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Summary 
Cancer is a leading cause of death worldwide, accounting for 7.6 million, or ~13% of all 

deaths in 2008. The majority of cancers arise from epithelia. Breast cancer, originating from 

the mammary epithelium, is the most frequent cancer in women worldwide. Breast cancer 

detection and treatment at early stages is an effective measure of counteracting the number of 

deaths, however at later stages, cancer cells may spread from the primary tumor to secondary 

organs, a multistage process called metastasis. This process involves the dissemination of 

cancer cells from the primary tumor, entrance into the vascular system, extravasation and re-

growth (colonization) in the target organ. Metastasis is the actual cause of death in 90% of 

cancer patients. 

Breast cancer treatment is complicated by the existence of substantial biological 

heterogeneity between and within tumors: At least five different subtypes of breast cancer 

with variable response to treatment and outcome have been proposed. The biological 

differences between these tumor subtypes are mainly determined by the nature of the 

oncogenic hit(s) and the cell type in which transformation originally occurred. In addition to 

different tumor types, progressing tumors (and also their metastatic outgrowth) consist of 

individual tumor cells with varying features, which can be evoked by acquisition of 

cumulative genetic/epigenetic alterations and/or by differential stimulation by components of 

the nearby tumor microenvironment.  

These circumstances call for a better understanding of the underlying mechanisms that 

provide cancer cells with malignant features, such as the acquisition of a metastatic behavior 

and treatment resistance. 

One mechanism that endows cancer cells with several pro-metastatic features and 

treatment resistance is the epithelial-mesenchymal transition (EMT). EMT is a latent 

embryonic program that can be aberrantly reactivated in epithelial tumor cells during tumor 

progression. Activation of EMT-like programs in tumor cells leads to dissolution of cell-cell 

adhesions, a loss of polarity and an acquisition of migratory, invasive and stem-cell-like traits.  

Studies investigating the role of EMT in cancer have mainly employed a combination of 

different model systems for in vitro and in vivo experiments. Due to the lack of model 

systems that allow the study of breast cancer associated EMT in vitro and in vivo using the 

same cell line, I have established a stable cell line (Py2T) from a breast tumor of an MMTV-
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PyMT transgenic mouse. I show here that this epithelial cell line undergoes bona fide EMT 

under cell culture conditions when stimulated with the well-known EMT-inducer 

transforming growth factor β (TGFβ). TGFβ treatment of Py2T cells leads to downregulated 

expression of the epithelial marker E-cadherin and an upregulation of mesenchymal markers, 

concomitant with the induction of migratory and invasive properties. When orthotopically 

injected into mice, Py2T cells generate tumors that are highly invasive and display a 

mesenchymal phenotype characterized by the absence of E-cadherin expression, suggesting 

that these cells undergo spontaneous EMT-like changes in vivo. Interestingly, Py2T cells 

overexpressing a dominant-negative TGFβ-receptor, leading to a block of TGFβ 

responsiveness, also form tumors upon fat-pad transplantation, yet in these tumors a partial 

re-expression of E-cadherin can be observed, suggesting that TGFβ signaling contributes to 

the EMT phenotype in vivo. Together, my results show that the Py2T model system is a 

versatile tool to study EMT both in vitro and in vivo. 

The second project presented in this thesis aimed at the identification of critical 

transcription factors (TFs) that mediate the widespread changes in gene expression observed 

during EMT. A genome-wide bioinformatics analysis has uncovered that the DNA-binding 

motif of Tead transcription factors (MCAT motif) is present in a large number of promoters 

of EMT-regulated genes. Here I show that Tead transcriptional activity is increased during 

EMT. Moreover, the expression levels of several Tead family members are also upregulated 

during EMT, and my results demonstrate that elevated transcriptional activity of Tead2 is 

sufficient to induce EMT. Furthermore, inhibition or depletion of Teads attenuates the EMT 

process. Moreover, Tead2 levels also can control the subcellular localization of the Tead co-

activators Yap and Taz, a mechanism that possibly contributes to the increased Tead activity 

observed during EMT. I further demonstrate that Zyxin, a focal adhesion component and 

regulator of actin remodeling, which has previously been shown to be required for EMT-

induced migration, is a direct target gene of Tead2. Collectively, these results demonstrate an 

important regulatory role of Tead transcription factors in the EMT process. 
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1. General Introduction 

1.1 Cancer 

1.1.1 History and definition of cancer 

The origin of the term cancer dates back over 2,500 years and was first used by the 

Hippocratic school, where the prominent appearance of thick, dark veins on the surface of 

breast tumors were observed to appear like the limbs of a crab (Καρκίνος, Karkinos, greek 

for crab). Although difficult to interpret, documentations of what would nowadays possibly be 

identified as cancer reaches back to some of the first forms of documentation (Figure 1).  

 

 

Figure 1. Papyrus possibly describing a male breast cancer. 
This copy made in the 17th century b.c. of an older manuscript originally written during the period 3000-2500 b.c. (the 
„Pyramid“ age) was recovered by Edwin Smith in Luxor in 1862. The Hieroglyphs depicted are part of a five meters long roll 
describing several cases of illnesses, which could have been a physician’s hand- book, outlines of lectures, or a student’s 
notebook. Depicted is case 45, which was translated in 1930 by Breasted (Breasted, 1930): Upper hieroglyphs: “Instructions 
concerning bulging tumors on the breast”. Followed by “If thou examinest a man having bulging tumors on his breast, thou 
findest that swelling have spread over his breast; if thou puttest thy hand upon his breast upon those tumors, thou findest 
them very cool, there being no fever at all when thy hand touches him; they have no granulation, they form no fluid, they do 
not generate secretions of fluid, and they are bulging to thy hand . . . . Swellings on his breast are large, spreading and hard; 
touching them is like touching a ball of wrappings; the comparison is to a green hemat-fruit, which is hard and cool under thy 
hand, like touching those swellings which are on his breast”. The most that can now be said, is that this was a possible case of 
cancer (Weiss, 2000). 
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Miscellaneous and ever changing theories had been postulated by different cultures of 

mankind about the origins and treatment of cancer (Weiss, 2000). The establishment of the 

concept that living organisms are composed of cells that can divide and therefore are able to 

multiply led to the understanding that cancers originate from somehow aberrantly multiplying 

cells of the own body, an idea pioneered by the German physicist Rudolf Virchow (Virchow, 

1871). An understanding of why cells break free of their normal behavior and turn into cancer 

cells has only been elucidated in the last decades. Today we know that cancer is a disease of 

cells containing dysregulated genes and molecules, resulting in an imbalance between growth 

inhibitory signals and growth stimulatory signals. These imbalances ultimately result in 

abnormal, uncontrolled cell division (Neoplasia, greek for “new growth”). 

Cancers can originate in virtually all tissues, including the blood. It should be specified that 

cancer is a general term encompassing a group of at least 100 diseases, with every cancer type 

originating from different tissues having its own characteristics and peculiarities. Cancers of 

the same original tissue are also diverse in their nature, and these differences are largely 

determined by the difference in nature of the underlying oncogenic event. Usually, cancers 

originate from just one single cell that then can give rise to the entire neoplastic tissue. Further 

genetic modifications of these cells, changes in differentiation state and cross-talk with 

normal cells and other surrounding factors further contributes to the diversity and complexity 

of cancers.  

The majority of human tumors (or neoplasms) arises from epithelia, and can be benign or 

can be(come) malignant. Benign tumors remain confined to their location within the tissue 

they have originated. Malignant tumors can invade surrounding tissue and spread to different 

sites in the body via the blood and/or the lymphatic system, a process termed metastasis. 

These secondary metastatic outgrowths are usually the actual cause of death, rather than the 

primary tumors, which can often be removed by surgery. Importantly, only malignant tumors 

are correctly referred to cancers. Cancers of epithelial origin are termed carcinomas, which 

are responsible for over 80% of cancer deaths in the western world (Weinberg, 2006). 

According to the World Health Organization (WHO), cancer is one of the leading causes of 

death worldwide, accounting for 7.6 million deaths (around 13% of all deaths) in 2008. 
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1.1.2 Hallmarks of Cancer 

Despite the above-described diversity among cancers, some features are common to most 

human cancers. These features are prerequisites that allow tumors to grow and progress to 

metastatic disease. A summary of such features, or hallmarks of cancer according to Hanahan 

and Weinberg (Hanahan and Weinberg, 2000; 2011), are briefly delineated below. 

Sustained proliferative signaling 

One general property of cancer cells is that they display a reduced or even completely 

abolished requirement of growth stimulatory signals for active proliferation. Normal cells rely 

on these stimuli to remain or enter into an active cell cycle. Such stimuli can come from the 

extracellular environment, other neighboring cells or are systemically distributed. A number 

of strategies are used by cancer cells to sustain proliferation the appropriate signals are 

limited: for example, overexpression of growth-factor receptors may lead to sufficient 

mitogenic signaling in response to low levels of growth factors, which would otherwise not 

suffice to elicit proliferative responses. Similarly, mutation of these receptors or in 

downstream elements of growth stimulatory pathways that lead to constitutive activation of 

signaling may allow proliferation in the absence of ligands. Conversely, cancer cells may 

aberrantly produce growth stimulatory factors to which they can respond themselves, which is 

rarely the case in normal cells. A large number of cancers of different origins display such 

alterations converging on activation of the mitogenic SOS-Ras-Raf-MAP kinase or the PI-3 

Kinase/Akt pathways. Yet other strategies of cancer cells involve disruption of negative 

feedback loops, which are activated in normal cells upon mitogenic signaling in order to 

dampen these signals and to ensure well controlled transient signaling instead of 

overshooting. Examples are the disruption of negative feedback loops in the MAP kinase 

pathway mediated by Ras GTPases that directly counteract Ras activity, or loss of PTEN 

function, which normally dampens PI-3 kinase signaling. In addition, it has been observed 

that normal cells overstimulated by proliferative signals can enter into a quiescent state, while 

cancer cells sometimes loose the ability to do so to, thus “blindly” executing the given 

commands with fatal outcome. 
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Evasion of growth suppressors 

Normal cells contain sensory mechanisms that mediate anti-proliferative signaling to 

ensure tissue homeostasis. Anti-proliferative signals are also elicited in situations where 

further proliferation would be detrimental due to cellular stress, lack of nutrients or DNA 

damage. Signals of this nature typically converge on two central “gatekeeper” proteins: cell 

extrinsic signals are usually directed onto the retinoblastoma protein pRB, while cell intrinsic 

cues to stop proliferation are propagated to p53. These two tumor suppressor proteins seem to 

be woven into a complex, situation- and tissue- specific web of sensory mechanisms in a 

functionally redundant manner. Upregulated and activated p53 transcriptionally upregulates 

the cell cycle inhibitor p21, which inhibits G1/S transition of the cell cycle by inhibition of 

Cyclin/CDK2 complexes. The anti-proliferative action of pRB is also affected by p21 

expression: p21 inhibits pRB phosphorylation indirectly by inhibition of cyclin/CDK 

complexes, which normally phosphorylate pRB. Unphosphorylated pRB binds to and 

sequesters E2F transcription factors away from target promoters of cell cycle progression 

genes, thereby inhibiting cell cycle progression. Similarly, transforming growth factor β 

(TGFβ) has been shown to potently inhibit proliferation by blocking c-myc expression, which 

prevents cell cycle arrest, and by induction of p15INK4B and p21. In cancers, both p53 and/or 

pRB inactivating mutations or loss can result in an evasion from growth suppressive stimuli. 

The tumor suppressive functions of TGFβ can be circumvented in tumor cells by either 

disruption of the core components like TGFβ receptors or by inactivation of the immediate 

downstream mediators like Smad4. On the other hand, only the tumor suppressor arm of the 

highly branched TGFβ pathway can be inactivated, leaving the core pathway and therefore 

the other downstream activites intact, which are well established to contribute to tumor 

progression. Another growth suppressive mechanism inherent to normal cells underlies their 

ability to „sense“ the contact of neighboring cells, instructing them to stop growing once the 

tissue reaches its correct size. This phenomenon of contact inhibition can also be observed 

with cultured cells in a dish (e.g. epithelial cells or fibroblasts), which will stop proliferating 

once the entire surface is covered and neighboring cells contact each other. Transformed cells 

often loose the ability to arrest proliferation under these circumstances and hence form foci 

(in a dish) or overgrow to form tumors. 

 



  GENERAL INTRODUCTION 

 

___________________________________________________________________________ 

 5 

Resisting cell death 

Virtually all cells of the body are able to undergo cell “suicide” or apoptosis. This process 

is a highly ordered cellular program triggered by various physiological stresses and can also 

occur in response to elevated oncogenic signaling, therefore acting as a safeguard mechanism 

preventing the induction of cancer. The apoptotic machinery is composed of two parts. A 

sensing part, which monitors both the extracellular (e.g. Fas/Fas-ligand) and the intracellular 

environment (e.g. p53), and decides whether a cell should live or die. The executing part is 

responsible for degrading the cell in an orderly way. Whether apoptosis is executed depends 

on the balanced expression levels of the pro- (e.g. Bax, Bim) and anti-apoptotic (e.g. Bcl-2) 

proteins of the Bcl-2 family. The anti-apoptotic members bind and inhibit the activity of their 

apoptotic counterparts, which sit in the mitochondrial membrane. When activated, the pro-

apoptotic members disrupt the mitochondrial membrane resulting in cytochrome-c release 

into the cytoplasm. This in turn activates a cascade of proteolytic caspases that execute the 

apoptotic program and degrade cellular components. Cancer cells have been shown to 

circumvent the induction of apoptosis in a multitude of ways, reflecting the importance of the 

apoptotic program as a barrier for cancer development. One of the most frequently observed 

ways to escape from apoptosis is the inactivation of p53, which acts as a critical sensor of 

DNA damage and whose activation induces either cell cycle arrest or apoptosis. 

Consequently, p53 is functionally inactivated in more than 50% of human cancers. Other 

strategies to circumvent apoptosis induction involve the misregulation of pro- or anti-

apoptotic proteins, including the members of the pro-apoptotic Bcl-2 family, in the 

appropriate direction, or disruption of the FAS death signaling circuit. 

Limitless replicative potential 

The three hallmarks of cancer described above will usually not be sufficient to form a 

tumor, because most mammalian cells have a limited lifespan, clocked by an intrinsic, cell-

autonomous program working independently of the above-mentioned signaling pathways. 

With each completed cell cycle, the chromosomal ends (telomeres) are shortened by 50-100 

nucleotides. Cultured untransformed human cells may divide 60 – 70 times until telomeres are 

blunted. At this stage, a scrambling of the karyotype and crisis occurs, in which almost all 

cells undergo senescence and/or apoptosis. Under cell culture conditions, an estimated 1 in 

107 cells however will survive the crisis and be “immortalized”, i.e. be able to divide without 
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limit. Most malignant cells display telomere maintenance, providing limitless growth 

potential and protection from crisis and apoptosis. Telomere maintenance is usually achieved 

by telomerase upgregulation. Therefore, the lifetime “countdown” of normal cells represents a 

barrier to cancer development and has to be overcome by cancer cells. 

Sustained angiogenesis 

During tissue and organ development, the formation of new blood vessels concomitant 

with growth of the respective organ or tissue is a prerequisite, and ensures that cells are 

supplied with nutrients and oxygen. At the same time, a well-developed vascular system also 

allows disposal of waste products and carbon dioxide. Neoplasms at the earliest stages lack 

the ability to encourage vessel recruitment by sprouting angiogenesis from the pre-existing 

surrounding vasculature, and must go through an “angiogenic switch” that allows sustained 

activation of angiogenesis. Only after an angiogenic switch a progression to larger tumor size 

is possible. Angiogenesis is balanced by both pro- and anti-angiogenic factors that signal via 

transmembrane receptors expressed on blood endothelial cells. Vascular endothelial growth 

factor A (VEGF-A) and Thrombospondin 1 (TSP-1) are the key representatives of the pro- 

and anti-angiogenic category, respectively. Therefore, one obvious strategy to overcome the 

cancer growth barriers of low oxygen and nutrients during the establishment of cancers is up- 

or downregulation of pro- and antiangiogenic factors, respectively. Some oncogenes like Ras 

and Myc can themselves upregulate pro-angiogenic factors, and are therefore an example for 

how some factors may influence multiple hallmarks of cancer at the same time. 

Activating invasion and metastasis 

Most human cancers progress to a stage where cells are dissociating from the primary 

tumor to spread to different sites in the body, where they will colonize the foreign tissue to re-

grow as secondary tumors. This multistage process is called metastasis, which can be divided 

into a series of steps:  First, cancer cells must break away from the primary tumor mass and 

reach the circulation, which provides a route to distant sites. To be able to do so, cancer cells 

need to loosen their cell-cell adhesions and acquire invasive and migratory properties. A 

process termed epithelial-mesenchymal transition (EMT) is implicated in facilitating these 

first steps, and possibly also later steps. Having survived the transport to secondary organs via 

the circulation, and having mastered the entrance into distant tissues, cancer cells may either 

rest at the new sites as clusters of a few cells residing in a dormant state (micrometastasis) or 
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they may re-grow. To be able to develop macroscopic tumors at the foreign sites (i.e. 

successful colonization), cancer cells have to adapt to these new sites, essentially requiring all 

the hallmarks described above, however in a different background with differing demands. As 

of yet, however, the mechanisms involved in colonization are poorly understood. 

The signaling circuitry of normal cells that is reprogrammed in cancer cells to achieve the 

above discussed hallmarks of cancer can be portrayed as integrated signaling circuits 

consisting of interlinked subcircuits, each of which determining a subset of biological features 

that, when reprogrammed, make up the hallmarks of cancer cells (Figure 2). 

 

 

Figure 2. Cellular circuitry reprogrammed in cancer cells. 
A simplified scheme showing the signaling pathways that operate in normal cells to regulate the balance of growth and 
apoptosis. Reprogramming of separate subcircuits, grouped according to their contribution to biological functions, can lead to 
acquisition of one or several hallmarks of cancer cells. Taken from (Hanahan and Weinberg, 2011). 
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1.2 Breast cancer 

1.2.1 The normal breast 

The normal breast is composed of a number of milk-producing terminal units (termed 

terminal ductal lobular units (TDLUs) in humans or terminal end buds (TEBs) in the mouse) 

that lead into a branched network of milk ducts converging at the nipple. These epithelial 

structures, in their entirety forming the mammary gland, are embedded in connective tissue 

mainly composed of adipocytes (fat cells) (Figure 3A). 

 

 

Figure 3. The mammary gland. 
(A) Schematic representation of the human and mouse mammary gland. (B) Cross-sectional view of a duct (top) and a 
terminal end bud (bottom). (C) Hierarchical differentiation model of the mammary gland. Cell surface markers used to 
isolate subsets of cells at various differentiation stages are shown in red (human) and blue (mouse). Schemes are taken from 
(Visvader, 2009). 
 

At a cellular level, ducts and end units are mainly composed of two separate cell types: an 

inner layer of luminal epithelial cells and an outer layer of contractile myoepithelial/basal 

epithelial cells, surrounded by a basement membrane (Figure 3B). It is becoming increasingly 
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clear that the mammary gland is developed in a hierarchical manner, much like the 

hematopoietic system. The two main cell types of the mammary epithelium have been found 

to be generated from adult mammary stem cells (MaSCs) that differentiate along the luminal 

or basal lineage via bipotential progenitors to give rise to differentiated luminal and basal 

cells (Visvader, 2009); (Figure 3C). 

1.2.2 Breast cancer subtypes 

Classification of breast cancer subtypes 

Breast cancer is a generic term that encompasses neoplasms of the normal breast tissue 

which are of considerably varied type. These different subtypes of breast tumors have distinct 

disease courses and react differentially to treatment. In order to deal with this complexity, 

classification schemes are used which categorize similar tumor types according to histological 

and immunopathological features, and, more recently, also by their gene expression profiles. 

These classification schemes are summarized hereafter.  

Classical pathology segregates breast tumors according to overall morphology and 

structural organization: Invasive ductal carcinomas (IDCs) are the most commonly identified 

(~75% of all cases), followed by invasive lobular carcinoma (ILC); (~10% of all cases). The 

remaining types not listed here are referred to as „special types“. In general, these subtypes 

can be correlated with disease prognosis. Immunopathological categorization as used in 

clinics nowadays, segregates tumor types according to expression of certain markers, which 

helps to predict prognosis and to choose appropriate treatment. The most important markers 

used are estrogen receptor (ER), human epidermal receptor 2 (HER2, also called ErbB2 or 

Neu) and progesterone receptor (PR). Tumors that are ER-positive may respond to anti-

estrogen treatment, while HER2-positive tumors can be treated with targeted therapies (e.g. 

Trastuzumab, an antibody targeting HER2). Tumors are classified according to marker 

combinations: ER+ (ER+/HER2-), HER2+ (ER-/HER2+), triple-negative (ER-/PR-/HER2-) 

and triple-positive (ER+/PR+/HER2+). The ER+ cases have the best outcome, while triple-

negative cases have the worst prognosis (Bertos and Park, 2011).  

Gene expression profiling of breast tumors using microarray technology has led to 

identification of transcriptional signatures and therefore molecularly defined subtypes (Perou 

et al., 2000; Sørlie et al., 2001; Weigelt et al., 2010; Colombo et al., 2011). These partially 
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recapitulate the immunopathological subtypes, however also allowed refined classifications. 

The main molecular subgroups defined have been termed luminal A, luminal B, basal-like, 

HER2, and normal breast-like. Luminal A and B subtypes are only slightly distinct and 

contain ER-positive cases, where tumors of subtype A are characterized by higher expression 

of ER-regulated genes, lower proliferation and improved overall outcome with respect to 

tumors of subtype B. Luminal subtypes, in comparison to HER2 and basal-like subtypes, are 

generally associated with a good prognosis. The remaining three subtypes are ER-negative. 

The HER2 subtype is similar to HER2-positive tumors identified by immunopathological 

means, and the very heterogeneous, most aggressive basal-like subtype corresponds to triple-

negative tumors. The normal-like subgroup resembles expression profiles of normal breast 

tissue. Another subgroup within the ER-negative group of tumors, called claudin-low, has 

been defined recently and was linked to metaplastic breast cancers belonging to the above 

mentioned “special types” of tumors according to histological analyses (Hennessy et al., 

2009). The claudin-low subtype is characterized by low expression of tight junction and 

adhesions molecules (e.g. several claudins, occludins and E-cadherin) and diminished 

expression of luminal differentiation markers. Furthermore, the gene expression profile of this 

subtype correlates with gene signatures of epithelial-mesenchymal transition (EMT) and 

putative breast cancer stem cells (Prat et al., 2010a; Taube et al., 2010; Herschkowitz et al., 

2012). 

Origins of breast cancer subtypes  

Two main mechanisms have been proposed that may lead to heterogeneity between tumors 

(Visvader, 2011). The genetic/epigenetic model suggests that the nature of the oncogenic 

hit(s) determines tumor phenotype (Figure 4A). On the other hand, the cell-of-origin model 

states that the same oncogenic hit in distinct cells with different differentiation status may 

lead to tumors with different phenotypes (Figure 4B). Interestingly, gene expression profiles 

of different subtypes of breast cancers overlap with those of normal mammary cells at distinct 

differentiation stages (Lim et al., 2009; Prat and Perou, 2009), allowing the assignment of a 

potential cell of origin to each tumor subtype. Figure 4C illustrates these potential 

relationships. 
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1.2.3 Intratumoral heterogeneity 

The classification of tumors into subtypes should not mislead from the fact that 

considerable heterogeneity of tumor cell phenotypes within the same tumor exists 

(intratumoral heterogeneity). Cells within a tumor can be different in size, morphology and 

cell-cell interaction, marker expression, proliferation rate, metastatic properties, and 

sensitivity to therapy, thereby complicating treatment. As tumors progress, this heterogeneity 

generally increases. Intratumoral heterogeneity can be created by several means. At least two 

models are currently discussed, which are summarized below. 

  

 

Figure 4. Origins of breast cancer subtypes. 
(A) In the genetic/epigenetic mutation model, the nature of the cancer-initiating mutations primarily determines the 
phenotype of the tumor, such that different mutations result in different tumor morphology. (B) In the cell-of-origin model, 
transformation of cells residing in distinct differentiation stages results in different tumor subtypes. (A) and (B) are from 
(Visvader, 2011). (C) Similarities between breast tumor subtypes and cells in distinct stages of mammary lineage 
differentiation as determined by gene expression profiling. Taken from (Prat and Perou, 2009). 
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The clonal evolution model 

Heterogeneity elicited by genetic/epigenetic changes in tumor cells can be described by the 

„clonal evolution model“ initially proposed by Nowell in 1976 (Nowell, 1976). According to 

this model, a tumor arises because a single cell acquires one or a few genetic/epigenetic 

alterations, allowing it to acquire one or several of the hallmarks that are required for tumor 

initiation as described above. During tumor progression, tumor cells acquire increasing 

amounts of genetic/epigenetic modifications, facilitated for example by increased genomic 

instability. Some of these mutations provide advantages for further growth, and others result 

in a disadvantage. Cells carrying disadvantageous alterations are negatively selected and those 

that have gained advantageous changes are positively selected according to the laws of 

Darwinian evolution. These evolutionary mechanisms eventually result in a tumor that is 

composed of an array of heterogeneous cell clones, each carrying different genetic/epigenetic 

changes provoking different phenotypes. 

The cancer stem cell model 

Alternatively, tumor heterogeneity can also be generated by other means. An underlying 

concept that has emerged in recent years is that breast and other solid cancers may contain 

tumor cells with stem cell-like properties, similar to leukemic malignancies (Al-Hajj et al., 

2003; Campbell and Polyak, 2007; Polyak, 2007; Visvader and Lindeman, 2008). According 

to the proposed „cancer stem cell“ model, tumors are organized in a hierarchical manner 

much like normal tissues, where indefinitely self-renewing adult tissue stem cells differentiate 

into phenotypically diverse progenitor cells that make up the bulk of the tumor, thereby 

creating intratumoral heterogeneity (Blanpain et al., 2007; Clevers, 2011).  

Notably, by definition only the cancer stem cells are able to initiate new tumors when 

transplanted into immunocompromised mice because of their self-renewal properties, and are 

therefore regarded as the drivers of tumor growth, whereas their descendants are generally 

non-tumorigenic because of differentiation and associated loss of self-renewal capacity. It is 

also important to note that the cancer stem cell concept assumes the presence of stem cells in 

tumors but does not address the provenance of these stem-like cells. Cancer stem cells could 

emerge by transformation of normal tissue stem cells. In this case the resulting cancer stem 

cells would at the same time be the tumor cell of origin. Alternatively, stem-like cells may 

also arise from differentiated tumor cells by secondary acquisition of stemness. The latter 
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possibility may involve intrinsic factors as for example additional genetic/epigenetic lesions, 

but can also be influenced by external cues from the microenvironment. For example, recent 

evidence suggests that EMT can be a mechanism that enhances stemness (Mani et al., 2008; 

Morel et al., 2008; Asiedu et al., 2011). This example indicates that the clonal evolution 

model and the cancer stem cell model do not have to be mutually exclusive, and that 

combinations of those two models may be at work to create the heterogeneity observed within 

individual tumors (Clevers, 2011; Visvader, 2011). 

1.2.4 The tumor microenvironment 

A unified concept of not only breast cancer but of all solid cancers is not possible without 

considering the other mayor constituents of tumors apart from the cancer cells themselves. 

These other constituents are collectively referred to the tumor microenvironment, which 

includes various cell types like endothelial cells making up the blood- and lymphatic system, 

pericytes that cover blood vessels, infiltrating immune cells and tumor-associated fibroblasts, 

as well as the complex proteinaceous space between cells, the extracellular matrix (ECM). All 

of these constituents are reciprocally influencing each other as well as the tumor cells to 

promote or inhibit tumor growth and progression in complex ways. Examples are paracrine 

signaling, signaling by cell-cell interactions and cell-matrix interactions, sequestering of 

signaling molecules by ECM proteins, activation of signaling molecules by secreted 

proteases, immune surveillance and so on. In addition, the composition and activities of the 

tumor environment are significantly changing during tumor progression, adding another layer 

of complexity to the tumor “ecosystem”, which is one of the reasons that microenvironmental 

regulation of tumor growth and progression is only beginning to be understood (Joyce and 

Pollard, 2009; Sleeman et al., 2012). One well-studied example of microenvironmental 

regulation however is the ability of microenvironmental factors to induce an epithelial-

mesenchymal transition in tumor cells, which is discussed below. 
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1.3 Epithelial-mesenchymal transition (EMT) 

1.3.1 EMT is context-dependent 

The EMT concept 

EMT is a latent embryonic program that encompasses plastic changes in phenotype (Figure 

5). During EMT, epithelial cells loose their cell-cell adhesions and apical-basal polarity, adopt 

a mesenchymal appearance with front-rear polarity, produce increased amounts of 

extracellular matrix and acquire migratory and invasive properties. The transition is 

accompanied by a replacement of the epithelial intermediate filament network that is based on 

cytokeratins by vimentin filaments, along with the remodeling of cortical actin in epithelial 

cells into stress fibers in mesenchymal cells (Nieto, 2011). The prototypical component of 

epithelial adherens junctions, E-cadherin, is downregulated and replaced by the mesenchymal 

N-cadherin, an event termed “cadherin switch” (Cavallaro and Christofori, 2004). 

 

 
Figure 5. Phenotypic hallmarks of the Epithelial-mesenchymal transition. 
Schematic drawing showing the conversion of epithelial cells (top left) into mesenchymal cells (top right) during EMT. 
Hallmark characteristics of each state are described in the bottom panel (left and right), and the changes occurring during 
EMT are indicated in between (middle). Text is color-coded and refers to the colors used in the drawing. 
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Developmental EMTs 

Classical EMT is observed at several stages during early development, where it allows 

dispersion of cells in the embryo. The first event of EMT occurs at the gastrulation stage, 

where cells of the primitive streak undergo EMT and leave the epithelial layer to form 

endoderm and mesoderm, while the remaining cells not undergoing EMT form the ectoderm. 

Thus, EMT is necessary to produce the three germ layers. Later in development, EMT is 

required for formation of neural crest cells, which delaminate from the neural tube and 

migrate to distant sites to differentiate into various specialized cell types such as bone or 

pigment cells (Acloque et al., 2009). In the adult, EMT is transiently activated in 

inflammatory contexts and tissue wounding, and produces mesenchymal cells/fibroblasts 

associated with tissue repair from epithelial cells. Chronic inflammation can result in 

sustained activation of EMT and the continued generation of extracellular matrix-producing 

fibroblasts, leading to excess deposition of matrix that eventually results in organ destruction 

(Kalluri and Weinberg, 2009). 

Oncogenic EMT 

Most important for this work is the observation that similar changes in epithelial phenotype 

and migratory/invasive behavior have also been observed in cancer cells (Thiery, 2002; 

Klymkowsky and Savagner, 2009), including breast cancer (Trimboli et al., 2008; 

Tomaskovic-Crook et al., 2009). A reactivation of the EMT program or at least a partial 

activation of some features of EMT in cancer cells (oncogenic EMT), is thought to provide 

cancer cells with the ability to leave the primary tumor, to invade the surrounding tissue and 

to enter the vascular system, thereby facilitating the first steps in the metastatic cascade 

(Chaffer and Weinberg, 2011). It is envisioned that, once cancer cells arrive at distant sites, a 

secondary outgrowth involves re-differentiation into an epithelial phenotype (MET), as 

metastatic lesions usually mimic the phenotype of primary tumors (Brabletz et al., 2005). 

Additionally, oncogenic EMT has been linked to resistance to chemo- and radiation therapy, 

evasion from immune-surveillance, evasion from apoptosis, self-renewal and resistance to 

treatment (Singh and Settleman, 2010; May et al., 2011; Tiwari et al., 2012). Because EMT is 

a transient process and in addition may involve only a few cells at once, signs of EMT have 

been difficult to detect in human tumor samples by standard pathological procedures. 

Importantly, oncogenic EMT rarely represents the full EMT like it is observed during 
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organism development (Lee et al., 2006; Klymkowsky and Savagner, 2009). Rather, through 

reactivation of “subroutines” of developmental EMT, a variable number of processes and 

phenotypic subsets are activated during oncogenic EMT. For example, it is often observed 

that parts of tumors with a mesenchymal appearance are still positive for epithelial 

cytokeratins, like cytokeratin 8/18, while concomitantly expressing mesenchymal markers 

like vimentin (Derksen et al., 2006; Damonte et al., 2007; Creighton et al., 2009; McCoy et 

al., 2009; Cardiff, 2010; Prat et al., 2010a). 

EMT in breast cancers 

EMT in human breast cancer appears to preferentially occur in distinct subtypes, namely 

within the heterotypic triple-negative or basal subgroup (Sarrió et al., 2008). Recent further 

stratification of the basal-like subgroup by transcriptional profiling uncovered that EMT 

signatures can be found in rare but highly aggressive metaplastic type and claudin-low type 

breast cancers of the basal-like subgroup (Hennessy et al., 2009; Taube et al., 2010; Prat et al., 

2010a). Interestingly, cells undergoing EMT-like changes in human tumors, as determined by 

gene expression profiles, do not always display the same cellular phenotypes and metastatic 

behavior as cells that undergo EMT in murine breast cancers: the formation of highly invasive 

“EMT-tumors” characterized by spindloid appearance of tumor cells has been documented in 

many mouse models of breast cancer, while in most human breast cancers, spindloid cells 

seem to be less apparent, even though their gene expression profiles may overlap with EMT 

signatures and cell express mesenchymal markers (Cardiff et al., 2000; 2011). Additionally, 

spindle cell EMT tumors in mice have been observed to be only locally invasive and have not 

been observed to metastasize (Cardiff, 2010), while EMT in human breast cancer has been 

correlated with metastasis and poor prognosis (Sarrió et al., 2008; Hennessy et al., 2009; 

Taube et al., 2010). The reason for this apparent discrepancy between species is currently not 

known. 

1.3.2 Mediators of EMT 

Numerous mediators of EMT have been uncovered, many of which are functionally 

conserved between oncogenic and developmental EMTs (Micalizzi et al., 2010; Drasin et al., 

2011; Takebe et al., 2011). The main players identified thus far that control and execute the 

EMT program range from a plethora of signaling molecules to various transcription factors 
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and some microRNA families, as well as molecules composing structural components like 

adherens junctions and polarity complexes. 

Ε-cadherin and EMT 

Perhaps the most critical player and also marker of EMT is the adherens junction 

component E-cadherin, encoded by the CDH1 gene. A loss of E-cadherin mediated cell-cell 

adhesion in epithelial cells, by either delocalization from adherens junctions via endocytosis 

(Janda et al., 2006) or transcriptional inactivation by transcriptional repressors (Thiery et al., 

2009) or promoter hypermethylation (Polyak and Weinberg, 2009), is sufficient to induce 

EMT (Perl et al., 1998; Onder et al., 2008). Moreover, loss of CDH1 heterozygosity occurs in 

invasive lobular carcinoma, which contains highly invasive tumor cells infiltrating the tumor 

stroma (Vos et al., 1997). Invasive lobular carcinoma is phenocopied in p53 null breast cancer 

mice with conditionally inactivated E-cadherin (Derksen et al., 2006). The loss of E-cadherin 

leads to activation of numerous signaling events, a prototypical one being the release of E-

cadherin associated β-catenin into the cytoplasm, resulting in activation of the canonical Wnt 

pathway (Cavallaro and Christofori, 2004). Not surprisingly, a number of E-cadherin 

transcriptional repressors are also implicated in EMT.  

Transcription factors and EMT 

The zinc-finger transcriptional repressors Snail1, Snail2, Zeb1 and Zeb2 and the basic 

helix-loop-helix repressors E12/E47 and Twist can directly repress E-cadherin transcription 

by binding to palindromic E-boxes (CANNTG) in the CDH1 promoter (Peinado et al., 2007). 

Α plethora of signaling molecules is known to be sufficient to induce EMT via signaling 

through their cell surface receptors. These signals mainly converge on the upregulation of the 

above mentioned “master transcription factors”. These signaling molecules include 

transforming growth factor β (TGFβ), epidermal growth factor (EGF), fibroblast growth 

factor (FGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF) and platelet-

derived growth factor (PDGF). Other signaling pathways capable of inducing EMT include 

the Notch, Hedgehog and Wnt pathway (Thiery and Sleeman, 2006; Sleeman and Thiery, 

2011). 
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1.3.3 TGFβ-induced EMT 

The dual role of TGFβ in cancer 

TGFβ is a ubiquitously expressed cytokine with a diverse spectrum of roles in tissue 

development, differentiation and homeostasis. In normal tissues, TGFβ exerts a tumor 

suppressive effect by inhibiting proliferation. However, during tumor progression, cancer 

cells frequently acquire resistance to TGFβ mediated cytostasis, while remaining responsive 

to other aspects of TGFβ signaling, such as the induction of EMT, a functional switch known 

as the „TGFβ paradox“. Therefore, TGFβ exerts a dual role during tumor progression. In 

normal tissue and in early lesions, TGFβ acts as a tumor suppressor, while at later stages, 

when cancer cells have lost responsiveness to the tumor suppressive arm of TGFβ-signaling, 

it contributes to tumor malignancy, in part by induction of EMT (Massagué and Gomis, 2006; 

Massagué, 2008). 

The TGFβ pathway 

Mammals have three genes encoding highly similar TGFβ-ligands (TGFβ 1-3), which can 

bind to three receptors (TβR-I to III). TβR-III is usually the most highly expressed and 

functions as an accessory receptor, which binds and modulates TGFβ function, however it 

lacks enzymatic activity. TβRI and II harbor a Ser/Thr kinase in their cytoplasmic domains 

and are enzymatically active. Upon ligand binding, TβR-II transphosphorylates TβR-I, which 

leads to binding of the intracellular receptor Smad (R-Smad) proteins Smad2 and Smad3 and 

activation by phosphorylation. Activated Smad2 and Smad3 are then complexing with the 

common Smad (Co-Smad) Smad4, which enables the translocation of the Smad2/3/4 complex 

into the nucleus, where it binds to gene promoters and regulates their transcription. This 

pathway is termed the „canonical“ TGFβ pathway (Feng and Derynck, 2005). Non-canonical 

(i.e. Smad2/3-independent) signaling is also elicited upon ligand binding to TGFβ-receptors, 

and includes activation of the mitogen activated protein kinases (MAPK) ERK1/2, p38 and 

JNK, activation of the PI3K-AKT-mTOR pathway, activation of the NF-κΒ pathway and 

activation of the small GTP-binding proteins RhoA, Rac1 and Cdc42 (2009). 

TGFβ stimulation induces EMT 

EMT induction by TGFβ has first been described by Derynck and colleagues in 1994 

(Miettinen et al., 1994). Following this discovery, TGFβ has been established as a master 
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inducer of EMT in a variety of contexts (Zavadil and Böttinger, 2005; Taylor et al., 2010; 

Moses and Barcellos-Hoff, 2011). To achieve EMT activation and progression, TGFβ 

signaling must coordinate the various phenotypic changes occurring during EMT, such as the 

loss of epithelial junctions, the remodeling of the cytoskeleton and the gain in migratory and 

invasive properties by controlling a complex regulatory network of effectors downstream of 

the activated canonical and non-canonical pathways. Some of the principal mechanisms 

involved are delineated hereafter. 

Canonical TGFβ signaling calls up EMT transcription factors 

A critical part of this regulatory network that drives EMT are the Snail, ZEB and bHLH 

families of master transcription factors (TFs) of EMT, which are upregulated in response to 

TGFβ signaling either through a Smad-dependent mechanism or indirectly. In turn, these TFs 

repress epithelial gene expression and concomitantly activate mesenchymal gene expression 

through activation of downstream transcriptional networks (Figure 6).  

 

Figure 6. Canonical TGFβ signaling and downstream effects. 
In response to TGF-β, the receptor associated Smad2 and 3 are activated, and form complexes with the common Smad4. This 
complex then regulates the transcription of target genes through interactions with other DNA binding transcription factors. 
Activated Smads mediate transcriptional regulation through three families of transcription factors, resulting in repression of 
epithelial marker gene expression and activation of mesenchymal gene expression. Taken from (Xu et al., 2009). 
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The Snail family consists of Snail1 (initially called Snail), Snail2 (Slug) and the less 

characterized Snail3 (Smuc) (Herreros et al., 2010). Snail1 upregulation during EMT is 

directly mediated by Smad3, which binds to the Snail1 promoter and stimulates its 

transcription (Hoot et al., 2008). In addition, Snails are regulated at the post-transcriptional 

level via phosphorylation by GSK3, which regulates their stability and nuclear-cytoplasmic 

localization (Barrallo-Gimeno and Nieto, 2005). The zinc-finger proteins of the Snail family 

act as transcriptional repressors, and as such they mediate transcriptional downregulation of 

E-cadherin by recruitment of co-repressors such as HDACs, thereby inducing EMT. In 

addition, Snail represses the expression of various other cell-cell junction proteins like several 

claudins and occludins, as well as the polarity complex component Crumbs3 (Peinado et al., 

2007). The ZEB family of transcriptional repressors consists of two members in vertebrates: 

ZEB1, (also known as δEF1) and ZEB2 (also known as SIP1). Transcriptional repression by 

ZEBs is achieved by repressor motifs in the central homeodomain and by recruitment of 

CTBP as a co-repressor. However, interaction of ZEB1 with co-activators PCAF and p300 

can switch ZEB1 function from repression to activation (Postigo et al., 2003; Peinado et al., 

2007). TGFβ signaling induces ZEB proteins through Smad-independent mechanism 

mediated in part by Ets-1. ZEBs subsequently downregulate epithelial genes by interacting 

with Smad3 and by recruiting the co-repressor CTBP (Shirakihara et al., 2007). ZEBs are 

regulated at the post-transcriptional level by the microRNA-200 family, which are 

dramatically downregulated during TGFβ-induced EMT and EMT in general (Burk et al., 

2008; Gregory et al., 2008; Korpal et al., 2008). As the Snails, ZEBs are also repressors of E-

cadherin and bind to E-boxes in the E-cadherin promoter (Comijn et al., 2001; Eger et al., 

2005). A third class of transcriptional E-cadherin repressors that act via E-boxes is 

represented by the basic helix-loop-helix transcription factors E12/E47 (TCF3) and Twist. 

E12 and E47 are different splice variants of the E2A gene (Peinado et al., 2007). Another 

direct target of TGFβ signaling is HMGA2 (high mobility group A2). This factor is 

upregulated upon activation of TGFβ signaling by direct binding of Smad4 to its promoter, 

and at the same time appears to control expression of Snails and Twist, exemplifying the 

elaborate transcriptional network architecture that controls the execution of EMT (Thuault et 

al., 2006). 
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The role of non-canonical TGFβ signaling in EMT 

Apart from the effects elicited via canonical TGFβ signaling, the non-canonical arms of the 

pathway not involving Smad proteins also contribute to the diverse phenotypic and functional 

changes occurring during TGFβ-induced EMT (Figure 7). The activation of these pathways 

occurs through protein-protein interactions of signaling mediators with the TβRs receptors, 

which can be direct or mediated by adaptor proteins. 

 

 

Figure 7. Non-canonical TGFβ signals 
(A) TGF-β mediates p38 MAP kinase and JNK MAP kinase activation through activation of the MAPKKK TAK1 by 
receptor-associated TRAF6. Erk MAP kinase is activated through recruitment and phosphorylation of Shc by TβRI. (B) 
RhoA is activated in response to TGF-β and at the same time is also locally targeted for proteasomal degradation at tight 
junctions by the E3 ubiquitin-ligase Smurf1. (C) TGF-β induces PI3-kinase signaling, leading to the activation of Akt-mTOR 
signaling. Dashed lines represent indirect actions. Taken from (Xu et al., 2009). 
 

Activation of the MAPK pathway by TGFβ, although generally lower compared to 

activation by other growth factors, is achieved in the following way (Figure 7A): The adaptor 

protein ShcA binds to TβRI and is tyrosine-phosphorylated, which creates a docking site for 

the recruitment of Grb2 and Sos. This complex then initiates Ras activation, leading to the 

activation of a Raf, MEK and ERK1 and 2 kinase activation cascade (Lee et al., 2007). Pre-

activated MAPK signaling cooperates with TGFβ to enhance EMT induction, as activated 
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Ras or activated Raf, which are upstream of MAP kinases, is required for TGFβ induction of 

EMT in otherwise unresponsive Eph4 cells (Oft et al., 1996; Janda et al., 2002; 2006). 

Furthermore, blocking MEK1/2 activity using a chemical inhibitor, inhibits TGF-β-induced 

EMT (Xie et al., 2004). TGFβ also induces activation of the MAP kinases p38 and JNK. This 

activation is initiated by TβRI-associated TRAF6, an E3 ubiquitin ligase, which is 

autoubiquitilated upon TGFβ stimulation and mediates TGFβ associated kinase 1 (TAK1) 

activation (Sorrentino et al., 2008; Yamashita et al., 2008). Activated TAK1, then activates 

the MAP kinase kinases MKK3 and MKK6, which activate p38, and MKK4, which activates 

JNK (Xu et al., 2009). Activation of p38 is usually required for EMT induction, as treatment 

with a chemical inhibitor prevents TGFβ-induced EMT in some but not all mammary 

epithelial cells (Bakin et al., 2002; Yu et al., 2002; Xie et al., 2004). Also JNK has been 

demonstrated to be required for EMT (Santibañez, 2006; Alcorn et al., 2008). JNK, among 

other targets, activates c-Jun, a component of the transcription complex AP-1, which 

cooperates with Smads, for example in transcriptionally upregulating urokinase-like 

plasminogen activator (uPA), an inducer of extracellular matrix degradation (Santibañez, 

2006). 

TGFβ signals to the small Rho-like GTPase RhoA in at least two ways (Figure 7B). First, 

TGFβ signaling provokes an increase in RhoA activity, leading to activation of its 

downstream target ROCK, which induces the formation of actin stress fibers. In addition, 

ROCK activation also leads to activation of LIM kinase which that inactivates cofilin, an 

actin depolymerizing factor important for actin reorganization during EMT (Bhowmick et al., 

2001). Second, the polarity complex protein Par6 was found to be phosphorylated upon TGFβ 

stimulation by TβRII while bound to TβRI. This results in Smad2/3-dependent upregulation 

and recruitment of the E3 ubiquitin ligase Smurf1, which is responsible for degradation of 

RhoA at tight junctions (Ozdamar et al., 2005). This contrasts with the increased overall 

activation of RhoA by TGFβ, but might be explained by spatio-temporal differences of RhoA 

activity during EMT. 

TGFβ stimulation leads to rapid activation of PI3 kinase and downstream activation of 

protein kinase B/Akt (PKB/Akt);(Figure 7C). Activation of the PI3K/Akt pathway was shown 

to be required for Smad2 activation and general Smad transcriptional response, as well as for 

junction breakdown during EMT (Bakin et al., 2000). PI3 kinase activation is achieved by 
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indirect association of the PI3K regulatory subunit p85 with TβRII and TβRI receptors, which 

is necessary for PI3 kinase activation by TGFβ (Yi et al., 2005). 

 Together, these all these findings illustrate the extensive functional cross-talks between 

canonical and non-canonical TGFβ pathways, and leave the impression that a finely tuned 

network of players orchestrates the diverse downstream processes elicited by TGFβ 

stimulation, ultimately leading to the transdifferentiation from an epithelial into a 

mesenchymal cellular state. 

TGFβ in mouse models of breast cancer 

Early experiments using genetically engineered mice (GEM) assessing the role of TGFβ in 

breast cancer uncovered the tumor suppressive action of this cytokine. For example, 

transgenic mice constitutively expressing TGFβ1 in the mammary gland under the control of 

the MMTV promoter did not develop tumors, and when treated with DMBA to induce 

mammary tumors, tumor latency was increased in comparison to non-transgenic control mice. 

Similarly, when MMTV-TGFβ1 mice were crossed with MMTV-TGF-α mice that are prone 

to tumor formation, tumors in double-transgenic mice developed later in comparison to 

single-transgenic mice (Pierce et al. 1995). Additionally, MMTV-TGFβ1 single-transgenic 

mice showed a decreased incidence of tumorigenesis when infected with the tumor inducing 

mouse mammary tumor virus (Boulanger and Smith, 2001). Conversely, overexpression of a 

dominant-negative TGFβ-receptor II (dnTβRII) in mammary glands of MMTV-neu breast 

cancer mice led to faster tumor development. Interestingly, in the same double-transgenic 

mice, lung metastasis was decreased. Conversely, expression of TGFβ in neu-induced tumors 

resulted in an increase in metastasis formation, suggesting that TGFβ signaling positively 

contributes to the metastatic process (Siegel et al., 2003). Moreover, systemic administration 

of TGFβ neutralizing antibodies applied to a variety of murine breast cancer models 

consistently resulted in a reduction of metastatic spread (Biswas et al., 2007; Nam et al., 

2008; Padua and Massagué, 2009). Collectively, these studies illustrate the dual nature of 

TGFβ, acting as a tumor suppressor in normal tissue and promoting metastatic disease in 

tumors. 

What is the source of TGFβ in vivo?  Under conditions of tissue injury, TGFβ is released 

by blood platelets and stromal components in order to prevent overproliferation and 

inflammation (Massagué, 2008). As tumors can be viewed as wounds that do not heal 
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(Dvorak, 1986), much the same is true in tumors. TGFβ is often present in the tumor 

microenvironment, and its presence, which can be indirectly detected by Smad 

phosphorylation, has been documented in many subsets of tumors (Xie et al., 2002). TGFβ in 

tumors can be produced by the tumor cells themselves, thereby activating TGFβ signaling in 

an autocrine fashion, or by a variety cell types of the tumor stroma. Examples herefore are 

tumor-infiltrating leukocytes, macrophages, and bone marrow-derived endothelial, 

mesenchymal, and myeloid precursor cells. The preferential presence of TGFβ1 at the 

invasive fronts of tumors observed in a study of invasive ductal mammary carcinoma may be 

due to higher concentrations of tumor infiltrating cells at this location (Dalal et al., 1993). 
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1.4 Tead transcription factors 

1.4.1 The Tead family 

The Tead/TEF (TEA domain-containing/transcription enhancer factor) family of 

transcription factors comprises four (Tead1-4) members in mice and humans, which are 

highly conserved between species (Jacquemin et al., 1996; Kaneko and DePamphilis, 1998). 

Even though at least one family member is expressed in virtually every tissue, single 

members exhibit differential expression patterns across tissues and during development. 

Members of this family are also found in yeast, birds, fungi, worms and flies (Jacquemin et 

al., 1996; Kaneko and DePamphilis, 1998; Wu et al., 2001). In Drosophila, only one homolog 

named Scalloped (Sd) was identified (Campbell et al., 1992). Tead1 (TEF-1) was first 

identified in human cells as an activator of the simian virus 40 enhancer (SV40)(Davidson et 

al., 1988). Subsequently, murine Tead1 (Blatt and DePamphilis, 1993; Shimizu et al., 1993) 

and the three other members Tead2 (TEF4) (Yasunami et al., 1995; Jacquemin et al., 1996; 

Kaneko et al., 1997), Tead3 (TEF5)(Yasunami et al., 1996; Yockey et al., 1996; Kaneko et 

al., 1997) and Tead4 (TEF3)(Jacquemin et al., 1996; Yasunami et al., 1996; Yockey et al., 

1996) were identified.  

1.4.2 Tead functions 

After their discovery, Tead proteins were subsequently characterized as being important 

for gene expression during cardiac and skeletal muscle development and regeneration (Chen 

et al., 1994; Stewart et al., 1994; Gupta et al., 1997; Butler and Ordahl, 1999; Ueyama et al., 

2000; Milewski et al., 2004; Zhao et al., 2006; Benhaddou et al., 2012). Tead2 was found to 

bind to an enhancer region of Pax3 and to activate its expression in pre-migratory neural crest 

cells (Milewski et al., 2004). Notably, neural crest cell delamination from the neural tube is an 

example of developmental EMT, and requires Pax3 expression. Interestingly, Tead2 has been 

shown to be the only Tead family member and one of the first transcription factors overall 

that is transcribed after egg fertilization at the two-cell stage of embryonic development, 

where global gene transcription commences (Kaneko et al., 1997; Kaneko and DePamphilis, 

1998). The exact role of Tead2 at this stage has not been determined. It is interesting to note 

however that Tead2, along with one of its co-activators (Yap) is selectively and highly 

expressed in undifferentiated embryonic, neural and hematopoietic stem cells (Ramalho-

Santos et al., 2002), indicating that transcriptional activity mediated by Tead2 may be 
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involved in the production or maintenance of these cells. However, Tead2 homozygous 

mutant mice appear relatively normal (Sawada et al., 2008), although they display an 

increased risk of exencephaly, a defect that results in brain protrusion into the amniotic cavity 

and is attributed to incomplete neural tube closure (Kaneko et al., 2007). Tead1 homozygous 

mutant embryos die at embryonic day 11.5 (E11.5) because of heart defects (Chen et al., 

1994). Notably, Tead1/Tead2 double mutant embryos are small at E8.5 due to reduced cell 

proliferation and increased apoptosis, lack a closed neural tube, a notochord and somites and 

die at E9.5 with severe defects. These observations suggest that Tead1 and Tead2 have 

redundant roles in vivo. Tead4 mutant embryos do not develop further than E3.5, due to 

defects in trophectoderm specification and therefore are unable to form blastocysts, which 

consist of outer trophectoderm and inner cell mass (Yagi et al., 2007). Together, it appears 

that Tead family members may functionally compensate for each other in some contexts, but 

also have specific roles at certain stages of development. 

1.4.3 Tead transcriptional machinery 

Tead DNA binding 

All Tead family members contain an evolutionarily conserved TEA (TEF-1, TEC1 and 

AbaA) DNA binding domain, consisting of a three-helix bundle with a homeodomain fold 

(Anbanandam et al., 2006). The 72 amino acid long TEA domain localizes to the N-terminal 

half and is highly conserved between different Tead family members(Jacquemin et al., 1996; 

Kaneko and DePamphilis, 1998) and species (Jacquemin et al., 1996; Kaneko and 

DePamphilis, 1998). The Tead1 and Tead2 TEA domain sequences in mouse and humans are 

identical. Interestingly, human Tead1 can substitute for Drosophila Scalloped in wing 

formation, illustrating a high grade of conservation also on the functional level (Deshpande et 

al., 1997). All four Tead proteins bind to MCAT DNA binding motifs with the core sequence 

CATTCCT (Larkin et al., 1996; Yoshida, 2008), as well as to the highly similar GTIIC motifs 

with the core sequence CATTCCT (Davidson et al., 1988), with similar affinity (Kaneko and 

DePamphilis, 1998). 

Tead co-activators 

Transcriptional activation by Tead transcription factors requires the recruitment of co-

activator proteins. Tead1 can bind TATA-box binding protein (TBP), although this interaction 
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seems to rather repress gene transcription (Jiang and Eberhardt, 1996). Furthermore, Tead2 

can bind the nuclear receptor coactivator protein SRC1 that belongs to the p160 coactivator 

protein family (Belandia and Parker, 2000). The effects of these interactions on Tead 

mediated transcription are subtle and in the range of 2-3 fold. In Drosophila, the nuclearly 

localized protein Vestigial (Vg) has been established to specify and to be required for wing 

formation (Brook et al., 1996). Vg has been shown to exert its function by direct binding to 

the Tead homolog Scalloped, which binds to wing-specific enhancers (Halder et al., 1998; 

Simmonds et al., 1998; Guss et al., 2001). There are four mammalian homologs of Vg called 

vestigial-like (Vgll) 1-4. Human Vgll1 (also called TONDU) can substitute for Vg in 

Drosophila (Vaudin et al., 1999), however the functional contribution of Vgll proteins to Tead 

activation in mammalian cells has not been evaluated. The Vg/Sd complex only operates in 

the wing-disc, yet Sd was also shown to direct gene expression during leg, eye and optic lobe 

development (Srivastava et al., 2004; Garg et al., 2007), indicating that other co-factors must 

exist that mediate Sd activity in these tissues.  

An in vitro study identified binding of Yap (Yes-associated protein, also called Yap65 or 

Yap1) to Tead2 and further showed the binding and requirement of Yap for transcriptional 

activity of all four Tead family members (Vassilev et al., 2001). Yap interacts with Teads via 

its N-terminal region, and contains a transcriptional activation domain at its C-terminus, 

which is similar to that found in the herpes simplex virus protein VP16 and is almost equally 

potent in transcriptional activation (Yagi et al., 1999). Importantly, Vll proteins do not contain 

a transcriptional activation domain, and their transcriptional activation of Teads is generally 

weaker compared to that of Yap (Vassilev et al., 2001; Maeda et al., 2002). The Yap-related 

protein Taz (transcriptional co-activator with PDZ-domain, also named Wwtr1) has also been 

shown to be able to bind to Teads, and activates their transcriptional activity to a similar 

extent as Yap (Mahoney et al., 2005). Yap and Taz are about 45% identical and share a 

common domain structure (Kanai et al., 2000). They both contain 1) a 14-3-3 protein binding 

motif important for cytoplasmic retention, 2) one (Taz) or two (Yap) WW domains, 3) a 

transcriptional activation domain in the C-terminal half, 4) a Tead-binding region in the N-

terminal half, 5) multiple phosphorylation sites and 6) a C-terminal motif that mediates 

interaction with PDZ domain containing proteins. The WW domains can strongly bind to 

proteins containing the Pro-Pro-X-Tyr (PPXY) motif. This motif can be found in a large 

number of transcription factors, some of which have been shown to be regulated by either 
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Yap or Taz, like PPARγ, Runx2 and members of the Smad, Sox and Forkhead families (Pan, 

2010). Therefore, Yap and Taz do not only regulate Teads, but are also involved in 

transcriptional regulation via other DNA-binding TFs.  

Reciprocally, it has been suggested that Yap and Taz are among the main regulators of 

Tead TFs, based on the following observations: transgenic embryos in which Tead1 and 

Tead2 were disrupted showed many phenotypic similarities to embryos with disrupted Yap, 

such as small size at E8.5, a discontinuous notochord and defective yolk sac vasculogenesis. 

In addition, compound mutants of Tead1, Tead2 and Yap demonstrated genetic interaction 

among Tead and Yap (Morin-Kensicki et al., 2006; Sawada et al., 2008). In Drosophila, the 

Yap/Taz homolog Yorkie (yki) has also been shown to genetically interact with Scalloped 

(Goulev et al., 2008; Wu et al., 2008; Zhang et al., 2008). Furthermore, Yap and Tead1/Tead2 

were shown to regulate a largely overlapping sets of genes in cultured cells (Ota and Sasaki, 

2008; Zhao et al., 2008b). 

Functional studies using the untransformed mammary epithelial cell line MCF10A, have 

demonstrated that artificial overexpression of Yap or Taz promotes cell proliferation, 

anchorage–independent growth, loss-of-contact inhibition and EMT in a Tead-dependent 

manner (Overholtzer et al., 2006; Zhao et al., 2007; Lei et al., 2008; Zhao et al., 2008b; Zhang 

et al., 2009a). Similarly, increased proliferation and loss of contact inhibition mediated by 

Tead activation has also been observed with fibroblasts and was shown to be Yap-dependent. 

Furthermore, overexpression of Yap or an activated version of Tead2 rendered these cells 

tumorigenic (Ota and Sasaki, 2008). Therefore, Tead activity mediated by Yap/Taz is an 

important determinant of oncogenic features. But how is Tead activity regulated in an 

endogenous setting? 

1.4.4 Regulation of Yap/Taz/Tead transcriptional activity 

Yap and Taz nuclear localization, which determines Tead activity, can be regulated by the 

rather recently discovered Hippo tumor suppressor pathway, as well as by other means that 

seem to be independent of canonical Hippo signaling.  

The core Hippo pathway 

The Hippo pathway regulates the levels of proliferation and apoptosis in growing tissues, 

and its deregulation is implicated in cancer. The first members of the pathway were initially 
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identified in Drosophila, however the core of the pathway is highly conserved in mammals, 

and consists of Mst1/2 (Hippo, Hpo in flies), WW45 (Salvador, Sav in flies), Lats1/2 (Warts, 

Wts in flies) and Mob (Mats in flies). These proteins form a complex, which negatively 

regulates Yap and Taz. Biochemical experiments showed that, when the pathway is activated, 

Mst phosphorylates Lats, which in turn phosphorylates Yap/Taz at several key serine 

residues, thereby creating a docking site for 14-3-3 proteins that mediate cytoplasmic 

retention of Yap/Taz. The exclusion of Yap and Taz from the nucleus results in abrogated 

Tead activity and discontinued target gene expression (Figure 8). 

 

 

Figure 8. Hippo signaling in Drosophila and mammals. 
Corresponding components in Drosophila and mammals are shown in the same color. The abbreviations used are as follows: 
Ex (Expanded), Mer (Merlin, also called NF2), Hpo (Hippo), Sav (Salvador), Mats (Mob as tumor suppressor), Wts (Warts), 
Yki (Yorkie), Sd (Scalloped), Mst (Mst1/2, also called STK4 and STK3, Hpo homolog), WW45 (Sav homolog), Mob (Mps 
One Binder kinase activator-like 1A/B, MOBKL1A/B, Mats homolog), Lats (Lats1/2, Wts homolog), YAP (Yes-associated 
protein, Yki homolog), TAZ (transcriptional co- activator with PDZ binding motif, also called WWTR1, Yki homolog), and 
TEAD (TEA domain family member 1/2/3/4). Dashed arrows indicate unknown biochemical mechanism and question marks 
denote unknown components. Taken from (Zhao et al., 2008a). 
 

The mechanisms of Hippo signaling activation and the mechanisms that control Yap/Taz 

localization were largely unclear a few years ago, however during the last three years, 

significant progress in elucidating the regulatory signals has been achieved. An emerging 
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view is that Yap/Taz mediated Tead activity is largely controlled by three main cellular 

components: cell-cell junctions, the actin cytoskeleton, and polarity complexes. These cellular 

structures may act through activation of canonical Hippo signaling to control Yap/Taz 

localization or may influence Yap/Taz localization independently of the core Hippo 

components (Pan, 2010; Zhao et al., 2010; 2011b; Boggiano and Fehon, 2012). An overview 

of these mechanisms is given hereafter. 

Regulation by intercellular junctions 

Intercellular junctions are not only structural components of cells but also participate in 

cellular signaling. The classical example herefore is the role of adherens junctions in 

sequestering β-catenin, thereby preventing its nuclear translocation where it acts as a 

transcriptional regulator together with TCF/Lef transcription factors (Jeanes et al., 2008). In 

order to prevent overgrowth, polarized cells in growing epithelial tissues need to monitor their 

surroundings and cease proliferation once a certain cell density or organ size is reached. 

Intercellular junctions are ideally positioned to appoint this task. First evidence that cells 

signal through the Hippo pathway to control proliferation came from the observations that 

Yap phosphorylation was increased when cells were grown to high densities in cell culture 

dishes, leading to cytoplasmic translocation of Yap and decreased Tead activity (Zhao et al., 

2007; Ota and Sasaki, 2008). These observations suggested that the core Hippo Mst and Lats 

kinases are activated upon high cell density, however this has not been directly demonstrated. 

Early models of the Hippo pathway suggested a hierarchical transmission of signals from 

transmembrane proteins acting as density „sensors“, to intracellular proteins which convey the 

signal along a cascade to the core Hippo components (Hamaratoglu et al., 2006; Zeng and 

Hong, 2008; Zhao et al., 2008a); (Figure 8). However it was later found that Yki (Yap in 

Drosophila) can form a complex with the adherens junction localized „upstream“ component 

Expanded (Ex) in a phosphorylation-independent manner, leading to sequestering of Yki from 

the nucleus (Badouel et al., 2009). Moreover, the same complex was found to contain Hpo 

(Mst) and Wts (Lats), and again the nuclear function of Yki was shown to be inhibited by 

formation of this complex, notably in a phosphorylation-independent manner (Oh et al., 

2009). These findings suggested that membrane sequestration of Yap (Yki) by Hippo pathway 

components represents a mechanism for Yap inhibition in addition to phosphorylation (Figure 

9). 
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Figure 9. Updated concept of Hippo 
signaling in mammals 
Sequestering of Yap/Taz by intercellular 
junctions and the crumbs polarity complex is 
added (compare to Figure 8). Participation of 
Smads is also indicated. Arrowed or blunted 
ends indicate activation or inhibition, 
respectively. Dashed lines indicate unknown 
mechanisms. Taken from (Zhao et al., 2011b). 

  

Several studies in mammalian systems have confirmed the existence of similar 

mechanisms of Yap inhibition. Two studies showed that Yap interacts with the adherens 

junction protein α-catenin, which links E-cadherin to the actin cytoskeleton, in mouse 

keratinocytes (Schlegelmilch et al., 2011; Silvis et al., 2011). In dense cells, Yap is 

phosphorylated and bound by 14-3-3, and this complex binds to α-catenin (Schlegelmilch et 

al., 2011); (Figure 9). Loss of α-catenin or adherens junction disruption by EGTA, but 

interestingly not E-cadherin depletion, leads to dissociation of the complex, 

dephosphorylation of Yap by the phosphatase PP2A and subsequent nuclear accumulation 

and transcriptional activity. Of note, Yap phosphorylation upon increased cell density was 

neither Mst- nor Lats-dependent, suggesting that another kinase must accomplish this task in 

keratinocytes. A study performed in breast epithelial cells presented evidence that E-cadherin 

can regulate Yap localization via catenins and Hippo components (Kim et al., 2011). When 

beads coated with E-cadherin were added to these cells to create homophilic E-cadherin 

interactions in a defined way, a moderate but measurable reduction of proliferation was 

observed. This phenotype could be blocked by siRNA depletion of either ���α- or β-catenin, or 

by depletion of the Hippo pathway components Merlin/NF2, Lats, and Kibra. Additionally, E-

cadherin overexpression led to cytoplasmic retention of Yap, which was dependent on the E-
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cadherin catenin-binding domain. Conversely, depletion of ß-catenin or Lats in densely 

cultured cells led to nuclear accumulation and reduced phosphorylation of Yap. Notably, the 

anti-proliferative effect of E-cadherin ligation was independent of Mst, again suggesting that 

an additional kinase must mediate Yap phosphorylation under these circumstances. Yap/Taz 

regulation that is completely independent of phosphorylation by the Hippo pathway has also 

been shown to be mediated by Yap/Taz binding to angiomotin family (AMOT) proteins 

localized in tight junctions (Chan et al., 2011; Wang et al., 2011b; Zhao et al., 2011a); (Figure 

9). Interestingly, knockdown of AMOTL2 in MCF10A cells leads to induction of EMT-like 

changes (Wang et al., 2011b). Collectively, these data suggest that Yap/Taz sequestration to 

tight- and adherens-junctions provides a mechanism for inhibition of Yap/Taz mediated Tead 

activity. 

Regulation by the cytoskeleton 

Experiments from mammalian tissue culture suggest that Yap/Taz subcellular localization 

and activity is regulated by changes in cell morphology and the actin cytoskeleton. Whether 

this is mediated by canonical Hippo signaling is currently debated. Wada et al. showed that 

Yap/Taz nuclear localization and activity is increased upon cell spreading (i.e. cell 

morphology) and concomitant formation of stress fibers (F-actin), in a Lats-dependent manner 

(Wada et al., 2011). In addition, pharmacological inhibition of F-actin and also of 

microtubules also suggested that the cytoskeletal state influences Yap phosphorylation via 

Lats (Zhao et al., 2012). Differential regulation of Yap localization and transcriptional activity 

was also shown to be dependent on extracellular matrix stiffness, although the authors of this 

study did not find differences in Yap phosphorylation, and the effects of matrix stiffness and 

stress fiber formation upon cell spreading were still observed in Lats-depleted cells (DuPont 

et al., 2011). Additionally, increased amounts of F-actin in the Drosophila wing disc 

promoted by loss of capping proteins results in increased Yki activity and tissue overgrowth 

(Fernández et al., 2011; Sansores-Garcia et al., 2011). 

Regulation by polarity complexes 

Finally, Yap/Taz localization and activity has been shown to be modulated by the crumbs 

(Crb) apical polarity complex (Varelas et al., 2010). Similar to α-catenin and AMOT, the Crb 

complex sequesters Yap/Taz from the nucleus by direct interaction in cells grown to high 

density and inhibits Yap/Taz target gene expression, which is dependent on canonical Hippo 
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signaling. Interestingly, AMOT was also found in the apical complex identified by Varelas 

and colleagues (Varelas et al., 2010), suggesting that regulation by AMOT and the Crb 

complex could be related (Figure 9). A study by the same group previously established 

physical binding of Taz and Smads, and showed that presence of Taz in the nucleus is 

required for the ability of Smad2/3/4 complexes to accumulate in the nucleus after TGFβ 

stimulation (Varelas et al., 2008). The newer study then established that in densely grown 

Eph4 mammary epithelial cells, Smad2/3 were activated upon TGFβ treatment but failed to 

accumulate in the nucleus to regulate TGFβ target genes. The authors further showed that in 

dense cells treated with TGFβ, a complex encompassing pSmad2/3 and pYap exists. Under 

these conditions, inactivation of Hippo signaling by depletion of Lats, disruption of the 

crumbs complex by knockdown of its components Pals1 or Crumbs3, or calcium chelation 

resulted in nuclear accumulation of activated Smads and restored target gene transcription 

(Varelas et al., 2010); (Figure 9). These results suggest that the Hippo pathway can control the 

response to canonical TGFβ signaling. 

Collectively, the extensive number of studies during the last few years have shown that 

Yap/Taz/Tead transcriptional control is exerted through a combination of at least two 

mechanisms: 1) the phosphorylation of Yap/Taz by the canonical Hippo pathway, and 2) the 

sequestration of Yap/Taz at the cell cortex by direct binding to components of adherens- and 

tight junctions and polarity complexes (Figure 9). 

Transcriptional targets of Tead 

Although much research has been directed towards understanding the upstream regulatory 

mechanisms of Yap/Taz/Tead transcriptional activity, and several functional consequences 

have been documented, mechanistic insights into the downstream effects of this 

transcriptional complex are limited. Several direct Yap/Taz/Tead target genes have been 

identified in mammalian cells (Ota and Sasaki, 2008; Zhao et al., 2008b; Lai et al., 2011) and 

Drosophila (Wu et al., 2008; Zhang et al., 2008; Neto-Silva et al., 2010; Ziosi et al., 2010). 

However, these target genes appear to be highly species- and context specific (Ota and Sasaki, 

2008). CTGF and Cyr61 are direct target genes in mammalian cells. CTGF was determined to 

be important for Yap-induced anchorage-independent growth and proliferation in MCF10A 

cells (Zhao et al., 2008b). Cyr61, together with CTGF has been shown to be responsible for 

Yap/Taz/Tead-mediated Taxol resistance of breast cancer cells (Lai et al., 2011). Further 
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evaluation of the individual functions of Yap/Taz/Tead target genes will be an interesting area 

for future research. 

1.5 MARA Analysis 

MARA is a computational method that allows prediction of transcription factor activity 

across different samples from gene expression profiling data. To infer differential activity of 

transcription factors, MARA uses human and mouse ‘promoteromes’, i.e. annotations of the 

genomic location of promoter regions from genome-wide transcription start site data obtained 

from cap analysis of gene expression (CAGE); (Balwierz et al., 2009). To predict functional 

transcription factor binding sites (TFBSs) within these promoter regions, MARA uses the 

MotEvo algorithm (van Nimwegen, 2007), which maps known regulatory motifs to the 

promoterome by comparative genomic sequence analysis and predicts functionality of these 

mapped sites by considering their evolutionary conservation.  

The output of MARA include a list of regulatory motifs and corresponding TFs, sorted by 

a z-value that quantifies the contribution of the motif to the observed expression changes of 

target genes. MARA also provides a list of target promoters for each motif, as well as the 

location of binding sites in the promoters through which the corresponding TFs are predicted 

to act. Additionally, an activity profile across all input samples is generated which quantifies 

the difference in expression of all predicted target genes between samples. 
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2. Aim of the study 
Metastasis is the cause of death in 90% of cancer patients, yet this process is one of the most 

enigmatic aspects of the disease. Uncovering the mechanisms that contribute to metastatic 

disease is likely to pave the way for the development of prevention- and treatment-strategies. 

Increasing evidence suggests that a cell-biological program termed epithelial-mesenchymal 

transition (EMT) plays a key role in the metastatic process. 

 

The work presented here represents several approaches to advance the knowledge about the 

biological processes important for metastasis formation by 

 

• Establishing new tools that allow a better characterization of the role of EMT 

in tumor progression and metastasis 

 

• Identifying and characterizing key molecular regulatory mechanisms that 

control the EMT transdifferentiation process 

 

To achieve these goals, we established a novel model system of EMT, which we demonstrate 

to be a versatile tool to study EMT both in a cell culture environment and also under more 

physiological conditions in mice. In addition, we set out to identify critical transcription 

factors that are responsible for essential gene expression changes associated with the EMT 

process, and identified the Tead transcription factor family as critical regulators of the EMT 

program. 
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3. Results 
3.1 Py2T murine breast cancer cells, a versatile model of TGFβ-induced 

EMT in vitro and in vivo 

3.1.1 Abstract 

Introduction: Increasing evidence supports a role of an epithelial to mesenchymal transition 

(EMT) process in endowing subsets of tumor cells with properties driving malignant tumor 

progression and resistance to therapy. To advance our understanding of the underlying 

mechanisms, we sought to generate a transplantable cellular model system that allows defined 

experimental manipulation and analysis of EMT in vitro and at the same time recapitulates 

oncogenic EMT in vivo. Methods: A cell line (Py2T) was established from a breast tumor of 

an MMTV-PyMT transgenic mouse. TGFβ-induced EMT and cell migration and invasion 

were assessed by cellular assays in vitro, and the expression of epithelial and mesenchymal 

markers in Py2T cells was determined by immunofluorescence staining, immunoblotting and 

quantitative RT-PCR. Tumor formation of Py2T cells was evaluated by orthotopic 

transplantation into syngeneic mice, and tumors were characterized for an EMT-like 

phenotype by histopathological and gene expression analysis. TGFβ signaling in Py2T cells 

was modulated by stable lentiviral expression of a dominant-negative TGFβ receptor, and 

effects on primary tumor formation, tumor progression and metastasis was evaluated upon 

orthotopic transplantation into immunocompromised mice. Results: We have established a 

novel murine breast cancer cell line (Py2T), which displays a metastable epithelial phenotype, 

concomitantly expresses luminal and basal cytokeratins, and can be induced to undergo 

reversible EMT by exposure to TGFβ in vitro. Upon TGFβ-induced EMT, Py2T cells also 

gain in single cell motility and invasiveness. Py2T cells give rise to tumors after orthotopic 

injection into syngeneic mice. Notably, transplantation of epithelial Py2T cells results into 

invasive primary tumors, indicating that the cells undergo EMT in vivo, a process that appears 

to depend on TGFβ signaling.  Conclusions: Together, the data demonstrate that the Py2T cell 

line represents a versatile model system to study the EMT process in vitro and in vivo. The 

observations that Py2T cells give rise to tumors and collectively undergo EMT-like changes 

in vivo highlight the suitability of the Py2T model system as a tool to study tumor-related 

EMT. In particular, Py2T cells may serve to corroborate recent findings relating EMT to 

cancer cell stemness, to therapy resistance and to tumor recurrence. 
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3.1.2 Introduction 

Epithelial to mesenchymal transition (EMT) is an embryonic cellular program during 

which polarized epithelial cells lose their cell-cell adhesions and convert into a motile 

mesenchymal cell type (Thiery et al., 2009; Nieto, 2011). These phenotypic changes can be 

induced by a plethora of signals, including hypoxia, Wnt signaling, epidermal growth factor 

(EGF), hepatocyte growth factor (HGF), transforming growth factor β (TGFβ), and many 

more (Huber et al., 2005; Moustakas and Heldin, 2007). Intracellular signaling pathways then 

integrate these signals to initiate the acquisition of mesenchymal traits via an elaborate 

network of EMT-related transcription factors (Moreno-Bueno et al., 2008), culminating in the 

loss of E-cadherin, a central hallmark of EMT (Thiery, 2002). In the adult, an analogous 

program can be reactivated in the setting of solid tumors (termed oncogenic or Type III EMT) 

(Kalluri and Weinberg, 2009). During the last two decades, EMT has been in the focus of 

many research fields and laboratories (Nieto, 2011). One longstanding interest is based on the 

concept that EMT of cancer cells facilitates their dissociation from primary tumors and their 

invasion of surrounding tissue and intravasation, thereby contributing to the initial steps of 

metastasis (Thiery et al., 2009; Chaffer and Weinberg, 2011; Valastyan and Weinberg, 2011). 

Consistent with the metastatic role of EMT, recent results have indicated that EMT confers 

stem cell-like traits to tumor cells (Mani et al., 2008; Morel et al., 2008; Polyak and 

Weinberg, 2009). These results have also provided an attractive explanation for the findings 

that oncogenic EMT contributes to resistance against cancer therapy, escape from oncogene 

addiction and recurrence of tumor growth (Singh and Settleman, 2010; Cardiff et al., 2011; 

May et al., 2011; Dave et al., 2012). A number of normal and transformed cell lines of murine 

and human origin have been described and used to study EMT in vitro, yet model systems 

that allow the study of breast cancer EMT both in vitro and in vivo have remained scarce.  

To meet this need, we set out to establish a cellular model of breast cancer EMT that with 

one cellular system allows the study of epithelial plasticity in vitro and of EMT, malignant 

tumor progression and metastasis in vivo. We here report the establishment of a cell line 

(Py2T) derived from a primary breast tumor of MMTV-PyMT transgenic mice. Py2T cells 

undergo EMT in vitro upon TGFβ stimulation and, upon orthotopic injection into syngeneic 

or nude mice, they form primary tumors with an EMT-like phenotype, which is at least in part 

dependent on the responsiveness of the transplanted tumor cells to TGFβ signaling. 
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3.1.3 Results 

3.1.3.1 Py2T, a novel breast cancer cell line undergoing TGFβ-induced EMT 

To establish a cellular model system that could be used to study epithelial to mesenchymal 

transition (EMT) in vitro and also in vivo, we sought to establish stable cancer cell lines from 

primary breast tumors. Since EMT is regarded as a prerequisite in the early steps of 

metastasis, we chose to isolate cells from tumors of the highly metastatic MMTV-PyMT 

mouse model of breast cancer (Guy et al., 1992; Lin et al., 2003). After recovery from culture 

shock and passaging for 2 months, an isolated pool of cells displayed a uniform cobblestone-

like morphology typical of differentiated epithelial cells (Figure 1A). We termed this cell line 

Py2T (Polyoma-middle-T tumor). The presence of the MMTV-PyMT transgene in these cells 

could be confirmed by genotyping (Figure 1B). Curiously, PyMT transgene expression was 

not maintained during extended culturing (Figure 1C). 

Next, we investigated whether treatment with a selection of known inducers of EMT 

(Huber et al., 2005) could induce EMT-like morphological changes in cultured Py2T cells. 

Both transforming growth factor β (TGFβ) and hepatocyte growth factor/scatter factor (HGF) 

provoked loss of cell-cell contacts, which was not observed with other treatments, even after 

prolonged treatment for 10 days (Figure 1D). Interestingly, only TGFβ treatment resulted in a 

classical „cadherin-switch“, a hallmark of EMT in which expression of the epithelial cell 

adhesion molecule E-cadherin is lost and expression of mesenchymal N-cadherin is gained 

(Cavallaro and Christofori, 2004). Furthermore, we observed an upregulation of the 

mesenchymal marker fibronectin only in TGFβ-treated cells and to a lesser extent in EGF-

treated cells (Figure 1E). Therefore, among all the factors tested, only TGFβ induced a bona 

fide EMT in Py2T cells.  

TGFβ is known to exert cytostatic effects via effector arms downstream of the canonical 

Smad2/3 pathway in normal cells. However, cancer cells often develop resistance to TGFβ-

induced cell cycle arrest (Massagué, 2008). The canonical TGFβ pathway was activated in 

Py2T cells upon TGFβ treatment, indicated by the nuclear translocation of the Smad2/3 

complex and the activation of Smad3 by phosphorylation (Figure S1A). Furthermore, 

transient transfection of a promoter reporter construct in which firefly luciferase expression 

was under the control of a Smad-binding element (SBE) revealed a dramatic induction of 

transcriptional activity upon TGFβ stimulation, while there was no detectable activity in 
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untreated cells (Figure S1B); (Dennler et al., 1998). Despite an intact canonical pathway, we 

did not observe any significant increase in cell cycle arrest or apoptosis upon TGFβ treatment 

of Py2T cells (data not shown). 

 

Figure 1. Establishment of a murine breast cancer cell line undergoing TGFβ-induced EMT. 
(A) Primary tumor cells were isolated from an advanced breast tumor of a MMTV-PyMT transgenic female mouse and were 
cultured for at least 2 months prior to further experimentation, resulting in a novel cell line termed Py2T.  
(B) Py2T cells maintain the MMTV-PyMT transgene. The MMTV-PyMT transgene was detected by PCR and agarose gel 
electrophoresis. DNA from an MMTV-PyMT tumor and from normal murine mammary gland (NMuMG) cells served as 
positive and negative controls, respectively. 
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(C) Py2T cells lost the expression of the MMTV-PyMT transgene. Immunoblotting for the PyMT protein was performed on 
lysates of Py2T cells untreated or treated with 0.1μM Dexamethasone for up to 72h to induce the MMTV promoter. Lysates 
of an MMTV-PyMT tumor and NMuMG cells served as positive and negative controls, respectively.  
(D) Treatment of Py2T cells with known EMT inducers. Cells were continuously treated with the indicated growth factors 
and cytokines for 10 days (2ng/mL TGFβ1; 50ng/mL EGF; 10ng/mL IGF-I; 50ng/mL HGF; 20ng/mL FGF-2; 20ng/mL 
PDGF-BB; 50ng/mL IL-6). Potential morphological changes were analyzed by phase-contrast microscopy.  
(E) Expression of epithelial (E-cadherin) and mesenchymal (N-cadherin, fibronectin) markers were analyzed by 
immunoblotting of the lysates of cells treated in (D).  
(F) Immunoblotting analysis of EMT marker expression in Py2T and Py2T LT cells. The mesenchymal subline Py2T LT 
(long-term) was generated by TGFβ-treatment of Py2T cells for at least 20 days, and was subsequently maintained in TGFβ 
containing growth medium (see also Additional files 3 and 4 for live cell imaging of Py2T and Py2T LT).  
(G) Analysis of markers for EMT and breast cell type before and after TGFβ-induced EMT. Immunofluorescence staining 
was performed with antibodies against E-Cadherin (epithelial marker), vimentin (mesenchymal marker), estrogen receptor 
alpha (ERα), cytokeratin 8/18 (luminal markers) and cytokeratin 14 (basal marker). Scale bar, 20μm. 
 

To establish an experimental system that allowed direct comparison of epithelial versus 

mesenchymal cells without prior lengthy TGFβ treatment, Py2T cells were treated with TGFβ 

for 20 days and subsequently maintained as mesenchymal subline (Py2T LT) in growth 

medium containing TGFβ. Conveniently, Py2T LT cells preserved their mesenchymal 

phenotype, even when frozen and re-cultured in the presence of TGFβ. As confirmed by 

immunoblotting analysis, Py2T LT cells displayed a lack of E-cadherin expression, along 

with high expression of the mesenchymal markers N-cadherin and fibronectin (Figure 1F). 

Furthermore, immunofluorescence staining against E-cadherin and the mesenchymal marker 

vimentin were mutually exclusive in Py2T and Py2T LT cells, respectively, further verifying 

their distinct epithelial and mesenchymal states (Figure 1G left).  

To determine the cell type represented by Py2T cells and to further characterize the effects 

of TGFβ-induced EMT on cellular identity, we stained for relevant breast cancer and 

mammary gland cell lineage markers. As the bulk of MMTV-PyMT tumors consist of 

luminal, estrogen receptor α (ERα)-positive epithelial cells, we expected Py2T cells to 

display a similar expression pattern. Indeed, we could detect nuclear ERα staining in 

untreated cells, indicative of luminal differentiation (Figure 1G middle). Py2T LT cells 

however did not stain positive for ERα, consistent with a role of ERα in maintaining an 

epithelial phenotype and suppressing EMT (Guttilla et al., 2012). To determine whether Py2T 

cells represent a luminal or a basal mammary gland cell subtype, we stained for luminal 

cytokeratin 8/18 (CK8/18) and for basal cytokeratin 14 (CK14). Interestingly, Py2T cells 

were double positive for these markers, while, consistent with the loss of the epithelial 

phenotype, Py2T LT cells only weakly stained for CK8/18 and lacked CK14 (Figure 1G right, 

see also Figure 2B). 
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We also performed a gene expression profiling by Affymetrix DNA oligonucleotide 

microarray analysis of Py2T and Py2T LT cells. The gene expression profiles were compared 

to molecular breast cancer subtypes using the PAM50 predictor established by Parker and 

colleagues (Parker et al., 2009), followed by the 9-cell line claudin-low predictor (Prat et al., 

2010b). This bioinformatic analysis revealed that the gene expression profile of Py2T cells 

resembles a Her2-enriched breast cancer subtype, whereas the Py2T LT cell line represents 

the highly invasive claudin-low subtype (data not shown). 

3.1.3.2 EMT kinetics and plasticity in Py2T cells 

To characterize the transition from an epithelial to a mesenchymal phenotype in a time-

resolved fashion, we analyzed various hallmarks of EMT upon TGFβ treatment of Py2T cells 

over time. On a morphological level, TGFβ treatment led to a gradual loss of cell-cell 

contacts and scattering already after 1 day of TGFβ treatment, while cell elongation and 

filopodia formation gradually increased over several days (Figure 2A). Immunoblotting 

analysis revealed a downregulation of E-cadherin expression over seven days, whereas N-

cadherin levels began to increase between four and seven days, illustrating a classical 

cadherin switch (Figure 2B) (Cavallaro and Christofori, 2004). Maximum fibronectin 

expression was observed already after one day of TGFβ treatment. Expression of the luminal 

CK8/18 was found reduced yet with significant expression remaining even after thirteen days 

of treatment, whereas the expression of basal CK14 was completely lost after seven days. We 

further examined the transcriptional regulation of well-known EMT markers by quantitative 

RT-PCR (Figure 2C). The kinetics of mRNA levels of E-cadherin, N-cadherin and fibronectin 

closely correlated with the immunoblotting analysis (Figure 2B). Furthermore, we observed a 

strong and gradual increase in mRNA levels of vimentin and the E-cadherin gene repressors 

Zeb1 and Zeb2, a robust early induction of Snail mRNA, and only a modest increase in 

mRNA levels of the other E-cadherin repressors Slug, E47 and Twist (Figure 2C). Overall, 

these time-course experiments demonstrated that in Py2T cells, TGFβ-induced EMT involves 

gradual changes in gene expression, with early events occurring already after one day (loss of 

cell-cell contact, upregulation of fibronectin and Snail), while others are observed at later 

stages of EMT (cadherin switch, expression of vimentin, Zeb1 and Zeb2).  
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Figure 2. Kinetics and reversibility of TGFβ-induced EMT in Py2T cells. 
(A) Morphological changes of Py2T cells during a time-course of TGFβ-treatment. Cells were cultured in growth medium 
containing TGFβ (2ng/ml) and phase-contrast microscopy pictures were taken at the indicated times. 
(B) Immunoblotting analysis of lysates prepared from Py2T cells treated as in (A). The expression of epithelial (E-cadherin), 
mesenchymal (N-cadherin, fibronectin), luminal (CK8/18) and basal (CK14) markers was analyzed. 
(C) Changes in the expression of EMT markers during TGFβ-induced EMT of Py2T cells. Py2T cells were treated for 10 
days with TGFβ as described in (A). RNA was extracted at the indicated time points and quantitative RT-PCR was 
performed with primers specific for the EMT markers indicated. Expression levels are shown as mean fold difference of 
untreated cells (0d) ± S.E.M of 5 independent experiments. 
(D-E) Reversibility of TGFβ-induced EMT. Py2T cells were treated with TGFβ for 30 days to induce EMT and were then 
further cultured without TGFβ for additional 30 days. Phase-contrast microscopy images were taken at the indicated time 
points (D). E-cadherin expression levels were analyzed throughout the experiment by immunoblotting (E). 
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After having studied the transition from an epithelial to a mesenchymal state, we wondered 

whether Py2T cells that have undergone EMT can also revert back to the epithelial state and 

undergo a mesenchymal to epithelial transition (MET) upon withdrawal of TGFβ. We 

observed that Py2T cells cultured for up to 30 days in growth medium containing TGFβ were 

still able to revert to the original epithelial morphology when TGFβ was withdrawn from the 

medium. The MET process took approximately 18 days (Figure 2D), with a gradual re-

establishment of E-cadherin expression during this time (Figure 2E). These results indicate 

that Py2T cells offer a valuable experimental system to study the multiple stages of EMT and 

its reversion, MET. 

3.1.3.3 Migratory and invasive properties upon EMT induction 

To evaluate whether Py2T cells could be a suitable in vitro model system to study 

functional consequences of EMT, we assessed the migratory and invasive capabilities of these 

cells before, during and after EMT. First, we employed a modified Boyden chamber assay to 

analyze whether and to what extent Py2T cells become migratory and invasive during EMT. 

Cells previously treated with TGFβ for different times were seeded into Boyden chamber 

inserts without (migration assay) or with matrigel coating (invasion assay) and were allowed 

to move towards a gradient of fetal bovine serum as single cells. Quantification of cells that 

traversed the membrane revealed that cells treated with TGFβ for seven or more days were 

more migratory compared to untreated cells, and the migratory capacity dramatically 

increased with longer TGFβ treatment (Figure 3A top left). Similarly, when we seeded cells 

into Boyden chambers pre-coated with matrigel, cells passed through the bottom of the 

chambers with a similar increase over time of TGFβ treatment (Figure 3A top right). To 

illustrate these results, we stained cells located on the bottom side of the insert membranes 

with crystal violet (Figure 3A bottom). These findings clearly demonstrate that Py2T cells 

display a dramatic increase in chemotactic, single cell migration and invasion upon induction 

of EMT. 
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Figure 3. Changes of migratory and invasive properties of Py2T cells before, during and after TGFβ-induced EMT. 
(A) Boyden chamber migration and invasion assay. Cells were treated with TGFβ for the indicated times (LT=long term 
treatment, as described in Fig 1F). 25'000 cells were seeded into migration or invasion chambers in duplicate in the absence 
or presence of TGFβ and allowed to pass through the membrane pores for 24 hours along an FBS gradient. Invasion 
chambers were pre-coated with growth-factor reduced Matrigel (BD BioCoat chambers). Cells that passed through the 
membrane pores were stained with crystal violet and photographed (bottom panels) and then counted (top graphs). Results 
are expressed as mean ± S.E.M of three independent experiments. 
(B) Scratch wound healing assay. Cells pre-treated with TGFβ or not as indicated were starved over night and scratch 
wounds were introduced into confluent monolayers. Scratch wound closure was monitored by an IncuCyte™ live cell 
imaging system. Black masking represents initial gap width at 0 hours. Note the collective, sheet-like wound closure by 
untreated Py2T cells in contrast to single cell wound infiltration of TGFβ-treated cells (also see Additional files 1 and 2 for 
live imaging data of this experiment). 
(C) Morphology of epithelial Py2T cells and mesenchymal Py2T LT cells grown on plastic tissue culture dishes (2D) and in 
Matrigel (4mg/ml; 3D). Structures were grown for 6 days, and stained directly in Matrigel with antibodies against epithelial 
E-cadherin and ZO-1 or against mesenchymal vimentin and fibronectin. Immunofluorescence images were acquired by 
confocal microscopy. Scale bars, 25μm. 
(D) Three-dimensional reconstruction of confocal imaging stacks from cells grown in Matrigel as described in (A) (See also 
Additional files 5 and 6 for rotating 3D models). Scale bars, 25μm. 
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Scratch wound closure is another frequently used assay to assess the migratory capacity of 

cells on tissue culture plastic. Untreated and TGFβ-treated Py2T cells were grown to 

confluency and then starved in serum-free medium. After scratching a gap into confluent 

monolayers, we followed gap closure by live cell imaging (Additional file 1 and 2). Figure 3B 

shows images at different time points after wounding. Interestingly, untreated Py2T cells 

closed the scratch wound already after 12 hours in a sheet-like fashion, demonstrating that 

they are capable of a collective mode of migration, indicative of a metastable state (Lee et al., 

2006). Py2T cells treated with TGFβ closed the scratch wound much slower, moving in a 

mesenchymal mode of single cell migration and displaying front-rear polarity. These 

observations indicate that TGFβ treatment switches Py2T cells from a collective to a single 

cell migration mode (Friedl, 2004). 

To compare the migratory and invasive capabilities of Py2T and Py2T LT cells in a more 

physiological setting, the cells were seeded into a three-dimensional extracellular matrix 

(Matrigel; Figure 3C). Cells cultured on plastic are shown for comparison (Figure 3C, left; see 

also Additional file 3 and 4 for live imaging). When cultured for 6 days in growth factor-

reduced Matrigel, Py2T cells formed spheres. In contrast, Py2T LT cells invaded the 

surrounding matrix (Figure 3C middle). To further examine these different phenotypes, we 

performed in-gel immunofluorescence staining of intact three-dimensional structures, 

followed by confocal microscopy. Double-labeling of Py2T spheres with antibodies against 

E-cadherin and ZO-1 revealed densely packed cells with intact adherens and tight junctions, 

respectively (Figure 3C top right). In contrast, Py2T LT structures, stained against vimentin 

and fibronectin, invaded the matrix as single cells or as cell trails (Figure 3C bottom right). 

The phenotypic differences between Py2T and Py2T LT cells grown in extracellular matrix 

became even more apparent upon reconstructing the confocal microscopy stacks to three-

dimensional models using Imaris software (Figure 3D, see also Additional file 5 and 6 for 

animation). This analysis revealed the invasion and indian-file-like trailing of Py2T LT cells 

as single cells. Interestingly, only the leading cells expressed vimentin, while all Py2T LT 

cells cultured on a two-dimensional surface were positive for vimentin (Figure 1G) and 

moved as single cells rather than being organized in trails (Additional file 4). Taken together, 

these data demonstrate that the Py2T cell line represents a valuable model system to study 

various aspects of cell migration and invasion in the context of EMT. 
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3.1.3.4 Invasive tumor formation upon orthotopic transplantation into syngeneic mice 

We next orthotopically transplanted Py2T cells into fat pads of mice to evaluate their 

tumorigenicity. Since Py2T cells have been derived from tumors of MMTV-PyMT mice in an 

FVB/N background and because the PyMT transgene was no more expressed in cultured 

cells, we transplanted Py2T cells into syngeneic FVB/N mice. Three mice were injected with 

1x106 cells, all of which developed tumors. After 27 days of growth, tumors were harvested 

and analyzed. Hematoxylin & Eosin (H&E) staining of histological sections of a Py2T tumor 

(Figure 4A, right) and a late stage MMTV-PyMT tumor (Figure 4A, left) revealed that 

MMTV-PyMT tumors were mainly well differentiated with some less well-differentiated 

areas and necrosis towards the tumor center. 

 

 

Figure 4. Orthotopic transplantation of Py2T cells into syngeneic mice results in the formation of invasive tumors. 
(A) H&E staining of histological sections from tumors of MMTV-PyMT transgenic mice and from transplanted Py2T 
tumors. 1x106 Py2T cells were transplanted into the fat pad of 8 weeks old female FVB/N mice and allowed to grow tumors 
for 27 days. Late-stage MMTV-PyMT tumors were from 12 weeks old female mice. Bottom panels: enlarged regions 
indicated by the white squares in the top panels. Note the typical pushing borders in MMTV-PyMT tumors in contrast to 
stream-like invasion of fat tissue in Py2T tumors. Scale bars, 200μm. 
(B) Polyoma-middle-T (PyMT) expression in MMTV-PyMT and Py2T tumors. Paraffin sections were stained with an 
antibody against PyMT. Immunohiostochemical staining in the absence of primary antibody (1º) was used as negative 
control. Scale bar, 100μm. 
(C) Immunoblotting analysis for EMT markers in tumor lysates of MMTV-PyMT and Py2T tumors. Lysate from cultured 
Py2T cells is included as a control. Note the loss of E-cadherin expression and upregulation of mesenchymal markers (N-
cadherin, fibronectin) in Py2T tumors. 
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The tumor borders were passively invading the fat pad by proliferation (pushing borders). 

In contrast, Py2T tumors were characterized by streams of elongated cells that were actively 

invading the surrounding fat tissue. Of note, Py2T tumors lacked excessive necrosis, possibly 

because they were well vascularized as determined by staining for the blood vessel marker 

CD31 (data not shown). Furthermore, Py2T tumors contained a high stromal component 

intermixed with tumor cells. To exclude the possibility that immune cell infiltration was due 

to a possible re-expression of the PyMT transgene, tumor tissue sections were stained with an 

antibody against the PyMT protein. As expected, PyMT expression could be detected in 

MMTV-PyMT tumors (Figure 4B, left), but not in Py2T tumors (Figure 4B, right). Notably, 

when Py2T cells were orthotopically implanted into immuno-deficient nude mice, all mice 

developed tumors with a substantial infiltration of CD45-positive stromal cells, with a high 

content of macrophages (Figure S2).  

The spindle-like appearance of cells in the Py2T tumors suggested that Py2T cells may 

have undergone an EMT in these tumors. We thus compared lysates from mainly epithelial 

MMTV-PyMT tumors with lysates from mainly invasive Py2T tumors for expression of EMT 

markers. Indeed, expression of E-cadherin in MMTV-PyMT tumors was readily detectable as 

expected, however, very little if any E-cadherin expression was detectable in lysates of Py2T 

tumors (Figure 4C), supporting the hypothesis that Py2T cells had undergone EMT-like 

changes in vivo. Expression of the mesenchymal markers fibronectin and N-cadherin was also 

higher in some but not all Py2T tumors as compared to MMTV-PyMT tumors. Collectively, 

these results demonstrate that Py2T cells are tumorigenic, despite the absence of PyMT 

expression, and that they undergo oncogenic EMT-like changes in vivo. Notably, neither 

FVB/N nor immunodeficient mice bearing Py2T tumors had detectable metastasis, as 

determined by organ sectioning and luciferase activity measurement of organ lysates from 

mice injected with luciferase-tagged Py2T cells (data not shown, see also discussion).  

3.1.3.5 TGFβ-dependent EMT of Py2T tumors 

We next assessed whether the EMT occurring during Py2T tumor growth in the mammary 

fat pad of mice could be attributed to stimulation by host-derived TGFβ. First, we generated 

Py2T cell lines that stably express GFP for their distinction from host stromal cells. Next, we 

superinfected these cells with a lentiviral construct encoding a dominant-negative form of 

TGFβ receptor II (TBRDN); (Oft et al., 1998) or empty vector as control. Cultured Py2T 
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TBRDN-expressing cells did not show any apparent changes in phenotype as compared to 

control cells in the absence of TGFβ, but were resistant against TGFβ-induced EMT (Figure 

S3A). In a next step, we transplanted untreated Py2T control and Py2T TBRDN into fat pads 

of immunodeficient nude mice to evaluate their ability to undergo EMT in vivo. 

All mice developed tumors, and tumor growth was not significantly different between the 

two experimental groups (Figure S3B). H&E staining of Py2T control tumors revealed the 

same stream-like cellular growth pattern as observed in Py2T tumors in FVB/N mice (Figure 

5A top left), with cells displaying a spindle-like morphology (Figure 5A bottom left). In 

contrast, tumors formed by Py2T TBRDN contained areas of differentiated appearance 

(Figure 5A top right), with cells adopting a round, differentiated morphology (Figure 5A 

bottom right).  

Analysis of the expression of EMT markers revealed that, indeed, Py2T control tumors 

were negative for E-cadherin expression (Figure 5B, top left), whereas Py2T TBRDN tumors 

widely expressed E-cadherin, corresponding to the more differentiated regions observed by 

H&E staining (Figure 5B, top right). These results indicated that the inhibition of TGFβ 

signaling in Py2T TBRDN cells was sufficient to prevent a loss of E-cadherin expression and 

to preserve an epithelial phenotype. Immunofluorescence microscopy analysis of E-cadherin 

staining of GFP-expressing Py2T and Py2T TBRDN tumor cells, respectively, confirmed 

these observations (Figure 5C). Furthermore, immunoblotting analysis demonstrated higher 

E-cadherin expression in Py2T TBRDN tumors in contrast to Py2T control tumors (Figure 

5E). Py2T tumors also stained positive for the mesenchymal marker vimentin, however, the 

vimentin expressing cells observed were stromal cells rather than Py2T cells, as revealed by a 

lack of GFP expression (Figure 5D). This result suggested that Py2T cells, although capable 

of vimentin upregulation upon EMT induction in vitro (Figure 2C), did not undergo a 

complete EMT in transplanted tumors, which is often reported as a hallmark of oncogenic 

EMT.  

As Py2T cells expressed both luminal (CK8/18) and basal (CK14) markers in culture 

(Figure 1G, Figure 2B), we were curious to see whether the EMT-like changes observed in 

tumors would be accompanied by changes in the expression of these lineage markers. 

Immunofluorescence staining (Figure 5B) and immunoblotting analysis (Figure 5E) revealed 

a switch-like change in expression: a loss of CK14 expression was observed in favor of 



  RESULTS: Py2T Breast Cancer EMT Model 

___________________________________________________________________________ 

 49 

CK8/18 expression in Py2T tumors. On the other hand, Py2T TBRDN tumors were strongly 

positive for CK14 expression and displayed a reduction or even a loss of CK8/18 expression. 

Together, these results demonstrate that Py2T tumors display EMT-like changes characterized 

by a loss of E-cadherin expression, and suggest an apparent differentiation along the luminal 

lineage, both of which is inhibited by blocking the TGFβ responsiveness of the tumor cells. 
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Figure 5. Tumors of TGFβ-resistant Py2T cells display a more epithelial phenotype. 
(A) Morphology of tumors generated from Py2T cells stably overexpressing a dominant-negative TGFβRII (Py2T TBRDN) 
or empty vector control cells (Py2T). 1x106 cells were injected into fat pads of nude mice and tumors were grown for 24 
days. Paraffin sections were stained with H&E. Note the appearance of more differentiated epithelial areas in Py2T TBRDN 
tumors. Top: Epithelial (E) and mesenchymal (M) regions are separated by the dashed line (Scale bar, 200 μm). Bottom 
panels show larger magnification (Scale bar, 50 μm). 
(B) Expression of EMT and lineage markers in Py2T and Py2T TBRDN tumors. Immunohistochemical staining of paraffin 
sections was performed using the specified antibodies. White squares show higher magnification. Scale bar, 100μm. 
(C-D) Immunofluorescence staining of frozen sections of GFP-labeled Py2T and Py2T TBRDN tumors described in (A) with 
antibodies against E-cadherin or vimentin (red) and Py2T tumor cells (green). Scale bar, 20μm. 
(E) Immunoblotting analysis of epithelial and cytokeratin lineage markers in a series of Py2T and Py2T TBRDN tumors as 
indicated. 
 
 

3.1.4 Discussion 

We here report the generation and characterization of a stable murine breast cancer cell 

line, named Py2T, from a primary breast tumor of MMTV-PyMT transgenic mice. Cultured 

Py2T cells can be induced to undergo a full EMT by TGFβ treatment, a multistage process 

that takes up to ten days and results in a complete loss of epithelial morphology and epithelial 

marker expression and the gain of mesenchymal marker expression and increased cell 

migration and invasion. Upon long-term treatment with TGFβ, Py2T cells maintain the 

mesenchymal differentiation status (Py2T LT), allowing the direct comparison between the 

extreme stages of epithelial-mesenchymal plasticity. Upon removal of TGFβ, Py2T LT cells 

revert to their epithelial origin by undergoing an MET, with the gain of epithelial morphology 

and marker expression.  

Py2T cells also offer a novel syngeneic orthotopic transplantation model of malignant 

breast cancer progression. Upon injection into the fat pads of syngeneic FVB/N mice or into 

immuno-deficient nude mice, Py2T cells form primary tumors and spontaneously undergo 

EMT-like changes in vivo. As a proof of concept for the dual in vitro and in vivo use of Py2T 

cells as models of murine breast cancer cells undergoing EMT, we blocked TGFβ 

responsiveness of Py2T cells by stable expression of a dominant-negative version of 

TGFβRII. Transplantation of these cells yielded tumors with an epithelial phenotype, showing 

that the EMT-like changes in Py2T cell-derived tumors are, at least in part, dependent on 

TGFβ stimulation. These experiments approve Py2T cells as a versatile model for functional 

studies of murine breast cancer cells undergoing EMT in vitro and in vivo. 

It has been recognized that breast cancer is not a single, but a heterogeneous disease of 

various subtypes, which can be categorized according to staining for marker combinations, or, 

more recently, by molecular subtyping according to gene expression profiles. The type of 
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breast cancer is largely dictated by the transforming oncogene and the cell of origin being 

transformed (Petersen et al., 2001; Vargo-Gogola and Rosen, 2007; Visvader, 2009; Bertos 

and Park, 2011). We therefore characterized the cell type represented by Py2T cells. 

Molecular subtyping of MMTV-PyMT tumors has previously shown that these tumors 

resemble the luminal subtype of human breast cancer (Herschkowitz et al., 2007; Vargo-

Gogola and Rosen, 2007), as would be expected from the fact that the MMTV promoter is 

active in luminal epithelial cells (Wagner et al., 2001; Andrechek et al., 2005). Consistent 

with their origin from a tumor of an MMTV-PyMT transgenic mouse, Py2T cells are positive 

for the luminal markers estrogen receptor (ER) and CK8/18 (Figure 1G). Interestingly, Py2T 

cells also co-express the basal marker CK14 (Figure 1G) and therefore do not display a purely 

luminal phenotype. Concomitant basal and luminal cytokeratin expression has also been 

observed in a luminal breast cancer model where the MMTV promoter has been used to drive 

mutant PIK3CA H1047R oncogene expression (Meyer et al., 2011), and one of the pathways 

activated by PyMT is the PI3K pathway (Dilworth, 2002), suggesting that similar 

mechanisms are involved. Our observations and those of others show that MMTV-PyMT 

tumors also contain a fraction of CK14-positive tumor cells (data not shown)(Maglione et al., 

2001). Furthermore, double positivity for CK8/18 and CK14 has been established as a 

hallmark of basal cell lines (Keller et al., 2010). 

Together, these considerations suggest that Py2T cells should be categorized as a basal cell 

line with luminal origin, although comparative molecular subtyping could further clarify this 

issue. It is interesting to note in this context that EMT-like changes have most commonly 

been observed in the basal-like subgroup of breast cancers, indicating that this subgroup is 

predisposed for EMT-like changes (Mahler-Araujo et al., 2008; Sarrió et al., 2008). Basal-like 

tumors also encompass the recently determined claudin-low subtype, now considered to be a 

distinct entity, which is clearly enriched in EMT marker expression (Lim et al., 2010; Taube 

et al., 2010; Prat et al., 2010a). Our gene expression profiling and subsequent bioinformatic 

analysis according to the PAM50 and 9-cell line claudin-low predictor (Parker et al., 2009; 

Prat et al., 2010b) revealed that Py2T cells most closely resemble Her2-enriched breast cancer 

of patients. In contrast, Py2T cells that have undergone TGFβ-induced EMT (Py2T LT) 

resemble basal-like, claudin-low breast cancer, a highly invasive breast cancer subtype that 

has been shown to correlate with EMT in a variety of experimental systems (Taube et al., 

2010; Prat et al., 2010b; Asiedu et al., 2011; Herschkowitz et al., 2012). 
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Expression of basal cytokeratins 5 and 14 has also been linked to a hybrid or metastable 

differentiation state, in which cells display considerably more plasticity than fully 

differentiated cells, residing in a dynamic continuum between epithelial and mesenchymal 

states (Lee et al., 2006; Klymkowsky and Savagner, 2009). One feature that characterizes 

metastable cells is that they display loose but intact cell-cell adhesions and show migratory 

properties in the form of collective movement as a sheet. Indeed, when grown to confluency, 

Py2T cells close a scratch wound as a cellular sheet (Figure 3C and Additional file 1). A 

further indicator for a metastable state is the observation that, when grown under sparse 

culture conditions on plastic, Py2T cells are able to transiently leave the epithelial sheet and 

move as single cells in a spontaneous manner (Additional file 3). This single cell mode of 

migration resembles amoeboid movement, characterized by a rounding of cell bodies and a 

fast change in direction, and is distinct from the mesenchymal mode of migration 

characterized by front-rear polarity which we observed with Py2T LT cells (Additional file 4) 

(Friedl, 2004; Sahai, 2005). The reversibility of TGFβ-induced EMT of Py2T cells further 

illustrates the plasticity of Py2T cells and has also been proposed as a hallmark of 

metastability (Figure 2E) (Lee et al., 2006; Klymkowsky and Savagner, 2009; Savagner, 

2010). From these observations we conclude that cultured Py2T cells do not represent fully 

differentiated epithelial cells, but that they are rather in a metastable state that is readily 

shifted towards a mesenchymal phenotype by TGFβ treatment. 

When implanted into the mammary fat pad microenvironment, Py2T cells eventually 

develop tumors with an EMT-like phenotype (Figures 4 and 5). We believe that the term 

„EMT-like“ is accurate, since we have noticed that in these tumors, Py2T cells do not 

completely convert into mesenchymal cells as they do under culture conditions in the 

presence of TGFβ. Breast cancers can display a range of stages of EMT, in fact, tumor-

associated EMT appears less complete than developmental EMT (Kalluri and Weinberg, 

2009; Drasin et al., 2011). A staging scheme has been proposed based on the state of cell 

polarization, cell cohesiveness and intermediate filament expression, categorizing oncogenic 

EMT into four distinct stages (P0-P3), with P0 designating full epithelial differentiation and 

P3 indicating a fully mesenchymal state (Klymkowsky and Savagner, 2009). Py2T tumors 

correspond to the P2 stage, where cells have lost polarization and cohesive cell-cell contacts, 

but retain cytokeratin expression (at least CK8/18) and fail to upregulate vimentin (Figure 5). 

When we block TGFβ-responsiveness in Py2T cells, epithelial morphology is widely 
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retained, and tumor cells appear to be organized as dynamic cohesive sheets or strand-like 

structures, however not regaining full epithelial polarization (Figure 5). This phenotype is 

again consistent with a metastable state rather than full epithelial differentiation, and 

corresponds to the P1 stage of oncogenic EMT according to (Klymkowsky and Savagner, 

2009).  

Despite the fact that Py2T cells form locally invasive tumors and that MMTV-PyMT 

tumors give rise to distant metastases, we were unable to detect any metastasis evoked by 

Py2T tumors. One conceivable reason for this apparent discrepancy could be the following: 

Py2T tumors are fast growing and aggressive, and, due to animal welfare considerations, mice 

have to be sacrificed approximately 25 days after implantation (Figure S3). Therefore, the 

timeframe to establish detectable metastasis may be simply too short. In comparison, the 

metastasis latency in MMTV-PyMT tumors is about 3.5 months (Fantozzi and Christofori, 

2006).  

We have observed that PyMT transgene expression is absent in Py2T cells both in vitro 

(Figure 1C) and in vivo (Figure 4B). This finding has important implications. First, it allows 

the transplantation of Py2T cells (derived from MMTV-PyMT mice in a FVB/N background) 

into syngeneic FVB/N mice (Figure 4). Second, the loss of PyMT expression together with 

the fact that these cells are nevertheless tumorigenic suggests that outgrowing Py2T cells have 

escaped oncogene addiction. Intriguingly, in several other mouse models of breast cancer, 

discontinued oncogene expression is followed by the appearance of tumors that display EMT-

like features (see (Cardiff, 2010) for review). For example, after turning off Her2/neu 

expression in tumors induced by this oncogene in the mammary gland, tumors regress, yet 

regrow as spindle cell „EMT“ tumors that are strikingly similar if not identical in phenotype 

to the tumors we describe here (Moody et al., 2002). In agreement with our study, these 

tumors have not been observed to metastasize (Cardiff, 2010). It is likely that our model 

recapitulates these events, whose underlying mechanisms have yet to be determined. If so, the 

Py2T model system could be instrumental in elucidating mechanisms of tumor recurrence and 

resistance to therapy, which has been previously attributed to EMT (Creighton et al., 2009; 

Singh and Settleman, 2010; Drasin et al., 2011; Biddle and Mackenzie, 2012; Dave et al., 

2012). Finally, in light of the recent findings that EMT confers stem cell-like traits to cancer 

cells (Mani et al., 2008; Morel et al., 2008), Py2T cells also offer a unique system to study 

these events in vitro and in vivo.  
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3.1.5 Conclusions 

We have established and functionally characterized a novel cellular model of murine breast 

cancer EMT (Py2T). While Py2T cells undergo EMT in response to TGFβ stimulation in 

vitro, orthotopic transplantation into mice results in tumors displaying oncogenic, TGFβ-

dependent EMT. Py2T cells thus represent a versatile model to investigate the molecular 

mechanisms underlying EMT and to delineate how EMT contributes to therapy resistance, 

loss of oncogene addiction and tumor recurrence. 
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3.1.6 Supplemental Data 

 

 

 

 
Figure S1. Canonical TGFβ signaling in untreated versus TGFβ-treated Py2T cells. 
(A) Immunofluorescence staining for total Smad2/3 (red) and phosphorylated (activated) pSmad3 (green). Nuclei are 
visualized by DAPI staining. Scale bar, 20μm. 
(B) Transcriptional Smad activity was determined by a dual luciferase reporter assay. Cells were transfected with a Smad4 
luciferase reporter containing a Smad-binding element (SBE-luc) or a control plasmid lacking the SBE (luc), along with 
Renilla luciferase for normalization. Relative luminescence units (RLU) are expressed as mean +/- SEM from 2 independent 
experiments. 
 

 

 

 

 

 

 

 

Figure S2. Py2T tumors are characterized by a high immune 
cell infiltration. 
Immunofluorescence staining of a Py2T tumor for the leukocyte 
marker CD45 and the macrophage marker F4/80. Images show a 
central region of a tumor grown in nude mice as described in 
Figure 5. Scale bar, 50μm. 
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Figure S3. Expression of a dominant-negative TGFβRII in Py2T cells prevents EMT in vitro and in vivo. 
(A) Py2T cells stably expressing a dominant-negative TGFβRII (Py2T TBRDN) or cells transfected with empty vector 
control were treated with TGFβ (2ng/mL). To assess activation of canonical ΤGFβ signaling and nuclear accumulation of 
Smad proteins, cells were stained with antibodies against Smad2/3. To evaluate the breakdown of cell junctions downstream 
of TGFβ signaling, cells were stained with E-cadherin (adherens junctions) and ZO-1 (tight junctions). Scale bars, 50μm. 
(B) Tumor growth of Py2T TBRDN and control cells (Experiment is described in Figure 5). N=10 mice per group. Data is 
presented as mean ± S.E.M. Statistical values are calculated by using an unpaired, two-tailed t-test. A p-value > 0.05 was 
considered not significant. 
 
 
 
 
Additional files containing digital data (movies, spreadsheet files) are available upon request.  
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3.1.7 Materials and Methods 

Antibodies and reagents 

Antibodies: PyMT (mouse monoclonal Pab762, a kind gift of Dr. S. Dilworth, Imperial 

College London), Actin (sc-1616, SantaCruz Biotechnology), E-cadherin (610182, 

Transduction Laboratories), N-cadherin (M142, Takara Bio), fibronectin (F3648 Sigma-

Aldrich), GAPDH (ab9485, Abcam), cytokeratin 14 (RB-9020-P0, NeoMarkers), cytokeratin 

8/18 (20R-CP004, Fitzgerald), vimentin (V2258, Sigma-Aldrich), ERα (sc-542, Santa Cruz 

Biotechnology), ZO-1 (617300, Zymed), F4/80 (MCAP497, Serotec), CD45 (550539, BD), 

Smad2/3 (610842, BD), Smad3 pSer423/425 (9520, Cell Signalling). 

Reagents: recombinant human (rh) TGFβ1 (240-B-010, R&D Systems), recombinant mouse 

(rm) EGF (PMG8041, Invitrogen), rmIGF-1 (250-19, Peprotech), rmHGF (2207-HG, R&D 

Systems), rmbasicFGF (3139-FB-025, R&D Systems), rhPDGF-BB (220-BB, R&D Systems, 

rhIL-6 (200-06 Peprotech), Dexamethasone (800-437-7500, Chemicon), Matrigel, growth 

factor reduced (356230, BD). 

Cells and cell lines 

A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG) has been previously 

described(Maeda et al., 2005). NMuMG and Py2T cells were cultured in DMEM 

supplemented with glutamine, penicillin, streptomycin, and 10% FBS (Sigma). 

Mouse strains 

MMTV-PyMT (Guy et al., 1992; Lin et al., 2003) were received from N. Hynes (FMI, Basel, 

Switzerland). BALB/c nude mice were purchased from JANVIER SAS (Le Genest Saint Isle, 

France). 

Primers 

For genotyping of the MMTV-PyMT transgene, the following primers were used: MMTV-

PyMT (forward: 5’-cggcggagcgaggaactgagg-3’, reverse: 5’-tcagaagactcggcagtcttag-3’). 
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For quantitative RT-PCR, the following primers were used: 

mRNA Forward primer (5’-3’) Reverse primer (5’-3’) 

Rpl19 ctcgttgccggaaaaaca tcatccaggtcaccttctca 

E-cadherin cgaccctgcctctgaatcc tacacgctgggaaacatgagc 

N-cadherin ctgccatgactttctacggaga caatgacgtccaccctgttct 

Fibronectin cccagacttatggtggcaatt aatttccgcctcgagtctga 

Vimentin ccaaccttttcttccctgaa ttgagtgggtgtcaaccaga 

Zeb1 gccagcagtcatgatgaaaa tatcacaatacgggcaggtg 

Zeb2 ggaggaaaaacgtggtgaactat gcaatgtgaagcttgtcctctt 

Snail ctctgaagatgcacatccgaa ggcttctcaccagtgtgggt 

Slug tgtgtctgcaagatctgtggc tccccagtgtgagttctaatgtg 

E47 ggacattaacgaggccttccg tggggttcaggttgcgttct 

Twist gccggagacctagatgtcattg cacgccctgattcttgtgaa 

 

Genotyping 

To extract DNA, cells from a confluent 10cm dish were trypsinized, washed in PBS and 

pelleted. To the pellet, 450μL tail tip buffer (50mM Tris-HCl pH 8, 100mM NaCl, 100mM 

EDTA, 1% SDS) and 180μL 6M NaCl were added, the samples were mixed and spun at full 

speed in a tabletop centrifuge. Supernatant was added to 600µL isopropanol, vortexed and 

spun for 5 min at full speed. Supernatant was discarded and 500μL of 70% EtOH was added, 

vortexed and spun for 3 min at full speed. Supernatant was discarded and the pellet was dried 

and resuspended in TE buffer. Samples were analyzed using standard PCR procedure. 

Quantitative RT-PCR 

Total RNA was prepared using Tri Reagent (Sigma-Aldrich), reverse transcribed with M-

MLV reverse transcriptase (Promega, Wallisellen, Switzerland), and transcripts were 

quantified by PCR using SYBR-green PCR MasterMix (Applied Biosystems, Rotkreuz, 

Switzerland). Riboprotein L19 primers were used for normalization. PCR assays were 

performed in triplicates, and fold induction was calculated using the comparative Ct method 

(ΔΔ Ct).  
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Luciferase reporter assay 

5x104 Py2T cells were plated in triplicate in a 24 well plate. One day after plating, cells were 

transfected with 800ng reporter and 5ng Renilla encoding plasmids using Lipofectamine 

2000. Fresh growth medium was added after 5 hours of transfection containing 2ng/mL TGFβ 

or not. After 2 days, cells were lysed directly in plates using 1x passive lysis buffer (#E194, 

Promega) and lysates were analyzed using the Dual-Luciferase Reporter Assay System 

(#E1960, Promega) and a Berthold Luminometer LB960. Measured luciferase values were 

normalized to internal Renilla control. The Smad4 reporter was kindly provided by P. ten 

Dijke (Leiden University; (Dennler et al., 1998). 

Cell line isolation 

A piece (~200mg) of freshly isolated tumors was transferred into collection medium (DMEM 

supplemented with 10% FBS, 2mM glutamine, supplemented with Gentamycin (50ug/mL)) 

and minced into very small pieces using sterile technique with a scalpel. Pieces were collected 

by rinsing with pre-digestion buffer (10mM HEPES pH7.4, 142mM NaCl, 0.67mM KCl, 

1mM EDTA) supplemented with Gentamycin (50ug/mL)(G1397, Sigma-Aldrich) and 1x 

Antibiotic-Antimycotic (15240-096, Invitrogen), and transferred to a 15mL Falcon tube. 

Pieces were predigested in horizontal position at 200rpm at 37°C for 30min on a bacterial 

shaker. Predigested tissue was pelleted by spinning at 900xg for 5min, the supernatant was 

removed and the pellet was resuspended in digestion mix (10mM HEPES pH7.4, 142mM 

NaCl, 0.67mM KCl, 0.67mM CaCl2, 20mM Glucose, 1mg/mL Collagenase Type I, 

0.1mg/mL DNAseI) supplemented with Gentamycin (50ug/mL) and 1x Antibiotic-

Antimycotic. The tissue was digested by shaking in horizontal position at 200rpm at 37°C for 

30min on a bacterial shaker. For final single cell dissociation, tissue was pipetted up and 

down for 5 min using a 1mL pipette. Digested tissue was pelleted, washed twice in PBS and 

plated into multiple wells of a 24 well plate in normal growth medium (DMEM supplemented 

with 10% FBS, 2mM glutamine, 100U penicillin and 0.2mg/ml streptomycin). Growth 

medium was exchanged the next day, and subsequently exchanged every three to four days 

until epithelial cultures without Fibroblast contamination emerged. 

Immunofluorescence staining of cultured cells 

Cells were plated on glass coverslips and treated for the indicated times with TGFβ. The 

following steps were all done at room temperature. After fixation using 4 % 
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paraformaldehyde /PBS for 15 min, cells were permeabilized with 0.5 % NP-40 for 5 min. 

Next, cells were blocked using 3 % BSA, 0.01 % TritonX-100 in PBS for 20 min. Then, cells 

were incubated with the indicated primary antibodies for 1 h followed by incubation with the 

fluorochrome-labeled secondary antibody (Alexa Fluor®, Invitrogen) for 30 min at room 

temperature. Nuclei were stained with 6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) 

for 10 min. The coverslips were mounted (Fluorescent mounting medium, Dako) on 

microscope slides and imaged with a conventional immunofluorescence microscope (Leica 

DMI 4000) or a confocal microscope (Zeiss LSM 510 Meta). Confocal stacks were 

reconstructed with Imaris Software (Bitplane, Switzerland). 

Immunoblotting 

Cells were lysed in RIPA buffer (150 mM NaCl, 2 mM MgCl, 2 mM CaCl2, 0.5 % NaDOC, 

1 % NP40, 0.1 % SDS, 10 % Glycerol, 50 mM Tris pH 8.0) containing 2 mM Na3VO4, 10 

mM NaF, 1 mM DTT, and a 1:200 dilution of stock protease inhibitor cocktail for 

mammalian cells (Roche). Protein concentration was determined using the BCA assay kit 

(Pierce). Equal amounts of protein were diluted in SDS-PAGE loading buffer (10 % glycerol, 

2 % SDS, 65 mM Tris, 1 mg/100 ml bromophenol blue, 1 % β-mercaptoethanol) and resolved 

by SDS-PAGE. Proteins were transferred to polyvinylidene fluoride (PVDF) membranes 

(Millipore) by semi-dry transfer, blocked with 5 % skim milk powder in TBS/ 0.05 % Tween 

20 and incubated with the indicated antibodies. HRP conjugated secondary antibodies were 

detected by chemiluminescence using a Fusion Fx7 chemiluminescence reader (Vilber 

Lourmat, France). 

Retroviral infection 

A cDNA encoding EGFP was subcloned from pEGFP-N3 (Clontech) into the retroviral vector 

pBabe-hygro (Morgenstern and Land, 1990). The resulting plasmid pBH-EGFP was 

transfected into the retroviral packaging cell line Plat-E (purchased from Cell Biolabs)(Morita 

et al., 2000) using FugeneHD (Roche). One day after transfection, medium was exchanged 

and retroviral supernatant was produced for 2 days. Viral supernatant was filtered through 

0.45 μm pores and 8 ug/mL Polybrene was added. Py2T cells were plated into 6-well plates 

and were infected with viral supernatant one day after plating. For infection, 2 mL supernatant 

was added per well and plates were spun for 1 hour at 30°C at 1000xg and were subsequently 

incubated at 37°C with 5% CO2 in a tissue culture incubator for 2 more hours. Viral 
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supernatant was then replaced by normal growth medium and one day later, selection with 

500 μg/mL Hygromycin B (Invitrogen) was performed for 5 consecutive days. 

Lentiviral infection 

A cDNA encoding a human dominant-negative version of TGFβRII (K277R)(Oft et al., 1998) 

(kindly provided by M. Oft, Targenics Inc., San Francisco) was subcloned into the lentiviral 

expression vector pLentiCMV (a kind gift from O. Pertz, University of Basel). Lentiviral 

particles were produced by transfecting HEK293T cells with the lentiviral expression vector 

pLentiTBRDN or empty vector as a control, in combination with the helper vectors pHDM-

HGPM2, pHDM-Tat1b, pRC-CMV-RaII and the envelope encoding vector pVSV using 

Fugene HD. After two days of virus production, lentivirus-containing supernatants were 

harvested, filtered (0.45 µm) and added to target cells in the presence of polybrene (8 μg/ml). 

Cells were spun for 1 hour at 30°C at 1000xg and were subsequently incubated at 37°C with 

5% CO2 in a tissue culture incubator for 2 more hours. Viral supernatant was then replaced by 

normal growth medium and one day later, selection with 5 μg/mL Puromycin (Sigma-

Aldrich) was performed for 3 consecutive days. 

Boyden chamber migration and invasion assay 

Cells pre-treated or not with TGFβ were trypsinized, washed once with PBS, and resuspended 

in growth medium containing 0.2% FBS and 2 ng/mL TGFβ where appropriate. 2.5x104 cells 

in 500 µL were seeded into cell culture insert chambers containing 8 μm pores (migration 

chambers: 353097, BD Falcon; invasion chambers with ECM coating: 354483, BD Falcon) in 

triplicate. Subsequently, the bottoms of chambers were filled with 700 μL of growth medium 

containing 20% FBS, and cells were incubated in a tissue culture incubator at 37°C with 5% 

CO2. After 24 hours, inserts were fixed with 4% PFA/PBS for 10 min. Cells that had not 

crossed the membrane were removed with a cotton swab, and cells on the bottom of the 

membrane were stained with DAPI. Images of five fields per insert were taken with a Leica 

DMI 4000 microscope and stained cells were counted using an ImageJ software plugin 

developed in-house. Subsequently, inserts were stained in crystal violet solution (0.125% 

crystal violet, 20%MeOH) for 10 minutes, followed by washing in a large volume of dH2O 

and drying over night. Images of crystal violet stained inserts were taken with an AxioVert 

microscope (Zeiss, Germany). 
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Scratch wound closure assay 

3x105 untreated Py2T cells and 3x105 Py2T cells treated with TGFβ for 13 days were seeded 

into 24-well plates with or without TGFβ. Normal growth medium was replaced by starving 

medium containing 2% FBS with or without TGFβ on the next day. After starvation over 

night, a wound was scratched into confluent monolayers and plates were transferred to an 

IncucyteTM live imaging instrument (Essen BioScience). 

3D matrigel culture and in-gel immunofluorescence staining 

Growth factor-reduced matrigel (356230, BD) stock was thawed on ice and diluted to 4 

mg/mL protein with ice-cold, serum-free growth medium. Cells were trypsinized, 

resuspended in ice-cold normal growth medium and counted using a CASY cell counter 

(Roche, Switzerland). A pellet of 2500 cells was resuspended in 10 μL of pre-diluted matrigel 

and transferred to one well of a µ-slide angiogenesis microscopy slide (ibidi, Martinsried, 

Germany). After an incubation of 20 min in a tissue culture incubator to allow solidification 

of the gel, 50 μL of normal growth medium containing or not 2 ng/mL TGFβ was added to 

each well. Growth medium was replenished every third day. After 6 days of growth, 

structures were prepared for immunofluorescence analysis directly in the matrix. Structures 

were fixed with 4% PFA/PBS for 10 min and washed with 20 mM Glycine/PBS for 5 min. 

After a second wash with PBS, cells were permeabilized and blocked with IF buffer (0.2% 

TritonX-100/0.1% BSA/0.05% Tween20/PBS) containing 10% goat serum. Samples were 

incubated with primary antibodies diluted in IF buffer for 2 hours at room temperature in a 

humid chamber. After 2 washes with IF buffer, secondary antibodies diluted in IF buffer were 

incubated for 45 minutes, and nuclei were stained with DAPI solution for 20 minutes. After 2 

final washes with IF buffer, samples were topped with fluorescent mounting medium (Dako) 

and imaged with a confocal microscope (LSM 510 Meta, Zeiss). 

Orthotopic tumor cell transplantation 

Cells were trypsinized, washed twice and resuspended in ice-cold PBS. Eight weeks old 

female BALB/c nude mice or FVB/N mice were anaesthetized with isoflurane/oxygen and 

injected with 1x106 Py2T cells in 100μL PBS into mammary gland number 9. Tumor volumes 

were calculated according to the formula V= 0.5*D*d^2, where D represents length and d 

represents width of tumors measured by a digital caliper. Mice were sacrificed by CO2 and 

tumors were isolated and further processed. 
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Histology and immunostaining 

For immunohistochemistry (IHC) and Hematoxilin & Eosin (H&E) stainings, tumors were 

fixed at 4°C in 4% phosphate-buffered paraformaldehyde (PFA) for 12 hours and then 

embedded in paraffin after ethanol/xylene dehydration. H&E staining was performed as 

previously described (Perl et al., 1998; Wicki et al., 2006). For immunofluorescence analysis 

of frozen sections, organs were fixed at 4°C in 4% PFA for 2 hours, and cryopreserved for 10 

hours in 20% sucrose in PBS prior to embedding in OCT freezing matrix. For IHC stainings 

of PFA-fixed, paraffin-embedded specimens, antigen epitopes were retrieved by boiling slides 

in 10mM Na-Citrate buffer (pH6.0) in a PrestigeMedical Z2300 antigen retriever. Stainings 

with mouse and rabbit antibodies were performed using the Dako EnVision plus Kit (K4065) 

according to the manufacturer’s recommendations. Cytokeratin 8/18 staining was performed 

using the Vectastain ABC kit (PK-6100 standard, Vector). Stainings were revealed by 

incubation with biotinylated secondary antibodies and ABC Elite detection kit using AEC 

substrate (all from Vector Laboratories) according to the manufacturer’s instructions and 

counterstained using hematoxilin. Cryosections were cut 7μm thick and dried for 30’ prior to 

rehydration in PBS. Slides were permeabilized with in PBS/0.2% TritonX-100 and blocked 

for 30 min in PBS/5% normal goat serum and then incubated with the primary antibody in 

blocking buffer for 1 hour at room temperature. Immunofluorescence (IF) stainings were 

revealed by incubation with Alexa488 or Alexa568 labeled secondary antibodies (Molecular 

Probes) and nuclei were stained with DAPI (SIGMA). IHC stainings were evaluated on an 

AxioVert microscope (Zeiss, Germany) and IF stainings on a Leica DMI 4000 microscope 

(Leica Microsystems, Germany). 

Statistical analysis 

Statistical analysis and graphs were generated using the GraphPad Prism software (GraphPad 

Software Inc, San Diego, CA). All statistical analysis was performed by unpaired, two-sided 

t-test. 
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3.2 Critical roles of Tead transcription factors in the EMT process 

3.2.1 Abstract 

Activation of cellular programs associated with epithelial-mesenchymal transition (EMT) 

can empower tumor cells with migratory, invasive and stem cell-like properties, thereby 

supporting tumor progression and malignancy. These phenotypic changes are driven by broad 

changes in gene expression, and we therefore sought to identify critical transcription factors 

(TFs) mediating these changes. To do so, we have chosen a genome-wide approach to search 

for TF DNA-binding motifs that are overrepresented in promoters of EMT-regulated genes. 

We have performed time-resolved gene expression profiling of normal murine mammary 

gland (NMuMG) cells undergoing EMT in response to TGFβ-treatment, and have subjected 

these data to computational motif-activity-response analysis (MARA). This analysis has 

predicted a prominent role for Tead transcription factors in the upregulation of a large number 

of genes during the EMT process. Here, show experimental evidence that endogenous Tead 

transcriptional activity is elevated during EMT. Moreover, Tead family members display an 

increase in their expression during EMT, and ectopic expression of wild type Tead2, or a 

constitutive active version of Tead2, leads to an increase in Tead transcriptional activity and is 

sufficient to induce EMT. Furthermore, we show that Tead2 can control the subcellular 

localization of Yap and Taz, indicating that during EMT, elevated levels of Tead2 may recruit 

additional Yap/Taz molecules to the nucleus to achieve increased transcriptional activity. 

MARA analysis has also provided us with candidate Tead target genes. We here demonstrate 

that Zyxin, a focal adhesion component and regulator of actin remodeling that has been 

previously shown to be required for EMT-induced migration, is a direct target gene of Tead2 

during EMT. 
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3.2.2 Introduction 

Epithelial-mesenchymal transition (EMT) is a cell-biological program that is required at 

various stages during development. Activation of EMT in epithelial cells induces a loss of 

cell-cell adhesions and apical-basal polarity and promotes transdifferentiation into a 

mesenchymal state which is characterized by a migratory and invasive phenotype (Kalluri and 

Weinberg, 2009; Nieto, 2011). During solid tumor progression, a reactivation of some of 

these features in epithelial tumor cells (oncogenic EMT) is regarded as one of the mechanisms 

that facilitate metastatic spread (Thiery et al., 2009; Chaffer and Weinberg, 2011). Oncogenic 

EMT not only provides tumor cells with invasive properties that permit dissemination from 

the primary tumor, but also results in the acquisition of stem cell-like traits, which has 

implications for cancer therapy and may also be important for colonization of distant organs 

(Polyak and Weinberg, 2009; Chaffer and Weinberg, 2011; Magee et al., 2012; Scheel and 

Weinberg, 2012). Oncogenic EMT can be driven by the same players that control 

developmental EMT, and transcription factors are major coordinators of the EMT program 

(Thiery and Sleeman, 2006; Moreno-Bueno et al., 2008; Acloque et al., 2009; Nieto, 2011). 

To gain more insight into the transcriptional regulation of EMT, we sought to identify 

transcription factors that differentially regulate the expression of a wide range of target genes 

during this process. To do so, we first performed time-resolved gene expression profiling of 

the EMT process utilizing normal murine mammary gland (NMuMG) cells, which undergo 

EMT upon TGFβ treatment, as a model (Maeda et al., 2005). Gene expression profiles of 

different timepoints of TGFβ-induced EMT were then analyzed by motif-activity-response-

analysis (MARA) (FANTOM Consortium et al., 2009). This computational analysis is based 

on a collection of ~200 transcription factor (TF) binding motifs, which represent the DNA 

binding sites of ~340 TFs. The MARA algorithm ranks all of these binding motifs according 

to their overrepresentation in promoters of genes that are differentially regulated, in this case 

during EMT. Thereby, the transcription factors corresponding to the motifs at the top of the 

list are predicted to regulate the highest number of target genes. The MCAT motif, which 

corresponds to the DNA binding motif of Tead family TFs, ranked among the top of this list. 

In mammals, four Tead family members (Tead1-4) exist (Jacquemin et al., 1996; Kaneko and 

DePamphilis, 1998). Teads are ubiquitously expressed and have partially redundant roles in 

regulating the development of various tissues such as neural crest, notochord and 

trophoectoderm (Milewski et al., 2004; Sawada et al., 2005; Yagi et al., 2007; Sawada et al., 
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2008). In the adult, Teads have mainly been implicated in muscle-specific gene expression 

(Chen et al., 1994; Stewart et al., 1994; Gupta et al., 1997; Butler and Ordahl, 1999; Ueyama 

et al., 2000; Milewski et al., 2004; Zhao et al., 2006; Benhaddou et al., 2012). Transcriptional 

activity of Teads is mediated by direct binding of the transcriptional co-activators Yap or Taz 

(Vassilev et al., 2001; Mahoney et al., 2005), which controls proliferation in epithelial cells 

and fibroblasts (Ota and Sasaki, 2008; Zhao et al., 2008b; Zhang et al., 2009a). Yap and Taz 

nuclear localization and Tead activation is inhibited by the Hippo tumor suppressor signaling 

pathway: when Hippo signaling is activated by high cell density, the Hippo core component 

Lats phosphorylates Yap/Taz, thereby creating a binding site for 14-3-3 proteins that act to 

sequester Yap/Taz in the cytoplasm. As a result, target gene expression is discontinued and 

the result is growth arrest (Pan, 2010; Zhao et al., 2010; 2011b). Interestingly, recent studies 

have shown binding of Yap/Taz to intact adherens junctions (Kim et al., 2011; Schlegelmilch 

et al., 2011; Silvis et al., 2011), tight junctions (Wang et al., 2011a; Zhao et al., 2011a) and 

polarity complexes (Varelas et al., 2010) in densely grown epithelial cells, which can 

contribute to cytoplasmic retention and inhibition of Tead activity. Several recent studies also 

established that Yap/Taz nuclear localization and Tead activity is positively regulated by cell 

spreading and the presence of stress fibers, however whether this is dependent on Hippo 

signaling is currently debated (Dupont et al., 2011; Fernández et al., 2011; Sansores-Garcia et 

al., 2011; Wada et al., 2011; Zhao et al., 2012). Interestingly, Yap/Taz overexpression was 

shown to be sufficient to induce EMT of MCF10A cells in a Tead-dependent manner (Lei et 

al., 2008; Zhao et al., 2008b; Zhang et al., 2009a). Moreover, a recent report established that 

Yap/Taz nuclear accumulation in EpH4 cells treated with TGFβ is required for these cells to 

undergo EMT (Varelas et al., 2010). Even though these studies clearly suggest a crucial role 

of Teads in mediating EMT induction, the mechanisms involved remain elusive. Thus, on the 

basis of our bioinformatics analysis that proposed an increase in Tead transcriptional activity 

during EMT of NMuMG cells, we chose to investigate the role of Tead transcription factors 

in the EMT process. 

Here, we make use of several cellular model systems of EMT, and experimentally 

demonstrate that endogenous Tead activity is increased upon EMT in these systems. 

Moreover, we find that the expression levels of several Tead family members concomitantly 

increase with their transcriptional activity. In particular, Tead2 is upregulated during EMT in 

all three model systems investigated, and we show that ectopic expression of wild type Tead2 
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or of a constitutively active form (Tead2-VP16) is sufficient to induce EMT, while 

knockdown of Teads or overexpression of a dominant-negative form of Tead2 attenuates 

EMT. We further provide evidence that Tead2 can regulate Yap/Taz nuclear localization. 

Conversely, we show that Tead2 is exported from the nucleus in densely grown cells along 

with Yap/Taz. Finally, we identify Zyxin, a component of focal adhesions and an actin 

cytoskeleton remodeling protein which has previously been implicated in EMT (Mori et al., 

2009; Sperry et al., 2010), as a novel downstream target gene of Tead2. 
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3.2.3 Results 

3.2.3.1 Increase of Tead transcriptional activity during EMT 

To identify key transcription factors (TFs) that mediate the vast changes in gene expression 

during EMT, we screened for TFs that change their activity during EMT. To do so, we 

initially chose to employ the widely used normal murine mammary gland (NMuMG) cell line, 

which gradually undergoes EMT when stimulated with TGFβ, as a model system (Maeda et 

al., 2005). We performed gene expression profiling of five different time points during the 

transition from epithelial to mesenchymal cells and subjected the resulting data to Motif 

Activity Response Analysis (MARA); (Pachkov et al., 2007; FANTOM Consortium et al., 

2009). MARA contains a collection of ~200 regulatory motifs representing the DNA binding 

sites of ~350 TFs, which are mapped to genome-wide, CAGE-defined promoters of genes 

(Balwierz et al., 2009). Briefly, the algorithm predicts changes in transcription factor activity 

by analyzing the presence of regulatory motifs in promoters of genes that are differentially 

regulated across different samples, in our case different time points of EMT. One of the top 

scoring regulatory motifs that was overrepresented in differentially expressed genes during 

EMT was the MCAT motif, corresponding to the DNA binding site of Tead transcription 

factors (Figure 1A).  

MARA analysis revealed an increase in activity of this motif during EMT; in other words, 

the genes containing such a motif in their promoters were upregulated during EMT. Figure 1B 

shows the mean expression changes of these genes. To experimentally validate these findings, 

we constructed a luciferase reporter construct bearing 8 repeats of the MCAT core motif 

(CATTCCT), flanked by additional sequences that allow activation of expression in non-

muscle cells (Figure 1C); (Larkin et al., 1996). To determine background luciferase activity, 

we used the same construct lacking MCAT and flanking sequences. We determined Tead 

activity during EMT in two different cellular model systems of EMT in addition to NMuMG 

cells (Figure 1D, bottom panels). Py2T cells are described in this thesis and undergo EMT 

upon TGFβ stimulation. The mammary tumor (MT) system consists of epithelial cells 

(MTflEcad) derived from an MMTV-Neu breast cancer mouse model (Muller et al., 1988), in 

which the E-cadherin gene is flanked by Lox-P sites (Derksen et al., 2006). The mesenchymal 

MTΔEcad cells in this system were derived from MTflEcad cells by cre-recombinase 

mediated deletion of the E-cadherin gene (Lehembre et al., 2008). Measurement of luciferase 



RESULTS: Role of Tead transcription factors in EMT 

 

___________________________________________________________________________ 

 69 

activities revealed a gradual increase in Tead reporter activity during EMT of NMuMG and 

Py2T cells, and a marked increase in activity in mesenchymal MTΔEcad cells compared to 

epithelial MTflEcad cells (Figure 1D, top panels). Notably, MARA prediction from gene 

expression profiles of the MT system also showed higher Tead activity in MTΔEcad cells 

compared to epithelial MTflEcad cells (data not shown). We confirmed these findings using a 

previously described Tead reporter (Supplementary figure S1) (Ota and Sasaki, 2008). 

Therefore, the experimental data provided here suggests that Tead activity is increased during 

EMT and is high in mesenchymal cells, corroborating the findings obtained from in silico 

MARA analysis. 

 

 

Figure 1. Tead transcriptional activity increases during EMT. 
(A) Position weight matrix used for motif activity response analysis (MARA), representing the Tead DNA binding motif. 
(B) MARA analysis of Tead activity during TGFβ-induced EMT of NMuMG cells. NMuMG cells were induced to undergo 
EMT by TGFβ treatment and RNA was harvested at the timepoints indicated. Gene expression profiling of each timepoint 
was performed using affymetrix microarrays and data was subjected to MARA analysis. The curve shows averaged 
expression changes of all mRNAs containing a species-conserved MCAT motif in their promoters. Data shown is from three 
independent experiments. 
(C) Scheme of the luciferase reporter constructs engineered to measure Tead activity in cells. Eight repeats of the core 
MCAT Tead DNA binding motif (CATTCCT) including flanking sequences were cloned in front of a basal promoter 
followed by the firefly luciferase gene (MCAT reporter). A construct not containing the 8xMCAT sequences was used as a 
control.  
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(D) Measurement of Tead activity in three cellular EMT systems. Normal murine mammary gland (NMuMG) and Py2T cells 
undergo EMT in response to TGFβ treatment. Stably mesenchymal MTΔEcad cells were derived from epithelial MtflEcad 
by Cre-recombinase mediated knockout of the E-cadherin gene. NMuMG and Py2T cells were treated with TGFβ for the 
indicated times prior to simultaneous lysis and luminescence analysis. Reporter constructs were transfected one day before 
lysis, along with a Renilla luciferase construct for normalization. Top panels: Tead-reporter activity in the NmuMG (n=3), 
Py2T (n=5) and MT (n=2) EMT systems. Bottom panels: Bright-field images illustrating the morphological differences of 
cells at the endpoints of these experiments. Experiments were repeated n times and results are shown as mean ± S.E.M, *p-
value< 0.05; **p-value < 0.01. 
 
 

3.2.3.2 Tead2 expression levels are upregulated during EMT 

The Tead family of transcription factors consists of the four members Tead1-4 in 

mammalian cells (Kaneko and DePamphilis, 1998). To determine which of these factors are 

expressed and whether they are regulated during EMT, we first measured mRNA levels of all 

four Tead family members (Figure 2A). Transcripts of all four members could be detected by 

quantitative RT-PCR. Interestingly, Tead2 mRNA levels were found to be upregulated 

consistently in all three EMT systems analyzed. We therefore chose to focus our attention on 

this member of the family, even though we do not exclude a possible role of the other three 

family members in the EMT process. Consequently, we generated a polyclonal antibody 

against Tead2 by immunizing rabbits with an N-terminal peptide of murine Tead2 that is 

conserved in humans. We confirmed that the antibody specifically detects Tead2 and not 

other family members by immunoblotting (Figure S2). Analysis of endogenous Tead2 

expression levels in all three EMT systems by immunoblotting revealed that Tead2 protein 

levels gradually increase during EMT and closely follow the mRNA expression profile over 

time (Figure 2B). In addition, we were able to determine exclusively nuclear subcellular 

localization in these systems by performing immunofluorescent staining using the same 

antibody (Figure 2C). Collectively, these results demonstrate that Tead2 is the only Tead 

family member whose expression is consistently upregulated during EMT in the systems 

tested here, and that its nuclear localization is unchanged during EMT. 
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Figure 2. Tead2 expression levels are increased during EMT. 
(A) Measurement of mRNA expression levels of Tead1-4 during EMT. Time-course experiments of TGFβ induced EMT 
were performed as described in Figure 1D and RNA was extracted at the indicated timepoints. Samples were analyzed by 
quantitative RT-PCR with primers specific for the individual Tead family members. Results are presented as mean fold 
difference ± S.E.M of three independent experiments (Py2T and NMuMG). Expression changes in MT cells were determined 
once. 
(B) Western blot analysis of Tead2 levels during EMT. 
(C) Immunofluorescent staining for Tead2 showing subcellular localization. Cells were treated with TGFβ as indicated and 
stained with antibodies against Tead2 and E-cadherin as a control. Scale bar, 50 μM. 
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3.2.3.3 Increase of Tead2 activity is sufficient to induce EMT 

After having determined that Tead transcriptional activity and Tead2 expression levels 

increase during the EMT process, we next asked whether experimentally increasing Tead2 

levels and/or Tead transcriptional activity could be sufficient to induce EMT. Notably, forced 

overexpression of the Tead co-factors Yap and Taz has been demonstrated to be sufficient to 

induce EMT in MCF10A cells (Overholtzer et al., 2006; Lei et al., 2008), which has later 

been shown to be dependent on Teads (Zhao et al., 2008b; Zhang et al., 2009a). Here we 

retrovirally transduced Py2T cells with either wild type, full-length Tead2 or with an activated 

version consisting of the TEA DNA-binding domain of Tead2, fused to the transcriptional 

activation domain of the herpes simplex virus protein VP16 (Figure 3A); (Ota and Sasaki, 

2008). We next measured Tead activity in the resulting stable cell lines by a luciferase 

reporter assay, and observed increased transcriptional activity in cells stably expressing Tead2 

FL, and an even greater increase in cells transduced with the activated version of Tead2 

(Figure 3B). Activation of Tead activity resulted in morphological changes consistent with 

EMT (Figure 3C, left). Cells transduced with Tead2 FL appeared elongated, mostly lost cell-

cell contact and formed filopodia. These effects were even more pronounced in cells 

expressing the fully activated version of Tead2 (Tead2-VP16). Cells overexpressing either 

version of Tead2 had lost intact adherens- and tight-junctions as revealed by 

immunofluorescence staining for E-cadherin and ZO-1, respectively. Furthermore, these cells 

expressed the mesenchymal marker vimentin, whose expression was absent in the epithelial 

control cells, and displayed remodeling of the actin cytoskeleton to stress fibers, whereas 

control cells showed cortical actin arrangement (Figure 3C). We additionally analyzed 

expression levels of EMT markers by immunoblotting (Figure 3D). Tead2 FL expressing cells 

displayed reduced levels of the epithelial marker E-cadherin and increased levels of the 

mesenchymal markers N-cadherin and Fibronectin. Expression of constitutively active Tead2-

VP16 resulted in an even more pronounced downregulation of E-cadherin, however these 

cells failed to upregulate N-cadherin and Fibronectin, indicating that this artificial construct 

does not completely recapitulate the effects of the wild type version. Collectively, these 

results demonstrate that overexpression of Tead2 and a concomitant increase in Tead 

transcriptional activity in the absence of TGFβ stimulation is sufficient to induce EMT in 

Py2T breast cancer cells. 
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Figure 3. Tead2 gain-of-function is sufficient to induce EMT. 
(A) Schematic representation of constructs used. Retroviral expression constructs were engineered coding for either full 
length Tead2 (FL) or a fusion protein consisting of the Tead2 DNA-binding domain fused to the VP16 transcriptional 
activation domain. 
(B) Tead transcriptional activity in Py2T cells stably expressing Tead2 FL and Tead2-VP16. Cells were transfected with the 
indicated luciferase reporter constructs and luminescence was analyzed one day after transfection. Results from two 
independent experiments are represented as mean ± SEM (*p-value< 0.05). 
(C) Morphological analysis for hallmarks of EMT. Left: Bright-field images showing changes in cell shape. 
Immunofluorescence analysis was performed using antibodies against the major adherens junction component E-cadherin, 
the tight-junction marker ZO-1 and the mesenchymal intermediate filament vimentin. Actin cytoskeleton was stained by 
phalloidin coupled to a fluorophore. 
(D) Immunoblot analysis for EMT marker expression changes in the indicated cell lines. Membranes were probed with the 
epithelial marker E-cadherin and the mesenchymal markers N-cadherin and fibronectin. 
(E) Modified Boyden chamber assay to determine chemotactic migration and invasion. 25'000 cells were seeded in starving 
medium (0.2% FBS) into porous cell culture inserts uncoated (migration) or coated with matrigel (invasion). Growth medium 
containing 20% FBS was filled into the bottom of wells as an attractant. Cells were allowed to pass through pores for 24 
hours and were then fixed and cells at the bottom of inserts were counted. Data is shown as mean ± S.E.M of three 
independent experiments (**p-value < 0.01; ***p-value <0.001). 
(F) Three-dimensional culture in extracellular matrix (matrigel). Cells were embedded in matrigel and allowed to grow for 5 
days. Scale bar, 50 μM. 
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Another hallmark of cells that have undergone EMT is the acquisition of migratory and 

invasive properties (Yilmaz and Christofori, 2009; Nieto, 2011). We therefore performed 

modified Boyden chamber migration and invasion assays to test this notion. Py2T Tead2 FL 

cells exhibited a dramatic increase in migratory and invasive potential in these assays, while 

Py2T Tead2-VP16 cells did not (Figure 3E). When grown in a 3-dimensional environment 

consisting of extracellular matrix, Tead2 overexpressing cells invaded the surrounding matrix 

in contrast to control cells, which formed spheres. Tead2-VP16 expressing cells were able to 

project filopodia into the extracellular matrix indicative for increased invasiveness (Figure 

3F). The differences in phenotypes between wild type Tead2 and Tead2-VP16 overexpressing 

cells could be due to the inability of Tead2-VP16 to form complexes with the appropriate co-

factors and therefore activating sets of genes that slightly differ from physiologically relevant 

Tead2 target genes. An additional explanation could be that the constitutively activated 

Tead2-VP16 is not amenable to negative feedback, therefore not providing finely balanced 

expression of target genes, which might be crucial for a dynamic process like migration. 

Reinforcing this notion, we also observed differences in dynamic behavior of Tead2 FL and 

Tead2-VP16 overexpressing cells cultured on plastic. Tead2 FL overexpressing cells 

exhibited dynamic extension and retraction of filopodia and migrated on plastic, while Tead2-

VP16 cells extended protrusions into various directions but were unable to move directionally 

(see Supplementary movies 1, 2 and 3). Together, these results indicate that a gain in Tead 

activity results in an activation of migratory and invasive machinery, consistent with EMT. 

To get insight into the cellular programs activated by Tead2 and their possible relevance 

for biological processes in general, we performed gene expression profiling of Py2T Tead2 

FL, Py2T-VP16 and control cells. We determined differentially expressed genes and 

subjected these gene lists to biological function and pathway enrichment analysis using 

Ingenuity pathway analysis software (IPA, Ingenuity systems, www.ingenuity.com); (Figure 

S3A). These analyses suggested that Tead activation affects genes involved in cellular 

movement and cell morphology, and that these genes contribute to biological processes such 

as tissue development, organ development, cancer and embryonic development. The data 

obtained is consistent with the observed role of Tead in EMT and with the role of Tead 

transcription factors as downstream effectors of the Hippo tumor suppressor pathway that 

controls organ size, tissue regeneration, stemness and self-renewal (Halder and Johnson, 

2011; Zhao et al., 2011b). We also extended the IPA bioinformatics analysis to predict which 
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cellular signaling pathways might be most affected by the differentially regulated genes upon 

Tead2 activation in Py2T cells. Within the collection of pathways available in IPA, 

differentially expressed genes were largely overrepresented in pathways related to fibrosis, 

endocytosis and guidance of neuronal cells (Figure S3B). 

 

3.2.3.4 Loss of Tead function attenuates EMT and inhibits migration and invasion 
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Figure 4. Loss of Tead function attenuates EMT. 
(A) Effect of Tead knockdown on disassembly of adherens- and tight-junctions. NMuMG cells were transfected with siRNAs 
against Tead2 and Tead4. One day after transfection, cells were stimulated to undergo EMT by TGFβ treatment for 5 days. 
Cells were re-transfected every second day with the same siRNAs during TGFβ treatment. Images show immunofluorescence 
staining for the adherens junction marker E-cadherin and the tight-junction marker ZO-1.  
(B) Western blot analysis to investigate the effect of Tead knockdown on EMT marker expression. The experiment was 
performed as described in (A), with different timepoints. 
(C) Scheme of the dominant-negative construct used to block Tead activity. The Tead2 DNA-binding domain is fused to the 
transcriptional repression domain of Drosophila Engrailed (Tead2-EnR). A stable pool of Py2T cells expressing HA-tagged 
Tead2-EnR in a doxycycline-inducible fashion (Py2T-iTead2-EnR) was generated by lentiviral transduction.  
(D) Analysis of Tead activity in parallel to the experiment described in (D). Cells were transfected one day before lysis with 
either control or MCAT Tead reporter along with a Renilla luciferase construct for normalization. Results are presented as 
mean ± S.E.M. from two independent experiments.  
(E) Effect of dominant-negative Tead2 on TGFβ-induced EMT of Py2T cells. Cells were pre-treated with doxycycline for 3 
days to allow expression of dominant-negative Tead2, and were then treated or not with TGFβ for 5 days. Expression of HA-
Tead2-EnR, E-cadherin, N-cadherin and fibronectin was determined by immunoblotting. 
(F) Effect of Tead activity downregulation on morphology and invasiveness of mesenchymal cells. Mesenchymal Py2T-
iTead2-EnR cells were generated by long-term (LT) treatment with TGFβ for 20 days. Bright-field images show the 
morphology of cells grown in standard cell culture dishes (2D), and in matrigel (3D) after 6 days of growth. Doxycycline 
treatment was done for 3 days (2D) or for the whole growth period of 6 days (3D). Scale bars, 50μM. 
(G) Effect of Tead activity downregulation on migratory and invasive capabilities. Migration and invasion assays were 
performed as described in Figure 3E. Untreated and long-term TGFβ-treated Py2T-iTead2-EnR cells were pre-treated or not 
with doxycycline for 3 days, trypsinized, seeded into chambers and allowed to pass through pores for 24 hours. Top: Crystal 
violet staining of migrated/invaded cells. Bottom: quantification. Results are presented as mean ± SD of biological duplicates. 

 

To assess whether Teads are required for EMT, we first silenced Tead family members by 

siRNA in NMuMG cells and then induced EMT by TGFβ treatment. Knockdown of single 

Tead family members had no effect on EMT (data not shown), possibly because of functional 

compensation between family members, which has been observed previously (Zhang et al., 

2009a). However, when cells undergoing EMT were treated with siRNA against Tead2 

combined with siRNA against one other family member, in particular Tead4, we observed a 

striking stabilization of adherens and tight junctions in comparison to control cells, which 

completely lost these structures after 5 days of TGFβ treatment (Figure 4A). Indeed, in 

contrast to cells treated with control siRNA, which showed a marked downregulation of E-

cadherin and upregulation of the mesenchymal markers N-cadherin and Fibronectin as 

expected, cells that were depleted of Tead2 and Tead4 showed much weaker changes in 

expression of these markers as determined by western blot (Figure 4B). These results 

suggested that in NMuMG cells, expression of Tead2 and Tead4 is required for EMT. 

To confirm these results in a different cellular system, we assessed the requirement of Tead 

activity for EMT in Py2T cells. Knockdown of single Tead family members again did not 

have any effect on TGFβ-induced EMT in these cells (data not shown). As the knockdown 

efficiency was poor when we treated these cells with siRNA against more than one family 

member, we engineered Py2T cells that express a dominant-negative version of Tead2 (Figure 

4C); (Ota and Sasaki, 2008) in a doxycycline-inducible manner (Py2T-iTead2-EnR).  
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Expression of this construct effectively suppressed Tead activity in cells treated with TGFβ 

(Figure 4D). Py2T cells undergoing EMT downregulated E-cadherin and upregulated the 

mesenchymal markers N-cadherin and Fibronectin as expected, however these changes were 

markedly attenuated in cells treated with doxycycline to express dominant-negative Tead2 

(Figure 4E). However, a complete block of EMT was not observed as cells induced with 

doxycycline still lost most of their cell-cell contacts and scattered. Nevertheless, these results 

suggest that Tead transcriptional activity is also contributing to proper EMT in Py2T cells. 

We next assessed whether Tead activity is required for migration and invasion in 

mesenchymal cells that had undergone full EMT. We therefore first generated mesenchymal 

Py2T-iTead2-EnR cells by long-term (LT) culture in TGFβ-containing medium for at least 20 

days in the absence of doxycycline. Induction of Tead2-EnR in the derived mesenchymal 

cells resulted in rounder cell shapes with reduced filopodia formation as compared to cells 

that did not express the dominant-negative Tead construct (Figure 4F). When embedded in 

extracellular matrix, control cells formed highly invasive structures, in contrast to cells 

expressing Tead2-EnR which rather formed clumps and displayed less protrusions (Figure 

4F). In Boyden chamber assays, migration and invasion of mesenchymal control cells was 

highly induced compared to cells not treated with TGFβ as expected. Expression of dominant-

negative Tead2 drastically decreased the ability of mesenchymal cells to migrate and invade 

towards a chemotactic gradient (Figure 4G). From these experiments we concluded that 

Tead2 activity and therefore Tead2 target genes are an important determinant of mesenchymal 

migration and invasion. These findings are in line with the increased migration observed in 

Tead2 overexpressing cells, and the IPA bioinformatics analyses (Figure S3A) that suggested 

a role of Tead2 in cellular movement.  

3.2.3.5 Tead2 is sufficient and required for Yap/Taz nuclear localization 

It has been well established that Yap and Taz directly bind to Tead transcription factors 

(Vassilev et al., 2001; Mahoney et al., 2005; Zhao et al., 2010). It has also been demonstrated 

that Taz mutants defective for interaction with Tead proteins fail to accumulate in the nucleus 

(Chan et al., 2009). Since Tead2 was upregulated in all our EMT systems, we hypothesized 

that increased levels of Tead2 in the nucleus may enhance Yap/Taz nuclear localization, 

which could explain the observed increase in Tead transcriptional activity during EMT 

(Figure 1). We first investigated whether overexpression of Tead2 results in Yap/Taz 
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recruitment to the nucleus. We therefore made use of a pool of Py2T cells that expresses wild 

type Tead2 in a doxycycline inducible fashion. Treatment with doxycycline for three days led 

to heterogeneous induction of Tead2 expression in these cells, as observed by 

immunofluorescence staining of Tead2 (Figure 5A).  

We additionally co-stained Yap and Taz with an antibody that recognizes both of these 

highly similar proteins. Control cells expressing low endogenous levels of Tead2 showed 

Yap/Taz staining in the nucleus, as expected in proliferating cells, as well as prominent 

cytoplasmic staining consistent with Yap/Taz cytoplasmic sequestration by intercellular 

junctions and polarity complexes in polarized epithelial cells (Boggiano and Fehon, 2012). In 

cells that were induced to overexpress Tead2 by doxycycline for three days, we observed that 

already a moderate increase in Tead2 levels relative to endogenous levels resulted in depletion 

of Yap/Taz from the cytosol, indicating that both proteins may have relocalized to the nucleus 

in response to elevated levels of Tead2. Notably, we observed that already 3 days after 

addition of doxycycline addition, cells that overexpressed Tead2 started to lose E-cadherin 

expression as revealed by triple staining with an antibody against E-cadherin, consistent with 

the EMT inducing capability established earlier. 

To further investigate the possibility that Tead2 recruits Yap/Taz to the nucleus as an 

underlying mechanism of EMT induction, we also stained for these proteins in Py2T cells 

stably overexpressing Tead2 FL and Tead2-VP16. We could confirm the depletion of 

cytosolic Yap/Taz in cells stably overexpressing Tead2 FL. Interestingly, in cells 

overexpressing the Tead2-VP16 fusion protein that contains only the Tead2 DNA-binding 

domain but not the Yap binding domain, Yap/Taz localization was exclusively cytoplasmic. 

We propose that overexpression of Tead2-VP16, which is unable to bind Yap or Taz, 

competes with endogenous Tead2 for DNA binding. Therefore, wild type Tead2 binding to 

DNA and at the same to Yap/Taz seems to be necessary for Yap and Taz nuclear localization. 
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Figure 5. Tead2 regulates nuclear/cytoplasmic localization of its co-factors Yap and Taz. 
(A) Forced expression of Tead2 in epithelial cells results in redistribution of Yap/Taz and reduced E-cadherin staining. A 
stable pool of Py2T cells expressing Tead2 in a doxycycline-inducible fashion (Py2T-iTead2) was generated by lentiviral 
transduction. Cells induced to express Tead2 or not were co-stained with an antibody against Tead2, an antibody recognizing 
both Yap and Taz, and an antibody directed against E-cadherin. Yellow and white arrows denote Tead2-overexpressing cells 
and cells with endogenous Tead2 levels, respectively. 
(B) Full length Tead2 is required for redistribution and nuclear localization of Yap/Taz. Images show immunofluorescent 
stainings of Tead2 and Yap/Taz cellular localization in Py2T cells stably expressing full length Tead2 (Tead2 FL) or the 
Tead2-VP16 fusion protein consisting of the Tead2 DNA binding domain fused to the VP16 transcriptional activation 
domain. 
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To confirm this notion in the setting of EMT, during which Tead2 expression is 

upregulated (Figure 1 and 2), we assessed Yap/Taz localization in NMuMG and Py2T cells 

undergoing EMT and in the epithelial and mesenchymal counterparts of the MT system. 

These stainings showed that Yap/Taz was similarly distributed in all three epithelial cell 

types, with prominent nuclear and cytoplasmic staining (Figure 6A).  

 

 

Figure 6. Yap/Taz intracellular localization during EMT. 
(A) Immunofluorescent staining for Yap/Taz before, during or after EMT. 
(B) Larger magnification showing membrane staining of Yap/Taz (marked by orange arrows). 
(C) Nuclear/cytoplasmic fractionation to determine Yap/Taz compartmental localization during EMT. Py2T cells were 
treated or not with TGFβ for 6 days to induce EMT and nuclear/cytoplasmic protein fractions were separated and analyzed 
for the presence of Yap and Taz by immunoblot. (C=cytoplasmic fraction; N=nuclear fraction). Antibodies against 
heterogeneous nuclear ribonucleoproteins (hnRNP) and against GAPDH were used to control for purity of nuclear and 
cytoplasmic fractions, respectively. 
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A faint membrane staining could also be observed (Figure 6B), consistent with recent reports 

demonstrating Yap/Taz binding to adherens, tight junction and polarity complexes (Remue et 

al., 2010; Varelas et al., 2010; Kim et al., 2011; Robinson and Moberg, 2011; Schlegelmilch 

et al., 2011; Silvis et al., 2011). In cells undergoing EMT or in mesenchymal cells, Yap/Taz 

staining seemed to be more nuclear than cytoplasmic (Figure 6A). However, 

immunofluorescence imaging might be misleading because of the dramatic changes in cell 

shape during EMT. We therefore performed subcellular fractionation and analyzed Yap and 

Taz protein levels in nuclear and cytoplasmic fractions by immunoblotting. This analysis 

suggested that there is no collective shift of Yap/Taz proteins from the cytoplasm to the 

nucleus during EMT (Figure 6C). We suspect that only a fraction of Yap/Taz recruited to 

increased endogenous Tead2 during EMT is sufficient for activation. Co-immunoprecipitation 

of Tead2 and Yap to determine the amount of complex formation before, during and after 

EMT could resolve this open question. 

3.2.3.6 Tead2 localization is regulated by cell density 

It has been well established that Yap/Taz nuclear export is controlled by cell density, 

thereby leading to contact inhibition of proliferation (Zhao et al., 2010; Halder and Johnson, 

2011). Since Tead2 seemed to regulate Yap/Taz subcellular localization, we wondered 

whether the opposite is also true. 
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Figure 7. Tead2 nuclear localization is regulated by cell density. 
(A) Tead relocalization along with Yap/Taz in cells grown under dense conditions. Different cell numbers (factor 10 
difference between sparse and dense) were seeded, grown for 5 days and co-stained for Yap/Taz and Tead2. Yellow arrows 
indicate nuclear localization; blue arrows denote cells with exclusively cytoplasmic staining. 
(B) Measurement of Tead activity in sparse and dense cell cultures by luciferase reporter assay. The assay was performed as 
described in Figure 1D.  
 

To investigate this, we grew NMuMG and Py2T cells to dense cultures, and performed double 

immunofluorescence labeling for Yap/Taz and Tead2. As shown in Figure 7A, dense 

culturing resulted in nuclear export of Yap and Taz in most cells. Strikingly, also Tead2 

nuclear staining was absent in those cells and was concentrated in the cytoplasm, closely 

correlating with Yap/Taz localization at the single cell level. Consistent with this observation, 

Tead activity was decreased in densely grown cells (Figure 7B). These results suggest that 

Tead2 is exported from the nucleus upon cell density in a complex with Yap/Taz, and 

therefore establish a Hippo pathway dependent regulation of Tead activity by not only 

controlling localization of co-factors but also the transcription factor itself. 

3.2.3.7 Identification of Zyxin as a novel Tead2 target gene during EMT 

Besides investigating upstream mechanisms that mediate the increase of Tead activity 

during EMT, we also sought to elucidate downstream effects mediated by the increase of 

Tead transcriptional activity. IPA analysis suggested that activation of Tead activity had a 

prominent effect on genes involved in cellular movement (Figure S3A). To identify direct 

Tead target genes, we made use of MARA predictions. By mapping the Tead DNA binding 

motif (MCAT) to genes that were upregulated during EMT of NMuMG cells, the MARA 

algorithm is able to predict direct Tead target genes during this process. Table I shows the top 

50 candidates identified. Because Zyxin, which was one of the top candidates, has previously 

been shown to be upregulated during EMT and to be required for mediating actin re-

organization and migration of these cells (Mori et al., 2009), we chose to validate a direct 

transcriptional induction of this gene by Tead2. To do so, we first evaluated Zyxin levels in 

response to increased Tead activity. We therefore overexpressed Tead2 FL, Tead2-VP16, and 

additionally Yap and Taz, together with Hippo signaling insensitive mutants of Yap and Taz. 

Western blot analysis of lysates from cells grown under sparse conditions revealed that Zyxin 

expression was induced by all of these factors except for Yap, in both Py2T cells and 

NMuMG cells (Figure 8A). These results suggest that Tead2 induces Zyxin expression via co-

activation by Taz.  
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Figure 8. Zyxin is a novel Tead target gene. 
(A) Western blot analysis of Zyxin expression in cells overexpressing different versions of Tead2 or Tead co-activators. 
Stable pools of cells overexpressing HA-tagged versions of indicated proteins were generated by retroviral infection. Note 
that HA-Tead2-EnR expression was not detected, possibly due to a selective disadvantage caused by the negative effect of 
Tead2-EnR expression on cell proliferation (data not shown).  Taz and Yap Serine-to-Alanine point mutants are resistant to 
cell density mediated nuclear-cytoplasmic translocation. Lysates were prepared from cells grown under sparse conditions. A 
background band detected by the HA antibody is indicated with an asterisk. 
(B) Zyxin expression levels in Py2T cells undergoing EMT in the absence (-Dox) or presence (+Dox) of HA-tagged 
dominant-negative Tead2-EnR. Cells were pretreated with doxycycline for three days before TGFβ treatment. Detection of 
the EMT marker E-cadherin is included as a control. See Supplementary figure 4A for Tead activity measurements done in 
parallel. 
(C) Zyxin protein levels during an EMT timecourse of NMuMG cells depleted of Tead2 and Tead4 by siRNA or not. 
Membranes are from the experiment described in Figure 4b and were reprobed with an antibody against Zyxin. 
(D) Zyxin expression is regulated by cell density. Different cell numbers (factor 10 difference between sparse and dense) 
were seeded and grown for 5 days. Mesenchymal derivatives of Py2T and NMuMG cells included in this experiment were 
long term (LT) treated with TGFβ for at least 20 days. Epithelial (E-cadherin) and mesenchymal (N-cadherin) markers are 
included as controls. See Supplementary figure 4B for Tead activity measurements of this experiment. 
(E) Chromatin immunoprecipitation (ChIP) experiment demonstrating direct binding of Tead2 to Zyxin intronic sequence 
containing an MCAT motif as predicted by MARA. Chromatin of Py2T cells treated with TGFβ for 5 days was used for 
ChIP with an antibody against endogenous Tead2 (see Supplementary figure 4C for ChIp validation of α-Tead2). Enrichment 
of Zyxin DNA was quantified by quantitative PCR. Results are presented as mean ± S.E.M of two independent experiments. 
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To determine whether Zyxin is indeed upregulated during EMT and whether this is 

dependent on Tead activity, we induced EMT in Py2T cells expressing dominant negative 

Tead2 (Tead2-EnR) or not. Immunoblotting analysis demonstrated that Zyxin was 

upregulated during EMT in a Tead-activity dependent manner (Figure 8B). A luciferase 

reporter assay performed in parallel to this experiment confirmed the increase in Tead activity 

upon EMT and the efficient reduction in activity due to expression of Tead2-EnR (Figure 

S4A). To confirm these results in NMuMG cells, we measured Zyxin levels in NMuMG cells 

undergoing EMT in the absence or presence of Tead2 and Tead4. Similar to the experiment 

performed with Py2T cells, we observed an upregulation of Zyxin during EMT only in the 

presence of Tead2 and Tead4 in NMuMG cells (Figure 8C). As Tead activity is regulated by 

cell density, Zyxin expression should also be regulated in a cell density dependent manner. To 

test this notion we grew epithelial and long term treated, mesenchymal NMuMG and Py2T 

cells to dense cultures and compared Zyxin levels in those cells to the levels expressed in 

sparsely growing cells. Immunoblot analysis showed that Zyxin levels were increased in 

mesenchymal cells as expected, and were reduced in cells that were grown to high density 

(Figure 8D), concomitant with Tead activity (Figure S4B), further indicating a direct 

regulation by Teads. MARA analysis found a Tead regulatory motif (MCAT) within the first 

intron of the Zyxin gene (data not shown). To prove a direct binding of Tead2 to this region, 

we performed chromatin immunoprecipitation (ChIP) of endogenous Tead2 with chromatin 

from Py2T cells treated with TGFβ for 5 days, a time point of EMT where Tead activity is 

increased (Figure 1D). We first validated the suitability of our antibody for ChIP and the ChIP 

protocol by analyzing the binding of Tead2 to the promoter of the established Tead target 

gene CTGF (Zhao et al., 2008b); (Figure S4C). We then tested for direct binding of Tead2 to 

the Zyxin gene region containing the MCAT motif and observed an enrichment of this DNA 

region in Tead2 immunoprecipitates but not in IgG samples, showing that Tead2 directly 

binds to this locus (Figure 8E). Together, these results suggest that Tead2 regulates Zyxin 

expression during EMT by direct binding to an MCAT motif in the Zyxin gene. 
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3.2.4 Discussion 

The transdifferentiation of epithelial cells into a mesenchymal state involves changes in 

cell architecture and the establishment and activation of mesenchymal features, such as a 

remodeled cytoskeleton and an active migratory machinery, and relies on changes in gene 

expression orchestrated by transcription factors. 

Here we have used a bioinformatic analysis (motif activity response analysis, MARA) to 

identify transcription factor binding motifs that display an overrepresentation in promoters of 

genes that are transcriptionally regulated during EMT, and therefore may explain the 

regulation of a large subset of totally regulated genes. This analysis identified the Tead DNA-

binding motif MCAT to be among the most significant motifs. 

By analyzing the average expression change of all genes carrying the MCAT motif in their 

promoters, MARA suggested an increase in Tead transcriptional activity upon EMT 

induction. This genome-wide analysis, together with complementary measurements of Tead 

activity using Tead-responsive luciferase reporter constructs, clearly demonstrates that overall 

Tead transcriptional activity increases during EMT. These results also validate that MARA 

analysis can accurately predict Tead activity from gene expression profiles. The same analysis 

could therefore be applied to datasets of human breast cancer samples to determine whether 

Tead activity is associated with tumor progression and whether it has prognostic value, as 

suggested by our results which demonstrated that an increase in Tead transcriptional activity 

is sufficient to induce EMT. Evidence that this could indeed be the case has been presented 

recently: one study showed that Taz is overexpressed in ~20% of breast cancers, most of 

which represent invasive ductal carcinomas (IDC), and that expression of this Tead co-

activator is responsible for migration and invasiveness in cultured breast cancer cell lines 

(Chan et al., 2008). Another study defined that the response of breast cancer cell lines to 

Taxol, a cytostatic chemotherapeutic drug used for breast cancer treatment, is decreased by 

Yap/Taz/Tead mediated transcription of CTGF and Cyr61 (Lai et al., 2011). Interestingly, 

Cordenonsi and colleagues found that a species-conserved Yap/Taz target gene signature, 

established from various gene expression profiling experiments (Dong et al., 2007; Ota and 

Sasaki, 2008; Zhao et al., 2008b), correlates with normal breast and breast cancer stem cell 

signatures, and also with metastasis-free survival in patients (Cordenonsi et al., 2011). 

Our findings that increased Tead activity induced by overexpression of wild type Tead2 or 
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of an activated version (Tead2-VP16) (Figure 3B) is sufficient to induce bona fide EMT in 

murine Py2T breast cancer cells (Figure 3C) is in line with previous reports which 

demonstrated that ectopic expression of Yap/Taz induces EMT via Teads in normal human 

MCF10A cells (Lei et al., 2008; Zhao et al., 2008b). As expected from cells that have 

undergone EMT, Tead2 overexpressing cells display dramatically increased migration and 

invasion capabilities in comparison to control cells (Figure 3E). Similarly, cells 

overexpressing constitutively active Tead2-VP16 undergo EMT, however these cells are 

unable to migrate, even though their gene expression profile displays a signature consistent 

with cellular movement (Figure 3A, middle). One explanation for these differences could be 

that the Tead2-VP16 fusion protein over-activates migration-related genes due to its 

constitutive activity, while in wild type Tead2 overexpressing cells negative feedback may 

occur, and, therefore, Tead target gene expression is finely balanced to allow proper function 

of the migration machinery. Interestingly, some predicted Tead target genes (Table I) are 

compatible with this hypothesis and could play a role in a negative feedback control: LATS2 

is one of the core components of the Hippo pathway, and can inactivate Yap by 

phosphorylation leading to nuclear exit (Zhao et al., 2010). CAPZB (capping protein, muscle-

Z line, beta) is another predicted Tead target gene. Capping proteins have been shown to 

negatively regulate Yki in Drosophila via prevention of extra F-actin formation (stress fibers), 

which normally activates Yki/Yap (Dupont et al., 2011; Fernández et al., 2011; Sansores-

Garcia et al., 2011; Wada et al., 2011).  

We observed an attenuation of the EMT process when we inhibited endogenous Tead 

activity during EMT by expression of a dominant-negative Tead2 (Tead2-EnR) in Py2T cells 

(Figure 3 C-E). This effect was even more pronounced when we depleted NMuMG cells of 

Tead family members by siRNA knockdown (Figure 4A, B), demonstrating that the presence 

and transcriptional activity of Teads is required for proper execution of the TGFβ-induced 

EMT program, and it also seems to be required to sustain the migratory and invasive 

phenotype of mesenchymal cells (Figure 4F-G). 

As Tead transcriptional activity is mainly controlled by binding of the co-factors Yap and 

Taz (Vassilev et al., 2001; Mahoney et al., 2005; Zhao et al., 2008b; Zhang et al., 2009a), we 

wished to elucidate whether this is also true in the setting of EMT. We first attempted to test 

this possibility by transient knockdown experiments. However, knockdown of either Yap or 

Taz in cells undergoing EMT resulted in a complete proliferation arrest and apoptosis in all 



RESULTS: Role of Tead transcription factors in EMT 

 

___________________________________________________________________________ 

 87 

cell types tested, consistent with the pro-proliferative function of these two factors (Zhao et 

al., 2010). Nuclear localization of Yap/Taz is negatively regulated by cell density via the 

Hippo tumor suppressor pathway (Zhao et al., 2010). The experiments evaluating Tead 

activity upon EMT however were all performed under sparse conditions with proliferating 

cells, and we therefore did not observe changes in Hippo-mediated Yap phosphorylation (data 

not shown). Consistent with the role of Yap/Taz in mediating proliferation under sparse 

conditions, we observed nuclear staining of these factors in all cells before, during and after 

EMT, with no obvious differences in nuclear staining intensity (Figure 6A). Cytoplasmic 

Yap/Taz appeared to be diminished in cells undergoing EMT (Figure 6A, left, middle) or in 

stable mesenchymal cells (Figure 6A, right) compared to cells that reside in the epithelial 

state. However, a direct comparison of cytoplasmic staining intensity is difficult to interpret 

due to the significant differences in cell shape. Moreover, we did not observe a major shift in 

Yap/Taz subcellular localization as determined by nuclear/cytoplasmic fractionation (Figure 

6C). Together, these observations showed that the nuclear/cytoplasmic distribution of 

Yap/Taz was not extensively changed during EMT. Interestingly, in addition to nuclear and 

cytoplasmic staining, we observed a membranous staining pattern of Yap/Taz in epithelial 

cells reminiscent of tight junctions (Figure 6B). This observation is consistent with a series of 

recent studies that demonstrated inhibition of Yap/Taz transcriptional activity by direct 

binding to tight-junction localized angiomotin/angiomotin-like proteins, an inhibitory 

mechanism that is independent of canonical Hippo signaling (Chan et al., 2011; Wang et al., 

2011a; Zhao et al., 2011a). It is therefore tempting to speculate that the membrane bound pool 

of Yap/Taz in epithelial cells, presumably a minor fraction of total levels, is released from 

angiomotins during EMT-induced tight-junction breakdown to enter the nucleus in order to 

stimulate Tead activity. Consistent with this hypothesis, knockdown of angiomotin-like 2 

(Amotl2) is sufficient to induce EMT in MCF10A cells (Wang et al., 2011a). Furthermore, an 

earlier study established that mutation of Yap WW domains, the domain responsible for 

physical binding to angiomotins, increases the ability of Yap to activate Teads in MCF10A 

cells, and promotes cell migration (Zhang et al., 2009b). Furthermore, Taz has been shown to 

be able to interact with the tight-junction proteins zonula occludens 1 and 2 (ZO-1, 2), also 

via its WW domain (Remue et al., 2010). Remarkably, we observed a loss of tight-junction 

staining and nuclear accumulation of ZO-1 upon EMT induction in our cellular systems (data 

not shown), which supports a model in which membrane-localized Taz could translocate into 

the nucleus during EMT, possibly in a complex with ZO-1. Further along this line, Yap/Taz 
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have been shown to strongly bind to Pals1 and other crumbs polarity complex proteins 

(Varelas et al., 2010), and we observed nuclear accumulation of Pals1 upon EMT induction in 

our cellular systems (data not shown). Intriguingly, the crumbs polarity complex and tight 

junctions have been shown to be linked via Pals1 (Roh et al., 2002), indicating that the 

separate identification of Yap/Taz in the crumbs complex and its association with tight-

junction proteins could be based on the presence of Yap/Taz in a multiprotein complex 

encompassing both tight-junction and polarity complex proteins that both localize to the 

apical part of the cell membrane. Collectively, these considerations would be compatible with 

the hypothesis that a small pool of apically sequestered Yap/Taz is released from the cell 

membrane and redistributes to the nucleus upon EMT, which might be sufficient for 

mediating the increased Tead activity we have observed. 

An alternative mechanism could be envisioned that controls the increase in Tead activity: 

as Yap and Taz are already present in the nucleus in epithelial cells, the amount of Teads 

present may be the limiting factor for transcriptional activation of EMT-related target genes. 

Indeed, Tead2 and, depending on the cell type investigated, also other Tead family members 

display increased expression during EMT (Figure 2A, B). Moreover, increasing Tead2 levels 

by ectopic expression increases Tead activity (Figure 3B) and leads to EMT (Figure 3C, D), 

consistent with a “bottleneck” function of Tead expression levels. It is thus conceivable that 

the “bottleneck” mechanism and the relocalization of a membrane bound pool of Yap/Taz 

proposed above cooperate to increase Tead transcriptional activity. 

However, a third mechanistic aspect would be unclear: how are Yap/Taz, once released 

from the apical membrane into the cytoplasm, recruited into the nucleus to serve as Tead co-

activators? Much research has been directed towards the elucidation of how Yap/Taz are 

exported from the nucleus, however what determines their nuclear localization remains 

unexplored. Notably, Teads all carry a nuclear localization signal, while Yap and Taz do not. 

One report demonstrated that an ectopically expressed GFP-Taz fusion protein, carrying a 

point mutation that disrupts Tead binding, is more inefficiently shuttled to the nucleus after 

photobleaching in comparison to “wild-type” GFP-Taz that can bind to Teads (Chan et al., 

2009). This observation suggests that Teads are able to mediate Taz (and presumably also 

Yap) accumulation in the nucleus. Indeed, we show here that ectopic expression of Tead2 is 

sufficient for a collective redistribution of Yap/Taz from the cytoplasm into the nucleus 

(Figure 5), suggesting that during EMT, the increasing amounts of Tead molecules in the 
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nucleus may recruit additional co-factors from the cytoplasm to ensure saturation and 

effective target gene transcription.  

Interestingly, the reverse is also true, at least for Tead2: when Yap/Taz are shuttled into the 

cytoplasm in response to high cell density, Tead2 is also excluded from the nucleus. This 

observation suggests that Tead2 target genes are regulated by cell density, regardless whether 

co-activation is mediated by the Hippo pathway components Yap/Taz or by any other co-

activators. 

MARA analysis provided us with a rated list of potential Tead target genes. These genes 

all carry a species-conserved MCAT motif in their promoter-regions and their mRNA levels 

are upregulated during EMT. We confirmed that Zyxin, one of the target genes with the 

highest prediction score (Table I), is upregulated during EMT in a Tead-dependent manner 

(Figure 8B, C), and our data also suggests that this regulation is mediated via activation of 

Teads by Taz but not Yap (Figure 8A). Furthermore, we validated direct binding of Tead2 to 

the promoter-region of Zyxin, however final proof of actual regulation will have to be 

determined by luciferase assays with Zyxin promoter reporters carrying either a wild type or a 

mutant MCAT motif.  

Zyxin belongs to the family of LIM proteins and associates with the actin cytoskeleton and 

therefore can be localized at the apical membrane, in focal adhesions and on stress fibers 

(Beckerle, 1997). Notably, Zyxin was previously shown to be upregulated and to be required 

for rearrangement of the actin cytoskeleton during TGFβ-induced EMT of NMuMG cells, 

thereby enabling migration (Mori et al., 2009). Zyxin upregulation could therefore be at least 

one of the mechanisms how Tead activity controls the induction of a migratory phenotype 

during EMT. Notably, the study of Mori and colleagues showed that Zyxin upregulation is 

dependent on the transcription factor Twist, indicating that Tead activation occurs 

downstream of the action of Twist. Interestingly, a connection between Zyxin and the Hippo 

pathway has been established recently. Zyxin localizes to the apical membrane at intercellular 

junctions of the wing disc epithelium, can interact with Wts (Lats in Drosophila) and the 

presence of Zyxin positively regulates Yki (Yap in Drosophila), because loss of Zyxin leads 

to diminished nuclear localization of Yki and reduced organ growth (Rauskolb et al., 2011). 

The mechanisms involved however have not been elucidated and it is unclear whether a 

similar role of Zyxin also exists in mammalian cells. 
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To gain further insight into the functional consequences of increased Tead activity during 

EMT, we are currently performing more extensive validation of genome-wide direct Tead2 

target genes by combining chromatin immunoprecipitation with high-throughput sequencing 

(ChIP-seq), and functional sites will be evaluated by their mapping to gene promoters and 

comparison with the gene expression profiles of Tead2 gain-of-function experiments. 

Collectively, our results establish a crucial regulatory role for Tead transcription factors in 

the EMT process, and provide first insights into the regulatory mechanisms that are involved 

in mediating enhanced transcriptional activation of Teads during EMT, and also provide a 

basis for the further investigation of downstream processes. 

  



RESULTS: Role of Tead transcription factors in EMT 

 

___________________________________________________________________________ 

 91 

3.2.5 Supplementary Data 

 

 

Supplementary Figure 2. Characterization of Tead2 antibody. 
(A) Tead2 antibody does not detect Tead family members other than Tead2. Lysates of NMuMG cells transfected with 
siRNAs against all known Tead family members were probed with α-Tead2 by western blot. Note the disappearance of the 
band representing Tead2 in lysates of Tead2 knockdown cells. This band was also weaker when siTead3 was used, which is 
due to the fact that siTead3 also led to a knockdown of Tead2 (see below). (B) Quantification of siRNA efficiency in the 
experiment described in (A). Downregulation of targeted mRNAs was at least 60% and family member specific, with the 
exception of siTead3, which led to efficient double knockdown of Tead2 and Tead3. (C) Tead2 antibody does not detect 
overexpressed murine Tead family members other than Tead2. Tead family members were transiently overexpressed in 
HEK293 cells, and lysates were probed with α-Tead2 by western blot. Fugene HD (Roche) was used for transfection 
according to the manufacturers instruction. The asterisk denotes a band detected that is not specific for Tead2. 

 

Supplementary Figure 1. Tead activity during EMT as measured by a GTIIC Tead luciferase reporter. 
Measurement of Tead activity in NMuMG and Py2T cells using a luciferase reporter bearing a Tead response element termed 
GTIIC. Eight copies of the core GTIIC Tead DNA binding motif (CATTCCA) plus flanking sequences were cloned in front 
of a basal promoter followed by the firefly luciferase gene (GTIIC reporter). Cells were treated with TGFβ for the indicated 
times prior to simultaneous lysis and luminescence analysis. Reporter constructs were transfected one day before lysis, along 
with a Renilla luciferase construct for normalization. Reporter activities are shown as mean ± S.E.M of two independent 
experiments (*p-value< 0.05). 
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Supplementary Figure 3. Gene expression profile analysis of Tead2 gain-of-function cell lines. 
(A) Enrichment of differentially expressed genes in distinct biological functions. Differentially expressed genes in Tead2 FL 
(top), Tead2-VP16 (middle) or in both (bottom) cell lines compared to control cells were determined by Partek microarray 
analysis software and uploaded into Ingenuity Pathway Analysis software (IPA, see Materials and Methods section). A cutoff 
of 2-fold up- or down-regulation with p-values ≤ 0.05 was applied for Partek analysis (see Supplementary files for full lists). 
Numbers in circles represent the number of genes with significant differential expression after upload to IPA. IPA core 
analysis was performed to assign a possible enrichment of the differentially regulated genes in distinct biological processes 
(left). In other words, the determined differentially expressed genes are overrepresented in the indicated biological function 
categories. Only the top 10 significant processes are shown. Orange lines represent a p-value cutoff of 0.05. 
(B) Overrepresentation of differentially expressed genes in a non-exhaustive set of canonical pathways available within IPA. 
Data was processed as described in (A). Only the top 10 significant processes are shown. Orange data points represent the 
ratio of differentially regulated genes that map to the specific pathway, divided by the total number of genes contained within 
this pathway. Straight orange lines represent a p-value cutoff of 0.05. 
 

 

 

 

Supplementary Figure 4. Control experiments 
(A) Measurement of Tead activity in the experiment described in Figure 8B. Results are shown as mean ± S.E.M. of two 
independents experiments.  
(B) Tead activity measurements in the experiment described in Figure 8D. Data represents mean ± S.E.M. (n=2). 
(C) Validation of α-Tead2 antibody for ChIP use. Chromatin of Py2T cells treated with TGFβ was subjected to ChIP with α-
Tead2. The DNA locus containing a Tead binding site was amplified by quantitative PCR and enrichment was calculated 
relative to ChIP with IgG antibody (mean ± S.E.M. of two independent experiments). 
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Supplementary table I. Tead target genes predicted by MARA analysis. 
Gene expression profiles of NMuMG cells undergoing EMT were subjected to MARA analysis as described in Figure 1B. 
Tead target genes were calculated and rated by z-Values based on occurrence of a Tead DNA binding motif (MCAT motif) in 
their promoters, the conservation of this motif in different species and their regulation during EMT. The top 50 predicted 
target genes are shown (see Supplementary files for an extended list). 
 

 

Supplementary movies and supplementary data files mentioned in the text are available upon 

request. 
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3.2.6 Materials and Methods 

Antibodies and reagents 

Antibodies: Affinity purified, polyclonal rabbit Tead2 antibody was generated by immunizing 

rabbits with a peptide corresponding to the N-terminus of Tead2 (AAs 16-32), which is 

conserved in human and mouse. Actin (sc-1616, SantaCruz Biotechnology), E-cadherin 

(610182, Transduction Laboratories), N-cadherin (M142, Takara Bio), fibronectin (F3648 

Sigma-Aldrich), GAPDH (G8795, Sigma), vimentin (V2258, Sigma-Aldrich), ZO-1 (617300, 

Zymed), Yap/Taz (101199, SantaCruz Biotechnology), hnRNP (sc-15386, SantaCruz 

Biotechnology), Zyxin (sc6437, SantaCruz Biotechnology), HA (MMS-101R, Covance), 

Phalloidin Alexa-Fluor 568 (A12380, Invitrogen). 

Reagents: recombinant human TGFβ1 (240-B-010, R&D Systems); Matrigel, growth factor 

reduced (356230, BD); Doxycycline (631311, Clontech). 

Cells and cell lines 

A subclone of NMuMG cells (NMuMG/E9; hereafter NMuMG) has been previously 

described (Maeda et al., 2005). MTflEcad and MTΔEcad have been described previously 

(Lehembre et al., 2008). Py2T cells are described in this Thesis. All cells were cultured in 

DMEM supplemented with glutamine, penicillin, streptomycin, and 10% FBS (Sigma). 

Plasmids 

The GTIIC luciferase reporter construct was generated by subcloning of a cDNA fragment 

encompassing eight repeats of a GTIIC Tead DNA-binding motif with flanking sequences, 

followed by a basal promoter (kindly provided by Dr. H. Sasaki, RIKEN Center for 

Developmental Biology, Kobe, Japan) into the luciferase reporter plasmid pGL4 (Promega) 

(Davidson et al., 1988; Ota and Sasaki, 2008). MCAT reporter was generated by replacement 

of 8xGTIIC with eight copies of the sequence CCTGACACACATTCCTCAGCT (8xMCAT), 

where the MCAT core motif is underlined, and flanking sequences were according to (Larkin 

et al., 1996). The total length 8xMCAT sequence was commercially synthesized with flanking 

restriction sites for subcloning (Mr. Gene GmbH, Regensburg, Germany). The control 

reporter construct was created by excision of 8xGTIIC and subsequent ligation. Renilla 

Luciferase expressing vector (pRL-CMV) was from Promega. Murine Tead1-4 in pcDNA3.1 
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for transient transfection were kindly provided by Dr. J. Carvajal (The Institute of Cancer 

Research, London, UK). Retroviral Tead2 FL and Tead2-VP16 constructs have been 

described previously (Ota and Sasaki, 2008). Retroviral HA-tagged Tead2, Tead2-VP16, 

Tead2-EnR, Taz and Yap were created by inserting the respective cDNAs into the pBabe-

derived retroviral vector pRFTO containing an N-terminal HA tag (kindly provided by Dr. R. 

Kohler, FMI, Basel, Switzerland). cDNAs were kind gifts from Drs. H. Sasaki (Tead2, Tead2-

VP16), R. Kohler (Yap and YapS127A) and K. Guan (Department of Pharmacology and 

Moores Cancer Center, UCSD, La Jolla, USA) (Taz and TazS89A). The lentiviral, 

doxycycline-inducible HA-Tead2 and HA-Tead2-EnR constructs were generated by 

subcloning from pRFTO into pLVX-tight-puro (Clontech). 

siRNA 

5 nM siGENOME smart pool siRNAs (Dharmacon) against murine Tead1 (M-048419-01), 

Tead2 (M-060552-00), Tead3 (M-044127-01) and Tead4 (M-057322-01) were used for 

transient knockdown experiments. Transfection was performed with Lipofectamine 

RNAiMax according to the manufacturer’s instructions. A reverse transfection protocol was 

used at the start of each experiment, and forward re-transfection was done every second day 

where appropriate. 

Quantitative RT-PCR 

Total RNA was prepared using Tri Reagent (Sigma-Aldrich), reverse transcribed with M-

MLV reverse transcriptase (Promega, Wallisellen, Switzerland), and transcripts were 

quantified by PCR using SYBR-green PCR MasterMix (Applied Biosystems, Rotkreuz, 

Switzerland). Riboprotein L19 primers were used for normalization. PCR assays were 

performed in triplicates, and fold induction was calculated using the comparative Ct method 

(ΔΔ Ct). Primers used for quantitative RT-PCR were: Tead1 (forward: 5’-

ccaggatcctcacaagacg-3’, reverse: 5’-gaatgggggctgtgactg-3’), Tead2 (forward: 5’-

ctgaggacagggaagacgag-3’, reverse: 5’-cttcgagccaaaacctgaat-3’), Tead3 (forward: 5’-

gagctgattgcccgctac-3’, reverse: 5’-tgtatgtggctggacacctg-3’), Tead4 (forward: 5’-

tcaaaacacctaccctgtcca-3’, reverse: 5’-gccctgcaggagactcaa-3’), RPL19 (forward: 5’-

ctcgttgccggaaaaaca-3’, reverse: 5’-tcatccaggtcaccttctca-3’). 
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Luciferase reporter assay 

Cells were plated in triplicate in a 24 well plate. One day after plating, cells were transfected 

with 800ng reporter and 5ng Renilla encoding plasmids using Lipofectamine 2000. Fresh 

growth medium was added after 5 hours of transfection. One or two days after transfection, 

cells were lysed directly in plates using 1x passive lysis buffer (#E194, Promega) and lysates 

were analyzed using the Dual-Luciferase Reporter Assay System (#E1960, Promega) and a 

Berthold Luminometer LB960. Measured luciferase values were normalized to internal 

Renilla control and fold difference to control reporter was calculated. 

Immunofluorescence staining of cultured cells 

Cells were plated on glass coverslips and treated for the indicated times with TGFβ. The 

following steps were all done at room temperature. After fixation using 4 % 

paraformaldehyde /PBS for 15 min, cells were permeabilized with 0.5 % NP-40 for 5 min. 

Next, cells were blocked using 3 % BSA, 0.01 % TritonX-100 in PBS for 20 min. Then, cells 

were incubated with the indicated primary antibodies for 1 h followed by incubation with the 

fluorochrome-labeled secondary antibody (Alexa Fluor®, Invitrogen) for 30 min at room 

temperature. Nuclei were stained with 6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) 

for 10 min. The coverslips were mounted (Fluorescent mounting medium, Dako) on 

microscope slides and imaged with a conventional immunofluorescence microscope (Leica 

DMI 4000) or a confocal laser-scanning microscope (Zeiss LSM 510 Meta). 

Chromatin immunoprecipitation 

ChIP experiments were performed as previously described (Weber et al., 2007). In brief, 

crosslinked chromatin was sonicated to achieve an average fragment size of 500 bp. Starting 

with 150 μg of chromatin and 5 μg of antibody, 0.5 μl of ChIP material and 0.5 μl of input 

material were used for quantitative real-time PCR using specific primers covering the MCAT 

motif in the Zyxin gene. Primers covering an intergenic region were used as a control. The 

efficiencies of PCR amplification were normalized between the primer pairs. The following 

primers were used for ChIP-qPCR: Zyxin (forward: 5’-ccctgtcctgagcagatgtt-3’, reverse: 5’-

agaacgagccaggttgaaga-3’); Intergenic (forward: 5’-gctccgggtcctattcttgt-3’, reverse: 5’- 

tcttggtttccaggagatgc-3’). 
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Nuclear/cytoplasmic fractionation 

All steps were performed on ice or at 4°C. Cells were scraped in cold PBS and pelleted, 

followed by swelling in RSB Buffer (10 mM HEPES, 10 mM NaCl, 1.5 mM MgCl2) 

containing phosphatase and protease inhibitors for 30 min. Cells were passed 5 times through 

a 26 gauge needle, protein content was measured, adjusted to the same levels in all samples 

and input samples were collected. Nuclei were then pelleted by centrifugation at 400xg for 2 

min and cytoplasmic supernatant was collected. Nuclear pellet was washed 3 times with RSB 

Buffer containing inhibitors. Nuclei were lysed with EBC Buffer (50 mM Tris, 250 mM 

NaCl, 1 % Triton X-100) containing inhibitors by vortexing followed overhead shaking for 1 

hour. Finally, nuclear and cytoplasmic fractions were centrifuged at full speed for 15 min in a 

tabletop centrifuge and supernatant was collected, and all samples were diluted in SDS-PAGE 

loading buffer (10 % glycerol, 2 % SDS, 65 mM Tris, 1 mg/100 ml bromophenol blue, 1 % β-

mercaptoethanol). 

Immunoblotting 

Cells were lysed in RIPA buffer (150 mM NaCl, 2 mM MgCl, 2 mM CaCl2, 0.5 % NaDOC, 

1 % NP40, 0.1 % SDS, 10 % Glycerol, 50 mM Tris pH 8.0) containing 2 mM Na3VO4, 10 

mM NaF, 1 mM DTT, and a 1:200 dilution of stock protease inhibitor cocktail for 

mammalian cells (Roche). Protein concentration was determined using the BCA assay kit 

(Pierce). Equal amounts of protein were diluted in SDS-PAGE loading buffer (10 % glycerol, 

2 % SDS, 65 mM Tris, 1 mg/100 ml bromophenol blue, 1 % β-mercaptoethanol) and resolved 

by SDS-PAGE. Proteins were transferred to polyvinylidene fluoride (PVDF) membranes 

(Millipore) by semi-dry transfer, blocked with 5 % skim milk powder in TBS/ 0.05 % Tween 

20 and incubated with the indicated antibodies. HRP conjugated secondary antibodies were 

detected by chemiluminescence using a Fusion Fx7 chemiluminescence reader (Vilber 

Lourmat, France). 

Retroviral infection 

Retroviral plasmids containing the cDNA of interest were transfected into the retroviral 

packaging cell line Plat-E (purchased from Cell Biolabs); (Morita et al., 2000) using 

FugeneHD (Roche). One day after transfection, medium was exchanged and retroviral 

supernatant was produced for 2 days. Viral supernatant was filtered through 0.45 μm pores 
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and 8 ug/mL polybrene was added. Target cells were plated into 6-well plates and were 

infected with viral supernatant one day after plating. For infection, 2 mL supernatant was 

added per well and plates were spun for 1 hour at 30°C at 1000xg and were subsequently 

incubated at 37°C with 5% CO2 in a tissue culture incubator for 2 more hours. Viral 

supernatant was then replaced by normal growth medium and one day later, selection was 

performed with the appropriate antibiotics or cells were FACS sorted for GFP expression. 

Lentiviral infection 

The Lenti-X Tet-On Advanced system (Clontech) was used to generate stable pools of cells 

capable of expressing Tead2 FL or Tead2-EnR in a doxycycline-inducible fashion. Lentiviral 

particles were produced by transfecting HEK293T cells with the lentiviral expression vectors 

pLVX-Tet-On Advanced or pLVX-HA-Tead2 or pLVX-HA-Tead2-EnR or pLVX-tight-puro-

luc as a control, in combination with the helper vectors pHDM-HGPM2, pHDM-Tat1b, pRC-

CMV-RaII and the envelope encoding vector pVSV using Fugene HD. After two days of 

virus production, lentivirus-containing supernatants were harvested, filtered (0.45 µm) and 

stored at -80°C. For infection, viral supernatants were added to target cells in the presence of 

polybrene (8 μg/ml). Cells were spun for 1 hour at 30°C at 1000xg and were subsequently 

incubated at 37°C with 5% CO2 in a tissue culture incubator for 2 more hours. Viral 

supernatant was then replaced by normal growth medium and one day later, selection with the 

appropriate antibiotics was performed for 3 consecutive days. 

Boyden chamber migration and invasion assay 

Cells were trypsinized, washed once with PBS, and resuspended in growth medium 

containing 0.2% FBS and 2 ng/mL TGFβ where appropriate. 2.5x104 cells in 500 µL medium 

were seeded into cell culture insert chambers containing 8 μm pores (migration chambers: 

353097, BD Falcon; invasion chambers with ECM coating: 354483, BD Falcon) in triplicate. 

Subsequently, the bottoms of chambers were filled with 700 μL of growth medium containing 

20% FBS, and cells were incubated in a tissue culture incubator at 37°C with 5% CO2. After 

24 hours, inserts were fixed with 4% PFA/PBS for 10 min. Cells that had not crossed the 

membrane were removed with a cotton swab, and cells on the bottom of the membrane were 

stained with DAPI. Images of five fields per insert were taken with a Leica DMI 4000 

microscope and stained cells were counted using an ImageJ software plugin developed in-

house. Subsequently, inserts were stained in crystal violet solution (0.125% crystal violet, 
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20%MeOH) for 10 minutes, followed by washing in a large volume of dH2O and drying over 

night. Images of crystal violet stained inserts were taken with an AxioVert microscope (Zeiss, 

Germany). 

3D matrigel culture 

Growth factor-reduced matrigel (356230, BD) stock was thawed on ice and diluted to 4 

mg/mL protein with ice-cold, serum-free growth medium. Cells were trypsinized, 

resuspended in ice-cold normal growth medium and counted using a CASY cell counter 

(Roche, Switzerland). A pellet of 2500 cells was resuspended in 10 μL of pre-diluted matrigel 

and transferred to one well of a µ-slide angiogenesis microscopy slide (ibidi, Martinsried, 

Germany). After an incubation of 20 min in a tissue culture incubator to allow solidification 

of the gel, 50 μL of normal growth medium was added to each well. Growth medium was 

replenished every third day. After 5 days of growth, structures were photographed using a 

Leica DMIL microscope. 

Affymetrix gene expression profiling 

RNA was isolated using Quiazol lysis reagent (Quiagen). RNA quality and quantity was 

evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies). The manufacturer’s 

protocols for the GeneChip platform by Affymetrix were followed. Methods included 

synthesis of the first- and second-strand cDNA followed by synthesis of cRNA by in vitro 

transcription, subsequent synthesis of single-stranded cDNA, biotin labeling and 

fragmentation of cDNA and hybridization with the microarray slide (GeneChip® Mouse 

Gene 1.0 ST array), posthybridization washings and detection of the hybridized cDNAs using 

a streptavidin-coupled fluorescent dye. Hybridized Affimetrix GeneChips were scanned using 

an Affimetrix GeneChip 3000 scanner. Image generation and feature extraction were 

performed using Affimetrix GCOS Software and quality control was performed using 

Affimetrix Expression Console Software. Raw microarray data were normalized with Robust 

Multi-Array (RMA) and analyzed using Partek® Genomics Suite Software (Partek Inc.). One-

way analysis of variance (ANOVA) and asymptotic analysis were used to identify 

significantly differentially expressed genes. Ingenuity pathway analysis software (IPA) was 

used for further analyses. 
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Ingenuity Pathway analysis 

The functional analysis identified the biological functions and/or diseases that were most 

significant to the data set. Molecules from the dataset that met the fold change cutoff of 2 

were considered for the analysis and were associated with biological functions in the 

Ingenuity Knowledge Base. Right‐tailed Fisher’s exact test was used to calculate a p‐value 

determining the probability that each biological function assigned to that data set is due to 

chance alone. Canonical pathways analysis identified the pathways from the IPA library of 

canonical pathways that were most significant to the data set. Molecules from the data set that 

met the fold change cutoff of 2 were considered for the analysis were associated with 

canonical pathways in the Ingenuity Knowledge Base. The significance of the association 

between the data set and the canonical pathway was measured in 2 ways: 1) A ratio of the 

number of molecules from the data set that map to the pathway divided by the total number of 

molecules that map to the canonical pathway is displayed. 2) Fisher’s exact test was used to 

calculate a p‐value determining the probability that the association between the genes in the 

dataset and the canonical pathway is explained by chance alone. 

Statistical analysis 

Statistical analysis and graphs were generated using the GraphPad Prism software (GraphPad 

Software Inc, San Diego, CA). All statistical analyses were performed by unpaired, two-sided 

t-test
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