
 

Organising Molecules  

at the Solid - Liquid Interface 

 

Inauguraldissertation 

 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

 

M. A. Umut Soydaner 

aus Istanbul, Turkei 

 

Basel, 2012 

 

Original document stored on the publication server of the University of Basel  
edoc.unibas.ch 

 

 
 

This work is licenced under the agreement „Attribution Non-Commercial No Derivatives – 

2.5 Switzerland“. The complete text may be viewed here:  

creativecommons.org/licenses/by-nc-nd/2.5/ch/deed.en 
 



 

 



   

 
 
 
Attribution-Noncommercial-No Derivative Works 2.5 Switzerland 

 
 
 

 

You are free: 
 
 

 
to Share — to copy, distribute and transmit the work 

 

Under the following conditions: 
 
 
 

 

Attribution. You must attribute the work in the manner specified by the author 
or licensor (but not in any way that suggests that they endorse you or your use of 
the work). 

 

 

Noncommercial. You may not use this work for commercial purposes. 
 
 
 

 

No Derivative Works. You may not alter, transform, or build upon this work. 

 

• For any reuse or distribution, you must make clear to others the license terms of this work. The best 
way to do this is with a link to this web page.  

 
• Any of the above conditions can be waived if you get permission from the copyright holder.  
 
• Nothing in this license impairs or restricts the author's moral rights.  
 
 
 
Your fair dealing and other rights are in no way affected by the above. 
 
This is a human-readable summary of the Legal Code (the full license) available in German:  
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de 
 
Disclaimer:  
The Commons Deed is not a license. It is simply a handy reference for understanding the Legal Code (the 
full license) — it is a human -readable expression of some of its key terms. Think of it as the user-friendly 
interface to the Legal Code beneath. This Deed itself has no legal value, and its contents do not appear in 
the actual license. Creative Commons is not a law firm and does not provide legal services. Distributing of, 
displaying of, or linking to this Commons Deed does not create an attorney-client relationship. 
 

 
Quelle:  http://creativecommons.org/licenses/by-nc-nd/2.5/ch/deed.en Datum: 3.4.2009 



 

 
 

 



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität 

Basel auf Antrag der Herren: 

 

Prof. Dr. Marcel Mayor 

Prof. Dr. Wolf-Dietrich Woggon 

 

Basel, den 22. Juni.2010 

 

 

 

Prof. Dr. E. Parlow   

 (Dekan) 



 



   

The work presented here was initiated and supervised by Prof. Dr. Marcel Mayor at 

the Chemistry Departement of the University of Basel, between 2005 and 2010. 

 

Excerpts from this work are published in: 

 

Soydaner, U., Peterle, T., Ringler, P., Mayor, M., “A novel thiol-thioether hybrid 

ligand for the direct synthesis of gold nanoparticles” in preparation. 

 

Raimondo, C., Reinders, F., Soydaner, U., Mayor, M., Samorì P., “Light-responsive 

reversible solvation and precipitation of gold nanoparticles” Chem. Commun., 2010, 

46 (7):1147-9  

  

Boz, S., Stöhr, M., Soydaner, U., Mayor, M., “Protecting-group-controlled surface 

chemistry - organization and heat-induced coupling of 4,4’-di(tert-

butoxycarbonylamino)biphenyl on metal surfaces”, Angew. Chem. Int. Ed., 2009, 

48(17):3179 – 83. “Schutzgruppengesteuerte Oberflächenchemie - Organisation und 

temperaturinduzierte Kupplung von 4,4’-Di(tert-Butoxycarbonylamino)biphenyl auf 

Metalloberflächen” Angewandte Chemie, 2009, 121(17):3225-9 

 

 
 



 



   

Acknowledgments 

 

I want to express my gratitude to Prof. Dr. Marcel Mayor for giving me the 

opportunity to work on such an interesting and challenging project. Furthermore, I 

sincerely thank to Prof. Dr. Wolf D. Woggon for accepting co-examination of my 

thesis as well as being a mentor in the beginning of my research life and Prof. Dr. 

Edwin C. Constable for accepting to be the chairman. 

 

I would like to thank to Dr. Meike Stöhr for the fruitful collaboration and especially to 

Serpil Boz for her experimental work and all the stimulating and scientific 

discussions. Moreover, I would also like to thank Dr. Philippe Ringler for the 

measurement of the TEM micrographs. 

 

I would like to thank Dr. Daniel Häussinger for NMR measurements, Dr. Heinz Nadig 

for EI- and FAB-MS and M. Werner Kirsch for elemental analysis. I am also thankful 

to Brigitte Howald, Marina Mambelli Johnson and Beatrice Erismann for their 

administrative support as well as the complete ‘Werkstatt’ and ‘Materialausgabe’ 

team. These are the people who keep the Department of Chemistry running. 

 

I would like to thank to the colleagues from the Department of the Chemistry and the 

entire Mayor group all for the warm environment and the unforgettable memories. My 

thanks go to Sergio Grunder for being my first lab mate, Dr. Nicolas Weibel and 

Torsten Peterle for their help and useful suggestions, Sandro Gabutti and David 

Muñoz for their friendship, Thomas Eaton for proofreading, Viviana Horhoiu and 

Agnieszka Glowinska for making lab work fun and their contribution to a nice and 

multicultural environment. 

 

I would like to acknowledge the NCCR “Nanoscale Science”, University of Basel and 

SNF for financial support. 

 

I am indebted to my parents and my sister for all their help and guidance as I started 

to make my way in the world. 



 

 

Last but not least, I am deeply grateful to my wife Banu Sürücü for her presence in 

my life, never-ending love and supporting me all the time and to our son Arda for 

bringing  “joie de vivre” to our life.  Without them, this research would never have 

come so far. 

 

Golf kadar… 

 

 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Si la jeunesse savait, 
si la viellesse pouvait.... 



 

 



Table of Contents 
 

 

TABLE OF CONTENTS Page 

i. LIST OF FIGURES i 

ii. LIST OF SCHEMES Iv 

iii. ABBREVIATIONS Vi 

1. INTRODUCTION 1 

1.1. Towards the Gold Nanoparticles 1 

1.2. Properties of Gold Nanoparticles 4 

1.2.1. Surface Plasmon Resonance  5 

1.2.2. Quantum Size Effects 5 

1.3. Synthesis of Gold Nanoparticles 9 

1.3.1. Turkevich Method 10 

1.3.2. Phosphine Ligands 10 

1.3.3. Brust-Schiffrin Method 12 

1.4. Functionalization of Nanoparticles 13 

1.4.1. Post-Synthetic Modification 14 

1.4.2. Ligand Exchange 14 

1.5. Purification of Nanoparticles 17 

1.6. Characterization of Nanoparticles 17 

1.7. Preparation of Ordered Nanoparticles 18 

1.8. From Molecules to Structures  20 

1.8.1. Molecules on the Surface 22 

2. AIM OF THE THESIS 35 

3. RESULTS AND DISCUSSION 37 

3.1. Synthesis of New Ligands for Enwrapping Au55 Nanoparticles 37 

3.2. Synthesis New Gold Nanoparticles Stabilized by Thioether Based Ligands 64 

3.3. 2D Assemblies of Preorganised Molecules 87 

3.3.1. Protection Group Controlled Surface Chemistry 87 

3.3.2. Selective Cleavage of Protection Group 100 

3.3.3. Self-Assembly Pattern of Asymmetric Thermally Interlinkable Structure 107 

4. SUMMARY AND CONCLUSION 117 

5. EXPERIMENTAL PART 119 

5.1. General Remarks 119 

5.1.1. Chromatographic Methods 119 

5.1.2. Spectroscopic Methods 120 



Table of Contents 
 

5.2. Synthetic Procedures for Gold Nanoparticles 121 

5.3. Synthetic Procedures for 2D Assemblies of Preorganized Structures 165 

6. REFERENCES 177 

7. CURRICULUM VITAE 186 



List of Figures 
 

i 

. 

i. LIST OF FIGURES Page 

Figure 1.1. Sarcophage of Touthankamon and Lycurgus cup 1 

Figure 1.2. Faraday’s colloidal ruby gold 2 

Figure 1.3. Number of articles published containing the concept on gold 

nanoparticles since 1991 
3 

Figure 1.4. Some potential application areas of nanoparticles 4 

Figure 1.5. Origin of surface plasmon resonance 5 

Figure 1.6. Formation of a metallic band structure 6 

Figure 1.7. Kubo criterion 7 

Figure 1.8. Experimental arrangement and conditions to measure current-voltage 

(I-U) characteristics of gold nanoparticles 
7 

Figure 1.9. I-U curve of Au55(PPh3)12Cl6 at room temperature 8 

Figure 1.10. Diagram of a gold MPC 9 

Figure 1.11. Preparation of citrate-stabilized nanoparticle 10 

Figure 1.12. Synthesis of of Au55(PPh3)12Cl6 11 

Figure 1.13. Organization of full shell metal clusters 12 

Figure 1.14. Idealized computational model structure of a thioether ligand gold 

cluster complex and the employed ligand structure 
15 

Figure 1.15. Examples of images obtained by lithographic method 19 

Figure 1.16. Schematic representation of the self-assembly of a supramolecular 

aggregate 
21 

Figure 1.17. Hydrogen bond arrays based G-C base pair 21 

Figure 1.18. STM images of isophthalic acid derivatives 22 

Figure 1.19. STM image of terephthalic acid derivatives 23 

Figure 1.20. STM images of PVBA on Ag(111) 24 

Figure 1.21. STM images of 1-NN on Au(111) 24 

Figure 1.22. STM images of the 2D structure formed by TCPP and stearic acid 25 

Figure 1.23. Arrangement of trimesic acid molecules on graphite surface 26 

Figure 1.24. Schematic diagrams showing the structure of NTCDA and NTCDI 27 

Figure 1.25. STM image of NTCDI on Ag-Si(111) 27 

Figure 1.26. Quartets of guanine formed by self-assembly on Au(111) 27 

Figure 1.27. Structures of melamine and cyanuric acid complexes 28 

Figure 1.28. STM images of C60 heptamers in PTCDI-melamine supramolecular 

network. 
29 



List of Figures 
 

ii 

Figure 1.29. STM images of Cu-Pc and PTCDA on Cu(111) 29 

Figure 1.30. STM image of SubPc and C60 on Ag(111) 30 

Figure 1.31. Steering the size and aspect ratio of rectangular molecular-scale 

compartments  
30 

Figure 1.32. STM images and diagrams showing the process of controlling the 

initiation and termination of linear chain polymerization 
32 

Figure 1.33. Proposed structure of the molecules arising from the UV induced 

formation of “clothlike” macromolecules  
32 

Figure 1.34. STM image of the TTA-DIA monolayer structure on graphite 33 

Figure 1.35. Nano-architectures of covalently bound Br4TPP molecular networks 34 

Figure 2.1. Ligand enwrapping gold nanoparticles 35 

Figure 2.2. Schematic view of H-bonding of 4,4’-diaminobiphenyl molecules 36 

Figure 3.1.1. Schematic representation of the expected ligand exchange and 

enwrapping of Au55 nanoparticles with dimeric macrocycle ligands 
37 

Figure 3.1.2. 1H-NMR spectrum of ligand B 58 

Figure 3.1.3. 31P-NMR spectrum of ligand B 59 

Figure 3.2.1. Model depicting the minimized energy calculations of preligand E 79 

Figure 3.2.2. UV-Vis spectrum of gold nanoparticles stabilized with ligand E 82 

Figure 3.2.3. 1H-NMR spectrum of ligand E with gold nanoparticles 83 

Figure 3.2.4. TEM picture of gold nanoparticles stabilized with ligand E 85 

Figure 3.2.5. Histogram of gold nanoparticles stabilized with ligand E 86 

Figure 3.2.6. Models depicting the minimized energy calculations of ligand E 87 

Figure 3.3.1. Candidates for the formation of well-ordered molecular patterns 88 

Figure 3.3.2. STM image of 50 on Ag(111) 89 

Figure 3.3.3. STM images of 50 on Cu(111) 90 

Figure 3.3.4 STM images and suggested models of 50 on Cu(111) 91 

Figure 3.3.5. STM image of 50 on Ag(111) annealed ~200°C 92 

Figure 3.3.6. STM image of 50 on Cu(111) annealed at 196°C 93 

Figure 3.3.7. HPLC spectrum of the azo derivative 62 (top), the DMF extract of the 

Ag nanoparticles (middle in red) and of the urea derivative 60 
99 

Figure 3.3.8. STM image of 50 on Cu(111) annealed at > 198°C.  100 

Figure 3.3.9. Close up STM image of 65 on Ag (111) 102 

Figure 3.3.10. STM image of 65 on Ag (111) 102 

Figure 3.3.11. STM image of 65 on Cu (111) 103 



List of Figures 
 

iii 

Figure 3.3.12. STM images of 65 on Ag (111) annealed at 160°C 104 

Figure 3.3.13. STM images of 65 on Ag (111) annealed at 168°C 105 

Figure 3.3.14. XPS measurements of 65 on Ag(111) 105 

Figure 3.3.15. STM images of 65 on Cu(111) 106 

Figure 3.3.16. STM images of 66 on Ag(111) 108 

Figure 3.3.17. Close up STM image of 66 on Ag (111) 109 

Figure 3.3.18. STM image of 66 on Ag(111) at low coverage 109 

Figure 3.3.19. STM image of 66 on Ag(111) at high coverage 110 

Figure 3.3.20. STM image of 66 on Ag(111) annealed at 155°C 111 

Figure 3.3.21. Close up STM image of 66 on Ag (111) annealed at 155°C 111 

Figure 3.3.22. STM image of 66 on Ag (111) annealed at 168°C 112 

Figure 3.3.23. STM image of 66 on Cu(111) at low coverage 113 

Figure 3.3.24. STM images of left and right hexamers of 66 on Cu(111) 113 

Figure 3.3.25. Coverage dependent growth of self-assembled structures of 66 on 

Cu(111) 
114 

Figure 3.3.26. Parallel arrangement of 66 on Cu(111) 114 

Figure 3.3.27. STM image of 66 on Cu(111) annealed at 160°C. 115 

Figure 4.1. Suggested assembly of gold nanoparticles stabilized with two of 

ligands E 
117 

Figure 4.2. Preorganized molecular building blocks interlinked on the surface. 118 

 



List of Schemes 
 

iv 

. 

ii. LIST OF SCHEMES Page 

Scheme 3.1.1. Retrosynthetic analysis of symmetric ligand A 37 

Scheme 3.1.2. Synthesis of 1,3,5-tris(bromomethyl)benzene 40 

Scheme 3.1.3. Strategy to synthesize (3,5-bis(bromomethyl)benzyl)(hexyl)sulfane 41 

Scheme 3.1.4. Suggested mechanism for polymerization of bis(bromomethyl) 

benzyl)sulfane 
41 

Scheme 3.1.5. Strategy to synthesize (3,5-bis(chloromethyl)benzyl)(hexyl)sulfane 42 

Scheme 3.1.6. Retrosynthetic analysis of asymmetric ligand B 43 

Scheme 3.1.7. Retrosynthetic analysis of polar group containing building block 43 

Scheme 3.1.8. Synthesis of the polar chain 44 

Scheme 3.1.9. Synthesis of first building block of ligand B 45 

Scheme 3.1.10. Alternative synthesis of first building block of ligand B 46 

Scheme 3.1.11. Retrosynthetic analysis of second building block of ligand B 47 

Scheme 3.1.12. Strategy towards synthesis of second building block of ligand B 49 

Scheme 3.1.13. Retrosynthetic analysis of 1,3,5-tris(mercaptomethyl)benzene building 

block 
50 

Scheme 3.1.14. Synthesis of polar thio building block 51 

Scheme 3.1.15. Synthesis of 1,3,5-tris(mercaptomethyl)benzene building block 52 

Scheme 3.1.16. One pot synthesis and deprotection of THP of 1,3,5-

tris(mercaptomethyl)benzene building  block 
53 

Scheme 3.1.17. Alternative synthesis of 1,3,5-tris(mercaptomethyl)benzene building 

block   
54 

Scheme 3.1.18. Synthesis of of dithiol building block   55 

Scheme 3.1.19. Synthesis of dimer B   56 

Scheme 3.1.20. Retrosynthetic analysis of benzo 1,3,5-tris(mercaptomethyl)benzene 

dithiol building block 
61 

Scheme 3.1.21. A new approach to the synthesis of a 1,3,5-

tris(mercaptomethyl)benzene dithiol building block 
62 

Scheme 3.1.22. Synthesis of ligand C 63 

Scheme 3.2.1. Linear oligomeric multidentate thioether ligands 64 

Scheme 3.2.2. Retrosynthetic analysis of cyclic thiol-thioether hybrid multidentate 

ligand D 
66 

Scheme 3.2.3. Retrosynthetic analysis building blocks 66 

Scheme 3.2.4. Synthesis of of bis(halomethyl)benzylsulfane 69 



List of Schemes 
 

v 

Scheme 3.2.5. Retrosynthetic analysis of 1,3,5-tris(mercaptomethyl)benzene building 

block 
70 

Scheme 3.2.6. Alternative synthesis of 1,3,5-tris(mercaptomethyl)benzene dithiol 

building block 
71 

Scheme 3.2.7. Synthesis of ligand D 72 

Scheme 3.2.8. Retrosynthetic analysis of ligand E 75 

Scheme 3.2.9. Synthesis of one masked, one free thiol containing tert-butylbenzylic 

compound 
77 

Scheme 3.2.10. A new approach to the synthesis of ligand with bulkier linker 78 

Scheme 3.2.11. The synthesis of ligand E 80 

Scheme 3.3.1. Hypothesized chemical reaction sequence 95 

Scheme 3.3.2. Synthesis of biphenyl 53 96 

Scheme 3.3.3. Synthesis of biphenyl 59 96 

Scheme 3.3.4. Synthesis of 60   97 

Scheme 3.3.5. Simulation of surface reactions 97 

Scheme 3.3.6. Synthesis of biphenyl 62 98 

Scheme 3.3.7. Synthesis of fluorinated derivative of 50 101 

Scheme 3.3.8. Synthesis of asymmetric derivative of 50 108 



Abbreviations 
 

vi 

. 

iii. ABBREVIATIONS 

Ac Acetyl 
Å Angstrom 

AIBN 2,2′-azobis(2-methylpropionitrile)  
Anhyd. Anhydrous 
aq. Aqueous 
BOC N-tert-butoxycarbonyl 
br Broad 
BTC Bis(trichloromethyl)carbonate 

Bu Butyl 
d Duplet 
DMAP Dimethylaminopyridine 
DCM Dichloromethane 

DHP 3,4-Dihydro-2H-pyran 

DMF N,N-dimethylformamide  
DMSO Dimethylsulfoxide 
EA Elemental Analysis 
EI Electron Impact 
eq. Equivalent 
ESI Electron Spray Ionization 
Et Ethyl 
EtAc Ethylacetate 

EtOH Ethanol 

FAB Fast Atom Bombardment  
FG Functional Group 
GPC Gel Permeation Chromatography 
h Hour 
HPLC High Performance Liquid Chromatography 

HRXPS High Resolution X-ray Photoelectron Spectroscopy  
hv Light 
KSAc Potassium thioacetate 
NaH Sodium hydride 
m Multiplet 
M Molar 



Abbreviations 
 

vii 

m/z Mass per charge 
MALDI Matrix-Assisted Laser Desorption-Ionization 
Me Methyl 
mg Milligram 

min Minute 

mL Milliliter 

ML Monolayer 

mmol Millimole 

MeOH Methanol 

MP Melting Point 
MS Mass Spectrometry 
Ms Mesyl 
NBS N-Bromosuccinimide  
nm  Nanometer 

NMR Nuclear Magnetic Resonance 
PG Protecting Group 
Ph Phenyl 
PMB p-methoxybenzyl 
ppm Parts per million 
PPTS Pyridinium p-toluenesulfonate 
q Quartet 
quant. Quantitative 
Rf Retention factor 
RT Room temperature 
s Singlet 
STM Scanning Tunneling Microscopy  
t Triplet 
Tert Tertiary 
TBAF Tetra-n-butylammonium fluoride 
TBME t-butyl methyl ether 
TEA Triethylamine 
TEM Transmission Electron Microscopy 
TFA Trifluoroacetic acid 
THF Tetrahydrofuran 



Abbreviations 
 

viii 

THP Tetrahydropyran 
TLC Thin Layer Chromatography 
TOAB tetra-n-octylammonium bromide  
TOF Time of Flight 
TPP Triphenylphoshine 
Trt Trityl 
UV-Vis Ultraviolet and visible 
v/v Volume per volume 
XPS X-ray photoelectron spectroscopy 



Introduction 
 

1 

INTRODUCTION 
 

1.1. Towards the Gold Nanoparticles 

 

The extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria). It became 

rapidly prevalent not only for its scarcity but also for its resistivity against the corrosion and 

its softness, which enabled it to be hammered into pieces of jewellery. The production of 

gold reached 10 tons per year in Egypt around 1200-1300 B.C. when the statue of 

Touthankamon was constructed. 

 

  

Figure 1.1. Sarcophage of Touthankamon (left), Lycurgus Cup (right) 

 
“Soluble” gold (gold colloids) have been probably appeared around the 5th or 4th century 

B.C. in Egypt. Following their discovery, gold colloids have been used for well over a 

thousand years for both aesthetic and curative purposes some of which still continues today 

such as production of ruby glass and coloring of ceramics. Perhaps the most famous 

example is the Lycurgus Cup, which was made in the 5th to 4th century B.C. Its color is ruby 

red in transmitted light and green in reflected light, which is due to the presence of gold 

colloids [1]. In addition to the Lycurgus cup, use of gold nanoparticles could also be seen at 

the windows of many medieval churches. 

 

The color of gold nanoparticles arises from unique resonance frequency, so called surface 

plasmon resonance (SPR), which results from the restoring force that tries to compensate 

collective oscillation of conduction electrons caused by the electric field of the incoming 

radiation, for example light [2]. Although many metals show plasmon resonance, their plasma 

frequency lies in the UV part of the spectrum [3]. However, gold and and other coinage 

metals are exceptional. They are not only more noble and form air-stable colloids but also 
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their plasma frequency is pushed into the visible part of spectrum (between 500 and 

600 nm) due to the to d−d band transitions [4]. 

 

The reputation of soluble gold until the Middle Ages was to display fabulous curative powers 

for various diseases, such as heart and venereal problems, dysentery, epilepsy, and tumors, 

as well as for diagnosis of syphilis. The curative use of gold colloids was well detailed in 

what is considered as the first book on colloidal gold, published by the philosopher and 

medical doctor Francisci Antonii in 1618 [5]. Afterwards, the German chemist Johann 

Kunckels published another book, [6] in 1676, in which he concluded, well before Michael 

Faraday, that “gold must be present in such a degree of communition that it is not visible to 

the human eye”. During 16th and 17th centuries there have been numerous studies on 

stability[7] and the coloration[8] of the gold colloids. However the real breakthrough in the 

scientific study of these particles was achieved by Faraday [9], whose gold colloid films have 

survived to this day. In 1857, Faraday reported the formation of deep red solutions of 

colloidal gold by reduction of an aqueous solution of chloroaurate (AuCl4
-) using phosphorus 

in carbon disulfide (a two-phase system) [9]. The methods for producing gold colloids have 

since extended to many other elements, notably Ag, Pt and some transition metals [10].  

 

 

Figure 1.2. Faraday’s colloidal ruby gold. Reproduced by courtesy of the Royal Institution of Great 
Britain. 

 

In contrast to the long history of gold, the development of its chemistry delayed because of 

its noble character since it could be only dissolved in oxidizing media like aqua regia limiting 

the scope of the potential experiments. In the mid-19th century Faraday [9] reported the initial 

formal studies of the interactions between gold colloids and light, subsequently in the 20th 

century, the physical descriptions such as Mie theory [11] were able to explain and predict the 
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optical properties of gold nanoparticles. In addition, descriptions of gold nanoparticles as 

zero-dimensional quantum wells and the theory of Coulomb blockade have initiated the 

analysis of their electronic properties. It is expected that the electronic properties of 

nanoparticles may offer solutions to the limits of Moore's law rendering them particularly 

interesting for future applications [12-18]. In the past decade, gold colloids have been the 

subject of a considerably increased number of books and reviews. Current effort is focused 

on colloids with particles smaller than 100 nm, known-as “nanoparticles”. Particularly 

interesting are the particles in the size range between 1 and 10 nm, where they can neither 

be treated as single molecule nor as bulk materials [19]. The subject is currently intensively 

investigated, due to fundamental and applied aspects relevant to the quantum size effect. 

The recent growth in the number of publications observed in Figure 1.3 reveals the 

recognition of the new and changing properties on the nanoscale. 
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Figure 1.3. Number of articles published containing the concept on gold nanoparticles since 1991. 
Data collected from Scifinder 2010. 

 

The nanometer scale is also important for several applications, which also includes those in 

biological systems [20-22] (Figure 1.4). Many proteins are around tens of nm in size. Since 

structures can be accurately designed in nanometer scale, they could be incorporated into 
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biological systems owing to their similar size scales. Aside from the similar size and 

correspondingly large surface-to-volume ratio, certain nanomaterials are attractive probe 

candidates because of their chemically tailorable physical properties. Moreover, their 

remarkable target binding properties and overall structural robustness yield novel hybrid 

nanobiomaterials. Nanotechnology for life sciences comprise an effort to address problems 

ranging from painful and inefficient drug delivery to the need for faster medical diagnosis and 

analysis. 

 

 

Figure 1.4. Some potential application areas of nanoparticles. 

 

1.2. Properties of Gold Nanoparticles 

 

Nanoparticles can have fundamentally different properties compared to their bulk 

counterparts [19]. For instance, they can exhibit SPR, their melting point is lower than that of 

bulk metals [23, 24] and their charging can be a quantized single-electron event [25, 26]. Virtually 

any chemical functionality can be bound to them by simple surface reactions [27, 28] and 

different metal compositions can be used to tailor the electronic properties of the core [10, 26]. 

Remarkably, most of these properties are size-dependent and can be adjusted by changing 

the nanoparticle size.  



Introduction 

5 

1.2.1. Surface Plasmon Resonance (SPR) 

Nanoparticles exhibit distinct optical properties. For instance, photoluminescence spectra of 

semiconductor particles are governed by the opening of gaps in the band structure and the 

spatial confinement of excitons inside the nanoparticle [23, 29]. In metallic particles, the most 

prominent feature is the surface plasmon excitation [30]. An important characteristic of gold, 

silver and other noble metal nanoparticles is the SPR in the visible spectrum, which gives 

rise to intense colors. SPR is due to the collective oscillation of the conduction band 

electrons on the particle surface induced by the interacting electromagnetic field. SPR is 

very sensitive to the size of the particles. It is not observed for bulk materials but also 

vanishes for radii less than 2 nm since the incident light was absorbed by the electrons 

which behave like a wave due to quantum effects. For 2 - 20 nm particles, the position and 

the intensity of SPR is well defined by the Mie theory [2, 31] and can be used to obtain 

information about the concentration and polydispersity of the nanoparticle sample. 

Aggregation also affects surface plasmon resonance as the SPR of a single particle 

changes if it is brought in close proximity to another particle. The sensitivity of the plasmon 

frequency to the environment of the nanoparticle opens the way for application of such 

particles as sensors [32, 33]. 

 

 

Figure 1.5. Origin of surface plasmon resonance due to coherent interaction of the electrons in the 
conduction band with electromagnetic field. 

 

1.2.2. Quantum Size Effects 

When the size of a metal is reduced to a particle of a few nanometres in diameter, bulk 

descriptions of the electronic structure are no longer valid [34]. In bulk, metallic gold, the 

electronic properties are characterized by the valence and conductance bands containing an 
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infinite number of bonding and antibonding orbitals respectively. The Fermi level lies within 

the conductance band, allowing the metal to conduct using only thermal energy (Figure 

1.6.c). When the dimensions of the metal are reduced to a few tens of nanometers, discrete 

energy levels start to appear at the band edges due to confinement of space and decrease 

in the number of electrons (Figure 1.6.b). Although the properties of the gold nanoparticle 

remain largely metallic, some molecular transitions may be observed under certain 

conditions such as low temperature. As the size is further decreased to below 2 nm, the 

(pseudo) continuous bands will split into discrete levels, molecular orbitals, within the band 

structure can be observed (Figure 1.6.a) [35]. For instance, Au55 clusters have a gap of ~ 0.25 

eV [36]. As a consequence, the nanoparticle loses the majority of its metallic character and 

exhibits size-induced metal-to-insulator transition [23, 37, 38]. These changes in the electronic 

structure with size point out the need for access to gold nanoparticles with well-defined core 

diameter [12]. 

 

 

Figure 1.6. Formation of a metallic band structure. Adapted from [39]. On the way from a molecule a) 
via nanosized clusters b) the quasi delocalisation of valence electrons increases until the bulk state c) 
is reached. EF=Fermi energy, DOS = Density of states. 

 

The above mentioned discrete nature gives rise to Quantum Size Effects (QSE) [23, 24, 35, 37, 

40]. The energy required to add an electron to a system, energy known as the Coulomb 

charging energy (Ec= e2/2C), is almost zero for bulk gold. However, in small gold 

nanoparticles, electrons are subject to substantial confinement leading to strong Coulombic 

repulsion and a subsequent increase in Fermi energy (EF). Indicated by Kubo criterion, the 
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QSE begin to take place when the level spacing at the Fermi level δ(EF) exceeds the thermal 

energy of the electrons (kBT), leading to single electron transition (SET) events [12, 34, 41-43].  

 

 

Figure 1.7. Kubo criterion. NA: Avogadro constant, kB: Boltzmann constant; z: the number of valence 
electrons per atom. 

 

When a nanoparticle is placed between two electrodes (Figure 1.8), a double tunneling 

junction will be formed due to the small size of the cluster and the band splitting. In order for 

electrons to tunnel between the source and the drain through the nanoparticle, a minimum 

energy known as the Coulomb charging energy must be applied [23, 44-46]. The nanoparticle is 

charged with one elementary charge by the tunnelling electron, causing a voltage build up U 

= e/C. If the capacitance is very small, the voltage build up can be large enough to prevent 

another electron from tunnelling. 

 

 

Figure 1.8. Experimental arrangement and conditions to measure current-voltage (I-U) 
characteristics. Adapted from [39]. 

 
The conductivity of such a device is therefore limited by a Coulomb blockade [47, 48]. Between 

-500 mV and +500 mV, conductivity is not observed meaning that a single electron is 

trapped in the cluster until a voltage less than 500 mV is reached (Figure 1.9). If the bias 

voltage is increased, a stepwise increase of the conductivity is expected [23, 45, 46, 49]. Within 

the Coulomb blockade region, the SET is in the “off” or "0" state, and at high enough gate 

voltages, the SET will be in the “on” or "1" state [12, 50]. 
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Figure 1.9. I-U curve of Au55(PPh3)12Cl6 at room temperature.There is a well-pronounced Coulomb 
blockade between -500 mV and +500 mV. Adapted from [39]. 

 

Moreover, if the nanoparticle under investigation is sufficiently small, these effects can be 

observed at room temperature [51, 52]. In an ideal case it is possible to observe SET, however, 

only if the thermal energy of the electrons (kBT) is very small compared with the Coulomb 

charging energy. As the capacity C directly depends on the surface of the particle this 

means that the smaller the particle, the larger the electrostatic energy becomes. If C is small 

enough, T could be increased up to room temperature. All former measurements in literature 

had to be done at very low temperature to observe SET. However, Au55(PPh3)12Cl6 for the 

first time allowed the observation of SET processes at room temperature. To sum up, careful 

control over the size and composition as well as the purity of gold nanoparticles is crucial for 

observing and utilizing the unique electronic properties of these materials. 

 

Another important general property of nanoparticles is their surface-to-volume ratio. Small 

particles have a large proportion of their atoms at the surface. This will lead to different 

binding energies, since the surface atoms will have a lower coordination number than bulk 

atoms. For instance, the Au–Au binding is stronger in gold clusters than in bulk gold, leading 

to a smaller bond length [53]. The reactivity of small particles differs from that of the bulk 

material, due to this difference in the interatomic bonding. In combination with the large 

surface exposure and defect free close shell structures makes gold nanoparticles potent 

oxidation catalysts [23, 54]. Another important example is the low temperature oxidation of CO 

(carbon monoxide) by gold particles [55-57]. 
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1.3. Synthesis of Gold Nanoparticles 

 

The goal in preparing gold nanoparticles is to produce a population of narrowly dispersed 

gold cores. Most commonly, a Au(III) salt is reduced to Au(0) to form an activated species, 

either in a single step or via an Au(I) intermediate followed by reduction to Au(0). These 

activated Au(0) species are thermodynamically unstable and rapidly aggregate to form 

nuclei because in any colloidal material reduction of the surface-to-volume ratio is favourable 

for reducing the surface free energy [58]. To prevent aggregation of gold nanoparticles these 

activated Au(0) species are commonly passivated and stabilized by an organic ligand shell 

(Figure 1.10).  

 

 

Figure 1.10. Diagram of a monolayer protected cluster (MPC). A) Inner gold core. B) Outer 
passivating organic monolayer, which electrically insulates the inner core. 

 

In order to produce a uniform, narrowly distributed population of gold nanoparticles, the 

activated species must be homogenously dissolved throughout the reaction medium, and 

the nucleation should occur simultaneously. To meet these criteria, reactions are typically 

carried out in small volumes with millimolar concentrations of reactants using constant, 

vigorous stirring. The rate of activated species formation, and thus the rate of nucleation, is 

controlled by choice of the reducing agent, the concentration or the temperature. 

 

Although hundreds of methods have now been reported for the preparation of gold 

nanoparticles, they can generally be categorized by the type of organic ligand they are 

prepared with. These categories include (i) non-specific ligands, such as citrates, (ii) 

phosphines, such as triphenyl phosphine and (iii) thiols, such as dodecanethiol. Methods 
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resulting in formation of nanoparticles containing these classes of ligands are discussed 

below. 

1.3.1.  Turkevich Method 

The most common method of synthesizing gold nanoparticles is through the use of citrate 

(Figure 1.11). Turkevich et al. reported that adding sodium citrate to a boiling solution of 

chlorauric acid led to the formation of nanoparticles [59]. 

 

 

Figure 1.11. Preparation of citrate-stabilized nanoparticles. 

 

Later work revealed that variations in temperature and the ratio of reactants allowed for 

control over the average core size from 10 to 100 nm [60]. More recent work showed that Au-

citrate solutions allowed for the synthesis of nanoparticles less than 10 nm in average core 

size [171]. Despite being the most common method of producing nanoparticles, citrate-

stabilized nanoparticles are disadvantageous for several reasons. First, they cannot be 

isolated from solution, making it difficult to store or study them in the solid state. Second, 

with minimal changes in pH or ionic strength their stability is diminished. Finally, and most 

significantly, their functionalisation, either through ligand exchange or via derivatisation of 

carboxylic acids in the ligand shell, is rather limited. 

 

As noted, the synthesis of gold nanoparticles using non-specific ligand shells typically yields 

nanoparticles with large (> 5 nm) cores. The strongly enhanced plasmon resonance renders 

the large nanoparticles effective for optical and biological applications as tagging agents. In 

addition, larger nanoparticles produced by these methods have also been utilized as 

precursors in seeded growth reactions. On the other hand, despite their intriguing electronic 

properties at very low temperatures, large nanoparticles are not particularly suited for single 

electronics applications. For this reason, there has been significant effort put into the 

synthesis of smaller nanoparticles. 
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1.3.2. Phosphine Ligands 

Though not as common as citrate preparations, another important class of gold 

nanoparticles is stabilized using phosphine ligands. The small size of gold nanoparticles 

stabilized with phosphine ligands, (typically less than 2 nm) along with their predicted room-

temperature Coulomb blockade properties makes them particularly attractive for room 

temperature SET applications. 

 
The earliest syntheses were derived from cluster chemistry, and some of the first molecular 

gold clusters contained just a few gold atoms. Initially, Au5 and Au11 were reported, and this 

was followed by a number of other molecular species up to Au39. 
[61-64]. The shift from sub-

nanometer cluster chemistry to nanoparticle synthesis began with Schmid's synthesis of 

Au55 with 1.4-nm average core diameter [65]. These particles were synthesized in two steps. 

First, HAu(III)Cl4·3H2O is reduced to PPh3Au(I)Cl, by addition of triphenylphosphine [66]. Then, 

the next step requires the stronger reducing agent diborane, B2H6. A reaction equation 

completely describing the stoichiometry has never been elucidated for this reaction.  

 

HAuCl4 + 2PPh3 + H2O / EtOH � PPh3AuCl + 3HCl + OPPh3 

 

Figure 1.12. Synthesis of Au55[PPh3]12Cl6. 

 

It is known that face centered clusters or hexagonal closed packed structures of transition 

metals contain 10n2+2 atoms, so-called magic numbers, with n being the number of shell 

around the central atom [26]. Interestingly, it has been shown that the growth of gold 

nanoparticles generally proceeds through the formation of magic number clusters, which 

exhibit high electronic stability.  

 

The properties of Au55 cluster have been extensively studied [18, 51, 53]. Both the stoichiometry 

and geometry of Au55[PPh3]12Cl6 have been subject of a debate [67, 68]. It is suggested that 

Au55 cluster should be surrounded by two closed shells of gold atoms. The inner shell of Au55 
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cluster should be formed by a central gold atom surrounded by 12 neighboring atoms. In the 

outer shell of Au55 cluster, twelve atoms should be situated at the vertices, twenty four at the 

edges and six at the centres of the (100) facets. The proposed Au55 cluster has six (100) and 

eight (111) facets. Moreover, high electronic stability of Au55 clusters also implies face-

centered cubic arrangement, giving it the cuboctahedral shape, as seen in figure 1.13. It is 

also proposed that the well defined geometry of the Au55 cluster leads to monodisperse and 

more stable compounds than the bulk gold [70], since geometrically full shell clusters are 

much more stable than clusters with incomplete outer shells [35]. Nevertheless, the proposed 

structure has become widely accepted, owing to the increasing amount of evidence [51, 53, 69]. 

 

 

Figure 1.13. Organization of full shell metal clusters. A central metal atom (purple) is surrounded by 
12 others (green) to form a full shell cluster M13. 42 atoms (red) can be densely packed on the first 
shell to form a M55 2

nd shell cluster, followed by 92 atoms on the 3rd shell (yellow) to give M147 
[43]. 

 

One drawback for phosphine-stabilized nanoparticles is the limited functionality available 

with compatible phosphine ligands and the fact that many phosphine-stabilized 

nanoparticles, for example, Au55[PPh3]12Cl6, are not stable in solution [71, 72]. In solution, part 

of the phosphine ligands detaches from the gold surface and leads to formation of 

irreversible coagulation of gold nanoparticles to bulk gold [73, 74]. Recent studies have 

demonstrated that phosphine-stabilized nanoparticles can undergo ligand exchange 

reactions with a wide variety of thiols, leading to nanoparticles that are stable in solution for 

extended periods [75, 76]. 

1.3.3. Brust-Schiffrin Method 

In 1994, Brust et al. reported the direct synthesis of gold nanoparticles containing 

dodecanethiol ligands by use of tetraoctyl ammonium bromide (TOAB) [77]. In this method, 

aqueous sodium borohydride is used to reduce HAuCl4 in toluene in the presence of 
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stabilising thiols and TOAB, to form toluene soluble 5 to 6-nm gold nanoparticles. Although 

the ability to synthesize a diverse range of core sizes is limited, this method provides 

advantages with respect to Turkevitch method and the resulting nanoparticles can be 

isolated from solution. Moreover, the ligand can be exchanged to yield both thiol and amine 

stabilized nanoparticles [78, 79]. Futhermore, thiol coating makes the particles extremely stable 

and they can be repeatedly dried and redispersed in various solvents without degradation.  

 

Following these initial reports, syntheses have been developed for a wide variety of organic-

and water-soluble nanoparticles containing a number of functional groups. Subsequent 

studies showed that a monophasic procedure could be used to prepare alcohol-soluble gold 

nanoparticles and eventually water-soluble gold nanoparticles [80]. Murray's group showed 

that the core size of nanoparticles prepared in this fashion might be tailored by varying the 

ligand to gold ratio during the reaction [81] In general, the direct synthesis of thiol-capped 

gold nanoparticles leads to nanoparticles in the 2 to 8-nm size regime and tends to result in 

a greater degree of size dispersity than, for example, phosphine-stabilized nanoparticles. 

The synthesis has since been further modified to get more monodisperse gold nanoparticles 
[28, 82, 83]. 

 

1.4. Functionalization of Nanoparticles 

 
Upon synthesis, gold nanoparticles often contain an improperly functionalized ligand shell. 

However, this is not useful for the applications such as assembly or targeting, which require 

nanoparticles with specific peripheral functional groups. The presence of peripheral 

functionality allows for tuning the interactions between the gold nanoparticle and its 

environment, such as solubility, reactivity and self-assembly. Two general approaches have 

been devised for the introduction of functional groups into the periphery of the ligand shell: 

(i) post-synthetic modification of the existing ligands or (ii) ligand exchange to replace the 

existing ligands with ligands containing a desired functionality.  

1.4.1. Post-Synthetic Modification  

Post synthetic modifications are used to attach molecules containing a desired functionality 

to the periphery of the nanoparticle using an existing functional group on the nanoparticle. 

For instance, Templeton et al. investigated the SN2 reactivity of bromo groups on the 

periphery of gold nanoparticles [84].
 

In particular, the effect of the chain length of the ligand 

shell (4, 8 and 10 carbons) and the bulkiness of the nucleophile on packing density of 
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ligands were investigated. Subsequently, it was shown that terminal ―COOH groups could 

be modified by alcohols and amines to form the resulting amides and esters [85]. Other post-

synthetic modifications included coupling reactions [84, 85], polymerization [86]
 
and peripheral 

group transformations [87]. 

 

Post-synthetic modification offers the opportunity to start with a common precursor 

nanoparticle and, through well-known chemical transformations, obtain functionalized 

nanoparticles. However, the success of this approach is limited not only by the stability of 

the gold nanoparticle under the reaction conditions, but also by the reactivity and bulkiness 

of the peripheral functionality to be modified. Furthermore, complete functionalisation of 

nanoparticles might not be achieved in most of the cases leading a mixture of functionalised 

and non-functionalised nanoparticles [75]. Therefore, the functionalisation of particles is 

usually characterized qualitatively by infrared spectroscopy, X-ray diffraction, transmission 

electron microscopy etc. The quantitative analysis of the functionalised particles is 

performed indirectly which requires further reactions of nanoparticles and measuring the 

quantitativity of formed products. Consequently, the determination of the extent of 

functionalization is rather difficult. Because of these obstacles, ligand exchange is often 

employed. 

1.4.2. Ligand Exchange  

One of the most intriguing properties of noble metal clusters is the ligand exchange reaction 

where the existing ligand shell on a gold nanoparticle is either partially or fully displaced by 

another ligand that contains the desired functionality through simple chemisorption and 

desorption [26-28, 75, 84].  Most commonly, the gold nanoparticle is synthesized with a small, 

labile ligand shell that can be easily displaced in subsequent steps. Generally, the gold 

nanoparticles are dispersed in a suitable solvent, followed by addition of an excess of the 

ligand, typically a thiol, either under monophasic or biphasic conditions. This is allowed to 

stir for several hours or days either under ambient conditions or at elevated temperatures. 

Following the exchange, excess and exchanged ligands are removed by suitable purification 

methods, yielding the ligand-exchanged product. In all cases, removal of the excess ligand 

is important following ligand exchange because it has been shown that excess ligands lead 

to destabilization of the nanoparticles. In order to introduce the desired functionality, a 

variety of ligand exchange methods have been developed for different classes 

nanoparticles. 
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Phosphine Ligand Exchange  

Ligands like phosphines which are binding less strongly to gold than thiols may be replaced. 

Phosphine stabilized nanoparticles ligand exchange chemistry for triphenyl phosphine (TPP) 

stabilized nanoparticles was well-described by Woehrle et al [76, 88]. The ligand exchange of 

1.4 nm TPP stabilized nanoparticles, under both single and biphasic conditions, showed that 

the TPP was displaced as a Au(PPh3)Cl compound followed by association of the incoming 

thiol during the ligand exchange process. Even though some loss of gold from the surface 

was observed, reductions in core diameter were negligible and the Au55 clusters were 

reported to be more stable when the phospine ligands are exchanged for thiols or thioethers 
[66, 89-91]. Similarly, 0.8-nm TPP stabilized nanoparticles (Au11), have been exchanged with 

both functionalized phosphines and thiols to yield ligand-exchanged products. 

 

In 2001, von Kiedrowski et al. reported the phase-transfer synthesis of gold clusters 

stabilized by tridentate benzylic thioether ligands based on 1,3,5-

tris(mercaptomethyl)benzene scaffolds using water-soluble ligands [92].  

 

 

Figure 1.14. Idealized computational model structure of a thioether ligand gold cluster complex and 
the employed ligand structure. Adapted from [92].  

 

The stoichiometry that is expected for the thiol-coated Au55 clusters thus formed depends on 

steric factors. With alkylthiols, a stoichiometry of Au55[SR]26 is expected: twelve apical thiols, 

one thiol on each of the eight 111-faces and one on each of the six 100-faces. Indeed, 
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Brown claims to have obtained Au55L26, where L=SC12H25 
[91]. Schmid finds Au55L12 with very 

bulky substituents that apparently occupy only the apical positions [89, 90].  

 

Thiol Ligand Exchange 

Nanoparticles synthesized directly with thiol ligands are appealing because they offer the 

ability to obtain stable nanoparticles coated with a functionalized ligand shell in a single step. 

Unfortunately, the scope of direct thiol stabilized nanoparticle synthesis is limited by the 

stability of thiols with respect to disulfide formation. Although, it was reported that the 

disulfide ligands can be used for direct synthesis of gold nanoparticles, the stability of the 

particles is much lower than thiol counterparts [93, 94].  For this reason, thiol-thiol ligand 

exchange is often required to obtain nanoparticles with the desired functionality. However 

thiol-thiol ligand exchanges are often more difficult than exchanges on TPP or 4-

dimethylaminopyridine (DMAP) stabilized nanoparticles.  

 
Murray et al. suggested that ligand dissociation and exchange occurs via a concerted 

mechanism whereby an incoming ligand transfers a proton to the sulfur of an outgoing ligand 
[28]. It has been further hypothesized that certain locations on a nanoparticle are more 

reactive during ligand exchange. For both steric and electronic reasons, edge and vertex 

sites, areas where gold atoms have few nearest neighbors, are considered to have the 

highest reactivity, followed by edge sites, near-edge face sites and interior face sites [95]. It is 

likely that the vertex sites are the most reactive because; (i) the gold atoms at the vertex 

have the highest potential, and therefore show the highest reactivity (i.e. for redox chemistry) 

and, (ii) ligands at these sites are not stabilized by Van der Waals interactions. By similar 

arguments, interior surface sites show the greatest stability because the gold surface is 

more uniform and there is much higher ligand packing density, which increases the stability 

of the monolayer
 
[28, 96, 97]. 

 

 

Several other factors have been shown to be important during the ligand exchange process. 

First, it has been shown that ligand exchange occurs most readily when the precursor 

particle has a ligand shell that is composed of short chain length and that is labile. Longer 

chain lengths lead to greater monolayer stability and lower exchange rates. It has also been 

shown that for the same reasons, incoming ligands that have favorable Van der Waals or 

hydrogen bonding interactions will show higher exchange rates. The concentration of 

incoming ligand also plays a large role. Although there is a one-to-one ligand exchange 

ratio, a high concentration of incoming ligand is required to force the ligand exchange 
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reaction to completion. The reason for this is that there is significant equilibrium of thiols on 

the surface and in solution. As with any equilibrium situation, pushing the reaction towards 

completion requires a significant excess of the incoming thiol. Additionally, time and 

temperature also play a role in forcing the reaction [98].  

 

1.5.  Purification of Nanoparticles 

 

Purification of the desired product is one of the most critical aspects of nanoparticle 

preparation. Following synthesis, the product is often contaminated with excess free ligand, 

precursor molecules, salts and nanoparticles with undesired sizes. These impurities will 

often interfere on the properties of the gold nanoparticles along with their interactions with 

the environment, either for self-assembly or for assessing the toxicology.  

 

The method used for purification of nanoparticles largely relies on the nanoparticle 

characteristics and the composition of the impurity to be removed. For instance, purification 

of water-soluble, thiol-stabilized nanoparticles could be challenging, as the desired material 

and the impurities, both salts and free ligand, often have similar solubility.  

 

Extractions and solvent washes are beneficial for removal of the free ligand and other 

organic impurities, but tend to leave residual salts behind. Size exclusion chromatography is 

useful for removing both salts and free ligand, however the nanoparticles tend to irreversibly 

precipitate on the chromatography supports, leading to decreased yields. Centrifugation is 

another method for removing both types of impurity, but requires considerable amount of 

time for sufficient purification.  

 

1.6. Characterization of Nanoparticles 

 

One of the significant challenges in gold nanoparticle synthesis is sufficient characterization 

in order to determine average core diameter and shape, ligand shell composition and 

impurity profile of the synthesized material. Defining a precise picture of the gold 

nanoparticles allows for a better understanding of the optical and electronic properties and 

contributes in the development of structure-function relationships. In order to establish the 

size and shape of the gold nanoparticle core, Transmission Electron Microscopy (TEM) and 

UV-Visible spectroscopy (UV-Vis) are often used. UV-Vis is a rapid and routine 

characterization method used for assessing gold nanoparticle samples. It allows access to 
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the optical properties of gold nanoparticles, primarily through the plasmon resonance 

exhibited at ~520 nm. While UV-Vis allows determining of collective properties for a 

qualitative assessment of particle size and shape, TEM provides a more quantitative 

determination of individual properties like size distribution. Additionally, electron diffraction 

experiments can also be carried out, allowing for an assessment of atomic packing and 

orientation, which is useful for shaped gold nanoparticles. In the area of nanoparticle study, 

NMR is used primarily to verify the composition of the ligand shell and to identify any 

impurities in the sample. 1H-NMR can be used to determine the identity of ligands bound to 

the surface versus those in solution or weakly bound. Due to the effects of the nanoparticle 

core and the proximity of bound ligands to one another, integration and thus quantification of 

the relative concentrations of different species associated with the nanoparticle is usually not 

applicable, thus other methods such as elemental analysis (EA), thermogravimetric analysis 

(TGA) and x-ray photoelectron spectroscopy (XPS) are used for quantification. EA or TGA 

offers the ability to determine the percentage of organic material in a nanoparticle sample. It 

is also possible to calculate the theoretical amount of ligand associated with the surface of a 

gold nanoparticle [99]. XPS is a useful technique for analyzing solid-state samples and is 

used to identify elements present within a sample and to determine their relative 

abundances in relation to each other. It allows for similar assessments, and also allows for 

the determination of how much inorganic impurities (e.g. excess salts) exist in the sample. 

Using these characterization methods, it is possible to obtain a fairly accurate picture of the 

gold nanoparticle sample. 

 

1.7. Preparation of Ordered Nanoparticles  

 

An object of a certain volume can be made in two ways: either sculpturing from bulk source 

material which has a larger volume in comparison to the intended object, or making a 

mosaic starting from tiny source material whose volume is far less than that of the object. In 

making small structures, the former is typically referred as top-down, and the latter is called 

bottom-up approach. Both approaches comprise a rich variety of tools with their specific 

advantages and drawbacks. 

 

The general top-down approach often uses the traditional workshop or micro fabrication 

methods where externally-controlled tools are used to cut, mill, and shape materials for 

generating a pattern or structure and to reduce if to the desired size [100]. The mass 

production of miniaturized devices has been developed through top-down technologies as 
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optical projection lithography and etching [101]. The limit of this method is the diffraction limit 

given by the wavelength of the incident beam. X-rays [102] or electron-beams [103] have been 

used as beam sources with smaller wavelength. However, such technologies become very 

expensive: X-ray lithography requires synchrotron radiation and electron-beam lithography 

requires ultra-high vacuum. Several methods in the projection scheme are still pursued with 

novel ideas such as optical interference lithography [104, 105]. Although, much smaller 

nanostructures can be build using new lithographic methods the fabrication of each structure 

is a costly process [106]. Recently, an imprinting technique, in which a compression molding 

is used to create a thickness contrast pattern [107], is reported. Because the technique does 

not require lithography and an etching process, the time required to fabricate nanostructure 

with a resolution of 10 nm requires only a few seconds [108]. While there is an ongoing 

technological progress over a few decades in the development of lithography and other top-

down methods, the manipulation of matter at the atomic scale is still in its infancy. 

 

  

Figure 1.15. Examples of images obtained by lithographic methods. 

 
Bottom-up approaches use the inherent properties of the materials: self-replication or self-

assembling. In his famous visionary talk “There’s Plenty of Room at the Bottom” in 1959, 

Richard Feynman outlined how to merge chemistry, biology and physics to produce 

materials, whose functional units would be of a nanoscopic dimensions and whose capability 

in information storage would be comparable with the molecular structures known in biology 
[109]. Naturally, bio-molecules are good examples of self assembled nanostructures. 

Therefore, one can expect that the molecular self-assembly concepts are envisioned to play 

a major role. 
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1.8. From Molecules to Structures  

 

Supramolecular chemistry is often defined as “the chemistry beyond the molecule” or “the 

chemistry of the noncovalent bond” [110-112]. The terminology of supramolecular chemistry 

was defined starting in the 1970s and new concepts were introduced by several different 

working groups. In 1987 the Nobel Prize in chemistry was awarded to C. J. Pedersen, D. J. 

Cram, and J.-M. Lehn for “pioneering an important contribution in the field of molecular 

recognition by non natural receptors.”  

 

Noncovalent interactions, molecular recognition, and self-assembly are keywords that have 

to be considered for understanding the principles of supramolecular chemistry. The spatial 

arrangement of the building blocks and the supramolecular assemblies is determined by the 

directional intermolecular interactions. These bonds, non-covalent in nature, are of weak or 

intermediate strength. The various bonding types comprise metal-ligand interactions [113, 114], 

hydrogen bonding [115-117], π-π stacking [118], van der Waals [119] or dipolar coupling [120, 121]. 

Each bonding type represents a different class of interactions differing in their directionality, 

degrees of strength, and dependence on distance and angles.  

 

The formulation of fundamental principles of molecular recognition goes back to the early 

20th century, when Emil Fischer and Paul Ehrlich introduced the terms “lock and key 

principle” [122] and “receptor-substrate” [123]. Molecular recognition is the specific interaction 

between two molecules, which are complementary in their geometric and electronic features 

(like two fitting pieces of a jigsaw puzzle). The lock and key principle laid the foundation for 

host–guest chemistry.  

 

Molecular self-assembly relies on the specific interactions between complex molecules 

including a wide variety of functional groups. Self-organization describes the modular 

assembly of simple building blocks into complex architectures, whose topology is 

determined by the kinetics and thermodynamics of the assembly process. The rapid 

reversibility of the process ensures that any errors that may have occurred during assembly 

can be corrected. The abundance of self-assembly processes in nature clearly demonstrates 

its power in the construction of functional biological structures.  
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Figure 1.16. Schematic representation of the self-assembly of a supramolecular aggregate a by 
molecular recognition and noncovalent interactions between molecular building blocks. Poor 
complementarity of the building blocks will destabilize the obtained aggregate b, while the binding 
between complementary units leads to strong aggregation in the case of a. Adapted from [124].  

 

Among the mentioned non-covalent forces above, hydrogen bonding is one of the most 

important intermolecular interactions. The strength of hydrogen bonds is typically around 20 

kJMol-1, but can even be as strong as 163 kJ Mol-1, as has been reported for the F-···HF 

interaction [125]. However, a single hydrogen bond is still very weak compared to covalent 

bond and a combination of hydrogen bonds is usually needed to form a more stable 

interaction. Not only the number of hydrogen bonds determines the stability of the assembly, 

but also the arrangement of the donor (D) and acceptor (A) sites plays a significant role [126]. 

The differences in stability of hydrogen bonded supramolecular species can be largely 

attributed to attractive and repulsive secondary interactions. Stabilization arises from 

electrostatic attraction between positively and negatively polarized atoms in adjacent 

hydrogen bonds, whereas destabilization is caused by electrostatic repulsions between two 

positively or negatively polarized atoms (Figure 1.17). 

 

 

Figure 1.17. Hydrogen bond arrays based G-C base pair; attractive (solid arrows) and repulsive 
(dotted arrows) secondary interactions.  
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1.8.1. Molecules on the surface 

Molecular recognition between the molecular building blocks is essential to enable an 

effective aggregation by noncovalent interactions, which in reversible self-assembly 

processes leads to stable and well-defined supramolecular species. By use of this principle 

to construct large ensembles of molecules, supramolecular chemistry bridges the gap 

between the picometer dimensions of molecules and the nanoworld. Therefore, the 

understanding of its fundamental basics is crucial for a successful chemical “bottom–up” 

approach toward nanotechnology [127]. The invention of scanning probe microscopy 

techniques has opened new doorways to study these concepts on surfaces [128]. 

 

At solid substrates, hydrogen bonds can be present in molecular structures and these may 

consequently be highly ordered with specific directionality. For instance, alkylated isophthalic 

acid (1,3-benzenedicarboxylic acid) and terephthalic acid (1,4-benzenedicarboxylic acid) 

derivatives are versatile compounds displaying hydrogen bonding. 5-Alkoxyisophthalic acid 

derivatives form close-packed arrays of interdigitating hydrogen-bonded ribbons (Figure 

1.18.a) [129, 130]. In contrast to the 3D crystals, the alkyl chains and the isophthalic acid groups 

are confined in the same plane. As a result, the hydrogen bonding motif does not reflect the 

traditional dimer formation of the carboxylic acid functions but a more complex 2D hydrogen 

bonding pattern is formed. By changing the location and the nature of the alkyl chains on the 

isophthalic acid groups, various other 2D motifs can be formed (Figure 1.18.b-d). 

 

 

Figure 1.18. STM images of isophthalic acid derivatives, illustrating the effect of number, position and 
nature of the alkyl chains on the 2D ordering. The “discs” represent isophthalic acid groups. The lines 
are alkyl chains. In c, not all alkyl chains are adsorbed on the surface. In d, the isophthalic acid 
groups form a hexamer. The scale bar indicates 2 nm [129, 130]. 
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Some functionalised hydrocarbons may display stabilizing hydrogen bonding along the 

lamella axis. For example, in monolayers of dialkylated terephthalic acid derivatives the 

terephthalic acid groups (bright) are linked by hydrogen bonds (the distance between the 

terephthalic acid groups is the same as the distance found in 3D crystals), and the alkyl 

chains, which are oriented perpendicular to the lamella axis, are interdigitated (Figure 

1.19.a). In this way, infinite 1D arrays of hydrogen-bonded terephthalic acid groups are 

formed. Other examples of infinite 1D arrays include those formed by urea or amide 

derivatives [131]. The urea function provides an especially strong intermolecular interaction. 

As a result, it was demonstrated that 1D rows or incomplete rows could be formed and 

imaged at the solid–liquid interface. Those hydrogen bonded arrays and the adsorbate– 

substrate interactions are strong enough to immobilise the molecules on the substrate, 

without forming a two-dimensional network (Figure 1.19.b) [131].  

 

  

Figure 1.19. STM image at the solid (HOPG)–liquid (phenyloctane) interface of (left) a terephthalic 
acid derivative. The bright structures are the terephthalic acid groups. The model refers to the area 
indicated. (right) A bis-urea derivative. Left: STM image and molecular model Right: STM image 
with incomplete surface coverage (17.7 nm x 17.7 nm) [130, 131]. 

 

Another interesting example is the supramolecular ordering of 4-[trans-2-(pyrid-4-

vinyl)]benzoic acid (PVBA), surfaces [132, 133]. This molecule carries a benzoic acid function 

and a pyridine function. The former one can act as hydrogen bond donor and acceptor while 

the latter functionality is a hydrogen bond acceptor. Arrangements of PVBA molecules, 

which becomes chiral upon adsorption on a Ag(111) surface as it is confined to a 2D plane, 

was studied extensively and the resulting two enantiomers were labelled as λ and δ. Twin 

chains form “nanogratings” extending over micrometer-size domains. This is surprising given 

that adjacent twin rows are nanometers apart from each other and no interaction is possible 

between adjacent chains. The achiral equivalent 4-[(pyrid-4-yl-ethynyl)]benzoic acid (PEBA) 
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was also studied. In contrast to PVBA, PEBA organises in islands, which consist of parallel 

chains. This difference may arise different lateral interactions between molecules are 

responsible for the differences in the 2D patterning, although, the main intermolecular 

interaction is head-to-tail hydrogen bonding for both molecules. 

 

 
 

Figure 1.20. a) δ PVBA on Ag(111) at 300K. b)¸ PVBA “nanograting” on Ag(111) formed at 300K . 
c) schematic showing the two enantiomers of PVBA, ¸δ and λ, and the two resulting chiral double 
chains, with OH···N and weak lateral CH···OC hydrogen bonds [133]. 

 

Hydrogen bonded clusters of molecules have been observed which appear self terminating 

in size, and do not extend to give larger arrays. These structures were investigated via the 

phases formed by 1-nitronaphthalene (NN) on Au(111). 1D chains and both chiralities of 10-

molecule clusters were observed using STM. The arrangement of molecules became 

pseudochiral on adsorption, though the molecules are not geometrically enantiomeric when 

not restricted to a plane as with PVBA. The 1D rows form at 0.1 monolayer (ML) coverage 

with clusters forming at 0.2 ML coverage. High-resolution STM images and local density 

calculations reveal the orientations of individual molecules [134-136]. 

 

 

Figure 1.21. STM images at 50 K of a reconstructed Au(111) surface with adsorbed NN; a) 0.7 ML 
NN. Inset: Structural formula of NN. The dashed line encloses the “exclusion” area resulting from 
steric repulsion. The distance of the red line from the dashed line indicates the strength of a negative 
electrostatic potential. b) 0.1 ML NN at 65 K. c) 0.2 ML NN at 50 K. Inset: 0.2 ML NN at 10 K [135]. 
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Lei et al. reported on the surface stabilised porphyrin and phthalocyanine 2D network 

formation connected by hydrogen bonds (Figure 1.22) [137]. They have co-deposited a 

porphyrin derivative and stearic acid on highly oriented pyrolytic graphite (HOPG). It was 

observed that adsorption of the porphyrin derivative alone on the surface of HOPG did not 

yield observable molecular images while in presence of stearic acid, 2D islands of the 

porphyrin derivative were absorbed, surrounded by lamellae of stearic acid (Figure 1.22.a). 

In the porphyrin domains, the molecules are arranged with 4-fold symmetry (Figure 1.22.b). 

The 2D ordering is a compromise between the intermolecular interactions (hydrogen-

bonding) and the minimization of the surface free energy: in the hypothetical closest 

packing, no hydrogen bonding is possible; those configurations with optimal hydrogen 

bonding would lead to large voids; the observed packing is a compromise between both 

(Figure 1.22.c). 

 

 

Figure 1.22. a) STM image of the 2D structure formed by TCPP and stearic acid, (200 x 200 nm2) b) 
STM image of the TCPP hydrogen-bonded network (22 x 22 nm2), and c) molecular packing of a 
porphyrin derivative. Note that the hydrogen bonding between the carboxylic acid groups is not 
optimal, but allows a dense packing [137].  

 

Hydrogen bonding between molecules need not necessarily lead to the formation of a single 

phase under a set of growth conditions, and different ordered phases can form together. The 

substrate on which the molecules are deposited also plays a crucial role in the possible 

ordering of the molecules, as does the temperature of the surface. Due to the trigonal 

exodentate functionality, trimesic acid deposited in vacuum onto Cu(100) was found at low 

temperatures (around 200K) to form two dimensional hexagonal (honeycomb) networks 

structure stabilised by carboxylic acid hydrogen bonding interactions between neighbouring 

molecules [138].  

 

Increasing the temperature to room temperature allows the molecules to rearrange 

themselves, forming a stripe motif with molecules oriented such that they no longer lie flat, 
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but the plane of the molecules is oriented perpendicular to the surface. Heckl et al. found 

that in addition to the honeycomb lattice, trimesic acid forms also a flowerlike motif on 

natural grown graphite [139]. These two phases are labelled as a hexagonal phase and a 

flower phase, and they can coexist due to different possible bonding geometries in which the 

molecules arrange to form hydrogen bond stabilised networks (Figure 1.23).  

 

 

Figure 1.23. Trimesic acid molecules can arrange in different hydrogen bonding configurations hexagonal 
(left) and flower (right) to give these two structures on graphite [139]. 

 

Hydrogen bonded molecular structures can be engineered through careful choice of 

functional groups, and can be considered as single entities. It is found that diimide 

interactions in naphthalene tetracarboxylic diimide (NTCDI) on Ag:Si(111) mediate the 

formation of 1D rows and close packed islands. The similar molecule NTCDA (dianhydride) 

was also deposited on Ag:Si(111) and image of loosely bound molecules were observed. 

Thus the functional groups of adsorbate molecules can control, to some extent, the 

possibility of hydrogen bonded array formation. The researchers demonstrate the 

manipulation of a row of hydrogen bonded NTCDI molecules across the surface as a single 

object using the STM tip (Figure 1.25) [140]. 
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Figure 1.24. a) Schematic diagrams showing the 
structure of NTCDA and NTCDI. b) Bulk crystal 
structure of NTCDI. Molecules are canted to the 
direction of the parallel rows within the crystal by 
an angle θ = ±13.9° [140]. 

Figure 1.25. a) STM image (6 x 6 nm2, sample 
voltage +1 V, tunnel current 0.5 nA) of the 
Ag/Si(111) surface. b) simplified schematic of the 
surface with vertices corresponding to positions 
of Ag trimers [140]. 

 
Cooperative hydrogen bonding can be present in ordered molecular surface structures. An 

example is demonstrated by Otero et al. [141], who presented STM images of guanine 

deposited at room temperature on Au(111) in UHV conditions. Guanine molecules are found 

to group into quartets of four molecules in a square arrangement, which the authors model 

computationally using density functional theory (DFT). These findings confirm that the 

quartet arrangement is more stable than a molecular dimer through stabilisation by 

cooperative hydrogen bonding. One may expect at first that a dimer structure would form as 

nucleic acids do in DNA. The guanine quartets pattern the surface to give a network 

structure. Figure 1.26 shows the quartet arrangement observed. After annealing the sample, 

the guanine molecules rearranged to form a self-assembled monolayer with a 30% increase 

in packing density, though hydrogen bonding was still present [141]. 

 

 

Figure 1.26. Cooperative hydrogen bonds (shown in green) stabilise quartets of guanine on Au(111); 
these quartets hydrogen bond (shown in blue) to form a network over the surface. Adapted from 
[141]. 
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In many self-assembling structures, the components are held together by arrays of several 

hydrogen bonds. One early example is the formation of a ‘rosette-like’ insoluble complex 

between melamine and cyanuric acid discovered by Whitesides and co-workers [142]. Lehn et 

al. adapted this hydrogen-bonding motif by blocking one face of each of the subunits with 

alkyl chains [143]. Steric interactions cause these compounds to form a linear molecular 

ribbon, which is a non-covalently linked polymer. This work has recently been extended by 

Perdigao et al., who studied two dimensional melamine-cyanuric networks on the silver 

terminated silicon surface Ag:Si(111) [144].  

 

 

 
 
 

 

Figure 1.27. Melamine and cyanuric acid form an insoluble ‘rosette-like’ complex  (left) [142], 
whereas sterically hindered analogues form a molecular ribbon (right) [143].   

 
Theobald et al. studied the perylene derivative perylene-3,4,9,10-tetracarboxylic-3,4,9,10-

diimide (PTCDI) and melamine on Ag:Si(111) and found them to form a supramolecular 

hexagonal hydrogen bonded network (Figure 1.28) [115]. At the vertex of each hexagonal 

pore a triangular melamine molecule is bonded to three PTCDI molecules by means of a 

triple hydrogen bond consisting of two O···H-N bonds and a central N···H-N bond. This triple 

hydrogen bonding configuration provides the network stability. The network was then used 

as a template in which clusters of guest molecules were housed. Heptameric clusters of C60 

molecules (Figure 1.28) and different sized clusters of C84 were observed to rest inside the 

network pores, and these clusters could then be manipulated using the STM tip and were 

placed in different pores in the network [115, 145].  
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Figure 1.28. a) C60 heptamers captured in a PTCDI-melamine supramolecular network. Scale bar 
indicates 5nm; b) schematic of the supramolecular bonding and placement of the C60 heptamers in 
the network pores. Adapted from [115].  

 
Aside from hydrogen bonding, other supramolecular forces like adsorbate-substrate 

interactions, surface defect densities, steric factors, temperature, adsorbate abundance, and 

many other factors may lead to formation of well ordered structures.  

 

For example, two planar molecular species can form close packed ordered structures on a 

surface due to the steric repulsion. Perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride 

(PTCDA) and copper phthalocyanine (Cu-Pc) on Cu(111) were investigated [146]. These two 

molecules interacted on the surface to form domains of molecules comprised of 3-molecule 

chevrons; one Cu-Pc was bound to two PTCDA molecules and this unit was repeated to 

build up an ordered close packed phase. Another phase was observed consisting of rows of 

Cu-Pc molecules alternating with zig-zag rows of PTCDA, forming a second close packed 

structure (Figure 1.29). 

 

 

Figure 1.29. Cu-Pc and PTCDA molecules on Cu(111) forming an intermixed phase (15 x 15 nm2). 
Adapted from [146].  
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The phases observed involving two molecular species could rely on the relative 

concentrations of each species. de Wild et al investigated the phases formed by depositing 

chloro[subphthalocyaninato]boron(III) (SubPc) and C60 on Ag(111) [120]. The intermixed 

phases formed were found to be coverage dependent, and by changing the ratio of 

SubPc:C60 on the surface several different motifs were observed (Figure 1.30) including 1D 

C60 chains and star motifs. 

 

 
Figure 1.30. SubPc and C60 form coverage dependent intermixed phases on Ag(111). This image 
shows how two triangular SubPc molecules bond to a C60 molecule to form staggered chains, next to 
a region of close packed C60. Adapted from [120].  

 
Further, in a study by Langner et al., two bipyridines (ligand 1a, 1,4-bipyridyl-benzene; ligand 

1b, 4,4′-bipyridyl-biphenyl) and three bis-carboxylic acids (ligand 2a, 1,4-benzoic-

dicarboxylic acid; ligand 2b, 1,4′-biphenyl-dicarboxylic acid; ligand 2c, 4,1′,4′,1′-terphenyl-

1,4′-dicarboxylic acid) were used during the coordination of iron atoms and highly ordered 

supramolecular arrays produced from redundant ligand mixtures by molecular self-

recognition and -selection, enabled by efficient error correction and cooperativity (Figure 

1.31) [147]. 
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Figure 1.31. Complementary molecular ligands deposited with Fe atoms on Cu(100) self-assemble into 
regular rectangular arrays (left). Steering the size and aspect ratio of rectangular molecular-scale 
compartments via the backbone length of the ligands in self-assembled iron coordination networks 
(right). STM images show six possible binary combinations [(Fe2)(1)2/2(2)2/2]n of bipyridine (ligands 1a 
and 1b) and bis-carboxylic acid (ligands 2a, 2b, and 2c) ligands. All images are 9.4 × 6.0 nm [147]. 

 

No extended molecular networks on surfaces stabilized by interactions that are covalent 

have been realized yet. In contrast to supramolecular structures, these chemical bonds 

could facilitate efficient charge transport [148] and high stability [149]. Such large networks are 

difficult to make by traditional repetitive chemical synthesis. It has been shown that the STM 

can be used to create covalent bonds between single molecules on a surface [150, 151]. The 

covalent connection is typically achieved by either activating the precursor components by 

applying an electrical bias pulse such that transient intermediates are formed which react 

with one another, or by photochemical treatment after the components have been brought, 

either manually or by self-assembly, into tight enough contact. However, this method is not 

suitable for applications where a large number of molecules need to be connected in a 

desired architecture. 
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Figure 1.32. STM images and diagrams showing the process of controlling the initiation and 
termination of linear chain polymerization with an STM tip [152]. 

 

The first such approach in this area was reported by Takami et al., who irradiated 

monolayers of 1,15,17,31-dotriacontatetrayne under UHV conditions with UV light and 

investigated the product by STM (Figure 1.33) [153]. Although the image showed periodic 

features with reasonable dimensions, it is still questionable how many of the diacetylene 

units and—perhaps even more so—how many of the terminal acetylene units have actually 

reacted to give the proposed periodic fisherman’s net with a defined mesh size.  

 

 

Figure 1.33. Proposed structure of the product arising from the UV induced formation of “clothlike” 
macromolecules. Adapted from [153]. 
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A related topochemical polymerization was also reported by De Schryver and co-workers in 

which a terephthalic acid (TTA) transferred onto HOPG by the horizontal lifting method [154]. 

The terephthalic acid and diacetylene (DIA) units formed alternating parallel linear arrays in 

2D lamellae, in which the latter units were aligned at a distance and an angle allowing for 

topochemical polymerization which can be induced by UV irradiation. 

 

 

Figure 1.34. a) STM image of the TTA-DIA monolayer structure on graphite deposited by the 
horizontal lifting method. Blue arrows point to the TTA groups and the red arrow indicates the 
diacetylene moieties in the side chain. b) Molecular model of the area outlined in a) and the unit cell 
parameters. Adapted from [154]. 

 

The most recent case stems from the research group of Grill and Hecht. Porphyrin derivative 

was activated thermally before or while being deposited under UHV on a Au(111) surface so 

that the the carbon–bromine bond was homolytically cleaved [155]. In the absence of any 

reagent with which the highly active centers of these intermediates could react, and by 

exploiting their high diffusivity on the surface, some single molecule products could be 

characterized and proven unequivocally by STM. 
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Figure 1.35. Nano-architectures of covalently bound Br4TPP molecular networks [155]. 

 

The covalent nature of the products was proven by dragging experiments. Related 

approaches were recently published by Amabilino, Raval, and co-workers [156] as well as 

Zwaneveld and coworkers [157]. 
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2. AIM OF THE THESIS 
 
Metal nanoparticles, and in particular monodispersed gold clusters, have attracted 

substantial attention in recent years owing to their small size and quantum properties leading 

to a wide range of potential applications as molecular devices and catalysts compared to 

their macromolecular counterparts. To make use of gold nanoparticles for fundamental or 

applied research, access to well-defined nanoparticles samples whose properties can be 

tuned through chemical modification is desirable.  

 

The aim of this thesis with respect to gold nanoparticles is two fold. First, multidentate 

thioether based ligands were designed based on structural considerations, and synthesized. 

Then, the interactions of these novel well-defined ligands with Au55 nanoparticles were 

investigated. Once the successful ligand exchange between the triphenylphosphanes and 

our concept ligands was achieved, a composite dimer and a composite dimer with tunable 

linker may become accessible leading to a one-dimensional arrangement of the gold 

nanoparticles. 

 

 

Figure 2.1. Ligand enwrapping gold nanoparticles 

 

Alternatively, the potential of multidentate macrocyclic ligands as stabilizing and size 

steering additives during the direct synthesis of new gold clusters with the Brust-Schiffrin 

method shall be investigated. Through careful selection of the passivating ligands and/or 

reaction conditions, the power of the concept to produce new gold nanoparticles tailored to 

possess desired properties shall be investigated. Since the physical and chemical properties 
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of gold nanoparticles are known to be dramatically affected by their size, shape and spatial 

arrangement, these were the parameters we hoped to be able to steer by the ligands.  

 

The study and the construction of nanomaterials became available with the development of 

the STM. In a bottom-up approach, nanostructures are constructed from molecular 

components which assemble themselves chemically by the principles of molecular 

recognition. Supramolecular chemistry based self-assembling techniques appear to be most 

promising in the design and development of a variety of nanomaterial structures. However, 

the formation of such thermodynamically controlled aggregated structures is reversible in 

most cases and the interaction between the molecular components is usually weak. A very 

appealing concept to obtain structures with higher stability is to benefit from the 

supramolecular order of pre-organized structures and to interlink the individual molecular 

building blocks to macromolecules.  

 

In the second part of this study, we investigate the potential of tert-butoxycarbonyl (BOC) 

protected arylamine structures as supramolecularly organized building blocks which might 

be subsequently interlinked via reactive intermediates accessed by deprotection chemistry. 

This concept may pave the way towards molecule-based covalently linked 2D functional 

structures that are so far only achievable at larger scale by lithography techniques. 

  

 

Figure 2.2. Expected H-bonding of 4,4’-diaminobiphenyl molecules as example of the supramolecular 
self assembly of BOC protected arylamines. 
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3. RESULTS AND DISCUSSION 
 

3.1. Synthesis of New Ligands for Enwrapping Au55 
Nanoparticles 

 
The successful exchange of phosphine ligands of Au55 clusters, also known as Schmid’s 

clusters, using different water soluble tristhioether based ligands derived from 1,3,5-

tris(mercaptomethyl)benzene scaffolds while nanoparticles size and monodispersity remain 

intact were reported by von Kiedrowski [92]. The elemental anaysis data suggested that the 

Au55 cluster were covered with four ligands derived from 1,3,5-tris(mercaptomethyl)benzene 

scaffolds. More importantly, ligands derived from 1,3,5-tris(mercaptomethyl)benzene 

scaffolds improved the stability of Schmid’s clusters in solution. 

 

Our goal was to design interconnected hexadentate benzotristhioether ligand derived from 

1,3,5-trimethylbenzene scaffolds to investigate their potential as multidentate ligands for 

stabilizing Au55 clusters. As displayed in figure 3.1.1, the hexadentate ligand was expected 

to cover half of the surface of Au55 clusters. Thus our first target structures were the 

macrocycles A-C (Figure 3.1.1). 

 

 

n=0, R1 = R2 = C6H13 � ligand A 

n=0, R1 = C6H13, R
2 = (CH2)5O(CH2)2OMe � ligand B 

n=1, R1 = C6H13, R
2 = (CH2)5O(CH2)2OMe � ligand C 

Figure 3.1.1. Schematic representation of the expected ligand exchange and enwarpping of Au55 
nanoparticles with dimeric macrocycle ligands. 
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A symmetrical ligand was preferred in order to achieve the final product in fewer steps. The 

presence of a methylene spacer between the benzene rings and the sulfur atoms induced a 

bent geometry allowing all three sulfur atoms to point towards the corners of the 111 triangle 

of Au55 clusters. In contrast to this, direct connection of sulfur atoms to the benzene ring 

would result in a flat core that would be less ideal for covering (111) triangles of Au55 clusters 

surfaces. Furthermore, these mercaptometylbenzene groups could be obtained by 

nucleophilic substitution of benzylhalides allowing a straight forward synthetic approach to 

the desired structure. This strategy was further encouraged by the excellent properties of 

sulfur as nucleophile. The length of the spacers which interlink both 1,3,5-

tris(mercaptomethyl)benzene cores were estimated around 5-to-6 carbon atoms, assuming 

an arrangement as decribed by previous molecular modeling data[158]. Furthermore, alkyl 

chains were added to the ligand to improve its solubility and processability in organic 

solvents (Figure 3.1.1).  

 

The macrocyclic ligand must be synthesized by a ring closing reaction. As displayed in 

scheme 3.1.1, either the dimerisation of a suitably functionalized precursor or twofold 

reaction of two different bifunctional starting materials could be considered. However, the 

presence of leaving group and nucleophile interlinked by a flexible chain in the case of 

dimerisation of a suitably functionalized precursor would provide a competing intramolecular 

reaction strongly disfavoring the viability of this approach. In our first strategy, we thus 

suggested the reaction between the dibromine and the dithiol precursors which were 

expected to yield in the desired hexadentate ligand A. To favor the ligand formation over 

polymerization, high dilution conditions were considered.  
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Scheme 3.1.1. Retrosynthetic analysis of symmetric ligand A.  

 

The synthesis of the both required building blocks was achieved in a straightforward manner 

starting from 1,3,5-tris(bromomethyl)benzene, 1. 1 was synthesized either from mesitylene 

via bromination or from 1,3,5-benzenetricarboxylic acid via esterication, reduction to 

corresponding triol and subsequent substitution of benzylic alcohols with bromines. 

Synthesis of 1 via bromination of mesitylene required low cost commercially available 

starting materials. However, the achieved yields were low due to partial over bromination of 

benzylic positions. Moreover, the low polarity of both 1 and the side products made its 

purification by column chromatography ineffective. The successive recrystallizations were 

time consuming, challenging and reduced the total yield to 22%. Another drawback of this 

synthetic approach to 1 was the toxicity of carbon tetrachloride, as solvent during the 

bromination. An alternative strategy based on esterification, reduction to corresponding triol 

and subsequent substitution with bromine required more costly starting materials and more 

synthetic steps, but led to improved over all yields and superior quality (purity) of the target 

compound 1. 1,3,5-benzenetricarboxlylic acid was refluxed overnight in methanol (MeOH) 
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containing 2.5% concentrated sulfuric acid. 1,3,5-benzenetricarboxylate (2) was obtained 

quantitatively (quant.) as white needle-like crystalline solid after aqueous workup and 

extraction with tert-butyl methyl ether (TBME). 2 was then reduced to the corresponding triol 

3 with LiAlH4 by refluxing overnight in tetrahydrofuran (THF). After quenching the excess of 

reducing agent with few drops of water, the solvent was evaporated. The crude alcohol (3) 

was then substituted with bromines by refluxing overnight in 48% HBr in a water-toluene 

biphasic mixture. 1,3,5-tris(bromomethyl)benzene (1) was obtained as white needle likes 

crystalline solid in 89% yield in three steps after purification with a short plug of silica gel. 

 

Br

Br Br

a

Br

Br Br
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Scheme 3.1.2. Synthesis of 1,3,5-tris(bromomethyl)benzene (1) (a) NBS, AIBN, dry CCl4, ↑↓, 44%; 
(b) MeOH, H2SO4, ↑↓ (c) LiAlH4, THF, ↑↓ (d) 48% HBr in water- toluene, ↑↓  89% (3 steps). 

 

First attempts to synthesis the monohexylsulfanyl derivative were based on a nucleophilic 

substitution of sodium n-hexylthiolate (4) on 1. Sodium n-hexylthiolate (4) was synthesized 

easily reacting dissolved sodium metal in ethanol (EtOH) with n-thiohexane for 2 hours at 

room temperature (RT). The formed white residue was washed extensively with TBME 

yielding 97% of 4 as white powder. Then, one equivalent of 4 was added to 1 in dry THF 

under Argon. Although, polar solvents like acetonitrile (MeCN) and N,N-dimethylformamide 

(DMF) were common solvents for substitution of benzylic bromines with thiols, THF was 
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preferred not only because of the low solubility of 1 in acetonitrile but also the toxicity and 

difficult removal of DMF as a solvent. Monitoring the course of reaction by thin-layer 

chromatography (TLC) displayed the formation of 3 new compounds within 10 minutes, 

probably representing the mono-, di- and tristhiolated compounds respectively. It was also 

noticed that some amounts of the reaction mixture applied to TLC plate remained on the 

baseline. However, after an aqueous workup and purification by column chromatography 

isolation of neither the desired compound nor of the side products could be achieved. 

 

S

Br Br
X

5

HS NaS

4

a b

 

Scheme 3.1.3. Strategy to synthesize (3,5-bis(bromomethyl)benzyl)(hexyl)sulfane, 5 (a) Na, EtOH, 
RT, 97%; (b) 1, THF.  

 

The failure of isolation of these compounds could be because of decomposition or 

polymerization of the mixture during the purification by column chromatography. Probably 

the nucleophilic character of the alkylbenzylthiol still allowed attacking benzylbromides of the 

neighboring molecule. Thus, as long as sterically not very demanding alkyl chains were used 

there seems to be an intrinsic problem with these bifunctional structures. Hence the benzylic 

bromines were probably reacting with the benzylic thioethers of the other molecules during 

purification leading the formation of sulfonium salts. Kugelrohr distillation, as alternative 

purification methods, also failed. Probably the increased temperature even increased the 

reaction between benzylic bromines and benzylic thioethers and led to polymerization de 

novo.  
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Scheme 3.1.4. Suggested mechanism for polymerization of bis(bromomethyl)benzylsulfane, 5. 
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Basicity of the leaving group is one of the factors affecting SN2 reactions. In general, the 

weaker the basicity of a group, the greater its leaving ability. Weak bases do not share their 

electrons well since their electrons are farther away from the nucleus, making them easier 

for their bonds to be broken. Therefore, SN2 reaction rates of compounds increases going 

down in the same periodic group. The relative SN2 reaction rate of bromide (around 10000) 

is 50 times faster than chloride (around 200, where fluoride is 1). Therefore replacing 

benzylic bromides with chlorides could increase the stability of the desired compound and 

might prevent its polymerization during its isolation.  

 

The exchange of bromine atoms to chlorine atoms is an equilibrium reaction but this could 

be driven to completion by using a large excess of chloride anions as nucleophiles. Thus, 5 

equivalents of lithium chloride was added to 1 in dry DMF under Argon and the desired 

compound 1,3,5-tris(chloromethyl)benzene (6) was obtained quantitatively after aqueous 

workup and extraction with TBME. Using again the nucleophilic substitution of 4 on 6 in THF 

led to formation of three new compounds, probably representing the mono-, di- and 

tristhiolated compounds respectively, determined by TLC. However, all attempts to isolate 

3,5- bis(chloromethyl)benzyl) sulfane (7) failed de novo. 

 

Cl

Cl Cl

S

Cl Cl
X

Br

Br Br

a b

1 6 7  

Scheme 3.1.5. Strategy to synthesize (3,5-bis(chloromethyl)benzyl)(hexyl)sulfane, 7 (a) LiCl, DMF, 
RT, 99%; (b) 4, THF, RT. 

 

These unexpected problems to synthesize the monohexylsulfanyl building block led to 

reconsideration of the strategy for the synthesis of asymmetric ligand B. Although the 

synthesis of this asymmetrical ligand requires more steps, the polarity of its chain was 

expected to be useful for improved the separation features of the desired compound in 

column chromatography and to enhance its solubility in more polar organic solvents. On the 

other hand, dithiol building block can be synthesized first by substituting the two leaving 

groups with a dithiol that carries one of the thiols masked by a protection group and then 

substituting the remaining leaving group with thiohexane. This strategy was explained in 

detail below (Scheme 3.1.6). 
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Scheme 3.1.6. Retrosynthetic analysis of asymmetric ligand B.  

 

For the the synthesis of the more polar thioalkyl chain required for building block (8) a 

reaction between 1 and the chain-like molecule (9) compromising a terminal thiol and a polar 

ethylene glycol subunit was considered.  
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Scheme 3.1.7. Retrosynthetic analysis of polar group containing building block.  

 

The synthesis of 5-(2’-methoxyethoxy)pentane-1-thiol (9) could be performed starting from 

commercially available 1,5-dibromopentane. Substitution of one bromine with 2-

methoxyethanol and of the other bromine with a masked sulfur atom provided an ideal 

precursor of the target structure 9. In order to profit from the increased polarity during the 

purification by column chromatography, the introduction of the polar 2-methoxyethanol group 

was considered first. Therefore, 1,5-dibromopentane was treated with equimolar amounts of 
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2-methoxyethanol and 1.2 equivalents of sodium hydride (NaH) in THF. The course of the 

reaction was monitored by TLC using a potassium permanganate solution as developing 

agent. The TLC showed that the formation of products was very slow. Completion was not 

even observed after overnight stirring at RT. For that reason, the mixture was heated to 

reflux. After overnight reflux, the consumption of 2-methoxyethanol and appearance of the 

two new well separated spots, probably representing the mono and di- substituted products, 

were observed on the TLC plate. After carefully quenching of excess NaH with water, the 

crude was separated by column chromatography following aqueous workup and extraction 

with TBME. 1-bromo-5-(2’-methoxyethoxy)pentane (10) was isolated in a low yield of %24 

as colorless oil. However, the low yield was compensated by scaling up of the synthesis. 

 

An elegant method for substitution of the remaning halogen of 10 with a sulfur atom was 

made using a thioacetate salt, followed by removal of the acetyl protection group in the next 

step. Thus, the introduction of the thioacetate group was performed by reacting equimolar 

amounts of 10 and potassium thioacetate (KSAc) in DMF at RT. The reaction was allowed to 

stir overnight. S-5-(2-methoxyethoxy)pentyl-thioacetate (11) was obtained quantitatively as 

white powder by column chromatography. The acetyl protection group was then removed in 

one hour (h) using one molar (M) NaOH in refluxing MeOH. After an aqueous workup 

extraction with TBME, 9 was obtained in 89% yield as colorless oil. 
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Scheme 3.1.8. Synthesis of the polar chain (a) 2-Methoxyethanol, NaH, THF, ↑↓, 24%; (b) KSAc, 
DMF, RT, quant. (c) NaOH, MeOH, ↑↓, 89%. 

 
The synthesis of the dibromo building block 8 was achieved by the nucleophilic attack of 9 

and 1 in THF at RT. One equivalent of NaH dispersed in 60% mineral oil was used as a 

base to deprotonate the thiol 9. The consumption of 9 and formation of new products was 

observed by TLC in 30 minutes. The excess sodium hydride was quenched with a few drops 

of water and the crude was obtained after extraction with TBME. Then, the desired product 
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was isolated in 46% yield as colorless oil after purification by column chromatography. Di- 

and tris- substituted derivatives of 8 were also obtained as side products in lower yields. On 

the other hand, the obtained compound 8 was found to decompose even under inert 

atmosphere and cold storage. Most likely this decomposition reaction, which is due to the 

high reactivity of benzylic bromines towards thioethers, again took place (Scheme 3.1.4). To 

improve the stability of the dihalide building block, 1,3,5-tris(chloromethyl)benzene 

comprising considerably weaker leaving groups than its trisbromo derivative was used. 

Under similar conditions that were used to synthesize 8, the desired dichloro building block 

(3,5-bis(chloromethyl)benzyl)(5-(2-methoxyethoxy)pentyl)sulfane (12) was obtained as 

colorless oil with a little higher yield, %47, than before. More importantly, compound 12 

displayed considerably improved stability as decomposition under inert atmosphere and cold 

storage was not detected. 
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Scheme 3.1.9. Synthesis of first building block; NaH, THF, RT, 46% for a and 47% for b.  

 

Another strategy to prevent the decomposition of 8 was to substitute bromines with sulfur 

atoms and to extend the synthesis towards the synthesis of dithiol building blocks. This way, 

it might be possible to couple the dithiol building block with another dihalide building block 

for the synthesis of target ligand B. Under similar conditions that were used for the synthesis 

of 9, the dibromide 8 was reacted with two equivalents of potassium thioacetate. The dithiol 

building block 14 was obtained as colorless oil in two steps with 90% isolated yield after 

column chromatography. 
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Scheme 3.1.10. Alternative synthesis of first building block (a) under inert atmosphere and cold 
storage (b) KSAc, DMF, RT, 99%; (c) NaOH, MeOH, ↑↓, 90%. 

 

The second building block should contain thioalkyl chain for improved solubility and dithiol 

functionality in order to perform a ring closing reaction with the dibromo building block 8. Due 

to the difference in the nature of thiol containing chains, they have to be substituted into the 

tris(halomethyl)benzene core separately, either inserting the thioalkyl chain first, then dithiol 

functionality or introducing the thioalkyl chain following the substitution of the thiol 

functionalities. Nevertheless, inserting the thioalkyl chain at the first step may result in the 

decomposition of the product as observed previously during the synthesis of 5. For this 

reason, the introduction of the thiol functionalities was considered first. However, inserting 

the dithiol functionality has one major drawback; free thiols may as well lead to 

polymerization. Therefore, free thiols should be protected before reacting with 

tris(halomethyl)benzene core. Unfortunately, there are not many choices as a protection 

groups for thiols under basic conditions. Moreover, protection groups need to be cleaved for 

performing a reaction with first building block 8 in order to achieve ring closing synthesis. 

Furthermore, it was found that available protection groups may not be efficient to prevent 

decomposition of the product. Therefore, a reversible thiol-disulfide formation was 

considered. The thiol functionalities could be synthesized as dithioalklydisulfide, substituted 

into the benzylic core. The remaining leaving group could be substituted with a thioalkyl 

chain. In the final step, the disulfide bond could be broken to form the free thiols. This 

strategy had a clear superiority than the use of a protection group as it eliminates inefficient 
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and time consuming protection-deprotection steps while reducing the danger of 

decomposition of the desired product 15.  
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Scheme 3.1.11. Retrosynthetic analysis of second building block. 

 

The dithiol chain, 5,5'-disulfanediyldipentane-1-thiol (16) was synthesized from commercially 

available 5-chloropentan-1-ol. First, 5-chloropentan-1-ol was reacted with equimolar 

amounts of potassium thioacetate in DMF for the introduction of the thioacetate group. 

Following a similar procedure for the synthesis of 11, S-5-hydroxypentyl thioacetate (17) was 

obtained quantitatively as white powder. The acetyl protection group was removed under 

basic conditions similar to the procedure for the synthesis of 9. The pure 5-mercaptopentan-

1-ol (18) was obtained in 79% yield as colorless oil. Then 18 was oxidized to the disulfide 

5,5'-disulfanediyldipentan-1-ol (19) by dropwise addition of 0.5 M methanolic iodine solution. 

The completion of reaction was confirmed by the persistent brown color of the solution. The 

excess iodine was quenched by washing with 10% Na2S2O3 solution. 19 was isolated in 89% 

yield as colorless oil after column chromatography.  
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It is known that alcohols do not easily undergo substitution reactions when they are reacted 

with nucleophiles. Thus, alcohols must first be transformed into a better leaving group in 

order to undergo substitute with nucleophiles. Tosylates or mesylates salts are commonly 

used reagents for converting alcohols into better leaving groups. Hence, the alcohol groups 

of 19 were substituted with better leaving groups, in our case tosyls, in order to insert dithiol 

functionality. The synthesis of 5,5'-disulfanediylbis(pentane-5,1-diyl) bis(4-

methylbenzenesulfonate) (20) was performed by reacting one equivalent of 19 with five 

equivalents of p-toluenesulfonyl chloride (p-TSCl) in pyridine containing dicholoromethane 

(DCM). Triethylamine (TEA) can also be used as a base for sulfonation instead of pyridine 

due to ease of removal. However, pyridine is a much better base for sulfonation as it forms a 

complex with tosyl chloride by rendering the attack of the alcohol on the sulfur easier, acting 

as a nucleophilic catalyst. After overnight stirring at RT, the ditosylate 20 was obtained in 

97% yield as white powder by column chromatography. The substitution of tosyl groups with 

sulfur atoms was performed using potassium thioacetate following similar conditions to the 

synthesis of 9. S,S'-5,5'-disulfanediylbis(pentane-5,1-diyl) dithioacetate (21) was obtained 

quantitatively as white powder. Although, previous substitution of leaving groups with 

potassium thioacetate and subsequent removal of acetyl protection groups to free thiol was 

performed successfully with excellent yields, the yield of deprotection of dithioacetate 21 

was very low, only 6%. The analysis of deprotection reaction products showed the formation 

of 18 as the main product. Apparently, the acetyl deprotection conditions were too harsh and 

mainly led to cleavage of disulfide bond. The cleavage of disulfide bond may be caused by 

treatment of 21 at high temperature in presence of strong base. Therefore, various acids and 

bases were used for the removal of acetyl protection group without heat treatment. However, 

these acids and bases were either too strong leading 0 to 5% yield of desired compound and 

favoring the formation of 18 by cleaving the disulfide bond again or not efficient by removing 

the acetyl protecting group.  
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Scheme 3.1.12. Strategy towards synthesis of second building block, (a) KSAc, DMF, RT, quant.; (b) 
NaOH, MeOH, ↑↓, 79%; (c) 0.5 M methanolic iodine, MeOH, RT, 89%; (d) p-TSCl, pyridine, DCM, RT, 
97%; (e) KSAc, DMF, RT, quant.; (f) NaOH, MeOH, ↑↓, 6%. 

 

The low yield of deprotection of diethanethioate 21 and the unexpected problems confronted 

during the synthesis of monothiosubstitued dibromomethylbenzene 5 compelled us to revise 

the synthetic strategy in a more efficient and elaborate way. Dithiol containing 1,3,5-

tris(mercaptomethyl)benzene building block could be synthesized by disubstitution of 1,3,5-

tris(bromomethyl)benzene with polar thioalkyl chains. The resulting dithioalkyl substitued 

monobromomethylbenzene compound could be further treated with hexanethiol for the 

formation of 1,3,5-tris(mercaptomethyl)benzene building block. After the removal of 

protection groups, alcohol groups could be converted to suitable leaving groups. Finally, 

dithiol containing tris(mercaptomethyl)benzene building block could be synthesized by 

treating the precursor with potassium thioacetate and removal of acetyl protection groups 

respectively. 
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Scheme 3.1.13. Retrosynthetic analysis of 1,3,5- tris(mercaptomethyl)benzene building block. 

 

Dithioalkyl substitued monobromomethylbenzene compound building block could be 

synthesized by reacting one equivalent of 1 with two equivalents of 18. However, 18 was not 

commercially available and it had to be synthesized. Although, the synthesis of 18 was 

performed starting from commercially available 5-chloropentan-1-ol, the alcoholic end had to 

be protected before substitution with 1 in order to reduce unwanted side products such as 

benzoethers. However, the protection of alcoholic end of 18 may also result in the protection 

of thiolic end since most of the protection groups and reaction conditions for protecting the 

alcohol and thiol groups are similar.  

 

The alcohol protecting group should be resistant under basic conditions since the 

nucleophilic substitution conditions and removal of acetyl groups of thioacetate were 

performed in basic medium. In order to profit from the polarity of alcohol for easier 

purification, the protection group should not reduce the polarity of the compound. These 

limitations render the usage of alkyl, benzyl or silyl ethers, and common acid labile alcohol 

protecting reagents obsolete, since they will reduce the polarity of the molecule. Esters or 

benzyl esters can not be selected as an efficient protection group either, since they can not 

only lead to cleavage of the thiobenzyl bond during the deprotection but also be deprotected 

during the removal of the acetyl protection groups of sulfur. Although methoxymethyl (MOM) 

ethers are stable under basic conditions and provide polarity for purification, their precursor 

(MOM-Cl) is harmful and known as human carcinogen. Based on these limitations, 

methoxyethoxymethyl chloride (MEM-Cl) or 3,4-dihydro-2H-pyran (DHP) can be used. DHP 

was selected and applied as an alcohol protection group as it requires milder deprotection 

conditions than the MEM-Cl.  
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5-chloropentan-1-ol was thus reacted in a nucleophilic substitution reaction with 1.2 

equivalents of DHP in DCM using pyridinium p-toluenesulfonate (PPTS) as catalyst. After 

stirring overnight at RT, the 2-(5-chloropentyloxy)-tetrahydro-2H-pyran (22) was obtained 

quantitatively as colorless oil by column chromatography. After the protection of alcohol 

group with THP, 22 was treated with one equivalent of potassium thioacetate in DMF leading 

to introduction of the thioacetate group. The reaction was allowed to stir overnight at RT and 

S-5-(tetrahydro-2H-pyran-2-yloxy)pentyl ethanethioate (23) was obtained quantitatively by 

column chromatagrophy as white powder. The removal of acetyl group was performed under 

similar basic conditions for deprotection of 11. 5-(tetrahydro-2H-pyran-2-yloxy)pentane-1-

thiol (24) was isolated in 88% yield as colorless oil by column chromatography. 
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Scheme 3.1.14. Synthesis of polar thio building block. (a) PPTS, DCM, RT, 95%; (b) KSAc, DMF, RT, 
quant.; (c) NaOH, MeOH, ↑↓, 88%. 

 

The synthesis of dithiol containing 1,3,5-tris(mercaptomethyl)benzene building block was 

performed in two steps. First, 1 was treated with two equivalents of dithiol 24 in THF at RT 

using sodium hydride as a base. The TLC revealed that the reaction was completed in half 

an hour, indicating the effectiveness of the reaction conditions. After quenching the excess 

sodium hydride with water and aqueous work up which was followed by the extraction with 

TBME, the crude was purified by column chromatography and bis-THP-protected-alcohol 

(bromomethyl)benzene (25) was isolated in 42% yield as colorless oil. Mono and tri- 

substituted side products were also isolated in lower yields. For the introduction of thioalkyl 

chain, commercially available hexanethiol was chosen and treated with equimolar amounts 

of 25 in THF.  2,2'-(5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis-(methylene)bis-

(sulfanediyl)bis-(pentane-5,1-diyl))bis-(oxy)bis-(tetrahydro-2H-pyran) (26) was isolated in 

61% yield as colorless oil after purification by column chromatography. The total yield is 26% 

after two steps reaction. 

 

The yield of 26 was lower than expected for a one-to-one substitution reaction. This was 

also interesting since the reaction conditions proved to be efficient previously. Therefore, the 



Results and Discussion 
 

52 

low yield could be a result of the decomposition of 25. Hence, the stability of 25 was 

examined and it was found that 25 decomposed under inert atmosphere and cold storage in 

a few days, most likely in accordance with the suggested mechanism in scheme 3.1.4.  
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Scheme 3.1.15. Synthesis of tris(mercaptomethyl)benzene building block.  (a) NaH, THF, RT, 42%; 
(b) hexanethiol, NaH, THF, RT, 61%, the total yield is 26% after two step reaction; (c) hexanethiol, 
NaH, THF, RT, 28% using one pot reaction method. 

 

The total yield of 26 was found to be low, only 26%, after a two step reaction. While, one pot 

reaction can lead to more side products, the statistical yield of the desired compound is 

33%, a little higher than the total yield of the two steps. Moreover, a one pot reaction method 

has the advantage of reducing the total synthesis steps and saving time. Thus, the synthesis 

of 26 was performed in one pot using two equivalents of dithiol 24, one equivalent of 

hexanethiol and 3.3 equivalents of sodium hydride in THF. Aqueous work up and extraction 

with TBME followed by column chromatography gave the desired product 26 in 28% yield, 

close to the statistical yield and a little higher than the two-step approach.  

 

Then, the deprotection of THP ethers was achieved quantitatively under milder condition 

using PPTS in refluxing EtOH. The course of the deprotection reaction was monitored by 

TLC. Due to the slow proton exchange mechanism between the solvent and THP protected 

compound of the deprotection reaction, the mono deprotection of THP was first observed. 

After overnight reflux, the fully deprotected 5,5'-(5-(hexylthiomethyl)-1,3-phenylene) bis-

(methylene)bis-(sulfanediyl)dipentan-1-ol (27) was obtained quantitatively by purification with 

a short plug of silica gel. The stepwise deprotection mechanism and possibility to isolate 
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mono alcohol-mono THP (27) compound can be further expanded to the synthesis of 

tetrameric ligands in future. 
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Scheme 3.1.16. One pot synthesis and deprotection of THP of 1,3,5-tris(mercaptomethyl)benzene 
building block.  (a) NaH, THF, RT, 28%; (b) PPTS, EtOH, ↑↓, 99%. 

 

After the fully deprotection of THP ethers, alcohols groups of diol 27 were exchanged with a 

better leaving group in order to perform a ring closing reaction by coupling with the first 

building block 8. Phosphorus trisbromide (PBr3) can be used to convert alcohols into the 

alkyl bromides. The high reactivity of bromine towards sulfur atoms could be very useful in a 

ring closing reaction. Moreover, the highly non-polar final product would be easier to 

separate from highly polar starting compound by column chromatography. Thus, two 

equivalents of PBr3 were added dropwise into the solution of 27 in THF at 0ºC. The mixture 

was allowed to reach RT and left to stir under Ar. After an overnight reaction, two new spots 

were determined by TLC, probably representing the mono- and dibrominated compounds 

respectively. However, the newly formed compounds were found very unstable during the 

purification attempts. It was also noticed that large amount of mixture remained on the 

baseline of the TLC plate even in presence of highly polar eluents. Further, the crude turned 

into a darkish color after the removal of solvent before transferring to the silica gel column or 

Kügelrohr for purification. The purification of the crude failed because of the high instability 

of the newly formed products. It is plausible that the substitution reaction easily took place 

but the high reactivity of bromines towards benzylic thiols led to decomposition of product 

during purification as suggested in scheme 3.1.4. For performing substitution reactions, 

conversion of diol 27 into more suitable leaving groups, such as tosylate and mesylates, 

were considered. The exchange of diol into sulfonates was studied since they can be 

introduced easily under mild conditions. Hence, one equivalent of diol 27 was dissolved in 
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dry DCM. Then two equivalents of pyridine, a common base, and three equivalents of p-TsCl 

or methanesulfonyl chloride (MsCl), in case for mesylation, were added to the previous 

solution at 0ºC. The reaction was run overnight at RT and the completion of the reaction was 

confirmed by TLC. After aqueous workup and extraction with TBME followed by purification 

by column chromatography, the tosylate 29 and the mesylate 30 were isolated in moderate 

yields of 59% and 41% respectively as colorless oil. However, the decomposition of 

sulfonates was observed even under Argon and below 0°C. Interestingly, both tosylate 29 

and mesylate 30 displayed higher stability in DCM or TBME solutions even at room 

temperature unlike oily (dry) states. 
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Scheme 3.1.17. Synthesis of 1,3,5-tris(mercaptomethyl)benzene building block.  (a) PBr3, THF, 0º-RT 
for R = Br; Pyridine, p-TsCl, DCM, RT, 59% for R = Tos, and 41% for mesylchloride for R = Ms. 

 

To prevent the decomposition of these precious building blocks, further substitution of 

leaving groups into sulfur atoms using potassium thioacetate and deprotection to the free 

thiol was considered. Sulfonates 29 and 30 were reacted with two equivalents of potassium 

thioacetate in DMF. Acetyl protected thiol product 31 was isolated by column 

chromatography in a good yield as colorless oil. However, the yield of the thioacetate 

substitution was lower than similar previous substitutions. It is plausible that monosubstituted 

complex might react intra or intermolecularly with the sulfonate end which led to formation of 

a cyclic compound or disulfonate dimer respectively. Then the dimer might be reacted with 

another monosubstitued thioacetate complex for the formation of oligomers and even 

polymers as suggested in scheme 3.1.4.  

 

In the final synthetic step, the acetyl protection groups were removed using a new method 

under milder conditions. The reaction of dithioacetate 31 with 0.25 equivalents of sodium 

methoxide (NaOMe) in dry MeOH provided the desired dithiol building block 32 quantitatively 

as colorless oil. 
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Scheme 3.1.18. Synthesis of of dithiol building block. (a) KSAc, DMF, RT, 69%; (b) NaOMe, MeOH, 
RT, quant., R are either tosyl or mesyl groups. 

 

The synthesis of dithiol 15 from 29 or 30 provided the opportunity to choose different 

building blocks for the synthesis of dimer B. The ring closing reaction for the synthesis of 

dimer B might be performed either by the reaction between dibromo 8 and dithiol 15, or by 

the reaction between dithiol 14 and disulfonate 29 or 30. The synthesis of dithiols 14 and 15 

both required two more steps of reactions starting from 8 and 29 or 30 respectively. Both of 

the building blocks 8 and 14 required the synthesis of alcohol protected thiol precursors 9. 

On the other hand, the synthesis of second building blocks, disulfonates or 15 required the 

synthesis of alcohol protected thiol precursors 18. Both of the precursors 9 and 18 could be 

synthesized in three steps from the commercially available starting materials. However, 14 

could be synthesized in three steps starting from 1 whereas the synthesis of 15 needed 

double amount of reactions than 14, a total of six steps starting from 1.  More importantly, 

the last two steps for synthesizing 15 reduced the amount of valuable building block. 

Therefore, it would be convenient to use dithiol 14 and ditosylate 29 or 30, for the synthesis 

of ligand B for these reasons. 

 

In a final synthetic step, 0.2 mmol dithiol 14 and 0.2 mmol ditosylate 29 were dissolved 

separately in 10 mL of THF. These solutions were simultaneously added with a rate of one 

drop per minute into 50 mL of THF solution containing 2.2 equivalents of sodium hydrate at 

room temperature. The dithiol 14 were activated with sodium hydrate in the reaction medium 

as the thiol salts blocked the needle and prevented dropwise addition of 14 to the reaction 

mixture. After the completion of addition of reactants to the reaction medium, the mixture 

allowed to stir overnight at room temperature. By using high dilution conditions (from 4.10-5 
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M to 333.10-5 M of reactants), the target compound, dimer B, was obtained as white solid in 

a yield of 16% by chromatographic purification. The yield of dimer B was a little higher, 19% 

when dimesylate 30 were used instead of ditosylate 29 due to the higher activity of tosylates 

towards leaving and thus increasing the polymerization possibility during the ring closing 

reaction. However, the total yield of last two steps was 9.44% for ditosylate 29, while the 

yield was 7.79% for the mesylate 30 pathway.  
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Scheme 3.1.19. Synthesis of dimer B. (a) NaH, THF, RT, 19% using mesylated building blocks, and 
16% using tosylated building blocks. R is either tosyl or mesyl group. 
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Ligand Exchange Experiments 

After the full characterization of dimer B, ligand exchange experiments were conducted 

using Schmid’s clusters, Au55((PPh3)12)Cl6. Schmid’s clusters are soluble in common organic 

solvents and their solutions are dark red colored. Previous ligand exchange studies of 

Schmid’s clusters by Pankau et al. [92] were performed in two-phase experimental setup 

using aqueous soluble ligands and organic soluble Schmid’s clusters. The progress of the 

ligand exchange was monitored by color change of the phases. However, both Schmid’s 

clusters and our multidentate thioether ligand B are soluble in organic solvents which render 

the observation of color change like in two-phase system obsolete. Therefore, the ligand 

exhange between the phosphine ligands and ligand B had to be confirmed using other 

analytical methods. It is well known that characteristic phosphorus peak of Schmid’s clusters 

at δ= 34.5 ppm disappears in successful ligand exchange studies [91]. The removal of 

phosphine ligands can be easily monitored by 31P-NMR measurements. In addition to the 

disappearance of phosphorus peak by 31P-NMR measurements, one can expect much 

sharper 1H-NMR signals for the triphenylphosphine ligands attached to gold atoms after 

successful ligand exchange since the triphenylphosphine signals in Schmid’s clusters are 

broadened because of the nearby gold atoms. Moreover, it was anticipated the broadening 

of thioether peaks of the dimer B around 2.2 and 2.4 ppm where the main interaction of 

thioethers with the Au55 clusters will occur. 

 

A fast ligand exchange between the phosphine and the dimer B can be expected due to the 

monophasic transfer medium and structural flexibility of dimer B. Therefore, one equivalent 

of solid Au55 clusters were added directly into the NMR tube containing two equivalents of 

dimer B dissolved in CD2Cl2. The color of the solution changed quickly from colorless to dark 

reddish-brown upon addition of Au55 clusters and the ligand exchange studies were 

performed using NMR techniques. Interestingly, neither 1H-NMR nor 31P-NMR spectra 

showed changes in the signals.Thus, a slow ligand exchange reaction was considered. To 

minimise the oxidation of reactants, the NMR tube was sealed under vacuum and 

investigated regularly over a period of five days as a long term NMR study. A solution of 

Schmid’s clusters and a solution of ligand B were also monitored separately under similar 

conditions as control experiment. 

 

After five days of monitoring, it was found that the peak broadening belonging to 

triphenlyphosphine ligand of Au55 clusters at 7.6 ppm became more visible in 1H-NMR 
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spectrum, proving the instability of Au55 clusters in CD2Cl2 as reported earlier [69]. On the 

other hand, the expected broadening of thioether peaks of the dimer B around 2.2 and 2.4 

ppm as a sign of their interaction with gold clusters was not observed. The small changes 

and broadening of peaks at the 1H-NMR spectra could be probably caused by coagulation of 

Au55 clusters into bulk gold. Moreover, a non-dispersible shiny gold film was formed on the 

surface of NMR tube preventing to observe the inside of the NMR tube which prevented 

further observation by naked eye.  

 

 

Figure 3.1.2. 1H-NMR Spectrum at 500MHz in CD2Cl2 of dimer, dimer with gold nanoparticles at t=0 
and with gold nanoparticles at t=5 days.  
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Figure 3.1.3. 31P-NMR Spectrum at 200MHz in CD2Cl2 of dimer with gold nanoparticles at t=0 and 
with gold nanoparticles at t=5 days.  

 

During the ligand exchange studies of Au55 clusters, Hutchison et. al. [88] observed a new 

peak formation in 31P-NMR spectra at 16.00 ppm arising from the formation of AuPPh3Cl due 

to the decomposition of Au55 clusters. In contrast to Hutchison findings, two new peaks were 

noticed at 53.58 ppm and 28.49 ppm in 31P-NMR spectrum at 200 MHz in CD2Cl2 after 5 

days. These two peaks may be arising by the change in gold cluster shape and size. In 

addition to that, it was observed that the peak at 34.50 ppm belonging to the 

triphenylphospine ligand of the Au55 clusters was shortened and became broadened with 

time stating the instability of Schmid’s clusters in solution.  

 

The findings in 1H-NMR and lack of phosphine peak at 16.00 ppm in 31P-NMR spectra 

supports the coagulation of Au55 clusters rather then the decomposition. It was already 

proven that the coagulation of Au55 clusters is thermodynamically favored [18]. Moreover, the 

coagulation of Au55 clusters was reported when the ligand exchange is slow [91].  

 

To overcome the coagulation of Au55 clusters due to the slower ligand exchange rate, the 

previously reported successful use of two phase ligand exchange method were considered. 
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Although, previously reported biphasic ligand exchanges were performed using organic 

soluble Schmid cluster and water soluble ligands, water soluble Au55 clusters, Au55PPh3SO4, 

were used since the dimer B is soluble in organic phase. The dimer B was dissolved in DCM 

whereas Au55 clusters were dissolved in deionised water. The mixture was then stirred for 7 

days under Argon at room temperature. The organic layer stayed colorless, while the water 

layer remained reddish due to the presence of water soluble gold clusters indicating that the 

expected ligand exchanged did not occur. These findings were further supported by the 1H-

NMR and 31P-NMR spectra of the organic part which did not show any broadening or 

appearance of new peaks arising from the interaction of dimer B with Au55 clusters. In 

contrast to organic soluble counterparts only a little coagulation of water soluble Au55 

clusters was observed in the aqueous phase. 

 

The two phase method for the ligand exchange reactions between the water soluble 

Schmid’s clusters and organic soluble ligand B was clearly unsuccessful. On the other hand, 

it was observed that quick coagulation of Schmid’s clusters into bigger clusters during 

monophasic ligand exchange studies with ligand B. It may be probable that the ligand B was 

exchanging with phosphine ligands only by covering half of the gold cluster and these half 

covered gold clusters coagulates before the completion of full ligand exchange. Another 

reason leading to the failure of successful ligand exchange may be the distance between the 

1,3,5-tris(mercaptomethyl)benzene cores. In contrast to previous theoretical calculations, the 

distance between the 1,3,5-tris(mercaptomethyl)benzene cores may not be long enough to 

cover half of the gold cluster surface [172]. To test this hypothesis, the synthesis of a similar 

ligand with six carbon chain as a linker between the benzothioether cores was performed 

starting from commercially available1,6-hexanedithiol.  

 

The choice of 1,6-hexanedithiol as a starting material will reduce the required total synthesis 

steps comparing to 6-chloropentan-1-ol which could be used to synthesis 6-

mercaptopentan-1-ol. Unlike 6-mercaptopentan-1-ol, 1,6-hexanedithiol is commercially 

available. Moreover, 1,6-hexanedithiol could be directly monoprotected and react with the 

1,3,5-tris(bromomethyl)benzene core unlike protection of alcohol, substitution of chloride 

with potassium thioacetate and removal of acetyl group in case of choosing 6-chloropentan-

1-ol as starting material. In addition to that, removal of protecting group of 1,3,5-

tris(mercaptomethyl)benzene dithiol could be performed in one step to synthesize the final 

compound. The desired 1,3,5-tris(mercaptomethyl)benzene dithiol building block could be 

easily obtained in further two steps, one pot reaction following the removal of protection 
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groups, allowing the total synthesis in three steps starting from commercially available 

material.  
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Scheme 3.1.20. Retrosynthetic analysis of 1,3,5-tris(mercaptomethyl)benzene dithiol building block. 

 

THP was preferred again as a protection group for thiols as a result of the suitable protection 

group requirements mentioned above. In addition to that, THP provided not only the 

opportunity of selective deprotection towards the possibility to perform tetramer synthesis 

but also provided enough polarity for easier purification of desired compounds by column 

chromatography.   

 

The monoprotection of 1,6-hexanedithiol with THP was achieved in 79% yield by using high 

dilution condition in DCM after overnight stirring at RT and usual work-up with water. The 

pure product, 6-(tetrahydro-2H-pyran-2-ylthio)-hexane-1-thiol (32) was isolated easily by 

column chromatography thanks to the polarity of the protection group. The synthesis of fully 

THP protected dithiol building block (33) was performed using one pot reaction under similar 

conditions of synthesis for compound 26 and obtained in 43% yield as slightly yellowish oil. 

In the next step, THP protection groups were cleaved using PPTS in refluxing EtOH. The 

6,6'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl)dihexane-1-thiol (34) 

was obtained in 55% yield as colorless oil by column chromatography. While the 

deprotection of THP from alcohols could be fully performed quantitatively by increasing 

reaction time, the complete removal of THP protection groups for thiols could not be 

performed quantitatively. Although, the yield of 34 was better than synthesizing of 1,3,5- 

tris(mercaptomethyl)benzene dithiol building block starting from 6-chloropentan-1-ol, more 

efficient deprotection methods were investigated. The cleavage of THP groups in two steps 

using AgNO3 in MeOH/ H2O/ MeCN mixture following reaction with H2S in chloroform or HBr 
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in MeOH/ THF/ Benzene mixture were already known. However, these conditions could lead 

to unwanted cleavage of benzylic thioethers. Therefore, the conditions for selective cleavage 

of THP in the presence benzylic thioethers were considered. It was found that THP groups 

could be cleaved using trifluoroacetic acid (TFA) solution in DCM in the presence of 

triethylsilane (Et3SiH) which could be used as an efficient cation scavenger allowing the 

deprotection reactions at low concentrations of TFA [173]. The complete removal of THP 

protection groups were performed quantitatively using 4% TFA solution in DCM with 2.5 

equivalents of triethylsilane, while benzylic thioethers remain intact and 1,3,5-

tris(mercaptomethyl)benzene dithiol building block 34 was isolated quantitatively as 

colorless oil by purification with a short plug of silica gel. 
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Scheme 3.1.21. A new approach to the synthesis of a 1,3,5-tris(mercaptomethyl)benzene dithiol 
building block with six carbon chains as a linker between the aromatic cores. (a) DHP, PPTS, DCM, 
RT, 79%; (b) 1, hexanethiol, NaH, THF, RT, 43%; (c) Et3SiH, TFA, DCM, RT, 99%.  

 

The synthesis of 1,3,5-tris(mercaptomethyl)benzene dithiol building block 34 was performed 

in three steps with a 57% yield starting from 1,3,5-tris(bromomethyl)benzene, in fewer steps 

and higher yields than the previously applied synthesis strategy. The ring closing reaction 

towards the synthesis of dimer C was performed between dibromo 8 and dithiol 34 using the 

previously mentioned conditions. After an overnight reaction, the dimer C was isolated in 

22% yield as colorless oil by column chromatography. 
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Scheme 3.1.22. Synthesis of ligand C. (a) NaH, THF, RT, 22%. 

 

Following the full characterization of ligand C, which has six carbon atoms containing alkyl 

chains for bridging the 1,3,5-tris(mercaptomethyl)benzene cores, the ligand exchange 

reactions with Schmid’s clusters were studied with the help of NMR techniques. 

Unfortunately, increasing the carbon chain between the 1,3,5-tris(mercaptomethyl)benzene 

cores led to similar observations as in the ligand exchange of the dimer B which has five 

carbon atoms containing alkyl chain between the 1,3,5-tris(mercaptomethyl)benzene cores. 

 

In summary, the synthesis of different length hexathioether ligands was performed. The 

ligand exchange reactions using Schmid’s clusters were investigated under a varying of 

conditions. However, it was found out that the ligand exchange reactions were slower than 

the coagulation of Au55 clusters showing that the benzothioether ligands do not enwrap and 

efficiently stabilize the nanoparticles. These results indicate that the benzothioether wrapped 

Au55 clusters could not be achieved by ligand exchange reactions in contrast to previous 

findings [92]. The coagulation of Au55 clusters in the presence of benzothioether ligands and 

the designing of bulkier ligands should be investigated in the future.  
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3.2. Towards the synthesis of new gold nanoparticles 

stabilized by thioether based ligands 

 
An important breakthrough for the synthesis of gold nanoparticles was achieved in 1994 by 

Brust and Schiffrin, who improved Faraday’s two-phase method using alkane thiols to form 

highly stable monolayer protected gold nanoparticles [77]. Further investigations reported that 

the size of gold nanoparticles can be adjusted by varying the thiol-gold ratios, employed 

conditions and the nature of the ligand shell [81]. Several researchers expanded the Brust-

Schiffrin method using other sulfur based ligands such as disulfides or thioethers for the 

synthesis of gold nanoparticles [93, 94, 174-178]. 

 

Generally speaking, disulfides do not stabilize gold nanoparticles as well as thiols, and 

thioethers do not bind gold nanoparticles as strongly as thiols because of a weaker Au-S 

interaction [93]. Moreover, the first studies of thioether stabilized gold nanoparticles showed 

much larger core sizes and broader size distributions than thiol ligands, probably because of 

the weak bondindg nature of the thioethers [176-177]. To compensate for the weak interaction 

between gold nanoparticles and thioethers, multiple thioethers containing ligands were 

required for producing stable and well-ordered monolayers [177-179].  

 

Recent studies from our lab showed that linear oligomeric multidentate thioether ligands can 

be used for the synthesis of gold nanoparticles via the two-phase method developed by 

Brust and Schiffrin for the synthesis of alkyl thiolate protected gold nanoparticles [160]. 

 

S S SR

n

RS

 

Scheme 3.2.1. Linear oligomeric multidentate thioether ligand where n is 1 to 3 and R is a benzyl 
group. 

 

The synthesis of linear oligomeric multidentate thioether ligands shown in scheme 3.2.1, and 

their ability to stabilize gold nanoparticles was reported [160]. It was found that the stability of 
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the formed nanoparticles increased with the length of the stabilizing oligomer. Moreover, 

particles stabilized by the pentameric thioether ligand show a large size distribution while a 

much narrower size distribution was observed by using heptameric thioether ligands. [160]  

 

In the light of these findings, the synthesis of gold nanoparticles via the two-phase method 

developed by Brust and Schiffrin using cyclic multidentate thioether ligands was considered 

due to their similar structural motifs with oligomeric multidentate thioether ligands [77]. 

Moreover, the central thioether cavity of cyclic multidentate thioether ligands may act as a 

template for the synthesis of predefined size gold nanoparticles. By varying the size of the 

central thioether ring of cyclic multidentate thioether ligands, the size of the desired gold 

particles could be dictated as has already been shown for ions by crown ethers. However, 

due to the unsuccessful results during the ligand exchange studies, the weak binding of 

thioethers to the gold particles should be modified. Therefore, a thiol-thioether hybrid 

multidentate ligand could lead to promising results for the direct synthesis of gold 

nanoparticles. While the central thioether ring could serve as a template for the synthesis of 

predefined size of gold nanoparticles, the thiol parts of the ligands could support additional 

binding to gold nanoparticles resulting in improved stability of gold clusters.  

 

As mentioned above, Schmid’s clusters have a perfect size for applications in future 

electronic devices. The theoretical calculations made for suitable ligands for Schmid’s 

clusters states that the 1,3,5-tris(mercaptomethyl)benzene which are occupying [111] faces 

of gold clusters should be separated  with a chain consisting of five or six carbon atoms [172].  

 

Under the light of these findings, a cyclic thiol-thioether hybrid multidentate ligand whose 

1,3,5-tris(mercaptomethyl)benzene cores separated by five or six carbon atom could be a 

successful candidate for the synthesis of gold nanoparticles using Brust-Schiffrin method. A 

promising cyclic thiol-thioether hybrid multidentate ligand could be synthesized by a ring 

closing reaction between a monothioether substituted dibromomethylbenzene with one 

masked, two free thiols substituted 1,3,5-tris(mercaptomethyl)benzene building block. Once 

the ring closing reaction was performed, the cyclic thiol-thioether hybrid multidentate ligand 

can be obtained by removal of protection groups on the thiol end. 

 



Results and Discussion 
 

66 

S

S

S

S

S R

SR

Br

Br

S
R

S

S

S+

R

SH

SH

R = Pg 
R = H Ligand D

R = Pg R = Pg

 

Scheme 3.2.2. Retrosynthetic analysis of cyclic thiol-thioether hybrid multidentate ligand D. 

 

Retrosynthetic analysis depicted in scheme 3.2.2 led to build of a new type of ligand D. The 

easiest way to synthesis modified ligand D was to use one masked benzylic thiol and two 

leaving group with 1,3,5-tris(mercaptomethyl)benzene building block. Both building blocks 

would be easily accessible from 1,3,5-trimethylbenzene or 1,3,5-benzenetricarboxylic acid in 

few steps as performed before for the synthesis of previous building blocks. The 1,3,5-

tris(mercaptomethyl)benzene building block could be synthesized from monothioether 

substituted dibromomethylbenzene in a few more straightforward steps.  
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Scheme 3.2.3. Retrosynthetic analysis building blocks. R and R1 are different protection groups. 

 

Nevertheless, the choice of suitable protecting group for the synthesis of monothioether 

substituted dibromomethylbenzene will be the most challenging step due to the the high 
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reactivity of sulfur in the presence of leaving groups which caused the low stability and led to 

decomposition of desired compound, possibly by polymerization as suggested before in 

scheme 3.1.4. Consequently, the suitable protecting group for the masked thiol had to be 

highly stable under conditions used for the nucleophilic substitution reaction, proper 

cleavage conditions without leading the cleavage of benzylic sulfides, easy to purify after 

deprotection and preferably higher selectivity towards mono functionalization.  

 

All these requirements made general thiol protection groups such as the S-acetyl group or 

other thioesters useless due to their easy cleavage under basic conditions, which are 

frequently used for nucleophilic substitution reactions. Alkyl thioethers were not considered 

as a suitable protection group not only because of the relatively harsh deprotection 

conditions [161] but also most of them lack bulkiness for preventing the reaction of benzylic 

thiols with the leaving groups.  

 

All these limitations show that p-methoxy benzyl (PMB) or trityl could be used as suitable 

protection group. It has been described that sterically demanding protecting groups like trityl 

or PMB derivatives are suitable for monosubstitution reactions [180-181]. They are not only 

stable under basic reaction conditions, but also are reasonably bulky to prevent undesired 

intra or intermolecular reactions which lead to decomposition or polymeration of the desired 

product.  However, PMB and trityl derived protecting groups are highly sensitive under acidic 

conditions and may be cleaved during column chromatography purification [161]. On the other 

hand, while PMB groups are much more resistant to cleavage under acidic conditions than 

trityl groups thanks to the electron donating abilities of p-methoxy moiety, their deprotection 

generally requires use of similar reagents as are used for the cleavage of benzyl thioethers 
[161]. Therefore, suitable deprotection conditions for selective cleavage of PMB in the 

presence of benzylic thioethers are required. After a literature search, it was found that 

mercury salts could also be used in the selective cleavage of PMB groups in the presence of 

benzyl sulfides despite their toxicity [161].  

 

As was explained above, PMB and trityl groups were considered as suitable protection 

group for the synthesis of monothioether substituted dibromomethylbenzene. Both of the 

protection groups PMB and trityl are commercially available as p-methoxybenzylmercaptane 

and triphenylmethyl mercaptane respectively. It is evident that the PMB groups are more 

polar than trityl groups due to the existence of the ether part; hence their purification could 
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be easier than trityl counterparts. For this reason, one equivalent of 1 was reacted with one 

equivalent of PMB in the presence of sodium hydride as base in THF at RT. Formation of 

well separated new spots, probably belonging to the mono and di- substituted products, on 

the TLC plate was observed after 30 minutes of reaction. After an aqueous workup and 

extraction with TBME, the crude mixture was subjected to silica gel column for purification. 

However, it was found that the desired product (3,5-bis(bromomethyl)benzyl)(4-

methoxybenzyl)sulfane (35) and side products were decomposing during purification. It is 

most likely that the PMB group bulkiness is not enough to protect benzylic thiols from the 

attack of benzylic bromines and causing the decomposition of product by polymerization as 

happened before. Therefore, mono-PMB protection reaction was performed under similar 

conditions using less reactive leaving group containing 1,3,5-tris(chloromethyl)benzene. 

Although, the formation of new products was identified by TLC, the pure product (3,5-

bis(chloromethyl)benzyl)(4-methoxybenzyl)sulfane (36) could not be obtained by column 

chromatography. The purification via Kügelrohr was also failed. 

 

After the unsuccessful monoprotection attempts using PMB, tritytl groups emerged as the 

only suitable candidate for the protection group. Therefore, the mono protection of 1,3,5-

tris(mercaptomethyl)benzene using triphenylmethyl mercaptan was performed under similar 

conditions. The formation of new products was observed on TLC plate after 30 minutes of 

reaction as in the case of PMB. Similar workup procedure was applied and the desired 

product (3,5-bis(bromomethyl)benzyl)(trityl)sulfane (37) was isolated in 46% as white 

powder by column chromatography. The yield was similar, 49% when 1,3,5-

tris(chloromethyl)benzene was used as starting material. The slow decomposition of 38 was 

observed while (3,5-bis(chloromethyl)benzyl)(trityl)sulfane (38) showed no sign of 

decomposition even storage at room temperature. 
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Scheme 3.2.4. Synthesis of of bis(halomethyl)benzylsulfane. (a) 4-methoxybenzylmercaptane, NaH, 
THF, RT; (b) Triphenylmethyl mercaptan NaH, THF, RT, 46-48%. 

 

Bis(halomethyl)benzylsulfane, 37 or 38, can be also employed as precursors in the 

synthesis of one masked, two free thiols substituted 1,3,5-tris(mercaptomethyl)benzene 

building block. The one masked, two free thiols substituted 1,3,5-

tris(mercaptomethyl)benzene building block could be easily synthesized by substituting the 

leaving groups of bis(halomethyl)benzylsulfane with monoprotected dithiol.  

 

The one masked, two free thiols substituted 1,3,5-tris(mercaptomethyl)benzene building 

block could be synthesized by treating 38 with two equivalents of one free and one masked 

dithiol containing compound. Although less bulky protecting groups could be selected for 

masking one sulfur atom, the problem of selecting a proper protection group which can be 

cleaved in presence of trityl protection group arises. As stated earlier, nucleophilic 

substitution reactions usually require basic conditions which render useless to usage S-

acetyl group or other thioesters groups as suitable protection groups. On the other hand, 

acidic deprotection conditions may also lead to deprotection of trityl protection groups. The 

suitable protection group for dithiol should be also cleaved leaving benzylic thioethers 

untouched. It was also desired that the protection group modifies the polarity of compound 

for easy purification by column chromatography. 
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Scheme 3.2.5. Retrosynthetic analysis of 1,3,5-tris(mercaptomethyl)benzene building block where R 
and R1 are different protection groups. 

 

THP protection groups reasonably modify the polarity of compounds. They are also stable 

under basic conditions. But deprotection of THP groups from thiols requires harsh conditions 

or toxic mercury salts. A milder deprotection method using PPTS was performed for THP 

protection-deprotection of alcohol groups. This procedure was extended for the protection-

deprotection of thiols with DHP as reported for the synthesis of 33 and 34. Although, the 

deprotection efficiency was much lower than protection, monoprotected dithiol compound 32 

was already synthesized and THP group may be cleaved mildly in presence of the trityl 

protection groups. 

 

Bis(bromomethyl)benzylsulfane 37 was reacted with two equivalents of monoTHP protected 

dithiol 32 in THF using sodium hydrate as base. After aqueous workup and extraction with 

TBME, THP protected 1,3,5-tris(mercaptomethyl)benzene 39 was isolated easily in 96% 

yield as colorless oil thanks to the polarity of THP protection groups. In the next step, the 

removal of THP protection groups in the presence of trityl protection group was performed 

mildly using PPTS in refluxing EtOH. In addition to a starting material spot, two well 

separated spots were observed on TLC, probably representing mono and di- deprotected 

compounds after 24 hours of refluxing. A small sample taken from the reaction mixture and 

the yield of desired dithiol 40 was found around 30% (the yield was around 45% due the 

amount of consumed starting material). The reaction was refluxed another 24 hours, 

expecting the increase in desired compound yield. The analysis of a small sample taken 

from the reaction mixture showed similar yields, a little higher than 30%, for the amount of 

desired product 40. The mild deprotection of THP group method is based on proton 

exchange between the solvent and compound. For this reason, the deprotection reaction 

was performed in more dilute solutions, in order to increase amount of the solvent atoms 
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which can exchange their protons with the compound 39 but the previously observed yield 

was obtained.  

Oxygen being more electronegative than sulfur, has a higher proton tendency, thus EtOH 

may not prefer to exchange its proton with THP protected sulfur atoms. Therefore, the 

removal of THP groups using milder deprotection method was performed in aklylthiols to 

eliminate the electronegativity effect of solvent and to improve proton exchange between the 

solvent and compound 39. The similar procedure for the deprotection of THP groups was 

repeated in n-propanethiol. The reaction were followed carefully, a small sample was taken 

every 12 hours and analyzed, but the improvement in the yield of desired compound 40 was 

not observed. It was likely that the proton exchange reaction reaches an equilibrium thus 

preventing the improvement of desired product yield. Although, this mild deprotection 

method for the cleavage of THP group was not very efficient, starting material and 

monodeprotected compounds could be isolated again, allowing their deprotection in 

subsequent runs to obtain more and more 1,3,5-tris(mercaptomethyl)benzene dithiol building 

block 40.  
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Scheme 3.2.6. Alternative synthesis of 1,3,5-tris(mercaptomethyl)benzene dithiol building block. (a) 
NaH, THF, RT, 96%; (b) PPTS, EtOH, ↑↓, 31% (45% due to the amount of consumed 39). 

 

Having two building blocks bis(halomethyl)benzylsulfane (37 for bromo and 38 for chloro) 

and 1,3,5-tris(mercaptomethyl)benzene dithiol 40 at hand, the ring formation reaction was 

performed by dropwise addition of both building blocks in highly diluted medium with the 

help of  a syringe pump. Again sodium hydrate was dissolved in reaction medium for in situ 

activation of dithiol 40 since activating them in syringe led to blocking of needle because of 

the formation of sulfonium salts. This strategy proved to be very effective, as the formation of 

new compound was observed right after the addition of building blocks. However, new spots 

which could be representing bigger chains, rings or polymer formations were also observed 
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by TLC after the addition of one fourth of starting materials into the reaction medium. The 

mixture was stirred half an hour more after the completion of addition of compounds and 

usual workup done before the purification via column chromatography. Side products such 

as bigger chains, rings or polymers formed in the reaction stuck to the silica gel and desired 

compound 41 could be purified easily with 32% yield as white powder. At the last step of the 

synthesis, the ligand D was obtained in 96% yield as colorless oil after deprotection of the 

trityl protecting groups using 4% TFA solution in DCM at the presence of triethylsilane 

following the previously mentioned conditions.  

 

S

S

S

S

S R

SR

Br

Br

S S

S

S

40

+

a

Trit

SH

SH

Trit

37

R = Trit 41
R = H Ligand D

b
 

Scheme 3.2.7. Synthesis of ligand D, (a) NaH, THF, RT, 32%; (b) 4% TFA in DCM, triethylsilane, 
96%. 

 

The effectivity of ligand D for the direct synthesis of gold nanoparticles was carried out in a 

two-phase water-dichloromethane system. To protect the one-to-one ratio between the gold 

nanoparticles precursor and thiol-thioether moieties, the amount of added ligand D was 

normalized to the total number of thiol-thioethers. Therefore, a one-to-six ratio of ligand D to 

gold was used during the direct synthesis of nanoparticles. The synthesis was started by 

adding phase transfer agent, tetra-n-octylammonium bromide (TOAB), dissolved in toluene 

into the aqueous solution of the gold(III) precursor tetrachloroauric acid. The quick 
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discoloration of the aqueous phase and appearance of the orange color in the organic phase 

as a sign of transfer of gold salts into the organic phase was observed after vigorously 

stirring of the biphasic system. Then, a solution of the ligand D dissolved in toluene was 

added to the mixture. The formation of gold nanoparticles was performed by adding freshly 

prepared aqueous solution of the sodium borohydride to the strongly stirred two-phase 

system. After the addition of the reducing agent, the toluene phase turned dark brown, 

indicating the presence of gold nanoparticles in the organic part. Although, these were 

promising results proving for the formation of gold nanoparticles with ligand D, formation of a 

black precipitate was observed. Unfortunately, the black precipitate was insoluble and could 

not be re-dispersed in organic solvents hence purification and detailed analysis of formed 

complex could not be performed.  

  

During the direct synthesis of gold nanoparticles with ligand D, several evidences of the 

formation of gold nanoparticles were observed. However, ligand-gold-phase transfer reagent 

mixture formed an insoluble black precipitate preventing further analysis. It is very probable 

that ligand D was missing bulkiness since they may not be efficient to keep gold 

nanoparticles separated and the formation of ligand-gold-phase transfer reagent complex 

might be happening.  

 

As mentioned in the introduction, the suitable ligands should be bulkier or contain 

electrostatic atoms to prevent the coagulation of gold nanoparticles. Therefore, one can 

assume that ligand D should contain bulkier groups or charged atoms should be added in 

order to stabilize gold nanoparticles efficiently. The charged atoms could be inserted into 

ligand D by synthesizing new building blocks containing quaternary ammonium chains, or 

protonable components like alcohol, carboylic acids etc. On the other hand, ligand D 

bulkiness could be easily improved by adding bulkier groups like tert-butyl or benzyl groups 

into the suitable places. The addition of bulkier groups close to thiols should be avoided in 

order to not decrease their ability to bind gold atoms. Hence, the most suitable position for 

addition of bulkier groups will be between the thioethers. Moreover, this could be achieved 

easily by replacing mono-THP protected dithiol (32) with a bulkier compound like mono-THP 

protected mercaptomethylbenzene (45).  

 

The selection of suitable protection groups and the synthesis of 

bis(bromomethyl)benzylsulfane (37) were already explained in details above. Thus, the 

synthesis of new bulkier building block for bridging two 1,3,5-tris(mercaptomethyl)benzene 
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cores will be discussed here. While replacement of flexible alkyl bridges with benzylic 

building blocks may increases the bulkiness of the ligand, it can also lead to the problem of 

insolubility due to the increased stiffness of final compound. Therefore, it will be a crucial 

decision to add good solubilizing groups to the bulky linkers. It is also known that tert-butyl 

groups could be used to improve solubility of the compounds due to its orthogonality which 

prevents stacking of molecules. Having bulkier than the linear alkyl chains and ability to 

improve solubility, it will be a wiser choice to add tert-butyl groups to the interlinking benzene 

groups while increasing the solubility and the bulkiness of the final compound. Therefore, 

tert-butylbenzene based compounds will be the most promising candidate for interlinking the 

1,3,5-tris(mercaptomethyl)benzene cores instead of alkyl chains. A reaction between one 

equivalent of dibromomethylbenzylsulfane 37 and two equivalents of one masked and one 

free thiol containing tert-butylbenzylic compound might lead to precursors of ligand E. Then 

the trityl protected cyclic compound could be synthesized after removal of protection group 

masking dithiols and followed by reaction with one equivalent dibromomethylbenzylsulfane 

37. Finally, the ligand E could be obtained after the cleavage of trityl protection groups of 

cyclic compound. 
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Scheme 3.2.8. Retrosynthetic analysis of ligand E. 

 

The bulkier tert-butylbenzene based linkers could be synthesized in a benzylic bromination 

reaction with NBS starting from commercially available 5-tert-butyl-1,3-xylene. First, 1,3-

bis(bromomethyl)-5-tert-butylbenzene (42) was synthesized in a good yield via benzylic 

bromination reaction started using AIBN as initiator and illumination with a 500 W halogen 

lamp from commercially available 5-tert-butyl-1,3-xylene in methyl formate solution instead 

of using human carcinogenic and environmentally hazardous carbon tetrachloride [118, 119]. 
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Then (5-tert-butyl-1,3-phenylene)dimethanethiol (44) was synthesized in two steps following 

the previously mentioned synthetic conditions. 

 

First, tert-butyl-phenylmethanedithioacetate 43 was synthesized in 93% yield by reacting 

one equivalent of 42 with 2.2 equivalents of potassium thioacetate. Then acetyl groups 

deprotected to the free thiols under basic conditions yielding 59% of tert-butyl-

phenylmethanedithiol (44) as slightly yellow oily compound. The crude product was purified 

after basic workup and extraction with TBME. Interestingly, the yield of 44 was much lower 

than expected for the deprotection step. This could arise from the disulfide bond formation 

between the free thiols during the basic deprotection conditions or workup. 44 could also be 

synthesized alternatively in one pot reaction using thioacetic acid and potassium carbonate 

in two steps [182]. Although, this alternative synthesis way was much faster than previous 

one, it was not preferred because of strong pungent odour of thioacetic acid and lower yield, 

45%, compared to the synthesis with potassium thioacetate.   

 

As already mentioned in retrosynthetic analysis of ligand E, bis(bromomethyl)benzylsulfane 

37 should be reacted with one masked and one free thiol containing tert-butylbenzylic 

building block towards the synthesize of ligand E. Due to their mild deprotection method in 

presence of highly acid labile trityl and acid labile benzothioether, THP was chosen again as 

a suitable protection group for masking one thiol of the (5-tert-butyl-1,3-

phenylene)dimethanethiol (44). Therefore, DHP and 44 were reacted one-to-one ratio as 

described before and the desired compound, (3-tert-butyl-5-((tetrahydro-2H-pyran-2-

ylthio)methyl)phenyl)methanethiol (45) was isolated by column chromatography in 62% 

yield, (77% yield due to the amount of consumed t-butyl-phenylmethanedithiol, 44), as  

colorless oil.  
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Scheme 3.2.9. Synthesis of one masked, one free thiol containing tert-butylphenylic compound. (a) 
KSAc, DMF, RT, 91%; (b) NaOMe, MeOH, RT, 59%; (c) PPTS, DCM, RT, 62%, 77% due to the 
amount of consumed starting material. 

 

The precursor of ligand E was synthesized from one equivalent of 

bis(bromomethyl)benzylsulfane 37 and two equivalents of mono THP protected-tert-butyl-

phenylmethanethiol 45 in THF using 3.3 equivalents of sodium hydride as a base. After 30 

minutes of stirring of the reaction mixture at RT, the excess of sodium hydride was carefully 

quenched with water. The general aqueous workup and extraction with TBME were applied. 

The crude was purified by column chromatography to give the pure semi cycle 46 in an 

excellent yield of 93% as white solid foam. In the next step, the THP groups were 

deprotected under mild conditions applied using PPTS as for the deprotection of previous 

compound 39. Although, the yield of complete deprotection of THP groups while keeping 

trityl groups intact was a little better than in case of 39, the yield of desired product was 39% 

(56% due to the consumed amount of starting material). 
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Scheme 3.2.10. A new approach to the synthesis of ligand with bulkier linker between the aromatic 
cores. (a) NaH, THF, RT, 93%; (b) PPTS, EtOH, ↑↓, 39%; (56% due to the amount of consumed 46). 

 

The next reaction towards the synthesis of ligand E was the ring formation between 47 and 

37 by dropwise addition of both building blocks in highly diluted medium with the help of 

syringe pump as was carried out in the synthesis of ligand D. Despite in situ activation of 

thiols and high dilution conditions, the formation of desired product was not observed by 

TLC. It was assumed that the formation of side products such as longer chains, bigger rings 

or polymers was happening as the sample spot from the reaction mixture remained on the 

baseline of the TLC plate even if highly polar solvents were used as eluent. 

 

Based on this information, it seems very likely that the the bulkier trityl protection groups 

were blocking the reaction between the free benzylic thiols of 47 and benzylic bromides of 

37 by preventing cyclisation of the whole molecule and lead to formation of side products. 

The free benzylic thiols of bulkier interlinking group should be less flexible then less bulky 

alkyl thiols counterparts. 
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Figure 3.2.1. Balls and stick models of minimized energy calculations of uncyclised ligand with 
Chem 3D ver 11.0. Sulfur atoms are yellow, bromine atoms are red and carbon atoms are grey 
colored. Hydrogen atoms were omitted for clarity of the picture. 
 

However, since the free rotation of single bonds around the carbon-carbon is assumed, the 

cyclisation reaction between 37 and 47 could be achieved under suitable conditions. It was 

rationalized that the desired ligand E  could be obtained if the cyclization reaction performed 

using the more diluted conditions and cooler temperature in order to reduce the collision rate 

of molecules and thus to prevent unwanted intermolecular reactions. Therefore, the 

cyclisation reaction between 37 and 47 were repeated again in much more diluted conditions 

and varying temperatures from 0 ºC to RT. 0.1 mmol dithiol 47 and 0.1 mmol dibromo 37 

were dissolved separately in 20 mL of THF. These solutions were simultaneously added with 

a rate of one drop per minute to 100 mL of THF solution containing 2.2 equivalents of 

sodium hydrate at 0 ºC. The appearance a new spot, indicating the formation of 48, and the 

complete consummation of starting materials was confirmed by TLC analysis. After the 

completion of addition of reactants to the reaction medium, the mixture allowed to reach 

room temperature and stirred overnight under argon. The isolation of the new spot and fully 

characterization by spectroscopic methods verify the synthesis of 48 in 34% yields as white 

powder.  

 

In a final synthetic step, the trityl protecting group was then removed from 48 using TFA (4% 

v/v) containing DCM in the presence of triethylsilane as cation scavenger similar to the 

deprotection of the cyclic benzothioether 41. The apolar by-products of the deprotection 



Results and Discussion 
 

80 

procedure were removed easily by column chromatography to give the pure ligand E in a 

yield of 53% as white powder.  
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Scheme 3.2.11. The synthesis of ligand E (a) NaH, THF, RT, 34%; (b) Et3SiH, TFA, DCM, RT, 53%. 

 

Ligand E was employed for the direct preparation of gold nanoparticles using Brust-Schiffrin 

method. One-to-one ratio of thiol-thioether to gold equivalents was maintained to ensure 

compatibility with previous studies. Hence, a one-to-six ratio of ligand E to gold was used 

during the direct synthesis of nanoparticles. The synthesis was started by adding 131.2 mg 

(240 µmol, 12 eq.) TOAB dissolved in 2.5 mL DCM into 203.9 mg (120 µmol, 6 eq.) 

tetrachloroauric acid dissolved in 2.5 mL deionised water and the two-phase mixture stirred 

until the aqueous phase became colorless at room temperature. 15 mg (20 µmol, 1 eq.) of 

ligand E dissolved in 2.5 mL DCM was added to the reaction mixture followed by a freshly 
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prepared solution of 36.3 mg (960 µmol, 48 eq.) sodium borohydride in 2.5 mL water. After 

10 minutes stirring, the resulting strongly colored dichloromethane phase was separated and 

the aqueous phase was washed twice with 10 mL of DCM. The combined organic fractions 

were dried over sodium sulfate, filtered and concentrated to a volume of ca. 1 mL. Ethanol 

(approx. 15 mL) was added to precipitate the particles, which were then centrifuged. The 

supernatant was discarded and the formed gold nanoparticles were collected for further 

analysis. 

 

The pre-purification UV-Vis analysis of the particles stabilized with ligand E (blue line on 

figure 3.2.2) showed the presence of a very weak surface plasmon resonance band around 

520 nm, stating that most of the gold nanoparticles size was less than 2nm.  

 
It has already been reported that the phase transfer agent TOAB can itself act as stabilizer 

for gold nanoparticles[163]. Therefore, the newly formed gold nanoparticles should be purified 

in order to prove the stabilizing efficiency of the ligand E.  

 

First of all, the nanoparticles were re-dissolved in toluene to get rid off the black precipitate 

which was probably coagulated gold nanoparticles depicted in UV-Vis as a small shoulder 

around 520 nm. It was observed that the UV-Vis spectrum of the particles stabilized with 

ligand E after redissolution in an organic solvent (red line on figure 3.2.2) was pointing 

towards the gold nanoparticles with a diameter less than 2 nm due to the disappearence of 

previously noted surface plasmon resonance band around 520 nm [162]. The phase transfer 

reagent (TOAB) had to be removed from the mixtures in order to receive clear information 

about the stabilizing efficiency of ligand E. Therefore, the nanoparticles were dissolved in 

few milliliters (mL) of DCM and concentrated to approximately 1 mL by using Rotavap and 

24 mL of EtOH was added for precipitation of gold nanoparticles in order to remove the 

remaining phase transfer reagents. Usually precipitation procedures were repeated three 

times to ensure complete removal of excess phase transfer reagent but ligand E stabilized 

gold nanoparticles were reasonably soluble even in highly polar solvents such as ethanol. 

Although, the high solubility of gold nanoparticles stabilized by ligand E is suitable for 

removal of non-bounded ligands, it also led to loss of considerable amounts of 

nanoparticles. For this reason, further precipitations were omitted to prevent loss of thioether 

coated gold nanoparticles. The nanoparticles stabilized with ligand E were obtained as 

black-brown waxy solids after precipitation. The UV-Vis measurement was repeated for the 

nanoparticles purified by precipitation (green line on figure 3.2.2) and a spectra resembling 
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to the UV-Vis measurement after re-dissolution of gold nanoparticles (red line on figure 

3.2.2) was detected.  

 

 

Figure 3.2.2.  UV-Vis measurements of gold nanoparticles stabilized with bulky ligand E. UV-Vis 
measurements from the reaction mixture is showed by blue, redispersed nanoparticles by red and 
purified nanoparticles by green curves. 

 

Although, UV-Vis measurement is very quick and useful to determine gold nanoparticles 

size, is not sufficient to prove the efficiency of ligands for stabilizing gold nanoparticles 

alone. Therefore, benzothioether stabilized gold nanoparticles were further investigated by 
1H-NMR in CD2Cl2. The broadening of thiol and thioether signals arising from close Au-S 

interaction was observed on the 1H-NMR spectrum. However, the presence of phase 

transfer agent, TOAB, was also detected on the 1H-NMR spectrum confirming that the one 

purification by precipitation was not enough for complete removal of excess TOAB from the 

medium. Although, more purification by precipitation could be performed; the complete 

removal attempts of TOAB may lead to the decomposition of gold nanoparticles. It may be 

possible that some amount of the TOAB is required for the stabilization of gold nanoparticles 

stabilized by thioether dendrimers as reported by Luisa De Cola et al.,[164].  

 

The calculation of ligand-TOAB ratio was done based on comparison of integration of t-butyl 

groups of ligand E and alkyl chains of TOAB signals where a more accurate results can be 

obtained since the broadening of peaks was minimal due to their low interaction with gold 
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nanoparticles.  The careful integration of these peaks and the interpretation of the 1H-NMR 

spectrum revealed a 1-to-0.9 ligand-to-TOAB ratio.  

 

 

Figure 3.2.3. 1H-NMR Spectrum at 500MHz in CD2Cl2 of ligand E with gold nanoparticles.  

 

Beside spectroscopic analysis such as UV-Vis and 1H-NMR investigations, elemental 

analysis is a very useful technique for defining the TOAB-to-ligand ratio. From the nitrogen 

percentage of the elemental analysis, the amount of TOAB in the nanoparticles could be 

calculated as this is the only nitrogen source. However, the amount of nitrogen in the 

nanoparticles could not be detected by elemental analysis. This inconsistency could be 

arising due to the very low amount of nitrogen percentage of the whole complex. The pure 

TOAB contains 2.56% and the nitrogen amount of the whole complex could be very small for 

failing detection of it. Therefore, ligand-to-TOAB ratio was calculated using carbon-to-

hydrogen ratio of the gold nanoparticles complexes. The results obtained from the elemental 

analysis showed 7.52-to-1 carbon-to-hydrogen ratio, 18.49% carbon and 2.46% hydrogen. 

This value is very consistent with our 1-to-0.9 ligand-to-TOAB ratio assumptions. The 

carbon-to-hydrogen ratio of pure ligand E is 9.62-to-1 whereas it is 5.62 for TOAB. 1-to-0.9 

ligand-to-TOAB ratio leads 7.5-to-1 carbon-to-hydrogen ratio as obtained from the elemental 
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analysis. From these values, a mass proportion of 27% or 26.8% ligand-to-TOAB mixture 

was calculated based on the carbon or the hydrogen percentage respectively. These mass 

proportions also stated that the gold atoms were generating the remaining 73% of the total 

weight of the nanoparticles. Therefore, 1 g of the nanoparticles should be composed of 730 

mg of gold atoms and 270 mg of organic components (ligand E and TOAB). The molecular 

weight of ligand E and TOAB are 749.25 g/mol and 546.80 g/mol respectively. The 

contribution of ligand E to the organic part of the nanoparticles will be 749.25 g/mol, while 

the contribution of TOAB will be 492.12 g/mol according to the 1-to-0.9 ligand E to TOAB 

ratio, concluding that the organic part of the nanoparticles should be 1241.37 g/mol. If 1 g 

nanoparticles contain 270 mg of organic components, then the 1 mol of nanoparticles should 

be 4597.67 g and the amount of gold atoms should be 3356.3 g. The atomic weight of gold 

is 196.97 g/mol. Therefore, 1 mol of ligand E and 0.9 mol of TOAB should stabilize 17 moles 

of gold atoms.  

 

Transmission Electron Microscopy (TEM) measurements were performed after purification of 

nanoparticles stabilized by ligand E. The gold cores appeared well separated from each 

other by their protective layer and only occasional agglomerations were observed around the 

larger particles. This could be arisen from interlinking of two or more benzothioether 

stabilized gold nanoparticles due to the free thiol on the ligand. Free thiol at the end of the 

bulky ligand may also lead to formation of pseudo one dimensional arrangement of similar 

size nanoparticles. From the TEM pictures, one can clearly notice several linear 

nanoparticles chain formation where the chain length varies from 2 to 8 nanoparticles. 

However, the size and distance between the nanoparticles forming pseudo one dimensional 

arrangement showed a wide variation from 1.2 nm to 1.6 nm and 1.0 nm to 1.9 nm 

respectively.  
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Figure 3.2.4.  TEM picture of nanoparticles stabilized with ligand E. While the gold cores appear well 
separated and some pseudo 1D arrangement available, a few of stacks of gold nanoparticles can be 
observed around the larger particles.  

 

The TEM pictures quality was enhanced using commercial image processing programs to 

reduce the measurement errors before the determination of particle sizes. The size 

distribution of particles was done carefully for a sample area of 100 nm x 600 nm and 

diameters of more than 400 nanoparticles were measured. The histogram in figure 3.2.5 

showed narrow size distribution of nanoparticles ranging from 0.6 to 2.3 nm in which nearly 

70% of the nanoparticles size lay between 0.9 nm to 1.2 nm. The particles larger than 2 nm 

or interlinked particles were probably insoluble and were purified from the mixture during the 

re-dissolution process. UV-Vis measurements were also supporting this observation as 

explained above.  
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Figure 3.2.5. Histogram of nanoparticles stabilized with ligand E. 

 

The elemental analysis results stated that 17 gold atoms were stabilized per ligand with 

TOAB whose ratio is 1-to-0.9. However, TEM measurements showed that the average size 

of gold nanoparticles stabilized with ligand was 1.1 nm. It was reported that the Au38 cores 

synthesized with Brust-Schiffrin method have a core diameter of 1.1 nm [165]. In the light of 

these findings, it is more suitable that two of ligands E were templating the formation of one 

nanoparticle composed of 34 gold atoms.  

 

Au13 clusters sizes are determined as 0.8 nm [166]. The gold nanoparticles smaller than 1.1 

nm may be formed in the thioether cavity of the bulky ligand and the free thiol branches of 

the ligands may wrap around the gold nanoparticles which is further supported from the 

calculations of the elemental analysis. 

 

Simple energy minimization for molecular structure calculations (MM2) showed that the 

ligand E could have a bowl shape. The thioether atoms could have arranged a square like 

structure whose length is around 5.8-5.9 Å whereas thiol to thioether distance was 

measured 5.9-6.0 Å. On the other hand, the distance between the free thiols is 10.9-11.0 Å. 
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These measurements indicate that a cluster whose size is around 1 nm may fit into the 

ligand cavity. Finally, tert-butyl groups of bulky benzyl linkers pointing outwards of the bowl 

may serve to prevent coagulation of gold nanoparticles.  

 

 

 

 

Figure 3.2.6. Balls and stick models of minimized energy calculations of ligand E with Chem 3D ver 
11.0 from side (left) and top (right) view. Sulfur atoms are shown in yellow and carbons in grey 
colored. Hydrogen atoms were omitted for clarity of the picture. 

 

For the nanoparticles larger than 1.1 nm, there are two possible explanations. First, it was 

clear from NMR data that TOAB was still present after purification by precipitation, and could 

therefore help to cover the surface of the nanoparticles which were not covered by the 

ligands. Alternatively, three or more ligand structures may also template the formation of 

larger gold nanoparticles.  

 

3.3 2D assemblies of preorganised molecules  

3.3.1 Towards protection group controlled surface chemistry  

 
Di-tert-butyl dicarbonate (Boc-anhydride; Boc2O) is an extensively used reagent for the clean 

and rapid introduction Boc-protecting group for the amine functionality [167]. A tert-butyl 

carbamate (Boc) group is a common protecting group in organic synthesis frequently used in 

peptide and nucleoside syntheses as well as in heterocyclic chemistry.  It is rather stable to 

hydrolysis under basic conditions and is inert to many other nucleophilic reagents. 

Deprotection is generally achieved under acidic conditions whereas it can be also obtained 

under basic conditions only in special cases, where the amine is highly activated, such as a 

pyrrole [168]. Furthermore, thermal deprotection methods have also been reported [169, 170].  
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Besides common usage as a protection group, Boc groups can also play an important role in 

the self assembly of molecules by forming intermolecular hydrogen bonds due to the H-bond 

donor and H-bond acceptor capability. Being thermally cleavable and having self-assembly 

possibilities due to the H-bonding, Boc protected molecules are not only ideal candidates to 

arrange ordered structures but also to release active species at well defined positions as 

building blocks of a network consisting of interlinked deprotected molecules.  

 

For the investigation of the potential of Boc groups which can act as intermolecular 

organizers for the formation of well-ordered molecular patterns, several fully Boc protected 

bi-functional arylamine precursors were synthesized from commercially available biamino 

precursors using Boc anhydride. The synthesis of fully protected bi-functional arylamine 

precursors were performed by reacting one equivalent of biamino precursor with three 

equivalents of Boc2O in THF using three equivalents of triethylamine as a base. The 

mixtures were allowed to stir for 16h at RT under Argon. The crude was obtained after 

workup with water and extracted with DCM. The desired products were isolated by column 

chromatography in reasonable yields as white powder.  
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Figure 3.3.1. Candidates for the formation of well-ordered molecular patterns. 

 
The synthesized molecules potentials for self-assembly and intermolecular network 

formation were investigated by STM after deposition onto Cu(111) and Ag(111) surfaces.  
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The investigation of fully protected monophenylamine (49) and naphthalene diyldicarbamate 

(52) by STM showed no regular self-assembly pattern on neither Cu(111) nor Ag(111) 

surfaces. The fully protected triphenylamine (51) deposited on the Cu(111) surfaces by 

sublimation at RT showed self assembled structures. However, due to the changes in STM 

setup, it was unable to repeat the findings.  

 

On the other hand, tert-butyl biphenyl-4,4'-diyldicarbamate, 50, was successfully deposited 

to the both Cu(111) and Ag(111) surfaces. Upon deposition of 50 onto the Ag(111) surfaces, 

the structure of network identified as herringbone rearrangement. In high resolution STM 

images the bright lobes were assigned to tert-butyl groups of 50 while molecular backbone 

was noticed enabling the identification of the arrangement of individual molecules within the 

network [183-184]. 

 

 

Figure 3.3.2. STM image (5.2 x 4.8 nm2, 2 V, 20 pA, RT) of 50 on Ag(111). 

 

Alternatively, STM images showed that the Boc protected 4,4'-diaminobiphenyl (50) forms 

two different but similar self-assembled structures for coverage ≤ 1 ML onto Cu (111) 

surfaces.  
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Figure 3.3.3. (a) Coexistence of both the parallel and the herringbone arrangements upon 
submonolayer coverage of 50 on Cu(111) (16 x 16 nm2; Ugap = 1.6 V, Itunnel = 10 pA, 77 K). (b) 
Closer view of submonolayer coverage of 50 on Cu(111) (10.8 × 10.5 nm2; Ugap = 1.21 V, Itunnel = 
10 pA, 77 K).  

 

Atomically resolved STM images showed that the aromatic backbones were oriented along 

the [11 2 ] direction. This led to determine the evolution of the self assembly of 50 starts with 

the formation of individual molecular rows which can be considered as the building block for 

both the parallel and the herringbone arrangements are aligned along the [011] direction. 

The position of the individual molecules forming parallel and herringbone arrangements is 

marked by the blue lines on STM images. The molecules are always located in the same 

position with regard to the underlying Cu(111) substrate thanks to the arrangement. The 

molecules within these rows interact with each other via H-bonds between the carbonyl 

oxygen atom of one molecule and a phenyl hydrogen atom of another molecule where the 

distance of the O···H bond can be estimated to 2.3Å. 

 

As can be seen from STM images of samples with higher molecular coverage, a densely 

packed arrangement can be reached either by keeping the same orientation of the 1D 

molecular rows during their assembly or by mirroring every second row at the [011] direction 

of the Cu substrate.  
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Figure 3.3.4. a) Parallel (7 x 7 nm2, 10 pA, 1.6 V, 77 K) and b) herringbone (7 x 7 nm2, 20 pA, 1.6 V, 
room temperature) arrangement of 50 on Cu(111). c), d) Suggested models for the two observed 
assembly structures. The unit cell is marked by green dots. The molecular row highlighted in yellow is 
the parent stripe motive which is stabilized by H-bonding (red lines) and which leads to both observed 
arrangements. 

 

To induce intermolecular reactions within the self-assembled monolayers of 50, temperature 

was applied as a trigger. It was expected to be able to profit from the rich chemistry of 

reactive intermediates potentially occurring during the deprotection of the Boc group to 

interlink the pre-organized molecular building blocks. For this purpose, the samples were 

heated and subsequently investigated after cooling to room temperature.  

 

Observation of samples of 50 deposited on Ag(111) surfaces showed that after heating the 

samples at temperatures around 200ºC, chainlike structures indicating the occurrence of a 

chemical reaction. From the disappearance of bright spots, it is suggested that the BOC 

groups are released and such, the remaining biphenyl units are interlinked.  
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Figure 3.3.5. STM images of 50 on Ag(111) after heating samples to ~200°C. (15 x 15 nm2, -1.18 V, 
6 pA, RT). 

 

Noteworthy, a considerable different and periodic molecular pattern was observed after 

heating the samples of 50 deposited on Cu(111) surfaces to 196°C. The number of bright 

spots arising from the bulky tert-butyl groups of the Boc protection groups was reduced 

considerably as expected for the deprotection of the Boc groups by heating. 

 

A new pattern became visible in the upper part of figure 3.3.6 while the lower part shows the 

herringbone pattern of the doubly Boc protected biphenyl 50 as already observed before the 

heat treatment. The pattern seems to consist mainly of molecular rods still featuring terminal 

Boc groups but having about twice the length of the initial biphenyl rod 50. Apparently, upon 

heating and subsequently investigated after cooling to RT each monomer loses one Boc 

group and two of these modified biphenyl units are interlinked towards a dimer. Therefore, a 

dimerization reaction must have taken place with the molecules immobilized on the surface 

since the desorption-reaction-readsorption mechanisms are very unlikely or even impossible 

under UHV conditions.  
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Figure 3.3.6. a) STM image (24 x 12 nm2, 22 pA, 1.2 V) of 50 on Cu(111) annealed at 196°C. The 
drawn in molecules illustrate their arrangement in each of the two patterns. b) Hypothesized 
dimerization rearrangement of molecules explaining the transition from the herringbone arrangement 
of 50 to the double row arrangement of 54. 

 

Both biphenyl dimers must be interlinked quite rigidly since they aligned parallel to each 

other and parallel to the [11 2 ] direction. It is very probable that the interaction of lone pairs 

of oxygen of Boc groups and lone pairs of amine groups with the underlying Cu substrate 

plays an important role for the arrangement. More importantly, perfectly organized rows of 

dimers were formed as a result of selective deprotection of only one of both Boc groups of 

50. Although deprotection of a single protection group might be a consequence of electronic 

effects, a selection rule conveyed between the individual molecules was needed to allow the 

perfect transformation from the ordered monomer pattern into the double row dimer 

structure. For this, the deprotection of individual Boc groups induced by the spatial 

rearrangement of the neighboring molecules might be the underlying mechanism. Since a 

distance of approximately 2.5 Å was measured, the azo structure R-N=N-R or the hydrazine 

structure R-NH-NH-R were taken into consideration in order to align both biphenyl subunits. 

 

Considering the stiffness of parallel arrangement of the dimers, azo structure R-N=N-R was 

preferred. In fact, the weak signal corresponding for the linking azo unit R-N=N-R in the STM 

images were in line with the previous reported findings [188, 189].  
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Formation of the dimers and their assembly into the double row pattern which took place via 

a coupling reaction between pairs of neighboring molecules were demonstrated in a 

quantitative manner in figure 3.3.6. One of the two subunits forming the dimer stayed in its 

position (molecules I and III in the lower part of Figure 3.3.6b), whilst the second rotated 

approximately 60° on the surface (molecules II and IV) to react with the first one, thus 

forming the pairs of dimers. It is plausible that the dimer pairs were stabilized by H-bonds 

between carbonyl oxygens and hydrogen atoms of the biphenyl core of the molecule [185]. 

Intercalating terminal tert-butyl groups separated these dimer pairs from each other. 

 

A possible mechanism for monodeprotection of the 50 and formation of dimer can be 

explained by loss of isoprene moiety leading the formation of hydroxycarbamate upon 

heating. Then hydroxycarbamate may be decomposed to amine by decarboxylation or to 

isocyanate by condensation. Assisted by the coordination of the nitrogen lone-pair of 50 to 

the metal surface, the isocyanate 56 may even be formed directly by elimination of tert-

butanol. Subsequently, the free amine 55 may react with the isocyanate 56 to form urea 

derivative 57 either by removal of formaldehyde or carbon monoxide (CO) and hydrogen. 

While urea derivatives in solution are rather stable and comparable reactions have not been 

reported yet, the coordination of CO on the metal surface might assist this reaction step on 

the metal surface. Furthermore, these hypothesized reaction steps would provide a potential 

explanation for the observed monodeprotection of 50. The decreasing electron withdrawing 

character of the terminal substituents of 54, 55 and 56 and also reduced electron-

withdrawing ability of the central linker of 53 and 57 compared with 50 strengthens the 

stability of the second BOC protection group, hence providing a chemical argument for the 

observed monoprotection during the transformation from 50 to 53. 
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Scheme 3.3.1. Hypothesized chemical reaction sequence from the thermal transformation of the 
monomer 50 to the dimer 53 on the metal surface. 

 

To investigate the chemical processes leading the coupling, azo derivative 53 was 

synthesized starting from commercially available p-iodoamine. 1,2-bis(4-iodophenyl)diazene 

was synthesized following a reported procedure [186]. The oxidation of p-iodoamine in 

refluxing DCM containing one-to-one ratio of KMnO4-FeSO4 led to synthesis azo benzene 

precursor in 18% yield as orange powder. Subsequent Suzuki coupling of 1,2-bis(4-

iodophenyl)diazene, azo benzene precursor, with two equivalent of 4-(Boc amino)benzene 

boronic acid pinacol ester in refluxing toluene-EtOH mixture containing 2M Na2CO3 as base 

yielded the desired orange colored compound 53 in 67% yield by column chromatography.  
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Scheme 3.3.2. Synthesis of biphenyl 53 (a) KMnO4-FeSO4, DCM, ↑↓ 18%; (b) 4-(Boc amino)benzene 
boronic acid pinacol ester, Pd(PPh)3, Toluene-EtOH, Na2CO3, ↑↓, 67%.    

 

However, the deposition of 53 to the metal surface was failed because of its rather low 

decomposition temperature under UHV conditions.  To test the hypothesis, model 

compounds were synthesized. A mono Boc functionalized biphenyl compound (59) was 

considered over compound 50 to reduce the number of potential reaction products. The 

model compound 59 was synthesized by Suzuki coupling reaction which conditions 

described above, between equimolar amounts of tert-Butyl-N-[4-(4,4,5,5-tetramethyl-1,2,3-

dioxaborolan-2-yl)phenyl]carbamate (Boc protected amino boroester) and p-bromobenzene. 

Following the usual workup, the desired compound 59 was obtained with 85% yield by 

column chromatography as an orange powder. 
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Scheme 3.3.3. Synthesis of biphenyl 59 (a) Pd(PPh)3, Toluene-EtOH, Na2CO3, ↑↓, 85%.   

 

On the other hand, the model compound 61 was synthesized by condensation of 4-

aminobiphenyl with of bis-(trichloromethyl)carbonate (BTC) also known as triphosgene, in 

DCM at RT. 6 equivalents of 4-aminobiphenyl and 8 equivalents of 4-(dimethylamino)-pyridin 

(DMAP) was dissolved in DCM. One equivalent of BTC was added dropwise and the 

reaction mixture was stirred at RT. The formation of white solid was observed after 15 

minutes of reaction. The solid was collected and washed extensively with DCM yielding 85% 

of 60 as white powder. 
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Scheme 3.3.4. Synthesis of 60 (a) CO(OCCl3)2, DMAP, DCM, RT 85%. 

 

After the successful synthesis of both of the model compounds 59 and 60, they were 

separately adsorbed on Ag nanoparticles and were heated under reduced pressure (0.1 

mbar) to 200°C for 6h to investigate the chemical processes leading to coupling under UHV 

conditions. Ag-particles have been preferred instead of Cu-particles as the surface purity of 

the later turned out to be troublesome due to oxidation processes. Three main reaction 

products were isolated by preparative thin layer chromatography (TLC) of the CH2Cl2 extract 

of the particles. The MALDI-TOF spectra of the products showed signals corresponding to 

the structures 61-63, thus supporting the formation of new N-N and N-C bonds under the 

reaction conditions.  
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Scheme 3.3.5. Simulation of surface reactions: Reaction products obtained by thermal decomposition 
of 59 on Ag nanoparticles. Thermal degradation of the urea derivative 60 to the azo derivative 62 on 
Ag nanoparticles. a) Ag(0), 0.1 mbar, 200°C. 
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To support the hypothesized reaction sequence displayed in scheme 3.3.5 the so far 

unprecedented step from the urea derivative 57 to the azo derivative 53 was of particular 

interest. Indeed, a model reaction of urea 60 on Ag-particles under reaction conditions 

described above led to the formation of azo derivative 62 being identified by reversed phase 

HPLC as a reaction product in DMF extract. For the comparison of molecules, azo derivative 

62 was synthesized following previously mentioned Suzuki coupling reaction conditions 

using two equivalents of phenylboronic acid pinacol ester and one equivalent previously 

synthesized 1,2-bis(4-iodophenyl)diazene. After overnight reaction, the solvent was 

removed, the crude dissolved in DCM and washed with water. The orange colored pure 

product was obtained by column chromatography with 85% yield. 
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Scheme 3.3.6. Synthesis of biphenyl 62 (a) phenylboronic acid pinacol ester, Pd(PPh)3, Toluene-
EtOH, Na2CO3, ↑↓, 85%;    

 

The analysis of the compounds and extracts is investigated by reverse phase HPLC. All 

three compounds have a common maximum absorption at 284 and 362nm. However, urea 

derivative 60 has a poor absorption at 362 nm. Hopefully, a much stronger signal can be 

recorded at 284nm. The analysis of the extracts displayed three main compounds: 

unreacted starting material 60, an unknown reaction product and the expected azo 

derivative 62 supporting the idea of conversion of urea compound (60) to diazo compound 

62 under UHV conditions. The unknown reaction product may be oligomeric derivatives of 

diazo compound 62 which are observed as cross or longer linear structures after heating 

samples to ≥ 198°C. 
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Figure 3.3.7. Reversed phase HPLC (CH3CN, flow 0.4ml/min, λdet = 362 nm, t = 25°C) of the azo 
derivative 62 (top), the DMF extract of the Ag nanoparticles (middle in red) and of the urea derivative 
60 (bottom).  

 

The formed dimer 53 has also two terminal Boc protected amines like 50 and they are in 

close proximity in the double-row arrangement. Therefore, the dimer 53 can be further react 

to give longer structures by applying higher temperatures. As expected, the formation of 

more complex interlinked structures surrounded by a mobile phase was observed by heating 

of 53 ≥ 198°C and subsequently investigated after cooling to RT [184, 187].  

 

Although, the structure of 53 and the structures of the resulting covalently linked molecules 

observed after heating ≥ 198°C and subsequently investigation after cooling to RT showed 

very interesting images, unfortunately, the very low yield and polymeric nature of the 

products prevented to their analysis by traditional surface techniques.  
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Figure 3.3.8. STM image (15 x 15 nm2, 1.2 V, 20 pA) of 50 on Cu(111) annealed at temperatures > 
198°C. Chains and cross type structures consisting of interlinked biphenyl subunits were formed. 

 

3.3.2 Towards the selective cleavage of protection group for controlling 

length of the interconnected structures 

After these preliminary promising results, the selective cleavage of Boc protection groups 

which may lead to control of the length of the interconnected structures were investigated. If 

the cleavage of Boc groups can be performed in distinct temperatures, the length of the 

interconnected structures can be controlled. For this reason, one of the Boc groups should 

be cleaved at lower or much higher temperature than the other one. Increasing the cleavage 

temperature for Boc group is not only difficult to achieve while keeping the structure similar 

to original but also may lead problems during the evaporation of molecules for deposition on 

to the surfaces. On the other hand, reducing the cleavage temperature of one Boc groups 

can be achieved easily by replacing some of the hydrogen atoms with fluorine atoms. 

Fluorine containing compounds are well known for their reduction of melting or evaporating 

temperatures of molecules comparing to their non-fluorinated counterparts. For example, 

fluorides have been used in the past to reduce the melting temperatures of metals and ores, 

and to help them flow. Another advantage of fluorine atoms is not only its similar size to 

hydrogen atoms but also their ability to form H-bonding.  

 

In the light of these information above, the desired molecule can be easily accessible by 

mono Boc protecting commercially available 4,4'-diaminobiphenyl (a.k.a. Benzidine) and 

following the nucleophilic substitution of remaining free amino site with fluorinated Boc 

derivative.  
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First, the synthesis of mono Boc protected benzidine derivative (64) was achieved using 

equimolar of benzidine and Boc anhydride in presence of one equivalent of triethylamine as 

a base in THF. The mixture was stirred overnight at RT under Argon. After usual workup 

with water and extraction with DCM, mono Boc protected benzidine derivative was obtained 

with 47% yield by column chromatography as white powder. For the synthesis of 65, the 

remaining free amino site of 64 is reacted with 1,1,1-trifluoro-2-methylpropan-2-ol in 

presence of BTC following the procedure described above thus yielding 89% of 65 as white 

powder. 
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Scheme 3.3.7. Synthesis of 65 (a) Boc2O, Et3N, THF, RT, 47%; (b) 1,1,1-trifluoro-2-methylpropan-2-
ol, CO(OCCl3)2, DMAP, DCM, RT 89%.  

 

Being the most electronegative element, replacing some hydrogen atoms of Boc group with 

fluorine atoms will affect the electron density of the whole molecule making slightly polar. 

The fluorinated Boc group of a molecule will be much more electronegative comparing to the 

non fluorinated Boc group. Therefore, one can expect that the fluorinated Boc groups will 

display more brightness than non fluorinated counterparts. Moreover, a head-to-tail coupling 

of monomers on the surface can be expected as a result of different polarity of Boc groups. 

 

65 was deposited at room temperature on both Cu(111) and Ag(111) surfaces for 

determination of self assembly pattern on the surfaces.  

 

Upon deposition of 65 onto Ag(111) surface, the structure of network was identified as 

herringbone arrangement. However, the herringbone arrangement is not fully periodic 

displaying double and triple rows. The O···H distance of neighboring molecules was 
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measured ~2.7 Å. The evolution of the pattern starts with the formation of molecular blocks 

shown by green arrows as described the molecular model below. The formation of 

intermolecular H-bonding between the fluorinated Boc group of the molecule with the non-

fluorinating end of the neighboring molecule which is parallel was observed. On the other 

hand, the formation of H-bonding between the fluorinated Boc groups of perpendicularly 

oriented neighboring molecules was observed too.  

 

 

Figure 3.3.9. a) STM image (8 x 8 nm2, 1.7 V, 20 pA, RT) of the 65 adsorbed on Ag(111). b) The 
tentative molecular model shows molecular building blocks in green,  hydrogen bonds blue for O···H 
red for F···H. 

 

It should be noted that the formation of parallel arrangements in double or triple rows were 

also observed in addition to herringbone arrangement of 65 on Ag(111) surfaces. 

 

 

Figure 3.3.10. High resolution STM image of 65 on Ag (111) surface. Double row herringbone 
arrangement marked with green circles while triple row arrangements with blue circles (20 x 20 nm2, 
1.7 V, 20 pA, RT). 
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On the other hand, molecules of 65 deposited on Cu(111) surfaces showed a parallel 

arrangement similar to the results obtained for double Boc protected biphenyl 50. The STM 

images indicates that the intermolecular H-bonding were formed between the fluorinated 

Boc group of a molecule with the hydrogen of phenyl ring attached to the non-fluorinating 

Boc group of neighboring molecule resulting head-to-tail coupling of monomers.  

 

 

Figure 3.3.11. a) STM image (6 x 5.9 nm2, -1.8 V, 20 pA, RT) of biphenyl 65 adsorbed on Cu(111) 
and b) the tentative molecular model.  

 

After the deposition of 65 onto Ag(111) and Cu(111) surfaces, the samples were heated and 

subsequently investigated upon cooled to room temperature to determine the temperature of 

formation of interlinked molecules.  

 

It was found that the herringbone pattern formed during deposition onto the Ag(111) 

surfaces evolved into completely new arrangements after heating samples to around 150ºC, 

much lower than its non fluorine containing counterpart, 50, as expected. The formation of 

dimeric structures was observed. It is suggested that the fluorinated Boc group cleaves first 

due to the reasons explained previously and the formed unstable compounds react with the 

neighboring molecule resulting the formation of a dimer. The length of dimers is measured 

~2.1 nm which is also in good agreement with twice of the biphenyl unit lenght.  

 

While dimeric structures are observed in majority after heating samples up to 160°C, some 

biphenyl units are observed to be linked up into even longer structures (between 160-

170°C). It is probable that dimers and trimers were forming spontaneously on the substrate 

surface. Longer structures, probably trimers, of 65 which were assembled in small islands 

were observed. The formation of trimeric structures assembled in a parallel pattern due to 
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the H-bonding interactions similar to dimeric arrangements was observed by heating 

samples at 168°C and subsequently investigation after cooled to room temperature. Mainly 

paralleled arrangement of trimeric structures was observed on STM images. Boc groups 

separated with a darker backbone were measured ~3.2 nm consisting with the length of 

three interconnected biphenyl units.  

 

 

Figure 3.3.12. a) STM image of the dimeric arrangement of biphenyl 65 on Ag (111) after annealing 
the sample at 160°C (8 x 8 nm2, -1.8 V, 20 pA, RT), and b) corresponding molecular model. c) STM 
image of the trimeric structures formed after annealing the sample at 168°C (8 x 8 nm2, -1.9 V, 20 pA, 
RT), and d) schematic representation of the arrangement. 

 

For temperatures larger than 168°C a considerable free space on the surface, some larger 

structures probably representing oligomers of 65 and small islands consisting of only trimeric 

structures were observed.  
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Figure 3.3.13. (a) STM image of 65 the surface after annealing the sample at 160°C showing the 
coexistence of dimeric and trimeric structures (24.9 x 17.8 nm2, -1.9 V, 20 pA, RT). (b) Longer 
chains obtained after annealing 65 at 168°C. (10 x 10 nm2, -1.9 V, 20 pA, RT) 

 

The formation of longer molecules step by step may be possible if the fluorinated Boc group 

of a molecule cleaves first leaving a free amine behind which may then reacting the Boc 

protected side of the neighboring molecule. Therefore, 65 can form a dimer could be similar 

to its monomer, containing a Boc and a fluorinated Boc groups on opposite ends of the 

molecule, while being heavier than 50. The increase of molecular length will not only reduce 

the dipole difference but also increased molecular weight will improve the stability of Boc 

groups by making their cleavage much more difficult than the monomer. Nevertheless, 

selective cleavage of fluorinated Boc group of the dimer can be still possible and may lead to 

trimer formation. Therefore, one can expect that the number of fluorine atoms will reduce 

due to the increase on number of cleaved fluorinated Boc groups. For this reason, 65 on 

Ag(111) surfaces were investigated by XPS at different temperatures. It was found that the 

number of fluorine atoms decreased drastically as a result of the desorption of the 

fluorinated Boc groups due to a dramatic decrease of the fluorine peak after treatment of the 

samples at elevated temperatures.  

 

  

Figure 3.3.14. XPS measurements of  65 on Ag(111) at different annealing temperatures 
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The only parallel arrangement of samples observed on Cu(111) at RT were stable up to 150°C. 

Above this temperature, a new periodic pattern consisting of molecular rods which were 

measured twice the length of 65, appeared which was stable in a wide temperature range of 

150-180°C. It is the same dimeric arrangement obtained from biphenyl 50 after heat treatment 

at elevated temperatures. These dimers were probably arranged similar to the ones obtained 

before the heat treatment and showed the consistency with previous findings using biphenyl 50. 

The dimers were held together thanks to the H-bonding between the carbonyl oxygen and 

hydrogen atoms of the biphenyl core of neighboring molecules.  

 

  

 

Figure 3.3.15. The STM images of 65 on Cu(111) surfaces (a) treated with heat at 157°C (30 x 30 
nm2, 22 pA, 1.2 V) (b) treated with heat at 167°C. (11 x 11 nm2, 22 pA, 1.2 V). Below, the tentative 
model which represents the arrangement of the molecules. 
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In short, the molecules of 65 deposited on Cu(111) was started to react with each other at 

157°C. The formation of similar dimeric interlinked structures for 65 was observed at 167°C, 

much lower than its non fluorinated counterpart, 50, as expected due to the reduction in 

melting temperature thanks to the fluorine atoms. Further heating of the samples led to 

decomposition of the structures. Although, the formation of interlinked structures of 65 

happened at lower temperatures than 50 proved that the cleavage of fluorinated Boc group 

and formation of dimers happening first, the longer interconnected structures can not be 

observed.  

 

On the other hand, the formation of interlinked dimeric structures of 65 on Ag(111) surface 

was observed at 160°C, 7°C lower than the ones on Cu(111) surfaces. The similar double 

row pattern for dimers of compound 50 on Cu(111) surface was detected. Surprisingly, the 

formation of linear trimers were observed upon heating the samples to 168°C which is very 

close to the temperature where dimer formation of 65 on Cu(111) surfaces. However, 

formation of trimer was unique to the 65 on Ag(111) surfaces. A linear trimer formation was 

neither observed for compound 50 on Cu(111) surface nor compound 65 on Cu(111) 

surface. 

 

3.3.3 Self-Assembly pattern of asymmetric thermally inter-linkable structure  

 
Until now, the self assembly of the symmetric or pseudo symmetric Boc protected 

biaminophenyl molecules on the Cu(111) and Ag(111) surfaces were investigated. The 

interlinking mechanisms of molecules were discussed in details. Moreover, the selective 

cleavage of Boc groups was succeeded by substituting some hydrogens of one Boc groups 

by fluorine atoms. Another possibility to perform selective cleavage of Boc groups could be 

achieved by changing positions of Boc groups. It is expected that the para positioned Boc 

group may cleave before the meta positioned Boc group due to the electronic reasons, thus 

by synthesizing asymmetric Boc protected biaminophenyl molecules. Moreover, 2D 

networks of asymmetric Boc protected biaminophenyl molecules could show different 

arrangement than symmetric or pseudo symmetric Boc protected biaminophenyl molecules 

due to the difference on their structures. Therefore, asymmetric Boc protected 

biaminophenyl molecules were synthesized to get a complete understanding about the self 

assembly and interlinking mechanism on Cu(111) and Ag(111) surfaces.  
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The asymmetric Boc protected biaminophenyl, di-tert-butyl biphenyl-3,4'-diyldicarbamate 

(66) was synthesized easily from commercially available N-(tert-Butoxycarbonyl)-3-

bromoaniline and 4-(N-Boc-amino)phenylboronic acid pinacol ester by Suzuki reaction with 

92% yield following similar procedures described before.  
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Scheme 3.3.8. Synthesis of asymmetric derivative of 50 (a) Pd(PPh)3, Toluene-EtOH, Na2CO3, ↑↓, 
78% 

 

Then asymmetric Boc protected biaminophenyl (66) was deposited on both Cu(111) and 

Ag(111) surfaces at room temperature and the samples were investigated by STM.  

 

For low coverage of molecules of 66 on Ag(111) surface chain like structures and hexamers 

(flower like structures) were observed. The molecular chains were distributed randomly on 

the surface and exhibited no influence of the underlying silver substrate. The different 

conformations of the molecular chains formed by individual molecules of 66 were observed 

by STM.  

 

  

Figure 3.3.16. (a) Overview image of the molecular chains and flowers of 66 on Ag(111) formed 
at low coverage (100 x 100 nm2, 1.8 V, 20 pA, 77 K). (b) Randomly oriented single molecular 
rows with different molecular conformations. (15 x 14 nm2, -1.57 V, 20 pA, 77 K). 

 

The flower like structures can clearly be identified that consisting of 6 molecules of 66, thus 

revealing a six-fold symmetry. This hexamer has a side of length around 10Å. In order that a 

hexagon to be formed structure by intermolecular H-bonding interactions in a circular 
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arrangement; the two carbonyl oxygen atoms of the monomers should point to the opposite 

directions. As a result, the structures stabilized by 12 H-bonds between carbonyl oxygen and 

the phenyl hydrogen atoms of each neighboring molecule where the O···H distance is 

measured to be ~3 Å.  

 

 

Figure 3.3.17. a) Closeup view of a hexamer consisting of six individual molecules of 66 (4.7 x 
4.7 nm2, -1.57 V, 20 pA, 77 K). b) The tentative molecular model. 

 
When increasing coverage of 66, chains formed by double rows lying parallel to each other 

were observed. The uniformly arranged molecules showed same conformations in contrast 

to the arrangements at low coverage. Such a double row can be considered as a building 

block for the formation of the densely-packed arrangement at higher coverage due to the H-

bonding interactions between the oxygen of carbonyl groups and hydrogens of phenyl rings. 

 

 

Figure 3.3.18. a) STM image of the molecular pattern at 0.5 ML (10 x 10 nm2, 1.57 V, 20 pA, 77 
K). Evolution of the densely packed arrangement starts with the formation of double rows. A few 
molecules are inserted in the double row shown with a yellow arrow. The arrangement shown 
with a blue arrow is formed by the packing of two double rows and is a close-packed parallel 
arrangement which evolves into bigger islands at high coverage. b) Molecular model of the 
double row.  
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Figure 3.3.19. a) Overview of the close-packed parallel arrangement of biphenyl 66 on Ag(111) 
surface (40 x 40 nm2, 1.2 V, 20 pA, 77 K). b) Molecules superimposed to the STM images (5.7 x 
5.7 nm2, 1.3 V, 20 pA, 77 K). c) Schematic representation of the arrangement double molecular 
row is highlighted by a red stripe. 

 

To induce intermolecular reactions within the self-assembled monolayers of biphenyl 66, 

temperature is exploited as a trigger for deprotection of Boc groups, as in the previous cases 

(biphenyl 50 and 65).  

 

The formation of new structures was observed when the samples was heated to 155°C and 

subsequently investigated after cooling to RT. It is clearly visible that the number of bright 

dots which correspond to the Boc groups was reduced along these rows indicating an 

interlinking of monomers into longer structures. The structure along the row at the border 

lying next to a monomer (indicated by a blue arrow) had twice the length of the monomer, 

hence corresponded to a dimer. On the other hand, the row inside the network was 

exclusively formed by the dimers that were rotated by 180º with respect to the neighboring 

dimer (indicated by a red arrow). 
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Figure 3.3.20. a) STM image of the structures which follow the principle directions of the 
underlying Ag(111) substrate (80 x 80 nm2, -1.94 V, 20 pA, RT). b) Mixture of monomers and 
dimers (indicated by red and blue arrows) of 66 (15 x 15 nm2, -1.94 V, 20 pA, RT). 

 

 

Figure 3.3.21.  a and b) Dimers of 66 with different zoom view (29.8 x 20.8nm2, -1.9 V, 20 pA, 
RT) (10 x 10 nm2, -1.9 V, 20 pA, RT). c) The tentative molecular model.  

 

The dimers reacted further and revealed longer structures upon increasing the temperature 

to 168°C. It is probable that a monomer which looses a Boc group at para position forms an 
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unstable complex and reacts with two meta positioned Boc group containing dimer to form a 

trimer which has two meta positioned Boc group. 

 

Similar dimeric and trimeric structures were previously obtained after annealing the self-

assembled monolayers of biphenyl 50 and 65. However, the dimeric pattern obtained after 

deprotection of biphenyl 66 displayed a distinct appearance in the STM images owing to the 

asymmetric shape of the molecule. Therefore, by selecting proper reaction temperature, it is 

possible to form well ordered 2D network structures mainly consisting of monomers, dimers 

or trimers. 

 

 

Figure 3.3.22. a) STM image of the trimeric structure at 168°C. Monomers and dimers are marked in 
blue lines (13.6 x 16.8 nm2, -1.9 V, 20 pA, RT) b) Tentative molecular model of the trimeric 
arrangement. 

 

At low coverage, the molecules of 66 on Cu(111) organize mainly into double rows (building 

block) in which they are arranged in a parallel fashion with the same molecular conformation 

in contrast to their curved and disoriented chains on Ag(111) surfaces. Apart from this 

observation, the flower like structures are found to exist more frequently on Cu(111) surface.  
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Figure 3.3.23.  a) Chains and hexamers at low coverage on Cu(111) surfaces (50 x 50 nm2, 1.1 
V, 20 pA, 77 K). b) Closer view of molecules of 66 forming double rows marked in black lines in 
(a) (20 x 20 nm2, 1.5 V, 20 pA, 77 K).  

 

Further investigation of flower like structures on Cu(111) surfaces revealed that the 

molecules introduce a chiral signature to the hexameric structures. While the left hexamer 

are rotated counterclockwise, the molecules in the right hexamer are rotated in the opposite 

direction.  

 

 

Figure 3.3.24.  a) Enhanced STM image of left and right hexamers b) STM image in (a) with a 
normal contrast. (8.5 x 4.7 nm2, 1.58 V, 20 pA, 77 K). 

 

The growth mechanism of supramolecular structures of biphenyl 66 exhibited difference 

when formed on Cu(111) and Ag(111) surfaces. The randomly distributed chains displayed a 

better ordering and the hexamers mainly formed on Cu(111) at low coverage. The number 

and lengths of chains as well as the number of hexamers increased with increasing 

coverage density of molecules. Small islands of self-assembled molecules of 66 formed 

close to monolayer of molecules was deposited onto Cu(111) surfaces. On Ag(111) 

surfaces, the molecules started to form the parallel arrangement even at low molecular 

densities. When the coverage densities were increased, the 2D network arrangement of 
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molecules filled completely Ag(111) surfaces. On the other hand, molecules prefer to form 

only the chains formed by double rows and the hexameric structures on Cu(111) until all the 

free spaces between these structures are filled. This result indicated a random distribution of 

the chains and the double rows over the surface and no periodic order at high coverage.  

 

 

Figure 3.3.25. a) to e) Coverage dependent growth of self-assembled structures of 66 obtained by 
repeatedly adding molecules on Cu(111) surface. a) b) and c) (100 x 100 nm2, 1.65 V, 20 pA, 77 
K). (100 x 100 nm2, 1.65 V, 20 pA, 77 K). d) (19x 18 nm2, 1.6 V, 20 pA, 77 K (e); 15x15 nm2, -1.26 
V, 20 pA, 77 K.  

 

A closer look to these arrangements reveals that the molecules interact with each other 

dominantly in a parallel manner by H-bonds whereas a herringbone arrangement can be 

observed at some regions.  

 

 
Figure 3.3.26. a) STM image of the parallel arrangement in which the unit cell and a few molecules 
are inserted to illustrate their arrangement (10x 10 nm2, -1.26 V, 20 pA, 77 K). Besides this 
structure, rarely a herringbone arrangement of the molecules can be observed, which is illustrated 
with black lines inside the network. b) Tentative molecular model of the close-packed parallel 
arragement. 
 

The molecules of asymmetric Boc protected biaminophenyl (66) deposited on Cu(111) 

disorganized upon heating to 120°C which is 76°C colder than the temperature on which 
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formation of interlinked structures for symmetric Boc protected biaminophenyl (50) was 

observed. The temperature difference between 66 and symmetric Boc protected 

biaminophenyl (50) can be explained by the structural differences, i.e. para vs meta. 

However, it was very interesting that any interlinked structures can be observed upon 

heating of 66. 

 

 

Figure 3.3.27. STM image of the sample after annealed at 160°C (12.7 x 12.8 nm2, 1.5 V, 20 pA, 
77 K). Some interlinking is observed but there is no ordering of the structures.  

 

On the other hand, the formation of interlinked dimeric structures of 66 on Ag(111) surface 

was observed at 165°C, 31°C lower than the temperature for interlinking symmetric Boc 

protected biaminophenyl (50) was observed, and 5°C higher than the temperature for 

interlinking of 65 on Ag(111) surfaces. Upon heating to 165°C, trimeric interlinked structures 

was observed for the 66 on Ag(111) surface similar to the interlinked structures of 65. 66 

and 65 showed similar interlinking pattern at very close temperatures. Therefore, the 

resulting interlinking structures and their interlinking temperature can be tuned by modifying 

the Boc protection group’s substitution position or charge distribution.  
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4. SUMMARY AND CONCLUSIONS 
 

Metal nanoparticles have received much attention as potentially effective materials showing 

novel electronic, optical, optoelectronic, magnetic, and thermal properties derived from the 

“quantum size effect”. Organized assemblies of metal nanoparticles are also expected to 

show novel and fascinating properties. For this reason, chemical control over the particle 

size in order to fabricate monodisperse metal nanoparticles is required. 

 

In this work, we presented novel cyclic benzothioether ligands for ligand exchange studies of 

phosphine stabilized Au55 nanoparticles. The ligand exchange reactions for better stabilized 

Au55 clusters were examined. Moreover, direct synthesis of highly monodisperse gold 

nanoparticles was performed using novel cyclic benzothiol-thioether hybrid ligands. Model 

ligand E was studied closely for understanding the size, stability and dispersity of directly 

synthesized gold nanoparticles. 

 

Our studies for the synthesis of monodisperse gold nanoparticles can be investigated in two 

parts. In the first part, ligands that are more stable than phosphines were designed 

according to the theoretical calculations. Then, we focused our attention to ligand exchange 

of well-defined, monodisperse Au55(PPh3)12Cl6 clusters with cyclic benzothioether ligands. 

Mono and biphasic ligand exchange attemps to replace phosphine ligands with more stable 

benzothioether ligands could not be achieved. In fact, coagulation of Au55 nanoparticles into 

bigger particles or even into bulk gold was observed. Hence, we concluded that cyclic 

benzothioether ligands were not suitable for stabilization of Au55 clusters by ligand exchange 

reactions not only for their weak binding properties but also their lack of bulkiness to prevent 

coagulation, which essentially restricts the general applicability of this method.  

 

In the second part of our search for better monodispersed gold nanoparticles, we focused on 

direct synthesis of gold nanoparticles with reduction of gold(III) precursors in the presence of 

our modified cyclic benzothioether ligands using two phase Brust-Schiffrin method. After the 

formation of gold nanoparticles with our bulkier benzothioether ligands, the properties of 

newly formed gold nanoparticles were investigated. Significantly, a very narrow size 

distribution with mainly 1.1 nm gold nanoparticles was obtained as demonstrated by TEM 

analysis. Calculations utilizing the characterization data showed that two of our bulky ligands 

stabilized one gold nanoparticle composed of 34 gold atoms. It was also observed that the 
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newly formed gold nanoparticles are additionally stabilized with the help of the ionic phase 

transfer reagent and showed very high stability in solution or solid phase.  

 

 

Figure 4.1. Suggested assembly of gold nanoparticles stabilized with two of ligands, E. 

 

These studies proved cyclic benzothiol-thioether hybrid ligands as a good candidate for 

synthesis of highly stable and monodisperse gold nanoparticles using the bottom-up 

approach. Yet, in order to improve the yield of ligands for the large-scale production, more 

efficient synthesis methods and more suitable protection groups for sulfur atoms remain to 

be established. Moreover, the gold nanoparticles could not be fully purified and separated 

from each other due to the problems encountered during purification by precipitation. 

Therefore, benzothiol-thioether hybrid ligands stabilized gold nanoparticle formation should 

be studied to define not only the parameters for higher monodispersity and narrower size 

distribution but also the effect of the ligand/gold ratio and the synthesis conditions to achieve 

total control of the end products. 

 

Organized molecular structures are of vital importance for the production of advanced 

functional surfaces in the field of nanotechnology. Recent studies revealed that design 

principles from supramolecular chemistry can be adapted to fabricate unique supramolecular 

aggregates at surfaces. A major challenge in bottom–up assembly of functional molecular 

nanosystems at surfaces is the formation of structures of large size using covalent or non-

covalent bonds. 2D assembly of larger nanostructures from preorganised monomers was 

achieved using the concepts of supramolecular chemistry and protection group chemistry. 

Several Boc protected aromatic structures were synthesized and their ability to form ordered 

structures on surfaces were investigated. It was found that the Boc-protected 

diaminobiphenyl, 50, self-assembled in two different arrangements on Cu(111) surface. 
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Annealing these arrangements at 196°C provided a well-ordered pattern consisting of 

dimers with terminal Boc groups. Further annealing of the samples at ≥198°C led to the 

formation of cross-type and chain-like structures. To understand the reactions leading the 

formation of more complex structures from the surface assembled preorganized molecules, 

bench side experiments were performed and the formation of new N-N and N-C covalent 

bonds between the monomers was identified which is facilitated by the release of the 

protecting groups under UHV conditions.  

 

In the light of these promising results, fluorinated derivative of Boc-protected 

diaminobiphenyl (65) and asymmetric Boc-protected diaminobiphenyl (66) were synthesized 

for the study of more controlled covalent formation of preorganised molecules. Their 

coverage and self-assembly structures were investigated on Cu(111) and Ag(111) surfaces. 

Both of the molecules showed similar annealing temperatures for the covalent bond 

formation towards longer interconnected structures. While two different arrangements on 

Cu(111) and Ag(111) surfaces were observed for fluorinated derivative of Boc-protected 

diaminobiphenyl, asymmetric Boc-protected diaminobiphenyl showed only parallel 

arrangement structures only on Ag(111) structures.  

 

These results reveal that using suitably designed protecting groups to arrange monomers on 

surfaces and inducing their cleavage by an external trigger allow the interlinking of the 

preorganized monomers. However, the principals underlying the formation of different 

structures on different surfaces remain to be investigated in details. 

 

 

Figure 4.2. Preorganized pre-organized molecular building blocks interlinked on the surface 

 

In conclusion, the assembly of the nanostructures with help of the protection groups may 

pave the way towards molecule-based covalently linked two dimensional functional 

structures which are so far only attainable at larger scale by lithography.
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5. EXPERIMENTAL PART 

 
5.1. General Remarks 

All reactions were performed in dried standard glassware and inert atmosphere of Argon 6.0 

obtained from PanGas AG (Dagmersellen, Switzerland). Evaporation and concentration of 

compounds in vacuo was done using a Büchi rotary evaporator. Drying of compounds and 

reagents were done using a RV5 high vacuum pump from Edwards. 

 

Chemicals and reagents were used as received from Fluka AG (Buchs, Switzerland), Acros 

AG (Basel, Switzerland), and Aldrich (Buchs, Switzerland) in puriss. p. a. quality and used 

without further purification. Solvents for chromatography and extractions were distilled prior 

to use. Dry DCM was distilled from CaH2, THF from Na-benzophenone. HPLC-grade 

solvents were purchased from J. T. Baker and used for analytical HPLC. Elemental 

analyses (EA) were carried out by W. Kirsch on a Perkin-Elmer Analysator 240. The values 

are given in mass percent. Melting points (MP) were determined in °C using a Stuart SMP3 

apparatus and are uncorrected. 

 

5.1.1 Chromatographic methods 

Thin layer chromatography (TLC) was performed on 0.25 mm precoated either 5x10 cm 

glass plates coated with silica gel 60 F254 or 0.2 mm precoated basic alumina plates were 

used purchased from Merck AG (Darmstadt, Germany). Visualization of compounds was 

done at 254 nm (UV) and 366 nm (fluorescence). If necessary, the plates were stained by 

dipping into a KMnO4 solution. 

Description: TLC (SiO2, Alox) (solvent) Rf 

Normal phase column chromatography was done using silica gel 60 from Merck AG 

(Darmstadt, Germany) (0.043mm-0.060 mm, 230-400 mesh).  

High performance liquid chromatography (HPLC) was done using HP1100 Series 

analytical HPLC on a Nucleosil 100-5 5.0µm SiO2 column from Bischoff Chromatography 

NC-04 (250x4 mm). Reverse phase column chromatography was performed on 

Lichorspher® 100 RP-18 silica gel from Merck (5µm particle size, 4x250 mm column) with 

HPLC-grade MeCN. 

Description: HPLC (solvent system, length of program; detector wavelength), Rt 
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5.1.2 Spectroscopic methods 

UV-Vis spectra were recorded on an Agilent 8453 diode array detector spectrophotometer 

using optical 114-QS Hellma cuvettes (10 mm light path).   

Description: UV-Vis (solvent), maxima wavelength (λmax) in nm, (main bands, relative 

extinction coefficient in %) 

Electron impact (EI) mass spectra and fast atom bombardment (FAB) mass spectra were 

recorded by Dr. H. Nadig on a finnigan MAT 95Q for EI-MS and on a finnigan MAT 8400 for 

FAB-MS in the mass spectrometry laboratory of the institute. As matrix for FAB-MS m-nitro-

benzyl alcohol or glycine was used. Electron spray ionization mass spectra (ESI-MS) 

were recorded on a Bruker Esquire 3000plus. Matrix-assisted laser desorption-ionization 

mass spectra in conjunction with time of flight (MALDI-TOF) were recorded on a 

Perseptive Biosystems Vestec Mass Spectroscopy Products VoyagerTM Elite 

BiospectrometryTM Research station. The samples for ESI-MS were prepared by dissolving 

the compounds in DCM and dilution with MeOH. For MALDI-TOF measurements 1-10µl of 

sample dissolved in DCM was placed on a 100-wells sample plate and measured without 

matrix. Peaks with intensity less than 10% were not considered. 

Description: MS type, mass peaks in m/z 

Nuclear magnetic resonance (NMR) were recorded on Bruker Avance250-MNR (250 MHz 
1H), Bruker DPX-NMR (400 MHz 1H and 100 MHz for 13C) or or a Bruker DRX-500 (500 MHz 

for 1H and 125 MHz for 13C) spectrometer at ambient temperature in the solvents indicated.  

Solvents were obtained from Cambridge Isotope Laboratories. CDCl3 was filtered through 

basic alumina prior to use. All measurements were done at RT unless otherwise stated. The 

chemical shifts (δ) were given in ppm relative to TMS. The coupling constants J, were listed 

in Hz. The multiplicities of the signals were indicated s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet) and br (broad). HMQC and HMBC measurement were done on 

Bruker DRX-NMR (600 MHz) Dr. D. Haussinger. 

Description: 1H-NMR (frequency, solvent): δ in ppm, peak multiplicity, J in Hz 
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 5.2. Synthetic Procedures for Gold Nanoparticles 

Synthesis 1,3,5-tris(bromomethyl)benzene, 1 

Br

BrBr  

Via Radical reaction 

In a dry double neck 250 mL flask under Ar, mesitylene (5.0 g, 42 mmol, 1 eq.), N-

bromosuccinimide (22.5 g, 127 mmol, 3 eq.) and α,α′-azoisobutylnitrile (25 mg, 0.15 mmol, 

as initiator) were heated to reflux in 125 mL dry CCl4 with stirring for 24 h. The mixture 

filtered to remove the succinimide and the filtrate washed with distilled H2O (3 x 125 mL) and 

dried over anhyd. Na2SO4. The solvents were removed under reduced pressure. The 

resulting yellow oil was recrystallized in boiling light petroleum. The solvent was evaporated 

using Rotavap. The product was purified by recrystallization in ethylacetate to give product 

as white crystalline needles (6.59 g, 44%). 

 

Via Reduction and bromination 

In a dry double neck 500 mL flask under Ar, lithium aluminum hydride (2.23 g, 58.5 mmol, 

3.6 eq.) was added to 150 mL of dry THF. Then, benzenetricarboxylate (2) (4 g, 15.8 mmol. 

1 eq.) dissolved in 150 mL of dry THF was added dropwise at room temperature under 

vigorous stirring and an atmosphere of Ar. The mixture was refluxed O/N. The excess of 

reducing agent was destroyed by slow addition of water, and the solvent was evaporated. 

Then, 120 mL of a 48% HBr solution and 200 mL of toluene were added and heated to reflux 

for O/N. The organic layer was separated, and the aqueous portion was extracted with 

TBME (3 x 150 mL). The organic layers were combined, washed with 500 mL brine, dried 

over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude material was 

purified through a short column of silica using n-hexane as eluent. The solvents were 

evaporated under high vacuum to afford the product as white crystalline needles (5.25 g, 

93%). 

  

C9H9Br3,  M.W. = 356.88 g/mol  

 Exact Mass = 353.83 g/mol 

TLC   SiO2, Hexane (100%) 

  Rf = 0.3 

Melting point 104–105°C 
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EI-MS 354.1[M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 7.33 (s, 3H); 4.44 (s, 6H)  
13C-NMR  (100 MHz, CDCl3) 

δ= 139.11; 129.62; 32.27; 

 

Synthesis trimethyl benzene-1,3,5-tricarboxylate, 2 

O O

O

O O

O

 

In a dry double neck 500 mL flask under Ar, benzenetricarboxylic acid (10 g, 47.5 mmol, 3.6 

eq.) was added to 200 mL of MeOH solution which contains 2.5 mL concentrated sulfuric 

acid. The mixture was refluxed O/N. Upon cooling down, white needle like crystals formed. 

Saturated sodium carbonate solution was added until the solution became neutral. The 

solution was filtered; the crystals were washed excessively to remove sodium carbonate 

salts. The white needle like compound was dried open air to give product as white powder 

(11.38 g, 95%). 

 

C12H12O6,  M.W. = 252.22 g/mol  

 Exact Mass = 252.06 g/mol 

TLC   SiO2, Hexane-EtAc (5:1) 

  Rf = 0.3 

Melting point 146–148°C 

EI-MS 252 [M+], 
1H-NMR  (250 MHz, CDCl3) 

δ= 8.87 (s, 3H); 3.99 (s, 9H)  

 

Synthesis benzene-1,3,5-triyltrimethanol, 3 

OH

HO

OH  
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In a dry double neck 500 ml flask under Ar, lithium aluminum hydride (2.23 g, 58.5 mmol, 3.6 

eq.) was added to 150 mL of dry THF. Then, benzenetricarboxylate (2) (4 g, 15.8 mmol. 1 

eq.) dissolved in 150 mL of dry THF was added dropwise at room temperature under 

vigorous stirring and an atmosphere of Ar. The mixture was refluxed O/N. The excess of 

reducing agent was destroyed by slow addition of water, and the solvent was evaporated. 

The solution was filtered; the formed solids were washed excessively to remove aliminium 

salts. The colorless oily compound was obtained after evaporation of the solvent (2.39 g, 

90%). 

 

C9H12O3,  M.W. = 168.19 g/mol  

 Exact Mass = 168.08 g/mol 

TLC   SiO2, CHCl3-MeOH (9:1) 

  Rf = 0.35 

Melting point 76–78°C 

EI-MS 191.1 [M+], 
1H-NMR  (400 MHz, MeOD) 

δ= 7.24 (s, 3H); 4.60 (s, 6H)  
13C-NMR  (100 MHz, MeOD) 

δ= 141.95; 124.49; 64.14 

 

Synthesis sodium hexane-1-thiolate, 4 

SNa  

In a dry 100 mL 2-necked flask equipped with a condenser and a magnetic stirrer, sodium 

metal (2.3 g, 0.1 mol, 1 eq.) was dissolved in 20 mL anhyd. EtOH over a period of 30 min. 

mercaptohexane (14.1 mL, 0.1 mol, 1 eq.) was then added slowly, and the resulting solution 

was stirred for another 2 h at RT. The solid residue obtained after evaporation of the solvent 

was washed with Et2O, isolated by filtration, and dried under vacuum leading the product as 

white solid (13.5 g, 97%).   

 

C6H13NaS,  M.W. = 140.22 g/mol   

 Exact Mass = 140.06g/mol 

ESI-MS 140.1 [M++Na], 
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Synthesis (3,5-bis(bromomethyl)benzyl)(hexyl)sulfane, 5 

BrBr

S

 

In a dry double neck 250 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (3.57 g, 10 

mmol, 1 eq.) was dissolved in 100 mL THF. Hexane-1-thiolate (4) (1.4 g, 10 mmol, 1 eq.) 

added slowly to the reaction mixture. Then the mixture was let to stir at RT for 30 minutes. 

The reaction mixture is poured into 75 mL water. Organic layer was collected. Water layer 

was extracted with TBME (3 x 75 mL). All the organic extracts were combined, washed with 

150 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap 

leaving yellowish oily crude. The purification attempts via column chromatography or 

distillation were failed. 

 

TLC   SiO2, Hexane-EtAc (19:1) 

  Rf = 0.45 

 

Synthesis 1,3,5-tris(chloromethyl)benzene, 6 

Cl

ClCl  

In a dry double neck 25 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (3.57 g, 10 

mmol, 1 eq.) and lithiumchloride (2.12 g, 50 mmol, 5 eq.) were dissolved in 15 mL dry DMF. 

The mixture is stirred 2 h at RT, under Ar. The reaction mixture is poured into 25 mL water. 

The mixture was extracted with TBME (3 x 25 mL). All the organic extracts were combined, 

washed twice with 25 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated 

using Rotavap leading the product as white powder (2.23 g, 99%). 

 

C9H9Cl3,  M.W. = 223.53 g/mol  

  Exact Mass = 221.98 g/mol 

TLC   SiO2, Hexane (100%) 

  Rf = 0.3 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.38 (s, 3H,); 4.59 (s, 6H,); 
13C-NMR  (100 MHz, CDCl3) 
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δ= 138.67, 128.64; 45.38 

 

Synthesis (3,5-bis(bromomethyl)benzyl)(hexyl)sulfane, 7 

ClCl

S

 

In a dry double neck 25 mL flask under Ar, 1,3,5-tris(chloromethyl)benzene (6) (0.22 g, 0.1 

mmol, 1 eq.) was dissolved in 10 mL dry THF. Hexane-1-thiolate (4) (0.14 g, 1 mmol, 1 eq.) 

added slowly to the reaction mixture. Then the mixture was let to stir at RT for 30 minutes. 

The reaction mixture is poured into 10 mL water. Organic layer was collected. Water layer 

was extracted with TBME (3 x 10 mL). All the organic extracts were combined, washed with 

25 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap leaving 

yellowish oily crude. The purification attempts via column chromatography or distillation were 

failed. 

 

TLC   SiO2, Hexane-EtAc (19:1) 

  Rf = 0.45 

 

Synthesis (3,5-bis(bromomethyl)benzyl)(5-(2-methoxyethoxy)pentyl)sulfane, 8 

S

BrBr

O
O

 

In a dry double neck 250 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (3.57 g, 10 

mmol, 1 eq.) and 5-(2-methoxyethoxy)pentane-1-thiol (9)  (1.78 g, 10 mmol, 1 eq.) were 

dissolved in 100 mL dry THF. Sodium hydrate 60% dispersion in mineral oil (0.44 g, 11 

mmol, 1.1 eq.) was added to the previous solution at 0°C. Then the mixture was let to stir at 

RT for 30 minutes. The reaction mixture is poured into 100 mL water. Organic layer was 

collected. Water layer was extracted with TBME (3 x 75 mL). All the organic extracts were 

combined, washed with 150 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 3:1) 

and the product was obtained as colorless oil (2.09 g, 46%). 

 

C17H26Br2O2S  M.W. = 454.26 g/mol  
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  Exact Mass = 452 g/mol 

TLC   SiO2, Hexane-EtAc (3:1) 

  Rf = 0.3 

MALDI-MS 452.1 [M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 7.35 (s, 1H); 7.29 (s, 2H); 4.45 (s, 4H); 3.70 (s, 2H); 3.60-3.55 (m, 4H); 

3.49 (t, J= 6.8 Hz, 2H); 3.4 (s, 3H); 2.43 (t, J= 7.6 Hz, 2H); 1.61-1.54 (m, 4H); 

1.45-1.39 (m, 2H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 140.51; 139.01; 129.90; 128.47; 72.39; 71.68; 70.45; 59.50; 46.37; 36.24; 

31.84; 29.61; 29.59; 25.47;  

E.A.  Calculated : C, 44.95%; H, 5.77%;  

  Found  : C, 45.11%; H, 5.69%; 

 

Synthesis 5-(2-methoxyethoxy)pentane-1-thiol, 9 

O
O SH  

In a dry double neck 25 mL flask under Ar, 5-(2-methoxyethoxy)pentyl ethanethioate (11) 

(1.10 g, 5 mmol, 4 eq.), and sodiumthiomethoxide (0.07 g, 1.25 mmol, 1 eq.) were dissolved 

in 15 mL dry MeOH and the mixture was let to stir at RT for O/N. The reaction mixture was 

poured into 15 mL water, acidified with sat. NH4Cl and was extracted with DCM (3 x 25 mL). 

All the organic extracts were combined, washed with 50 mL brine, dried over anhyd. 

Na2SO4. The solvent was evaporated using Rotavap leading colorless oily product (0.89 g, 

99%). 

 

C8H18O2S  M.W. = 178.29 g/mol  

 Exact Mass = 178.1 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.3 

EI-MS 70eV 

179.1 [M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 3.44-3.38 (m, 4H); 3.22 (t, J= 6.4 Hz, 2H); 3.24 (s, 3H); 2.38 (q, J1= 3.6 

Hz, J2= 7.6 Hz, 2H); 1.53-1.43 (m, 4H); 1.58-1.48 (m, 4H); 1.36-1.32 (m, 2H); 

1.21 (t, J= 7.6 Hz, 1H); 
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13C-NMR  (100 MHz, CDCl3) 

δ= 72.26; 71.49; 70.20; 59.41; 34.07; 29.11; 25.20  

E.A.  Calculated : C, 53.89%; H, 10.18%;  

  Found  : C, 54.11%; H, 10.03%; 

 

Synthesis 1-bromo-5-(2-methoxyethoxy)pentane, 10 

O
O Br  

In a dry double neck 50 mL flask under Ar, sodium hydrate 60% dispersion in mineral oil 

(0.44 g, 11 mmol, 1.1 eq.) was dissolved in 10 mL dry THF and 2-methoxyethanol (0.73 mL, 

10 mmol, 1 eq.) added dropwise to the previous solution at 0°C. All the sodium alkolate 

solution was added to the refluxing 1,5-dibromopentane (1.37 mL 10 mmol, 1 eq.) dissolved 

in 10 mL dry THF solution. The mixture was refluxed O/N under Ar. The solvent evaporated, 

the crude dissolved in 15 mL EtAc and filtered to get rid off salt. The filtrate was washed with 

water (2 x 25 mL) and with 25 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 6:1) 

and the product was obtained as colorless oil (0.54 g, 24%). 

 

C8H17BrO2,  M.W. = 225.12 g/mol  

 Exact Mass = 224.04 g/mol 

TLC   SiO2, Hexane-EtAc (6:1) 

  Rf = 0.3 

EI-MS 70eV 

225.1 [M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 3.51-3.46 (m, 4H); 3.40 (t, J= 6.4 Hz, 2H); 3.34 (t, J= 6.8 Hz, 4H); 3.32 (s, 

1H); 1.85-1.78 (m, 7.6 2H); 1.60-1.52 (m, 2H); 1.47-1.39 (m, 2H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 72.32; 71.49; 70.42; 59.41; 34.07; 32.96; 29.11; 25.20;  

 

Synthesis S-5-(2-methoxyethoxy)pentyl ethanethioate, 11 

O
O S

O

 

In a dry double neck 25 mL flask under Ar, 1-bromo-5-(2-methoxyethoxy)pentane (10) (2.25 

g, 10 mmol, 1 eq.) and  potassiumthioacetate,  (2.51 g, 0.22 mol, 2.2 eq.) were dissolved in 
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10 ml anhyd. DMF. The mixture was let to stir at RT for O/N. The reaction mixture is poured 

into 10 mL water. The mixture was extracted with TBME (3 x 15 mL). All the organic extracts 

were combined, washed twice with 25 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap leading colorless oily product (2.20 g, 99%). 

 

C10H20O3S  M.W. = 220.33 g/mol  

 Exact Mass = 220.11 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.2 

EI-MS 70eV 

220.1 [M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 3.51-3.46 (m, 4H); 3.39 (t, J= 6.4 Hz, 2H); 3.31 (s, 3H); 2.79 (t, J= 7.2 Hz, 

2H); 2.25 (s, 3H); 1.58-1.48 (m, 4H); 1.39-1.30 (m, 2H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 194.45; 72.32; 71.52; 70.38; 59.41; 30.96; 29.73; 29.45; 29.36; 25.72  

E.A.  Calculated : C, 54.51%; H, 9.15%; 

  Found  : C, 54.36%; H, 9.09%; 

 

Synthesis (3,5-bis(bromomethyl)benzyl)(5-(2-methoxyethoxy)pentyl)sulfane, 12 

S

ClCl

O
O

 

In a dry double neck 100 mL flask under Ar, 1,3,5-tris(chloromethyl)benzene (6) (2.23g, 10 

mmol, 1 eq.) and 5-(2-methoxyethoxy)pentane-1-thiol (9) (1.78 g, 10 mmol, 1 eq.) was 

dissolved in 25 mL dry THF. Sodium hydrate 60% dispersion in mineral oil (0.44 g. 11 mmol, 

1.1 eq.) was added to the previous solution at 0°C. Then the mixture was let to stir at RT for 

30 minutes. The reaction mixture is poured into 30 mL water. Organic layer was collected. 

Water layer was extracted with TBME (3 x 25 mL). All the organic extracts were combined, 

washed with 75 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using 

Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 3:1) and the product 

was obtained as colorless oil (1.72 g, 47%). 
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C17H26Cl2O2S  M.W. = 365.36 g/mol  

  Exact Mass = 364.10 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.25 
1H-NMR  (400MHz, CDCl3) 

δ= 7.30 (s, 3H); 4.57 (s, 4H); 3.69 (s, 2H); 3.59-3.53 (m, 4H); 3.44 (t, J= 6.4 

Hz, 2H); 3.38 (s, 3H); 2.41 (t, J= 7.8 Hz, 2H); 1.62-1.54 (m, 4H); 1.45-1.39 (m, 

2H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 140.40; 138.68; 129.39; 127.70; 72.39; 71.68; 70.45; 59.50; 46.07; 36.31; 

31.87; 29.58; 29.44; 25.81;  

 

Synthesis S,S'-(5-((5-(2-methoxyethoxy)pentylthio)methyl)-1,3-phenylene)bis (methylene) 

diethanethioate, 13 

S

SS

O

O

OO  

In a dry double neck 25 mL flask under Ar, (3,5-bis(bromomethyl)benzyl)(5-(2-

methoxyethoxy)pentyl)sulfane (8) (0.48 g, 1 mmol, 1 eq.), and potassiumthioacetate,  (0.25 

g,  22 mmol, 2.2 eq.) were dissolved in 2 mL anhyd. DMF. The mixture was let to stir at RT 

for O/N. The reaction mixture is poured into 10 mL water. The mixture was extracted with 

TBME (3 x 15 ml). All the organic extracts were combined, washed twice with 25 mL brine, 

dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap leading colorless oily 

product (0.44 g, 99%). 

 

C21H32O4S3  M.W. = 444.67 g/mol  

  Exact Mass = 444.15 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.1 

EI-MS 70eV 

455.1 [M+] 
1H-NMR  (400MHz, CDCl3) 
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δ= 7.10 (s, 2H); 7.07 (s, 1H); 4.07 (s, 4H); 3.61 (s, 2H); 3.57-3.48 (m, 4H); 

3.45 (t, J= 6.8 Hz, 2H); 3.37 (s, 3H); 2.39 (t, J= 7.2 Hz, 2H); 2.34 (s, 6H); 

1.65-1.55 (m, 4H); 1.45-1.35 (m, 2H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 195.34; 139.95; 138.61; 128.63; 128.23; 72.38; 71.70; 70.44; 59.49; 

36.38; 33.53; 31.87; 30.74; 29.60; 29.45; 25.82  

E.A.  Calculated : C, 56.72%; H, 7.25%;  

  Found  : C, 56.74%; H, 7.33%;  

 

Synthesis (5-((5-(2-methoxyethoxy)pentylthio)methyl)-1,3-phenylene)dimethanethiol, 14 

S

SHHS

O

O

 

In a dry double neck 25 mL flask under Ar, S,S'-(5-((5-(2-methoxyethoxy)pentylthio)methyl)-

1,3-phenylene)bis (methylene) diethanethioate (13) (0.44 g, 1 mmol, 4 eq.) and 

sodiumthiomethoxide (0.13 g, 0.25 mmol, 1 eq.) were dissolved in 5 mL dry MeOH and the 

mixture was let to stir at RT for O/N. The reaction mixture was poured into 10 mL water, 

acidified with sat. NH4Cl and was extracted with DCM (3 x 15 mL). All the organic extracts 

were combined, washed with 50 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap leading the colorless oily product (0.36 g, 99%). 

 

C17H28O2S3  M.W. = 360.6 g/mol  

  Exact Mass = 360.13 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.2 

EI-MS 70eV 

359.1 [M+] 
1H-NMR  (250 MHz, CDCl3) 

δ= 7.17 (s, 1H); 7.15 (s, 2H); 3.70 (t, J= 4 Hz, 4H); 3.66 (s, 2H); 3.55 (dxt, 

4H); 3.44 (t, J= 6.8 Hz, 2H); 3.38 (s, 3H); 2.42 (t, J= 7.2 Hz, 2H); 1.77  (t, J= 

7.6, 2H);  1.61-1.54 (m, 4H); 1.44-1.39 (m, 2H);  
1H-NMR  (400MHz, CDCl3) 
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δ= 7.17 (s, 1H); 7.15 (s, 2H); 3.70 (t, J= 17.2 Hz, 6H); 3.60-3.55 (m, 4H); 3.44 

(t, J= 6.8 Hz, 2H); 3.38 (s, 3H); 2.45 (t, J= 7.2 Hz, 2H); 1.77 (t, J= 7.2 Hz, 2H); 

1.61-1.54 (m, 4H); 1.45-1.39 (m, 2H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 142.20; 139.98; 127.66; 126.77; 72.39; 71.71; 70.45; 59.50; 36.48; 31.89; 

29.62; 29.49; 29.11; 25.84; 

E.A.  Calculated : C, 56.63%; H, 7.83%;  

  Found  : C, 55.93%; H, 7.67%; 

 

Synthesis 5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) dipentane-

1-thiol, 15 

S

SSSH SH

 

In a dry double neck 25 mL flask under Ar, S,S'-5,5'-(5-(hexylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl bis(pentane-5,1-diyl) diethanethioate (31) (58.9 mg, 

0.1 mmol, 4 eq.), and sodiumthiomethoxide (13 mg, 0.025 mmol, 1 eq.) were dissolved in 2 

mL dry MeOH and the mixture was let to stir at RT for O/N. The reaction mixture was poured 

into 10 mL water, acidified with sat. NH4Cl and was extracted with DCM (3 x 15 mL). All the 

organic extracts were combined, washed with 50 mL brine, dried over anhyd. Na2SO4. The 

solvent was evaporated using Rotavap to give a colorless oily product (50.5 mg, 99%). 

 

C25H44S5  M.W. = 504.94 g/mol  

  Exact Mass = 504.2 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.4 

EI-MS 70eV 

503.8 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.12 (s, 3H); 3.66 (s, 6H); 2.64 (t, J= 7.3 Hz, 6H); 2.47-2.40 (m, 4H); 1.72-

1.23 (m, 22H); 0.87 (t, J= 6.4 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 
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δ= 139.57; 139.31; 133.53; 130.26; 128.39; 70.71; 36.49; 31.99; 31.83; 

31.53; 29.63; 28.98; 28.87; 25.02; 22.96; 22.06; 14.47 

E.A.  Calculated : C, 59.47%; H, 8.78%;  

  Found  : C, 59.57%; H, 8.85%; 

 

Synthesis 5,5'-disulfanediyldipentane-1-thiol, 16 

HS S
S SH

 

In a dry double neck 25 mL flask under Ar, S,S'-5,5'-disulfanediylbis(pentane-5,1-diyl) 

diethanethioate (21) (3.54 g, 10 mmol, 1 eq.) and sodium hydroxide (0.44 g, 11 mmol, 1 eq.) 

were dissolved in 10 mL dry MeOH. Then the mixture was refluxed O/N. The reaction 

mixture is poured into 50 ml water. The mixture was extracted with TBME (3 x 25 ml). All the 

organic extracts were combined, washed with 75 mL brine, dried over anhyd. Na2SO4. The 

solvent was evaporated using Rotavap leading yellowish oily crude. The crude material was 

purified through a short column of silica with using pure n-hexane as eluent. The solvents 

were evaporated under high vacuum to afford the product as white solid (0.16 g, 6%). 

 

C10H22S4  M.W. = 270.54 g/mol  

 Exact Mass = 270.06 g/mol 

TLC   SiO2, Hexane (100%) 

  Rf = 0.45 

EI-MS 70eV 

270.1 [M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 2.66 (t, J= 7.2 Hz, 4H); 2.52 (q, J1= 4.0 Hz, J2= 7.2 Hz, 4H); 1.71-1.58 (m, 

8H); 1.51-1.43 (m, 4H); 1.33 (t, J= 7.6 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 39.19; 33.97; 28.98; 27.57; 24.88 

 

Synthesis S-5-hydroxypentyl ethanethioate, 17 

S OH

O

 

In a dry double neck 25 mL flask under Ar, 1-chloro-pentan-5-ol (2.25 g, 10 mmol, 1 eq.) and 

potassiumthioacetate (2.51 g, 0.22 mol, 2.2 eq.) were dissolved in 10 mL anhyd. DMF. The 

mixture was let to stir at RT for O/N. The reaction mixture is poured into 10 mL water. The 
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mixture was extracted with TBME (3 x 15 ml). All the organic extracts were combined, 

washed twice with 25 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated 

using Rotavap to give product as colorless oil (1.62 g, 99%). 

 

C7H14O2S  M.W. = 162.25 g/mol  

 Exact Mass = 162.07 g/mol 

TLC   SiO2, Hexane-EtAc (2:1) 

  Rf = 0.3 

EI-MS 70eV 

162.1 [M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 3.64 (t, J= 6.4 Hz, 2H); 2.90 (t, J= 6.4 Hz, 2H); 2.35 (s, 3H); 1.69-1.48 (m, 

6H) 

E.A.  Calculated : C, 51.82%; H, 8.70%; 

  Found  : C, 52.16%; H, 8.59%; 

 

Synthesis 5-mercaptopentan-1-ol, 18 

HO SH  

In a dry double neck 25 mL flask under Ar, S-5-hydroxypentyl ethanethioate (17) (1.62 g, 10 

mmol, 1 eq.) and sodium hydroxide (0.44 g, 11 mmol, 1 eq.) were dissolved in 10 mL dry 

MeOH. Then the mixture was refluxed O/N. The reaction mixture is poured into 50 mL water. 

The mixture was extracted with TBME (3 x 25 mL). All the organic extracts were combined, 

washed with 75 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using 

Rotavap leading yellowish oily crude. The crude material was purified through a short 

column of silica with a 1-to-1 mixture of n-hexane-EtAc. The solvents were evaporated under 

high vacuum to afford the product as white solid (0.95 g, 79%). 

 

C5H12OS  M.W. = 120.21 g/mol  

 Exact Mass = 120.06 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.35 

EI-MS 70eV 

120.1 [M+], 
1H-NMR  (250MHz, CDCl3) 
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δ= 3.65 (t, J= 6.0 Hz, 2H); 2.55 (q, J1= 3.5 Hz, J2= 7.25 Hz, 2H); 1.88 (s, 1H); 

1.68-1.52 (m, 6H); 1.36 (t, J= 7.6 Hz, 1H); 

 

Synthesis 5,5'-disulfanediyldipentan-1-ol, 19 

HO S
S OH

 

In a 100 mL beaker, 5-mercaptopentan-1-ol (18) (1.20 g, 10 mmol, 1 eq.) was dissolved in 

10 mL methanol and and titrated with 0.5 M methanolic iodine until the reaction turned from 

colorless to a persistent yellow. The reaction was quenched with 10% sodium bisulfite to a 

colorless solution. The resulting mixture is poured into 25 mL water. Water layer was 

extracted with DCM (3 x 25 mL). All the organic extracts were combined, washed with 50 mL 

brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude 

material was purified through a short column of silica with a 1-to-1 mixture of n-hexane-EtAc. 

The solvents were evaporated under high vacuum to afford the product as colorless oil (1.06 

g, 89%). 

  

C10H22O2S2,  M.W. = 238.41 g/mol  

 Exact Mass = 238.11 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.2 

EI-MS 70eV 

238.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 4.68 (s, br, 2H); 3.65 (t, J= 6.8 Hz, 4H); 2.69 (t, J= 6.8 Hz, 4H); 1.75-1.68 

(m, 4H); 1.63-1.57 (m, 4H); 1.51-1.48 (m, 4H). 
13C-NMR  (100 MHz, CDCl3) 

δ= 63.12; 39.33; 32.67; 29.33; 25.04 

E.A.  Calculated : C, 50.38%; H, 9.30%; 

  Found  : C, 50.76%; H, 9.19%; 

 

Synthesis 5,5'-disulfanediylbis(pentane-5,1-diyl) bis(4-methylbenzenesulfonate), 20 

O S
S O S

S

O

O
O

O

 

In a dry double neck 100 mL flask under Ar, 5,5'-disulfanediyldipentan-1-ol (19) (2.38 g 10 

mmol, 1 eq.) was dissolved in 10 mL dry DCM and pyridine (1.8 ml, 22 mmol, 2.2 eq.) was to 
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the reaction mixture. p-Toluenesulfonyl chloride (4.58 g, 24 mmol, 2.4 eq) dissolved in 12 

mL dry DCM was added slowly to the previous mixture at 0°C. The reaction mixture was let 

to reach RT and stirred under Ar for O/N. The reaction mixture was quenched by adding 20 

mL saturated NH4Cl solution. Organic layer was collected and extracted with sat. Na2SO4 

solution (2 x 25 mL) washed with 25 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The crude was purified on a silica gel column (Hex-EtAc 9:1) and 

the product was obtained as colorless oil after evaporation of the solvents (5.30 g, 97%). 

 

C24H34O6S2,  M.W. = 546.78 g/mol  

 Exact Mass = 546.12 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.3 

EI-MS 70eV 

546.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.77 (d, J= 4.8 Hz, 4H); 7.34 (d, J= 5.2 Hz, 4H); 4.01 (t, J= 5.2 Hz, 4H); 

2.59 (t, J= 4.8 Hz, 4H); 2.44 (s, 6H); 1.71-1.55 (m, 9H); 1.46-1.38 (m, 4H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 145.18; 133.48; 130.28; 128.29; 70.69; 38.88; 28.88; 28.86; 24.70; 22.06  

E.A.  Calculated : C, 52.72%; H, 6.27%; 

  Found  : C, 52.76%; H, 6.19%; 

 

Synthesis S,S'-5,5'-disulfanediylbis(pentane-5,1-diyl) diethanethioate, 21 

S S
S S

O

O

 

In a dry double neck 25 mL flask under Ar, 5,5'-disulfanediylbis(pentane-5,1-diyl) bis(4-

methylbenzenesulfonate) (20) (5.47 g 10 mmol, 1 eq.) and potassiumthioacetate,  (2.51 g,  

0.22 mol, 2.2 eq.) were dissolved in 10 mL anhyd. DMF. The mixture was let to stir at RT for 

O/N. The reaction mixture is poured into 10 mL water. The mixture was extracted with TBME 

(3 x 15 mL). All the organic extracts were combined, washed twice with 25 mL brine, dried 

over anhyd. Na2SO4. The solvent was evaporated using Rotavap leading colorless oily 

product (3.52 g, 99%). 

 

C14H26O2S4  M.W. = 354.62 g/mol  
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 Exact Mass = 354.08 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.4 

EI-MS 70eV 

354.5 [M+], 
1H-NMR  (400MHz, CDCl3) 

δ= 2.89-2.82 (m, 4H); 2.66 (t, J= 7.2 Hz, 4H); 2.32 (s, 6H); 1.75-1.42 (m, 12H) 

E.A.  Calculated : C, 47.42%; H, 7.39%; 

  Found  : C, 47.76%; H, 7.19%; 

 

Synthesis 2-(5-chloropentyloxy)-tetrahydro-2H-pyran, 22 

Cl O O  

In a dry double neck 100 mL flask under Ar, 5-chloro-pentan-1-ol, (1.16 ml, 10 mmol, 1 eq.), 

3,4-Dihydro-2H-pyran (0.91 ml, 10 mmol, 1 eq.) and pyridinium p-toluenesulfonate (0.17 g, 1 

mmol, 0.1 eq.) were dissolved in 30 mL anhyd. DCM. The mixture was let to stir at RT O/N. 

The reaction mixture is poured into 30 mL water. Organic layer was collected. Water layer 

was extracted with DCM (3 x 25 mL). All the organic extracts were combined, washed with 

75 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The 

crude was purified on a silica gel column (Hexane-EtAc 9:1) and the product was obtained 

as colorless oil (1.96 g, 95%). 

 

C10H19ClO2  M.W. = 206.71 g/mol  

  Exact Mass = 206.11 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.3 

EI-MS 70eV 

205.1 [M+], 
1H-NMR  (250 MHz, CDCl3) 

δ= 4.57 (m, 1H); 3.86-3.67 (m, 2H); 3.52-3.30 (m, 4H); 1.83-1.40 (m, 12H) 

 

Synthesis S-5-(tetrahydro-2H-pyran-2-yloxy)pentyl ethanethioate, 23 

S O O

O
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In a dry double neck 25 mL flask under Ar, 2-(5-chloropentyloxy)-tetrahydro-2H-pyran (22) 

(2.06 g, 10 mmol, 1 eq.), and potassiumthioacetate (2.51 g,  22 mmol, 2.2 eq.) were 

dissolved in 10 mL anhyd. DMF. The mixture was let to stir at RT for O/N. The reaction 

mixture is poured into 20 mL water. The mixture was extracted with TBME (3 x 25 mL). All 

the organic extracts were combined, washed twice with 50 mL brine, dried over anhyd. 

Na2SO4. The solvent was evaporated using Rotavap and the product was obtained as 

colorless oil (2.46 g, 99%). 

 

C12H22O3S  M.W. = 246.37 g/mol  

  Exact Mass = 246.13 g/mol 

TLC   SiO2, Hexane-EtAc (6:1) 

  Rf = 0.35 

EI-MS 70eV 

245.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 4.57 (t, J= 7.2 Hz, 1H); 3.88-3.80 (m, 1H); 3.78-3.72 (m, 1H); 3.52-3.46 

(m, 1H); 3.42-3.36 (m, 1H); 2.88 (t, J= 7.2 Hz, 2H); 2.33 (s, 3H); 1.76-1.40 (m, 

12H) 

E.A.  Calculated : C, 58.50%; H, 9.00%; 

  Found  : C, 58.76%; H, 9.09%; 

 

Synthesis 5-(tetrahydro-2H-pyran-2-yloxy)pentane-1-thiol, 24 

HS O O  

In a dry double neck 25 mL flask under Ar, S-5-(tetrahydro-2H-pyran-2-yloxy)pentyl 

ethanethioate (23) (1.23 g, 5mmol, 4 eq.) and sodiumthiomethoxide (0.07 g, 1.25 mmol, 1 

eq.) were dissolved in 15 mL dry MeOH and the mixture was let to stir at RT for O/N. The 

reaction mixture was poured into 15 mL water, acidified with sat. NH4Cl and was extracted 

with DCM (3 x 25 mL). All the organic extracts were combined, washed with 50 mL brine, 

dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap leaving and the 

product was obtained as colorless oil (2.02 g, 99%). 

 

C10H20O2S  M.W. = 204.33 g/mol  

  Exact Mass = 204.12 g/mol 
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TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.3 

EI-MS 70eV 

205.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 4.55 (t, J= 3.6 Hz, 1H); 3.87-3.81 (m, 1H); 3.75-3.69 (m, 1H); 3.50-3.45 

(m, 1H); 3.40-3.34 (m, 1H); 2.51 (q, J1= 3.6, J2= 9.6, 2H); 1.81-1.77 (m, 1H); 

1.72-1.41 (m, 11H), 1.35 (t, J= 3.6 Hz, 1H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 99.28; 67.74; 62.76; 34.25; 31.16; 29.59; 25.87; 25.48; 24.94; 20.08 

E.A.  Calculated : C, 58.78%; H, 9.87%;  

  Found  : C, 58.93%; H, 9.75%; 

 

Synthesis 2,2'-(5,5'-(5-(bromomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) 

bis(pentane-5,1-diyl)) bis(oxy)bis(tetrahydro-2H-pyran), 25 

S

BrS

O O

O

O

 

In a dry double neck 250 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (1.78 g, 5 

mmol, 1 eq.) and 5-(tetrahydro-2H-pyran-2-yloxy)pentane-1-thiol (24) (2.04 g, 10 mmol, 2 

eq.) was dissolved in 100 mL dry THF. Sodium hydrate 60% dispersion in mineral oil (0.44 

g, 11 mmol, 2.2 eq.) was added to the previous solution at 0°C. Then the mixture was let to 

stir at RT for 30 minutes. The reaction mixture is poured into 100 mL water. Organic layer 

was collected. Water layer was extracted with TBME (3 x 75 mL). All the organic extracts 

were combined, washed with 150 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 4:1) 

to give product as colorless oil (1.32 g, 43.6%). 

 

C29H47BrO4S2  M.W. = 603.72 g/mol  

  Exact Mass = 602.21 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.25 

EI-MS 70eV 
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603.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.20 (s, 2H); 7.18 (s, 1H); 4.55 (t, J= 2.8 Hz, 2H); 4.43 (s, 2H); 3.85-3.81 

(m, 2H); 3.71-3.66 (m, 2H); 3.64 (s, 2H); 3.50-3.43 (m, 2H); 3.36-3.30 (m, 2H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.96; 138.57; 129.74; 128.46; 99.24; 67.74; 62.75; 36.32; 33.62; 31.77; 

31.16; 29.72; 29.47; 25.96; 25.88; 20.11 

E.A.  Calculated : C, 57.69%; H, 7.85%;  

  Found  : C, 58.03%; H, 7.75%; 

 

Synthesis 2,2'-(5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) 

bis(pentane-5,1-diyl))bis(oxy)bis(tetrahydro-2H-pyran), 26 

S

SS

O O

O

O

 

In a dry double neck 25 mL flask under Ar, 2,2'-(5,5'-(5-(bromomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl) bis(pentane-5,1-diyl)) bis(oxy)bis(tetrahydro-2H-

pyran) (25) (1.2g, 2 mmol, 1 eq.) and and sodium hexane-1-thiolate (4)  (0.28 g, 2 mmol, 1 

eq.) was dissolved in 10 mL dry THF. The mixture was let to stir at RT for 30 minutes. The 

reaction mixture is poured into 25 mL water. Organic layer was collected. Water layer was 

extracted with TBME (3 x 15 mL). All the organic extracts were combined, washed with 50 

mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude 

was purified on a silica gel column (Hexane-EtAc 4:1) and the product product was obtained 

as colorless oil (0.78 g, 61.4%). 

 

Via one pot reaction 

In a dry double neck 100 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (1.78 g, 5 

mmol, 1 eq.), 5-(tetrahydro-2H-pyran-2-yloxy)pentane-1-thiol (24) (2.04 g, 10 mmol, 2 eq.) 

and hexane-1-thiol (1.4 ml, 5 mmol, 1 eq.) were dissolved in 50 mL dry THF. Sodium 

hydrate 60% dispersion in mineral oil (1.32 g, 33 mmol, 3.3 eq.) was added to the previous 

solution at 0°C. Then the mixture was let to stir at RT for 30 minutes. The reaction mixture is 

poured into 100 mL water. Organic layer was collected. Water layer was extracted with 

TBME (3 x 75 mL). All the organic extracts were combined, washed with 150 mL brine, dried 
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over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude was purified on 

a silica gel column (Hexane-EtAc 4:1) and the product was obtained as colorless oil (1.15 g, 

36%). 

 

C35H60O4S3  M.W. = 641.04 g/mol  

  Exact Mass = 640.37 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.35 

EI-MS 70eV 

640.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.12 (s, 3H); 4.55 (t, J= 2.4 Hz, 2H); 3.88-3.84 (m, 2H); 3.74-3.69 (m, 2H); 

3.66 (s, 6H); 3.51-3.46 (m, 2H); 3.38-3.33 (m, 2H); 2.40 (dxt, J1= 4.0 Hz, J2= 

9.2 Hz, 6H); 1.95-1.09 (m, 32H);  0.87 (t, J= 6.4 Hz, 3H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.49; 128.34; 128.31; 99.30; 67.78; 62.78; 36.49; 31.87; 31.84; 31.77; 

31.17; 29.77; 29.62; 29.52; 28.99; 25.99; 25.89; 22.96; 20.11; 14.46 

E.A.  Calculated : C, 65.58%; H, 9.43%;  

  Found  : C, 65.92%; H, 9.67%; 

 

Synthesis 5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) dipentan-1-

ol, 27 

S

SS

OH

OH

 

In a dry double neck 25 mL flask under Ar, 2,2'-(5,5'-(5-(hexylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl) bis(pentane-5,1-diyl))bis(oxy)bis(tetrahydro-2H-

pyran) (26) (1.28 g, 2 mmol, 1 eq.) and pyridinium p-toluenesulfonate (0.34 g, 0.2 mmol, 0.1 

eq.) were dissolved in 10 ml anhyd. EtOH and the mixture were let to stir at 55°C for O/N. 

The solvent was evaporated using Rotavap. The crude was purified on a silica gel column 

(Hexane-EtAc 1:1) and the product was obtained as colorless oil (0.73 g, 77%). 

 

C25H44O2S3  M.W. = 472.81 g/mol  
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  Exact Mass = 472.25 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.35 

ESI-MS 495.1 [M++ Na] 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.12 (s, 3H); 3.66 (s, 6H); 3.61 (t, J= 6 Hz, 4H); 2.41 (t, J= 7.2 Hz, 6H); 

1.61-1.51 (m, 8H); 1.48-1.391 (m, 6H); 1.34-1.24 (m, 8H); 0.87 (t, J= 6.8 Hz, 

3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.41; 128.38; 128.33; 63.10; 36.51; 32.66; 31.98; 31.84; 31.73; 29.39; 

28.99; 25.42; 22.96; 14.46 

E.A.  Calculated : C, 63.51%; H, 9.38%;   

  Found  : C, 63.73%; H, 9.27%; 

 

Synthesis (5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis((5-bromopentyl) sulfane), 

28 

S

SS

Br

Br

 

In a dry double neck 25 mL flask under Ar, 5,5'-(5-(hexylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl) dipentan-1-ol (27) (47.28 mg, 0.1 mmol, 1 eq.) was 

dissolved in 1 mL dry THF. Phosphorus tribromide (23.5 µL, 0.25 mmol, 2.5 eq.) was added 

dropwise to the previous solution at 0°C. The mixture was let to stir at RT for O/N. The 

reaction mixture is poured into 20 mL icy water. Organic layer was collected. Water layer 

was extracted with TBME (3 x 15 mL). All the organic extracts were combined, washed with 

25 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap leaving 

yellowish oily crude. The purification attempts via column chromatography or distillation were 

failed. 

 

C25H42Br2S3  M.W. = 596.60 g/mol  

  Exact Mass = 596.08 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.35 
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Synthesis 5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl)bis 

(pentane-5,1-diyl) bis(4-methylbenzenesulfonate), 29 

S

SSO
S OO

O
SO O

 

In a dry double neck 25 mL flask under Ar, 5,5'-(5-(hexylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl) dipentan-1-ol (27) (0.47 g, 1 mmol, 1 eq.) and 

pyridine, (0.16 mL, 2 mmol, 2 eq.) were dissolved in 2 mL dry DCM. p-Toluenesulfonyl 

chloride (0.42 g, 2.2 mmol, 2.2 eq.) dissolved in 1 mL dry DCM was added dropwise to the 

previous solution at 0°C and the mixture was let to stir at RT for O/N. The reaction mixture 

was diluted with 10 mL DCM and was quenched by slow addition of 15 mL sat NH4Cl 

solution water. Organic layer was collected. Water layer was extracted with DCM (3 x 15 

mL). All the organic extracts were combined, washed with 50 mL sat. Na2CO3 and 50 mL 

brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude 

was purified on a silica gel column (Hexane-EtAc 3:2) and the product was obtained as 

colorless oil (0.46 g, 59%). 

 

C39H56O6S5  M.W. = 781.18 g/mol  

  Exact Mass = 780.27 g/mol 

TLC   SiO2, Hexane-EtAc (3:1) 

  Rf = 0.3 

EI-MS 70eV 

779.3 [M+] 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.75 (d, 2H); 7.35 (d, 2H); 7.10 (s, 2H); 7.09 (s, 1H); 3.99 (t, J= 6.8 Hz, 

4H); 3.66 (s, 2H); 3.63 (s, 4H); 2.44 (s, 6H); 2.39 (t, J= 7.2 Hz, 3H); 2.35 (t, J= 

6.8 Hz, 4H); 1.66-1.46 (m, 10H); 1.41-1.25 (m, 10H); 0.87 (t, J= 6.4 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.57; 139.31; 133.53; 130.26; 128.39; 128.28; 70.71; 36.49; 31.99; 

31.83; 31.53; 29.63; 28.98; 28.87; 25.02; 22.96; 22.06; 14.47 

E.A.  Calculated : C, 59.96%; H, 7.23%;  
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  Found  : C, 59.71%; H, 7.12%; 

 

Synthesis 5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl)bis 

(pentane-5,1-diyl) dimethanesulfonate, 30 

S

SSO
S OO

O
SO O

 

In a dry double neck 25 mL flask under Ar, 5,5'-(5-(hexylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl) dipentan-1-ol (27) (0.47 g, 1 mmol, 1 eq.) and 

pyridine, (0.16 mL, 2 mmol, 2 eq.) were dissolved in 2 mL dry DCM. Methanesulfonyl 

chloride (0.17 mL, 2.2 mmol, 2.2 eq.) was added dropwise to the previous solution at 0°C 

and the mixture was let to stir at RT for O/N. The reaction mixture was diluted with 10 mL 

DCM and was quenched by slow addition of 15 mL sat NH4Cl solution water. Organic layer 

was collected. Water layer was extracted with DCM (3 x 15 mL). All the organic extracts 

were combined, washed with 50 mL sat Na2CO3 and 50 mL brine, dried over anhyd. 

Na2SO4. The solvent was evaporated using Rotavap. The crude was purified on a silica gel 

column (Hexane-EtAc 1:1) and the product was obtained as colorless oil (0.26 g, 41%). 

 

C27H48O6S5  M.W. = 628.99 g/mol  

  Exact Mass = 628.21 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.3 

EI-MS 70eV 

627.4 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.11 (s, 3H); 4.21 (t, J= 6.4 Hz, 4H); 3.68 (s, 6H); 2.99 (s, 6H); 2.41 (t, J= 

7.2 Hz, 6H); 1.81-1.72 (m, 6H); 1.64-1.54 (m, 10H); 1.36-1.21 (m, 6H); 0.86 (t, 

J= 6.4 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.60; 139.32; 128.42; 128.29; 70.21; 37.80; 36.50; 32.02; 31.83; 31.55; 

29.64; 29.15; 28.99; 28.98; 25.06; 22.96; 14.47 

E.A.  Calculated : C, 51.56%; H, 7.69%;  

  Found  : C, 51.11%; H, 7.62%; 
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Synthesis S,S'-5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl 

bis(pentane-5,1-diyl) diethanethioate, 31 

S

SSS S

O O

 

In a dry double neck 25 ml flask under Ar, 5,5'-(5-(hexylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl)bis (pentane-5,1-diyl) bis(4-

methylbenzenesulfonate) (29) (0.78 g, 1 mmol, 1 eq.), and potassiumthioacetate,  (0.25 g,  

22 mmol, 2.2 eq.) were dissolved in 2 mL anhyd. DMF. The mixture was let to stir at RT for 

O/N. The reaction mixture is poured into 20 mL water. The mixture was extracted with DCM 

(3 x 25 mL). All the organic extracts were combined, washed twice with 50 mL brine, dried 

over anhyd. Na2SO4. The solvent was evaporated using Rotavap leading colorless oil as 

product (0.25g, 42%). 

 

C29H48O2S5  M.W. = 589.02 g/mol  

  Exact Mass = 588.23 g/mol 

TLC   SiO2, Hexane-EtAc (3:1) 

  Rf = 0.25 

EI-MS 70eV 

587.3 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.12 (s, 3H); 3.66 (s, 6H); 3.61 (s, 4H); 2.84 (t, J= 7.2 Hz, 4H); 2.39 (t, J= 

7.2 Hz, 6H); 2.32 (s, 6H); 1.59-1.49 (m, 10H); 1.44-1.19 (m, 10H); 0.87 (t, J= 

6.8 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 196.30; 139.53; 139.38; 128.38; 128.31; 36.49; 31.92; 31.85; 31.62; 

31.06; 29.63; 29.56; 29.33; 29.11; 29.00; 28.37; 22.97; 14.47 

E.A.  Calculated : C, 59.13%; H, 8.21%;  

  Found  : C, 59.23%; H, 8.20%; 
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Synthesis of ligand B for enwrapping Au55 nanoparticles  

S

S

SO
O

S

S

S
 

In a dry double neck 100 mL flask, sodium hydrate 60% dispersion in mineral oil (0.18 mg, 

0.44 mmol, 2.2 eq.) dissolved in 50 mL anhyd. DMF. (5-((5-(2-

methoxyethoxy)pentylthio)methyl)-1,3-phenylene)dimethanethiol (14) (72.12 mg, 0.2 mmol, 

1 eq.), and 5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis-(methylene)bis-(sulfanediyl)bis-

(pentane-5,1-diyl)bis-(4-methylbenzenesulfonate), 29, (or 126 mg 5,5'-(5-(hexylthiomethyl)-

1,3-phenylene)bis-(methylene)bis-(sulfanediyl)bis-(pentane-5,1-diyl) dimethanesulfonate, 

(30) (156.22 mg, 0.2 mmol, 1 eq.) dissolved in 10 mL anhyd. DMF separately were added to 

the previous solution dropwise at RT. The mixture was let to stir at RT for O/N. The reaction 

mixture was poured into 10 mL water. The mixture was extracted with TBME (3 x 50 mL). All 

the organic extracts were combined, washed twice with 100 mL brine, dried over anhyd. 

Na2SO4. The solvent was evaporated using Rotavap. The crude was purified on a silica gel 

column (Hexane-EtAc 4:1) and the desired product(s) were obtained obtained as colorless 

oil (for 29, 25.52 mg, 16% yields and for 30, 30.29 mg, and 18%). 

 

C42H68O2S6  M.W. = 797.38 g/mol  

  Exact Mass = 796.35 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.25 

MALDI 819.19 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.11 (s, 4H); 7.09 (s, 2H); 3.63 (s, 12H); 3.58-3.50 (m, 4H); 3.44 (t, J= 7.2 

Hz, 2H); 3.63 (s, 3H); 2.39 (dxt, J1= 1.2 Hz, J2= 7.2 Hz, 4H); 2.29 (t, J= 6.4 

Hz, 8H); 1.60-1.22 (m, 26H); 0.87 (t, J= 6.4 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.82; 139.75; 139.37; 139.36; 128.36; 72.38; 71.71; 70.45; 59.50; 

36.48; 31.94; 31.84; 31.26; 29.63; 29.49; 29.18; 28.99; 28.60; 25.84; 22.96; 

14.47 

E.A.  Calculated : C, 63.26; H, 8.60;  
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  Found  : C, 63.10; H, 8.46; 

GPC  THF, 210 nm, 16.68 min, (90.07% pure) 

 

Synthesis 6-(tetrahydro-2H-pyran-2-ylthio)hexane-1-thiol, 32 

HS
S O  

In a dry double neck 25 mL flask under Ar, hexane-1,6-dithiol, (1.5 g, 10 mmol, 1 eq.), 3,4-

Dihydro-2H-pyran,  (1.1 ml, 12 mmol, 1 eq.) and pyridinium p-toluenesulfonate (0.25 g, 1 

mmol, 0.1 eq.) were dissolved in 15 mL anhyd. DCM. The mixture was let to stir at RT O/N. 

The reaction mixture is poured into 30 mL water. Organic layer was collected. Water layer 

was extracted with DCM (3 x 15 mL). All the organic extracts were combined, washed with 

50 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The 

crude was purified on a silica gel column (Hex-EtAc 9:1) and the product was obtained as 

colorless oil (0.98 g, 41.9%, 79.2% yield due to the amount of consumed starting material). 

 

C11H22OS2  M.W. = 234.42 g/mol  

  Exact Mass = 234.11 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.3 

EI-MS 70 eV 

234.1 [M++ Na] 
1H-NMR  (400 MHz, CDCl3) 

δ= 4.87-4.82 (m, 1H); 4.11-4.05 (m, 1H); 3.52-3.47 (m, 1H); 2.72-2.44 (m, 

4H); 1.98-1.44 (m, 14H); 1.34 (t, J= 6.8, 2H);   
13C-NMR  (100 MHz, CDCl3) 

δ= 82.69; 65.03; 34.00; 31.85; 30.61; 29.80; 28.05; 26.02; 24.90; 22.20 

E.A.  Calculated : C, 56.36%; H, 9.46%;  

  Found  : C, 56.58%; H, 9.22%; 
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Synthesis 2,2'-(6,6'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene) bis(sulfanediyl) bis 

(hexane-6,1-diyl))bis(sulfanediyl)bis(tetrahydro-2H-pyran), 33 

S

SS
S SO O

 

In a dry double neck 25 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (1.78 g, 5 

mmol, 1 eq.),  6-(tetrahydro-2H-pyran-2-ylthio)hexane-1-thiol (32) (2.34 g, 10 mmol, 1 eq.) 

and hexane-1-thiol (1.4 mL, 5 mmol, 1 eq.) were dissolved in 15 mL anhyd. THF. Sodium 

hydrate 60% dispersion in mineral oil (1.32 g, 33 mmol, 3.3 eq.) was added to the previous 

solution at 0°C. Then the mixture was let to stir at RT for 30 minutes. The reaction mixture is 

poured into 50 mL water. Organic layer was collected. Water layer was extracted with TBME 

(3 x 25 mL). All the organic extracts were combined, washed with 75 mL brine, dried over 

anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude was purified on a 

silica gel column (Hex-EtAc 9:1) and the product was obtained as colorless oil (1.51 g, 43%). 

 

C37H64O2S5  M.W. = 701.23 g/mol  

  Exact Mass = 700.35 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.2 

EI-MS 70eV 

700.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.12 (s, 3); 4.86-4.82 (m, 2H); 4.12-4.06 (m, 2H); 3.67 (s, 6H); 3.52-3.48 

(m, 2H); 2.72-2.48 (m, 4H); 2.40 (t, J= 7.2, 6H); 1.95-1.28 (m, 38H); 0.88 (t, 

J= 6.4 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.51; 139.40; 128.36; 128.31; 82.71; 65.01; 36.49; 31.90; 31.86; 31.86; 

31.71; 30.60; 29.96; 29.63; 29.25;  29.00; 28.58; 26.03; 22.96; 22.21; 14.63 

E.A.  Calculated : C, 63.37%; H, 9.20%;  

  Found  : C, 63.08%; H, 9.03%; 
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Synthesis 5,5'-(5-(hexylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) dipentane-

1-thiol, 34 

S

SS
HS SH

 

In a dry double neck 25 mL flask under Ar, 2,2'-(6,6'-(5-(hexylthiomethyl)-1,3-phenylene)bis-

(methylene)bis-(sulfanediyl)bis-(hexane-6,1-diyl))bis(sulfanediyl)bis-(tetrahydro-2H-pyran) 

(33) (0.70 g, 1 mmol, 1 eq.) and pyridinium p-toluenesulfonate (0.5 g, 0.2 mmol, 0.2 eq.) 

were dissolved in 10 mL anhyd. EtOH and the mixture were let to stir at 55°C for O/N. The 

solvent was evaporated using Rotavap. The crude was purified on a silica gel column (Hex-

EtAc 9:1) and the product was obtained as colorless oil (0.05 g, 9% and 25.4% due to the 

amount of consumed starting material). 

 

C27H48S5  M.W. = 533.00 g/mol  

  Exact Mass = 532.24 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.35 

EI-MS 70eV 

531.7 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.13 (s, 3H); 3.67 (s, 6H); 2.50 (q, J1= 3.6 Hz, J2= 12.4 Hz, 4H); 2.41 (t, J= 

7.2 Hz, 6H); 1.61-1.21 (m, 26H); 0.88 (t, J= 7.5 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.54; 139.39; 128.39; 128.31; 36.52; 33.95; 31.96; 31.85; 31.68; 29.64; 

29.07; 27.94; 24.88; 22.97; 14.47 

E.A.  Calculated : C, 60.84%; H, 9.08%;  

  Found  : C, 60.92%; H, 9.01%; 
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Synthesis of ligand C for enwrapping Au55 nanoparticles 

S

S

S
O

O
S

S

S

 

In a dry double neck 100 mL flask, sodium hydrate 60% dispersion in mineral oil (0.18 mg, 

0.44 mmol, 2.2 eq.) dissolved in 50 mL anhyd. DMF. 5,5'-(5-(hexylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl) dipentane-1-thiol (34) (106.6 mg, 0.2 mmol, 1 eq.), 

and (3,5-bis(bromomethyl)benzyl)(5-(2-methoxyethoxy)pentyl)sulfane (8)   (90.85 mg, 0.2 

mmol, 1 eq.) dissolved separately in 10 mL anhyd. DMF and were added dropwise to the 

previous solution at RT. The mixture was let to stir at RT for O/N. The reaction mixture is 

poured into 10 mL water. The mixture was extracted with TBME (3 x 50 mL). All the organic 

extracts were combined, washed twice with 100 mL brine, dried over anhyd. Na2SO4. The 

solvent was evaporated using Rotavap. The crude was purified on a silica gel column 

(Hexane-EtAc 4:1) and the product was obtained as colorless oil (for 34 25.52 mg, 16%, and 

for 30, 30.29 mg, 18%). 

 

C44H72O2S6  M.W. = 825.43 g/mol  

  Exact Mass = 824.39 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.25 

MALDI 824.19 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.11 (s, 4H); 7.09 (s, 2H); 3.66 (s, 12H); 3.55 (m, 4H); 3.44 (t, J= 6.8 Hz, 

2H); 3.38 (s, 3H); 2.40 (m, 2H); 2.29 (t, J= 7.2 Hz, 12H); 1.62-1.18 (m, 28H); 

0.87 (t, J= 6.4 Hz, 3H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 139.82; 139.75; 139.36; 128.36; 72.38; 71.71; 70.45; 59.50; 36.48; 31.94; 

31.84; 31.36; 29.63; 29.49; 29.18; 28.99; 28.59; 25.84; 22.96; 14.47 

E.A.  Calculated : C, 64.02; H, 8.79;   

  Found  : C, 63.90; H, 8.56; 
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Synthesis (3,5-bis(bromomethyl)benzyl)(4-methoxybenzyl)sulfane, 35 

BrBr

S

O

 

In a dry double neck 250 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (3.57 g, 10 

mmol, 1 eq.) was dissolved in 100 ml THF. Methoxybenzylmercaptane (2.3 ml, 11 mmol, 1.1 

eq.) and sodium hydrate 60% dispersion in mineral oil (660 mg, 11 mmol, 1.1 eq.) added 

slowly to the reaction mixture. Then the mixture was let to stir at RT for 30 minutes. The 

reaction mixture is poured into 75 mL water. Organic layer was collected. Water layer was 

extracted with TBME (3 x 75 mL). All the organic extracts were combined, washed with 150 

mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap leaving 

yellowish oily crude. The purification attempts via column chromatography or distillation were 

failed. 

 

C17H18Br2OS  M.W. = 430.20 g/mol  

  Exact Mass = 427.94 g/mol 

TLC   SiO2, Hexane-EtAc (5:1) 

  Rf = 0.6 

 

Synthesis (3,5-bis(bromomethyl)benzyl)(4-methoxybenzyl)sulfane, 36 

ClCl

S

O

 

In a dry double neck 250 mL flask under Ar, 1,3,5-tris(chloromethyl)benzene (6) (2.24g, 10 

mmol, 1 eq.) was dissolved in 100 mL THF. Methoxybenzylmercaptane, (2.3 ml, 11 mmol, 

1.1 eq.) and sodium hydrate 60% dispersion in mineral oil (660 mg, 11 mmol, 1.1 eq.) added 

slowly to the reaction mixture. Then the mixture was let to stir at RT for 30 minutes. The 

reaction mixture is poured into 75 mL water. Organic layer was collected. Water layer was 

extracted with TBME (3 x 75 mL). All the organic extracts were combined, washed with 150 

mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap leaving 

yellowish oily crude. The purification attempts via column chromatography or distillation were 

failed. 

 

C17H18Cl2OS  M.W. = 341.30 g/mol  
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  Exact Mass = 340.05 g/mol 

TLC   SiO2, Hexane-EtAc (5:1) 

  Rf = 0.6 

 

Synthesis of (3,5-bis(bromomethyl)benzyl)(trityl)sulfane, 37 

S

Br Br  

In a dry double neck 100 mL flask under Ar, 1,3,5-tris(bromomethyl)benzene (1) (3.57 g, 10 

mmol, 1 eq.), triphenylmethanethiol (2.76 g, 10 mmol, 1 eq.) and sodium hydrate 60% 

dispersion in mineral oil (0.66 g, 11 mmol, 1.1 eq.) were dissolved in 60 mL THF. Then the 

mixture was let to stir at RT for 30 minutes. The reaction mixture is poured into 75 mL water. 

Organic layer was collected. Water layer was extracted with TBME (3 x 50 mL). All the 

organic extracts were combined, washed with 150 mL brine, dried over anhyd. Na2SO4. The 

solvent was evaporated using Rotavap. The crude was purified on a silica gel column 

(Hexane-DCM 4:1) and the product was obtained as white powder (2.54 g, 46%). 

 

C28H24Br2S  M.W. = 552.36 g/mol  

  Exact Mass = 550.00 g/mol 

TLC   SiO2, Hexane-DCM (4:1) 

  Rf = 0.25 

EI-MS 70eV 

549.1 [M+], 
1H NMR  (400 MHz, CDCl3) 

δ = 7.48-7.42 (m, 6H), 7.35-7.20 (m, 10H), 7.01 (s, 2H), 4.39 (s, 4H), 3.32 (s, 

2H) 
13C NMR  (100 MHz, CDCl3) 

δ = 144.51; 138.73; 138.42; 129.77; 129.64; 128.29; 128.02; 126.85; 67.30; 

36.41; 32.66 

E.A.  Calculated : C, 60.88%; H, 4.38%;  

  Found  : C, 61.08%; H, 4.21%; 
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Synthesis of (3,5-bis(chloromethyl)benzyl)(trityl)sulfane, 38 

S

Cl Cl  

In a dry double neck 100 mL flask under Ar, 1,3,5-tris(chloromethyl)benzene (6) (2.22 g, 10 

mmol, 1 eq.), triphenylmethanethiol (2.76 g, 10 mmol, 1 eq.) and sodium hydrate 60% 

dispersion in mineral oil (0.66 g, 11 mmol, 1.1 eq.) were dissolved in 60 mL THF. Then the 

mixture was let to stir at RT for 30 minutes. The reaction mixture is poured into 75 mL water. 

Organic layer was collected. Water layer was extracted with TBME (3 x 50 mL). All the 

organic extracts were combined, washed with 150 mL brine, dried over anhyd. Na2SO4. The 

solvent was evaporated using Rotavap. The crude was purified on a silica gel column 

(Hexane-DCM 4:1) and the product was obtained as white powder (2.22 g, 48%). 

 

C28H24Cl2S  M.W. = 463.46 g/mol  

  Exact Mass = 462.10 g/mol 

TLC   SiO2, Hexane-DCM (4:1) 

  Rf = 0.25 

EI-MS 70eV 

461.14 [M+], 
1H-NMR  (250 MHz, CDCl3) 

δ= 7.49 -7.44 (m, 6H); 7.35-7.20 (m, 10H); 7.03 (s, 2H); 4.47 (s, 4H); 3.34 (s, 

2H); 

E.A.  Calculated : C, 72.56%; H, 5.22%; 

  Found  : C, 72.80%; H, 5.12%; 
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Synthesis of 2,2'-(6,6'-(5-(tritylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) 

bis(hexane-6,1-diyl))bis(sulfanediyl)bis(tetrahydro-2H-pyran), 39 

S

S S
SS OO

 

In a dry double neck 25 mL flask under Ar, (3,5-bis(bromomethyl)benzyl)(trityl)sulfane (38) 

(0.55 g, 1 mmol, 1 eq.), 6-(tetrahydro-2H-pyran-2-ylthio)hexane-1-thiol (32) (0.51 g, 2.2 

mmol, 2.2 eq.) and sodium hydrate 60% dispersion in mineral oil (0.12 g, 3 mmol, 3 eq.) was 

dissolved in 15 mL dry THF. Then the mixture was let to stir at RT for 30 minutes. The 

reaction mixture is poured into 25 mL water. Organic layer was collected. Water layer was 

extracted with TBME (3 x 15 mL). All the organic extracts were combined, washed with 50 

mL brine, dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude 

was purified on a silica gel column (Hexane-EtAc 5:1) and the product was obtained as 

colorless oil (0.83 g, 96%). 

 

C50H66O2S5  M.W. = 859.37 g/mol  

  Exact Mass = 858.37 g/mol 

TLC   SiO2, Hexane-EtAc (5:1) 

  Rf = 0.2 

MALDI 881.59 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.49 -7.43 (m, 6H); 7.38-7.22 (m, 9H); 7.10 (s, 1H); 6.96 (s, 2H); 4.87-4.83 

(m, 2H); 4.13-4.07 (m, 2H); 3.64 (s, 4H); 3.53-3.48 (m, 2H); 2.71-2.49 (m, 

4H); 2.40 (t, J= 7.2, 4H); 1.95-1.24 (m, 30H);  
13C-NMR  (100 MHz, CDCl3) 

δ= 145.07; 139.39; 137.91; 130.03; 128.57; 128.43; 128.37; 127.12; 82.70; 

67.86; 65.03; 37.18; 36.43; 31.87; 31.80; 30.69; 30.22; 29.51; 28.97; 28.88; 

26.04; 22.23 

E.A.  Calculated : C, 69.88%; H, 7.74%;  

  Found  : C, 69.70%; H, 7.61%; 
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Synthesis of 6,6'-(5-(tritylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) dihexane-

1-thiol, 40 

S

S S
SHHS

 

In a dry double neck 25 mL flask under Ar, 2,2'-(6,6'-(5-(tritylthiomethyl)-1,3-

phenylene)bis(methylene)bis(sulfanediyl) bis(hexane-6,1-diyl))bis(sulfanediyl)bis (tetrahydro-

2H-pyran) (39) (0.43 g, 0.5 mmol, 1 eq.) and pyridinium p-toluenesulfonate (0.5 g, 0.2 mmol, 

0.2 eq.) were dissolved in 10 mL anhyd. EtOH and the mixture were let to stir at 55°C for 

O/N. The solvent was evaporated using Rotavap. The crude was purified on a silica gel 

column (Hexane-EtAc 4:1) and the product was obtained as colorless oil (0.11 g, 31.1%, and 

45.4% due to the amount of consumed starting material). 

 

C40H50S5  M.W. = 691.15 g/mol  

  Exact Mass = 690.25 g/mol 

TLC   SiO2, Hexane-EtAc (4:1) 

  Rf = 0.4 

MALDI 713.43 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.45 (d, J= 7.6 Hz, 6H); 7.32-7.22 (m, 9H); 7.08(s, 1H); 6.93 (s, 2H); 3.62 

(s, 4H); 3.29 (s, 2H); 2.48 (q, J1= 3.4 Hz, J2= 7.8 Hz 4H); 2.37 (t, J= 7.2 Hz, 

4H); 1.59-1.18 (m, 18H);  
13C-NMR  (100 MHz, CDCl3) 

δ= 145.08; 139.41; 137.93; 130.04; 128.58; 128.36; 127.13; 37.21; 36.48; 

34.22; 31.78; 31.26; 29.49; 28.66; 28.31; 25.91; 24.93;  

E.A.  Calculated : C, 69.51%; H, 7.29%;  

  Found  : C, 69.25%; H, 7.31%; 
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Synthesis of protected ligand D for enwrapping Au55 nanoparticles, 41 

S

S

S
S

S
S

 

In a dry double neck 100 mL flask, sodium hydrate 60% dispersion in mineral oil (0.09 mg, 

0.44 mmol, 2.2 eq.) was dissolved in 50 ml dry THF under Ar. Then 6,6'-(5-(tritylthiomethyl)-

1,3-phenylene)bis(methylene)bis(sulfanediyl) dihexane-1-thiol (40) (69.15 mg, 0.1 mmol, 1 

eq.) and (3,5-bis(bromomethyl)benzyl)(trityl)sulfane (37) (55.24 mg, 0.1 mmol, 1 eq.) 

dissolved separately in 5 mL dry THF were added dropwise to the previous solution at RT. 

The mixture was let to stir at RT for O/N. The reaction mixture is poured into 10 mL water. 

The mixture was extracted with TBME (3 x 50 mL). All the organic extracts were combined, 

washed twice with 100 mL brine, dried over anhyd. Na2SO4. The solvent was evaporated 

using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 5:1) and the 

product was obtained as colorless oil (34.61 mg, 32%). 

 

C68H72S6  M.W. = 1081.69 g/mol  

  Exact Mass = 1080.40 g/mol 

TLC   SiO2, Hexane-EtAc (5:1) 

  Rf = 0.25 

MALDI 1103.09 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.52 -7.44 (m, 12H); 7.36-7.24 (m, 18H); 7.03 (s, 2H); 6.92 (s, 4H); 

3.58 (s, 8H); 3.27 (s, 4H); 2.26 (t, J= 7.2 Hz, 8H); 1.62-1.21 (m, 16H);  
13C-NMR  (100 MHz, CDCl3) 

δ= 145.07; 139.35; 138.16; 130.04; 128.60; 128.40; 127.16; 67.88; 37.22; 

36.26; 31.23; 29.54; 28.82;  

E.A.  Calculated : C, 75.51; H, 6.71;  

  Found  : C, 75.85; H, 6.60; 
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Synthesis of ligand D for enwrapping Au55 nanoparticles  

S

S

SH
S

S
HS

 

In a dry double neck 25 mL flask under Ar, protected ligand D (41) (27.04 mg, 0.025 mmol, 1 

eq) was dissolved in 5 mL anhyd. DCM. Then triethylsilane (0.014 ml, 0.075 mmol, 3 eq.) 

and trifluoroacetic acid (0.2 ml, 4% v/v in DCM) was added to the previous solution. The 

mixture was let to stir at RT for 15 min. The reaction mixture is poured into 5 mL sat. 

NaHCO3 solution. The mixture was extracted with DCM (3 x 5 mL). All the organic extracts 

were combined, washed twice with 25 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 9:1) 

and the product was obtained as colorless oil (11.64 mg, 78%). 

 

C30H44S6  M.W. = 597.06 g/mol  

  Exact Mass = 596.18 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.25 

MALDI 619.92 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.14 (s, 4H); 7.10 (s, 2H); 3.71 (d, J= 3.6 Hz, 4H); 3.65 (s, 8H); 2.33 (t, J= 

7.2 Hz, 8H); 1.76 (t, J= 6.8 Hz, 2H); 1.48-1.40 (m, 8H); 1.30-1.22 (m, 8H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 142.24; 139.65; 128.57; 127.54; 36.33; 31.32; 29.52; 29.15; 28.77  

E.A.  Calculated : C, 60.35; H, 7.43;  

  Found  : C, 60.69; H, 7.31; 

 

Synthesis of 1,3-Bis(bromomethyl)-5-tert-butylbenzene, 42 

BrBr  
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In a dry double neck 250 mL flask under Ar, N-Bromosuccinimide (30.17 g, 170 mmol, 

2.1 eq) and 5-tert-butyl-m-xylene (15.0 mL, 12.98 g, 80 mmol, 1 eq) were dissolved in 

methyl formate (150 mL). 2,2′-Azobis(2-methylpropionitrile) (75 mg) was then added and the 

reaction mixture was illuminated by a 500 W halogen lamp for 3 hours. The solvent was 

evaporated by using a rotary evaporator and the residue was redissolved in DCM. All the 

organic extracts were combined, washed twice with 75 mL brine, dried over anhyd. Na2SO4. 

The solvent was evaporated using Rotavap. The residue was recrystallized from 

dichloromethane-hexane twice to give the product as white crystals (18.02 g, 70%). 

 

C12H16Br2  M.W. = 320.06 g/mol  

  Exact Mass = 317.96 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.35 

MALDI 316.92 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.34 (br, 2H); 7.27 (br, 1H); 4.49 (s, 4H); 1.34 (s, 9H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 153.06; 138.42; 127.32; 126.78; 35.20; 33.97; 31.61; 

E.A.  Calculated : C, 45.03; H, 5.04;   

  Found  : C, 45.33; H, 5.21;   

 

Synthesis of S,S'-(5-tert-butyl-1,3-phenylene)bis(methylene) diethanethioate, 43 

SS

O O  

In a dry double neck 100 mL flask under Ar, 1,3-Bis(bromomethyl)-5-tert-butylbenzene (3.20 

g, 10 mmol, 1 eq.) and potassium thioacetate (2.51 g, 22 mmol, 2.2 eq.) were dissolved in 

10 mL anhyd. DMF. Then the mixture was let to stir at RT for O/N. The mixture was let to stir 

at RT for. The reaction mixture is poured into 20 mL water. The mixture was extracted with 

TBME (3 x 25 mL). All the organic extracts were combined, washed twice with 75 mL brine, 

dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap and the product was 

obtained as white powder (2.82 g, 91%). 
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C16H22O2S2  M.W. = 310.47 g/mol  

  Exact Mass = 310.11 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.2 

MP  140-142°C 

MALDI 310.0 [M++Na],  
1H-NMR  (400 MHz, CDCl3) 

δ= 7.18 (s, 2H); 7.01 (s, 1H); 4.09 (s, 4H); 2.35 (s, 6H); 1.29 (s, 9H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 195.54; 152.51; 137.87; 126.75; 126.82; 125.39; 35.07; 33.97; 31.67; 

30.75 

E.A.  Calculated : C 61.90%, H 7.14% 

  Found  : C 62.22%, H 7.06% 

 

Synthesis of (5-tert-Butyl-1,3-phenylene)dimethanethiol, 44 

SHHS  

In a dry double neck 25 ml flask under Ar,  1,3-bis(bromomethyl)-5-tert-butylbenzene (42) 

(3.20 g, 10 mmol, 1 eq) and thiourea (1.77 g, 23.3 mmol, 2.5 eq) was dissolved in 40 ml dry 

DMSO under an atmosphere of argon. Then the mixture was let to stir at RT for O/N. The 

mixture was poured into a 50 mL 1M ice cold aqueous sodium hydroxide solution, which was 

then acidified with 1M hydrochloric acid. The mixture was extracted with DCM (3 x 50 mL).  

All the organic extracts were combined, washed twice with 75 mL brine, dried over anhyd. 

Na2SO4. The solvent was evaporated using Rotavap and the product was obtained by 

kugelrohr distillation (2 x 10-1 mbar, 195°C) as white powder (1.34 g, 64%). 

 

C12H18S2  M.W. = 226.40 g/mol  

  Exact Mass = 226.08 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.4 

EI-MS 70eV 

225.1 [M+], 
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1H-NMR  (400 MHz, CDCl3) 

δ= 7.22 (s, 2H,); 7.14 (s, 1H); 3.74 (d, J= 7.2 Hz, 4H); 1.78 (t, J= 7.2 Hz, 2H); 

1.33 (s, 9H). 
13C-NMR  (100 MHz, CDCl3) 

δ= 152.56: 141.55; 125.30; 124.31; 35.17; 31.75; 29.52 

E.A.  Calculated : C, 63.66; H, 8.01;  

  Found  : C, 63.39; H, 7.89; 

 

Synthesis of (3-tert-butyl-5-((tetrahydro-2H-pyran-2-ylthio)methyl)phenyl)methanethiol, 45 

SHS O

 

In a dry double neck 25 mL flask under Ar, (5-tert-Butyl-1,3-phenylene)dimethanethiol (44) 

(2.26 g, 10 mmol, 1 eq.), 3,4-Dihydro-2H-pyran   (1.1 ml ,12 mmol, 1 eq.) and pyridinium p-

toluenesulfonate (0.25 g, 1 mmol, 0.1 eq.) were dissolved in 15 mL anhyd. DCM. The 

mixture was let to stir at RT O/N. The reaction mixture is poured into 30 mL water. Organic 

layer was collected. Water layer was extracted with DCM (3 x 15 mL). All the organic 

extracts were combined, washed with 50 mL brine, dried over anhyd. Na2SO4. The solvent 

was evaporated using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 

9:1) and the product was obtained as colorless oil (0.99 g, 31.9%, 45.2% due to the amount 

of consumed starting material). 

 

C17H26OS2  M.W. = 310.52 g/mol  

  Exact Mass = 310.14 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.3 

EI-MS 70eV 

310.1 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.21 (s, 2H); 7.11 (s, 1H); 4.75-4.69 (m, 1H); 4.15-4.08 (m, 1H); 3.87 (s, 

1H); 3.76-3.70 (m, 3H); 3.58-3.49 (m, 1H); 1.98-1.84 (m, 3H); 1.61-1.44 (m, 

4H); 1.32 (t, J= 6.4, 9H);   
13C-NMR  (100 MHz, CDCl3) 



Experimental Part 
 

160 

δ= 152.21; 141.28; 138.92; 126.20; 125.33; 124.07; 81.26; 65.07; 35.10; 

34.60; 31.76; 31.29; 29.55; 26.04; 22.19 

E.A.  Calculated : C, 65.76%; H, 8.44%;    

  Found  : C, 65.96%; H, 8.65%;    

 

Synthesis of 2,2'-5,5'-(5-(tritylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) 

bis(methylene)bis(3-tert-butyl-5,1-phenylene)bis(methylene)bis(sulfanediyl) bis(tetrahydro-

2H-pyran), 46 

S

S S

SSO O

 

In a dry double neck 25 mL flask under Ar, (3,5-bis(bromomethyl)benzyl)(trityl)sulfane (45) 

(0.55 g, 1 mmol, 1 eq.), (3-tert-butyl-5-((tetrahydro-2H-pyran-2-

ylthio)methyl)phenyl)methanethiol (0.68 g, 2.2 mmol, 2.2 eq.) and sodium hydrate 60% 

dispersion in mineral oil (0.12 g, 3 mmol, 3 eq.) was dissolved in 15 mL dry THF. The 

mixture was let to stir at RT for 30 minutes. The reaction mixture is poured into 25 mL water. 

Organic layer was collected. Water layer was extracted with TBME (3 x 15 mL). All the 

organic extracts were combined, washed with 50 mL brine, dried over anhyd. Na2SO4. The 

solvent was evaporated using Rotavap. The crude was purified on a silica gel column 

(Hexane-EtAc 9:1) and the product was obtained as colorless oil (0.94 g, 93%) 

 

C62H74O2S5  M.W. = 1011.57 g/mol  

  Exact Mass = 1010.43 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.2 

MALDI 1033.92 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.47 (d, J=6.4 Hz, 6H); 7.30 (t, J=6.8 Hz, 6H); 7.22 (t, J=6.8 Hz, 5H); 7.14 

(s, 2H); 7.09 (s, 1H); 7.07 (s, 2H); 6.94 (s, 2H); 4.72-4.65 (m, 2H); 4.14-4.08 
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(m, 2H); 3.76 (dxd, J1=20.6 Hz, J2=13.2 Hz, 4H); 3.54 (d, J=4.8 Hz, 8H); 3.48-

3.42 (m, 2H); 3.29 (s, 2 H); 1.98-1.84 (m, 4H); 1.61-1.44 (m, 6H); 1.32 (t, J= 

6.4, 18H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 151.91; 145.60; 139.09; 138.71; 138.18; 138.01; 130.04; 128.82; 128.77; 

128.38; 127.20; 127.13; 125.25; 125.05; 81.25; 67.89; 65.04; 37.21; 36.37; 

35.93; 35.04; 34.66; 31.80; 31.32; 26.04; 22.21 

E.A.  Calculated : C, 73.61%; H, 7.37%; 

  Found  : C, 73.95%; H, 7.32%; 

 

Synthesis of 5,5'-(5-(tritylthiomethyl)-1,3-phenylene)bis(methylene)bis(sulfanediyl) 

bis(methylene) bis(3-tert-butyl-5,1-phenylene)dimethanethiol, 47  

S

S SHS SH  

In a dry double neck 25 ml flask under Ar, 2,2'-5,5'-(5-(tritylthiomethyl)-1,3-phenylene)bis-

(methylene)bis-(sulfanediyl)bis-(methylene)bis-(3-tert-butyl-5,1-phenylene)bis-

(methylene)bis-(sulfanediyl)bis-(tetrahydro-2H-pyran) (46) (0.51 g, 0.5 mmol, 1 eq.) and 

pyridinium p-toluenesulfonate (0.5 g, 0.2 mmol, 0.2 eq.) were dissolved in 10 mL anhyd. 

EtOH and the mixture were let to stir at 55°C for O/N. The solvent was evaporated using 

Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 9:1) and the product 

was obtained as colorless oil (0.10 g, 23.7% and 39.6% due to the amount of consumed 

starting material). 

 

C52H58S5  M.W. = 843.34g/mol  

  Exact Mass = 842.31 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.25 

MALDI 865.36 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 
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δ= 7.46 (t, J= 4.8 Hz, 8H); 7.34-7.04 (m, 14H); 6.94 (s, 2H); 3.67 (d, J= 4.8 

Hz, 4H); 3.53 (d, J= 4.4 Hz, 8H); 3.30 (s, 2H); 1.74 (t, J= 4.8 Hz, 2H); 1.29 (s, 

18H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 152.29; 145.18; 141.34; 138.43; 138.00; 130.09; 128.39; 128.33; 126.31; 

125.24; 125.20; 67.90; 37.22; 36.22; 35.11; 31.26; 29.53 

E.A.  Calculated : C, 74.06%; H, 6.93%;  

  Found  : C, 74.32%; H, 6.91%; 

 

Synthesis of protected ligand E for direct synthesis of nanoparticles, 48 

S

S
S

S

S

S

 

 

In a dry double neck 250 mL flask, sodium hydrate 60% dispersion in mineral oil (0.09 mg, 

0.44 mmol, 2.2 eq.) dissolved in 100 ml dry THF under Ar. Then 5,5'-(5-(tritylthiomethyl)-1,3-

phenylene)bis-(methylene)bis-(sulfanediyl)bis-(methylene)bis-(3-tert-butyl-5,1-

phenylene)dimethanethiol, (47) (84.33 mg, 0.1 mmol, 1 eq.) and (3,5-

bis(bromomethyl)benzyl)(trityl)sulfane (37) (55.24 mg, 0.1 mmol, 1 eq.) were dissolved 

separately in 5 ml dry THF and were added dropwise to the previous solution at 0ºC. After 

the completion of addition of reactants, the mixture was let to reach RT and let to stir for 

O/N. The reaction mixture is poured into 10 mL water. The mixture was extracted with TBME 

(3 x 50 mL). All the organic extracts were combined, washed twice with 100 mL brine, dried 

over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude was purified on 

a silica gel column (Hexane-EtAc 9:1) and the product was obtained as white solid (41.95 

mg, 32%). 

 

C80H80S6  M.W. = 1233.88 g/mol  
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  Exact Mass = 1232.46 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.45 

MALDI 1255.68 [M++Na], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.45 (d, J= 4.0 Hz, 12H); 7.33-7.18 (m, 24H); 6.96 (s, 4H); 6.92 (s, 1H); 

6.84 (s, 1H); 3.52 (d, J= 7.2 Hz, 16H); 3.28 (s, 4H); 1.27 (s, 18H); 
13C-NMR  (100 MHz, CDCl3) 

δ= 152.28; 145.07; 138.03; 130.05; 129.09; 128.40; 128.35; 127.15; 125.07; 

109.96; 67.87; 36.02; 35.10; 31.82; 30.13 

152.29; 145.18; 141.34; 138.00;; 128.39; 128.33; 126.31; 125.24; 125.20; 

E.A.  Calculated : C, 77.87; H, 6.54; 

  Found  : C, 77.99; H, 6.45; 

 

Synthesis of ligand E for direct synthesis of nanoparticles, 49 

S

S
HS

S

S

SH

 

In a dry double neck 25 mL flask under Ar, protected ligand E (61.69 mg, 0.05 mmol, 1 eq) 

was dissolved in 5 mL anhyd. DCM. Then triethylsilane (0.028 ml, 0.15 mmol, 3 eq.) and 

trifluoroacetic acid (0.2 ml 4% v/v in DCM) was added to the previous solution. The mixture 

was let to stir at RT for 15 min. The reaction mixture is poured into 5 mL sat. NaHCO3 

solution. The mixture was extracted with DCM (3 x 5 mL). All the organic extracts were 

combined, washed twice with 25 mL brine, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 9:1) 

and the product was obtained as colorless oil (19.85 mg, 53%). 

 

C42H52S6  M.W. = 749.25 g/mol  
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  Exact Mass = 748.24 g/mol 

TLC   SiO2, Hexane-EtAc (9:1) 

  Rf = 0.3 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.22 (s, 4H); 7.14 (s, 4H); 6.97 (s, 2H); 6.87 (s, 2H); 3.68 (d, J= 7.6 Hz, 

4H); 3.58 (d, J= 7.2 Hz, 16H); 1.76 (t, J= 7.6 Hz, 2H); 1.31 (s, 18H); 

E.A.  Calculated : C, 67.33; H, 7.00; 

  Found  : C, 67.71; H, 6.90; 

 

Gold Nanoparticle Formation, Purification and Size Distribution Measurement 

Gold nanoparticle syntheses were carried out on a 20 - 30 µmol scale with respect to the Au 

equivalents. Tetrachloroauric acid (n equivalents, where n is the number of sulphur atoms in 

the used ligand) was dissolved in 2.5 mL deionized water. A solution of tetraoctylammonium 

bromide (2n equivalents) in 2.5 mL DCM was added and the two-phase mixture stirred until 

the aqueous phase became colourless. The ligand (1 equivalent) was dissolved in 2.5 mL 

DCM and then added to the reaction mixture, followed by a freshly prepared solution of 

sodium borohydride in 2.5 mL of water. After 10 min of stirring, the resulting strongly 

coloured DCM phase was separated and the aqueous phase was extracted with DCM (2 x 5 

mL). The combined organic fractions were dried over magnesium sulphate, filtered and 

concentrated to a volume of ca. 1 mL. Approximately 15 mL ethanol was added to 

precipitate the particles, which were then centrifuged. The supernatant was discarded. After 

redispersion in DCM, the nanoparticles were either left in that solvent or evaporated to 

dryness using a rotary evaporator.  

 

Sample preparation consists of depositing the nanoparticles onto a suitable TEM substrate 

(typically a SiO/Cu or SiO2 TEM grid). For optimal analysis, a dilute nanoparticle sample is 

aerosoled onto the grid in order to ensure well-spaced, uniform distributions of particles on 

the surface. The sample is placed into the microscope and micrographs at a suitable 

magnification (-200,000 x) are obtained. In order to ensure that there is no bias in the size 

analysis, several images representing diverse regions of the TEM grid and several hundreds 

to thousands of nanoparticles are taken. This helps to avoid artificial size separation or 

skewing as a result of drying effects or aggregation. Analysis of the obtained micrographs 

can be the most difficult aspect of the size analysis.  
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Following developing of the positive film, the images are digitized and undergo image 

manipulations in Adobe Photoshop or CorelDraw software to enhance the contrast of the 

nanoparticles. First, the positive film is inverted, yielding black spots (nanoparticles) on a 

gray background then, levels adjustment increases contrast, by lightening the background 

and darkening the nanoparticles. Finally, unsharp mask is used to further enhance contrast 

between the nanoparticles and the background, but may also increase background noise, 

which is eliminated using a Gaussian blur. Throughout the many steps, every effort is taken 

to avoid distorting the nanoparticle size distribution.  

 

The digitally enhanced image is then opened in the software Image J and threshold adjusted 

to highlight the nanoparticles over the background and then automated size analysis is 

carried out. Because nanoparticle aggregates and background noise can influence particle 

size measurements, nanoparticles with a circularity less than 0.75 (1 being a perfect circle) 

are removed as possible aggregates. This series of steps is carried out for each of the 

obtained images, and the average core diameter and size-distribution is calculated in MS 

Excel.  

 

5.3. Synthetic Procedures for 2D assemblies of preorganized 

structures 

Synthesis of di-tert-butyl 1,4-phenylenedicarbamate, 49 

NHHN

O
O

O
O

 

In a dry double neck 100 mL flask under Ar, p-phenylenediamine (0.54 g, 5 mmol, 1 eq.) 

was dissolved in 25 mL THF. Triethylamine (1.5 mL, 11 mmol, 2.2 eq.) was added to the 

solution. Di-tert-butyl dicarbonate (2.71 g, 12.5 mmol, 2.5 eq.) was dissolved in 25 mL in dry 

THF and added slowly to the reaction mixture. Then the mixture was let to stir at RT for 

overnight. The reaction was quenched by addition of 25 mL water. The organic layer was 

separated. The water layer was extracted with DCM (3 x 15 mL). All the organic extracts 

were combined, washed with 25 mL sat. NH4Cl, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The product was purified by recrystallization in ethylacetate and 

the product was obtained as white solid (0.68 g, 44%).  
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C16H24N2O4,  M.W. = 308.37 g/mol  

 Exact Mass = 308.17 g/mol 

TLC   SiO2, EtAc (100%) 

  Rf = 0.8 

ESI-MS 331.1 [M+ + Na], 

EI-MS 70eV 

308.1 [M+], 
1H-NMR  (400 MHz, DMSO, d6) 

δ= 9.16 (s, 2H); 7.31 (s, 4H); 1.47 (s, 18H) 
13C-NMR  (100 MHz, DMSO, d6) 

δ= 153.61; 134.31; 127.12; 119.26; 79.90; 28.99 

E.A.  Calculated  : C, 62.32%; H, 7.84%, N, 9.08% 

  Found  : C, 62.29%; H, 7.60%, N, 9.15% 

 

Synthesis of tert-butyl biphenyl-4,4'-diyldicarbamate, 50 

NHHN

O
O

O
O

 

In a dry double necked 25 mL flask under Ar, di-tert-butyl dicarbonate (1.18g, 5 mmol, 2.5 

eq.) was dissolved in 5 mL dry THF and triethylamine (0.55 ml, 4 mmol, 2 eq.) was added to 

the solution. Benzidine (0.37 g, 2 mmol, 1 eq.) was dissolved in 5 mL dry THF and was 

added dropwise to the reaction mixture. Then the mixture was let to stir at RT for O/N in the 

dark. The reaction was quenched by addition of 15 mL water. The organic layer was 

separated. The water layer was extracted with DCM (3 x 15 mL). All the organic extracts 

were combined, washed with 25 mL sat. NH4Cl, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 1:1) 

and the product was obtained as white solid (0.45 g, 58%). 

 

C22H28N2O4,  M.W. = 384.47 g/mol 

 Exact Mass = 384.20 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.7 

EI-MS 70eV 
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384.1 [M+], 
1H-NMR  (400 MHz, DMSO, d6) 

δ= 9.38 (s, 2H); 7.49 (s, 8H); 1.46 (s, 18H) 
13C-NMR  (100 MHz, DMSO, d6) 

δ= 153.61; 139.35; 134.31; 127.12; 119.26; 79.90; 28.99; 

E.A.  Calculated : C, 68.73%; H, 7.34%, N, 7.29% 

  Found  : C, 68.48%; H, 7.19%, N, 7.22% 

 

Synthesis of tert-butyl terphenyl-4,4'-diyldicarbamate, 51 

NHHN

O
O

O
O

 

In a dry double necked 25 mL flask under Ar, di-tert-butyl dicarbonate (1.18g, 5 mmol, 2.5 

eq.) was dissolved in 5 mL dry THF and triethylamine (0.55 ml, 4 mmol, 2 eq.) is added to 

the solution. Terphenyl (0.52 g, 2 mmol, 1 eq.) dissolved in 5 mL dry THF was added 

dropwise to the reaction mixture. Then the mixture was let to stir at RT for overnight in the 

dark. The reaction was quenched by addition of 15 mL water. The organic layer was 

separated. The water layer was extracted with DCM (3 x 15 mL). All the organic extracts 

were combined, washed with 25 mL sat. NH4Cl, dried over anhyd. Na2SO4. The solvent was 

evaporated using Rotavap. The product was recrystallized in THF to give as white solid 

(0.29 g, 32%).  

 

C28H32N2O4,  M.W. = 460.56 g/mol 

 Exact Mass = 460.24 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.5 

EI-MS 70eV 

460.1 [M+], 
1H-NMR  (400 MHz, DMSO, d6) 

δ= 9.46 (s, 2H); 7.69 (s, 4H); 7.49 (dxd, J1= 4.8 Hz, J2= 13.2 Hz, 8H); 1.49 (s, 

18H) 
13C-NMR  (100 MHz, DMSO, d6) 

δ= 152.50; 139.41; 136.92; 128.12; 127.24;119.75; 79.52; 28.32 
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E.A.  Calculated : C, 73.02%; H, 7.00%, N, 6.08%; 

  Found  : C, 73.32%; H, 6.87%, N, 5.99%; 

 

Synthesis of di-tert-butyl naphthalene-1,5-diyldicarbamate, 52 

NH

HN

O

O

O

O

 

In a dry double necked 25 mL flask under Ar, di-tert-butyl dicarbonate (1.18g, 5 mmol, 2.5 

eq.) was dissolved in 5 mL dry THF and triethylamine (0.55 ml, 4 mmol, 2 eq.) is added to 

the solution. Naphthalene-1,5-diamine, (0.32 g, 2 mmol, 1 eq.) dissolved in 5 mL dry THF 

was added dropwise to the reaction mixture. Then the mixture was let to stir at RT for 

overnight in the dark. The reaction was quenched by addition of 15 mL water. The organic 

layer was separated. The water layer was extracted with DCM (3 x 15 mL). All the organic 

extracts were combined, washed with 25 mL sat. NH4Cl, dried over anhyd. Na2SO4. The 

solvent was evaporated using Rotavap. The product was recrystallized in EtAc to give as 

white solid (0.24 g, 34%).  

 

C16H24N2O4,  M.W. = 358.43 g/mol  

 Exact Mass = 358.19 g/mol 

TLC   SiO2, EtAc (100%) 

  Rf = 0.8 

ESI-MS 381.1 [M+Na]+, 

EI-MS 70eV 

358.3 [M+], 
1H-NMR  (400 MHz, DMSO, d6) 

δ= 9.16 (s, 2H); 7.56 (dxd, J1= 4.8 Hz, J2= 11.2 Hz,4H); 7.37 (t, J= 4.8 Hz, 

2H); 6.96 (dxd, J1= 4.4 Hz, J2= 12.4 Hz, 2H); 1.47 (s, 18H) 
13C-NMR  (100 MHz, DMSO, d6) 

δ= 152.50; 141.01; 126.33; 125.32; 111.76; 105.08; 79.50; 28.49; 

E.A.  Calculated  : C, 67.02%; H, 7.31%, N, 7.82% 

  Found  : C, 66.69%; H, 7.20%, N, 7.55% 
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Synthesis of (E)-di-tert-butyl 4',4''-(diazene-1,2-diyl)bis(biphenyl-4',4-diyl)dicarbamate, 53 

N
N NH

HN

O
O

O
O  

In a 25 mL double necked flask under Ar, (E)-1,2-bis(4-iodophenyl)diazene (59) (86.95 mg, 

0.2 mmol, 1 eq), and 4-(Boc-amino)benzeneboronic acid pinacol ester (143.8 mg, 0.44 

mmol, 2.2 eq) were dissolved in degassed 14 mL toluene/ethanol (6:1) containing 1 mL 2M 

Na2CO3. Then, Pd(PPh3)4 (26 mg, 0.02 mmol, 10%mol eq.) was added and the mixture was 

refluxed under Ar O/N. The solvent was evaporated. The crude mixture was dissolved in 50 

mL DCM and washed with water (2 x 50 mL). The organic layer was collected, washed with 

50 mL brine and dried over anhydrous Na2SO4. The solvent was evaporated using Rotavap. 

The crude was purified on a silica gel column (DCM 100%) and the product was obtained as 

an orange solid (75.7 mg, 67%).  

 

C34H36N4O4,  M.W. = 564.67 g/mol 

 Exact Mass = 564.27 g/mol 

TLC   SiO2, (DCM 100%). 

  Rf = 0.25 

EI-MS 70eV 

564.3 [M+], 
1H-NMR  (400 MHz, DMSO-d6) 

δ= 9.54 (s, 2H); 7.98 (d, J= 8Hz, 4H); 7.88 (d, J= 8Hz, 4H); 7.72 (d, J= 8Hz, 

4H); 7.60 (d, J= 8Hz, 4H); 1.50 (s, 18H) 
13C-NMR  not soluble 

E.A.  Calculated : C, 72.32%; H, 6.43%; N, 9.92% 

  Found  : C, 71.97%; H, 6.21%; N, 9.53% 

 

Synthesis of (E)-1,2-bis(4-bromophenyl)diazene, 58 

 

In a dry double neck 100 mL flask under Ar, 4-iodo-aniline (2.19 g, 10 mmol, 1 eq.) was 

dissolved in 25 mL dry DCM.  Equal amount of oxidant (3 g KMnO4 and 3 g FeSO4.7H2O) 

was prepared by grinding in a mortar and added to the solution. The mixture was refluxed 
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under Ar for O/N. The solution was filtered, dried over Na2SO4 and was evaporated using 

Rotavap. The crude was purified on a silica gel column (Hexane-DCM 3:1) and the product 

was obtained as yellow powder (0.78 g, 18%). 

 

C12H8I2N2  M.W. = 434.01 g/mol  

  Exact Mass = 433.88 g/mol 

TLC   SiO2, Hexane-DCM (3:1) 

  Rf = 0.3 

EI-MS 70eV 

433.8 [M+] 

MP  242-244°C 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.86 (d, J=8.0 Hz, 4H); 7.64 (d, J=8.0 Hz, 4H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 152.13; 138.84; 124.94; 98.55 

 

Synthesis of tert-butyl biphenyl-4-ylcarbamate, 59 

NH

O
O

 

In a dry 25 mL double necked flask under Ar, bromobenzene (0.22 mL, 2 mmol, 1 eq.) and 

4-(Boc-amino)benzeneboronic acid pinacol ester (0.64g, 2 mmol, 1 eq.) were dissolved in 

degassed 14 mL toluene/ethanol (6:1) containing 1mL 2M Na2CO3. Then, Pd(PPh3)4 (0.12g, 

0.2 mmol, 1 eq.) was added and the mixture was refluxed under Ar O/N. The reaction was 

stopped, the solvent evaporated. The crude was dissolved in 25 mL DCM and washed with 

25mL water then with 25 mL brine. The water layer was extracted with DCM (3 x15 mL). All 

the organic extracts were combined, dried over anhyd. Na2SO4. The solvent was evaporated 

using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 4:1) and the 

product was obtained as white solid (0.46 g, 85%). 

 

C17H19NO2,  M.W. = 269.34 g/mol 

 Exact Mass = 269.14 g/mol 

TLC   SiO2, (Hexane-EtAc 4:1). 

  Rf = 0.4 

EI-MS 70eV 
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269.2 [M+], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.57-7.52 (m, 4H); 7.44-7.40 (m, 4H); 7.33 (t, 0.34 H, J= 12.0 Hz); 7.31 (t, 

0.51 H, J= 20.0 Hz); 7.29 (t, 0.17 H, J= 20.0 Hz); 6.52 (s, 1H); 1.52 (s, 9H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 153.13; 141.04; 138.06; 136.35; 129,14; 128.03; 127.18; 119.21; 81.05; 

28.76 

E.A.  Calculated : C, 75.81%; H, 7.11%, N, 5.20% 

  Found  : C, 75.56%; H, 7.17%, N, 5.14% 

 

Synthesis of 1,3-Bis(4-iodophenyl)urea, 60 

H
N

O
H
N

 

In a dry 25 mL double necked flask under Ar, 4-biphenylamine (113.30 mg, 0.67 mmol, 6 

eq.) and DMAP (109.13 mg, 0.92 mmol, 8 eq.) were dissolved in 2 mL dry DCM. Then, BTC 

(32.64 mg, 0.11 mmol, 1 eq.) dissolved in 2 mL dry DCM added dropwise to the previous 

solution at RT. The solution was stirred 15 min additional after addition of all BTC. White 

turbid solution mixture was filtered. The filter cake was washed extensively with DCM and let 

to dry at open air to obtain the product as white solid (103.07 mg, 85%).  

 

C25H20N2O,  M.W. = 364.44 g/mol 

 Exact Mass = 364.16 g/mol 

MALDI 364.82 [M+], 
1H-NMR  (400 MHz, DMSO-d6) 

δ= 8.85 (s, 2H); 7.67-7.58 (m, 12H); 7.45 (t, br, J= 8.0 Hz, 4H); 7.32 (t, br, J= 

7.6 Hz, 2H) 
13C-NMR  not soluble enough 

E.A.  Calculated : C, 82.39%; H, 5.53%, N, 7.69% 

  Found  : C, 82.77%; H, 5.32%, N, 7.59% 

UV-Vis  (MeCN) λ= 284 and 306 

RP-HPLC (100% MeCN, flow 0.4ml/min, λdet= 284 and 306 nm, T= 25°C)  

Rt= 7.6 min, purity 99% 
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Synthesis of 1,2-di(biphenyl-4-yl)diazene, 62  

N
N

 

In a 25 mL double necked flask under Ar, (E)-1,2-bis(4-iodophenyl)diazene (58) (108.5 mg, 

0.25 mmol, 1 eq), and phenylboronic acid pinacol ester (116.2mg, 0.6 mmol, 2.2 eq) were 

dissolved in degassed 14 mL toluene/ethanol (6:1) containing 1mL 2M Na2CO3. Then, 

Pd(PPh3)4 (28.9 mg, 0.025 mmol, 10%mol eq.) was added and the mixture was refluxed 

under Ar O/N. The solvent is evaporated. The crude mixture is dissolved in 50 mL DCM and 

washed with water (2 x 50 mL). The organic layer was collected, washed with 50 mL brine 

and dried over anhydrous Na2SO4. The solvent was evaporated using Rotavap. The crude 

was purified on a silica gel column (DCM 100%) and the product was obtained as an orange 

solid (284.25 mg, 85%). 

 

C24H18N2,  M.W. = 334.41 g/mol 

 Exact Mass = 334.15 g/mol 

TLC   SiO2, (DCM 100%). 

  Rf = 0.35 

EI-MS 70eV 

334.2 [M+] 

MP  253-255°C 
1H-NMR  (400 MHz, THF-d4) 

δ= 8.03 (d, J= 6.8 Hz, 4H); 7.84 (d, J= 7.2 Hz, 4H); 7.73 (d, J= 5.6 Hz, 4H); 

7.46 (t, J= 11.2 Hz, 4H); 7.36 (t, J= 11.6 Hz, 2H)  
13C-NMR  not soluble enough 

E.A.  Calculated : C, 86.20; H, 5.43; N, 8.38 

  Found  : C, 85.79; H, 5.66; N, 8.25 

UV-VIS  (MeCN) λ= 362  

RP- HPLC (100% MeCN, flow 0.4ml/min, λdet= 362nm, T= 25°C)  

Rt= 18.7min, purity 99% 

 

Simulation of the surface reactions 

The reaction conditions were mimicked by adsorbing 59 (5 mg, 0.0186 mmol) dissolved in 

dichloromethane on Ag nanoparticles with a diameter of about (2±1) µm (1.01 g) by 

evaporation of the solvent at the rotavap. Subsequently, the surface functionalized particles 
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were treated at 200°C and 0.1 mbar for 6h in a glass reaction vessel. To analyze the 

emerging organic compounds, the particles were extracted extensively with DCM. After 

concentration of the eluent and preparative TLC three new compounds have been isolated 

together with considerable amounts of unreacted starting material 59. Analysis by MALDI-

ToF displayed their molecular weights of 321.12, 334.11 and 471.22 suggesting the 

structures 61-63 displayed in Scheme 3.3.5 as reaction products. In a similar procedure the 

urea derivative 60 (5 mg, 0.0137 mmol) was dissolved in DMF and immobilized on Ag 

nanoparticles with a diameter of about (2±1) µm (1.01g) by evaporation of the solvent at 

reduced pressure. After similar treatment of the particles as described above, the cooled 

down particles were extracted with DMF. The solvent of the extract was removed under 

reduced pressure and the remaining material was redissolved in acetonitrile for subsequent 

analysis by reversed phase HPLC. The analysis of the extract displayed three main 

compounds: unreacted starting material 60, an unknown reaction product and the expected 

azo derivative 62. 

 

Synthesis of tert-butyl 4'-aminobiphenyl-4-ylcarbamate, 64 

NH2HN

O
O

 

In a dry double necked 25 mL flask under Ar, di-tert-butyl dicarbonate (1.09 g, 5 mmol, 1 

eq.), triethylamine (1.4 mL, 10 mmol, 2 eq.) and benzidine (0.92 g, 5 mmol, 1 eq.) were 

dissolved in 15 mL dry THF. The mixture was let to stir at RT for O/N in the dark. The 

reaction was quenched by addition of 15 mL water. The organic layer was separated. The 

water layer was extracted with DCM (3 x 15 mL). All the organic extracts were combined, 

dried over anhyd. Na2SO4. The solvent was evaporated using Rotavap. The crude was 

purified on a silica gel column (Hexane-EtAc 1:1) and the product was obtained as white 

solid (0.67 g, 47%). 

 

C17H20N2O2,  M.W. = 284.35 g/mol 

 Exact Mass = 284.15 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.3 

ESI-MS 285.2 [M+], 
1H-NMR  (250 MHz, DMSO-d6) 
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δ= 9.31 (s, 1H); 7.43 (d, J= 3.2 Hz, 4H); 7.31 (d, J= 6.8 Hz, 2H); 6.62 (d, J= 

6.8 Hz, 2H); 5.15 (s, 2H); 1.49 (s, 9H) 

E.A.  Calculated : C, 71.81%; H, 7.09%, N, 9.85% 

  Found  : C, 71.90%; H, 7.14%, N, 9.65% 

 

Synthesis of tert-butyl (1,1,1-trifluoro-2-methylpropan-2-yl) [1,1'-biphenyl]-4,4'-

diyldicarbamate, 65 

NHHN

O
O

O
O

F

F
F

 

In a dry 25 mL double necked flask under Ar, BTC (89.02 mg, 0.3 mmol, 1 eq.) was 

dissolved in 3 mL dry DCM. 1,1,1-trifluoro-2-methylpropan-2-ol (98.5 µL, 0.9 mmol, 3 eq.) 

and DMAP (219.9 mg, 1.8 mmol, 6 eq.) were dissolved in 3 mL dry DCM and were added 

slowly to the previous solution at 0ºC. The mixture allowed to reach RT and stirred under Ar. 

tert-butyl 4'-aminobiphenyl-4-ylcarbamate (64) (255.93 mg, 0.9 mmol, 3 eq.) and DMAP 

(219.9 mg, 1.8 mmol, 6 eq.) were dissolved in 3 mL dry DCM and added dropwise to the 

previous solution at RT. The solution was stirred 15 min additional after the completion of 

addition. White turbid solution mixture was filtered. The reaction was diluted with 10 mL 

DCM and quenched by addition of 15 mL water. The organic layer was separated and 

washed with 15 mL 0.5 M HCl, 15 mL water, 15 mL 5% Na2S2O3, 15 mL 2.5% NaHCO3 and 

15 mL brine. Organic extracts were dried over anhyd. Na2SO4. The solvent was evaporated 

using Rotavap. The crude was purified on a silica gel column (Hexane-EtAc 1:1) and the 

product was obtained as white solid (390.21 mg, 89%). 

 

C22H25F3N2O4  M.W. = 438.44 g/mol 

 Exact Mass = 438.18 g/mol 

TLC   SiO2, Hexane-EtAc (1:1) 

  Rf = 0.5 

EI-MS 437.82 [M+], 
1H-NMR  (400 MHz, DMSO-d6) 

δ= 9.84 (s, 1H); 9.39 (s, 1H); 7.54-7.50 (m, 8H); 1.70 (s, 6H); 1.47 (s, 9H) 
13C-NMR  (100 MHz, DMSO-d6) 
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δ= 153.60; 151.74; 139.50; 138.39; 135.14; 134.11; 127.22; 119.69; 11926; 

79.93; 28.99; 20.30  

E.A.  Calculated : C, 60.27%; H, 5.75%, N, 6.39% 

  Found  : C, 60.62%; H, 5.69%, N, 6.33% 

 

Synthesis of di-tert-butyl biphenyl-3,4'-diyldicarbamate, 66 

HN

O
O

NH

O
O

 

In a 25 mL double necked flask under Ar, N-(tert-Butoxycarbonyl)-3-bromoaniline (272.14 

mg, 1 mmol, 1 eq), and 4-(N-Boc-amino)phenylboronic acid pinacol ester (319.21 mg, 1 

mmol, 1 eq) were dissolved in degassed 14 mL toluene/ethanol (6:1) containing 1mL 2M 

Na2CO3. Then, Pd(PPh3)4 (57.78 mg, 0.05 mmol, 5%mol eq.) was added and the mixture 

was refluxed under Ar O/N. The solvent is evaporated. The crude mixture is dissolved in 50 

mL DCM and washed with water (2 x 50 mL). The organic layer was collected, washed with 

50 mL brine and dried over anhydrous Na2SO4. The solvent was evaporated using Rotavap. 

The crude was purified on a silica gel column (Hexane-EtAc 4:1) and the product was 

obtained as an orange solid (299.9 mg, 78%). 

 

C22H28N2O4,  M.W. = 384.47 g/mol 

 Exact Mass = 384.20 g/mol 

TLC   SiO2, Hexane-EtAc 4:1 

  Rf = 0.3 

EI-MS 70eV 

384.1 [M], 
1H-NMR  (400 MHz, CDCl3) 

δ= 7.58 (s, 1H); 7.53 (t, J= 2.8 Hz, 1H); 7.51 (t, J= 2.8 Hz, 1H); 7.41 (d, J= 4.0 

Hz, 2H); 7.35-7.28 (m, 2H); 7.24 (t, J= 1.6 Hz, 0.5H); 7.22 (t, J= 1.6 Hz, 0.5H); 

6.53 (s, 2H); 1.53 (s, 18H) 
13C-NMR  (100 MHz, CDCl3) 

δ= 153.16; 141.94; 139.16; 138.20; 135.95; 129.74; 128.08; 121.94; 119.11; 

117.48; 117.27; 81.04; 28.77 



Experimental Part 
 

176 

E.A.  Calculated : C, 68.73%; H, 7.34%, N, 7.29% 

  Found  : C, 68.82%; H, 7.34%, N, 7.06% 
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