edoc-vmtest

Drosophila neural stem cells : cell cycle control of self-renewal, differentiation, and termination in brain development

Reichert, H.. (2011) Drosophila neural stem cells : cell cycle control of self-renewal, differentiation, and termination in brain development. Results and problems in cell differentiation, Vol. 53. pp. 529-546.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5844177

Downloads: Statistics Overview

Abstract

The wealth of neurons that make up the brain are generated through the proliferative activity of neural stem cells during development. This neurogenesis activity involves complex cell cycle control of proliferative self-renewal, differentiation, and termination processes in these cells. Considerable progress has been made in understanding these processes in the neural stem cell-like neuroblasts which generate the brain in the genetic model system Drosophila. Neuroblasts in the developing fly brain generate neurons through repeated series of asymmetrical cell divisions, which balance self-renewal of the neuroblast with generation of differentiated progeny through the segregation of cell fate determinants such as Numb, Prospero, and Brat to the neural progeny. A number of classical cell cycle regulators such as cdc2/CDK1, Polo, Aurora A, and cyclin E are implicated in the control of asymmetric divisions in neuroblasts linking the cell cycle to the asymmetrical division machinery. The cellular and molecular identity of the postmitotic neurons produced by proliferating neuroblasts is influenced by the timing of their exit from the cell cycle through the action of a temporal expression series of transcription factors, which include Hunchback, Kruppel, Pdm, and Castor. This temporal series is also implicated in the control of termination of neuroblast proliferation which is effected by two different cell cycle exit strategies, terminal differentiative division or programmed cell death of the neuroblast. Defects in the asymmetric division machinery which interfere with the termination of proliferation can result in uncontrolled tumorigenic overgrowth. These findings in Drosophila brain development are likely to have general relevance in neural stem cell biology and may apply to cell cycle control in mammalian brain development as well.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Molecular Zoology (Reichert)
UniBasel Contributors:Reichert, Heinrich
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Springer
ISSN:0080-1844
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:23 Jul 2015 09:11
Deposited On:14 Sep 2012 06:40

Repository Staff Only: item control page