Synthese eines Deazaflavin-überbrückten Fe(III)-Porphyrins zur Untersuchung der photophysikalischen Wechselwirkungen eines Deazaflavinyl-Inhibitors mit dem Cofaktor von Cytochrom P450 3A4

Inauguraldissertation

zur

Erlangung der Würde eines

Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der

Universität Basel

von

Michael Andreas Müller

aus Lörrach (Deutschland)

Basel 2004

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag der Herren:

Prof. Dr. Wolf-D. Woggon

Prof. Dr. Jakob Wirz

Prof. Dr. Urs Séquin (Vorsitz)

Basel, den 25. Mai 2004

Prof. Dr. Marcel Tanner (Dekan)

Danksagung

Die hier vorliegende Arbeit entstand auf Anregung und unter Anleitung von Prof. Dr. Wolf-D. Woggon im Departement Chemie der Universität Basel zwischen Dezember 2000 und Mai 2004.

Ich möchte mich besonders bei Herrn Prof. Dr. Woggon bedanken, der mir ein sehr interessantes Thema überliess, stets hilfsbereit und offen gegenüber Fragen, Problemen und Anregungen war und mir bei der Ausführung dieser Arbeit eine grosse Freiheit zubilligte. Ausserdem habe ich den persönlichen Kontakt sehr geschätzt und auch Frau Prof. Dr. Antoinette Chougnet möchte ich für die vielen Ratschläge und ihre Unterstützung danken.

Prof. Dr. Jakob Wirz danke ich herzlich für die freundliche Unterstützung, die Bereitstellung von Messapparaturen und Messzeit innerhalb seiner Gruppe und der Begutachtung dieser Arbeit als Koreferent.

Bedanken möchte ich mich auch herzlich bei Dr. Bogdan Tokarczyk und Martin Gaplovsky für die Durchführung und Interpretation der Messungen in der Arbeitsgruppe von Prof. Dr. Wirz. Zudem möchte ich mich bei Dr. Egbert Figgemeier für die Bereitstellung von Geräten und Materialien sowie für die Hilfe bei den elektrochemischen Messungen bedanken. Weiter möchte ich mich bei Dr. David Ricard (Post-Doc), Dominik Meyer (Diplomarbeit) und Catherine Stoessel (Dissertation) bedanken, die durch ihre Forschungsbeiträge viele Resultate in dieser Arbeit ermöglicht haben.

Mein Dank gebührt auch dem Personal der NMR-, MS-Abteilung und des Mikrolabors, der Werkstatt, des Materialschalters und der Bibliothek des Instituts für Organische Chemie, ohne welche diese Arbeit nicht möglich gewesen wäre.

Schliesslich geht mein besonderer Dank an meine Eltern, meine Grosseltern und meine Freunde für ihre Geduld und liebevolle menschliche Unterstützung.

"Heute wird immer deutlicher, dass die Frage nach dem Wesen des Lebens nur im Lichte der Erkenntnis seines Werdens gelöst werden kann."

A. I. Oparin (1894 - 1980)

Inhaltsverzeichnis

1.	Einleitung	1	
1.1	Cytochrome P450	1	
1.2	Klassifizierung		
1.3	Funktion	4	
1.4	Vertreter der Subfamilie CYP3A		
1.5	Cytochrom P450 3A4 (CYP3A4)	6	
2.	Konzept für einen Universalinhibitor für CYP3A4	9	
2.1	Hintergrund	9	
2.2	Resultate und Diskussion	11	
2.2.1	Synthese		
2.2.2	Evaluation der IC ₅₀ -Werte von 15 und 16 durch Inkubation		
	mit verschiedenen CYP3A4-Substraten	15	
2.2.3	Diskussion	21	
2.2.4	Zusammenfassung	23	
3.	5-Deazaflavine	25	
3.1	Allgemeines über 5-Deazaflavine	25	
3.2	Katalyse mit 5-Deazaflavinen	28	
3.3	Photochemie und Redoxchemie von 5-Deazaflavinen		
3.4	Fluoreszenz und Phosphoreszenz	34	
4.	Entwicklung einer Modellverbindung zur Untersuchung		
	der Wechselwirkung zwischen Fe(III)-Porphyrinen und		
	5-Deazaflavinen	37	
4.1	Design der Modellverbindung	37	
4.2	Synthese geeigneter Modellsysteme	39	

4.2.1	Versuche zur Synthese eines Deazaflavin-überbrückten Fe(III)			
	Porphyrins mit zwei C ₂ -Seitenarmen	39		
4.2.2	Entwicklung der Synthese für eine Modellverbindung aus			
	Porphyrin und 5-Deazaflavin mit einem C ₂ - und einem			
	C ₃ -Seitenarm	45		
4.3	Resultate	52		
4.3.1	Elektrochemische Untersuchungen			
4.3.2	Spektroelektrochemische Untersuchungen			
4.3.3	Fluoreszenz und Fluoreszenzlöschung (Quenching)			
4.3.3.1	Stern-Volmer Löschung			
4.3.3.2	Zeitaufgelöste Fluoreszenzmessungen			
4.3.3.3	Resonanzenergietransfer (RET)			
4.3.4	Elektronentransfer-Untersuchungen			
4.3.4.1	Energetik für PET	76		
4.3.4.2	Thermodynamische Triebkraft und Geschwindigkeit des ET	80		
4.3.4.3	Zeitaufgelöste UV/Vis-Differenzspektren			
4.3.4.4	Kinetische Untersuchung von 87	90		
4.3.4.5	Kinetische Untersuchung von 88	100		
5.	Zusammenfassung	107		
6.	Experimenteller Teil	109		
6.1	Allgemeine Bemerkungen	109		
6.1.1	Reagenzien und Lösungsmittel	109		
6.1.2	Geräte und Apparaturen	110		
6.1.3	Chromatographische Methoden	111		
6.1.4	Spektroskopische Methoden	112		
6.1.5	Elektrochemische Methoden			
6.1.6	Molecular Modeling	118		
6.1.7	Datenauswertung und Berechnungen zur Bestimmung des IC_{50} .	119		
6.1.8	Inkubationen	120		
6.2	Synthesen	126		

6.	Literatur	158
6.3	Abkürzungen	155
6.2.3	Kopplung von Porphyrin und 5-Deazaflavin	151
6.2.2	Synthese von 5-Deazaflavin	137
6.2.1	Porphyrinsynthese	126

1. Einleitung

1.1 Cytochrome P450

Cytochrome P450 gehören zu der Gruppe der Häm-Proteine, welche eine wichtige physiologische Funktion für aerobes Leben ausüben. Ein gemeinsames Strukturmerkmal der Häm-Proteine ist ein Eisen-(III)-Protoporphyrin IX (Häm b) Kofaktor im aktiven Zentrum. Im Fall von Cytochrom P450 besteht der fünfte proximale Ligand aus einer Thiolatfunktion, welche von einem Cystein der Polypeptidkette des globulären Proteins bereit gestellt wird. Cytochrom P450 wurde erstmals 1958 von *Klingenberg*¹ und *Garfinkel*² in Pigmenten von Lebermikrosomen entdeckt. Die reduzierte Form zeigte in Anwesenheit von Kohlenmonoxid ein Absorptionsmaximum von $\lambda = 450$ nm. Erst 1964 konnten *Omura* und *Sato*³ zeigen, dass dieses Pigment den Eisen-Protoporphyrin IX Kofaktor enthält und verliehen ihm den Namen "Cytochrom P450". Später konnte gezeigt werden, dass die charakteristische *Soret*-Bande bei 450 nm von der Koordination des Cysteinats *trans* zum Kohlenmonoxid herrührt. Erst im Jahre 1985 präsentierten Poulos, Kraut und Mitarbeiter⁴ die erste Röntgenstruktur eines P450-Enzyms, dem P450_{CAM}, welches aus 414 Aminosäuren besteht und eine Masse von ungefähr 45 kDa aufweist.

Schema 1: Eisen(III)-Protoporphyrin(IX)

Im Laufe von 30 Jahren Forschung auf dem Gebiet der P450-katalysierten Reaktionen konnte gezeigt werden, dass Cytochrome P450 ubiquitär in der Natur auftreten. Cytochrome P450 konnten aus Bakterien⁵, Pflanzen⁶ und Säugetieren⁷ isoliert werden. Dabei sind zahlreiche Isozyme an dem Metabolismus von strukturell

sehr unterschiedlichen Verbindungen wie zum Beispiel Steroide, Fettsäuren und Alkaloide beteiligt. Die Cytochrome P450 weisen ferner ein grosses Repertoire an Reaktionen auf, darunter: Hydroxylierung von nicht-aktivierten C-H-Bindungen, Epoxidierung von Alkenen, Dealkylierungen an Sauerstoff, Stickstoff und Schwefel sowie C-C-Bindungsspaltungen⁸.

Die Hauptfunktion der P450 beruht in der Oxidation von organischen Verbindungen unter Verwendung von molekularem Sauerstoff als Oxidationsmittel. Bereits 1955 konnten Mason⁹ und Hayaishi¹⁰ unabhängig voneinander mittels ¹⁸O₂-Markierung zeigen, dass eines der beiden Sauerstoffatome in das Substrat inkorporiert wird, wohingegen das zweite Sauerstoffatom als Wasser eliminiert wird. Da nur eines der beiden Sauerstoffatome in das Substrat eingebaut wird, handelt es sich bei P450 folglich um eine Monooxygenase. Die entsprechende Redoxreaktion kann mit folgender Bruttogleichung (*Schema 2*) beschrieben werden.

Schema 2: Oxidation organischer Substrate durch Cytochrom P450

$$R-H + O_2 + NAD(P)H + 2 H^+ \rightarrow R-OH + H_2O + NAD(P)^+$$

Die Elektronen für diesen Redoxprozess werden je nach Vorkommen des P450 durch unterschiedliche Elektronentransportsysteme bereitgestellt. Dabei ist es wichtig, dass die Redoxproteine innerhalb der Elektronentransportkette die Elektronen sequentiell auf P450 transferieren können. Klasse II P450, zu welchen mikrosomale P450 gehören, erhalten ihre Reduktionsäquivalente von NADPH-P450-Oxidoreduktase (P450R), welche über FAD und FMN verfügt. Der katalytische Zyklus ist in *Schema 3* dargestellt. Das Substrat ist hierbei vereinfacht durch eine Methylgruppe auf der distalen Seite des Häms dargestellt, das Porphyrin durch zwei schwarze Balken mit zentralem Eisenatom.

Schema 3: P450-katalysierte Spaltung von Disauerstoff

Im Ruhezustand des Kofaktors ist ein Wassermolekül an Fe(III)-Häm koordiniert (1), welches durch Binden eines Substrates aus dem aktiven Zentrum verdrängt wird (2). Die erste Ein-Elektronenreduktion führt zu einem Fe(II)-Häm (3), welches durch Koordination von molekularem Sauerstoff in ein Superoxo-Fe(III)-Häm übergeht (4). Die zweite Ein-Elektronenreduktion führt zur Bildung eines anionischen Peroxo-Fe(III)-Häm (5). Eine anschliessende doppelte Protonierung und Eliminierung eines Wassermoleküls unter Spaltung der O-O-Bindung führt zur Bildung der hochvalenten und reaktiven Fe(IV)-Oxo-Spezies (6), welche allgemein unter "*Compound I*" bekannt ist. Diese abstrahiert ein H· vom Substrat unter Bildung eines Hydroxy-Fe(IV)-Häm (7). Ein darauffolgender "*oxygen rebound*" unter Retention der Konfiguration führt zur Bildung des Fe(III)-Häm (8), welches nach Produkt-Desorption wieder in den Ruhezustand (1) zurückkehrt.

1.2 Klassifizierung

Gegen Ende der 90er Jahre betrug die Anzahl der bekannten P450-Familien nahezu 200 mit seitdem steigender Tendenz. Von diesen 200 P450-Familien entfallen etwa 40 Familien auf Tiere, etwa 25 Familien auf Pilze, etwa 50 Familien auf Pflanzen und etwa 80 Familien auf Bakterien¹¹. Nach der vollständigen Sequenzierung des

menschlichen Genoms sind 55 unterschiedliche humane P450 Gene sowie 29 Pseudogene mit über 1200 charakterisierten P450-Sequenzen bekannt. Abhängig von der Übereinstimmung in ihrer Aminosäuresequenz werden die P450 in 17 Familien (> 40 % Übereinstimmung) und 42 Subfamilien (> 55 % Übereinstimmung) eingeteilt. Aus praktischen Gründen wird für Cytochrom P450 auch die Abkürzung CYP verwendet.

Schema 4: Klassifizierung der Familie der Cytochrome P450

1.3 Funktion

CYPs sind hauptverantwortlich für den oxidativen Abbau von endogenen und exogenen Substanzen (Xenobiotika). Sie repräsentieren Phase-I-Enzyme, dass heisst sie biotransformieren ein Substrat mittels Inkorporation einer polaren funktionellen Gruppe in das Produkt. Die Einführung dieser polaren funktionellen Gruppe in ein lipophiles Substrat führt zu einer erhöhten Polarität und somit einer verbesserten Wasserlöslichkeit. Dadurch lassen sich sowohl endogene wie auch exogene Sunstanzen besser ausscheiden. Ein Grossteil der Pharmaka ist lipophiler Natur und somit imstande, die Blut-Hirn-Schranke oder Zellmembranen passieren zu können. CYP-katalysierte Reaktionen sind folglich von grosser Bedeutung für die Entgiftung des Körpers. Dieser oxidative Metabolismus birgt allerdings auch Gefahren, da mitunter Metaboliten mit zytotoxischer oder mutagener Wirkung gebildet werden. In der Tat benötigen zahlreiche Mutagene eine Bioaktivierung durch P450 um ihre mutagene Wirkung zu entfalten. Dies konnte eindeutig anhand des Metabolismus polyzyklischer aromatischer Kohlenwasserstoffe wie zum Beispiel Benzo(a)pyren nachgewiesen werden^{12,13}. In der Familie der tierischen und speziell der menschlichen CYPs sind nicht alle Isoformen an der Umsetzung von exogenen Verbindungen beteiligt. In einer typischen menschlichen Leber werden 11 CYPs exprimiert, welche für den Abbau von Xenobiotika verantwortlich sind¹⁴: CYP1A2, CYP2A6, CYP2B6, CYP2C8/9/18/19, CYP2D6, CYP2E1 und CYP3A4/5^{14,15}. Hieraus wird ersichtlich, dass die Familien CYP1, CYP2 und CYP3 hauptverantwortlich für den Metabolismus von Xenobiotika^{16,17} innerhalb des menschlichen Organismus sind. Allerdings zeigen diese Enzyme oftmals eine überlappende Substratspezifität^{18,19}, welche dazu führt, dass mehrere Enzyme an der Oxidation eines individuellen Substrates involviert sein können. Da sich die Bandbreite an Xenobiotika über einen grossen Bereich von strukturell und funktionell unterschiedlichen Substanzen erstreckt, ist der menschliche Organismus nicht in der Lage, für jedes Xenobiotikum ein spezifisches Enzym zu kodieren. Als Folge weisen die Mitglieder der hepatischen CYPs eine breite Substratspezifität auf, welche es ihnen ermöglicht, eine grosse Palette strukturell verschiedener Substrate umzusetzen. Somit unterscheiden sie sich stark von den CYPs der Keimdrüsen, die am Steroid-Metabolismus (Hormonbildung) beteiligt sind. Die klassische Auffassung "Ein Enzym - Ein Substrat" ist hier nicht mehr streng gültig. Grundvoraussetzung für diese breite Substratspezifität ist ein voluminöses und flexibles aktives Zentrum.

1.4 Vertreter der Subfamilie CYP3A

Enzyme der CYP3A-Subfamilie treten sowohl beim Menschen als auch in Tieren auf. Im menschlichen Organismus treten mindestens fünf funktionelle Proteine der CYP3A-Subfamilie auf. Diese sind CYP3A3, CYP3A4, CYP3A5, CYP3A7 und CYP3A43. Die cDNA von CYP3A3 unterscheidet sich von CYP3A4 in nur 14 Nukleotidpositionen²⁰. Aufgrund dieser starken cDNA-Sequenzhomologie ist noch nicht eindeutig geklärt, ob CYP3A3 ein separates Genprodukt oder eine allele Variante von CYP3A4 repräsentiert. Die Bezeichnung CYP3A4 umfasst gewöhnlich beide Isoformen. CYP3A4 ist die dominierende Isoform innerhalb der Leber mit einem durchschnittlichen Anteil von 30 % der gesamten CYP-Protein-Konzentration. Hohe Konzentrationen treten ferner im Gastrointestinaltrakt und in der Lunge auf. Die cDNA von CYP3A5 ist zu 88 % identisch mit CYP3A4^{21,22}, dennoch unterscheidet sich CYP3A5 strukturell von CYP3A4 und stellt die dominierende Isoform innerhalb der Nieren dar. CYP3A7 tritt vermehrt in fötaler Leber auf. In der Leber von Erwachsenen tritt es wenn überhaupt nur in geringen Konzentrationen auf²³. Von allen Vertretern der CYP3A-Familie wurde CYP3A4 am intensivsten untersucht und man geht davon aus, dass die anderen Isoformen ähnliche Charakteristika aufweisen. Für ein besseres Verständnis individueller CYPs eignen sich in-vitro Studien besser als in-vivo Studien, da hier eine bessere Kontrolle der Versuchsbedingungen möglich ist. Von grossem Vorteil ist, dass bei in-vitro Studien die Aktivität eines einzelnen isolierten CYPs untersucht werden kann, was bei in-vivo Studien (z.B. in Mikrosomen) aufgrund des Potpourris an CYPs nicht möglich ist. Durch die Exprimierung von rekombinanten CYPs in z. B. Bakterien^{24,25}, Viren²⁶ oder menschlichen Zellen können gegenwärtig grosse Mengen eines reinen funktionsfähigen CYP erhalten werden. Speziell bei den Mitgliedern der Familie CYP3A traten grosse Schwierigkeiten bei der Rekonstitution eines funktionsfähigen Enzymsystems auf. Es stellte sich dabei heraus, dass für eine optimale CYP-Aktivität noch zahlreiche Kofaktoren wie NADPH-P450 Reduktase (Schema 5), Cytochrom b_5^{27} und Phospholipide²⁸⁻³⁰ mitverantwortlich sind. Ferner wird die Geschwindigkeit der Produktbildung von CYP3A-katalysierten Reaktionen durch die Wahl des Puffers Tris oder Phosphat sowie durch die Anwesenheit von mono- und divalenten Kationen (NH4⁺, Ca²⁺, Mg²⁺) beeinflusst³¹⁻³³. Ein weiterer Grund für in-vitro Studien ist der Mangel an geeigneten menschlichen Zellen. Post-mortem Quellen eignen sich nur bedingt, da das Material für zuverlässige Resultate so frisch wie möglich sein muss. Ein Nachteil der in-vitro Studien ist die Tatsache, dass die experimentellen Befunde nicht ohne weiteres auf die Versuchsbedingungen in-vivo übertragen werden können.

1.5 Cytochrom P450 3A4 (CYP3A4)

Ursprünglich war CYP3A4 (EC 1.14.13.67) unter dem Namen P450_{NF} bekannt, aufgrund seiner Fähigkeit, Nifedipin zu oxidieren³⁴. CYP3A4 tritt ausschliesslich beim Menschen auf. Das CYP3A4 Gen besteht aus 27204 Basenpaaren und befindet sich innerhalb des menschlichen Genoms auf dem Chromosom 7 (Genlokus 7q22.1 auf dem Minus-Strang). Das Protein besteht aus insgesamt 502 Aminosäuren mit einem Molekulargewicht von 57299 Da. Ferner weist CYP3A4 zwei Transmembranhelices von Aminosäure 2 bis 23 und Aminosäure 35 bis 55 auf. Neben dem Wildtyp CYP3A4.1A existieren, hervorgerufen durch Mutationen, noch eine Reihe anderer Allele, für welche eigens eine Nomenklatur entwickelt wurde.

Schema 5: Elektronentransport auf CYP3A4 (Cytochrom b₅ ausgelassen)

CYP3A4 metabolisiert über die Hälfte aller therapeutisch applizierten Pharmaka^{14,17} und verfügt somit über eine sehr breite Substratspezifität. Dennoch zeigt es eine strikte Regio- und Stereospezifität bei der Umsetzung seiner Substrate³⁵. Die Tatsache, dass Testosteron fast ausschlieslich an der 6β-Position oxidiert wird^{34,36} und das grösste bekannte Substrat Cyclosporin A (MG=1201) ebenfalls ausschliesslich an drei Positionen oxidiert wird, legt den Schluss nahe, dass das aktive Zentrum spezifische Bindungsstellen für individuelle Substratorientierungen besitzt. Aufgrund der grossen Bandbreite an Substraten ist dieses Enzym von grosser Bedeutung für die Pharmakologie und die Industrie. Da CYP3A4 membrangebunden vorliegt, war es bisher nicht möglich, geeignete Kristalle für eine Röntgenstrukturanalyse zu züchten. Beim Versuch, das Enzym aus der Membran zu solubilisieren, führen Konformationsänderungen zu einem Verlust seiner Aktivität. Um dennoch eine Vorstellung von der Struktur und der Dynamik des aktiven Zentrums zu erhalten, wurden diverse Näherungsmethoden wie das Konzept der ",substrate recognition sites"³⁷ oder Konsensusmethoden^{38,39} entwickelt. Bei ersterer werden durch Austausch von Aminosäuren, die vermutlich für die Substratspezifität verantwortlich sind, bestimmte CYP-Mutanten exprimiert und auf deren Aktivität hin getestet. Bei letzterer Methode werden Aminosäuresequenzen von Referenzproteinen miteinander verglichen um konservierte Regionen zu bestimmen. Eine nachfolgende Energieminimierung und molekulare Dynamikmethoden führen zu einer modellierten Struktur (homology modeling). Als Referenzproteine dienen hierbei bakterielle CYPs mit bekannter Struktur. Beide Methoden haben allerdings erhebliche Nachteile. Die überwiegende Anzahl von CYP-Röntgenstrukturen stammt von zytosolischen, bakteriellen CYPs, doch die Sequenzhomologie zwischen bakteriellen und humanen CYPs ist relativ gering. Ausserdem hängt die Struktur des

Modells auch von der jeweiligen Kraftfeldrechnung und Verfeinerungsmethode ab. Zum Schluss muss das Modell auch mit experimentellen Resultaten konsistent sein.

Eine besondere Eigenschaft der Vertreter der CYP3A-Familie und speziell von CYP3A4 ist, dass die katalytische Aktivität für ein spezielles Substrat durch die Anwesenheit eines anderen Xenobiotikums stimuliert werden kann. Diese positive Kooperativität konnte bei 7,8-Benzoflavon und Flavonoiden⁴⁰⁻⁴³ sowie einigen Steroiden^{42,44} beobachtet werden. Eine zunehmende Konzentration eines bestimmten Substrates kann auch zur Stimulierung seines eigenen Metabolismus führen^{38,40}. Die Zugabe von 7,8-Benzoflavon kann andererseits auch den Metabolismus eines weiteren Substrates inhibieren⁴⁴⁻⁴⁷. Als Folge dieser diversen Kooperativitätsformen zeigt CYP3A4 oft keine klassische Sättigungskinetik gemäss Michaelis-Menten, sondern einen mehr oder minder ausgeprägten sigmoidalen Kurvenverlauf. Trotz zahlreicher Modelle ist die Kinetik von CYP3A4 bislang nicht eindeutig aufgeklärt. Erschwerend kommt hinzu, dass die Kofaktoren P450R und Cytochrom b₅ ebenfalls einen Einfluss auf die Kinetik von CYP3A4 haben. Aber auch deren Effekt ist noch nicht eindeutig bekannt. Das Auftreten von sigmoidaler Sättigungskinetik deutet auf allosterische Effekte hin. Im Falle von CYP3A4 kann der Effektor allerdings auch im aktiven Zentrum binden. Heutzutage wird allgemein angenommen, dass bis zu drei Moleküle (Substrate und/oder Effektoren) gleichzeitig im aktiven Zentrum anwesend sein können⁴⁷. Die grosse Bandbreite an Substraten sowie die Tatsache, dass mehr als ein Substrat im aktiven Zentrum binden kann^{40,48-53}, führt häufig zu sogenannten "Drug-Drug Interactions".

Genaue Untersuchungen dieser Wechselwirkungen in Form von aufwendigen Tests sind vor der Neuzulassung von Medikamenten unerlässlich⁵⁴⁻⁵⁷. Darüber hinaus ist die Pharmaindustrie mit einem weiteren Problem konfrontiert, welches darin liegt, dass die Konzentration von CYP3A4 bedingt durch genetische Polymorphismen innerhalb einer Population und insbesondere zwischen verschiedenen Ethnien ebenfalls erheblich variieren kann. Die unterschiedliche P450-Induktion bedingt, dass für den gleichen pharmakologischen Effekt für verschiedene Indiviuen auch unterschiedliche Substratkonzentrationen erforderlich sind (*poor / fast metabolizer*).

2. Konzept für einen Universalinhibitor für CYP3A4

2.1 Hintergrund

Gegenwärtig existieren eine Reihe von Inhibitoren für CYP3A4, welche aber den Metabolismus von verschiedenen Substraten nicht in gleichem Ausmass inhibieren. Bislang ist kein Inhibitor bekannt, welcher den Metabolismus von strukturell verschiedenen Substraten in gleicher Weise inhibiert. Solch ein Inhibitor könnte dazu beitragen, die aufwendigen Tests bezüglich Substrat-Substrat-Wechselwirkungen zu verkürzen. Dieser Inhibitor sollte einen IC₅₀ im Bereich 1-10 μ M für möglichst alle bekannten Substrate aufweisen. Neue Pharmaka müssten lediglich gegen diese Referenzsubstanz (Universalinhibitor) und nicht gegen zahlreiche bekannte Substrate getestet werden. Medikamente, die den Inhibitor aus dem aktiven Zentrum verdrängen und somit stärker binden, führen möglicherweise zu einer zu starken Inhibition von CYP3A4. Da CYP3A4 auch andere endogene sowie exogene Substrate metabolisiert, ist eine zu starke Inhibition gefährlich. Dies kann schlimmstenfalls zu toxischen Plasmaspiegeln anderer Medikamente führen und lethale Folgen haben, siehe z. B. Possicor (Roche[®]). Aus diesem Grund darf ein neues Medikament CYP3A4 und somit den Metabolismus anderer Medikamente nicht zu stark inhibieren.

Im Hinblick auf ein schnelles Testverfahren für eine grosse Anzahl von Verbindungen (high-throughput) wäre es von Vorteil, wenn der sogenannte "Universalinhibitor" nicht als Inhibitor in einer P450-katalysierten Reaktion eingesetzt würde, sondern seine Bindung an beziehungsweise seine Verdrängung von CYP3A4 mittels quantitativer Messung eines UV- oder Fluoreszenz-Signals bestimmt werden kann.

Es wird angenommen, dass CYP3A4 wenigstens drei Substratbindungsstellen besitzt⁵⁷. An jeweils eine dieser drei Bindungsstellen binden die Substrate Testosteron **17**, Midazolam **21** und Nifedipin **24** besonders gut. Testosteron bindet ausgezeichnet an seine Bindungsstelle und wird deshalb als Testsubstrat für Aktivitätsstudien in-vivo und in-vitro verwendet. Testosteron **17** wird durch CYP3A4 zum hydrophileren 6β -Hydroxytestosteron **18** oxidiert (*Schema 6*).

Ein Inhibitor mit einer an Position 6β modifizierten Testosteryl-Substruktur sollte ähnlich gute Bindungseigenschaften besitzen wie Testosteron selbst. Dies hätte zur Folge, dass der Inhibitor nicht durch CYP3A4 metabolisiert werden kann. Aufgrund seiner guten Fluoreszenzeigenschaften eignet sich der Deazaflavinchromophor als Sonde, die über einen Spacer mit dem modifizierten Testosteron verbunden ist. Der Spacer sollte dabei ein gewisses Mass an Flexibilität gewährleisten. An Hand dieser Überlegungen wurde **15** als geeignetes Zielmolekül angesehen.

Schema 7: Grundstruktur des Universalinhibitors

2.2 Resultate und Diskussion

2.2.1 Synthese

Retrosynthetisch lässt sich **15** in ein 6β-substituiertes Testosteron **5** und ein an Position 3 und 10 alkyliertes 5-Deazaflavin-Derivat **13** zerlegen, das aus den Komponenten o-Hydroxybenzaldehyd **11**, 6-Aminouracil **10** und Ethyl-4-Bromobutyrat **14** herstellbar ist (*Schema 8*). Die Synthese von **15** beziehungsweise von **16** wurde von Dr. David Ricard entwickelt und von Dominik Meyer optimiert. Der Vollständigkeit halber wird die Synthese nur kurz besprochen.

Schema 8: Retrosynthetische Betrachtung des Universalinhibitors

Die Synthese der Testosterylessigsäuren **5** und **7** (*Schema 9*) begann mit dem im Handel erhältlichen Testosteron **17**, welches in Anwesenheit von $PdCl_2$ und NaCl stereospezifisch in den dimeren α -konfigurierten π -Allylpalladiumkomplex **2** überführt werden konnte. Bei dem nachfolgenden nukleophilen Angriff des Dimethylmalonat-Anions wurde aufgrund der sterischen Hinderung ausschliesslich das 6 β -Malonat **3** erhalten. Bei der anschliessenden Decarboxylierung mit wasserfreiem Lil in trockenem DMF wurde eine von der Dauer der Reaktion abhängige Epimerisierung an C(6) beobachtet⁵⁸. Dabei stellte sich das 6 β -Methylacetat **4** als kinetisches und 6 α -Methylacetat **5** als thermodynamisches Produkt heraus. Die klassische Verseifung der beiden Epimere mit LiOH in Methanol/Wasser lieferte in mässiger Ausbeute die gewünschten Säuren **5** und **7**. Durch eine anschliessende Umkristallisation konnte das Epimerenverhältnis zu Gunsten jeweils eines der Epimeren verbessert werden, so dass man schliesslich die Produkte mit folgender Epimerenreinheit erhielt: **5** (11 % 6 α ; 89 % 6 β), **7** (92 % 6 α ; 8 % 6 β).

Schema 9: Synthese der beiden Testosterylessigsäure-Derivate 5 und 7

Reagenzien und Bedingungen: (a) PdCl₂ (1 Äq.), NaCl (0.7 Äq.), THF, Rückfluss, 4 h danach **1** (1.2 Äq.), Rückfluss, 48 h, 72 %. (b) NaH (1.3 Äq.), H₃CO₂CCH₂CO₂CH₃ (3.4 Äq.), DMSO, 35°, 8 h, 93 %. (c) Lil (1.5 Äq.), DMF, Rückfluss, 3 h, 57 %. (d) LiOH·H₂O (5 Äq.), MeOH-H₂O (3:1), RT, 1 h, 36 %. (e) LiOH·H₂O (5 Äq.), MeOH-H₂O (3:1), RT, 1 h, 36 %. (e) LiOH·H₂O (5 Äq.), MeOH-H₂O (3:1), RT, 1 h, 36 %. (e) LiOH·H₂O (5 Äq.), MeOH-H₂O (3:1), RT, 1 h, 28 %. (f) p-TsOH (1 Äq.), THF, Rückfluss, 48 h, 37 %. (g) p-TsOH (1 Äq.), THF, Rückfluss, 12 h, 99 %.

Die Synthese des 5-Deazaflavins (*Schema 10*) begann mit dem kommerziell erhältlichen 6-Chlorouracil **9**, welches mit 4-Aminobutanol in n-BuOH in das entsprechende 6-Aminouracil **10** überführt wurde. Dieses wurde mit dem ebenfalls im Handel erhältlichen o-Hydroxybenzaldehyd **11** kondensiert und ergab das an N-10 alkylierte 5-Deazaflavin **12** mit zufriedenstellender Ausbeute⁵⁹. Als Nachteil stellte sich heraus, dass dieses 5-Deazaflavin relativ schwer löslich war und lediglich in den Lösungsmitteln TFA, 1 M NaOH, MeOH/CH₂Cl₂ (1:10), kochendes DMF oder DMSO in Lösung ging. Um dieses Problem zu umgehen, wurde in einem zusätzlichen Schritt eine Alkylkette mit einer Estergruppe an N(3) des 5-Deazaflavins eingeführt und ergab **13**.

Schema 10: Synthese des 5-Deazaflavins 13

Reagenzien und Bedingungen: (a) $H_2N(CH_2)_4OH$ (2 Äq.), n-BuOH, Rückfluss, 18 h, 92 %. (b) DMF, Rückfluss, 14 h, 77 %. (c) K_2CO_3 (6 Äq.), Ethyl-4-bromobutyrat **14** (4 Äq.), DMF, 60°, über Nacht, 70 %.

Die Kopplung der beiden Epimeren **5** und **7** mit dem 5-Deazaflavin **13** (*Schema 11*) gelang ohne Epimerisierung an C(6) problemlos mit einem Überschuss an EDC·HCI und einer katalytischen Menge an DMAP in CH_2CI_2 .

Schema 11: Kopplung von Testosteronsäure und 5-Deazaflavin

Reagenzien und Bedingungen: (a) EDC·HCI (1.6 Äq.), DMAP (1 Äq.), **13** (2.1 Äq.), CH₂Cl₂, RT, über Nacht, 79 %. (b) EDC·HCI (1.5 Äq.), DMAP (1.1 Äq.), **13** (2.1 Äq.), CH₂Cl₂, RT, über Nacht, 67 %

Die gebildeten Endprodukte **15** und **16** wiesen die in *Schema 11* angegebene Epimerenzusammensetzung auf, die auf einer Integration der diastereotopen H an C(4) von **15** und **16** beruht (*Figur 1*). Eine weitere Anreicherung beziehungsweise Trennung der Epimeren mittels Dünnschicht, Säulenchromatographie oder HPLC erwies sich als undurchführbar.

Figur 1: Charakteristische ¹H- und ¹³C-NMR-Resonanzen

	O ² 3 4 CO ₂ Me	O 4 5 6 CO ₂ Me
NMR-Signal	6α-Epimer	6β–Epimer
H(4)	5.59 ppm, d, J = 1.5 Hz	5.76 ppm, s
H(6)	2.91-2.81 ppm, m	3.06-2.96 ppm, m
C(4)	121.3 ppm	126.8 ppm

Um reines 6α -Epimer zu erhalten wurden Epimerisierungsversuche auf der Stufe des Dimethylmalonat-Derivates **3** durchgeführt. Die Säurekatalyse mit p-Toluolsulfonsäure zeigte dabei ein Potential zur Epimerisierung⁶⁰, konnte auf dieser Stufe jedoch nicht den erhofften Erfolg bringen.

Die säurekatalysierte Epimerisierung des Methylesters **4** mit p-Toluolsulfonsäure in THF zeigte dabei die besten Resultate mit einer Invertierung des Epimerenverhältnisses bei sehr guten Ausbeuten. Die beachtliche Epimerisierung bei der Reaktion mit p-Toluolsulfonsäure in Eisessig wurde von den starken Nebenreaktionen überschattet, die zu massiven Ausbeuteeinbussen führten.

2.2.2 Evaluation der IC₅₀-Werte von 15 und 16 durch Inkubation mit verschiedenen CYP3A4-Substraten

Die gesamten CYP3A4-Inkubationen wurden mit den Verbindungen 6 β -Deazatesto (91 % 6 β , 9 % 6 α) **15** und 6 α -Deazatesto (93 % 6 β , 7 % 6 α) **16** nach Prüfung auf deren Reinheit mittels Chromatographie und Epimerenreinheit mittels NMR-Spektroskopie durchgeführt. 6 β -Deazatesto **15** wurde gegen die drei Standard-substrate Testosteron **17**, Midazolam **21** und Nifedipin **24**, sowie gegen 7-Benzyloxy-4-trifluorocoumarin **19** und (+/-) Bufuralol **26** getestet. Bei den Inkubationen mit Testosteron **17**, Midazolam **21**, Nifedipin **24** und (+/-) Bufuralol **26** wurde die relative Konzentration an Metaboliten durch Integration der Peakfläche nach einer HPLC-

Trennung und nachfolgender UV-Detektion bestimmt. Midazolam wird durch CYP3A4 zu 1'-Hydroxymidazolam (Hauptmetabolit) **22** und 4-Hydroxymidazolam (Nebenmetabolit) **23** oxidiert⁶¹⁻⁶³. Aufgrund von Trennproblemen konnte die exakte Fläche des Hauptmetaboliten nicht bestimmt werden. Zudem überlagert der breite Peak von 1'-Hydroxymidazolam mit einem Metaboliten von 6β-Deazatesto. Da 4-Hydroxymidazolam in annähernd gleichem Ausmass gebildet wurde und während der Messungen stabil war, konnte dessen Fläche für die Bestimmung der Inhibition herangezogen werden. 7-Hydroxy-4-trifluorocoumarin **20**, der Metabolit von 7-Benzyloxy-4-trifluorocoumarin **19** konnte mittels Messung der Fluoreszenz bestimmt werden (*Schema 13*), da lediglich der Metabolit fluoresziert. Mit Hilfe von Fluoreszenz-Differenzspektren (*Schema 15*) konnte hier der relative Anteil an Metabolit bestimmt werden. Das Anfertigen von Differenzspektren war dabei unumgänglich, da der Inhibitor selbst eine Fluoreszenz aufweist (*Schema 12*), welche mit der 7-Hydroxy-4-trifluorocoumarin-Fluoreszenz teilweise überlappt.

Schema 12-14: Differenzspektrum des BFC-Metabolismus

(+/-)-Bufuralol, ein typisches CYP2D6-Substrat, wurde ebenfalls mit 6 β -Deazatesto **15** und CYP2D6 getestet um zu klären, ob der Inhibitor ein ähnlich starkes Inhibitionspotential auf ein anderes wichtiges CYP aufweist. Zusätzlich wurde das 5-Deazaflavin **13** als Inhibitor gegen Testosteron getestet um zu klären, in welchem Ausmass die 5-Deazaflavin-Substruktur des Inhibitors in dem aktiven Zentrum bindet. 6α -Deazatesto wurde lediglich gegen die drei Substrate Testosteron **17**, Midazolam **21** und Nifedipin **24** getestet.

Bei allen Inkubationen wurde darauf geachtet, dass die Konzentration des Substrates im Bereich von K_m lag, während die Konzentration von **15** und **16** variiert wurde. Bei einer Konzentration, welcher K_m entspricht, metabolisiert das Enzym ein Substrat mit 50 % seiner Maximalgeschwindigkeit. Zudem ist die Geschwindigkeit der Produktbildung bei dieser Konzentration annähernd linear.

Schema 15: Übersicht über Substrate und deren Metaboliten

Nachdem die relativen Intensitäten der Metaboliten bestimmt worden waren, konnte ein IC_{50} für jedes Substrat ermittelt werden. Der IC_{50} entspricht dabei derjenigen Inhibitorkonzentration, bei welcher das Enzym nur noch 50 % seiner Aktivität verglichen zu der Aktivität in Abwesenheit des Inhibitors aufweist. Die Inkubation des Substrates in Abwesenheit des Inhibitors führte zu einer maximalen Konzentration an Metabolit und die Aktivität wurde gleich eins gesetzt. Mit zunehmender Konzentration an Inhibitor sollte im Falle von kompetitiver Inhibition die Konzentration an Metabolit abnehmen. Die relative Aktivität wurde graphisch gegen den Logarithmus der jeweiligen Inhibitorkonzentration aufgetragen. Die IC_{50} sollten somit im Bereich 0-1 auf der Abszisse liegen. Dabei sind die gemessenen Aktivitäten als blaue Punkte dargestellt. Mit Hilfe einer speziellen Gleichung für kompetitive Inhibition konnte mit Hilfe eines Algorithmus für jede Messreihe eine Kurve durch die Datenpunkte angepasst werden (farbig)⁶⁴. Nachdem die Kurve berechnet worden war, konnte anhand eines weiteren Algorithmus der IC_{50} direkt bestimmt werden.

Schema 16: Übersicht über die Inhibitionstests mit 6β-Deazatesto (15)

Schema 17: Übersicht über die Inhibitionstests mit 6α-Deazatesto (16)

Die oben aufgeführten Schemata zeigen deutlich, dass sowohl 6β - als auch 6α -Deazatesto den Metabolismus der drei Standardsubstrate inhibieren. Dabei ist nur ein leichter Unterschied in den IC₅₀ für jedes Substrat erkennbar. Dennoch liegen für beide Inhibitoren alle IC₅₀ für die Standardsubstrate in dem erwünschten Konzentrationsbereich von 1-10 µM (Bereich 0-1 in den Graphiken). Somit eignet sich das ursprünglich unerwünschte 6a-Deazatesto ebenfalls als Universalinhibitor für CYP3A4. Die Inhibition des Metabolismus von (+/-) Bufuralol durch CYP2D6 für 6β-Deazatesto ist in dem Konzentrationsbereich von 1-10 µM vernachlässigbar. Dennoch besitzt 6B-Deazatesto ein Inhibitionspotential gegenüber CYP2D6 bei höheren Konzentrationen (Schema 18). Die Art und Weise, wie 6β-Deazatesto CYP2D6 inhibiert ist dabei noch unklar. Ferner wird ersichtlich, dass 13 selbst ein Inhibitor für CYP3A4 ist, lediglich um einen Faktor von 10² schlechter (Schema 19). Dieses Ergebnis legt den Schluss nahe, dass die guten Bindungseigenschaften des Inhibitors überwiegend von dem Binden des Testosteron-Restes an seine Bindungsstelle innerhalb des aktiven Zentrums resultieren. Dennoch scheint ein Teil dieser guten Bindungseigenschaften auf eine Wechselwirkung zwischen dem Häm von CYP3A4 und dem 5-Deazaflavin zu entfallen, vermutlich in Form von π - π -stacking.

Schema 19: Übersicht über die Inhibitionstests mit Testosteron und (13)

Die Inkubationsversuche mit BFC (*Schema 14*) zeigen deutlich, dass eine Bestimmung des IC_{50} für die relevanten Konzentrationen mittels Fluoreszenzdetektion möglich ist. Die Fluoreszenzspektren sowie Inkubationen mit **15** allein haben gezeigt, dass ein bestimmter Anteil des Inhibitors selbst metabolisiert wird (*Schema 20*). Dabei konnten erwartungsgemäss mehrere polarere Metaboliten beobachtet werden. Eine Besonderheit war das Auftreten eines im Vergleich zum 6 β - Deazatesto apolareren Metaboliten (t_R \approx 28 min), dessen genaue Struktur unbekannt blieb.

Schema 20: Chromatogramm des Metabolismus der Inhibitoren 15 und 16

Bedingungen: 219 ng 6 β -Deazatesto, 20 nM CYP3A4, t=15 min, SuperSPHER[®] (RP-8), T=35°C, 0.5 ml/min, UV-Detektion: 250 nm, 50 mM NH₄OAc-Puffer (A), MeCN (B), Direktinjektion von 100 μ l, Gradient: 70 % A \rightarrow 50 % A (30 min); 50 % A \rightarrow 70 % B (1 min)

2.2.3 Diskussion

Kürzlich konnte gezeigt werden, dass Midazolam **21** in menschlichen Lebermikrosomen die 6β -Hydroxylierung von Testosteron **17** inhibiert⁶⁶. Testosteron selbst inhibiert die Hydroxylierung von Midazolam **21** zu 1'OH-Midazolam **22**, aber stimuliert gleichzeitig die Oxidation zu 4-OH-Midazolam **23**.

Schema 21-23: Substratwechselwirkung (Testosteron-Midazolam)

Diese Ergebnisse zeigen deutlich auf, dass selbst hohe Konzentrationen an Testosteron nur zu einer partiellen Inhibition der Hydroxylierung von Midazolam zu 1'-OH-Midazolam führen. Eine vollständige Inhibition des Midazolam-Metabolismus durch Testosteron konnte nicht beobachtet werden. Für die Inhibition der 6β-Hydroxylierung von Testosteron durch Midazolam genügen geringere Konzentrationen von Midazolam. Die maximale Inhibition beziehungsweise Aktivierung des Midazolam-Metabolismus wird bei einer Testosteron-Konzentration von 50-100 µM erreicht. Aus diesen Graphiken folgt, dass bei einer Testosteron-Konzentration von etwa 250 μM der Midazolam-Metabolismus zu 50 % inhibiert ist. Ferner folgt daraus, dass bei einer Midazolam-Konzentration von etwa 30 µM der Testosteron-Metabolismus zu 50 % inhibiert ist. Diese beiden IC₅₀ liegen relativ weit auseinander, was zu dem Schluss folgt, dass beide Substrate unterschiedliche Inhibitorqualitäten aufweisen. Das in dieser Arbeit entwickelte 6β-Deazatesto 15 inhibiert den Metabolismus beider Substrate mit je zwei IC₅₀ (0.6 μ M für MDZ **21**, 2.8 μ M für Testo 17), welche wesentlich näher beieinander und in dem erhofften Bereich von 1-10 μ M liegen. Dies deutet daraufhin, dass der Metabolismus beider Substrate durch diesen Inhibitor in annähernd gleicher Weise inhibiert wird. Zudem konnte keine Aktivierung der Bildung von 4-OH-Midazolam beobachtet werden, sondern ein simultaner Rückgang beider Metaboliten mit steigender Inhibitorkonzentration.

Im Falle der Testosteron-Nifedipin-Wechselwirkung (*Schema 24+25*) konnte beobachtet werden⁶⁶, dass Nifedipin in menschlichen Lebermikrosomen die 6β - Hydroxylierung von Testosteron inhibiert, wohingegen Testosteron selbst nur einen geringfügigen Einfluss auf die Nifedipin-Oxidation zeigt. Anstatt einer Inhibition, war eher eine leichte Aktivierung der Nifedipin-Oxidation durch Testosteron erkennbar. Versuche mit rekombinantem CYP3A4 bestätigten die Ergebnisse mit Lebermikrosomen.

Schema 24+25: Substratwechselwirkungen (Testosteron-Nifedipin)

Bei einer Nifedipin-Konzentration von etwa 50 μ M ist die 6 β -Hydroxylierung von Testosteron zu 50 % inhibiert. Auch dieser Wert liegt weit oberhalb des hier mit 6 β -Deazatesto ermittelten IC₅₀ für Nifedipin (4.4 μ M).

2.2.4 Zusammenfassung

Alle hier erhaltenen Resultate deuten daraufhin, dass $6\alpha/6\beta$ -Deazatesto potente Inhibitoren sind, da die IC₅₀ für alle hier getesteten CYP3A4-Substrate in einem schmalen Konzentrationsbereich 1-10 μ M inhibieren. Dieser Bereich wird bei der Suche nach neuen Medikamenten allgemein als optimal betrachtet, da ein IC₅₀ bei niedrigerer Konzentration eine zu starke Hemmung des Enzyms bedeutet. Ein grosser Vorteil dieser Inhibitoren ist die Möglichkeit einer raschen Fluoreszenzdetektion der Bindungseigenschaften von Substraten. Erst kürzlich konnte in unserer Gruppe gezeigt werden⁶⁷, dass bei einer äquimolaren Mischung von CYP3A4 und 6β -Deazatesto die Fluoreszenz des Inhibitors gelöscht ist, was bestätigt, dass 6β -Deazatesto innerhalb des aktiven Zentrums gebunden ist. Während der sequentiellen Zugabe von Ketokonazol, kehrte die Fluoreszenz sukzessive zurück, was darauf hinweisst, dass Ketokonazol stärker im aktiven Zentrum bindet und somit den Inhibitor aus dem aktiven Zentrum in das umgebende Milieu verdrängt. Hiermit konnte eindeutig gezeigt werden, dass ein rasches Auswahlverfahren von neuen Medikamenten anhand einfacher Fluoreszenzdetektion möglich ist.

3. 5-Deazaflavine

3.1 Allgemeines über 5-Deazaflavine

5-Deazaflavine (5-Deazaisoalloxazine oder Pyrimido[4,5-b]quinolin-2,4-(3H,10H) dion), bei welchen (N)-5 durch CH ersetzt ist, wurden erstmals 1970 von *Cheng* und Mitarbeitern als potentielle Flavin-Antagonisten synthetisiert. Seitdem wurden sie intensiv in enzymatischen Reaktionen^{68,69} oder in Modellsystemen^{70,71} untersucht, um einen Einblick in Flavin-katalysierte Reaktionen zu erhalten. Im Jahre 1978 isolierten *Wolfe*⁷² und Mitarbeiter ein redoxaktives Koenzym namens Faktor 420 (F₄₂₀) aus dem Methan-produzierenden Bakterium *Methanobacterium thermoautotrophicum* (*Schema 26*). Dieses enthielt ein 5-Deazaflavingerüst und wies ein Absorptionsmaximum von λ =420 nm auf. Seitdem konnten 5-Deazaflavine aus zahlreichen anderen biologischen Quellen isoliert werden.

Schema 26: Koenzym Faktor F420 (F₄₂₀)

Eine wichtige biologische Funktion haben 5-Deazaflavine bei der Reparatur von Pyrimidindimeren innerhalb der DNA, welche durch UV-Bestrahlung in einer $[2\pi+2\pi]$ Zykloaddition entstehen. Die hierbei gebildeten *cis-syn*-Pyrimidindimere sind häufig für den Zelltod oder die Degenerierung in Tumorzellen verantwortlich. Für die Beseitigung dieser gefährlichen Dimere existieren Reparaturenzyme, die sogenannten DNA-Photolyasen. Diese sind in der Lage spezifische *cis-syn*-Dimerformationen zu erkennen und in einer lichtabhängigen Zykloreversion zu spalten

(*Schema 27*). Für ihre Arbeit benötigen sie ein reduziertes Riboflavin (FADH⁻), ein Ribodeazaflavin (F₀) oder ein Methenyltetrahydrofolat⁷³⁻⁷⁵. Der Reparaturmechanismus beginnt mit der Absorption von Licht durch den Kofaktor F₀. Anschliessend wird die Anregungsenergie von F₀ auf das reduzierte und deprotonierte Riboflavin FADH⁻ übertragen⁷⁶⁻⁷⁸. Das angeregte Flavin überträgt ein Elektron auf das Pyrimidindimer, welches spontan in ein Thymin und ein Thymin-Radikalanion aufspaltet⁷⁴. Anschliessend überträgt das Thymin-Radikalanion ein Elektron zurück auf das Flavosemiquinon. Das Deazaflavin selbst ist zwar in der Lage, den Elektronentransfer auf das Pyrimidindimer zu initiieren, allerdings verläuft dieser Prozess mit einer sehr niedrigen Quantenausbeute^{68,79}. Genauere enzymatische Untersuchungen deuten darauf hin, dass das Deazaflavin innerhalb des Enzyms lediglich als Photoantenne fungiert⁸⁰ und durch Energietransfer die Reparaturgeschwindigkeit erhöht⁸¹.

Die Röntgenstrukturen⁸² der DNA-Photolyase von *E. coli* und *A. nidulans* zeigen eine grosse räumliche Separation zwischen dem lichtsammelnden und dem redoxaktiven Kofaktor (16.8 Å und 17.5 Å), was zu der Hypothese führt, dass die Distanz der beiden Kofaktoren im Laufe der Evolution nie optimiert wurde^{82,83}. Der Grund für die grosse Distanz zwischen den beiden Kofaktoren liegt womöglich darin, einen konkurrierenden Elektronentransfer des Elektronendonors auf die Antenne zu unterbinden⁸⁴, welcher für geringere Distanzen thermodynamisch bevorzugt ist. Für die Untersuchung der Effizienz des Energietransfers wurden verschiedene Modellsysteme synthetisiert⁸⁵. Dabei wurde die Länge des Spacers variiert (Schema 28) und mit Hilfe der Steady-state Fluoreszenz-Spektroskopie die Fluoreszenzintensität des Deazaflavins bestimmt. Bei allen Modellsystemen konnte eine deutlich verringerte Fluoreszenzintensität verglichen zu den ungekoppelten Deazaflavinen gemessen werden. Die Abnahme der Fluoreszenzintensität korreliert mit einer Zunahme der Effizienz des Energietransfers⁸⁶, da gemäss der Theorie von *Förster⁸⁷* die Geschwindigkeit des Energietransfers proportional zu r⁻⁶ abnimmt. Tatsächlich zeigte das Modellsystem mit der geringsten Kofaktorseparation auch die stärkste Fluoreszenzlöschung und somit die höchste Energietransfer-Effizienz. Allerdings zeigte diese Modellverbindung keine Aktivität bei der Spaltung des Pyrimidindimers. Diese Tatsache führt zu dem Schluss, dass eine grosse Distanz zwischen den beiden Kofaktoren essentiell ist, um 5-Deazaflavin als alternativen Elektronenakzeptor auszuschliessen.

Schema 28: Modellsysteme für DNA-Photolyasen

Das 5-Deazaflavin-Ringsystem ähnelt strukturell sowohl den Flavinen, als auch den Nikotinamid-Nukleotiden. Aufgrund dieser Ähnlichkeit werden 5-Deazaflavine auch vereinzelt als "Flavinartige Nikotinamidanaloga" bezeichnet (Schema 29). Die Flavinen und 5-Deazaflavinen unterscheidet sich Chemie von allerdings gravierend^{88,89} und es wurde berichtet⁹⁰, dass das chemische Verhalten von 5-Deazaflavinen eher dem chemischen Verhalten von NAD aleicht. Die 5-Deazamodifikation eliminiert zwei der drei Haupteigenschaften des Flavins, nämlich Elektronentransfer und Disauerstoff-Aktivierung. Transhydrogenierung, die dritte Haupteigenschaft von Flavinen bleibt zu einem gewissen Grad erhalten. Die 5-Deazamodifikation entfernt die thermodynamische Stabilität des natürlichen Flavin-Radikals⁹⁰.

3.2 Katalyse mit 5-Deazaflavinen

Im Jahre 1977 gelang es *Yoneda* und Mitarbeitern⁹¹ erstmals, Alkohole in einer nichtenzymatischen Reaktion in Anwesenheit von 5-Deazaflavin zu oxidieren (*Schema 30*). Es stellte sich heraus, dass eine Base für die Katalyse erforderlich ist und dass das gebildete 1,5-Dihydro-5-deazaflavin durch molekularen Sauerstoff in die oxidierte Form rückoxidiert werden kann und somit als Katalysator⁹¹⁻⁹³ fungieren kann.

Schema 30: 5-Deazaflavin-katalysierte Alkoholoxidation

5-Deazaflavine zeigen ebenfalls ein Potential für die Reduktion von Carbonylverbindungen. Die Reduktion von einfachen erste nichtaktivierten Carbonylverbindungen durch ein 1,5-Dihydro-5-Deazaflavin wurde 1978 von Yoneda und Mitarbeitern⁹⁴ berichtet (Schema 31). Hier konnten Benzaldehyd oder Cyclohexanon in der Anwesenheit von 1,5-Dihydro-5-Deazaflavin in sehr guten Ausbeuten in die entsprechenden Alkohole reduziert werden. Die anwesende Ameisensäure regeneriert die katalytisch aktive Spezies und sorgt dafür, dass das Deazaflavin ebenfalls als Katalysator fungiert⁹⁵.

Schema 31: Reduktion von Carbonylverbindungen durch 5-Deazaflavin

Weiter konnten 5-Deazaflavine bei der biomimetischen Aminosäuresynthese erfolgreich von Yoneda und Kuroda⁹⁶ eingesetzt werden. Weitere Erfolge verzeichnete Yoneda bei der spezifischen 1,4-Reduktion von α , β -ungesättigten Carbonylverbindungen⁹⁷, sowie bei der stereoselektiven, nicht-enzymatischen Reduktion von Carbonylverbindungen unter Verwendung chiraler 1,5-Dihydro-5-Deazaflavine^{98,99}. *Peterson*¹⁰⁰ gelang es 1977, ein Cytochrom P450 unter anaeroben Bedingungen mit EDTA und katalytischen Mengen an Deazaflavin bei Bestrahlung zu reduzieren.

3.3 Photochemie und Redoxchemie von 5-Deazaflavinen

Ein-Elektronenreduktion des 5-Deazaflavins führt zu dem roten, kurzlebigen 1-HdFl-, welches ein starkes Reduktionsmittel ist¹⁰¹. Die Abwesenheit eines Elektronenakzeptors führt einerseits mittels 1,5-Prototropie zum 5-HdFl- und andererseits zu Dismutation. Die Dismutation ist bei nachfolgender Bestrahlung reversibel. Bei langanhaltender Bestrahlung überwiegt die irreversible Bildung des photostabilen σ -Dimers (HdFl-)₂ (*Schema 34*), welches oberhalb von 350 nm transparent ist.

Schema 32: Struktur, Stabilität und Tautomerie der 5-Deaza-Flavosemiquinone

Zwei-Elektronendonoren reagieren mit 5-Deazaflavinen unter Bildung von kovalenten σ -Addukten (RdFl_{Red}H). *Spencer*¹⁰² konnte zeigen, dass die Reduktion von 5-Deazaflavinen mit Cyanoborhydrid quantitativ zur Formation von 1,5-H₂dFl_{Red} führt. Carbanion-Addition tritt bei 5-Deazaflavinen auch unter Lichtausschluss und

Basenkatalyse auf. Bei normalen Flavinen konnte diese Reaktion nicht beobachtet werden¹⁰³.

Ein-Elektronenoxidation von 1,5-Dihydro-5-Deazaflavin (1,5-H₂dFl_{Red}) führt zu 5-HdFl·, einem milden Oxidationsmittel, welches oberhalb von 480 nm transparent ist. Da die 1,5-Prototropie bei Redoxreaktionen mit 5-Deazaflavinen geschwindigkeitsbestimmend sein kann, zeigen Radikale keine doppelte Ein-Elektronen-oxidoreduktion wie die natürlichen Flavosemiquinone. Aus diesem Grund bevorzugen 5-Deazaflavine nukleophile Substrataddition (Carbanionen-Transfer) und Bildung von σ -Addukten. Zudem besitzt C(5) eine partiell positive Ladung.

Schema 33: Das 5-Deazaflavin-Redoxsystem

In Blau: 1. Absorptionsmaximum

Protonierung an N(3) erhöht generell die Löslichkeit sowohl in wässrigen, als auch in polar aprotischen Lösungsmitteln. Dabei bleiben die spektralen und chemischen Eigenschaften unverändert. Eine Ausnahme ist die wässrige, basische Hydrolyse,

welche durch die natürliche Deprotonierung an N(3) bei ca. pH 10 verhindert wird. N(3)-substituierte 5-Deazaflavine sollten daher nicht mit einem pH \geq 10 behandelt werden¹⁰⁴. Ein gemeinsames Merkmal aller reduzierten und halbreduzierten Flavine und Deazaflavine ist die Tatsache, dass die Deprotonierung an N(1) die Energie des π - π *-Überganges nicht ändert (*Schema 33*). Der Grund hierfür ist die elektronische Isolation des Pyrimidin-Subnukleus, welche durch ESR-Experimente an Flavosemi-quinonen untermauert ist^{105,106}.

Das Produkt der Photoreduktion von 5-Deazaflavinen ist nicht das erwartete Hauptprodukt 1,5-H₂dFl_{Red}, ganz im Gegensatz zu der Photoreduktion von Flavinen, bei welchen 1,5-H₂Fl_{Red} das Hauptprodukt ist. Die Deazaflavin-Intermediate reagieren zu einer Mischung aus zwei kovalent verknüpften 5-Deazaflavin-Dimeren (*Schema 34*).

Schema 34: Mögliche diastereomere 5-Deazaflavindimere

Werden 5-Deazaflavine einem kurzen Laserblitz ausgesetzt, so geht ein bestimmter Anteil der Moleküle in den angeregten Singulett-Zustand ¹dFl_{Ox}^{*} über. Ein anschliessendes Intersystem Crossing (ISC) führt zur Bildung des angeregten Triplett-Zustandes ³dFl_{Ox}^{*}. Dieser kehrt in Abwesenheit von Elektronen-Donoren aufgrund von Deaktivierungsprozessen in den Grundzustand zurück (*Schema 35+36*). Schema 35: Triplett-Formation und Deaktivierung

$${}^{1}dFl_{Ox} \xrightarrow{hv} {}^{1}dFl_{Ox}^{*} \xrightarrow{ISC} {}^{3}dFl_{Ox}^{*}$$

$${}^{3}dFl_{Ox}^{*} + {}^{3}dFl_{Ox}^{*} \xrightarrow{Triplett - Triplett - Annihilation} {}^{1}dFl_{Ox}^{*} + {}^{1}dFl_{Ox}^{*}$$

$${}^{3}dFl_{Ox} \xrightarrow{Triplett - Deaktivierung} {}^{1}dFl_{Ox}^{*}$$

In Anwesenheit von Elektronen-Donoren ist das angeregte Triplett aufgrund seines stark positiven Redoxpotentials in der Lage, ein Elektron von dem Donor zu abstrahieren und dadurch das 5-Deaza-Flavosemiquinon ¹HdFl· zu bilden (*Schema 36*). Dieses Radikal zerfällt langsam mittels Dismutation oder Dimerisierung. Dabei überwiegt die Dismutation bei kurzer und Dimerisierung bei langanhaltender Bestrahlung.

Schema 36: Triplett-Formation und Triplett-Quenching

Substrate, welche das angeregte Triplett im 5-Deazaflavin-Photosystem löschen können, werden eingeteilt in Ein-Elektronen-Donoren (z.B. EDTA¹⁰⁷) oder Zwei-Elektronen-Donoren (z.B. BH₄^{- 108,109}). Oftmals kann keine eindeutige Grenze zwischen den beiden Typen von Donoren gezogen werden. Der Reaktionspfad kann nicht anhand der Endprodukte, sondern nur anhand der gebildeten Intermediate bestimmt werden. Die Produktverteilung lässt sich durch das "dFl_{ox}-Bleaching" bestimmen. Darunter versteht man das Verschwinden der gelben Farbe von oxidiertem 5-Deazaflavin. Da die reduzierte Form von 5-Deazaflavin farblos ist (*Schema* 38), liegt bei 100 % Bleaching eine farblose Lösung und somit hauptsächlich $H_2 dFI_{Red}$ vor (*Schema* 37).

Schema 37: Photoreduktion des 5-Deazaflavin-Tripletts

3.4. Fluoreszenz und Phosphoreszenz

Die Orbitalenergien und optischen Spektren von Flavinen und Deazaflavinen wurden von zahlreichen Autoren untersucht¹¹⁰⁻¹¹². Aus diesen Untersuchungen geht hervor, dass die Fluoreszenz von 5-Deazaflavinen von dem niedrigsten π - π^* -Übergang resultiert. Ferner hängt die Quantenausbeute der Fluoreszenz stark von den Elektronendonor- und Elektronenakzeptor-Eigenschaften der Substituenten ab.

Schema 38: Typische Absorptionsspektren¹¹³ von 3,10-Dimethyl-5-Deazaflavin

Weiterhin wurden die Fluoreszenz-, Phosphoreszenz- und Absorptionsspektren von verschiedenen 5-Deazaflavinspezies sowohl bei Raumtemperatur, als auch bei tiefer Temperatur bestimmt¹¹³. In *Schema 39* sind die Absorptionsspektren sowie die korrigierten Emissionsspektren dargestellt. Dabei stellte sich heraus, dass eine Änderung der Temperatur nur einen geringen Effekt auf die Absorptionsspektren hat. Das 5-Deazaflavin-Dimer (HdFI)₂ selbst weist bei beiden Temperaturen keinerlei Fluoreszenz auf. Die Energiedifferenz zwischen ¹dFl_{Ox}^{*} und ³dFl_{Ox}^{*} konnte auf ungefähr 2900 cm⁻¹ (0.36 eV; 8.29 kcal/mol, *Tabelle 2*) bestimmt werden.

Schema 39: Absorptions- und Fluoreszenzspektren von 3,10-Dimethyl-5-Deazaflavin bei 77 K

Absorption: Pfeile nach rechts Emission : Pfeile nach links

(a) dFl_{Ox} (pH 5)
(b) HdFl_{Red}-COOH (pH 5)
(c) H₂dFl_{Red} (pH 5)
(d) HdFl_{Red}⁻ (ph 8.7)

Tabelle 1: Spektroskopische Parameter¹¹³ bei 295 K

Parameter	dFlox	H ₂ dFl _{red}		(HdFl) ₂	
	pH 5∙0	pH 5∙0	рН 8∙7	рН 5∙0	pH 8·7
First absorption maximum (nm)	390*	318 ^B	316 ^c	314 ^D	310 ^p
Maximum of fluorescence (nm)	456	380	365	E	B
Quantum yield of fluorescence, ϕ_f^F	0.20	2×10-3	0.17	<5×10 ⁻⁴	<5×10 ⁻⁴
pK_a of ground state	1.80	7·4 ^H 7·9		9 ^H	
pK _a of triplet state	2.2g				

^A e_{max} 11000. ^B e_{max} 14000. ^C e_{max} 13600. ^D e_{max} 17000. ^E Not determined. ^F Experimental error 10%. ^O Ref. 10. ^H Ref. 8.

Tabelle 2: Spektroskopische Parameter¹¹³ bei 77 K

Parameter	dFla	H₂d	Flred	HdFl _{red} COOH pH 5·0	
	pH 5∙0	pH 5∙0	pH 8·7		
Photoexcitation maximum (nm)	391	319	316	307	
Maximum of fluorescence (nm)	445	368	343	360	
Quantum yield of fluorescence, ϕ_{f}^{A}	0.22	0.35	0.20	0.37	
$S_0 \leftrightarrow S_1 (eV)$	2.95	3.65	3.71	3.73	
Maximum of phosphorescence (nm)	480	425	411	415	
Quantum yield of phosphorescence, ϕ_n^A	0.24	0.01	0.03	0.04	
$S_0 \leftrightarrow T_1 (eV)$	2.58	2.92	3.02	2.99	
Lifetime of phosphorescence, τ_p (s) ^A	1.46	1.92	2.51	1.21	

^A Experimental error 10%.

4. Entwicklung einer Modellverbindung zur Untersuchung der Wechselwirkung zwischen Fe(III)-Porphyrinen und 5-Deazaflavinen

4.1 Design der Modellverbindung

Zu Beginn dieser Arbeit war nicht geklärt, ob^{*} und mit welchem Mechanismus die Fluoreszenz von Deazaflavin 13 bei Wechselwirkung mit dem Kofaktor von CYP3A4 gequencht würde. Für eine detailliertere spektroskopische Untersuchung der möglichen Wechselwirkungen wurde deshalb eine Modellverbindung entwickelt (Schema 16). Die Modellverbindung besteht aus einem Fe(III)-Porphyrin, auf dessen proximaler Bindungstelle ein Thiolat koordiniert ist. Auf der distalen Seite ist ein 5-Deazaflavin über zwei Seitenarme mit dem Fe(III)-Porphyrin verbrückt. Sowohl dreidimensionale Modelle, als auch Computer-unterstützte Molecular Modeling-Studien zeigten, dass eine Länge der Seitenarme von zwei Kohlenstoffeinheiten (C₂) für eine Verbrückung ausreichend ist. Molecular Modeling-Studien für die Modellverbindung mit einem C₂- und einem C₃-Seitenarm (88) ergaben, dass die 5-Deazaflavindicarbonsäure (68) mit einem COOH-COOH-Abstand von 11.3 Å sehr gut auf das Diaminoporphyrin (87) mit einem NH₂-NH₂-Abstand von 10.9 Å passt (Schema 40). Zusätzlich konnte gezeigt werden, dass die Distanz zwischen der Porphyrin- und der 5-Deazaflavinebene etwa 4.0 - 4.5 Å beträgt und dass das verbrückte 5-Deazaflavin nicht exakt planar zum Porphyrinring liegt, sondern leicht gekippt ist. Anhand einer Modellverbindung bestehend aus Flavin und einem ähnlichen Metalloporphyrin konnte *Hirobe*¹¹⁴ eine gegenseitige Beeinflussung des Redoxpotentiales der beiden Chromophore nachweisen. Ferner ist bekannt¹¹⁵, dass Elektronentransfer zwischen Flavin-Koenzymen und Hämgruppen höchstwahrscheinlich über einen outer-sphere-Mechanismus (Abschnitt 4.3.4.2) verläuft. Dabei kommt es zu einer Wechselwirkung der π -Orbitale des Benzolkerns des Flavins und des Porphyrinrings. Die hier entwickelte Modellverbindung soll Aufschluss über einen möglichen Energie- und Elektronentransfer zwischen beiden Chromophoren geben.

^{*} Dieser Aspekt wurde ziemlich eingehend von C. Stoessel in unserer Arbeitsgruppe untersucht.

Schema 40: Molecular Modeling für Modellverbindung 88

4.2 Synthese geeigneter Modellsysteme

4.2.1 Versuche zur Synthese eines Deazaflavin-überbrückten Fe(III)-Porphyrins mit zwei C₂-Seitenarmen

Der erste Ansatz bestand aus der Entwicklung einer Modellverbindung **90**, welche über je zwei C₂-Seitenarme über das Porphyrin verbrückt ist. Retrosynthetisch betrachtet lässt sich die Modellverbindung **90** in ein Poryphrin-Derivat **86** und ein 5-Deazaflavin-Derivat **35** aufteilen, welche über zwei Amidbindungen miteinander gekoppelt sind. Das für die Bildung der Amidbindung erforderliche 5-Deazaflavindicarbonsäuredichlorid **35** kann durch Kopplung eines 2,4,6-Trichloro-5-formyl-pyrimidins **32** mit einem (3-N-Isopropoyl-2-methyl)-phenylessigsäuremethylester **30** hergestellt werden. Das Porphyrin **86** lässt sich zerlegen in je zwei Dipyrrylmethan-Derivate **74**, tert-Butyl N-(2-formyl-3-methoxyphenyl)carbamat **75** und ein Brückenmolekül **80**, das die gewünschte Thiolatfunktion trägt.

Der erste und kürzeste Syntheseansatz für die Synthese des 5-Deazaflavins 35 ging von der kommerziell erhältlichen (3-Aminophenyl)essigsäure 28 aus, welche zunächst mit Thionylchlorid und MeOH in ihren Methylester 29 überführt wurde. Als nächstes wurde die Aminogruppe mit Aceton und NaBH₄¹¹⁶ reduktiv aminiert. Wie in Abschnitt 3 erwähnt, ist bekannt, dass 5-Deazaflavine, welche an Position 3 und 10 nicht substituiert sind sowohl in stark apolaren wie auch stark polaren Lösungsmitteln nicht oder sehr schlecht löslich sind. Um ein später in der Synthese mögliches Löslichkeitsproblem zu vermeiden, wurde eine Isopropylgruppe gewählt, welche die Löslichkeit in apolaren Lösungsmitteln deutlich erhöht. Die Kopplung mit dem Pyrimidin 32 erfolgte mit einem Überschuss an Amin 30 ohne Lösungsmittel bei 95° C gemäss dem Protokoll von Yoneda¹¹⁷ und lieferte ausschliesslich das monosubstituierte Pyrimidin-Derivat 33 in guter Ausbeute. Bei der nachfolgenden Zyklisierung von 33 zum 5-Deazaflavin 34 traten folgende Probleme auf: Von den beiden möglichen Regioisomeren 34 und 36 trat das unerwünschte polarere Isomer 36 als Hauptprodukt auf, wohingegen das erwünschte weniger polare Isomer 34 nach aufwendiger chromatographischer Trennung lediglich in Spuren nachgewiesen werden konnte. Zudem führte die Behandlung des Zyklisierungsvorläufers 33 mit konz. H₂SO₄ gemäss dem Protokoll von Yoneda¹¹⁷ zu einer signifikanten Deisopropylierung an N-10, was zur Bildung eines extrem schlecht löslichen farblosen Festkörpers 36 führte.

Schema 42: Synthese von 35

Reagenzien und Bedingungen: (a) $SOCI_2$ (1.8 Äq.), MeOH, 80°, 30 min, 98 %. (b) Aceton, Na-Acetat-Puffer (PH 4.7), RT, 1 h dann NaBH₄ (5 Äq.), RT, 1 h, 68 %. (c) 95°, 4 h, 80 %. (d) konz. H₂SO₄, 0°, 30 min. (e) POCI₃ (8.4 Äq.), DMF (2 Äq.), 4°C dann **31**, 100°C, 4 h, 59 %.

Demzufolge wurde die Synthesestrategie zunächst folgendermassen geändert. Für die Zyklisierung wurde TFA und somit eine weniger starke Säure verwendet. Zwar konnte somit eine Deisopropylierung weitestgehend unterdrückt werden, doch das erwünschte Regioisomer **34** trat weiterhin nur in Spuren auf. Diese ernüchternden Erkenntnisse erforderten einen neuen Syntheseansatz, bei welchem der aromatische Aminomethylester **30** mit einer Methylgruppe in Position 2 substituiert ist. Somit ist die Zyklisierung zu dem erwünschten 5-Deazaflavin **46** gewährleistet.

Schema 43: Methylsubstitution an Position 9 des 5-Deazaflavins

kommerziell erhältlichen 2-Methyl-3-Nitro-Die Synthese begann mit dem benzylalkohol 38, welcher mit Phosphortribromid in das entsprechende Benzylbromid **39** überführt wurde. Die nachfolgende nukleophile Substitution mit Kaliumcyanid und die saure Hydrolyse mit halbkonzentrierter Schwefelsäure führte zu der Nitrophenylessigsäure **41** gemäss dem Protokoll von Askam¹¹⁸, welche darauf mit Thionylchlorid in der Anwesenheit von MeOH in den entsprechenden Nitrophenylessigsäuremethylester 42 überführt wurde. Im Anschluss wurde die Nitrogruppe mit Pd-C und H₂ zu der Aminogruppe reduziert, welche in einer reduktiven Aminierung mit Hilfe von Aceton und NaBH4¹¹⁶ in das N-Isopropylamin-Derivat **44** überführt wurde. Die weitere Kopplung mit dem Pyrimidin 32 und die anschliessende Zyklisierung mittels konz. TFA lieferte das 5-Deazaflavin 46. Die Synthese bis zu dieser Stufe zeichnete sich durch eine hohe Gesamtausbeute (44 % über 8 Stufen) aus. Bei der weiteren N-Alkylierung des 5-Deazaflavins 46 an N(3) stellte sich die Methylengruppe des Seitenarmes gemäss dem Protokoll von Gani¹¹⁹ als unerwartet

stark acid heraus. Bei der Verwendung von Cs₂CO₃ schritt die Reaktion zwar rasch voran, lieferte aber überwiegend zwei Nebenprodukte **49** und **50**. Bei milderen Basen wie K₂CO₃, Na₂CO₃, TEA, NaOAc und (i-Pr)₂NEt war kein oder nur ein mässiges Voranschreiten der Reaktion erkennbar, wobei überwiegend die Nebenprodukte gebildet wurden.

Reagenzien und Bedingungen: (a) PBr₃ (1.7 Äq.), Et₂O, 50°, 30 min, 95 %. (b) KCN (1.8 Äq.), EtOH (75 %), 70°, 30 min, 95 %. (c) H₂SO₄ (50 %), AcOH (100 %), 120°, 30 min, 90 %. (d) SOCl₂ (1.8 Äq.), MeOH, 80°, 1 h, 99 %. (e) Pd-C (5 %), EtOH (95 %), H₂, 1 bar, RT, 4.5 h, 92 %. (f) Aceton, Na-Acetat-Puffer (PH 4.7), RT, 30 min danach NaBH₄, 0°, 20 min, 84 %. (g) 95°, 30 min danach CH₂Cl₂, 50°, 16 h, 84 %. (h) TFA (98 5), 50°, 2 h, 85 %. (i) X₂CO₃ (X=Na,K,Cs; 5.6 Äq.), BrCH₂COOCH₃ (10 Äq.), DMF, x h

Ein Versuch der Reduktion des Methylesters **46** mit DIBAH in THF zu dem entsprechenden Alkohol und der anschliessenden Alkylierung an N(3) zu **52** verlief erfolgreich. Hierbei sei angemerkt, dass die Behandlung von 5-Deazaflavinen auch zu einer Reduktion des oxidiert vorliegenden 5-Deazaflavins führt. Erkennbar war dieser Vorgang an der kontinuierlichen Entfärbung der gelben Lösung (bleaching) wie in Abschnitt 3 aufgeführt. Nach längerem Aufenthalt an der Luft kehrte die gelbe Farbe wieder zurück. Die direkte Oxidation des Alkohols **52** mit Chrom-Reagenzien verursachte allerdings eine C₁-Verkürzung eines der Seitenarme und führte zu **55**. Die indirekte Oxidation des Alkohols über den Aldehyd **54** mit Dess-Martin-Periodinan¹²⁰ gelang zwar in mässiger Ausbeute, dafür schlug die anschliessende Oxidation zur Carbonsäure **53** fehl.

Schema 45: Probleme bei der 3-Alkylierung von 46

Reagenzien und Bedingungen: (a) DIBAH (20 %), abs. THF, 0°, 30 min, 89 %. (b) K_2CO_3 (5.6 Äq.), BrCH₂COOCH₃ (3.8 Äq.), DMF, RT, 4 h, 37 %. (c) PDC (5 Äq.), DMF, RT, 4 h, 34 %. (d) Dess-Martin-Periodinan (1.1 Äq.), CH₂Cl₂, 0° \rightarrow RT, 2 h, 55 %. (e) (i) Ag₂O (2 Äq.), CH₂Cl₂, RT (ii) Ag₂O (5 Äq.), Dioxan-EtOH, 1 M NaOH, 70° C, 30 min.

Trotz erheblicher Bemühungen konnte das erwünschte N-alkylierte 5-Deazaflavin **47** nicht in präparativem Massstab gewonnen werden, was eine weitere Modifikation der Synthese erforderte. Die acide Methylengruppe wurde hierbei bereits nach dem Protokoll von *Hanna*¹²¹ auf der Stufe der Nitrilverbindung **56** doppelt methyliert.

Schema 46: Synthese von 59 mit dimethyliertem Seitenarm

Reagenzien und Bedingungen: (a) tert-BuOK (2.2 Äq.), MeI (2.2 Äq.), 18-Krone-6 (0.25 Äq.), THF, -78°, 20 min, 77 %. (b) K₂CO₃ (5.6 Äq.), BrCH₂COOCH₃ (5.6 Äq.), DMF, RT, 5 h, 67 %. (c) 0.15 N LiOH, THF-H₂O (2.5:1), RT, 30 min

Das erwünschte doppelt alkylierte 5-Deazaflavin **57** konnte diesmal in guter Ausbeute erhalten werden. Die weitere Verseifung des Dimethylesters **58** mit milden Basen führte allerdings nicht wie gewünscht zu der 5-Deazaflavindicarbonsäure **59**, sondern lediglich zu der Monocarbonsäure **60**. Bei der Anwendung von starken Basen oder erhöhter Temperatur wurde das 5-Deazaflavin zerstört. Aus der Literatur¹²² ist bekannt, dass N(3)-alkylierte 5-Deazaflavine bei einem PH >10 in wässrigen Lösungen instabil sind. Die Verseifung mit Tristrimethylsilanolat oder Lil in DMF blieb ebenfalls erfolglos.

4.2.2 Entwicklung der Synthese für eine Modellverbindung aus Porphyrin und 5-Deazaflavin mit einem C_2 - und einem C_3 -Seitenarm

Aufgrund der massiven Schwierigkeiten bei der Herstellung des C₂-C₂-Deazaflavins **35**, wurde eine neue Synthesestrategie entwickelt, bei welcher einer der Seitenarme lediglich um eine C₁-Einheit verlängert ist. Weiterhin wurde die Isopropylgruppe an N(10) aufgrund ihrer beobachteten Säurelabilität bei 5-Deazaflavinen durch eine Methylgruppe (*Schema 41*) ausgetauscht. Zudem wurde das Porphyrin mit einem Aktivester des 5-Deazaflavins gekoppelt.

Reagenzien und Bedingungen: (a) PBr₃ (1.65 Äq.), Et₂O, RT danach 50°, 1 h, 99 %. (b) NaH (5 Äq.), CH₂(COOCH₃)₂ (5 Äq.), DMSO, 0°→ RT, 45 min danach **39**, RT, 45 min, 58 %. (c) Lil (3 Äq.), DMF-H₂O (9:1), 160°, 7 h, 76 %. (d) Pd-C (5 %), H₂, 1 bar, EtOH, RT, 4 h, 76 %. (e) NaH (1.1 Äq.), Mel (1.2Äq.), RT, 45 min, 64 %

Die Synthese des 5-Deazaflavins wurde wiederum mit Barbitursäure **31** und 2-Methyl-3-Nitrobenzylalkohol **38** begonnen, welche beide kommerziell erhältlich waren.

Schema 48: Retrosynthese für dimethyliertes 5-Deazaflavindicarbonsäuredichlorid 69

Die Barbitursäure **31** wurde gemäss dem Protokoll von Yoneda¹¹⁷ in einer Vilsmeyer-Reaktion in das formylierte Pyrimidinderivat **32** überführt. Der Benzylalkohol **38** wurde zunächst in das Benzylbromid **39** transformiert, welches darauf mit Na-Dimethylmalonat in den 2-substituierten aromatischen Malonsäuredimethylester **61** überführt wurde. Die weitere Decarboxylierung mit Lil führte zu einem aromatischen Propionsäuremethylester **62**. Bei dieser Reaktion konnte die Nebenreaktion der α -Methylierung drastisch reduziert werden, indem 10 % Wasser der Reaktion hinzugefügt wurden. Zuletzt wurde noch die Nitrogruppe des Propionsäuremethylesters **62** mit Hilfe von Pd-C und H₂ in eine Aminfunktion transformiert, welche dann mit Mel zu **64** monomethyliert werden konnte. Die Monomethylierung wurde jeweils zu dem Zeitpunkt beendet, an welchem der Anteil an dimethyliertem Produkt und nicht umgesetztem Amin minimal war. Das nichtumgesetzte Amin wurde jeweils zurückgewonnen.

Schema 49: Synthese der aktivierten 5-Deazaflavindicarbonsäurederivate 69 und 70

Reagenzien und Bedingungen: (a) DMF (2 Äq)., POCl₃ (8.4 Äq.), 0°, 15 min danach **31**, 100°, 4 h, 59 %. (b) CH_2Cl_2 , 100°, 5 min, 85 %. (c) TFA (98 %), 60°, 1 h, 98 %. (d) K_2CO_3 (5.6 Äq.), BrCH₂COOCH₃ (10 Äq.), DMF, RT, 10 h, 65 %. (e) LiOH·H₂O (5 Äq.), THF-H₂O (3:2), RT, 1 h, 68 %. (f) EDC·HCI (1.4 Äq.), C₆F₅OH (3 Äq.), DMF, RT, 1 h, 83 %.

Die Kopplung des Pyrimidins **32** mit dem N-Methylderivat **64** verlief sehr rasch. Eine Überschuss an Pyrimidin sowie zu lange Reaktionszeiten führten zu einem erhöhten Anteil an di- bzw. trisubstituiertem Pyrimidin-Derivat. Die weitere Behandlung des monosubstituierten Pyrimidins **65** mit konzentrierter TFA führte in einer raschen und sauberen Reaktion zu dem 5-Deazaflavinmonomethylester **66**. Dieser wurde mit Methylbromoacetat gemäss *Gani*¹¹⁹ an Position 3 N-alkyliert. Die anschliessende Verseifung konnte mit der klassischen Methode LiOH in THF-H₂O erreicht werden. Die 5-Deazaflavindicarbonsäure **68** liess sich leicht mit Pentafluorophenol in Gegenwart von EDC in den aktivierten 5-Deazaflavindiester **70** überführen. Alle Versuche, Verbindung **69** mittels SOCl₂ oder (COCl)₂ herzustellen schlugen fehl.

Die Synthese des Porphyrins wurde mit dem im Handel erhältlichen 3-Methoxyanilin **72** begonnen, dessen Amino-Funktion zuerst zum tert-Butoxycarbamat **73** geschützt wurde. Die anschliessende Formylierung gemäss dem Protokoll von *Stanetty*¹²³ lieferte den 2-formylierten Salicylaldehyd **75**. Das Dipyrrylmethan¹²⁴ **74** wurde aus dem Dipyrrylmethandiethylester **71** synthetisiert, welcher in der Gruppe ausreichend vorhanden war. Die Verseifung und die nachfolgende Decarboxylierung des Diesters lieferte das Licht- und Sauerstoffempfindliche Dipyrrylmethan **74**, welches dann rasch weiter verwendet wurde. Die klassische [2+2] Porphyrinkondensation¹²⁵ des Dipyrrylmethans **74** mit dem Salicylaldehyd **75** unter Säurekatalyse mit p-Toluolsulfonsäure ergab nach anschliessender Oxidation mit 2,3-Dichloro-5,6-dicyanoquinon (DDQ) ein Gemisch aus zwei Atropisomeren $\alpha \alpha$ **76**, dem polareren Isomer und $\alpha\beta$ **77**, dem weniger polaren Isomer im Verhältnis 3.4 : 1 (*Schema 50*).

Schema 50: Synthese der Atropisomere 76 und 77

Reagenzien und Bedingungen: (a) NaOH (10 %), EtOH, Rückfluss, 3 h. (b) H₂N(CH₂)₂OH, Ar, 120°, 30 min, 40 % (2 Stufen). (c) BOC₂O (1.1 Äq.), THF, RT, 24 h, 95 %. (d) t-BuLi (2.2 Äq.), Et₂O, -20°, 3 h danach DMF (2 Äq.), -78°→ RT, 56 %. (e) kat. p-TsOH, MeCN, RT, 68 h danach DDQ (1.5 Äq.) in THF, RT, 1 h, 48 % αα 14 % αβ

Nach der chromatographischen Trennung des Gemisches **76** und **77** auf Kieselgel wurden die BOC-Schutzgruppen des $\alpha\alpha$ -Isomers mit Trifluoressigsäure entfernt. Die beiden freien Aminogruppen wurden im nächsten Schritt mit Acetanhydrid in die säurestabilen Acetylaminogruppen überführt. Die geringe Ausbeute bei der Porphyrinsynthese (12 % ab dem Salicylaldehyd) ist im Einklang mit den in der Literatur beschriebenen Ausbeuten (10-30 %). Die Spaltung der beiden Methylether mit wasserfreiem Aluminiumtrichlorid in einer Mischung aus CH₂Cl₂ und EtSH führte zu dem Bisphenolporphyrin **83**. Das für die weitere Synthese erforderliche Dimesylat (Brückenmolekül) **80** wurde aus dem entsprechenden Diol **79** hergestellt (*Schema*)

51). Dieses wurde wiederum durch Hydroborierung des Diallylthiophenolcarbamates78 gewonnen, welches in der Gruppe in ausreichender Menge zur Verfügung stand.

Schema 51: Synthese des Brückenmoleküls 80

Reagenzien und Bedingungen: (a) $BH_3 \cdot Me_2S$ (3 Äq.), THF, RT, 2 h danach 3 N NaOH, H_2O_2 (30%), 0°, 1 h, danach 1 h Rückfluss, 77 %. (b) MsCl (4.6 Äq.), NEt₃ (8 Äq.), CH₂Cl₂, 0° \rightarrow RT, 3 h, 87 %

Die Kopplung des Dimesylats **80** mit dem Bisphenolporphyrins **83** erfolgte in heissem DMF in der Gegenwart von Cs₂CO₃ unter hochverdünnten Bedingungen. Das Cs₂CO₃ diente einerseits als Base für die Generierung des Bisphenolats und andererseits als Templat für die Makrozyklisierung¹²⁶. Die Entfernung der beiden Acetylaminogruppen mit einer heissen Mischung aus 6 M HCl und MeOH ergab **85**. Zuletzt wurde die Thiocarbamatgruppe des S-geschützten Bis(aminophenyl)-porphyrins **85** mit entgastem KOMe in trockenem und entgastem Dioxan unter Argon-Atmosphäre entfernt und lieferte **86** (*Schema 52*). Es war hierbei sehr wichtig unter sauerstofffreien Bedingungen zu arbeiten, da das freie Thiol **86** in der Gegenwart von Sauerstoff leicht oxidiert werden kann.

Schema 52: Synthese des S-entschützten Diaminoporphyrins 86

Reagenzien und Bedingungen: (a) CH₂Cl₂, TFA (98%), RT, 1 h, 78 %. (b) Pyridin (140 Äq.), DMAP (0.1 Äq.), Ac₂O (8 Äq.), Rückfluss, 2 h, 62 %. (c) EtSH (500 Äq.), AlCl₃ (38 Äq.), CH₂Cl₂, RT, 21 h, 70 %. (d) Cs₂CO₃ (30 Äq.), abs. DMF, 60°danach **80** (1.5 Äq.), DMF, 60°C, 5 h, hochverdünnt, 76 %. (e) 6 M HCl-MeOH (50:1), 130°, 5 h, 89 %. (f) KOMe (12 Äq.), abs. Dioxan, Ar, 100°, 30 min, 85 %

Die weitere Kopplung des Diaminoporphyrins **86** mit dem Aktivester des 5-Deazaflavins **70** verlief selbst unter konzentrierten Bedingungen, einem Überschuss an Aktivester sowie erhöhten Temperaturen sehr langsam und mit geringer Ausbeute. Kopplungsversuche mit der 5-Deazaflavindicarbonsäure **68** und den Reagentien EDC, Carbonyldiimidazol, HOBT/Oxalylchlorid und BTBO¹²⁷ blieben erfolglos. Die Herstellung des Dicarbonäuredichlorids **69** mittels Thionylchlorid und Oxalylchlorid führte trotz zahlreicher Reaktionsvarianten stets zu wüsten Substanzgemischen und wurde deshalb verworfen. Die Synthese wurde mit der Eiseninsertion von **87** mittels trockenem und entgastem FeBr₂ in der Gegenwart von 2,6-Lutidin in Toluol abgeschlossen (*Schema 53*). Die letzte Stufe zu **88** wurde unter sauerstoffreien Bedingungen durchgeführt und nach der Reinigung und Trocknung stets in der "Glove Box" aufbewahrt.

Schema 53: Synthese der Modellverbindung 88

Reagenzien und Bedingungen: (a) abs. DMF, 100°, 4 h, 37 %. (b) 2,6-Lutidin (20 Äq.), FeBr₂ (14 Äq.), abs. Toluol, 120°, 45 min, 89 %

4.3 Resultate

4.3.1 Elektrochemische Untersuchungen

Bei der Bestimmung des Reduktionspotentiales von 5-Deazaflavin **67** zeigte sich, dass bei einem Vorwärtsscan (Scan zu negativeren Potentialen) ein katodischer Peak auftrat, welcher eine Ein-Elektronenreduktion von dFl_{Ox} in dFl⁻ bzw. HdF- anzeigt. Bei dem anschliessenden Rückwärtsscan konnte kein anodischer Peak mit vergleichbarer Intensität beobachtet werden, was darauf hinweist, dass die Ein-Elektronenreduktion nicht reversibel ist (*Schema 54*).

Bedingungen: 0.1 M LiClO₄ in MeCN; RT; Potentialverlauf: +1.00 V \rightarrow -2.00 V; 1 V/s; Arbeitselektrode: Glassy Carbon, Gegenelektrode: Pt-Netz, Referenzelektrode; Ag-Draht.

Selbst bei einer Erhöhung der Scangeschwindigkeit (bis zu 5 V/s) blieb der anodische Peak aus. Es konnte ferner keine weitere Reduktion zu H-dFl_{Red} bzw. H_2dFl_{Red} beobachtet werden. Dies steht im Einklang mit den in Abschnitt 3 angesprochenen Radikaleigenschaften, denen zufolge das Radikal rasch in dFl_{Ox} und H_2dFl_{Red} dismutiert. Für eine genauere Bestimmung des Potentials erwies sich die differentielle Pulsvoltammetrie als sehr hilfreich. Die Vorteile gegenüber der zyklischen Voltammetrie liegen in einer geringeren Nachweisgrenze und einer besseren Auflösung der Halbstufenpotentiale. Aufgrund der erheblichen Lösungsmittelabhängigkeit der Redoxpotentiale^{128,129} wurde dem System Ferrocen als interne Referenz beigemengt, gegenüber welchem die Redoxpotentiale bestimmt wurden.

Schema 55: Differentielles Pulsvoltammogramm von 67

Bedingungen: 0.1 M LiClO₄ in MeCN; RT; Potentialverlauf: +1.00 V \rightarrow -2.00 V; Arbeitselektrode: Glassy Carbon, Gegenelektrode: Pt-Netz, Referenzelektrode; Ag-Draht.

Schema 56: Elektrochemisch untersuchte Verbindungen

Schema 57: Reduktions- und Oxidationspotentiale in MeCN^{*} vs. SCE, bestimmt mittels DPV und Vergleich mit Literaturwerten

Subst.	Redoxpaar	E in V	Vergleich mit Literaturwerten
67	dFl _{Ox} ⁺ / dFl _{Ox}	+1.93	
	¹ dFl _{ox} [*] / dFl ⁻	+1.85	
	dFl _{ox} / dFl _{ox} -	-0.98	-0.80 ^{e,89} / -0.65 ¹⁰¹ / -1.00 ^{f,134}
82	P ²⁺ / P ⁺	+1.38	+1.30(H ₂ OEP) ^{a,130}
			+0.89(H ₂ OEP) ^{c,132}
	P ⁺ / P	+0.84	+0.81(H ₂ OEP) ^{a,130}
			+0.39(H ₂ OEP) ^{c,132}
	P / P ⁻	-1.33	-1.44(H ₂ OEP) ^{a,131}
			-1.46(H ₂ OEP) ^{b,130}
			-1.90(H ₂ OEP) ^{c,132}
	P ⁻ / P ²⁻	-1.82	-1.86(H ₂ OEP) ^{b,130}
			-2.31(H ₂ OEP) ^{c,132}
86	P ⁺ / P	+0.68	
	P / P ⁻	-1.07	
89	$Fe^{IV}P^+ \leftrightarrow Fe^{III}P^{2+} / Fe^{III}P^+$	+1.19	+1.24(FeOEP-OH) ^{a, 130}
	Fe ^{lll} P⁺↔ Fe ^{lV} P / Fe ^{lll} P	+1.01	+1.01 (Fe(OEP)CI) ^{d,133}
			+1.00(FeOEP-OH) ^{a,130}
	Fe ^{III} P / Fe ^{II} P	-0.78	
	Fe ^{ll} P / Fe ^l P ↔ Fe ^{ll} P ⁻	-1.69	
87	P ²⁺ / P ⁺	+1.29	
	P ⁺ / P	+0.73	
	dFl _{ox} ⁺ / dFl _{ox}	-0.91	
	P / P ⁻	-1.31	
88	dFl _{Ox} ⁺ / dFl _{Ox}	+2.01	
	Fe ^{lV} P⁺ ↔ Fe ^{llI} P ²⁺ / Fe ^{llI} P	+1.27	
	Fe ^{III} P⁺↔ Fe ^{IV} P / Fe ^{III} P	+0.64	
	Fe ^{III} P / Fe ^{II} P	-0.62	
	dFl _{ox} / dFl _{ox}	-1.10	
	Fe ^{ll} P / Fe ^l P ↔ Fe ^{ll} P ⁻	-1.55	
	1		

 $^{+}E^{0}$ (Fc⁺/Fc) = +0.41 V (in MeCN vs. SCE)¹³⁵ ; P = Porphyrin

**Bestimmt mit *Gleichung* 19

- a) 0.1 M TBAP in Butyronitril vs. SCE
- b) 0.1 M TBAP in DMSO vs. SCE
- c) Bu₄NPF₆ PhCN vs. Ferrocen
- d) 0.1 M Bu₄NClO₄ in CH_2Cl_2 vs. SCE
- e) 0.1 M TEABr + AcOH in MeCN vs. SCE
- f) 0.1 M Phosphat-Puffer, pH 7, 20°C vs. NHE

Ein elektrochemisches Kriterium für die Unterscheidung von Redoxprozessen von Porphyrin-Ring und Metall ist die 2.25 ± 0.15 V Differenz zwischen dem Potential der ersten Ringoxidation und der ersten Ringreduktion¹³⁶. Die hier ermittelte Differenz von 2.19 V für **88** genügt diesem Kriterium. Bei der Oxidation und Reduktion von Fe-Porphyrinen muss zwischen verschiedenen Elektromeren unterschieden werden, da gemäss *Reed*¹³⁶ eine Delokalisation der Ladung zwischen Metall und Ligand möglich ist. Das stark negative Reduktionspotential von **67** zeigt deutlich die thermodynamische Instabilität des Semiquinons wieder.

4.3.2 Spektroelektrochemische Untersuchungen

Die Spektren von Porphyrinen im sichtbaren Bereich wurden anhand eines Vier-Orbital-Modells erfolgreich von *Gouterman*¹⁸⁶ beschrieben. Die Spektren weisen eine starke Absorption nahe des UV-Bereiches auf, welche auch als B- oder *Soret*-Bande bezeichnet wird. Schwächere Absorptionen lassen sich im Bereich von 500-700 nm finden, welche auch als Q-Banden bekannt sind. Die *Soret*-Bande beruht auf Übergängen zwischen a_{1u} und e_g -Orbitalen, und die Q-Banden auf Übergängen zwischen a_{2u} und e_g -Orbitalen (*Schema 58*). Dabei ist e_g zweifach entartet.

Schema 58: Porphyrin-Übergänge im visuellen spektralen Bereich

Eine detailliertere Darstellung der Orbitalenergien liefert *Schema 59.* Daraus geht hervor, dass die Insertion von Eisen die Energie des a_{1u} -Orbitales nur geringfügig verändert. Da die Energiedifferenz zwischen dem a_{1u} - und dem e_g -Orbital bei der Insertion des Eisens etwas zunimmt, äussert sich dies in einer leichten hypsochromen Verschiebung der *Soret*-Bande. Die Eiseninsertion hat einen wesentlich stärkeren Einfluss auf die Energie des a_{2u} -Orbitales. Die Energiedifferenz zwischen a_{2u} und e_g -Orbital nimmt sehr stark zu, was zu einer starken hypsochromen Verschiebung der Q-Banden führt. Die hier aufgeführten Energieniveaudiagramme sind berechnet für Porphyrine mit D_{2h}-Symmetrie (TPP) und D_{4h}-Symmetrie (FeTPP).

Schema 59+60: Relative Orbitalenergien für TPP und Fe(II)TPP und diverse ionische Zustände¹⁸⁷

Schema 60 zeigt deutliche Trends in den Orbitalenergien für verschiedene Oxidationszustände. Die Orbitalenergien $(a_{1u}, a_{2u} \text{ und } 2e_g)$ werden durch sukzessive Reduktion von Fe(II)TPP energetisch angehoben. Ferner geht daraus hervor, dass die Extraktion des ersten Elektrons von Fe(II)TPP zu einer Stabilisierung aller Orbitale führt. Die Extraktion des zweiten Elektrons führt dagegen zu einer energetischen Anhebung der besetzten Orbitale. Da diese Energieänderungen variabel sind, kann es mitunter zu einem "Orbital Switching" kommen.

Bei den spektroelektrochemischen Methoden wird an eine Probe in einer speziellen Küvette ein konstantes Potential angelegt und danach in bestimmten Zeitintervallen ein UV-Spektrum aufgenommen. Dies erlaubt die spektroskopische Beobachtung des zeitlichen Verlaufs eines elektrochemischen Vorganges.

Messung von 67 (5-Deazaflavindimethyldiester)

Zur Überprüfung des in Abschnitt 4.3.1 ermittelten Oxidationspotentiales von +1.93 V sollte das Anlegen eines konstanten Potentiales von +2.00 V ausreichen, um **67** in ausreichendem Masse zu oxidieren. Eventuell oxidierter Elektrolyt sollte dabei keine Störung hervorrufen, da er in dem essentiellen Absorptionsbereich (> 200 nm) transparent ist.

Schema 61: Zeitlicher Verlauf der Absorption bei der Oxidation von 67

Bedingungen: 5 min bei +2.00 V; 0.1 M LiClO₄ in MeCN

Wie aus *Schema 61* ersichtlich wird, nimmt die Absorption der Maxima 225 nm, 262 nm, 343 nm und 405 nm ab, wohingegen ein neues Absorptionsmaximum bei 376 nm auftritt, welches dem Radikalkation dFl_{0x}^{+} von **67** zugeordnet werden kann. Das Auftreten von zahlreichen isosbestischen Punkten deutet daraufhin, dass während der Oxidation keine andere Spezies auftritt. Leider konnten zu der Natur des Radikal-Kations keine Vergleiche mit der Literatur herangezogen werden.

Schema 62: Zeitlicher Verlauf der Absorption bei der Reduktion von 67

Bedingungen: 5 min bei -1.50 V; Alle 10 s Spektrenaufnahme; 0.1 M LiClO₄ in MeCN

In *Schema 62* ist deutlich ein Rückgang der Absorption der drei Absorptionsmaxima (266, 343 und 405 nm) bei fortwährender Reduktion von **67** zu erkennen. Im Gegenzug ist eine deutliche Zunahme der Absorption bei 315 nm zu beobachten. Dieses neue Absorptionsmaximum wird der vollständig reduzierten Form (H₂dFl_{Red}) von **67** zugeordnet^{89,113} Gemäss *Schema 33* und *Schema 36* kann es sich dabei nicht um das Radikalanion beziehungsweise das Semiquinon handeln, da dieses bei 520-530 nm^{89,122,137} absorbiert. Die Absorption bei 520 nm stieg zwar im Verlauf der Reduktion stetig an (Inset in *Schema 62*), doch blieb die Intensität insgesamt sehr schwach. Dieser Umstand und die irreversible Reduktion bei der Zyklovoltammetrie zeigt, dass das nach der Ein-Elektronenreduktion gebildete Semiquinon wie in Abschnitt 3.3 erläutert dismutiert oder dimerisiert. Die Bildung des Dimers kann ebenfalls nicht ausgeschlossen werden, da es gleichfalls eine Absorption in der Gegend von 315 nm aufweist.

Messung von 82 ("Free base" Porphyrin)

Schema 63: Zeitlicher Verlauf der Oxidation von 82

Bedingungen: 5 min bei +1.00 V; Alle 10 s Spektrenaufnahme; 0.1 M LiClO₄ in MeCN

Die Entfernung von Elektronen aus dem HOMO (a_{2u}) von Porphyrinen hat eine Intensitätsverminderung der Q-Banden bei 500-540 nm¹³⁸ zur Folge, wie in Schema 63 deutlich erkennbar ist. Dies ist somit ein gutes Indiz auf die Bildung von Porphyrin-Radikalkationen. Aus der Literatur¹³⁹ ist bekannt, dass Porphyrin-Radikalkationen die Tendenz haben, in Lösung zu dimerisieren. Diese Porphyrin-Radikaldimere weisen ein typisches Absorptionsmaximum oberhalb von 900 nm (Inset in Schema 63) und eine schwache Bande bei etwa 575 nm auf. Diese Dimere befinden sich in einem Gleichgewicht mit den monomeren Porphyrin-Radikalkationen. Bei niederen Temperaturen ist die Dimerisierung bevorzugt, wohingegen bei erhöhter Temperatur die Monomere bevorzugt sind. UV/VIS-Spektren monomerer Porphyrin-Radikalkationen weisen eine starke Absorptionsbande in der Region von 650-700 nm¹³⁹ auf. Ein weiteres typisches Merkmal¹³⁰ ist die geringe aber stete Zunahme der Absorption für Porphyrin-Radikalkationen im Bereich von 600-1000 nm. Die Bildung des Radikal-Kations war in diesem Fall reversibel. Bei Anlegen eines Potentiales von 0 V konnte das anfängliche Spektrum fast vollständig zurück erhalten werden. Die bathochrome Verschiebung der Soret-Bande steht im Einklang mit den Beobachtungen von Inisan¹³² bei der Oxidation von H₂TPP.

Schema 64: Zeitlicher Verlauf bei der Reduktion von 82

Bedingungen:15 min bei -2.00 V; Alle 20 s Spektrenaufnahme; 0.1 M LiClO₄ in MeCN

Der Rückgang der Intensität, die Verbreiterung der *Soret*-Bande wie in *Schema 64* deutlich zu sehen und die grünliche Verfärbung der Lösung ist ein deutlicher Hinweis für das Auftreten eines Porphyrin-Radikalanions¹⁴⁰.

Messung von 89 (Fe(III)S⁻(NH₂)₂

Schema 65: Zeitlicher Verlauf der Absorption bei der Oxidation von 89

Bedingungen: 10 min bei +1.50 V; Alle 10 s Spektrenaufnahme; 0.1 M LiClO₄ in MeCN

Hier konnte ein starker Rückgang der Intensität der *Soret*-Bande bei 404 nm beobachtet werden. Im Vergleich zu der Oxidation von **82** (*Schema 63*) trat nur eine unwesentliche bathochrome Verschiebung der *Soret*-Bande auf. Der Rückgang der Q-Bande bei 515 nm sowie ein leichter Anstieg der Absorption im Bereich von 700-1000 nm ist ein typisches Merkmal für das Auftreten eines Porphyrin-Radikalkations und nicht für eine Oxidation von Fe(III) zu Fe(IV).

Bei der Reduktion von **89** tritt typischerweise eine bathochrome Verschiebung der *Soret*-Bande und ein isosbestischer Punkt bei etwa 411 nm auf. Der isosbestische Punkt zeigt klar auf, dass während der Reduktion Fe(III)Por \rightarrow Fe(II)Por keine weitere Spezies auftritt. Die bathochrome Verschiebung tritt häufig auf, wenn das Porphyrin an der meso-Position mit elektronenziehenden Gruppen substituiert ist¹⁴¹. Die Tatsache, dass während der Reduktion von **89** kein Rückgang der Intensität der *Soret*-Bande zu beobachten ist, deutet darauf hin, dass Fe(III) zu Fe(II) reduziert wird. Ein Porphyrin-Radikalanion tritt somit nicht auf, da sonst wie bei der Reduktion von **82** (*Schema 64*) ein Rückgang der Intensität der *Soret*-Bande zu beobachten wäre.

Schema 66: Zeitlicher Verlauf der Absorption bei der Reduktion von 89

Bedingungen: 5 min bei -1.00 V; Alle 10 s Spektrenaufnahme; 0.1 M LiClO₄ in MeCN

Schema 67: Zeitlicher Verlauf bei der Oxidation von 88

Bedingungen: 10 min bei +1.50 V; Alle 10 s Spektrenaufnahme; 0.1 M LiClO₄ in MeCN

Bei der Oxidation der Modellverbindung **88** konnte analog zu der Oxidation von **89** ein Rückgang der Intensität der *Soret*-Bande beobachtet werden. Eine starke bathochrome Verschiebung der *Soret*-Bande konnte nicht beobachtet werden. Die Bildung des 5-Deazaflavin Radikalkations wurde ebenfalls bei diesem Potential nicht beobachtet. Der Rückgang der Absorption im Bereich der Q-Banden, der kontinuierliche Anstieg der Absorption im langwelligen Bereich, sowie das Auftreten eines Absorptionsmaximums bei etwa 900 nm sind deutliche Indizien für ein Porphyrin-Radikalkation.

Bei der Reduktion der Modellverbindung **88** (*Schema 68*) ist zunächst eine bathochrome Verschiebung der *Soret*-Bande zu beobachten, welche auf die Reduktion von Fe(III) zu Fe(II), gemäss der Reduktion von **89** (*Schema 66*) hindeutet. Nach weiterer Reduktion findet eine weitere bathochrome Verschiebung und zusätzlich eine Aufspaltung der *Soret*-Bande statt, was auf die Bildung von Fe(II)Por⁻⁻ hindeutet^{141,142}. Der Rückgang der Absorption bei 343 nm und das Auftreten eines Maximums bei 317 nm nach längerer Reduktion (Inset in *Schema 68*) deutet auf die Bildung von vollständig reduziertem 5-Deazaflavin hin. Das Spektrum

nach 15 min bei -1.80 V wird dabei dem H₂dFl_{Red}-Fe(II)-Por⁻ zugeordnet. Wie in *Schema 59* und *60* aufgeführt liegen die Orbitale a_{1u} und a_{2u} im Falle für Fe(II)Por⁻ sehr dicht zusammen. Zusätzlich ist die Energiedifferenz zwischen a_{1u} und a_{2u} und $2e_g$ geringer als für unkomplexiertes Porphyrin. Dies erklärt die bathochrome Verschiebung der *Soret*-Bande. Die beiden Maxima bei 421 nm und 439 nm werden somit den Übergängen $a_{1u} \rightarrow 2e_g$ (*Soret*) und $a_{2u} \rightarrow 2e_g$ (Q) zugeordnet.

Schema 68: Zeitlicher Verlauf bei der Reduktion von 88

Bedingungen: 5 min bei -1.50 V; Alle 10 s Spektrenaufnahme; 0.1 M LiCIO₄ in MeCN

4.3.3 Fluoreszenz und Fluoreszenzlöschung (Quenching)

Bei der bimolekularen Fluoreszenzlöschung unterscheidet man zwischen der statischen und der dynamischen Fluoreszenzlöschung.

Schema 69: Statische Fluoreszenzlöschung

Statische Löschung tritt auf, wenn der Quencher (Q) die Löschsphäre während der Lebensdauer des angeregten Moleküls (M^{*}) nicht verlassen kann. Dies tritt häufig auf bei hohen Quencher-Konzentrationen oder bei sehr kurzen Lebensdauern des angeregten Moleküls. Alternativ hierzu ist auch die Bildung eines nicht-fluoreszenten Komplexes im Grundzustand möglich (*Schema 69*).

Bei der dynamischen Fluoreszenzlöschung (*Stern-Volmer* Quenching) ist es dem Quencher möglich, sich mittels Diffusion dem Molekül zu nähern und dieses zu deaktivieren. Hierbei ist τ_0 die Lebensdauer des angeregten Zustandes von M und k_q die Quenching-Konstante, verursacht durch Q. Logischerweise ist die "in situ" Lebensdauer des angeregten Zustandes von der Quencherkonzentration abhängig.

Schema 70: Mechanismus der dynamischen Fluoreszenzlöschung

Dynamische Fluoreszenzlöschung für den in *Schema 70* aufgeführten Mechanismus wird durch die *Stern-Volmer*-Beziehung (*Gleichung 1*) beschrieben:

Gleichung 1: Stern-Volmer Quenching

$$\frac{\tau_0}{\tau} = \frac{\mathsf{I}_0}{\mathsf{I}} = \mathsf{k}_{\mathsf{Q}}\tau_0[\mathsf{Q}]$$

Das Produkt $k_{Q\tau_0} = K_{SV}$ wird auch als *Stern-Volmer*-Konstante bezeichnet. I_0 entspricht dabei der Fluoreszenzintensität in Abwesenheit von Q und I der verringerten Intensität in Anwesenheit von Q. Die Intensitäten werden hierbei unter Steady-State-Bedingungen (kontinuierliche Bestrahlung) gemessen.

4.3.3.1 Stern-Volmer Löschung

Folgende Graphik zeigt den Rückgang der Fluoreszenz von **67** bei sukzessiver Zugabe von **86** als Quencher.

Schema 71: Dynamische Fluoreszenzlöschung von 67 mittels 86

Bedingungen: MeCN, λ_{Ex} = 340 nm, 1 cm Quarzküvette

Bei dieser Messung wurden 10⁻⁶ M Portionen von **86** zu einer 5.10⁻⁵ M Lösung von 67 gegeben und jeweils die Fluoreszenzspektren aufgenommen. Eingestrahlt wurde hierbei bei 340 nm, da bei dieser Wellenlänge beide Chromophore einen vergleichbaren Extinktionskoeffizienten (13200 cm²·mmol⁻¹ für **67** und 16000 cm²·mmol⁻¹ für **86**; *Tabelle 3*) aufweisen. Leider konnte **67** nicht separat angeregt werden, da die Absorption von 86 den gesamten Absorptionsbereich von 67 überlagert. Beobachtet wurde ein steter Rückgang der Fluoreszenz von 67 bei 474 nm und ein steter Anstieg der Fluoreszenz von 86 im Bereich 630-700 nm (Schema 71). Mit Gleichung 1 konnte ein K_{SV} = 29000 M⁻¹ bestimmt werden. Mit τ_0 = 3.0 ns (*Schema* 73) ergab sich eine Quenching-Konstante $k_q = 9.7*10^{12} \text{ M}^{-1} \text{s}^{-1}$. Dieser Wert liegt erheblich über dem Diffusionslimit¹⁴³ von k = $1.2*10^{10}$ M⁻¹s⁻¹ für organische Moleküle in MeCN. Somit kann es sich dabei nicht um einen einzelnen Quenching-Prozess handeln. Möglicherweise beruht diese Tatsache auf einem inneren Filtereffekt, bei welchem ein Rückgang der Donorfluoreszenz im Bereich der spektralen Überlappung zu beobachten ist. Dieser Rückgang resultiert daher, dass eine der Q-Banden des Porphyrins im Bereich um 500 nm (erkennbar an der Einbuchtung der Emission von 67) absorbiert. Somit liegt wahrscheinlich nur ein trivialer Energietransfer (Emission von 67 und Absorption durch 86) vor und weniger Licht erreicht den Detektor. Ferner ist bekannt, dass Porphyrine in konzentrierten Lösungen ($\geq 10^{-4}$ M) Aggregate (H- und J-Aggregate^{144,145}) bilden können. Erkennbar sind diese in Form von modifizierten Soret-Banden. Diese Aggregate weisen dann verursacht durch Singulett-Singulett-Quenching erheblich verkürzte Lebenszeiten auf¹⁴⁶. Die hier verwendeten Konzentrationen an Porphyrin, die strukturelle Beschaffenheit von 86 und die Tatsache einer unveränderten Soret-Bande legt allerdings den Schluss nahe, dass dieser Prozess hier keine wesentliche Rolle beim Löschen der Fluoreszenz spielt. Somit ist anzunehmen, dass die Fluoreszenzlöschung somit intramolekular erfolgt. Für intramolekulare Deaktivierungsprozesse des angeregten Singulett-Zustandes von **67** kommen zum Beispiel Resonanzenergietransfer (RET) oder auch Elektronentransfer (ET) in Frage. Welcher dieser Prozesse in welchem Ausmass an dem schnellen Quenching beteiligt ist, wird in den folgenden Abschnitten untersucht.

4.3.3.2 Zeitaufgelöste Fluoreszenzmessungen

Die Absorption eines Photons (ca. 10⁻¹⁵ s) führt gemäss dem *Franck-Condon*-Prinzip zum Übergang eines Elektrons aus einem Orbital im Grundzustand in ein unbesetztes Orbital im angeregten Zustand. Dort verweilt das Elektron einen bestimmten Zeitraum, bevor es bedingt durch Deaktivierungsprozesse wie zum Beispiel Abgabe von Strahlung (Fluoreszenz 10⁻¹⁰ - 10⁻⁷ s bzw. Phosphoreszenz 10⁻⁶ - 1 s) oder in einem strahlungslosen Übergang (Interne Konversion 10⁻¹¹ - 10⁻⁹ s, Energietransfer oder Elektronentransfer) wieder in den Grundzustand zurückkehrt. Weist das Molekül Fluoreszenz auf, so folgt der Rückgang der Fluoreszenz einem exponentiellen Zerfall (*Schema 72*).

Schema 72: Exponentieller Fluoreszenzzerfall

Die Lebensdauer τ des angeregten Zustandes entspricht dabei dem Zeitpunkt, an welchem die Fluoreszenz nur noch 1/e der Anfangsintensität I₀ beträgt. Ferner entspricht die Lebensdauer dem Reziprokwert der Fluoreszenz-Zerfalls-Geschwindigkeitskonstanten k_f. Verlässliche Resultate für dynamische Phänomene lassen sich dabei nur innerhalb des experimentellen Zeitfensters zwischen $\tau/100$ und 10τ erhalten.

Mit Hilfe der zeitaufgelösten Fluoreszenzmessungen konnten die Lebensdauern folgender Moleküle (*Schema 73*) bei einer Einstrahlungswellenlänge von 388 nm bestimmt werden. Die zeitaufgelösten Fluoreszenzmessungen wurden mit freundlicher Unterstützung von Martin Gaplovsky in der Arbeitsgruppe von Prof. Dr. Jakob Wirz im Institut für Physikalische Chemie der Universität Basel durchgeführt.

Die experimentell gefundene Lebensdauer von τ = 10.0 ns für die Fluoreszenz von **86** steht im Einklang mit den in der Literatur^{147,160} gefundenen Werten für andere Porphyrine von $\tau \approx 10$ ns.

Die mit der Streak-Kamera aufgezeichneten Fluoreszenzspektren lassen sich dreidimensional darstellen. Dabei entspricht die horizontale Achse der Wellenlänge der Fluoreszenz und die vertikale Achse dem experimentellen Zeitfenster der Messung und somit der zeitlichen Auflösung der Fluoreszenz. Die dritte Dimension entspricht dabei der Fluoreszenzintensität und ist farbig dargestellt (*Schema 74*).

Schema 74: 3D-Darstellung der zeitaufgelösten Fluoreszenzmessungen

Aus *Tabelle 3* ist ersichtlich, dass die Einstrahlung bei 310 nm prinzipiell am besten geeignet ist, da hier die Extinktionskoeffizienten von **67** und **86** etwa gleich gross

sind. Leider waren für diese Wellenlänge bei gegebener Konzentration zu geringe Fluoreszenzintensitäten zu beobachten. Eine Einstrahlung bei 340 nm war aus apparativen Gründen nicht möglich und somit wurde eine Wellenlänge von 388 nm gewählt, obwohl hier fast 90 % des Lichts durch **86** absorbiert wird. Das Fehlen der Deazaflavin-Fluoreszenz in Modellverbindung **87** resultiert aber keinesfalls aus der Tatsache, dass 90 % des Lichts durch Porphyrin aborbiert wird, da die Deazaflavin-Fluoreszenz in dem (1:1) Gemisch sehr wohl vorhanden ist.

$\lambda_{\text{Ex.}}$	A (86)	A (67)	A(67)/A(86)	ε (86)	ε (67)
310	0.074	0.056	0.757	7400	5600
340	0.160	0.108	0.675	16000	10800
388	0.636	0.071	0.112	63600	7100
403	1.004	0.092	0.092	100400	9200
414	1.147	0.085	0.074	114700	8500

Tabelle 3: Relative Absorbanz von 67 und 86 für 5 Wellenlängen

Bedingungen: Konz. = 10⁻⁵ M, 1 cm Quarzküvette, MeCN (absolut, entgast)

Bei einer genaueren kinetischen Betrachtung der Fluoreszenz von Modellverbindung **87** wurde festgestellt, dass der Fluoreszenzzerfall biexponentiell erfolgt und somit zwei Lebensdauern τ_1 und τ_2 (*Schema 75*) liefert. Diese Beobachtungen führten zu der Annahme, dass die Fluoreszenzlöschung vermutlich über einen Resonanzenergietransfer erfolgt.

Schema 75: Zeitlicher Verlauf und Fit des Fluoreszenzzerfalls von 87

4.3.3.3 Resonanzenergietransfer (RET)

Unter Resonanzenergietransfer versteht man den strahlungslosen Transfer von Anregungsenergie zwischen zwei Chromophoren, welcher auftreten kann, wenn das Emissionsspektrum des Donors (D) mit dem Absorptionsspektrum des Akzeptors (A) überlappt (*Schema 76*).

Schema 76: Spektrale Überlappung

Dabei haben einige Vibrationsübergänge des Donors (1, 2 und 3) die gleichen Energien wie die Übergänge des Akzeptors (1', 2' und 3'). Somit sind diese Übergänge gekoppelt bzw. in Resonanz (Schema 76). Folglich spricht man auch von Resonanzenergietransfer (RET). Unterscheiden sich Donor und Akzeptor, so spricht man von einem Heterotransfer. Die Ursache für RET ist entweder eine Coulomb-Wechselwirkung oder eine intermolekulare Orbitalüberlappung. Die Coulomb-Wechselwirkung besteht aus einer long-range Dipol-Dipol-Wechselwirkung (Förster Mechanismus) wohingegen die intermolekulare Orbitalüberlappung auf einem Austausch von Elektronen zwischen Donor und Akzeptor beruht (Dexter Mechanismus). Je nach Distanz und Stärke der Wechselwirkung unterscheidet man starke, schwache und sehr schwache Kopplung. Die sehr schwache Kopplung (longe-range Dipol-Dipol) wird durch Dexter und Förster beschrieben wobei die Geschwindigkeit des Energietransfers proportional zu r⁻⁶ ist. Eine Distanz von 10 Å wird heutzutage allgemein als Kreuzungspunkt der beiden Mechanismen für Singulett-Singulett-RET akzeptiert^{148,149}. Die Distanz der beiden Chromophore in dem hier entwickelten Modell 87 bzw. 88 beträgt in etwa 4 Å und liegt somit deutlich unterhalb dieser

kritischen Distanz. Bei dieser Chromophoren-Distanz sollte der Energietransfer folglich gemäss dem *Dexter*-Mechanismus erfolgen. Schwierig wird die Situation im Bereich der starken und schwachen Kopplung, da die Anregungsenergie nicht mehr speziell auf einem Chromophor lokalisiert, sondern über beide Chromophore delokalisiert ist und zwischen diesen beiden oszilliert. Dieser Energietransfer kann durch die Exciton-Theorie beschrieben werden (*Schema 77*).

Gleichung 2: Dexter-Energietransfer:

$$\mathbf{k}_{\mathrm{T}} = \frac{2\pi}{\mathrm{h}} \mathrm{K} \mathbf{J}' \exp^{\left(\frac{-2\mathrm{R}}{\mathrm{L}}\right)} \text{ wobei } \mathbf{J}' = \int_{0}^{\infty} \mathbf{I}_{\mathrm{D}}(\lambda) \varepsilon_{\mathrm{A}}(\lambda) \mathrm{d}\lambda$$

Dabei ist J das Überlappungsintegral, K eine experimentelle Konstante, R die Chromophoren-Distanz und L der durchschnittliche *Bohr*-Radius.

Gemäss *Förster* lässt sich eine Geschwindigkeitskonstante k_T für den Energietransfer zwischen Donor und Akzeptor für gegebene Distanz r berechnen.

Gleichung 3: Förster-Energietransfer:

$$\mathbf{k}_{\mathrm{T}} = \frac{1}{\tau_{\mathrm{D}}^{0}} \left[\frac{\mathsf{R}_{\mathrm{0}}}{\mathsf{r}} \right] \text{ wobei } \mathsf{R}_{\mathrm{0}} = 0.2108 \left[\kappa^{2} \Phi_{\mathrm{D}}^{0} n^{-4} \int_{0}^{\infty} \mathsf{I}_{\mathrm{D}}(\lambda) \varepsilon_{\mathrm{A}}(\lambda) \lambda^{4} d\lambda \right]^{1/6}$$

Dabei ist τ^0_D die Lebensdauer des angeregten Zustandes des Donors in Abwesenheit des Akzeptors. R₀ entspricht dem *Förster*-Radius, bei welchem die

Wahrscheinlichkeit für Energietransfer oder spontanen Zerfall des angeregten Zustandes gleich ist. Für die Bestimmung des *Förster*-Radius ist eine genaue Kenntnis des Orientierungsfaktors κ , der Quantenausbeute der Donor-Fluoreszenz Φ^0_D , des Brechungsindex n des Mediums, des molaren Extinktionskoeffizienten des Akzeptors ϵ_A sowie des Überlappungsintegrales wichtig. Zusätzlich zu k_T lässt sich auch eine Effizienz Φ_T (*Gleichung 4*) für den Energietransfer angeben. Dabei ist zu beachten, dass sich die Änderungen in der Effizienz des Energietransfers am stärksten im Bereich um R₀ auswirken.

Gleichung 4: Effizienz des Energietransfers

$$\Phi_{\rm T} = \frac{{\rm k}_{\rm T}}{1/\tau_{\rm D}^{\rm 0} + {\rm k}_{\rm T}} = \frac{1}{1 + ({\rm r}/{\rm R}_{\rm 0})^{\rm 6}}$$

Aus den obigen Erläuterungen wird ersichtlich, dass der strahlungslose Energietransfer direkt einen Effekt auf die Fluoreszenzemission des Donors hat. Je grösser die Geschwindigkeit des Energietransfers, umso stärker konkurriert dieser mit der Fluoreszenz des Donors. Für die Bestimmung der Transfereffizienz eignen sich sowohl Steady-state als auch zeitaufgelöste Methoden. Energietransfer von einem Donor auf einen Akzeptor reduziert die Quantenausbeute des Donors und erhöht die Quantenausbeute des Akzeptors. Somit kann bei den Steady-state-Methoden eine verringerte Donorfluoreszenz und eine erhöhte Akzeptorfluoreszenz beobachtet werden.

Gleichung 5-7:

$$\frac{1}{\tau_{\rm D}} = \frac{1}{\tau_{\rm D}^{0}} + \mathbf{k}_{\rm T}$$
$$\Phi_{\rm T} = \frac{1 - \frac{\tau_{\rm D}}{\tau_{\rm D}^{0}}}{\left(\frac{\tau_{\rm D}^{0}}{\tau_{\rm D}} - 1\right)^{1/6}}$$

Alternativ lässt sich k_T auch durch Messung der Zunahme der Akzeptorfluoreszenz nach einer Anregung mit einem Lichtpuls bestimmen.

Bei einem Vergleich der Emissions- und Absorptionsspektren (*Schema 78*) von **67** und **86** wurde ersichtlich, dass das Emissionsmaxmimum (474 nm) von **67** sehr gut mit dem Absorptionsmaximum (509 nm; Q-Bande) von **86** überlappt. Dabei ist zu beachten, dass der Extinktionskoeffizient der Q-Bande bei 509 nm in **86** durchaus vergleichbar mit dem Extinktionskoeffizienten von **67** bei 403 nm ist. Die Voraussetzung für einen Energietransfer vom Deazaflavin auf das Porphyrin sind somit erfüllt. Die Fluoreszenzintensitäten sind dabei auf 1 normiert, da diese von dem jeweiligen Gerät abhängen.

Schema 78: Vergleich der spektralen Eigenschaften von 67 und 86

[67] = [86] = 10⁻⁵ M; MeCN; Quarz-Küvette; Fluoreszenzintensitäten auf 1 normiert

Wie oben ausgeführt, äussert sich ein Energietransfer in Form eines Rückgangs der Fluoreszenz des Donors und einer Zunahme der Fluoreszenz des Akzeptors. Die zeitaufgelösten Fluoreszenzmessungen für Modellverbindung 87 zeigen, dass die Fluoreszenz des Deazaflavins nicht mehr nachzuweisen ist (Schema 74) und die Fluoreszenz des Porphyrins ebenfalls stark (Faktor 4) verringert ist. Diese Beobachtung spricht eindeutig gegen einen Energietransfer als alleinigen Deaktivierungsprozess, bei welchem zumindest die Porphyrin-Fluoreszenz zunehmen müsste. Somit wird ersichtlich, dass die Ursache der Fluoreszenzlöschung in Modellverbindung 87 nicht in einem Energietransfer, sondern vielmehr in einem Elektronentransfer liegt. Untersuchungen an Porphyrin-Quinon-Zyklophanen¹⁵⁰ haben gezeigt, dass die Lebensdauern des Porphyrins im Bereich von 9-16 ns liegen, wenn die reduzierte Form des Quinons vorliegt. In Anwesenheit des Quinons in oxidierter Form sind die Lebensdauern drastisch verkürzt und liegen im Bereich von 460-550 ps. Basierend auf diesen Ergebnissen kann die kurze Lebensdauer von τ_1 = 384 ps in **87** der raschen Bildung eines Ladungstransfer-Komplexes zugeordnet und mit Hilfe eines photoinduzierten Elektronentransfers erklärt werden. Dabei ist zunächst noch ungewiss, in welcher Richtung und in welcher Weise der Elektronentransfer verläuft (*Schema 79*).

Schema 79: Möglicher Elektronenfluss in Modellverbindung 87

4.3.4 Elektronentransfer-Untersuchungen (ET)

Aus dem in Abschnitt 4.3.3.3 diskutiertem Experiment folgt, dass die Fluoreszenz des Deazaflavins in **87** intramolekular durch einen photoinduzierten Elektronentransfer gelöscht wird. Es konnte dabei nicht geklärt werden, in welcher Richtung und in welcher Weise der Elektronentransfer verläuft. Anhand von Porphyrin-Quinon-Komplexen stellte sich die Frage, ob der intramolekulare Elektronentransfer von kovalent gebundenen Donor-Akzeptor-Komplexen durch den Raum ("through space") oder durch Bindungen ("through bond" bzw. "superexchange") erfolgt^{151,152}. Heutzutage wird allgemein angenommen, dass das Elektron vom Porphyrin auf den Akzeptor tunnelt. In unserem Fall beträgt die Donor-Akzeptor-Distanz etwa 4.0 - 4.5 Å. Dies liegt nahe der optimalen Distanz für Elektronentunneln von etwa 5 Å bei vander-Waals Kontakt ähnlicher Moleküle¹⁵³. Zudem ist bekannt, dass ein photoinduzierter Elektronentransfer von Porphyrinen in Lösung bis zu einer Entfernung von 20 \pm 2 Å ablaufen kann¹⁵⁴. Bei dem direkten, nicht-adiabatischen Elektronentunneln durch den Raum hängt die Geschwindigkeit des Elektronent

transfers von der Überlappung der Wellenfunktionen von Donor und Akzeptor und somit auch von deren Abstand, Symmetrie und relativer Orientierung ab¹⁵⁵⁻¹⁵⁷.

Einen möglichen Aufschluss über die Richtung des Elektronentransfers liefert eine genauere Betrachtung der Thermodynamik eines solchen Prozesses.

4.3.4.1 Energetik für PET

Die thermodynamische Triebkraft ΔG eines photoinduzierten Elektronentransfers zwischen einem Donor (D) und einem Akzeptor (A) kann anhand der *Rehm-Weller*-Beziehungen berechnet werden, welche allgemein für stark polare Lösungsmittel anwendbar sind¹⁵⁸. Dabei muss neben der Ladungsseparation (CS) auch aufgrund der starken elektronischen Kopplung des Ionenpaares stets die Ladungsrekombination (CR) mitberücksichtigt werden.

Gleichung 8: Ladungsseparation (CS)

$$\Delta G_{\text{ET}} = E^{0}_{\text{Ox}}(\text{Donor}) - E^{0}_{\text{Red}}(\text{Akzeptor}) - \Delta E_{0,0}(\text{Donor}) - \Delta G_{\text{Solv}}$$

Wenn alle Messungen im gleichen Lösungsmittel vorgenommen werden, dann handelt es sich bei ΔG_{Solv} lediglich um die Stabilisierungsenergie der getrennten Ladungen durch das umgebende Lösungsmittel.

Gleichung 9: Ladungsrekombination (CR)

$$\Delta G_{ET} = E^{0}_{Red}(Akzeptor) - E^{0}_{Ox}(Donor) + \Delta G_{Solv}$$

Die Änderung der freien Solvatationsenthalphie für das hier verwendete Modellsystem lässt sich wie folgt berechnen:

Gleichung 10: Freie Solvatationsenthalpie

$$\Delta \mathbf{G}_{\mathsf{Solv}} = \left(\frac{\mathbf{e}^2}{2}\right) \left(\frac{1}{\mathsf{r}_{\mathsf{D}}} + \frac{1}{\mathsf{r}_{\mathsf{A}}}\right) \left(\frac{1}{4\pi\varepsilon_0\varepsilon_{\mathsf{r}}}\right) - \frac{\mathbf{e}^2}{4\pi\varepsilon_0\varepsilon_{\mathsf{r}}\mathsf{r}_{\mathsf{DA}}}$$

- e = Elementarladung (e = $1.602 \cdot 10^{-19}$ C)
- ε_0 = Dielektrizitätskonstante des Vakuums (ε_0 = 8.854·10⁻¹² C²/J·m)

 ε_r = Dielektrizitätszahl von MeCN (ε_r = 35.9¹⁵⁴)

 r_D = Effektiver Radius des Donors (Porphyrin; r_D = 5.0 Å)

 r_A = Effektiver Radius des Akzeptors (Deazaflavin; r_A 4.5 Å)

 r_{DA} = Abstand der Zentren von Donor und Akzeptor (r_{DA} = 4.3 Å)

Einsetzen aller Werte liefert: ΔG_{Solv} (MeCN) = -4.9 kJ/mol (-0.05 eV)

Dieser Wert stimmt sehr gut mit dem in der Literatur angegeben Modellsystem überein (ΔG_{Solv} (MeCN) = -5.8 kJ/mol / -0.06 eV ¹³⁷). Die effektiven Radien wurden mit Hilfe der Molecular Modeling Studien erhalten. Der berechnete effektive Radius für Deazaflavin stimmt mit dem in der Literatur aufgeführten effektiven Radius von 4.4 Å ¹⁵⁹ für Flavin sehr gut überein.

Die Energiedifferenz $\Delta E_{0,0}$ (Donor) für den Übergang $S_0 \rightarrow S_1$ lässt sich anhand der Absorptions- und Fluoreszenzspektren mit folgender Beziehung ermitteln:

Gleichung 11: Berechnung der Energie für den Übergang $S_0 \rightarrow S_1$

$$\Delta \mathsf{E}_{0,0} = \frac{\lambda_{\mathsf{Max},\mathsf{Fluor}} + \lambda_{\mathsf{Max},\mathsf{Abs}}}{2}$$

Die Thermodynamik für die Ladungsseparation lässt sich in einem Energieniveaudiagramm (*Perrin-Jablonski*-Diagramm) darstellen, in welchem die Energieniveaus der jeweiligen Zustände aufgeführt sind. Hierbei wurde für die Absorption von **86** die Q-Bande des Porphyrins bei 630 nm und im Falle von **67** das zweite Absorptionsmaximum bei 404 nm als Berechnungsgrundlage herangezogen. Bei der Fluoreszenz wurde für **86** das Maximum bei höchster Wellenlänge (698 nm) verwendet.

Für einen photoinduzierten Elektronentransfer mussten folgende vier Prozesse in Betracht gezogen werden:

Schema 80: Triebkraft für alle vier möglichen Elektronentransfer-Prozesse

A)
$$P + D^* \rightarrow P^- + D^+$$
 ($\Delta G_{ET} = +36.0 \text{ kJ/mol}; +0.37 \text{ eV}$)
B) $P + D^* \rightarrow P^+ + D^-$ ($\Delta G_{ET} = -97.2.0 \text{ kJ/mol}; -1.01 \text{ eV}$)
C) $P^* + D \rightarrow P^+ + D^-$ ($\Delta G_{ET} = -4.8 \text{ kJ/mol}; -0.05 \text{ eV}$)
D) $P^* + D \rightarrow P^- + D^+$ ($\Delta G_{ET} = +128.4 \text{ kJ/mol}; +1.33 \text{ eV}$)

Unter Verwendung der in Abschnitt 4.3.1 ermittelten ersten Oxidations- und Reduktionspotentiale von **67** und **86** und den in Abschnitt 4.3.3 aufgeführten Absorptions- und Emissionsspektren (*Schema78*) konnte die thermodynamische Triebkraft Δ G für die Ladungsseparation der vier weiter oben aufgeführten Prozesse gemäss *Gleichung 8* berechnet werden.

Schema 81: Perrin-Jablonski-Diagramm für 87

Die Energie ($E_T = 2.58 \text{ eV}$) für P-³D^{*} wurde *Tabelle 2* entnommen und um -0.12 eV korrigiert, da der Literaturwert des Singulett ebenfalls um diesen Betrag von dem experimentell gemessenen Wert für **87** abweicht. Die Energie für ³P^{*}-D wurde aus der Literatur entnommen^{154,170}. Das Intersystem Crossing von dem Porphyrin-Singulett ¹P^{*}-D hin zu dem Porphyrin-Triplett ³P^{*}-D wurde nicht in Betracht gezogen, da innerhalb von 2 ns (*Schema 85*) keine nennenswerte Triplettbildung beobachtet werden konnte. Das ISC von P-¹D^{*} nach P-³D^{*} wurde ebenfalls nicht weiter berücksichtigt.

Aus thermodynamischer Sicht ist die Bildung des Ladungstransfer-Komplexes P⁺-D⁻ durch die Prozesse B) und C) begünstigt und ein möglicher Elektronentransfer sollte vom Porphyrin in Richtung 5-Deazaflavin verlaufen. Die Bildung des P⁻-D⁺-Komplexes ist aus thermodynamischer Sicht hin auszuschliessen, da dieser energetisch sehr ungünstig ist. Die Energie für das Porphyrin-Singulett ¹P^{*}-D von +1.87 eV stimmt dabei sehr gut mit den in der Literatur berichteten Energien von +1.90 eV^{159,160} und +1.89 eV¹⁶¹ überein. Die experimentell bestimmte Energie des 5-Deazaflavin-Singuletts von +2.83 eV liegt ebenfalls im Bereich der in Abschnitt 3.4 aufgeführten 5-Deazaflavin-Singulettenergie von +2.95 eV¹¹³ (*Tabelle 2*). Das ISC von P-¹D^{*} zum P-³D^{*} wurde auch nicht beobachtet. Ferner zeigt das Jablonski-Diagramm (*Schema 81*) eine frappierende Ähnlichkeit mit dem Jablonski-Diagramm für nicht-verbrückte Porphyrin-Flavin-Dyaden, untersucht von *Köhler*¹⁵⁹.

4.3.4.2 Thermodynamische Triebkraft und Geschwindigkeit des ET

Reaktionsgeschwindigkeiten werden durch das jeweilige Lösungsmittel beeinflusst. Dabei polarisieren geladene Moleküle die dipolaren Solvensmoleküle besonders gut. Der Elektronentransfer in einem polaren Lösungsmittel hat aufgrund der Ladungsumverteilung einen starken Einfluss auf die permanenten Dipolmomente der polaren Solvensmoleküle. Wird der Elektronentransfer überwiegend durch die Solvensmoleküle beeinflusst, so spricht man von einem "outer-sphere" Elektronentransfer. Hierbei wird die Bewegung entlang der Reaktionskoordinate stark gestört und die Geschwindigkeit des ET hauptsächlich durch die longitudinale dielektrische Relaxationszeit til des Solvens bestimmt. Bei einem "inner-sphere" ET dominieren die Änderungen der Bindungen innerhalb des Moleküls und die Bewegung entlang der Reaktionskoordinate wird nur unwesentlich durch das umgebende Lösungsmittel gestört¹⁶³. Weiterhin unterscheidet man je nach der Grösse der Kopplungsenergie von Reaktant- und Produktzustand zwischen adiabatischem und nicht-adiabatischem ET. Eine Unterscheidung dieser beiden Prozesse ist mit folgenden Kriterien möglich. Ein ET verläuft nicht-adiabatisch, wenn er dem Landau-Zener Kriterium¹⁷⁷⁻¹⁷⁹ (Gleichung 12) genügt und adiabatisch, wenn er dem Rips-Jortner-Kriterium¹⁸⁰ (Gleichung 13) genügt. Ein nicht-adiabatischer ET zeichnet sich durch eine geringe elektronische Kopplung (V < 15 meV) und einen niedrigen Adiabatizitätsparameter (K << 1) aus.

Gleichung 12: Landau-Zener Kriterium

$$\frac{2\pi \left|\mathsf{V}\right|^2}{\eta \omega \sqrt{2\lambda \mathsf{k}_{\mathsf{B}} \mathsf{T}}} < 1$$

ω = Niederfrequente Lösungsmittelbewegung ($ω \sim 12.4 \text{ meV}^{181}$ bei 300 K)

Gleichung 13: Rips-Jortner-Kriterium

$$\mathsf{K} = \frac{4\pi \left|\mathsf{V}\right|^2 \tau_L}{\eta \lambda}$$

K = Adiabatizitätsparameter

 τ_L = Longitudinale Relaxationszeit des Lösungsmittels (BuCN: τ_L = 1.7 ps¹⁸¹)

Der nicht-adiabatische, photoinduzierte ET wird beschrieben durch die *Marcus*-Theorie¹⁶². Die Geschwindigkeit k_{ET} des ET lässt sich durch die *Marcus*-Gleichung (*Gleichung 14*) berechnen.

Gleichung 14: Marcus-Gleichung für nicht-adiabatischen Elektronentransfer

$$\mathbf{k}_{\rm ET} = \sqrt{\frac{4\pi^2}{\mathbf{h}\lambda\mathbf{k}_{\rm B}\mathsf{T}}} |\mathsf{V}|^2 \exp\left[-\frac{(\Delta\mathsf{G}+\lambda)^2}{4\lambda\mathbf{k}_{\rm B}\mathsf{T}}\right]$$

V = Elektronisches Matrixelement (Beschreibt die Kopplung des reaktiven Zustandes mit dem Endzustand; Porphyrin-Quinon-Zyklophane: V $\approx 1.2 \text{ meV}^{164}$) $\lambda = \text{Reorganisationenergie} (\lambda = \lambda_{innen} + \lambda_{aussen})$ ΔG^0 = Freie Standard-Reaktionsenthalpie (Maximum für - $\Delta G^0 = \lambda$) h = Planck-Konstante (h = 6.626 \cdot 10⁻³⁴ Js) k_B = Boltzmann-Konstante (k_B = 1.381 \cdot 10⁻²³ J/K) T = Temperatur in K

Die Geschwindigkeit des ET hängt ab von der Änderung der freien Reaktionsenthalpie ΔG , der Reorganisationsenergie λ und der elektronischen Wechselwirkung V zwischen Donor und Akzeptor. Da die Dynamik des Elektronentransfers von den Kernbewegungen abhängt, zeigen die Potentialflächen von Reaktant- und Produktzustand gemäss dem Gesetz von *Hooke* eine parabolische Form. Die *Marcus*-Gleichung beschreibt diesen parabolischen Zusammenhang zwischen k_{ET} und ΔG . Damit der Elektronentransfer am Kreuzungspunkt erfolgen kann, sind Änderungen der internen Bindungslängen oder alternativ die Reorganisation des Solvens erforderlich. Bei der Beschreibung des Zusammenhangs von ΔG und k_{ET} werden drei Bereiche hinsichtlich der Grösse der Reorganisationsenergie unterschieden:

- a) $|\Delta G| < \lambda \rightarrow$ Zunahme von k_{ET} mit zunehmendem ΔG ("normaler Bereich")
- b) $|\Delta G| = \lambda \rightarrow ET$ erfolgt ohne Aktivierung ($\Delta G = \Delta G^*$)
- c) $|\Delta G| > \lambda \rightarrow Abnahme von k_{ET}$ mit zunehmendem ΔG ("inverser Bereich")

Schema 82: Marcus-Bereiche

Das elektronische Matrixelement V = $\langle \Psi_0^R | H_{el} | \Psi_0^P \rangle$ beschreibt die Kopplung der reaktiven Zustandes mit dem Endzustand. Dabei sind Ψ die diabatischen Wellenfunktionen des Reaktant- und Produktzustandes und $|H_{el}|$ der Hamilton-Operator für ein berechnetes System mit fixen Kernabständen (*Born-Oppenheimer-*Approximation). Im Falle für adiabatischen ET und grosser Kopplungsenergie kann sich das Elektron mehrmals zwischen Donor und Akzeptor hin und her bewegen, bevor eine Änderung der Kernabstände erfolgt. Für geringe Kopplungsenergien ist die vibrationelle Kernbewegung rascher als die Elektronenbewegung und der Prozess ist nicht-adiabatisch. Die Kopplungsenergie für adiabatischen ET entspricht dabei genau der Hälfte der Energiedifferenz zwischen den beiden adiabatischen Zuständen am Kreuzungspunkt.

Schema 83: Adiabatischer ET bei starker Kopplung V

Die Reorganisationsenergie ist die Stabilisierungenergie durch das Solvens und teilt sich dabei auf in Änderungen von Bindungslängen innerhalb des Moleküls (λ_{innen} ; "inner sphere term") und Änderungen in der umgebenden Solvathülle (λ_{aussen} ; "outer sphere term"). Typische Werte für λ_{aussen} reichen von \approx 0 eV für apolare Lösungsmittel bis hin zu \approx +1.0 eV für stark polare Lösungsmittel. Die Reorganisationsenergie lässt sich mit folgender Gleichung berechnen:

Gleichung 15: Reorganisationsenergie

$$\lambda = \lambda_{\text{innen}} + \lambda_{\text{aussen}} = \lambda_{\text{innen}} + \frac{e^2}{4\pi\varepsilon_0} \left(\frac{1}{2r_{\text{D}}} + \frac{1}{2r_{\text{A}}} - \frac{1}{2r_{\text{DA}}}\right) \left(\frac{1}{n^2} - \frac{1}{\varepsilon_{\text{r}}}\right)$$

n = Brechungsindex von MeCN (n =1.344)

 λ_{innen} = innere Reorganisationsenergie ($\lambda_{innen,MeCN}$ = 0.19 eV ¹⁶⁴)

Nach Einsetzen aller Parameter ergibt sich eine Reorganisationsenergie von $\lambda = 0.91$ eV für Modellverbindung **87** und **88**. Aus *Gleichung 14* + *15* geht hervor, dass das verwendete Lösungsmittel mit dessen Brechungsindex n und dessen Dielektrizitätszahl ε einen Einfluss auf die Triebkraft und die Reorganisationsenergie des ET hat. Die freie Reaktionsenthalpie ΔG und die Reorganisationsenergie λ sind ihrerseits über die freie Aktivierungsenergie ΔG^{\neq} des Elektronentransfers miteinander verknüpft. Die Aktivierungsenergie entspricht dabei der Energie am Kreuzungspunkt der beiden Potentialhyperflächen.

Gleichung 16: Verknüpfung von Aktivierungsenthalpie, freier Reaktionsenthalpie und Reorganisationsenergie

$$\Delta G^* = \frac{(\Delta G + \lambda)^2}{4\lambda} \rightarrow \text{Hier} : \Delta G^* = 0.20 \text{eV}$$

Die Geschwindigkeit des Elektronentransfers hängt zusätzlich von der Stabilisierung des Ladungstransfer-Komplexes durch das Lösungsmittel ab. Diese Lösungsmitteleffekte können mit Hilfe des *Onsager*-Modells¹⁷⁶ abgeschätzt werden.

Die Thermodynamik und Kinetik von Elektronentransferprozessen für Porphyrin-Quinon-Zyklophane als Photosynthesemimika wurde sehr eingehend untersucht¹⁶⁴. Dabei stellte sich heraus, dass die Reduktionspotentiale E^{0}_{Red} der unterschiedlich substituierten Quinone im Bereich von -0.72 V bis -1.45 V (vs. SCE)¹⁶⁴ liegen. Das in Abschnitt 4.3.1 ermittelte Reduktionspotential E^{0}_{Red} = -0.98 V (vs. SCE) für 5-Deazaflavin liegt ebenfalls in diesem Bereich. Somit handelt es sich bei **67** um einen vergleichbaren Elektronenakzeptor für photoinduzierten Elektronentransfer. Für Porphyrin-Quinon-Zyklophane konnte ein parabolischer Zusammenhang zwischen ΔG und k_{ET} in Acetonitril gefunden werden. Daraus wird ersichtlich, dass Ladungsseparation und Ladungsrekombination trotz erheblicher Unterschiede in der Triebkraft mit vergleichbarer Geschwindigkeit ablaufen kann (Marcus "inverser" Bereich).

67

Das folgende Modell für Porphyrin-Quinon-Systeme¹⁶⁴ ist geeignet für die Beschreibung von Modellverbindung **87**, da die Distanz der Zentren von Porphyrin und Quinon etwa 4.5 Å betrug und somit sehr nahe bei der in Modellverbindung **87** ermittelten Distanz von 4.0-4.3 Å liegt. Zudem konnte gezeigt werden, dass die elektronische Kopplung zwischen Porphyrin und Quinon gering ist und der Elektronentransfer somit nicht-adiabatisch erfolgt. Die Triebkraft am Maximum der *Marcus*-Kurve entspricht dabei der Reorganisationsenergie ($\Delta G = -\lambda$). Bei dieser Triebkraft ist die maximale Elektronentransfer-Geschwidigkeit zu erwarten. Demnach sollte die maximale Geschwindigkeit für Elektronentransfer in dem hier entwickelten Modellsystem **87** gemäss *Gleichung 15* für $\Delta G = -0.91$ eV auftreten. Dieser Wert steht im Einklang mit den Porphyrin-Zyklophan-Systemen.

Schema 84: Marcus-Kurve für Porphyrin-Quinon-Zyklophane

compd	τ _i (a _i) [ps]	∆G _{es} [eV]	k. [10 ¹⁰ s ⁻¹]	∆G _{er} [eV]	ker [10 ¹⁰ s ⁻¹]	P*-Q	Î	Kan Kan	- <u>AG</u> a -X P*-0
		In MeCN						. /	
1	5 (67), 30 (30)	-0.03	15	-1.93	4.5		hr	Ka /	10
2	4 (89), 30 (7)	-0.07*	23	-1.89	3.6			/	-0.04
3	2	-0.13	50					/	
4	1	-0.27	≃100					/	
5	2	-0.41	50					*	
11	3 (67), 10 (33)	-0.04*	26	-1.92	13	P-Q			~
13	4 (75), 12 (23)	-0.06*	21	-1.85	9.1				
14	8 (70), 10 (30)	-0.05*	5.30	-1.86	7.4				
15	3 (95), 15 (5)	-0.07*	16*	-1.84	6.9				
16	1	-0.34	>50*						

Aus *Tabelle 4* ist ersichtlich, dass die Ladungsrekombination in den Grundzustand trotz seiner wesentlich stärkeren Triebkraft langsamer erfolgt als die Ladungsseparation, welcher eine geringere Triebkraft besitzt. Somit muss die Möglichkeit eines Elektronen-Rücktransfers (k_{-CS}) in den angeregten Porphyrin-Singulettzustand ¹P^{*}-D und somit ein rasches vorgelagertes Gleichgewicht in Betracht gezogen werden. Dies führt zu einer verzögerten Fluoreszenz des angeregten Porphyrin-Singuletts. Bei starker Triebkraft für Ladungsseparation kann der Rücktransfer in den fluoreszenten Singulett-Zustand jedoch vernachlässigt werden.

4.3.4.3 Zeitaufgelöste UV/VIS-Absorptionsmessungen

Aus den in Abschnitt 4.3.4.1 durchgeführten Berechnungen geht hervor, dass der Elektronentransfer vom Porphyrin in Richtung Deazaflavin erfolgt. Somit sollte ein intermediär gebildetes Porphyrin-Radikalkation (P^{+.}) und 5-Deazaflavin-Radikalanion (D⁻) anhand von zeitaufgelöster Absorptionsspektroskopie nachweisbar sein. Porphyrin-Radikal-Kationen weisen eine breite und unstrukturierte Absorptionsbande in der Gegend von 650-750 nm auf¹⁶⁵⁻¹⁶⁸. Die Bildung eines Porphyrin-Radikalkations sollte mit Hilfe von zeitaufgelösten UV/VIS-Differenzspektren beobachtet werden können. Die 3D zeitaufgelösten UV/VIS-Absorptionsdifferenzspektren wurden mit Hilfe der "pump-probe" Technik aufgenommen. Dabei wurde die zu messende Substanz zunächst mit einem kurzen monochromatischen Laserpuls ("pump"-Puls) angeregt. Ein zweiter Laserpuls ("probe"-Puls) wurde zeitlich verzögert mit dem Anregungspuls im Mittelpunkt der Probelösung überlagert und lieferte somit ein Absorptionsdifferenzspektrum.

Die zeitaufgelösten UV/Vis-Differenzspektren (Transientenspektren) folgender Verbindungen wurden bestimmt.

Schema 85: Transientenspektrum von 67

Zeitfenster = 2 ns; Zeitabstände = 10 ps; MeCN; [**67**] = $4.2 \cdot 10^{-4}$ M; λ_{Ex} = 260 nm

Das Spektrum von **67** zeigt die Bildung des Singuletts von **67** im Bereich von 400 nm bis 360 nm. Das starke bleaching bei 340 nm und 400 nm resultiert aus dem Fehlen des Deazaflavins im Grundzustand. Der Rückgang der Absorption des Singuletts (τ = 3.0 ns) wird begleitet von einem leichten Anstieg der Absorption von etwa 450 nm bis 600 nm, welche auf die Bildung des Tripletts hindeutet. Das erwartete Absorptionsmaximum des Tripletts bei 520 nm wird allerdings von einem starken bleaching in diesem Bereich überlagert, welches womöglich auf eine stimulierte Emission des Deazaflavins (Fluoreszenzmaximum bei 480 nm) zurückzuführen ist.

Schema 86: Transientenspektrum von 86

Zeitfenster = 2 ns; Zeitabstände = 10 ps; MeCN; [**86**] = $1.2 \cdot 10^{-3}$ M; λ_{Ex} = 260 nm

Das Spektrum von **86** zeigt sehr schön die Bildung des Porphyrin-Singuletts im Bereich von 300-500 nm, welches allerdings mit dem sehr starken bleaching der *Soret*-Bande überlagert ist. Das Singulett zerfällt innerhalb des Messzeitraumes nur unwesentlich (τ = 10.0 ns). Sehr gut ist auch das bleaching der Q-Banden bei etwa 510 nm und 575 nm zu erkennen. Oberhalb von 600 nm wird keine starke Absorption beobachtet.

Schema 87: Transientenspektrum von 87

Zeitfenster = 2 ns; Zeitabstände = 10 ps; MeCN; [87] = $4.2 \cdot 10^{-4}$ M; λ_{Ex} = 260 nm

Das Spektrum von **87** zeigt deutlich den rascheren Abfall des Porphyrin-Singuletts im Bereich von 300-500 nm (τ = 2.5 ns) und einen wesentlich beschleunigten Rückgang des *Soret*-Bleachings bei etwa 420 nm. Im Vergleich zu **86** tritt hier eine deutlich erkennbare Absorption oberhalb von 600 nm auf, welche sich über einen längeren Messzeitraum hin erstreckt. Ferner fällt auf, das sich die Spektren von **86** und **87** sehr ähneln, dass heisst, eine charakteristische Absorption des Deazaflavins ist nicht erkennbar und somit praktisch vollständig überlagert von dem sehr starken Porphyrin-Singulett. Somit lassen sich keine sicheren Aussagen über die mögliche Bildung eines Deazaflavin-Radikalanions machen.

Bei einer Verkürzung der Messabstände von **87** wird erkennbar, dass die Absorption oberhalb von 600 nm nicht gleichzeitig mit dem Porphyrin-Singulett gebildet wird, sondern um etwa 1 ps zeitlich verzögert. Zeitliche Verzögerungen der einzelnen Wellenlängen des Lichts, verursacht durch Brechung an optischen Geräten wurden entsprechend korrigiert.

Zeitfenster = 6 ps; Zeitabstände = 30 fs; MeCN; [87] = $4.2 \cdot 10^{-4}$ M; λ_{Ex} = 260 nm

Schema 89: Transientenspektrum von 88

Zeitfenster = 30 ps; Zeitabstände = 200 fs; MeCN; [88] = $2.1 \cdot 10^{-4}$ M; λ_{Ex} = 260 nm

Das Spektrum von **88** zeigt ganz klar auf, dass die Bildung des Porphyrin-Tripletts in Anwesenheit von Fe bereits in sehr kurzen Messzeiträumen eine wesentliche Rolle spielt. Die Ursache dafür könnte in dem Schweratom-Effekt des Eisens liegen. Schwere Elemente begünstigen die Spin-Bahn-Kopplung, dessen Effizienz proportional zu Z⁴ (Z = Kernladungszahl) ansteigt. Eine begünstigte Spin-Bahn-Kopplung hat zur Ursache, dass der "verbotene" Prozess des ISC nun "weniger verboten" ist und mit erhöhter Geschwindigkeit abläuft. Das beschleunigte ISC erkennt man an dem Auftauchen des Absorptionsmaximums des Porphyrin-Tripletts bei etwa 620 nm. Das Singulett zerfällt hier fast vollständig innerhalb kürzester Zeit, was damit zu erklären ist, dass neben dem Elektronentransfer auch noch ein rasches ISC als Deaktivierungsprozess des Porphyrin-Singuletts vorhanden ist. Eine Schwierigkeit liegt in der Tatsache, dass die deutlich erkennbare Absorption oberhalb von 650 nm nicht eindeutig dem Porphyrin-Triplett oder dem Porphyrin-Radikalkation zugeordnet werden kann.

Aufgrund der Komplexizität des Transientenspektrums von **88** wurde zunächst Modellverbindung **87** auf die Formation eines Porphyrin-Radikalkations hin untersucht, da hier gemäss dem Transientenspektrum von **67** in sehr kurzen Messzeiträumen die Triplettbildung ausgeschlossen werden kann.

4.3.4.4 Kinetische Untersuchung von 87

Für eine genauere Analyse des Transientenspektrums von **87** für das Zeitfenster von 6 ps erwies sich eine vereinfachte Darstellung als hilfreich, bei welchem nur jeder dritte Messzeitpunkt dargestellt ist. In dieser Graphik ist eindeutig die sehr rasche Bildung des Porphyrin-Singuletts P^{*}-D unmittelbar nach dem Laserpuls zu erkennen. Das Porphyrin-Singulett ist charakterisiert durch eine stark Absorption in der Gegend von 450-500 nm, einer schwächeren Absorption im Bereich 540-600 nm sowie einem starken "bleaching" der *Soret*-Bande im Bereich 380-440 nm und einem schwächeren "bleaching" der ersten Q-Bande bei etwa 525 nm. Kurz nach der Bildung von P^{*}-D findet ein rascher Abfall dessen Absorption bei etwa 500 nm statt. Gleichzeitig wird eine rasche Zunahme der Absorption oberhalb von 620 nm beobachtet

Schema 90: Vereinfachte Darstellung von Schema 85

Zeitfenster = 6 ps; Zeitabstände = 30 fs; MeCN; [**87**] = $4.2 \cdot 10^{-4}$ M; λ_{Ex} = 260 nm; (Nur jede dritte Messung dargestellt)

Deutlich erkennbar wird dieser Vorgang, wenn man sich auf eine zweidimensionale Darstellung mit weniger Messzeitpunkten beschränkt.

Schema 91 + *92*: UV-Absorption von **87** zu drei Messzeitpunkten nach der Anregung sowie Vergleich mit Transienten aus der Literatur¹⁶⁵

Aus *Schema 91* geht eindeutig hervor, dass während der Bildung von ¹P^{*}-D innerhalb von 50 fs nach dem Laserpuls keine Absorption oberhalb von 600 nm zu erkennen

ist. Die breite, strukturlose Bande oberhalb von 600 nm tritt erst ungefähr 1 ps verzögert auf (gelbes Spektrum in *Schema 91*). Ein Minimum bei etwa 650 nm innerhalb des Transientenspektrums ist ein Indiz auf die stimulierte Emission des Porphyrins, wie in der Literatur berichtet¹⁶⁶. Der Transient im Bereich von 640 bis 690 nm ähnelt in verblüffender Weise dem Transient für Porphyrin-Quinon-Dyaden (*Schema 92* A). Der zeitliche Verlauf der Absorption des Singuletts bei 445 nm (*Schema 92* B, oben) weist ebenfalls einen sehr raschen Zerfall kurz nach dessen Bildung auf. Simultan hierzu taucht eine Absorption bei 700 nm (*Schema 92* B, unten) auf, welche eindeutig erst nach Bildung des Porphyrin-Singuletts erscheint. Die Absorption bei 700 nm zerfällt ebenfalls viel langsamer im Vergleich zu deren Erscheinen. Die Absorption des Porphyrin-Radikalkations oberhalb von 650 nm ist vergleichbar schwach wie in der Literatur^{167,169}.

Mehr Aufschluss über das kinetische Verhalten liefert eine genauere kinetische Analyse des Transientenspektrums von **87** (*Schema 88*). Dabei wird der zeitliche Verlauf bei bestimmten charakteristischen Wellenlängen verfolgt. Nach einem Fit der experimentellen Werte können somit Lebensdauern bestimmt werden. Die Analyse von **87** konzentrierte sich dabei primär auf den zeitlichen Verlauf bei 680 nm $(P^{+}-D^{-})$ und 500 nm $({}^{1}P^{*}-D)$.

Schema 93: Vergleich des Anstiegs bei 680 nm (linke Seite) und des Zerfalls bei 500 nm (rechte Seite) und dem jeweiligen Fit.

Aufgrund der detaillierten Analyse des Transientenspektrums von **87** konnten folgende Lebensdauern ermittelt werden:

Schema 94: Experimentelle Lebensdauern der Absorption bei 500 nm / 680 nm in 87

$$\tau_{\text{Rasch}} = 50 \text{ fs } / \text{P-D} \rightarrow {}^{1}\text{P}^{*}\text{-D}$$

$$\tau_{\text{Anstieg(680 nm)}} = \tau_{\text{Zerfall,rasch(500 nm)}} = 300 \text{ fs } / {}^{1}\text{P}^{*}\text{-D} \rightarrow \text{P}^{+}\text{-D}^{-} \text{ (CS)}$$

$$\tau_{\text{Zerfall,langsam(680 nm)}} = 400 \text{ ps } / \text{P}^{+}\text{-D}^{-} \rightarrow \text{P-D} \text{ (CR)}$$

Die genauere Analyse der zeitaufgelösten Fluoreszenzmessungen ergaben folgende Lebensdauern:

Schema 95: Experimentelle Lebensdauern des Fluoreszenzzerfalls bei 635 nm in 87

$$\tau_1 = 385 \text{ ps} \equiv {}^{1}\text{P}^*\text{-}\text{D} \rightarrow \text{P}^+\text{-}\text{D}^-\text{-}$$
$$\tau_2 = 2.5 \text{ ns} \equiv {}^{1}\text{P}^*\text{-}\text{D} \rightarrow \text{P}\text{-}\text{D}$$

Der rasche Zerfall (τ = 300 fs) des Porphyrin-Singuletts bei 500 nm in **87** und die gleichzeitige rasche Bildung (τ = 280 fs) des Porphyrin-Radikalkations bei 680 nm korrelieren miteinander und deuten auf die Bildung eines Ladungstransfer-Komplexes hin. Die zeitaufgelösten Fluoreszenzmessungen von **87** zeigten allerdings einen raschen Fluoreszenzzerfall (τ = 400 ps), welcher der Bildung des Ladungstransfer-Komplexes zugeschrieben wird. Aus den zeitaufgelösten UV/Vis-Spektren von **87** geht ferner hervor, dass das Porphyrin-Radikalkation eine Lebensdauer von etwa 400 ps besitzt.

Ein ähnliche Beobachtung wurde auch von *Gust*¹⁶¹ bei der Untersuchung von kovalent verknüpften Porphyrin-Naphthoquinon-Dyaden beobachtet. Dabei stellte sich heraus, dass die Ladungsrekombination des Ladungstransfer-Komplexes in den Grundzustand wesentlich rascher erfolgt als dessen Bildung aus dem Singulett. *Gust*¹⁶¹ geht von einer "inversen Kinetik" aus, dass heisst, der rasche Anstieg des Transienten für das Porphyrin-Radikalkation entspricht tatsächlich dessen Zerfall und der langsamere Rückgang der Absorption des Transienten dessen Bildung. *Osuka* und *Mataga*¹⁶⁵ konnten anhand von Porphyrin-Quinon-Modellsystemen ebenfalls zeigen, dass die Geschwindigkeit der Ladungsrekombination des Ladungstransfer-Komplexes von der Polarität des Lösungsmittels stärker beeinflusst wird als die Geschwindigkeit der Ladungsrekombination des Ladungstransfer-Komplexes von der Polarität des Lösungsmittels von 600 nm in stark polaren Lösungsmitteln. Im Falle stark polarer Lösungsmittel (BuCN) konnte ein k_{CR} > k_{CS} (inverse Kinetik) beobachtet werden.

Schema 96: Inverse Kinetik nach Gust¹⁶¹

In *Schema 96,rechts* sind die Absorptionen des Transienten im Bereich von 500-750 nm zu den Zeitpunkten 0.5 ps (—), 1.3 ps (---) und 60 ps (—) dargestellt. Das Inset zeigt den zeitlichen Verlauf des Transienten bei 510 nm (\blacksquare) und 723 nm (o). Die durchgezogenen Linien repräsentieren den exponentiellen Fit. Der rasche Anstieg von 300 fs (k = $3 \cdot 10^{12}$ s⁻¹) wird dabei der Ladungsrekombination und der langsamere Abfall von 42 ps (k = $2.4 \cdot 10^{10}$ s⁻¹) der Ladungsseparation zugeschrieben.

Gust beobachtete ebenfalls einen biexponentiellen Zerfall der Absorption bei 510 nm, bei welchem die Lebenszeit des rascheren Prozesses ebenfalls 300 fs betrug. Zeitaufgelöste Fluoreszenzexperimente zeigten ebenfalls eine Lebenszeit von 42 ps für ¹P^{*}-NQ. Die nachfolgende Tabelle (*Tabelle 5*), der zeitliche Verlauf der Transienten-Absorption bei 510 nm und 723 nm in **87** sowie die relativ schwache Absorption des Transienten zeigen eine verblüffende Ähnlichkeit mit den Beobachtungen von *Gust*. Der einzige Unterschied liegt darin, dass die Absorption des Transienten oberhalb von 700 etwa zehnmal schneller zerfällt. Dazu muss erwähnt werden, das die berechnete thermodynamische Triebkraft für die Ladungsseparation bei dem Modell von *Gust* mit $\Delta G = -0.44$ eV erheblich stärker ist.

Phänomen	τ beob. Von <i>Gust</i>	τ exp. beob.	
Zerfall bei 510 bzw. 500 nm	τ ₁ = 300 fs	τ ₁ = 300 fs	
	τ ₂ = 42 ps	$\tau_2 = 400 \text{ ps}$	
Anstieg bei 723 bzw. 680 nm	τ = 300 fs	τ = 300 fs	
Zerfall bei 723 bzw. 680 nm	τ = 42 ps	τ = 400 ps	
Fluoreszenz-Zerfall bei 650	12 pp	τ = 385 ps	
bzw. 635 nm	η – 42 ps		

Tabelle 5:	Gegenüberstell	una von 8	37 mit dem	Modell von	Gust
	obgonaboroton				0401

Die Annahme von inverser Kinetik aufgrund der oben aufgeführten Überlegungen führt zu einem modifizierten Perrin-Jablonski-Diagramm (Schema 97). Dabei wird der thermodynamisch mögliche Energietransfer von P-¹D^{*} nach ¹P^{*}-D nicht weiter berücksichtigt, da bei einer Anregung der Modellverbindung 87 bei 388 nm (es wird sich hierbei nur auf das Fluoreszenz-Quenching bezogen) aufgrund des ungünstigen Verhältnisses der Extinktionskoeffizieten lediglich 10 % der Moleküle als angeregtes Deazaflavin-Singulett P-¹D^{*} vorliegen. Dabei wird die Ladungsrekombination zurück zu dem Porphyrin-Singulett ¹P^{*}-D und somit ein mögliches Gleichgewicht nicht in Betracht gezogen, da die Ladungsrekombination des Ladungstransfer-Komplexes in den Grundzustand sehr rasch erfolgt. Die Tatsache, dass Modellverbindung 87 dennoch Fluoreszenz aufweist deutet darauf hin. das die beiden Deaktivierungsprozesse Fluoreszenz und Ladungsseparation des Porphyrin-Singuletts miteinander konkurrieren und somit von vergleichbarer Grössenordnung sind. Dabei scheint die Ladungsseparation aufgrund des Verhältnisses der Lebenszeiten von Porphyrin in **86** (10.0 ns) und Modell **87** (2.5 ns) zu überwiegen. In diesem Modell wird die beobachtete Restfluoreszenz des Porphyrin-Singuletts in **87** somit durch das Verhältnis von Ladungstrennung ($k_{CS} = 2.5 \cdot 10^9 \text{ s}^{-1}$) und Fluoreszenz ($k_f = 4 \cdot 10^8 \text{ s}^{-1}$) bestimmt, da die Ladungsrekombination in den Grundzustand nicht geschwindigkeitsbestimmend ist.

Schema 97: Modifiziertes Perrin-Jablonski-Diagramm für 87

Die Geschwindigkeit des Elektronentransfers kann anhand folgender Gleichung bestimmt werden:

Gleichung 17

$$\mathbf{k}_{\rm ET} = \frac{1}{\tau_{\rm P^{\star}-D}} - \frac{1}{\tau_{\rm P^{\star}}}$$

 τ_{P^*-D} = Lebensdauer des Porphyrin-Singuletts (P^{*}-D) in Modell **87** τ_{P^*} = Lebensdauer des Porphyrin-Singuletts (P^{*}) in **86**

Die Geschwindigkeit des Elektronentransfers $k_{ET} = 2.5 \cdot 10^9 \text{ s}^{-1}$ ist allerdings erheblich geringer im Vergleich zu der in Abschnitt 4.3.4.2 (*Tabelle 4*) erwarteten

Geschwindigkeit von $k_{ET} \approx 10^{11} \text{ s}^{-1}$ für vergleichbare thermodynamische Triebkraft. Eine Kopplungsenergie von V = 32 meV (gemäss *Gleichung 14*) und die von *Osuka* und *Mataga*¹⁶⁵ beobachtete starke Beschleunigung der Ladungsrekombination in stark polaren Lösungsmitteln spricht somit für das Modell mit inverser Kinetik. Aufgrund dieser Kopplungsenergie liegt der ET somit im Grenzbereich zwischen adiadatischem und nicht-adiabatischem ET.

Der Elektronentransfer lässt sich auch mit Hilfe "normaler Kinetik" erklären. Dabei wird davon ausgegangen, dass die Ladungsseparation sehr rasch erfolgt. Da die Ladungsrekombination des Ladungstransfer-Komplexes in den Grundzustand sehr langsam erfolgt, stellt sich somit ein rasches Gleichgewicht zwischen dem Porphyrin-Singulett und dem Ladungstransfer-Komplex ein. Die Geschwindigkeit des Elektronen-Rücktransfers k._{CS} sollte dabei eine vergleichbare Geschwindigkeit wie die Ladungsseparation aufweisen. Die Restfluoreszenz des Porphyrin-Singuletts wird somit durch das Verhältnis von Fluoreszenz und Ladungsrekombination in den Grundzustand bestimmt. Der Elektronentransfer ist somit nicht geschwindigkeitsbestimmend. Auch hierfür lässt sich wieder ein *Perrin-Jablonski*-Diagramm erstellen (*Schema 98*).

Schema 98: Modifiziertes Perrin-Jablonski-Diagramm für 87

Unter Annahme eines Gleichgewichtes zwischen dem Porphyrin-Singulett und dem Ladungstransfer-Komplex kann die Geschwindigkeit des Elektronen-Rücktransfers (k_{-CS}) wie folgt berechnet werden:

Gleichung 18: Elektronen-Rücktransfer

$$\Delta G_{CS} = -RTIn\left(\frac{k_{CS}}{k_{-CS}}\right) \rightarrow k_{-LS} = \frac{k_{CS}}{e^{\frac{\Delta G_{CS}}{RT}}} \rightarrow k_{-CS} = 9 \cdot 10^{11} \text{ s}^{-1}$$

 $\Delta G_{CS} = -0.05 \text{ eV}$ $k_{CS} = 3.10^{12} \text{ s}^{-1}$ R = 8.31 J/K·mol ; T = 298 K

Die Ladungsrekombination des Ladungstransfer-Komplexes in den Grundzustand verläuft trotz seiner starken thermodynamischen Triebkraft von $\Delta G = -1.82$ eV sehr langsam, was darauf hindeutet, dass dieser Prozess im inversen *Marcus*-Bereich liegt. Der rasche Abfall des Transienten bei 500 nm (*Schema 93, rechts*) deutet somit auf die rasche Einstellung des Gleichgewichtes hin gefolgt von dem langsameren Zerfall des Ladungstransfer-Komplexes. Dieser Sachverhalt steht im Einklang mit dem Zerfall des Porphyrin-Radikal-Kation-Transienten bei 680 nm ($\tau = 400$ ps) und dem raschen Zerfall ($\tau = 400$ ps) der Fluoreszenz bei 635 nm von **87**. Gegen diese kinetische Beschreibung spricht die Geschwindigkeit der Ladungsrekombination, welche in einem stark polaren Lösungsmittel wie MeCN erheblich rascher erfolgen sollte. Die Beschreibung mit normaler Kinetik führt laut *Gleichung 14* auf eine sehr starke elektronische Kopplung von V = 1.15 eV zwischen Porphyrin und Deazaflavin, welche weit oberhalb der Kopplungsenergie vergleichbarer Modellsysteme liegt und eindeutig adiabatisch verlaufen sollte.

Zuletzt bleibt die Frage offen, auf welche Weise die Fluoreszenz des Deazaflavins in **87** gelöscht wird. Aus allen Berechnungen geht hervor, dass die Deaktivierung von $P-{}^{1}D^{*}$ über zwei mögliche Prozesse erfolgen kann. Die Deaktivierung kann entweder über einen Energietransfer (i) oder einen Elektronentransfer (ii) erfolgen. Ein Energietransfer kann anhand der Zunahme der Akzeptor-Fluoreszenz nachgewiesen werden. Allerdings ist das in Modellverbindung **87** nicht möglich, da die Fluoreszenz von ${}^{1}P^{*}$ -D selbst durch Bildung des Ladungstransfer-Komplexes gelöscht wird. Der Elektronentransfer von $P-{}^{1}D^{*}$ nach $P^{+}-D^{-}$ lässt sich auch sehr schwer bestimmen, da

der Ladungstransfer-Komplex ebenfalls durch ¹P^{*}-D gebildet wird. Um einen genaueren Einblick über die Deaktivierung von P-¹D^{*} zu erhalten, wäre es hilfreich, das Deazaflavin selektiv anzuregen. Dies ist allerdings gemäss *Schema 78* nicht möglich. Die Fluoreszenz von P-¹D^{*} wird einerseits gelöscht, indem ein direkter Elektronentransfer von P-¹D^{*} zu P⁺-D⁻ erfolgt. Andererseits kann zuerst ein Energietransfer von P-¹D^{*} nach ¹P^{*}-D erfolgen. Das rasche Gleichgewicht zwischen¹P^{*}-D und P⁺-D⁻ führt dann zur Bildung des Ladungstransfer-Komplexes P⁺-D⁻. De facto enden beide Deaktivierungsprozesse in dem selben Ladungstransfer-Komplex. Die Deaktivierung des Deazaflavin-Singuletts kann aufgrund der Reduktionspotentiale beurteilt werden, siehe *Gleichung 19*¹⁸².

Gleichung 19: Berechnung des Reduktionspotentiales von ${}^{1}dFl_{Ox}^{*}$ (67)

 E_{Red}^{0} (${}^{1}dFI_{Ox}^{*} / dFI^{-}$) = E_{Red}^{0} (dFI_{Ox} / dFI^{-}) + ${}^{1}E_{0,0}$

 E_{Red}^{0} (dFl_{Ox}/dFl⁻) = -0.98 V (*Schema 37*) ¹E_{0,0} = 2.83 eV (*Schema 81*)

Einsetzen der Werte ergibt ein Reduktionspotential des Deazaflavin-Singuletts von E_{Red}^{0} (${}^{1}dFl_{Ox}^{*}/dFl^{-}$) = +1.85 V. Dieser Wert ähnelt sehr stark dem Reduktionspotential des Singuletts von Riboflavin mit E_{Red}^{0} (${}^{1}RFl^{*}/RFl^{-}$) = +1.89 V (vs. SCE)^{182,183}. Dieses Reduktionspotential liegt deutlich höher als die Ein-Elektronenoxidationspotentiale aller hier gemessenen Porphyrine und Metalloporphyrine im Bereich von +0.64 bis +1.01 V (*Schema 37*). Da das Singulett von Deazaflavin ein sehr starkes Oxidationsmittel ist, ist anzunehmen, dass es bei Bestrahlung das Porphyrin oxidiert. Somit wird angenommen, dass das Deazaflavin-Singulett in **87** hauptsächlich durch Elektronentransfer deaktiviert wird (*Schema 99*).

4.3.4.5 Kinetische Untersuchung von 88

Vor der genaueren Untersuchung des Transientenspektrums von **88** ist es hilfreich, zuerst einen Überblick über die Thermodynamik zu erhalten. Hierfür wurde wiederum ein *Perrin-Jablonski*-Diagramm erstellt. Auch hier müssen für einen photoinduzierten Elektronentransfer wieder vier mögliche Prozesse betrachtet werden.

Schema 100: Triebkraft für alle vier möglichen Elektronentransfer-Prozesse

 $\begin{array}{l} A \;) \; P \; + \; D^{*} \; \rightarrow \; P^{-} \; + \; D^{+} & (\Delta G_{ET} \; = \; +75.3 \; kJ/mol \; ; \; \; +0.78 \; eV) \\ B \;) \; P \; + \; D^{*} \; \rightarrow \; P^{+} \; + \; D^{-} \; (\Delta G_{ET} \; = \; -100.3.0 \; kJ/mol \; ; \; -1.04 \; eV) \\ C \;) \; P^{*} \; + \; D \; \rightarrow \; P^{+} \; + \; D^{-} & (\Delta G_{ET} \; = \; -9.6 \; kJ/mol \; ; \; -0.10 \; eV) \\ D \;) \; P^{*} \; + \; D \; \rightarrow \; P^{-} \; + \; D^{+} & (\Delta G_{ET} \; = \; +166.0 \; kJ/mol \; ; \; +1.72 \; eV) \end{array}$

Die Betrachtung der Triebkraft zeigt auf, dass die Bildung des Ladungstransfer-Komplexes in **88** annähernd vergleichbare thermodynamische Triebkraft wie in **87** besitzt. Dieser Ladungstransfer-Komplex kann ebenfalls von P-¹D^{*} und ¹P^{*}-D gebildet werden.

Schema 101: Perrin-Jablonski-Diagramm für 88

Die energetische Lage des Porphyrin-Tripletts wurde nicht experimentell bestimmt. Um dennoch ein eine Abschätzung der Triplettenergie vorzunehmen, ist es hilfreich zunächst mehr Eigenschaften über Porphyrin- und Metall-Porphyrine in Erfahrung zu bringen. Triplettenergien für Porphyrin-Tripletts sind bekannt aus der Literatur^{154,170}.

Die in *Tabelle 6* (Verbindung 1) aufgeführte Lebensdauer ($\tau_{\rm S} = 9.3$ ns) und Energie des Singuletts (E_S = 1.90 eV) von Tetraarylporphyrinen stimmt sehr gut mit den für Modellverbindung **87** gemessenen Werten von $\tau = 10.0$ ns und 1.87 eV überein. Somit sollte die Energie des Porphyrin-Tripletts in Modellverbindung **87** und **88** ebenfalls mit den in *Tabelle 6* und *Tabelle 7* aufgeführten Werten von E_T = 1.44 eV und 1.45 eV übereinstimmen. Aus diesen Tabellen geht weiterhin hervor, dass die Triplett-Energien von Metallo-Porphyrinen deutlich zunehmen, je schwerer das Metallion ist. Die Bestimmung der Energie ΔE_{0-0} (P_{Fe}-D \rightarrow ¹P_{Fe}^{*}-D) lässt sich schwierig ermitteln, da einerseits die Q-Banden im UV/Vis-Spektrum von Modellverbindung **88** keinerlei Fluoreszenz aufweist. Da die *Soret*-Bande in **88** um 10 nm hypsochrom gegenüber **87** verschoben ist, ist anzunehmen, das die Energie von
${}^{1}P_{Fe}^{*}$ -D in **88** annähernd der Energie von ${}^{1}P^{*}$ -D in **87** entspricht. Aus den Tabellen geht weiter hervor, dass die Triplettenergien von Metallo-Porphyrinen recht genau 0.40 eV unterhalb der Singulettenergien liegen. Somit sollte für **88** die Triplettenergie bei etwa +1.50 eV liegen.

		compound				
property	1	2	3	1	$M = 2H^{+}$,	n =
. (eV)	1.90	2.06	2.21	· Yox 2	M = 2n,	n =
Þ _r	0.19	0.045	<0.0001	· · 3	M = Au,	n =
(ns)	9.3	2.3		1 may		
/eV	1.44	1.64	1.82	The second at		
h,	0.61	0.72	1.0	$(\mathcal{H} \times \mathcal{H})$		
(µs)	1200	820	0.0014	X M M X		
" (V vs SCE)	-1.24	-1.63	-0.59	· vyv ·		
E. ° (V vs SCE)	1.01	0.62	1.62			
Ered ^o (V vs SCE)	0.66	0.43	1.62	tex		
E. (V vs SCE)	0.20	0.01	1.23			
Eos (V vs SCE)	-0.89	-1.44	-0.59			
E. (V vs SCE)	-0.43	-1.02	-0.20			

Tabelle 6: Spektroskopische Parameter für Tetraarylporphyrine¹⁷⁰

* Für monomere Porphyrine in DMF

	Tabelle 7: S	Spektrosko	pische Pa	arameter t	für Por	phyrine ¹⁵⁴
--	--------------	------------	-----------	------------	---------	------------------------

compd	eV.	E(D ⁺) ^b	E°	compd	τ _{ET} , ns
ZnTPC	2.03	0.60	0.76	¹ ZnCQ	~1
ZnTPP	2.07	0.75	0.65	¹ ZnPQ(Ac) ₄	0.65
TPC	1.91	0.88	0.36	1CQ	>8
PQ(Ac),	1.90	1.05	0.18	PQ(Ac).	>400
³ ZnTPP	1.59	0.75	0.17	³ ZnPQ(Ac) ₄	150
³ TPP	1.45	1.05	-0.27	3PQ(Ac).	>106

Die Untersuchung der Kinetik von **88** (*Schema 89*) konzentriert sich auf die Wellenlängen 450 nm (Maximum von ¹P^{*}-D), 585 nm (Maximum von ³P^{*}-D) und 680 (Maximum des P⁺-D⁻). Das Porphyrin-Singulett (¹P^{*}-D) zeigt einen biexponentiellen Zerfall. Die kürzere Lebensdauer τ_1 = 336 fs wird dabei dem raschen ISC zum Porphyrin-Triplett (³P^{*}-D) zugeschrieben, wohingegen die längere Lebensdauer τ_2 = 10.4 ps der Bildung des Ladungstransfer-Komplexes zugeordnet wird. Im Vergleich zu Modellverbindung **87** ist die Absorption des Transienten bei 680 nm in **88** erheblich schwächer. Dies zeigt auf, dass das rasche ISC der Hauptdeaktivierungsprozess des Porphyrin-Singuletts ist. Die Tatsache, dass die Lebensdauern für den Zerfall bei 680 nm und 585 nm annähernd gleich sind, legt den Schluss nahe, dass es sich bei der Absorption bei 680 nm lediglich um das Triplett handelt.

Aufgrund der sehr schwachen Absorption des Transienten bei 680 nm ist eine detaillierte kinetische Untersuchung allerdings erschwert (*Schema 104*).

Schema 102-104: Messdaten und Fit

Auch hier lässt sich wieder ein modifiziertes *Perrin-Jablonski*-Diagramm aufstellen. Aus diesem Diagramm kann keine Aussage über die Deaktivierung des Deazaflavin-Singuletts gemacht werden. RET kann nicht nachgewiesen werden, da sowohl Donor- als auch Akzeptor-Fluoreszenz vollständig gelöscht sind. Die Deaktivierung durch Elektronentransfer ist auch nicht nachzuweisen, da der Ladungstransfer-Komplex ebenfalls durch das Porphyrin-Singulett gebildet wird.

Schema 105: Modifiziertes Perrin-Jablonski-Diagramm für 88

Eine mögliche Erklärung der Fluoreszenzlöschung des Deazaflavins in **88** basiert auf den Untersuchungen von Porphyrin-Dimeren durch *Asano-Someda*^{184,185}. Dabei wurde jeweils ein Cu(II)Porphyrin über einen Spacer (SP) mit einem "free base"-Porphyrin gekoppelt (Cu(II)-SP-H₂).

Schema 106: Modellverbindungen von Asano-Someda

Im Vergleich zu Zn(II)-Porphyrinen zeigen Cu(II)-Porphyrine keinerlei Fluoreszenz, was zu dem Schluss führt, dass der bereits in Abschnitt 4.3.4.3 aufgeführte Schweratomeffekt nicht die alleinige Ursache für die Fluoreszenzlöschung sein kann. Der einzige Unterschied ist die Elektronenkonfiguration der beiden Metallionen. Zn(II) verfügt über 10 d-Elektronen (3d¹⁰) und ist somit diamagnetisch. Cu (II) verfügt lediglich über 9 d-Elektronen (3d⁹) und ist somit paramagnetisch. Dieses ungepaarte Elektron wechselwirkt mit den π -Elektronen des Porphyrins und führt zu einer Aufspaltung der Singulett- und Triplettzustände des Porphyrins. Aufgrund der gleichen Multiplizität des ²S und ²T ist dieser Übergang nicht mehr streng verboten und verläuft erheblich rascher.

Singulet ¹S \rightarrow Sing-Dublett ²S₁ und ²S₀ Triplett ³T \rightarrow Trip-Dublett ²T₁ Trip-Quartett ⁴T₁

Aufgrund der raschen Deaktivierung des Porphyrin-Singuletts durch beschleunigtes ISC konnte in den Modellverbindungen vom Typ Cu(II)-SP-H₂ ein Triplet-Triplett-Energietransfer (TEET) mit einer Effizienz von nahezu 1 nachgewiesen werden. Die analogen Zn(II)-SP-H₂-Verbindungen hingegen zeigen Singulett-Singulett-Energietransfer (SEET). Darüber hinaus konnte nachgewiesen werden, dass der Cu(II)-Porphyrinteil das ISC des "free base"-Porphyrinteils (Akzeptor) ebenfalls erheblich beschleunigt.

Schema 107: Perrin-Jablonski-Diagramm für paramagnetische Cu(II)-SP-H₂-Modelle

Die Elektronenkonfiguration von Fe(III) ist d⁵ und somit verfügt Fe(III) ebenfalls über midestens ein ungepaartes Elektron und ist paramagnetisch. Für Fe(III)-Porphyrine ähnlicher Modellverbindungen sind folgende Spinzustände möglich (*Schema 108*): low-spin (S=1/2), intermediate-spin (S=3/2) und high-spin (S=5/2). Fe(III)-Thiolat-Porphyrine ohne starken distalen Ligand zeigen high spin.

Schema 108: Mögliche Spinzustände von Fe(III)-Porphyrinen

Da Modellverbindung **88** keinen starken distalen Liganden koordiniert hat, liegt Fe(III) folglich als high-spin-Zustand (S = 5/2) vor und besitzt fünf ungepaarte Elektronen. Damit ist anzunehmen, dass die Wechselwirkung mit den π -Elektronen des Porphyrins und den π -Elektronen des Deazaflavins erheblich stärker ist und das ISC deutlich rascher erfolgen sollte. Das Fehlen der Fluoreszenz von Deazaflavin beruht auf dem erheblich beschleunigten ISC und ist somit unterhalb der Auflösung der Messapparatur. Diese Tatsache führt zu dem Schluss, dass das Deazaflavin-Singulett nicht durch Singulett-Singulett-Energietransfer, sondern durch Triplett-Triplett-Energietransfer deaktiviert wird. Die Deaktivierung des Deazaflavin-Singuletts hin zu dem Ladungstransfer-Komplex ist aufgrund der sehr schwachen Absorption des Porphyrin-Radikalkations zudem unwahrscheinlich.

5. Zusammenfassung

Anhand der Inkubationsstudien konnte gezeigt werden, dass 6β-Deazatesto (**15**) im aktiven Zentrum von CYP3A4 bindet und den Metabolismus von vier Standardsubstraten für CYP3A4 inhibiert.

Hinzu kommt. dass die IC50 für alle Substrate in einem schmalen Konzentrationsbereich von 0.5-5 µM liegen. Die Tatsache, dass der Inhibitor den Metabolismus dieser Substrate in gleicher Weise inhibiert führt zu dem Schluss, dass es sich hierbei tatsächlich um einen "Universalinhibitor" handelt. Somit hat der Inhibitor grosses Potential als Referenzsubstanz für ein rasches "screening" von neuen Pharmaka eingesetzt zu werden. Aufwendige Tests mit zahlreichen Substraten könnten somit durch rasche Tests mit nur einer Referenzsubstanz ersetzt werden. Eine weitere Verbesserung im Hinblick auf rasche Inhibitionsstudien ist die Fluoreszenz der 5-Deazaflavinsubstruktur. Es konnte gezeigt werden, dass die Fluoreszenz des Inhibitors gelöscht wird, solange der Inhibitor im aktiven Zentrum gebunden ist. Die Fluoreszenz kehrt allerdings zurück, wenn der Inhibitor durch ein stärker bindendes Substrat aus dem aktiven Zentrum verdrängt wird. Bindet ein Substrat stärker in dem aktiven Zentrum, so hemmt es den Metabolismus anderer Substrate zu stark (IC₅₀ < 1-10 μ M) und kommt für eine therapeutische Anwendung nicht in Frage. Mit Hilfe von 6β-Deazatesto ist somit ein rasches Auswahlverfahren für diese Substrate anhand von einfacher Fluoreszenzdetektion möglich.

Weiter konnte gezeigt werden, dass die 5-Deazaflavinsubstruktur allein den Metabolismus des Testosteron-Metabolismus inhibieren kann. Allerdings liegt der

IC₅₀ für dieses Substrat um einen Faktor 10^2 höher als der IC₅₀ für 6β-Deazatesto (**15**). Diese Tatsache und das Verschwinden der Fluoreszenz durch Bindung im aktiven Zentrum legt den Schluss nahe, dass die 5-Deazaflavinsubstruktur mit dem Häm b von CYP3A4 wechselwirkt. Somit beruht das Inhibitionspotential von 6β-Deazatesto einerseits auf dem Binden der Testosteryl-Substruktur an seine Bindungsstelle und andererseits auf der Abschirmung von "Compound 1" durch die 5-Deazaflavinsubstruktur. Die Wechselwirkung zwischen 5-Deazaflavin und Häm b wurde mit Hilfe von zwei synthetischen Modellen (**87 + 88**) untersucht.

In beiden Modellen wurde ein ähnliches 5-Deazaflavin auf der distalen Seite mit einem Diamino-Fe(III)-porphyrin verbrückt. Die proximale Seite bestand dabei aus einer Thiol- (**87**) bzw. Thiloatfunktion (**88**).

Schema 109: Fluoreszenzlöschung von 5-Deazaflavin in CYP3A4

Aus allen Messungen geht hervor, dass die Löschung der Fluoreszenz von Deazaflavin durch das Fe(III)-Porphyrin in Modellverbindung **88** womöglich auf einem

raschen ISC des Deazaflavinsinguletts aufgrund der Wechselwirkung mit den ungepaarten Elektronen des Eisens in Häm beruht. Eine Löschung durch Bildung eines Ladungstransfer-Komplexes kann nicht völlig ausgeschlossen werden, doch es ist anzunehmen, dass dieser Prozess nur eine untergeordnete Rolle spielt. Bei der Übertragung der Messergebnisse von Modellverbindung **88** auf CYP3A4 ist zu beachten, dass CYP3A4 neben Häm b noch zahlreiche andere Struktureinheiten besitzt, welche für die Fluoreszenzlöschung mitverantwortlich sein könnten. Das stark positive Reduktionspotential des Deazaflavin-Singuletts weist dieses als starkes Oxidationsmittel aus, welches in der Lage ist neben Häm b auch Amine oder Aromaten zu oxidieren. Bei der Fluoreszenzlöschung von Deazaflavin im aktiven Zentrum von CYP3A4 ist nicht geklärt, ob diese analog zu Modellverbindung **88** erfolgt und inwiefern alternative Elektronendonoren einen Einfluss auf die Bildung eines Ladungstransfer-Komplexes haben.

6. Experimenteller Teil

6.1 Allgemeine Bemerkungen

6.1.1 Reagenzien und Lösungsmittel

Bei Verbindungen ohne Angaben handelt es sich um kommerziell erhältliche Ausgangsmaterialien der Firmen Fluka (Buchs, Schweiz), Merck (Darmstadt, Deutschland) oder Aldrich (Buchs, Schweiz), Ultrafine (Manchester, Grossbritannien) und BD Gentest (Woburn, USA). Chemikalien der Qualität *purum, purissimum* oder > 98 % wurden ohne weitere Reinigung eingesetzt. Lösungsmittel wurden vor dem Gebrauch destilliert. Trockenes THF sowie trockenes Et₂O wurden mittels Destillation über Na/Benzophenon und trockenes CH₂Cl₂ durch Destillation über CaH₂ erhalten. Trockenes DMF, DMSO, Dioxan, Ethanol u.a. wurden von der Firma Fluka bezogen und wiesen weniger als 0.005 % (v/v) Wasser auf. Acetonitril und MeOH wurden von den Firmen J.T. Baker (Deventer, Holland) und Machler (Reinach, Schweiz) bezogen und in HPLC-Qualität verwendet. Für Reaktionen in wässrigem Milieu sowie für die Herstellung von Pufferlösungen wurde Wasser aus einer Reinstwasseranlage Nanopure D4742 der Firma Skan (Basel, Schweiz) verwendet. Alle trockenen Lösungsmittel wurden über Molekularsieb (3 Å) und unter Argon aufbewahrt.

Die in der "Glove-Box" verwendeten trockenen Lösungsmittel wurden entgast, indem sie dreimal mit flüssigem Stickstoff eingefroren, im festen Zustand 15 min dem Hochvakuum (ca. 0.01 mbar) ausgesetzt und im Vakuum wieder aufgetaut wurden.

Alle hergestellten Verbindungen wurden unter Argon im Dunkeln bei 4°C oder -20°C gelagert.

Für eine inerte Atmosphäre innerhalb der "Glove-Box" (< 4 ppm Restgase) wurde Stickstoff 50 der Firma Carbagas (Lenzburg, Schweiz) verwendet.

Cytochrom P450 3A4 (CYP3A4) wurde von der Firma BD Gentest (Woburn, USA) bezogen. Dabei handelte es sich um humanes CYP3A4, welches zusammen mit humaner P450 Reduktase und Cytochrom b_5 in mit Baculoviren infizierten Insektenzellen koexprimiert wurde (Supersomes[®]). Die Proteinkonzentration betrug dabei 5 mg/ml, die Konzentration an CYP3A4 betrug 0.5 nmol/0.5 ml¹⁷¹. Das Enzym wurde nach einmailgem Auftauen aliquotiert und die Aliquote stets bei -78°C aufbewahrt.

Pufferlösungen wurden mit einem pH-Meter E512 der Firma Metrohm (Herisau, Schweiz) auf den jeweiligen pH eingestellt und vor dem Gebrauch über NC 45 Membranfilter (Porengrösse 0.45 μ m, \varnothing 50 mm) der Firma Schleicher & Schuell (Dassel, Deutschland) filtriert.

Alle Substanzen wurden bei 4°C oder -18°C aufbewahrt.

6.1.2 Geräte und Apparaturen

Lösungsmittel wurden mit einem Rotationsverdampfer (Waterbath 461, Rotavapor RE 111 und Vacuum Controller 168) der Firma Büchi (Schweiz) und der Membranpumpe MZ 2C der Firma Vacuubrand entfernt. Die Kühlmischung aus Wasser und Ethanol wurde mit dem Wärmetauscher UWK 300 der Firma Vacuubrand auf minimal 4°C gehalten.

Für grobe Wägungen diente die Waage PJ 360 Deltarange und für feine Wägungen die Waagen AE 163 und AX 205 alle von der Firma Mettler[®] (Schweiz).

Zum Trocknen der hergestellten Verbindungen im Hochvakuum diente eine Ölpumpe RV5 der Firma Edwards[®].

Für die langsame Zugabe von Lösungen mit der Spritze wurde eine Infusionspumpe Precidor 5003 der Firma Informs (Schweiz) verwendet.

Für das Arbeiten mit sauerstoffempfindlichen Substanzen wurde die "Glove-Box" Labmaster der Firma Braun (Deutschland) benutzt. Der Sauerstoffgehalt (< 2ppm) und der Wassergehalt (< 0.1 ppm) wurde mit einem kombinierten H_2O/O_2 -Analysator der Firma Braun (Deutschland) gemessen.

Schmelzpunkte wurden auf einem Heiztisch V 250 der Firma Zabona (Basel, Schweiz) gemessen. Da die Schmelzpunkte der meisten Porphyrine über 250°C liegen, wurde auf deren Messung verzichtet.

Inkubationen wurden ausschliesslich in 1,5 ml Click-Caps aus Polypropylen der Firma Treff (Degersheim, Schweiz) durchgeführt. Für die Zugabe von Lösungen wurden 1 ml und 200 μl Pipetten vom Typ Pipetman der Firma Gilson (Villiers Le Bel, Frankreich). Für die Zugabe von geringen Mengen an Lösung zu den Inkubationen wurden 10 μl-Spritzen vom Typ Microliter[®] 701 der Firma Hamilton (Bonaduz, Schweiz) verwendet. Für ein rasches Durchmischen der Inkubationslösung diente ein Reagenzien Mixer der Firma Apparatebau Eckli Electronic (Zürich, Schweiz). Die Inkubationen wurden in einem Thermomixer 5436 der Firma Eppendorf (Hamburg, Deutschland) durchgeführt. Für die Zentrifugation der Inkubationslösungen wurde ein Modell Centrifuge 5415 C der Firma Eppendorf (Hamburg, Deutschland) verwendet.

6.1.3 Chromatographische Methoden

Analytische Dünnschichtchromatographie wurde auf Fertigplatten beschichtet mit Kieselgel 60 F_{254} (5x10 cm, Schichtdicke 0.25 mm) der Firma Merck oder mit beschichteten Plastikplatten (5x10 cm, Schichtdicke 0.2 mm, Alugram[®] Aluminium-oxid N/UV₂₅₄) der Firma Macherey-Nagel (Deutschland) durchgeführt. Umkehrphasenchromatographie wurde mit Fertigplatten beschichtet mit RP-18 F_{254s} (5x10 cm, Schichtdicke 0.25 mm) der Firma Merck durchgeführt. Die Detektion der UV-aktiven Verbindungen erfolgte durch Fluoreszenz-Löschung des auf den Kieselgel-Fertigplatten vorhandenen Indikators bei einer Wellenlänge von 254 nm (UV254+) oder durch Fluoreszenz bei einer Wellenlänge von 366 nm (UV366+). Porphyrine und Deazaflavine konnten auch visuell detektiert werden (Vis+).

Beschreibung: DC: Retentionsfaktor R_f (Laufmittelgemisch v/v; Detektion)

Präparative Dünnschichtchromatographie wurde auf Fertigplatten (20 cm x 20 cm) mit Kieselgel 60 F_{254} (Schichtdicke 0.25 mm) der Firma Merck durchgeführt. Die Detektion der UV-aktiven Substanzen erfolgte durch Fluoreszenz-Löschung des auf den Kieselgel-Fertigplatten enthaltenen Indikators bei einer Wellenlänge von 254 nm (UV254+). Die Substanz wurde nach der Trennung von der Fertigplatte gelöst, in einer Mischung aus CH₂Cl₂ und Methanol (9:1 v/v) aufgeschlämmt, abfiltriert und eingeengt.

Säulenchromatographie ("Flash-Chromatographie") erfolgte mit Kieselgel 60 (Korngrösse 40-63 µm) der Firma Merck. Umkehrphasenchromatographie wurde mit Kieselgel C₁₈-Umkehrphase 100 (Korngrösse 15-35 µm; vollständig endcapped) der Firma Fluka (Buchs, Schweiz) durchgeführt. Die Grösse der Säule, sowie die Porosität der Fritte wurde den jeweiligen Substanzmengen angepasst. Die Volumenverhältnisse der jeweiligen Lösungsmittelgemische sind bei den Versuchsbedingungen angegeben. Das Adsorbens wurde hierzu im Laufmittel aufgeschlämmt und in der Säule unter einem maximalen Druck von 0.4 bar

homogenisiert. Das zu trennende Gemisch wurde in möglichst wenig Laufmittel gelöst und als schmale Bande auf die Chromatographiesäule aufgetragen. Nachdem das Substanzgemisch in die stationäre Phase hinein eluiert war, wurde Seesand als mechanischer Schutz auf die stationäre Phase aufgetragen. Danach wurde weiteres Laufmittel zugegeben und die Trennung bei maximal 0.2 bar durchgeführt. Bei oxidationsempfindlichen Verbindungen wurde Argon verwendet.

Analytische RP-HPLC wurde auf einem HPLC Modul der Serie 1050 der Firma Hewlett Packard (USA) durchgeführt. Die Daten wurden mit Hilfe der Software 2D ChemStation Version A.03.02 auf einem Vectra VL2 4/100 der Firma Hewlett Packard verarbeitet und dargestellt. Für die analytischen Trennungen wurde eine stationäre Phase vom Typ Superspher[®] 60 RP-Select B (Octyl-Derivat, speziell geeignet für RP-Trennungen von Basen, mittlere Korngrösse 4 µm) in einer LiChroCART[®] 125-3 (Länge 125 mm, Durchmesser 3 mm) Kartusche der Firma Merck (Darmstadt, Deutschland) verwendet. Für alle Injektionen wurde eine 100 µl Injektionschlaufe bestehend aus rostfreiem Stahl der Firma Rheodyne (Rhonert Park, USA) und eine 250 µl HPLC-Spritze vom Typ Gastight 1725 der Firma Hamilton (Bonaduz, Schweiz) verwendet.

6.1.4 Spektroskopische Methoden

Ultraviolett-Sichtbar-Spektroskopie wurde auf einem Diode Array Spektrophotometer 8452A der Firma Hewlett-Packard und einem Diode Array Spektrophotometer 8453 der Firma Agilent (USA) durchgeführt. Der Diodenabstand betrug 2 nm. Die spektralen Daten wurden mit Hilfe der Software UV-Visible Chemstation (Version A.02.04 und Version A.08.03) der Firma Hewlett-Packard verarbeitet und dargestellt. Es wurden Küvetten (Dicke 1 cm) der Firma Hellma (Deutschland) aus optischem Spezialglas für den Bereich $\lambda = 280 - 800$ nm und aus Quarzglas für den Bereich $\lambda = 200 - 800$ nm verwendet. Bei den spektroelektrochemischen Messungen wurde eine Spezielle Quarzküvette mit einer optischen Weglänge von 1 mm aus optischem Spezialglas verwendet. Darin wurde als Arbeitselektrode ein Platin-Netz gegeben, welches innerhalb des Strahlenganges des Spektrometers lag. Als Gegenelektrode diente ebenfalls ein Platin-Netz und als Referenzelektrode ein Silberdraht. Nach dem Anlegen eines bestimmten Potentiales wurden in bestimmten Zeitintervallen UV/Vis-Spektren aufgenommen.

Beschreibung: UV/VIS: (Lösungsmittel) Wellenlänge λ der Maxima (Relativer Extinktionskoeffizient in %)

Transienten-Spektroskopie

Als Lichtquelle diente ein CPA-2001 Ti:Sapphire Laser System der Firma Clark-MXR, Inc., Dexter, Michigan, USA mit einer Pulsenergie von 0.8 mJ, einer Pulsbreite (fwhm) von < 150 fs und einer Ausgangswellenlänge von 775 nm. Für die Wahl einer geeigneten Anregungswellenlänge diente ein NOPA ("noncollinearly phase matched parametric amplifier"). Die Funktionsweise von NOPA beruht in dem Erzeugen eines Wellenlängen-Kontinuums (weisses Licht) und der gezielten Amplifikation einer speziellen Wellenlänge innerhalb des Kontinuums durch Änderungen von optischen Weglängen. Somit können einzelne Wellenlängen in einem Bereich von 470-700 nm erhalten werden. Da der Pump-Strahl innerhalb des NOPA zahlreiche optische Geräte durchläuft, kommt es aufgrund von Dispersion zu einer zeitlichen Verbreiterung der Pulslänge. Mit Hilfe eines nachgeschalteten Prismenkompressors ist es möglich, die Pulsbreite auf weniger als 30 fs zu komprimieren. Die zeitliche Verzögerung des Probe-Strahles wurde durch die Änderung der optischen Weglänge mit Hilfe eines Computer-gesteuerten Schrittmotors erreicht. Dabei entspricht eine Änderung der Weglänge von 3 µm einer zeitlichen Verzögerung von 10 fs. Mit Hilfe des Schrittmotors konnte eine maximale zeitliche Verzögerung von 2 ns erreicht werden. Für die Detektion der Transientenspektren diente ein Diodenarray Sensor S3094-512Q der Firma Hamamatsu und sein Schaltkreis C7884. Als Messzelle diente eine Flusszelle mit einem Durchmesser von 200 µm. Der apparative Aufbau wurde von Dr. Bogdan Tokarczyk in der Gruppe von Prof. Wirz erstellt und ist in Schema 110 skizziert.

Schema 110: Apparativer Aufbau für Pump-Probe Experimente (Dr. B. Tokarczyk)

BS = Beam splitter

Der Ausgangsstrahl wird zunächst mit einem Beam splitter in zwei Strahlen aufgeteilt. Der Pump-Strahl durchläuft NOPA, den Prismenkompressor und zuletzt Spiegel 9. Während dieser Zeit durchläuft der Probe-Strahl zahlreiche optische Geräte (Spiegel 1,2+3) und trifft auf Spiegel 6, dessen Position mit Hilfe des Schrittmotors räumlich varriert wird. Nach passieren von Spiegel 4,7 und 8 trifft der Probe-Strahl auf die Messzelle. Beide Strahlen überlagern sich zeitgleich oder aber zeitlich versetzt in der Messzelle und ergeben ein Differenzspektrum (Transientenspektrum)

Fluoreszenzspektroskopie

Steady-State-Messungen wurden auf einem ISA Jobin Yvon-Spex Fluoromax-2[®] aufgenommen. Dabei wurden Quarzküvetten QS 1.000 (Dicke 1 cm) der Firma Hellma verwendet. Die spektralen Daten wurden mit Hilfe der Software DataMax Version 2.10 verarbeitet und dargestellt.

Die zeitaufgelösten Fluoreszenzmessungen erfolgten mit einer C5680 Universal Streak Camera der Firma Hamamatsu[®] mit einer zeitlichen Auflösung von 2 ps. Die Fluoreszenz-Lebensdauern wurde dabei mittels Photon Counting und anschliessender Integration bestimmt. Durch Wahl des geeigneten zeitlichen und räumlichen Offsets werden so verschiedene Lichtpulse mit unterschiedlichen Lichtintensitäten durch einen Schlitz, sowie zwei Linsen als Bild auf eine Photokathode projiziert. Hier werden die Lichtpulse entsprechend ihrer Intensität sequentiell in Elektronen umgewandelt, welche in Richtung der Sweep-Elektroden beschleunigt werden. Das an den Sweep-Elektroden angelegte Potential verändert sich mit der Zeit und führt somit zu einer abgelenkten Flugbahn der Elektronen. Somit ist die Ablenkung an den Sweep-Elektroden direkt proportional zu der zeitlichen Verzögerung der Lichtsignale nach dem Auftreffen auf die Photokathode. Die abgelenkten Elektronen treffen auf die MCP (micro-channel plate), wo sie vielfach verstärkt werden, bevor sie auf eine Phosphorscheibe geschossen und somit wieder in Licht zurückverwandelt werden.

Schema 111: Funktionsweise der Streak-Kamera

Als Lichtquelle diente ein CPA-2001 Ti:Sapphire Laser System der Firma Clark-MXR, Inc., Dexter, Michigan, USA mit einer Pulsenergie von 0.8 mJ, einer Pulsbreite (fwhm) von < 150 fs und einer Ausgangswellenlänge von 775 nm.

Infrarotspektroskopie wurde bei Feststoffen mit 1%igen (w/w) Kaliumbromid-Presslingen und bei Ölen oder Flüssigkeiten als Film zwischen zwei Natriumchlorid-Plättchen auf dem Spektrometer FTIR 1600 der Firma Perkin-Elmer im Fouriertransformationsverfahren durchgeführt. Beschreibung: "IR: (Medium): Wellenzahl v in cm⁻¹ (Intensität: s = stark, m = mittel, schw = schwach)"

¹H-Kernresonanzspektren wurden auf den Spektrometern Bruker av250 (250 MHz), Bruker DPX-NMR (400 MHz), Bruker DRX-500 (500 MHz) oder Bruker DRX-600 (600 MHz) aufgenommen. Die Messungen erfolgten in Lösungen von CDCl₃, d₆-DMSO, d₄-MeOH, d₈-Toluol, d₁-AcOH oder D₂O bezogen von den Firmen Dr. Glaser AG (Basel, Schweiz) und Cambridge Isotope Laboratories Inc. (Andover, USA). CDCl₃ wurde vor dem Gebrauch über basisches Aluminiumoxid filtriert. Die Messungen wurden, wenn nicht explizit angegeben bei 25°C (298 K) durchgeführt. Die chemischen Verschiebungen δ wurden in Bezug zu dem TMS-Standard (δ = 0 ppm) angegeben. Die Multiplizitäten werden wie folgt abgekürzt: s = Singulett, d = Dublett, t = Triplett, q = Quartett, quin = Quintett, sext = Sextett, m = Multiplett, br = breit. Da bei verbrückten Porphyrinen die IUPAC-Nomenklatur zu einer unübersichtlichen Numerierung führt, wurde die gängigere Bezeichnung übernommen.

Bei schwer interpretierbaren Verbindungen wurden zusätzlich COSY, TOCSY, NOESY und ROESY Experimente durchgeführt. Bei der Durchführung und Interpretation dieser Experimente halfen Dr. Klaus Kulicke, Dr. Gerd Scherer und Dr. Daniel Häussinger.

Beschreibung: ¹H-NMR (Frequenz; Lösungsmittel) Chemische Verschiebung δ in ppm (Multiplizität, Kopplungskonstanten J in Hz, Integration, Zuordnung)

¹³C-Kernresonanzspektren wurden mit den Spektrometern Bruker DPX-NMR (400 MHz), Bruker DRX-500 (500 MHz) oder Bruker DRX-600 (600 MHz) aufgenommen. Es wurden dabei in der Regel die gleichen deuterierten Lösungsmittel wie zur Aufnahme der ¹H-Kernresonanzspektren verwendet.

Bei schwer interpretierbaren Verbindungen wurden zusätzlich HMQC und HMBC Experimente durchgeführt.

Beschreibung: ¹³C-NMR (Frequenz; Lösungsmittel) Chemische Verschiebung δ in ppm (Zuordnung)

Massenspektren (MS) wurden von Dr. H. Nadig auf einem doppelfokussierenden Spektrometer VG-70-250 der Firma Varian in dem institutseigenen Labor für Massenspektrokopie aufgenommen. Als Methode wurde EI (*Electron Impact*) mit einem Ionisierungspotential von 70 eV oder FAB (*Fast Atom Bombardment*) den Substanzen angepasst eingesetzt. Für Porphyrine wurde ausschliesslich MALDI-TOF-MS (matrix assisted laser desorption ionisation time-of-flight mass spectroscopy) auf einer Perseptive Biosystems Vestec Mass Spectrometry Products Voyager[®] Elite Biospectrometry[®] Elite Station oder ESI-MS (electron spray ionisation mass spectroscopy) auf einem Esquire3000+ der Firma Bruker verwendet. Für MALDI-TOF-MS Messungen wurde die Substanz mit einer Kapillare auf eine Edelmetallplatte mit 100 kleinen Vertiefungen aufgetragen und mit einer 0.1 M Lösung bestehend aus 2,5-Dihydroxybenzoesäure in MeCN/H₂O/EtOH = 50:45:5 vermischt. Nach dem Trocknen des Gemisches wurde direkt gemessen. Für ESI-MS Messungen wurde eine verdünnte Lösung (10⁻⁵ -10⁻⁶ M) der zu messenden Substanz in MeOH hergestellt und vor der Injektion durch ein Spritzenfilter filtriert.

Beschreibung: Massenpeak (Relative Intensität in %; Zugeordnetes Fragmention). Peaks mit einer Intensität von weniger als 5 % wurden nicht berücksichtigt.

Elementaranalysen (EA) wurden von Dr. H. Kirsch wurden auf einem Analysator 240 der Firma Perkin-Elmer im institutseigenen Mikrolabor durchgeführt. Da Porphyrine und Dipyrrylmethane häufig unbefriedigende Elementaranalysen ergeben, wurde auf deren Messung verzichtet.

Beschreibung: EA: (Summenformel; Molekulargewicht in g/mol) Berechnete Massenanteile von C, H, ... in %; Gefundene Massenanteile von C, H, ... in %

6.1.5 Elektrochemische Methoden

Zyklovoltammetrie und differentielle Pulsvoltammetrie wurden mit einem µAutolab type II Potentiostaten und der Software General Purpose Elektrochemical Systems (GPES) Version 4.8 für Windows der Firma Eco Chemie B. V. (Utrecht, Niederlande) durchgeführt. Dieser wurde von Dr. Egbert Figgemeier aus der Gruppe von Prof. Constable im Institut für Anorganische Chemie bereitgestellt. Beide Methoden wurden mit Hilfe der Drei-Elektroden-Technik durchgeführt. Als Arbeitselektrode wurde eine Glassy-Carbon Elektrode verwendet, als Gegenelektrode diente ein Platin-Netz und als Referenzelektrode wurde ein Silberdraht verwendet. Für alle Messungen wurde eine 0.1 M LiCIO₄-Lösung in absolutem und entgastem MeCN verwendet. Alle Elektroden wurden vor den Messungen mit Aceton in einem Ultraschallbad behandelt und getrocknet. Die Glassy Carbon Elektrode wurde zusätzlich vor jeder Messung mit Aluminiumoxid poliert. Alle Messungen wurden mit Volumina von 0.5 bis 1 ml bei Raumtemperatur durchgeführt. Die elektrochemischen Potentiale wurden gegen Ferrocen als interner Referenz gemessen, welches dem Elektrolyten beigemengt wurde. Da das Redoxpotential von Fc⁺/Fc gegen SCE in der Literatur bekannt ist, konnten die Potentiale aller gemessenen Substanzen ebenfalls gegen SCE umgerechnet werden.

6.1.6 Molecular Modeling Studien wurden mit dem Programm Titan[®]1.05 der Firmen Schrödinger Inc. (Portland, OR, USA) und Wavefunction Inc. (Irvine, CA, USA). Dabei wurde eine Gleichgewichts-Geometrie durch molekulare Mechanik (MMFF) bestimmt.

6.1.7 Datenauswertung und Berechnungen zur Bestimmung des IC₅₀⁶⁴

Zur Ermittlung des IC_{50} (IC = "inhibition constant") wurde die Software Microsoft[®] Excel 97 SR-2 verwendet. Für jedes Substrat wurde jeweils eine Inkubation in Abwesenheit des Inhibitors durchgeführt, welches zu einer maximalen Konzentration von Metabolit führte. Die integrierten Peakflächen (HPLC) der Metaboliten in Anwesenheit des Inhibitors wurden in Verhältnis zu der integrierten Peakfläche des Metaboliten in Anwesenheit des Inhibitors gesetzt (relative Aktivität).

$$a_{exp} = \frac{Fläche([I] \neq 0)}{Fläche([I] = 0)}$$

Im Falle der BFC-Inkubation wurde ein Fluoreszenz-Differenzspektrum angefertigt, welches die relativen Intensitäten lieferte.

Für kompetitive Inhibition liess sich die relative Aktivität des Enzyms für eine bestimmte Konzentration an Inhibitor anhand folgender Gleichung berechnen⁶⁴:

$$a_{ber} = \frac{K_m + [S]}{K_m \left(1 + \frac{1}{K_i}\right) + [S]}$$

 K_m = Michaelis-Menten Konstante (entspricht derjenigen [S] für ½ v_{Max}) K_i = Inhibitionskonstante [S] = Substrat-Konzentration

 K_m wurde der Literatur entnommen und [S] wurde so gewählt, dass diese im Bereich um K_m lag. In diesem Bereich kann die Geschwindigkeit für den Substrat-Metabolismus als annähernd linear betrachtet werden. K_i wurde in Abhängigkeit zu K_m und [S] berechnet.

Aus der experimentell gemessenen und der berechneten relativen Aktivität wurde die Differenz gebildet und anschliessend quadriert $(a_{exp} - a_{ber})^2$. Im Anschluss wurde die Fehlerquadratsumme gebildet, indem die Quadrate aller Differenzen summiert

wurden $\Sigma(a_{i,exp} - a_{i,ber})^2$. Danach wurde die Fehlerquadratsumme mit Hilfe der Solver-Funktion von Microsoft[®] Excel 97 SR-2 minimiert.

Der IC₅₀ wurde mit Hilfe der folgenden Gleichung berechnet:

$$i = \frac{[I]}{[I] + K_i \left(1 + \frac{[S]}{K_m}\right)}$$

i = Prozentuale Inhibition

[I] = Inhibitor-Konzentration

Der IC_{50} entspricht derjenigen Inhibitor-Konzentration, bei welcher das Enzym nur noch 50 % seiner Aktivität verglichen zu der Aktivität in Abwesenheit des Inhibitors aufweist.

Mit Hilfe der Solver Funktion von Microsoft[®] Excel 97 SR-2 konnte die Inhibitor-Konzentration bestimmt werden. Hierbei wurde i=0.5 gesetzt und K_i aus der vorhergehenden Berechnung übernommen.

6.1.8 Inkubationen

Lösungen

- Regenerationslösung bestehend aus 50 mM MgCl₂·6 H₂O, 10 mM β-NADP Natriumsalz und 100 mM β-D-Glucose-6-phosphat Dinatriumsalz in 1 ml Kalium-Phosphatpuffer (100 mM, pH 7.4)
- II. Dehydrogenase-Lösung bestehend aus 30 Units β-D-Glucose-6-phosphat-Dehydrogenase in 1 ml Kalium-Phosphatpuffer (100 mM, pH 7.4)
- III. Substratlösung bestehend aus 0.6 mM Midazolam, 5.5 mM Testosteron, 4 mM
 Nifedipin oder 10 mM BFC in MeOH
- IV. Inhibitorlösung (Es wurden Lösungen an Inhibitor hergestellt, welche 100 x so konzentriert waren wie die im experimentellen Teil angegebenen Endkonzentration an Inhibitor in der Inkubationslösung).

Inkubationen mit Nifedipin wurden unter Lichtausschluss durchgeführt, da reduziertes Nifedipin hochgradig lichtempfindlich ist.

1 Unit (1 U) ist diejenige Menge Enzym, welche die Bildung von 1 μ mol Produkt pro Minute unter bestimmten Bedingungen katalysiert⁶⁴.

Durchführung

Zu einer Lösung von 10 pmol CYP3A4 in 100 μ l Kalium-Phosphatpuffer (100 mM, pH 7.4) wurden 5 μ l der Lösung III, 5 μ l der Lösung IV, 50 μ l der Lösung I und 290 μ l Kalium-Phosphat (100 mM, pH 7.4) gegeben. Die Mischung wurde ebenso wie Lösung II 3 min bei 37°C geschüttelt. Die Inkubation wurde durch die Zugabe von 50 μ l der Lösung zu der Inkubationslösung (Endkonzentration an CYP3A4 20 nM) gestartet und im Anschluss 15 min beziehungsweise 20 min (BFC) bei 37°C geschüttelt (Inkubationen mit Nifedipin wurden unter Lichtausschluss durchgeführt). Die Inkubation wurde durch die Zugabe von 500 μ l MeOH beendet. Die Lösung wurde rasch geschüttelt und danach 6 min bei 11000 rpm zentrifugiert. Danach wurden 800 μ l des Überstandes in ein anderes 1.5 ml Click-Cap transferiert. Für die chromatographische Trennung und anschliessende UV-Detektion wurden Portionen von 120 μ l des Überstandes direkt in das HPLC (100 μ l Schlaufe) injiziert.

HPLC-Bedingungen

Das HPLC und speziell der Detektor wurde mindestens 1 h vor Beginn einer Messreihe aktiviert. Ebenfalls vor jeder Messreihe wurden alle Leitungen ausreichend gewaschen. Die Trennsäule wurde ungefähr 30 min vor Beginn der Messreihe mit dem Eluenten äquilibriert und auf die jeweilige Temperatur gebracht. Die Detektions-Wellenlänge wurde auf 250 nm gesetzt, da die Absorptionsmaxima aller Substrate und Metaboliten sowie des Inhibitors in diesem Bereich liegen.

Mobile Phase A: 100 % MeCN

Mobile Phase B: 100 % NH₄OAC (50 mM)

Gradient: Startbedingungen 30 % A und 70 % B. Danach linearer Gradient auf 50 % A und 50 % B während 30 min. Anschliessend wieder auf die Startbedingungen innerhalb von 1 min.

Temperatur: 35° C Flussrate: 0.5 ml / min UV-Detektion: 250 nm

Retentionszeiten und Peakflächen von Substraten und Metaboliten

Die Retentionszeiten t_R für das oben aufgeführte Trennsystem sind in Minuten angeben und entsprechen den jeweiligen Peak-Maxima.

Tabelle 8: Retentionszeiten der Substrate und Metaboliten

Substrat	Metabolit	t _R (min)
Testosteron (17)		16.6 ± 0.1
	6β-OH-Testosteron (18)	5.8 ± 0.1
Midazolam (21)		19.2 ± 0.1
	1'OH-Midazolam (22)	13.3 ± 0.1
	4-OH Midazolam (23)	10.4 ± 0.1
Nifedipin (24)		15.0 ± 0.1
	Oxidiertes Nifedipin (25)	14.1 ± 0.1
α- / β-Deazatesto (16 / 15)		25.4 ± 0.1
	Metaboliten	13.1 ± 0.1
		15.6 ± 0.1
		16.0 ± 0.1
		18.4 ± 0.1
		27.8 ± 0.1

Flächen der Metaboliten

Die nachfolgenden Tabellen repräsentieren die experimentell erhaltenen Peakflächen für die jeweiligen Konzentration an Inhibitor bei fixer Substratkonzentration.

[I] = Inhibitor-Konzentration in μM

A = Fläche des Metaboliten in mAU·s

Tabelle 9: Exp. Flächen von 6β-OH-Testosteron

6α -Deazatesto (IC ₅₀ = 6.9 µM)			6β-Deazatesto (IC ₅₀ = 2.8 μ M)		
[I]	A (6β-OH-Testosteron)		[I]	A (6β-OH-Testosteron)	
0	388.339	389.329	0	343.178	
0.75	384.012	367.151	0.75	279.777	
1.5	340.439	336.416	1.5	202.959	
3	290.246	261.093	3	164.721	
6	196.978	211.295	6	97.930	
10	166.169	147.659	10	75.749	
15	112.814	102.813			
30	64.454	72.143			

[Testosteron] = 55 μ M

Tabelle 10: Exp. Flächen von 4-OH-Midazolam

6α -Deazatesto (IC ₅₀ = 1.6 μ M)			6β-Deazatesto (IC ₅₀ = 0.6 μ M)		
[I]	A (4-OH-Midazolam)		[1]	A (4-OH-Midazolam)	
0	23.618	22.842	0	23.662	
0.47	17.666	17.798	0.19	18.787	
0.94	15.892	15.600	0.38	14.749	
1.88	9.721	9.885	0.75	11.461	
3.75	7.358	7.459	1.5	5.463	
7.5	4.333	3.689	3	4.269	
15	3.218	2.784	6	3.585	
30	2.738	1.781	10	2.464	

[Midazolam] = 6 µM

Tabelle 11: Exp. Flächen von oxidiertem Nifedipin

24

25

6α -Deazatesto (IC ₅₀ = 8.6 μ M)			6β-Deazatesto (IC ₅₀ = 4.4 μ M)		
[I]	A (Ox. Nifedipin)		[I]	A (Ox. Nifedipin)	
0	168.626	172.616	0	140.000	
0.47	152.915	146.202	0.19	155.000	
0.94	132.848	134.832	0.38	148.761	
1.88	125.100	127.147	0.75	117.816	
3.75	107.964	118.891	1.5	108.327	
7.5	87.397	79.061	3	84.459	
15	74.041	74.501	6	70.528	
30	59.706	62.707	10	60.656	

[Nifedipin] = 40 µM

	19	20
[I]	A (HFC)	
0	2424180	
1.3	1344411	
2.6	890811	
3.8	741381	
5.1	740921	
7.7	547301	
10.2	511351	
15.3	406050	

[BFC] = 100 μ M ; IC₅₀ = 1.9 μ M

Tabelle 13: Exp. Flächen von 5-Deazaflavin 13

[1]	A (6β-OH Testosteron)
0	296.268
3.2	292.874
6.3	267.650
12.5	241.109
25	263.563
50	249.287
100	201.449
500	105.329

[Testosteron] = 55 μ M ; IC₅₀ = 240 μ M

6.2 Synthesen

6.2.1 Porphyrinsynthese

S-{[2,6-di(3-hydroxypropyl)-4-tertbutyl]-N,N-dimethylthiocarbamat (79)

In einen Kolben wurden 500 mg (1.6 mmol; 1 Äq.) **78** gegeben und mit 10 ml absolutem THF gelöst. Im Anschluss wurden 360 mg (4.7 mmol; 3 Äq.) BMS-Komplex über einen Zeitraum von 5 Minuten zugegeben. Die Lösung wurde nachfolgend während 2 h gerührt, wobei der gelartige, weisse Niederschlag rührbar

gemacht wurde. Danach wurden unter Eiskühlung 3 ml 3N NaOH-Lösung langsam zugetropft und die Lösung 1 h bei 0°C gerührt. Unter Eiskühlung wurden 3 ml 30 % H_2O_2 -Lösung tropfenweise zugegeben, wobei sich der Niederschlag auflöste. Die Lösung wurde noch 1 h rückflussiert und auf RT gebracht. Die Lösung wurde auf 50 ml Eiswasser gegossen und dreimal mit dest. Et₂O extrahiert. Das gelbe Öl wurde mittels Säulenchromatographie (SiO₂; CH₂Cl₂ / MeOH = 95:5) gereinigt. Die Produkt-fraktionen wurden gesammelt, vereinigt und eingeengt. Nach dem Trocknen am Hochvakuum wurden 430 mg (1.2 mmol; 77 %) eines klaren, viskosen Öls erhalten.

DC: $R_f (CH_2CI_2 / MeOH = 95:5) = 0.12$

¹**H-NMR**: (CDCl₃; 400 MHz): 7.18 (s; 2 H; H_{3,5}); 3.62 (t; J = 6.3 Hz; 4 H; H_{α}); 3.16 (br; 3 H; N-CH₃); 3.00 (br; 3 H; N-CH₃); 2.87 (t; J = 7.8 Hz; 4 H; H_{γ}); 1.93 (br; 2 H; OH); 1.86 (quint; J = 6.3 Hz; 4 H; H_{β}); 1.29 (s; 9 H; tert-Butyl)

S-{[2,6-di(3-mesylpropyl)-4-tertbutyl]-N,N-dimethylthiocarbamat (80)

In einem Kolben wurden 400 mg (1.1 mmol; 1 Äq.) **79** vorgelegt und mit 15 ml absolutem CH_2Cl_2 gelöst. Danach wurden 1.3 ml (8.9 mmol; 8 Äq.) Triethylamin zugegeben und die Reaktionslösung im Eisbad gekühlt. Nachfolgend wurden 0.4 ml (5.2 mmol; 4.6 Äq.) Mesylchlorid

gelöst in 15 ml absolutem CH_2CI_2 über einem Zeitraum von 5 Minuten zugegeben. Die Lösung wurde 40 min bei 0° C, weitere 3 h bei RT gerührt und zuletzt mit 3 ml eisgekühlter 1 M HCl versetzt. Die wässrige Phase wurde zweimal mit dest. CH_2CI_2 extrahiert. Die organische Phase wurde mit gesättigter NaHCO₃-Lösung, gesättigter NaCl-Lösung und dest. H₂O gewaschen. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mit Hilfe der Säulenchromatographie (SiO₂, Hexan / Ethylacetat = 1:2) gereinigt und ergab nach dem Trocknen am Hochvakuum 500 mg (1 mmol; 87 %) farblose Kristalle.

- **DC**: R_f (Hexan / Ethylacetat = 1:2) = 0.42
- ¹**H-NMR**: (CDCl₃; 400 MHz): 7.19 (s; 2 H; H_{3,5}); 4.24 (t; J = 6.3 Hz; 4 H; H_{α}); 3.18 (br; 3 H; N-CH₃); 3.05 2.95 (br; 3 H; N-CH₃); 2.99 (s; 6 H; SO₂CH₃); 2.90 (t; J = 7.3 Hz; 4 H; H_{γ}); 2.04 (m; 4 H; H_{β}); 1.31 (s; 9 H; tert-Butyl)

Tert-Butyl N-(3-methoxyphenyl)carbamat (73)

In einem Kolben wurden 3.31 g (26.9 mmol; 1 Äq.) frisch destilliertes m-Anisidin **72** vorgelegt und mit 60 ml absolutem THF gelöst. Im Anschluss wurden 6.45 g (29.6 mmol; 1.1 Äq.) Di-tert-Butylcarbonat zugeben und 24 h bei Raumtemperatur gerührt. Danach wurde die Lösung mit dest. Wasser verdünnt und dreimal mit dest. THF extrahiert.

Die vereinigten organischen Phasen wurden zweimal mit gesättigter NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und eingeengt. Nach der Reinigung des

gelben Öls mittels Säulenchromatographie (SiO₂, Hexan / Ethylacetat = 5:1) wurden nach dem Trocknen am Hochvakuum 5.70 g (25.5 mmol; 95 %) schwach gelbes Öl erhalten, welches nach Aufbewahrung bei 4°C zu einem farblosen Festkörper auskristallisierte.

DC:
$$R_f$$
 (Hexan / Essigester = 5:1) = 0.45

- ¹H-NMR: (CDCl₃; 400 MHz): 7.17 (t; J = 8.3 Hz; 1 H; Ar-H₅); 7.10 (s; 1 H; Ar-H₂);
 6.83 (d; J = 8.1 Hz; 1 H; Ar-H₆); 6.47 (br; 1 H; N-H); 3.79 (s; 3 H; OCH₃);
 1.53 (s; 9 H; tert. Butyl)
- **MS**: (ESI-MS; MeOH; positiv): 246.0 [M+Na]⁺, 469.0 [2M+Na]⁺

Tert-Butyl N-(2-formyl-3-methoxyphenyl)carbamat (75)

In einem 50 ml Dreihalskolben wurden 3.00 g (13.4 mmol; 1 Äq.) **73** vorgelegt und mit 20 ml trockenem Et₂O gelöst. Darauf wurde die Lösung auf -20°C gekühlt und tropfenweise 1.88 g (30 mmol; 2.2 Äq.) tert-BuLi zugefügt. Dabei wurde darauf geachtet, dass die Temperatur -15°C nicht überschritt. Nach beendeter Zugabe wurde die Lösung weitere 3 h bei ungefähr -15°C gerührt. Die Lösung wurde nach-

folgend auf -78°C abgekühlt und 2.1 ml (26.8 mmol; 2 Äq.) absolutes DMF tropfenweise zugefügt. Während der Zugabe bildete sich ein gelber Niederschlag. Die Lösung wurde anschliessend 4 h bei RT gerührt und zuletzt mit gesättigter NaCl-Lösung gequencht. Die wässrige Phase wurde zweimal mit dest. Et₂O extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das gelbe Öl wurde mittels Säulenchromatographie (SiO₂; CH₂Cl₂) gereinigt und ergab nach dem Trocknen am Hochvakuum 1.90 g (7.6 mmol; 56 %) gelben Festkörper.

DC:
$$R_f (CH_2CI_2) = 0.77$$

¹**H-NMR**: (CDCl₃; 400 MHz): 10.96 (br; 1 H; N-H); 10.71 (s; 1 H; Ar-CHO); 8.01 (d; J = 8.6 Hz; 1 H; Ar-H₆); 7.46 (t; J = 8.6 Hz; 1 H; Ar-H₅); 6.53 (d; J = 8.3 Hz; 1 H; Ar-H₄); 3.89 (s; 3 H; OCH₃); 1.52 (s; 9 H; tert-Bu)

MS: (ESI-MS; MeOH; positiv): 274.0 [M+Na]⁺, 524.7 [2M+Na]⁺

3,3'-Dibutyl-4,4'-dimethyl-2,2'-dipyrrylmethan (74)

In einen Zweihalskolben wurden 5.03 g (11.3 mmol; 1 Äq.) **71** gegeben und mit 75 ml absolutem EtOH gelöst. Die Lösung wurde nachfolgend erwärmt, so worauf sich das Edukt löste. Danach wurden 22.7 ml 10 % NaOH-Lösung zugefügt und die Lösung 3 h rückflussiert. Die Lösung wurde darauf auf RT gebracht, mit 50 ml dest. H₂O versetzt und zweimal mit Ethylacetat extrahiert. Die wässrige Phase wurde mit 1-M HCI-

Lösung auf PH = 5 eingestellt, wobei sich ein weisser Niederschlag bildete. Die wässrige Phase wurde weitere dreimal mit dest. Et₂O extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Nach dem Trocknen des Rohproduktes über Nacht am Hochvakuum wurden 4.60 g (11.8 mmol) pinker Festkörper erhalten. Der pinke Festkörper wurde in einen Zweihalskolben transferiert und mit 20 ml frischem Ethanolamin gelöst. Die Lösung wurde nun 30 min unter Argonatmosphäre und Lichtausschluss bei 120°C gerührt. Danach wurde die Lösung auf RT abgekühlt, auf Eiswasser gegeben und dreimal unter Lichtausschluss mit dest. CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden eingeengt und direkt auf eine gepackte Säule (SiO₂; CH_2Cl_2) gegeben. Unter Lichtausschluss wurde das Produkt gesammelt, eingeengt und mit dest. n-Hexan umkristallisiert. Die Lösung wurde über Nacht bei -20°C aufbewahrt und die farblosen Kristalle abfiltriert. Nach dem Trocknen am Hochvakuum wurden 1.34 g (4.4 mmol; 40 %) farblose Kristalle erhalten.

DC:
$$R_f(CH_2CI_2) = 0,75$$

¹**H-NMR:** (CDCl₃; 400 MHz): 7.36 (br; 2 H; N-H); 6.37 (s; 2 H; Pyrrol-H₅); 3.81 (s; 2 H; Meso-H); 2.41 (t; J = 7.3 Hz; 4 H; H_α); 2.04 (s; 6 H; Pyrrol-CH₃); 1.53 - 1.27 (m; 8 H; H_{β,γ}); 0.93 (t; J = 7.1 Hz; 6 H; H_δ)

 $\alpha\alpha$ -10,20-Bis[6-(tert-butoxycarbonyl)amino-2-methoxyphenyl]-3,7,13,17-tetrabutyl-2,8,12,18-tetramethylporphyrin (76)

In einem Kolben wurden 1.44 g (6.1 mmol; 1.3 Äq.) **75** vorgelegt und mit 80 ml MeCN (mit Argon entgast) gelöst. Danach wurden bei RT 0.80 g (0.46 mmol; 0.1 Äq.) p-TsOH und 1.34 g (4.6 mmol; 1 Äq.) **74** zugegeben. Anschliessend wurde die Lösung 68 h bei

RT und unter Lichtauschluss gerührt. Als nächstes wurden 1.57 g (6.9 mmol; 1.5 Äq.) DDQ gelöst in 20 ml trockenem THF zugegeben und eine weitere Stunde bei RT gerührt. Die Reaktionsmischung wurde eingeengt und das Rohprodukt direkt auf eine gepackte Säule (SiO₂; Hexan / Ethylacetat = 3:1+1 % TEA) gegeben. Die Produkt-fraktionen wurden gesammelt, vereinigt und eingeengt. Nach dem Trocknen am Hochvakuum wurden 1.16 g (1.1 mmol; 48 %) lila Festkörper erhalten.

DC: R_f (Hexan / Ethylacetat = 3:1+ 1 % TEA) = 0.61

UV/VIS: (CHCl₃): λ = 410 nm (100), 508 nm (10), 542 nm (5)

¹**H-NMR**: (CDCl₃; 400 MHz): 10.24 (s; 2 H; H_{5,15(Meso)}); 8.21 (d; J = 8.3 Hz; 2 H; H_{5'}); 7.77 (t; J = 8.3 Hz; 2 H; H_{4'}); 7.06 (d; J = 8.1 Hz; 2 H; H_{3'}); 5.85 (s; 2 H; NH_{BOC}); 4.02 (m; 8 H; H_α); 3.55 (s; 6 H; Ar-OCH₃); 2.62 (s; 12 H; Pyrrol-CH₃); 2.18 (quin; J = 7.3 Hz; 8 H; H_β); 1.74 (sext; J = 7.1 Hz; 8 H; H_γ); 1.12 (t; J = 7.1 Hz; 12 H; H_δ); 0.98 (s; 9 H; tert-Bu); - 2.33 (br; 2 H; Pyrrol-NH)

MS: (MALDI-TOF-MS): 1034.58 (100; [M+H]⁺), 980.99 (14; [M-BOC]⁺), 927.69 (9; [M-2BOC]⁺)

$\alpha\alpha$ -10,20-Bis(6-amino-2-methoxyphenyl)-3,7,13,17-tetrabutyl-2,8,12,18-tetramethylporphyrin (81)

1.16 g (1.1 mmol; 1 Äq.) **76** wurden in einem Kolben vorgelegt und mit 5 ml absolutem CH_2Cl_2 gelöst. Darauf wurden 5 ml TFA (98 %) zugegeben, wobei sich die Lösung grün verfärbte. Anschliessend

wurde 1 h bei RT gerührt und die Lösung mit eisgekühltem dest. Wasser versetzt. Die grüne Lösung wurde solange mit dest. CH_2Cl_2 extrahiert, bis die wässrige Phase farblos blieb. Die organische Phase wurde mit gesättigter NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mittels Säulenchromatographie (SiO₂; Hexan / Ethylacetat = 4:1+ 1 % TEA) gereinigt. Die Produktfraktionen wurden gesammelt, vereinigt und eingeengt. Nach dem Trocknen am Hochvakuum wurden 730 mg (0.9 mmol; 78 %) lila Festkörper erhalten.

DC: R_f (Hexan / Ethylacetat = 4:1+ 1 % TEA) = 0.32

UV/VIS: (CHCl₃): λ = 410 nm (100), 508 nm (8), 542 nm (3)

¹**H-NMR**: (CDCl₃; 400 MHz): 10.17 (s; 2 H; $H_{5,15(Meso)}$); 7.55 (t; J = 8.3 Hz; 2 H; $H_{4'}$); 6.80 - 6.69 (m; 4 H; $H_{3',5'}$); 4.01 (m; 8 H; H_{α}); 3.62 (s; 6 H; Ar-OCH₃); 2.74 (s; 12 H; Pyrrol-CH₃); 2.18 (quint; J = 7.6 Hz; 8 H; H_{β}); 1.74 (sext; J = 7.6 Hz; 8 H; H_{γ}); 1.09 (t; J = 7.4; 12 H; H_{δ}); -2.29 (br; 2 H; Pyrrol-NH)

MS: (MALDI-TOF-MS): 833.83 (100; [M]⁺), 873.78 (6; [M+K]⁺)

$\alpha\alpha$ -10,20-Bis(6-acetylamino-2-methoxyphenyl)-3,7,13,17-tetrabutyl-2,8,12,18-tetramethylporphyrin (82)

730 mg (876 μmol; 1 Äq.) **81** wurden in einen Kolben gegeben und mit 10 ml Pyridin gelöst. Anschliessend wurden 11 mg (88 μmol; 0.1 Äq.) DMAP und 720 mg (7.1 mmol; 8 Äq.) Acetanhydrid zugegeben. Die Lösung wurde 2 h rückflussiert, auf RT

gebracht und in ca. 100 ml eisgekühltes dest. H₂O gegeben. Die wässrige Phase wurde dreimal mit dest. CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mittels Säulenchromatographie (SiO₂; Hexan / Ethylacetat / CH₂Cl₂ = 6:2:1) gereinigt. Die Produktfraktionen wurden gesammelt, vereinigt, eingeengt und zuletzt am Hochvakuum getrocknet. Es konnten 497 mg (542 µmol; 62 %) lila Festkörper erhalten werden.

DC: R_f (Hexan / Ethylacetat / $CH_2Cl_2 = 6:2:1$) = 0.19

UV/VIS: (CHCl₃): λ = 408 nm (100), 508 nm (10), 574 nm (5)

- ¹**H-NMR**: (CDCl₃; 400 MHz): 10.24 (s; 2 H; H_{5,15(Meso)}); 8.44 (d; J = 8.6 Hz; 2 H; H_{5'}); 7.80 (t; J = 8.6 Hz; 2 H; H_{4'}); 7.13 (d; J = 8.1 Hz; 2 H; H_{3'}); 6.50 (s; 2 H; NH_{Ac}); 4.00 (m; 8 H; H_a); 3.58 (s; 6 H; Ar-OCH₃); 2.59 (s; 12 H; Pyrrol-CH₃); 2.18 (quint; J = 7.3 Hz; 8 H; H_β); 1.73 (sext; J = 7.6 Hz; 8 H; H_γ); 1.11 1.07 (t; J = 7.3 Hz; 12 H; H_δ / s; 6 H; CH_{3,Ac}); -2.32 (br; 2 H; Pyrrol-NH)
- **MS**: (MALDI-TOF-MS): 918.68 (100; [M]⁺)

$\alpha\alpha$ -10,20-Bis(6-acetylamino-2-hydroxyphenyl)-3,7,13,17-tetrabutyl-2,8,12,18-tetramethylporphyrin (83)

In einen Kolben wurden 497 mg (542 μ mol; 1 Äq.) **82** gegeben und mit 20 ml trockenem CH₂Cl₂ gelöst. Danach wurden 20 ml (270 mmol; 500 Äq.) EtSH sowie 2.74 g (20.6 mmol; 38 Äq.) AlCl₃ zugefügt und die Lösung während 21 h bei RT gerührt. Im

Anschluss wurde die Reaktion vorsichtig mit gesättigter NaHCO₃-Lösung neutralisiert. Die Lösung wurde dreimal mit dest. CH_2CI_2 extrahiert. Die vereinigten organischen Phasen wurden mit dest. H_2O gewaschen, über Na₂SO₄ getrocknet, filtriert und eingeengt. Nach der Reinigung mittels Säulenchromatographie (SiO₂; SiO₂; Hexan / Ethylacetat = 2:1+ 1 % TEA) und Trocknen am Hochvakuum konnten 339 mg (381 µmol; 70 %) lila Festkörper erhalten werden.

DC: R_f (Hexan / Ethylacetat = 2:1+ 1 % TEA) = 0.20

UV/VIS: (CHCl₃): λ = 406 nm (100), 508 nm (12), 542 nm (8)

- ¹**H-NMR**: (CDCl₃; 400 MHz): 10.35 (s; 2 H; H_{5,15 (Meso)}); 8.39 (d; J = 8.4 Hz; 2 H; H_{5'}); 7.76 (t; J = 8.3 Hz; 2 H; H_{4'}); 7.18 (d; J = 7.6 Hz; 2 H; H_{3'}); 6.43 (s; 2 H; NH_{Ac}); 4.57 (br; 2 H; Ar-OH); 4.03 (t; J = 7.8 Hz; 8 H; H_{α}); 2.69 (s; 12 H; Pyrrol-CH₃); 2.19 (quint; J = 7.6 Hz; 8 H; H_{β}); 1.75 (sext; J = 7.4 Hz; 8 H; H_{γ}); 1.14 (s; 6 H; CH_{3,Ac}); 1.11 (t; J = 7.3 Hz; 12 H; H_{δ}); -2.40 (br; 2 H; Pyrrol-NH)
- **MS**: (MALDI-TOF-MS): 889.83 (100; [M]⁺), 911.61 (10; [M+Na]⁺)

10,20-{{[4-(tert-Butyl)-2-(N,N-dimethylcarbamoyl}thio-1,3-phenylen]bis(trimethylenoxy)}-di-(6-acetylamino)-di-2,1-phenylen}-3,7,13,17-tetrabutyl-2,8,12,18tetramethylporphyrin (84)

In einem Kolben wurden 339 mg (381 μ mol; 1 Äq.) **83** vorgelegt und mit 340 ml absolutem DMF gelöst. Nach der Zugabe von 3.73 g (11.4 mmol; 30 Äq.) Cs₂CO₃ wurde die Lösung auf 60°C erwärmt. Im Anschluss wurden 291 mg (572 μ mol; 1.5 Äq.) **80** gelöst in 85 ml über einen Zeitraum von 5 h zugegeben. Die Reaktion wurde noch weitere 30 min bei 60°C gerührt und danach auf RT

abgekühlt. Danach wurde die Lösung vorsichtig mit 170 ml 10 % HCI-Lösung und 85 ml gesättigter NaCI-Lösung neutralisiert. Die wässrige Phase wurde dreimal mit dest. TBME extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und eingeengt. Nach der Reinigung mittels Säulenchromatographie (SiO₂; Hexan / Ethylacetat = 2:1+ 1 % TEA) konnten nach dem Trocknen am Hochvakuum 349 mg (289 μ mol; 76 %) lila Festkörper erhalten werden.

DC: R_f (Hexan / Ethylacetat = 2:1+ 1 % TEA) = 0.65

- **UV/VIS**: (CHCl₃): λ = 414 nm (100), 510 nm (7), 544 nm (1), 582 nm (2), 630 nm (0.2)
- ¹**H-NMR**: (CDCl₃; 400 MHz): 10.15 (s; 1 H; H_{5,15(meso)}); 9.72 (s; 1 H; H_{5,15(meso)}); 8.54 (d; J = 8.1 Hz; 2 H; H_{5'}); 7.80 - 7.76 (m; 4 H; H_{4'} + NH_{Ac}); 6.97 (d; J = 7.8 Hz; 2 H; H_{3'}); 6.32 (s; 2 H; H_{3'',5''}); 4.20 - 3.80 (m; 8 H; H_{\alpha}); 3.65 -3.50 (m; 4 H; H_{\alpha'}); 2.72 (s; 6 H; Pyrrol-CH₃); 2.54 (s; 6 H; Pyrrol-CH₃); 2.30 - 2.20 (m; 4 H; H_{\beta}); 2.00 - 1.70 (m; 4 H; H_{\beta}); 1.78 (sext; J = 7.6 Hz; 4 H; H_{\garracleft}); 1.71 (sext; J = 7.1 Hz; 4 H; H_{\garracleft}); 1.51 (s; 3 H; N-CH₃); 1.15 (t; J = 7.3 Hz; 6 H; H_{\delta}); 1.13 (t; 7.6 Hz; 6 H; H_{\delta}); 1.06 (s; 9 H; tert-Bu); 0.70 -

0.40 (m; 6 H; $H_{\gamma'}$ + $H_{\beta'}$); 0.00 - (-0.10) (m; 2 H; $H_{\beta'}$); -1.00 (br; 3 H; N-CH₃); -2.17 (br; 2 H; Pyrrol-NH)

MS: (MALDI-TOF-MS): 1207.52 (5; [M+H]⁺), 1135.90 (100; [M-CONMe₂]⁺)

10,20-{{[4-(tert-Butyl)-2-(N,N-dimethylcarbamoyl}thio-1,3-phenylen]bis(trimethylenoxy)}-di-(6-amino)-di-2,1-phenylen}-3,7,13,17-tetrabutyl-2,8,12,18tetramethylporphyrin (85)

In einen Kolben wurden 349 mg (289 μ mol; 1 Äq.) **84** vorgelegt und mit einer Mischung aus 175 ml 6 M HCl und 3,5 ml abs. MeOH gelöst. Danach wurde die Lösung 4 h bei 130°C gerührt und auf RT abgekühlt. Unter Kühlung im Eisbad wurde die Lösung mit 50 % NaOH_(aq) auf PH 10 eingestellt. Im Anschluss wurde die

Lösung dreimal mit dest. CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet, filtriert und eingeengt. Nach der Reinigung mittels Säulenchromatographie (SiO₂; Hexan / Ethylacetat = 3:1) konnten nach dem Trocknen am Hochvakuum 290 mg (258 µmol; 89 %) lila Festkörper erhalten werden.

DC: R_f (Hexan / Ethylacetat = 3:1) = 0.40

- **UV/VIS**: (CHCl₃): λ = 414 nm (100), 510 nm (7), 544 nm (2), 580 nm (2), 630 nm (0.02)
- ¹**H-NMR**: (CDCl₃; 400 MHz): 10.07 (s; 1 H; H_{5,15(meso)}); 9.65 (s; 1 H; H_{5,15(meso)}); 7.53 (t; J = 8.1 Hz; 2 H; H_{4'}); 6.87 (d; J = 7.8 Hz; 2 H; H_{5'}); 6.61 (d; J = 7.8 Hz; 2 H; H_{3'}); 6.32 (s; 2 H; H_{3'',5''}); 4.29 (br; 4 H; Ar-NH₂); 4.02 (t; J = 7.3 Hz; 4 H; H_{\alpha}); 3.95 - 3.75 (m; 8 H; H_{\alpha} + H_{\alpha'}); 3.65 - 3.50 (m; 4 H; H_{\alpha'}); 2.93 (s; 6 H; Pyrrol-CH₃); 2.69 (s; 6 H; Pyrrol-CH₃); 2.30 - 2.20 (m; 4 H; H_{\beta}); 2.00 - 1.80 (m; 8 H; H_{\beta} + H_{\geta}); 1.71 (sext; J = 7.1 Hz; 4 H; H_{\geta}); 1.50

(s; 3 H; N-CH₃); 1.20 - 1.10 (m; 12 H; H_{δ}); 1.06 (s; 9 H; tert-Bu); 0.70 - 0.40 (m; 6 H; H_{β '} + H_{γ '}); 0.10 - (-0.10) (m; 2 H; H_{γ '}); -0.70 - 1.50 (br; 3 H; N-CH₃); -2.08 (s; 2 H; Pyrrol-NH)

MS: (MALDI-TOF-MS): 1123.35 (100; [M+1]⁺)

10,20-{{[4-(tert-Butyl)-2-thio-1,3-phenylen]bis(trime-thylenoxy)}-di-(6-amino)-di-2,1-phenylen}-3,7,13,17-tetrabutyl-2,8,12,18-tetramethylporphyrin (86)

In einem 10 ml Schlenk-Kolben wurden 100 mg (89 μmol; 1 Äq.) **85** vorgelegt und mit 5 ml absolutem und entgastem Dioxan gelöst. Nachdem die Lösung auf 100°C erwärmt worden war, erfolgte die Zugabe von 75 mg (1.07 mmol; 12 Äq.) entgastem KOMe. Die Lösung wurde nachfolgend 0.5 h bei 100°C weitergerührt und am Schluss auf RT

abgekühlt. Die Reaktion wurde mit gesättigter NH₄Cl-Lösung gequencht und mit dest. H₂O verdünnt. Die Lösung wurde dreimal mit dest. CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mittels Säulenchromatogrpahie (SiO₂; Hexan / Ethylacetat = 3:1) gereinigt und ergab nach dem Trocknen am Hochvakuum 80 mg (76 μ mol; 85 %) lila Festkörper.

DC: R_f (Hexan / Ethylacetat = 3:1) = 0.39

¹**H-NMR**: (CDCl₃; 400 MHz): 10.09 (s; 2 H; H_{5,15(meso)}); 7.53 (t; J = 8.1 Hz; 2 H; H_{4'}); 6.89 (d; J = 8.1 Hz; 2 H; H_{5'}); 6.61 (d; J = 8.1 Hz; 2 H; H_{3'}); 6.15 (s; 2 H; H_{3'',5''}); 4.32 (br; 4 H; Ar-NH₂); 3.98 (t; J = 7.8 Hz; 8 H; H_{\alpha}); 3.56 (t; J = 4.8 Hz; 4 H; H_{\alpha'}); 2.81 (s; 12 H; Pyrrol-CH₃); 2.14 (quint; J = 7.3 Hz; 8 H; H_{\beta}); 1.73 (sext; J = 7.3 Hz; 8 H; H_{\garbeta}); 1.07 (t; J = 7.3 Hz; 12 H; H_{\beta}); 0.86 (s; 9 H; tert-Bu); 0.60 - 0.50 (m; 4 H; H_{\beta'}); 0.50 - 0.40 (m; 4 H; H_{\garbeta'}); -2.21 (br; 2 H; Pyrrol-NH); -3.14 (s; 1 H; Ar-SH)
¹³**C-NMR**: (CDCl₃; 400 MHz): 160.59 (C_{2'}); 147.72 (C_{6'}); 146.36 (C_{4'}); 145.91 (C_{1,9,11,19}); 143.41 (C_{3,7,13,17}); 141.79 (C_{4,6,14,16}); 138.41 (C_{2",6"}); 136.19 (C_{2,8,12,18}); 130.64 (C_{4'}); 127.16 (C_{1"}); 123.28 (C_{3",5"}); 117.97 (C_{1'}); 109.41 (C_{5'}); 103.73 (C_{3'}); 96.83 (C_{5,15(meso)}); 68.69 (C_{\alpha}); 35.96 (C_{\beta'}); 33.99 (<u>C</u>(CH₃)₃); 31.37 (C_{\garbeta}); 31.22 (C(<u>C</u>H₃)₃); 29.38 (C_{\beta}); 26.90 (C_{\alpha'}); 23.73 (C_{\garbeta}); 14.69 (C_{\beta}); 13.63 (Pyrrol-CH₃)

ESI-MS: (MeOH; positiv): 1051.5 (100; [M]⁺), 1073.5 (6; [M+Na]⁺)

6.2.2 Synthese von 5-Deazaflavin

2,4,6-Trichloro-5-formylpyrimidin (32)

In einem Kolben wurden 9.6 ml (124.8 mmol; 2 Äq.) DMF vorgelegt und unter Kühlung im Eisbad 48 ml (524.2 mmol; 8.4 Äq.) POCl₃ tropfenweise zugegeben, wobei sich die Lösung leicht orange verfärbte. Danach wurde noch 15 min bei 0°C gerührt und das Kühlbad entfernt. Bei RT wurden

8.02 g (62.4 mmol; 1 Äq.) Barbitursäure **31** zugefügt und die Lösung auf 100°C erwärmt. Nach 4 h Rühren bei 100°C wurde die mittlerweile dunkelrote Lösung direkt eingeengt ^{*}und auf RT abgekühlt, wobei sich ein brauner, gummiartiger Festkörper bildete. Zu dem braunen Festkörper wurden portionenweise Eisstücke gegeben, wobei sich ein farbloser Niederschlag bildete. Nachdem der gesamte braune Festkörper hydrolysiert worden war, wurde die Suspension noch 1 h bei 4°C aufbewahrt. Der farblose Festkörper wurde abfiltriert, mit reichlich dest. H₂O gewaschen und am Wasserstrahl getrocknet. Anschliessend wurde der Festkörper transferiert und über Nacht am Hochvakuum getrocknet. Das Rohprodukt wurde mittels Säulenchromatographie (SiO₂; CH₂Cl₂) gereinigt und ergab nach dem Trocknen am Hochvakuum 7.82 g (37 mmol; 59 %) eines farblosen Feststoffes.

* Es ist unbedingt erforderlich, dass keine Spuren an POCI₃ mehr vorhanden sind, da das Produkt sonst bei der Hydrolyse zerstört wird.

DC: $R_f(CH_2CI_2) = 0.48$

Smp.: 131 - 132°C

- **UV/VIS**: (CHCl₃): λ = 254 nm (100)
- ¹**H-NMR**: (CDCl₃; 400 MHz): 10.41 (s; 1 H; CHO)
- ¹³**C-NMR**: (CDCl₃; 400 MHz): 184.95 (CHO); 164.433 (C_{4,6}); 123.97 (C₅)
- **MS**: (EI-MS; 70 eV): 208.9 (100; [M+H]⁺), 173.9 (10; [M-Cl]⁺), 146.9 (5), 120 (11), 85 (23)
- IR: (KBr): 2833.7 (schw), 1706.3 (st), 1525.9 (st), 1499.0 (st), 1299.5 (m), 1118.7 (m), 885.9 (m)
- EA: C₅HOCl₃ (211.44 g/mol) Berechnet: C 28.40, H 0.48, N 13.25, O 7.57 Gefunden: C 28.45, H 0.49, N 13.19, O 7.70

2-Methyl-3-Nitrobenzylbromid (39)

In einen Kolben wurden 20.0 g (120 mmol; 1 Äq.) 2-Methyl-3-Nitrobenzylalkohol **38** gegeben und mit 200 ml trockenem Et₂O gelöst. Im Anschluss wurden tropfenweise 18.6 ml (197 mmol; 1.65 Äq.) PBr₃ bei RT zugegeben. Die Lösung wurde 1 h bei 50°C gerührt und danach auf 0°C abgekühlt. Bei 0°C wurden tropfenweise

50 ml dest. H₂O zugefügt. Nach der Zugabe wurde die Lösung mit dest. H₂O verdünnt und dreimal mit dest. Et₂O extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mittels Flashchromatographie (SiO₂; CH₂Cl₂) gereinigt und ergab nach dem Trocknen am Hochvakuum 27.4 (119 mmol; 99 %) schwachgelbe Kristalle.

DC: $R_f(CH_2CI_2) = 0.74$

Smp.: 42 - 43°C

- **UV/VIS**: (CHCl₃): λ = 242 nm (100)
- ¹**H-NMR**: (CDCl₃; 400 MHz): 7.71 (d; J = 8.1 Hz; 1 H; H₄); 7.54 (d; J = 7.6 Hz; 1 H; H₆); 7.30 (t; J = 8.1 Hz; 1 H; H₅); 4.54 (s; 2 H; CH₂Br); 2.51 (s; 3 H; Ar-CH₃)
- ¹³**C-NMR**: (CDCl₃; 400 MHz): 151.96 (C₃); 139.07 (C₁); 134.31 (C₆); 131.97 (C₂); 127.24 (C₅); 124.78 (C₄); 30.99 (Ar-CH₃); 14.87 (CH₂Br)
- **MS**: (EI-MS; 70 eV): 229.0 (6; $[M]^+$), 214.0 (6; $[M-CH_3]^+$), 183.0 (1; $[M-NO_2]^+$), 150.1 (100; $[M-Br]^+$), 132.1 (7), 103.1 (42), 77.1 (20), 51.0 (11)
- IR: (KBr): 3079.5 (schw), 1525.5 (st), 1454.0 (m), 1357.2 (st)
- EA: C₈H₈NO₂Br (230.06 g/mol) Berechnet: C 41.77, H 3.51, N 6.09 Gefunden: C 41.76, H 3.30, N 6.04

2-(2-Methyl-3-nitrobenzyl)malonsäuredimethylester (61)

In einen Kolben wurden 13.1 g (328 mmol; 5 Äq.) NaH (60 %) gegeben und mit 150 ml trockenem DMSO gelöst. Unter Kühlung im Eisbad wurden tropfenweise 38 ml (328 mmol; 5 Äq.) Malonsäuredimethylester über einen

Zeitraum von 30 min zugegeben. Nach der Zugabe wurde noch 15 min bei RT gerührt. Ebenfalls bei RT wurden 15.09 g (65.6 mmol; 1 Äq.) **39** gelöst in 50 ml trockenem DMSO während 45 min zugefügt^{*}. Nach beendeter Zugabe wurde die braune Reaktionslösung auf 200 ml eisgekühltes dest. H₂O gegeben, worauf sich ein farbloser Festkörper bildete. Die Lösung wurde darauf noch 1 h bei 4°C aufbewahrt. Anschliessend wurden der farblose Niederschlag abfiltriert und mit genügend dest. H₂O gewaschen. Die Kristalle wurden 15 min am Wasserstrahl und über Nacht am

Hochvakuum getrocknet. Es konnten 10.73 g (38.1 mmol; 58 %) farblose Kristalle erhalten werden.

* Eine zu rasche Zugabe führt vermehrt zur Bildung von disubstituiertem Malonat (hochverdünnte Bedingungen ratsam)

DC: $R_f(CH_2CI_2) = 0.40$

Smp.: 81 - 83°C

- **UV/VIS**: (CHCl₃): λ = 260 nm (100)
- ¹**H-NMR**: (CDCl₃; 400 MHz): 7.63 (dd; ³J = 8.1 Hz; ⁵J = 1.0 Hz; 1 H; H₄); 7.38 (d; J = 7.1 Hz; 1 H; H₆); 7.24 (J = 7.8 Hz ; 1 H; H₅); 3.71 (s; 6 H; COOCH₃); 3.65 (t; J = 7.6 Hz; 1 H; H_β); 3.33 (d; J = 7.6 Hz; 2 H; H_α); 2.45 (s; 3 H; Ar-CH₃)
- ¹³C-NMR: (CDCl₃; 400 MHz): 169.16 (<u>C</u>OOCH₃); 151.95 (C₃); 139.23 (C₁); 134.04 (C₆); 130.90 (C₂); 126.81 (C₅); 123.23 (C₄); 53.17 (COO<u>C</u>H₃); 52.20 (C_β); 32.67 (C_α); 15.10 (Ar-CH₃)
- **MS**: (FAB-MS; 70 eV): 282 (100; [M+H]⁺), 265 (7), 250 (14), 218 (36), 150 (20), 137 (30)
- IR: (KBr): 2953.1 (schw), 2360.2 (m), 1731.0 (st), 1531.3 (st), 1434.9 (st), 1355.6 (st), 1293.3 (m), 1228.0 (m), 1159.6 (m), 1020.7 (m)
- EA: C₁₃H₁₅NO₆ (281.27 g/mol) Berechnet: C 55.51, H 5.38, N 4.98, O 34.13 Gefunden: C 55.55, H 5.25, N 4.95, O 33.97

3-(2-Methyl-3-nitrophenyl)propansäuremethylester (62)

In einen Kolben wurden 9.27 g (33 mmol; 1 Äq) **61** gegeben und mit einer Mischung aus 50ml DMF und 5 ml dest. H_2O^* gelöst. Danach wurden 13.24 g (98 mmol; 3 Äq.) Lil zugefügt und die Lösung auf 160°C erwärmt. Nachdem die Lösung

7 h rückflussiert worden war, wurde die Reaktion auf RT abgekühlt und auf 300 ml eisgekühltes dest. H₂O gegeben. Die wässrige Phase wurde dreimal mit dest. CH_2CI_2 extrahiert. Die vereinigten organischen Phasen wurden über Na_2SO_4 getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mit Hilfe der Säulenchromatographie (SiO₂; Hexan / Ethylacetat = 2:1) gereinigt und ergab nach dem Trocknen am Hochvakuum 5.57 g (25 mmol; 76 %) eines gelben Öles.

^{*} Die Zugabe von H₂O vermindert die Bildung des α -methylierten Nebenproduktes

DC:	R_f (Hexan / Ethylacetat = 2:1) = 0.37
UV/VIS:	(CHCl ₃): λ = 261 nm (100)
¹ H-NMR:	$(\text{CDCI}_3; 400 \text{ MHz}): 7.52 \text{ (dd; }^3\text{J} = 8.1 \text{ Hz}; {}^5\text{J} = 1.0 \text{ Hz}; 1 \text{ H}; \text{ H}_4); 7.33 \text{ (d}; \text{J} = 7.1 \text{ Hz}; 1 \text{ H}; \text{ H}_6); 7.18 \text{ (t}; \text{J} = 7.8 \text{ Hz}; 1 \text{ H}; \text{ H}_5); 3.62 \text{ (s}; 3 \text{ H}; \text{COOCH}_3); 2.98 \text{ (t}; \text{J} = 8.1 \text{ Hz}; 2 \text{ H}; \text{ H}_\alpha); 2.55 \text{ (t}; \text{J} = 8.1 \text{ Hz}; 2 \text{ H}; \text{ H}_\beta); 2.35 \text{ (s}; 3 \text{ H}; \text{Ar-CH}_3)$
¹³ C-NMR:	(CDCl ₃ ; 400 MHz) 172.99 (<u>C</u> OOCH ₃); 151.83 (C ₃); 141.92 (C ₁); 133.19 (C ₆); 130.42 (C ₂); 126.78 (C ₅); 122.53 (C ₄); 52.06 (COO <u>C</u> H ₃); 40.32

MS: (EI-MS; 70 eV): 223.0 (3; [M]⁺), 206.1 (19), 192.1 (17; [M-OCH₃]⁺), 174.1 (76), 164.1 (41; [M-COOCH₃]⁺), 146.1 (49), 132.1 (100), 115.1 (28), 103.1 (30), 91.1 (44), 77.1 (25), 59.1 (17), 39.1 (14)

 (C_{α}) ; 28.93 (C_{β}) ; 14.89 $(Ar-CH_3)$

- IR: (NaCl): 3088.9 (schw), 3000.0 (schw), 2952.9 (m), 1737.5 (st), 1605.6 (schw), 1527.4 (st), 1438.1 (m), 1355.7 (st), 1294.4 (m), 1261.1 (m), 1211.1 (m), 1171.9 (m), 1088.1 (schw), 1027.0 (schw), 988.9 (schw), 905.6 (schw), 877.8 (schw), 833.3 (schw), 806.7 (schw), 772.0 (schw), 733.4 (m)
- EA: C₁₁H₁₃NO₄ (223.23 g/mol) Berechnet: C 59.19, H 5.87, N 6.27, O 28.67 Gefunden: C 58.96, H 5.82, N 6.26, O 28.81

3-(2-Methyl-3-aminophenyl)propansäuremethylester (63)

In einem Kolben wurden 5.43 g (24.3 mmol; 1 Äq.) **62** vorgelegt und mit 100 ml 95 % EtOH gelöst. Anschliessend wurden 500 mg Pd-C (5 %) zugefügt. Nachdem die Apparatur kurz evakuiert und unter H_2 gesetzt worden war, wurde

die Lösung 4 h unter kontinuierlicher H₂-Zufuhr bei RT geschüttelt. Die Reaktionslösung wurde im Anschluss über Celite filtriert und mit reichlich EtOH nachgewaschen. Danach wurde die Lösung mit dest. H₂O verdünnt und dreimal mit dest. CH₂Cl₂ extrahiert. Die vereinigten, organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mittels Säulenchromatographie (SiO₂; Hexan / Ethylacetat = 1:1) gereinigt und ergab nach dem Trocknen am Hochvakuum 3.55 g (18. 4 mmol; 76 %) farblose Kristalle.

DC: R_f (Hexan / Ethylacetat = 1:1) = 0.33

Smp.: 45 - 46°C

UV/VIS: (CHCl₃): λ = 245 nm (100), 288 nm (38)

¹**H-NMR**: (CDCl₃; 400 MHz): 6.96 (t; J = 7.6 Hz; 1 H; H₅); 6.63 (d; J = 7.6 Hz; 1 H; H₄); 6.60 (d; J = 8.1 Hz; 1 H; H₆); 4.00 - 3.50 (br; 2 H; Ar-NH₂); 3.69 (s; 3 H; COOCH₃); 2.94 (t; J = 8.3 Hz; 2 H; H_{α}); 2.56 (t; J = 8.3 Hz; 2 H; H_{β}); 2.12 (s; 3 H; Ar-CH₃)

- ¹³C-NMR: (CDCl₃; 400 MHz): 173.88 (<u>C</u>OOCH₃); 144.94 (C₃); 139.81 (C₁); 126.82 (C₆); 120.94 (C₂); 120.20 (C₅); 114.29 (C₄); 52.01 (COO<u>C</u>H₃); 35.35 (C_α); 29.54 (C_β); 12.85 (Ar-CH₃)
- **MS**: (EI-MS; 70 eV): 193.1 (100; $[M]^+$), 162.1 (16; $[M-OCH_3]^+$), 134.1 (68; $[M-COOCH_3]^+$); 120.1 (65; $[M-CH_2COOCH_3]^+$), 106.1 (34; $[M-CH_2CH_2-COOCH_3]^+$), 77.1 (11)
- IR: (KBr): 3452.9 (m; NH₂), 3374.2 (m; NH₂), 3002.9 (schw), 2950.4 (m), 1731.1 (st; CO), 1635.1 (m), 1587.1 (m), 1472.9 (m), 1437.0 (m), 1369.0 (schw), 1291.0 (m), 1250.0 (m), 1195.1 (m), 1167.1 (m), 1083.0 (schw), 782.8 (m)
- EA: C₁₁H₁₅NO₂ (193.25 g/mol) Berechnet: C 68.37, H 7.82, N 7.25, O 16.56 Gefunden: C 68.25, H 7.77, N 7.15, O 16.60

3-(2-Methyl-3-(N-methyl)aminophenyl)propansäuremethylester (64)

In einen Kolben wurden 5.04 g (25.9 mmol; 1 Äq.) **63** gegeben und mit 75 ml trockenem DMF gelöst. Gleich darauf wurden 683 mg (28.5 mmol; 1.1 Äq.) NaH zugefügt. Anschliessend wurden 2 ml (31.00 mmol; 1.2 Äq.) Mel über einen Zeitraum von

30 min bei RT zugetropft. Nach beendeter Zugabe wurde noch 15 min weiter bei RT gerührt^{*} und die Lösung mit dest. H₂O verdünnt. Danach wurde die Lösung mit 1 M NaOH auf PH 11 gestellt und dreimal mit dest. CH₂Cl₂ extrahiert. Die vereinigten, organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Säulenchromatographie (SiO₂; Hexan / Ethylacetat = 1:1). Nach dem Trocknen am Hochvakuum konnten 1.27 g (6.55 mmol) nicht umgesetztes Edukt, 451 mg (2.04 mmol) dimethyliertes Produkt und 2.57 g (12.4 mmol; 64 %^{**}) monomethyliertes Produkt erhalten werden.

* Bei längerer Rührzeit bildet sich vermehrt dimethyliertes Produkt. Es empfiehlt sich, die Reaktion vor dem vollständigen Umsatz des Amins abzubrechen.

^{**} Bei der Berechnung der Ausbeute wurde das nicht umgesetzte Produkt von dem Startansatz subtrahiert

DC: R_f (Hexan / Ethylacetat = 1:1) = 0.57 (Dimethyliertes Produkt) 0.47 (Monomethyliertes Produkt)

- **UV/VIS**: (CHCl₃): λ = 247 (100), 294 (31)
- ¹**H-NMR**: (CDCl₃; 250 MHz): 7.14 (t; J = 7.8 Hz; 1 H; H₅); 6.65 (d; J = 7.7 Hz; 1 H; H₆); 6.56 (d; J = 8.1 Hz; 1 H; H₄); 3.80 3.70 (br; 1 H; N-H); 3.73 (s; 3 H; COOCH₃); 3.01 (t; J = 7.5 Hz; 2 H; H_{α}); 2.93 (s; 3 H; N-CH₃); 2.60 (t; J = 7.7 Hz; 2 H; H_{β}); 2.12 (s; 3 H; Ar-CH₃)
- ¹³C-NMR: (CDCl₃; 400 MHz): 173.97 (<u>C</u>OOCH₃); 147.75 (C₃); 139.10 (C₁); 127.07 (C₅); 120.20 (C₂); 118.72 (C₆); 108.45 (C₄); 52.04 (COO<u>C</u>H₃); 35.54 (N-CH₃); 31.56 (C_β); 29.77 (C_α); 12.59 (Ar-CH₃)
- **MS**: (EI-MS; 70 eV): 207.1 (100; [M]⁺), 176.1 (15; [M-OCH₃]⁺), 160.0 (6), 148.1 (51; [M-COOCH₃]⁺), 134.1 (32), 120.0 (36), 91.0 (9)
- IR: (NaCl): 3438.4 (m), 2948.0 (m), 2360.8 (schw), 1733.9 (st), 1590.2 (st), 1511.1 (m), 1477.9 (m), 1433.3 (m), 1361.1 (schw), 1287.1 (m), 1160.3 (m), 1105.6 (schw), 1027.8 (schw), 778.2 (schw)
- EA: C₁₂H₁₇NO₂ (207.27 g/mol) Berechnet: C 69.54, H 8.27, N 6.76, O 15.44 Gefunden: C 69.06, H 8.30, N 6.81, O 15.15

3-[2-Methyl-3-(N-2,4-dichloro-5-formylpyrimidino-N-methyl)aminophenyl] propansäuremethylester (65)

In einen Kolben wurden 1.00 g (4.8 mmol; 1 Äq) **64** gegeben und mit 25 ml trockenem CH_2Cl_2 gelöst. Nach der portionenweise Zugabe von 1.02 g (4.8 mmol; 1 Äq.) **32** wurde die Lösung 5 min bei 100°C gerührt

und auf RT gebracht. Die Reaktion wurde mit dest. H_2O verdünnt und mit 1 M NaOH auf PH 11 gebracht. Anschliessend wurde dreimal mit dest. CH_2CI_2 extrahiert. Die vereinigten organischen Phasen wurden über Na_2SO_4 getrocknet, filtriert und eingeengt. Nach der Reinigung des Rohproduktes mittels Säulenchromatographie (SiO₂; Hexan / Ethylacetat = 1:1) und anschliessendem Trocknen am Hochvakuum konnten 1.55 g (4.1 mmol; 85 %) schwachgelber Feststoff erhalten werden.

DC: R_f (Hexan / Ethylacetat = 1:1) = 0.54

Smp.: 83 - 85°C

UV/VIS: (CHCl₃): λ = 243 (100), 277 (78)

- ¹**H-NMR**: (CDCl₃; 500 MHz): 9.20 (br; 1 H; CHO); 7.20 7.10 (m; 2 H; H₄ + H₆); 6.86 (br; 1 H; H₅); 3.69 (s; 3 H; COOCH₃); 3.41 (br; 3 H; N-CH₃); 2.99 (t x d; J₁ = 7.1 Hz; J₂ = 2.6 Hz; 2 H; H_{α}); 2.62 (t x d; J₁ = 7.9 Hz; J₂ = 3.4 Hz; 2 H; H_{β}); 2.18 (s; 3 H; Ar-CH₃)
- ¹³C-NMR: (CDCl₃; 500 MHz): 185.48 (CHO); 173.06 (<u>C</u>OOCH₃); 162.16 (C₄·);
 159.74 (C₂·); 143.74 (C₅·); 142.20 (C₁); 140.05 (C₆·); 134.05 (C₃); 134.00 (C₂); 129.48 (C₆); 127.82 (C₄); 124.49 (C₅); 51.81 (COO<u>C</u>H₃); 40.51 (N-CH₃); 34.13 (C_β); 28.68 (C_α); 13.98 (Ar-CH₃)
- MS: (EI-MS; 70 eV): 381.0 (100; [M]⁺), 366.0 (70; [M-CH₃]⁺), 352.0 (80), 346.0 (43; [M-Cl]⁺), 322.0 (58; [M-COOCH₃]⁺), 306.0 (34), 294.0 (40; [M-CH₂CH₂COOCH₃]), 278.0 (52), 264.0 (36), 115.0 (32), 91.1 (31)

- IR: (KBr): 2992.9 (schw), 2949.9 (schw), 2844.0 (schw), 1739.8 (st), 1700.1 (st), 1437.0 (m), 1396.8 (m), 1341.1 (m), 1279.1 (m), 1234.6 (m), 1134.1 (m), 1091.3 (m), 1045.5 (m), 1021.8 (m), 982.3 (m), 885.5 (m)
- EA: C₁₇H₁₇Cl₂N₃O₃ (382.25 g/mol) Berechnet: C 53.42, H 4.48, N 10.99, O 12.56 Gefunden: C 53.48, H 4.45, N 10.93, O 12.27

9,10-Dimethyl-8-(methoxypropyl-3-oxo)-5-deazaisoalloxazine (66)

In einem Kolben wurden 1.42 g (3.7 mmol; 1 Äq.) 65 vorgelegt und mit 10 ml 98 % TFA versetzt. Die Lösung wurde nachfolgend 1 h bei 60°C gerührt, auf RT abgekühlt und auf 200 ml eisgekühltes

dest. H₂O gegeben. Im Anschluss wurde die wässrige Phase solange mit dest. CH₂Cl₂ extrahiert, bis diese nahezu farblos blieb. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Nach der Reinigung des Rohproduktes mittels Säulenchromatographie (SiO₂; CH_2CI_2 / MeOH = 9:1) wurden die Produktfraktionen eingeengt und ergaben 1.18 g (3.6 mmol; 98 %) gelben Feststoff.

DC:	$R_f (CH_2CI_2 / MeOH = 9:1) = 0.31$
Smp.:	> 300°
UV/VIS:	(CHCl ₃): λ = 269 nm (100), 343 nm (43), 404 nm (41)
Fluor.:	(CHCl ₃): λ_{Ex} = 410 nm ; λ_{Max} = 474 nm
¹ H-NMR:	(CDCl ₃ ; 250 MHz): 8.84 (s; 1 H; H ₅); 8.46 (br; 1 H; NH); 7.71 (d; J = 8.2 Hz; 1 H; H ₆); 7.40 (d; J = 8.1 Hz; 1 H; H ₇); 4.15 (s; 3 H; N-CH ₃); 3.74 (s; 3 H; COOCH ₃); 3.22 (t; J = 7.9 Hz; 2 H; H _{α}); 2.75 (t; J = 7.5 Hz; 2 H; H _{β}); 2.67 (s; 3 H; Ar-CH ₃)

- ¹³C-NMR: (CH₃COOD; 500 MHz): 174.73 (<u>C</u>OOCH₃); 164.34 (C₄); 161.33 (C_{10a});
 160.91 (C₂); 151.75 (C₈); 145.50 (C_{9a}); 145.31 (C₅); 130.56 (C₆); 128.31 (C₇); 127.32 (C₉); 123.74 (C_{5a}); 114.77 (C_{4a}); 52.68 (COO<u>C</u>H₃); 43.81 (N-CH₃); 34.54 (C_β); 30.45 (C_α); 18.98 (Ar-CH₃)
- **MS**: (EI-MS; 70 eV): 327.1 (37; [M]⁺), 296.0 (6; [M-OCH₃]⁺), 268.1 (100; [M-COOCH₃]⁺), 254.0 (10; [M-CH₂COOCH₃]⁺), 225.1 (9).
- IR: (KBr): 3144.4 (schw), 3012.2 (schw), 2800.0 (schw), 2366.7 (schw), 1737.1 (schw), 1704.5 (m), 1664.4 (m), 1623.0 (st), 1594.4 (m), 1552.0 (m), 1527.7 (m), 1482.1 (schw), 1413.7 (schw), 1377.8 (schw), 1344.4 (schw), 1228.8 (m), 1175.2 (schw)
- EA: C₁₇H₁₇N₃O₄ (327.34 g/mol) Berechnet: C 62.38, H 5.23, N 12.84 Gefunden: C 62.00, H 5.31, N 12.26

9,10-Dimethyl-3-(methoxyethyl-2-oxo)-8-(methoxypropyl-3-oxo)-5-deazaisoalloxazine (67)

In einem Kolben wurden 1.13 g (3.5 mmol; 1 Äq.) **66** vorgelegt und mit 15 ml trockenem DMF gelöst. Anschliessend wurden 2.67 g (19.3 mmol; 5.6 Äq.) K_2CO_3 sowie 3.2 ml

(34.5 mmol; 10 Äq.) Methylbromoacetat zugegeben und die Lösung 10 h bei RT gerührt (die Suspension ging langsam in eine klare Lösung über). Die Lösung wurde mit dest. H₂O verdünnt und dreimal mit dest. CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mittels Säulenchromatographie (SiO₂; CH₂Cl₂ / MeOH = 9:1) gereinigt und ergab nach dem Trocknen am Hochvakuum 900 mg (2.25 mmol; 65 %) gelben Feststoff.

DC:
$$R_f (CH_2CI_2 / MeOH = 95:5) = 0.39$$

Smp.: 218 - 220°C

- **UV/VIS**: (CHCl₃): λ = 267 nm (100), 343 nm (35), 405 nm (31)
- **Fluor.**: (CHCl₃): λ_{Ex} = 410 nm ; λ_{Max} = 477 nm
- ¹**H-NMR**: (CDCl₃; 500 MHz): 8.77 (s; 1 H; CHO); 7.65 (d; J = 8.1 Hz; 1 H; H₆); 7.33 (d; J = 8.1 Hz; 1 H; H₇); 4.83 (s; 2 H; H_{α'}); 4.07 (s; 3 H; N-CH₃); 3.74 (s; 3 H; CH₂COOC<u>H₃</u>); 3.69 (s; 3 H; CH₂CH₂COOC<u>H₃</u>); 3.17 (t; J = 8.0 Hz; 2 H; H_{α}); 2.71 (t; J = 8.0 Hz; 2 H); 2.62 (s; 3 H; Ar-CH₃)
- ¹³**C-NMR**: (CDCl₃; 500 MHz): 172.54 (CH₂CH₂COOCH₃); 168.65 (CH₂COOCH₃); 161.69 (C_{4a}); 159.18 (C_{10a}); 156.39 (C₂); 149.50 (C₈); 144.03 (C_{9a}); 143.13 (C₅); 129.10 (C₆); 126.42 (C₇); 125.21 (C₁₀); 121.85 (C_{5a}); 52.38 (CH₂COO<u>C</u>H₃); 52.00 (CH₂CH₂COO<u>C</u>H₃); 42.71 (N-CH₃); 42.14 (C_{α'}); 33.85 (C_{β}); 29.54 (C_{α}); 18.96 (Ar-CH₃)
- **MS**: (EI-MS; 70 eV): 399.1 (57; [M]⁺), 368.1 (12; [M-OCH₃]⁺), 340.1 (100; [M-COOCH₃]⁺), 280.1 (19; [M-2COOCH₃]⁺), 225.1 (8)
- IR: (KBr): 2927.0 (m), 2367.2 (schw), 1752.2 (st), 1733.3 (st), 1699.5 (m), 1650.0 (st), 1616.6 (st), 1531.7 (st), 1433.4 (st), 1369.8 (m), 1322.6 (schw), 1209.5 (st), 1066.7 (schw), 966.7 (schw), 933.0 (schw), 796.2 (m)
- EA: C₂₀H₂₁N₃O₆ (399.41 g/mol) Berechnet: C 60.14, H 5.30, N 10.52, O 24.04 Gefunden: C 57.88, H 5.24, N 10.02, O 24.61

9,10-Dimethyl-3-(hydroxyethyl-2-oxo)-8-(hydroxypropyl-3-oxo)-5-deazaisoall oxazine (68)

400 mg (1 mmol; 1 Äq.) **67** wurden in einem Kolben vorgelegt und in 10 ml THF-H₂O (6:4) gelöst. Im Anschluss wurden 210 mg (5 mmol; 5 Äq.) LiOH·H₂O zugefügt und die Lösung 1 h

bei RT gerührt. Danach wurde die Reaktion mit ca. 10 ml dest. H₂O verdünnt, mit 1 M HCI auf PH 3 gestellt und direkt eingeengt. Das Rohprodukt wurde mittels Säulenchromatographie (RP-18 SiO₂; H₂O / MeCN = 3:1) gereinigt und ergab 252 mg (0.68 mmol; 68 %) gelben Feststoff.

DC: R_f (RP-18 SiO₂; H₂O / MeCN = 3:1) = 0.74

- **Smp.**: 291 292°C
- **UV/VIS**: (MeOH): λ = 229 nm (82), 264 nm (100), 343 nm (32), 401 nm (26)

Fluor.: (MeOH): λ_{Ex} = 410 nm ; λ_{Max} = 476 nm

- ¹**H-NMR:** (CDCl₃; 250 MHz): 13.00 12.00 (br; 2 H; 2 x COOH); 8.98 (s; 1 H; H₅); 7.91 (d; J = 7.9 Hz; 1 H; H₆); 7.47 (d; J = 8.0 Hz; 1 H; H₇); 4.55 (s; 2 H; $H_{\alpha'}$); 3.98 (s; 3 H; N-CH₃); 3.08 (t; J = 7.4 Hz; 2 H; H_{\alpha}); 2.65 (t; J = 8.0 Hz; 2 H; H_{\alpha}); 2.62 (s; 3 H; Ar-CH₃)
- ¹³C-NMR: (DMSO; 500 MHz): 173.7 (CH₂CH₂COOH); 169.6 (CH₂COOH); 161.3 (C₄); 158.9 (C_{10a}); 155.5 (C₂); 150.3 (C₈); 143.4 (C_{9a}); 143.0 (C₅); 128.9 (C₆); 126.2 (C₇); 125.4 (C₉); 121.5 (C_{5a}); 112.9 (C_{4a}); 42.1 (N-CH₃); 41.8 (C_α'); 33.6 (C_β); 29.3 (C_α); 18.4 (Ar-CH₃)
- MS: (EI-MS; 70 eV; Probe zersetzt sich): 371.2 (100; [M]⁺); 340.1 (12); 326.2 (57; [M-COOH]⁺); 312.2 (29; [M-CH₂COOH]⁺); 283.2 (28); 266.1 (45); 252.1 (9); 237.1 (9)

IR: (KBr): 2933.3 (schw), 2361.1 (st), 1727.8 (st), 1694.4 (st), 1670.3 (st), 1586.4 (st), 1536.4 (st), 1483.3 (m), 1452.4 (m), 1411.1 (m), 1377.8 (schw), 1338.9 (schw), 1311.1 (schw), 1250.0 (schw), 1208.3 (st), 927.4 (schw)

EA: C₁₈H₁₇N₃O₆ (371.35 g/mol) Berechnet: C 58.22, H 4.61, N 11.32, O 25.85 Gefunden: C 57.62, H 4.73, N 11.05, O 26.32

9,10-Dimethyl-3-(pentafluorophenyloxyethyl-2-oxo)-8-(pentafluorophenyloxypropyl-3-oxo)-5-deazaisoalloxazine (70)

In einem Kolben wurden 170 mg (458 μ mol; 1 Äq.) **68** vorgelegt und mit 5 ml trockenem DMF gelöst. Im Anschluss wurden 263 mg (1.37

mmol; 3 Äq.) EDC·HCI und 253 mg (1.37 mmol; 3 Äq.) Pentafluorophenol zugegeben. Die Lösung wurde nachfolgend 1 h bei RT gerührt und mit dest. H₂O verdünnt. Danach wurde dreimal mit dest. CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und eingeengt. Das gelbe Rohprodukt wurde in CH₂Cl₂ / n-Hexan umkristallisiert. Die gelben Kristalle wurden abfiltriert, am Wasserstrahl getrocknet und transferiert. Nach dem Trocknen am Hochvakuum wurden 267 mg (380 μ mol; 83 %) gelbe Kristalle erhalten.

DC: $R_f (CH_2Cl_2 / MeOH = 9:1) = 0.85$

UV/VIS: (CHCl₃): λ = 266 nm (100), 342 nm (38), 406 nm (33)

Fluor.: (CHCl₃): λ_{Ex} = 410 nm ; λ_{Max} = 472 nm

¹**H-NMR**: (CDCl₃; 400 MHz): 8.85 (s; 1 H; H₅); 7.72 (d; J = 8.1 Hz; 1 H; H₆); 7.41 (d; J = 8.1 Hz; 1 H; H₇); 5.20 (s; 2 H; H_{α'}); 4.10 (s; 3 H; N-CH₃); 3.32 (t; J = 7.6 Hz; 2 H; H_{α}); 3.10 (t; J = 7.6 Hz; 2 H; H_{β}); 2.68 (s; 3 H; Ar-CH₃)

IR: (KBr): 2926.7 (schw), 1782.5 (m), 1700.3 (m), 1654.6 (st), 1628.6 (m), 1603.8 (schw), 1559.7 (schw), 1520.4 (sst), 1419.8 (schw), 1366,7 (schw), 1314.5 (schw), 1252.5 (schw), 1148,3 (m), 1111.1 (m), 1001.2 (st), 796.3 (schw)

6.2.3 Kopplung von Porphyrin und 5-Deazaflavin

Synthese von 5-DF-Por-SH (87)

In einem 10 ml Schlenk-Kolben wurden 58 mg (55.2 μ mol; 1 Äq.) **86** unter Argon vorgelegt und mit 1 ml trockenem und entgastem DMF gelöst. Gleich im Anschluss wurden 97 mg (138 μ mol; 2.5 Äq.) **70** zugegeben und die Lösung 4 h bei 100°C gerührt. Die Lösung wurde auf RT gebracht und mit dest. CH₂Cl₂ verdünnt. Anschliessend wurde die Lösung mit gesättigter NaHCO₃-Lösung basisch gestellt und

dreimal mit dest. CH_2CI_2 extrahiert. Die vereinigten organischen Phasen wurden über Na_2SO_4 getrocknet, filtriert und eingeengt. Das Rohprodukt wurde mittels Säulenchromatographie (SiO₂; CH_2CI_2 / MeOH = 95:5+ 1 % TEA) gereinigt. Nach dem Trocknen am Hochvakuum wurden 28 mg (20.1 µmol; 37 %) eines lila Feststoffes erhalten.

DC: R_f (CH₂Cl₂ / MeOH = 95:5+ 1 % TEA) = 0.33

UV/VIS: (CHCl₃): λ = 269 nm (47), 346 nm (31), 415 nm (100), 513 nm (9), 546 nm (4), 583 nm (4)

Fluor.: (MeOH): λ_{Ex} = 410 nm ; λ_{Max} = 476 nm

¹**H-NMR**: (CDCl₃; 600 MHz; T = 345 K): 10.14 (br; 2 H; H_{5,15(meso)}); 9.05 (d; J = 8.8 Hz; 1 H; H_{5'}); 8.93 (d; J = 8.8 Hz; 1 H; H_{5'}); 8.77 (s; 1 H; NHCO); 7.95 (s; 1 H; NHCO); 7.70 (m; 2 H; H_{4'}); 6.70 (m; 2 H; H_{3'}); 6.15 - 6.05 (m; 2 H; H_{3",5"}); 5.80 (d; J = 7.7 Hz; 1 H; H_{7"}); 4.46 (s; 2 H; H_{a"}); 4.41 (s; 1 H; H_{5""}); 4.18 (d; J = 7.9 Hz; 1 H; H₆"); 4.10 - 3.80 (m; 8 H; H_a); 3.27 (t; J = 4.6 Hz; 2 H; H_{a'}); 3.17 (t; J = 4.4 Hz; 2 H; H_{a'}); 2.74 (br; 12 H; Pyrrol-CH₃); 2.50 - 2.40 (m; 2 H; H_β"); 2.40 - 2.10 (m; 8 H; H_β); 2.12 (s; 3 H; Ar-CH₃(DF)); 1.90 - 1.70 (m; 8 H; H_γ); 1.18 (t; J = 7.1 Hz; 6 H; H_δ); 1.10 (t; J = 7.3 Hz; 6 H; H_δ); 1.05 - 0.95 (m; 2 H; H_{a"}); 0.84 (s; 9 H; tert-Bu); 0.70 (m; 2 H; H_γ'); 0.57 (m; 2 H; H_γ'); 0.28 (s; 3 H; N-CH₃); 0.26 (m; 2 H; H_β'); 0.17 (m; 2 H; H_β'); -2.57 (s; 1 H; Pyrrol-NH); -2.87 (s; 1 H; Pyrrol-NH); -3.02 (s; 1 H; SH)

MS: (ESI-MS; MeOH, positiv): 1386.5 (100; [M]⁺)

In einem Kolben wurden 7.8 mg (5.6 μmol; 1 Äq.) **87** vorgelegt und mit 3 ml absolutem und entgastem Toluol gelöst. Danach wurden 13 μl (112 μmol; 20 Äq.) trockenes und entgastes 2,6-Lutidin zugefügt und die Lösung auf 120°C erwärmt. Im Anschluss wurden 17.2 mg (78 μmol; 14 Äq.) trockenes und entgastes FeBr₂ gelöst in 0.3 ml Toluol zugegeben. Die mittlerweile braune

Lösung wurde 45 min bei 120°C weitergerührt und nachfolgend auf RT abgekühlt. Die Reaktionsmischung wurde direkt über Celite filtriert. Dabei wurde solange mit trockenem und entgastem Toluol nachgespühlt, bis das Filtrat farblos war. Nach dem Einengen der Lösung am Hochvakuum wurde das Rohprodukt mittels Säulenchromatographie (SiO₂; Toluol / THF = 2:1) gereinigt. Nach dem Trocknen am Hochvakuum konnten 6.5 mg (5.0 μ mol; 89 %) brauner Feststoff erhalten werden.

Synthese von 5-DF-Fe(III)Por-S (88)

DC: R_f (Toluol / THF = 1:1) = 0.41

UV/VIS: (CHCl₃): λ = 269 nm (68), 346 nm (49), 406 nm (100), 510 nm (br; 15)

MS: (ESI-MS; MeOH, negativ): 1437.6 (100; [M-1]⁺), 1473.5 (15; [M+Cl]⁺), 1518.3 (3; [M+Br]⁺)

Bemerkungen:

Die Verbindungen **73**, **74**, **75**, **76**, **79**, **80**, **81**, **82**, **83**, **84** und **85** wurden mehrfach innerhalb der Gruppe synthetisiert und charakterisiert. Aus diesem Grund wurde von einer vollständigen Charakterisierung abgesehen. Verbindungen **86**, **87** und **88** konnten nur in geringen Mengen erhalten werden, so dass auf Analysemethoden, welche die Probe zestören oder zuviel Material benötigen verzichtet wurde. Bei Verbindung **88** wurde aufgrund der geringen Menge und ihrer Sauerstoffempfind-lichkeit nur die notwendige Analytik vorgenommen.

6.3 Abkürzungen

Å	1 Ångström (1 Å = 10 ⁻¹⁰ m)
abs.	absolut
AcOH	Essigsäure
Äq.	Äquivalente
AU	Absorption Units
BFC	7-Benzyloxy-4-trifluormethylcoumarin
BMS	Bortribromid Dimethylsulfid-Komplex
BOC	tert-Butyloxycarbonyl
br	breit
BuCN	Butyronitril
BuLi	n-Butyllithium
¹³ C	Kohlenstoff
COSY	Correlated Spectroscopy
CV	Zyklovoltammetrie
δ	Chemische Verschiebung (in ppm)
d	Dublett
Da	1 Dalton (Atomare Masseneinheit u=1/12 m (¹² C))
DABCO	1,4-Diazabicyclo[2.2.2]octan
DBU	1,8-Diazabicyclo[5.4.0]undec-7-en
DDQ	2,3-Dichlor-5,6-Dicyan-1,4-benzochinon
dest.	destilliert
DMAP	4-Dimethylaminopyridin
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
DPV	Differentielle Pulsvoltammetrie
3	Extinktionskoeffizient (cm ² / mmol)
E ⁰	Standardpotential (in V)
EA	Elementaranalyse
EDC	N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid
	hydrochlorid
EI	Electron Impact
ESI	Electro Spray Ionisation

ET	Elektronen-Transfer
Et ₂ O	Diethylether
EtOAc	Ethylacetat
EtOH	Ethanol
eV	Elektronenvolt (= 96.485 kJ/mol)
Ex	Excitation (Anregung)
FAB	Fast Atom Bombardement
FAD/FADH ₂	Flavin-Adenin-Dinukleotid
¹ H	Proton
HFC	7-Hydroxy-4-trifluormethylcoumarin
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Coherence
HPLC	High Performance Liquid Chromatography
IC	Inhibition constant
IR	Infrarot-Spektroskopie
J	Kopplungskonstante
K _m	Michaelis-Menten Konstante
λ	Wellenlänge
λ m (IR)	Wellenlänge mittel (IR)
λ m (IR) m (NMR)	Wellenlänge mittel (IR) Multiplett (¹ H-NMR)
λ m(IR) m(NMR) MALDI	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i>
λ m(IR) m(NMR) MALDI Max	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i> Maximum
λ m (IR) m (NMR) MALDI Max MeCN	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i> Maximum Acetonitril
λ m (IR) m (NMR) MALDI Max MeCN MeOH	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i> Maximum Acetonitril Methanol
λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i> Maximum Acetonitril Methanol Megahertz
λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz MS	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i> Maximum Acetonitril Methanol Megahertz Massenspektrokopie
 λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz MS NADP 	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i> Maximum Acetonitril Acetonitril Methanol Megahertz Massenspektrokopie Nicotinamid Adenin Dinukleotid Phosphat
 λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz MS NADP NMR 	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) <i>Matrix Assissted Laser Desorption Ionisation</i> Maximum Acetonitril Acetonitril Methanol Megahertz Massenspektrokopie Nicotinamid Adenin Dinukleotid Phosphat <i>Nuclear Magnetic Resonance</i>
λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz MS NADP NMR NOESY	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) Matrix Assissted Laser Desorption Ionisation Maximum Acetonitril Methanol Megahertz Massenspektrokopie Nicotinamid Adenin Dinukleotid Phosphat Nuclear Magnetic Resonance Nuclear Overhauser Effect Spectroscopy
 λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz MS NADP NMR NOESY OEP 	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) Matrix Assissted Laser Desorption Ionisation Maximum Acetonitril Methanol Megahertz Massenspektrokopie Nicotinamid Adenin Dinukleotid Phosphat Nuclear Magnetic Resonance Nuclear Overhauser Effect Spectroscopy Octaethylporphyrin
 λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz MS NADP NMR NOESY OEP ppm 	Wellenlänge mittel (IR) Multiplett (¹ H-NMR) Matrix Assissted Laser Desorption Ionisation Maximum Acetonitril Methanol Megahertz Massenspektrokopie Nicotinamid Adenin Dinukleotid Phosphat Nuclear Magnetic Resonance Nuclear Overhauser Effect Spectroscopy Octaethylporphyrin Parts Per Million
λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz MS NADP NMR OEP ppm p-TsOH	Wellenlängemittel (IR)Multiplett (¹ H-NMR)Matrix Assissted Laser Desorption IonisationMaximumAcetonitrilMethanolMegahertzMassenspektrokopieNicotinamid Adenin Dinukleotid PhosphatNuclear Magnetic ResonanceNuclear Overhauser Effect SpectroscopyOctaethylporphyrinParts Per Millionpara-Toluolsulfonsäure
λ m (IR) m (NMR) MALDI Max MeCN MeOH MHz NADP NMR NOESY OEP ppm p.TsOH	Wellenlängemittel (IR)Multiplett (¹ H-NMR)Matrix Assissted Laser Desorption IonisationMaximumAcetonitrilMethanolMegahertzMassenspektrokopieNicotinamid Adenin Dinukleotid PhosphatNuclear Magnetic ResonanceNuclear Overhauser Effect SpectroscopyOctaethylporphyrinParts Per Millionpara-ToluolsulfonsäureQuartett

RET	Resonanzenergie-Transfer
R _f	Retentionsfaktor
ROESY	Rotational Frame Overhauser Effect Spectroscopy
RP	Reversed Phase (Umkehrphase)
rpm	Rotations per minute (Umdrehungsgeschwindigkeit)
RT	Raumtemperatur
S	Singulett
S _{br}	breites Singulett
SCE	Standard Calomel Electrode
schw	schwach
sext	Sextett
SiO ₂	Kieselgel
Smp.	Schmelzpunkt
st	stark
τ	Lebensdauer
t	Triplett
t _R	Retentionzeit
TBME	tert-Butyldimethylether
TEA	Triethylamin
tert-Bu	tert-Butyl
TFA	Trifluoressigsäure
THF	Tetrahydrofuran
TMS	Tetramethylsilan
TOCSY	Total Correlation Spectroscopy
TOF	Time-of-flight
TPP	Tetraphenylporphyrin
t _R	Retentionszeit
UV	Ultraviolett-Detektion
UV254+	Ultraviolett-Absorption bei λ = 254 nm
UV366+	Ultraviolett-Absorption bei λ = 366 nm
VIS	Visuelle Detektion
VIS+	Visuell detektierbar
v/v	Volumen pro Volumen
w/v	Gewicht pro Volumen

7. Literatur

- [1] D. Klingenberg, Arch. Biochem. Biophys. 1958, 77, 493
- [2] B. Garfinkel, Arch. Biochem. Biophys. 1958, 75, 376
- [3] T. Omura, R. Sato, J. Biol. Chem. 1964, 239, 2370
- [4] T. L. Poulos, B. C. Finzel, I. C. Gunsalus, G. C. Wagner, J. Kraut J. Biol. Chem. 1985, 260, 16122
- [5] P. R. Ortiz de Montellano, in *Cytochrome P450: Structure, Mechanism and Biochemistry*, 2nd Ed. (Ed.: P. R. Ortiz de Montellano), Plenum Press, New York, **1995**
- [6] F. Durst, in *Frontiers in Biotransformation* (Ed.: K. Ruckpaul, H. Rein), Akademie Verlag, Berlin, **1991**, 191
- [7] F. P. Guengerich, in *Mammalian cytochrome P450, Vol. 1-2*, CRC, Boca Raton, Florida, **1987**
- [8] D. Mansuy, Pure Appl. Chem. 1994, 66, 737
- [9] H.S. Mason, W. Fawlks, J. Peterson J. Am. Chem. Soc. 1955, 77, 2914
- [10] O. Hayaishi, M. Katagiri, S. Rothberg J. Am. Chem. Soc. 1955, 77, 5450
- [11] D. R. Nelson, Arch. Biochem. Biophys. 1999, 369, 1-10
- [12] H. V. Gelboin, E. Huberman, L. Sachs, Proc. Natl. Acad. Sci. 1969, 64, 1188-1194
- [13] A. H. Conney, Cancer Res. 1982, 42, 4875-4917

- [14] D. M. Stresser, A. P. Blanchard, S. D. Turner, J. C. L. Erve, A. A. Dandeneau,
 V. P. Miller, C. L. Crespi, *Drug Metab. Dispos.* 2000, 28, 1440-1448
- [15] C. Ioannides, Cytochrome P450: Metabolic and Toxicological Aspects C.
 Ioannides, Ed.; CRC Press, New York, 1996, pp 77-297
- [16] S. A. Wrighton, J. C. Stevens Crit. Rev. Toxicol. 1992, 22, 1-21
- [17] F. P. Guengrich, Cytochrome P450 : Structure, Mechanism, and Biochemistry, 2nd ed.; P. R. Ortiz de Montellano, Ed.; Plenum: New York, 1995, Chapter 5, pp 473-535
- [18] D. R. Nelson, L. Koymans, J. J. Stegeman, R. Feyereisen, D. J. Waxman, M.
 R. Waterman, O. Gotoh, M. J. Coon, R. W. Estabrook, I. C. Gunsalus, D. W.
 Nebert, *Pharmacogenetics* **1996**, *6*, 1-42
- [19] F. J. Gonzalez, *Pharmacol. Rev.* 1988, 40, 243-288
- [20] D. T. Molowa, E. G. Schuetz, S. A. Wrighton, P. B. Watkins, P. Kremers, G. Mendez-Picon, G. A. Parker, P. S. Guzelian, *Proc. Natl. Acad. Sci.* **1986**, *83*, 5311-5315
- [21] T. Aoyama, S. Yamano, D. J. Waxman, D. P. Lapenson, U. A. Meyer, V. Fischer, R. Tyndale, T. Inaba, W. Kalow, H. V. Gelboin, F. J. Gonzalez, *J. Biol. Chem.* 1989, 264, 10388-10395
- [22] J. D. Schuetz, D. T. Molowa, P. S. Guzelian, Arch. Biochem. Biophys. 1989, 274, 355-365
- [23] M. Komori, K. Nishio, M. Kitada, K.Shiramatsu, K. Muroya, M. Sona, K. Nagashima, T. Kamataki, *Biochemistry* **1990**, *29*, 4430-4433

- [24] E. M. J. Gillam, T. Baba, B.-R. Kim, S. Ohmori, F. P. Guengerich, Arch. Biochem. Biophys. 1993, 305, 123-131
- [25] H. Yamazaki, Y. Inui, S. A. Wrighton, F. P. Guengerich, *Carcinogenesis* **1995**, 16, 2167-2170
- [26] J. T. M. Buters, K. R. Korzekwa, K. L. Kunze, Y. Omata, J. P. Hardwick, F. J. Gonzalez, Drug Metab. Dispos. 1994, 22, 688-692
- [27] H. Yamazaki, M. Nakano, Y. Imai, Y. F. Ueng, F. P. Guengerich, T. Shimada, *Archives of Biochemistry and Biophysics* **1996**, *325*, 174-182
- [28] W. R. Brian, M. A. Sari, M. Iwasaki, T. Shimada, L. S. Kaminsky, F. P. Guengerich, *Biochemistry* 1990, 29, 11280-11292
- [29] M. S. Shet, K. M. Faulkner, P. L. Holmans, C. W. Fisher, R. W. Estabrook, *Arch. Biochem. Biophys.* **1995**, *318*, 314-321
- [30] H. Yamazaki, E. M. Gillam, M. S. Dong, W. W. Johnson, F. P. Guengerich, T. Shimada, Arch. Biochem. Biophys. 1997, 342, 329-337
- [31] M. S. Shet, C. W. Fisher, P. L. Holmans, R. W. Estabrook, Proc. Natl. Acad. Sci. 1993, 90, 11748-11752
- [32] S. Imaoka, Y. Imai, T. Shimada, Y. Funae, *Biochemistry* 1992, 31, 6063-6069
- [33] H. Yamazaki, Y. F. Ueng, T. Shimada, F. P. Guengerich, *Biochemistry* **1995**, 34, 8380-8389
- [34] F. P. Guengerich, M. V. Martin, P. H. Beaune, P. Kremers, T. Wolff, D. J.
 Waxman, *J. Biol. Chem.* **1986**, *261*, 5051-5060
- [35] Y.-F. Ueng, T. Kuwabara, Y.-J. Chun, F. P. Guengerich, *Biochemistry* **1997**, 36, 370-381

- [36] D. J. Waxman, C. Attisano, F. P. Guengerich, D. P. Lapenson, *Arch. Biochem. Biophys.* **1988**, 263, 424-436
- [37] O. Gotoh J. Biol. Chem. 1992,267, 83-90
- [38] G. D. Szklarz, J. R. Halpert J. Comput. Aided Mol. Des. 1997, 11, 265-272
- [39] G. D. Szklarz, J. R. Halpert Life Sci. 1997, 61, 2507-2520
- [40] M. Shou, J. Grogan, J. A. Mancewicz, K. W. Krausz, F. J. Gonzalez, Biochemistry 1994, 33, 6450-6455
- [41] Y.-F. Ueng, T. Kuwabara, Y.-J. Chun, F. P. Guengerich, *Biochemistry* **1997**, 36, 370-381
- [42] V. Kerlan, Y. Dreano, J. P. Bercovici, P. H. Beaune, H. H. Floch, *Biochem. Pharmacol.* **1992**, *44*, 1745-1756
- [43] B.M. Kerr, K. E. Thummel, C. J. Wurden, S. M. Klein, D. L. Kroetz, *Biochem. Pharmacol.* **1994**, *47*, 1969-1979
- [44] C. H. Yun, M. Wood, A. J. J. Wood, F. P. Guengerich, Anesthesiology 1992, 77, 467-474
- [45] K. D. Raney, T. Shimada, D. H. Kim, J. D. Groopman, T. M. Harris, F. P. Guengerich, *Chem. Res. Toxicol.* **1992**, *5*, 202-210
- [46] Y. F. Ueng, T. Shimada, H. Yamazaki, F. P. Guengerich, *Chem. Res. Toxicol.* **1995**, *8*, 218-225
- [47] G. D. Szklarz, J. R. Halpert, Drug Metab. Disp. 1998, 26, 1179-1184
- [48] M. Shou, R. Dai, D. Cui, K. R. Korzekwa, T. A. Baillie, T. H. Rushmore, J. Biol. Chem. 2001, 276, 2256-2262

- [49] M. Shou, Y. Lin, P. Lu, C. Tang, Q. Mei, D. Cui, W. Tang, J. S. Ngui, C. Lin, R. Singh, *Curr. Drug Metab.* 2001, 2, 17-36
- [50] A. P. Koley, J. T. M. Buters, R. C. Robinson, A. Markwitz, F. K. Friedman, J. Biol. Chem. 1995, 270, 5014-5018
- [51] Y. A. He, Y. Q. He, G. D. Szklarz, J. R. Halpert, *Biochemistry* 1997, 36, 8831-8839
- [52] G. R. Harlow, J. R. Halpert, Proc. Natl. Acad. Sci. 1998, 95, 6636-6641
- [53] K. R. Korzekwa, N. Krishnamachary, M. Shou, A. Ogai, R. A. Parise, A. E. Rettie, F. J. Gonzalez, T. S. Tracy, *Biochemistry* **1998**, *37*, 4137-4147
- [54] J. H. Lin, A. Y. H. Lu, *Pharmacol. Rev.* 1997, 49, 403-449
- [55] C. L. Crespi, Curr. Opin. Drug Discov. Dev., 1999, 2, 15-19
- [56] G. C. Moody, S. J. Griffin, A. N. Mather, D. F. McGinnity, R. J. Riley, *Xenobiotica* **1999**, *9*, 53-75
- [57] N. A. Hosea, G. P. Miller, F. P. Guengerich, *Biochemistry* 2000, 39, 5929-5939
- [58] D. J. Collins, W. R. Jackson, R. N. Timms, Aust. J. Chem. 1977, 30, 2167-2175
- [59] T. Carell, H. Schmid, M. Reinhard, J. Org. Chem. 1998, 63, 8741-8747
- [60] C. D. Jones, N. R. Mason, Steroids, Volume 25, ed.; A. Segaloff, Holden-Day Inc., San Francisco 1975, California, Nr. 1, 23-32
- [61] T. Kronbach, D. Mathys, M. Umeno, F. J. Gonzalez, U. A. Meyer, *Mol. Pharmacol.* **1989**, *36*, 89-96

- [62] J. C. Gorski, S. D. Hall, D. R. Jones, M. VandenBranden, S. A. Wrighton, *Biochem. Pharmacol.* **1994**, *47*, 1643-1653
- [63] A. Ghosal, H. Satoh, P. E. Thomas, E. Bush, E. Moore, *Drug Metab. Disp.* **1996**, *24*, 940-947
- [64] I. H. Segel, *Enzyme Kinetics*, Wiley Classics Library: New York, 1993, Chapter 3, pp 100-125
- [65] C. L. Crespi, 2003 persönliche Mitteilung
- [66] R. W. Wang, D. J. Newton, N. Liu, W. M. Atkins, A. Y. H. Lu, Drug Metab. Disp. 2000, 28, 360-366
- [67] A. Chougnet, C. Stoessel, W.-D. Woggon, *Bioorg. Med. Chem. Lett.* 2003, 13, 3643-3645
- [68] D. E. O'Brien, L. T. Weinstock, C. C. Cheng, J. Heterocyclic Chem. 1970, 7, 99C; Walsh, Acc. Chem. Res. 1986, 19, 216
- [69] P. Hemmerich, V. Massey, H. Fenner, FEBS Lett. 1977, 84, 5
- [70] T. C. Bruice, *Progress in Bioorganic Chemistry*, Vol. 4, E. T. Kaiser and F. J. Kezdy, Eds., John Wiley & Sons, New York, 1976
- [71] F. Yoneda, K. Tanaka, Med. Res. Rev. 1987, 7, 477
- [72] D. Eirich, G. D. Vogels, R. S. Wolfe, *Biochemistry* **1978**, *17*, 4583
- [73] A. Sancar, *Biochemistry* 1994, 33, 2-9
- [74] P. F. Heelis, R. F. Hartman, S. D. Rose, Chem. Soc. Rev. 1995, 289-297
- [75] T. P. Begley, Acc. Chem. Res. 1994, 27, 394-401

- [76] S.-T. Kim, P. F. Heelis, T. Okamura, Y. Hirata, N. Mataga, A. Sancar, *Biochemistry* **1991**, *30*, 11262-11270
- [77] S.-T. Kim, P. F. Heelis, A. Sancar, *Biochemistry* 1992, 31, 11244-11248
- [78] M. S. Jorns, A. J. Ramsey, *Biochemistry* 1992, 31, 8437-8441
- [79] M. S. Jorns, J. Am. Chem. Soc. 1987, 109, 3133-3136; S. E. Rokita, C. T.
 Walsh, *ibid.* 1984, 106, 4589-4595
- [80] K. Malhotra, S.-T. Kim, C. Walsh, A. Sancar, *J. Biol. Chem.* **1992**, *267*, 15406-15411; G. Payne, M. Wills, C. Walsh, A. Sancar, *Biochemistry* **1990**, *29*, 5706-5711
- [81] A. P. M. Eker, R. H. Dekker, W. Berends, *Photochem. Photobiol.* 1981, 33, 65-72; Y. Yasui, M. Takao, A. Oikawa, A. Kiener, C. T. Walsh, A. P. M. Eker, *Nucleic Acids Res.* 1998, *16*, 4447-4463
- [82] H. W. Park, S.-T. Kim, A. Sancar, J. Deisenhofer, *Science* **1995**, *268*, 1866-1872; T. Tamada, K. Kitadokoro, Y. Higuchi, K. Inaka, A. Yasui, P. E. de Ruiter, A. P. M. Eker, K. Miki, *Nature Struct. Biol.* **1997**, *38*, 887-891
- [83] P. F. Heelis, J. Photochem. Photobiol. B 1997, 38, 31-34
- [84] G. R. Fleming, *Chimia* 1997, 7, 365; N. Krauss, W.-D. Schubert, O. Klukas, P. Fromme, H. T. Witt, W. Saenger, *Nature Struct. Biol.* 1996, 3, 965-973; R. van Grondelle, J. P. Dekker, T. Gillbro, V. Sundstrom, *Biochim. Biophys. Acta* 1994, *1187*, 1-65
- [85] R. Epple, T. Carell, J. Am. Chem. Soc. 1999, 121, 7318-7329
- [86] H. G. O. Becker, *Einführung in die Photochemie*, 3. Auflage ed.: Deutscher Verlag der Wissenschaften: Berlin 1991

[87] T. Förster, Discuss. Faraday Soc. 1959, 27, 7-17

- [88] P. Hemmerich, V. Massey, H. Fenner, FEBS Lett. 1977, 84, 5
- [89] H.-J. Duchstein, H. Fenner, P. Hemmerich, W. R. Knappe, *Eur. J. Biochem.* **1979**, *104*, 167
- [90] P. Hemmerich, Helv. Chim. Acta 1964, 47, 464-475
- [91] F. Yoneda, Y. Sakuma, P.Hemmerich, *J. Chem. Soc., Chem. Commun.* **1979**, 825
- [92] F. Yoneda, K. Mori, S. Matsuo, Y. Kadokawa, Y. Sakuma, *J. Chem. Soc. Perkin Trans. I* **1981**, 1836
- [93] F. Yoneda, Lectures in Heterocyclic Chemistry, Vol. 5, R. N. Castle, S. W.Schneller, eds.: Heterocorporation, Orem Utah, 1980,73
- [94] F. Yoneda, Y. Sakuma, Y. Nitta, Chem. Lett. 1978, 1177
- [95] F. Yoneda, K. Kuroda, M. Kamishimoto, J. Chem. Soc. Commun. 1981, 1160
- [96] F. Yoneda, K. Kuroda, J. Chem. Soc. Commun. 1982, 927
- [97] F. Yoneda, K. Kuroda, K. Tanaka, J. Chem. Soc. Commun. 1984, 1194
- [98] K. Tanaka, T. Okada, F. Yoneda, T. Nagamatsu, K. Kuroda, *Tetrahedron Lett.* 1984, 25, 1741
- [99] K. Tanaka, T. Kimura, T. Okada, X. Chen, F. Yoneda, *Chem. Pharm. Bull.* 1987, 35, 1397

- [100] J. A. Peterson, R. E. White, Y. Yasukochi, M. L. Coombs, D. H. O'Keefe, R. E. Ebel, B. S. S. Masters, D. P. Ballou, M. J. Coon, *J. Biol. Chem.* **1977**, 252, 4431-4434
- [101] G. Blankenhorn, Eur. J. Biochem. 1976, 67, 67-80
- [102] M. Janda, P. Hemmerich, *Angew. Chem.* **1976**, *88*, 475-476; *Angew. Chem. Int. Ed. Engl.* **1976**, *15*, 443-444
- [103] H.-J. Duchstein, Thesis, Freie Universität, Berlin, 1977
- [104] P. Hemmerich, Progress in the Chemistry of Organic Natural Products 1976;
 W. Herz, H. Grisebach, G. W. Kirby, eds.; Vol. 33, pp. 451-527
- [105] F. Müller, P. Hemmerich, A. Ehrenberg, G. Palmer, V. Massey, *Eur. J. Biochem.* **1970**, *14*, 185-196
- [106] F. Müller, P. Hemmerich, A. Ehrenberg, *Flavins and Flavoproteins*; H. Kamin, ed.: pp. 107-122, University Park Press, Baltimore
- [107] P. F. Heelis, B. J. Parsons, G. O. Phillips, J. F. McKellar, *Photochem. Photobiol.* **1979**, *30*, 343-347
- [108] P. Hemmerich, W.-R. Knappe, H. E. A. Kramer, R. Traber, *Eur. J. Biochem.* **1980**, *104*, 511-520
- [109] R. Traber, T. Werner, S. Schreiner, H. E. A. Kramer, W. R. Knappe, P. Hemmerich, *Flavins and Flavoproteins*; K. Yagi, R. Yamano., eds: pp. 431-442, Jap. Sci. Soc. Press, Tokyo and University Park Press, Baltimore
- [110] M. Sun, T. A. Moore, P. S. Song, J. Am. Chem. Soc. 1972, 72, 1730
- [111] S. P. Song, T. A. Moore, W. E. Kurtin, Z. Naturforsch. 1972, 1011

[112] M. Sun, P. S. Song, *Biochemistry* 1973, 4663

- [113] M. Bliese, A. Launikonis, J. W. Loder, A. W.-H. Mau, W. H. F. Sasse, *Aust. J. Chem.* **1983**, *36*, 1873-1883
- [114] J. Takeda, S. Ohta, M. Hirobe, J. Am. Chem. Soc. 1987, 109, 7677-7688
- [115] P. Hemmerich, *Bioinorganic Chemistry II*; K. N. Raymond, Ed. American Chemical Society: Washington, DC, 1977, pp 312-329
- [116] K. A. Schellenberg, J. Org. Chem. 1963, 28, 3259-3261
- [117] F. Yoneda, Y. Sakuma, S. Mizumoto, R. Ito, J. Chem. Soc. Perkin Trans. 1 1976, 1805
- [118] V. Askam, R. H. L. Deeks, J. Chem. Soc. 1969, 14, 1935-1936
- [119] T. R. G. Edwards, D. Gani, *Tetrahedron* **1990**, *46*, 935-956
- [120] K. Toshima, T. Jyojima, N. Miyamoto, M. Katohno, M. Nakata, S. Matsumura, J. Org. Chem. 2001, 66, 1708-1715
- [121] G. Prasad, P. E. Hanna, J. Org. Chem. 1991, 56, 7188-7190
- [122] M. Goldberg, I. Pecht, H. E. A. Kramer, R. Traber, P. Hemmerich, *Biochim. Biophys. Acta* **1981**, *673*, 570-593
- [123] P. Stanetty, H. Koller, M. Mikovilovic, J. Org. Chem. 1992, 57, 6833
- [124] P. S. Clesy, G. A. Smythe, J. Aust. Chem. 1969, 22, 239
- [125] A. Osuka, B. Liu, K. Marayama, J. Org. Chem. 1993, 58, 3582

- [126]B. Stäubli, H. Fretz, U. Piantini, W.-D. Woggon, *Helv. Chim. Acta* **1987**, *70*, 1173
- [127] K. Takeda, K. Tsuboyama, K. Yamaguchi, H. Ogura, *J. Org. Chem.* **1985**, *50*, 273-275
- [128] V. V. Pavlishchuk, A. W. Addison, Inorganica Chimica Acta, 2000, 298, 97-102
- [129] I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay, A. F. Masters, L. Phillips, *J. Phys. Chem. B* 1999, 103, 6713-6722
- [130] J.-H. Fuhrhop, K. M. Kadish, D. G. Davis, J. Am. Chem. Soc. 1973, 95, 5140-5147
- [131] A. M. Stolzenberg, M. T. Stershic, J. Am. Chem. Soc. 1998, 110, 6391-6402
- [132] C. Inisan, J.-Y. Saillard, R. Guilard, A. Tabrd, Y. Le Mest, *New. J. Chem.* **1998**, 823-830
- [133] M. A. Phillippi, H. M. Goff, J. Am. Chem. Soc. 1982, 104, 6026-6034
- [134] P. A. J. Link, H. C. van der Plas, J. Org. Chem. 1986, 51, 1602-1604
- [135] A. M. Stolzenberg, M. T. Stershic, J. Am. Chem. Soc. 1988, 110, 6391-6402
- [136] C. A. Reed, Adv. Chem. Ser. 1982, 333-356
- [137] A. J. W. G. Visser, J. H. Fendler, J. Phys. Chem. 1982, 88, 2406-2409
- [138] R. Weiss, V. Bulach, A. Gold, J. Terner, A. X. Trautwein, *J. Biol. Inorg. Chem.* 2001, 6, 831-845
- [139] J. Fajer, D. C. Borg, A. Forman, D. Dolphin, R. H. Felton, *J. Am. Chem. Soc.* 1970, 72, 3451-3459

[140] J.-H. Fuhrhop, Struct. Bonding 1974, 18, 1-67

- [141] K. Yamaguchi, I. Morishima, Inorg. Chem. 1992, 31, 3216-3222
- [142] R. J. Donohoe, M. Atamian, D. F. Bocian, *J. Am. Chem. Soc.* **1987**, *109*, 5593-5599
- [143] G. Porcal, S. G. Bertolotti, C. M. Previtali, M. V. Encinas, *Phys. Chem. Chem. Phys.* 2003, *5*, 4123-4128
- [144] D. C. Barber, R. A. Freitag-Beeston, D. G. Whitten, *J. Phys. Chem.* **1991**, *95*, 4074-4086
- [145] D. L. Atkins, H.-R. Zhu, C. Guo, J. Phys. Chem. 1996, 100, 5420-5425
- [146] R. F. Khairutdinov, N. Serpone, J. Phys. Chem. B 1999, 103, 761-769
- [147] D. Kuciauskas, P. A. Liddell, S.-C. Hung, S. Lin, S. Stone, G. R. Steely, A. L. Moore, T. A. Moore, D. Gust, *J. Phys. Chem. B* 1997, *101*, 429-440
- [148] N. Turro, *Modern Molecular Photochemistry*; University Science Books, CA, 1991
- [149]S. Faure, C. Stern, R. Guilard, P. D. Harvey, J. Am. Chem. Soc. 2003, 126, 1253-1261
- [150] D. Mauzerall, J. Weiser, H. Staab, Tetrahedron 1989, 45, 4807-4814
- [151]S. L. Mayo, R. E. Walther, R. J. Crutchley, H. B. Gray, Science 1986, 233, 948-952
- [152] N. S. Hush, M- N. Paddon-Row, E. Cotsaris, H. Overing, J. W. Verhoeven, M. Heppener, *J. Phys. Lett.* **1985**, *117*, 8-11. D. N. Beratan, J. N. Onuchic, J. J. Hopfield, *J. Chem. Phys.* **1985**, *83*, 5325-5329. D. N. Beratan, J. J. Hopfield, *J.*

am. Chem. Soc. **1984**, *106*, 1584-1594. H. Overing, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, *J. Am. Chem. Soc.* **1987**, *109*,3258-3269. K. Ohta, G. L. Closs, K. Morokuma, N. J. Green, *J. Am. Chem. Soc.* **1986**, *108*, 1319-1320

- [153] J. K. Delaney, D. C. Mauzerall, J. S. Lindsey, J. Am. Chem. Soc. 1990, 112, 957-963
- [154] J. S. Lindsey, J. K. Delaney, D. C. Mauzerall, H. Linschitz, *J. Am. Chem. Soc.* 1988, *110*, 3610-3621
- [155] D. Mauzerall, Brookhaven Symp. Biol. 1976, 28, 64-73. D. Mauzerall, The Porphyrines; D. Dolphin, Ed.; Academic: New York, 1978; Vol. V, 29-52
- [156] R. P. Domingue, M. D. Fajer, J. Chem. Phys. 1985, 83, 2242-2251
- [157] R. J. Cave, P. Siders, R. A. Marcus, J. Phys. Chem. 1986, 90, 1436-1444
- [158] M. Asano-Someda, A. van der Est, U. Krüger, D. Stehlik, Y. Kaizu, H. Levanon, *J. Phys. Chem. A* **1999**, *103*, 6704-6714
- [159] D. T. Hermann, A. C. Schindler, K. Polborn, R. Gompper, S. Stark, A. B. J. Parusel, G. Grabner, G. Köhler, *Chem. Eur. J.* **1999**, *5*, 3208-3220
- [160] A. M. Brun, A. Harriman, V. Heitz, J.-P. Sauvage, *J. Am. Chem. Soc.* **1991**, *113*, 8657-8663
- [161] J. Springer, G. Kodis, L. de la Garza, A. L. Moore, T. A. Moore, D. Gust, J. Phys. Chem. A 2003, 107, 3567-3575
- [162] R. A. Marcus, N. Sutin, *Biochim. Biophys. Acta* **1985**, *811*, 265-322
- [163] J. Zimmermann, J. von Gersdorff, H. Kurreck, B. Röder, *J. Photochem. Photobiol. B* **1997**, *40*, 209-217

- [164] H. Heitele, F. Pöllinger, M. E. Michel-Beyerle, H. A. Staab, *J. Phys. Chem.* **1994**, *98*, 7402-7410
- [165] T. Asahi, M. Ohkohchi, R. Matsusaka, N. Mataga, R. P. Zhang, A. Osuka, K. Maruyama, J. Am. Chem. Soc. 1993, 115, 5665-5674
- [166] J. P. Sumida, P. A. Liddell, S. Lin, A. N. MacPherson, G. R. Seely, A. L. Moore, T. A. Moore, D. Gust, *J. Phys. Chem. A* **1998**, *102*, 5512-5519
- [167] J. Andreasson, G. Kodis, T. Ljungdahl, A. L. Moore, T. A. Moore, D. Gust, J. Martensson, B. Albinsson, J. Phys. Chem. A 2003, 107, 8825-8833
- [168] K. Kilsa, J. Kajanus, A. N. MacPherson, J. Martensson, B. Albinsson, J. Am. Chem. Soc. 2001, 123, 3069-3080
- [169]A. N. MacPherson, P. A. Liddell, S. Lin, L. Noss, G. R. Seely, J. M. DeGraziano, A. L. Moore, T. A. Moore, D. Gust, *J. Am. Chem. Soc.* 1995, 117, 7202-7212
- [170] A. M. Brun, A. Harriman, V. Heitz, J.-P. Sauvage, *J. Am. Chem. Soc.* **1991**, *113*, 8657-8663
- [171] Katalog der Firma Becton Dickinson AG, Biosciences, 4002 Basel, Schweiz
- [172] A. Altomare, G. Cacarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *J. Appl. Cryst.* **1994**, *27*, 435-435
- [173] D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, R. I. Cooper, CRYSTALS Issue 11. Chemical Crystallography Laboratory, Oxford, UK, 2001
- [174] L. J. Farrugia, J. Appl. Cryst. 1997, 30, 56
- [175] K. Kilsa, J. Kajanus, S. Larsson, A. N. MacPherson, J. Martensson, B. Albinsson, *Chem. Eur. J.* **2001**, *7*, 2122-2133

- [176]C. J. F. Böttcher, in *The Theory of electric polarisation, Vol. I., Elsevier, Amsterdam*, **1973**, p. 153
- [177] R. Kubo, Y. Toyozawa, Prog. Theor. Phys. 1955, 13, 160
- [178] V. G. Levich, R. R. Dogonadze, Dokl. Acad. Nauk SSSR 1959, 124, 123
- [179] V. G. Levich, Adv. Elektrochem. Eng. 1965, 4, 249
- [180] I. Rips, J. Jornter, Phys. Chem. N. F. 1982, 133, 93
- [181] D. G. Johnson, M. P. Niemczyk, D. W. Minsek, G. P. Wiederrecht, W. A. Svec,G. L. Gaines III, M. R. Wasielewski, *J. Am. Chem. Soc.* 1993, *115*, 5692-5701
- [182] S. Fukuzumi, T. Tanaka, *Flavins and Deazaflavins in photoinduced electron transfer* (1988), Pt. C, 636-683
- [183] G. R. Seeley, Photochem. Photobiol. 1978, 79, 1344
- [184] M. Asano-Someda, Y. Kaizu, Inorg. Chem. 1999, 38, 2303-2311
- [185] M. Asano-Someda, A. Jinmon, N. Toyama, Y. Kaizu, *Inorg. Chim. Acta* **2001**, *324*, 347-351
- [186] M. Gouterman, J. Chem. Phys. 1959, 30, 1139
- [187] M.-S. Liao, S. Scheiner, J. Chem. Phys. 2002, 117, 205-219

Curriculum Vitae

Name:	Michael Andreas Müller
Geburtsdatum:	09.07.1975
Geburtsort:	Basel
Zivilstand:	Ledig
Nationalität:	Deutsch
Ausbildung	
1982-1986	Fridolinschule Lörrach-Stetten
1986-1995	Hans-Thoma-Gymnasium Lörrach
1996-2000	Chemiestudium an der Universität Basel mit Nebenfach Biologie. Diplomarbeit mit dem Titel "Synthese eines 1,10-Diaza-18-Krone-6 überbrück- ten Porphyrins als Vorläufer für ein Enzymmodell von P450 _{CAM} " unter Leitung von Prof. Dr. Wolf- Dietrich Woggon.
2000-2004	Doktorarbeit in der Forschungsgruppe von Prof. Dr. Wolf-Dietrich Woggon auf dem Departement Chemie der Universität Basel. Entwicklung eines Inhibitors für Cytochrom P450 3A4 und Untersuchung der photophysikalischen Eigenschaften von Deazaflavin- überbrückten Porphyrinen
März 2003 - Mai 2004	Assistent im Organisch-chemischen Praktikum für Studierende der Pharmazie und Biologie (Neben- fachpraktikum)
Publikationen und Präsentationen

- M. Müller, M. Lochner, L. Mu, W.-D. Woggon, "Synthesis of an Active Site Analogue of the Resting State of Cytochrome P450_{cam}", *Posterpräsentation* im Rahmen des 20. Regiosymposiums über organische und bioorganische Chemie, 27.-29. Sept. 2000, Sornetan (CH).
- (2) M. Müller, A. Chougnet, D. Meyer, C. Stoessel, W.-D. Woggon, "Rational Design and Synthesis of a New Fluorescent Probe for CYP3A4", *Posterpräsentation* im Rahmen der Gordon Research Conference über Organic Structures and Properties, 28. Jul.- 2. Aug., SPring-8, Japan.
- (3) M. Müller, A. Chougnet, D. Meyer, W.-D. Woggon, "Design and Synthesis of a New Inhibitor of Cytochrome P450 3A4 (CYP3A4), *Posterpräsentation* im Rahmen des 22. Regio-Symposiums über organische und bioorganische Chemie, 25.-27. Sept. 2002, Falkau (D).

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich meine Dissertation selbständig und nur mit den angegebenen Hilfsmitteln angefertigt habe. Ich erkläre ausserdem, dass ich diese Dissertation an keiner anderen Fakultät eingereicht habe.

Basel, den 25. Mai 2004

Michael Müller