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Zusammenfassung

Malaria ist global gesehen einer der grössten Versursacher von Krankheit und Tod unter
den Infektionskrankheiten. Weltweit erkrankten geschätzte 200 Millionen Menschen an
Malaria im Jahr 2008, grösstenteils (zu 85%) in Afrika. Dies führte zu einer geschätzten
Million Todesfälle, mit einem ähnlich grossen Anteil (89%) in Afrika. Es gibt verschiedene
Species, welche Malaria verursachen, aber die meisten Todesfälle gehen auf das Konto von
Plasmodium falciparum.
Malaria bleibt eine grosse Herausforderung für die wissenschaftliche Forschung: der Para-
sit evolviert fortlaufend Resistenzen gegen bestehende Medikamente, so dass immer neue
Substanzen gefunden werden müssen um Malaria zu heilen. Eine Impfung gegen Plas-
modium falciparum zu finden erweist sich als äusserst schwierig weil der Parasit Wege
gefunden hat, sich der menschlichen Immunantwort zu entziehen. Wie genau dies passiert
ist wenig genau verstanden. Zusätzlich sind viele betroffene Länder arm und verfügen über
unzureichende Gesundheitssysteme um effektiv gegen die Seuche vorzugehen.
In den 1950er Jahren fasste die Weltgesundheitsorganisation (WHO) die weltweite Aus-
rottung der Malaria ins Auge: das neu entdeckte Insektizit DDT schien sehr gut geeignet
dafür, die Anzahl der Fälle zu reduzieren. Dies durch Abtöten der Anopheles Mücken,
durch welche die Malaria übertragen wird. Zusätzlich sagten die mathematischen Modelle
jener Zeit voraus, dass es im Prinzip möglich wäre, die Krankheit vollkommen auszurot-
ten. Trotz grosser Erfolge in der Karibik, in Teilen Asiens, Süd- und Zentralamerikas, und
erfolgreicher Ausrottung in Europa und Nordamerika während der folgenden Jahrzehnte,
blieb der Erfolg in Afrika und Teilen Asiens aus.
Nach diesem Rückschlag wurde Malaria für lange Zeit vernachlässigt. Erst seit kurzem
steht Malaria wieder ganz oben auf der globalen Gesundheitsagenda. Nach den massiven
Fortschritten, welche die Biologie in den letzten Jahrzehnten gemacht hat, verfügt man
heute über neue Werkzeuge um den Lebenszyklus des Parasiten besser zu verstehen und
ihn möglicherweise wirkungsvoller zu bekämpfen.
Ein wichtiger Faktor, welcher in der Vergangenheit einem besseren Verständnis der Epi-
demiologie des Parasiten im Wege stand ist die Tatsache, dass Mikroskopie als Diag-
nosemethode nicht in der Lage ist, einzelne Infektionen zu unterscheiden: In Gebieten,
wo Malaria endemisch vorkommt, tragen die Menschen oft gleich mehrere Infektionen in
sich, häufig asymptomatisch. DNS-basierte Diagnosemethoden benützen gezielt genetis-
che Loci, bei welchen zahlreiche Varianten innerhalb der Parasitenpopulation vorkommen,
um die einzelnen Infektionen zu unterscheiden. Ein solcher Locus heisst “merozoite sur-
face protein 2” (msp2).
Diese Dissertation entwickelt statistische Modelle um solche Daten über das Vorhanden-
sein von (hauptsächlich) msp2 Genotypen zu analysieren. Im Speziellen wird der Datensatz
aus einer Kohortenstudie, welche in Navrongo, im Norden Ghanas, durchgeführt wurde
analysiert. Zusätzlich werden in Kapitel 6 Daten aus Papua Neu Guinea verwendet. Eine
grosse Herausforderung bei der Analyse solcher Daten ist, dass der Parasit nicht immer de-
tektierbar ist: er versteckt sich in den Kapillargefässen durch Anheften an die Gefässwände
und ist im peripheren Blut nicht immer vorhanden.
Die drei Parameter welche durch unsere statistischen Modelle aus den erwähnten Zeitreihen-



daten geschätzt werden sind i) die “force of infection” (die Anzahl neuer Infektionen,
welche pro Person und Jahr erworben werden), ii) die Dauer einer einzelnen Infektion,
und iii) die “detectability” (Wahrscheinlichkeit eine vorhandene Infektion im peripheren
Blut nachweisen zu können).
Frühere Ansätze zur Analyse von longitudinalen genetischen Daten waren limitiert in dem
Sinne, dass nur Exponentialverteilungen benutzt werden konnten, um die Infektionsdauer
zu modellieren: Dies ist gleichbedeutend mit der Annahme einer konstanten Eliminierungs-
rate (pro Zeit). Die Grund hierfür war einzig mathematische Einfachheit: Unter An-
nahme einer Exponentialverteilung für die “Überlebenzeiten” der Infektionen kann die
Altersstruktur der Infektionspopulation innerhalb eines Menschen vernachlässigt werden,
da die Eliminierungsrate ja konstant und somit unabhängig vom Alter einer Infektion ist.
Anders ausgedrückt: Man verwendete man für den “Zerfall” von Infektionen mathema-
tisch dasselbe Modell wie für den radioaktiven Zerfall von Atomen. Biologisch macht dies
wenig Sinn, und wenn man mehr über die Dynamik der Anzahl Parasiten innerhalb eines
Menschen oder die Auswirkungen von Immunität verstehen möchte, sollte man zwischen
alten und jungen Infektionen unterscheiden können.

Die Dissertation entwickelt eine Erweiterung zu Bestehenden statistischen Methoden und
benützt parametrische Verteilungen aus der Ereigniszeitanalyse um zu Beschreiben, wie
die Eliminierung von Infektionen von deren Alter abhängt. Zusätzlich wird der Einfluss
des Alters des infizierten Menschen untersucht, da dieses als Indikator für Immunität1 in-
terpretiert werden kann: Je älter ein Mensch, desto mehr Infektionen hat er durchgemacht
und desto mehr Immunität hat er erworben. Änderungen in der Eliminierung von Infektio-
nen in Abhängigkeit des Alters des Trägers kann deshalb als Immunitätseffekt interpretiert
werden.

Es wurde ein Unterschied zwischen der Verteilung der Infektionsdauer im Datensatz aus
Ghana im Quervergleich zu künstlich herbeigeführten Infektionen2 festgestellt: Ein grosser
Teil der Infektionen in der Ghanaischen Population dauern nur sehr kurz. Da dies in allen
Altersklassen der Fall ist, kann ein Effekt von über längerer Zeit erworbener Immunität
ausgeschlossen werden. Dies ist das erste Mal, dass dies nachgewiesen werden konnte.
Zudem konnte das Resultat mit einer verschiedenen statistischen Methodik und anderen
Daten bestätigt werden. Als wahrscheinlichste Erklärung dafür kommt eine Interaktion
zwischen Infektionen, welche den gleichen Menschen befallen, in Frage. Die Konsequen-
zen dieser Entdeckung für das Verständnis der Prozesse im innern des Menschlichen Kör-
pers bei Infektion mit Plasmodium falciparum werden diskutiert.

1Immunität gegen Malaria schützt nicht vor Neuinfektionen, sondern gegen Fieber und schwere
Krankheitsverläufe.

2Bevor geeignete Antibiotika zur Verfügung standen, mussten Syphilispatienten durch Infektion mit
Malaria behandelt werden. Vermutlich heilten die Fieberschübe die Syphilis.
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Summary

Malaria is one of the major contributors to the global burden of disease. Worldwide, there
were an estimated number of 200 million malaria cases in the year 2008, with a vast ma-
jority (85%) of those being in the African Region. This has lead to an estimated number of
up to one million deaths, with a similar majority (89%) happening in the African region.
There are several parasite species causing malaria, but most deaths are caused by Plasmod-
ium falciparum.
Malaria remains a major challenge for scientific research: constantly the parasite evolves
resistance against existing drugs, and ever new substances to cure malaria need to be found.
Creating a vaccine against Plasmodium falciparum proves exceptionally difficult, because
the parasite has found ways to escape the human immune response. How exactly, is poorly
understood. In addition, many countries affected by the disease suffer from poverty and
ineffective health infrastructure.
In the 1950’s the final eradication of malaria was envisioned by the WHO: the newly dis-
covered insecticide DDT showed very promising results in reducing the malaria burden by
killing the Anopheles mosquitoes, through which malaria is transmitted, and mathematical
models of malaria transmission predicted that eradication of the disease would be possi-
ble. Despite great successes in the Carribean, parts of Asia and South-Central America,
and elimination in Europe and North America during the following decades, the efforts did
not succeed in tropical Africa and many parts of Asia. After that failure, malaria was a
“neglected” disease for a long period. Only since recent times malaria is again high on
the global health agenda. Now, the enormous progress in the life sciences during the last
decades provides new tools to better understand the parasite’s natural history, and perhaps
will reveal new ways of attacking it.
One factor which limited the understanding of the epidemiology of the parasite was that mi-
croscopy as diagnostic tool is not able to distinguish multiple concurrent infections within
one human host: people in endemic areas often harbour several infecting clones in parallel.
DNA-based methods make use of genetic loci of which many different variants exist in the
parasite population, e.g. merozoite surface protein 2 (msp2), to distinguish co-infecting
clones. This thesis develops statistical models to analyse such data on the presence of
(mostly) msp2 genotypes. In particular, data from a longitudinal study in Navrongo, North-
ern Ghana is used in all chapters except chapter 6, where data from Papua New Guinea is
analysed. A major challenge in the analysis of this type of data is the phenomenon of im-
perfect detection: the parasite hides in the deep blood vessels by attaching to the capillary
walls, and it can therefore not be always detected in the peripheral blood.
The three parameters which are estimated by our statistical models from time-series on
presence or absence of genotypes are i) the force of infection (the number of infections
acquired per person and year), ii) the duration of infection for one parasite clone, and iii)
the detectability (the probability of detecting a parasite, given it is present).
Previous statistical methods for the analysis of longitudinal genotyping data were restricted
to exponential distributions of infection duration: this means that a constant rate (per time)
is assumed at which infections are cleared. The reason for this was mathematical simplic-
ity: the age structure of the infection population within a host can be neglected because



the clearance rate is constant and does not depend on the age of an infection. In other
words, the same mathematical model as for radioactive decay was used. Biologically, this
is a very unrealistic assumption, and to understand more about within-host dynamics of
P. falciparum or immunity against it one would like to distinguish between young and old
infections.

This thesis develops an extension to previous statistical analysis methods and makes use of
parametric survival distributions to describe infection clearance and how it depends on the
age of an infection. In addition to the age of infection, the effect of host age on infection
clearance is investigated: older persons have experienced more infections and are therefore
more immune3. Changes in infection clearance with host age can therefore be interpreted
as effects of immunity.
An difference between the distribution of infection durations in the Ghanaian dataset com-
pared to artificial infections4 emerged: a large proportion of infections in the Ghanaian
population are cleared quickly after inoculation. It is the first time this could be measured
from field data, and the result was confirmed using a different statistical method and study
design. The difference between artificial infections and the field data cannot be attributed
to acquired immunity in the Ghanaian population because all age groups show a similar
abundance of very short infection durations. An interaction between the multiple infec-
tions within one host in Northern Ghana appears to be the most likely explanation. The im-
plications of this finding for our understanding of the within-host processes in falciparum
malaria are discussed.

3Immunity against malaria protects from severe disease or fever, not re-infection.
4Before suitable antibiotics were available, infection with malaria was a method to treat syphilis.
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Chapter 1

Introduction

1.1 Malaria

1.1.1 Overview

Malaria is one of the major contributors to the global burden of disease [1]. Worldwide,
there were an estimated number of roughly 200 million malaria cases in the year 2008,
with a vast majority (85%) of those being in the African Region. This has lead to an
estimated number of up to one million deaths, with a similar majority (89%) happening
in the African region [2]. Sub-Saharan Africa in particular, where around 70% of clinical
attacks occur [3], has such a high incidence of malaria because ideal climatic conditions
for transmission coincide with the presence of efficient malaria vector mosquitoes [4].
Malaria is caused by protozoan parasites of the genus Plasmodium. There are five different
parasite species of said genus which are known to infect humans, namely P. falciparum,
P. vivax, P. malariae, P. ovale and, as recently confirmed, P. knowlesi [5–7]. Of these, P.
falciparum is responsible for the majority of severe disease and death [8].
Human malaria is exclusively transmitted by mosquitoes of the genus Anopheles. The
female Anopheles require blood as protein source for egg production, and thereby create the
opportunity for human-to-mosquito and mosquito-to-human transmission. Anophelines,
albeit present worldwide, are most common in tropical and subtropical regions, and are
only found at altitudes below 2500m. There are approximately 430 Anopheles species, of
which around 70 are malaria vectors, but only 40 of these are thought to be of major public
health importance [5]. In Sub-Saharan Africa the two major malaria vectors are Anopheles
funestus and the members of the Anopheles gambiae complex [9].
A number of different strategies are available today in order to prevent or cure malaria in-
fections. For treatment of malaria, a range of different drugs are available today, and many
of these can be taken preventively. Despite these good news, the enormous number of in-
fections acquired every year, the logistical and financial constraints developing countries
are facing, and the rapid evolution of drug resistance when a drug is used on a large scale
make the sheer existence of such drugs insufficient to tackle the problem properly. The
distribution of insecticide-treated bednets (ITNs) has proven to be an effective and afford-
able tool of malaria prevention [11], as has the spraying of the inside walls of houses with
residual insecticide (Indoor Residual Spraying, IRS) [12–14].

1.1.2 The history of malaria

Malaria was recognised as a disease in China almost 5000 years ago. It’s characteristic
symptoms have been described in many other parts of the world since then, such as in an-
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Figure 1.1: The global distribution of malaria since preintervention (1900-2002) - Il-
lustration from [10].

cient Indian scriptures (3500 to 2000 years ago) as well as in Greek and Roman medical
works [15], and the curative effects of quinine have been known for hundreds of years.
Malaria parasites in human blood were first described in 1880 by Laveran, a french army
surgeon in Algeria. However, it was not until 1897 that Ronald Ross discovered in India
that malaria is transmitted by mosquitoes [5]. This discovery sparked a new era of re-
search related to the control of malaria, which at that time still affected large areas of North
America and Europe, including parts of Switzerland [15, 16]. With the disease vector now
known, larvicides to prevent the breeding of mosquito larvae in water were developed. At
the beginning of the second World War, the strong insecticidal action of Dichlordiphenyl-
trichlorethan (DDT) was discovered, and the subsequent spraying of insecticides against
adult mosquitoes revolutionised malaria control. The effects of this can clearly be seen in
Figure 1.1. Moreover, treatment options for malaria improved substantially after chloro-
quine was developed in 1934. The final eradication of malaria was envisioned in the 1950s,
when DDT application showed very promising results in reducing the malaria burden [5].
Despite great successes in the Carribean, parts of Asia and South-Central America, and
elimination in Europe and North America during the follwing decades, the efforts did not
succeed in tropical Africa and many parts of Asia [15, 17]. This failure can partly be at-
tributed to emerging drug and insecticide resistance, but also to the fact that in sub-Saharan
Africa ideal climatic conditions for transmission coincide with the ranges of the most ef-
ficient vector mosquitoes in the world [18]. After that failure, malaria was a “neglected”
tropical disease until recently, and malaria control was emphasized rather than eradication.
It was almost considered a taboo to earnestly discuss local elimination or even eradication
(the elimination of malaria from the globe). The Bill&Melinda Gates Foundation broke
this taboo, by - quiet boldly - declaring malaria eradication as feasible and making it their
primary long-term goal. Today, with unprecedented political will and financial support,
malaria eradication is back on the global health agenda [19, 20].
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1.1.3 The biology of Plasmodium falciparum

The malaria parasite life cycle [21], as shown in Figure 1.2, involves two hosts. During
a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into
the human host (1). Sporozoites infect liver cells (2) and mature into schizonts (3), which
rupture and release merozoites (4). (Of note, in P. vivax and P. ovale a dormant stage [hyp-
nozoites] can persist in the liver and cause relapses by invading the bloodstream weeks,
or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony
A), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizo-
gony B). Merozoites infect red blood cells (5). The ring stage trophozoites mature into
schizonts, which rupture, releasing merozoites (6). Some parasites differentiate into sexual
erythrocytic stages (gametocytes) (7). Blood stage parasites are responsible for the clini-
cal manifestations of the disease. The gametocytes, male (microgametocytes) and female

Figure 1.2: The life cycle of Plasmodium falciparum - Illustration from [21]

(macrogametocytes), are ingested by an Anopheles mosquito during a blood meal (8). The
parasites multiplication in the mosquito is known as the sporogonic cycle C. While in the
mosquito’s stomach, the microgametes penetrate the macrogametes, generating zygotes
(9). The zygotes in turn become motile and elongated (ookinetes) (10) which invade the
midgut wall of the mosquito where they develop into oocysts (11). The oocysts grow, rup-
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Figure 1.3: Prevalence of P. falciparum (trophozoites and/or gametocytes) and of game-
tocytes only, by age and season. Graph from [22]. It characterizes the malaria situation in
Garki, Nigeria, in the year 1971.

ture, and release sporozoites (12), which make their way to the mosquito’s salivary glands.
Inoculation of the sporozoites (1) into a new human host perpetuates the malaria life cycle.

1.1.4 The epidemiology of Plasmodium falciparum

Measures of malaria transmission quantify malaria risk and endemicity levels and they are
the basis of rational decision making in malaria control. These measures include parame-
ters related to malaria transmission from mosquito to humans (i.e. entomological inocula-
tion rates, force of infection, incidence rates, parasite prevalence) and parameters related to
malaria vectors (i.e. mosquito survival, infection probability). On the human side, parasite
prevalence is the most commonly used measure of malaria endemicity. Especially age-
prevalence curves (Figure 1.3) provide insight into age-related aspects of disease preva-
lence. Malaria epidemiology is mainly dependent on the occurrence of efficient malaria
vectors, climatic favourability for mosquito breeding as well as for parasite development,
and presence of the human host. Given the presence of a mosquito population capable
of transmitting the disease, transmission intensity heavily depends on the longevity of the
adult anopheline vector. This is because the mosquito, infected after biting a human, has to
survive the sporogonic development cycle of the Plasmodia, and after that survive another
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few days in order to infect human hosts [23, 24]. Given the seasonal nature of environ-
mental factors influencing mosquito emergence and survival, it is evident that also malaria
transmission can be highly seasonal.
In the tropics, routine malaria diagnosis is carried out mainly by microscopic methods, but
rapid diagnostic tests (RDT’s) are being evaluated as possible replacement. RDT testing
results are positive when antigens of the parasite are present in a blood sample, and the test
has therefore a higher sensitivity than microscopy [25]. However, it is also more expen-
sive, and more difficult to store (cooling), and it’s use may therefore not be practical in all
circumstances. For epidemiological studies, there are also DNA-based diagnostic methods
(see Section 1.4).
The clinical presentation of a malaria infection is with - sometimes periodic - fever, nausea
and headache. These symptoms are rather general, and therefore there is a high danger of
confusing malaria with other febrile diseases. Only diagnosis by microscopy or RDT’s can
securely identify a malaria infection as cause. Additional symptoms of severe infection are
anaemia and acidosis. Severe cases may progress to losing consciousness, and death may
occur. Particularly children are vulnerable to one of the most serious clinical complica-
tions, cerebral malaria [26]. The pathogenic mechanisms underlying cerebral malaria and
why a small percentage of patients develop it are not fully understood, but the accumulation
of large numbers of parasites in specific sites such as the brain or placenta appears to be
important [27, 28]. In areas of intense transmission, new born children are relatively pro-
tected against malaria infection for the first three months due to passive immunity acquired
from the mother through breastfeeding [29]. After that period, infants and children become
highly susceptible to severe clinical manifestations of malaria and the overwhelming bur-
den of morbidity and mortality falls upon this age group [26, 30–32]. If children survive
past the age of five years, after being repeatedly inoculated with sporozoites and there-
fore exposed to pathogenic asexual blood-stages, they acquire a state of semi-immunity
which protects them from the severest outcomes of malaria. This occurs primarily through
the suppression of parasite densities without necessarily shortening the duration of infec-
tion [33–37]. For this reason, malaria prevalence in adults in highly endemic areas is
often relatively low whereas the majority of young children are patently infected (Figure
1.3) [26, 38]. However, prevalence in semi-immune adults and older children is probably
underestimated because low-density infections are harder to detect by microscopy [39].

1.2 Mathematical modeling of malaria

Mathematical models are used in many areas of scientific research as a tool for computing
the consequences of one’s assumptions. Devising such models is essentially just a more
rigorous and formal way of “thinking” about a specific natural process of interest. By
forcing the modeler to accurately state underlying assumptions in the form of mathemat-
ical equations, and by providing an exact framework which allows for deduction of the
consequences of these assumptions, mathematical modeling helps mitigate the scientific
“weaknesses” of the human mind, such as wishful thinking and the ability and willingness
to overlook contradictions as well as the inability to grasp complex nonlinear interactions.
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Figure 1.4: The Ross-Macdonald model of malaria transmission - The flow of humans
from a susceptible class to an infected class and, through recovery from infection, the
reverse, are shown in the upper part of the figure. The flow of mosquitoes from a susceptible
class to an infected class, and finally to an infectious class are shown on the bottom. The
human and mosquito populations are linked through the transmission process. Illustration
from [42]

.

The importance of a quantitative description of malaria transmission in order to explain the
observed differences in malaria patterns in different areas of the world was recognised very
early. The first mathematical models of malaria were devised by Ronald Ross [40,41], who
previously discovered that malaria is transmitted by mosquitoes.
George MacDonald later refined and extended Ross’ modeling work, and mathematical
modelling played a role in the planning of the malaria eradication campaign of the 1950s
and 60s. A simple example of a transmission model, termed the Ross-MacDonald-Model,
is given in Figure 1.4. The list of features of malaria which are not “accurately” represented
by this model is long: the possibility that a host can harbour more than one infection
(superinfection), the effects of immunity in the host, aspects of the natural history of the
vector, the possible development of insecticide- and drug resistance, clinical manifestations
of the disease, etc. Nevertheless its analysis has led to such fundamental insights as “...to
counteract malaria anywhere we need not banish Anopheles there entirely...we need only
to reduce their numbers below a certain figure.”, or that the weakest link in the chain of
malaria transmission was the survivorship of adult Anopheles. Given that MacDonald’s
models were published at about the same time the global eradication campaign based on
DDT began, with DDT targeted at adult female Anopheles, it is not surprising that this
conclusion was recruited to the cause [43]. The subsequent failure of the global eradication
campaign is a reminder of the fact that conclusions from mathematical models must be
interpreted with great care, or, in other words: malaria is easiest eradicated in models. Later
modeling publications sought to identify and include other aspects of malaria transmission,
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such as host immunity [22].
Today there exists a multitude of different approaches, modelling different aspects of the
disease, such as whithin-host parasite dynamics, mosquito life cycle, migration of people,
health systems, etc. The “Biostatistics and Computational Sciences” group at Swiss TPH
is currently working on an integrated framework, where different model types can be in-
tegrated and tested with respect to their goodness of fit [44]. This platform is intended
to help answer questions of interest in current malaria research and control, such as what
the quantitative public health impact of mosquito net distribution would be, or under what
conditions a vaccine would be effective for the control or elimination of malaria.

1.3 Infection dynamics in the human population

Modelling malaria transmission presents a number of challenges additional to those en-
countered when modelling diseases with completely infection-blocking immunity, like
measles or rubella. An infection with P. falciparum does not protect from being re-infected,
which inevitably leads to superinfection, i.e. some individuals harbouring several infec-
tions at a time. With microscopy alone, which is not able to distinguish between individual
infection clones, it was impossible to tell how many infections a person is harbouring and to
distinguish new from old infections. This made it difficult to validate existing mathematical
models of infection dynamics in humans with field data.

1.3.1 The parameters of infection dynamics

Models of malaria infection dynamics in the host typically require three parameters to
capture the processes of infection, clearance, and detection of an infection. Effects of im-
munity can then be expressed as changes in those parameters as a consequence of previous
exposure. Since previous exposure is not readily accessible to measurement, host age is
commonly used as a proxy, since an older age usually means that more infections were
experienced. Other, “observable” epidemiological measures, such as prevalence, may sub-
sequently be derived from the models, e.g. in order to allow for statistical fitting. Here
we introduce the three parameters by highlighting the possibilities of measuring them us-
ing microscopy data. As examples of actual measurements of these parameters, graphs
are shown which were reproduced after [37], using molecular data as information source.
The workings of analysis methods using molecular data will be explained further below in
section 1.4.1.

1.3.2 The force of infection

The acquisition of new infections is measured by the force of infection (FOI), denoted
by the parameter λ. It is defined as the number of infections an individual acquires on
average per unit of time. In many situations, λ is the measure of choice for measuring
malaria transmission, e.g. in areas of very high endemicity, where the prevalence may not
be informative because it approaches saturation. The force of infection is also an important
determinant of the incidence of clinical disease, as it is believed that clinical attacks are
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due to "new" infections and chronic infections tend to be asymptomatic. In clinical trials,
knowledge of the force of infection assists in the design and in the estimation of required
sample size and observation periods. When transmission rates are very high, children can
be followed from birth until they become infected, in order to provide an estimate of λ as
originally proposed by MacDonald [45]. This estimate is called the infant conversion rate.
Another method recommended by [46] for determining λ is to use a drug to clear par-
asitaemia from a representative cohort of people. The subjects are then bled at regular
intervals, perhaps once a week to once a month (depending on the level of malaria trans-
mission) and blood films are collected for examination by microscopy. In this way, the
force of infection can be calculated as the total number of (first) re-infection events divided
by the total time at risk in the cohort. Alternatively, the presence of malaria-specific anti-
bodies in blood serum (seropositivity) can be used to measure the force of infection. People
of different ages are sampled in cross-sectional survey, their immune responses determined
and sero-positivity is then a reliable measure of cumulative prevalence. [47] used indirect
fluorescent antibody tests (IFAT) to estimate the force of infection for P. falciparum in this
way, but were forced to omit children under one year of life from their surveys, because
maternal antibodies would complicate the picture. This method cannot obviously not be
used at high levels of transmission where almost the whole population is seropositive, but
it is particularly useful in areas of very low transmission, where one is unlikely to find any
ongoing infections.

1.3.3 The duration of infection

The duration of a P. falciparum infection is also the duration of potential infectivity of
the host and is therefore of high importance in any transmission model. Not only does it
affect the magnitude of transmission from humans to the mosquito population, but it also
gains special significance in settings where malaria transmission is seasonal: the fraction
of infections surviving a hypothetical dry season constitutes the founder population for the
new transmission season. Any rational planning of a malaria control or elimination there-
fore profits from accurate measurements of infection duration. In analogy to the strategy
of estimating the force of infection by following cohorts of uninfected people, until they
become infected, the average duration of infection can be estimated by following naturally
infected individuals and recording when the infection dissapears. In practise, however,
this seemingly simple problem is marred by a number of difficulties: in naturally exposed
populations, people tend to have multiple infections. This can be accounted for in the math-
ematical models used to analyse the data, yet because microscopy cannot distinguish the
individual infections, untestable assumptions about the degree and nature of superinfection
have to be made. In addition, imperfect detection is expected to bias the measurements,
as “not detecting” an infection does not necessarily mean that it was cleared. A number
of different approaches to measuring the infection duration from such data have been de-
scribed, and the consensus appears to be a mean duration of approximately 200 days. For
further information on measuring infection durations from microscopy data, the interested
reader is referred to [48]. A second source of information on the duration of infection
is malariatherapy data. These data were obtained from neurosyphilis patients, who were
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Figure 1.5: Seasonality in the force of infection - These FOI estimates from Navrongo,
Northern Ghana, show both the pronounced seasonality of transmission in this area and the
generally high number of infections a person acquires per year. Estimates were obtained
by use of the method developed in chapter 4.
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intentionally infected with P. falciparum strains. Infection with malaria was, before the
discovery of modern antibiotics against syphilis, the only way of curing the disease. It is
thought, that the recurrent fevers caused by malaria eventually cleared the syphilis. Malar-
iatherapy data from the 1940’s to the 1960’s is up to this day an important source of infor-
mation on the whithin-host dynamics of malaria. Sama et al [49] analysed these data and
measured a mean infection duration of approximately 210 days. There are, however, sev-
eral problems associated with malariatherapy data: firstly, it is unknown whether syphilis
changes anything about the dynamics of malaria infections, and secondly, the data is ob-
tained from individuals who never experienced malaria before, i.e. are immunologically
naïve. It is therefore unclear how acquired immunity changes the duration of infection as
measured from these data. Apart from that, many of the patients were given sub-curative
treatments during the course of the infection, and it is also not known whether this affects
the estimates. Often one uses a clearance rate µ as parameter to quantify the duration of
infection: assuming an exponential distribution of infection duration, this corresponds to
an average duration of 1/µ. The implications of making assumptions about the distribution
of infection durations will be explained in more detail in section 1.5.

1.3.4 Detectability

Diagnostic methods in epidemiology have their limitations. It is therefore often of inter-
est to compare different methods with respect to their sensitivity, i.e. their probability of
correctly identifying an infected host. This is common practice in epidemiology, as one
wants to find the “best” diagnostic method, yet it implicitly assumes that failure to detect
an infection is solely due to properties of the diagnostic test being used. In addition, there
may be properties of the host-parasite system, such as changes in parasite densities, which
have an influence on the probability of detection. The term “detectability” is used, when
the interest is not in comparing different diagnostic methods, but rather in understanding
the factors of the host-parasite system influencing detection. Because a discussion of de-
tectability is only meaningful for a given diagnostic method at a time, we denote it with
“Q” when using microscopy, and with “q” when using molecular methods. The difference
is, that Q is the probability of detecting at least one infection in a potentially superinfected
individual, and q denotes the probability of detecting a single clonal infection.
Failure to account for imperfect detection biases several standard epidemiological mea-
sures such as prevalence and multiplicity of infection (when using molecular methods),
and also affects estimates of the force and duration of infection, as mentioned above. In a
single cross-sectional survey it is not possible obtain information about the numerical value
of detectability because non-detection due to absence of a parasite is not distinguishable
from a failure of detection. Longitudinal data, on the other hand, contains information on
the value of detecability, provided there is some knowledge about duration and force of in-
fection: e.g, a negative sample between two positive samples can be regarded as detection
failure, if clearance and infection rates are known to be sufficiently well known in order
to exclude clearance and subsequent re-infection during the time interval. Several related
methods have been described in order to estimate the numerical value of detectability from
longitudinal data. For microscopy data, where individual parasite clones cannot be distin-
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guished, the methods of [50] and [51] are applicable. Both assume infections are neither
acquired nor cleared during the study.

1.4 Molecular data

Molecular diagnostic methods make use of the desoxyribonucleic acid (DNA) of highly
variable regions of the parasite genome to distinguish different infection clones within
one individual.In P. falciparum, established methdods are, e.g., the use of restriction frag-
ment length polymorphism (RFLP) genotyping, where DNA is amplified using polymerase
chain reaction (PCR, a method to produce numerous copies of a DNA template) and subse-
quently digested using sequence-specific bacterial restriction enzymes. This yields DNA-
fragments with a characteristic length-distribution [52] for each parasite clone. A different
approach uses genes which contain repetitive sequences of variable length within the par-
asite population. Two genes of this class are the “Merozoite Surface Proteins”, msp1 and
msp2. PCR Amplification of a region delimited by primers up- and downstream of the
variable region then yields DNA fragments of different length, which can be classified us-
ing gel or capillary electrophoresis. Most datasets analysed in this thesis were obtained
using the msp2 marker gene. Msp2 is located on the merozoite surface and appears to be
essential for the parasite, yet it’s exact function is not clear [53]. Despite it’s essentiality,
no homologues are found in other human malaria species, and the closest homologue is
found in P. reichenowi, a close relative of P. falciparum infecting chimpanzees [54].

1.4.1 The analysis of molecular data

Molecular diagnostic methods have the advantage that individual infections whithin one
host can be distinguished. This is a considerable improvement over microscopy as far as
epidemiological research is concerned, because it has the potential to yield a much more
detailed picture of infection dynamics in the human host. However, microscopy still retains
a value for diagnosis as a cheap and easily maintainable diagnostic method in potentially
resource-constrained settings. Moreover, microscopy allows for measurement of actual
parasite densities, while genotyping data rather indicates presence or absence of a particu-
lar strain. Molecular diagnostic methods are able to detect very small amounts of DNA in a
sample and are therefore much more sensitive than microscopy. Yet, at least two diagnostic
problems remain. Firstly, it is possible that two parasite clones share the same genotype at
the locus which is used for diagnosis. As far as analysis of longitudinal molecular data is
concerned, there is to date no reliable statistical method to correct for this, and one gen-
erally has to assume that re-infection with the same genotype is a rare event and does not
occur. This assumption will also be made throughout this thesis, but most analyses here
use data from northern Ghana, where genetic diversity in the parasite population is high.
There are, however, methods to assess whether it is safe to make said assumption [55–57].
The second problem which complicates the analysis of molecular data is that sometimes
the peripheral blood of infected persons does not contain any parasites at all - an effect
which is summarised in the detectability parameter q, as explained in section 1.3.4. The
biological reasons for the complete absence of parasites in the peripheral blood are com-
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Figure 1.6: Age dependence of detectability - These measurements from Navrongo,
Northern Ghana, suggest a decrease of detectability with the age of the host. This is in-
terpreted as an effect of acquired immunity, which acts to reduce parasite densities after
repeated exposure. Estimates and confidence intervals were obtained by use of the method
developed in chapter 4.



1.4. Molecular data 13

monly attributed to attachment of the late intra-erythrocytic stages of P. falciparum to the
endothelium of the blood vessels, and a synchronization of the parasite population with
respect to stages of development. This would then have the effect that, at certain times, a
majority of the parasite population is attached to the walls of the blood vessels. However,
this is not very well understood, and chapter 2 will further discuss this phenomenon. A
typical longitudinal dataset, produced using molecular diagnostics, will yield a sequence
of presence and absence for each genotype in every human. For convenience, one uses a
binary notation, i.e. “1010” would then mean, that the particular genotype under consider-
ation was detected on the first survey, not detected on the second survey, and so on. Every
individual in the dataset would "contain" zero or more such binary sequences, depending
on the degree of superinfection. A very straightforward method of analysing such data
would be to just assume perfect detection, and count the number of appearances and dissa-
pearances of a genotype. The number of appearances per time unit would then be the force
of infection, and the time until a genotype dissapears would be an estimate for the dura-
tion of infection. Since some of the times the infection was present, but not detected, this
obviously leads to very bad estimates of both of these parameters: the force of infection
should be greatly overestimated, and the duration underestimated. A slightly better method
is assuming that re-infection with the same genetic marker is very rare event and does not
happen at all - an assumption which is justified if the marker diversity in the parasite pop-
ulation is high enough. Using this method one would obtain a better estimate of λ as the
number of “new” appearances of a genotype, and an estimate of the average duration 1/µ
would be the average time between the first and last detections of infections in the data.
This method would also yield a rough estimate of the detectability q, namely in form of the
proportion of times an infection was not detected between first and last “sighting”. These
methods are not very good, because especially at low values of q infections are acquired
much before they are first and terminate much after they are last seen, or they may not be
detected at all. Nevertheless, such considerations highlight the fact that a central challenge
in the analysis of molecular data stems from the fact that detection is imperfect. Clearly,
a statistical model in the form of an expression for the likelihood of a particular dataset
as a function of parameters λ, µ and q is needed. One of the early developments in this
direction is proposed by [58], who use a multinomial likelihood model for the frequency
distribution of short binary sequences, termed triplets. A later, generalized variant of the
method applied the markov chain formalism in order to calculate the likelihood of the com-
plete dataset, rather than only looking at certain triplets. The basic idea of those methods
was subsequently worked out using a Poisson likelihood model (instead of a multinomial
likelihood model) by [37, 57]. Their method allows for estimation of all three parameters
of infection dynamics simultaneously from longitudinal typing data. Through modelling
seasonality by using a different parameter λi for every season i in the dataset (Figure 1.5),
and by allowing the detectability parameter to decrease as a function of age of the host
(Figure 1.6), the model fit could be substantially improved. The duration of infection, 1/µ,
showed no dependence on the age of the host, and remained constant at approximately 140
days [37]. This is an interesting finding, because it questions the hypothesis that immunity
shortens the duration of a P. falciparum infection. Whether or not this conclusion will be
confirmed by future analyses, it is clear that the method of [57] offers the possibility to
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learn more about the infection dynamics of malaria by comparing different statistical mod-
els with respect to their goodness of fit. Molecular typing data holds the key to a wealth of
information on malaria infection dynamics, which can be harvested by advancing suitable
methods of analysis.

1.5 Objectives of the thesis

The work presented in this thesis aims to extend the existing methods of analysis of molec-
ular data. The focus shall be on increasing the knowledge about P. falciparum within-host
dynamics, as far as it is observable by methods similar to the one of [57]. The plan is to
successively drop or change different key assumptions and compare the different models
with respect to their goodness of fit to data.
Chapter 2 investigates the short term within-host dynamics using statistical methods. The
motivation for this comes from the need to model imperfect detection as a Bernoulli pro-
cess. This essentially implies that detections at two points in time are independent of each
other. As there are reports of complicated dynamics of parasite densities, the assumption
of a constant probability of detection must be investigated.
Chapter 3 reports for the first time the complete molecular dataset from a one-year lon-
gitudinal study in Navrongo, Northern Ghana. Analyses are performed using the method
developed in chapter 4, among others.
Chapter 4 develops an extension of the method of [57] where a range of parametric survival
distributions can be used to model infection durations. This is of interest because the
current models only permit an exponential distribution of infection durations, which is
biologically very unrealistic.
Chapter 5 uses the method developed in chapter 4 in order to explore the effects of acquired
immunity on infection dynamics, especially on clearance of infections.
Chapter 6 analyses data on P. falciparum and P. vivax from a study in Papua New Guinea
(PNG). Estimates of detectability obtained using a formula introduced in chapter 2 are
compared between species.

1.5.1 The distribution of infection durations

The main assumption in [57] that this thesis aims to overcome, is the assumption of an
exponential distribution of infection durations. This is a very common assumption in many
areas of mathematical modelling, and it is implied by having a constant clearance rate µ.
If the clearance rate is constant, the durations of all malaria infections are then distributed
according to an exponential distribution, with mean duration 1/µ. One of the reasons for
this is a purely mathematical one: in an exponential distribution, the age structure of the
infection population can be neglected because the probability that an infection is cleared
within a certain time interval is entirely independent of the current age of the infection. This
assumption closely reflects reality within the context of e.g. radioactive decay (the time
until a particle decays), or chemical reactions (the time a molecule exists before reacting
on). Yet, with respect to the distribution of biological infection durations, an exponential
model is arguably not very realistic.
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Figure 1.7: The distribution of infection durations - Sama et al [49] fitted different sur-
vival distributions to the durations measured in malariatherapy data. The data is comprised
of patients which were deliberately infected with P. falciparum in order to cure an existing
neurosyphilis - a common treatment for syphilis before the advent of suitable antibiotics.
Since the start and, with less precision, the end points of all infections are known in this type
of data, standard survival analysis methodology can be used for estimation of the distribu-
tional parameters. Yet, it is not known how acquired immunity would change this picture,
since inference of similar information from naturally exposed individuals is complicated
by imperfect detection.
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To date, the only information on how durations of P. falciparum infections are distributed,
comes from malariatherapy data [49]. The analyis of such data is facilitated by the fact that
the dates of infection are exactly known, and patients were only infected with one strain
at a time. The duration of every single infection is therefore approximately known, and
the methods of statistical survival analysis can be applied. The authors have compared a
number of parametric survival distributions and concluded that the Gompertz and Weibull
distributions gave the best fit to the data, followed by the gamma, lognormal, and expo-
nential distributions (Figure 1.7). However, their analysis was solely based on infections
in immunologically naïve patients, and it is not clear what the picture would look like in
people who have experienced high malaria transmission throughout their lives.
The main target of the work presented in this thesis is to fit survival distributions to geno-
typing data from exposed individuals, by extending the method of [57], and to investigate
the effects of acquired immunity on infection durations.
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Detectability of Plasmodium
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Ingrid Felger, Tom Smith

2.1 Abstract

Background: In areas of high transmission people often harbour multiple clones of Plas-
modium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the
detectability, q) of all clones present in a host. Accurate measurements of detectability are
desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of
breakthrough infections in clinical drug trials. Detectability can be estimated by typing re-
peated samples from the same host but it has been unclear what should be the time interval
between the samples and how the data should be analysed.
Methods: A longitudinal molecular study was conducted in the Kassena-Nankana dis-
trict in northern Ghana. From each of the 80 participants, four finger prick samples were
collected over a period of 8 days, and tested for presence of different Merozoite Surface
Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by
comparing the fit of statistical models of serial dependence and over-dispersion.
Results: The distribution of the frequencies of detection for msp2 genotypes was close
to binomial if the time span between consecutive blood samples was at least 7 days. For
shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the
interval between two blood collections, the more likely the diagnostic results matched for
a particular genotype. Estimates of q were rather insensitive to the statistical model fitted.
Conclusions: A simple algorithm based on analysing blood samples collected 7 days apart
is justified for generating robust estimates of detectability. The finding of positive corre-
lation of detection probabilities for short time intervals argues against imperfect detection
being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that
the detectability of a given parasite clone changes over time, at an unknown rate, but fast
enough to regard blood samples taken one week apart as statistically independent.
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2.2 Background

In areas of high endemicity of Plasmodium falciparum, human hosts are often superin-
fected with multiple clones of the parasite [58]. Identification of these concurrent infec-
tions is important for understanding patterns of drug resistance [59] and of the transmission
of the parasite. PCR-based methods for detecting parasites not only have lower detection
limits than blood smear microscopy, but also make it possible to distinguish genetically
distinct clones, and hence to compute multiplicity of infection. But at least two diagnostic
problems remain: i) the same host might be infected with more than one parasite clone of
the same genotype, which can introduce bias into estimates of multiplicity of infection [55].
ii) PCR detection can be negative because the sample taken does not contain any parasites.
This may happen due to effects of acquired immunity or synchronization of the parasite
population. Failure to account for imperfect detection biases several standard epidemio-
logical measures, such as prevalence and multiplicity of infection. Most critically, analysis
of drug failure rates using molecular typing may overlook breakthrough parasite clones or
conversely misclassify them as new infections after treatment.
Repeated blood samples from the same host can be analysed to estimate the probability that
a clone is detected in any given sample (the detectability, q). For microscopy data, where
individual parasite clones cannot be distinguished, the statistical methods of [50, 51] are
applicable. Both assume infections are neither acquired nor cleared during the study. For
molecular data, several pieces of work aiming at estimating infection duration and force
of infection also yielded measurements of detectability and its dependence on age of the
host [37, 57, 58, 60]. These methods make use of data collected over longer time periods
(several months up to a year), with surveys every 1 to 2 months, the kind of which may not
be easily available in practice. Moreover, the obtained estimates of detectability depend on
simultaneous estimates of infection- and recovery rates as well as on assumptions concern-
ing these processes. A simple method is therefore presented, to estimate the detectability of
infecting clones from molecular data with short inter-survey intervals. It makes use of pairs
of surveys sufficiently close in time, such that reinfection with the same parasite genotype
can be safely excluded. The method is similar to the one presented in [50], but adapted for
the context of molecular diagnostic methods. This implies that the maximal number of “in-
fections” is not limited by the number of hosts in the study, but rather represents individual
parasite clones. The methods of [37, 57, 58, 60] as well as the one presented here assume
that the detections of an infecting clone at different time points are independent from each
other. While it seems reasonable to make such an assumption, provided intervals between
surveys are long enough, it is not clear how long these intervals need to be. Numerous pub-
lications report complicated periodic behaviour of fevers or parasitaemia [61], or detection
events [62], which creates a need to establish the circumstances under which the methods
mentioned above can be applied.

In order to evaluate the effect of possible “non-random” behaviour of clonal infections on
estimates of detectability, a longitudinal study comprising 80 individuals was conducted in
northern Ghana. From each participant, four blood samples were collected over a period
of 8 days. Using these data, various statistical models are compared with respect to their



2.3. Methods 19

goodness of fit, and a series of hypothesis tests is performed. The resulting statistical de-
scription of the within-host dynamics of P. falciparum clones, as observed by molecular
typing methods, allows us to justify a simple algorithm for obtaining reasonably robust
estimates of q and specify the circumstances under which this method is applicable.

2.3 Methods

2.3.1 Study site and sample collection

The present survey was conducted following a one year longitudinal study on malaria epi-
demiology [37,52,57,63] in the Kassena-Nankana district (KND), in the Upper East Region
of Ghana. The malariological situation in this area is characterized by very high prevalence
and multiplicity of infection [63, 64], and year-round transmission with seasonal variation
in transmission intensity [37]. From the participants of the mentioned main study, 80 indi-
viduals below 20 years of age were randomly selected for this follow-up. From these, a total
of four blood samples were taken on the last survey of the main study as well as 1, 6 and
7 days later (Figure 2.1). The present analysis was restricted to these four samples within
eight days. Study participants were visited in the early mornings of each day and houses
were visited in the approximately the same order, to ensure sample collection at roughly
the same time of day for each individual. Whole blood was collected on “ISOCodeTM Stix”
PCR template preparation dipsticks (Schleicher & Schuell, Dassel, Germany).
Study participants who were sick at the time of the survey were referred to the routine
health services. No anti-malarial treatments were administered by the research team.

2.3.2 Genotyping

DNA was eluted from “ISOCodeTM Stix” filter paper and screened for presence of P. falci-
parum by polymerase chain reaction (PCR). Sample processing and PCR conditions have
been described in detail [65]. In brief, all samples were subjected to PCR using primers
specific for the merozoite surface protein (msp) 2 locus. Genotypes were distinguished on

Figure 2.1: Study design - Blood samples were collected in four survey rounds (R1-R4),
on day 1, 2, 7 and 8. The result of this study design are two sampling intervals of 1 day,
one of 5, two of 6, and one of 7 days. A 48-hour periodicity of P. falciparum detectability
could therefore be identified, as it should show positive correlation of detection outcomes
between surveys with even-numbered interval length, and negative correlation between
surveys with odd-numbered interval length (in days).
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R1 R2 R3 R4 sequence no. count
0 0 0 0 0 -
0 0 0 1 1 43
0 0 1 0 2 42
0 0 1 1 3 26
0 1 0 0 4 54
0 1 0 1 5 10
0 1 1 0 6 13
0 1 1 1 7 19
1 0 0 0 8 28
1 0 0 1 9 21
1 0 1 0 10 41
1 0 1 1 11 34
1 1 0 0 12 64
1 1 0 1 13 22
1 1 1 0 14 41
1 1 1 1 15 61

Table 2.1: Data coding - Failure or success to detect a clone at any given survey round was
coded using binary notation. This yielded 519 sequences of length four. Sequences were
numbered according to the binary value they encode. Sequence no. 0 is invisible.

the basis of length polymorphism and PCR fragments were precisely sized by automated
capillary electrophoresis and GeneMapper R© software. An in-house generated software
identified all genotypes per sample and transformed the data into different formats suitable
for data management and statistical analysis. Given the high number of msp2 genotypes in
the population, re-infection with the same genotype was assumed to be a rare event. As a
consequence of this, for any given host, msp2 genotype is assumed to be synonymous with
“infecting clone” in all analyses.

2.3.3 Data analysis

Only data of those participants who were present at all four survey rounds, and where at
least one genotype was found, were included in the analysis. This reduced the number
of individuals in the data set to 69. Patterns of appearance and disappearance of specific
parasite genotypes depend on rates of infection and clearance as well as on detectability.
However, for the purpose of the present analysis, acquisition and loss of infections were ne-
glected. It was assumed that there are no false positive results and that an infecting clone is
present throughout all four surveys if detected at least once. This is justified by the compar-
atively short time interval between the first and the last survey, and by previously published
estimates of infection- and clearance rates from the dataset of the main study [37]:
According to the authors, a person experienced an estimated 0.6 new infections during the
time of the study (31 new infections per annum in the corresponding season). This implies
that around 0.6 ∗ 69 ≈ 41 or approximately 8% of the 519 clones in the data set may have



2.3. Methods 21

been acquired during the study. Similarly, assuming an average (clonal) infection duration
of 150 days and that infections were acquired at random times relative to the time of the
study leads to an estimate of 7/150 ≈ 5% of clones being cleared during the study period
of seven days.
Failure or success to detect a strain was denoted by 0 or 1, respectively, yielding 519 binary
sequences of length four. The 15 possible sequence types containing at least one positive
test result are referred to by the binary number they encode (Table 2.1). The resulting pool
of sequences was either analysed as a whole, or split into the following age-groups (age in
years): 0-2, 3-5, 6-10, 11-15, 16-20. This mode of analysis implies that clones infecting
the same host are assumed independent of each other. Further, the present analysis is only
concerned with variation in detectability among clones, not among hosts.
A series of χ2 tests and Spearman’s rank correlation analysis yielded qualitative informa-
tion on the temporal behavior of detectability. Further, a series of models for the dynamics
of detectability were fit to the data using Bayesian MCMC. These are described in detail
below. The models and their estimates of detectability are compared using Deviance In-
formation Criterion (DIC) as measure of goodness of fit [66]. That only sequences with at
least one positive result were included in the data, and therefore the data are biased, was
accounted for in all analyses. The software Winbugs [67] was used for all Bayesian model
fitting, whereas for all other analyses the software package R was used [68].

2.3.4 Models of detection

In order to explore the short term dynamics of detectability, three statistical models are
compared with regard to their goodness of fit (M1 to M3 below). These models are in the
form of an expression for the detectability of clone i at time point t. This allows for fitting
of the models by Bayesian Markov Chain Monte Carlo (MCMC), assuming individual
detections are Bernoulli-distributed as

Xi,t ∼ Bern(qobs
i,t ).

In addition, a simple method of directly measuring detectability from pairs of surveys (M0)
is used. Applying this method to all available survey pairs in the data set and comparing
the estimates of q with the model results allows us to develop criteria for the circumstances
under which the method may be used.

2.3.4.1 M0: Direct estimation of detectability

Following [50], a method is proposed for direct estimation of the detectability q from pairs
of observations. The estimate is a function of the number of infecting clones that were
detected in only one of two survey rounds (n1), and the number which was detected in
both (n2). Assuming a binomial distribution of the number of times a clone is detected
and correcting for the detection bias leads to the following expression for the estimated
detectability q̂ so given by
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q̂ =
2n2

n1 + 2n2
. (2.1)

The binomial likelihood model implies statistical independence of detections at different
time points. This assumption might be violated if detectability exhibits temporally struc-
tured behavior. The detectability model underlying this method is identical to M1 below,
but this method only uses two observations, and model fitting in order to estimate q is done
analytically.
This simple method is compared to models M1 to M3 (below) in order to justify it’s use,
and to establish the conditions where it can be applied. For a formal derivation of (2.1) and
confidence intervals for q̂ please refer to the appendix (additional file 1).

2.3.4.2 M1: Binomial model

Model 1 follows M0 in assuming that the detectability qi,t is a constant for all clones i and
time points t, namely

qi,t = q̄.

This implies independence of detecting a clone at time t from whether it was detected at
other time points, and homogeneity of the infection population with respect to detectability.

2.3.4.3 M2: Beta-binomial model

Model 2 allows for variation in detectability among clones, but requires every clone to have
the same detectability throughout the study. Variation in detectability is modeled using a
beta distribution:

qi,t = qi ∼ Beta(a, b),

where a and b are the shape parameters of the beta distribution.

2.3.4.4 M3: First order Markov Chain

Model 3 uses a two-state, first order Markov chain to represent the time evolution of de-
tectability. In a first order Markov chain, the probability of detecting a clone at time t
depends on whether it was detected at time t − 1. This is achieved by defining qi,t as one of
two detectabilities q1 or q0, depending on whether the clone i was detected at time t − 1, or
not.

qi,t =

{
q1 , if clone detected at t − 1
q0 , otherwise

This is equivalent to a two-state Markov chain defined by the transition matrix
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T =

(
t00 t01

t10 t11

)
=

(
1 − q0 q0

1 − q1 q1

)
,

where ti, j is the probability that a transition from state i to state j occurs in the data, when
the two observations are one time unit apart (24h in this case).
If the two observations are n days apart, the the transition matrix is raised to the power of
n and becomes

Tn = T n.

The probability of detecting a clone at the first survey, qi,1, was assumed to be equal to
the expected detectability q̄, which follows from the stationary distribution of the Markov
chain defined by T . In equilibrium, the the number of transitions from 0 to 1 and from 1 to
0, respectively, must be equal. Therefore q̄t10 = (1 − q̄)t01, which leads to the expression
for q̄ as given by

q̄ =
t01

t01 + t10
=

q0

1 + q0 − q1
.

An important feature of this simple model is that it not only represents a random walk in
“detection space” (i.e. switching between being detected and not being detected), but that
it can also be interpreted as a random walk in “detectability space” (switching between the
two detectabilites). This can be illustrated as follows: The probability that a clone changes
its internal state from q0 to q1 is equal to the probability that it is detected while being
in state q0, which is equal to q0. Likewise, the probability of a transition from q1 to q0

is 1 − q1. The resulting transition matrix for such a process is identical to T. However,
since this model is fitted to a population of sequences, as opposed to just fitting it to one
single time-series, one has to be careful in interpreting a possible best fit of this model:
simple heterogeneity in detectability among clonal infections would also result in different
estimates for q1 and q0, even if there is no random walk in detectability within a single
clone. Therefore, only in combination with the results of M2, which is also able to capture
such heterogeneity, is one able to interpret t10 and t01 as transition probabilities between q0

and q1.

2.3.5 Bias correction of detectability estimates

An “observed” detectability estimated by fitting these models does not correspond to the
underlying “true” detectability because clones only appear in the data if detected at least
once. Therefore, a bias correction is required in order to estimate the true detectability
qtrue. This was achieved as follows: by considering only the (time independent) mean de-
tectability qobs = E

[
qobs

i,t

]
, the corresponding mean true detectability qtrue is approximated

by qobs times the probability that a clone is included in the data, so given by

qtrue ≈ qobs(1 − (1 − qtrue)4).
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This expression can be solved numerically by starting with the approximation

qtrue ≈ qobs(1 − (1 − qobs)4),

and iteratively approaching qtrue. The magnitude of the bias in detectability estimates can
thus be examined numerically. It amounts to approximately 10−2 for the values of q in the
present data. The approach was used in all models to correct the measured detectabilities
for detection bias. Similarly, the true number of clones present, Ntrue, is approximated as

Ntrue ≈
Nobs

(1 − (1 − qtrue)4)
,

with Nobs = 519.

2.4 Results

In the complete study population (80 individuals), the average prevalence across all four
survey rounds was 46 % by microscopy and 69 % by PCR. The dataset used for statistical
analyses comprised 69 parasite-positive individuals between 6 months and 20 years of age,
with a median age of 5.2 years (inter-quartile range 3.5-9.7). The median multiplicity of
infection (MOI) among these was 10 (inter-quartile range 7-13), when pooling all four ob-
servations from each individual. This differs from standard practice when reporting MOI,
but was justified given the very short interval between the surveys. The obtained value
is expected to be a better estimate of the true MOI. When only considering single survey
rounds, the median MOI among PCR-positives was 4. The 519 detected clones belonged
to 77 different msp2 genotypes, with the most common allele reaching a frequency of 9.2
%.

2.4.1 Tests of proportion and correlation

A series of hypothesis tests was performed in order to gain insight into the statistical prop-
erties of the data-generating process. These do not relate to the models M1-M3 directly,
but rather aim to look at similar questions using a completely different methodology. Any
conclusions would need to be consistent with both approaches. In this analysis, the detec-
tion bias is accounted for by adding a total of 26 all-zero sequences to the data set, such that
the total number of sequences equals 545. This is the “true” number of clonal infections,
as estimated robustly by models M1 to M3. In the following list, H1 − H5 indicate the hy-
potheses tested, and the corresponding p-values obtained using χ2 tests (with the exception
of the Spearman’s Rank Correlation analysis) are given:

H1: All 4 surveys have an equal proportion of positive results, i.e.
∑

di,1 =
∑

di,2 =∑
di,3 =

∑
di,4 (Data: 312, 284, 277, 236). This hypothesis of stationarity is rejected by a

χ2 test with 3 degrees of freedom: P-value <0.0001.
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Figure 2.2: Expected and actual frequencies of sequence types - Comparison of se-
quence type frequencies in the data with their expectations from a) the binomial model
(M1), and b) the Markov Chain model (M3). M3 fitted the data better, yet did not fully ex-
plain it. The beta-binomial model (M2) is not shown since it measured almost no variation
in detectability among clones, and therefore effectively reduced to M1.

H2: The frequencies si of the 16 binary sequences (including the added all-zero sequence)
are multinomially distributed with expectations si = 545qoi(1−q)4−oi , where oi is the num-
ber of positive testing results in sequence i). This hypothesis, effectively proposing that
a Bernoulli-process is able to perfectly describe the data, is rejected by a χ2 test with 14
degrees of freedom: P-Value <0.0001.

H3: The number of sequences with i = 0, 1, .., 4 detections are multinomially distributed
with expectations si = 545

(
4
oi

)
qoi(1 − q)4−oi . This is a slightly relaxed version of H2, such

that the time order of detections is neglected, and sequences with a certain number of de-
tections are pooled. However, this hypothesis is rejected by a χ2 test with 3 degrees of
freedom: P-Value <0.0001.

H4: The frequencies of all four possible results of a survey pair (i.e. "00","01","10" and
"11") are multinomially distributed with expectations si = 545qoi(1 − q)2−oi . This is a spe-
cial case of H2, only applied to a pair of surveys, instead of the whole dataset. Except for
survey pair 2-3 (p-value 0.06) this hypothesis is rejected on all survey pairs by χ2 tests with
2 degrees of freedom: P-values <0.0001.

H5: The distribution of the number of successful detections in pairs of surveys is binomi-
ally distributed. This is very similar to H3, except that only pairs of surveys are considered.
The duration between the observations turns out to be important, as the hypothesis is re-
jected by χ2 tests with 1 degree of freedom on all survey pairs (p-value <0.0001), except
on the longest interval with a duration of 7 days (p-value: 0.83). The p-values of all pairs
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are listed in Table 2.3. This result is particularly interesting as it could be interpreted as
test of an ergodic hypothesis, which implies that after enough time has passed, the system
“forgets” where it started and its state at the second observation is independent from the
first observation.

A Spearman’s Rank Correlation analysis showed significant positive correlation between
all pairs of surveys which are 24h apart, and no correlation for all other pairs, with the
exception of the pair formed of surveys 1 and 3.

2.4.2 Model comparison

A comparison of models M1 to M3 with respect to their goodness of fit - as indicated by
lower values of DIC - reveals that M3 fits the data best (Table 2.2). This was the case both
when splitting the data by age group (DIC 2860.0) and without doing so (DIC 2856.4).
The model estimating a separate parameter set for each age group indicates a decreasing
trend in detectability with age, as observed by others [37, 58, 69]. However, the model
with only one parameter set for all ages has a lower value of DIC, and therefore this trend
is not significant. There is almost no difference in goodness of fit between the binomial
(M1) and beta binomial models (M2), as indicated by the corresponding DIC values (all
between 2870.2 and 2872.3). This is in line with the finding that the beta-binomial models
estimated almost no variation in q and therefore effectively reduced to the corresponding
binomial model. A graphical comparison of M1 and M3 is presented in Figure 2.2.

model age groups q̄ DIC
M1 (binomial) 1 0.50 2870.2
M1 (binomial) 5 0.55, 0.52, 0.49, 0.53, 0.41 2872.3
model age groups q̄ var(q) DIC
M2 (beta-bin.) 1 0.51 0.003 2871.5
M2 (beta-bin.) 5 0.51, 0.46, 0.46, 0.47, 0.46 0.004,0.005,0.005,0.005,0.005 2871.3
model age groups q̄ q0 q1 DIC
M3 (Markov) 1 0.50 0.47 0.59 2856.4
M3 (Markov) 5 0.55, 0.53,0.49, 0.53, 0.41 0.45, 0.44, 0.47, 0.56, 0.46 0.65, 0.64, 0.56, 0.55, 0.45 2860.0

Table 2.2: Comparison of Models M1-M3 - Model results: M3 without age groups fitted
the data best, indicated by it’s lowest value of DIC. M2 effectively reduced to M1, as it
estimated very low variance of detectability. All models estimated a true number of clones
of approx. 546 (not shown), and similar values for the mean detectability q̄. Values of q̄
represent the bias-corrected mean detectability, whereas q0 and q1 are not bias corrected,
but represent “observed” detectabilities (see section “bias correction”).

2.4.3 Estimates of q

The estimates of detectability (Table 2.2) were found to be similar for models M1 through
M3, especially when common parameters for all age groups were estimated. All values
were approximately 0.5, and showed little prior sensitivity. Although measuring separate
detectabilities for every age group did not improve model fit, a decreasing trend of de-
tectability with age was observed. Estimates of q for the youngest group are between 0.51
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survey pair interval (days) n1 n2 q̂ 95% CI p-value
1-2 1 220 188 0.63 0.59-0.68 9.4e-12
3-4 1 233 140 0.55 0.49-0.60 9.1e-7
2-3 4 293 134 0.48 0.43-0.53 1.1e-2
1-3 5 235 177 0.60 0.55-0.65 2.4e-7
2-4 5 276 112 0.45 0.39-0.50 1.7e-3
1-4 7 272 138 0.50 0.45-0.55 0.83

Table 2.3: Direct estimation of q on all survey pairs, using M0. -Direct estimation of
q on all pairs of surveys gave heterogeneous results. However, only in pair 1-4 are the
proportions of single and double positives compatible with the binomial assumption of the
direct estimation method (p-value:0.83). The estimate of q from this pair is close to the
estimate of M3.

and 0.55, and decrease to values between 0.41 an 0.46 for the oldest age group. This is con-
sistent with the findings of other authors [37]. Estimates of q obtained using M0, however,
show some variation, with values ranging from 0.45 to 0.63. Table 2.3 shows the corre-
sponding estimates obtained from all available pairs of surveys. Only for the measurement
using survey pair 1-4 were the criteria for using the method fulfilled, as the corresponding
p-value of 0.83 indicates, and the value of q estimated from this pair matches the estimates
from the models very well.

2.5 Discussion

The short term dynamics of asymptomatic P. falciparum clonal infections in vivo were
characterized in order to find a simple way of measuring detectability in the field. A series
of statistical tests as well as a progression through three simple models provided insight
into some statistical properties of within-host dynamics monitored by molecular typing.
Classical PCR ignores absolute parasite densities, but length polymorphic amplicons make
it possible to distinguish between co-infecting parasite clones. Detectability, however, can
be used as a proxy for parasite densities, as the two must be correlated. Since key epidemi-
ological measures such as prevalence and multiplicity of infection (MOI) depend on the
numerical value of detectability, planning and monitoring of malaria interventions rely on
accurate measurements of detectability. It is important to note that detectability may not
only depend on host or parasite factors, but also on the methods for generation of geno-
typing data. These include the method for collecting blood samples, the actual volumes of
blood collected, storage conditions, PCR conditions, and competition within the PCR as-
say limiting the detection of minority clones. The present analysis did not consider any of
these factors, but rather assumed that their impact is more or less identical for all samples
and clones.
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2.5.1 Within-host dynamics

Measurement of detectability from longitudinal data will for practical reasons rely on bi-
nomial models of detection. This creates a need to establish under what conditions such
binomial models are applicable. Different hypotheses tested on the typing data showed
complicated dynamics of clonal infections for short timescales. These dynamics could not
be described by a binomial model (rejection of hypotheses H1 to H3). A hypothesis which
could not always be rejected was H5. This hypothesis stated that the number of successful
detections in sample pairs were binomially distributed. It was not rejected for the sample
pair collected at the most distant dates, i.e. from surveys 1 and 4 with interval of 7 days
(Table 2.3). This finding could indicate that the processes governing detectability on short
time scales are prone to stochastic variation such that the effect of the initial state of a
clone vanishes after some time, and the two observations become independent. In other
words, the corresponding test could be interpreted as test of an ergodic hypothesis, which
implies that the system under investigation “forgets” it’s initial state after enough time has
passed. That the frequencies of “01” and “10” sequences are not equal, and therefore H4

(stricter than H5) is rejected on all survey pairs except pair 2-3, questions this interpreta-
tion, and can not be explained it in a satisfactory way. Since there are consistently more
“10” pairs than ‘01”, one could presume that the detectability of clones simply decreases
with time, which would also explain the decreasing trend in the number of detections per
survey (H1). However, this is mere speculation and can hardly be shown from this dataset.
Nevertheless, the method of directly measuring detectability is presumably little affected
by this phenomenon, as it’s estimates of q only depend on the sum of single positive pairs
and the obtained numerical values of q agree very well with the results of the other models.

Intuitively, one would expect a certain amount of variation in detectability among clonal
infections, especially since these were pooled across individuals. It is therefore surprising
that M2, which would allow for such variation, measured zero variance of q and effectively
reduced to the binomial model M1. The best fitting model M3 offers a possible interpre-
tation, as it is capable of capturing change in detectability over time. M3 models the time
evolution of detectability as a Markov chain, which is equivalent to assume that a clone
has detectability q0 if it was not detected on the preceding survey, and detectability q1 if
it was. The obtained estimates of q0 and q1 as 0.47 and 0.59, respectively, could either
indicate variation in the dataset with respect to detectability or that the detectability of a
clone performs a random walk in detectability space, alternating between the two states q0

and q1. Since M2 reduced to M1, and estimated practically no variation in detectability,
we have to assume the latter.
One might expect parasite densities to fluctuate with a period of approximately 48 hours, as
observed in malariatherapy-data [61], and in good agreement with in-vitro measurements
of a 48 hour erythrocytic cycle. In fact, such periodic behaviour of asymptomatic infec-
tions has been reported [62, 70]. The present analysis does not find a 48-hour periodicity,
rather the opposite: both the best fitting model as well as the results of the Spearman’s
rank correlation analysis indicate positive autocorrelation between time points which are
24 hours apart. A process with a periodicity of 48 hours, on the contrary, should show nega-
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tive correlation. A possible explanation for the difference between malariatherapy data and
the data presented here could be that malariatherapy patients were not immune and there-
fore had fever more often. The question of periodicity in symptomatic malaria should be
considered separately, and it’s causes are thought to be well explained [71, 72]: high tem-
perature (fever) differentially affects the intra-erythrocytic stages of parasite development,
and nearly stops development in some of these. This leads to “queuing” of the parasite
population, and when the fever goes down, all parasites continue their development in a
synchronized way. Fever can by definition not be operating in asymptomatic individuals,
but at least in simian and avian malaria an effect of normal diurnal changes in body tem-
perature on synchronization has been demonstrated, alongside with the observation that
sometimes the parasite population is split into "two broods [..], coming to schizogony on
alternate days" [73]. Two broods, synchronized within themselves, appearing in the pe-
ripheral blood with a 48 hour periodicity, yet with a 24 hour phase-shift, would appear in
the data as having a 24 hour periodicity. This would be consistent with the finding that de-
tection results one day apart are positively correlated. As the data does not contain smaller
time intervals, however, any such periodicity cannot be distinguished from a simple grad-
ual change in detectability.
Analysis of periodicity of clonal infections would ideally make use of long series of par-
asitological observations of untreated infections with short intervals, but few studies have
collected such data, partly for ethical reasons. Exceptions include the malariatherapy
datasets [35], the studies of Farnert et al [62, 74] and Magesa et al [75] in Tanzania, and
Bruce et al [70,76] from Papua New Guinea. Bruce et al aggregated data for paired obser-
vations with identical interval length and calculated the probability of detecting an infection
at the second occasion, conditional on it being detected at the first occasion. This analy-
sis suggests values of detectability similar to the estimates in the present study, with a six
day periodicity. This periodicity was interpreted as signal of a 48-hour underlying cycle
because the sampling interval was three days, which meant that six-day and two-day peri-
odicity could not be distinguished. Similar analyses of the other available datasets would
be of value.

2.5.2 Measurement of detectability

A comparison of different approaches for estimating detectability found remarkably good
agreement of the obtained numerical values. Of practical interest is the use of a direct
method of estimating the detectability q from pairs of surveys by using the number of
clones which were detected once (n1), or twice (n2):

q ≈
2n2

n1 + 2n2
.

This approach was found to give very similar results as the more sophisticated methods,
provided the underlying assumption is met: the number of successful detections must fol-
low a binomial distribution. The statistical properties of the data, as assessed by a series
of tests, suggest that if there is an interval of at least 7 days between consecutive surveys,
it is safe to make these assumptions (see H5). Alternative methods [37, 57, 58, 60] rely on
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the same two assumptions, yet are further incorporating models for the processes of ac-
quisition and loss of infections. While those may themselves be of interest, the associated
measurements of q may be affected by assumptions about acquisition and loss of infections.
Direct estimation using M0 is therefore recommended as a simple and practical alternative,
if only detectability is of interest, and if the interval between two surveys is short enough
so acquisition and loss of infection clones can safely be excluded.

2.5.3 Epidemiological significance of detectability

Prevalence and multiplicity of infection (MOI) are key epidemiological parameters, which
characterize the malariological situation in a given area, and are routinely being reported.
Quantities like these are ultimately important for rational planning of interventions. Both
mentioned quantities are, however, affected by the value of detectability, which in compar-
ison receives little attention. It seems plausible, that on average the “true” MOI should be
the “observed” MOI divided by the detectability, which implies - given values of q around
0.5 - that true MOI’s are roughly double of what is being reported. However, this ignores,
that detectability itself might depend on MOI, and is merely an approximation. What about
estimates of prevalence? It seems plausible that the extent to which measurements of preva-
lence are influenced by the value of q should vary with the multiplicity of infection, as the
probability to miss every single one of n clones in a host (and obtain a false negative result)
could be stated as (1 − q)n (Figure 2.3).

This implies that the measurement error for prevalence, when neglecting detectability,
should be highest at the lowest multiplicities of infection - a situation to be expected when
approaching local elimination. It is therefore desirable to routinely report q together with
other epidemiological measures, if possible.
In drug efficacy trials, the phenomenon of imperfect detection complicates the task of dis-
tinguishing new from breakthrough infections, and therefore must have an influence on
drug efficacy estimates. In addition, residual drug levels may keep parasite densities at un-
detectable levels for some time, which is usually taken into account when designing drug
efficacy trials. No satisfactory statistical methodology for analysis of such trials appears
to exist, taking into account both imperfect detection and residual drug levels. It is sus-
pected that many recrudescent infections, i.e. infection clones which survive treatment and
are detected several days or weeks later, might in fact often be detected earlier if multi-
ple testing took place. This is strongly supported by the findings of [77], who note that
consecutive-day blood sampling changes the results of a drug efficacy trial compared to
single-day blood sampling.

2.6 Conclusions

The presented work demonstrates the importance of paying attention to the phenomenon of
imperfect detection not only in the sense of assessing the sensitivity of diagnostic tests, but
also looking at it as a property of infections or individuals. Various epidemiological mea-
sures, such as prevalence or MOI, are affected by imperfect detection. Failure to account



2.6. Conclusions 31

a)

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multiplicity of infection

P
ro

b.
 o

f t
es

tin
g 

po
si

tiv
e

.9
.7

.5

.3

.1

q

b)
Multiplicity of Infection

F
re

qu
en

cy

0
1

2
3

4
5

6
7

0 5 10 15

Figure 2.3: The error in prevalence measurements becomes more important at low
MOI - a) Prevalence estimates are biased due to imperfect detection. Assuming that in-
fecting clones within a particular host are independent from each other, the probability of
missing all of them and therefore falsely classify an individual as negative, is highest for
low multiplicity of infection. This graph shows - for different values of q - how the num-
ber of clonal infections in a host affects the estimates of prevalence. The probability of
correctly recognizing a positive individual with n infections is calculated as 1 − (1 − q)n.
It follows that the effect of detectability on prevalence estimates is highest at low multi-
plicity of infection and therefore low transmission, for example when being close to local
elimination. However, low transmission intensity might prevent acquisition of immunity
and therefore raise the value of detectability. It is therefore desirable to report estimates of
q and multiplicity of infection together with prevalence estimates. b) The distribution of
MOI. Contrary to common practice, observations from all four surveys are pooled for the
calculation of MOI. This corresponds to the assumption that clones are present throughout
all surveys if detected once. With the help of subfigure a, the bias on prevalence estimates
in this population, as introduced by imperfect detection, can be roughly estimated.



Detectability of Plasmodium falciparum clones

for it may severely distort the outcome of measurements and may even lead to wrong con-
clusions. As an example, the decrease in prevalence with age, as it is frequently observed
in malaria, might actually mean that detectability decreases with age, while prevalence re-
mains constant or even increases. Indeed, some publications suggest that this might be the
case [37]. In addition, it is likely that underestimation of prevalence may be substantial in
situations where the multiplicity of infection is low. This is because the chance of missing
every single clone in a host is highest when there are only few.

A simple method of estimating detectability from molecular data, using pairs of surveys,
was presented. It is a modification of existing methods, which can deal with data on mul-
tiple infections within one host. The numerical estimates of detectability obtained using
said formula appeared remarkably robust. Through comparison of the detectability esti-
mates with estimates from different models, and through a series of statistical tests, the
conditions under which the underlying assumptions of the method are fulfilled could be
established. It’s use is recommended when the time interval between the two surveys is
one week or more, but discouraged on data with shorter time intervals, if possible. Both
the method itself as well as the way of addressing it’s applicability are not restricted to
malaria, but may in a similar way be used for other infectious diseases where molecular
data on individual clones is available.

The restrictions on applicability stem from the complicated dynamics of detectability on
short time scales. These were investigated and it was found that treating individual de-
tections as statistically independent is only an acceptable approximation for time intervals
longer than one week. Contrary to expectation, however, no changes in detectability indica-
tive of a 48 hour cycle were found, as is reported from malariatherapy data. This suggests
that not the 48 hour erythrocytic cycle of P. falciparum is dominating detectability in vivo,
but that other factors, such as e.g. the dynamics of the immune system, may be impor-
tant. As the participants of the study must be considered partly immune, it is presumed
that the within-host dynamics of infections differ between immune and non-immune in-
dividuals. This questions the use of malariatherapy data for fitting of within-host models
for the immune host, and encourages further collection of relevant data as well as develop-
ment of analysis methods in order to gain better insight into the within-host dynamics of P.
falciparum in immune individuals.

2.7 Appendix

A formula to estimate the detectability q from pairs of surveys has to take into account
the fact, that double-negative pairs are never detected, and that therefore the data is biased.
Such a formula was given by [50] for the diagnosis of onchocerciasis by microscopy. Here,
the corresponding formula is derived for the context of genotyping data, where a human
host can harbor multiple infections. The obtained algebraic expression in the case of two
survey rounds will turn out to be identical to the one given in [50], despite the slightly
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different assumptions of the two approaches 1.

Assuming a binomial distribution of the number of successful detections, the probability
that an infection produces a pair of observations with k positive results, pk is

pk =
2

k!(2 − k)!
qk(1 − q)2−k

A heuristic way of arriving at an estimator q̂ of q is as follows: it is assumed that the actual
data equal their expectations, i.e. nk = pkntot , of which n1 and n2 are known. Algebraically
dividing n2 by n1,

n2

n1
=

q2ntot

2q(1 − q)ntot
=

q
2 − 2q

,

and solving for q yields equation (2.1) as the desired result 2:

q̂ =
2n2

n1 + 2n2
.

2.7.1 Maximum likelihood estimation of q

A formal derivation of equation (2.1) makes use of a multinomial likelihood model and
uses the probabilities of getting k successes conditional on the probability that an infection
appears in the data3, i.e. pk

1−p0
. The likelihood of having n1 single and n2 double detections

in n1 + n2 trials can then be written as follows:

L(q) =
(n1 + n2)!

n1!n2!︸      ︷︷      ︸
=konst.

(
p1

1 − p0

)n1
(

p2

1 − p0

)n2

∝

(
2q(1 − q)

1 − (1 − q)2

)n1
(

q2

1 − (1 − q)2

)n2

∝

(
2 − 2q
2 − q

)n1
(

q
2 − q

)n2

.

Omitting constant factors and taking the logarithm yields the log-likelihood function:

l(q) = n1 log(2 − 2q) − n1 log(2 − q) + n2 log q − n2 log(2 − q).
1In the method of [50], nk signifies the number of individuals testing positive k times in a study, and the

prevalence is unknown. For the context of genotyping data, nk denotes the total number of infections found in
the study population which were detected k times, and the total number of infections in the study population is
unknown.

2Through division by q the solution q = 0 is lost. It is not plausible for physical reasons, as one would then
not observe any data.

3A note on conditional probabilities: The probability that an event A occurs, given that an independent event
B has already occurred, equals the probability that both events occur divided by the probability that B occurs,
namely P(A|B) = P(A, B)/P(B). This may at first not be obvious, but follows through simple rearrangement of
the more familiar expression P(A|B)P(B) = P(A, B).
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We obtain the score function S (q) by taking the derivative of l(q) with respect to q:

S (q) =
d
dq

l(q) =
2n2 − q(n1 + 2n2)

q(1 − q)(2 − q)

The maximum likelihood estimator q̂ of q can then be determined by finding the root of the
score function

2n2 − q̂(n1 + 2n2)
q̂(1 − q̂)(2 − q̂)

= 0.

This expression can only be zero, if the numerator is zero, and therefore it simplifies to

2n2 − q̂(n1 + 2n2) = 0.

Solving for q̂ leads to equation (2.1)

q̂ =
2n2

n1 + 2n2
,

which confirms that it is a maximum likelihood estimator of q.

Confidence interval

Construction of a confidence interval requires the Fisher information I(q), which is the
negative derivative of the score function, namely

I(q) = −
d
dq

S (q) = −
d

dq

(
2n2 − qn1 − 2qn2

q(1 − q)(2 − q)

)
,

which leads to

I(q) = −
n1 + n2

(q − 2)2 +
n1

(q − 1)2 +
n2

q2 . (2.2)

The observed fisher information Iobs is I(q) evaluated at q = q̂, so

Iobs = −
n1 + n2

(q̂ − 2)2 +
n1

(q̂ − 1)2 +
n2

q̂2 ,

which simplifies to

Iobs =
(n1 + 2n2)4

4n1n2(n1 + n2)

This allows us to calculate the standard error of q̂ as

S E(q̂) =
1
√

Iobs
=

2
√

n1n2(n1 + n2)
(n1 + 2n2)2 .



2.7. Appendix 35

A confidence 95% confidence interval for q̂ can then be constructed using Wald’s approxi-
mation:

[
q̂ ± 1.96S E(q̂)

]





Chapter 3

The dynamics of natural Plasmodium
falciparum infections

Authors: Ingrid Felger, Martin Maire, Michael T. Bretscher, Nicole Falk, André Tiaden, Wilson
Sama, Hans-Peter Beck, Seth Owusu-Agyei, Thomas Smith

3.1 Abstract

Background: The force of Plasmodium falciparum infection and the duration of untreated
infections are key variables in understanding the temporal dynamics of effects of interven-
tions. Estimation of these parameters from the field requires molecular typing techniques
for longitudinal tracking of co-infecting clones. Statistical methods need to allow for im-
perfect detection of infections. Our previous ability to analyze age-dependency in average
duration of infection was restricted by limited availability of genotyping data. Recent im-
provements in mathematical modeling and in the precision and throughput of our genotyp-
ing system enable us to overcome this limitation.
Methods and Findings: In a longitudinal study conducted in a highly exposed population
in Northern Ghana over a period of one year, up to six consecutive blood samples were
analyzed from each of 349 individuals of an age-stratified cohort. An immigration-death
model was fitted to detection time-series of merozoite surface protein 2 (msp2) genotypes.
The P. falciparum clone acquisition rate was highest about two months after the onset of the
rainy season. The model gave estimates of the duration of clonal infections against a back-
ground of high multiplicity of infection (MOI) and imperfect detection. Detectability was
38% in children and decreased with age, reaching 17% in adults >60 yrs. The estimated du-
ration of infection peaked in 5-9 year old children, in whom on average an infection lasted
319 days (CI 318-320). In adults duration decreased to about 131 days (CI 114-148). We
corrected MOI for the effects of imperfect detection. The modeled MOI was considerably
higher than the observed number of clones, with the greatest effect in the older age groups
where a mean of only 2.8 clones per parasite positive carrier was observed, compared with
an estimated average of 17 distinct clones present.
Conclusions: Persistence and chronicity of individual parasites is the hallmark of malaria
infections. P. falciparum infections persisted in all age groups for longer than 100 days
and duration of infection was highest in 5-9 year old children. The semi-immune status
achieved with adolescence seems to contribute to a somewhat increased elimination rate as
well as to a reduction of parasite load. The true age pattern of MOI is profoundly affected
by lower detectability in adults as a consequence of the decreasing parasite load leading to
higher number of sub-patent infections.
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3.2 Introduction

The rates at which new infections of the malaria parasite Plasmodium falciparum are ac-
quired and existing infections are lost may be affected by the host’s acquired immunity, and
thus by the age of the host. Although many mathematical models of malaria transmission
assume that acquired immunity reduces infection duration there are few experimental data
available on clearance and acquisition rates of natural infections observed over extended
periods of time.
The duration of a clonal infection is difficult to determine in field samples from endemic
areas due to the abundance of superinfection. A background of ongoing infections pre-
cludes the identification of new infections by microscopy, thus the duration of a natural
infection can only be determined using molecular typing. Sequestration of late stage para-
sites by cytoadherence further obscures the study of infection dynamics because parasites
disappear from the peripheral blood circulation at periodic intervals, so that when para-
sites are well synchronised entire parasite clones can escape detection. Failure to detect
a sub-patent parasite clone can also depend on its density and the detection limit, even
when using nested PCR (nPCR). Longitudinal studies with short term sampling (daily or
weekly) in asymptomatic individuals have found that individual parasite clones identified
by restriction fragment length polymorphisms (RFLP) frequently appear to be lost only to
reappear again [62, 78]. As a consequence, temporary absence from the peripheral blood
has to be distinguished from parasite clearance.
We have developed several statistical methods to estimate infection duration allowing for
this imperfect detectability of individual clones [37, 57, 58, 60]. These models assume that
the failure to detect a particular genotype at a date between two positive samples need not
reflect loss, but may also result from presence below the detection limit. However, in our
previous analyses uncertainties were caused by subjectivity in the visual analysis of RFLP
gels and the small number of samples that could be processed using this laborious genotyp-
ing approach. In addition, we were not able to fit separate models to different age groups,
and as a consequence, did not consider non-monotonic patterns of age dependence.
To reduce these uncertainties we recently established and validated a highly accurate geno-
typing technique of the P. falciparum merozoite surface protein 2 (msp2) gene, that is based
on precise sizing of PCR products by capillary electrophoresis. This approach facilitates
longitudinal tracking of multiple infections using an automatic readout [52]. We have now
expanded our previous pilot analyses of parasite typing and dynamics in Navrongo, north-
ern Ghana [37, 52, 57, 63], to include data from all 349 individuals of all ages who were
followed up over one year in two monthly surveys. We now present age-specific estimates
of infection duration and detectability based on these data.

3.3 Materials and Methods

3.3.1 Field methodology

The study was carried out in Kassena-Nankana District (KND) in northern Ghana where
malaria transmission is intense with strong seasonality [79]. For a molecular epidemio-
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No. individuals enrolled 347
No. of samples collected 1902
No. of individuals with a complete set of 6 samples 269
No. of individuals with >1 parasite-positive blood samples 216
Female to male ratio (%) 53/47
P. falciparum positivity by microscopy (proportion)
<1yr 0.549
1-2 yrs 0.838
3-4 yrs 0.803
5-9 yrs 0.826
10-19 yr 0.633
20-39 yrs 0.448
40-59 yrs 0.371
>60 yrs 0.363
overall 0.515
P. falciparum positivity by PCR, all ages (proportion) 0.898
Geometric mean parasite density by age group (95% CL)
<1yr 770.6 (500.1; 1187.6)
1-2 yrs 1053.6 (766.7; 1447.9)
3-4 yrs 1064.5 (805.3; 1407.2)
5-9 yrs 420.5 (344.5; 513.2)
10-19 yr 291.0 (233.4; 362.9)
20-39 yrs 111.4 (84.5; 146.9)
40-59 yrs 119.8 (84.2; 170.4)
>60 yrs 116.8 (89.9; 151.8)

Table 3.1: Characteristics of the cohort studied
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Figure 3.1: Sampling intervals and rainfall in Navrongo/Northern Ghana during the
study period - Blue triangles represent weekly rainfall, the black line shows the 5 weeks
moving average of rainfall. Grey bars represent the six sampling periods.

logical survey of P. falciparum multiplicity of infection and infections dynamics among
asymptomatic inhabitants of a holoendemic malarious area, a cluster sample of the KND
population was drawn by selecting 16 index compounds at random from the database of the
Navrongo Demographic Surveillance Site, which covers the whole district. From the area
centered on each index compound, two people in each of the following age categories were
selected: <1, 1-2, 3-4, 5-9, 10-19, 20-39, 40-59, 60+ [63]. Blood samples were collected
on DNA ISOCodeTM Stix (Schleicher & Schuell) in intervals of two months, starting in
mid 2000, resulting in a total of 6 samples per participant (R1-R2-R3-R4-R5-R6). Study
participants who were sick at the time of the survey were referred to the routine health
services. No antimalarial treatments were administered by the research team. Informed
consent was obtained from participants by signature or thumbprint in the presence of a wit-
ness. Ethical clearance for this study was obtained from the Ghana Health Service Ethics
Committee.

3.3.2 DNA isolation and genotyping

Processing of DNA and PCR amplifications were described previously [52, 65]. The cap-
illary electrophoresis (CE)-based genotyping technique used differentially labeled fluores-
cent dyes for each of the two allelic families of the polymorphic marker gene msp2 (VIC
for 3D7-types and 6-FAM for FC27-types). The GeneMapper R© Software version 3.7 (Ap-
plied Biosystems) was used for calculating fragment sizes. This typing technique had been
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validated with a subset of our samples [52]. Direct comparison of CE-based results with
those obtained by the previously used PCR-RFLP technique showed that the CE technique
is more precise and more sensitive.
For fragment sizing by CE, 0.25 µl of nPCR product was combined with 10 µl ROX-labeled
size standard (diluted 1:40 with water to minimize pipetting errors). Samples were dried
and sent to the Genomics Core Laboratory of MRC Clinical Science Centre in London.
Highly deionized formamide was added, mixed well, and after denaturation, samples were
analyzed on an ABI PRISM 3700 genetic analyzer.

3.3.3 Data analysis

An in-house generated computer program was used to classify peaks sized by GeneMapper R©

software. To allow for the inaccuracy in size determination, peaks were assigned to size
bins with a length of 3 base pairs since the genotyping applied to a coding region of DNA.
A clone with a given length was considered to be present when the peak height exceeded a
well- and plate-specific cutoff. The cutoff height was a product of an allelic family-specific
constant, the average height for the size standard, and the relative height of the size stan-
dard for the plate. The allelic family-specific constant was chosen to give optimal detection
of peaks using samples with known DNA content. Post-processing procedures applied to
the raw data consisted in genotype calling and elimination of so called “bleeding” peaks,
“plus-A” artifacts, and other allele-specific PCR artifacts. These procedures have been de-
scribed previously in greater detail [52].
The genotyping data were first analyzed by calculating the frequencies of gain, loss and
persistence of infecting clones. An infection present in the survey at time t, but not de-
tected in the subsequent survey t+1 was considered a “loss” (+ -), whereas a “gain” (- +)
was counted when an infection was observed in round t but not in the previous round t-1.
Where infections were observed in consecutive surveys, this was recorded as “persistence”.
Two different methods were used to simultaneously estimate detectability and duration of
infection by allowing for undetected infections: For the first so-called “triplet” approach
the data were arranged as records of the presence or absence of individual parasite geno-
types in sequences of up to three successive samples from the same individual. A sliding
window of three consecutive samples was used so that each sample could appear at any
position in the triplet. Four types of sequences were counted (++x; +-+; +-- ;+-?; where +

represents positive, - negative, ? missing, and x can be any of the three). [58] give formulae
for the relative frequencies of these patterns assuming parasite persistence to be a homo-
geneous first order Markov process, and parasite detection to be described by a constant
detectability parameter. Assuming a multinomial distribution for the frequencies of the
different sequence types, separate estimates for each age group of both detectability and of
clearance rates were made using the software Winbugs version 1.4 [67].
The second approach, an immigration-death model, used sequences of all six observations
and allowed for imperfect detection of an infection at some of the time points [37, 57].
This approach made a more efficient use of the data and adjusted for seasonality in the
infection process. Detectability, force of infection and duration of an infection were simul-
taneously estimated. This entailed maximum likelihood fit to the frequency distributions
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of the full sequences of six observations. We present the results for a minor modification
of the best fitting model among those fitted previously to the pilot database as determined
using the Akaike Information Criterion (AIC) [37]. The revised model corresponds to an
immigration-death process with force of infection λ(t) and clearance rate µ(a). Parameter
estimates are given in Table 3.2. λ(t) is the season-specific infection rate, taking distinct
values for each of the 6 two-monthly periods corresponding to the inter-survey intervals,
assuming the same seasonal pattern to have recurred annually since birth. In the best fitting
model of Sama et al [37] the clearance rate, µ, was modeled as an exponential function of
age, whereas in our updated model, separate clearance rates µ1, µ2 . . .µ6 were estimated,
depending on the age group of the host upon acquisition of an infection. This allows for
more flexibility in representing the dependence of infection duration on the age of the host
and was necessary to capture a peak of infection duration at intermediate ages. We param-
eterize the detectability s as a logit-linear function of age, i.e.:

logit(s(a)) = s0 + s1(a − ā) ,

where ā is the mean age and s0 and s1 are parameters to be estimated. Further details of
the general approach were given previously [37, 57].

3.4 Results

From the 349 individuals enrolled at baseline, 1978 blood samples were collected dur-
ing the one year follow-up in two-monthly intervals. All 1386 PCR positive blood sam-
ples were genotyped by our highly accurate technique. This amounted to a total of 6386
detected PCR fragments. The GeneMapper R© analysis distinguished 103 different msp2
genotypes. 28 belonged to the FC27 allelic family and 75 were of 3D7-type. Genotypes
belonging to the FC27 family generally reached higher allelic frequencies than 3D7 geno-
types. The most frequent genotype represented 10.2% of all fragments detected (651/6386)
and was of FC27 type. The most frequent 3D7 genotype represented 3.6% of all fragments.
In the overall data set P. falciparum prevalence was 48% by microscopy and 75% by PCR
[57]. The age distribution of PCR positivity shows a peak in the 5-9 year old children with
93% of these children being parasite positive (Figure 3.2a). Mean multiplicity measured
in the PCR positive samples also peaked in the age group of 5-9 years. Both prevalence
and the mean number of concurrent infections detected in a blood sample (multiplicity of
infection, MOI) were lowest in the 60+ age group.
The highest prevalence by PCR (88%) and highest MOI (a mean of 5.4 concurrent clones
per individual) was observed in Round 2 (Figure 3.2b). These peaks coincided with the
rainy season as sampling for Round 2 started just after the rainfall had reached a maximum
(Figure 3.1). Prevalence was lowest (60%) in Round 6, which marked the beginning of the
next rainy season.
The apparent dynamics of P. falciparum infections can be described by the observed rates
of clone appearance and disappearance (Figure 3.3). Rates of gain were higher in children
than in adults, with a peak in the 5-9 years age group that showed an average of about 5
clones gained per interval. The observed rate of clone disappearance showed an opposite
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Parameter Unit Value
ID model Triplet model

λ1 Force of Infection Aug/Sep per yr 44.8 (CI 44.7-44.9) n.a.*)
λ2 Force of Infection Oct/Nov per yr 19.2 (CI 19.1-19.3) n.a.
λ3 Force of Infection Dec/Jan per yr 18 (CI 17.8-18.2) n.a.
λ4 Force of Infection Feb/Mar per yr 7.5 (CI 7.4-7.6) n.a.
λ5 Force of Infection Apr/May per yr 12.3 (CI 12.2-12.3) n.a.
λ6 Force of Infection Jun/Jul per yr 39.6 (CI 39.3-39.8) n.a.
1/µ1 Duration of infection (<1 yr) days 155 (CI 128-183) 129 (CI 108-160)
1/µ2 Duration of infection (1-2 yrs) days 256 (CI 254-259) 198 (CI 143-322)
1/µ3 Duration of infection (3-4 yrs) days 257 (CI 254-259) 196 (CI 162-247)
1/µ4 Duration of infection (5-9 yrs) days 319 (CI 318-320) 216 (CI 169-297)
1/µ5 Duration of infection (10-19 yrs) days 176 (CI 156-196) 189 (CI 143-279)
1/µ6 Duration of infection (20-39 yrs) days 129 (CI 124-134) 124 (CI 93-186)
1/µ7 Duration of infection (40-59 yrs) days 126 (CI 113-139) 158 (CI 95-472)
1/µ8 Duration of infection (>60 yrs) days 131 (CI 114-148) 190 (CI 97-5924)
s0 Logit detectability at 20 yrs -0.84 (CI -0.91 - -0.78) n.a.
s1 Change in logit detectability per 10 yrs -0.17 (CI -0.21 - -0.13) n.a.
q1 Detectability (<1 yr) percent n.a. 61 (CI 48-74)
q2 Detectability (1-2 yrs) percent n.a. 46 (CI 34-58)
q3 Detectability (3-4 yrs) percent n.a. 46 (CI 39-52)
q4 Detectability (5-9 yrs) percent n.a. 40 (CI 34-47)
q5 Detectability (10-19 yrs) percent n.a. 33 (CI 26-41)
q6 Detectability (20-39 yrs) percent n.a. 33 (CI 19-48)
q7 Detectability (40-59 yrs) percent n.a. 22 (CI 09-35)
q8 Detectability (>60 yrs) percent n.a. 13 (CI 03-23)

Table 3.2: Parameter estimates of statistical models - *) n.a.: not applicable; the estima-
tion method did not provide these estimates.
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a)

b)

Figure 3.2: Multiplicity of infection and prevalence - Mean multiplicity of infection
(MOI) and prevalence by PCR (a) by age and (b) by survey. Mean multiplicity is calculated
from PCR positive samples only.
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Figure 3.3: Transitions - Transition types observed between two consecutive survey
rounds (gains or losses of parasite clones and persistent clones) by age group. Transi-
tions were monitored in 1978 blood samples collected longitudinally from 349 individuals
from Northern Ghana.

trend. More clones are lost between two surveys in older individuals than in young children.
The apparent persistence of clones thus decreased with age.
The data set used in the present analysis to estimate detectability and duration of infec-
tion from longitudinal genotyping data contained 216 individuals with complete records
for each round. Both statistical methods for estimating detectability found that even highly
sensitive nPCR combined with precise capillary electrophoresis and GeneMapper R© based
fragment sizing detected less than half of the clones present at a given time in an indi-
vidual (Figure 3.4). Both methods also agreed that in the younger age groups <10 years,
detectability was higher than in older age groups, reaching a minimum of 17% in the oldest
individuals. This age-dependent decline of detectability was in line with decreasing micro-
scopic parasite density with age (Figure 3.4). Our implementation of the immigration-death
model constrained the relationship of detectability with age to be monotonic, leading to a
decrease in detectability with age. Overall mean detectability in all six rounds was esti-
mated to be 30% by the immigration death (ID) model.
The duration of infection was also estimated by both models (Figure 3.5). The “triplet”
model gave estimates of duration much longer than those based on direct observations
in blood samples, averaging 168 days (95% CI 144-202) over the whole age range. The
immigration-death (ID) model led to even longer estimates of mean duration of 194 days
(95% CI 191- 196). Both models considered each age group separately and thus allowed
non-monotonic age effects. Figure 3.5 shows a peak in duration of infection in children 5-9
years of age. Infection duration for infants and older ages were shorter. Table 3.2 provides
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Figure 3.4: Detectability and parasite density - Detectability by age group and Williams
mean parasite densities by age assessed by microscopy.
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a summary of the parameter estimates. Compared to the previously published version of
our ID model (model 6 in [37]), the current model results were superior according to AIC
value (8005.1).
Estimates of the age profile of MOI need to be corrected for the effects of imperfect detec-
tion of parasite clones. Figure 3.6 shows the observed versus the true MOI corrected for
imperfect detection by both models.
The age pattern of multiplicity, adjusted for detectability was similar, whichever model was
used to estimate detectability. Estimated MOI in infants is lowest at roughly 10 infecting
clones per child. There is a peak in 5-9 year old children with about 19 concurrent infec-
tions per child. All ages above 20 years show a lower MOI when adjusted for detectability
by the ID model. Overall, correction with the immigration death model provides higher
estimates of MOI and gives estimates of overall mean MOI reaching a maximum of 18 at
the end of the wet season and a minimum of 14 at the end of the dry season, assuming an
average detectability of 0.3.

3.5 Discussion

Although the duration of malaria infections is a key parameter in mathematical models of
transmission, few studies have attempted to estimate this quantity from field data. Analyses
of microscopically determined parasitaemia are complicated by the complex patterns of
disappearance and reappearance of parasites from the peripheral blood, and this leads to
difficulties in estimating infection duration from repeated survey data [48]. In situations
where repeated superinfection is occurring, it is in any case the persistence of individual
parasite clones that needs to be assessed, and this requires the use of parasite typing data.
Some authors have interpreted the complex patterns of intermittent appearance of individ-
ual clones as rapid turnover [78]. Our studies strongly suggest these patterns result from
fluctuations in density of persisting infections, and that new inoculations are relatively in-
frequent. We find a remarkable agreement between the average duration of 210 days of
artificial P. falciparum infections in malariatherapy patients [49, 80] and estimates from
our field studies. This agrees with observations that infections from the transmission sea-
son in the Sudan are retained as sub-patent asymptomatic infections throughout the long
transmission free dry season [81].
Quantitative analysis of longitudinal studies of malaria genotypes requires a typing sys-
tem with high resolution and discrimination power. Traditional side-by-side runs of PCR
products or RFLP fragments on polyacrylamide gels were laborious, and allowed com-
parison of only a limited number of samples. Capillary electrophoresis for sizing of PCR
fragments, combined with fluorescence-labels for the discrimination of msp2 allelic fami-
lies [52] makes it possible to accrue much larger and more accurate datasets for analyzing
parasite dynamics. A further advance would be to test the reproducibility of the results
using a second marker gene in addition to msp2.
There are limits to possible improvements in field and the laboratory systems for detecting
parasites. In previous studies we have estimated detectability to be 0.51 in young Tanzanian
children [69], and 0.35 and 0.47 in the pilot study in Ghana, that include 100 individuals
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Figure 3.5: Duration of infection by host age
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Figure 3.6: Multiplicity of infection - Observed mean multiplicity of infection (MOI) by
age group in Northern Ghana and MOI. MOI was determined from PCR positive blood
samples only.
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of all ages, with the values in the latter study depending on the genotyping method applied
[52]. Standard molecular techniques thus detect at most about half of all clones and even
nPCR misses many low density infections. Increasing the volume of blood sample per
DNA extraction and thus the amount of target DNA per PCR augments detectability, but
this will never reach 100% because of sequestration of some parasite clones. Nor will
collection of samples at very short intervals overcome the problem of imperfect detection
[82].
We will therefore continue to need statistical methods that allow for imperfect detection,
with the immigration-death model [37, 57] representing our preferred approach for esti-
mating P. falciparum infection duration from typing data. This makes use of all the data
while allowing for variation in effects of age on both detection and clearance rate, as well
as for seasonal variation in transmission intensity. It could also allow for other factors
known to complicate relationships between age and infection status, such as the increase
in attractiveness to Anophelines as body size increases [83, 84].
Disadvantages of this approach are that it necessarily assumes that reinfection with the
same clone is a rare event. Thus, lack of detection of a PCR fragment between two time
points that were both positive, was treated as due to either sequestration of the parasite
clone at the time of blood sampling or to a density below the detection limit of nPCR.
This assumption is justified by the low frequencies of the individual genotypes (Figure
3.7). This approach also treats parasite clearance and detection as independent of age of
the infection, which is equivalent to assuming an exponential distribution of durations.
The durations of untreated infections fit better to Gompertz or Weibull distributions than
to the exponential [49], and to test the robustness of our conclusion, we plan to carry out
additional analyses assuming more realistic distributional forms for this parameter.
The generally higher parasite densities in children are expected to lead to higher detectabil-
ity [85] but we find that detectability decreased gradually with age, whereas density shows
a pronounced peak in young children. Correction for this age pattern in detectability makes
the age effects in MOI seem less pronounced than they appear in simple descriptions. The
MOI observed in our study population is high, though when adjusted for age is lower than
the median of 3 clones per parasite positive carrier in 3 months old children found in a
study in the Ashanti region of Ghana [86]. Even in high transmission areas MOI is gener-
ally low in the youngest children, and shows a peak at about the same age as the prevalence
as assessed by microscopy [63,69,87]. In lower transmission areas (including another area
in Ghana [88]), MOI is both lower and less age dependent [89–91]. Our analyses however
suggest that much of the age dependence in MOI in high transmission areas results from
lower detectability in adults who simultaneously harbor many sub-patent infections.
Estimates of the age-dependence of duration are even more strongly modified by allowing
for age-dependence in detectability. When this is ignored, parasite persistence appears to
decrease strongly with age, corresponding to the idea that stronger immunity in older in-
dividuals clears infections. In a study in Papua New Guinea a median duration of clonal
infections of >60 days was estimated in 4 year olds, but a median of only 15 days was
estimated for children of 5-14 years [76]. By allowing for imperfect detection, our analy-
ses found a very different pattern, with the duration of infection shorter in infants than in
older children (Figure 3.5). This is in agreement with our earlier analyses that suggested
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that there is a decrease in clearance rates with age during the first few years of life in Tan-
zanian children [58, 60, 92]. Clearance rates do seem to increase again in semi-immune
adolescents and adults, leading to somewhat shorter duration of infection, but the oldest
individuals have increased persistence that might correspond to loss of immunity in older
people, resulting in higher parasite densities.
One factor not considered in our analysis is the potential influence of antimalaria treat-
ment. In Navrongo, treatment was mostly given to <2 years old children, but was relatively
infrequent. Thus, the natural clearance is inseparable from curative therapy and duration
estimated for the youngest age group is likely an overestimation of natural clearance.
In conclusion, the age patterns of MOI, detectability and duration of infection are the result
of the interplay of the infection and clearance processes, but their analysis is complicated
by imperfect detection of parasites. The present analysis used data from reliable high-
throughput typing and was much larger than any available previously. This gives us much
more precise estimates of the age-specific parameters and increases our confidence that ef-
fects of parasite clearance can be separated statistically from those of imperfect detection.
It supports our previous suggestions that the main effect of acquired immunity is not to in-
crease clearance rates [37], but that there is a non-monotonic relationship between duration
and age in endemic populations [69].
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Figure 3.7: List of all 100 msp2 genotypes detected in cohort from Northern Ghana
(349 individuals)
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The distribution of Plasmodium
falciparum infection durations

Authors: Michael T Bretscher, Nicolas Maire, Nakul Chitnis, Ingrid Felger, Seth Owusu-Agyei,
Tom Smith

4.1 Abstract

Background: The duration of untreated P. falciparum infections in naturally exposed hu-
man populations is of interest for rational planning of malaria control interventions as it
is related to the duration of infectivity. The extent of variability in duration is relevant
where transmission is seasonal, and for the planning of elimination efforts. Methods for
measuring these quantities from genotyping data have been restricted to exponential mod-
els of infection survival, as implied by constant clearance rates. Such models have greatly
improved the understanding of infection dynamics on a population level but likely misrep-
resent the within-host dynamics of many pathogens. Conversely, the statistical properties
of the distribution of infection durations, and how these are affected by exposure, should
contain information on within-host dynamics.
Methods: We extended existing methods for the analysis of longitudinal genotyping data
on P. falciparum infections. Our method simultaneously estimates force of infection, de-
tectability, and the distribution of infection durations. Infection durations are modeled
using parametric survival distributions. The method is validated using simulated data, and
applied to data from a cohort study in Navrongo, Northern Ghana. Distribution estimates
from exponential, Weibull, lognormal, and gamma models are compared with the distribu-
tion of durations in malariatherapy data.
Results and Conclusions: The Weibull model fitted the data best. It estimated a shorter
mean duration than the exponential model, which gave the worst fit. The distribution es-
timates appeared positively skewed when compared with the distribution of durations in
malariatherapy data, suggesting that a significant proportion of infections is cleared shortly
after inoculation. We conclude that malariatherapy data, the most important source of in-
formation on P. falciparum within-host dynamics, may not be representative of the actual
processes in natural populations, and should be used with care. Further, conclusions from
transmission models assuming exponential infection survival may be biased.
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4.2 Background

The duration of a P. falciparum infections is related to the duration of potential infectivity
of the host. It affects the magnitude of transmission from humans to the mosquito pop-
ulation and gains special significance in settings where malaria transmission is seasonal:
the fraction of infections surviving a transmission-free dry season constitutes the founder
population for the new transmission season. Rational planning of a malaria control or elim-
ination therefore profits from accurate measurements of infection duration. How much
variation there is in the duration of natural infections is largely unknown, but important
for similar reasons. A case study suggests that single infections may in extreme cases last
up to 8 years [93]. Current knowledge about within-host dynamics and the distribution of
P. falciparum infection durations comes mostly from malariatherapy data [49]: before the
arrival of suitable antibiotics, infection with malaria was a common method to treat neu-
rosyphilis.
Analysis of such data is facilitated by the fact that the start- and end-points of every infec-
tion are approximately known, and that therefore standard methods of statistical survival
analysis can be applied. A comparison of various parametric survival distributions sug-
gested that the Gompertz and Weibull distributions gave the best fit to these data, followed
by the gamma, lognormal, and exponential distributions [49]. An average duration of ap-
proximately 200 days was found. Infection durations much shorter or longer than the mean
were rare.
However, malariatherapy data may not accurately mirror the situation in naturally exposed
populations: the patients were immunologically naïve, infected with syphilis, and did not
have multiple concurrent infections. Moreover, the P. falciparum strains used for therapy
were selected by physicians for optimal curative properties as well as for low clinical vir-
ulence [94]. Thus it is not clear whether the distribution of infection durations would be
the same in human hosts who have experienced high malaria transmission throughout their
lives, and possibly have multiple concurrent infections caused by wild-type parasite strains.
A valuable source of information about infection dynamics in natural populations is cohort
data on malaria infection, obtained using DNA-based diagnostic methods. These have the
advantage that infecting clones can be distinguished on the basis of highly polymorphic ge-
netic markers, such as Merozoite Surface Protein 2 (msp2). However, analysis of such data
is not straightforward using standard techniques because detection of P. falciparum clones
is imperfect, even when using polymerase chain reaction (PCR). Several dedicated statisti-
cal methods, allowing for imperfect detection, have been developed [37,57,58,60,95]. The
assumption of a constant clearance rate of infections is common to all these approaches.
This has a long tradition and there are practical reasons for doing this: a constant clear-
ance rate means that the rate at which infections are cleared is independent of the age of
an infection, which implies an exponential distribution of infection durations. This sim-
plifies the required mathematics enormously since it is not necessary to keep track of the
age structure of the infection population. From a biological point of view, however, ex-
ponential survival of infections seems not very plausible. The study of how durations of
infection are distributed is the quest for a statistical description of one important aspect of
within-host dynamics. Such analyses may yield information which can be used to validate
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process-based within-host models.
In continuation of [37,57,58,60] we have developed a method to analyse molecular cohort
data and measure parameters of infection dynamics. We use a more complete dataset from
the study analysed by Sama et al [37]. The main findings of [37] are therefore briefly ex-
plained: using the statistical model described earlier in [57], Sama et al studied seasonality
and age dependence of the following parameters of infection dynamics: λ (the force of in-
fection, FOI), µ (the clearance rate, which is the inverse duration of infection and implies
an exponential distribution of durations) and q (the detectability parameter, denoting the
probability of detecting a specific clone in a blood sample, given it is present). In total,
Sama et al compared twelve different model parameterizations with respect to goodness of
fit, using a longitudinal, age-stratified dataset from Navrongo, Northern Ghana. One of the
main findings was that the detectability of infections declines with host age in a very pro-
nounced way, suggesting an effect of cumulative exposure, a proxy for acquired immunity,
on parasite densities. Contrary to expectation, the duration of infection was hardly affected
by host age. The present analyses consider the sensitivity of these results with respect
to the assumption of constant clearance rates, and provide estimates of the distribution of
infection durations.

4.3 Methods

4.3.1 Study design and sample collection

A one year longitudinal study of malaria infection was conducted in the Kassena-Nankana
district, in the upper East region of Ghana [37, 52, 57, 63]. The malariological situation in
this area is characterized by very high prevalence and multiplicity of infection [63,64], and
year-round transmission with seasonal variation in transmission intensity [37]. A total of
349 individuals of all ages were followed up over one year in 2-monthly intervals. New
births were recruited during the follow-up so as to ensure that the age distribution remained
the same throughout the study. Blood was collected on ISOCodeStixTM PCR template
preparation dipsticks (Schleicher & Schuell, Dassel, Germany).

4.3.2 Genotyping

DNA was eluted from ISOCodeStixTM and screened for presence of P.falciparum by PCR.
Processing of stix and PCR conditions have been described in detail before [65]. In brief,
samples that tested positive for presence of P. falciparum were subjected to PCR using
primers specific for the msp2 locus. Different alleles were distinguished on the basis of
length polymorphisms, by means of automated capillary electrophoresis technology. The
obtained data files were further processed using the GeneMapper R© software and an in-
house generated software, which facilitates identification of known alleles from the raw
output of GeneMapper R© and transforms the data into different formats suitable for data
management and statistical analysis.
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4.3.3 Data preparation

Only data of those participants who were present at all survey rounds were included in the
analysis. This reduced the number of individuals in the dataset to 216. Failure or success
to detect a strain was denoted by 0 or 1, respectively. The resulting 63 possible sequence
types containing at least one positive test result were numbered from 1 to 63, using their
binary value (e.g., 000010 is sequence 2). This yielded a frequency distribution of binary
patterns for every host, to which statistical models could be fitted. The possibility of re-
infection of a host with the same genotype was ignored for all modeling analyses. This
assumption was justified by the high diversity of msp2 alleles in the population.

4.3.4 Models of infection dynamics

A selection of process-based statistical models, similar to the ones presented in [37], were
devised and compared to the data. In the models, three main processes are assumed to
determine frequencies of the different binary patterns in each human host: acquisition,
clearance, and detection of infections. Given mathematical models for each of the three, a
likelihood can be calculated as explained in the following section. The simplest possible
model represents each process by a single parameter: the force of infection λ (no. of
infections acquired per person year), the duration of a clonal infection (in the simplest case
modeled as an exponentially distributed random variable, with scale parameter equal to the
inverse clearance rate, 1/µ ), and the detectability q (the probability of detecting any present
falciparum clone in a blood sample by PCR). Such a simple model is not able to capture
several important characteristics of real data, such as seasonality in transmission or changes
in detectability with increasing immunity of the host. These have been shown by [37] to be
present in the Navrongo dataset and need to be incorporated into a model in order to yield
unbiased parameter estimates. As a starting point for our analysis, we use the best fitting
exponential model from [37], which was fitted to a partial dataset from the same study:
the FOI parameter λ(t) was modeled as a function of season alone, meaning that for every
two-month season a separate parameter λi was estimated. The resulting pattern of seasonal
transmission was assumed to have repeated since the birth of every host. We extended
the work of [37] to allow the use of four parametric survival distributions for modeling
of the clearance of infections: these are the exponential, Weibull, gamma and lognormal
distributions (Table 4.1). Except for the exponential distribution, which is characterized
by a single (scale) parameter, these distributions require two parameters. In the following
we will refer to these as “scale” and “shape” parameters, ignoring possible distribution-
specific names. Because the best-fitting model of [37] showed no age-dependence of the
duration of infection, and because the present analysis is intended to be a proof of concept,
we chose to parameterize the survival models with simple constant values, rather than e.g.
modeling them as functions of host age. The age dependence of detectability was modeled
as a logit-linear function,

l(a) = ln
(

q(a)
1 − q(a)

)
= q0 + q1(a − ā),
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FOI Scale Shape Detectability
λ̂ λ ŝ1 s1 ŝ2 s2 q̂ q

Exponential 19.05 18 3.22 3.53 - - 0.48 0.5
Weibull 17.95 18 3.93 3.94 2.38 2.2 0.49 0.5
Lognormal 17.90 18 1.18 1.11 0.53 0.53 0.49 0.5
Gamma 17.25 18 0.72 1.19 5.23 3 0.49 0.5

Table 4.2: Parameter estimates from simulated datasets - The data were produced by
stochastic simulation using survival models and parameter values from [49], with constant
values of FOI and detectability. Every row corresponds to a survival model tested on a
simulated dataset. Columns correspond to the different parameters of infection dynamics,
with estimated parameter values shown to the left of the true values. The FOI is given in
infections acquired per year, otherwise the time unit is per 2 months (corresponding to the
survey interval).

where a is the age of a host (in 2-month units), and ā is the average age in the dataset 1.
The detectability of infections in a host of age a can then be obtained by using the inverse
logit function:

q(a) =
1

e−l(a) + 1
. (4.1)

4.3.5 Model equations

Let (nk,1, nk,2, .., nk,63) denote the realizations of 63 Poisson random variables with means
(ωk,1, ωk,2, .., ωk,63), where ωk,i is the expected frequency of observed pattern i in individual
k. In order to derive the ωk,i, we firstly derive the expected frequencies of the 21 (hypo-
thetical) true patterns, τk,i representing true infection status. True patterns are also indexed
using the binary number they encode, but only patterns comprising a single uninterrupted
subsequence of “ones” are considered.
Individual k is of age bk at the time of the baseline survey, tb, implying that it was born at
time tb − bk. As some parameters of infection dynamics can be functions of time (season-
ality), and others functions of the age of the host, we will use t as variable of integration,
and refer to the age of an individual at time t as ak(t) = t − tb + bk. We denote the length of
inter-survey intervals with ε, and assume equally spaced surveys.
Consider for the acquisition of infections a Poisson process with intensity λ(t), the force
of infection. Since true patterns consist of uninterrupted sequences of “ones”, every true
pattern can be defined by the times of the first and the last survey where the infection is
present, t1,i and t2,i, respectively. These imply, given the study design, a time interval where
its causative infection may be acquired and a time interval where it must be cleared. Those
intervals can be obtained for each true pattern from the age of the individual at baseline,
bk, and the number of surveys, s, in the study.

1For the sake of comparing our results with those from [37], ā was set to 120.72 (in units of 2 months,
corresponding to the survey interval). This is the average age in the partial dataset used by [37].
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Figure 4.1: Validation using simulated data - Exponential, Weibull, lognormal and
gamma models were fitted to simulated datasets. The histograms indicate the actual dis-
tribution of the duration of those infections which were present at some point during the
simulated study. Solid blue lines indicate the PDF of the survival distribution that the ac-
tual durations were sampled from - the estimates from malariatherapy data as in [37]. The
dashed lines indicate the PDFs of the survival distributions as recovered by our statistical
model.
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To illustrate this, we use examples of true patterns representative of the different possi-
bilities. Our aim is to obtain the interval of possible infection time points, [α, β], and the
interval within which an infection must be cleared if pattern i is generated, [γ, δ]. Consider,
for example, true pattern 110000. An infection generating this sequence can be acquired
between birth of the host and the first survey. Thus, α = tb − bk and β = tb. The situation
is different if the time of first presence of the infection, t1,i, is after baseline, as in pattern
001111. An infection which leads to this true pattern can only be acquired between the 2nd
and the 3rd survey, therefore α = t1,i − ε and β = t1,i. To summarise this, we write

αk,i =

{
tb − bk, if t1,i = tb
t1,i − ε, otherwise

and

βi = t1,i

An infection acquired at time t will, given α ≤ t ≤ β , generate true pattern i with a nonzero
probability. We call this probability pk,i(t). If given pk,i(t), we can obtain τk,i, the expected
frequency of true pattern i in host k, as

τk,i =

∫ βi

αk,i

λ(t)pk,i(t) dt . (4.2)

This probability depends on the distance to the surveys in time, and the properties of the
survival distribution used for modeling clearance of infections. The properties of the sur-
vival distribution may in turn depend on the age of the host at time t, when the infection is
acquired.
The probability that an infection acquired at time t generates pattern i, pk,i(t), is equal to
the probability that the infection is cleared in the interval [γi, δi]. Therefore

pk,i(t) =

∫ δi

γi

f (u − t) du

= S (γi − t) − S (δi − t),

where f and S are the probability density function and survivor function, respectively, of
the survival distribution used to model clearance of infections.
To obtain γi , the start of the clearance interval, we consider again patterns 001111 and
110000 as examples, and conclude, trivially, that an infection cannot be cleared before t2,i,
the time of the last survey it is present conditional on producing pattern i.

γi = t2,i.
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The time point until an infection must be cleared in order to generate true pattern i depends
on whether the last survey the infection is present coincides with the last survey of the
study, or not. If so, it can be cleared anytime after the last survey, if not, the infection has
to be cleared before the survey which follows the one at t2,i, so

δi =

{
∞, if t2,i = tb + sε
t2,i + ε, otherwise

.

The complete expression for the number τi of true patterns of type i to be expected in host
k is then

τk,i =

∫ βi

αk,i

λ(t)
∫ δi

γi

f (u − t) du dt ,

or, in terms of the survivor function S ,

τk,i =

∫ βi

αk,i

λ(t)
[
S (γi − t) − S (δi − t)

]
dt . (4.3)

A more formal but equivalent approach, explaining the presented heuristics, is outlined in
section 4.7.
The expected frequencies ωk,i of observed patterns in individual k can be obtained using
the probability Pi, j that true pattern i gives rise to observed pattern j, as follows:

ωk, j =
∑

i

Pi, j(qk)τk,i,

where qk is the detectability of infections within host k at the time of the study. To calculate
Pi, j we denote the individual digits of either binary sequence by dn,i ∈ {0, 1}, and dn, j ∈

{0, 1}. Then the probability that true pattern i gives rise to observed pattern j is calculated
as

Pi, j =

s∏
n=1

o(dn,i, dn, j) ,

where s is the number of surveys, and o(dn,i, dn, j) is the probability that true presence or
absence of a particular genotype at position n results in a positive or negative outcome of
detection, assuming perfect specificity:

o(dn,i, dn, j) =


1, if dn,i = 0 and dn, j = 0
0, if dn,i = 0 and dn, j = 1
1 − q, if dn,i = 1 and dn, j = 0
q, if dn,i = 1 and dn, j = 1

where q is the host-specific detectability, possibly modeled as a function of the age of
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the host. Considering all observed patterns j and all hosts k, and assuming a Poisson
distribution of the actual data nk, j with expectations ωk, j we obtain the overall likelihood

LData =
∏

k

∏
j

e−ωk, jω
nk, j

k, j

nk, j!

Since the terms involving nk, j are independent of the statistical model fitted, they can be
omitted from the likelihood computations without altering the ranking of models. The
statistical models can then be compared using Akaike’s information criterion (AIC) 2.

4.3.6 Model implementation and parameter estimation

All models were implemented using the JavaTM programming language. Maximum-likelihood
estimates of parameters were obtained by minimization of AIC values using the “UncMin”
algorithm by [96]. A Java version of this algorithm was obtained from http://www1.
fpl.fs.fed.us/optimization.html. Numerical integration was performed using a
Romberg integration algorithm with modified stopping criterion3, from the Apache Com-
mons Math library [97].
A major challenge was to reduce the required computation time such that models could
be fitted within acceptable time by a single-processor computer. Apart from choosing
a gradient-based optimization algorithm, this could be achieved by making some of the
numerical integrations redundant through discretization of host ages. To this end the fol-
lowing assumption was introduced: the expected frequencies of any true pattern i in two
different hosts are assumed to be equal, if t1,i is not at baseline and if the two hosts are in the
same age group throughout the time interval where pattern i can be acquired. The reason
for not pooling the patterns where t1,i coincides with the baseline survey, is the following:
since host age has two distinct meanings in the context of our model, namely age of the
host as a measure for immunity, and age of the host as time of exposure, one could not sim-
ply group hosts by age without altering the results. As an example, it may seem reasonable
to have an age group ranging from 3 to 5 years, as immunity would - by hypothesis - not
change very much within this age range. But, a host of age 5 will have had 2 years more
time to acquire infections and may - depending on the shape of the survival distribution of
infections - have a higher multiplicity of infection (MOI), and different pattern frequencies.
However, if only one of the two collinear time variables is discretized, namely host age as
measure of immunity, said error is not introduced, while some integrals become redundant
and only need to be calculated once.

2AIC was calculated as 2n − 2l, with the number of parameters n and the log-likelihood l.
3Absolute instead of relative precision was used as stopping criterion. This substantially reduced the com-

putation time needed, presumably because the relative change in integral values per iteration may become
smaller than machine precision for true patterns with very low expected frequency.

http://www1.fpl.fs.fed.us/optimization.html
http://www1.fpl.fs.fed.us/optimization.html
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4.4 Results

4.4.1 Simulated data

For the purpose of validating our method, simulated datasets were produced using Monte-
Carlo simulation. Number and ages of the hosts in the simulated datasets were identical
to the Ghanaian dataset, and a constant, homogeneous FOI of 18 infections per person
and year was assumed, as approximately measured on average by [37]. The number of
infections a person experienced between birth and the last survey round was sampled from
a Poisson distribution with mean λa, where λ is the force of infection, and a is the age of
the human host at the last survey round. Actual infection time-points were then sampled
from a uniform distribution within said interval. Subsequently, a duration was assigned to
each infection, using one of four survival distributions with parameter values as measured
from malariatherapy data [49]. A Bernoulli random variable with mean q = 0.5 was then
used to determine for each survey round and clone whether detection was successful or not.
All parameters of infection dynamics could be recovered well from the simulated data, as
shown in Table 4.2 and Figure 4.1.

4.4.2 Estimates from the Ghanaian dataset

All of the 216 study participants included in the statistical analysis tested positive for P. fal-
ciparum on at least one survey. Parasite prevalence in the dataset was 48% by microscopy,
75% by PCR, and the mean MOI was 4.5 per person (these measures are not corrected for
imperfect detection). A total of 103 different msp2 genotypes were found, with the most
frequent genotype representing 10.2% of all fragments detected.
The four different models for infection survival showed the following order of goodness of
fit, as measured by AIC: the Weibull model fits the data best (AIC: 8029.1), followed by
the gamma (AIC: 8029.4), lognormal (AIC: 8045.1), and exponential model (AIC: 8127.4).
Parameter estimates are given in Table 4.3, and the correlation matrix of the Weibull model
in Table 4.4. All non-exponential distributions show an increased clearance in the early
stages of an infection, i.e. they are positively skewed (to the left). The estimated mean
durations, which can be calculated from the scale and shape parameters (Table 4.3) and the
distribution-specific expressions for the mean (Table 4.1), are as follows (in days): 139.9
(Weibull), 54.9 (gamma), 205.3 (lognormal), and 219.7 (exponential). There is a substan-
tial difference between the FOI estimates of the gamma and Weibull models, which are
very similar in terms of goodness of fit (Figure 4.3). Measurements of detectability are in
good quantitative agreement (Figure 4.4). All models measure a detectability of between
40% and 50% in young ages, which decreases to just above 10% in the old ages.



The distribution of Plasmodium falciparum infection durations

0 100 200 300 400 500 600 700

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Duration of infection (days)

P
ro

ba
bi

lit
y 

de
ns

ity

● ●

Weibull (AIC: 8029.1)

Ghanian data
Sama etal. 2006

0 100 200 300 400 500 600 700

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Duration of infection (days)

P
ro

ba
bi

lit
y 

de
ns

ity

● ●

Gamma (AIC: 8029.4)

Ghanian data
Sama etal. 2006

0 100 200 300 400 500 600 700

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Duration of infection (days)

P
ro

ba
bi

lit
y 

de
ns

ity

● ●

Lognormal (AIC: 8045.1)

Ghanian data
Sama etal. 2006

0 100 200 300 400 500 600 700

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Duration of infection (days)

P
ro

ba
bi

lit
y 

de
ns

ity

●●

Exponential (AIC: 8127.4)

Ghanian data
Sama etal. 2006

Figure 4.2: Results from the Ghanaian dataset compared to malariatherapy data -
The PDFs of the distributions of infection duration as measured from the Ghanaian dataset
are plotted in solid blue lines together with the estimates from malariatherapy data (dashed
red lines) [49], in order of decreasing goodness of fit. Circles on the abscissa indicate the
corresponding mean durations. The Weibull survival model fitted the data best, followed
by the gamma, lognormal, and exponential models. With the exception of the gamma
model, estimated mean durations differ only slightly between malariatherapy data and the
data from the exposed population. The estimated non-exponential distributions from the
Ghanaian dataset are positively skewed.
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λ1 λ2 λ3 λ4 λ5 λ6 s1 s2 q1 q2

1 -0.04 0.12 0.18 0.11 0.17 0.01 0.01 -0.01 0.00 λ1

1 0.11 -0.06 0.10 -0.06 0.03 0.02 0.00 0.00 λ2

1 0.30 0.89 0.33 -0.15 0.01 0.00 -0.01 λ3

1 0.32 0.90 0.07 0.06 -0.02 -0.01 λ4

1 0.36 -0.14 0.01 0.00 -0.01 λ5

1 0.06 0.06 -0.02 -0.01 λ6

1 0.05 -0.14 -0.02 s1

1 0.48 0.09 s2

1 0.12 q1

1 q2

Table 4.4: Correlation matrix - Correlation matrix for the parameters of the best-fitting
Weibull model. An expected overall negative correlation between the average FOI and the
mean duration of infection may be obscured, as these are functions of several parameters.
However, a clear positive correlation between the shape parameter s2 and detectabililty
of an individual of average age, q1, indicates that different interpretations of the data are
possible concerning clearance of infections and detectability.

4.5 Discussion

By extending the method of [37,57], such that parametric survival distributions can be used
for modeling of infection survival, it has become possible to obtain more detailed informa-
tion on clearance of P. falciparum infections in naturally exposed populations. A validation
with simulated datasets suggests that parameters are identifiable using our approach and the
present study design.

4.5.1 Distribution estimates

All estimated distributions are positively skewed (Figure 4.2), with exception of the ex-
ponential distribution, which does not have the freedom to measure more than the mean
duration. Positive skewness means that most infections are cleared rather soon after in-
oculation. This is very different from the estimates of [49] who find that most infections
in malariatherapy data last for an amount of time similar to the mean duration, and that
very short or very long infections are rare. It also becomes apparent that in the Weibull and
gamma models, which fit the data best, this effect is more pronounced than in the lognormal
model. We attribute this to fact that the PDF of a lognormal distribution is constrained to be
unimodal and therefore does not have the freedom to estimate such extreme early clearance
of infections, as would be required in order to attain a better fit to the data. Thus, a consis-
tent picture emerges, where the finding of early clearance of infections is independent of
the clearance model. This positive skew of distributions is consistently associated with a
lower estimated mean duration, which suggests that assuming an exponential distribution
may lead to an overestimation of the mean infection duration. Across the models, shorter
estimates of the mean duration are in turn associated with higher estimates of FOI. This
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Figure 4.3: Estimates of the force of infection - Different seasonal patterns of FOI were
measured by the four models. Each group of bars compares the estimates of all the statis-
tical models for a given season, and differences represent the uncertainty in measurements
of the FOI with respect to assumptions about clearance of infection. Within one season,
estimates are arranged from left to right in order of decreasing goodness of fit of the corre-
sponding survival model. The gamma model estimated the highest FOI, which is consistent
with it also estimating the shortest average duration of infection (see Figure 4.2). The over-
all pattern of seasonality in transmission is consistent across the models.
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Figure 4.4: Estimates of detectability - The obtained estimates of detectability differ only
slightly for different assumptions about infection clearance. A detectability below 50%
is estimated consistently, and all models agree on a decrease of detectability with host
age. The logit-linear relationship of q with age, which is assumed here, does not allow
for e.g. a peak in the youngest children. This may lead to inaccurate estimates for these
age groups, but since the proportion of infants in the dataset is small, this is unlikely to
influence estimates of other parameters.
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presumably reflects the simple notion that a given number of detected infections can be
explained by either higher FOI and shorter duration, or the other way round. Detectability
estimates seem to largely agree across the different survival models, with only the expo-
nential model estimating a slightly lower overall detectability (Figure 4.4).

4.5.2 Validation

The successful recovery of parameters from the simulated datasets suggests that our statis-
tical approach in conjunction with the study design in principle allows for correct identifi-
cation of the distributions of infection duration. As a caveat, the simulated data is certainly
idealized compared to a real dataset: there is no seasonal or spatial heterogeneity in the
FOI, and no inter-individual variation in parameters concerning clearance and detection of
infections.
Simulated datasets can also be used to establish optimal study designs for measuring a cer-
tain quantity of interest. In this case, we could confirm that the study design is suitable for
identification of the distribution of infection durations - given it is similar to the published
measurements from malariatherapy data [49]. The high discrepancy of the two best fitting
models (Weibull and gamma) concerning duration- and FOI estimates from the Ghanaian
dataset may be connected to the study design: the differences between the two models fall
largely into an interval of infection durations which is shorter than the survey interval of 60
days. The bulk of infections can therefore not be observed very well with the current study
design, and shorter survey intervals seem necessary to obtain more accurate measurements.
According to the conclusions of chapter 2, there is a lower limit of one week for survey
intervals. This has to do with the fact that our method assumes statistical independence
of detections at different survey rounds. Due to the complicated temporal behaviour of P.
falciparum detectability at short time scales, we suggest a survey interval of 2 weeks or
more for future, similar studies.

4.5.3 The difference to malariatherapy data

Estimates from the Ghanaian dataset suggested the presence of a large proportion of short
infections, which is in dissagreement with previous measurements from malariatherapy
data. Hypotheses on the cause of this difference can broadly be divided into two groups:
hypotheses attributing the differences to the distinct immune status of the malariatherapy
and Ghanaian study populations, respectively, and other hypotheses. Here, we will shortly
line out a range of possible explanations.
Acquired immunity could make it harder for the parasite to permanently colonize a host
which was exposed before. Since the FOI in the Ghanaian dataset is very high, the pop-
ulation can be considered immune on average, while the malariatherapy patients are im-
munologically naïve. This hypothesis requires the effects of immunity to last and thus to
accumulate over time. Because the age of a human host can be used as a proxy for expo-
sure, an increase of such long-lasting immunity effects with age is expected, which should
should lead to more short infections in older individuals. Whether this is indeed the case
can be tested by comparing host age groups using the present analysis method (chapter 5).
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Short-lived effects of immunity, on the other hand, may include the interaction of concur-
rent infections within one host: the host populations from the two datasets also differ with
respect to their MOI, as there are only single infections in the malariatherapy patients. An
effect of interactions between concurrent infections, mediated by short-term effects of im-
munity, might be confirmed by observing a change of the distribution of infection durations
with MOI.
Various factors not related to immunity also have the potential to explain the observed
distribution of infection durations. Among these are the following: heterogeneous (un-
reported) treatment in the population could clear all infections early in some individuals,
who mostly treat their infections, and let infections persist in another subpopulation, which
rarely treats their infections. Averaged over the study population, this should convey a pic-
ture which is consistent with the results of this analysis. This explanation appears, however,
unlikely when comparing the number of treatments sold by local health centers to estimates
of the expected number of episodes in the area. An alternative explanation attributes the
difference of distribution estimates to genetic differences between malariatherapy strains
and wild type strains in the Navrongo area. It seems plausible that doctors treating syphilis
patients with P. falciparum would not favour strains which are cleared after a very short
time, requiring a re-infection of the patient. Yet, natural selection may well be doing the
same, as a shorter infection duration reduces the R0 of a strain. Other possibilities include
genetic differences between the Ghanaian population and the malariatherapy patients, per-
haps with respect to mutations protective against malaria, or an interaction of syphilis with
malaria in the patients. In addition, differences in infective dose, or the route of infec-
tion may play a role, as some of malariatherapy patients were infected using sporozoites,
either through mosquito bites or via subcutaneous injection, and others through infected
blood [49, 98].

4.5.4 Limitations of the method

The application of our statistical method to data requires, for now, the assumption that re-
infection with the same genetic marker is a rare event. This assumption has been discussed
before [56]. However, it gains special significance in cohort studies of long duration: if an
immigration-death model is used, what matters is not only the probability to find in a host
more than one infecting clone with identical marker genotype at any one time, as consid-
ered in [56], but the probability that an individual experiences more than one infection with
the same genotype within the study period. The latter must depend on marker diversity, the
force of infection as well as on the study duration. For practical purposes, the validity of the
assumption can be tested for a given dataset by successively removing the most frequent
marker allele from the analysis and observing a possible change in parameter estimates.

4.6 Conclusions

The estimated distribution of P. falciparum infection durations in exposed individuals in
northern Ghana is different from the distribution in malariatherapy infections [49]. This
difference is mainly in the shape of the distributions: in the Ghanaian population, many
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infections are cleared at an early stage and others remain for a long time, while in the
malariatherapy data infections are most often cleared close to their expected age at clear-
ance (the mean duration of infection). The measured mean duration is shorter for the more
flexible survival models compared to the exponential distribution.
At this point is not possible to decide among a multitude of possible hypotheses as to
what causes the different distributions of infection durations in the two datasets. We have
demonstrated that it is possible to gain information about the distribution of durations from
longitudinal genotyping data, together with other parameters of infection dynamics. Our
method represents - for the part concerning clearance of infections - an extension of existing
methods of survival analysis, with the additional complication that the actual time-points
of truncation and censoring are different for every infection, unknown and stochastic. This
uncertainty is overcome by inferring simultaneous estimates of FOI and detectability. The
software used to carry out the analyses can be obtained as a plattform-independent JavaTM

executable on http://www.swisstph.ch/resources/software.html. There might
be situations where assuming an exponential decay of infections can be a good assumption
in order to reduce the number of parameters in the statistical model. Such a situation may
occur if the total duration of a study is too short to contain sufficient information on the
higher moments of the distribution of infection durations.

http://www.swisstph.ch/resources/software.html
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4.7 Appendix

The relationship between the method described above and previously published methods,
most exhaustively explained in [57], is not immediately apparent. We illustrate the math-
ematical relationship of the presented heuristics with standard approaches of modelling
immigration-death processes briefly, and show that the two approaches lead to equivalent
expressions.
Rather than calculating the expected frequencies of true pattern types, we consider for the
purpose of this illustration the simpler problem of calculating the number of infections
present at any time point x, using t as variable of integration. Acquisition of infections
at a rate λ(t) is assumed to occur within the time interval [0, x]. Survival of infections is
modeled using parametric survival distributions. These appear in form of the hazard h(a),
which for every infection depends on its current age a. The hazard is defined as

h(a) = −
S ′(a)
S (a)

, (4.4)

where the survivor function S (a) is the fraction of infections surviving at least until age
a. Its negative derivative is the PDF of the corresponding parametric survival distribution.
The hazard is therefore the rate at which surviving infections of age a are being cleared.

4.7.1 Exponential survival of infections

We consider first the special case of exponential survival, where the age-independent haz-
ard is often called clearance rate and denoted by µ. In analogy to Equation (4.2) we write
the number of infections n(x) at time x as

n(x) =

∫ x

0
λ(t)px(t) dt .

The probability px(t) that an infection acquired at time t will is still present at time x is
simply equal to S (x− t). The survivor function of the exponential distribution has the form
S (a) = e−µa, which, assuming a constant force of infection λ, leads to

n(x) = λ

∫ x

0
e−µ(x−t) dt ,

for the number of infections n(x) present at time x. The value of this integral is

n(x) =

[
λ

µ
e−µ(x−t)

]x

0
=
λ

µ
(1 − e−µx) .

This is a familiar result and the solution of the differential equation
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dn(x)
dt

= λ − µn(x) , (4.5)

with n(0) = 0, which constitutes a simple model for superinfection and is explained in [99].
In fact, it was this model of superinfection in connection with the CDF of the exponential
distribution which allowed [57] to work out all expected true pattern frequencies. Our
approach to calculating these frequencies is therefore equivalent in the case of exponential
survival of infections.

4.7.2 Non-exponential survival of infections

In the general case, a model for the age structure of the parasite population within a host is
required. Such a model is given by the McKendrick - von Foerster equation [100], a partial
differential equation (PDE) of the form

∂u(a, x)
∂x

+
∂u(a, x)
∂a

= −h(a)u(a, x) , (4.6)

with boundary conditions u(0, x) = λ(x) and u(a, 0) = 0. The function u(a, x) denotes
the age-density4 of infections with a certain age a after time x, and λ(x) is the force of
infection, the rate at which infections enter the population with an age of 0. Given u(a, x),
the total number of infections present after time x is

n(x) =

∫ x

0
u(a, x)da , (4.7)

the integral of u(a, x) over all existing ages. Equation (4.6) can be solved using the “method
of lines”, which yields

u(a, x) = λ(x − a)S (a) . (4.8)

By inserting the solution for u into Equation (4.7) we obtain the cumulative number of
infections of all ages present at a time point x as

n(x) =

∫ x

0
λ(x − a)S (a)da . (4.9)

By substitution of the integration variable as t = x − a and reversing integration we obtain

n(x) =

∫ x

0
λ(t)S (x − t) dt . (4.10)

4Density not in the sense of a probability density. Rather, in analogy to the density of mass in physics, u da
denotes the number of infections within the age range [a, a + da].
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This expression can also be obtained from Equation (4.3), as the special case when α = 0,
β = γ = x and δ→ ∞ 5:

n(x) =

∫ x

0
λ(t)S (x − t) dt

=

∫ β

α
λ(t)

S (γ − t) − lim
δ→∞

S (δ − t)︸         ︷︷         ︸
0

 dt

The approach described in this paper therefore represents an extension of the approach
by [57], making it possible to use non-exponential survival distributions in models of su-
perinfection.

5Corresponding to the number of infections present at time x which were acquired between α = 0 and
β = x, and are cleared anytime between γ = x and δ→ ∞
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malaria infections
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Tom Smith

5.1 Abstract

Background: Acquired immunity against P. falciparum is unusual in that it does not pre-
vent re-infection. The parasite thrives even in highly exposed hosts, and superinfection with
several clones at once is common. One of the key immune-evasion mechanisms allowing
this is thought to be clonal antigenic variation, whereby a given infecting clone changes
its dominant antigens in the course of the infection. Clone-specific immunity, developed
during the course of an infection, may affect older infections, and clone-transcending im-
munity, acquired over a lifetime of exposure, may allow older hosts to better control new
infections. Analysis of these aspects of immunity requires genotyping data from a cohort
study including older, highly exposed individuals. Statistical analyses need to allow for the
imperfect detection of P. falciparum clones.
Methods: Building on previous work, we use an immigration-death model to re-analyse
genotyping data from a one-year cohort study in Navrongo, Northern Ghana. Our statisti-
cal analysis method simultaneously estimates force of infection, detectability, and duration
of infections. Clearance of infections is modeled using the exponential, Weibull, gamma,
and lognormal distributions. By comparing the results from these parametric survival dis-
tributions, robust inference about infection clearance is achieved. The effect of host age,
and by implication, cumulative exposure, on these estimates offers insights into the effects
of acquired immunity.
Results and Conclusions: The average duration of infection was short in children below
5 years, peaked in 5-9 year olds, and subsequently decreased in the older age groups, sug-
gesting a moderate effect of cumulative exposure on infection duration. The Weibull model
of infection clearance fitted the data best. An large proportion of P. falciparum infections
in natural populations appeared to be cleared soon after inoculation, while some infections
persisted significantly longer. This was true for all host ages, and therefore cumulative
exposure cannot explain the discrepancy between our results and previous distribution es-
timates from malariatherapy data. The time until the last infections are cleared appeared to
be longer in the field than in malariatherapy infections, which has implications for timelines
in P. falciparum elimination programs.
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5.2 Background

With most pathogens, acquired immunity clears the infection and prevents new infections
with the same agent. P. falciparum parasites are unusual in that they survive and multi-
ply even in highly exposed hosts, who can also be superinfected, both concurrently and
sequentially. One of the key immune-evasion mechanisms allowing this is thought to be
clonal antigenic variation, whereby a given infecting clone changes its dominant antigens
in the course of the infection [101].
A distinction can be made between strain specific immunity, which is accumulated by
hosts during the course of an infection, and strain-transcending immunity, accumulated
over a lifetime of exposure, which allows older hosts to better control or clear new in-
fections [61, 102]. Strain specific immunity should increase with the age of an infection,
and perhaps cause “senescence” of infections, meaning that the clearance rate is higher for
older infections. Similarly, strain-transcending immunity should increase with host age,
as the cumulative number of infections somebody has experienced increases with age, and
should presumably lead to faster clearance of infections in older individuals.
Empirical studies of the effect of acquired immunity on duration can only be carried out
in endemic populations since they must include immune individuals, using age as a proxy
for cumulative exposure. Such analyses can therefore only be carried out on data from
contexts where there are many superinfections. Genotyping technologies are consequently
required to track individual infections longitudinally. A change in the duration of clonal
infections with age of the human host can then be interpreted as effect of acquired immu-
nity, with the possibility of confounding by other measures which are correlated with age:
the multiplicity of infection (MOI), or physiological changes of the human body with age.
We therefore use the word “cumulative exposure” where it is more accurate.
In empirical studies, P. falciparum parasites are often present at low densities, with a small
chance of being detected (Chapter 2). Even with high-resolution genotyping of repeated
blood samples from the same host, it is challenging to assess the persistence of infections
in such contexts. Imperfect detection of the parasite biases estimates of duration by ob-
scuring the start and end-points of clonal infections. Only a few studies have assessed the
persistence of individual clones using statistical models that allow for this imperfect de-
tection [37, 57, 58, 60]. Sama et al [37, 57] analysed the infection durations of falciparum
clones in a highly exposed population in northern Ghana. These analyses involved fitting
of a deterministic immigration-death model of infection dynamics to “merozoite surface
protein 2” (msp2) data from a one-year cohort study. Under the assumption that clearance
is independent of the age of an infection - which implies an exponential distribution of in-
fection durations - Sama et al compared twelve different parameterizations of their model
with respect to goodness of fit. One of the main findings was that the detectability of clonal
infections declined with host age, while the duration of infection was only slightly affected
by cumulative exposure. In addition, it was found that seasonality in transmission is an
important aspect of the dataset that was used.
We subsequently perfomed a similar analysis (Chapter 4) of the same study, which allowed
for non-exponential distributions of infection duration, thereby dropping the assumption
that clearance is independent of the age of an infection. This was achieved by use of
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four different paremetric survival distributions to model clearance of clones: the Weibull,
lognormal, gamma, and exponential distributions. These survival distributions have the
flexibility to model clearance in response to the age of an infection, by including a “shape”
parameter. Each distribution has it’s own constraints concerning possible shapes.
The estimated distributions of infection duration showed a positive skew, meaning that
most infections are cleared soon after inoculation. This is different from estimates ob-
tained using malariatherapy data [49]. Malariatherapy is the treatment of neurosyphilis by
intentional infection with Plasmodium, which was the method of choice before suitable
antibiotics became available. Data obtained from malariatherapy has the advantage that
the time points of inoculation and - approximately - clearance of infections are known. An
analysis of such data by [49] suggested an average duration of approximately 200 days,
and that infection durations much shorter or longer than the mean are rare.
Possible explanations for the difference between our estimates and malariatherapy were
brought forward in chapter 4. some of these attribute early clearance of infections to the
higher immunity status of the Ghanaian study population. Here we test this hypothesis by
allowing the parameters of the survival distributions in to vary with host age.

5.3 Methods

5.3.1 Study design and sample collection

A one year longitudinal study of malaria infection was conducted in the Kassena-Nankana
district (KND), in the upper East region of Ghana [37, 52, 57, 63]. The malariological
situation in this area is characterized by very high prevalence and multiplicity of infection
[63,64], and year-round transmission with seasonal variation in transmission intensity [37].
A total of 349 individuals of all ages were followed up over one year in 2-monthly intervals.
Blood was collected on ISOCodeStixTM PCR template preparation dipsticks (Schleicher &
Schuell, Dassel, Germany).

5.3.2 Genotyping

DNA was eluted from ISOCodeStixTM Stix and screened for presence of P. falciparum
by polymerase chain reaction (PCR). Processing of stix and PCR conditions have been
described in detail before [65]. In brief, samples that tested positive for presence of P.
falciparum were subjected to PCR using primers specific for the msp2 locus. Different
alleles were distinguished on the basis of length polymorphisms by means of automated
capillary electrophoresis technology. The obtained data files were further processed using
the GeneMapper R© software and an in-house generated software, which facilitates identifi-
cation of known alleles from the raw output of GeneMapper R© and transforms the data into
different formats suitable for data management and statistical analysis.

5.3.3 Data preparation

Only data of those participants who were present at all survey rounds were included in the
analysis. This reduced the number of individuals in the data set to 216. Failure or success to
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detect a strain was denoted by 0 or 1, respectively. The 63 possible pattern types containing
at least one positive test result were numbered from 1 to 63 using their binary value (e.g.,
000010 is pattern 2), and counted. The possiblility of re-infection of a host with the same
genotype was ignored for all modeling analyses. This assumption was justified by the high
diversity of msp2 alleles in the population. Thus, for every host, a frequency distribution
of binary patterns was obtained. Statistical models were formulated to predict the absolute
frequency of each pattern taking into account host age and seasonal transmission.

5.3.4 Models of infection dynamics

Three main processes are determining the frequencies of the different binary patterns in
each human host: acquisition, clearance, and detection of infections.
Acquisition of infecting clones is represented by the FOI parameter λ(t). Seasonality in
transmission was found to be an important aspect of the present dataset [37]. For this rea-
son, λ(t) takes into account seasonality: for every two-month season i, a separate parameter
λi is estimated. The pattern of seasonal transmission is assumed to have repeated since the
birth of every host, and the FOI is assumed to be independent of host age (in line with
previous models for the present dataset [37]).
Clearance of clonal infections is represented by four different parametric survival distri-
butions: the exponential, Weibull, gamma and lognormal distributions (Table 5.1). These
represent competing hypotheses about clearance of clonal infections, and are compared
with respect to goodness of fit. The exponential distribution is characterized by a single
scale parameter, equal to the mean duration of a clonal infection. It does therefore not
have any flexibility to yield detailed information on the properties of the clearance process.
Nevertheless, it has been widely used in infectious disease models, mainly due to it’s math-
ematical simplicity 1. The Weibull, lognormal and gamma distributions are characterized
by two parameters. In the following we will refer to those as “scale” and “shape” parame-
ters, ignoring possible distribution-specific names. For each of the following age groups, a
separate set of scale and shape parameters was estimated (in years): <5, 5-9, 10-19, 20-39,
40-59, ≥60.
The probability of detecting an infecting clone was found to be dependent on host age [37].
The age dependency of detectability was modeled as a logit linear function,

l(a) = q0 + q1(a − ā),

where a is the age of a host (in 2-month units), and ā is the average age in the dataset 2. The
actual detectability of any given host of age a is then given by the inverse logit function:

q(a) =
el(a)

1 + el(a) . (5.1)

1Assuming a constant clearance rate per time implies an exponential distribution of infection durations and
makes it possible to ignore the age structure of the infection population within one host.

2For the sake of comparing our results with those from [37], ā was set to 120.72 (in units of 2 months,
corresponding to the survey interval). This is the average age in the partial dataset used by [37].
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5.3.4.1 Calculating expected pattern frequencies

Firstly, the detection process is ignored in order to determine the frequency distribution
of the expected “true pattern” frequencies, representing true infection status. Every true
pattern i consists of an uninterrupted sequence of “ones”, since detection is assumed per-
fect. It can therefore be uniquely identified by two time intervals: [αk,i, βi] (the interval
where infections leading to true pattern i can be acquired), and [γi, δi] (the interval where
infections must be cleared in order to produce true pattern i).

The expected frequency τi of true pattern i in host k is then given by the expression

τk,i =

∫ βi

αk,i

λ(t)
[
S (γi − t) − S (δi − t)

]
dt, (5.2)

where S is the survivor function of the parametric survival distribution in use (Table 5.1).
The scale and shape parameters of S depend on the age of the host at time t, as outlined
above.

In a second step the detection process is incorporated by means of the age-dependent de-
tectability q. In short, the expected frequencies of all the 63 “observed” patterns j are
calculated based on the frequencies of the true patterns i and the probabilities of these giv-
ing rise to observed pattern j through detection failure. A binomial model of detection is
assumed, implying that detection outcomes at different time points are independent of each
other.
A detailed description of the statistical methods was given previously, and all models were
implemented in the Java TM language and fitted to the data by maximum likelihood, as
described in chapter 4. The software can be obtained from the authors.

5.4 Results

The prevalence of P. falciparum in the dataset is 48% by microscopy and 75% by PCR. The
age distribution of PCR positivity showed a peak in the 5-9 year old children with 93% of
these children being parasite positive (data not shown). Mean multiplicity measured in
the PCR positive samples also peaked in the age group of 5-9 years. Both prevalence
and the MOI were lowest in the 60+ age group. A more comprehensive epidemiological
description of the dataset is given in chapter 3. A total of 103 different msp2 genotypes
were found. The most frequent genotype represented 10.2% of all fragments detected.
The four parametric survival distributions as models for clearance of clonal infenctions
were compared using Akaike’s Information Criterion (AIC) as a measure of goodness of fit
(Tables 5.3 and 5.4): the Weibull model fitted the data best (AIC: 7908.5), followed by the
gamma (AIC: 7944.8), lognormal (AIC: 7978.3), and exponential (AIC: 8022.6) models.
These results can be compared to the results in chapter 4 because the same dataset and
methodology were used.
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Survival model FOI by season (person−1 year−1) Detectability AIC
λ1 λ2 λ3 λ4 λ5 λ6 q0 q1 (2-months−1)

Weibull 74.5 41.6 36.3 13.2 22.7 56.9 -0.72 -0.003727 7908.5
Gamma 169.1 93.5 89.2 9.1 57.1 126.3 -0.84 -0.004692 7944.8
Lognormal 41.7 26.0 21.6 7.5 15.1 38.8 -0.89 -0.004985 7978.3
Exponential 45.1 19.3 18.1 7.4 12.3 39.8 -0.84 -0.002865 8022.6

Table 5.2: Force of infection and detectability - A separate FOI parameter (λ1, λ2 . . . λ6)
was estimated by the statistical models for each of the six 2-month-seasons. The numerical
value of detectability can be calculated for any host of given age using equation (5.1) and
parameters q0 and q1.
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Figure 5.1: The force of infection - Each group of bars shows the FOI estimates across the
four models for the corresponding season.
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Survival model Scale Shape AIC
r1 r2 r3 r4 r5 r6 s1 s2 s3 s4 s5 s6

Weibull 1.00 1.31 1.01 0.75 0.94 1.23 0.49 0.47 0.67 0.58 0.66 0.75 7908.5
Gamma 9.02 12.37 6.24 6.64 7.06 8.44 0.10 0.10 0.12 0.09 0.10 0.12 7944.8
Lognormal 1.68 1.86 1.54 1.51 1.62 1.71 1.32 1.37 1.06 1.06 1.18 1.24 7978.3
Exponential 3.73 5.30 2.93 2.15 2.10 2.18 - - - - - - 8022.6

Table 5.3: Parameters related to clearance of infections - Scale and shape parameters
are shown for all models and host age groups. The exponential distribution is defined by a
single “scale” parameter per age group, while all other distributions require an additional
“shape” parameter. Derived properties of the estimated survival distributions can be ob-
tained from these parameters in conjunction with Table 5.1. The survey interval of two
months was used as time unit where applicable. Lower AIC values indicate a better fit to
the data.

5.4.1 Force of infection

The overall pattern of seasonality is consistent among all models of infection survival, but
differences exist in the numerical estimates of the FOI (Figure 5.1 and Table 5.2). Es-
timates of the Weibull model range from 74.5 infections per person year in August and
September to 13.2 infections in February and March, while the corresponding results from
the exponential model are 45.1 and 7.4, respectively. The gamma model estimates a con-
siderably higher FOI of 169.1 in the high-transmission season, but the FOI estimate for the
low-transmission season (9.1) agrees well with the other models.

5.4.2 Clearance of infections

The probability density functions (PDF) estimated by the best-fitting Weibull model are
compared to the estimates from the exponential model, which gave the worst fit to the data
(Figure 5.2). The distribution of infection durations under the Weibull model is positively
skewed in all age groups, compared to the exponential estimates. This is the case for all
survival models (not shown), and most extremely for the gamma estimates. A positive skew
of distributions indicates that a significant proportion of infections is cleared rather soon
after inoculation. The PDF of an exponential distribution depends by definition entirely on
the mean duration and does not have the flexibility to measure the higher moments of the
distribution in the data. The corresponding CDF’s of distribution estimates are shown in
Figure 5.6
The raw estimates of scale and shape parameters provide limited information on properties
of interest. Mean and standard deviations and their dependence on host age are therefore
reported. These can be calculated from the scale and shape parameters (Table 5.3) and the
distribution-specific expressions for the mean and variance (Table 5.1).
All models suggest an intermediate mean duration of infection in the youngest age group, a
peak a in the 5-9 year olds and a subsequent decrease of duration with increasing host age
(cumulative exposure). The average durations across all age groups are (in days): 102.7
(Weibull), 52.0 (gamma), 210.4 (lognormal), and 184.0 (exponential). Results for all age
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Figure 5.2: Clearance of infections - The PDF’s of the best-fitting Weibull model and the
exponential model by age groups. Mean durations are indicated by circles on the abscissa.
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Survival model < 5yo 5-9yo 10-19yo 20-39yo 40-59yo > 60yo AIC
Weibull 124.2 178.8 80.2 70.2 75.3 87.7 7908.5
Gamma 54.6 77.4 43.1 36.8 40.6 59.7 7944.8
Lognormal 241.9 285.5 161.7 158.4 194.6 220.4 7978.3
Exponential 224.1 317.9 175.6 128.8 126.3 131.4 8022.6

Table 5.4: Mean durations - The mean duration of infection (in days) is indicated for all
age groups under different assumptions concerning infection clearance. It can be calculated
from the parameter estimates (Table 5.3) and the distribution-specific expressions for the
mean (Table 5.1). Lower AIC values indicate a better fit to the data.

groups separately are reported in Table 5.4 and Figure 5.3.
Estimates of the standard deviation of infection duration consistently show less variation

in the non-exponential survival models than estimated under the exponential model (Fig-
ure 5.4). In an exponential distribution, the standard deviation is always equal to the mean.
All models show a peak in the standard deviation in the 5-9 year olds, very similar to the
estimates of the mean duration.

The mean residual lifetime (MRL) is the additional time an infection is expected to
last [103]. This quantity may change with the age of an infection, depending on the prop-
erties of the distribution of infection durations. It can be calculated from the shape and
scale parameters as 1

S (ξ)

∫ ∞
0 t f (t + ξ) dt where ξ is the current age of an infection and S

and f are the survivor function and PDF, respectively, of the parametric survival function
in use. MRL is plotted against age of infection in Figure 5.5. Only estimates from the best-
fitting Weibull model and the worst-fitting exponential model are shown. The MRLs of
the exponential estimates appear as horizontal straight lines because under an exponential
model, clearance is independent of infection age. Weibull estimates, conversely, show an
increase of MRL with the age of an infection. This effect is strongest in the first days after
inoculation, and in the younger host ages.
The question of how much time is needed until all or almost all infections in a human pop-

ulation are cleared, in absence of transmission, is of relevance for the planning of malaria
elimination, although other factors need to be considered as well. In line with [104], who
develop a theory of elimination, the times until 99% of infections are cleared is shown
across host ages (Figure 5.7). Times to near-elimination show a peak in the 5-9 year olds,
and there appears to be considerable variation of estimates depending on which survival
distribution is used.

5.4.3 Detectability

Measurements of detectability are in good quantitative agreement (Figure 5.8). All models
measure a detectability of ca. 40% in the young ages, which decreases to ca 20% in the
older age groups. However, measurements in the very young may be biased, as the logit-
linear curve in use to model the relationship of detectability with age did not allow for an
expected “peak” of detectability in those ages.
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Figure 5.3: Average duration of infection - The mean duration of a clonal infection is
plotted against the midpoint of each age group, for all four models of infection survival.
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Figure 5.4: Variation in the duration of infection - The standard deviation of infection
durations is plotted against the midpoint of each age group. While in an exponential dis-
tribution, the standard deviation is always equal to the mean, the other distributions have
greater flexibility.
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Figure 5.5: Mean residual lifetime - The mean residual lifetime (MRL) is the additional
time an infection is expected to last. It depends on the current age of an infection and the
distribution of infection durations. MRL is plotted against age of infection separately for
each host age group.
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Figure 5.6: Persistence of infections - The proportion of clonal infections surviving is
plotted against time after inoculation, for different models of infection clearance and across
host age groups. Mean infection durations are indicated as circles on the abscissa.
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Figure 5.7: Time until most infections are cleared - The time is shown until 99% of
infections are cleared after complete interruption of transmission. All models agree that
the time required is longest in the age group of 5-9 years.
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Detectability

Figure 5.8: Detectability - Detectability estimates across the different clearance models
show almost no difference. The numerical values of detectability range from ca. 40 % in
the younger ages to ca. 20 % in older hosts. Modeling the age depencence of detectabilty as
a logit-linear relationship (which cannot represent peaks) may bias detectability estimates
in the very young host ages.
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5.5 Discussion

The introduction of separate scale and shape parameters for every age group improved
model fit considerably in comparison to the age-independent models of chapter 4. This
indicates that changes in infection clearance with host age are important. The ranking of
the different survival models with respect to goodness of fit was not affected: in both cases
the Weibull model gave the best fit to the data, followed by the gamma, lognormal and
exponential models3. A major difference is that in the present analysis the model ranking
is very clear, while in chapter 4 the Weibull and gamma model showed a very similar
goodness of fit.
The significance of host age lies in its correlation with cumulative exposure to infection. If a
change of certain parameters with host age is observed, it may be interpreted as an effect of
acquired immunity. This is only partly correct, since confounding by other age-dependent
factors may occur, such as by MOI. We therefore prefer the term “cumulative exposure”
instead of “immunity”. The absence of change in parameter values or derived measures
with host age, conversely, may well be interpreted as “no effect of immunity” - ignoring
the unlikely possibility that a confounder might exactly balance the effects of acquired
immunity. By fitting models with infection clearance depending on host age we are now
able to better understand the findings presented in chapter 4, and it possible to rule out
some of the hypotheses given in chapter 4, which aimed at an explanation of the observed
differences in infection clearance between a dataset from malariatherapy patients [37] and
the present dataset.

5.5.1 Force of infection

FOI estimates are practically identical to previously reported results (chapter 4), using mod-
els which did not estimate separate clearance parameters for each age group. All models
broadly agree with respect to the pattern of seasonality (Figure 5.1). The Weibull model
estimates on average a slightly higher FOI than the exponential model, indicating that pre-
vious analyses may have underestimated the FOI. The most extreme estimates are by the
gamma model, which also estimated a very short infection duration (Figure 5.3). A major
difference to chapter 4 is, as mentioned above, that the ranking of models is much clearer
in the present analysis. This considerably increases our confidence in the numerical es-
timates of the FOI obtained from the Weibull model. Several potential properties of the
FOI, however, remain unexplored in the present analysis. Firstly, the dataset is expected
to comprise a wide range of transmission intensities. Secondly, it is assumed that the FOI
does not depend on the age of the host. This neglects both effects of body size and acquired
immunity on the FOI. It is unclear what the effects of not accounting for age-dependence of
FOI are. Because the number of clones present at any one time should increase with both
FOI and mean duration of infections, it is expected that not accounting for age-dependence
of the FOI may bias estimates of the mean duration. Future analyses need to explicitly

3The AIC values in the age-independent models of chapter 4 were: 8029.1 (Weibull), 8029.4 (gamma),
8045.1 (lognormal), 8127.4 (exponential). These are comparable to the present analysis because the same
dataset was used.
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model age-dependence of the FOI.

5.5.2 Clearance of infections

A positive skewness of all distribution estimates across all age groups emerged. The
Weibull PDF, shown in Figure 5.2, illustrates this. It means that most infections are cleared
soon after inoculation, with the PDF flattening out at older ages of infection. In fact, only
a fraction of those infections shorter than the survey interval of two months can be picked
up with the current study design, even if detectability were high. It is therefore desirable to
have shorter survey intervals in future, similar studies, in order to collect more information
on these short infections. The picture of infection clearance is radically different from esti-
mates obtained from malariatherapy patients [49], where most infections were cleared after
an intermediate amount of time. The distribution of infection durations in the malariather-
apy patients was approximately symmetrical about the mean, with relatively few infections
cleared soon after inoculation.
The absence of a change of skewness with host age in the present dataset indicates that
cumulative exposure is not the likely cause for the early clearance of many infections. This
was proposed in chapter 4 as a possible explanation for the observed differences between
malariatherapy data and the the present Ghanaian dataset, because malariatherapy patients
were immunologically naïve. But no effect of cumulative exposure does not necessarily
mean no effect of immunity. It is imaginable that a short-lived effect of the frequent ex-
posure to P. falciparum antigens could raise overall immune activity, which would in turn
make it hard for newly arriving infection clones to survive the critical phases of host entry
and establishment of a stable blood stage infection. A short term effect of exposure would
mean that the distribution of infection durations should change with the FOI. This could
perhaps be tested on the present dataset, as it presumably contains considerable hetero-
geneity in the FOI. A very similar but distinct hypothesis is that the presence of infections
in a host would make it harder for newly arriving infections to last.

Genetic differences between the wildtype strains and those used in malariatherapy represent
another possible explanation. It is known that the malariatherapy strains were selected for
desired properties with respect to the treatment of neurosyphilis [94], and in fact, Collins
and Jeffery [35] report shorter infection durations of the “McLendon” strain compared to
the “El Limon” or “Santee-Cooper” strains. Even without doctors intentionally selecting
parasite strains, the serial passage of strains from patient to patient, and the absence of
within-host competition through absence of superinfection could arguably have changed
the genetic properties of the malaria-therapy strains.
Unknown genetic differences between the two human populations, such as a possible in-
creased prevalence of sickle cell anaemia in the Ghanaians, or a predisposition for con-
tracting syphilis in the patients, may further play a role. Or, there may be an interaction
between malaria and syphilis in malariatherapy patients, perhaps through modulation of
the immune response.
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Mean residual lifetime of clonal infections

The MRL of an infection is the expected additional time the clone will persist. Plotting
MRL versus the age of infection is a way of visualizing the properties of the distribution of
infection durations. The MRL’s under the Weibull and exponential models are compared in
(Figure 5.5). Exponential MRL appears as a horizontal line because the clearance rate is in-
dependent of infection age. The Weibull MRL, conversely, increases with age of infection,
particularly in the early days after inoculation. This effect is strongest in the younger host
ages, and decreases with age (cumulative exposure). This can be interpreted as indication
that the early stages of a P. falciparum blood-stage infection are a vulnerable point in the
life cycle of the parasite. The continous increase of MRL with infection age gradually diss-
appears with cumulative exposure. This may be connected to increased acquired immunity
or higher MOI. Both should have the effect that more and more antigenic variants are either
known to the host from previous exposure, or already “in use” by another infecting clone,
which would close the corresponding routes of immune escape. The lognormal and gamma
models do not fit consistently into this view when ordered by goodness of fit (not shown).

Mean and standard deviation of infection durations

The Weibull model estimates shorter mean infection durations than the exponential model.
This suggests that analyses which assume a constant clearance rate tend to overestimate
infection duration. As a general trend, the models with shorter mean estimates also yield
higher estimates of the FOI. The most extreme example is the gamma model, which es-
timates very high FOI and very short infection durations. It’s goodness of fit is clearly
inferior to the Weibull model, which suggests that the estimates of the latter are more reli-
able. The gamma model also suggests that a massive proportion of infections are cleared
after only a few days. But most of these infections never appear in the data, given the
2-month survey interval of the study. This supports the view that the gamma estimates are
unrealistic, and that the extremely short (unobserved) infection durations are balanced by
a high FOI, such that the mean number of infections present at any time is consistent with
the data.
Infection duration is short in children below 5 years, and peaks in the 5-9 year olds (Figure
5.3). The reason for this is unclear. Physiological differences between age groups might
explain this observation, but it is possible that the absence of age-dependence of the FOI,
in the statistical models, might lead to biased estimates of the duration. In the present anal-
ysis, the FOI is modeled as a function of seasonality alone, but [84] and others found that
the FOI usually increases with body size. Explicit modeling of the age dependence of FOI
is therefore required to gain futher insight.
The decrease of average infection duration in individuals of 10 years and older is not in
line with a main conclusion of [37], who analysed a partial dataset from the present study:
Sama et al found that assuming clearance rate independent of host age gave the best fit
to the data, and concluded that, contrary to common belief, cumulative exposure does not
substantially influence infection clearance, but mainly causes a decrease in detectability.
This decrease in detectability is able to explain the often observed decrease in prevalence
and MOI in older ages. The relationship of infection duration with age, as suggested by
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our analysis, could not be captured by the model of Sama et al, as it only allowed for
monotonous changes of the mean duration with age. However, our estimates indicate that
the mean infection duration remains relatively constant after 15 years of age.
The standard deviation of infection durations, as estimated by the non-exponential models,
is considerably smaller than suggested by the exponential model (Figure . . . ). Since the
standard deviation of an exponential distribution is always equal to the mean it is likely that
exponential models overestimate the variation of infection durations. Interestingly, while
the Weibull estimates from the Ghanaian dataset show less variation than the corresponding
exponential estimates, they show more variation than the durations in malariatherapy data.
This might be a consequence of selection bias in the malariatherapy strains, as doctors may
have avoided using strains that only lead to short infections.

5.5.3 Detectability

Detectability estimates largely agree across the different survival models and show a clear
decrease of detectability with cumulative exposure (Figure 5.8), in agreement with [37]
and chapter 4. Part of this decrease might also be attributed to increased MOI in older ages
as well as to increased levels of acquired immunity, which acts to reduce parasite densities.

5.5.4 Time to near-elimination

The discussion about local elimination or global eradication of malaria is again on the ta-
ble, and the waiting time until the last infection is cleared is of considerable interest in this
debate. However, estimates of the expected waiting time until 99% or 99.9% of infections
are cleared, obtained from a distribution, do not form a complete theory of elimination or
eradication: the size of the human population, the MOI, the intensity of residual transmis-
sion, the number of people at risk of infection, the intensity of surveillance through the
health system and the rate of immigration of cases from elsewhere need to be considered
as well. They distribution of the durations of clonal infections does, however, form part
of such a theory, as presented by [104]. Smith et al consider “senescence” of infections,
meaning that the rate at which infections are cleared (the hazard) increases with their age.
Senescence of infections appeared to decrease the time to elimination in those simulations.
The opposite, namely that the clearance rate would decrease with the age of infection,
should therefore prolong the time needed until near-elimination. The increasing MRL es-
timated by the Weibull model (Figure 5.5) shows exactly this: the older an infection, the
longer it will stay. Anecdotal evidence suggests that P. falciparum infections may last up
to 8 years [93], which may well be an upper limit. This renders some our estimates of time
to near-elimination unrealistic. This is likely because infection durations longer than one
year could not be directly observed within the present study but, represent projections out-
side the data. However, our results show that the choice of the statistical model influences
estimates of time to near-elimination, identify the age group of 5-9 year olds as important
target group for surveillance of activities during a potential elimination campaign.
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5.6 Conclusions

We investigated the properties of infection clearance by use of an immigration-death model
with parametric survival distributions for modeling infection clearance. The force of infec-
tion, parameters of the clearance process, and detectability were simultaneously estimated
from a genotyping dataset from northern Ghana. The present analysis extended previ-
ous work by allowing for host-age dependent estimates of parameters describing infection
clearance. We found that the Weibull distribution constitutes the best model for infection
clearance in the present dataset, as it was clearly superior in terms of goodness of fit com-
pared to the second-best fitting gamma distribution.
A prominent property of the estimated distributions of infection duration is positive skew-
ness, which means that a large proportion of infections does not persist for a very long time,
but is rather cleared shortly after inoculation. This differs from analyses of malariatherapy
data [49], which suggested that infection durations are rather symmetrically distributed
about the mean. Possible causes for this discrepancy include selection of strains with good
curative properties by the physicians, interaction of infections in the Ghanaian population,
or different genetics of the two study populations.
Because no large differences concerning early clearance were found among host age groups
in the Ghanaian population, a different immune status of the individuals in either dataset
cannot account for differences in early clearance of infections.
There was an effect of cumulative exposure on other aspects of infection survival: the
mean residual lifetime (MRL) of an infection increased with the age of an infection under
the best-fitting Weibull model. This effect nearly vanished in the older host ages, suggest-
ing that acquired immunity or higher MOI does make it harder for a clone to establish a
lasting infection.
The average infection duration peaked in the age group of 5-9 years, and decreased in older
host ages.
An overestimation of the average duration of infection by exponential models was noted.
This overestimation of the duration appears to go along with a slight underestimation of
the force of infection. There might be datasets where assuming an exponential decay of
infections can be a good assumption in order to reduce the number of parameters in the
statistical model. Such a situation would occur if the total duration of a study is too short
to contain sufficient information on the higher moments of the distribution of infection du-
rations.
It is likely that data with 2-month survey interval does not contain accurate information
about the presence or absence of very short infections. This argues for experimentation
with different study designs, ideally using a combination of short (ca. 2 weeks) and long
time intervals 4.

4The present statistical method can be extended to studies with non-equally spaced survey intervals
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Abstract

Background: In endemic areas, most people are simultaneously infected with different
parasite clones. Detection of individual clones is hampered when they fluctuate around the
detection limit and, in the case of P. falciparum, by sequestration during part of their life
cycle. This might have important implications for basic measures of epidemiology or for
the outcome of clinical trials. This study aimed at measuring the detectability of individual
P. falciparum and P. vivax parasite clones in consecutive samples of the same patient and
at investigating the impact of sampling strategies on basic epidemiological measures, such
as multiplicity of infection (MOI).
Methods: Samples were obtained in a longitudinal field survey in 1-4.5 years old children
from Papua New Guinea which were followed up in 2-monthly intervals over 16 months.
At each follow-up visit, two consecutive blood samples were collected from each child at
intervals of 24 hours. Samples were genotyped for the polymorphic markers msp2 for P.
falciparum and msp1F3 and MS16 for P. vivax. Mean MOI estimated from single samples
per host was compared to combined data from sampling twice within 24h.
Findings and Conclusion: Detectability was high in our data set (0.79 for P. falciparum
and depending on the marker 0.61 to 0.73 for P. vivax). The effect of combining results
from samples collected over 24 hours on prevalence and mean multiplicity of infection
was comparable in P. falciparum and P. vivax. Differences in parasite densities have likely
a greater impact on clone detectability than effects of periodic parasite sequestration. The
additional efforts and costs of such a study design do not generally justify short term sam-
pling in epidemiological studies with a main focus on prevalence, however, this sampling
strategy is advised when individual clones in low parasitaemia samples shall be detected.
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6.1 Background

Many epidemiological health surveys rely on data of the presence of parasites or parasite
clones in populations. In recent years the Malaria Atlas Project (MAP) has created detailed
maps of global malaria risk using parasite prevalence as the main indicator for transmis-
sion and estimated global P. falciparum disease burden based on a empirical relationship
between prevalence of infection and incidence of clinical disease [105–108]. Within pop-
ulations, the identification of individual clones by PCR based genotyping techniques has
substantially increased knowledge of the infection dynamics of malaria by providing pre-
cise estimates of multiplicity of infection, incidence and clearance rates [76, 78, 109, 110].
In addition, it allows classifying drug failure in recrudescence and new infection.
However all methods for the detection of malaria infections or individual parasite clones
in a blood sample are imperfect. Malaria parasites can remain undetected because parasite
densities are below the detection limit of a given diagnostics or in the case of P. falci-
parum because of mature forms sequester in peripheral blood vessels for 24-28 hrs of its
48-hour life cycle. Although sequestration of P. falciparum parasites has been reported
several decades ago [111, 112], and the sensitivity threshold of both light microscopy and
PCR-based diagnostic methods have been well studied [52, 113, 114], their consequences
on estimates of prevalence and other epidemiological parameters have so far little been
discussed. Also outcome of drug efficacy studies might be compromised. According to
the clinical trial guidelines from WHO treatment failure is defined by at least one identical
parasite clone observed before and after treatment [115]. Imperfect detection potentially
leads to underestimation of treatment failure when a persisting parasite clone is detected
only once.
When children were followed-up on a daily basis a highly complex dynamics of P. falci-
parum clones was observed with the composition of infections unstable over time or even
changing from one day to another [62]. Consequently, a single blood sample is likely to
only partly represent the true parasite population present in a host. Several studies have
addressed the issue of imperfect detectability and described mathematical models to esti-
mate infection dynamics of P. falciparum under conditions of imperfect detection of para-
sites [37,57,60]. The model by Sama et al [57] was applied for a longitudinal field study in
Ghana, where consecutive blood samples were collected from each participant in 2 monthly
intervals. From this dataset, it was estimated that 47 per cent of all parasites present in a
host are detected by PCR-RFLP in a single blood sample [57].
Sequestration is thought not to occur in P. vivax. This view was questioned only very re-
cently when cytoadherence of P. vivax was shown in vitro [116]. In addition parasite loads
of P. vivax are usually lower than those of P. falciparum [70, 117]. As a consequence im-
perfect detection of P. vivax is to be expected when P. vivax densities are near of below
the detection limit of light microscopy or molecular diagnostics. Only few studies have
addressed the infection dynamics of individual P. vivax clones [76]. Daily fluctuations in
detectability of P. vivax clones have not yet been investigated. Indication of limits in P.
vivax detection comes from a report in Brazil [118]. A high proportion of confirmed multi-
ple clone infections were not detected, despite the application of high-resolution markers.
This is most likely due to imperfect detection of clones.
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Repeated blood sampling after short time intervals might provide an improved picture of
the parasite population present in a host. On the other hand it leads to a considerable
increase in efforts in the field and laboratory, added costs, and additional discomfort for
study participants. The effect of such a sampling scheme on epidemiological measures
such as prevalence or multiplicity of infection is little known.
We present here data from a large set of paired samples that were collected 24 hours apart.
Within this time interval re-infection with a new parasite clone can be excluded. Samples
derived from a cohort study performed in Papua New Guinean children 1-4.5yrs of age
living in an area highly endemic for both P. falciparum and P. vivax. Parasites of both
species were genotyped to calculate the detectability of infection and to investigate the
benefit of collecting 24h bleeds on basic and molecular measures of epidemiology such as
prevalence and multiplicity of infection.

6.2 Methods

6.2.1 Field survey and patients

This study was conducted in a rural area near Maprik, East Sepik Province, Papua New
Guinea. A detailed description of the study was given previously [117]. Briefly, 269 study
participants were enrolled at an age of one to three years starting in March 2006 and regu-
lar follow-up visits were conducted over a period of 16 months until July 2007. At seven
time points separated by 8-weekly intervals from each study participant two consecutive
blood samples were collected at intervals of 24 hours (in the following termed: 24h bleed).
Antimalarial treatment with Coartem R© (Novartis, Switzerland) was administered upon a
positive rapid diagnostic test or if haemoglobin levels were <7.5 g/dl. Informed consent
was sought from all parents or guardians prior to recruitment of each child. Scientific ap-
proval and ethical clearance for the study was obtained from the Medical Research and
Advisory Committee (MRAC) of the Ministry of Health in PNG and from the Ethikkom-
mission beider Basel in Switzerland.

6.2.2 Laboratory procedures

All finger prick blood samples were separated into plasma and cells. DNA was extracted
from cell pellets using QIAamp R© 96 DNA Blood Kit (Qiagen, Australia) according to the
manufacturer’s instructions. All samples were genotyped for the polymorphic marker gene
merozoite surface protein 2 (msp2) by use of capillary electrophoresis for fragment sizing
as previously described by Falk et al [52] with some minor changes and adaptations of
PCR conditions for highly purified DNA as described by Schoepflin et al [119].
P. vivax genotyping was performed as described previously [120] with the following mod-
ifications: A multiplex primary PCR was done with the primers for the 2 markers msp1F3
and MS16 followed by individual nested PCRs for msp1F3 and MS16. Primary PCR was
performed in a volume of 20 µl containing 1 µl template DNA, 0.25 µM of each primer
(Eurofins MWG Operon), 0.3 mM dNTPs (Solis BioDyne), 2 mM MgCl2, 2 µl Buffer B
(Solis BioDyne) and 5 U Taq FIREPol (Solis BioDyne). 0.5 µl primary PCR product was
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used as template for nested PCR performed in a volume of 20 µl containing 0.25 µM of
each primer (Applied Biosystems), 0.2 mM dNTPs (Solis BioDyne), 2 mM MgCl2, 2 µl
Buffer B (Solis BioDyne) and 1.5 U Taq FIREPol (Solis BioDyne). The forward primers
for the nested PCR were labelled with fluorescent dyes: 6-FAM for msp1F3, NED for
MS16. Cycling conditions were as follows: Initial denaturation 95◦C for 1 minute, then 30
cycles (primary PCR) or 25 cycles (nested PCR) with 15 seconds denaturation at 95◦C, 30
seconds annealing at 59◦C and 30 seconds elongation at 72◦C plus a final elongation of 5
minutes at 72◦C.

All samples negative after the first round of PCR amplification, were repeated once. Re-
peats and all microscopy negative samples (due to an expected lower parasitaemia) were
done under similar conditions with the exception that 2 µl DNA solution were used as
template for the primary PCR, and 1 µl primary PCR product as template for the nested
reaction. All samples with high amount of background or stutter peaks were repeated in a
50 µl reaction volume for both the primary and nested reaction, 0.2 µM of each primer, 0.2
mM dNTPs, 5 µl Buffer B, 2 mM MgCl2 and 2.5 U Taq DNA polymerase and 1 µl DNA
for the primary PCR and 0.5 µl of primary PCR product for the nested PCR. Capillary
electrophoresis was done as described earlier [120]. As the msp1F3 nested PCR in general
led to more amplification product compared to the MS16 PCR, twice as much MS16 PCR
product was analysed by capillary electrophoresis.

6.2.3 Data analysis

Analysis of 24h interval bleeds. Sample pairs collected 24 hours apart from the same
patient were compared. Sample pairs were excluded from the analysis if antimalarial treat-
ment was given on the first day of a paired sampling. Individual genotypes were classified
by positivity on each of two consecutive days, leading to two categories for each genotype:
one day positive (genotype observed on either day of paired sampling, n1) and both days
positive (n2). An estimate of the detectability q was calculated as follows:

q =
2n2

n1 + 2n2
,

according to [82]. An approximate confidence interval was calculated as follows: CI[
q ± 1.96 SE(q)

]
, where the standard error is:

S E(q) =
2
√

n1n2(n1 + n2)
(n1 + 2n2)2 .

The detectability was calculated for different age groups of patients. Comparison of de-
tectability between day 1 and day 2 was done by McNemar’s exact test for paired data.

All statistical analysis was performed using STATA R© 9.1 statistical analysis software (Stata
Corporation, College Station, TX).
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P. falciparum P. vivax
No. of positive samples
only 1st day positive 39 (16.1%) 57 (10.1%)
only 2nd day positive 47 (19.4%) 68 (12.1%)
Both days positive 156 (64.5%) 438 (77.8%)
Total No.of positive pairs 242 563

Prevalence
Prevalence on 1st day 0.19 0.49
Prevalence 2 days combined 0.24 0.55

Detectability q incl. CI 0.78 [0.76 – 0.81] 0.88 [0.86 – 0.89]

Table 6.1: Effect of repeated sampling on prevalence as determined by microscopy

6.3 Results

6.3.1 Effect of repeated sampling on prevalence

For the analysis of paired samples collected in a 24h interval a total of 1019 pairs were
eligible. By light microscopy 242 and 563 pairs were positive P. falciparum and P. vivax,
respectively, at least on either day (Table 6.1). Prevalence did not differ between individual
days but it increased when both days were combined. P. falciparum prevalence was 19.1%
at day 1 and 20.0% at day 2 (McNemar’s test: χ2=0.65, p=0.42). When both days were
combined prevalence increased to 23.7%. Prevalence of P. vivax was 48.6% on day 1 and
49.7% at day 2 (McNemar’s test: χ2=0.88, p=0.35), and 55.3% when both days were
combined.
The 1019 sample pairs were genotyped using msp2 as P. falciparum marker and msp1F3
and MS16 as P. vivax markers. After PCR the number of pairs positive at least on one of
both consecutive days increased to 311 for P. falciparum and 616 for P. vivax. Table 6.2
summarizes the PCR results on day 1 and 2 of paired samples. Again the prevalence of
P. falciparum as well as P. vivax infection did not differ significantly between both days
(P. falciparum: 27.8% on day 1 vs. 28.5% on day 2; McNemar’s test: χ2=1.0, p=0.3, P.
vivax: 58.5% on day 1 vs. 60.5% on day 2; McNemar’s test: χ2=2.21, p=0.14). When
typing results from both days were combined, the prevalence increased only marginally:
from 28% to 30.6% for P. falciparum and from 59.3% to 64.0% for P. vivax.

6.3.2 Effect of repeated sampling on detection of individual clones

When assessing the persistence of individual alleles on the consecutive days of sampling,
considerable turn over in allele composition was observed. For the msp2 marker of P.
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P. falciparum P. vivax P. vivax P. vivax
msp2 msp1F3 MS16 2 markers combined

Positivity in paired samples
only 1st day positive 21 (6.8%) 39 (6.3%) 49 (7.8%) 40 (6.1%)
only 2nd day positive 28 (9.0%) 56 (9.1%) 58 (9.1%) 55 (8.4%)
Both days positive 262 (84.2%) 521 (84.6%) 527 (83.1%) 557 (85.5%)
Total No. of positive pairs 311 616 634 652

Prevalence
Prevalence on 1st day 0.29 0.55 0.57 0.59
Prevalence 2 days combined 0.31 0.60 0.62 0.64

Detection of parasite clones
No. clones detected only on day 1 93 (18.0%) 382 (23.8%) 495 (25.2%)
No. clones detected only on day 2 90 (17.4%) 307 (19.2%) 617 (31.3%)
No. clones detected on both days 335 (64.7%) 912 (57.0%) 855 (43.5%)
Total No. of clones 518 1601 1967

Detectability q incl. CI 0.79 [0.76 - 0.82] 0.73 [0.71 - 0.75] 0.61 [0.58 - 0.63]
Multiplicity of infection
MOI on day 1 1.52 2.31 2.34 2.78
MOI on day 2 1.47 2.11 2.52 2.77
MOI on both days 1.68 2.60 3.10 3.37

Table 6.2: Effect of repeated sampling on detection of parasites and alleles by PCR and
on multiplicity if infection - Combining of markers for P. vivax: A sample was defined
positive if any of the two markers msp1F3 or MS16 was amplified. The highest value for
MOI of either marker was used.

falciparum 64.7% of all genotypes were observed on both days. For P. vivax two molecular
markers, msp1F3 and MS16, showing slightly different diversity were genotyped. 57.0%
of the msp1F3 alleles and 43.5% of the MS16 alleles were observed on both consecutive
days (Table 6.2).
Combining the genotyping results from 24h bleeds makes it possible to assess the effect
of repeated sampling on other molecular epidemiological parameters, e.g. multiplicity of
infection. In P. falciparum combination of results from both days lead to a small increase
in mean MOI to 1.68 compared to mean MOI of 1.5 based on a single day (t test for
paired data: t=8.5, p<0.001). In P. vivax the mean MOI based on msp1F3 increased from
2.21 detected on a single day to 2.60 (t = 7.6, p<0.001) detected on both days. For the
highly diverse marker MS16, mean MOI increased from 2.43 to 3.10, respectively (t = 8.7,
p<0.001). When both markers were considered to establish mean MOI, i.e. for each pair
the highest number of clones observed was counted, MOI increased from 2.78 based on a
single day bleed to 3.37 based on results of both consecutive days (t = 18.4, p<0.001).q
was in the same range for both Plasmodium species: for P. falciparum clones detectability
was 0.79 and for P. vivax detectability was 0.73 based on msp1F3 marker and 0.61 based on
microsatellite MS16. Table 6.3 lists the detectability calculated for different age groups (0-
2 years, 2-3 years, >3 years). For P. falciparum msp2 and P. vivax msp1F3 no substantial
difference was observed between the 3 groups (95% CI overlap). Detectability of P. vivax
MS16 was lower in children older than 3 years (no overlap of 95% CI).
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P. falciparum msp2 P. vivax msp1F3 P. vivax MS16
Detectability CI Detectability CI Detectability CI

0-2 years 0.80 [0.71 – 0.88] 0.72 [0.68 - 0.76] 0.63 [0.59 - 0.67]
2-3 years 0.81 [0.77 – 0.85] 0.73 [0.70 - 0.76] 0.63 [0.60 - 0.66]
>3 years 0.75 [0.70 – 0.81] 0.72 [0.68 - 0.76] 0.55 [0.51 - 0.59]

Table 6.3: Detectability of parasite clones by PCR in different age groups

6.4 Discussion

Many epidemiological surveys are crucially dependent on accurate diagnosis of presences
and/or complexity of infecting parasites strains. In the case of Plasmodium species imper-
fect detectability in blood samples can occur when parasites sequester in the deep blood
vessels for part of their life cycle or when parasite densities fluctuate around the detection
limit of light microscopy or PCR. As a consequence, a single blood sample might not be
representative for the entire parasite population in a host at a given time and parameters
such as prevalence, MOI, duration of infection or outcome of treatment failures can be
compromised. This study aimed at investigating changes in the genotypic profile of P. fal-
ciparum and P. vivax populations within a host over a period of 24 hours in children 1-4.5
years of age.
Our analysis of samples collected 24 hours apart revealed imited day to day fluctuations in
the detection of P. falciparum and P. vivax infection. This indicates that short-term sam-
pling has only a small impact on prevalence - regardless whether infections are detected by
light microscopy or PCR. Prevalence by PCR increased only between 7 and 12% (depend-
ing on the marker used) when 2 days were combined. A more pronounced difference was
only observed for P. falciparum prevalence determined by light microscopy that increased
by 24%. These finding suggests that for Plasmodium species conducting repeated sampling
within 24 h does not substantially increase the total number of infections detected.
Detection of individual clones was very high in P. falciparum ( q =79%). Accordingly,
combining genotypes from both days resulted in a small increase in mean MOI rising from
1.52 based on one day only to 1.68 for both days. Children <5 years have not yet developed
a strong immunity to P. falciparum [117] and therefore carry high parasite densities (mean
parasite density: 2558 parasites/µl), which leads to a better chance to detect most of the
parasites present by PCR.
In contrast to P. falciparum, sequestration of late stage parasites is not reported from P.
vivax. Despite this biological difference, the detectability of clones was lower in P. vivax
than in P. falciparum. A larger number of P. vivax clones was only deteced on either day
for both P. vivax markers analyzed. In P. vivax parasite densities are generally much lower,
in our study mean P. vivax density was 498 parasites/µl compared to 2558 parasites/µl of P.
falciparum positive samples. Our results suggest that the low parasitaemia of P. vivax has a
larger impact on detectability than sequestration plus occasional low parasitaema levels in
P. falciparum. This is in line with a recent study by Bretscher et al [82] that failed to find a
48 hours periodicity in P. falciparum positive samples. A further reason for the difference in
detectability of clones might lie in the more complex P. vivax infections. P. vivax mean MOI
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was 3.37 (2 markers combined) versus 1.7 of P. falciparum. In samples harbouring a high
MOI, the chance of amplifying only the dominant clone in a PCR reaction and of missing
minority clones due to template competition is higher than in samples where infections are
less complex. Indeed P. vivax detectability decreases in our data with increasing MOI (data
not shown). The different results for the two P. vivax markers likely represent the overall
better amplification of the msp1F3 PCR compared to the MS16 PCR. In addition different
resolution of markers adds to the effect as two clones share more often the same msp1F3
allele (virtual heterozygosity HE=0.88) than the same MS16 allele (HE=0.98).
The lower detectability of the P. vivax markers msp1F3 (q=0.73) and MS16 (q=0.61) com-
pared to 0.79 in P. falciparum suggests that a single bleed does usually not fully reflect the
complexity of concurrently infecting P. vivax clones. The effect of repeated sampling on
prevalence, however, was in the same range in P. falciparum and P. vivax. In both cases
around 15% of all infections were missed on one day. This is astonishing, as P. falciparum
sequestration and as a consequence absence of parasites from the blood stream had been
thought to be a main difference between the two parasites. In fact the ability of P. falci-
parum to sequester is considered as a major reason for the generally more severe outcome
of P. falciparum infection [121]. Future research will show whether the recent observation
of adhesion of P. vivax infected red blood cells to different human cells indicates a certain
level of sequestration in P. vivax. Our data suggest that regarding presence of parasites in
the blood stream the two species are less different than previously assumed.
It had been shown that in the age group studied densities of P. vivax drop with increas-
ing age, while P. falciparum parasitaemia remains unchanged. If densities directly impact
detectability, a decrease in P. vivax detectability is expected with increasing age. In the
present study, detectability of P. vivax for marker MS16 (but not for msp1F3) was indeed
lower in children above 3 years of age. Frequent multiple clone infections combined with
low parasite loads likely lead to lower detectability. The often-observed decrease of preva-
lence in age at moderate to high levels of transmission might at least partially be due to a
lower detectability associated with decreasing parasite levels.
Our P. falciparum results can be compared to a previous study conducted in a highly en-
demic area in Ghana, where overall detectability was only 35% [52]. However, a strong
age-dependency of detectability [37] was noted and in individuals of the same age group
detectability ranges from 0.51 and 0.55 [82]. The low overall value in Ghana was caused by
a detectability of only around 10% in highly immune adults. Due to the narrow age range
in our study (1 to 4.5 years) similar age trends were not observed. The lower transmission
and therefore slower acquisition of immunity in PNG might lead to generally lower age
dependence in detectability. Our current results reflect the situation in children harbouring
high parasite densities and might differ in adults. In addition it is possible that the higher
endemicity in Ghana compared to PNG might have lowered the estimates of detectability
of P. falciparum. The discussed effect of MOI on detectability likely influences the different
estimates from the 2 countries.
We conclude that measures of prevalence obtained from cross sectional surveys give a rea-
sonable good picture of the overall malaria situation in a region. In this context it is also
important to point out that prevalence is a very stable measure and is surprisingly inde-
pendent of other factors such as use of insecticide treated bed nets [11] or entomological



6.4. Discussion 105

inoculation rate [122]. In a study in the same area in PNG almost 20 years ago only a very
weak correlation between entomological inoculation rate and prevalence was observed: a
ten-fold increase in entomological inoculation rate led only to 28% increase in P. falci-
parum prevalence and a 7% increase in P. vivax prevalence [122].
We observed a limited increase in precision of estimates of epidemiological parameters in
our study for both P. falciparum and P. vivax, with surprisingly little difference between the
two parasites. We conclude that routine 24 hrs bleeds may not be justified in children below
5 years. In older children, however, and in highly endemic areas where individuals often
carry very low parasite density as a result of acquired immunity, the considerable logistical
efforts required for this sampling scheme might well be justifiable or even required.





Chapter 7

General discussion

The aim of this thesis was to measure the distribution of Plasmodium falciparum infection
durations, in continuation of the thesis of Wilson Sama [123]. Sama’s work represented
significant advances in measuring the duration of clonal infections from longitudinal geno-
typing data [37, 57], but a descriptive analysis of malariatherapy data [49] had revealed
that exponential models might significantly misrepresent the survival of P. falciparum in-
fections. It was therefore envisaged to drop the assumption of a constant clearance rate
in analyses of longitudinal genotyping data. A mathematical approach to modeling the
age structure of an infection population was undertaken by Wilson Sama in collaboration
with Klaus Dietz ( [123], Appendix), yielding expressions for the relative frequencies of all
true pattern types. While the obtained solution was correct, the algebraic expressions were
unpractically complicated, and it was decided for this thesis to use stochastic simulation
techniques instead. Stochastic simulation was pursued for 2 years, and later abandoned for
an approach using explicit calculation of the likelihood, due to problems with model fit-
ting with stochastic lossfunctions. Although model fitting using explicit likelihoods proved
demanding for other reasons, those problems were eventually solved and the method was
applied to a dataset from Navrongo, Northern Ghana, in chapters 4 and 5.

7.1 Review of chapters

Chapter 2 explored the short-term dynamics of detectability of clonal infections. The rea-
son for this in the context of the whole thesis is that the immigration-death models pre-
sented by [37, 57] as well as the approaches used in chapters 4 and 5 rely on binomial
models of detection. This implies that detection of an infecting clone at two different time
points are assumed independent. Yet, numerous publications discuss whether detection of
parasites may be connected to periodic behaviour of parasite densities - influenced by the
48 hour erythrocytic cycle of P. falciparum, and sequestration, i.e. binding of the late intra-
erythrocytic stages of the parasite to the vascular endothelia. Such periodicity of detectabil-
ity could compromise estimates from immigration-death models, because the assumption
of independence of detections would be violated. Chapter 2 analysed genotyping data with
short sampling intervals and discussed the implications for using immigration-death mod-
els. The main conclusion was that when sampling at intervals of 7 days (or more) it is
safe to assume indepence of detections. No 24 h periodicity was found. A simple formula
was provided for estimating detectability from pairs of surveys, with the aim to convey the
concept of detectability to research fields which currently pay little attention to it (e.g. drug
efficacy trials), and provide field-epidemiologists with a practical tool for measuring and
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reporting detectability alongside standard epidemiological measures.

Chapter 3 reported for the first time the complete genotyping dataset from a longitudi-
nal molecular study in Navrongo, Northern Ghana, providing a comprehensive description
of the molecular results. The exponential model from chapter 5 was used with eight age
groups. Rates of infection clearance and the detectability were estimated and compared
to analogous estimates from the simpler “triplet” model [58]. The results broadly agreed,
with the “triplet” model estimating higher detectability in children below one year of age,
because its detectability estimates were not constrained to be a monotonic function of host
age.

Chapter 4 developed a statistical method for analysing longitudinal genotyping data. The
method is based on the approach of [37, 57], but not restricted to exponential models of
infection survival. Rather it is possible to use Weibull, lognormal, exponential or gamma
distributions to model clearance of infections. This allowed investigation of the relationship
between age of an infection and infection clearance. The dependence of infection clearance
on host age was ignored. This was justified by the results of [37], which reported that their
best-fitting model assumed a single clearance rate across all host ages. An unexpected dif-
ference between the distribution of infection duration estimates from the Ghanaian dataset
and analogous measurements from malariatherapy data [49] emerged: a vast majority of
infections in the naturally exposed population appeared to be cleared soon after inocula-
tion. Several competing hypotheses were brought forward, aiming to explain the observed
difference between the two datasets. These include hypotheses considering acquired im-
munity as a possible cause as well as factors which are not related to acquired immunity. It
was noted that by using host age as proxy for cumulative exposure, and therefore acquired
long-term immunity, some of the immunity-related hypotheses could be falsified.

Chapter 5 expanded on the parameterizations of the immigration-death model in chapter 4
by estimating a separate set of distribution parameters for each host age-group. This meant
that lasting effects of cumulative exposure, which are assumed to increase in intensity with
host age, became observable in form of the change of distribution parameters with age. The
results indicated, that the previously observed early clearance of most infections cannot be
explained by long-lasting acquired immunity. Various quantities derived from the param-
eter estimates for the Weibull, lognormal, exponential and gamma models were plotted
against host age to describe the effects of immunity. These include foremost a moderate
reduction of the average duration of infection and a pronounced reduction of detectability.
The expected time (after inoculation) until nearly all infections are cleared was found to be
larger than previsouly assumed using exponential models. This has implications for plan-
ning of strategies for local elimination. However, the predicted times lie outside the range
of observations, since the models were fitted to data from a one-year study. They They may
therefore be influenced by assumptions about the highly seasonal force of infection (FOI)
in the past or by the range of possible shapes permitted by the various survival distributions.

Chapter 6 analysed blood samples from a study in Papua New Guinea, where children be-
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tween 1 and 4.5 years of age were followed up in two-monthly intervals for 16 months.
Additional blood samples were taken 24 hours after each follow-up visit. All samples were
analysed for presence of P. falciparum and P. vivax using PCR. A formula from chapter 2
was used to estimate the detectability of clonal infections, and estimates were compared
between species. It was found that the detectabilities of P. vivax and P. falciparum were
similar and high (between 60% and 80%), whereas parasite densities were higher in P. fal-
ciparum than in P. vivax.

7.2 Results of the thesis

The main achievement of this thesis is to have developed a method which makes it possi-
ble to use non-exponential survival distributions for the statistical analysis of longitudinal
genotyping data. The main finding is that a large proportion of clonal infections in the
Ghanaian study population is cleared relatively soon after inoculation. This is different
from the results of an analysis of malariatherapy data [49]. The presence of early clearance
of infections in all host ages revealed that this difference cannot be explained by a lasting
effect of previous exposure.
Some of the assumptions underlying the statistical method used to fit survival distributions
to the Ghanaian dataset, one could argue, may be incorrect. As an example, the detectabil-
ity of infections is assumed to be constant throughout the course of infections, even though
parasite densities are known to decrease with time, and detectability appears to be related
to parasite densities. The possibility that the main result of fast clearance of infections in
the Ghanaian dataset is merely an artefact can therefore not be excluded with certainty if
only a single statistical method is used. In addition, the short infection durations postulated
by the analyses in chapters 4 and 5 cannot be well observed using survey intervals of 2
months. To verify if early clearance of infections is common in the analysed dataset, an
additional analysis was performed (Figure 7.1), and the main finding of the thesis could be
confirmed with a different statistical method.

7.2.1 Interpretation

Several competing hypotheses aiming to explain the high abundance of short infection du-
rations in Ghana compared to malariatherapy data have been discussed in chapters 4 and
5. These identify genetic differences between the P. falciparum strains or between the host
populations, and interaction of infections as possible causes. While there is a clear pos-
sibility that malariatherapy doctors selected against strains with short infection durations,
it is almost certain that natural selection would do the same: the duration of infection is
related to the duration of potential infectivity to mosquitoes and directly connected to par-
asite fitness. That host genetics may be playing a role cannot be excluded with certainty,
but given the large proportion of short infection durations, genetic mutations conferring
resistance against malaria to the carrier would need to be present at very high frequencies.
It is, however, very hard to argue that there is no interaction between clones which are
simultaneously infecting the same host: the immune response against an ongoing infection



General discussion

is likely to also affect newly arriving clones. In fact, any type of cross-reactive immunity
should be strongest when another strain is present in the host, stimulating both innate and
adaptive immune responses by constant antigen presentation. The parasite has adapted to
escape the immune response of the host, and it seems plausible that the initial phase of a
blood-stage infection may be a very vulnerable stage in the life cycle of the parasite: the
population size of a newly arriving clone may be small initially, making it vulnerable to
extinction, and a suitable var-gene variant for optimally escaping host immune defenses
may not yet have been found.
Most mathematical within-host models consider only single infections, and often use malar-
iatherapy data to calibrate parameters. A model of Gatton & Cheng [124] allows multiple
concurrent infections per host. In the particular example shown in [124], 10% of blood
stage infections did not last for longer than 10 days after acquisition of few infections.
This indicates that rapid clearance of clones infecting an already infected host is implied
by current ideas about within-host dynamics and immunity. Schöpflin et al (personal com-
munication) found that multiplicity of infection (MOI) significantly reduced the number of
new P. falciparum infections in the dataset used in chapter 6. It is generally problematic to
use MOI as explanatory for the FOI parameter, because of the known causal influences of
the FOI and duration of infection on MOI, resulting in circularity of causal relationships.
In concrete terms, one would expect MOI to be positively associated with the FOI, with
individuals experiencing higher exposure also showing a higher MOI. Since the measured
effect of MOI on the FOI was negative, however, the result can be interpreted as showing
a protective effect of pre-existing infections against the establishment of new blood-stage
infections.
Experimental infection of Saimiri or Aotus monkeys with multiple P. falciparum strains
[125–127] could provide further insight into within-host interactions in falciparum malaria.
Alternatively, a confirmation that the abundance of short infection durations is caused
by interaction of infections could be obtained through analysis of field data from low-
transmission areas, where superinfection is rare, using the method developed in this thesis.
However, this type of data may not be easily available, as people in low transmission areas
rarely have asymptomatic infections and would need to be treated.

7.2.2 Virulence of P. falciparum

There are several approaches in evolutionary biology aiming to explain parasite virulence.
Some emphasize the importance of trade-offs between virulence and life-history traits
which directly influence reproductive success of the parasite, others stress the role of inter-
species or intra-species competition, or whether a parasite is a specialist or a generalist
with respect to its host range [128]. Interaction of infections within a host, such that
a large proportion of newly arriving infections are cleared quickly, is synonymous with
strong within-host competition among co-infecting strains: a strain which cannot establish
a lasting infection is unlikely to transmit to mosquitoes, and therefore has a selective disad-
vantage. Due to the absence of a lasting liver stage, the cost of not being able to establish a
lasting blood-stage infection must be particularly high for P. falciparum, compared to other
human malaria parasites.
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Figure 7.1: Early clearance of infections confirmed - An estimate of the duration of in-
fection was obtained using a different methodology than the one developed in chapter 4.
For all possible survey pairs from the short-term study described in chapter 2, the pro-
portion of infections detected at the second survey, conditional on confirmed presence at
the first survey, was calculated (data points). A model for this proportion p, depending
on detectability q, clearance rate µ, and time t between survey pairs, was fitted using log-
transformation of the data and linear regression. The model was of the form p = qe−µt.
Conclusion: a large proportion of infections is cleared within short time. Most of these can
only be observed directly when sampling intervals are short, but the method developed in
chapter 4 correctly interprets data from studies with long sampling intervals.
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Kin-selection models of virulence argue that such intra-host competition should result in
increased virulence of parasites [129]: in absence of competition, trade-offs between host-
death (one aspect of virulence) and reproductive output of the parasite would lead to in-
termediate virulence. Conversely, when other strains are present, a higher virulence is
expected because parasites that treat the host kindly at their expense of reproductive output
are outcompeted by those that exploit the host more vigorously. If the host dies, the prudent
and the ruthless clone share the reproductive cost of killing their host in equal parts. If the
host survives, the prudent clone has a reproductive disadvantage and is therefore removed
from the population by natural selection. This “tragedy of the commons” appears in many
areas of evolutionary biology, and well beyond (e.g. in economics).
What would the concrete nature of this evolutionary game be in the present case, where an
newly infecting clone is faced with a competitor which has already established an infec-
tion? What would increase the chances for the new clone of not being cleared by cross-
reactive immunity, originally mounted against the pre-existing strain, or of securing enough
of any limiting resource in order to persist? It appears that fast replication should be advan-
tageous for the intruder under several possible scenarios: again we encounter a “tragedy
of the commons”, this time not with the host as reproductive resource for between-host
transmission, but with competition for limited resources for within-host replication, such
as erythrocytes. When the resource is used up, both competitors face a shortage, but as long
as it is still available, whoever uses it faster gets more out of it. Even for immune-escape,
which may not exactly fit the concept of a resource, it can be argued that faster replication
should allow the new parasite to try a larger number of antigenic variants before it suffers
the delayed effects of a targeted immune response against itself, which is stimulated as
soon as it reaches high population densities.
The incidence of clinical disease in falciparum malaria is strongly correlated with peak
parasite densities, even across species [130]. The virulence of strains from high trans-
mission areas should therefore be higher, as superinfection is more common. As Read et
al [129] point out, it is difficult to find evidence for this from epidemiological data, because
immunity may be masking a relationship between high R0 (leading to high incidence of su-
perinfection) and virulence: highly superinfected hosts rather tend to have less episodes,
presumably because they have a longer history of exposure and therefore increased immu-
nity against clinical disease.
Provided the assumption that early clearance of infections in the Ghanaian dataset is caused
by pre-existing infections can be confirmed, the methods presented in this thesis provide
evidence for the existence of fierce intra-host competition among co-infecting strains, and
thereby indirectly support the hypothesis that high transmission in conjunction with the ab-
sence of a permanent liver stage in P. falciparum are likely reasons for the high pathogenic-
ity of falciparum malaria.

7.2.3 Consequences for control and elimination

While there is a range of models of malaria transmission which consider multiple infec-
tions, it appears that these mostly treat concurrent infections as independent of each other.
This is likely due to the absence of reliable information on the nature of such interactions.
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In fact, it is analyses like the ones presented in this thesis, or developments thereof, which
may have the potential to supply such quantitative information from longitudinal genotyp-
ing data. Alternatively, interaction of infections could be accounted for via process-based
within-host models, such as the one presented in [124].
Transmission models ignoring interaction of infections, such as the one in [44], should
yield biased predictions of malaria epidemiology in high transmission areas. Assumed val-
ues of R0, based on measurements of prevalence or force of infection might be too high,
as a large proportion of infections is never able to transmit to mosquitoes. It is plausible
that the predicted impact of vector control measures in such high transmission areas may
be smaller than expected, because infections become longer as transmission intensity de-
creases. However, as both fitting of models to data and predictions are performed assuming
independence of infections, the consequences might be counterintuitive. A way of testing
predictions of the impact of control measures by transmission models would be to assume,
as in the Ross-MacDonald model, that no superinfection occurs at all. A comparison of
the two extreme assumptions of no superinfection versus independence of if concurrent
infections should allow a quantitative assessment of neglecting interaction of infections on
predictions.

7.3 Methodology

Data from longitudinal studies contain more information than data from cross-sectional
studies. Every study participant may serve as it’s own control, permitting identification of
heterogeneities, and the stochastic processes of interest can be more directly observed.
In the case of genotyping data, it is impossible to distinguish between absence of clones
and detection failure in cross-sectional studies. Correct interpretation of such data therefore
requires cohort data and a process-based statistical approach. A series of such methods for
the analysis of malaria genotyping data was developed over the years [37, 57, 58, 60]. A
short review of these is given below.

7.3.1 Short history of methods

Common to all the currently available process-based approaches to analysing genotyping
data [37, 57, 58, 60] is the distinction of different types of binary sequences. Depending
on the model, either a multinomial likelihood function is used, making use of the rela-
tive frequencies of binary patterns in the data, or a Poisson likelihood is used, making use
of absolute pattern frequencies. That either of the two can be used reflects an intimate
relationship between these distributions: a set of Poisson-distributed random variables is
multinomially distributed, conditional on their sum. In practice, this sum represents the to-
tal number of infections present in a host, which is not exactly known due to the detection
problem in falciparum malaria.
The first approach to analysing longitudinal genotyping data by Smith et al [58] uses all
binary patterns of length three where a clone was detected on the first occasion. The ex-
pected relative frequencies of these patterns are calculated depending on whether the clone
is detected at the two survey rounds which follow the first observation, e.g. the pattern 101
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arises with a probability (1 − r)(1 − q)(1 − r)q, using the clearance probability between
two observations, r, and the detectability q. This approach does not estimate a force of
infection, but limits the analyses to a subset of the data where an infection is known to be
present. Estimates of infection duration and detectability agree with estimates using later
developments, as shown in chapter 3. A potential problem of this approach is that the in-
clusion of binary patterns into the analysis depends on the detectability itself: data from
hosts with lower detectability yields fewer “triplets” where a clone is detected on the first
occasion. The effects of this variable selection bias on estimates is unclear. However, by
only looking at subsets of the data where an infection is known to be present the need to
make assumptions about the force of infection in the past does not arise.
The method of Smith & Vounatsou [60] for the first time simultaneously estimated the
force of infection along with infection duration and detectability, making use of the en-
tire dataset. A Hidden Markov Model is considered for every clone which appears in the
data at least once, and transition probabilities between presence and absence of a particular
genotype are derived from a continuous-time reversible catalytic model. A multinomial
likelihood function is used to fit the models to data. The high number of parameters made
fitting of the models challenging, even with MCMC, and it is not obvious how this method
could be extended to non-exponential distributions.
A different approach was chosen by Sama et al [37,57]: instead of predicting the expected
relative frequencies of binary patterns for each genotype separately, absolute frequencies
of binary patterns are considered. Which genetic marker is producing a particular binary
pattern can be ignored because only the sum of patterns is needed to evaluate the likeli-
hood function. The expected number of patterns in the data is determined using a model of
superinfection, represented by the differential equation dn

da = λ − µn, with the number n of
infections in a host of age a, the FOI λ and clearance rate µ.
In [123] Sama et al presented a statistical approach which allows modelling of infection
survival using parametric survival distributions, in contrast to the earlier methods, which
were limited to exponential distributions of infection duration. By use of a partial differ-
ential equation describing the age structure of the infection population within one host,
the expected relative frequencies of binary patterns are determined. However, this lead
to very complicated mathematical expressions, which prevented the method from being
used in practice. The approach developed in chapter 4 overcomes this limitation by using
a Poisson instead of a multinomial distribution as likelihood function, modeling absolute
numbers of infections instead of relative frequencies. This leads to considerably simpler
expressions for the expected pattern frequencies.

7.3.2 Directions of future development

With the available datasets and methodology a range of additional analyses can readily be
performed. However, since the method of chapter 4 is computationally costly, it is at the
moment not practical to use MCMC methods in order to investigate e.g. heterogeneity
in transmission, unless parallelization of the computer program is achieved. Rather, one
could follow the much simpler approach of splitting the data according to explanatories of
interest (e.g. MOI, geographical location).
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A major problem for analysis of datasets with low marker diversity is re-infection with the
same marker. This problem was encountered when attempting to analyse the dataset pre-
sented in chapter 6 using an immigration-death model. If the assumption that re-infection
does not occur is not fulfilled, parameter estimates are biased. In particular, detectability
estimates approach zero, because the statistical model interprets non-detection of an absent
marker that later appears again as a failure to detect it. Apart from explicit simulation of
the process of infection with different markers, and model fitting using MCMC, it is not
clear how this problem can be overcome.
Future developments of the immigration-death model presented in this thesis might con-
sider a Bernoulli differential equation 1 to explicitly model an effect of pre-existing infec-
tions on new ones.

In the absence of easily available animal models for research on falciparum malaria, molec-
ular epidemiological data represents one of the most important sources of information on
the within-host dynamics of P. falciparum, especially in the context of multiple concurrent
infections. Efforts to extract as much from these data as possible should therefore be made.
I hope that the present thesis may inspire future research in this direction by showing the
range of questions that can be approached through analysis of longitudinal genotyping data,
in conjunction with process-based statistical time-series models . . .

1Such a model of superinfection could be of the form dn
da = λ − µnβ, where n is the number of infections in

a host of age a, λ denotes the FOI, and µ the clearance rate. The positive real-valued parameter β describes the
degree of interaction between infections. This type of nonlinear differential equation is analytically solvable.
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Course, by Dr. Martin Röösli, Institute for Social and Preventive Medicine,
Bern, Switzerland

Technical
Skills • Programming: R, Winbugs, Java, C/C++, UNIX shell scripting, MySQL, SVN,

and others.
• Process-based mathematical and statistical modelling.
• Experience in implementation of numerical algorithms for statistical analysis.
• Applications: LATEX, Ms Office, OpenOffice, and others.

playing guitar, travellingHobbies

1998Other

Preparation and realization of a 3-month stay in a village near Bayanga, Central
African Republic (CAR), among Bayaka pygmies. Lived in a leaf hut, went on
net- and spear hunting trips. Perhaps the origin of an interest in tropical diseases.

2003-2005

Lost a father, travelled the world (two months in New Zealand, eight months
through Africa), found a wife, and the way back to science.




	Introduction
	Malaria
	Overview
	The history of malaria
	The biology of Plasmodium falciparum
	The epidemiology of Plasmodium falciparum

	Mathematical modeling of malaria
	Infection dynamics in the human population
	The parameters of infection dynamics
	The force of infection
	The duration of infection
	Detectability

	Molecular data
	The analysis of molecular data

	Objectives of the thesis
	The distribution of infection durations


	Detectability of Plasmodium falciparum clones
	Abstract
	Background
	Methods
	Study site and sample collection
	Genotyping
	Data analysis
	Models of detection
	Bias correction of detectability estimates

	Results
	Tests of proportion and correlation
	Model comparison
	Estimates of q

	Discussion
	Within-host dynamics
	Measurement of detectability
	Epidemiological significance of detectability

	Conclusions
	Appendix
	Maximum likelihood estimation of q


	The dynamics of natural Plasmodium falciparum infections
	Abstract
	Introduction
	Materials and Methods
	Field methodology
	DNA isolation and genotyping
	Data analysis 

	Results
	Discussion

	The distribution of Plasmodium falciparum infection durations
	Abstract
	Background
	Methods
	Study design and sample collection
	Genotyping
	Data preparation
	Models of infection dynamics
	Model equations
	Model implementation and parameter estimation

	Results
	Simulated data
	Estimates from the Ghanaian dataset

	Discussion
	Distribution estimates
	Validation
	The difference to malariatherapy data
	Limitations of the method

	Conclusions
	Appendix
	Exponential survival of infections
	Non-exponential survival of infections


	Effects of host age on clearance of malaria infections
	Abstract
	Background
	Methods
	Study design and sample collection
	Genotyping
	Data preparation
	Models of infection dynamics

	Results
	Force of infection
	Clearance of infections
	Detectability

	Discussion
	Force of infection
	Clearance of infections
	Detectability
	Time to near-elimination

	Conclusions

	Are all malaria parasites equal? Human Plasmodia compared.
	Background
	Methods
	Field survey and patients
	Laboratory procedures
	Data analysis

	Results
	Effect of repeated sampling on prevalence
	Effect of repeated sampling on detection of individual clones

	Discussion

	General discussion
	Review of chapters
	Results of the thesis
	Interpretation
	Virulence of P. falciparum
	Consequences for control and elimination

	Methodology
	Short history of methods
	Directions of future development


	Bibliography

