
[14:44 29/9/2010 Bioinformatics-btq481.tex] Page: 2626 2626–2628

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 20 2010, pages 2626–2628
doi:10.1093/bioinformatics/btq481

Structural bioinformatics Advance access publication August 23, 2010

OpenStructure: a flexible software framework for computational
structural biology
Marco Biasini1,2, Valerio Mariani1,2, Jürgen Haas1,2, Stefan Scheuber1,2,
Andreas D. Schenk3, Torsten Schwede1,2,∗ and Ansgar Philippsen1

1Biozentrum, Universität Basel, Basel, 2SIB Swiss Institute of Bioinformatics, Basel, Switzerland and 3Department of
Cell Biology, Harvard Medical School, Boston, MA 02115, USA
Associate Editor: Anna Tramontano

ABSTRACT

Motivation: Developers of new methods in computational structural
biology are often hampered in their research by incompatible
software tools and non-standardized data formats. To address this
problem, we have developed OpenStructure as a modular open
source platform to provide a powerful, yet flexible general working
environment for structural bioinformatics. OpenStructure consists
primarily of a set of libraries written in C++ with a cleanly designed
application programmer interface. All functionality can be accessed
directly in C++ or in a Python layer, meeting both the requirements for
high efficiency and ease of use. Powerful selection queries and the
notion of entity views to represent these selections greatly facilitate
the development and implementation of algorithms on structural
data. The modular integration of computational core methods with
powerful visualization tools makes OpenStructure an ideal working
and development environment. Several applications, such as the
latest versions of IPLT and QMean, have been implemented based
on OpenStructure—demonstrating its value for the development of
next-generation structural biology algorithms.
Availability: Source code licensed under the GNU lesser general
public license and binaries for MacOS X, Linux and Windows are
available for download at http://www.openstructure.org.
Contact: torsten.schwede@unibas.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on July 7, 2010; revised on August 6, 2010; accepted on
August 14, 2010

1 INTRODUCTION
We introduce OpenStructure, a flexible software framework for
computational structural biology, a solid, yet flexible and versatile
toolkit for rapid prototyping of new methods as well as their
productive implementation. Typically, method development in
structural bioinformatics involves combining different independent
software tools, and significant effort is devoted to writing code for
input/output operations and format conversions between different
packages. This culminates when data and algorithms from different
domains are to be combined, e.g. protein structures, protein sequence
annotation and chemical ligands. Several software tools and
frameworks are available today for molecular modeling, e.g. MMTK

∗To whom correspondence should be addressed.

(Hinsen, 2000), Coot (Emsley et al., 2010) MolIDE (Canutescu
and Dunbrack, 2005), Modeller (Eswar et al., 2008), bioinformatics
algorithms libraries, e.g. BALL (Kohlbacher and Lenhof, 2000),
workflow automation tools, e.g. Biskit (Grunberg et al., 2007) or
KNIME (www.knime.org) and visualization e.g. VMD (Humphrey
et al., 1996), PyMol (www.pymol.org), DINO (www.dino3d.org),
or SwissPdbViewer (Guex et al., 2009).

OpenStructure is a flexible software framework tailored for
computational structural biology, which combines a C++ based
library of commonly used functionality with a Python layer and
powerful visualization tools. While PyMol and VMD also combine
a scripting environment with sophisticated visualization tools, they
are primarily geared toward visualization and less on providing a
clean application programmer interface (API) that is easy to use and
allows for rapid development of new algorithms. OpenStructure is
also designed to easily accommodate interfaces to already existing
software. This allows for rapid visually enhanced prototyping of
new functionality, making OpenStructure an ideal environment for
the development of next-generation structural biology algorithms.
For example, new versions of the QMean tools for model quality
assessment (Benkert et al., 2009a, b) are based on OpenStructure, as
well as the structural analysis tools in ProteinModelPortal (Arnold
et al., 2009). Further, work is on the way to implement the next
generation of the SWISS-MODEL pipeline using the OpenStructure
framework (Arnold et al., 2006; Bordoli et al., 2009).

2 IMPLEMENTATION
In OpenStructure, molecular or chemical entities, such as
macromolecules, sequences, alignments or electron density maps,
are represented as objects, offering a comprehensive set of functions
for data manipulation and information querying. Typically, users
interact with a high-level Python interface, while ‘power users’ with
high computational requirements access the API at the level of C++.

Functionality in OpenStructure is grouped into modules. Each of
these modules consists of a computational core as a shared library
of C++ code and a set of Python modules built on top of the
exported API. Parts of the computational core and the graphical
user interface of the Image Processing Library and Toolkit IPLT
(Philippsen et al., 2007) have been incorporated into OpenStructure
to offer versatile handling of image data with support for various
algorithms in one, two and three dimensions. A graphics module
for real-time rendering of molecules, density maps and molecular
surfaces provides functionalities for data visualization.

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.openstructure.org
http://creativecommons.org/licenses/


[14:44 29/9/2010 Bioinformatics-btq481.tex] Page: 2627 2626–2628

OpenStructure

Processing and visualization of molecular entities often requires
filtering by certain selection criteria. These selections are
implemented as so-called EntityViews, containing subsets of atoms,
residues, chains and bonds of the respective EntityHandle chosen
using selection statements (queries). The EntityView class shares a
common interface with the EntityHandle class it points to, and hence
they can be used interchangeably. This handle/view concept pertains
to the full structural hierarchy, i.e. residue views will only contain
the atoms that were part of the selection, etc. The query language
supports sophisticated selection criteria (for example, distance-
based selection, Boolean operators, selections based on user-defined
properties, and so on).

In order to infer connectivity and topology when reading
molecular coordinate files, we make use of the chemical components
dictionary which is part of the official PDB distribution (Berman
et al., 2003). Thus, detailed information is available on any
of the chemical components, allowing the framework to ensure
correct connectivity and topology during the load process and issue
appropriate warnings. The connectivity step is extensible and its
behavior can be adapted by overloading functions. Additionally, a
heuristic method is available as a fallback for loading unknown
residues or to handle non-standard residue and atom names.

3 APPLICATION EXAMPLE
Most users will interact with OpenStructure using Python. The code
fragment in Supplementary Table S1 illustrates the expressiveness
of the OpenStructure API in combining data from different domains.
In this example, we compare the sequence conservation of residues
in contact with a ligand with the rest of the protein, quantifying
the visually derived hypothesis that the binding-site residues of the
SH2 domain are more conserved than the rest. This is achieved by
mapping of a conservation score derived from a multiple sequence
alignment of various SH2 domains (‘sh2.aln’) onto a representative
structure (PDB: 3IMJ) (DeLorbe et al., 2009) and identifying
residues in direct contact with the ligand. Figure 1 shows the
results displayed in the DNG (‘DINO/DeepView Next Generation’)
graphical user interface, using the conservation score to color a
molecular surface representation.

The OpenStructure distribution contains several scripting
examples to introduce new users to the functionalities and usage
style of the tool kit, such as scripts to animate molecular dynamics
trajectories, calculate electron density maps from atomistic
structures or rank short peptide fragments according to their
correlation with electron density. Exhaustive documentation and
tutorials are provided on the web site. Mailing lists for OpenStructure
users and developers provide a forum to ask questions, report
problems or suggest new developments.

ACKNOWLEDGEMENT
We would like to thank Andras Aszodi for inspiring discussion
during the conception phase of the project, and Pascal Benkert
and Tobias Schmidt for critical feedback. OpenStructure uses
Eigen (http://eigen.tuxfamily.org), FFTW (http://www.fftw.org),
Boost (http://www.boost.org), Qt4 (http://qt.nokia.com) and PyQt4
(http://www.riverbankcomputing.co.uk).

Fig. 1. Molecular surface representation of a SH2 domain (PDB:3IMJ)
colored by conservation of the positions in a multiple sequence alignment.
The color scale ranges from red for conserved residues to blue for
residues with high variability. The ligand peptide is shown as yellow
stick representation. The image was rendered in OpenStructure, the
molecular surface was calculated using MSMS (Sanner et al., 1996). See
Supplementary Table S1 for details on calculation of sequence conservation
scores.

Funding: Development of OpenStructure was funded by the SIB
Swiss Institute of Bioinformatics and the Biozentrum University
of Basel. Implementation of the structure comparison for the
Nature PSI SBKB Protein Model Portal based on OpenStructure
was supported by the National Institutes of Health as a sub-grant
with Rutgers University, under Prime Agreement Award Number:
(3U54GM074958-05S2).

Conflict of Interest: none declared.

REFERENCES
Arnold,K. et al. (2006) The SWISS-MODEL workspace: a web-based environment for

protein structure homology modeling. Bioinformatics, 22, 195–201.
Arnold,K. et al. (2009) The protein model portal. J. Struct. Funct. Genomics, 10, 1–8.
Benkert,P. et al. (2009a) QMEAN server for protein model quality estimation. Nucleic

Acids Res., 37, W510–W514.
Benkert,P. et al. (2009b) Global and local model quality estimation at CASP8 using the

scoring functions QMEAN and QMEANclust. Proteins, 77 (Suppl. 9), 173–180.
Berman,H. et al. (2003) Announcing the worldwide Protein Data Bank. Nat. Struct.

Biol., 10, 980.
Bordoli,L. et al. (2009) Protein structure homology modeling using SWISS-MODEL

workspace. Nat. Protocol, 4, 1–13.
Canutescu,A.A. and Dunbrack,R.L. Jr (2005) MollDE: a homology modeling

framework you can click with. Bioinformatics, 21, 2914–2916.
DeLorbe,J.E. et al. (2009) Thermodynamic and structural effects of conformational

constraints in protein-ligand interactions. Entropic paradoxy associated with ligand
preorganization. J. Am. Chem. Soc., 131, 16758–16770.

Emsley,P. et al. (2010) Features and development of Coot. Acta Crystallogr. D. Biol.
Crystallogr., 66, 486–501.

Eswar,N. et al. (2008) Protein structure modeling with MODELLER. Methods Mol.
Biol., 426, 145–159.

Grunberg,R. et al. (2007) Biskit–a software platform for structural bioinformatics.
Bioinformatics, 23, 769–770.

Guex,N. et al. (2009) Automated comparative protein structure modeling with SWISS-
MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis, 30
(Suppl. 1), S162–S173.

Hinsen,K. (2000) The molecular modeling toolkit: a new approach to molecular
simulations. J. Comput. Chem., 21, 79–85.

2627

http://eigen.tuxfamily.org
http://www.fftw.org
http://www.boost.org
http://qt.nokia.com
http://www.riverbankcomputing.co.uk


[14:44 29/9/2010 Bioinformatics-btq481.tex] Page: 2628 2626–2628

M.Biasini et al.

Humphrey,W. et al. (1996) VMD: visual molecular dynamics. J. Mol. Graph, 14, 33–38,
27–38.

Kohlbacher,O. and Lenhof,H.P. (2000) BALL–rapid software prototyping
in computational molecular biology. Biochemicals Algorithms Library.
Bioinformatics, 16, 815–824.

Philippsen,A. et al. (2007) Collaborative EM image processing with the IPLT image
processing library and toolbox. J. Struct. Biol., 157, 28–37.

Sanner,M.F. et al. (1996) Reduced surface: an efficient way to compute molecular
surfaces. Biopolymers, 38, 305–320.

2628


