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I. SUMMARY 

 

 

Human natural killer (NK) cells are innate immunity CD56+CD3- lymphocytes, mediating 

spontaneous killing of tumor-transformed cells. The effector functions of NK cells are 

regulated by a balance of signals initiated from a variety of activating and inhibitory 

receptors. Recognition of HLA class I molecules on the surface of target cells by inhibitory 

NK cell receptors (e.g. KIR and NKG2A) ensures that healthy ,self’ cells are protected from 

NK cell lysis. The loss of HLA class I molecules as a consequence of tumor transformation 

renders cells susceptible to NK-cell mediated lysis. The cytolytic function of NK cells is 

dependent on activating receptors, which become engaged by specific cell surface molecules 

expressed on target cells.  

The best characterized activating immunoreceptor is NKG2D, which triggers cellular 

cytotoxicity and cytokine production upon engagement with its ligands, ULBP and MICA/B 

molecules. NKG2D ligands (NKG2D-L) are rarely expressed on healthy cells, but frequently 

upregulated in response to cellular changes caused by malignant transformation. In healthy 

tissue, inappropriate overexpression of NKG2D-L can trigger autoimmunity. This indicates 

that NKG2D-L expression has to be tightly regulated to avoid destruction of untransformed 

tissue, but at the same time to allow recognition and elimination of tumor cells. The molecular 

mechanisms controlling NKG2D-L expression are poorly understood. Numerous studies 

demonstrated that different cells and tissues express NKG2D-L transcripts but lack any 

expression of the corresponding proteins on the cell surface. These findings suggest that 

NKG2D-L are, at least partly, regulated at post-transcriptional level.  

 

In the first part of the thesis, we examined the involvement of post-transcriptional 

mechanisms in regulation of the NKG2D-L, ULBP1. Analysis of the 2.4 kb-long ULBP1-

3’UTR revealed the presence of four ARE motifs and more then 200 putative microRNA 

binding sites, regulatory elements which mediate RNA degradation and translational 

repression. Using luciferase reporter assays, we showed that the full-length 3’UTR of ULBP1 

is markedly involved in regulation of ULBP1 gene expression in human cancer cell lines and 

human primary foreskin fibroblasts. The involvement of ARE elements in negative regulation 

of ULBP1 gene expression was excluded by mutating ARE motifs in two regions of the 

ULBP1-3’UTR. The role of candidate microRNAs in regulation of ULBP1 was examined by 



 
I. SUMMARY 

 

12 

mutating the putative microRNA binding sites, or by silencing or overexpression of candidate 

microRNAs. However, we could neither support nor disprove our hypothesis that microRNAs 

are involved in regulation of ULBP1 expression, and therefore further studies are needed to 

elucidate the role of microRNAs. Despite the inconclusive outcome on the microRNA studies, 

our work provided the first evidence that the regulation of ULBP1 expression takes place on a 

post-transcriptional level and involves the ULBP1-3’UTR as mediator of RNA destabilization 

and translational repression.  

In the second part of the thesis, we investigated the effect of histone deacetylase 

inhibitors (HDACi) on surface expression of NKG2D-L in primary human fibroblast (HFF) 

and AML blasts. Treatment of HFF with trichostatin A (TSA) increased surface expression 

and transcript level of ULBP1. By using luciferase assay we revealed, that post-transcriptional 

mechanisms might participate in the upregulation of ULBP1 expression. Treatment of AML 

blasts with valproic acid (VA) also induced surface expression of NKG2D-L resulting in 

enhanced killing by NK cells. Efficient cytolysis of AML blasts was achieved by generating 

alloreactive NK cell lines with KIR-HLA class I mismatch, which allowed to circumvent the 

signaling by inhibitory NK cell receptors. 

 

Taken together, these data demonstrate, that ULBP1 is regulated by post-

transcriptional mechanisms and that the activation of NK cell can be augmented by 

pharmacological induction of NKG2D-L and the use of alloreactive NK cells.  
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II. INTRODUCTION 

 

1. Natural Killer Cells (NK) 

 

Human NK cells are crucial components of the innate immune system and play an important 

role in defense against virus-infected and tumor transformed cells.1 They comprise about 5 -

 15 % of all circulating lymphocytes and are phenotypically characterized by expression of 

CD56 and lack of CD3 cell surface antigens.2-3 NK cells are present in peripheral blood, 

lymph nodes, spleen, bone marrow, liver, peritoneal cavity and placenta.4-5 In contrast to T 

cells, NK cells are able to kill target cells rapidly without prior stimulation or exposure to a 

specific antigen and therefore control infections and tumor growth in an early stage.6 

 

 

1.1 NK cell subsets 

 

Two distinct NK cell subsets (Fig. 1 and 2) can be defined, based on the surface expression of 

CD56, an isoform of the human neuronal-cell adhesion molecule with unknown function, and 

the Fc receptor III (CD16).3,7 The majority (~90%) of human NK cells expresses low levels 

of CD56 and high density of CD16 antigen (CD56dimCD16bright NK cells). These cells are 

potent effectors mediating antibody-dependent and natural cytotoxicity due to their ability to 

form conjugates with target cells and their high content of cytolytic granules.4,8 The cytokine 

production by CD56dim cells is negligible even following specific stimulation.7 A minor 

subset of about 10% of NK cells, displaying a CD56brightCD16dim phenotype, is producing 

abundant immunoregulatory cytokines such as interferon (IFN)-, tumor necrosis factor 

(TNF)-, TNF-β, interleukine (IL)-10, IL-13, macrophage inflammatory protein (MIP)-1 

and granulocyte-macrophage colony-stimulating factor (GM-CSF) upon stimulation with 

monokines, while exhibiting low cytotoxicity.9-10 Therefore a major function of CD56bright NK 

cells might be to provide macrophages and other antigen-presenting cells with IFN- and 

other cytokines for early host defense against a variety of viral, bacterial and parasitic 

pathogens.3,9 
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Figure 1: Flow cytometric analysis of CD56bright and CD56dim NK cells.3 Approximately 90% of all human 

NK cells are CD56dim NK cell (blue box) and exhibit high-density surface expression of CD16. CD56high NK 

cells (red box) comprise ~10% of NK cells and express low levels of CD16. Abbreviations: PE, phycoerythrin; 

FITC, fluorescein isothiocyanate. 

 

 

In addition, CD56dim cells exhibit high levels of the inhibitory killer cell 

immunoglobuline-like receptors (KIR) on the cell surface whereas the predominant NK cell 

receptor (NKR) on CD56bright is CD94/NKG2A.8-9 Further characteristics of CD56dim cells is 

the expression of the chemokine receptors CXCR1, CX3CR1 and CXCR4 suggesting that 

these cells may be attracted to sites of acute inflammation.11 In contrast, CD56bright cells 

constitutively express the adhesion molecule L-selectin (CD62L) and the chemokine receptor 

CCR7 which enables them to migrate through endothelial venules into the lymph node, where 

they interact with cells of the adaptive immune system.12 Whereas CD56dim cells express only 

intermediate affinity IL-2 receptors (IL-2Rβγ) and are therefore weak responders to high 

doses of IL-2, CD56bright cells additionally express the high affinity IL-2 receptor (IL-2Rβγ) 

enabling them to expand in response to low (picomolar) concentrations of IL-2 in vitro and in 

vivo.9,13-14 Triggering of the receptor tyrosine kinase c-kit, exclusively expressed on CD56bright 

NK cells, augments the IL-2 induced proliferation.7 Both NK cell subsets constitutively 

express activating NK cell receptors and receptors for monocyte-derived cytokines including 

IL-12, IL-15 and IL-18.3,7,10 
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Figure 2: Subsets of human NK cells7: The immunoregulatory CD56brightCD16dim NK cells produce high levels 

of cytokines upon stimulation with monocyte-derived cytokines. Natural cytotoxicity as well as antibody-

dependent cellular cytotoxicity is poor. CD56dimCD16bright NK cells are highly cytotoxic and exhibit low 

production of cytokines. 

 

 

 

 

Table 1: Human activating and inhibitory NK cell receptors and their corresponding ligands 
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1.2  NK cell receptors 

 

NK cell receptors (NKR) are crucial for distinguishing autologous normal cells from 

transformed or foreign cells. On human NK cells three major subsets of NKRs have been 

described (Table 1): KIRs and receptors of the C-type lectin superfamily (CD94:NKG2), 

which both recognize MHC class I and MHC class I-like molecules, as well as natural 

cytotoxicity receptors (NCRs), whose ligands remain poorly defined.  

 

 

1.2.1  Killer immunoglobulin like receptors (KIR) 

 

KIRs are a polymorphic set of proteins which are clonally distributed in the NK cell repertoire 

and recognize HLA-A, -B and -C on target cells.15 KIRs are structurally characterized by 

either 2 (KIR2D) or 3 (KIR3D) extracellular immunoglobulin (Ig) like domains. The 

functional properties of KIRs are determined by the length of their cytoplasmatic tails: KIRs 

with a long tail (KIR2DL and KIR3DL) mediate an inhibitory signal due to the presence of 

immunoreceptor tyrosine-based inhibition motifs (ITIM), while the short tail receptors 

(KIR2DS and KIR3DS) elicit activating signals due to their association with adaptor proteins 

bearing immunoreceptor tyrosine-based activating motifs (ITAM).7 All inhibitory KIRs use 

the same mechanism for signal transduction (Fig. 3), regardless of the diversity of 

extracellular ligand-binding domains. Binding of MHC class I molecules to KIRs triggers 

phosphorylation of the ITIM by SRC family kinases and therefore allows binding of the 

tyrosine phosphatase SRC homology 2 domain-containing phosphatase 1 (SHP-1).16 In 

consequence, multiple targets in the ITAM-activating pathway are dephosphorylated by SHP-

1 resulting in inhibition of signalling. In contrast, binding of ligands to activating KIRs results 

in SRC family kinase-mediated phosphorylation of ITAM motifs, located in the associated 

adapter molecule DAP12 (DNAX-activating protein 12kDa). Subsequent binding of SYK 

family tyrosine kinases triggers downstream activation cascade.17  
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Figure 3: Function of inhibitory and activating KIRs17 

 

 

The highly polymorphic KIR genes are located in the leukocyte receptor cluster on 

chromosome 19p13.4, one of the most variable regions of the human genome.18 Based on the 

content of KIR genes, two KIR hapolotypes, termed A and B, have been defined.19 Both 

haplotypes consist of four framework genes: KIR2DL4, KIR3DL2, KIR3DL3 and KIR3DP1. 

In A haplotype, four additional genes (KIR2DL1, KIR2DL3, KIR2DS4 and KIR3DL1), 

which exhibit high allelic variability, are encoded in the genome. Among these, KIR2DS4 is 

the only activating KIR encoded by the A haplotype. The B haplotype is defined by the 

presence of the framework genes and one or more genes encoding for the inhibitory KIRs, 

KIR2DL5A/B and KIR2DL2, and the activating KIRs, KIR2DS1/2/3/5 and KIR3DS1. Thus, 

the variability in the B haplotype is created by presence or absence of genes, encoding for the 

inhibitory or activating KIRs, and to less extent by alleles. 

The predominant ligands for KIR receptors, involved in the inhibitory regulation of 

human NK cells, are encoded in the HLA-C locus. Based on the amino acid residues in 

position 77 and 80 in the 1 helix of the HLA-C molecule, these molecules can be 

distinguished into two groups, C1 and C2.17 Group C1 alleles are characterized by Ser77 and 

Asn80 and are recognized by the inhibitory receptors KIR2DL2 and KIR2DL3, as well as the 

activating KIR2DS2 and KIR2DS3. Group C2 alleles have Asn77 and Lys80 and bind to 

inhibitory KIR2DL1 and activating KIR2DS1. Furthermore, the inhibitory receptor KIR3DL1 

binds the HLA-Bw4 epitope at amino acid residues 77-83. 
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1.2.2  CD94:NKG2 receptors 

 

CD94:NKG2 receptors belong to the C-type lectin family and are expressed as heterodimers 

on the majority of NK cells and a small subset of CD8+ T cells.20 These receptors are 

composed of a common subunit CD94 covalently bound to a member of the C-type lectin 

NKG2 family, and recognize non-classical HLA-E molecules.21 Since CD94 lacks a 

cytoplasmic domain for intracellular signal transduction, signalling is mediated through the 

extracellular and cytoplasmatic domains of the NKG2 molecules.7 The NKG2 gene family 

consists of five related transcripts, encoded on chromosome 12, and include NKG2A (and its 

splice variant NKG2B), NKG2C, NKG2D, NKG2E (and its splice variant NKG2H) and 

NKG2F.22 Among these, NKG2D is unique, since it does not associate with CD94, but with 

DAP10 and DAP12 (see 2.1.4). CD94:NKG2A/B is the only inhibitory receptor of this group 

and signals through a long intracytoplasmatic tail at the NKG2 subunit, containing ITIM 

motifs.23 In contrast, all other NKG2 are composed of short cytoplasmatic tails and mediate 

activating signals through association with ITAM-containing adapter molecules.20 

 

 

1.2.3  Natural cytotoxicity receptors 

 

The natural cytotoxicity receptors (NCRs) NKp30, NKp44 and NKp46 were identified based 

on their role in natural cytotoxicity towards tumor cells and are exclusively expressed on NK 

cells.24-26 Whereas NKp30 and NKp46 are expressed on resting and activated NK cells, 

NKp44 is induced upon IL-2 stimulation.25 All NCRs are transmembrane glycoproteins 

belonging to the Ig superfamily, however share little structural similarity with each other (Fig. 

4) and with known human cell surface molecules.27 Due to lack of signaling motifs in the 

cytoplamic regions, NCRs associate with the signal transducing adapter proteins CD3, 

FcRI or DAP12, containing ITAM motifs. This interaction is stabilized through positively 

charged amino acids in the transmembrane region of the NCRs. Crosslinking of NCRs with 

monoclonal antibodies induces natural cytotoxicity, cytokine production and Ca2+ 

mobilization. The cellular ligands for NCR are not well defined. NKp44 and NKp46 has been 

shown to bind viral haemagglutinins (HA) through interaction of NKp44- and NKp46-

associated sialic acid residues with sialic acid binding sites of the HA-complex28-30 

Furthermore, heparan sulfate proteoglycans on target cells are recognized by NKp30 and 
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NKp46 and might be involved in tumor killing.31 Interestingly, interaction of pp65, a HCMV 

protein, with NKp30 results in supression of NK cell cytotoxicity.32 As examined with Fc 

fusion proteins, ligands of NKp44 and NKp46 (NCR-L) are expressed on malignant 

melanocytes. 33-34 Furthermore, variable levels of NCR-L are expressed on monocytes and 

granulocytes of AML patients, whereas malignant blasts are NCR-L low or negative.35 

 

 

 
Figure 4: Natural cytotoxicity receptors (modified from36) 

 

 

1.2.4  NKG2D and NKG2D ligands (NKG2D-L) 

 

NKG2D receptor 

The activating NK cell receptor NKG2D (natural-killer group 2, member D) is a homodimeric 

lectin like immunoreceptor expressed on NK cells, subsets of T cells (NKT cells, CD8+ T 

cells, and γδ T cells) and on myeloid-lineage interferon-producing killer dendritic cells 

(IKDCs).37-38 Triggering of NKG2D mediates costimulation in cytotoxic T lymphocytes 

(CTL) and/or activation in NK cells, resulting in proliferation, cytokine production and NK 

cell cytotoxicity.39-42 

Signaling of human NKG2D requires noncovalent association with the small adaptor 

protein DAP10, since NKG2D lacks intracellular signalling domains (Fig.5). Stimulation of 

NKG2D results in phosphorylation of the YxxM motif in the cytoplasmatic domain of 

DAP10, and subsequent recruitment and phosphorylation of Phosphoinositide 3-kinase 

(PI3K) and growth factor receptor-bound protein 2 (Grb2) induces cytotoxicity and IFN 
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production.37 In mice, two cell type specific splice variants of NKG2D exists: the short form 

(NKG2Dshort) associates with DAP10, whereas the long form (NKG2Dlong) is capable to 

associate with DAP10 or the adaptor protein DAP12 (Fig. 5). Signaling via DAP12 involves 

ITAM and is dependent on the protein tyrosine kinases SYK and/or ZAP-70.38-39,43 

NKG2D plays an important role in antitumor response. When NKG2D-deficient mice 

were crossed with transgenic mice spontaneously developing cancer, accelerated tumor 

growth was observed.44 Furthermore, enforced expression of NKG2D ligands (NKG2D-L) in 

tumor cells lead to a potent NKG2D-mediated rejection of tumors in vitro and in vivo, 

whereas blocking of NKG2D markely reduced killing of various tumor cell targets. 41,45-49 

Neutralizing of NKG2D with an -NKG2D monoclonal antibody (mAb) enhanced the 

chemically induced de novo formation of fibrosarcoma.50 However, tumors have developed 

evasion strategies to circumvent NKG2D dependent immunosurveillance. Tumor cells are 

able to reduce surface of NKG2D-L by sheding. Subsequent binding of soluble ligands 

induces endocytosis and degradation of NKG2D in NK cells.51-52 Chronic exposure of NK 

cells to ligand expressing tumor cells in vitro impaired cytolytic activity against target cells.53 

Furthermore, constitutive local overexpression of the ligands in the epithelial cells or in bone 

marrow (BM) systemically reduced NKG2D expression in vivo, resulting in impaired NK cell 

function.54-55 

 

 
Figure 5: Human and murine NKG2D receptors and their ligands38 
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NKG2D ligands 

Human NKG2D ligands (NKG2D-L) are proteins with a structural similarity to MHC class I 

molecules. In humans, two families of NKG2D-L have been described: major 

histocompatibility complex class I (MIC)-related molecules and UL-16 binding proteins 

(ULBP).38 The MIC family consists of two members, MICA and MICB. MIC genes are 

highly polymorphic, with over 70 distinct alleles identified, and are encoded in the human 

MHC locus on chromosome 6q21.56-57 MIC molecules are expressed as transmembrane 

glycoproteins and possess 1, 2, and 3 domains, however unlike the classical MHC class I 

molecules, they do not associate with β2-microglobulin.15 The ULBP molecules were 

identified by their ability to bind to the human cytomegalovirus (HCMV) glycoprotein 

UL16.57 To date, six members are identified: ULBP1-4, RAET1G and RAET1L,56,58-60 which 

are encoded on chromosome 6q25.61 ULBPs contain 1 and 2 domains and, like MIC, do 

not associate with β2-microglobulin. ULBP1-3 and RAET1L are glycosylphosphatidyl-

inositol (GPI)-linked whereas ULBP4 and RAET1G are transmembrane proteins.57,61 Murine 

NKG2D-L consist of at least nine members: five retinoic acid early transcript 1 proteins 

(RAE-1-), the minor histocompatibility antigen H60, two H60 variants (H60b and H60c) 

and mouse UL16-binding protein-like transcript 1 (MULT1).62 All ligands are homologues of 

ULBP1 and share 1 and 2 domains. MIC homologues have not been found so far.63 

MULT1 and H60 possess transmembrane domains and cytoplamic tails, whereas RAE-1 

molecules are GPI-anchored.38 

Human NKG2D-L are absent or weakly expressed on normal cells but are upregulated 

upon viral infection, tumor transformation or cellular stress.38 Interestingly, transcripts for 

some ligands are abundantly present in normal tissues, including heart, lung, liver, testis, 

placenta, kidney, skeletal muscle and tonsils.60-61,64 MICA and/or MICB (MICA/B) are 

expressed at low levels on human intestinal epithelial cells, however are upregulated on some 

epithelial tumors and on HCMV infected endothelial and fibroblast cells.42,65-67 In healthy 

individuals, ULBP is absent on T cells, NK cells and erythrocytes, whereas B cells and 

platelets are ULBP+. On monocytes and granulocytes, expression of ULBP is highly variable 

among individuals.68 Bone marrow derived CD34+ progenitor cells are NKG2D-L- and 

acquire ligand expression during the course of myeloid differentation.68 ULBP is expressed on 

most T cell leukemia cell lines, whereas MIC is absent or expressed at low levels. On cell 

lines of myeloid and B cell origin, NKG2D-L are not expressed.69 On primary leukemic cells 

derived from acute myeloid leukemia (AML) and B-cell chronic lymphoblastic leukemia (B-

CLL) patients, low levels of MIC and ULBP molecules were detected.52,68,70-71 Aberrant 
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NKG2D-L expression has been also linked with autoimmune diseases, including rheumatoid 

arthritis, celiac disease and autoimmune diabetes.72-74 In mice, RaeI and H60 are silent or 

weakly expressed in adult tissue but frequently induced in tumors and in cells infected with 

viruses.47 Abundant levels of MULT-1 transcripts were measured in several tissues, most 

notably in the thymus and MULT-1 expression occurs frequently on primary lymphomas and 

adenocarcinomas.75 

 

 

Regulation of NKG2D-L expression 

Expression of NKG2D-L must be tightly regulated to ensure elimination of diseased cells 

while avoiding destruction of healthy cells. Although the molecular mechanisms of NKG2D-

L regulation are incompletely understood, recent insights into regulatory mechanisms of 

NKG2D-L expression have shown, that regulation may take place on transcriptional, post-

transcriptional and post-translational levels. 

NKG2D-L expression is altered at a transcriptional level in response to several stimuli 

including heat shock, genotoxic stress, oxidative stress and viral infections (Fig. 6). Retinoic 

acid (RA) was the first reagent with potential to modulate NKG2D-L expression: 

transcriptional activity of Rae-1 significantly increased in response to RA in mouse 

teratocarcinoma cell line and human MIC proteins were upregulated upon treatment with RA 

in hepatocellular carcinoma cells.46,76 A RA–inducible element was found in the promoters of 

Rae-1 family members, suggesting that gene expression is induced at the transcriptional level 

by RA.77 Heat shock has been shown to upregulate MICA/B in epithelial cells, due to binding 

of heat shock factor 1 (HSF1) to the heat shock elements located in the promoter region.65 In 

contrast, upregulation of MICA/B in response to CMV infection is not dependent on the 

promoter region, but requires the expression of the viral intermediate early genes IE1 and 

IE2.78 Treatment with agents provoking DNA damage and stalled replication (e.g. 5-FU, 

aphidicolin, cisplatin and UV-C) activates members of the DNA damage response pathway, 

ataxia telangiectasia mutated (ATM) or ATM- and Rad3-related (ATR) protein kinases, 

resulting in increased expression of NKG2D-L in human fibroblasts and mouse epithelial 

cells.79 Oxidative stress induced MIC gene expression in colon carcinoma cells.78,80 Activator 

protein 1 (AP1), a transcription factor involved in tumorgenesis and cellular stress response 

was shown to regulate Rae-1, since upregulation of Rae-1 is dependent on low levels of 

JunB, a member of the AP1 transcription complex, as shown in JunB deficient mouse 
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embryonic fibroblasts.81 Finally, NKG2D-L was induced after transfection of the adenovirus 

serotype 5 (Ad5) E1A oncogene into mouse fibrosarcoma cells resulting in NKG2D-

dependent tumor rejection in vivo.82 

Transcriptional regulation of NKG2D-L was also reported for hematopoietic cells. In 

monocyte-derived dendritic cells (mDC), stimulation of toll-like receptors (TLR) with LPS 

poly I:C and RNA virus infection increased expression of ULBP1 and ULBP2, resulting in 

mDC-mediated NK cell activation.83 Furthermore, in vitro maturation of DCs is accompanied 

by an increase in ULBP1 mRNA and cell surface expression.84 LPS-dependent upregulation 

of ULBP1-3 and MICA on the cell surface of human macrophages activated NK cell 

cytotoxicity resulting in elimination of overstimulated macrophages.85 Moreover, stimulation 

of mouse macrophages by TLR ligands induced transcripts of all Rae-1 family members in a 

MyD88-dependent manner.86 In vitro co-culturing of antigen presenting cells with T cells or 

treatment of T cells with superantigens increased NKG2D-L expression on T cells and in 

consequence susceptibility to NK cell lysis.87-88 Inhibition of ATM and ATR, two members of 

the DNA damage response pathway, prevented upregulation of MIC in a NFκB-dependent 

manner.88 Antitumor reagents have been reported to modulate expression of NKG2D-L. 

Treatment of primary AML blasts and CD34+CD38- leukemic stem cells with the histone 

deacetylase inhibitor (HDACi) valproic acid induced surface expression of NKG2D-L 

resulting in increased susceptibility to NK cell lysis.70,89 Moreover, low-dose application of 

the proteasome inhibitor bortezomib enhanced MICA/B expression on hepatocellular 

carcinoma cells.90 

 

 

 
Figure 6: Examples of (A) transcriptional and (B) post-transcriptional regulation of NKG2D ligands62 



 
II. INTRODUCTION – Natural Killer Cells 

 

24 

As mentioned above, cell surface receptor expression and mRNA levels of NKG2D-L 

do not always correlate suggesting that NKG2D-L are at least partly regulated by post-

transcriptional mechanisms. Multiple mechanisms of post-transcriptional and post-

translational regulation of NKG2D-L such as intracellular retention, microRNA involvement, 

change of ubiquitination status and proteolytic shedding have been reported (Fig. 6). Infection 

of cells with HCMV induces transcription of NKG2D-L genes.42 However, HCMV virus has 

developed evasion strategies to prevent surface expression of MICB and ULBP1/2 proteins 

and therefore elimination of infected cells by NK cells: the viral UL16 protein was found to 

bind these ligands resulting in intracellular sequestration and retention.91-92 Mandelboim and 

colleagues revealed another antiviral defense mechanism of HCMV and other herpesviruses. 

Viral microRNAs influence expression of MICB by targeting the 3’UTR of MICB leading to 

translational repression and therefore downregulation of this NKG2D-L.93 Furthermore, also 

human endogenous microRNAs are able to negatively regulate the translation of MIC 

ligands.94-95 IFN was reported to decrease the expression of MICA and ULBP2 in melanoma 

cells and glioma cells and of mouse H60 on sarcoma cells in a STAT1 dependent manner.96-97 

Interestingly, Bui and colleagues showed that the downregulation of MICA on MelJUSo and 

HeLa cells in response to IFN was mediated by a single microRNA, miR-520b, which binds 

to the MICA promoter region and the 3’UTR.98 Another mechanism to modulate NKG2D-L 

post-transcriptionally is proteolytic shedding of MICA, a process that requires 

metalloproteinases and the cell surface endoplasmatic reticulum 5 protein (ERp5) and might 

enable the tumor to escape from immunosurveillance.51,99-100 Finally, the murine NKG2D-L 

MULT1 was shown to be induced upon heat shock and UV irradiation due to decreased 

ubiquitination resulting in lysosomal degradation.75 

This summary shows that numerous groups have investigated the stimuli and the 

mechanisms, which lead to induction of human and murine NKG2D-L. However one has to 

emphasize, that many of these studies represent either single reports or results which have not 

been confirmed by other groups. It appears also that the mechanism of NKG2D-L regulation 

are most likely dependent on the investigated cell type. Furthermore, most of the results are 

based on in vitro experiments and the relevance of the described mechanisms in vivo has still 

to be elucidated. These facts imply that further studies are needed in order to increase the 

knowledge about regulation of NKG2D-L expression. 
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1.3 Effector functions of NK cells 

 

NK cells are potent effectors capable to lyse target cells. The cytotoxicity of NK cells has to 

be properly controlled to ensure elimination of aberrant cells while sparing healthy cells. The 

activation of NK cells is tightly regulated by a balance of activating and inhibitory signals 

mediated by receptor/ligand interactions (Fig. 7).7 Under normal conditions, elimination of 

healthy autologous (‚self’) cells by NK cells is prevented through recognition of ‚self‘ MHC 

class I molecules on target cells by inhibitory NK cell receptors (Fig. 7A).15 This tolerance to 

‚self‘ requires an education process, before NK cells attain functional 

competence.101Additionally, healthy ‚self’ cells mostly lack activating ligands and therefore 

do not trigger activatory signals. When stimulating signals outweight inhibitory ones and pass 

a critical threshold, NK cells respond with cytolytic killing and production of cytokines (Fig. 

7B).75 According to the “missing self hypothesis”, introduced by Karre and colleagues, ‚self’ 

MHC class I molecules are frequently downregulated upon tumor transformation or viral 

infection and therefore escape recognition by MHC class I specific NK cell receptors, 

resulting in elimination of malignant cells by NK cells (Fig 7C).102 Furthermore, stress and 

infections can induce cell surface expression of activating ligands. Interaction of these alert 

molecules with their corresponding receptors results in activation of cell lysis.7 Watzl and 

colleagues showed, that inhibitory receptors can abrogate 2B4-mediated activation of NK 

cells.103 Antibody-mediated stimulation of the co-stimulatory, activating NK cell receptor 

NB4 leads to a rapid tyrosine phosphorylation and in consequence to cytotoxicity and IFN- 

release. The NK cell activation was completely blocked due to lack of tyrosine 

phosphorylation, when KIR2DL1 or CD94:NKG2 were triggered at the same time. Beside 

receptor/ligand interactions, various other stimuli are able to activate NK cells. Antibody-

coated target cells can be recognized by CD16, mainly expressed on CD56dim NK cells, 

resulting in antibody-dependent cell cytotoxicity (ADCC). Triggering of NK cells by 

monokines leads to production of IFN- and other proinflammatory 

cytokines/chemokines.15,104 Furthermore, dendritic cell (DC)-derived cytokines, such as IL-

12, IL-18, IL-15 and IFN-/, have been shown to promote IFN- production, NK cell 

proliferation and cytotoxicity in vitro.105  

NK cells can eradicate infected or tumor-transformed cells by two major mechanisms, 

which both require direct contact between NK and target cells106. The first process involves 

exocytosis of perforin- and granzyme-containing granules, which are released into the 
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intracellular space. Granzyme enters the target cell either through perforin-mediated cytosolic 

delivery or through perforin-independent uptake via the mannose 6-phosphate receptor, and 

subsequently induces apoptotic cell death. The second pathway involves engagement of death 

receptors (e.g. Fas and TRAIL-R) on target cells by their cognate ligands (FAS-L and 

TRAIL) on NK cells, resulting in caspase-dependent apoptosis. 

 

 

 
Figure 7: Regulation of NK cell response by activating and inhibitory receptors (modified from7) 
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2. Acute Myeloid Leukemia (AML) 

 

Acute myeloid leukemia is characterized by maturation arrest of myeloid progenitor cells in 

the bone marrow. The deficiency of healthy bone marrow progenitors and their replacement 

by malignant blasts leads to a reduced number of healthy mature blood cells, causing various 

clinical symptoms like infections fatigue, paleness, shortness of breath, hemorrhage and 

fewer. AML is the most common leukemia with an annual incidence of 3.5 per 100000 

affecting mainly adults.107 The annual incidence increases dramatically to 16 per 100000 in 

persons aged 65 and older. The median age of patients at diagnosis is 67 years. The 5-year 

survival for all AML patients is 23.4%, and 36.9% for patients younger than 65 years. 

Although overall survival has increased in the last years through improvement of diagnostic 

and therapeutic concepts, mortality is still very high and new strategies for treatment of AML 

are required. 

 

 

2.1  Risk factors 

 

The majority of AML patients have no known risk factors for developing AML and are 

therefore considered to have primary AML. However some patients develop secondary AML 

as a consequence of chemical exposure, ionizing irradiation or prior blood disorders. Known 

chemicals, which have been associated with development of AML, are chemotherapeutic 

drugs (e.g. alkylating agents, anthracyclines or topoisomerase inhibitors), benzene and 

tobacco smoke, which most probably cause various chromosomal aberrations in leukemic 

cells.108-111. Another risk factor for AML is ionizing irradiation. Patients treated with 

radiotherapy have a risk for developing therapy related AML.111 Among survivors of atomic 

bombing in Japan, nuclear tests in the USA as well as radioactive fallout after failures in 

nuclear power plants, the frequency of developing AML was increased.112-113 Also chronic 

exposure to irradiation of jet cockpit crew members and radiologists, employed prior to 

adoption of modern safety practices, was associated with a significantly increased risk of 

AML.114-115 Patients with preleukemic blood disorders like myelodysplastic syndroms (MDS) 

or myeloproliferative diseases (MPD) have an increased incidence of transforming into 

AML.116 
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Although AML develops in most cases sporadically due to acquisition of somatic mutations, 

some cases of familial leukemia have been reported, characterized by autosomal dominant 

inheritance and a declining age of onset with each generation.117 A family history of leukemia 

in a first degree relative increases the risk for leukemia by approximately three- to five-fold 

and the concordance for leukemia among identical twins is high.118 Additionally, some 

congenital diseases exist which have leukemia as a component feature. Individuals with Down 

syndrome, characterized by trisomy of chromosome 21, have a 10-18-fold increased risk for 

leukemia and also autosomal recessive syndromes of DNA repair deficiency (e.g. Bloom’s 

syndrome, Ataxia telangiectasia and Fanconi anemia) are predisposed to hematologic 

neoplasms.118-119 

 

 

2.2  Diagnosis and classification 

 

Modern diagnostic is based on combination of morphologic and cytochemical techniques as 

well as immunophenotyping by flow cytometry, cytogenetics and molecular diagnostic. The 

primary diagnostic includes morphologic identification of leukemic blasts (Fig. 8). Since the 

main characteristic of AML is maturation arrest of immature progenitor cells at different 

stages of myeloid development, leukemic cells from blood or bone marrow are 

morphologically characterized according to lineage maturation stage. Based on morphologic 

appearance of blasts and cytochemistry, the French-American-British (FAB) group has 

divided AML into nine distinct subtypes M0 – M7 (Table 2).120 Following the FAB system, a 

diagnosis is confirmed when the bone marrow contains more then 30% of blasts.  

The current schemata for AML classification is the World Health Organization 

(WHO) system, which divides the disease entities not only morphologically but uses in 

addition all available information such as cytochemistry, immunophenotype, genetics and 

clinical features.121-122 Four major subgroups of AML were defined: (1) AML with recurrent 

genetic abnormalities, (2) AML with myelodysplasia-related changes, (3) therapy-related 

myeloid neoplasms and, (4) AML not otherwise specified. Furthermore, additional minor 

AML entities exit. The blast threshold for the diagnosis of AML was reduced from 30% to 

20% in the blood or marrow, and patients with the particular clonal, recurring cytogenetic 

abnormalities are considered to have AML regardless of the blast content.  
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Figure 8: Scheme of normal myeloid development and a relationship to chronic and acute myeloid 

leukemia123 

 

 

Table 2: French-American-British (FAB) classification of acute myeloid leukemia and associated genetic 

abnormalities124 
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2.3  Pathogenesis and prognosis 

 

AML is characterized by aquisition of somatic mutations in hematopoietic progenitor cells. 

55% of adults with AML harbour chromosomal aberrations (e.g. reciprocal translocations, 

inversions, insertions, deletions, trisomies and monosomies).125 45% of patients have a normal 

karyotype, however carry other genetic lesions like point mutations. Understanding of genetic 

causes for AML has lead to better prediction of clinical outcome, improvement in 

classification of AML subgroups, prediction of therapeutic response and to the development 

of novel therapies that target some of the genetic lesions. 

Development of leukemia is thought to happen in a multistep process.126-127 It has been 

shown, that expression of a single mutant gene is not sufficient to cause AML and that 

different mutations cooperate with each other.128-131 Two classes of mutations can be 

distinguished (Fig. 9). Class I mutations activate members of signal transduction pathways 

(e.g. tyrosine kinases FLT3 and c-KIT, N-RAS, K-RAS) resulting in enhanced proliferation 

and/or survival of hematopoietic progenitors. Class II mutations are often ‚loss of function‘ 

mutations affecting transcription factors or components of the transcriptional co-activation 

complexes. An impaired hematopoietic differentiation and/or aquisition of aberrant self-

renewal properties of hematopoietic progenitors is the consequence. Multiple mutations 

belonging to one of these complementation groups occur rarely in the same patient, whereas 

mutations between complementation groups often occur together causing an acute leukemia 

phenotype. 

 

 
Figure 9: Multistep pathogenesis of AML.127 
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Prevalent types of aberrations are translocations and inversions resulting in generation of 

fusion proteins. Chromosomal breakpoints are often located in genes encoding for 

transcription factors (e.g. core binding factor (CBF), retinoic acid receptor alpha (RAR) and 

members of the HOX family) and for co-activators of transcription such as Creb-binding 

protein (CBP), p300, MOZ, TIF2 and MLL.127 Among the most common translocations are 

t[8;21], inv[16] and t[12;21], resulting in AML1/ETO, CBFβ/SMMHC and TEL/AML1 

fusions, respectively.132-134 AML1/ETO fusion is found in approximately 40% of all AML 

FAB M2 without beeing restricted to this subtype. AML1, the DNA-binding α-subunit of the 

transcription factor CBP activates, in combination with its β-subunit CBPβ and other co-

activators, the expression of genes essential for hematopoietic differentiation (Fig 10 A). 

Fusion of AML1 to ETO retains the ability to bind to the target sequence and to interact with 

CBPβ (Fig 10 B). However, ETO binds to a nuclear co-repressor, resulting in repression of 

transcription and therefore block of differentiation.124  

 

 

 
Figure 10: The fusion protein AML1/ETO and its impact on transcription (modified from 124) 

 

 

Likewise, CBFβ/SMMHC and TEL/AML1 are dominant negative inhibitors of CBF-

mediated transcription.127 Translocation t[15;17] is the cause of the chimeric protein 

PML/RAR resulting in disruption of development at a promyelocytic stage due to aberrant 

repression of transcription: While the binding of retinoic acid (RA) to wildtype RAR results 

in dissociation of the co-repressors SMRT and N-CoR and binding of co-activators, and in 
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consequence allows the differentiation and granulopoiesis, binding of RA to PML/RAR 

requires much higher pharmacological doses to dissociate from corepressors.135 Treatment of 

leukemic blasts with all-trans-retinoic acid (ATRA) targets PML/RAR and induces 

differentiation into mature granulocytes.136 The most frequent genetic aberration on molecular 

level are mutations in the tyrosine kinase receptor FLT3.137 In approximately 25% of adult 

AML patients internal tandem duplications (ITD) are found, with highest incidence in FAB 

M3 subtype. FLT3 is important for normal hematopoiesis and development of the immune 

system. Mutations of FLT3 cause autophosphorylation of the receptor, resulting in activation 

of downstream signalling pathways involved in regulation of transcription, proliferation and 

apoptosis, an event associated with poor prognosis.138-139 

The assessment of chromosomal abnormalities in combination with other clinical and 

laboratory data has allowed to subdivide AML into three prognostic groups: favorable, 

standard/intermediate, and unfavorable. One important factor to predict the outcome of AML 

is the cytogenetic status. In addition, other clinical and biological parameters are used to 

predict the response to treatment and the likelihood to relapse (Table 3).124,126  

 

 

Table 3: Adverse Prognostic Factors in patients with AML (modified from 124) 
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2.4  Therapy 

 

The treatment of AML comprises two steps: First, induction therapy is performed, aiming to 

achieve complete remission, which is defined by reduced amout of leukemic blasts in bone 

marrow (< 5%) and recovery of blood counts in peripheral blood. In a second step, 

postremission therapy is administered to sustain remission and prevent relapse.124 

Induction therapy is administered to all newly diagnosed patients except those with 

myelodysplasia or secondary AML. Through administration of cytarabine and anthracyclines 

(e.g. daunorubicin, idarubicin or mitoxantrone), complete remission can be induced in 70-

80% of patients younger then 60 years of age, whereas elderly patients > 60 years have a less 

favorable response rate of 40-50%.140 To increase the rate of complete remission, several new 

approaches have been tested, e.g. administration of high-dose cytarabine in combination with 

daunorubicin and usage of additional cytotoxic reagents or modulators of multidrug 

resistance.141-142 However, none of the alternative treatments had any convincing advantages 

compared to standard therapy. Currently, approaches to sensitize leukemic cells with 

hematopoietic growth factors to improve their susceptibility to cytotoxic chemotherapy are 

under investigation.141-142 However, three studies have showed opposing results concerning 

complete remission and disease-free survival upon administration of G-CSF and GM-CSF, 

and therefore clinical investigations are ongoing.  

After induction of complete remission, three options for postremission therapy exist, 

either high-dose chemotherapy, or chemoradiotherapy in combination with autologous or 

allogeneic hematopoietic stem cell transplantation (HSCT).142 The choice of therapy is 

dependent on type of AML, age of the patient, general health, response to induction therapy 

and, if HSCT is considered, the availability of a stem cell donor. If no postremission therapy 

is administered, virtually all patients will relapse.143 Patients with favorable-risk AML are 

generally treated with 3-4 courses of high-dose cytarabine.141 In a landmark study of this 

approach, the overall survival rates after four years was 46 percent.144 An alternative 

postremission stategy is the combination of chemoradiotherapy HSCT, whereby the entire 

hematopoietic system is replaced. Sources of stem cells are, beside the bone marrow, cord 

blood and “mobilized” blood, where the hematopoietic stem cells migrate out of the bone 

marrow into the periphery upon treatment with cytokines.145 For patients with favorable or 

intermediate risk, ablative cytotoxic treatment followed by autologous HSCT (re-infusion of 

the patients own stem cells) can be considered as alternative option for postremission therapy. 
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Promising long-time survival rates of 45-55% have been reported.124 Disadvantages of an 

autologous HSCT are possible contamination of the graft with residual leukemic cells that 

might contribute to disease relapse, and the lack of the graft-versus-leukemia effect.146 

However, benefits of this therapeutic approach may outweight the drawbacks under certain 

clinical indications. Allogeneic HSCT is considered as the most efficient antileukemic 

treatment. Transplantation of bone marrow from an HLA-matched sibling can cure 50-60% of 

recipients. The low relapse rate is the result of a combination of marrow-ablative high dose 

cytotoxic therapy before bone marrow transplantation and an allogenic graft-against-leukemia 

effect, mediated through alloreactive T and NK cells. However, these beneficial effects are 

accompanied not only by high treatment related mortality due to the toxicity of drugs, but also 

by complications of immunosuppression as well as the risk of graft-versus-host disease 

(GvHD), restricting allogeneic HSCT mainly to patients younger then 60 years.124 For 

patients older then 60 years, reduced-intensity conditioning (RIC) prior allogeneic HSCT has 

been developed to reduce the treatment related mortality.147 Results of a retrospective study in 

AML patients  <50 years suggest, that the disease-free survival of patients after RIC regimen 

HSCT was comparable to those patients receiving standard myeloablative allo-HSCT.148 

During the last years, the investigation of pathogenic mechanisms on molecular and 

epigenetic level has revealed strategies to directly target disease associated genetic lesions and 

molecular defects. For treatment of acute promyelocytic leukemia, which is often associated 

with the PML/RARA fusion protein, ATRA and arsenic trioxide are efficient drugs resulting 

in survival rates >70%.149 Furthermore, three novel agents have reached phase 3 clinical trials 

and are used in combination with conventional cytotoxic therapy.141 Gemtuzumab ozogamicin 

(GO) is a humanized anti-CD33 antibody chemically linked to the cytotoxic agent 

calicheamicin that inhibits DNA synthesis and induces apoptosis. This drug is approved for 

relapsed AML in older patients and can produce remissions in 15-35% of these patients.150 In 

younger patients addition of GO to standard induction therapy led to a promising 91% 

complete remission rate.151 A second group of agents are FLT3 tyrosine kinase inhibitors, 

which have shown promising response rates in patients with FLT3 mutations.152-153 The third 

group of agents are the demethylating agents azacitidine and decitabine. Treatment of AML 

patients with azacitidine resulted in a 2 year overall survival of 50%, whereas the overall 

survival in patients treated with conventional therapy was only 16%.154 
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2.5  NK cells and AML 

 

Since NK cells are able to kill myeloid leukemic cells in vitro and in vivo, these immune 

effectors might play an important role in immunosurveillance.89,155-156 The recognition of 

leukemic cells by NK cells is determined by interactions of KIR and CD94:NKG2A receptors 

with HLA molecules, resulting in inhibition of NK cell function, and the presence of 

activating ligands on leukemic cells. Abnormalities in expression of NK cell receptors or 

ligand in leukemic patients can lead to inadequate NK cell function and in consequence 

escape of leukemic blasts from NK cell recognition.157  

Indeed, NK cells of AML patients are altered regarding phenotype and function. 

Costello and colleagues showed, that NK cells of AML patients are reduced in number and 

that IL-2 activated NK cells display a low NCR surface density which was accompanied with 

weak cytotoxicity against autologous leukemic cells.158. These results are in contrast to 

findings of our group who showed, that cytokine-activated NK cell from patients with AML 

are highly cytotoxic against K562 target cells and are able to produce high amounts of IFN-. 

Expression levels of NKG2D and NKp46 were comparable to activated NK cells from healthy 

donors.159 Blasts from most AML patients express low level of ULBPs, MICA/B and NCR-

specific ligands and are poorly susceptible to lysis by NK cells.35,156 The reason for low 

density of activating ligands might be in vivo selection for ligand-low malignant clones, 

maturation arrest at a ligand low phenotype in hematopoietic differentiation or proteolytic 

shedding of MIC ligands.68,99,158 Furthermore, deficient expression of HLA class I molecules 

on leukemic blasts has been reported.160-163 Genetic studies revealed, that leukemic patients 

are associated with a more inhibitory A/B KIR haplotype, compared to controls, and that the 

frequency of specific inhibitory KIR-HLA class I interactions is increased.164-165 

Due to their cytotoxic potential against leukemic blasts, NK cells are promising 

candidates to eradicate malignant cells, which have escaped killing by high-dose 

chemotherapy. Velardi and colleagues demonstrated that the incidence of leukemic relapse 

was significantly reduced in AML patients, which have received hematopoietic stem cells 

from haploidentical donors with KIR ligand incompatibility in graft-versus-host direction. In 

this situation, alloreactive donor NK cells exhibit cytotoxicity, since inhibitory KIR molecules 

on the donor NK cell do not become engaged by their corresponding KIR ligand on recipient 

cells (Fig. 11). In consequence, this alloreactive NK cells are able to mediate graft-versus-

leukemia effect against residual leukemic cells.155 
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Figure 11: KIR mismatch in haplotype-mismatched stem cell transplantation166 (A) Donor and recipient are 

HLA haplotype-mismatched and KIR-mismatched at the HLA-C locus. Donor NK cell clones expressing 

KIR2DL1 are usually inhibited by ligands of C2 group of HLA-C molecules (HLA-Cw2, 4, 5, 6). However, in 

this transplantation setting, recipient’s leukemic blasts express HLA-Cw3, a member of the C1 group of HLA-C 

molecules, which is not recognized by the donor’s KIR2DL1 receptor, therefore resulting in activation of NK 

cells and lysis of leukemic blasts. (B) Donor and recipient are HLA haplotype-mismatched but both express 

HLA-C alleles of the C2 group. Therefore, donor NK cells expressing KIR2DL1 are inhibited by HLA-Cw4 on 

leukemic cells, resulting in lack of lysis. 

 

 

Additionally they showed that infusion of alloreactive NK cells into AML-engrafted 

NOD/SCID mice erradicated human leukemia in vivo. Furthermore, infusion of high numbers 

of allogeneic NK cells into lethally irradiated mice did not cause GvHD and pretransplant 

infusion of alloreactive NK cells into mice obviated the need for high intensity conditioning 

to achieve durable full-donor engraftment.155 

In an autologous or HLA-matched setting, blocking of the interaction between KIR receptors 

on donor cells and MHC class I molecules on recipient’s cells could be a potential therapeutic 

strategy. In a murine acute leukemia model, blocking of the murine counterpart of inhibitory 

NK receptors with a monoclonal antibody protected from leukemic death without toxicity. 

Also adoptive transfer of IL-2 activated NK cells treated ex vivo with this antibody 

significantly increased survival of leukemic mice.167 Since manipulation of the balance of 

activating and inhibitory signals in NK cells might open new prospects in immunotherapy, a 

better understanding of regulation of activating and inhibitory ligands may allow to develop 

novel therapeutic strategies against cancer. 
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3.  Post-transcriptional Regulation of Gene Expression 

 

The expression of genes is regulated not only on transcriptional level but at multiple steps in 

the expression pathway including splicing, mRNA transport, polyadenylation, translation, and 

posttranslational modifications.168-169 At RNA level, two mechanisms of post-transcriptional 

regulation are the control of mRNA stability and cytoplasmatic polyadenylation.170-171 

Regulation is accomplished by the interaction of trans-acting RNA binding proteins with cis-

acting regulatory elements, which are distributed throughout the transcript. The advantage of 

regulation at a post-transcriptional level are the possibility to rapidly adjust the protein 

synthesis to the changes in the cell environment, to fine-tune protein amounts.  

Important elements for mRNA stability are the cap structure at the 5’end and the 

poly(A) tail at the 3’end of the transcript. The poly(A) tail becomes gradually shortened 

through the deadenylating nuclease. When the poly(A) tail is reduced to a critical length, 

poly(A) binding proteins cannot bind any longer to the poly(A) tail, which destabilizes the 

interaction with the 5’cap and translation initiation factors. As a consequence, decapping 

enzymes remove the exposed cap and the unprotected mRNA is degraded by exonucleases. 

The rate of poly(A) shortening determines the half-lives of transcripts.169 

Many regulatory elements are located within the 5’UTR and the 3’UTR of transcripts. 

A cis-element, located in 5’UTR and at the beginning of the coding region of the IL-2 mRNA, 

has been shown to mediate stabilization of the transcript in response to activation of c-jun 

NH2-terminal kinase (JNK).172 The 5’UTR of the ferritin mRNA contains iron-responsible 

elements (IRE). In response to low iron concentration, IRE-binding proteins (IRE-BP) bind to 

the IRE and block the ribosome’s ability to inititate translation.173 The coding regions of 

several messages (e.g. c-FOS and c-MYC) contain specific destabilization elements.174-175 

Poly(A) signals and cytoplasmatic polyadenylation elements (CPE) are specific sequence 

motifs in the 3’UTR, required for polyadenylation. In oocytes, all CPE-containing mRNAs 

have short poly(A) tails. Binding of CPE binding proteins (CPEB) to CPEs mediates 

repression of translation, since the interactions of CPEB with other proteins prevent the 

assembly of the inititation complex at the 5’end of the mRNA. Upon phosphorylation of 

CPEB, the cleavage and polyadenylation specificity factor (CPSF) binds to the poly(A) site 

and interacts with the cytoplasmatic form of the poly(A) polymerase (PAP). After the poly(A) 

tail is extended, poly(A) binding proteins bind to it and interact with eIF4G, which is together 

with other initiation factors important for initiation of translation.171 Two other important 
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elements, located within the 3’UTR are microRNA binding sites and AU-rich elements, 

which modulate the mRNA stability positively or negatively. Both elements will be described 

in more detail in this chapter.  

 

 

3.1  MicroRNAs 

 

MicroRNAs are short noncoding RNAs ~22 nucleotides in length which play an important 

role in the regulation of various cellular processes, such as cell cycle, proliferation, apoptosis, 

differentiation and development. They are expressed in all higher organisms (e.g. humans, 

animals, flies, worms, plants) and viruses, and function as negative regulators of gene 

expression through inhibition of translation and/or mRNA degradation.176-177 MicroRNAs are 

evolutionary conserved and their genes represent about 1-2% of all human genes. So far, more 

than 850 human microRNAs are known, which are predicted to regulate 30% of human 

mRNAs. Single microRNAs are able to target more then 200 mRNAs and, conversely, 

multiple microRNAs cooperatively control a single mRNA target.178 MicroRNAs are encoded 

in the genome as single microRNAs or as multi-cistronic microRNA clusters. The genes are 

located either in non-coding regions between genes (intergenic), where they are transcribed 

from their own promoters, or in exons or introns of protein-coding mRNAs and non-coding 

RNA, where they are usually coordinately expressed with their host gene.179-181 

 

 

3.1.1  MicroRNA biogenesis and mode of action 

 

MicroRNAs are transcribed in the nucleus by RNA polymerase II as large RNA precursors 

with stem-loop regions, termed pri-microRNAs (Fig. 12).182 Recognition and cleavage of this 

molecule by the RNase III enzyme Drosha and its cofactor Pasha/DGCR8 results in 

generation of ~70 nucleotide-long hairpin intermediates (pre-microRNAs), that are exported 

to the cytoplasma via the nuclear transport receptor exportin-5 and the cofactor RanGTP. The 

pre-microRNA is cleaved by the Rnase III enzyme Dicer into double stranded RNA of ~22 

nucleotides, and the mature single-stranded microRNA is incorporated into the microRNA-

associated RNA-induced silencing complex (miRISC). Recruitment of the microRNAs by the 
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miRISC complex to microRNA binding sites with fully or partly complementary sequences in 

the 3’UTR of target genes usually results in gene repression.181,183 Recent reports suggest that 

miRNAs also interact with the 5’UTR and open reading frames of genes and mediate not only 

repression, but also translational activation.184-186 The precise mechanisms, that lead to 

silencing of gene expression upon microRNA binding, are so far not well understood. Several 

published studies suggest, that translational repression might be accomplished though 

different ways, e.g. inhibition of translational initiation, inhibition of elongation, premature 

translational termination and cotranslational protein degradation as well as microRNA-

mediated decay of target mRNAs.187  

A crucial factor, determining the mode of action, is the degree of complementarity between 

the microRNA and the target (Fig. 12).184 Binding of microRNAs with perfect or nearly 

perfect complementarity to regulatory elements located in the target transcript induces 

cleavage by ribonucleases in the miRISC complex, resulting in degradation of the mRNA. 

This type of mechanism is commonly found in plants, but microRNA-directed cleavage has 

also been described to occure in mammals. Most animal microRNAs bind with imperfect 

complementarity to transcripts and repress gene expression post-transcriptionally, resulting in 

reduction of protein levels without affecting the mRNA levels. However studies have shown, 

that binding with partial complementarity can also induce mRNA degradation. 

The most important nucleotides for microRNA-mRNA interactions are six nucleotides at 

position 2-7 at the 5’end of the microRNA, called ‘seed’ sequence.188 Coherent Watson-Crick 

base-pairing in the seed sequence is required for binding of microRNAs to their target. 

Different types of microRNA target sites exist dependent on the number of seed matches (6 or 

7 nt), the position of seed matches and the nucleotide composition in the flanking regions. 188 

However not only the type of site, but also the number of target sites, the distance between 

target sites, site position, the local AU content and the 3’pairing of microRNAs influences the 

efficiency of message destabilization.188-189 
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Figure 12: Biogeneis of microRNAs.190 

 

 

3.1.2  MicroRNAs and cancer 

 

Examination of microRNA expression patterns in cancer cells and corresponding healthy 

tissues revealed that microRNAs are frequently misexpressed in human cancer indicating that 

microRNAs function as oncogenes or tumor suppressors (Fig. 13).190 Alterations in 

microRNA expression may be caused by alterations in the microRNA processing machinery, 

epigenetic mechanisms or genomic abnormalities (e.g. deletions and mutations, genomic 

amplifications, chromosomal rearrangements).191 Many human microRNA genes are located 

at fragile sites of the chromosome, which are known to be associated with cancer, further 

supporting the notion, that microRNAs might have important functions in cancer 

progression.192 
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Figure 13: MicroRNAs can function as tumor supressors and oncogenes190 (a) In normal tissue, correct 

transcription, processing and binding to target mRNAs lead to translational repression and in consequence to 

normal rates of growth, proliferation, differentiation and cell death. (b) Defects in any stage of the microRNA 

biogenesis can lead to elimination or reduction of mature microRNAs that function as tumor suppressors. In 

consequence miR-target oncogenes are not repressed resulting in tumor formation due to aberrant expression of 

oncoprotein. (c) Overexpression of microRNAs that function as oncogenes results in tumor formation due to 

inappropriate negative regulation of miR-target tumor suppressor genes. This misexpression can be caused by 

amplification of the microRNA gene, a constitutively active promoter of microRNA genes, increased efficiency 

in microRNA processing or increased stability of the microRNA. 

 

 

MicroRNAs as tumor suppressors 

In human cancer, a global decrease in microRNA level can be observed, indicating that 

microRNAs act as tumor suppressors.192-193 First evidence for this model was provided by 

Calin and colleagues, who described that the miR-15/16-1 cluster, located on chromosome 

13q14, is preferentially deleted and downregulated in about 68% of patients with B-cell 

chronic lymphocytic leukemia (B-CLL).194 These microRNAs serve as tumor supressors by 

targeting the antiapoptotic B cell lymphoma 2 (Bcl2) protein.195 Moreover, the miR-15a/16-1 
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cluster was shown to regulate survival, proliferation and invasion in a prostate cancer model 

by targeting CCND1 and WNT3A.196 Other studies revealed members of the let-7 family as 

tumor supressors. This microRNA family consists of 12 human homologues, which map to 

fragile sites associated with lung, breast, urothelial and cervical cancer.197 The expression of 

let-7 microRNAs is significantly reduced in lung cancer and correlates with poor prognosis.198 

Let-7 directly regulates important oncogenes, including RAS, MYC and HMGA2, and alters 

cell cycle, cell division, and cell proliferation genes.199-202 Furthermore, multiple studies have 

shown, that microRNAs are important components of the p53 tumor suppressor network. 

Upon DNA damage or oncogenic stress, p53 transactivates members of the miR-34 family. 

These microRNAs subsequently regulate cell cycle and DNA damage response genes, 

resulting in growth arrest and apoptosis.203-205 

Reduced expression of microRNAs in cancers can be caused not only by mutations in 

microRNA genes, but also through reduced levels of enzymes crucially required for proper 

microRNA biogenesis. In ovarian cancer, reduced levels of Dicer and/or Drosha mRNA were 

observed in ~50% of samples, and low levels of these proteins were associated with poor 

prognosis.206 Reduced expression of Dicer was also found in lung cancer cells, and correlated 

with shorter postoperative survival of patients compared to patients expressing high levels of 

Dicer.207 Knockdown of Dicer, Drosha or DGCR8 in murine or human cancer cells resulted in 

a decreased microRNA levels, and enhanced tumor transformation, accompanied by increased 

proliferative capacity. Accelerated tumor formation, increased tumor size and invasion into 

surrounding tissue were observed upon subcutaneous injection of cancer cells, impaired in 

microRNA-processing, into immunocompromised mice. However, inpairing of the 

microRNA biogenesis machinery in wild type cells revealed that this event is not sufficient to 

promote de novo transformation.208  

 

MicroRNAs as oncogenes 

MicroRNAs have also been identified as potential oncogenes, since they can be upregulated 

in malignant cells. In many lymphomas, the polycistronic miR-17-92 cluster, which includes 

seven microRNA genes (miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR19b-1, miR-20 and 

miR-92-1), is overexpressed due to amplification. Concurrent overexpression of the miR19-

92 cluster and c-MYC accelerated tumor development in a murine B-cell lymphoma model.209 

This microRNA cluster is also markedly overexpressed in lung cancer, resulting in enhanced 

lung cancer cell growth.210 Administration of miR-17-5p and miR20a antisense molecules 
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significantly inhibited cell growth by inducing apoptosis.211 The oncogenic miR-155 is 

processed from a precursor form BIC (B-cell integration cluster), a non-coding RNA which 

accumulates in lymphomas. Expression level of miR-155 is 10 to 30 fold increased in 

lymphomas compared to normal B cells.212 B-cell specific overexpression of miR-155 in a 

transgenic mouse model promoted proliferation of pre-B-cells in spleen and bone marrow, 

and emergence of high-grade B cell neoplasms.213 Furthermore, miR-155 is overexpressed in 

the majority of pancreatic cancers, where it directly regulates the proapoptotic stress-induced 

p53 target gene TP53INP1.214 The miR-221/222 cluster is ~11 fold upregulated in thyroid 

cancer resulting in dramatic loss of KIT transcripts and protein.215 MiR-211/222 is also 

overexpressed in glioblastoma and directly targets the tumor suppressor and cyclin-dependent 

kinase inhibitor CDKNIB/p27Kip1, resulting in continuous proliferation of cancer cells.216 In 

hepatocellular carcinoma, high levels of miR-221 negatively regulate both CDKNIB/p27Kip1 

and CDKNIC/p57.217 Further, miR-21 is strongly overexpressed in glioblastoma tumor tissue 

and cell lines, and knockdown of miR-21 in these cells leads to activation of caspases and 

increased apoptotic cell death.218  

 

 

MicroRNA profiling 

Profiling of microRNA expression patterns allows to distinguish cancer tissue from normal 

tissue through unique microRNA expression signatures. These signatures can be used to 

classify different tumor types and tumor grades, to cluster sample groups according to their 

embryonic lineage, to predict prognosis and to determine the specific course of 

treatment.193,198,219-221 Expression pattern analysis in six solid cancers (breast, colon, lung, 

pancreas, prostate and stomach cancer) has revealed that overexpression of miR-21 is a 

common event in tumorigenesis, suggesting that miR-21 has an important regulatory role in 

pathways shared by all solid tumors investigated.222 In colorectal cancer, 28 microRNAs were 

identified to be differentially expressed compared to normal mucosa, and miR-143 and miR-

145 are consistently downregulated in this type of solid cancer.223 In breast cancer, 29 

microRNAs were found to be significantly de-regulated, and among these, a set of 15 

microRNAs predicted normal versus cancer tissue with a 100% accurancy.224 Rosenfeld and 

colleagues showed, that only 48 microRNA markers are needed to identify the origin of 22 

tissues with an accuracy of 90% in patients with metastatic cancer.225 Therefore, microRNA 
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signatures can be used to improve diagnosis and prognosis for cancer patients, as summarized 

in Table 4. 

 

 

Table 4: microRNA expression profiling in human cancers (adapted from 191) 

 

 

 

MicroRNAs as therapeutics 

Since microRNAs function as oncogenes and tumor suppressors, they might be targets for 

cancer therapies. One therapeutic strategy aims to quench oncogenic microRNAs by 

antisense-mediated inhibition. Knockdown of endogenous onco-miR-21 by synthetic 2‘-O-

methyl modified anti-microRNA oligonucleotides (AMO) in glioblastoma or breast cancer 

cells as well as in a xenograft mouse model inhibited cell growth due to increased 

apoptosis.218,226 A single intravenous injection of cholesterol-conjugated AMOs to target liver 

specific miR-122 into mice silenced miR-122 for up to 23 days and decreased the cholesterol 

serum level by ~40%.227 Intravenous injection of more stable and less toxic locked nucleic 

acid (LNA)-based olignonucleotides (LNA-antimiR) into African green monkeys resulted in 

depletion of mature miR-122 and a dose-dependent and long-lasting lowering of plasma 

cholesterol.228 Stable knockdown of microRNAs in vivo can be achieved through lentiviral 

delivery of artificial anti-microRNA decoys, comprised of multiple complementary binding 

sites for the targeted microRNA. Transplantation of hematopoietic stem cells, containing an 
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anti-miR-223 decoy, into lethally irradiated mice resulted in functional knockdown of miR-

223 that phenocopied the properties of the miR-223 knockout mouse.229  

Another strategy showing great therapeutic promise is to replace microRNAs by 

chemically modified double-stranded RNA oligonucleotides, so-called microRNA mimics, or 

viralvector-encoded microRNAs in tumors with reduced microRNAs expression. Adenovirus-

mediated overexpression of let-7 in a murine model of human lung cancer model suppressed 

lung tumor initiation and resulted in a 66% reduction of tumor burden compared to control 

mice.230 Similarly, mice injected with tumor-initiating breast cancer cells, which were 

transduced with lentiviruses containing let-7 overexpression cassette, developed significantly 

fewer tumors compared to mice injected with non-modified breast cancer cells.231 Bonci and 

colleagues showed that reconstitution of miR-15a and miR-16 expression in vitro and in vivo 

induced growth arrest and apoptosis in prostate cancer cells, and lead to considerable volume 

reduction in a xenograft prostate cancer model.196 In mice harbouring liver tumors, significant 

tumor regression was observed after adenoviral delivery of miR-26a.232 

 

 

3.2.2  MicroRNAs in normal hematopoiesis and acute leukemia 

 

MicroRNAs are crucial regulators of many physiological processes including haematopoietic 

differentiation. As already mentioned in section 2.3.1.2, inappropriate expression of 

microRNA contributes to leukaemogenesis.  

First evidence, that microRNAs play a role during normal hematopoiesis was provided by 

Chen and colleagues.233 From ~100 microRNAs, which were cloned from mouse bone 

marrow, miR-181, miR-223 and miR142s were differentially or preferentially expressed in 

hematopoietic tissue as well as in individual hematopoietic cell lines suggesting, that these 

microRNAs influence hematopoietic lineage differentiation. Indeed, ectopic expression of 

miR-181 in hematopoietic progenitor cells increased the fraction of B cells in in vitro 

differentiation assays and upon transplantation into lethally irradiated mice in vivo, indicating 

that miR-181 is a positive regulator of B-cell differentiation. In mice, miR-150 is expressed in 

mature lymphocytes, but not in their progenitors.234 In miR-150 knockout mice, a subclass of 

B-cells, so-called B1 cells, are expanded in the spleen and in the peritoneal cavity and the 

amount of antibodies in the blood serum is increased.235 Ectopic expression of miR-150 in 

transgenic mice reduced the expression of c-MYB, a transcription factor important for 
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lymphocyte development, in a dose-dependent manner and dramatically impaired lymphocyte 

development. The myeloid-specific miR-223 negatively regulates the proliferation of 

progenitors, as well as granulocyte differentiation and activation.236 The expression levels of 

miR-223 are low in hematopoietic stem cells and myeloid progenitors and increase steadily 

throughout granulocytic differentiation. Mutant mice lacking miR-223 have significantly 

higher numbers of neutrophils due to increased number of granulocyte progenitors. Further 

examples of microRNAs involved in hematopoiesis are listed in Table 5. 

 

 

Table 5: Examples of microRNA function in normal hematopoiesis (adapted from 237) 

 

 

  

Examination of microRNA expression pattern in leukemic and healthy hematopoietic cells 

revealed a number of microRNAs, which are misregulated in leukemia (Fig. 14).237 Distinct 

expression patterns were observed for AML subtypes harbouring particular types of 

cytogenetic and molecular alterations, and selected sets of microRNAs could predict different 

types of AML with high accuracy.238-239 In addition, the expression signature of some 

microRNAs was predictive of outcome and survival of patients with leukemia. The overall 

and event-free survival was significantly worse in AML patients with high expression of miR-

191 and miR-199a than in AML patients with low expression.240 In AML patients without 

cytogenetic alterations, the expression of miR-181a and miR-181b was associated with good 

outcome, whereas the expression of miR-124, miR-128, miR 194, miR-219-5p, miR-220a and 

miR-320 were associated with poor outcome.241  
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Figure 14: Involvement of microRNAs in acute leukemia237 Upregulated microRNAs are indicated in red, 

downregulated microRNAs are indicated in green. 

 

 

3.2  AU-rich elements (ARE) 

 

AU-rich elements were originally found in the 3’UTR of short-lived mRNAs encoding for 

proto-oncogenes, growth factors and cytokines. Further studies revealed, that 5-8% of human 

mRNAs contain ARE. These elements are involved in regulation of mRNA turnover since 

they promote rapid mRNA decay or stabilization of transcripts. ARE are sequence elements 

of 50-150 nucleotides that are rich in adenosine and uridine bases.242 Based on the number 

and distribution of the pentameric motif AUUUA, ARE can be assigned to three main classes 

(Table 6).243 Class I AREs contain one ore more dispersed copies of the AUUUA motif 

embedded within U-rich regions. Class II AREs consist of at least two overlapping copies of 

the nonameric sequence UUAUUUA(U/A)(U/A) and can be further subdivided into 5 groups 

based on the repetition pattern of AUUUA pentamers.244 Class III AREs lack the typical ARE 

motifs AUUUA.  
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Table 6: Classification of ARE sites (modified from 242 and 169) 

 

 

 

ARE binding proteins (ARE-BP) are trans-acting factors, that bind specificially with 

high affinity to AUUUA motifs and/or U rich regions in the 3’UTR of transcripts.243 

Interaction of ARE-BPs with ARE can have either negative or positive effect on mRNA 

stability, translation and subcellular localization.169 One ARE-BP is able to bind multiple 

mRNAs and, furthermore, individual mRNAs can bind more than one ARE-BP.242 Several 

ARE-BP have been described. HuR belongs to the superfamily of ELAV-related proteins.242 

This ubiquitously expressed protein is predominantly located in the nucleus, however can 

shuttle between nuclear and cytoplasmatic compartments. HuR is able to bind to all three 

classes of AREs, resulting in stabilization of transcripts in vitro and in vivo. Furthermore, 

HuR serves as an adapter molecule for the nuclear export of c-FOS. AUF1/hnRNPD 

(heterogeneous nuclear ribonucleoprotein D) is, like HuR, a nuclear protein and can shuttle 

between the nuclear and cytoplasmatic compartment. AUF1 binds to class I and class II AREs 

and induced mRNA decay under normal conditions. Upon stress (e.g. heat shock), mRNA 

stability was shown to be enhanced. Tristetraprolin (TTP) is, in contrast to HuR and AUF1, 

mainly located in the cytoplasm and targets only class II ARE. TTP was shown to destabilize 

TNF-, GM-CSF and IL-2.  
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The mechanism, how binding of ARE-BP to the transcript alters mRNA decay rates is 

still unclear. One proposed mechanism is, that ARE-BP influence the interaction of the 

translation initiation factors elF4E (4E), elF4G and the poly(A)-binding protein (PARB) with 

the 5’cap structure and the poly(A) tail of the transcripts.169 During translation these 

molecules are thought to promote circularization of the mRNA and therefore protect the 

mRNA from attack of deadenylases and decapping enzymes. Interaction of destabilizing 

factors, such as AUF1, with ARE elements might alter the interaction of PARB with the 

poly(A) tail, resulting in accessibility of the poly(A) tail to PARN (poly(A) ribonuclease) and 

in consequence rapid deadenylation-dependent decay. Conversely, stabilizing ARE-BPs, such 

as HuR, might enhance the binding affinity of PARB to the poly(A) tail and therefore block 

deadenylation.169 

 

 

 
Figure 15: Model of ARE mediated stability of mRNA169 
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III. AIM OF THE THESIS 

 

 

Human natural killer (NK) cells represent a unique subset of lymphocytes that contribute to 

the immunosurveillance of tumor-transformed cells. The recognition and elimination of 

cancer cells by NK cells is tightly regulated by a balance of activating and inhibitory signals 

mediated through receptor/ligand interactions. The inhibitory killer immunoglobulin-like 

receptors (KIR) recognize allelic groups of HLA class I molecules on target cells. 

Engagement of KIRs with ,self’ human leukocyte antigen (HLA) class I molecules inhibits 

NK cell effector function, whereas absence of these ligands on target cells, a common 

consequence of tumor transformation, triggers NK cell cytotoxicity. In addition to sensing the 

lack of ,self’ HLA class I molecules, NK cells need to be stimulated through binding of cell-

surface ligands on target cells to specific activating receptors. NKG2D serves as primary 

activating receptor and interacts with major histocompatibility complex class I (MIC)-related 

molecules, and UL-16 binding proteins (ULBP). NKG2D ligands (NKG2D-L) are absent or 

expressed at low levels in healthy tissue, but are frequently overexpressed on the cell surface 

of malignant cells in response to cellular stress including heat shock, DNA damage and stalled 

DNA replication. The functional importance of NKG2D and its ligands in cancer 

immunosurveillance has been demonstrated by accelerated tumor growth in NKG2D-deficient 

mice and efficient rejection of NKG2D-L+ tumors cells. 

Results from clinical hematopoietic stem cell transplantations (HSCT) indicate a 

curative role for NK cells in some types of human hematopoietic malignancies. Patients with 

acute myeloid leukemia (AML) undergoing haploidentical HSCT had an improved outcome 

when the recipient lacked HLA class I ligands for donor inhibitory KIRs. This KIR-HLA 

class I mismatch provided alloreactivity of NK cells, resulting in an enhanced recognition and 

elimination of residual malignant cells by the graft-versus-leukemia (GvL) effect. However, 

the effectiveness of the GvL may be limited since donor-derived NK cells display 

phenotypical abnormalities and functional immaturity and since the number of potentially 

alloreactive cells among donor NK cells is highly variable. Adoptive transfer of mature 

alloreactive NK cells post-transplantation might be a rational approach to increase the GvL 

effect in order to prevent relapse of AML patients. 

Leukemic cells have developed strategies to evade recognition by NK cells. Unlike in 

solid tumors, where the HLA class I molecules are frequently down-regulated, malignant 
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leukemic cells express high levels of HLA class I molecules and therefore inhibit the effector 

function of NK cells through binding to KIR receptors. Furthermore, AML blasts express only 

low levels of activating NKG2D-L and this prevents NKG2D-mediated activation of NK 

cells. In consequence, both escape mechanisms decrease the GvL effect of NK cells upon 

haploidentical HSCT. A better understanding of molecular meachnisms which contribute to 

regulation of activating and inhibitory ligands in cancer cells may help to develop strategies to 

increase the recognition and elimination of cancer cells by NK cells.  

 

In the first part of the thesis, our goal was to investigate molecular mechanisms which 

contribute to the regulation of the activating NKG2D-L, ULBP1. Previous studies have shown 

that the human NKG2D-L, MICA and MICB, as well as the murine NKG2D-L, MULT-1, are 

post-transcriptionally regulated by microRNAs and ubiquitination, respectively. The 

regulation of ULBP1 has not been linked to any post-transcriptional regulation mechanism so 

far. Since the 2.4kb-long 3’UTR of ULBP1 contains multiple potential regulatory elements, 

like ARE motifs and microRNA binding sites, our first goal was to investigate, by using 

luciferase reporter assays, whether the 3’UTR is involved in regulation of ULBP1. The 

involvement of ARE sites and specific candidate microRNAs in ULBP1 regulation was 

studied by mutating the regulatory elements in the 3’UTR, by overexpression of candidate 

microRNAs and by silencing of endogenous microRNAs with antisense molecules.  

In the second part of the thesis, our aim was to develop approaches, which may allow 

to augment recognition and elimination of cancer cells by NK cells. The emphasis of our 

work was on the NKG2D-L-mediated susceptibility of AML blasts by NK cells. Previous 

studies have shown that induction of NKG2D-L surface expression can be achieved by 

treatment of cancer cells with the histone deacetylase inhibitor (HDACi) valproic acid (VA). 

The first strategy used in our work was to examine the effect of HDACi, VA and trichostatin 

A, on NKG2D-L expression and its functional consequences. In these experiments, we used 

both primary human AML blasts or normal human fibroblasts and analyzed the endogenous 

NKG2D-L expression and the effect of HDACi in ULBP1-3’UTR luciferase reporter assays. 

A second strategy in our work was to improve the recognition of AML blasts by NK cells, by 

circumventing the inhibitory effect of KIR signaling. In order to increase alloreactivity of NK 

cells we generated NK cell lines, expressing only one KIR receptor on the cell surface, and 

investigated their cytotoxicity towards KIR-HLA class –mismatched primary AML blasts.  
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Despite their different objectives, both projects have a common aim: to augment the 

activation of NK cells in order to eliminate cancer cells either by strengthening of the 

activating signaling or by circumventing the inhibitory signaling. A better understanding, on 

how activation of NK cells can be increased may contribute to development of new 

immunotherapeutic approaches in anti-cancer treatment. 
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IV. RESULTS (PART 1) 

 

 

1. Post-transcriptional regulation of ULBP1, a ligand for the 

activating immunoreceptor NKG2D 

 

 

1.1 Introduction 

 

NKG2D is a major activating immunoreceptor expressed on cytotoxic NK cells and CD8+ T 

cells, playing a key role in tumor surveillance and viral defense63. Ligands for NKG2D, 

ULBPs and MICA/B, are rarely expressed on healthy cells but can be induced upon cellular 

stress, malignant transformation and viral infection.104 In consequence, ligand-expressing 

abnormal cells are recognized by immune effector cells, resulting in triggering of cytotoxicity 

and cytokine production. However, in many human tumors including acute myeloid leukemia 

(AML) expression of NKG2D-L is low or absent, contributing to poor recognition by immune 

effector cells.37,156 Thus, increasing surface levels of NKG2D-L could represent a therapeutic 

approach to increase the immunogenicity of tumors. The precise mechanisms of how 

NKG2D-L are regulated are however incompletely understood. A better understanding of 

NKG2D-L regulation would be needed in order to be able to modulate the expression of these 

molecules for therapeutic interventions in cancer treatment. 

Discrepancies in mRNA levels and surface expression of NKG2D-L suggest, that not 

only transcriptional, but also post-transcriptional mechanisms could contribute to the 

regulation of NKG2D-L.62 Two important mechanisms of post-transcriptional regulation are 

microRNA- and ARE-mediated regulation. The regulatory elements, ARE motifs and 

microRNA binding sites, are mainly located within the 3’UTR of mature mRNAs. Indeed, 

endogenous microRNAs have been identified to control MICA and MICB protein expression 

by serving as a threshold mechanism to prevent undesired upregulation of MICA/B resulting 

from small fluctuations in the amount of MICA and MICB mRNA.95 Furthermore, miR-520b 

is induced upon treatment with IFN-, and directly regulates MICA by targeting its 3’UTR.98  
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NCBI database search of the NKG2D-L transcripts revealed the presence of 3’UTRs 

in mRNAs of five out of seven ligands (Fig. 16). ULBP1 and MICB possess long 3’UTRs 

(2.4kb and 1.4kb, respectively), whereas the 3’UTRs of ULBP2, RAET1E and MICA are 

clearly shorter (32 – 530 bp). Futhermore, at least one pentameric ARE motif, AUUUA, is 

present in each 3’UTR, except for RAET1E.  

 

 

 
Figure 16: Length of 3’UTRs and presence of ARE motifs  

 

 

Computational prediction by Targetscan V5.1 algorithm showed, that all NKG2D-L 

3’UTRs contain potential microRNA binding sites (Table 7), which are not restricted to a 

particular region in the 3’UTR but distributed all over the 3’UTR. The vast majority of 

microRNAs are predicted to target the 3’UTR at only one position, however some 

microRNAs are potentially capable to bind the 3’UTR at two or more sites (Table 7).  

The different properties of NKG2D-L 3’UTRs together with the fact, that the 

expression level of individual NKG2D-L differs considerably among different tumors and 

infected cells indicate, that the various NKG2D-L might be regulated by different 

mechanisms.63 The presence of four ARE motifs and as well as 195 potential microRNA 

binding sites in the ULBP1-3’UTR prompted us to investigate if post-transcriptional 

mechanisms are involved in regulation of ULBP1.  
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Table 7: Characteristics of NKG2D-L 3'UTRs (March 2010) 
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1.2  Material and Methods 

 

 

1.2.1  Cell culture 

 

HeLa (cervical carcinoma cell line), Jurkat (T cell leukemia cell line), K562 (chronic myeloid 

leukemia cell line) and Raji (Burkitt lymphoma) cells were cultured in DMEM (Invitrogen, 

Carlsbad, CA) supplemented with 10% fetal bovine serum (FCS) (Invitrogen) and 

Penicillin/Streptomycin (Invitrogen). Human dermal foreskin fibroblasts (HFF) were 

purchased from Invitrogen (Carlsbad, CA) and cultured in Medium 106 and Low Serum 

Growth Supplement, as provided by the supplier. HFF were treated for 24 hours with the 

HDAC inhibitor trichostatin A (TSA; Sigma, Buchs, Switzerland), 5-fluorouracil (5-FU; Teva 

Pharma,Switzerland), aphidicolin (Sigma-Aldrich, St Louis, MO) or valproic acid (VA; 

Orfiril; Desitin, Liestal, Switzerland) at indicated concentrations. 

 

 

1.2.2  Cloning of luciferase expression vectors 

 

The full length 3’UTR of ULBP1 was amplified by PCR from I.M.A.G.E. Full Length cDNA 

clone IRATp970D01103D (imaGenes, Berlin, Germany) with primers containing NotI 

restriction sites (Table 8), subcloned into pGEM-T vectors (Promega, Madison, WI) and 

inserted into the NotI site of the Renilla luciferase reporter vector pRL-con (kindly provided 

by W. Filipowicz, FMI, Basel) immediately downstream of Renilla luciferase coding region 

to produce pRL-U1-UTR (Fig. 17).245 The orientation of the insert was determined by PCR. 

Nine fragments of the ULBP1-3’UTR, U1-1 to U1-9, were generated by specific PCR 

amplification from the ULBP1-3’UTR cDNA clone with fragment-specific forward and 

reverse primer containing NotI sites (Table 8), subcloned into pGEM-T and inserted into the 

NotI site of pRL-con (Fig. 17). The pRL-U1-6dupl construct was generated by amplification 

of U1-6 from the ULBP1-3’UTR cDNA clone with primers containing XbaI sites (Table 8), 

and inserted into the XbaI site of pRL-U1-6, between the Renilla luciferase gene and the 

fragment U1-6. 
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Figure 17: Scheme of pRL-con and pRL-U1-UTR. T7 = T7 promoter; T3 = T3 promoter; CMV = 

cytomegalovirus; hRL = Renilla luciferase. 

 

 

Mutated fragments of ULBP1-3’UTR, containing base pair substitutions or deletions 

in potential microRNA seed sequences (Fig. 18) or in predicted ARE sites (Fig. 19), as 

indicated in the Result sections, were ordered from DNA 2.0 (Menlo Park, CA), subcloned 

into p-GEM-T vectors and inserted into the NotI site of pRL-con. All products were verified 

by sequencing. 

 For stable luciferase expression, we used the lentiviral vector MA1 containing two 

expression cassettes driven by a bidirectional promoter (kindly provided by L. Naldini, 

Milano).246 The LNFGR gene was excised by digest with XmaI and SalI, and replaced by a 

Renilla luciferase expression cassette. The Renilla luciferase gene with and without the full 

length ULBP1-3’UTR was amplified from pRL-U1-UTR with primers containing XmaI or 

SalI restriction sites (Table 8) and subcloned into pGEM-T. Both fragments were inserted into 

the lentiviral vector MA1 to produce LV-RL-con and LV-RL-U1-UTR. Lentiviruses were 

produced as described.247 
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Table 8: Primers for cloning of transient and lentiviral luciferase reporter vectors 

 

 

 

 

 
Figure 18: Oligonucleotides with seed sequence mutations in fragment U1-6. The 5’ and 3’ flanking region 

contains NotI restriction sites. X = deletion 
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Figure 19: Mutations in ARE sites of fragment (A) U1-6 and (B) U1-9. Red letter indicate NotI restriction 

sites. 
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1.2.3 Luciferase assay 

 

Jurkat cells (6x105 cells/well) were transfected in duplicates in 24-well plates with 20ng of 

luciferase reporter vectors and 250ng of the vector pGL4.13 containing Firefly luciferase 

(Promega), using Lipofectamine 2000 (Invitrogen). HeLa cells were plated at 4x104 cells/well 

one day prior to transfection with 20ng of luciferase reporter vector and 150ng of pGL4.13. 

Renilla and Firefly activities were measured 48 hours after transfection using the Dual-

Luciferase Reporter Assay (Promega) on a MicroLumat Plus reader (Berthold Technologies, 

Bad Wildbad, Germany). Renilla luciferase light values were divided by Firefly luciferase 

light values, and ratios were normalized against control plasmid pRL-con. In cells stably 

transduced with LV-RL-con or LV-RL-U1-UTR, Renilla luciferase activity was measured 

with the Renilla Luciferase Assay (Promega) using equal cell numbers and normalized to the 

percentage of GFP expressing cells. Paired Student’s t-test was used to compare the effect of 

different reporter vectors on luciferase activity. 

For microRNA silencing, HeLa and Jurkat cells were co-transfected with 100 nM of anti-

miR-140-5p (Ambion, Austin, TX) and luciferase reporter constructs, using Lipofectamine 

2000. Luciferase activity was measured 48 hours after transfection. 

 

1.2.4 Flow cytometry 

 

NKG2D-L surface expression was determined using multiparametric FACS (FACSCalibur; 

BD Biosciences). Cells were stained with control mouse IgG1 (BD Biosciences) or 

unconjugated mouse monoclonal antibodies (mAbs) against ULBP1 (M295; kind gift of D. 

Cosman, Amgen, Seattle, WA), MICA/B and HLA class I (BD Biosciences) at 10 µg/mL and 

with secondary goat-anti mouse IgG-FITC (Jackson ImmunoResearch, West Grove, PA) or  

goat-anti mouse IgG-Alexa647 (Molecular Probes, Invitrogen). For staining of HFF, the 

directly labeled mouse mAb ULBP1-PE (R&D Systems, Minneapolis, MN) or mouse IgG2a-

PE isotype (BD Biosciences) was used. Propidium iodide (Sigma) was used to exclude dead 

cells from analysis. Cells were acquired using FACS (FACSCalibur; BD Biosciences) and 

analysis was performed using FlowJo software (Tree Star, Ashland OR). Surface expression 

levels of NKG2D-L were defined as the mean fluorescence intensity ratio (MFIR) of values 

obtained with specific mAbs divided by values given by secondary or control mAbs.35  
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1.2.5 Quantitative RT-PCR 

 

Total RNA was isolated using Trizol (Invitrogen). Reverse transcription was performed with 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). 

Quantitative real-time polymerase chain reaction (qPCR) was performed in duplicates using 

Power SYBR Green PCR master mix on an ABI Prism 7000 (Applied Biosystems) under the 

previously described conditions.248 The primer pairs used for quantification of specific 

mRNAs are listed in Table 9 and were in part described previously. PCR reactions were 

normalized to RPL19 for Drosha, ULBP1, MICA and MICB transcripts using the 2-CT 

method.248 

 To quantify luciferase transcripts after transient transfection of reporter vectors, total 

RNA was treated with TURBO DNA-free Kit (Ambion, Austin, TX) and cDNA was 

generated as described above. Control reactions without reverse transcriptase were performed. 

Primers specific for Renilla and Firefly luciferase are listed in Table 9. Renilla luciferase 

transcripts were normalized to Firefly luciferase transcripts. 

 

 

Table 9: Primers for real-time qPCR. * published in249; ** published in67. 

 

 

 

 Stem-loop quantitative RT-PCR for mature microRNAs (TaqMan microRNA Assays, 

Applied Biosystems) was performed on an ABI Prism 7500 Real-Time PCR system (Applied 

Biosystems) according manufacturer’s recommendation. Synthetic microRNAs miR-16, miR-

140-5p, miR-496 and miR632 (kindly provided by I. Beuvink, Novartis, Basel, Switzerland) 
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were used as positive control. PCR reactions were run in duplicates, and microRNA 

expression, relative to hsa-miR-16, was calculated.248 The threshold of microRNA expression 

was defined as CT(miR-16 – miR-X)  12.  

 

 

1.2.6 MicroRNA overexpression 

 

Complementary oligonucleotides designed to form artificial pre-microRNA hairpins (Table 

10; ordered from Eurogentec, Seraing, Belgium), were annealed by heating to 95°C for 5 

minutes and slow cooling to room temperature, phosphorylated by using T4 polynucleotide 

kinase and inserted into the HindIII and BglII sites of a modified pSUPER vector.95,250 The 

overexpression vectors were transiently transfected into Jurkat cells with indicated 

concentrations, using Lipofectamine 2000, and FACS, luciferase assay and isolation of RNA 

was performed 48 hours later. 

 

 

Table 10: Oligonucleotides for cloning of microRNA-overexpression vectors 
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1.2.7 ULBP1 overexpression 

 

HeLa and Jurkat cells were transfected with 200ng or 400ng of the ULBP1 overexpression 

vector RSV.5ULBP1 or the control vector RSV.5neo251 (kindly provided by A. Steinle, 

Frankfurt a. Main, Germany), using Lipofectamine 2000. Surface expression levels of ULBP1 

were measured 48 hours after transfection. 

 

 

1.2.8 Knockdown of Drosha with short hairpin RNA (shRNA) 

 

Lentiviral vectors containing a Drosha-specific shRNA (LV-shDrosha) or a control shRNA 

(LV-shControl), as well as a GFP expression cassette were kindly provided by O. 

Mandelboim, Jersualem, Israel.95 Lentiviruses were produced as described and HeLa cells 

were transduced.247 The number of GFP+ cells was measured by FACS to assess transduction 

efficiency. NKG2D-L surface expression and RNA levels were measured five days after 

infection. To perform the luciferase assay, HeLa cells were transduced with pRL-con or pRL-

U1-UTR, sorted for GFP and subsequently transduced with LV-shDrosha or LV-shControl. 

Seven days upon the second infection, luciferase activity was measured as described above. 

The doxycycline (DOX)-inducible lentivector shDrosha and the control vector pTIG were 

kindly provided by J. Rossi, Duarte, CA. 252 Lentiviruses were produced as described and 

HeLa cells were transduced.247 The number of GFP+ cells was measured by FACS to assess 

transduction efficiency. Infected cells were treated for eight days with DOX (1 g/mL) 

(Clontech, Mountain View, CA) and NKG2D-L surface expression and RNA levels were 

measured. 
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1.3  Results 

 

 

1.3.1  Role of the 3’UTR in regulation of ULBP1 expression 

 

Since various cells and tissues were shown to express ULBP1 mRNA in the absence of 

ULBP1 protein detectable on the cell surface,60 these discrepancies implicate that post-

transcriptional mechanisms might be involved in regulation of ULBP1 expression. To 

investigate whether the ULBP1-3’UTR is involved in regulation of ULBP1 gene expression, 

we constructed a Renilla luciferase reporter plasmid containing the 2.4 kb full length 3’UTR 

of ULBP1 (pRL-U1-UTR; Fig. 20A) and transiently transfected the construct into tumor cell 

lines. The transfection efficiency was assessed by co-transfection with a Firefly luciferase 

plasmid. Upon transfection of pRL-U1-UTR into HeLa, Jurkat and K562 cells, luciferase 

activity was reduced to13.1%±2.5%, 7.3%±0.8% and 25.7%±9.8% compared to control 

luciferase vector without 3’UTR (pRL-con) (Fig. 20A).  

In order to examine the role of the ULBP1-3’UTR in primary cells and cell lines, 

which are resistant to transient transfection with lipofectamine, we additionally generated a 

lentiviral luciferase vector containing the ULBP1-3’UTR (LV-RL-U1-UTR; Fig. 20B). 

Transduction efficiency was monitored by measuring the number of GFP+ cells by FACS. In 

accordance with the transient reporter system, luciferase activity was strongly reduced in 

Jurkat, HeLa and K562 cells upon stable transduction with LV-RL-U1-UTR compared to 

control construct LV-RL-con (Fig. 20B). Furthermore, the luciferase activity in Raji cells and 

primary human foreskin fibroblasts (HFF) was reduced to 12.0%±0.8% and 38.3%±3.5% 

upon transduction with LV-RL-U1-UTR (Fig. 20B). These data indicate, that the ULBP1-

3’UTR is involved in regulation of ULBP1 expression. 
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Figure 20: Scheme of luciferase reporter constructs and luciferase activity in tumor cell lines and primary 

human foreskin fibroblasts. (A) The 2.4 kb full length 3’UTR of ULBP1 was inserted downstream of a 

luciferase open reading frame into the parental vector pRL-con, resulting in pRL-U1-UTR. Luciferase activity of 

pRL-con (light grey) and pRL-U1-UTR (dark grey). Results are means ± SEM of duplicates (Hela: n=14; Jurkat: 

n=20; K562: n=2). (B) The full length ULBP1-3’UTR, fused to the luciferase gene or the luciferase gene alone 

were inserted into a lentiviral vector (LV-RL-con and LV-RL-U1-UTR, respectively). Luciferase activity was 

measured seven days after transduction with LV-RL-con (light grey) and LV-Rl-U1-UTR (dark grey). Results 

are means ± SEM (Hela: n=8; Jurkat: n=5; K562: n=2; Raji: n=2; HFF: n=4). 

 

 

1.3.2  Role of ARE in regulation of ULBP1 expression 

 

Sequence analysis revealed the presence of four AUUUA motifs in the 3’UTR of ULBP1 

mRNA (see Fig. 16). ARE motifs within the 3’UTR are crucial determinants of transcript 

instability in mammalian cells.242 To determine the contribution of ARE to regulation of 

ULBP1 expression, we simultaneously mutated three AUUUA sites within a 367bp-long 

fragment (U1-5) of the ULBP1-3’UTR (Fig. 19A and Fig. 21A) by substitution of one or 

three nucleotides, giving rise to pRL-U1-5-AREmut1 (ATTTA to ATGTA) and pRL-U1-5-

AREmut2 (ATTTA to AGGGA). In addition, a ARE-like site ATTTTA located in fragment 

U1-5 was mutated (ATTTTA to ATGTTA or AGGGGA). Likewise, we inactivated one 

AUUUA motif within a 669bp-long fragment (U1-9) by replacement of three nucleotides 

(ATTTA to AGGGA; see Fig. 19B and Fig. 21A), resulting in luciferase reporter vector pRL-
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U1-9-AREmut2. Transfection of the mutated reporter plasmids into HeLa and Jurkat cells did 

not result in an increased luciferase activity compared to the unmutated constructs (Fig. 21B) 

as would be expected from inactivation of mRNA destabilizing elements. Instead, a reduction 

in luciferase activity was observed in HeLa cells (U1-5: 100% vs. 60.5%±6.64% (p=0.0040) 

vs. 87.3%±2.1%; U1-9: 100% vs. 77.6%±3.2%), and similar results were obtained for Jurkat 

cells. Therefore we conclude, that ARE sites are unlikely to play a major role in negative 

regulation of ULBP1. 

 

 

 
Figure 21: Mutation of ARE in two regions of the U1-3’UTR. (A) Schematic localization of ARE in fragment 

U1-5 and U1-9 of the U1-3’UTR. The sequence motifs ATTTA (red) and ATTTTA (purple) were mutated by 

single base substitutions T to G (light and dark green) or by substitution of 3 bases TTT to GGG (light blue) and 

4 bases TTTT to GGGG (dark blue), respectively. Mutated fragments were inserted into pRL-con. (B) 

Luciferase activity was measured upon transient transfection of wild-type and mutated pRL-U1-5 (light grey) 

and pRL-U1-9 (dark grey) into HeLa and Jurkat cells and normalized to the activity of the corresponding wild-

type reporter vectors (pRL-U1-5 and pRL-U1-9, respectively). Results are means ± SEM of duplicates (n=2-5 

for HeLa and Jurkat). * = p < 0.05; ** = p < 0.01. 
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Figure 22: Prediction of potential microRNA binding sites in the ULBP1-3’UTR. Prediction was performed 

using Targetscan V5.1 (March 2010) 

 

 

1.3.3  Role of ULBP1-3’UTR fragments in regulation of ULBP1 expression 

 

In order to examine the involvement of microRNAs in regulation of ULBP1 expression, we 

searched for potential microRNA binding sites in the ULBP1-3’UTR by computational 

prediction. Analysis by the Targetscan algorithm revealed, that potential regulatory elements 

are distributed over the entire ULBP1-3’UTR (Fig. 22). To identify regions with high 

regulatory potential, we cloned nine fragments of the ULBP1-3’UTR (length: 178 - 1052 bp) 

downstream of the luciferase gene and transiently expressed the constructs pRL-U1-1 to pRL-

U1-9 in Jurkat and HeLa cells (Fig. 23A). Significant reduction of luciferase activity 

compared to pRL-con was observed for all fragments (Fig. 23B). Luciferase activity ranged 

from 19.1%±2.0% (U1-3) to 49.2%±8.4% (U1-7) in HeLa, and 23.8%±5.2% (U1-3) to 

61.9%±14.6% (U1-1) in Jurkat cells. Remarkably, none of the fragments was as potent as the 

the full length reporter construct pRL-U1-UTR. These observations suggest, that regulatory 

elements are located within the whole 3’UTR rather then restricted to specific areas. 

Luciferase activity was most efficiently reduced in cells transfected with pRL-U1-3 (HeLa: 

19.1%±2.0%; Jurkat: 23.8%±5.2%). Among the fragments within the region U1-3, less 

pronounced reduction of luciferase activity was observed for fragment U1-1 (61.9%±14.6%), 

U1-4 (56.6%±18.5%), and U1-5 (36.5%±3.6%) in Jurkat cells. The luciferase activity 
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observed for the subfragment U1-6 was only slightly higher compared to U1-5 (41.1%±1.5% 

vs. 36.9%±3.6%) in Jurkat cells, and almost equal (39.6%±3.9% vs. 40.0%±3.4%) in HeLa 

cells. Therefore we decided to concentrate in our further studies on the 178-bp-long fragment 

U1-6, which contains only a limited amount of binding sites for candidate microRNAs. 

Moreover, we included fragment U1-9 in our studies, since luciferase activity upon 

transfection with pRL-U1-9 revealed a highly reduced lucferase activitiy (25.6%±1.4%) in 

Jurkat cells, which was comparable to luciferase activity upon transfection with pRL-U1-3. 

 

 

 
Figure 23: Luciferase activity of reporter plasmids, containing fragments of U1-3’UTR. (A) Fragments of 

the full length ULBP1-3’UTR were inserted downstream of the Renilla luciferase gene into the parental vector 

pRL-con. (B) Luciferase activity was measured upon transient transfection into HeLa and Jurkat cells and 

normalized to pRL-con. Results are means ± SEM of duplicates (n=2-14 for HeLa and n=2-20 for Jurkat). prom 

= promoter; RL = Renilla. 
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Binding of microRNAs to the 3’UTR of target genes results in translation repression or 

mRNA degradation.184 To investigate the post-transcriptional mechanism leading to reduced 

luciferase activity, we measure reporter mRNA levels upon transient transfection with 

luciferase constructs (full-length ULBP1-3’UTR and fragments) in HeLa and Jurkat cells by 

qPCR, using primers located in the Renilla luciferase. mRNA levels of Renilla luciferase were 

first normalized to mRNA levels of Firefly luciferase gene and then to pRL-con. mRNA 

levels of different reporter constructs were subsequently correlated with luciferase activity 

(Fig. 24). Independent of the transfected fragments, levels of reporter mRNA in HeLa cells 

were low (2.4% to 21.8%) compared to control vector, indicating that reduced luciferase 

activity is most likely caused by degradation of mRNA. In contrast, high levels of reporter 

mRNA, ranging from 30.8%±2.4% to 110.4%±19.7%, were detected in Jurkat cells which is 

best explained by translational repression rather then RNA degradation. This experiments 

suggests, that the expression of ULBP1 in HeLa and Jurkat cells might be regulated by two 

different mechanisms. 

 

 

 
Figure 24: Levels of reporter mRNAs correlated with luciferase activity in Hela and Jurkat cells. mRNA 

expression levels of luciferase reporters and luciferase activity were measured upon transient transfection of 

reporter constructs into HeLa () and Jurkat () cells. (n=1-4) 

 

 

 

 

 

 



 
IV. RESULTS (PART 1) - Results 

 

70 

1.3.4  Role of region U1-6 in regulation of ULBP1 

 

Since target site multiplicity is thought to enhance the degree of translational repression184, we 

generated a reporter vector containing a duplication of fragment U1-6 (pRL-U1-6dupl). 

Compared to pRL-U1-6, luciferase activity was reduced in HeLa (100% vs. 81.3%±3.9%) and 

Jurkat (100% vs. 71.6%±2.8%) cells transfected with pRL-U1-6dupl (Fig.25). These results 

provide additional evidence, that fragment U1-6 contains regulatory elements of ULBP1. 

 

 

 
Figure 25: Luciferase activity of reporter constructs containing a duplication of U1-6. Luciferase activity 

was measured upon transient transfection into HeLa and Jurkat cells and normalized to pRL-con. Results are 

means ± SEM of duplicates. (n=2) 

 

 

1.3.5  Role of specific microRNAs in regulation of region U1-6 and U1-9 

 

Computational analysis  

In an attempt to identify microRNAs that target ULBP1 mRNA, we used computer algorithms 

to search for microRNA binding sites in the ULBP1-3’UTR. The accuracy of programs to 

predict microRNA binding sites in ULBP1-3’UTR is limited, because ULBP1 does not show 

sequence conservation which is one of the criteria that most of these programs are based 

upon. We used TargetScan V4.2 and 5.1 to predict candidate microRNAs and combined the 

results with predictions obtained from three alternative computational methods (DIANA 

microT v3.0, ElMMO v3 and Micro-Inspector v1.5). Since multiplicity of target sites is not 
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necessarily required, but thought to be an important factor for efficient translational 

inhibition, we included this criterion in our selection process.184 

Based on the strong suppressing effect on luciferase activity, we focused on region U1-6 in a 

first round of candidate selection. From 7 and 11 microRNAs, predicted with TargetScan 

V4.2 and V5.1 to target region U1-6, we selected 6 microRNAs for further investigation 

(Table 11). miR380-3p, miR-548c, miR-612 and miR-657 were predicted to target U1-6 by 

both algorithms, V4.2 and V5.1. Furthermore, we selected miR-140-5p, since this microRNA 

is, according to V4.2, supposed to target U1-6, U1-9 as well as another region in the 3’UTR. 

miR-409-3p was predicted to target U1-6 (V4.2) or U1-9 (V5.1). Since miR-1179, miR-1206, 

miR-1279, miR-1283 and miR1285 were discovered only recently, we excluded these 

particular miRs. Furthermore, we excluded miR-513-3p and miR-654-3p since they were 

predicted by V5.2 to target the 3’UTR only at one site.  

 

 

Table 11: First round of candidate microRNA selection. Targetscan V4.2 and V5.1 were used for prediction 

of candidate microRNAs in fragment U1-6. Selected microRNAs are indicated in red. miR801h was identified as 

a fragment of U11 splisosomal RNA and therefore removed from miRBase (www.mirbase.org) 

 

 

 

In a second round of candidate selection, we chose 7 additional microRNAs (miR-338-3p, 

miR-381, miR-433-3p, miR-496, miR-576, miR-632, miR-650) for further studies (Table 12). 

All of these microRNAs were predicted to target region U1-6 or U1-9 at least once. Except 
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for miR-496 and miR-650, all candidate microRNAs were predicted with at least three 

different algorithms to target the ULBP1-3’UTR. Furthermore, all candidate microRNAs, 

except miR-650, were predicted to target the ULBP1-3’UTR at least at two independent 

binding sites. The positions and numbers of potential microRNA binding sites for all selected 

microRNAs are indicated in Figure 26. 

 

 

Table 12: Second round of candidate microRNA selection. TS = Targetscan; E = Elmmo v3, M = Micro-

Inspector v1.5, D = Diana microT v3.0 

 

 

 

 
Figure 26: Localization of potential microRNA binding sites in the ULBP1-3’UTR. 
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Expression of candidate microRNAs 

A candidate microRNA responsible for reduced luciferase activity upon transfection with 

reporter constructs would need to be expressed in Jurkat, HeLa and HFF. To assess the 

microRNA expression level of candidate microRNAs, we performed qPCR using microRNA 

specific Taqman primers. Starting with 0.44 ng RNA per PCR reaction, miR-16 level was 

equally high expressed in all cell lines examined with an average cycle number (CT) of 

22.90.8 (range from 21.80.3 to 24.30.4 CTs)(Fig. 27). This observation is in accordance 

with published data.253-254 Therefore, miR-16 was used as housekeeping microRNA to 

normalize qPCR results.  

 

 

 
Figure 27: Expression of miR-16 in HeLa Jurkat and HFF. Results are means ± SEM of absolute cycle 

numbers (CT), measured in duplicates. (n=6-8) 

 

 

Of the 13 candidate microRNAs, 6 microRNAs (miR-140-5p, miR-381, miR-409-3p, miR-

433-3p, miR-496, miR650) were expressed in HFF, miR-140-5p and miR-650 were expressed 

in Jurkat cells and miR-140-5p, miR-409-3p, miR-433-3p and miR-650 were expressed in 

HeLa cells (Fig. 28). All other microRNAs were either not detectable (CT < 37) or only 

weakly expressed below the threshold, which was defined as 2-CT(miR-16 – miR-X)  2-12. These 

data are in accordance with the literature, reporting a global decrease of microRNAs in many 

tumors.193  

Since many of the microRNA were undetectable in all three cell lines tested, we used 

synthetic microRNA as a positive control for four TaqMan microRNA assays (miR-16, miR-

140-5p, miR-496, and miR-632). Positive signals were detected with all four assays (data not 

shown), therefore excluding technical problems in our measurements. 
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Figure 28: Endogenous expression of candidate microRNAs in HeLa, Jurkat and HFF. Results are means ± 

SEM of duplicates (n=1-5). 

 

 

Mutation of microRNA seed sequences 

To determine, if the microRNAs expressed in HeLa and Jurkat are involved in targeting the 

ULBP1-3’UTR, we generated two mutants (Fig. 18 and 29A) of fragment U1-6 by 

introducing base pair substitutions (U1-6sub) or base pair deletions (U1-6del) to 

simultaneously disrupt the seed sequence of five microRNA binding sites (miR-140-5p/380-

3p/409-3p/433-3p/650). In comparison to the unmutated construct pRL-U1-6 (Fig. 29B), 

luciferase activity was significantly higher in Jurkat cells (100 vs 118.7%±0.5% (p = 0.0157) 

vs. 111.3%±3.6%) and slightly higher in HeLa cells (100% vs. 116.7%±12.0% vs. 

114.9%±8.0%). These results suggest that at least some of the candidate microRNAs 

expressed in HeLa and Jurkat cells may contribute to regulation of ULBP1 within the region 

U1-6 of 3’UTR. 
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Figure 29: Effect of seed sequence mutations on luciferase activity. (A) Mutations of five seed sequences 

were simultaneously introduced into the fragment U1-6. The seed sequences were mutated by substitution of two 

bases (U1-6sub) or deletion of four bases (U1-6del). (B) Luciferase activity was measured upon transient 

transfection of luciferase vectors, containing seed sequence mutations in fragment U1-6 (pRL-U1-6 2sub and 

pRL-U1-6 4del, respectively), into HeLa and Jurkat cells. Luciferase activity was normalized to the activity of 

the non-mutated pRL-U1-6 vector. Results are means ± SEM of duplicates (n=2 for HeLa and Jurkat). * = p < 

0.05. 

 

 

Overexpression of microRNAs 

To investigate whether overexpression of single microRNAs results in reduced surface 

expression of ULBP1, we transiently transfected HeLa and Jurkat cells with 200 ng of pSuper 

vectors, containing an expression cassette to generate artificial microRNA precursors. In 

HeLa cells (Fig. 30A), expression of miR-140-5p, miR-409-3p and miR-650 was 98 to 726 

fold higher in cells transfected with overexpression plasmid compared to empty pSuper 

control vector. For miR-380-3p, miR-381 and miR-578, the miR levels were at least 2067 to 

10027 fold increased. Overexpression of miR-140-5p and miR-650 in Jurkat cells (Fig. 30A) 

resulted in a 36 and 282 fold increase of miR expression levels. For miR-380-3p, miR-381, 
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miR-409-3p, miR-433-3p and miR-578, expression was at least 25 to 1083 fold increased. 

Despite high expression of microRNAs in Jurkat cells, no effect on ULBP1 cell surface 

expression was observed (Fig. 30B). 

 

 

 
Figure 30: Overexpression of candidate microRNAs. (A) expression levels of candidate microRNAs upon 

transient transfection of microRNA overexpression vectors (dark grey) or control vectors (light grey) into HeLa 

and Jurkat cells. (n=1), n.d.= not done. (B) Effect of microRNA overexpression on the surface protein level of 

ULBP1 in Jurkat cells (n=1).  

 

 

Since mRNAs can be targeted by multiple microRNAs178, we investigated whether 

overexpression of the seven candidate microRNAs affects the surface expression of ULBP1. 

50 ng of each overexpression vector were simultaneously transfected into Jurkat cells. The 

increase of microRNA expression level (Fig. 31A) upon transfection ranged from 2.5-fold 

(miR-381) to 252-fold (miR-650), and no upregulation was obtained for miR-578. 

Overexpression of multiple microRNAs did not decrease the ULBP1 surface expression (Fig. 

31B). Consistent with this observation, co-transfection of all miR-overexpression vectors with 
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luciferase reporters did not change luciferase activity compared to co-transfection with pSuper 

empty (Fig. 31C). Based on this results, we were unable to demonstrate a specific modulatory 

role of the seven candidate microRNAs in the regulation of the regions U1-6 and U1-9 of the 

ULBP1-3’UTR.  

 

 

 
Figure 31: Simultaneous overexpression of seven candidate microRNAs. (A) MicroRNA expression levels 

were measured upon transient transfection of 350ng pSuper empty (light grey) or co-transfection of seven 

microRNA overexpression vectors (7x50ng pSuper mix; dark grey) into HeLa cells. Results are means ± SEM of 

duplicates. (B) FACS analysis of ULBP1 surface expression in Jurkat cells transfected with pSuper empty (grey 

shaded histogram) or pSuper mix (thick black line). Thin grey line: staining with isotype control Ab and 

secondary antibodies. (C) Luciferase activity was measured upon co-transfection of 350ng pSuper empty vector 

(light grey) or 7x50ng pSuper mix (dark grey) with luciferase reporter vectors. Luciferase activity was 

normalized to the activity of pRL-con. Results are means ± SEM of duplicates.   

 

 

Downmodulation of miR-140-5p by antagomirs 

The function of endogenous microRNAs can be transiently antagonized by chemically 

modified oligonucleotides, complimentary to individual microRNAs.255 To answer the 

question, if neutralizing of miR-140-5p, which is highly expressed in HeLa and Jurkat cells, 

diminished the high reduction in luciferase activity, we co-transfected luciferase vectors 

together with antimir-140-5p into HeLa and Jurkat cells (Fig. 32). No increase of luciferase 

activity was observed in cells transfected with antimiR-140-5p. To show, that antagomirs are 

transfectable into HeLa and Jurkat cells, control let-7a-antagomirs were co-transfected with a 

let-7 luciferase construct245 into HeLa and Jurkat cells, resulting in efficient downregulation 

of HeLa and Jurkat (data not shown). Therefore we conclude, that miR-140-5p is most likely 

not involved in regulation of ULBP1 expression. 
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Figure 32: Silencing of endogenous miR-140-5p by antimiR-140-5p. Luciferase activity was measured in 

HeLa and Jurkat cells upon co-transfection of reporter constructs with 100 nM of antimiR-140-5p (dark grey). 

As control, tranfection of reporter construct was performed without antimiR (light grey). Results are means ± 

SEM of duplicates. (n=1-3). 

 

 

Knockdown of Drosha  

Since investigation of specific candidate microRNAs by functional assays did not identify 

specific microRNAs, which are potentially involved in regulation of ULBP1, we used an 

approach to knock-down Drosha, a crucial component of the microRNA biogenesis 

pathway.256 HeLa cells were transduced with a lentiviral construct containing a shRNA 

against Drosha (LV-shDrosha) or a control shRNA (LV-shControl), and the knockdown 

efficiency of Drosha as well as the surface expression and mRNA levels of ULBP1 and 

MICA/B was assessed seven days post transduction. According to the number of GFP+ cells, 

transduction efficiency was 93% and 86% for cells transduced with LV-shDrosha and LV-

shControl, respectively (data not shown). In cells transduced with LV-shDrosha, the Drosha 

mRNA level was 2.7 fold reduced compared to LV-shControl. Disruption of the microRNA 

machinery increased the level of MICA transcripts by 1.4 fold (Fig. 33A) and lead to an 

upregulation of MICA/B surface protein expression (MFIR(LV-shControl) = 11.7 vs. 

MFIR(LV-shDrosha) = 17.1; Fig. 33B), which is in accordance with previous reports.95 

However for ULBP1, no increase in surface expression was observed and the amount of 

ULBP1 mRNA even decreased 1.7 fold upon knock-down of Drosha (Fig. 33. A and B). 

Accordingly, when cells were transduced with LV-RL-U1-UTR, Drosha knock-down had no 

effect on luciferase activity, which remained at a similarly low level of approximately 10% as 

in cells transduced with LV-shControl (Fig. 33C). 
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Figure 33: Downregulation of Drosha with short hairpin RNA in HeLa cells. (A) Measurement of Drosha, 

ULBP1 and MICA mRNA levels upon transduction with LV-shDrosha. The expression level of each mRNA 

was normalized to the corresponding mRNA expression levels upon transduction with a control LV-shCon. 

Results are means of duplicates (B) FACS analysis of ULBP1 and MICA/B surface expression on HeLa cell 

upon transduction with LV-shControl (red) or LV-shDrosha (green). Staining with isotype control Ab and 

secondary antibodies is indicated in blue (C) The luciferase activity was measured upon co-transduction of LV-

shControl (light grey) or LV-shDrosha (dark grey) and lentiviral luciferase reporter constructs (LV-RL-con and 

LV-RL-U1-UTR). Transduction efficiency was monitored by measurement of GFP+ cells by FACS. Luciferase 

activity was normalized to the amount of GFP+ cells and then normalizes to the luciferase activity of the control 

vector (LV-RL-con). Results are means of duplicates. 

 

 

As an alternative approach, we performed knock-down of Drosha by using a lentiviral vector 

containing a DOX-inducible shDrosha cassette.252 The transduction efficiency in HeLa cells 

was 88%, as indicated by the percentage of GFP+ cells (Fig. 34A). Eight days post induction 

of shDrosha by DOX treatment, the transcript level of Drosha was 2.9 fold reduced. In 

accordance with the previous result, knock-down of Drosha lead to a 3.3 and 2.9 fold increase 

of MICA and MICB mRNA, respectively, and induced MICA/B surface expression on 

GFPhigh cell 3-fold (Fig. 34 B and C). However, ULBP1 surface protein level was unaffected 
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and ULBP1 transcript was 2.0 fold reduced (Fig. 34 B and C). The fact that the knock-down 

of Drosha was sufficient to increase MIC molecules but not ULBP1 expression may indicate 

that ULBP1 is regulated by mechanisms other than microRNAs.  

  

 

 
Figure 34: DOX-induced downregulation of Drosha with short hairpin RNA in HeLa cells. (A) FACS 

analysis of transduction efficiency by measurement of GFP+ cells upon transduction with DOX-inducible LV-

shDrosha (B) Measurement of ULBP1 and MICA/B surface expression on HeLa cell upon transduction with 

DOX-inducible LV-shDrosha. Transduced cells were culture for 8 days with (green) or without DOX (red). 

Staining with isotype control Ab and secondary antibodies is indicated in blue. (C) Measurement of Drosha, 

ULBP1, MICA and MICB mRNA levels upon transduction with DOX-inducible LV-shDrosha. Transduced cells 

were culture for 8 days with DOX. mRNA levels were normalized to corresponding cells without DOX 

treatment. 
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Overexpression of ULBP1 in HeLa and Jurkat 

Since knockdown of Drosha did not result in upregulation of ULBP1 surface expression, we 

wanted to exclude that intrinsic mechanisms in HeLa cells prevent the presentation of ULBP1 

protein on the cell surface. Therefore, HeLa and Jurkat cells were transiently transfected with 

the ULBP1 overexpression vector RSV.5ULBP1 or the control vector RSV.5neo. Upon 

transfection of HeLa cells with 200ng and 400 ng RSV5.ULBP1, respectively, 24% and 41% 

of cells were expressing high levels of ULBP1 (Fig 35). Transfection of Jurkat cells with 

RSV5.ULBP1 resulted in 5% and 9% of ULBP1 positive cells, respectively. No expression 

was observed in cells transfected with RSV.5neo (data not shown). Therefore we conclude 

that HeLa and Jurkat cells are capable to express high levels of ULBP1 surface protein. 

 

 
Figure 35: Overexpression of ULBP1 in HeLa and Jurkat cells. Measurement of ULBP1 cell surface 

expression upon transient transfection with 200ng or 400ng of RSV.5ULBP1 
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1.4  Discussion 

 

The activating NKG2D ligand ULBP1, plays an important role in recognition of tumor-

transformed target cells by cytotoxic NK cells.37 The expression of ULBP1 must be tightly 

regulated to ensure, that tumor cells are attacked and eliminated whereas healthy cells are 

spared.56 The mechanisms responsible for the regulation of ULBP1 expressions are poorly 

understood. Based on studies with other molecules of the NKG2D-L family, these ligands can 

be regulated not only by transcriptional, but also by post-transcriptional and post-translational 

mechanisms.62 These mechanisms have been well documented in case of MIC ligands, were 

both transcriptional upregulation as well as post-transcriptional mechanisms involving 3’UTR 

and also protein shedding from the cell surface have been described.257 Previous studies on 

ULBP1 showed the transcriptional upregulation involving regulation at the putative promoter 

region.258 Our own studies have shown, that post-translational regulation by shedding is not 

strongly pronounced in case of ULBP1.156 Whether this ligand is a subject of post-

transcriptional regulation has not yet been investigated. Since ULBP1 carries a 2.4kb-long 

3’UTR, containing 4 ARE motifs and more then 200 microRNA binding sites, our aim was to 

investigate the involvement of post-transcriptional mechanisms in regulation of ULBP1 

expression. 

 

 

1.4.1  Involvement of 3’UTR in regulation of ULBP1 

 

In order to investigate the role of ARE motifs and microRNA binding sites in regulation of 

ULBP1 expression, we established a transient and a stable lentiviral reporter system based on 

luciferase reporter constructs with and without the full-length ULBP1-3’UTR. Transfection or 

transduction of the 3’UTR containing reporter constructs into four different human cancer cell 

lines (HeLa, Jurkat, K562, Raji) and into primary human fibroblasts (HFF) resulted in a 

highly pronounced and reproducible reduction of luciferase activity. Compared to cells 

transfected with the control construct pRL-con, the luciferase activity was reduced to 7 – 38% 

in cells transfected with the reporter construct containing the full-length ULBP1-3’UTR (Fig. 

20). With these experiments we provided the first evidence, that the 3’UTR of ULBP1 is 

functionally relevant and may therefore be involved in regulation of ULBP1 expression.  
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Fragmentation of regulatory elements and investigation by luciferase assays is a well 

accepted method, which is often applied in promoter studies and was also used to investigate 

the 3’UTR of candidate genes.200,258 In order to locate regions with high ULBP1 regulatory 

capability, we generated nine reporter vectors containing fragments of the ULBP1-3’UTR of 

different sizes. Upon transfection of these contructs into HeLa and Jurkat cells, a strong 

reduction in luciferase activity was observed for all 3’UTR fragments, ranging from 19 – 61% 

(Fig. 23). This finding suggests, that the elements which are responsible for regulation of 

ULBP1, are distributed over the entire 3’UTR. Interestingly, the luciferase activity of the 

single fragments was never as low as observed with the full-length constructs suggesting, that 

multiple regulatory elements in different parts of the 3’UTR contribute to the regulation of 

ULBP1.  

The reporter constructs which are being used in luciferase assays often cover a wide 

range of sizes. Investigations of the influence of the size of luciferase vectors on the luciferase 

activity upon transient transfection showed, that the luciferase activity inversely correlates 

with the construct size.259 In our study the difference in size between the control vector pRL-

con (6.3kb) and the full size vector pRL-U1-UTR (8.7kb) is 2.4 kb and one could argue that 

the strongly reduced luciferase activity upon transient transfection of the construct containing 

the full-length 3’UTR might be caused by this difference in size. However, the diminished 

luciferase activity was not only observed in the transient reporter system, but a similar 

reduction was also observed in the lentiviral reporter system. Furthermore, a low luciferase 

activity was also found for smaller constructs carrying fragments of the 3’UTR. Therefore, 

reduction in the luciferase activity upon transient transfections cannot be solely attributed to a 

diminished transfection rate of pRL-U1-UTR due to its enlarged size compared to the pRL-

con vector, although we cannot rule out that the size of the constructs may have influenced the 

luciferase activity to a certain degree also in our experiments. 

The reduction in luciferase activity which we observed upon transfection or 

transduction of constructs containing the full-length ULBP1-3’UTR or its fragments might be 

a consequence of mRNA degradation or translational repression. Degradation of mRNA can 

be caused by ARE- and microRNA-mediated regulation. Translational repression by storage 

of mRNAs in special cellular compartments, the P-bodies, has been linked to microRNA-

mediated regulation.189 In order to investigate which mechanism may regulate ULBP1 

expression, we measured the mRNA levels of reporter constructs containing the full-length 

ULBP1-3’UTR or the 3’UTR fragments by qPCR and correlated the mRNA levels with the 

corresponding luciferase activity in transfected cells. In Jurkat cells, the mRNA levels of 
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reporter transcripts ranged from 31 – 110% compared to the mRNA level upon transfection 

with the control vector, whereas the corresponding luciferase activity ranged from 7 – 40% 

(Fig. 24). The observation that the mRNA levels were decreased more moderately then the 

luciferase activity might indicate that translational repression causes the reduction in 

luciferase activity in Jurkat cells. In contrast, in HeLa cells, the mRNA levels of reporter 

transcripts were decreased dramatically, ranging from 6 – 22% (Fig. 24), which suggests that 

the reduced luciferase activity is a consequence of mRNA degradation. These results imply, 

that different regulatory mechanisms might regulate the expression of ULBP1 in HeLa and in 

Jurkat cells.  

Our findings that multiple regulatory elements in various parts of the 3’UTR may 

contribute to regulation of ULBP1 expression and that the regulatory mechanism my differ 

depending on the cell- or tissue-type, suggest a complexity in the process of post-

transcriptional control of ULBP 1 expression. Below, we discuss our data on the involvement 

of ARE motifs and microRNA-dependent regulation at ULBP1-3’UTR. 

 

 

1.4.2  Role of ARE in regulation of ULBP1 gene expression. 

 

Analysis of the ULBP1-3’UTR has revealed, that the 3’UTR harbours four ARE motifs in two 

regions, U1-5 and U1-9. In order to investigate the role of ARE sites in regulation of ULBP1 

gene expression, we mutated the AUUUA motifs by substitution of one or three bases, and 

performed luciferase reporter assays. Upon transfection of constructs harbouring the mutated 

fragments, the low luciferase activity seen with unmutated vectors, was not increased (Fig 

21). This indicates that the pronounced reduction of luciferase activity upon transfection of 

pRL-U1-UTR or the unmutated pRL-U1-5 and pRL-U1-9 constructs (Fig. 23) is not caused 

by ARE-mediated degradation of reporter transcripts. Since mutating of ARE motifs did not 

enhance luciferase activity in both HeLa and Jurkat cells, the differential effect of ARE in 

these two cell types in unlikely. Therefore we conclude, that ARE elements are not involved 

in negative regulation of ULBP1 expression. 

Interestingly, the luciferase activity was even further reduced upon transfection with 

mutated reporter constructs, ranging from 61-88% compared to unmutated fragments. This 

observation suggests, that ARE sites in the ULBP1-3’UTR might serve as stabilizing 

elements. Indeed, ARE sites do not only have mRNA destabilizing properties. The function of 
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ARE elements is highly dependent on the sequence composition around the ARE motifs and 

on the type of trans-acting ARE-binding proteins which attach to the ARE site.242 Binding of 

the ARE-binding protein HuR and other proteins to ARE results in stabilization of some 

transcripts.170,242 The question, whether also ULBP1 mRNA is stabilized by these proteins 

could be anwered using specific inhibitors260 or siRNA261 against HuR or other proteins. 

Changes in half-life of transcripts upon inhibitions of ARE-binding proteins could be 

examined by treatment of cells with the transcriptional inhibitors Actinomycin D (ActD) or 

5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole (DRB) and subsequent measurement of 

mRNA levels by qPCR at several time points.242,261 

Another explanation for the reduced luciferase activity upon mutation of ARE sites 

might be, that the mutation of U1-5 and U1-9 by base pair substitution leads to unintentional 

generation of new microRNA binding sites. Computational analysis of the unmutated and 

mutated U1-5 fragments revealed, that the substitution of one nucleotide (ATTTA to 

ATGTA) in the three ARE motifs of U1-5 indeed generated a second microRNA binding site 

for miR-496 (analysis was kindly done by N. Shomron, Tel Aviv, Israel). However, using 

microRNA qPCR, we were unable to detect miR-496 expression in Hela and Jurkat cells and 

hence it is unlikely, that the additional binding site for miR-496 contributed to the reduction 

of luciferase activity in cells transfected with the mutated construct pRL-U1-5-AREmut1. 

However, we cannot exclude that certain de novo microRNA binding sites for other 

microRNAs were generated by mutation of U1-5 and U1-9 and may have an impact on the 

luciferase activity. 

 

 

1.4.3  Role of microRNAs in regulation of ULBP1 expression 

 

Computational algorithms have predicted that more than 200 putative microRNA binding 

sites are located in the 3’UTR of ULBP1. In order to investigate the functional role of 

microRNAs in regulation of ULBP1, we selected 13 candidate microRNAs which were 

predicted to target the region U1-6 and/or U1-9 at least once. Studies in which the role of 

microRNAs in regulation of particular genes has been documented rely on approaches, which 

involve the analysis of the seed sequence184, overexpression or silencing of microRNAs227,262, 

as well as analysis of the involvement of enzymes involved in miR biogenesis, such as 

Drosha.95 These approaches were applied in our work. 
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In order to examine the expression level of the 13 candidate microRNA, we performed 

the microRNA qPCR and normalized the microRNA expression levels to the housekeeping 

miR-16. This analysis revealed, that 6 out of 13 candidate microRNAs were indeed expressed 

in HFF, 4 microRNAs were expressed in HeLa and only 2 microRNAs were expressed in 

Jurkat cells (Fig. 28). The low number of expressed microRNAs in the cancer cell lines HeLa 

and Jurkat may reflect the observation, that the microRNA expression is globally decreased in 

many tumors.193 Among the three types of cells used here, the 6 microRNAs (miR-140-5p, 

miR-381, miR-409-3p, miR-433-3p, miR-496, miR-650) were expressed in an overlapping 

manner. These data indicate, that only 6 of the 13 candidate microRNAs which are expressed 

in HeLa, Jurkat or HFF can be responsible for the pronounced reduction of luciferase activity 

upon transfection with the full-length ULBP1-3’UTR reporter. It remains open, whether the 

remaining 7 candidate microRNAs which were not expressed in HFF, HeLa and Jurkat, might 

be involved in regulation of ULBP1 in other cell types. 

In order to investigate, if miR-140-5p, miR-409-3p, miR433-3p and miR-650 are 

involved in regulation of ULBP1 expression, we simultaniously mutated the seed sequences 

of these candidate microRNAs in fragment U1-6 by base pair substitutions or deletions. Upon 

transfection of luciferase constructs containing the mutated seed sequences into HeLa and 

Jurkat cells, the luciferase activity was increased to 110–119% compared to unmutated 

construct (Fig. 29). Even though the effect was small, it was reproducibly seen in every 

experiment suggesting, that these endogenously expressed microRNAs might at least partially 

contribute to the regulation of ULBP1 expression. 

Based on these data, we continued the studies by an alternative approach of 

overexpression of selected candidate microRNAs and investigated, whether such 

overexpression can reduce the surface expression of ULBP1. Even though the microRNA 

expression levels were up to 10000 fold increased compared to the endogenous microRNA 

levels, this overexpression did not decrease the ULBP1 surface expression in ULBP1+ Jurkat 

cells. There was no effect on the expression of ULBP1 and no decrease in luciferase activity, 

irrespective whether overexpression was carried out for single candidate microRNAs or for 

their combinations. These data imply, that the candidate microRNAs we have overexpressed 

are not involved in regulation of ULBP1 expression.  

However, we cannot exclude a possibility that overexpression of microRNAs was not 

strong enough. In our hands, simultaneous transfection of multiple microRNA overexpression 

vectors resulted in a more moderate upregulation of microRNAs (2 – 250 fold), compared to 

transfection of single overexpression vectors (24 – 10000 fold) (Fig. 30 and 31). Mandelboim 
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and colleagues have reported, that overexpression of microRNAs in their hands had only an 

effect on the surface expression of the target protein when the transduction efficiency of their 

lentiviral constructs and in consequence the expression level of candidate microRNAs was 

high.95 Furthermore, we can not exclude, that the lack of an effect on ULBP1 surface 

expression upon overexpression of candidate microRNAs might be due to an alteration of the 

ULBP1-3’UTR in Jurkat cells. A recent study has shown that proliferating cells express 

transcripts with shortened 3’UTRs due to alternative cleavage and polyadenylation, and that 

these alterations result in fewer microRNA target sites.263 Interestingly, a sequence analysis of 

the ULBP1-3’UTR by W. Lutz (German Primate Center, Primate Genetics Laboratory, 

Göttingen, Germany) revealed, that the 3’UTR contains multiple canonical and alternative 

poly(A) sites (personal communication). Investigation of the ULBP1-3’UTR by Northern 

Blot, 3’RACE-PCR or sequencing could answer the question, if the 3’UTR is shortened in 

Jurkat, as well as in other cell types or tissues.  

Another approach to investigate involvement of microRNAs in gene regulation is the 

silencing of endogenous microRNAs by antisense microRNAs. In order to investigate if miR-

140-5p, which is highly expressed in both HeLa and Jurkat cells, contributes to the regulation 

of ULBP1, we co-transfected the reporter constructs and antimiR-140-5p into HeLa and 

Jurkat cells. Measurement of luciferase activity revealed, that silencing of endogenous mir-

140-5p had none or only a moderate effect on luciferase activity (Fig 32). Therefore we 

suggest, that miR-140-5p is not involved in regulation of ULBP1 expression. Silencing of 

other microRNA including miR-381, miR409-3p, miR-433-3p, miR-496 and miR-650, all 

which are expressed in HeLa, Jurkat and/or HFF, might allow to exclude the involvement of 

these microRNAs in regulation of ULBP1 expression, but we did not perform these analyses 

due to technical restrictions.  

In summary, we can conclude that the functional assays we have performed did not 

answer the question whether the seven investigated candidate microRNAs (miR-140-5p, miR-

380-3p, miR-381, miR-409-3p, miR-433-3p, miR-578 and miR-650) are involved in 

regulation of ULBP1. However, further investigations of these candidate microRNAs by 

experiments suggested above, could help to clarify the role of these candidate microRNAs in 

regulation of ULBP1.  
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1.4.4  Role of the microRNA biogenesis pathway involving Drosha 

 

Although we were not able to identify the involvement of specific microRNAs, we have to 

emphasize that none of the results we have obtained by luciferase assays and functional 

assays disproved the possibility that microRNAs are involved in regulation of ULBP1. In 

order to collect further arguments to support this hypothesis we investigated, whether 

disruption of the microRNA biogenesis pathway would affect the mRNA levels and the 

surface expression of ULBP1. Downregulation of Drosha by shRNA, using two different 

lentiviral systems, resulted in increased mRNA levels and surface expression of MIC 

molecules, which served as a positive control. However no upregulation of mRNA or surface 

protein was observed for ULBP1 (Fig. 33 + 34). Instead, the mRNA level of ULBP1 mRNA 

was even decreased upon knockdown of Drosha. Furthermore, the luciferase activity did not 

increase upon co-expression of Drosha-shRNA and luciferase reporter constructs. Therefore 

also this approach did not help to proof, that microRNAs are involved in regulation of 

ULBP1.  

Multiple studies have shown that knock-down of Drosha results in a decline of pre-

microRNAs and mature microRNAs.264-265 Although we have not examined the microRNA 

levels in HeLa cells upon knock-down of Drosha we assume, that the level of microRNAs 

was reduced. This assumption is supported by the facts, that the Drosha mRNA level was ~3 

fold diminished in cells transduced with shDrosha constructs. Furthermore, the expression of 

MIC transcript, a validated microRNA target95, was increased. Therefore we speculate, that 

the decrease of cellular microRNAs was sufficient enough to affect regulation of MIC 

molecules but might not be sufficient enough to upregulate ULBP1 expression. The 

observation that the effect of Drosha knock-down on ULBP1 and MIC transcripts was 

divergent might indicate, that these NKG2D-L are regulated by different mechanisms. One 

possible explanations for the decline of ULBP1 mRNA level upon knockdown of Drosha 

could be, that the putative low microRNA level in Drosha-deficient HeLa cells might have 

caused increased expression of microRNA-regulated RNA-destabilizing proteins, and in 

consequence degradation of ULBP1 mRNA.  

Taken together these data indicate that further experiments are needed to clarify if 

microRNAs are involved in regulation of ULBP1 expression. An alternative approach to the 

knock-down of Drosha might be knock-down of Dicer by shRNA, another crucial enzyme in 

the microRNA biogenesis pathway. In HEK293 cells, knock-down of Dicer leads to an 

increase of mRNA transcripts, containing 3’UTRs with putative microRNA binding sites.266 
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Knock-down of Dicer might lead to a more efficient reduction of microRNA levels and 

therefore might increase ULBP1 mRNA levels.  

Another possibility to investigate whether ULBP1 is regulated by microRNA might be 

co-immunoprecipitaion of Argonaute (Ago) proteins and Ago-associated mRNAs. Ago is part 

of the miRISC complex and guides microRNAs to the 3’UTR of the target mRNA. By using 

this approach, G. Meister and colleagues were able to isolate Ago-associated mRNAs and 

experimentally validated six mRNAs as microRNA targets267. In order to investigate whether 

ULBP1-3’UTR-containing luciferase reporter transcript are associated with Ago2, we co-

transfected in a preliminary experiment an Ago2-overexpressing plasmid and ULBP1-3’UTR 

luciferase reporter constructs into Jurkat cells and performed co-immunoprecipitation of 

Ago2, followed by RNA isolation of co-precipitated transcripts. Ago2-associated luciferase 

reporter mRNA was measured by qPCR, using luciferase-specific primers. However, the 

results gained from this experiment were not conclusive. A refinement of experimental set-up 

might lead to definite results in order to clarify, if microRNAs are involved in regulation of 

ULBP1 expression. 

 

 

1.4.5  Computational prediction and selection of candidate microRNAs 

 

Our attempts to identify functional relevant microRNAs in regulation of ULBP1 expression 

have failed. This however does not exclude, that microRNAs are involved in regulation of 

ULBP1. Beside the already discussed drawbacks in our functional assays, a major drawback 

for our failure might be the computational analysis and the strategy which was used to select 

for candidate microRNAs, involved in regulation of ULBP1 expression. Computational 

prediction by using several algorithms has revealed, that the ULBP1-3’UTR contains more 

then 200 microRNA binding sites. The selection of 13 candidate microRNA, all which were 

predicted to target region U1-6 and/or U1-9 in the ULBP1-3’UTR, were fully based on 

predictions resulting from Targetscan and other algorithms. 

Although computer algorithms are widely used to predict candidate microRNAs and 

are a well accepted method to unravel the role of microRNAs in biological processes and 

diseases, the prediction quality of current algorithms is poor.184,268 The major challenge in 

developing algorithms is the fact, that most of mammalian microRNAs recognize their mRNA 

targets via partial complementarity and therefore simple homology-based searches can not be 
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applied to uncover microRNA targets.188 Therefore the algorithms are mainly based on 

informations, gained through systematic target-site mutation experiments and extensive 

bioinformatical analysis.269-271 Based on these approaches, the main prediction parameters 

used in most of the current algorithms are stringent or moderately stringent pairing of the 

microRNA ,seed’ sequence to a complementary site in the target mRNA, and evolutionary 

conservation of potential microRNA binding sites in the 3’UTRs among different species. 

Additional parameters for prediction include good structural accessibility, nucleotide 

composition, and thermodynamic stability as well as location, number and proximity of the 

microRNA binding sites along a target mRNA.178,268  

To assess the quality of current prediction algorithms, Alexiou and colleagues 

compared the results from 9 prediction algorithms against experimental results gained from a 

high-throughput approach.268 Investigation of 5 microRNAs revealed, that five of nine 

programs (Diana-microT 3.0, Targetscan 5.0, TargetscanS, Picta, and ElMMo) had a 

precision of ~50% (50% of the computational results were correct when compared with 

experimental results; 50% false positive results). The sensitivity of these programs ranged 

from 6-12% (only ~10% of experimentally validated targets were correctly predicted by 

computational analysis; 90% false negative results). All these programs heavily rely on the 

evolutionary conservation of the seed region. The precision of the remaining four algorithms 

was even weaker. The authors conclude that even the most sensitive programs fail to identify 

large parts of target genes. Since the ULBP1-3’UTR is not conserved among species we can 

assume, that the prediction results we have gained by using different algorithms are not of a 

good quality, due to a high rate of false negative (experimentally supported microRNA-target 

gene interaction that are not predicted by the algorithm) and false positive (mistakenly 

predicted; microRNA:target-interaction experimentally disproven) predictions. 

Recently developed technologies will help to revise and improve the currently existing 

algorithms. Beside direct validation of microRNA:target-interactions such as luciferase 

reporter assays or seed sequence mutations, high throughput methods for indirect validation 

play an important role in this process. Overexpression or silencing of microRNAs and 

subsequent monitoring through gene expression arrays can help to identify microRNA targets, 

where binding of microRNAs results in changes of mRNA level. Recently developed high-

throughput proteomic techniques allow to identify also microRNA targets, which are 

translationally repressed by microRNAs and where the mRNA level is not affected.272-274 Two 

other recently developed methods to identify microRNA targets are the already mentioned 

immunoprecipitation of RISC components267,275 and crosslinking immunoprecipitation 
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(HITS-CLIP), followed by high-throughput sequencing of RNAs.276 However a common 

problem of all these methods are secondary and nonspecific effects.268 

Not only the quality of prediction algorithms might be responsible for the fact that we 

failed to identify functional relevant microRNAs, but also the strategy we have chosen to 

select 13 candidate microRNAs. Computational prediction revealed that more then 200 

microRNA might target the ULBP1-3’UTR. Examination of all predicted candidate 

microRNAs would have required high-thoughput approaches like microRNA microarrays. 

Instead, our strategy was to narrow down the number of predicted microRNA binding sites by 

generation of luciferase constructs containing fragments of the 3’UTR in order to uncover 

regions in the ULBP1-3’UTR with high regulatory capacity. Fragmentation of regulatory 

elements is a commonly used approach to investigate promoters and was also reported for 

investigation of the 3’UTR of candidate genes.200,258 Based on the results of luciferase 

reporter assays, region U1-6 and U1-9 were considered as regions with high regulatory 

potential. Therefore, we concentrated our studies only on U1-6 and U1-9 although we know, 

that regulatory elements are most likely located also in other parts of the ULBP1-3’UTR. This 

fact implies, that we have disregarded many microRNAs which might play a role in regulation 

of ULBP1. 

Furthermore, we did not examine all predicted candidate microRNAs in region U1-6 

and U1-9, but perfomed functional assays only with a selection of candidate microRNAs. The 

selection process was performed at two different time points. The coincidence, that the 

Targescan algorithm was revised during the course of our study forced us to use two different 

versions of the Targetscan (V4.2 and V5.2). When comparing the output of V4.2 and V5.1, 

the results differed significantly (see also Table 11). Whereas 7 microRNAs were predicted 

with V4.2 to target U1-6, the number of microRNAs in the revised algorithm V5.1 increased 

to 11. However, prediction results of only 4 microRNAs (miR-380-3p, miR-548c, miR-612, 

miR-657) were overlapping. Furthermore, one microRNA was predicted only with V4.2 and 

seven microRNAs only with V5.1. One microRNA was predicted with V4.2 to target the U1-

6, while V5.1 assigned this microRNA to target U1-9. One microRNA predicted with V4.2 

was afterwards removed from the microRNA registry, since this alleged microRNA was 

identified as a fragment of U11 splisosomal RNA. These differences in prediction by using 

two versions of Targetscan illustrate, that the development of prediction algorithms is an 

active and ongoing field of research and that the results, obtained from such algorithms can 

only be used with caution. 
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In the second round of selection, we combined and compared the results, which we 

obtained by using Targetscan V4.2 and V5.1, Elmmo3, microInspector V1.5 and DIANA 

microT V3.0 in order to increase the chance to select physiologically relevant candidate 

microRNAs. Based on this strategy, 7 additional candidates were selected. However a 

recently published study revealed, that one accurate algorithm might be better then the 

combination of predictions performed with several algorithms.268 Therefore it is questionable, 

if we would really increase the accuracy of our prediction by combining multiple algorithms.  

In our study, the expression of candidate microRNAs by qPCR was measured only 

after the selection process has been performed, as based on the one hand on computational 

analysis and on the other hand on the choice of putative 3’UTR fragments with regulatory 

function. Of thirteen candidate microRNAs, only 2 and 4 microRNAs turned out to be 

expressed in Jurkat and HeLa cells, respectively. Since only microRNAs, which are 

endogenously expressed in HeLa and Jurkat can cause the prominent reduction of luciferase 

activity, which was observed upon transfection with all luciferase reporter constructs 

containing parts of the ULBP1-3’UTR, we have finally analysed only 2 and 4 microRNAs, 

which might be relevant in regulation of ULBP1 expression in Jurkat and HeLa cells, 

respectively. The fact that the other candidate microRNAs are not expressed in HeLa and 

Jurkat does not exclude the possibility, that these microRNAs regulate ULBP1 expression in 

other cell types. Expression analysis in HFF has revealed, that these cells express 6 out of 13 

candidate microRNAs. Furthermore, microRNA array experiments have shown, that the 

microRNA signature differs considerably among different cell lines and cell types.193,225 

In a retrospective view, we might have increased the chance to discover functional 

relevant microRNAs by selection of candidate microRNAs based on microRNA microarray 

approaches. In a first step, examination of the microRNA expression pattern in HeLa, Jurkat 

and HFF would allow to exclude in advance these microRNAs from functional studies, which 

are not expressed in all three cell lines. In a second step, comparison of microRNA expression 

patterns would allow to select candidate microRNAs, which are expressed in all three cell 

lines. However one has to keep in mind, that not nessecarily the same microRNAs might be 

involved in regulation of ULBP1 in the different cell lines, and candidate microRNAs might 

be disregarded by focusing only on microRNA which are commonly expressed by all three 

cell lines. In a third step, the selection of candidate microRNAs could be further restricted by 

comparing the results obtained from microarrays and computational prediction algorithms. 
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1.4.6  Conclusions 

 

In this thesis, we provide the first evidence that the 3’UTR of ULBP1 is involved in 

regulation of ULBP1 gene expression. Furthermore we were able to exclude that the four 

ARE motifs, which are located in the ULBP1-3’UTR, possess destabilizing function. 

Unfortunately, our attempts to discover specific microRNAs, which might contribute to 

regulation of ULBP1 gene expression, failed. However, according to the performed 

experiments we can not exclude, that microRNAs are involved in regulation of ULBP1 

expression. Refinement of candidate microRNA selection and experimental approaches may 

help to elucidate the role of microRNAs in ULBP1 regulation. 

Identification of microRNAs, which are functionally relevant in regulation of ULBP1 

expression might allow to develop approaches to increase the susceptibility of cancer cells by 

microRNA-mediated upregulation of NKG2D-L. In a recent study, Mandelboim and 

colleagues could show, that transfection of antisense oligonucleotides against endogenous 

microRNAs into HFF lead to an induction of MICA and MICB protein expression and in 

consequence to enhanced killing of HFF by NK cells.95 Experiments in mice and monkeys 

proved that it is possible to administer antisense oligonucleotides and specifically target 

endogenous microRNAs in vivo.227-228 Although specific targeting of microRNAs is currently 

investigated only in preclinical studies, the development of new types of therapies to target 

microRNAs is an active field of research.277 
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V.  RESULTS (PART 2) 

 

1. Upregulation of NKG2D-L on human fibroblasts upon 

treatment with stress inducing reagents and histone deacetylase 

(HDAC) inhibitors 

 

1.1  Results 

 

Studies of Gasser and colleagues have revealed, that NKG2D-L expression can be induced on 

murine and human primary cell through treatment of these cells with reagents causing 

genotoxic stress and stalled DNA replication.79 Based on these results, we treated HFF with 

ionizing irradiation (IR), 5-fluorouracil (5-FU) or aphidicolin (Table 13), conditions which 

have been reported to induce surface expression of ULBP1 on this cell type. ULBP1 and 

MICA/B surface expression was measured one day post treatment. Among these treatments, 

increased expression of ULBP1 was only observed for IR (MFIR(untreated) = 1.9±0.3 vs. 

MFIR(IR) = 3.3; Fig. 36). Also MICA/B was slightly upregulated upon IR treatment. 

Treatment with 5-FU and aphidicolin did not modulate the surface expression of neither 

ULBP1 nor MICA/B.  

Since we have previously shown, that histone deacetylase inhibitors (HDACi) increase 

NKG2D-L levels and susceptibility of AML blasts to NK cell lysis (Diermayr et al. Blood 

2008), HFF were also treated with valproic acid (VA) and trichostatin A (TSA) (Table 13). 

Valproic acid (VA) slightly increased the surface expression of ULBP1 (1.9±0.3 vs. 2.8) and 

MICA/B (1.4±0.2 vs. 2.8; Fig. 36). For treatment of HFF with TSA, a strong and reproducible 

induction of ULBP1 (1.9±0.3 vs. 4.1±0.8; p = 0.0341) and MICA/B (1.4±0.2 vs. 13.2±3.3; p 

= 0.0081) were observed. Therefore we conclude, that the HDACi TSA is the most potent 

treatment among the reagents that we tested to modulate NKG2D-L surface expression on 

HFF. 
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Table 13: Reagent for treatment of HFF 

 

 

 

 
Figure 36: Upregulation of ULBP1 and MICA/B upon treatment in HFF with DNA damaging reagents 

and HDACi. ULBP1 and MICA/B surface expression one day after treatment with ionizing irradiation (IR), 5-

fluorouracil (5-FU), aphidicolin, valproic acid (VA) and trichostatin A (TSA). Results are means ± SEM (n=1-

4). * = p < 0.05; ** = p < 0.01. 

 

 

To closer investigate the effect of TSA on the ULBP1 and MICA/B expression, we measured 

mRNA level in TSA treated HFF by qPCR.  As already mentioned, surface expression of 

ULBP1 and MICA/B was highly induced upon TSA treatment (ULBP1: 2.1 fold; MICA/B: 

7.2 fold; Fig. 37 A). Measurement of mRNA levels by qPCR revealed a 4 fold increase of 

ULBP1 transcript and a 7.2 fold increase of MICA transcript (Fig. 37 B). The stronger 

upregulation of ULBP1 transcript compared to protein might indicate that post-transcriptional 

mechanisms are involved in TSA-induced upregulation of ULBP1. 

To investigate whether the upregulation of ULBP1 surface protein is mediated by the ULBP1-

3’UTR, we examined the influence of TSA treatment on lentiviral luciferase reporter 

constructs. In HFF transduced with LV-RL-con, luciferase activity was 1.5 fold induced upon 
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treatment with TSA (Fig. 37C) suggesting that TSA influences the transcription by acting on 

the lentiviral hPGK promoter (Fig. 20B) though epigenetic changes. In HFF tranduced with 

LV-RL-U1-UTR, the luciferase activity was nearly restored upon treatment with TSA (4 fold 

induction compared to untreated cells; Fig. 37C), suggesting, that the ULBP1-3’UTR 

contributes to the observed upregulation of ULBP1. Therefore, not only transcriptional but 

also post-transcriptional events might participate in TSA-mediated induction of ULBP1. 

 

 
Figure 37: Effects of TSA treatment on ULBP1 regulation. (A) Measurement of ULBP1 and MICA/B surface 

expression on HFF one day after TSA treatment (dark grey) or without treatment (light grey) Isotype staining is 

indicated with black lined histogram. (B) Measurement of ULBP1 and MICA mRNA levels one day after TSA 

treatment (dark grey). Results are normalized to untreated counterparts (light grey). (C) The luciferase activity 

was measured upon transduction of LV-RL-con or LV-RL-U1-UTR into HFF, and subsequent treatment with 

TSA for one day. Luciferase activity was normalized against untreated cell, transduced with LV-RL-con.  
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1.2  Discussion 

 

Investigation of leukemic blasts from patients with AML and of hematopoietic cancer cell 

lines have revealed, that many of these cells do not express NKG2D-L and therefore evade 

recognition and elimination by NK cells.52,156 In order to make hematopoietic malignant cells 

vulnerable for NK cell attack, our aim was to find stimuli to upregulate these ligands on the 

cell surface, and to investigate the underlying regulation mechanisms. Previous studies have 

shown that NKG2D-L expression can be upregulated by stress-causing stimuli, e.g. oxidative 

stress, heat shock and irradiation, as well as by reagents causing DNA damage.257 Therefore, 

we treated hematopoietic cell lines and primary bone marrow-derived CD34+ stem cells with 

various chemotherapeutic reagents which are known to cause DNA damage or stalled DNA 

replication (e.g. 5-FU, methotrexate, endoxane, cytosar, adriblastin, aphidicolin) or with other 

conditions triggering cellular stress (e.g. heat shock, amino acid starvation, IR, oxidative 

stress). However, in our hand, none of these treatments lead to a distinct and reproducible 

induction of NKG2D-L surface expression on hematopoietic cancer cell lines and bone 

marrow CD34+ stem cells (data not shown). 

Also our attempts to reproduce published results failed. Previous studies have shown 

that treatment of murine or human fibroblasts with IR, 5-FU or aphidicolin, all stimuli which 

cause genotoxic stress, resulted in upregulation of ligands as consequence of activation of 

ATM, ATR and Chk2 kinases in the DNA damage response (DDR) pathway.79 In contrast to 

the published results, treatment of the same type of HFF with 5-FU or aphidicolin did not or 

only marginally induced ULBP1 and MICA/B expression (Fig. 36) in our hands. A slight 

induction of ULBP1 on fibroblasts was only observed upon treatment of HFF with IR 

(MFIR(untreated) = 1.9±0.3 vs. MFIR(IR) = 3.3). It is difficult to explain these discrepancies 

to published data but to our knowledge, other groups also faced difficulties with 

reproducibility of these data (personal communications). 

Our observation from experiments with malignant hematopoietic cells suggest, that the 

upregulation of NKG2D-L as a consequence of activation of the DDR pathway is most likely 

restricted to non-pathogenic cells or cells in early stages of tumor transformation. Inactivation 

of the DDR in later stages of carcinogenesis as consequence of genetic instability and 

accelerated tumor formation might be the reason, why malignant hematopoietic cells are not 

able to upregulate NKG2D-L upon genotoxic stress. Indeed, a study has shown that the DDR 

is highly activated in early urinary bladder tumor, whereas the activation is clearly reduced in 



 
V. RESULTS (PART 2) - Discussion 

 

98 

more advanced stages of tumorigenesis.278 Furthermore, they showed that the activation of the 

ATM/ATR-Chk1/2-p53 cascade was frequently seen in absence of p53 mutations, suggesting 

that the latter event occurs later in tumorigenesis.  

The observation that primary HFF in our hands did not respond to treatment with 

DNA damaging reagents might be explained by the fact, that long-term culturing of cells is 

per se a stress factor. Cultured cells might adapt to this stress factor and in consequence may 

inactivate the DDR pathway. Therefore, the induction of NKG2D-L in primary cells might be 

only successful, if these cells are only short-term cultured and if they did not undergo freezing 

and thawing (personal communications).  

One explanation for the fact, that NKG2D-L are in general very difficult to induce 

may be, that NKG2D-L need to be tightly regulated and that special protection mechanisms 

exist in order to prevent unintended upregulation of ligands on healthy cells. Hematopoietic 

cells might require an even stronger protection than other cell types, since they are constantly 

exposed to metabolites, drugs, hormones and other substances in the peripheral blood or 

hypoxic conditions in the bone marrow. Therefore, these cells might have alternative stress 

sensors which ensure, that NKG2D-L are specifically upregulated only by highly threatening 

conditions.  

 

 

In our earlier study we could show, that treatment of AML blasts with the HDACi valproic 

acid (VA) induced NKG2D-L expression and in consequence augmented recognition and 

killing of blasts by NK cells. In order to examine, if HDACi can also trigger NKG2D-L 

surface expression on HFF, we treated these cells with TSA and VA. TSA treatment resulted 

in a significant and reproducible upregulation of ULBP1 (MFIR(untreated) = 1.9±0.3 vs. 

MFIR(TSA) = 4.1±0.8) and MICA/B (1.4±0.2 vs. 13.2±3.3) (Fig 36). In contrast, treatment 

with VA affected the surface expression of the ligands only slightly. Examination of mRNA 

levels revealed a 4 fold and 7.2 fold increase of ULBP1 and MICA transcripts upon TSA 

treatment, respectively (Fig. 37). The stronger upregulation of ULBP1 transcripts compared to 

protein surface expression (4 fold vs. 2.1 fold) might indicate that post-transcriptional 

mechanisms are involved in TSA-induced upregulation of ULBP1. Indeed, TSA treatment of 

HFF transduced with the full-length luciferase vector resulted in a 4 fold induction of 

luciferase activity (Fig 37), which further argues for post-transcriptional regulation of ULBP1.  

 The molecular mechanisms of TSA-mediated upregulation of ULBP1 have not been 

elucidated so far. Recent studies revealed that treatment of cancer cells with HDACi 
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modulates the expression of microRNAs.279-280 In order to examine, if these post-

transcriptional regulators contribute to regulation of ULBP1 in response to HDACi, changes 

in microRNA levels upon treatment of HFF with TSA could be investigated by microRNA 

microarray or microRNA qPCR. Subsequent functional analysis of affected microRNAs 

might help to identify microRNAs which regulate ULBP1 expression. 

Furthermore, this model could also be used to investigate transcriptional regulation 

mechanism of ULBP1, since TSA treatment significantly increased the ULBP1 mRNA level 

in HFF. Overexpression of HDAC is a common event in many cancer types and leads to 

formation of compact chromatin structures due to removal of acetyl groups from histones.281 

As consequence, transcription is impaired since transcription factors are unable to bind to 

promoter regions. Several reports showed, that MICA and MICB can be induced upon 

HDACi treatment. This induction has been linked to increased acetylation of histone H3 in the 

promoters of MICA and MICB.282 Furthermore, upregulation of MICA/B upon HDACi 

treatment was dependent on the glycogen-synthase-kinase 3 (GSK3).283 Our own studies 

showed, that not only MICA/B expression but also ULBP1 expression can be induced in 

primary AML blasts and HFF upon treatment with VA and TSA, respectively.70 However the 

molecular mechanisms of HDACi-mediated upregulation of ULBP1 are largely unknown. 

Investigation of the acetylation status in the ULBP1 promoter region might help to elucidate 

the molecular mechanisms leading to ULBP1 induction. Upregulation of ULBP1 might also 

be caused by secondary effects upon TSA treatment. In order to identify molecular pathways, 

involved in TSA-mediated upregulation of ULBP1, inhibitors like caffeine and KU-55933284 

(inhibitor of ATM/ATR), rapamycin285 (inhibitor of mTOR) or LY29402285 (inhibitor of 

PI3K), all which have been used to investigate regulation of NKG2D-L expression by other 

groups, might help to address this question.  

Multiple studies have shown that HDACi induce NKG2D-L expression selectively in 

cancer cells, while no increase of NKG2D-L was observed in non-malignant cells.89,282,286 

Therefore, pharmacological induction of NKG2D-L by treatment of patients with HDACi in 

combination with immunotherapeutical approaches, such as adoptive transfer of alloreactive 

NK cells, might represent a new therapeutic strategy in anticancer treatment.  
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2. NKG2D ligand expression in AML increases in response to 

HDAC inhibitor valproic acid and contributes to 

allorecognition by NK-cell lines with single KIR-HLA class I 

specificities 

 

2.1  Publication 
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2.2  Supplementary Data 

 

Table 14: Ligands on myeloblastic/monoblastic cells and in plasma ofAML (n=66) and CMML (n=3) 
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Table 15: HLA-class I haplotype of patients and potential NK cell recognition by KIR-HLA class I 

mismatch 

 

 

 

 

 
Figure 38: (A) A biochemical ULBP1 detection approach in which human plasma was subjected to fractionation 

by size exclusion chromatography followed by ELISA analysis of the eluate (see Methods). ULBP1 eluted as a 

single peak with an estimated molecular weight of 63 kDa. (B) The ULBP1-containing fractions (21-25) were 

pooled and subjected to immunoprecipitation and Western blot analysis. ULBP1-specific mAbs 

immunoprecipitated a protein of about 20 kDa (lane 4), as predicted for the extracellular ULBP1 region, which 

was not observed in control immunoprecipitations using mouse IgG1 (lane 2) or NKG2D receptor-specific mAbs 

(lane 3). Rh ULBP1/Fc is loaded as a control (lane 1). 
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Abstract 

The immunoreceptor NKG2D expressed by NK and T cells allows recognition and lysis of 

tumor cells expressing the corresponding ligands. To spare healthy cells from NKG2D-

mediated cytotoxicity, the expression of NKG2D ligands (NKG2D-L) must be tightly 

regulated. Discrepancy between NKG2D-L mRNA and surface expression levels indicates 

that post-transcriptional mechanisms may be involved in the regulation of NKG2D-L 

expression in healthy and malignant cells. To examine the contribution of 3’- untranslated 

region (UTR) of ULBP1 to the regulation of ULBP1 gene expression, we constructed Renilla 

luciferase reporter plasmids containing the full-length 3’UTR of ULBP1. We show that the 

luciferase activity is strongly reduced to 7% - 13% in Jurkat and HeLa cells. Fragments of the 

3’UTR, which cover the entire 2.4 kb of the 3’UTR, were less effective in reducing luciferase 

activity than the full-length 3’UTR (19% - 40%). In luciferase reporter assays, mutation of 

potential AU-rich elements revealed a mRNA stabilizing effect of these sequences. Mutations 

of potential microRNA binding sites and partial silencing of Drosha protein by short hairpin 

RNAs gave inconclusive results, and specific microRNAs controlling ULBP1 expression 

could not be identified. Altogether these results provide evidence of a novel, 3’UTR-mediated 

mechanism for regulation of ULBP1 and suggest that ULBP1 expression could be targeted at 

post-transcriptional level to enhance immunogenicity of tumor cells. 
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Introduction 

 

The activating immunoreceptor NKG2D is expressed by cytotoxic NK and CD8+ T cells and 

triggers cellular cytotoxicity and cytokine production [1]. Ligands of NKG2D (NKG2D-L) 

are frequently overexpressed by virus-infected or transformed cells but are rarely detectable 

on healthy cells.[2] The functional importance of NKG2D and its ligands in cancer immunity 

is illustrated by accelerated tumor development in NKG2D-deficient mice [3] and efficient 

rejection of tumors ectopically expressing NKG2D-L on their surface [4, 5]. In healthy tissue, 

inappropriate overexpression of NKG2D-L can trigger autoimmunity [6, 7]. This indicates 

that NKG2D-L expression levels have to be tightly regulated to allow recognition of tumor 

targets, but at the same time avoid destruction of untransformed tissues.  

Human NKG2D-L include the MHC class I chain-related proteins A and B (MICA 

and MICB) and six members of the UL-16 binding protein (ULBP) family [8-10]. Despite the 

existence of a multitude of ligands for one receptor, selective expression of single proteins has 

often been observed in various cell types and in response to various inducing signals. For 

example, activation of T cells and macrophages leads to upregulation of MICA, but not MICB 

[11], and ULBP1, but not the other ULBP ligands, are expressed in differentiating myeloid 

progenitors and EBV-infected B cells [12, 13]. In cancer, expression of ULBP3 is specifically 

detectable on chronic lymphocytic leukemia cells [14], and ULBP2 is found in melanoma 

metastases [15] or ovarian carcinoma cells [16]. These selective expression patterns argue for 

the existence of diverse regulatory mechanisms specifically controlling expression of 

individual NKG2D-L, dependent on pathophysiological conditions, thus ensuring the 

exposure of potentially harmful cells to the immune effectors [17, 18]. 

The therapeutic induction of human NKG2D-L in cancer or infection is of 

considerable interest, but clinical approaches remain restrained by limited understanding of 

the precise mechanisms that control expression of individual ligands. The promoters of MICA 

and MICB genes contain regulatory elements responsible for heat shock- and oxidative stress- 

responses associated with the transcriptional upregulation of MIC levels upon cellular stress 

[19]. Recently, the post-transcriptional control of MIC expression has been described, 

involving the 3’ untranslated region (3’UTR) of MICA and MICB genes recognized by 

microRNAs. Two short sequence segments conserved within the 3’UTR of MICA and MICB 

contain binding sites for endogenous cellular and also viral-encoded microRNAs (hsa-miR-

17-5p/-20a/-93/-106b/-373/-520d and hcmv-miR-UL122) [20, 21].  
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In case of ULBP expression, transcriptional regulation was postulated by the analysis 

of the putative promoter regions [22], and binding sites for the transcription factors Sp1, Sp3 

and AP-2a were specifically identified within the promoter of ULBP1 [23]. Expression of 

ULBP mRNA in the absence of proteins detectable on the surface of various cell types [24-

27] is indicating that, in analogy to MIC ligands, not only transcriptional but also post-

transcriptional mechanisms may regulate the levels of ULBPs [28].  

Here we investigated the role of 3’UTR in regulation of ULBP1 expression. 

Considerable differences in length and sequence of the 3’UTRs of the ULBP genes suggest 

that this region plays a role in differential expression of ULBPs. Sequence analysis of 2.4 kb-

long 3’UTR of ULBP1 revealed potential binding sites for microRNAs and AU-rich elements 

(ARE), the regulatory components of RNA degradation and translational suppression [29, 30]. 

Using luciferase reporter assays, we show that the full-length 3’UTR of ULBP1 is markedly 

involved in regulation of expression of ULBP1 in two cancer cell lines, HeLa and Jurkat. This 

finding reinforces the role of post-transcriptional mechanisms in modulating the NKG2D-L 

levels, which may increase the visibility of tumor cells to the effectors of the immune system. 

 

 

Material and Methods 

  

Cells 

Human cervix carcinoma HeLa cells and T cell leukemia Jurkat cells were cultured in DMEM 

(Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum and 

Penicillin/Streptomycin (Invitrogen).  

  

Cloning of Luc-expression vectors  

The full length 3’UTR of ULBP1 (ULBP1-3’UTR) was amplified by PCR from full-length 

cDNA clone IRATp970D01103D (imaGenes, Berlin, Germany) with primers containing NotI 

restriction sites, subcloned into pGEM-T vector (Promega, Madison, WI) and inserted into the 

NotI site of the Renilla luciferase reporter vector pRL-con [31] (kindly provided by W. 

Filipowicz, FMI, Basel) immediately downstream of luciferase coding region to produce 

pRL-U1-UTR. Nine fragments U1-1 to U1-9 were generated by specific PCR amplification 

from ULBP1-3’UTR cDNA clone with fragment-specific forward and reverse primers 

(Supplementary Table 1) and inserted into pRL-con. Mutated fragments of ULBP1-3’UTR, 

containing base pair substitutions or deletions in potential microRNA seed sequences or in 
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predicted ARE sites, as indicated in the Result section, were ordered from DNA 2.0 (Menlo 

Park, CA) and inserted into NotI sites of pRL-con. All products were verified by sequencing. 

 For stable luciferase expression, we used the lentiviral vector MA1 containing two 

expression cassettes driven by a bidirectional promoter [32] (kindly provided by L. Naldini, 

Milano). The LNFGR gene was excised by digest with XmaI and SalI and replaced by the 

Renilla expression cassette. The Renilla luciferase gene with and without full-length ULBP1-

3’UTR was amplified from pRL-U1-UTR with primers containing XmaI and SalI restriction 

sites, subcloned into pGEM-T and inserted into the lentiviral vector MA1 to produce LV-RL-

U1-UTR and LV-RL-con, respectively. Lentiviruses were produced as described [33]. 

  

Luciferase assay 

Jurkat cells (6x105 cells/well) were transfected in duplicates in 24-well plates with 20ng of 

luciferase reporter vectors and 250ng of the firefly luciferase vector pGL4.13 (Promega), 

using Lipofectamine 2000 (Invitrogen). HeLa cells (4x104 cells/well) were plated in 24-well 

plates one day prior to transfection with 20ng of reporter and 150ng of firefly luciferase 

vector. pRL-con served as control reporter vector. Renilla and Firefly activities were 

measured 48 hours after transfection using the Dual-Luciferase Reporter Assay (Promega) in a 

MicroLumat Plus reader (Berthold Technologies, Bad Wildbad, Germany). Renilla luciferase 

was normalized to firefly luciferase activity and then to the average activity of pRL-con. In 

cells stably transduced with LV-RL-U1-UTR, Renilla luciferase activity was measured with 

the Renilla Luciferase Assay (Promega) using equal cell numbers and normalized to the 

percentage of GFP expressing cells. Paired Student’s t-test was used to compare the effect of 

different reporter vectors on luciferase activity. 

  

Quantitative RT-PCR 

Total RNA was isolated using Trizol (Invitrogen). Reverse transcription was performed with 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). 

Quantitative real-time polymerase chain reaction was performed in duplicates using Power 

SYBR Green PCR master mix in an ABI Prism 7000 (Applied Biosystems) and conditions as 

described [34]. The following primer pairs were used for quantification of specific mRNAs: 

ULBP1 forward: 5'-GTACTGGGAACAAATGCTGGAT-3', reverse: 5'-

AACTCTCCTCATCTGCCAGCT-3' [35]; MICA forward: 5'-

ACAATGCCCCAGTCCTCCAGA-3', reverse: 5'-ATTTTAGATATCGCCGTAGTTCCT-3 

[36]; Drosha forward: 5'-GCAGTTATTTGGACGCTTGC-3', reverse: 5'-
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AGTTGTCGATCAGTATTTGGC-3'; RPL19 forward: 5'-GATGCCGGAAAAACACCTTG-

3', reverse: 5'-TGGCTGTACCCTTCCGCTT-3' [34]. PCR reactions were normalized to 

RPL19 using the 2–Ct method [34]. 

Stem-loop quantitative RT-PCR to quantify expression levels of mature miRNAs 

(TaqMan microRNA Assays, Applied Biosystems) was performed according to the 

manufacturer’s instructions in an ABI Prism 7500 Real-Time PCR system (Applied 

Biosystems). PCR reactions were run in duplicates, and miRNA expression, relative to hsa-

miR-16, was calculated [34]. The threshold of microRNA expression level was defined as 

CT(miR-16 – miR-X) >12. 

  

MicroRNA overexpression 

Complementary oligonucleotides designed to form artificial pre-miRNA hairpins 

(Supplementary Table 2; ordered from Eurogentec, Seraing, Belgium), were annealed by 

heating to 95°C for 5 minutes and slow cooling to room temperature, phosphorylated with T4 

polynucleotide kinase and inserted into the HindIII and BglII sites of a modified pSUPER 

vector [37]. The vectors were transiently transfected into Jurkat cells with indicated 

concentrations, using Lipofectamine 2000, and FACS, luciferase assay and RNA isolation 

was performed 48 hours later. 

  

Drosha knockdown with short hairpin RNA 

Lentiviral vectors containing a Drosha-specific shRNA (LV-shDrosha) or a control shRNA 

(LV-shControl), as well as a GFP expression cassette were kindly provided by O. 

Mandelboim, Jersualem, Israel) [20, 21]. Transduction efficiency of HeLa cells was assessed 

by measuring GFP+ cells by FACS. NKG2D-L surface expression and RNA levels were 

measured five days after transduction. To perform the luciferase assay, HeLa cells were 

transduced with LV-RL-U1-UTR or LV-RL-con, sorted for GFP expression and subsequently 

transduced with LV-shDrosha or LV-shControl. Seven days upon the second transduction, 

luciferase activity was measured as described above.  

 

Flow cytometry 

Cells were stained with unconjugated mouse monoclonal antibodies (mAbs) against ULBP1 

(M295; kind gift of D. Cosman, Amgen, Seattle, WA), MICA/B, HLA class I or with mouse 

IgG1 isotype (BD Biosciences, Allschwil, Switzerland) at 10 µg/mL and with secondary goat-

anti mouse IgG-FITC (Jackson ImmunoResearch, West Grove, PA) or goat-anti mouse IgG-
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Alexa647 (Molecular Probes, Invitrogen). Propidium iodide (Sigma, Buchs, Switzerland) was 

used to exclude dead cells from analysis. At least 20’000 events were acquired using FACS 

(FACSCalibur; BD Biosciences) and analysis was performed using FlowJo software 

(TreeStar, Ashland, OR). Surface expression level of NKG2D-L was defined as the mean 

fluorescence intensity ratio (MFIR) of values obtained with specific mAbs divided by values 

given by secondary or control mAbs [12]. 

  

  

Results 

  

Regulation of ULBP1 expression by 3’UTR 

Since various cells and tissues were shown to express ULBP1 mRNA in the absence of 

ULBP1 protein detectable on the cell surface, these discrepancies are suggestive of the 

involvement of post-transcriptional mechanisms in regulating ULBP1 levels. Here we studied 

the role of the 2.4-kb-long 3’UTR in post-transcriptional regulation of ULPB1 gene 

expression. The reporter plasmid pRL-U1-UTR, which contains the luciferase gene fused to 

the full-length ULBP1-3’UTR, was transiently transfected into HeLa and Jurkat cells. The 

luciferase activity was significantly decreased to 7%-13% compared to the control plasmid 

pRL-con without ULBP1-3’UTR (Figure 1A) Likewise, following stable transduction of 

HeLa and Jurkat cells with lentiviral vectors containing the luciferase ULBP1-3’UTR 

expression cassette (LV-RL-U1-UTR), we observed a strongly reduced luciferase signal 

compared to a control vector LV-RL-con (Figure 1B). These results indicate that the 3’UTR 

contains regulatory sequences for ULBP1 gene expression.  

To determine the position of regulatory sequences in the ULBP1-3’UTR, we 

generated nine constructs pRL-U1-1 to pRL-U1-9 carrying fragments of ULBP1-3’UTR 

inserted downstream of the luciferase gene (Figure 2A). Upon transient expression in HeLa 

and Jurkat cells, all fragments led to significant reductions of luciferase activity, as compared 

to pRL-con (Figure 2B). The strongest effects were observed with the 5’-terminal 1052 bp-

long pRL-U1-3 (19%±2% and 24%±5% in HeLa and Jurkat cells, respectively), and with the 

3’-terminal 669 bp-long pRL-U1-9 (35%±4% and 26%±1%). Within pRL-U1-3, the reduction 

was well pronounced with the 367 bp-long fragment U1-5 (40%±3% and 37%±4%), and the 

short, 178bp, U1-6 sub-fragment thereof (40%±4% and 40%±1%). Interestingly, none of the 

fragments was as potent as the full-length ULBP1-3’UTR, and the effects were seen with 

every fragment along the 3’UTR, suggesting that the regulatory sequences are distributed over 
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the entire 3’UTR, rather than restricted to specific areas. By examining the sequence of 

ULBP1-3’UTR, we identified a number of potential regulatory elements, including 

microRNA binding sites and ARE motifs, and we next investigated their involvement in 

regulating the levels of ULBP1. 

  

Role of ARE in regulation of ULBP1 expression 

Sequence analysis of the ULBP1-3’UTR indicated the presence of four potential ARE, three 

of them located in fragment U1-5 and one in fragment U1-9. ARE motifs within the 3' UTR 

of mRNAs are crucial determinants of transcript instability in mammalian cells [30]. To 

determine the contribution of these elements to ULBP1 post-transcriptional regulation, we 

generated mutated fragments of U1-5 and U1-9 (Figure 3A) in which the ARE were altered 

by base pair substitutions, giving rise to vectors pRL-U1-5-AREmut1 (ATTTA to ATGTA) 

and pRL-U1-5-AREmut2 (ATTTA to AGGGA) or pRL-U1-9-AREmut2 (ATTTA to 

AGGGA). In addition, we mutated an ARE-like site ATTTTA located in fragment U1-5 (to 

ATGTTA or AGGGGA; see also Supplementary Figure S1). Following transfection of 

unmutated pRL-U1-5 and pRL-U1-9 and their mutated counterparts to HeLa and Jurkat cells, 

we found that the mutations did not lead to an increase in luciferase activity (Figure 3B), as 

would be expected from inactivation of RNA destabilizing sites. Instead, the luciferase 

activities were reduced with individual mutated constructs in both HeLa and Jurkat cells (to 

60.5% - 86.6% of control vectors; Figure 3B). These results indicate that ARE sites are not 

responsible for reduced luciferase activity with U1-5 and U1-9 constructs, and it is therefore 

unlikely that they are involved in the suppression of ULBP1 transcript levels. 

  

Role of microRNAs in regulation of ULBP1 expression 

We next examined the role of microRNA-binding sites as regulatory elements within the 

ULBP1-3’UTR. MicroRNAs are important players in post-transcriptional regulation [38, 39]. 

In an attempt to identify the microRNAs that target ULBP1 mRNA, we used computer 

algorithms to search the ULBP1-3’UTR for potential sites recognized by cellular microRNAs. 

The accuracy of programs to predict microRNA binding sites in ULBP1-3’UTR is limited 

because human ULBP1 does not show sequence conservation with NKG2D ligands from 

other species, which is one of the criteria used by most of these programs. Using the four 

different programs, TargetScanHuman v.4.2 and v5.1[40], DIANA microT v3.0 [41], ElMMO 

v3 [42], and Micro-Inspector v1.5 [43], more than 200 potential microRNA were predicted to 

target the ULBP1-3’UTR. By focusing on U1-6 and U1-9 fragments, as based on their strong 
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suppressing effect on luciferase activity (see Figure 2B), we selected 13 microRNAs predicted 

by more than one program to bind to U1-6 or U1-9, or to have at least two binding sites in the 

full-length ULBP1-3’UTR (Supplementary Figure S2).  

First we examined whether any of these candidate microRNAs are expressed in Jurkat 

and HeLa cells. Using quantitative PCR we found miR-140 and miR-650 expression in Jurkat 

cells and miR-140, miR-409, miR-433 and miR-650 in HeLa cells (Figure 4A). All other 

miRNAs were either not present or were weakly expressed below the threshold defined 

according to miR-16, used in the assay as the housekeeping microRNA. To determine 

whether candidate microRNAs are involved in recognition of ULBP1-3’UTR and lead to 

reduced reporter luciferase activity, we generated mutants of fragment U1-6 by introducing 

base pair deletions or substitutions which should prevent the pairing of miR-140/-380/-409/-

433/-650 to the predicted binding sites (pRL-U1-6sub and pRL-U1-6del constructs: see 

Supplementary Figure S3). In comparison to unmutated pRL-U1-6, mutated vector pRL-U1-

6sub produced a statistically significant increase in luciferase activity in Jurkat cells, and also 

all other mutated fragments showed a similar tendency (Figure 4B), suggesting that at least 

some of the candidate microRNAs expressed in HeLa and Jurkat cells may contribute to 

regulation of ULBP1 within the region U1-6 of 3’ UTR. 

To validate the microRNA involvement in regulating ULPB1 transcript levels, we 

overexpressed several candidate microRNAs and examined whether high levels of these 

microRNAs lead to a decrease in ULBP1 surface expression. By transient co-transfection of a 

mix of six microRNA-overexpressing vectors (pSUPER-miR-140/-380/-381/-409/-433 and -

650) into Jurkat cells, we achieved microRNA levels that were 2.5-fold (miR-381) to 252-fold 

(miR-650) higher than the endogenous levels of respective microRNA (Figure 5A). When 

microRNA overexpressing plasmids were co-transfected with luciferase reporter vectors 

(pRL-U1-UTR or the pRL-U1-6 or U1-9), the luciferase activity was not altered (Figure 5B). 

No reduction of luciferase activity in the presence of increased microRNA levels is arguing 

against the involvement of these selected microRNAs in regulating ULPB1 transcript levels. 

Consistent with this observation, also the surface expression of ULBP1 protein was not 

affected in pSUPER-miR transfected Jurkat cells (Figure 5C). Unchanged was also the 

surface expression of HLA-ABC molecules (data not shown), as an indication of lack of 

potential unspecific off-target effects of microRNA overexpression. Based on these results, 

we were unable to demonstrate a specific modulatory role of the six candidate microRNAs in 

the regulation of the regions U1-6 and U1-9 of ULBP1-3’UTR.  
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Role of Drosha in regulation of ULBP1 expression 

Since the results described above did not identify specific microRNAs which are potentially 

involved in regulation of ULBP1 expression, we used an approach of knock-down of Drosha, 

a crucial component of microRNA biogenesis [44]. We transduced HeLa cells with a 

lentiviral vector expressing the short hairpin RNA directed against Drosha (LV-shDrosha) 

[21], and obtained a 2.3-fold reduction of Drosha mRNA levels (Figure 6A). In agreement 

with the known involvement of microRNAs in regulating MICA [21], the MICA mRNA level 

in transduced HeLa cells was increased by 1.4-fold (Figure 6A). However, we found no 

analogous increase in ULBP1 mRNA, the levels of which were even reduced by 50% (Figure 

6A). Accordingly, when HeLa cells were transduced with LV-RL-U1-UTR, Drosha knock 

down had no effect on luciferase activity, which remained at a similarly low level of 

approximately 10%, as in cells transduced with LV-shControl (Figure 6B). Furthermore, 

ULBP1 surface expression remained low in LV-shDrosha transduced cells, while MICA 

surface expression was markedly up-regulated from MFIR 11.7 to 17.1 (Figure 6C). In order 

to assess whether HeLa cells are capable of expressing cell surface ULBP1 at enhanced 

levels, we performed a control experiment by transfecting cells with the ULBP1 expression 

vector RSV.5ULBP1 [45]. As a significant proportion of transfected cells (41%) expressed 

high surface levels of ULBP1 (Figure 6D), we conclude that absence of ULBP1 up-regulation 

in Drosha knock-down HeLa cells is not due to intrinsic limiting factors. The fact that the 

knock-down of Drosha was sufficient to increase MICA but not ULBP1 expression may 

indicate that ULBP1 is regulated by mechanisms other than microRNAs. At the same time, 

we cannot exclude that microRNAs which are less sensitive to Drosha downregulation could 

target the 3’UTR of ULBP1.  

 

 

Discussion 

 

NK and T cells constitutively express the activating receptor NKG2D at high levels. 

Therefore, the control of expression of the corresponding NKG2D-Ls is essential for 

preventing a spontaneous NKG2D-mediated cytotoxicity against healthy neighboring tissue, 

while directing the immune response towards infected or transformed cells. The complexity of 

multiple known NKG2D-Ls is also reflected in multiple mechanisms underlying the induction 

and expression of individual ligands at the transcriptional, post-transcriptional, and post-

translational levels, as extensively demonstrated with the members of MIC ligand family [21]. 
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In comparison with MIC ligands, knowledge on the mechanisms of expression of ULBP 

ligand family members remains fragmentary. In this work, we studied the involvement of 

post-transcriptional mechanisms in regulation of ULBP1, and we provide the first evidence 

that 3’ UTR plays a role in regulating ULBP1 expression in cancer cells. 

Among the ULBP genes, ULBP1 contains the longest, 2.4 kb-long 3’UTR [25]. The 

regulatory potential of this region was shown in the functional assays employing the full-

length 3’UTR of ULBP1 fused to a luciferase reporter gene. Up to 14-fold suppression of 

luciferase activity was observed in Jurkat and HeLa cells after transient transfection as well as 

stable transduction with lentiviral vectors. Also fragments of ULBP1-3’UTR, which ranged 

from 178 – 1152 bp, had a suppressive effect, although to a lesser degree compared to the 

full-length 3’UTR. There was no correlation of fragment length and luciferase activity, 

suggesting that the regulatory elements are scattered all along the 2.4 kb-long UBLP1-3’UTR. 

The apparent involvement of 3’UTR and wide distribution of the putative regulatory 

elements suggests microRNAs as candidate regulators of ULPB1. Using several 

computational algorithms [40-43], numerous potential microRNA binding sites in ULBP1 

3’UTR could be predicted. Among the generated fragments of 3’UTR, we focused on 

fragment U1-6, because it was only 178bp long with 9 predicted microRNA binding sites, but 

nevertheless led to a significant 2.5-fold suppression of luciferase activity in Jurkat cells. By 

performing the expression profile analysis of microRNAs in HeLa and Jurkat cells, the 

number of candidate microRNAs was reduced to 6, and we asked whether these play a role in 

targeting U1-6, either by mutating the respective seed sequences or by overexpression of 

microRNAs. Our results showed that, on one hand, inactivation of potential microRNA 

binding sites in fragment U1-6 led to a significant increase of reporter activity, speaking for 

the involvement of these specific microRNAs in the control of luciferase expression. On the 

other hand, overexpression of specific microRNAs did not affect reporter activity or ULBP1 

surface expression in ULBP1+ Jurkat cells, arguing against a role of these microRNAs in 

ULBP1 regulation. Also, a functionally relevant 2.3-fold reduction of Drosha mRNA by 

specific shRNAs, sufficient to increase MICA mRNA and cell surface levels, did not 

influence luciferase or ULBP1 expression. Since most of microRNA prediction algorithms 

use sequence conservation among species as one of their selection criteria and since ULBP1 is 

only found in men and anthropoid apes, the accuracy of prediction algorithms may have been 

insufficient to choose the appropriate microRNAs, and this may explain our inconclusive 

results.  
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Computer analysis predicted four ARE sites in the ULBP1-3’UTR, three in fragment 

U1-6 and one in fragment U1-9. We examined their involvement in ULBP1 regulation by 

mutating the ATTTA consensus sequence. The inactivation of all four ARE sequences did not 

lead to any increase but rather to a significant decrease of the luciferase activity. Thus our 

results do not corroborate the possibility that low ULBP1 surface protein levels in many cell 

lines and primary cells are caused by ARE-mediated mRNA degradation. Instead the data 

indicate that AREs of ULBP1 3’UTR may be recognized by mRNA stabilizing proteins such 

as the HuR protein which is expressed in all proliferating cells [46]. Interestingly a correlation 

of ULBP1 expression and proliferation was described [11], but no link to ARE or HuR 

protein levels has been made.  

The search for additional regulatory elements in ULBP1-3’UTR revealed a potential 

Alu repeat, a non-coding RNA sequence with internal tandem duplications, which belongs to 

the short interspersed nucleotide elements [47]. This element at position 473-770 of ULBP1-

3’UTR overlaps with fragments U1-2 to U1-6 but does not include the predicted AREs in 

fragment U1-6. The mechanism by which Alu elements modulate gene expression are only 

little understood [48], but possible interactions with microRNAs have been postulated [49]. 

Remarkably some microRNAs which may bind Alu sequences were among those described to 

regulate MICA and MICB, e.g. miR-17-5p/-20a/-93/-106b/-373/-520d [21]. It is therefore 

tempting to speculate that these microRNAs could also target the Alu sequence of ULBP1-

3’UTR and thereby effectively prevent mRNA translation. The fact that most microRNA 

prediction algorithms have excluded repetitive sequences from consideration [40] would 

explain why the Alu-specific microRNAs were not among those listed to bind ULBP1 

mRNA. 

Our results add to the notion that induction of individual NKG2D-L shows distinct 

features, which may allow for a differential pattern of their expression. The transcriptional 

regulation was reported for both MIC and ULBP1, yet the contributing transcriptional factors 

are different [22, 23]. In this study we demonstrated that ULBP1 expression is regulated also 

at the post-transcriptional level, and that similarly to MIC ligands, the regulation involves the 

3’UTR. Whereas specific cellular microRNAs target the 3’UTR of MICA and MICB [21], the 

role of microRNAs in regulation of ULBP1 remains speculative. Further differences apply to 

the regulation of cell surface ligand levels by shedding, shown for MICA and MICB along 

with a reduced immunogenicity of NKG2D-L expressing cells [35, 50], but not found with 

ULBP1 [51]. Given that NKG2D-L expression is crucial for tumor recognition, understanding 
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the different gene expression mechanisms is of importance for exploring NKG2D receptor-

ligand interactions in therapeutic strategies to reinforce NK and T cell anti-tumor immunity. 
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Figure legends 

  

Figure 1. Scheme of luciferase reporter constructs and luciferase activity in HeLa and Jurkat 

cells. (A) The 2.4 kb full length 3’UTR of ULBP1 was inserted downstream of a luciferase 

open reading frame into the parental vector pRL-con, resulting in pRL-U1-UTR. Luciferase 

activities of pRL-con (light grey) and pRL-U1-UTR (dark grey) are shown as means ± SEM 

(n=14 for HeLa, n=20 for Jurkat). (B) The 2.4 kb full-length 3’UTR of ULBP1, fused to the 

luciferase gene, or the luciferase gene alone, were inserted into a lentiviral vector (LV-RL-con 

and LV-RL-U1-UTR, respectively). Luciferase activity was measured 7 days after 

transduction with LV-RL-con (light grey) and LV-Rl-U1-UTR (dark grey). Results are means 

± SEM (n=8 for HeLa and n=5 for Jurkat). 

  

Figure 2. Luciferase activity of reporter plasmids containing fragments of U1-3’UTR upon 

transient transfection into HeLa and Jurkat cells. Results were normalized to pRL-con and 

shown as means ± SEM (n=2-14 for HeLa, n=2-20 for Jurkat). prom = promoter; luc = 

luciferase. 

  

Figure 3. Mutation of ARE in two regions of the U1-3’UTR. (A) Schematic localization of 

ARE in fragment U1-5 and U1-9 of the U1-3’UTR. The sequence motifs ATTTA (black 

square) and ATTTTA (white square) were mutated by single base substitutions TG 

(triangles) or by substitution of three bases TTTGGG (black cirlce) and four bases 

TTTTGGGG (white circle), respectively. Mutated fragments were inserted into pRL-con. 

(B) Luciferase activity was measured upon transient transfection of wild-type and mutated 

pRL-U1-5 (light grey) and pRL-U1-9 (dark grey) into Hela and Jurkat cells and normalized to 

the activity of the corresponding wild-type reporter vectors (pRL-U1-5 and pRL-U1-9, 

respectively). Results are means ± SEM of duplicates (n=2-5). * = p < 0.05; ** = p < 0.01. 

 

Figure 4. Expression of candidate microRNAs and effect of seed sequence mutations on 

luciferase activity. (A) Endogenous expression levels of 13 candidate microRNAs were 

measured in HeLa (light grey) and Jurkat cells (dark grey). Results are means ± SEM (n=1-5 

in HeLa and Jurkat). (B) Luciferase activity was measured upon transient transfection of 

luciferase vectors, containing seed sequence mutations in fragment U1-6 (pRL-U1-6 2sub and 

pRL-U1-6 4del, respectively, see Supplementary Figure  S2), into HeLa (light grey) and 
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Jurkat cells (dark grey). Luciferase activity was normalized to the activity of the non-mutated 

pRL-U1-6 vector. Results are means ± SEM (n=2 for HeLa and Jurkat). * = p < 0.05. 

  

Figure 5. Overexpression of candidate microRNAs in Jurkat cells. (A) MicroRNA expression 

levels were measured upon transient transfection of 300ng pSuper empty (light grey) or co-

transfection of six microRNA overexpression vectors (6x50ng pSuper mix; dark grey) into 

Jurkat cells. Results are means ± SEM. (B) Luciferase activity was measured upon co-

transfection of 300ng pSuper empty vector (light grey) or 6x50ng pSuper mix (dark grey) 

with luciferase reporter vectors. Luciferase activity was normalized to the activity of pRL-

con. Results are means ± SEM. (C) FACS analysis of ULBP1 surface expression in Jurkat 

cells transfected with pSuper empty (shaded histogram) or pSuper mix (thick line). Thin line: 

staining with isotype control Ab and secondary antibody. 

 

Figure 6. Downregulation of Drosha with shRNA in HeLa cells. (A) Measurement of Drosha, 

ULBP1 and MICA mRNA levels upon transduction with LV-shDrosha. The expression level 

of each mRNA was normalized to the corresponding mRNA expression level upon 

transduction with LV-shCon. (B) The luciferase activity was measured upon co-transduction 

of LV-shCon (light grey) or LV-shDrosha (dark grey) and lentiviral luciferase reporter 

constructs (LV-RL-con and LV-RL-U1-UTR). Luciferase activity was normalized to the 

amount of GFP+ cells and then normalized to the luciferase activity of the control vector (LV-

RL-con). Results are means ± SEM. (C) FACS analysis of ULBP1 surface expression on Hela 

cell upon transduction with LV-shCon (shaded histogram) or LV-shDrosha (thick line). Thin 

line: staining with isotype control Ab and secondary antibodies. (D) FACS analysis of ULBP1 

surface expression upon transfection with RSV5.ULBP1 overexpression vector. 

 

 

Supplementary Figure S1. Sequence alignment of fragment U1-5 and U1-9 with wild type 

ARE and mutated AREs. 

 

Supplementary Figure S2. Predicted binding sites of selected microRNA in ULBP1-3’UTR. 

 

Supplementary Figure S3. Sequence alignment of fragment U1-6 with predicted and 

mutated microRNA seed sequences. 
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Supplementary Table S1. Forward and reverse primer sequences used to clone fragments 

U1-1 to U1-9 from ULBP1 3’UTR. 

 

Supplementary Table S2. Forward and reverse primer sequences used to generate 

microRNA overexpression vectors. 
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2. Figures of the manuscript 
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