Pluess, Bianca and Tanser, Frank C. and Lengeler, Christian and Sharp, Brian L.. (2010) Indoor residual spraying for preventing malaria. The Cochrane database of systematic reviews, Vol. 4 , CD006657.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5842927
Downloads: Statistics Overview
Abstract
BACKGROUND: Primary malaria prevention on a large scale depends on two vector control interventions: indoor residual spraying (IRS) and insecticide-treated mosquito nets (ITNs). Historically, IRS has reduced malaria transmission in many settings in the world, but the health effects of IRS have never been properly quantified. This is important, and will help compare IRS with other vector control interventions. OBJECTIVES: To quantify the impact of IRS alone, and to compare the relative impacts of IRS and ITNs, on key malariological parameters. SEARCH STRATEGY: We searched the Cochrane Infectious Diseases Group Specialized Register (September 2009), CENTRAL (The Cochrane Library 2009, Issue 3), MEDLINE (1966 to September 2009), EMBASE (1974 to September 2009), LILACS (1982 to September 2009), mRCT (September 2009), reference lists, and conference abstracts. We also contacted researchers in the field, organizations, and manufacturers of insecticides (June 2007). SELECTION CRITERIA: Cluster randomized controlled trials (RCTs), controlled before-and-after studies (CBA) and interrupted time series (ITS) of IRS compared to no IRS or ITNs. Studies examining the impact of IRS on special groups not representative of the general population, or using insecticides and dosages not recommended by the World Health Organization (WHO) were excluded. DATA COLLECTION AND ANALYSIS: Two authors independently reviewed trials for inclusion. Two authors extracted data, assessed risk of bias and analysed the data. Where possible, we adjusted confidence intervals (CIs) for clustering. Studies were grouped into those comparing IRS with no IRS, and IRS compared with ITNs, and then stratified by malaria endemicity. MAIN RESULTS: IRS versus no IRSStable malaria (entomological inoculation rate (EIR) < 1): In one RCT in Tanzania IRS reduced re-infection with malaria parasites detected by active surveillance in children following treatment; protective efficacy (PE) 54%. In the same setting, malaria case incidence assessed by passive surveillance was marginally reduced in children aged one to five years; PE 14%, but not in children older than five years (PE -2%). In the IRS group, malaria prevalence was slightly lower but this was not significant (PE 6%), but mean haemoglobin was higher (mean difference 0.85 g/dL).In one CBA trial in Nigeria, IRS showed protection against malaria prevalence during the wet season (PE 26%; 95% CI 20 to 32%) but not in the dry season (PE 6%; 95% CI -4 to 15%). In one ITS in Mozambique, the prevalence was reduced substantially over a period of 7 years (from 60 to 65% prevalence to 4 to 8% prevalence; the weighted PE before-after was 74% (95% CI 72 to 76%).Unstable malaria (EIR 1): Only one RCT was done in an area of stable transmission (in Tanzania). When comparing parasitological re-infection by active surveillance after treatment in short-term cohorts, ITNs appeared better, but it was likely not to be significant as the unadjusted CIs approached 1 (risk ratio IRS:ITN = 1.22). When the incidence of malaria episodes was measured by passive case detection, no difference was found in children aged one to five years (risk ratio = 0.88, direction in favour of IRS). No difference was found for malaria prevalence or haemoglobin.Unstable malaria (EIR > 1): Two studies; for incidence and prevalence, the malaria rates were higher in the IRS group compared to the ITN group in one study. Malaria incidence was higher in the IRS arm in India (risk ratio IRS:ITN = 1.48) and in South Africa (risk ratio 1.34 but the cluster unadjusted CIs included 1). For malaria prevalence, ITNs appeared to give better protection against any infection compared to IRS in India (risk ratio IRS:ITN = 1.70) and also for both P. falciparum (risk ratio IRS:ITN = 1.78) and P. vivax (risk ratio IRS:ITN = 1.37). AUTHORS' CONCLUSIONS: Historical and programme documentation has clearly established the impact of IRS. However, the number of high-quality trials are too few to quantify the size of effect in different transmission settings. The evidence from randomized comparisons of IRS versus no IRS confirms that IRS reduces malaria incidence in unstable malaria settings, but randomized trial data from stable malaria settings is very limited. Some limited data suggest that ITN give better protection than IRS in unstable areas, but more trials are needed to compare the effects of ITNs with IRS, as well as to quantify their combined effects
Faculties and Departments: | 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Department of Epidemiology and Public Health (EPH) > Health Interventions > Malaria Interventions (Lengeler) |
---|---|
UniBasel Contributors: | Lengeler, Christian |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | WileyInterscience |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 04 Sep 2015 14:31 |
Deposited On: | 14 Sep 2012 06:48 |
Repository Staff Only: item control page