edoc-vmtest

The role of the head and tail domain in lamin structure and assembly : analysis of bacterially expressed chicken lamin A and truncated B2 lamins

Heitlinger, E. and Peter, M. and Lustig, A. and Villiger, W. and Nigg, E. A. and Aebi, U.. (2002) The role of the head and tail domain in lamin structure and assembly : analysis of bacterially expressed chicken lamin A and truncated B2 lamins. Journal of structural biology, Vol. 108, H. 1. pp. 74-89.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5249484

Downloads: Statistics Overview

Abstract

Nuclear lamins like cytoplasmic intermediate filament proteins exhibit a characteristic tripartite domain structure with a segmented alpha-helical rod domain flanked by an N-terminal head and a C-terminal tail domain. To examine the influence of the head and tail domains on the structure and assembly properties of nuclear lamins, we have engineered "headless," "tailless," and "rod" chicken lamin B2 cDNAs and expressed them in Escherichia coli. A full-length chicken lamin A cDNA was also expressed in E. coli, and the recombinant protein compared with the structure and assembly properties of full-length chicken lamin B2 (E. Heitlinger et al. (1991) J. Cell Biol. 113, 485-495). As with lamin B2, at their first level of structural organization, lamin A and the headless lamin B2 formed myosin-like dimers consisting of a 51- to 52-nm-long tail flanked by two globular heads at one end. Similarly, the tailless and rod lamin B2 fragments formed tropomyosin-like dimers consisting of a 51 to 52-nm-long rod. In contrast to the lateral mode of association of cytoplasmic IF dimers into four-chain tetramers, at their second level of structural organization, lamin A dimers, just as lamin B2 dimers (E. Heitlinger et al. (1991) J. Cell Biol. 113, 485-495), associated longitudinally to form polar head-to-tail polymers. Whereas dimers made of the truncated B2 headless and rod lamins had lost their propensity to associate head-to-tail, tailless lamin B2 dimers revealed an enhanced head-to-tail association. Finally, at their third level of structural organization, rather than assembling into stable 10-nm filaments, both lamin A and the three truncated B2 lamins formed paracrystalline arrays exhibiting distinct transverse banding patterns with axial repeats of either 24 or 48-49 nm depending on the species.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum
05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Cell Biology (Nigg)
UniBasel Contributors:Nigg, Erich A.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Academic Press
ISSN:1047-8477
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:19
Deposited On:22 Mar 2012 13:17

Repository Staff Only: item control page