edoc-vmtest

Polaronic signatures and spectral properties of graphene antidot lattices

Stojanovic, Vladimir M. and Vukmirovic, Nenad and Bruder, C.. (2010) Polaronic signatures and spectral properties of graphene antidot lattices. Physical Review B, Vol. 82, H. 16 , 165410.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5841330

Downloads: Statistics Overview

Abstract

We explore the consequences of electron-phonon (e-ph) coupling in graphene antidot lattices (graphene nanomeshes), i.e., triangular superlattices of circular holes (antidots) in a graphene sheet. They display a direct band gap whose magnitude can be controlled via the antidot size and density. The relevant coupling mechanism in these semiconducting counterparts of graphene is the modulation of the nearest-neighbor electronic hopping integrals due to lattice distortions (Peierls-type e-ph coupling). We compute the full momentum dependence of the e-ph vertex functions for a number of representative antidot lattices. Based on the latter, we discuss the origins of the previously found large conduction-band quasiparticle spectral weight due to e-ph coupling. In addition, we study the nonzero-momentum quasiparticle properties with the aid of the self-consistent Born approximation, yielding results that can be compared with future angle-resolved photoemission spectroscopy measurements. Our principal finding is a significant e-ph mass enhancement, an indication of polaronic behavior. This can be ascribed to the peculiar momentum dependence of the e-ph interaction in these narrow-band systems, which favors small phonon momentum scattering. We also discuss implications of our study for recently fabricated large-period graphene antidot lattices.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik (Bruder)
UniBasel Contributors:Bruder, Christoph and Stojanovic, Vladimir M.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Institute of Physics
ISSN:0163-1829
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:14 Sep 2012 07:18
Deposited On:14 Sep 2012 06:47

Repository Staff Only: item control page