the
knowledge of tumor growth is of high importance. Computer algorithms simulating tumor
growth will help to gain a better understanding in the mechanism involved and can be sup-
ported by computer scientists. In validation of the computed results for high resolution 3D
images of a tumor using micro computed tomography, physicist can play a relevant role. The
spatial resolution of 3D imaging modalities in clinical environment is restricted to a fraction of
a millimeter. The application of micro computed tomography allows this limit to be reduced
to about 1 µm. Furthermore, the usage of phase-contrast imaging enables us to not only
measure the local X-ray absorption but also the changes in the local electron distributions
characterized by the refractive index, so the high-resolution 3D data permits us to calibrate
MR images.
The analysis of the vessel morphology can sufficiently describe the characteristic attributes of
a tumor. However, it is desirable to simultaneously obtain results for the morphology and the
physiology of the tumor for a better understanding in the underlying mechanism. This can
be achieved by additional measurements using positron emission tomography (PET) which
enables the analysis of tumor hypoxia and glucose metabolism [111]. Moreover, it would be
interesting to analyze the total tumor vessel tree. This would also include the identification
of the mother vessel(s) from which the vascularization has spread.
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Verbinn’ is wat Besünners un ik will höpen, datt dat ok in Tokunft so blifft.
Oma:
Di is dat egol, wat ik nu Physiker bün or Eier op?n Markt verkoopen do. För di bün ik eenfach
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