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Abstract 

The molecular networks that control endoplasmic reticulum (ER) redox conditions in 

mammalian cells are incompletely understood. Here, we demonstrate that after 

reductive challenge the ER steady-state disulfide content is restored on a time scale of 

seconds. Both the oxidase Ero1α and the oxidoreductase protein disulfide isomerase 

(PDI) strongly contribute to the rapid recovery kinetics, but experiments in ERO1 

deficient cells indicate the existence of parallel pathways for disulfide generation. We 

find PDI to be the main substrate of Ero1α, and mixed-disulfide complexes of Ero1 

primarily form with PDI, to a lesser extent with the PDI-family members ERp57 and 

ERp72, but are not detectable with another homologue TMX3. We also demonstrate 

for the first time that the oxidation level of PDIs and glutathione is precisely 

regulated. Apparently this is achieved neither through ER import of thiols nor by 

transport of disulfides to the Golgi apparatus. Instead, our data suggest that a dynamic 

equilibrium between Ero1- and glutathione disulfide-mediated oxidation of PDIs 

constitutes a key element of ER redox homeostasis.  

 

Key words:  Disulfide-Bond Formation / Endoplasmic Reticulum / Ero1 / 

Glutathione / Protein Disulfide Isomerase 
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Introduction 

Regulation of the redox environment in the endoplasmic reticulum (ER) is emerging 

as a key aspect of cellular homeostasis (Malhotra and Kaufman, 2007; Merksamer et 

al, 2008), and the thiol-disulfide oxidoreductases of the protein disulfide isomerase 

(PDI) family are central to ER redox control (Appenzeller-Herzog and Ellgaard, 

2008b). PDIs contain one or more thioredoxin-like domains. These typically harbor a 

CXXC active-site sequence motif required for the catalysis of thiol-disulfide 

exchange reactions, such as the introduction of disulfides into substrate proteins.  

The identification in yeast of the essential ER-resident sulfhydryl oxidase 

Ero1p (Frand and Kaiser, 1998; Pollard et al, 1998), which oxidizes PDI (Frand and 

Kaiser, 1999; Tu et al, 2000) and reduces molecular oxygen to hydrogen peroxide 

(Gross et al, 2006), has led to an improved understanding of oxidative folding and ER 

redox regulation (Sevier and Kaiser, 2008; Sevier et al, 2007). Consistent with a key 

function in ER protein oxidation, both human isoforms Ero1〈 and Ero1® are 

transcriptionally upregulated by the ER stress response (Marciniak et al, 2004; Pagani 

et al, 2000), which can be associated with a reductive shift in the ER redox conditions 

(Merksamer et al, 2008; Nadanaka et al, 2007). Moreover, the activity of Ero1α is 

subject to negative feedback regulation by intramolecular disulfide bonds 

(Appenzeller-Herzog et al, 2008; Baker et al, 2008). The enzyme appears in at least 

three redox forms; reduced, OX1, and OX2 (Benham et al, 2000). The latter is the 

most oxidized form with all regulatory disulfide bonds in place ((Appenzeller-Herzog 

et al, 2008); our unpublished observations). The cellular activation state of Ero1α is 

controlled by the availability of reduced PDI (Appenzeller-Herzog et al, 2008), which 

can reduce the regulatory disulfide bonds (see also Discussion) (Appenzeller-Herzog 
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et al, 2008; Baker et al, 2008; Sevier et al, 2007). Ero1α also controls calcium fluxes 

from ER to mitochondria (Li et al, 2009), which could correlate with its partial 

localization at mitochondria-associated ER membrane domains (Gilady et al, 2010).  

The dominance of Ero1 enzymes in providing the oxidizing equivalents for the 

synthesis of disulfides is, however, still a matter of debate (Thorpe and Kodali, 2010). 

For instance, the slow in vitro rate of PDI oxidation by Ero1〈 (Baker et al, 2008; 

Wang et al, 2008) appears at odds with a principal function in disulfide-bond 

generation. Knockout of the single Ero1 gene in fruit fly causes a specific defect in 

Notch signaling while apparently leaving the bulk disulfide-bond repertoire 

unperturbed (Tien et al, 2008). Most importantly, however, Ero1α and Ero1β appear 

non-essential in the mouse, as evidenced by the viability of an Ero1α/Ero1β double 

mutant (Zito et al, 2010). Indeed, several possible Ero1-independent pathways for 

disulfide generation and/or the oxidation of PDI in the ER of mammalian cells exist 

(Margittai and Banhegyi, 2010). These include the activity of quiescin-sulfhydryl 

oxidases (Thorpe and Kodali, 2010), import of dehydroascorbate from the cytosol and 

its reduction by dithiol groups (Saaranen et al, 2010), ER-luminal detoxification of 

NADPH oxidase 4-generated hydrogen peroxide (Santos et al, 2009), and a pathway 

that uses the oxidizing equivalents of radicals derived from mitochondrial respiration 

to generate disulfides in secretory compartments (Yang et al, 2007). In analogy to a 

mechanism that operates in both archaea and bacteria (Dutton et al, 2008; Singh et al, 

2008), PDI could also be oxidized through the vitamin K cycle (Wajih et al, 2007). 

Currently, we lack a thorough cell biological understanding of these pathways in 

relation to oxidative folding in the ER. 
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 In addition to the PDIs and Ero1, glutathione also plays a fundamental role in 

ER redox homeostasis. This low-molecular weight thiol compound exists as a mixture 

of reduced glutathione (GSH) and glutathione disulfide (GSSG). Cytosol-derived 

GSH can enter the ER where its reducing power is required for the rearrangement of 

aberrant disulfide bonds in folding substrates (Chakravarthi et al, 2006).  

 On these premises, we decided to further explore the links between Ero1, 

PDIs, and glutathione in cultured human cells. Our work demonstrates a very rapid 

production of disulfides in the ER whose velocity depends on both Ero1〈 and PDI, but 

apparently less so on other PDI family members. In cells devoid of both Ero1α and β, 

however, we present evidence for Ero1-independent pathway(s) for thiol oxidation. 

Finally, we show that ER oxidation is tightly regulated, and propose a mechanistic 

model of ER redox homeostasis that integrates previous and current findings.  
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Results 

 

Thiol import and disulfide export play a minor role in acute ER redox control 

While it has been shown that Ero1 activity ultimately leads to the oxidation of GSH in 

the ER (Appenzeller-Herzog et al, 2008; Cuozzo and Kaiser, 1999), the mechanisms 

that counteract the accumulation of ER-luminal GSSG are still unclear (Chakravarthi 

et al, 2006; Thorpe and Kodali, 2010). Since GSSG displays only low permeability 

through microsomal membranes (Banhegyi et al, 1999), we tested whether export of 

GSSG through the secretory pathway might contribute to ER redox homeostasis. We 

therefore combined the pharmacological inhibition of ER-to-Golgi transport with ER 

redox state analysis. For this purpose, we used a combination of brefeldin A and 

monensin (BFA/mon), which blocks vesicular anterograde transport from the ER 

while preserving the integrity of the Golgi apparatus ((Barzilay et al, 2005); Fig. S1), 

and an assay in which oxidized active-site cysteines in PDIs are modified with 4-

acetamido-4´-maleimidylstilbene-2,2´-disulfonic acid (AMS) resulting in slower 

mobility upon SDS-PAGE (Jessop and Bulleid, 2004). Using this AMS shift assay, 

we have consistently found the redox distribution of various PDIs to exhibit 

molecules in both reduced and oxidized states (Appenzeller-Herzog and Ellgaard, 

2008a; Appenzeller-Herzog et al, 2008; Haugstetter et al, 2005; Roth et al, 2010), the 

ratio of which can be used as a readout to monitor redox variations in the ER.  

We studied the effect of BFA/mon treatment on the redox recovery of the 

PDIs TMX3 (a transmembrane PDI family member) and ERp57 (a close homolog of 

PDI) upon application and washout of the oxidant diamide. No significant delay in the 

recovery was observed under conditions of blocked ER-to-Golgi transport (Figs. 1A 
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and B). Hence, BFA/mon-sensitive vesicular export appears to be of minor 

importance as a redox-balancing mechanism against hyper-oxidizing conditions.  

Reestablishment of the ER redox state after washout of the oxidant dipyridyl 

sulfide is mediated by the import of GSH through the ER membrane (Jessop and 

Bulleid, 2004). Further reductive input is brought to the ER through the co-

translational translocation of protein thiols (Cuozzo and Kaiser, 1999). For these 

reasons, we examined if lowering cellular GSH levels by L-buthionine-sulfoximine 

(BSO) or the shutdown of translation by cycloheximide (CHX) altered the steady-

state ER redox state. As shown in Fig. 1C, neither of these drugs showed a consistent 

effect on the redox ratios of TMX3 and ERp57 at steady state. It should be noted that 

for reasons of cytotoxicity we did not apply combinations of the above treatments so 

that additive effects between the different reductive pathways cannot be excluded. 

Still, these results suggested that mechanism(s) other than ER export of disulfides or 

import of thiols secure ER redox balance.  

 

PDI withstands in situ reduction better than other ER oxidoreductases 

PDI is a known substrate of Ero1 (Sevier and Kaiser, 2008). It is, however, less clear 

what regulates the redox state of other ER oxidoreductases and whether they are 

substrates of Ero1 (Jessop et al, 2009; Kulp et al, 2006; Mezghrani et al, 2001). We 

therefore next investigated factors that could control the redox state of various PDI 

family members. First, we determined their in vivo dithiothreitol (DTT) resistance by 

means of an assay where cells are challenged with increasing concentrations of this 

membrane-permeant reductant. Although the two separate active-site domains in PDI 

exhibit very similar reduction potentials (Darby and Creighton, 1995), the 
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susceptibility towards DTT-mediated in situ reduction of the a domain was greater 

than of the a´ domain (Fig. 2A). The a´ domain is preferentially oxidized in vitro by 

Ero1α (Baker et al, 2008; Wang et al, 2008), which becomes activated by DTT 

through reduction of its regulatory disulfides (see below). Thus – although the DTT 

resistance readout could also be influenced by protein quaternary structure and 

differential accessibility of active-site cysteines to DTT or N-ethylmaleimide (NEM) 

– this result suggested that the DTT resistance of a PDI family member’s active site in 

the ER reflects its propensity to become reoxidized by ER-resident oxidases.  

 When comparing the in vivo redox states of TMX3 and ERp57 after treatment 

of cells with different concentrations of DTT, we observed a slightly higher DTT 

resistance of the AMS-shifted form of ERp57 (Figs. 2B and C). This form represents 

ERp57 with its a´ domain oxidized, while ERp57 with exclusively the a domain 

oxidized virtually co-migrates with the reduced form (Appenzeller-Herzog et al, 

2008). Given that the active-site domains of ERp57 and TMX3 have approximately 

the same reduction potential (Frickel et al, 2004; Haugstetter et al, 2005), these 

results indicated that in cells the relative rates of oxidation for the single active site in 

TMX3 and the a´ active site in ERp57 are distinct. Still, the Ero1α-controlled active 

site in PDIa´ by far displayed the highest cellular DTT resistance, likely underlining 

its importance as an electron donor for Ero1α in vivo.  

 

Mixed-disulfide interactions of PDIs with Ero1α and Ero1β reflect their in vivo DTT 

resistance 

To investigate a possible role of Ero1 in maintaining the levels of the oxidized 

fractions of ERp57 and TMX3, we searched for intracellular mixed-disulfide 
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interactions. For this purpose, we performed co-immunoprecipitation experiments of 

myc-tagged Ero1α (Ero1αmyc6his) or Ero1β (Ero1βmyc6his) stably expressed from 

a doxycyclin-inducible promoter (Appenzeller-Herzog et al, 2008) using an in situ 

acidification/in vitro NEM-alkylation protocol. Compared to in situ NEM trapping, 

the acidification method was much more effective in trapping mixed-disulfide 

interactors of Ero1 (data not shown).  

As expected, PDI was readily precipitated with αmyc in an Ero1αmyc6his-

dependent fashion (Fig. 3A, lanes 3 and 4), and non-reducing gel electrophoresis 

revealed a prominent Ero1αmyc6his–PDI mixed-disulfide complex (Fig. 3A, lane 7). 

Unlike in a previous study that used NEM trapping of mixed disulfides (Mezghrani et 

al, 2001), an interaction with Ero1αmyc6his was also detected for ERp57 and ERp72 

(Figs. 3B and C). While the pool of PDI acid-trapped in a covalent complex with 

Ero1αmyc6his at steady state was > 3% of total, the disulfide-linked fractions of 

ERp57 and ERp72 were only 0.5-2% (compare lane 4 to 1% of total in lane 1). In 

contrast, we detected no co-immunoprecipitation of TMX3 (Fig. 3D). The same 

pattern of mixed-disulfide interactions was also found for Ero1βmyc6his (Fig. 3, 

lanes 5 and 8). In the case of ERp57, HA-tagged mutants with one active site changed 

to SXXS could both be acid-trapped in a mixed-disulfide complex with 

Ero1αmyc6his or Ero1βmyc6his (Fig. S2A). Since the cells were pulsed with 35S-

methionine for 1 h in the presence of doxycyclin and chased for 1 h without 

doxycyclin but in the presence of CHX, the detected mixed disulfide is unlikely to 

involve a folding intermediate of Ero1. The same result was obtained in the absence 

of CHX (data not shown). Autoradiography of the membranes used for Western 

blotting documented the specificity of immunoprecipitation (Fig. S2B). Taken 
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together, Ero1α and β can form mixed disulfides not only with their known substrate 

PDI, but to a lesser extent also with ERp57 and ERp72, while TMX3 appears not to 

interact directly with either of the two oxidases.  

 

Restoration of the ER redox balance is fast, precise, and affected by Ero1 over-

expression 

We next sought to functionally dissect the roles of Ero1 and its interaction partners in 

ER oxidation by means of an oxidative recovery assay. In this assay, the cellular 

levels of GSSG (which mainly represent GSSG in the ER (Appenzeller-Herzog et al, 

2008)) are recorded at different time points after DTT washout. The oxidative 

resetting of the steady-state ratio of GSSG to total glutathione (GStot) in HEK293 cells 

was very precise and displayed a half time of only ~10 s (Figs. 4A and S3A). Similar 

recovery times were observed with a negative control cell line for doxycyclin-

inducible over-expression of various Ero1 constructs (Fig. S3B). In this cell line, the 

reacquisition of the steady-state redox ratio of TMX3 and ERp57 was also very fast, 

with reoxidation becoming visible as early as 5 s after washout of the reductant (Fig. 

4B and data not shown). 

 To study the effect of over-expression of exogenous Ero1 variants on the 

recovery of GSSG pools following a reductive challenge, we next performed DTT 

washout experiments in the Ero1αmyc6his- and Ero1βmyc6his-inducible cells. As 

expected, when doxycyclin was omitted, the rate of GSSG formation resembled the 

situation in non-transfected cells (Figs. 4C and D, control; for raw data see Fig. S3). 

In contrast, induction of Ero1αmyc6his strongly modulated the process. The initial 

rate of GSH oxidation was apparently too fast to be assessed by our experimental 
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setup so that around six times the steady-state GSSG levels were measured at the 0 s 

time point (Fig. 4C). However, consistent with our previous finding that over-

expression of Ero1αmyc6his does not affect the cellular glutathione redox state 

(Appenzeller-Herzog et al, 2008), the GSSG:GStot ratio declined within 5 minutes to 

the steady-state value, indicating the reduction of excess GSSG to GSH.  

In the case of Ero1βmyc6his over-expression, the peak in GSSG formation 

was clearly less prominent and did not occur until the 10 s time point (Fig. 4D). These 

differences were not a result of lower expression levels of Ero1βmyc6his 

((Appenzeller-Herzog et al, 2008); Fig. S2B), and neither were they evident when 

monitoring the redox states of TMX3 and ERp57 upon DTT washout (Fig. S3C). We 

also used cell lines inducibly expressing two point mutants of Ero1α, Ero1αmyc6his-

C131A and Ero1αmyc6his-C394A. While the former cannot build a critical 

regulatory disulfide, the latter is a competitive inhibitor of ER oxidation 

(Appenzeller-Herzog et al, 2008). Like Ero1αmyc6his, Ero1αmyc6his-C131A led to 

strong transient GSH hyper-oxidation (Fig. 4E). Conversely, expression of 

Ero1αmyc6his-C394A slightly impeded the rate of oxidative recovery (Fig. 4F).  

 

Rapid oxidative recovery depends on Ero1 and PDI 

The stimulation of ER reoxidation by exogenous Ero1 implies that endogenous Ero1 

may catalyze the fast rate of disulfide-bond reformation upon DTT washout in non-

transfected cells. To examine this, we first downregulated the expression of Ero1α in 

HEK293 cells by siRNA transfection. Partial knockdown of Ero1α slightly delayed 

ER reoxidation as assessed by timed redox analysis of TMX3 and ERp57 (Figs. S4A-
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C). Next, we performed DTT washout experiments in embryonic fibroblasts derived 

from homozygous double mutant mice that harbor disruptive viral insertions in the 

genes encoding Ero1α and Ero1β (Zito et al, 2010). In keeping with the lack of 

Ero1α detection in double mutant cells (Fig. 5A), we observed a strong delay in ER 

reoxidation (Figs. 5B and C). The steady-state redox distribution of ERp57, however, 

was not affected by Ero1 deficiency (Fig. 5B). Unfortunately, these cells were not 

amenable to redox analysis of TMX3, because AMS modification only minimally 

shifts the electrophoretic mobility of mouse TMX3 (data not shown). We also 

assessed the reformation of GSSG during oxidative recovery from DTT in wild-type 

versus double mutant fibroblasts. Unexpectedly, the GSSG:GStot ratio promptly 

increased upon DTT washout not only in wild-type but also in the mutant cells, while 

complete reoxidation of GSH after a recovery period of 300 s was only achieved in 

wild-type cells (Fig. 5D). Furthermore, the resting value for GSSG:GStot was higher – 

i.e. more oxidizing – in double mutant cells (Fig. 5D, inset). These findings argue that 

at least one Ero1-independent pathway for GSH oxidation is operative in these cells.  

We next investigated whether the efficient delivery of disulfide bonds in the 

ER depended on PDI. Indeed, for TMX3, ERp57, and glutathione, the oxidative 

recovery was clearly impaired in cells stably depleted of PDI (knockdown efficiency 

~90%; see (Appenzeller-Herzog et al, 2008; Ou and Silver, 2006)) as compared to 

control cells (Figs. 5E-G). Thus, PDI plays a prominent role in oxidative recovery and 

the direct interactions of ERp57 or ERp72 with Ero1α (Fig. 3) cannot efficiently 

substitute the supply of disulfide bonds via the Ero1α–PDI relay. Nonetheless, the 

diminished rate of GSSG:GStot recovery in murine ERp57-/- cells (Garbi et al, 2006) 

suggested that early after DTT washout ERp57 does contribute to the shuttling of 

disulfide bonds to GSH (Fig. 5H).  
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So far, the data indicated that upon reductive challenge the propagation of 

Ero1-generated oxidative equivalents via PDI to the ER thiol pool was a rapid 

process. We therefore expected the complex between the two enzymes to form 

quickly after DTT treatment. To investigate this, we performed co-

immunoprecipitation experiments using cells that had been challenged with DTT. 

Hence, doxycyclin-induced Ero1αmyc6his or Ero1βmyc6his cells were treated with 

DTT or left untreated, washed with ice-cold phosphate buffered saline (PBS) and 

covered with trichloroacetic acid (TCA) followed by αmyc immunoprecipitation. Co-

immunoprecipitated PDI was readily detectable even after DTT treatment (Fig. 6A, 

lanes 12, 14, 16, 18), indicating the formation of the Ero1–PDI mixed-disulfide 

complexes to be extremely rapid. We suggest that this rapid process reflects the 

sulfhydryl oxidase activity of Ero1, and that this in turn accounts for the high apparent 

DTT resistance of the PDIa´ active site (Fig. 2A). Notably, when analyzed under non-

reducing conditions, the Ero1–PDI complexes isolated from DTT-treated cells 

migrated more slowly in the gel than when isolated from non-treated cells (Fig. 6A, 

Ero1+PDI RED.), a finding that was recapitulated for the endogenous proteins (Fig. 

6B). This suggested that in untreated cells, the bulk of Ero1 that is covalently attached 

to PDI is in an oxidized or partially oxidized state. We also found the mixed-disulfide 

complex between PDI and Ero1α from DTT-treated cells to require the active-site 

Cys94 in Ero1α (Fig. 6C). Finally, covalent interactions of ERp57 with 

Ero1αmyc6his, Ero1βmyc6his, and endogenous Ero1α were not unequivocally 

detectable after DTT treatment (Fig. S5). Overall, the findings demonstrated that 

Ero1, when activated by DTT in situ, efficiently established a catalytic interaction 

with PDI.  
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Discussion 

 

A molecular model for ER redox balance: interplay between Ero1 and glutathione 

Although Ero1p is essential in yeast, the principal pathway for disulfide-bond 

generation in the ER of metazoans is still unclear (Thorpe and Kodali, 2010; Tien et 

al, 2008; Zito et al, 2010). Furthermore, the concept of disulfide delivery to reduced 

substrate proteins and GSH through Ero1–PDI relay has been questioned because it 

potentially leads to the futile depletion of cellular reductants accompanied by the 

accumulation of ER-luminal GSSG and hydrogen peroxide (Thorpe and Kodali, 

2010).  

The data presented herein provide new insight on the significance and the 

precise regulation of disulfide generation by Ero1. We show that reoxidation of PDI 

family members and GSH after reductive challenge is very fast. The recovery process 

is hampered by genetic ablation of Ero1 and by knockdown of PDI, indicating that the 

Ero1–PDI disulfide relay represents an important pathway for the production of 

disulfide bonds in the ER of mammalian cells. In most cell types including mouse 

embryonic fibroblasts (Dias-Gunasekara et al, 2005; Zito et al, 2010), this pathway is 

exclusively supported by the Ero1α isoform. In addition, the results demonstrate that 

– in spite of the oxidative burst in the ER following DTT treatment – accumulation of 

GSSG is very tightly regulated. Thus, the cellular GSSG:GStot ratio levels off to the 

steady-state value within a few minutes. This rapid process could neither be explained 

through import of GSH or nascent proteins from the cytosol, nor by the escape of 

disulfide-bonded molecules from the ER through the secretory pathway (Fig. 1). 
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Likewise, the diffusion of excess GSSG through the ER membrane is far too slow to 

efficiently counteract the luminal oxidation of GSH (Banhegyi et al, 1999). Instead, 

we propose that the prompt regulation of GSSG levels involves ER-luminal reduction 

of GSSG to GSH (see below).  

The remarkable precision of GSSG:GStot regulation demonstrates a stringent 

redox control system in the ER. Here, PDI fulfills a central role in regulating ER 

redox conditions by its ability to adjust the activation state of Ero1α (Appenzeller-

Herzog et al, 2008). Moreover, glutathione is known to be important for ER redox 

homeostasis, since its depletion compromises oxidative protein folding (Chakravarthi 

and Bulleid, 2004; Molteni et al, 2004) and sensitises the ER to over-expression of 

Ero1 (Appenzeller-Herzog et al, 2008). A model depicting central elements of ER 

redox regulation that integrates the PDI–Ero1α feedback loop with the redox 

buffering capacity of glutathione is presented in Fig. 7. We propose that a dynamic 

equilibrium exists between Ero1α-driven (Fig. 7A) and GSSG-driven (Fig. 7B) 

oxidation of substrate proteins via PDI family members. In the context of de novo 

disulfide formation driven by Ero1α, GSH is oxidized to GSSG. Rising levels of 

GSSG will promote GSSG-driven oxidation of PDIs and also shutdown of Ero1α. 

The interplay between the two oxidative pathways that either produce (Fig. 7A) or 

consume (Fig. 7B) ER-luminal GSSG maintains ER redox homeostasis by 

establishing a system that can adapt to physiological changes in the throughput of 

substrate proteins. It should be noted that this model does not exclude the contribution 

from Ero1-independent oxidative pathways (see also below). However, the exact 

influence on ER redox control of such pathways awaits further investigation.  
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The model is supported by our experiments using over-expression of Ero1 

variants. The transient overshoot in GSH oxidation upon DTT washout resulting from 

the induction of Ero1αmyc6his (Fig. 4C) serves to illustrate both of the pathways 

depicted in Fig. 7. Hence, upon DTT-mediated breaking of the regulatory disulfides in 

Ero1α, the enzyme is present in its activated form which – when over-expressed – 

will catalyze excess production of GSSG via PDI. This process is, however, rapidly 

reverted. As indicated by the slightly delayed drop of GSSG:GStot in Ero1αmyc6his–

C131A expressing cells compared to wild-type (Figs. 4C and E), oxidative shutdown 

of Ero1α by the Cys94–Cys131 regulatory disulfide (Appenzeller-Herzog et al, 2008; 

Baker et al, 2008) apparently modulates the process. A comparable delay in GSSG 

peak formation following DTT washout was observed upon over-expression of 

Ero1βmyc6his (Fig. 4D), which – like Ero1αmyc6his–C131A – is partially 

deregulated (Appenzeller-Herzog et al, 2008). Since GSSG levels still declined in 

both Ero1αmyc6his–C131A and Ero1βmyc6his cells, these experiments also point to 

the existence of additional regulatory disulfide bonds in Ero1α and Ero1β, e.g. the 

equivalent of Cys90–Cys349 in Ero1p (Sevier et al, 2007). These in turn appear to be 

more stable in Ero1β, as evidenced by the less prominent formation of GSSG in 

Ero1βmyc6his cells upon DTT washout.  

The decline of GSSG:GStot in Ero1-over-expressing cells, however, cannot 

solely be explained by the shutdown of Ero1 activity, but must also involve reduction 

of GSSG. Based on in vitro kinetics, it has been proposed that GSSG in the ER 

preferentially reacts with reduced PDIs as compared to folding substrate proteins 

(Hatahet and Ruddock, 2009). Still, TMX3 and ERp57 – as putative electron sources 

for GSSG – were never completely oxidized during oxidative recovery in both 
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Ero1αmyc6his- and Ero1βmyc6his-expressing cells (Fig. S3C). A potential 

explanation for this observation could be that the PDIs rapidly pass on GSSG-derived 

disulfides to substrate proteins.  

We suggest that GSSG-driven oxidation of PDIs also takes place in non-

transfected cells to control redox homeostasis (Fig. 7B). For instance, TMX3, which 

is readily oxidized by GSSG in vitro (Haugstetter et al, 2007) but not found in mixed-

disulfide complexes with Ero1 (Fig. 3D), showed rapid, Ero1α-dependent reoxidation 

upon DTT washout (Fig. S4B) presumably as a result of oxidation by GSSG. 

Altogether, we propose that the reaction of GSSG with reduced PDIs followed by 

substrate oxidation (Lyles and Gilbert, 1991; Zapun et al, 1998), a pathway that has 

received little attention since the discovery of Ero1, is of physiological relevance for 

oxidative protein folding and ER redox homeostasis.  

 

The in vivo rate of Ero1-mediated disulfide generation is unexpectedly fast 

The rapid kinetics of redox recovery after DTT washout observed here was 

unexpected since previously published data from mammalian (Enyedi et al; 

Mezghrani et al, 2001) and yeast cells (Cuozzo and Kaiser, 1999) reported the rate of 

Ero1-dependent ER reoxidation to be much slower. How can this be explained? In our 

experiments, we observed that the millimolar concentrations of DTT necessary to 

fully reduce GSSG and ER oxidoreductases in situ are difficult to wash away. 

Therefore, the slow recovery kinetics previously observed could in part have been due 

to residual DTT in the sample. In addition, the oxidation state of cellular glutathione 

in yeast at “time point zero” after DTT washout was not – as should be expected after 

DTT treatment – fully reduced ((Cuozzo and Kaiser, 1999; Sevier et al, 2007); P. 
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Nørgaard and J.R. Winther, personal communication). This suggests that considerable 

amounts of GSSG had already formed in the ER before quenching. The subsequent 

slow increase of GSSG could potentially reflect the vacuolar accumulation of ER-

derived GSSG.  

 When assessed in vitro, the reaction kinetics of thiol-disulfide exchange 

between Ero1α and PDI are surprisingly slow compared to the rapid reaction in the 

ER during DTT washout (Baker et al, 2008; Wang et al, 2008). A partial explanation 

is offered by the shut-down of Ero1α activity through formation of intramolecular 

disulfide bonds (Appenzeller-Herzog et al, 2008; Baker et al, 2008). Accordingly, the 

bulk of purified Ero1α used for in vitro assays is in the inactive state (Baker et al, 

2008), whereas cellular Ero1α is fully activated by DTT at the start of the recovery 

period. Although PDI is involved in their regulation in vivo (Appenzeller-Herzog et 

al, 2008), the protein is not sufficiently reducing to effectively open the stable 

regulatory disulfide bonds in Ero1α (Baker et al, 2008). Addition of GSH to maintain 

PDI in the reduced form or replacement of PDI with the more reducing thioredoxin 

more efficiently activated Ero1α and increased the reaction kinetics (Baker et al, 

2008), but still failed to reproduce the rapid pace of oxidation observed in cells. It 

therefore appears that the in vitro experiments do not faithfully reproduce the 

situation in the ER where additional factors such as the ionic composition of the 

solvent (e.g. the levels of calcium), conformational changes in Ero1α induced by an 

as yet unknown protein, the two N-glycans in Ero1α or the catalyzed metabolic 

discharge of reaction products such as hydrogen peroxide could have important 

functions. 
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PDI is the major, but probably not the only substrate of Ero1 

Using acid quenching to trap mixed-disulfide complexes, we identify ERp57 and 

ERp72 as novel interactors of Ero1α and β. Multiple lines of evidence, however, 

point to PDI as being the principal interaction partner of Ero1: (1) As opposed to 

ERp57, PDI is unambiguously required for efficient ER reoxidation following DTT 

treatment (Fig. 5E-H). (2) Over-expression of Ero1α does not affect the cellular redox 

state of ERp57 while easily oxidizing PDI (Appenzeller-Herzog et al, 2008; 

Mezghrani et al, 2001). (3) PDIa´ is significantly more resistant than ERp57a´ 

towards in situ reduction by DTT (Fig. 2). (4) The amount of acid-trapped PDI co-

immunoprecipitating with Ero1 is relatively higher than that of ERp57 and ERp72 

(Fig. 3). (5) On non-reducing αEro1α Western blots following acid trapping, the 

mixed disulfide with PDI is the predominant high molecular weight species (Fig. 6B). 

(6) Depletion and over-expression of PDI, but not of other PDI family members, 

modulates the formation of the regulatory disulfide bonds in Ero1α ((Appenzeller-

Herzog et al, 2008); Araki, K. and Nagata, K., personal communication). (7) Among 

several PDIs that interact with Ero1α in cells, PDI itself is the best substrate in an in 

vitro activity assay and shows the highest affinity for Ero1α (Araki, K. and Nagata, 

K., personal communication). 

Due to the lower prevalence of the ERp57 and ERp72 complexes with Ero1, 

the functional implications of these interactions are currently unclear. Still, the 

increased resistance of ERp57 towards in situ reduction by DTT as compared to 

TMX3 (Fig. 2C) and the significant delay in GSSG reformation upon DTT washout in 

ERp57-/- cells (Fig. 5H) argue that at least under certain conditions, ERp57 can 
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accept disulfide bonds from Ero1, as has also been observed in vitro ((Kulp et al, 

2006) ; Araki, K. and Nagata, K., personal communication).  

We have shown that the PDI–Ero1α/β mixed disulfide in cells at steady state 

predominantly involves an oxidized form of Ero1 (Fig. 6). It is also worth noting that 

both PDI and ERp57 interacted with the active-site mutant Ero1α-C94S (data not 

shown). It was only in DTT-treated cells that formation of the PDI–Ero1α mixed 

disulfide became strictly dependent on Cys94 (Fig. 6C). Due to the typically short-

lived nature of a mixed disulfide during thiol-disulfide exchange (see e. g. (Darby and 

Creighton, 1995)) we reason that the surprisingly abundant Ero1 complexes at steady 

state do not exclusively represent catalytic reaction intermediates. It thus seems that 

PDI-related oxidoreductases as well as PDI itself are engaged in as yet 

uncharacterized mixed-disulfide interactions with Ero1. 

 

Ero1-independent disulfide-bond formation 

Murine B-cells depleted of both Ero1 isoforms unexpectedly secrete nearly normal 

levels of disulfide-bonded immunoglobulins (Zito et al, 2010). The results obtained 

here with ERO1 double mutant cells also provide strong evidence for Ero1-

independent generation of disulfides, which may explain the viability of these cells 

(for a recent review see (Margittai and Banhegyi, 2010)). Although we are currently 

lacking an explanation for these observations, it is worth noting the different 

reoxidation kinetics of cellular GSH and of the ER enzyme ERp57 after reduction in 

Ero1-deficient cells (Figs. 5B and D). In addition, these cells display a disturbed 

glutathione homeostasis as indicated by a higher GSSG:GStot (Fig. 5D) and a lower 

concentration of GStot (our unpublished observations). The exact nature of Ero1-
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independent pathways and their importance in cells harboring an intact Ero1 system 

will be important topics for future investigation. It is conceivable that such studies 

will reveal additional important elements of ER redox homeostasis that must be 

integrated into our current thinking about this process (Fig. 7). Despite all of this, the 

powerful capability of over-expressed Ero1α to boost GSH reoxidation (Fig. 4C) 

along with the delayed ER reoxidation in ERO1 double mutant cells (Fig. 5C) clearly 

indicates a prominent role of Ero1 oxidases in the net generation of disulfides in the 

mammalian ER.  

In conclusion, the present results emphasize the significance of electron flow 

from PDI to Ero1 for effective ER oxidation in mammalian cells. Moreover, the data 

indicate that a dynamic equilibrium between Ero1- and GSSG-driven substrate 

protein oxidation via PDIs constitutes a central element of ER redox control.  
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Materials and Methods 

 

Recombinant DNA 

For generation of the C94S mutant of Ero1α we used pcDNA3.1/Ero1α-myc6his 

((Cabibbo et al, 2000); a gift from R Sitia, Milan) as a template for QuikChange 

mutagenesis (Stratagene) using the primer pair 5´- 

GAATGACATCAGCCAGTCTGGAAGAAGGGACTG-3´ / 5´- 

CAGTCCCTTCTTCCAGACTGGCTGATGTCATTC-3´. pcDNA3/HA-ERp57SS1  

(encoding ERp57 SXXS-CXXC) and pcDNA3/HA-ERp57SS2 (encoding ERp57 

CXXC-SXXS) were produced by two consecutive rounds of QuikChange using 

pcDNA3/HA-ERp57 ((Otsu et al, 2006); a gift from R Sitia, Milan) as template. The 

primer pairs were: First round SS1: 5´-

GCCCCCTGGTGTGGACACAGCAAGAGACTTGC-3´ / 5´-

GCAAGTCTCTTGCTGTGTCCACACCAGGGGGC-3´. Second round SS1: 5´-

GCCCCCTGGTCTGGACACAGCAAGAGACTTGC-3´ / 5´-

GCAAGTCTCTTGCTGTGTCCAGACCAGGGGGC-3´. First round SS2: 5´-

GCCCCTTGGTGTGGTCATAGCAAGAACCTGGAG-3´ / 5´-

CTCCAGGTTCTTGCTATGACCACACCAAGGGGC-3´. Second round SS2: 5´-

GCCCCTTGGTCTGGTCATAGCAAGAACCTGGAG-3´ / 5´-

CTCCAGGTTCTTGCTATGACCAGACCAAGGGGC-3´.  

 

Cell culture, transfection, drug treatment, and antibodies 
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The culturing of HEK293, Flp-In TRex-293 cells for doxycyclin-inducible expression 

of Ero1 variants (or transfected with empty pcDNA5/FRT/TO vector; negative 

control cells), and HeLa-derived PDI shRNA cells (Ou and Silver, 2006) has been 

described (Appenzeller-Herzog et al, 2008). Immortalized embryonic fibroblasts were 

prepared from wild-type and Ero1α/Ero1β double mutant mice (Zito et al, 2010) and 

cultivated in Dulbecco’s modified eagle medium (4.5 g/l glucose) supplemented with 

1% non-essential amino acids and 10% fetal calf serum. 2175+ (ERp57+/+) and 

2175- (ERp57-/-) mouse fibroblast cells (Garbi et al, 2006) were grown in α-minimal 

essential medium (Invitrogen) containing 10% fetal calf serum. Transient transfection 

of cDNA was performed using Lipofectamine 2000 and of siRNA using 

Lipofectamine RNAiMAX (both Invitrogen). The following siRNAs were used 

(Qiagen, final concentrations in brackets): Negative control siRNA 1022076 (20 nM) 

and Hs_ERO1L_5 HP against Ero1α (20 nM). BFA and monensin (both Sigma) were 

used at a concentration of 5 μg/ml and 100 nM, respectively. For the depletion of 

glutathione or nascent proteins, the cells were treated with 1 mM BSO for 20 h or 100 

μg/ml CHX for 3 h (both Sigma). DTT resistance experiments were carried out using 

a fresh, aqueous DTT stock solution that was calibrated in 50 mM NaPO4, pH 7.3, 0.1 

mM EDTA using 5,5‘-dithiobis(2-nitrobenzoic acid) (DTNB ; 1 mM; ε412 14,150 M-

1cm-1). Cells were then incubated in full growth medium containing defined DTT 

concentrations for 10 min at 37°C.  

 The following mouse monoclonal antibodies were used: 9E10 (αmyc, 

Covance), AC-15 (αactin, Sigma), HA.11 (αHA, Covance), RL90 (αPDI, abcam). 

The rabbit polyclonal antisera used were as follows: αTMX3 (Haugstetter et al., 
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2005), αERp57 (a gift from A Helenius, Zürich), SPA-890 (αPDI, Stressgen), SPS-

720 (αERp72, Stressgen), αEro1α (D5, a gift from I. Braakman, Utrecht).  

 

Assays for the in vivo redox states of PDIs and glutathione 

Protocols for alkylation of originally oxidized cysteines with methoxy polyethylene 

glycol 5000 maleimide (mPEG-mal) or AMS have been published (Appenzeller-

Herzog and Ellgaard, 2008a). The cellular GSSG:GSH ratio was measured using a 

DTNB/glutathione reductase recycling assay as previously described (Appenzeller-

Herzog et al, 2008).  

 

In situ acid-trapping, immunoprecipitation and concanavalin A (ConA)-precipitation 

Cells induced with 1 ⎧g/ml doxycyclin for 24 h, pulsed with 35S-methionine (Perkin 

Elmer) for 1 h in the presence of doxycyclin, and chased for 1 h with 10 mM cold 

methionine in the presence or absence of 100 ⎧g/ml CHX were washed with cold 

PBS, covered with 10% TCA and incubated on ice for 15 min. The precipitated cell 

material was then scraped from the culture dish with a rubber policeman, pelleted at 

20,000 x g at 4°C for 15 min and the pellet covered with a solution containing 58 mM 

Tris/HCl pH 7, 27% dimethyl sulfoxide, 7.3% glycerol, 1.5 % SDS, 15 mM NEM, 0.2 

mM phenylmethylsulfonylfluoride, 0.1% bromcresol purple. After neutralization of 

the supernatant by dropwise addition of 1 M Tris/Cl, pH 8 until the solution turned 

purple, the pellet was solubilized using a microsonicator equipped with a 0.5 mm 

sonotrode (Hielscher Ultrasound Technology, Teltow, Germany) followed by 

incubation at room temperature for 1 h. Ten sample volumes of cold 30 mM Tris/HCl, 
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pH 8.1, 100 mM NaCl, 5 mM EDTA, and 2% Triton X-100 were then added, and the 

lysate processed for 〈myc immunoprecipitation as described previously (Appenzeller-

Herzog and Ellgaard, 2008a). Immunoprecipitates were analyzed by reducing or non-

reducing SDS-PAGE and Western blotting, followed by exposure of the Western blot 

membrane to a phosphor screen (GE Healthcare) for autoradiography. Ahead of 

precipitation using ConA-sepharose (Sigma), SDS-lysates of TCA-pellets were mixed 

with ten volumes of 100 mM NaPO4, pH 6.8, 1.5% TX-100.  

 

DTT washout assays 

For measuring the recovery of cellular GSSG levels after DTT treatment, the cells 

were grown in 10 cm dishes and incubated for 5 min in medium containing 10 mM 

DTT. The cell monolayers were then quickly washed twice with 5 ml of PBS at room 

temperature (a step taking ~30 s) and, for oxidative recovery, covered again with PBS 

(defined as the 0 s time point). The reaction was stopped by the removal of PBS and 

the addition of ice-cold 1% sulfosalicylic acid.  

For visualization of the TMX3 and ERp57 redox states upon DTT washout, 

the cells were grown on plastic coverslips (diameter ~30 mm, placed in a 6 well dish) 

that had been excised from 35 mm cell culture dishes and sterilized by UV light. DTT 

treatment (1 mM) was for 5 min at 37°C in growth medium. Subsequently, the 

coverslips were picked with forceps, drained on a paper towel, consecutively dipped 

into three beakers containing 37°C PBS (for ~1 s each) and into another warm PBS 

bathing solution for the indicated periods. For the 0 s time point, this last incubation 

step was omitted. Oxidative recovery was terminated by dipping the coverslips into 
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ice-cold PBS containing 20 mM NEM. After a 20 min incubation in NEM buffer on 

ice, the cells were further processed for AMS alkylation.  

 

Densitometric analyses 

To evaluate the results obtained by the AMS assay the ratios of oxidized to reduced 

species on αTMX3 and αERp57 Western blots were analyzed by densitometry using 

the ImageJ software (available at rsbweb.nih.gov/ij). Of note, the steady-state redox 

states of both TMX3 and ERp57 varied between individual experiments, which likely 

reflected physiological fluctuations rather than low reliability of the AMS assay (see 

the diamide control lanes). To normalize for these variations we therefore expressed 

the oxidized fractions as percentage of the oxidized fraction in the steady-state lane of 

the same experiment.  
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Figure Legends 

 

Fig. 1: Vesicular transport, glutathione concentration, and protein translocation only 

moderately influence ER redox homeostasis 

 (A) HEK293 cells pre-treated with BFA/mon for 0.5 h or left untreated were 

incubated with 5 mM diamide (dia) for 5 min, washed twice with PBS and incubated 

in the same buffer for 0, 5, 10, or 15 min (wo, washout). BFA/mon was present 

throughout the time course. For comparison, steady-state samples ± treatment with 

BFA/mon for 0.5 h were included. The reactions were stopped by rinsing the cells in 

ice-cold PBS containing 20 mM NEM, and the redox distributions of TMX3 and 

ERp57 visualized by Western blotting (WB) after differential alkylation with NEM 

and AMS. The mobility of the oxidized (ox) and reduced (red) forms of TMX3 and 

ERp57 are indicated. 

(B) Recovery of the TMX3 redox ratio assessed by densitometry in BFA/mon-treated 

and control cells as shown in panel (A) (n=3, mean ± SD).  

(C) The redox states of TMX3 and ERp57 in HEK293 cells depleted of glutathione 

(using BSO) or nascent proteins (using CHX). Treatment with BSO reduced cellular 

glutathione levels to 20% of control (data not shown). Oxidized fractions (%) as 

determined by densitometry are indicated. Lanes labeled with dia represent oxidized 

control lanes using diamide-treated cell lysates. The hairlines indicate where 

intervening lanes have been removed. Results are representative of three independent 

experiments. 
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Fig. 2: In vivo DTT resistance of PDI, TMX3, and ERp57 

(A) HEK293 cells were treated with the indicated concentrations of DTT, and the in 

vivo redox state of the two active sites in PDI (a and a´) determined by 

immunoprecipitation (IP) of 35S-labeled and mPEG-mal-modified PDI. Samples 

completely reduced with DTT and TCEP, or oxidized with diamide (dia) served as 

mobility markers. The contrast-enhancement of the region marked by the rectangle 

more clearly shows the different behaviour of the two semi-oxidized forms of PDI (a 

domain oxidized / a´ domain reduced (a-ox); a domain reduced / a´ domain oxidized 

(a´-ox)), for which we have previously determined the relative mobility (Appenzeller-

Herzog and Ellgaard, 2008a). One of two independent experiments with equal 

outcome is shown. Red, both active sites reduced; ox, both active sites oxidized; 

asterisks, reduced PDI modified with mPEG-mal on its non-catalytic cysteines 

(Appenzeller-Herzog and Ellgaard, 2008a).  

(B) After treatment of HEK293 cells with the indicated concentrations of DTT, the in 

vivo redox states of TMX3 and ERp57 were determined as in Fig. 1A. The mobilities 

of the oxidized (ox) and reduced (red) species, as verified by control samples using 

lysates from diamide- or DTT (104 μM)-treated cells, are marked.  

(C) Densitometric analysis of (B) (n=3, mean ± SD).  

 

Fig. 3: Mixed-disulfide interactions of PDIs with Ero1α/β 

Doxycyclin-induced and in situ acid-trapped negative control, Ero1αmyc6his, and 

Ero1βmyc6his cells were subjected to αmyc immunoprecipitation (IP) followed by 

reducing (R) or non-reducing (NR) SDS-PAGE and Western blot (WB) analysis using 
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αPDI (A), αERp57 (B), αERp72 (C), or αTMX3 (D). The 35S-signal recorded by 

phosphorimaging of one of the membranes is shown in Fig. S2B. As positive controls 

for Western blotting, 1% of the Ero1αmyc6his lysate (1% of total) as well as reduced 

and non-labelled HEK293 lysate (cold lysate) were loaded in lanes 1 and 2. The 

results are representative of two independent experiments. Filled arrowheads, 

monomeric PDIs; open arrowheads, dimeric mixed-disulfide complexes of PDIs with 

Ero1 (the precise mobility of which is unclear in the case of ERp72; indicated by a 

vertical line); asterisks, potential mixed-disulfide complexes of PDIs with Ero1α 

dimers; X, background bands.  

 

Fig. 4: ER reoxidation after DTT treatment is fast and affected by exogenous Ero1 

(A) Intracellular levels of GSSG and GStot were recorded from DTT-treated HEK293 

cells after washout of the reductant for 0 s, 10 s, 30 s, 1 min, 3 min, 5 min, or 20 min. 

The GSSG:GStot ratio is expressed as percentage of the steady-state value that was 

independently measured (mean ± SD, n=8, for individual experiments see Fig. S3A).  

 (B) Negative control cells were grown on plastic coverslips, treated with or without 

doxycyclin (dox) for 24 h, and left untreated (-) or incubated with DTT. After 0, 5, 10, 

or 20 s of DTT washout (wo), the cells were processed for AMS-alkylation and 

Western blotting (WB) using αTMX3 or αERp57. Ox, oxidized species; red, reduced 

species; dia, oxidized control lane using diamide-treated cells.  

(C-F) DTT washout assays followed by the determination of cellular levels of GSSG 

and GStot after 0, 10, 60, or 300 s using Ero1〈myc6his (C), Ero1βmyc6his (D), 

Ero1〈myc6his-C131A (E), and Ero1〈myc6his-C394A (F) cells cultured for 24 h with 
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or without (control) the addition of doxycyclin (mean ± SD, two independent 

experiments each performed in triplet, Figs. S3D-G). *, p < 0.05; **, p < 0.01; ***, p 

< 0.001 (Student’s t-test). Notice the different scaling on the y-axis in the individual 

panels. 

 

Fig. 5: Rapid oxidative recovery of the ER depends on Ero1 and PDI 

(A) Lysates of wild-type (+/+;+/+) or double mutant (i/i;i/i) mouse embryonic 

fibroblasts (MEFs) were analyzed by reducing (R) or non-reducing (NR) SDS-PAGE 

and αEro1〈 Western blotting after ConA-precipitation. The gel mobilities of the three 

known redox forms of Ero1α (R, OX1, OX2) are indicated.  

(B) Redox state analysis of ERp57 following DTT washout using wild-type (+/+;+/+) 

or double mutant (i/i;i/i) MEFs. The experiment was performed as in Figs. 4B and 

S4B except that oxidative recovery was allowed for longer periods. Open arrowheads 

indicate the delayed formation of oxidized ERp57 in double mutant cells.  

(C) Densitometric analysis of (B) (n=3, mean ± SD). 

(D) GSSG:GStot was determined in wild-type (+/+;+/+) or double mutant (i/i;i/i) 

MEFs at the indicated intervals after DTT washout (mean ± SD, three independent 

experiments each performed in triplet, Fig. S4D). For unknown reasons, GSSG:GStot 

rises above the steady-state value after 300 s of oxidative recovery in wild-type cells. 

The GSSG:GStot ratios in wild-type and double mutant MEFs at steady state are 

shown in the inset (n=12).  

(E) Redox state analysis of TMX3 and ERp57 following DTT washout performed as 

in Fig. 4B, but using PDI shRNA clones 5-1 (control cells) and 4-1 (PDI knockdown 
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(kd) cells). Open arrowheads indicate the delayed formation of oxidized 

TMX3/ERp57 upon knockdown of PDI.  

(F) Densitometric analysis of (D) (n=3, mean ± SD). 

(G and H) The oxidative recovery of GSSG:GStot following DTT washout was 

determined as in Fig. 4C using clone 5-1 (control) and clone 4-1 (PDI kd) cells (G) or 

2175+ (control) and 2175- (ERp57 ko) cells (H) (mean ± SD, two independent 

experiments each performed in triplet, Fig. S4E and F). For unknown reasons, 

GSSG:GStot rises above the steady-state value after 300 s of oxidative recovery in 

2175+ and 2175- cells. *, p < 0.05; **, p < 0.01; ***, p < 0.001 (Student’s t-test). 

 

Fig. 6: Upon reductive challenge, activated Ero1α rapidly reacts with PDI 

(A) Co-immunoprecipitation performed in analogy to the experiment presented in Fig. 

3 except that, where indicated, cells were treated with DTT ahead of TCA lysis. A 

phosphoimager scan (IP: αmyc (Ero1)) and a Western blot (WB) using αPDI are 

shown. The mobility differences between the Ero1–PDI mixed-disulfide complexes 

(Ero1+PDI) under steady-state conditions (OX.) and upon DTT-mediated reduction 

(RED.) are marked. For unknown reasons, the intensity of WB detection of Ero1+PDI 

did not reflect the relative intensities observed by phosphorimaging. Note that an 

NEM- and redox state-dependent mobility shift of Ero1α in reducing SDS-PAGE 

(compare lanes 2 and 3; see also panel B) has been reported previously (Benham et al, 

2000). The result is representative of two independent experiments. Filled arrowhead, 

monomeric PDI; asterisks, Ero1α/βmyc6his–ERp57 mixed-disulfide complex 

(inferred from Fig. S5); X, background band.  
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(B) TCA pellets from HEK293 cells incubated with DTT or left untreated were 

solubilized/neutralized in the presence of NEM, and Ero1α was precipitated from the 

lysate using ConA-sepharose (Benham et al, 2000). The precipitate was boiled under 

reducing (R) or non-reducing (NR) conditions and analyzed by αPDI Western 

blotting (WB, left panel). After stripping, the membrane was probed with αEro1α 

(right panel). The mobilities of PDI, the known monomeric redox forms of Ero1α (R, 

OX1, OX2; visible upon contrast-enhancement), and of the Ero1α+PDI complex 

(both RED. and OX.) are indicated. Results are representative of three independent 

experiments. Asterisk, potential mixed-disulfide complex of PDI with an Ero1α 

dimer; double asterisk, unidentified, DTT-resistant mixed-disulfide complex.  

(C) Phosphorimager scan of a co-immunoprecipitation experiment performed as in 

panel (A). In addition to doxycyclin-induced Ero1αmyc6his cells (dox), HEK293 

transiently transfected (cDNA) with pcDNA3/Ero1α or pcDNA3/Ero1α-C94S were 

used. For unknown reasons, the monomeric form of transiently transfected 

Ero1αmyc6his is more exposed than stably transfected Ero1αmyc6his to DTT-

mediated reduction (as indicated by enhanced conversion of OX2 into more reduced, 

slower migrating forms). The result is representative of two independent experiments. 

Asterisk, Ero1αmyc6his–ERp57 mixed-disulfide complex (compare Fig. S5).  

 

Fig. 7: Model for glutathione-buffered ER redox homeostasis 

Graphical depiction of two disulfide relay pathways that both lead to the oxidation of 

nascent proteins (substrate) in the ER. (A) In the Ero1α-driven oxidation pathway for 

de novo disulfide formation, oxidizing equivalents are transferred from O2 to Ero1α 
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that in turn oxidizes PDI. The byproduct H2O2 can also oxidize PDI yielding two 

molecules of H2O (Karala et al, 2009). A potential in vivo catalyst of this reaction 

remains to be identified (question mark). Abundant levels of reduced PDI keep Ero1α 

in an active state (green arrow) (Appenzeller-Herzog et al, 2008). Being the main 

substrate of Ero1α, disulfides are passed on primarily to PDI, but other PDI-family 

members (PDIs) may also participate to some extent in this pathway. GSH competes 

with substrate for reaction with oxidized PDI, resulting in the formation of GSSG.  

(B) GSSG-driven oxidation of reduced PDIs (yellow arrows) will be prominent when 

ER GSSG is abundant, which will also promote shutdown of Ero1α due to low 

availability of reduced PDI. Like for the Ero1α-driven oxidation pathway, the PDIs 

will then oxidize substrate proteins (blue arrows). The interplay between the two 

pathways depends on the redox state of the glutathione redox couple in the ER. For 

instance, during oxidative recovery after DTT treatment de novo disulfide generation 

is dominant immediately following DTT washout. However, as GSSG levels rise, the 

GSSG-driven oxidation pathway will become increasingly more prominent until 

homeostasis is reinstalled. For simplicity, the scheme only illustrates the net flow of 

oxidizing equivalents onto substrate and excludes the reduction of e.g. aberrantly 

disulfide-bonded substrates by PDIs. Likewise, the direct reaction of GSSG with 

reduced substrates that results in glutathionylated substrates (Bass et al, 2004; Hansen 

et al, 2009) has been omitted. The model does not account for the contribution to ER 

thiol-disulfide homeostasis by Ero1-independent pathway(s) since the exact nature of 

these is not yet known. Red, reduced; ox, oxidized.  
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